
 

 

 
 
OpenJDK 8 for VSI OpenVMS I64 and VSI 
OpenVMS x86-64 
Release Notes 
December 2023 

VSI-I64VMS-OPENJDK80-V0800-372C-1.PCSI  

VSI-X86VMS-OPENJDK80-V0800-372C-1.PCSI 

Introduction 
Thank you for your interest in this port of OpenJDK 8 for VSI OpenVMS. The current release of OpenJDK 
for VSI OpenVMS is based on the OpenJDK 8u372 distribution. 

OpenJDK (https://openjdk.java.net/) is a free and open source implementation of the Java Platform, 
Standard Edition (Java SE). OpenJDK is licensed under the GNU General Public License (GNU GPL) 
Version 2 with a linking exception such that components linked to the Java Class library are not subject 
to the terms of the GPL license. OpenJDK is the official reference implementation of Java SE since 
Version 7. 

This release notes document contains installation instructions, details of any new features, known 
issues, and other information specific to this release of the software. These kits can be used to develop 
and run Java-based programs on VSI OpenVMS I64 Version 8.4-1L1 or higher and on VSI OpenVMS 
x86-64 v9.2-1. 

Please ensure that you understand the copyright and license information before using this release 
(this information can be found in the top level directory of your OpenJDK installation). 

Note that OpenJDK 8 for VSI OpenVMS I64 and for VSI OpenVMS x86-64 is not an update for the Java™ 
Development Kit (JDK) 8 for the OpenVMS Integrity servers Operating System; it is a separate product. 

Fixed problems and improvements (cumulative) 
VSI I64VMS and VSI x86-64 OPENJDK80 V8.0-372C: 

● Introducing SSL-independency; the new version uses the system get_entropy method for random 
number/seed generation.  

●      OpenJDK on X86: X11 terminal support added. Fixed the bugs found in the Field Test version. 

●      JNI examples are added to the product. 

●      Fixed a bug when aŌer specifying the "-V" argument, the path/name of the options file needed 
was not provided. 

●      The V8.0-372 release of OpenJDK for VSI OpenVMS IA64 is supported on VSI OpenVMS I64 V8.4-
2L1 or higher. It cannot be installed on VSI OpenVMS I64 V8.4-2 or lower. 



 

 

● This release contains numerous bugfixes, including the security fixes -  CVE-2023-21930, CVE-
2023-21937, CVE-2023-21938, CVE-2023-21939, CVE-2023-21954, CVE-2023-21967, CVE-2023-
21968. Please see the official release page for details - https://mail.openjdk.org/pipermail/jdk8u-
dev/2023-April/017039.html. 

● Redirection of stdin and stdout to/from files has been fixed. From this version, it became possible 
to use like in the example below: 

ProcessBuilder builder = new ProcessBuilder("child.exe"); 

File out = new File("childlog.txt"); 

builder.redirectOutput(out); 

● An attempt to write to a closed pipe resulted in the %C-F-SIGPIPE, broken pipe exception. 
Now the correct java.io.IOException: broken pipe is created in this case. 

● Fixed a bug in the string conversion module that caused a memory leak. 

 

VSI I64VMS OPENJDK80 V8.0-342A 

● This release includes various security fixes (including CVE-2022-21540, CVE-2022-21541, and CVE-
2022-3416), along with assorted bug fixes and enhancements. 

Please see https://mail.openjdk.org/pipermail/jdk8u-dev/2022-July/015254.html for a complete 
list of all updates and changes. 

VSI I64VMS OPENJDK80 V8.0-312A 

● Please see https://mail.openjdk.java.net/pipermail/jdk8u-dev/2021-October/014373.html for a 
complete list of all updates and changes that are included in the OpenJDK 8u312 release. This 
release includes numerous security fixes and bug fixes. 

VSI I64VMS OPENJDK80 V8.0-222B 

● The V8.0-222B release of OpenJDK for VSI OpenVMS is supported on VSI OpenVMS I64 V8.4-1H1 
or higher (the previous release could only be used with VSI OpenVMS V8.4-2L1). 

● Unlike previous versions of Java for OpenVMS, OpenJDK for VSI OpenVMS does not normally 
require any DECC logical names to be defined in order to enable certain C RTL features required 
for correct JVM operation, with such features instead being enabled on JVM start-up via 
LIB$INITAILIZE. However, there may be some situations that require customization of the set 
of C RTL features that are enabled or disabled. This release of OpenJDK for OpenVMS provides a 
new logical name (JAVA$DONT_PRESET_LOGICALS) that can be used to prevent 
LIB$INITAILIZE from setting any C RTL features, allowing the user to explicitly specify which C 
RTL features are enabled by defining the relevant DECC logical names. The new logical name 
JAVA$DONT_PRESET_LOGICALS can be defined to any value (OpenJDK simply checks for 
existence of the logical name). Note that this new logical name should be used with considerable 
care, and applications that rely on this setting should be thoroughly tested to ensure that there 
are no side-effects. 

VSI I64VMS OPENJDK80 V8.0-222 



 

 

In addition to the fixed problems and updates included in the OpenJDK 8u222 release, a number of 
general issues encountered with previous versions of Java for OpenVMS have been resolved for this 
OpenJDK release, including the following: 

● Upon certain exceptions (error conditions) the OpenVMS debugger could start unexpectedly. This 
problem has been fixed. 

● Java crash dumps could sometimes be incomplete due to a second crash dump being initiated 
while the first crash dump was still in progress. This problem has been resolved. 

● The code for creating child processes with inherited I/O has been significantly improved and is less 
error-prone. Issues associated with losing sub-process mailboxes have also been fixed. 

● Enhancements to native code generation have eliminated the occurrence of a number of spurious 
errors and exceptions. 

● Not all file versions were processed by IfExists() (java.nio.file.Files package) when 
the logical name JAVA$DELETE_ALL_VERSIONS was defined. This problem is resolved. 

● The sun.nio.fs.UnixPath.toRealPath() method did not correctly resolve paths such as 
“path_to_dir/.” and “path_to_dir/subdir/..”. This problem has been fixed. 

● In some cases the sun.nio.fs.UnixPath.toRealPath() method incorrectly resolved links. 
This problem has been fixed. 

● The following C RTL features are enabled via LIB$INITIALIZE. Note that the logical names to 
enable some of these features are still included in java$setup.com in case users rely on these 
definitions for other purposes. 

– DECC$FILE_PERMISSION_UNIX 

– DECC$FILENAME_UNIX_NO_VERSION 

– DECC$FILE_SHARING 

– DECC$FD_LOCKING 

– DECC$EFS_CASE_PRESERVE 

– DECC$EFS_CHARSET 

– DECC$ARGV_PARSE_STYLE 

– DECC$READDIR_DROPDOTNOTYPE 

● Atomic operations on improperly aligned values could result in %SYSTEM-F-ROPRAND errors. This 
problem has been resolved. 

● The following JVM options have been changed: 

– The UseCompressedOops option is not supported in OpenJDK for VSI OpenVMS and is always 
set to false. 

– Only a subset of values can be used with the TypeProfileLevel JVM option. Specifically, 
for TypeProfileLevel=x00 x may only be 0, 1, or 2.  

● Incorrect JVM exit status values were being set in some situations. Exit status values are now set 
in a correct and consistent manner. 

● Problems with inconsistent file cache updates and renaming of cached files have been fixed. 



 

 

● When remote debugging, programs would not start correctly due to listening sockets being closed 
when they should not have been. This problem has been resolved. 

● When using sun.nio.fs.UnixNativeDispatcher.opendir() for an existing file (not a 
directory) an incorrect exception was being thrown. The correct exception is now reported. 

 

Compatibility 
OpenJDK 8 for VSI OpenVMS IA64 is largely compatible with older Java versions for OpenVMS IA64 
and most existing Java programs will run without change on the OpenJDK platform. However, if you 
are moving from Oracle Java 6 for HPE OpenVMS to OpenJDK 8 for VSI OpenVMS there are some 
significant differences to be aware of. 

The following list identifies various differences between Oracle Java 6 for HPE OpenVMS and OpenJDK 
8 for VSI OpenVMS that may impact the operation of some programs. 

● Exclusive use of 64-bit pointers 

For Oracle Java 6 for HPE OpenVMS, the HotSpot Java Virtual Machine (JVM) utilized 64-bit 
pointers to facilitate the use of more than 2GB memory; however other binary components such 
as the launcher and shareable images called into by Java class libraries used only 32-bit pointers. 
OpenJDK 8 for VSI OpenVMS uses 64-bit pointers exclusively. As a consequence of this, any C or 
C++ application code using the Java Native Interface (JNI) will need to be recompiled to use 64-bit 
pointers (/POINTER_SIZE=64). Depending on the nature of the application code, this may 
necessitate some code changes. 

● Symbol vector compatibility 

Symbol vectors in sharable images shipped with OpenJDK 8 for VSI OpenVMS will not necessarily 
match those of the equivalent images provided by Oracle Java 6 for HPE OpenVMS. Any C or C++ 
application code using the Java Native Interface (JNI) that links with these shareable images will 
need to be relinked.  

● Removal of logical name JAVA$ENABLE_ENVIRONMENT_EXPANSION 

Commands to run Java programs can often be very long, and this can cause issues with DCL 
command line lengths. The logical name JAVA$ENABLE_ENVIRONMENT_EXPANSION was used in 
prior versions of Java for OpenVMS to help get around this issue such that any argument specified 
on the Java command line beginning with a “$” would be assumed to equate to a logical name 
(without the leading “$” character) that could specify a list of values and would be expanded out 
internally within Java, thereby avoiding issues with command line length. This facility was most 
commonly used to specify the Java class path (via the –cp or –classpath command line options), 
as class paths can often be very long; however the facility was little used for any other purpose.  

In OpenJDK 8 for VSI OpenVMS the Java virtual machine always checks the value supplied with the 
–cp or –classpath option to determine whether it equates to a logical name and if so then 
expansion occurs as before (as if the logical name JAVA$ENABLE_ENVIRONMENT_EXPANSION 
was defined), regardless of whether the argument has a leading “$” or not. It should also be noted 
that OpenJDK for VSI OpenVMS also supports the use of wildcards (“*”) in class path specifications. 
This feature can also be used to reduce the length of class path specifications. 

● Logical name JAVA$FILENAME_CONTROLS defaults to “8”  



 

 

The logical name JAVA$FILENAME_CONTROLS can be used to control how OpenJDK interprets 
and maps file names (between UNIX and OpenVMS formats). This logical name now defaults to a 
value of 8, as this value generally affords greatest flexibility and most predictable results. 

Be sure to define JAVA$FILENAME_CONTROLS appropriately for your environment, particularly 
if an ODS-2 file system is used for .jar and/or .class files (however the use of ODS-2 file 
systems is not recommended). See examples in JAVA$FILENAME_CONTROLS.COM (found in 
SYS$COMMON:[OPENJDK$80.COM] assuming a default installation) for setting the variable 
JAVA$M_MULTI_DOT_KEEP_LAST to accommodate any particular file name mapping 
requirements. 

● Changes to use of JAVA$FORK_PIPE_STYLE 

In Oracle Java 6 for HPE OpenVMS it was possible to specify values of 0, 1, and 2 for this logical 
name to control how pipes are established between parent and child processes. The value of 2 
would cause sockets to be used instead of OpenVMS mailboxes or standard UNIX-style pipes. If 
JAVA$FORK_PIPE_STYLE is not defined then a default value of 1 is used (which causes mailboxes 
to be used for any inter-process communication). This is still the case for OpenJDK on VSI 
OpenVMS; however the value of 2 is no longer supported, and if a value of 2 or an invalid value is 
specified, this will not be accepted and the default value of 1 will silently be used. 

● No debug versions of images 

The size of the HotSpot Java Virtual Machine is such that building a debug version is not possible 
and consequently OpenJDK for VSI OpenVMS does not provide debug versions of executable 
programs and shareable images. 

● Case sensitivity of file names 

OpenJDK for VSI OpenVMS is more sensitive to the case of file names, and in general the names 
of .java and .class files should match identically the name of the class in question. For 
example, if you have a Java class named myClass, then the corresponding source file should be 
named myClass.java. This impacts both the JVM (the java command) and utilities such as the 
javac compiler. However, when compiling classes it is possible to specify Java source code file 
name arguments to javac in arbitrary case and the compiler will attempt to determine (and use) 
the true on-disk filename (which javac will expect to match the public class name). 

● Mixed syntax file names 

Oracle Java 6 for HPE OpenVMS allowed mixed-syntax file names (file names containing a 
combination of UNIX-style and OpenVMS-style syntax). The use of mixed syntax is not supported 
by OpenJDK for VSI OpenVMS, and in general file names should ideally conform to UNIX-style 
syntax. For example, the following code will give an exception: 

File file = new File("[.log]/filetest.log"); 

● java.awt.headless system property 

The system property java.awt.headless defaults to "true" for this release of OpenJDK for VSI 
OpenVMS. For Java applications that use AWT graphical user interface components, it is necessary 
to explicitly set java.awt.headless to false either via the java command line ("-
Djava.awt.headless=false") or programmatically. 



 

 

As a specific example, if you use the Archive Backup System (ABS) graphical user interface, the 
start-up script SYS$COMMON:[MDMS.SYSTEM]MDMS$START_GUI.COM should be modified to 
include -Djava.awt.headless=false on the Java command line, as follows: 

$ java "-Xmx64M" "-Djava.awt.headless=false" "absview.ABSView" 

● The CRTL feature DECC$READDIR_DROPDOTNOTYPE is enabled 

This CRTL feature controls how the OpenVMS C RTL treats file names with no extension (no file 
type). Without this feature enabled, problems can occur when performing operations such as 
adding a directory containing files with no extension to a jar file such that the files with no 
extension appear in the jar with a “.” appended to the names. This can then cause problems if 
your Java code specifically tries to access those files in the jar. Appending the “.” is the typical C 
RTL behaviour when scanning a directory to return a list of file names; this behaviour is overridden 
by enabling the DECC$READDIR_DROPDOTNOTYPE feature. 

● Exit status 

Upon normal successful completion, java, javac, and other executable utilities will consistently 
exit with a status of "%X10000001".  

● Location of error logs 

In the event of an unrecoverable error condition, the JVM will attempt to create a log file 
containing potentially useful information about the crash. Oracle Java 6 for HPE OpenVMS would 
attempt to create these files in the equivalent of the UNIX/Linux tmp directory, which unless 
otherwise defined, is mapped by the OpenVMS C RTL to SYS$SCRATCH. To avoid any ambiguity, 
this release explicitly uses SYS$SCRATCH instead of tmp. 

● HPE Secure Web Browser compatibility 

OpenJDK for VSI OpenVMS is not compatible with the HPE Secure Web Browser for OpenVMS. A 
compatible browser plugin may be provided at a later date.   

● Not compatible with Availability Manager Analyser  

The Availability Manager Analyser kit includes a compatible JRE (Java Runtime Environment). 
Availability Manager Analyser will not work correctly with OpenJDK for VSI OpenVMS and the use 
of the bundled JRE should not be overridden or bypassed in any way. An updated Availability 
Manager Analyser that can be used with OpenJDK for VSI OpenVMS will be made available in due 
course. 

● JAVA$DAEMONIZE_MAIN_THREAD logical name deprecated  

In Oracle Java 6 for HPE OpenVMS this logical name could be used to “daemonize” the main JVM 
thread, making it less susceptible to various types of interruption (particularly ASTs) that run on 
the main thread. This is the default for OpenJDK 8 for VSI OpenVMS. The logical name 
JAVA$DAEMONIZE_MAIN_THREAD therefore serves no purpose and defining it will have no effect 
on JVM operation. 

 

Requirements 
OpenJDK 8 for VSI OpenVMS I64 requires the operating system and layered product software versions 
listed below. 



 

 

● VSI OpenVMS IA64 Version 8.4-2L1 or higher; VSI OpenVMS x86-64 Version 9.2-1 or higher 

● VSI TCP/IP, HPE TCP/IP Services for OpenVMS, or the Process Software MultiNet TCP/IP stack for 
network communication 

● The software must be installed on an ODS-5-enabled file system (the software cannot be installed 
on an ODS-2 file system) 

● DECWindows Motif V1.5 or higher (note that this is required even if you are not using the Java 
AWT, as functionality provided by the Motif libraries is used for some non-AWT functions) 

● The OpenVMS internationalization data kit (VMSI18N) must be installed in order to use the Java 
debugger, jdb.  

● Kernel support for Thread Manager upcalls must be enabled (do not disable Thread Manager 
upcalls using either the image flags or the MULTITHREAD system parameter) 

The reader should be familiar with the installation, configuration, and use of open source products in 
the VSI OpenVMS environment. 

 

Installation 
The kits are provided as compressed OpenVMS PCSI kits (VSI-I64VMS-OPENJDK80-V0800-372C-
1.PCSI and VSI-X86VMS-OPENJDK80-V0800-372C-1.PCSI) that can be installed by a suitably 
privileged user using the following command: 

$ PRODUCT INSTALL OPENJDK80 

The installation will then proceed as follows (output may differ slightly from that shown, depending 

on the platform or other factors): 

%PCSI-I-VERIFYPDB, performing product database verification ... 

%PCSI-I-VERIFYSUC, successfully completed product database verification 

Performing product kit validation of signed kits ... 

%PCSI-I-VSIVALPASSED, validation of X86$DKB200:[USER]VSI-X86VMS-OPENJDK80-V0800-

372C-1.PCSI$COMPRESSED;1 succeeded 

The following product has been selected: 

    VSI X86VMS OPENJDK80 V8.0-372C         Layered Product 

Do you want to continue? [YES] 

Configuration phase starting ... 

You will be asked to choose options, if any, for each selected product and for 

any products that may be installed to satisfy software dependency requirements. 

Configuring VSI X86VMS OPENJDK80 V8.0-372C: OpenJDK for VSI OpenVMS X86-64 

    @ Copyright 2023 VMS Software Inc. 

    VMS Software Inc. 

* This product does not have any configuration options. 

Execution phase starting ... 

The following product will be installed to destination: 

VSI X86VMS OPENJDK80 V8.0-372C         DISK$X86SYS:[VMS$COMMON.] 

 

Portion done: 0%...10%...50%...60%...80%...90%...100% 



 

 

 

The following product has been installed: 

    VSI X86VMS OPENJDK80 V8.0-372C         Layered Product 

VSI X86VMS OPENJDK80 V8.0-372C: OpenJDK for VSI OpenVMS X86-64 

    Post-installation tasks are required. 

    **************************************************************************** 

         Note that the VSI OpenVMS internationalization data kit (VMSI18N) 

         must be installed in order to use the Java debugger, jdb; 

         however VMSI18N is not required by OpenJDK for any other purpose. 

    **************************************************************************** 

    To use OpenJDK Java, users must execute the following command: 

        $ @SYS$STARTUP:OPENJDK$SETUP.COM 

%PCSIUI-I-SUCINSTALL, INSTALL operation completed successfully 

 

Post-installation tasks 
Once the installation process has completed, you may wish to verify that the OpenJDK has installed 
correctly by running the following commands and verifying that the output is similar to that shown 
below (there may be some differences in the output, depending on operating system version, 
installation destination, available memory, locale settings, and so on). 

$ @sys$startup:openjdk$setup.com 
$ java -XshowSettings:all 
VM settings: 
    Max. Heap Size (Estimated): 1.78G 
    Ergonomics Machine Class: server 
    Using VM: OpenJDK 64-Bit Server VM 
 
Property settings: 
    awt.toolkit = sun.awt.X11.XToolkit 
    file.encoding = ISO8859-1 
    file.encoding.pkg = sun.io 
    file.separator = / 
    java.awt.graphicsenv = sun.awt.X11GraphicsEnvironment 
    java.awt.headless = true 
    java.awt.printerjob = sun.print.PSPrinterJob 
    java.class.path = . 
    java.class.version = 52.0 
    java.endorsed.dirs = /disk$ia18_2l3/sys0/syscommon/openjdk$80/jre/lib/endorsed 
    java.ext.dirs = /disk$ia18_2l3/sys0/syscommon/openjdk$80/jre/lib/ext 
    java.home = /disk$ia18_2l3/sys0/syscommon/openjdk$80/jre 
    java.io.tmpdir = /SYS$SCRATCH 
    java.library.path = /usr/lib 
    java.runtime.name = OpenJDK Runtime Environment 
    java.runtime.version = 1.8.0_342-b07 
    java.specification.name = Java Platform API Specification 
    java.specification.vendor = Oracle Corporation 
    java.specification.version = 1.8 
    java.vendor = VMS Software, Inc. 
    java.vendor.url = http://www.vmssoftware.com 
    java.vendor.url.bug = mailto:support@vmssoftware.com 
    java.version = 1.8.0_342 
    java.vm.info = mixed mode 
    java.vm.name = OpenJDK 64-Bit Server VM 
    java.vm.specification.name = Java Virtual Machine Specification 
    java.vm.specification.vendor = Oracle Corporation 
    java.vm.specification.version = 1.8 
    java.vm.vendor = VMS Software, Inc 
    java.vm.version = 25.342-b07 



 

 

    line.separator = \n 
    os.arch = ia64 
    os.name = OpenVMS 
    os.version = V8.4-2L3 
    path.separator = : 
    sun.arch.data.model = 64 
    sun.boot.class.path = 
/disk$ia18_2l3/sys0/syscommon/openjdk$80/jre/lib/resources.jar 
        /disk$ia18_2l3/sys0/syscommon/openjdk$80/jre/lib/rt.jar 
        /disk$ia18_2l3/sys0/syscommon/openjdk$80/jre/lib/sunrsasign.jar 
        /disk$ia18_2l3/sys0/syscommon/openjdk$80/jre/lib/jsse.jar 
        /disk$ia18_2l3/sys0/syscommon/openjdk$80/jre/lib/jce.jar 
        /disk$ia18_2l3/sys0/syscommon/openjdk$80/jre/lib/charsets.jar 
        /disk$ia18_2l3/sys0/syscommon/openjdk$80/jre/lib/jfr.jar 
        /disk$ia18_2l3/sys0/syscommon/openjdk$80/jre/classes 
    sun.boot.library.path = 
    sun.cpu.endian = little 
    sun.cpu.isalist = 
    sun.io.unicode.encoding = UnicodeLittle 
    sun.java.launcher = SUN_STANDARD 
    sun.jnu.encoding = ISO8859-1 
    sun.management.compiler = HotSpot 64-Bit Server Compiler 
    sun.os.patch.level = unknown 
    user.dir = /user003/biggles 
    user.home = /user003/biggles 
    user.language = en 
    user.name = BIGGLES 
    user.timezone = 
 
Locale settings: 
    default locale = English 
    default display locale = English 
    default format locale = English 
    available locales = , ar, ar_AE, ar_BH, ar_DZ, ar_EG, ar_IQ, ar_JO, 
        ar_KW, ar_LB, ar_LY, ar_MA, ar_OM, ar_QA, ar_SA, ar_SD, 
        ar_SY, ar_TN, ar_YE, be, be_BY, bg, bg_BG, ca, 
        ca_ES, cs, cs_CZ, da, da_DK, de, de_AT, de_CH, 
        de_DE, de_GR, de_LU, el, el_CY, el_GR, en, en_AU, 
        en_CA, en_GB, en_IE, en_IN, en_MT, en_NZ, en_PH, en_SG, 
        en_US, en_ZA, es, es_AR, es_BO, es_CL, es_CO, es_CR, 
        es_CU, es_DO, es_EC, es_ES, es_GT, es_HN, es_MX, es_NI, 
        es_PA, es_PE, es_PR, es_PY, es_SV, es_US, es_UY, es_VE, 
        et, et_EE, fi, fi_FI, fr, fr_BE, fr_CA, fr_CH, 
        fr_FR, fr_LU, ga, ga_IE, hi, hi_IN, hr, hr_HR, 
        hu, hu_HU, in, in_ID, is, is_IS, it, it_CH, 
        it_IT, iw, iw_IL, ja, ja_JP, ja_JP_JP_#u-ca-japanese, ko, ko_KR, 
        lt, lt_LT, lv, lv_LV, mk, mk_MK, ms, ms_MY, 
        mt, mt_MT, nl, nl_BE, nl_NL, no, no_NO, no_NO_NY, 
        pl, pl_PL, pt, pt_BR, pt_PT, ro, ro_RO, ru, 
        ru_RU, sk, sk_SK, sl, sl_SI, sq, sq_AL, sr, 
        sr_BA, sr_BA_#Latn, sr_CS, sr_ME, sr_ME_#Latn, sr_RS, sr_RS_#Latn, 
sr__#Latn, 
        sv, sv_SE, th, th_TH, th_TH_TH_#u-nu-thai, tr, tr_TR, uk, 
        uk_UA, vi, vi_VN, zh, zh_CN, zh_HK, zh_SG, zh_TW 
 
Usage: java [-options] class [args...] 
           (to execute a class) 
   or  java [-options] -jar jarfile [args...] 
           (to execute a jar file) 
where options include: 
    -d32          use a 32-bit data model if available 
    -d64          use a 64-bit data model if available 
    -server       to select the "server" VM 
    -client       is a synonym for the "server" VM  [deprecated] 
    -hotspot      is a synonym for the "server" VM  [deprecated] 
                  The default VM is server, 
                  because you are running on a server-class machine. 
 



 

 

 
    -cp <class search path of directories and zip/jar files> 
    -classpath <class search path of directories and zip/jar files> 
                  A : separated list of directories, JAR archives, 
                  and ZIP archives to search for class files. 
    -D<name>=<value> 
                  set a system property 
    -verbose:[class|gc|jni] 
                  enable verbose output 
    -version      print product version and exit 
    -version:<value> 
                  Warning: this feature is deprecated and will be removed 
                  in a future release. 
                  require the specified version to run 
    -showversion  print product version and continue 
    -jre-restrict-search | -no-jre-restrict-search 
                  Warning: this feature is deprecated and will be removed 
                  in a future release. 
                  include/exclude user private JREs in the version search 
    -? -help      print this help message 
    -X            print help on non-standard options 
    -ea[:<packagename>...|:<classname>] 
    -enableassertions[:<packagename>...|:<classname>] 
                  enable assertions with specified granularity 
    -da[:<packagename>...|:<classname>] 
    -disableassertions[:<packagename>...|:<classname>] 
                  disable assertions with specified granularity 
    -esa | -enablesystemassertions 
                  enable system assertions 
    -dsa | -disablesystemassertions 
                  disable system assertions 
    -agentlib:<libname>[=<options>] 
                  load native agent library <libname>, e.g. -agentlib:hprof 
                  see also, -agentlib:jdwp=help and -agentlib:hprof=help 
    -agentpath:<pathname>[=<options>] 
                  load native agent library by full pathname 
    -javaagent:<jarpath>[=<options>] 
                  load Java programming language agent, see java.lang.instrument 
    -splash:<imagepath> 
                  show splash screen with specified image 
See http://www.oracle.com/technetwork/java/javase/documentation/index.html for more 
details. 
 

Assuming that the installation was successful and OpenJDK is functioning as expected, you can now 
use the OpenJDK to compile and run your Java-based applications. 

 

Contents of the kit 
This section provides a general summary of the files and directories that are created by the installation 
process. For simplicity, it is assumed that OpenJDK was installed using the default location (namely 
SYS$COMMON:[OPENJDK$80]). If you installed the kit in that alternate location, substitute that 
location for the default while reading the examples in this document. 

● Development tools (SYS$COMMON:[OPENJDK$80.BIN]) 

This area contains programs that will help you develop, execute, debug, and document programs 
written in the Java programming language.  

● Runtime environment (JRE) (SYS$COMMON:[OPENJDK$80.JRE]) 



 

 

An implementation of the Runtime Environment (JRE). The runtime environment includes a virtual 
machine for Java, class libraries, and other files that support the execution of programs written in 
the Java programming language.  

● Additional libraries (SYS$COMMON:[OPENJDK$80.LIB]) 

Additional class libraries and support files required by the development tools. 

● C header files (SYS$COMMON:[OPENJDK$80.INCLUDE]) 

Header files that support native-code programming using the Java Native Interface (JNI) and the 
JVM Tools Interface. 

● JNI example code (SYS$COMMON:[OPENJDK$80.examples.jni]) 

Simple example code that illustrates using the JNI to call C code from Java and to call Java (invoke 
a JVM instance) from C.  

 

Known issues and changes 
This section provides descriptions of the known issues and limitations that exist in this release of 
OpenJDK for VSI OpenVMS. These issues include the following: 

OpenJDK for VSI OpenVMS for x86-64 specific issues:  

 
● When trying to work with fonts from the FreeType library or pictures in jpg format, errors may 

occur. 

● The exception is sometimes thrown on JVM exit. 

%NONAME-F-NOMSG, Message number 05F78414 

Improperly handled condition, image exit forced by last chance handler. 

The following issues and changes are relevant for both products: 

● The redirect stderr to the file does not work yet. 

● Use of the JAVA$READDIR_CASE_DISABLE logical name: 

Java program performance may be improved by defining the JAVA$READDIR_CASE_DISABLE 
logical name. This logical name allows the user to turn off the case-sensitive filename extraction 
feature, if it is not needed. In such cases, for ODS-2 filename formats the Java language compiler 
(javac) fails with the “cannot find symbol” error when referencing Java programs with mixed-
case class names. 

● To set the receive or send buffer size using the socket.setReceiveBufferSize(int)or 
socket.setSendBufferSize(int) methods, processes must have one (or more) of SYSPRV, 
BYPASS, or OPER privileges. This restriction is imposed by TCP/IP services.  

Without one of these process privileges, these Java methods behave as follows: 

o If the receive or send buffer size requested is greater than the default receive or send buffer 
size set on the system, the methods will fail. 



 

 

o If the receive or send buffer size requested is less than or equal to the default receive or send 
buffer size set on the system, the system returns the default receive or send buffer size.  

Alternatively, you can modify the default buffer size value in the system. 

● If the process does not have either of the SYSPRV, BYPASS, or OPER OpenVMS process privileges, 
invocation of the DatagramSocket setBroadcast(boolean) method fails. 

● The OpenJDK debugger (jdb) fails with “UTF ERROR” at start-up if the VMSI18N kit for VSI 
OpenVMS is not installed.  

The jdb utility uses the C RTL iconv family of functions to perform UTF-8 character conversions; 
however the database files required by the RTL for these conversions are not installed by default 
on all VSI OpenVMS operating system versions that support OpenJDK. To overcome this issue, you 
must ensure that the VMSI18N kit is installed on your system (note that VMSI18N is installed by 
default for OpenVMS 8.4-2 and higher). 

● OpenJDK will not operate properly after the DCL command set process/case=sensitive is 
executed. 

● OpenJDK will not operate correctly if either of the logical names DECC$FILENAME_UNIX_ONLY 
or DECC$DISABLE_TO_VMS_LOGNAME_TRANSLATION are defined. Running Java programs with 
these logical names defined is not supported. Other DECC$* logical names (or combinations of 
such logical names) may also result in incorrect operation of the Java virtual machine. 

● Upon encountering a fatal error, the JVM may try to create a log file containing potentially useful 
information regarding the crash. Unless specified otherwise (using the –XX:ErrorFile 
command line option) such log files will be created in the directory pointed to by the logical name 
SYS$SCRATCH (which is generally your login directory). However, it should be noted that the JVM 
will report that the file has been created in /tmp (the standard scratch area on UNIX and Linux 
systems). If tmp is not defined as a logical name, the OpenVMS C RTL will map /tmp to your 
SYS$SCRATCH directory. If tmp is defined, the log file may be found in the corresponding 
directory (assuming the directory exists). For example, the following definition would cause log 
files to be created in SYS$SYSDEVICE:[LOGS] (assuming the user has write permission for this 
directory): 

$ define tmp SYS$SYSDEVICE:[LOGS] 

● Splash screens may only work with small image files. For larger image files, the image may be only 
partially displayed. 

● This release of OpenJDK for VSI OpenVMS provides an option that can be used to limit the 
maximum length of XML names in XML documents processed by the Java API for XML processing 
(JAXP).  

The maximum length can be changed by using the -Djdk.xml.maxXMLNameLimit=value 
option, where value is a positive integer. A value of 0 or a negative number sets no limits (0 is 
the default). It is also possible to set this limit by adding the following line to your 
jaxp.properties file: 

jdk.xml.maxXMLNameLimit=value 

● Defining the logical name JAVA$FILE_OPEN_MODE to "3" can cause problems with some Java 
applications and should not be used. Note that this logical name is deprecated and may be 
removed in future releases. 



 

 

● The logical name JAVA$XCOMP_SAFE_MODE has been added 

In rare situations Java programs run with the –Xcomp option can crash with an ACCVIO error 
caused by a race condition between threads. The logical name JAVA$XCOMP_SAFE_MODE can be 
defined (to anything) to prevent this race condition from occurring, at the expense of a small 
performance penalty.  


