
Page 1 of 7

Python 3.10 for VSI OpenVMS I64
December 2021

1. Introduction
Thank you for your interest in this port of Python for OpenVMS (I64). This release of Python
for OpenVMS is based on the Python 3.10.0 Open Source distribution.

Python (https://www.python.org/) is an interpreted high-level programming language for
general-purpose programming that emphasizes code readability. It provides constructs that
enable clear programming of both small- and large-scale software applications. Python features
a dynamic type system and automatic memory management. The Python language supports
multiple programming paradigms, including object-oriented, functional, and procedural, and has
a large and comprehensive runtime library.

This OpenVMS port of Python comprises two kits, namely a core Python kit and a Python
packages kit. The core Python kit includes the core binary Python distribution and various
OpenVMS-specific extensions, including interfaces for OpenVMS products such as VSI
DATATRIEVE and the Oracle RDB database, along with interfaces for many OpenVMS system
services and library calls. The packages kit includes a substantial collection of commonly used
Python packages, including modules for web application development, integration, and testing.
It is anticipated that additional packages will be included in future releases. It is also possible for
users to readily download and install many other Python packages directly from the Python
Package Index repository (https://pypi.org/) or elsewhere using the Python PIP package
installer.

2. Requirements
The kit you are receiving has been compiled and built using the operating system and
compiler versions listed below. While it is highly likely that you will have no problems
installing and using the kit on systems running higher versions of the products listed, we
cannot say for sure that you will be so lucky if your system is running older versions.

 VSI OpenVMS Version 8.4-1H1 I64 or higher

 The software must be installed on an ODS-5 enabled disk (the installation will fail if this
requirement is not met)

 VSI TCP/IP or HPE TCP/IP Services for OpenVMS

It has not been verified whether the kit works with the MultiNet TCP/IP stack, but there is

a good chance that it will.

 C compiler (optional; required only if you intend to develop your own extensions)

In addition to the above requirements, it is assumed that the reader has a good knowledge
of OpenVMS and of software development in the OpenVMS environment.

https://www.python.org/
https://pypi.org/

Page 2 of 7

3. Recommended reading
It is recommended that software developers read some of the excellent tutorials and other
documentation available via the Python web site (https://www.python.org/). The web site
provides numerous links to books, technical guides, tutorials, and many other documents
that provide useful information on developing applications using Python.

In addition, the VSI wiki provides the following pages, which provide details regarding many
of the OpenVMS-specific modules, and details of compatibility issues that may be relevant to
developing and using Python applications on VSI OpenVMS.

 https://wiki.vmssoftware.com/VMS_specific_Python_modules

 https://wiki.vmssoftware.com/VMS_Python_compatibility_issues

It should be noted that the documentation for OpenVMS-specific modules is at this time
incomplete. It is anticipated that this documentation will be updated over the coming months
to include details for all such modules.

The core Python kit also includes a number of simple example and test programs in the
directory python$root:[lib.python3^.10.test] that serve to illustrate the usage of
some of some of the OpenVMS specific extensions. It is envisaged that additional examples
will be added over time.

4. Installing the kits
As noted previously, this OpenVMS port of Python comprises two compressed PCSI kits,
namely a core Python kit and a packages kit (also referred to as the “wheels” kit).

Additionally, this release of Python 3.10 for VSI OpenVMS provides both 32-bit and 64-bit
pointer versions of both the Python core and wheels kits. While it is possible to have both
the 32-bit and 64-bit pointer versions installed simultaneously on your system, this is
strongly discouraged, as there is overlap in terms of the logical names and start-up scripts
used by the two versions, which can complicate usage and cause unexpected problems.
Accordingly, VSI strongly recommends that you install one version or the other only, not
both.

From a usage perspective there is essentially no difference between the 32-bit and 64-bit
pointer versions, other than the fact that the 64-bit pointer version can run applications
requiring somewhat more memory and can be linked with application code that requires 64-
bit pointers. In general, VSI would recommend using the standard 32-bit version unless you
have specific requirements regarding the use of 64-bit pointers.

The kits are as follows:

 32-bit pointers:

– VSI-I64VMS-PYTHON-A0310-0RELEASE001-1.PCSI$COMPRESSED

– VSI-I64VMS-PYTHWHLS-A0101-6FIX02-1.PCSI$COMPRESSED

 64-bit pointers:

– VSI-I64VMS-PYTHON64-A0310-0RELEASE001-1.PCSI$COMPRESSED

– VSI-I64VMS-PYTHWHLS64-A0101-6FIX02-1.PCSI$COMPRESSED

Note that the packages kit is based on Python wheels (see https://pythonwheels.com/),
which provides a flexible and efficient means of installing optional Python packages. While it
would be possible to combine the core and packages kits into a single installable kit, it is
unlikely that all packages in the packages kit will be of interest to all users. It is also

https://www.python.org/
https://wiki.vmssoftware.com/VMS_specific_Python_modules
https://wiki.vmssoftware.com/VMS_Python_compatibility_issues
https://pythonwheels.com/

Page 3 of 7

envisaged that the list of packages and package versions will be updated more regularly than
the core distribution.

If you had previously installed the beta release of Python 3.10 (including the wheels kit), it is
strongly recommend that you uninstall these beta kits before installing these new non-beta
kits.

Note that the following sections illustrate installation of the 32-bit pointer kits. Installation of
the 64-bit pointer core and wheels kits is identical, with the exception of the product names
(namely PYTHON64 and PYTHWHLS64 in place of PYTHON and PYTHWHLS).

4.1. Installing the core kit

The core Python for VSI OpenVMS kit can be installed by a suitably privileged user using the
following command:

$ PRODUCT INSTALL PYTHON

The installation will then proceed as follows (output may differ slightly from that shown):

The following product has been selected:

 VSI I64VMS PYTHON A3.10-0RELEASE001 Layered Product

Do you want to continue? [YES]

Configuration phase starting ...

You will be asked to choose options, if any, for each selected product

and for any products that may be installed to satisfy software

dependency requirements.

Configuring VSI I64VMS PYTHON A3.10-0RELEASE001: Python for OpenVMS is

based on Python Version 3.10

 (C) Copyright 2021 VMS Software Inc.

 VSI Software Inc.

* This product does not have any configuration options.

Execution phase starting ...

The following product will be installed to destination:

 VSI I64VMS PYTHON A3.10-0RELEASE001 DISK$I64SYS:[VMS$COMMON.]

Portion done:

0%...10%...20%...30%...40%...50%...60%...70%...80%...90%...100%

The following product has been installed:

 VSI I64VMS PYTHON A3.10-0RELEASE001 Layered Product

VSI I64VMS PYTHON A3.10-0RELEASE001: Python for OpenVMS is based on

Python Version 3.10

 Post-installation tasks are required.

 To define the Python runtime at system boot time, add the

 following lines to SYS$MANAGER:SYSTARTUP_VMS.COM:

 $ file := SYS$STARTUP:PYTHON$STARTUP.COM

 $ if f$search("''file'") .nes. "" then @'file'

After the installation has successfully completed, include the commands displayed at the end

Page 4 of 7

of the installation procedure into SYSTARTUP_VMS.COM to ensure that the logical names
required in order for users to use the software are defined system-wide at start-up.

To enhance performance, Python includes a facility to compile Python modules to byte
codes when they are first used. The compiled files are created in the Python installation
area. To ensure that users who do not have permission to write to the installation area do
not get errors when using Python, it is recommended that all modules are compiled
following installation. This can be done by executing the following commands1. It is assumed
that the runtime environment has been previously defined as described above by running
PYTHON$STARTUP.COM. Compilation should take less than two minutes on most systems.

$ set process/parse_style=extended

$ python :== $python$root:[bin]python.exe

$ set default python$root:[lib.python3^.10]

$ python compileall.py ./

If new libraries are added into to the installation area the above commands can be re-run in
order to compile any new or modified modules.

Users will then be able to use the Python interpreter by defining a foreign command as
follows:

$ PYTHON :== $PYTHON$ROOT:[BIN]PYTHON.EXE

Generally speaking there are no special quota or privilege requirements required for users
wishing to develop applications using Python, although it should be noted that some
extensions may have special requirements (for example, networking extensions may require
an elevated BYTLM quota).

4.2. Installing the packages kit

The Python packages kit can be installed by a suitably privileged user using the following
command:

$ PRODUCT INSTALL PYTHWHLS

The installation will then proceed as follows (output may differ slightly from that shown):

The following product has been selected:

 VSI I64VMS PYTHWHLS A1.1-6FIX02 Layered Product

Do you want to continue? [YES]

Configuration phase starting ...

You will be asked to choose options, if any, for each selected product

and for any products that may be installed to satisfy software

dependency requirements.

Configuring VSI I64VMS PYTHWHLS A1.1-6FIX02: Python wheels collection

for OpenVMS Python 3.10

 (C) Copyright 2021 VMS Software Inc.

 VSI Software Inc.

* This product does not have any configuration options.

1 Note that some test scripts relating to UTF-8 encoding will currently fail to compile correctly; these
errors may be safely ignored and will be eliminated in figure releases.

Page 5 of 7

Execution phase starting ...

The following product will be installed to destination:

 VSI I64VMS PYTHWHLS A1.1-6FIX02 DISK$I64SYS:[VMS$COMMON.]

Portion done: 0%...10%...20%...50%...60%...80%...90%...100%

The following product has been installed:

 VSI I64VMS PYTHWHLS A1.1-6FIX02 Layered Product

VSI I64VMS PYTHWHLS A1.1-6FIX02: Python wheels collection for OpenVMS

Python 3.10

 Post-installation tasks are required.

 To define the Wheels for Python runtime at system boot time, add

the

 following lines to SYS$MANAGER:SYSTARTUP_VMS.COM:

 $ file := sys$startup:python_wheels$startup.com

 $ if f$search("''file'") .nes. "" then @'file'

After the installation has successfully completed, include the command displayed at the end
of the installation procedure into SYSTARTUP_VMS.COM to ensure that the logical names
PYTHON_WHEELS$ROOT and PIP_FIND_LINKS are defined system-wide at system start-up.
The logical name PYTHON_WHEELS$ROOT specifies the location of the installable wheels
packages and the logical name PIP_FIND_LINKS is used by the PIP Python package
installer to find these packages.

After installing the packages kit and ensuring the logical names PYTHON_WHEELS$ROOT and
PIP_FIND_LINKS are correctly defined, individual packages can be installed as follows by a
suitably privileged user, where <module-name> is the name of the package that you wish to
install.

$ python -m pip install --no-index <module-name>

A complete list of the packages included in the PYTHWHLS kit can be found below in Section
5, and details about these various packages can be found at https://pypi.org/.

Note that the --no-index option needs to be specified when installing packages from the
PYTHWHLS kit in order to prevent the PIP Python package installer from instead trying to
download packages from the internet. Alternatively to specifying this option you can define
the logical name PIP_NO_INDEX as shown below:

$ define PIP_NO_INDEX 1

When installing packages you should also ensure that the logical name PYTHONCASEOK is
not defined.

It should be noted that the installation of some packages can consume considerable
temporary disk space. By default, the logical name SYS$SCRATCH will be used to determine
the location of this temporary storage; however, an alternative location may be specified by
defining the logical name TMPDIR to point to the desired location. For similar reasons it may
also be desirable to define the logical name PIP_CACHE_DIR, which determines where the
PIP Python package installer caches temporary dependency data when installing packages.
Values (directory specifications) for these logical names should be specified using UNIX
syntax.

https://pypi.org/

Page 6 of 7

5. Included modules
As noted previously, this OpenVMS port of Python comprises a core Python kit and a Python
packages kit.

The core Python kit includes the core binary distribution and various OpenVMS-specific
extensions, including interfaces for OpenVMS products such as VSI DATATRIEVE and the
Oracle RDB database, along with various facility definitions (item codes and error codes) and
interfaces for many OpenVMS system services and library calls. The following table
summarizes the OpenVMS-specific packages:

accdef ile3 prvdef

acldef iledef prxdef

acrdef impdef pscandef

armdef indexedfile psldef
brkdef initdef pxbdef

capdef iodef quidef

chpdef issdef rabdef

ciadef jbcmsgdef rdb

clidef jpidef rec

cmbdef kgbdef regdef
cvtfnmdef lckdef rmidef

dcdef lib, libdef rms

decc libclidef rmsdef

dmtdef libdtdef rsdmdef

dpsdef libfisdef sdvdef

dscdef lkidef sjcdef
dtr (DATATRIEVE) lnmdef ssdef

dvidef maildef statedef

dvsdef mntdef stenvdef

efndef nsadef stsdef

eradef ossdef syidef

fabdef pcbdef sys

fdldef ppropdef uafdef

fpdef pqldef uaidef

fscndef prcdef prvdef

iccdef prdef prxdef

Several simple example and test programs for some of these extensions can be found in
python$root:[lib.python3^.10.test], and several examples for the OpenVMS RMS
extension can also be found in python$root:[lib.python3^.10.vms].

The core distribution also includes the following two default packages:

 pip 21.1.1

 setuptools 57.0.0

The PYTHWHLS packages kit includes a collection of commonly used Python packages,
including packages for web application development, integration, and testing. The following
table lists the various packages that are included in this release of the PYTHWHLS kit. It is
envisaged that this list will be periodically updated to include additional packages as well as
new versions of existing packages. Details about each of these packages may be found at
https://pypi.org/, the Python Package Index repository.

https://pypi.org/

Page 7 of 7

Note that if a particular package is not currently included in the PYTHWHLS kit and your
OpenVMS system is able to access the internet, in most cases it will be possible to download
and install the desired package directly using the "python -m pip install <module-
name>" command.

Automat-20.2.0 hypothesis-6.9.1 pytest_httpbin-1.0.0

Brotli-1.0.9 idna-2.10 pytest_httpserver-1.0.0

CherryPy-18.6.0 idna-3.2 pytest_localserver-0.5.0

Cython-0.29.22 incremental-21.3.0 pytest_subtests-0.4.0

Flask-1.1.2 iniconfig-1.1.1 pytest_xdist-2.2.1

Jinja2-3.0.1 iso8601-0.1.14 python_dateutil-2.8.1
MarkupSafe-2.0.1 itsdangerous-1.1.0 python_interface-1.6.1

Pillow-8.2.0 jaraco.classes-3.2.1 python_magic-0.4.24

PyYAML-5.4.1 jaraco.collections-3.3.0 pytz-2021.1

Pygments-2.9.0 jaraco.functools-3.3.0 raven-6.10.0

Werkzeug-1.0.1 jaraco.text-3.5.0 reportlab-3.5.66

apipkg-1.5 jmespath-0.10.0 requests-2.25.1

apispec-4.5.0 jsonpointer-2.1 responses-0.13.3

apispec_webframeworks-0.5.2 jsonschema-3.2.0 rfc3987-1.3.8

appdirs-1.4.4 marshmallow-3.12.1 rsa-4.7.2

async_generator-1.10 mistune-0.8.4 s3cmd-2.1.0

attrs-20.3.0 mock-4.0.3 s3transfer-0.3.6

awscli-1.19.50 more_itertools-8.8.0 semantic_version-2.8.5

behave-1.2.6 nose-1.3.7 semver-2.13.0

betamax-0.8.1 numpy-1.20.3 service_identity-21.1.0

blinker-1.4 outcome-1.1.0 setuptools-49.1.3

botocore-1.20.50 packaging-20.9 setuptools-56.0.0

bottle-0.12.19 pandas-1.2.4 setuptools-57.0.0

certifi-2020.12.5 parse-1.19.0 setuptools_rust-0.12.1

cffi-1.14.5 parse_type-0.5.2 setuptools_scm-6.0.1

chardet-4.0.0 path-15.1.2 simplejson-3.17.2

cheroot-8.5.2 pbr-5.6.0 six-1.15.0

click-7.1.2 perfdat-4.3.1 sniffio-1.2.0

colorama-0.4.3 pika-1.2.0 sortedcontainers-2.3.0

constantly-15.1.0 pluggy-0.13.1 strict_rfc3339-0.7
cryptography-3.4.7 portend-2.7.1 suds_py3-1.4.4.1

cryptography_vectors-3.4.7 prance-0.21.2 sure-1.4.11

decorator-5.0.6 pretend-1.0.9 tempora-4.0.2

distlib-0.3.2 psycopg2-2.8.6 toml-0.10.2

docutils-0.15.2 py-1.10.0 trustme-0.8.0

elementpath-2.2.2 pyOpenSSL-20.0.1 urllib3-1.26.4

execnet-1.8.0 pyasn1-0.4.8 validate_email-1.3

filelock-3.0.12 pyasn1_modules-0.2.8 virtualenv-20.4.7

flaky-3.7.0 pycparser-2.20 wcwidth-0.2.5

flasgger-0.9.5 pyparsing-2.4.7 wheel-0.35.1

flex-6.14.1 pyrsistent-0.18.0 wheel-0.36.2

freezegun-1.1.0 pytest-6.2.4 wsit-1.0.19

ftputil-5.0.1 pytest_flask-1.2.0 xmlschema-1.6.4

httpbin-0.7.0 pytest_forked-1.3.0 zc.lockfile-2.0

It is hoped that future releases of Python for OpenVMS will include a more comprehensive suite

Page 8 of 7

of such modules along with accompanying documentation and example programs.

Developers can implement their own dynamic Python modules (shareable images) by including
in their projects the Python header files found in PYTHON$ROOT:[INCLUDE] and by linking
with the shareable image PYTHON$ROOT:[LIB]PYTHON$SHR.EXE. Note that the logical name
PYTHON$SHR is defined by the Python start-up procedure and may be used to link with the
shareable image. Symbols in the shareable image are mixed-case, and developers should use the
C compiler option /NAMES=(AS_IS,SHORTENED) or include in their code appropriate
#pragma directives to ensure that symbols are correctly resolved when linking.

5.1. A note on using S3cmd

S3cmd (see https://s3tools.org/s3cmd) is a Python-based command line utility for uploading,
downloading, and managing files in AWS S3 storage and equivalent services provided by
other cloud storage service providers that support the S3 protocol.

In order to use S3cmd, in addition to having access to S3-based storage, some basic level of
configuration is required. The following notes describe the basic steps that must be followed
in order to configure and use S3cmd to interact with your S3 storage service (for a more
detailed description of configuring and using S3cmd refer to the documentation provided at
https://s3tools.org/s3cmd).

1. Locate certificate file:

$ python -c "import certifi; print(certifi.where())"

2. Configure s3cmd:

$ python /sys$login/local/bin/s3cmd --configure -
--ca-certs=<output from the previous command>

You can then run S3cmd as follows:

$ python /sys$login/local/bin/s3cmd <command>

It should be noted that S3cmd on VSI OpenVMS can currently only be used with files are in
stream-lf format. This limitation may be removed in the future.

https://s3tools.org/s3cmd
https://s3tools.org/s3cmd

