

1

LibRabbitMQ V2.7-0 for VSI OpenVMS
Alpha, Integrity, and x86-64

August 2023

VSI-I64VMS-LIBRABBITMQ-V0207-0-1.PCSI

VSI-AXPVMS-LIBRABBITMQ-V0207-0-1.PCSI

VSI-X86VMS-LIBRABBITMQ-V0207-0-1.PCSI

Introduction
Thank you for your interest in LibRabbitMQ for VSI OpenVMS. LibRabbitMQ provides an API

that can be used by OpenVMS-based software applications to exchange data with the

RabbitMQ message broker (http://www.rabbitmq.com) via the Advanced Message Queuing

Protocol (AMQP). LibRabbitMQ for VSI OpenVMS is based on the Open Source rabbitmq-c

API (https://github.com/alanxz/rabbitmq-c) and can be used with most 3GL programming

languages available for OpenVMS, including C/C++, FORTRAN, COBOL, BASIC, and Pascal.

Acknowledgements
VMS Software Inc. would like to acknowledge the support and assistance of the RabbitMQ

community and their ongoing efforts with regard to developing and supporting the rabbitmq-c

Open Source software package.

Requirements
The kit you are receiving requires the following products and product versions to be installed

in order for the software to operate correctly. In general it will also be possible to install and

use the software on higher versions of the operating system and other required products.

 OpenVMS 8.4-2L1 or higher (I64), OpenVMS V8.4-2L1 or higher (Alpha), OpenVMS 9.2-1

or higher (x86-64)

 VSI TCP/IP, HPE TCP/IP Services for OpenVMS, or MultiNet TCP/IP stack for network
communication

 OpenSSL 3.0.9 (statically linked into the supplied LibRabbitMQ shareable image)

Note that if you wish to statically link application code requiring with the supplied object

libraries and require SSL/TLS support, it will be necessary to link with a comparable

OpenSSL distribution.

In addition to the software requirements and options listed above, you will require language

compilers for the programming languages that you intend to use.

http://www.rabbitmq.com/
https://github.com/alanxz/rabbitmq-c

2

It is assumed that the reader has a good knowledge of OpenVMS and software development

in the OpenVMS environment.

Recommended reading
It is recommended that application developers read some of the tutorials and other excellent

documentation available on the RabbitMQ web site (http://www.rabbitmq.com). Developers

should also be sure to and examine end experiment with the samples programs provided

with LibRabbitMQ for VSI OpenVMS. You might also wish to join the RabbitMQ user mailing

list (see https://groups.google.com/forum/?hl=en#!forum/rabbitmq-users), which provides

access to the core RabbitMQ development team, and a thriving, knowledgeable, and helpful

community of other RabbitMQ users.

Installing the kit
The kit is provided as an OpenVMS PCSI kit (VSI-I64VMS-LIBRABBITMQ-V0207-0-

1.PCSI for I64, VSI-X86VMS-LIBRABBITMQ-V0207-0-1.PCSI for x86-64, or VSI-

AXPVMS-LIBRABBITMQ-V0207-0-1.PCSI for Alpha) that can be installed by a suitably

privileged user using the following command:

$ PRODUCT INSTALL LIBRABBITMQ

The installation will then proceed as follows (output may differ slightly from that shown

depending on platform and other factors):

Performing product kit validation of signed kits ...

The following product has been selected:

 VSI AXPVMS LIBRABBITMQ V2.7-0 Layered Product

Do you want to continue? [YES]

Configuration phase starting ...

You will be asked to choose options, if any, for each selected

product and for any products that may be installed to satisfy

software dependency requirements.

Configuring VSI AXPVMS LIBRABBITMQ V2.7-0

 VMS Software Inc.

* This product does not have any configuration options.

Execution phase starting ...

The following product will be installed to destination:

 VSI AXPVMS LIBRABBITMQ V2.7-0

DISK$FUNYET_SYS:[VMS$COMMON.]

Portion done: 0%...40%...50%...80%...90%

...100%IT (queue SYS$BATCH, entry 63) completed

http://www.rabbitmq.com/
https://groups.google.com/forum/?hl=en#!forum/rabbitmq-users

3

The following product has been installed:

 VSI AXPVMS LIBRABBITMQ V2.7-0 Layered Product

VSI AXPVMS LIBRABBITMQ V2.7-0

 Post-installation tasks are required.

 To start LibRabbitMQ at system boot time, add the following lines

 to SYS$MANAGER:SYSTARTUP_VMS.COM:

 $ file := SYS$STARTUP:LIBRABBITMQ$STARTUP.COM

 $ if f$search("''file'") .nes. "" then @'file'

 To stop LibRabbitMQ at system shutdown, add the following lines

 to SYS$MANAGER:SYSHUTDWN.COM:

 $ file := SYS$STARTUP:LIBRABBITMQ$SHUTDOWN.COM

 $ if f$search("''file'") .nes. "" then @'file'

Post-installation steps
After the installation has successfully completed, include the commands displayed at the

end of the installation procedure into SYSTARTUP_VMS.COM to ensure that the logical

names required in order for users to use the software are defined system-wide at start-up.

In addition to the system logical name LIBRABBITMQ$ROOT (which points to root directory

of the LibRabbitMQ installation tree), the system logical names LIBRABBITMQ$SHR and

RABBITMQ-C are also defined. The logical name LIBRABBITMQ$SHR points to the shareable

image LIBRABBITMQ$ROOT:[LIB]LIBPQ$SHR.EXE, which can be linked with application

code. Alternatively, it is possible to statically link application code with the object libraries

found in the LIBRABBITMQ$ROOT:[LIB] directory. The logical name RABBITMQ-C points

to the directory LIBRABBITMQ$ROOT:[INCLUDE.RABBITMQ-C] and should be used to

include LibRabbitMQ header files in C/C++ application code as illustrated by the example C

programs provided with the kit.

Privileges and quotas
Generally speaking there are no special quota or privilege requirements for applications

developed using LibRabbitMQ, although a reasonably high BYTLM is recommended,

particularly if applications will transfer large amounts of data. The following quotas should

be more than adequate for most purposes:

Maxjobs: 0 Fillm: 256 Bytlm: 128000

Maxacctjobs: 0 Shrfillm: 0 Pbytlm: 0

Maxdetach: 0 BIOlm: 150 JTquota: 4096

Prclm: 50 DIOlm: 150 WSdef: 4096

Prio: 4 ASTlm: 300 WSquo: 8192

Queprio: 4 TQElm: 100 WSextent: 16384

CPU: (none) Enqlm: 4000 Pgflquo: 256000

4

Sample applications
The directory LIBRABBITMQ$ROOT:[EXAMPLES] contains a number of simple example

programs written in C, COBOL, FORTRAN, and BASIC that serve to illustrate basic usage of

the LibRabbitMQ API, including various C examples that are provided with the rabbitmq-c

Open Source project (https://github.com/alanxz/rabbitmq-c).

There is a command procedure EXAMPLES.COM that may be used to build the various

examples. These examples are intended to provide an introduction to the API and to

hopefully serve as a basis for the development of more sophisticated applications.

The following table and subsequent notes provide a brief overview of some of the example

programs and how to run them. Note that some examples have the TCP/IP address and port

number of the RabbitMQ broker and username/password details hard-wired, and these

values will need to be changed as appropriate to reflect your environment. After modifying

the port number and TCP/IP address details to reflect your environment, execute the

commend procedure EXAMPLES.COM to compile and link the example code.

Example Relevant files Notes

FORTRAN

producer, COBOL

consumer

 FOR_PRODUCER.EXE

 COB_CONSUMER.EXE

A pair of programs that illustrate

basic producer/consumer

functionality. The producer publishes

messages that are routed into “test

queue” and the consumer consumes

messages from this queue. The

producer publishes 1000 messages of

size 2n where 1 ≤ n ≤ 15 and displays

the time taken to publish each batch

of messages.

Note that the COBOL consumer

specifies a pre-fetch count using the

AMQP$BASIC_QOS() function. You

may wish to experiment with pre-

fetch count and to see how changing

this value impacts consumer

performance and memory usage.

Request-response

example

 RR_CLIENT.EXE

 UARS.EXE

 UARS.COM

The request/response example

illustrates how the API can be used to

implement pseudo-synchronous

request-response processing using

AMQP. This functionality is provided

by the AMQP$CALL() utility function,

which is called by the client to send

the request buffer and receive the

response. The server is implemented

https://github.com/alanxz/rabbitmq-c

5

using the generic server,

AMQP$SERVER.EXE (run from

UARS.COM), which greatly simplifies

the server-side development effort.

The client issues 10000 calls and

displays the transaction rate.

Requests are published by

RR_CLIENT.EXE to the

amq.direct exchange with routing

key “SVC4”, and this key is mapped

by AMQP$SERVER.EXE to the

function MY_SVC4 in the shareable

image UARS.EXE. The function

AMQP$CALL() establishes a unique

and exclusive reply queue to which

responses are written.

C producer

(enqueue

example)

 ENQUEUE.EXE

 ENQUEUE-PERSIST.EXE

 BAS_DEMO.BAS

 UARS.EXE

 UARS.COM

This example illustrates the use of

AMQP$SERVER.EXE as a generic

consumer. Messages are published

by ENQUEUE.EXE (or ENQUEUE-

PERSIST.EXE) to the amq.direct

exchange using the routing key

“SVC1”, and this key is mapped by

AMQP$SERVER.EXE to the function

MY_SVC1 in the shareable image

UARS.EXE.

Messages published by ENQUEUE-

PERSIST.EXE are published with

delivery-mode 2, which means that

messages will be persisted to disk

and will not be lost if the broker is

restarted before the messages are

consumed, assuming that the queue

into which they are routed is also

durable.

Messages can also be published to

“SVC1” using the BASIC example

code, BAS_DEMO.BAS.

Multi-threaded

consumer

 THREADS.EXE A simple multi-threaded consumer

that is implemented using a new

experimental API. The new API is

intended to simplify client

6

development without imposing too

many restrictions; this API will be

evolved and documented in

subsequent releases of LibRabbitMQ

for VSI OpenVMS.

The example consumer establishes

two connections to the RabbitMQ

broker and each connection

consumes from a single queue (via a

single channel). The function

RabbitMQ_serve_thread () is

then used to start a separate

consumer thread for each

connection, and for each message

received the specified callback

function (callback_1() or

callback_2()) will be invoked. As

currently implemented, the threads

will terminate only if an error is

encountered; this behavior may be

changed in future releases to

facilitate clean shutdown of

processes.

Before running this example, you

should ensure that queues named

“foo” and “baa” are created and are

bound to the amq.direct exchange

(or another direct exchange) with

binding keys of “foo” and “baa”

respectively. To test the example,

you may then publish messages to

the amq.direct exchange with

routing keys of “foo” and “baa” and

observe that the messages are

consumed by the different threads.

Assuming that you have modified the examples (including the file UARS.COM) to specify the

appropriate location of the RabbitMQ broker, the examples described in the table above

may be run as follows:

 Running the FORTRAN producer/COBOL consumer example

1. In one OpenVMS session, start the consumer:

7

$ run cob_consumer.exe

2. Open a second OpenVMS session and run the producer:

$ run for_producer.exe

Once the consumer starts reading messages off the queue it will output a progress

counter for every 1000 messages read. After publishing each set of 100000

messages to the queue, the producer will report the time taken to publish the set of

messages and the number of messages published per second. The producer will

terminate after publishing the 16 sets of messages; the consumer continues to listen

for messages indefinitely and must be terminated by entering CNTRL-Y.

 Running the request-response example with AMQP$SERVER.EXE

1. In one OpenVMS session execute the UARS.COM command procedure, specifying as

parameters the TCP/IP address (or host name) and port number for the RabbitMQ

broker (replace the TCP/IP address and port number specified here with values

applicable to your environment):

$ @uars.com 16.156.32.108 5672

The UARS.COM command procedure runs the generic server AMQP$SERVER.EXE,

which loads the shareable image UARS.EXE and maps routing keys to function

names in the shareable image as specified via the –s command line option. Multiple

mappings may be specified using the –s option as illustrated in UARS.COM.

2. Open another OpenVMS session and run the request-response client:

$ run rr_client.exe

The client publishes messages using routing key “SVC4”, which is mapped by

AMQP$SERVER.EXE to the user action routine “my_svc4” in UARS.COB. The user

action routine routes responses back to the client using a unique reply queue

specific (and exclusive) to the client in question. Upon completion the client displays

the number of roundtrip calls processed per second.

 Running the C producer example

1. In one OpenVMS session execute the UARS.COM command procedure, specifying as

parameters the TCP/IP address (or host name) and port number for the RabbitMQ

broker:

$ @uars.com 16.156.32.108 5672

2. Open another OpenVMS session and run the C producer (ENQUEUE.EXE or

ENQUEUE-PERSIST.EXE):

$ run enqueue.exe

The producer publishes messages to the amq.direct exchange using the routing

key “SVC1”, which is mapped by AMQP$SERVER.EXE to the user action routine

“my_svc1” in UARS.COB. The user action routine displays the text “Hello from

SVC1” for each message that is successfully read from the queue by

8

AMQP$SERVER.EXE and passed to the action routine. Unlike the request-response

example above, the user action routine does not return a reply message1.

 Modifying the C producer example to publish to multiple consumers

The above examples all operate in a point-to-point fashion, using the direct exchange

amq.direct to publish each message to an individual consumer instance. The previous

example can be easily modified as described below to publish messages to multiple

consumers by instead using the topic exchange amq.topic:

1. Edit enqueue.c (or enqueue-persist.c) and change the name of the exchange

from ”amq.direct” to ”amq.topic”. Save your changes and rebuild

enqueue.exe (or enqueue-persist.exe) by re-running examples.com.

2. Edit UARS.COM and include the following option to instruct amqp$server.exe to

bind to the ”amq.topic” exchange:

”-e” ”amq.topic”

3. If you now start two or more consumers by running multiple instances of UARS.COM,

and then run enqueue.exe (or enqueue-persist.exe), you should see that all

consumers receive a copy of each message.

Tcl scripting engine (BUGS.EXE)
This release of LibRabbitMQ for VSI OpenVMS includes a Tcl-based scripting utility named
BUGS.EXE with language extensions RabbitMQ. This scripting tool can be useful for
prototyping and testing.

At this time the language extensions are not documented (it is hoped that documentation
will be available for inclusion in the next release); however several simple examples are
included with this kit to illustrate the capabilities of this scripting facility. The examples are
described below and the code for these examples may be found in the examples directory
librabbitmq$root:[examples.tcl].

Script Notes

consumer.tcl A simple consumer script that declares an auto-delete (temporary)
queue (with a randomly generated name) and binds it to the built-
in direct exchange "amq.direct" with binding key "tcl-test".
Any messages published to the “amq.direct” exchange with a
routing key of "tcl-test" will be routed into the queue and will
be received and displayed by the consumer.

get.tcl A trivial example script that declares an auto-delete queue named
"get-test", publishes a message into this queue via the default
exchange (""), and gets the message from the queue. The example
is intended to illustrate the use of the AMQP "basic.get"
method, which can be used to explicitly get the next message (if

1 AMQP$SERVER.EXE currently acknowledges successfully consumed messages. An option to disable

acknowledgements may be provided in future releases.

9

available) from the specified queue, as opposed to the AMQP
"basic.consume" method, where the broker effectively pushes
messages down to the client (consumer) as fast as it is permitted.

producer.tcl This example publishes a large number of messages to the
"amq.direct" exchange with a routing key of "tcl-test" and
may be used in conjunction with either the comsume.tcl example
or the service.tcl example.

props.tcl A trivial example that illustrates how to allocate, populate, and
delete properties structures that can be used to specify message
properties when publishing messages. The code fragment does not
perform any AMQP operations.

Note that only a subset of the message properties defined by the
AMQP standard are currently supported by the Tcl interface. The
supported properties are delivery mode (-delivery-mode),
content type (-content-type), content encoding (-content-
encoding) and the specification of one or more arbitrary headers
(-headers).

rpc.tcl An RPC client script that can be used in place of rr_client.exe
(refer to the request-response example above in the section
Sample LibRabbitMQ AMQP applications) to demonstrate RPC-style
functionality with amqp$server.exe. Instructions on running this
example are provided below.

serve.tcl This example illustrates the specification and use of callback
functions to receive and process messages based on binding keys.
The script declares an auto-delete queue (with a RabbitMQ-
generated name) and uses the RMQ::register command to bind
the queue to the amq.direct exchange with a binding key of
"tcl-test" and to associate the procedure TESTPROC with this
binding. The procedure TESTPROC will then be called for any
messages consumed that were published with a routing key of
"tcl-test". Any number of callback functions can be registered,
and the same callback function can be specified for different
binding keys (however bindings must be unique). The command
RMQ::serve listens for (consumes) messages and invokes the
relevant callback function (if any) to process each message.

spy.tcl This example illustrates the RMQ::spy command, which registers a
consumer on the logging exchange amq.rabbitmq.log and
associates with that consumer a procedure to process any
consumed messages. RabbitMQ publishes its log file entries to this
amq.rabbitmq.log topic exchange, using the severity level of the
log messages as the routing key. By consuming from a queue (or
queues) bound to this exchange with appropriate bindings it is
therefore possible to monitor in real-time broker activity. The
RMQ::spy command simplifies the implementation of such a
monitoring facility into a single command. The option "-all"
causes log messages of any severity to be consumed; specific
severities can be specified using -info, -warning, or -error

10

instead of -all. Note that it is possible to specify a callback
procedure with the RMQ::spy command that will be called for
each message consumed; if no callback procedure is specified,
messages will simply be displayed to SYS$ERROR. Multiple
RMQ::spy commands may be specified to consume and process
log messages of different severity using different callback functions.
Use of the RMQ::spy command is further described below.

Assuming that you have modified the Tcl examples RPC.TCL and SPY.TCL to correctly

specify the location of your RabbitMQ broker and the broker is running, these examples may

be run as follows:

 Running the RPC.TCL example

1. In one OpenVMS session execute the UARS.COM command procedure (assuming

that you have previously built this example as per the instructions in Sample

libRabbitMQ AMQP applications), specifying as parameters the TCP/IP address (or

host name) and port number for the RabbitMQ broker (replace the TCP/IP address

and port number specified here with values applicable to your environment):

$ @uars.com 16.156.32.82 5672

2. Open another OpenVMS session and use the Tcl script interpreter to run the

RPC.TCL client:

$ bugs :== $librabbitmq$root:[bin]bugs.exe

$ bugs rpc.tcl

If all is well, the RPC client will display the text “Hello there”, which is the

response message from the RPC server (the procedure MY_SVC4 in UARS.COB).

 Running the SPY.TCL example

1. In one OpenVMS session, define a foreign command for the Tcl scripting engine and

run the SPY.TCL script:

$ bugs :== $librabbitmq$root:[bin]bugs.exe

$ bugs spy.tcl

Assuming that script successfully connects to the broker, it will now sit idle, waiting

for log messages.

2. In another OpenVMS session, run BUGS.EXE and use the RMQ::attach command

to connect to the RabbitMQ broker, replacing the address specified here with the

correct address of your broker, and then use CNTRL-Z to exit the script interpreter:

$ run librabbitmq$root:[bin]bugs.exe

bugs> set ch [RMQ::attach "amqp://16.156.32.82:5672"]

bugs> ^Z

Upon establishing the connection, the SPY.TCL script will receive and output a

message indicating that the broker has accepted a new connection, and upon exiting

11

the script interpreter by entering CNTRL-Z the SPY.TCL script will display a

message indicating that a connection to the broker is being closed. Specially, the

output will be similar to the following (with different address details):

accepting AMQP connection <0.6298.5> (16.156.32.108:64713 ->

16.156.32.82:5672)

closing AMQP connection <0.6298.5> (16.156.32.108:64713 ->

16.156.32.82:5672):

connection_closed_abruptly

Note that the "connection_closed_abruptly" message is displayed because

the interpreter session was terminated without explicitly closing the AMQP

connection; this message is innocuous.

What’s missing?
The supplied kit for OpenVMS includes all functionality supported by the Open Source

rabbitmq-c client API. In addition, the port includes a language-agnostic API that makes it

straightforward to write RabbitMQ applications using 3GL languages such as COBOL and

FORTRAN. However, it should be noted that the language-agnostic API currently does not

support the specification of all message properties. It is anticipated that this limitation will be

addressed in future releases of the software.

Known problems and limitations
 The language-agnostic OpenVMS API implementation does not support the specification

of all message properties. It is anticipated that this limitation will be addressed in future

releases of the API.

 To ensure correct parsing of command line arguments when using AMQP$SERVER.EXE it
is recommended that users set the process parse style to “extended” (“set
process/parse_style=extended”) or enclose command line arguments and options
in double quotes.

