

Page 1 of 4

LIBPQ for OpenVMS I64
April 2023

1. Introduction
Thank you for your interest in the LIBPQ PostgreSQL client API and embedded SQL pre-
processor utility for OpenVMS. LIBPQ is the C application programmer's interface to
PostgreSQL and includes a set of library functions that allow client programs to pass queries to
the PostgreSQL backend server and to receive the results of these queries.

This release of LIBPQ for OpenVMS is based on the PostgreSQL 11.0 open source distribution
and includes the client API along with several utility programs such as the ECPG embedded SQL
pre-processor utility for developing PostgreSQL client applications in C/C++ using embedded
SQL statements and the PSQL interactive query tool.

This release also includes updates provided by Sector7 that negate issues associated with the
maximum number of arguments that can be supplied to a function call on OpenVMS, making it
possible perform database queries that return large numbers of columns and null-indicator
values. Additionally, this release includes bug fixes for problems observed with the PostgreSQL
timestamp data type.

Additional information about the LIBPQ C/C++ client API and the ECPG pre-processor utility can
be found at https://www.postgresql.org/docs/11/static/.

2. Acknowledgements
VMS Software Inc. would like to acknowledge and thank Sector7 for contributing changes to the
ECPG embedded SQL processor and associated API code that negate issues associated with the
maximum number of arguments that can be specified in a function call on OpenVMS.

3. Requirements
The kit you are receiving has been compiled and built using the operating system and
compiler versions listed below. While it is highly likely that you will have no problems
installing and using the kit on systems running higher versions of the products listed, we
cannot say for sure that you will be so lucky if your system is running older versions.

 OpenVMS 8.4-1H1 I64

 HP TCP/IP Services V5.7 ECO 2

It has not been verified whether the kit works with the MultiNet TCP/IP stack, but there is
a good chance that it will.

 C compiler - HP C V7.3-018

In addition to the above requirements, it is assumed that the reader has a good knowledge
of OpenVMS and of software development in the OpenVMS environment. It is also assumed
that the reader is familiar with the use of the PostgreSQL client API and the embedded SQL pre-
processor utility.

https://www.postgresql.org/docs/11/static/

Page 2 of 4

4. Recommended reading
It is recommended that developers read the documentation for LIBPQ and the ECPG utility
available at https://www.postgresql.org/docs/11/static/ and examine the samples programs
provided with the LIBPQ OpenVMS kit before using the software.

5. Installing the kit
The kit is provided as an OpenVMS PCSI kit (VSI-I64VMS-LIBPQ-V1100D-0-1.PCSI) that
can be installed by a suitably privileged user using the following command:

$ PRODUCT INSTALL LIBPQ

The installation will then proceed as follows (output may differ slightly from that shown):

Performing product kit validation of signed kits ...

The following product has been selected:

 VSI I64VMS LIBPQ V11.0-0D Layered Product

Do you want to continue? [YES]

Configuration phase starting ...

You will be asked to choose options, if any, for each selected

product and for

any products that may be installed to satisfy software dependency

requirements.

Configuring VSI I64VMS LIBPQ V11.0-0D: Libpq for OpenVMS is based on

PostgreSQL 11

 © Copyright 2023 VMS Software Inc.

 VSI Software Inc.

* This product does not have any configuration options.

Execution phase starting ...

The following product will be installed to destination:

 VSI I64VMS LIBPQ V11.0-0D DISK$I64SYS:[VMS$COMMON.]

Portion done: 0%...20%...50%...60%...70%...90%...100%

The following product has been installed:

 VSI I64VMS LIBPQ V11.0-0D Layered Product

VSI I64VMS LIBPQ V11.0-0D: Libpq for OpenVMS is based on PostgreSQL

11

 Post-installation tasks are required.

 To start the Libpq runtime at system boot time, add the following

 lines to SYS$MANAGER:SYSTARTUP_VMS.COM:

 $ file := SYS$STARTUP:LIBPQ$STARTUP.COM

 $ if f$search("''file'") .nes. "" then @'file'

 To stop Libpq at system shutdown, add the following lines to

https://www.postgresql.org/docs/11/static/

Page 3 of 4

 SYS$MANAGER:SYSHUTDWN.COM:

 $ file := SYS$STARTUP:LIBPQ$SHUTDOWN.COM

 $ if f$search("''file'") .nes. "" then @'file'

5.1. Post-installation steps
After the installation has successfully completed, include the commands displayed at the
end of the installation procedure into SYSTARTUP_VMS.COM to ensure that the logical
names required in order for users to use the software are defined system-wide at start-up.

In addition to the system logical name LIBPQ$ROOT (which points to root directory of the
LIBPQ installation tree), the logical name LIBPQ$SHR is also defined. This logical name
points to the shareable image LIBPQ$ROOT:[LIB]LIBPQ$SHR.EXE, which can be linked
with application code. Alternatively, it is possible to statically link application code with the
object libraries found in the LIBPQ$ROOT:[LIB] directory.

From a development perspective, it should be noted that symbols in the shareable image
and object libraries are mixed-case, and application developers must therefore use the
compiler option /NAMES=(AS_IS) or include in their code appropriate directives to ensure
that symbols are correctly resolved when linking. Developers will also need to include in
their code one or more of the header files found in LIBPQ$ROOT:[INCLUDE]. The example
build procedure (see LIBPQ$ROOT:[EXAMPLES]EXAMPLES.COM) illustrates how programs
must be compiled and linked when using the library.

5.2. Privileges and quotas
Generally speaking there are no special quota or privilege requirements for applications
developed using LIBPQ, although a reasonably high BYTLM is recommended, particularly if
database operations will transfer large amounts of data. The following quotas should be
more than adequate for most purposes:

Maxjobs: 0 Fillm: 256 Bytlm: 128000

Maxacctjobs: 0 Shrfillm: 0 Pbytlm: 0

Maxdetach: 0 BIOlm: 150 JTquota: 4096

Prclm: 50 DIOlm: 150 WSdef: 4096

Prio: 4 ASTlm: 300 WSquo: 8192

Queprio: 4 TQElm: 100 WSextent: 16384

CPU: (none) Enqlm: 4000 Pgflquo: 256000

6. Sample applications
The directory LIBPQ$ROOT:[EXAMPLES] contains several simple example programs that
can be used to learn about the API or as a source of inspiration for the development of new
applications. These examples can be compiled and linked using the provided build
procedures (EXAMPLES.COM), which also serves to illustrate how applications using LIBPQ
must be compiled and linked. All examples are linked with the LIBPQ$SHR shareable image;
however they could instead be statically linked with the various object libraries found in
LIBPQ$ROOT:[LIB].

Note that from a production deployment perspective it may in fact be preferable to statically
link applications, as this will avoid the need to install LIBPQ on production systems. An
example is provided (see comments in EXAMPLES.COM) that illustrates how to statically link
your application code with the relevant object libraries. Note that it is necessary to link in

Page 4 of 4

SSL. This is not required when linking with LIBPQ$SHR.EXE as the shareable image
statically links in these libraries.

7. What’s missing?
The supplied kit for OpenVMS includes all functionality supported by the PostgreSQL C/C++
client API and embedded SQL pre-processor, including Oracle Pro*C compatibility. Future
releases of the software may include additional OpenVMS-specific functionality, such as a
wrapper API to facilitate using the API from languages other than C/C++ such as COBOL,
FORTRAN, Pascal, and BASIC.

8. Other points to note
 It should be mentioned that LIBPQ has been built using IEEE floating point and linking

the libraries with code compiled to use another floating point formats may produce
unexpected results. It is recommended that all code use IEEE format to avoid such
situations.

 To ensure correct parsing of command line arguments when using the ECPG and PSQL
tools it is recommended that users set process parse style to “extended” (“set
process/parse_style=extended”) or enclose command line arguments and options
in double quotes.

