

Page 1 of 8

gSOAP for OpenVMS I64, Alpha, and x86-64
April 2024

VSI-AXPVMS-GSOAP-V0208-129B-1.PCSI
VSI-I64VMS-GSOAP-V0208-129B-1.PCSI
VSI-X86VMS-GSOAP-V0208-129B-1.PCSI

The gSOAP Toolkit for SOAP Web Services and XML-Based Applications is a cross-platform open source
C and C++ software development toolkit. It generates C/C++ RPC code, XML data bindings, and
efficient schema-specific parsers for SOAP Web services and other applications that benefit from an
XML interface.

1. Introduction
Thank you for your interest in this port of gSOAP to OpenVMS. The current release of the OpenVMS
gSOAP port is based on the 2.8.129 gSOAP distribution.

The initial motivation for porting gSOAP to OpenVMS was a question from a customer asking how
they could call a remote Web service from their OpenVMS COBOL/ACMS application. A number of
OpenVMS users have crafted novel solutions to address this type of problem; however, gSOAP
potentially provides a more complete, proven, and flexible solution. Since legacy applications can
easily call C libraries, gSOAP is well positioned to act as a Web service client for legacy applications
written in any OpenVMS 3GL.

In addition, gSOAP may be used to implement Web services on the OpenVMS platform. The other
popular technology for implementing Web services on OpenVMS is the Java implementation of
Apache AXIS2 used in conjunction with Apache Tomcat. These offerings provide OpenVMS users with
web service technology based on their choice of programming language and environment.

The following notes briefly describe how to install the gSOAP kit and how to get started with the
simple example applications. If you have any trouble with the kit, have suggestions for how it might be
improved, or would like a distribution for another version of the operating system, please let us know,
and we will do our best to oblige.

Finally, be sure to read the gSOAP documentation (see https://www.genivia.com/docs.html for
details), specifically the gSOAP User Guide. Aside from the handful of OpenVMS-specific functions
that have been added as part of the porting exercise, there should be little or no variance in terms of
usage from what is described in the User Guide (and if there is, we would like to hear about it).

1.1. What’s new in this release?
This release is based on gSOAP 2.8.129, which is a significant jump from the previous release. Please
refer to the documentation at https://www.genivia.com/changelog.html for a description of these
enhancements.

Specific changes in this VSI OpenVMS V2.8-129B kit include a fix to prevent undefined symbols when
compiling and linking C++ examples, and calls to setsockopt() to set send and receive buffer sizes

have been disabled, making it no longer required to have elevated privileges in order to run gSOAP
applications.

https://www.genivia.com/docs.html
https://www.genivia.com/changelog.html

Page 2 of 8

1.2. Outstanding issues
• When using gSOAP on systems that employ On Disk Structure Level 2 (ODS-2), the soapcpp2

utility will fail if generating sample XML message files and there are Web Service methods with
names longer than 35 characters. The workaround to this problem is to specify the -x command

line option, which will suppress the generation of sample XML message files. This issue may be
resolved in future releases of gSOAP for OpenVMS; however, installation on an ODS-5 file system
is recommended.

• When using gSOAP servers in CGI mode with either Apache HTTPD or WASD, problems can be
encountered with the output of the CGI program being truncated. These problems are caused by
inappropriate interpretation of carriage-control characters. To avoid these problems, include the
following code before calling soap_serve():

stdout = freopen("SYS$OUTPUT", "w", stdout, "ctx=bin", "ctx=xplct");

2. Requirements
The kit you are receiving requires the following products and product versions to be installed
for the software to operate correctly. In general, it will also be possible to install and use the
software on higher versions of the operating system and other required products.

• OpenVMS 8.4-2L1 or higher (I64), OpenVMS V8.4-2L1 or higher (Alpha), OpenVMS 9.2-1 or higher
(x86-64)

• VSI TCP/IP

• C compiler

• Optional components:

– C++ compiler (required if you wish to do development in C++ as opposed to C)

– VSI SSL3 V3.0-5 or higher (required if you wish to use SSL)

– VSI CSWS V2.4-48 or higher (required if you wish to use gSOAP in conjunction with
MOD_GSOAP and the Apache HTTPD web server)

In addition to the above requirements, it is assumed that the reader has a good knowledge of
OpenVMS and of software development in the OpenVMS environment.

2.1. Optional products
While gSOAP was implemented to facilitate the development of Web services applications using C and
C++, language integration issues aside, under OpenVMS in particular, there is no reason why it cannot
be used to develop Web services applications using other 3GL languages such as COBOL, BASIC,
Pascal, or FORTRAN. In addition, a simple OpenVMS-specific module is provided that can be used to
implement a gSOAP-based Web services layer on top of an existing ACMS application. Optional
products might therefore include your language compiler(s) of choice and ACMS.

Regardless of your programming language preference, it will invariably be necessary to write some C
code; however (when working with languages other than C/C++), this will typically need to be little
more than a thin veneer that takes care of language incompatibilities between C/C++ and your
primary programming language.

This release of gSOAP for OpenVMS also includes support for FastCGI. See Section 4.5 below for details
regarding FastCGI for OpenVMS and how to obtain a kit.

Page 3 of 8

3. Recommended reading
Before getting too carried away, do be sure to read the very comprehensive gSOAP User Guide
(https://www.genivia.com/doc/guide/html/index.html).

4. Installing the kit
The kit is provided as an OpenVMS PCSI kit (VSI-AXPVMS-GSOAP-V0208-129B-1.PCSI, VSI-

I64VMS-GSOAP-V0208-129B-1.PCSI, or VSI-X86VMS-GSOAP-V0208-129B-1.PCSI,

depending on platform) that can be installed by a suitably privileged user using the following
command:

$ PRODUCT INSTALL LIBMARIADB

The installation will then proceed as follows (output may differ slightly from that shown, depending
on architecture and other factors):

Performing product kit validation of signed kits ...

The following product has been selected:

 VSI I64VMS GSOAP V2.8-129B Layered Product

Do you want to continue? [YES]

Configuration phase starting ...

You will be asked to choose options, if any, for each selected

product and for any products that may be installed to satisfy

software dependency requirements.

Configuring VSI I64VMS GSOAP V2.8-129B

 VMS Software Inc. & Genivia Inc.

* This product does not have any configuration options.

Execution phase starting ...

The following product will be installed to destination:

 VSI I64VMS GSOAP V2.8-129B DISK$I64SYS:[VMS$COMMON.]

Portion done: 0%...20%...40%...50%...60%...70%...80%...90%...100%

The following product has been installed:

 VSI I64VMS GSOAP V2.8-129B Layered Product

VSI I64VMS GSOAP V2.8-129B

 Post-installation tasks are required.

 To define logical names used by gSOAP at system boot time, add

 the following lines to SYS$MANAGER:SYSTARTUP_VMS.COM:

 $ file := SYS$STARTUP:GSOAP$STARTUP.COM

 $ if f$search("''file'") .nes. "" then @'file'

 To deassign logical names used by gSOAP at system shutdown, add

 the following lines to SYS$MANAGER:SYSHUTDWN.COM:

 $ file := SYS$STARTUP:GSOAP$SHUTDOWN.COM

https://www.genivia.com/doc/guide/html/index.html

Page 4 of 8

 $ if f$search("''file'") .nes. "" then @'file'

 Please be sure to review the gSOAP licensing information

 described in the files GPLv2_license.txt, license.pdf, and

 LICENSE.txt included with this kit in GSOAP$ROOT:[000000].

4.1. Post-installation steps
After the installation has successfully completed, include the commands displayed at the end of the
installation procedure into SYSTARTUP_VMS.COM and SYSHUTDWN.COM to ensure that logical

names required to use the software are defined system-wide at start-up and de-assigned on system
shutdown.

Note: If you are upgrading from a previous release of gSOAP for OpenVMS and use MOD_GSOAP, be

sure to replace the existing version of MOD_GSOAP.EXE in APACHE$COMMON:[MODULES] with

the new version supplied with this release (GSOAP$ROOT:[LIB]MOD_GSOAP.EXE).

4.2. Privileges and quotas
A moderate level of privilege is required to run applications developed using the current release of
gSOAP for OpenVMS.

Generally speaking, there are no special gSOAP-imposed quota requirements for applications
developed using gSOAP, although a reasonably high BYTLM is recommended. The following quotas

should be more than adequate for most purposes:

Maxjobs: 0 Fillm: 4096 Bytlm: 2000000

Maxacctjobs: 0 Shrfillm: 0 Pbytlm: 0

Maxdetach: 0 BIOlm: 900 JTquota: 8192

Prclm: 0 DIOlm: 900 WSdef: 4096

Prio: 4 ASTlm: 900 WSquo: 16384

Queprio: 0 TQElm: 900 WSextent: 32767

CPU: (none) Enqlm: 8192 Pgflquo: 2000000

4.3. Debug library
To assist with debugging of applications, this OpenVMS gSOAP release includes the object library
GSOAPDBG.OLB. This library is essentially the same as GSOAP.OLB; however, the contents of the

library have been compiled with the SOAP_DEBUG macro defined, which causes a considerable body of

debug code to be included. Applications linked with the debug version of the object library will create
three log files (recv.log, sent.log, and test.log) that will contain a considerable volume of

potentially useful information about how the application is operating. Note that any of your application
files that include stdsoap2.h should also be compiled with the macro SOAP_DEBUG defined. Please

refer to the gSOAP documentation for more information regarding debugging.

4.4. SSL support
The supplied kit includes the object library GSOAPSSL.OLB, which may be used to build gSOAP

applications that use OpenSSL to provide secure communication. In order to make use of this
capability, the following points should be observed:

• VSI SSL3 V3.0-5 or higher must be installed and correctly configured on all relevant machines.

• All gSOAP-generated code or code that includes gSOAP header files must be compiled with the
WITH_OPENSSL macro defined (/define=WITH_OPENSSL).

• Programs must be linked with the GSOAPSSL.OLB object library and with the OpenSSL

shareable images SSL3$LIBSSL_SHR32.EXE and SSL3$LIBCRYPTO_SHR32.EXE, which

reside in SYS$LIBRARY.

Page 5 of 8

• Refer to the relevant sections of the gSOAP User Guide for details of how to modify your code to
deal with SSL and certificates.

The sample build procedure BUILD-CALC-SSL.COM in GSOAP$ROOT:[SAMPLES.CALC]

illustrates how to compile and link gSOAP applications to use OpenSSL in accordance with the notes
presented above.

4.5. FastCGI support
In addition to the libraries described above, this release of gSOAP for OpenVMS includes the object
libraries GSOAPFCGI.OLB (C) and GSOAPXXFCGI.OLB (C++), which may be used to build gSOAP

applications that use FastCGI (see http://www.fastcgi.org for additional information). In order to
make use of this capability, the following points should be noted:

• FastCGI for OpenVMS must be installed and configured

• All gSOAP C/C++ code or code that includes gSOAP header files must be compiled with the
WITH_FASTCGI macro defined (/define=WITH_FASTCGI).

The sample code in GSOAP$ROOT:[SAMPLES.FCGI] illustrates how to compile and link gSOAP

applications to use FastCGI. The reader should refer to the release notes provided with the FastCGI
for OpenVMS for additional information regarding use of the software and the configuration of WASD
or Apache HTTPD to act as a FastCGI server.

4.6. Possible issues for those not running ACMS
• As noted previously, one of the OpenVMS-specific extensions included with this kit is a module

that can be used to implement a gSOAP-based Web services layer on top of an ACMS
application. If you are not running ACMS on the OpenVMS system where you intend to use the
gSOAP development kit, you may wish to remove the ACMS agent module from the pertinent
object library to avoid linker warnings and other potential problems in the future:

$ lib/delete="agent"/log gsoap$root:[lib]gsoap.olb

Note the use of the double quotes around the module name in the above command.

• The gSOAP library code contains a number of function names that exceed 31 characters in
length and function names that are in mixed case. As a consequence of this, developers need to
take care with regard to the case of function names in any developed code, and it may be
necessary to use the CASE_SENSITIVE=YES|NO directive in linker options files when linking

applications. It may also be necessary to bracket some C header files with #pragma directives to

control how the names of functions and variables specified in those header files are treated by the
C compiler. For example, the #pragma directives below will ensure that the compiler does not

upper-case function and variable names specified in the header files soapH.h and add.nsmap,

but will instead preserve case of any function and variable names used therein (refer to the C
compiler documentation for more information):

#pragma names save

#pragma names as_is

#include "soapH.h"

#include "add.nsmap"

#pragma names restore

5. Sample applications
The GSOAP$ROOT:[SAMPLES] directory contains several very simple examples that illustrate

various aspects of the gSOAP toolkit and several specific features of the OpenVMS port. The following
text briefly discusses each of these examples. Each of the example directories contains simple

http://www.fastcgi.org/

Page 6 of 8

command procedures that can be run to build the example in question. These build procedures
contain the minimum code to compile and link the samples.

Note that the examples below are built using samples directories installed with the kit. It is
advisable to make copies of the files into a different directory to preserve the original kit contents.

1. gsoap$root:[samples.calc]

This sample application is adapted from one of the examples provided with the open source
gSOAP distribution. It has been extended to include a very simple COBOL client that calls one of
the Web service methods.

Before running the build procedure, have a look through the code and refer to the gSOAP User
Guide to help you understand what is going on.

Before running the build procedure, edit calcclient.c and cobclient.cob, and change

the value of the URL variable. For example, in the COBOL client, change the URL in the following
statement to something appropriate for your environment:

move "http://10.10.224.180:8181/calcserver.exe" to url.

Be sure to remember the port number, 8181 above, you have specified. If you now run the build
procedure (@build-calc), you should have three executable programs: calcclient.exe,

calcserver.exe, and cobclient.exe (assuming you have a COBOL compiler).

Next, define a foreign command for calcserver:

$ calcserver :== $gsoap$root:[samples.calc]calcserver.exe

You should now be able to run calcserver, specifying the port number you used in your URL

(see above) as the single command line parameter. For example, if decided to use port 8181 from
the original sample code, you would type:

$ calcserver 8181

Assuming that all is well, calcserver will now be listening on port 8181 for incoming Web

service requests. Try running calcclient.exe and cobclient.exe to verify that the

service is working correctly.

When looking through the code, you will have noticed that the COBOL client (cobclient.cob)

calls several functions whose names begin with GSOAP$. You might also have noticed that the

COBOL client does not call the generated gSOAP client stub directly, but instead calls a simple
wrapper function written in C. The GSOAP$ functions are OpenVMS-specific extensions to

gSOAP.

Finally, in the [.calc] directory you will also see a DCL command procedure called build-

calc-ssl.com. As noted previously, this command procedure illustrates how to compile and

link gSOAP applications to use OpenSSL. The [.calc] directory also includes a C++ implementation
of the calculator example, which can be built using the command procedure build-calc-

cpp.com.

2. [.math]

This example is designed to implement the same functionality as the math example provided
with the HP Web Services Integration Toolkit (WSIT). There is no client application provided with
this example; tools such as soapUI can be used as a generic SOAP client to test the service. If you
wish to try using soapUI with this sample application, you will need to copy the WSDL file
(demo.wsdl) generated by gSOAP for the application to your PC.

3. [.agent]

This example is only of relevance to users using ACMS. As noted previously, one of the OpenVMS
extensions to the gSOAP toolkit provided in the OpenVMS gSOAP kit is a module that can be used
to implement a gSOAP-based Web services layer on top of an ACMS application.

Page 7 of 8

The contents of the [.agent] directory illustrate the usage of this module to call the “add”

task implemented by the ACMS ADD example provided in the ACMSDI$EXAMPLES. Note that

no client application is provided with this example; tools such as soapUI may be used to test and
exercise the application.

Note that you will need to change the ACMS username used by the example as appropriate for
your environment. Remember also that the username has to be defined in the ACMS User
Definition File with the “/agent” privilege.

4. [.COBOL]

This is a very simple example that illustrates how to create a Web Service that uses an existing
COBOL application. The example does very little, but hopefully serves to illustrate some of the
factors that need to be considered when developing such services.

5. [.FORTRAN]

This example provides a simple illustration of how to use gSOAP to create a Web Service that
uses existing FORTRAN code, and how to create a simple client program to call this service from
FORTRAN code.

6. [.fcgi]

This example illustrates how to use gSOAP with FastCGI. After building the application using the
supplied command procedure, the reader should refer to the FastCGI for OpenVMS release notes
for details of how to configure and run the application. See Section 4 for details for details on
FastCGI for OpenVMS and how to obtain a kit.

7. [.wsse]

This directory contains an example program that illustrates the use of the WSSE plug-in that is
included with the kit. This example also uses the gSOAP DOM implementation and SSL. It should
be noted that it will be necessary to obtain appropriate certificates in order to use the SSL
functions.

6. Configuring and using Apache mod_gsoap
The COBOL example shipped with the kit can be built both for use with the gSOAP Standalone Server
as well as with the Apache HTTPD mod_gsoap module. The following text describes how to install

and configure the service built in this way to work with the Apache web server. Any service developed
using gSOAP can be similarly built and deployed in this same manner,

The gSOAP Standalone Server is very useful for development and testing. However, the standalone
server code provided with gSOAP is generally not as scalable or as fault tolerant as the Apache HTTPD,
and the server functionality provided by the standalone server is also somewhat limited. Therefore,
for production environments it is generally better to run services under Apache HTTPD using the
mod_gsoap module.

Deploying services under Apache HTTPD and mod_gsoap is straightforward, although a reasonably

high level of privilege is required in order to perform the installation. Assuming you have built the
Web service to work with Apache HTTPD and mod_gsoap, the following steps need to be performed

to install and configure the service:

• Copy gsoap$root:[lib]mod_gsoap.exe to apache$root:[modules] and ensure

that the ownership and permissions on the copied file are the same as the other modules in the
directory.

• Modify the Apache configuration file (apache$root:[conf]httpd.conf) to include the

mod_gsoap module and a definition for your new service. For example, you might add the

following statements at the bottom of the file:

LoadModule gsoap_module modules/mod_gsoap.exe

<Location /add>

Page 8 of 8

 SetHandler gsoap-handler

 SOAPLibrary add_server

</Location>

The LoadModule statement instructs Apache to load the mod_gsoap module. The

<Location> tag specifies an alias for and the location of our Web service. Assuming that

Apache is running on node bugs.bunny.com on port 81, the <Location /add> tag means that

we will access our service using the URL http://bugs.bunny.com:81/add. The statement
“SOAPLibrary add_server” instructs mod_gsoap that the shareable image implementing

our service is add_server. In this case, add_server is a logical name (see next step). You

could alternatively specify the full path to the service (add.exe).

• Define a system-wide logical name for add_server that points to the service (the sharable

image called add.exe). There is no need to install the shareable image.

• Restart Apache to pick up the new service.

You should now be able to access the “add” service running under Apache using a URL similar to that
specified above.

7. What’s missing?
As noted previously, all standard gSOAP functionality is provided by this OpenVMS release. If there
are additional components that you would like to see added to the distribution, please let us know,
and we will endeavour to factor your requests into a subsequent release.

http://bugs.bunny.com:81/add

