

Page 1 of 6

SQL Relay Client for OpenVMS I64 and Alpha
December 2022

VSI-AXPVMS-SQLRELAY-V0109-3-1.PCSI

VSI-I64VMS-SQLRELAY-V0109-3-1.PCSI

1. Introduction
Thank you for your interest in this port of the SQL Relay client API to VSI OpenVMS I64 and
Alpha. The current release of the SQL Relay client API or OpenVMS is based on the SQL Relay
1.9.3 open source distribution.

SQL Relay is an open source database connection management solution that resides between
your application and the database, providing functionality not typically provided by the
database directly, including persistent database connection pooling, proxying, throttling, high
availability, query routing, query filtering, query translation, and connection scheduling. Of
particular interest from an OpenVMS perspective are the proxying capabilities of SQL Relay,
which can be used to facilitate access to databases from unsupported platforms. Databases
that can be accessed via SQL Relay using the client API include Oracle, Sybase, Microsoft SQL
Server, IBM DB2, MySQL, MariaDB, PostgreSQL, Firebird, and SQLite, as well as ODBC data
sources. For more information see http://sqlrelay.sourceforge.net/index.html.

This OpenVMS port of the SQL Relay client API includes all functionality provided by the Open
Source release, including SSL/TLS support (based on OpenSSL 3.0.5). Also included is a
wrapper API that makes it easier to use the SQL Relay client API with OpenVMS programming
languages other than C/C++, such as COBOL, FORTRAN, Pascal, and BASIC. Additionally, the kit
provides several SQL Relay command line tools, including sqlrsh (an interactive tool similar
to Oracle SQL*Plus), and sqlr-export and sqlr-import, which can be used to export and
import data from XML files on a per-table basis. Additionally, this release includes a beta
version of an embedded SQL pre-processor (PRESQLR.EXE) that can be used to port existing
Oracle C and COBOL applications that use embedded SQL code to SQL Relay, in place of using
the Oracle pre-processor tools and client API1.

2. Acknowledgements
VMS Software Inc. would like to acknowledge the work of David Muse and the Firstworks SQL
Relay development team (http://www.firstworks.com/index.html) for their ongoing efforts in

developing and supporting this open source software.

3. What’s new in this release
For a detailed description of the features and bug fixes included in this release, please refer
to the ChangeLog file in the source repository (git://git.code.sf.net/p/sqlrelay/sqlrelay) and

1 It should be noted that the pre-processor in its current form is intended for use with embedded SQL code that
will interact with an Oracle database. While it is possible to use the tool in conjunction with another database,
correct operation of the resultant generated code is not guaranteed.

http://sqlrelay.sourceforge.net/index.html
http://www.firstworks.com/index.html
git://git.code.sf.net/p/sqlrelay/sqlrelay

Page 2 of 6

the version 1.9.3 release announcement (http://software.firstworks.com/2022/08/sql-relay-
193-release-announcement.html).

4. Requirements
The kit you are receiving has been compiled and built using the operating system and compiler
versions listed below. While it is highly likely that you will have no problems installing and
using the kit on systems running higher versions of the operating system or products listed,
we cannot say for sure that you will be so lucky if your system is running older versions.

 VSI OpenVMS V8.4-1H1 or higher (Integrity), or V8.4-2L1 or higher (Alpha)

 VSI TCP/IP Services for OpenVMS, HPE TCP/IP Services for OpenVMS, or MultiNet TCP/IP

 C, COBOL, or other language compiler (depending upon which language or languages you
intend to use to develop applications using the SQL Relay client API)

 VSI SSL 3.0-5 (or higher) for VSI OpenVMS

Note that if you wish to statically link application code with the supplied SQL Relay object
libraries and require SSL/TLS support, it will be necessary to link with a comparable
OpenSSL distribution.

In addition to the above requirements, it is assumed that the reader has a good knowledge of
OpenVMS and of software development in the OpenVMS environment.

5. Recommended reading
It is recommended that developers and administrators read the extensive documentation
provided on the SQL Relay web site (http://sqlrelay.sourceforge.net/documentation.html)

and that developers carefully examine the provided sample programs before using the
software.

6. Installing the kit
The kit is provided as an OpenVMS PCSI kit (VSI-I64VMS-SQLRELAY-V0109-3-1.PCSI or
VSI-AXPVMS-SQLRELAY-V0109-3-1.PCSI, depending on platform) that can be installed
by a suitably privileged user using the following command:

$ PRODUCT INSTALL SQLRELAY

The installation will then proceed as follows (output may differ slightly from that shown,
depending on platform and other factors):

Performing product kit validation of signed kits ...

The following product has been selected:

 VSI I64VMS SQLRELAY V1.9-3 Layered Product

Do you want to continue? [YES]

Configuration phase starting ...

You will be asked to choose options, if any, for each selected

product and for any products that may be installed to satisfy

software dependency requirements.

http://software.firstworks.com/2022/08/sql-relay-193-release-announcement.html
http://software.firstworks.com/2022/08/sql-relay-193-release-announcement.html
http://sqlrelay.sourceforge.net/documentation.html

Page 3 of 6

Configuring VSI I64VMS SQLRELAY V1.9-3

 VMS Software Inc.

* This product does not have any configuration options.

Execution phase starting ...

The following product will be installed to destination:

 VSI I64VMS SQLRELAY V1.9-3 DISK$I64SYS:[VMS$COMMON.]

Portion done:

0%...10%...20%...30%...40%...50%...60%...70%...90%...100%

The following product has been installed:

 VSI I64VMS SQLRELAY V1.9-3 Layered Product

VSI I64VMS SQLRELAY V1.9-3

 Post-installation tasks are required.

 To enable SQLRelay at system boot time, add the following lines

 To SYS$MANAGER:SYSTARTUP_VMS.COM:

 $ file := SYS$STARTUP:SQLRELAY$STARTUP.COM

 $ if f$search("''file'") .nes. "" then @'file'

 To disable SQLRelay at system shutdown, add the following lines

 To SYS$MANAGER:SYSHUTDWN.COM:

 $ file := SYS$STARTUP:SQLRELAY$SHUTDOWN.COM

 $ if f$search("''file'") .nes. "" then @'file'

Note: In addition to installing the SQL Relay client API, on OpenVMS it is also necessary to
install and configure the SQL Relay server on the Linux or Windows server hosting the target
database, or alternatively to build and use the Docker container as described above.

A detailed description of installing and configuring the SQL Relay server software is beyond the
scope of this document and the reader should refer to the documentation available on the SQL
Relay web site (http://sqlrelay.sourceforge.net/documentation.html).

6.1. Post-installation steps

After the installation has successfully completed, include the commands displayed at the end
of the installation procedure into SYSTARTUP_VMS.COM to ensure that the logical names
required in order for developers to use the software are defined system-wide at start-up.

In addition to the logical name SQLR$ROOT (which points to the root directory of the SQL
Relay client software installation), the logical names SQLR$SHR and SQLR$LIBESQL_SHR are
also defined. The logical name SQLR$SHR points to the shareable image SQLR$SHR.EXE,
located in SQLR$ROOT:[LIB], which can be linked with application code that uses the SQL
Relay client API. Alternatively, it is possible to statically link application code with the object
libraries found in the SQLR$ROOT:[LIB] directory. The logical name SQLR$LIBESQL_SHR
points to the shareable image SQLR$ROOT:[LIB]SQLR$LIBESQL_SHR.EXE, which must be

http://sqlrelay.sourceforge.net/documentation.html

Page 4 of 6

linked with application code containing embedded SQL statements that is built using the
PRESQLR.EXE embedded SQL pre-processor.

Other logical names defined by the SQL Relay start-up script are as follows:

Logical name Purpose

SQLR$BASIC Location of the include file sqlrdef.bas for use with BASIC
applications.

SQLR$BIN Location of SQL Relay command line utilities (sqlr-export.exe,
sqlr-import.exe, sqlrsh.exe)

SQLR$COBOL Location of the include file sqlrdef.cob for use with COBOL
applications.

SQLR$EXAMPLES Location of example programs in BASIC, FORTRAN, Pascal, COBOL,
and C.

SQLR$FORTRAN Location of the include file sqlrdef.for for use with FORTRAN
applications.

SQLR$LIB Location of SQL Relay client API object libraries and shareable
image.

SQLR$PASCAL Location of the include file sqlrdef.pas for use with Pascal
applications.

From a development perspective, for C/C++ programs it should be noted that symbols in the
shareable image and object libraries are mixed-case, and developers should therefore use the
C and C++ compiler option /NAMES=(AS_IS,SHORTENED) or include in their code
appropriate #pragma directives (C only) to ensure that symbols are correctly resolved when
linking. Developers will also need to include in their code the appropriate language header
file, from SQLR$ROOT:[INCLUDE]. Symbols for the wrapper API that can be used with other
OpenVMS programming languages are all upper-case.

Note that the C header file SQLR$ROOT:[INCLUDE.SQLRELAY]SQLR_WRAP_LIB.H must be
included by C source code modules containing embedded SQL code that is pre-processed by
the PRESQLR.EXE embedded SQL pre-processor.

6.2. Privileges and quotas

Generally speaking there are no special quota or privilege requirements for applications
developed using the SQL Relay client API, although a high BYTLM is recommended, and
SYSPRV, BYPASS, or OPER privilege will be required if applications developed using the library
need to utilise privileged ports (ports below 1024).

The following quotas should be more than adequate for most purposes:

Maxjobs: 0 Fillm: 256 Bytlm: 128000

Maxacctjobs: 0 Shrfillm: 0 Pbytlm: 0

Maxdetach: 0 BIOlm: 150 JTquota: 4096

Prclm: 50 DIOlm: 150 WSdef: 4096

Prio: 4 ASTlm: 300 WSquo: 8192

Queprio: 4 TQElm: 100 WSextent: 16384

CPU: (none) Enqlm: 4000 Pgflquo: 256000

Page 5 of 6

7. Sample applications
The directory SQLR$ROOT:[EXAMPLES] contains several simple example programs written
in C, COBOL, FORTRAN, BASIC, and Pascal that serve to illustrate the usage of the API. The
command procedure SQLR$ROOT:[EXAMPLES]BUILD_EXAMPLES.COM can be used to build
all of the example programs, and assumes that you have all of the relevant language compilers
installed on the system in question. If this is not the case, it will be necessary to modify the
command procedure to remove or comment out any language examples that you do not wish
to build.

These simple example programs are intended to provide an introduction to the SQL Relay API
and to hopefully serve as a basis for the development of more sophisticated applications. Note
that it will be necessary to have available an appropriately configured SQL Relay server
environment in order to run the example programs, and the example programs will need to
be modified to specify the correct username, password, network address, and database
connection details for your environment.

The directory SQLR$ROOT:[EXAMPLES.ESQL] contains a simple example build procedure
that illustrates how to build applications using the presqlr.exe embedded SQL pre-
processor. The example build procedure illustrates some of the command line options that
may be used with presqlr.exe; in order to see the full list of parameters and options, run the
pre-processor without specifying any parameters.

Note that it is mandatory to specify an input file using the /INAME qualifier. All other qualifiers
are optional, and will default to the values shown, where appropriate.

8. Docker container
Also provided for this release is a Dockerfile that can be used to build a Docker image
containing the SQL Relay server and Oracle Instant Client. Deploying these components via a
Docker container provides an easy way to set up and use the SQL Relay server, with
configuration and use equating to little more than modifying the SQL Relay server
configuration file to specify the correct connection details, and running a small set of Docker
commands to build and start the container image2. The Dockerfile and instructions for building

the image can be found at https://github.com/vmssoftware/sqlr-ora.

9. Known issues and limitations
The supplied kit for VSI OpenVMS includes all functionality supported by the open source SQL
Relay client API. In addition, the port includes a language-agnostic API that makes it
straightforward to write applications using 3GL languages such as COBOL, FORTRAN, Pascal,
and BASIC. This release of SQL Relay for VSI OpenVMS also includes a beta version of the
PRESQLR.EXE embedded SQL pre-processor tool for COBOL and C.

The following list identifies any known issues and limitations associated with this release of
SQL Relay for VSI OpenVMS:

2 Docker must be installed on the system where you intend to run the container image. Either a Microsoft

Windows, macOS, or Linux system may be used for this purpose. See https://www.docker.com/ for details
regarding the installation and use of Docker.

https://github.com/vmssoftware/sqlr-ora
https://www.docker.com/

Page 6 of 6

 The PRESQLR.EXE embedded SQL pre-processor for SQL Relay on VSI OpenVMS currently
supports only the COBOL and C programming languages. It is envisaged that support for
additional languages (and in particular FORTRAN) will be included in future releases.

 The PRESQLR.EXE embedded SQL pre-processor currently provides support for a subset
of Oracle RDBMS SQL statements3. Currently supported statements include those for

connection and transaction handling (CONNECT, COMMIT, ROLLBACK), cursors (DECLARE,
OPEN, FETCH, CLOSE), basic DML, DQL, and DDL operations (INSERT, UPDATE, DELETE,
SELECT, CREATE, and DROP), PL/SQL (with some limitations), partial support for BLOBs,
and standard embedded SQL constructs (INCLUDE SQLCA, BEGIN DECLARE SECTION,
END DECLARE SECTION). Support for additional Oracle RDBMS SQL statements will be
provided in future releases of the software.

 The embedded SQL CONNECT statement for SQL Relay is somewhat different than the
CONNECT statement for Oracle. Specifically, it is assumed that all databases are remote,
and connect string must contain connection details for the remote SQL Relay server in the
form host:port, where host may be the name or IP address of the server running the
SQL Relay server, and port is the port number being used by the SQL Relay server process.
The connect string can be specified via a host variable or a string constant, or alternatively
it can be specified via a PRESQLR.EXE command line parameter. It should be noted that
SQL statements support named connections for parallel activity across the same or
different databases using the AT clause, where named connections can be defined and
created with the CONNECT statement.

Subsequent releases of the SQL Relay client for OpenVMS will include addition development
tools and utilities, including embedded SQL processors for other programming languages and
an enhanced interactive query tool. It is anticipated that the inclusion of these facilities and
the scope of the functionality they provide will evolve over the course of several product
releases.

3 For example, declaring and using cursors for UPDATE and DELETE is not currently supported.

