
VSI OpenVMS

Programming Concepts Manual,
Volume I

Document Number: DO–DPROG1–01A

Publication Date: April 2024

Operating System and Version: VSI OpenVMS IA-64 Version 8.4-1H1 or higher
VSI OpenVMS Alpha Version 8.4-2L1 or higher
VSI OpenVMS x86-64 Version 9.2-1 or higher

VMS Software, Inc. (VSI)
Boston, Massachusetts, USA

Programming Concepts Manual, Volume I

Copyright © 2024 VMS Software, Inc. (VSI), Boston, Massachusetts, USA

Legal Notice

Confidential computer software. Valid license from VSI required for possession, use or copying. Consistent with FAR 12.211 and 12.212,
Commercial Computer Software, Computer Software Documentation, and Technical Data for Commercial Items are licensed to the U.S.
Government under vendor's standard commercial license.

The information contained herein is subject to change without notice. The only warranties for VSI products and services are set forth in the
express warranty statements accompanying such products and services. Nothing herein should be construed as constituting an additional
warranty. VSI shall not be liable for technical or editorial errors or omissions contained herein.

HPE, HPE Integrity, HPE Alpha, and HPE Proliant are trademarks or registered trademarks of Hewlett Packard Enterprise.

Intel, Itanium and IA-64 are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States and other countries.

Microsoft, Windows, and Windows NT are U.S. registered trademarks of Microsoft Corporation.

UNIX is a registered trademark of The Open Group.

X/Open is a registered trademark, and the X device is a trademark of X/Open Company Ltd. in the UK and other countries.

ii

Programming Concepts Manual, Volume I

Preface ... xv
1. About VSI .. xv
2. Intended Audience ... xv
3. Document Structure ... xv
4. Related Documents ... xvi
5. VSI Encourages Your Comments .. xvii
6. OpenVMS Documentation ... xvii
7. Typographical Conventions ... xvii

Chapter 1. Overview of Manuals and Introduction to Development on OpenVMS
Systems ... 1

1.1. Overview of the Manual .. 1
1.2. Overview of the OpenVMS Operating System .. 2
1.3. Components of the OpenVMS Operating System .. 2

1.3.1. OpenVMS Systems on Multiple Platforms .. 3
1.3.1.1. System Compatibility and Program Portability Across Platforms 3

1.3.2. OpenVMS Computing Environments ... 3
1.3.2.1. Open System Capabilities ... 4
1.3.2.2. Application Portability ... 4

1.3.3. Distributed Computing Capabilities .. 4
1.3.3.1. Client/Server Style of Computing .. 5
1.3.3.2. OpenVMS Client/Server Capabilities ... 5

1.4. The OpenVMS Programming Environment ... 6
1.4.1. Programming to Standards .. 7

1.4.1.1. Common Environment for Writing Code ... 7
1.4.1.2. Common Language Environment .. 7

1.5. OpenVMS Programming Software ... 7
1.5.1. Creating Program Source Files .. 8
1.5.2. Creating Object Files .. 9
1.5.3. Creating Runnable Programs ... 10
1.5.4. Testing and Debugging Programs ... 10

1.5.4.1. Special Modes of Operation for Debugging .. 11
1.5.5. Using Other Program Development Utilities ... 12
1.5.6. Managing Software Development Tasks .. 12

1.6. Using Callable System Routines ... 13
1.6.1. Using the POSIX Threads Library Routines ... 13
1.6.2. Using OpenVMS Run-Time Library Routines ... 13
1.6.3. Using OpenVMS System Services ... 14
1.6.4. Using OpenVMS Utility Routines .. 15

1.7. Programming User Interfaces ... 16
1.8. Optional VSI Software Development Tools ... 17
1.9. Managing Data ... 17

1.9.1. RMS Files and Records .. 17
1.9.2. RMS Utilities ... 18

Part I. Process and Synchronization

Chapter 2. Process Creation .. 21
2.1. Process Types ... 21
2.2. Execution Context of a Process .. 21
2.3. Modes of Execution of a Process ... 22
2.4. Creating a Subprocess ... 22

iii

Programming Concepts Manual, Volume I

2.4.1. Naming a Spawned Subprocess ... 23
2.4.2. Using LIB$SPAWN to Create a Spawned Subprocess .. 23
2.4.3. Using the C system() Call ... 26
2.4.4. Using SYS$CREPRC to Create a Subprocess .. 26

2.4.4.1. Disk and Directory Defaults for Created Processes 32
2.5. Creating a Detached Process .. 33
2.6. Process Quota Lists ... 34
2.7. Debugging a Subprocess or a Detached Process ... 34
2.8. Kernel Threads and the Kernel Threads Process Structure (Alpha and I64 Only) 37

2.8.1. Definition and Advantages of Kernel Threads ... 37
2.8.2. Kernel Threads Features ... 38

2.8.2.1. Multiple Execution Contexts Within a Process .. 38
2.8.2.2. Efficient Use of the OpenVMS and POSIX Threads Library Schedulers 38
2.8.2.3. Terminating a POSIX Threads Image .. 38

2.8.3. Kernel Threads Model and Design Features .. 39
2.8.3.1. Kernel Threads Model ... 39
2.8.3.2. Kernel Threads Design Features .. 39

2.8.4. Kernel Threads Process Structure .. 40
2.8.4.1. Process Control Block (PCB) and Process Header (PHD) 41
2.8.4.2. Kernel Thread Block (KTB) ... 41
2.8.4.3. Floating-Point Registers and Execution Data Blocks (FREDs) 42
2.8.4.4. Kernel Threads Region ... 42
2.8.4.5. Per-Kernel Thread Stacks ... 42
2.8.4.6. Per-Kernel-Thread Data Cells ... 43
2.8.4.7. Summary of Process Data Structures ... 43
2.8.4.8. Kernel Thread Priorities ... 43

2.9. THREADCP Command Not Supported on OpenVMS I64 ... 44
2.10. KPS Services (Alpha and I64 Only) ... 44

Chapter 3. Process Communication .. 45
3.1. Communication Within a Process ... 45

3.1.1. Using Local Event Flags ... 45
3.1.2. Using Logical Names .. 46

3.1.2.1. Creating and Accessing Logical Names .. 46
3.1.3. Using Command Language Interpreter Symbols .. 48

3.1.3.1. Local and Global Symbols ... 49
3.1.3.2. Creating and Using Global Symbols .. 49

3.1.4. Using the Common Area .. 49
3.1.4.1. Creating the Process Common Area .. 49
3.1.4.2. Common I/O Routines ... 49
3.1.4.3. Modifying or Deleting Data in the Common Block 50
3.1.4.4. Specifying Other Types of Data .. 50

3.2. Communication Between Processes .. 51
3.2.1. Using Logical Name Tables ... 52
3.2.2. Mailboxes .. 52

3.2.2.1. Creating a Mailbox .. 52
3.2.2.2. Creating Temporary and Permanent Mailboxes ... 53
3.2.2.3. Assigning an I/O Channel Along with a Mailbox 54
3.2.2.4. Reading and Writing Data to a Mailbox ... 55
3.2.2.5. Using Synchronous Mailbox I/O ... 55
3.2.2.6. Using Immediate Mailbox I/O .. 57
3.2.2.7. Using Asynchronous Mailbox I/O ... 61

3.3. Intracluster Communication ... 64

iv

Programming Concepts Manual, Volume I

3.3.1. Programming with Intracluster Communications ... 65
3.3.1.1. ICC Concepts .. 65
3.3.1.2. Design Considerations .. 66
3.3.1.3. General Programming Considerations .. 68
3.3.1.4. Servers ... 68
3.3.1.5. Clients .. 69

Chapter 4. Process Control ... 71
4.1. Using Process Control for Programming Tasks .. 71

4.1.1. Determining Privileges for Process Creation and Control 72
4.1.2. Determining Process Identification ... 73
4.1.3. Qualifying Process Naming Within Groups ... 74

4.2. Obtaining Process Information ... 75
4.2.1. Using the PID to Obtain Information ... 76
4.2.2. Using the Process Name to Obtain Information ... 76
4.2.3. Using SYS$GETJPI and LIB$GETJPI ... 78

4.2.3.1. Requesting Information About a Single Process .. 78
4.2.3.2. Requesting Information About All Processes on the Local System 81

4.2.4. Using SYS$GETJPI with SYS$PROCESS_SCAN ... 83
4.2.4.1. Using SYS$PROCESS_SCAN Item List and Item-Specific Flags 84
4.2.4.2. Requesting Information About Processes That Match One Criterion 85
4.2.4.3. Requesting Information About Processes That Match Multiple Values for
One Criterion .. 88
4.2.4.4. Requesting Information About Processes That Match Multiple Criteria 89

4.2.5. Specifying a Node as Selection Criterion .. 89
4.2.5.1. Checking All Nodes on the Cluster for Processes 90
4.2.5.2. Checking Specific Nodes on the Cluster for Processes 90
4.2.5.3. Conducting Multiple Simultaneous Searches with
SYS$PROCESS_SCAN ... 91

4.2.6. Programming with SYS$GETJPI ... 92
4.2.6.1. Using Item Lists Correctly .. 92
4.2.6.2. Improving Performance by Using Buffered $GETJPI Operations 92
4.2.6.3. Fulfilling Remote SYS$GETJPI Quota Requirements 93
4.2.6.4. Using the SYS$GETJPI Control Flags ... 94

4.2.7. Using SYS$GETLKI .. 98
4.2.8. Setting Process Privileges .. 99

4.3. Changing Process and Kernel Threads Scheduling ... 99
4.4. Using Affinity and Capabilities in CPU Scheduling (Alpha and I64 Only) 100

4.4.1. Defining Affinity and Capabilities .. 100
4.4.1.1. Using Affinity and Capabilities with Caution .. 101

4.4.2. Types of Capabilities .. 101
4.4.3. Looking at User Capabilities ... 101
4.4.4. Using the Capabilities System Services ... 102
4.4.5. Types of Affinity .. 102

4.4.5.1. Implicit Affinity ... 102
4.4.5.2. Explicit Affinity ... 103

4.5. Using the Class Scheduler in CPU Scheduling ... 104
4.5.1. Specifications for the Class_Schedule Command ... 104

4.5.1.1. The Add Subcommand .. 104
4.5.1.2. The Delete Subcommand ... 105
4.5.1.3. The Modify Subcommand .. 105
4.5.1.4. The Show Subcommand ... 106
4.5.1.5. The Suspend Subcommand ... 106

v

Programming Concepts Manual, Volume I

4.5.1.6. The Resume Subcommand ... 106
4.5.2. The Class Scheduler Database ... 107

4.5.2.1. The Class Scheduler Database and Process Creation 107
4.5.3. Determining If a Process Is Class Scheduled ... 107
4.5.4. The SYS$SCHED System Service ... 108

4.6. Changing Process Name .. 108
4.7. Accessing Another Process's Context .. 109

4.7.1. Reading and Writing in the Address Space of Another Process (Alpha and I64
Only) .. 109

4.7.1.1. EXE$READ_PROCESS and EXE$WRITE_PROCESS 109
4.7.2. Writing an Executive Image (Alpha and I64 Only) .. 115

4.7.2.1. INITIALIZATION_ROUTINE Macro (Alpha and I64 Only) 117
4.7.2.2. Linking an Executive Image (Alpha or I64 Only) 118
4.7.2.3. Loading an Executive Image (Alpha or I64 Only) 118
4.7.2.4. LDR$LOAD_IMAGE (Alpha or I64 Only) .. 119
4.7.2.5. LDR$UNLOAD_IMAGE (Alpha or I64 Only) 122

4.8. Synchronizing Programs by Specifying a Time for Program Execution 124
4.8.1. Obtaining the System Time ... 124

4.8.1.1. Executing a Program at a Specified Time ... 125
4.8.1.2. Executing a Program at Timed Intervals .. 126

4.8.2. Placing Entries in the System Timer Queue .. 127
4.9. Controlling Kernel Threads and Process Execution ... 128

4.9.1. Process Hibernation and Suspension ... 128
4.9.1.1. Using Process Hibernation .. 130
4.9.1.2. Using Alternative Methods of Hibernation ... 131
4.9.1.3. Using SYS$SUSPND ... 132

4.9.2. Passing Control to Another Image ... 132
4.9.2.1. Invoking a Command Image ... 132
4.9.2.2. Invoking a Noncommand Image .. 133

4.9.3. Performing Image Exit .. 133
4.9.3.1. Performing Image Rundown ... 134
4.9.3.2. Initiating Rundown .. 134
4.9.3.3. Performing Cleanup and Rundown Operations .. 135
4.9.3.4. Initiating Image Rundown for Another Process 135

4.9.4. Deleting a Process .. 136
4.9.4.1. Deleting a Process By Using System Services ... 137
4.9.4.2. $DELPRC System Service Can Invoke Exit Handlers (Alpha and I64
only) ... 138
4.9.4.3. Terminating Mailboxes ... 140

Chapter 5. Symmetric Multiprocessing (SMP) Systems .. 145
5.1. Introduction to Symmetric Multiprocessing .. 145
5.2. CPU Characteristics of an SMP System .. 145

5.2.1. Booting an SMP System ... 145
5.2.2. Interrupt Requests on SMP System .. 146

5.3. Symmetric Multiprocessing Goals ... 146
Chapter 6. Synchronizing Data Access and Program Operations 149

6.1. Overview of Synchronization ... 149
6.1.1. Threads of Execution .. 149
6.1.2. Atomicity ... 150

6.2. Memory Read and Memory Write Operations for VAX and Alpha 150
6.2.1. Accessing Memory ... 150

vi

Programming Concepts Manual, Volume I

6.2.2. Ordering of Read and Write Operations ... 151
6.2.3. Memory Reads and Memory Writes ... 152

6.3. Memory Read and Memory Write Operations for I64 Systems 152
6.3.1. Atomic Semaphore Instructions on I64 .. 152
6.3.2. Accessing Memory on I64 .. 152
6.3.3. Ordering of Read and Write Operations for I64 Systems 153

6.4. Memory Read-Modify-Write Operations for VAX and Alpha .. 153
6.4.1. Uniprocessor Operations ... 153
6.4.2. Multiprocessor Operations ... 154

6.5. Memory Read-Modify-Write Operations for I64 Systems .. 154
6.5.1. Preserving Atomicity with MACRO-32 .. 155

6.6. Synchronization Primitives ... 156
6.6.1. Interrupt Priority Level ... 157
6.6.2. LD x_L and ST x_C Instructions (Alpha Only) ... 157
6.6.3. Interlocking Memory References (Alpha Only) ... 158

6.6.3.1. Required Code Checks ... 158
6.6.3.2. Using the Code Analysis Tool ... 158
6.6.3.3. Characteristics of Noncompliant Code ... 159
6.6.3.4. Coding Requirements ... 160
6.6.3.5. Compiler Versions ... 162
6.6.3.6. Interlocked Memory Sequence Checking for the MACRO–32 Compiler 162
6.6.3.7. Recompiling Code with ALONONPAGED_INLINE or
LAL_REMOVE_FIRST Macros ... 163

6.6.4. Interlocked Instructions (VAX Only) .. 164
6.6.5. Memory Barriers (Alpha Only) .. 165
6.6.6. Memory Fences (I64 Only) ... 165
6.6.7. PALcode Routines (Alpha Only) ... 165
6.6.8. I64 Emulation of PALcode Built-ins .. 166

6.7. Software-Level Synchronization ... 166
6.7.1. Synchronization Within a Process .. 166
6.7.2. Synchronization in Inner Mode (Alpha and I64 Only) .. 167
6.7.3. Synchronization Using Process Priority .. 167
6.7.4. Synchronizing Multiprocess Applications .. 167
6.7.5. Synchronization Using Locks .. 168
6.7.6. Writable Global Sections ... 168

6.8. Using Event Flags ... 169
6.8.1. General Guidelines for Using Event Flags ... 169
6.8.2. Introducing Local and Common Event Flag Numbers and Event Flag Clusters 170
6.8.3. Using Event Flag Zero (0) .. 171
6.8.4. Using EFN$C_ENF Local Event Flag .. 172
6.8.5. Using Local Event Flags ... 172

6.8.5.1. Example of Event Flag Services .. 173
6.8.6. Using Common Event Flags .. 173

6.8.6.1. Using the name Argument with SYS$ASCEFC 174
6.8.6.2. Temporary Common Event Flag Clusters ... 175
6.8.6.3. Permanent Common Event Flag Clusters ... 175

6.8.7. Wait Form Services and SYS$SYNCH ... 177
6.8.8. Event Flag Waits .. 178
6.8.9. Setting and Clearing Event Flags ... 179
6.8.10. Example of Using a Common Event Flag Cluster .. 180
6.8.11. Example of Using Event Flag Routines and Services .. 182

6.9. Synchronizing System Services Operations .. 183

vii

Programming Concepts Manual, Volume I

Chapter 7. Synchronizing Access to Resources .. 187
7.1. Synchronizing Operations with the Lock Manager ... 187
7.2. Concepts of Resources and Locks .. 188

7.2.1. Resource Granularity .. 188
7.2.2. Resource Domains .. 189
7.2.3. Resource Names ... 190
7.2.4. Choosing a Lock Mode .. 190
7.2.5. Levels of Locking and Compatibility .. 191
7.2.6. Lock Management Queues .. 192
7.2.7. Concepts of Lock Conversion .. 193
7.2.8. Deadlock Detection .. 193
7.2.9. Lock Quotas and Limits ... 194

7.2.9.1. Enqueue Limit Quota (ENQLM) ... 194
7.2.9.2. Subresources and Sublocks ... 194
7.2.9.3. Resource Hash Table .. 195
7.2.9.4. LOCKIDTBL System Parameter ... 195

7.3. Queuing Lock Requests ... 195
7.3.1. Example of Requesting a Null Lock ... 196

7.4. Advanced Locking Techniques ... 197
7.4.1. Synchronizing Locks ... 197
7.4.2. Notification of Synchronous Completion ... 197
7.4.3. Expediting Lock Requests ... 198
7.4.4. Lock Status Block .. 198
7.4.5. Blocking ASTs ... 198
7.4.6. Lock Conversions ... 199
7.4.7. Forced Queuing of Conversions ... 200
7.4.8. Parent Locks .. 201
7.4.9. Lock Value Blocks ... 202
7.4.10. Interoperation with 16-Byte and 64-Byte Value Blocks 203

7.5. Dequeuing Locks .. 204
7.6. Local Buffer Caching with the Lock Management Services ... 206

7.6.1. Using the Lock Value Block .. 206
7.6.2. Using Blocking ASTs .. 206

7.6.2.1. Deferring Buffer Writes .. 206
7.6.2.2. Buffer Caching .. 207

7.6.3. Choosing a Buffer-Caching Technique .. 207
7.7. Example of Using Lock Management Services ... 207

Part II. Interrupts and Condition Handling

Chapter 8. Using Asynchronous System Traps .. 211
8.1. Overview of AST Routines .. 211
8.2. Declaring and Queuing ASTs ... 212

8.2.1. Reentrant Code and ASTs ... 212
8.2.1.1. The Call Frame ... 212

8.2.2. Shared Data Access with Readers and Writers .. 213
8.2.3. Shared Data Access and AST Synchronization .. 213
8.2.4. User ASTs and Asynchronous Completions ... 214

8.3. Common Mistakes in Asynchronous Programming ... 214
8.4. Using System Services for AST Event and Time Delivery ... 215
8.5. Access Modes for AST Execution .. 216
8.6. Calling an AST ... 216

viii

Programming Concepts Manual, Volume I

8.7. Delivering ASTs .. 218
8.7.1. The AST Service Routine ... 218
8.7.2. Conditions Affecting AST Delivery .. 220
8.7.3. Kernel Threads AST Delivery (Alpha and I64) ... 220

8.7.3.1. Outer Mode (User and Supervisor) Nonserial Delivery of ASTs 221
8.7.3.2. Inner Mode (Executive and Kernel) AST Delivery 222

8.8. ASTs and Process Wait States .. 222
8.8.1. Event Flag Waits .. 222
8.8.2. Hibernation .. 222
8.8.3. Resource Waits and Page Faults ... 223

8.9. Examples of Using AST Services ... 223
Chapter 9. Condition-Handling Routines and Services ... 227

9.1. Overview of Run-Time Errors .. 227
9.2. Overview of the OpenVMS Condition Handling Facility ... 227

9.2.1. Condition-Handling Terminology ... 227
9.2.2. Functions of the Condition Handling Facility .. 229

9.3. Exception Conditions ... 232
9.3.1. Conditions Caused by Exceptions .. 233
9.3.2. Exception Conditions .. 238
9.3.3. Arithmetic Exceptions ... 239
9.3.4. Unaligned Access Traps (Alpha and I64) .. 241

9.4. How Run-Time Library Routines Handle Exceptions .. 242
9.4.1. Exception Conditions Signaled from Mathematics Routines (VAX Only) 242

9.4.1.1. Integer Overflow and Floating-Point Overflow 242
9.4.1.2. Floating-Point Underflow ... 242

9.4.2. System-Defined Arithmetic Condition Handlers .. 243
9.5. Condition Values ... 244

9.5.1. Return Status Convention .. 246
9.5.1.1. Testing Returned Condition Values .. 246
9.5.1.2. Using the $VMS_STATUS_SUCCESS Macro .. 247
9.5.1.3. Testing SS$_NOPRIV and SS$_EXQUOTA Condition Values 247

9.5.2. Modifying Condition Values .. 248
9.6. Exception Dispatcher ... 249
9.7. Argument List Passed to a Condition Handler .. 252
9.8. Signaling .. 253

9.8.1. Generating Signals with LIB$SIGNAL and LIB$STOP 255
9.8.1.1. LIB$SIGNAL .. 256
9.8.1.2. LIB$STOP .. 257

9.8.2. Signal Argument Vector .. 258
9.8.3. VAX Mechanism Argument Vector .. 260
9.8.4. Alpha Mechanism Argument Vector .. 261
9.8.5. I64 Mechanism Vector Format .. 263
9.8.6. x86-64 Mechanism Vector Format ... 267
9.8.7. Multiple Active Signals ... 270

9.9. Types of Condition Handlers .. 272
9.9.1. Default Condition Handlers ... 272
9.9.2. Interaction Between Default and User-Supplied Handlers 274

9.10. Types of Actions Performed by Condition Handlers ... 275
9.10.1. Unwinding the Call Stack .. 276
9.10.2. GOTO Unwind Operations (64-bit Systems) ... 279

9.11. Displaying Messages .. 279
9.11.1. Chaining Messages .. 282

ix

Programming Concepts Manual, Volume I

9.11.2. Logging Error Messages to a File .. 285
9.11.2.1. Creating a Running Log of Messages Using SYS$PUTMSG 286
9.11.2.2. Suppressing the Display of Messages in the Running Log 286

9.11.3. Using the Message Utility to Signal and Display User-Defined Messages 287
9.11.3.1. Creating the Message Source File .. 288

9.11.4. Signaling User-Defined Values and Messages with Global and Local Symbols 291
9.11.4.1. Signaling with Global Symbols .. 291
9.11.4.2. Signaling with Local Symbols ... 291
9.11.4.3. Specifying FAO Parameters .. 292

9.12. Writing a Condition Handler .. 293
9.12.1. Continuing Execution .. 294
9.12.2. Resignaling ... 294
9.12.3. Unwinding the Call Stack .. 295
9.12.4. Example of Writing a Condition Handler .. 295

9.12.4.1. Signal Array .. 295
9.12.4.2. Mechanism Array .. 295
9.12.4.3. Comparing the Signaled Condition with an Expected Condition 295
9.12.4.4. Exiting from the Condition Handler ... 296
9.12.4.5. Returning Control to the Program ... 297

9.12.5. Example of Condition-Handling Routines .. 299
9.13. Debugging a Condition Handler .. 300
9.14. Run-Time Library Condition-Handling Routines ... 301

9.14.1. RTL Jacket Handlers (64-bit Systems) .. 301
9.14.2. Converting a Floating-Point Fault to a Floating-Point Trap (VAX Only) 301
9.14.3. Changing a Signal to a Return Status .. 301
9.14.4. Changing a Signal to a Stop .. 303
9.14.5. Matching Condition Values .. 303
9.14.6. Correcting a Reserved Operand Condition (VAX Only) 303
9.14.7. Decoding the Instruction That Generated a Fault (VAX Only) 304

9.15. Exit Handlers .. 304
9.15.1. Establishing an Exit Handler .. 305
9.15.2. Writing an Exit Handler .. 307
9.15.3. Debugging an Exit Handler ... 307
9.15.4. Example of Exit Handler ... 308

Part III. Addressing and Memory Management

Chapter 10. Overview of Alpha and I64 Virtual Address Space 313
10.1. Using 64-Bit Addresses ... 313
10.2. Traditional OpenVMS 32-Bit Virtual Address Space Layout 313
10.3. OpenVMS Alpha and OpenVMS I64 64-Bit Virtual Address Space Layout 314

10.3.1. Process-Private Space .. 316
10.3.2. System Space ... 316
10.3.3. Page Table Space .. 317
10.3.4. Virtual Address Space Size .. 317

10.4. Virtual Regions ... 318
10.4.1. Regions Within P0 Space and P1 Space ... 319
10.4.2. 64-Bit Program Region ... 319
10.4.3. User-Defined Virtual Regions .. 319

Chapter 11. Support for 64-Bit Addressing (Alpha and I64 Only) 321
11.1. System Services Support for 64-Bit Addressing .. 321

11.1.1. System Services Terminology .. 321

x

Programming Concepts Manual, Volume I

11.1.2. Comparison of 32-Bit and 64-Bit Descriptors ... 322
11.1.3. Comparison of 32-Bit and 64-Bit Item Lists ... 324

11.1.3.1. 32-Bit Item Lists .. 324
11.1.3.2. 64-Bit Item Lists .. 325

11.1.4. System Services That Support 64-Bit Addresses .. 327
11.1.5. Sign-Extension Checking ... 331
11.1.6. Language Support for 64-Bit System Services ... 331

11.2. RMS Interface Features for 64-Bit Addressing ... 331
11.2.1. RAB64 Data Structure .. 332
11.2.2. Using the 64-Bit RAB Extension ... 333
11.2.3. Macros to Support User RAB Structure .. 334

11.3. File System Support for 64-Bit Addressing .. 335
11.4. OpenVMS Alpha and OpenVMS I64 64-Bit API Guidelines 335

11.4.1. Quadword/Longword Argument Pointer Guidelines ... 335
11.4.2. OpenVMS Alpha, OpenVMS VAX, and OpenVMS I64 Guidelines 342
11.4.3. Promoting an API from a 32-Bit API to a 64-Bit API 343
11.4.4. Example of a 32-Bit Routine and a 64-Bit Routine .. 343

11.5. OpenVMS Alpha and OpenVMS I64 Tools and Utilities That Support 64-Bit
Addressing ... 344

11.5.1. OpenVMS Debugger ... 344
11.5.2. OpenVMS Alpha System-Code Debugger ... 345
11.5.3. Delta/XDelta .. 345
11.5.4. LIB$ and CVT$ Facilities of the OpenVMS Run-Time Library 345
11.5.5. Watchpoint Utility .. 345
11.5.6. SDA .. 346

11.6. Language and Pointer Support for 64-Bit Addressing .. 347
11.7. VSI C RTL Support for 64-Bit Addressing .. 347

Chapter 12. Memory Management Services and Routines on OpenVMS Alpha and
OpenVMS I64 ... 349

12.1. Virtual Page Sizes ... 349
12.2. Levels of Memory Allocation Routines ... 349
12.3. Using System Services for Memory Allocation ... 352

12.3.1. Increasing and Decreasing Virtual Address Space with 64-Bit System
Services ... 352
12.3.2. Increasing and Decreasing Virtual Address Space with 32-bit System Services 353
12.3.3. Input Address Arrays and Return Address Arrays for the 64-Bit System
Services ... 355
12.3.4. Input Address Arrays and Return Address Arrays for the 32-Bit System
Services ... 356
12.3.5. Allocating Memory in Existing Virtual Address Space on Alpha and I64
Systems Using the 32-Bit System Service .. 357
12.3.6. Page Ownership and Protection ... 358
12.3.7. Working Set Paging .. 358

12.3.7.1. SYS$ADJWSL System Service ... 359
12.3.7.2. SYS$PURGWS System Service .. 359
12.3.7.3. SYS$LKWSET and SYS$LKWSET_64 System Services 359
12.3.7.4. Specifying a Range of Addresses ... 360
12.3.7.5. Specifying a Range of Addresses In OpenVMS Version 8.1 360
12.3.7.6. Specifying a Range of Addresses In OpenVMS Versions Prior to V8.1 360
12.3.7.7. Specifying the Access Mode ... 361

12.3.8. Process Swapping ... 361
12.3.9. Sections ... 362

xi

Programming Concepts Manual, Volume I

12.3.9.1. Creating Sections with 64-Bit System Services 363
12.3.9.2. PFN-Mapped Sections .. 363
12.3.9.3. Creating Sections with 32-Bit System Services 363
12.3.9.4. Mapping Sections with 32-Bit System Services 367
12.3.9.5. Mapping Global Sections with 32-Bit Services 369
12.3.9.6. Global Page-File Sections with 32-Bit System Services 370
12.3.9.7. Mapping into a Defined Address Range With 32-Bit System Services 370
12.3.9.8. Mapping from an Offset into a Section File With 32-Bit System
Services ... 371
12.3.9.9. Section Paging Resulting from SYS$CRMPSC 371
12.3.9.10. Reading and Writing Data Sections .. 373
12.3.9.11. Releasing and Deleting Sections .. 374
12.3.9.12. Writing Back Sections .. 374
12.3.9.13. Memory-Resident Global Sections ... 375
12.3.9.14. Image Sections ... 375
12.3.9.15. Page Frame Sections .. 375
12.3.9.16. Partial Sections .. 376

12.3.10. Example of Using 32-Bit Memory Management System Services 376
12.4. Large Page-File Sections .. 380

Chapter 13. Memory Management Services and Routines on OpenVMS VAX 383
13.1. Virtual Page Size ... 383
13.2. Virtual Address Space ... 383
13.3. Extended Addressing Enhancements on Selected VAX Systems 385

13.3.1. Page Table Entry for Extended Addresses on VAX Systems 387
13.4. Levels of Memory Allocation Routines ... 387
13.5. Using System Services for Memory Allocation ... 389

13.5.1. Increasing and Decreasing Virtual Address Space .. 389
13.5.2. Input Address Arrays and Return Address Arrays .. 391
13.5.3. Page Ownership and Protection ... 392
13.5.4. Working Set Paging .. 393
13.5.5. Process Swapping ... 394
13.5.6. Sections ... 395

13.5.6.1. Creating Sections ... 395
13.5.6.2. Opening the Disk File .. 395
13.5.6.3. Defining the Section Extents ... 397
13.5.6.4. Defining the Section Characteristics .. 397
13.5.6.5. Defining Global Section Characteristics ... 398
13.5.6.6. Global Section Name ... 399
13.5.6.7. Mapping Sections ... 399
13.5.6.8. Mapping Global Sections .. 401
13.5.6.9. Global Page-File Sections ... 402
13.5.6.10. Section Paging ... 402
13.5.6.11. Reading and Writing Data Sections .. 404
13.5.6.12. Releasing and Deleting Sections .. 405
13.5.6.13. Writing Back Sections .. 405
13.5.6.14. Image Sections ... 405
13.5.6.15. Page Frame Sections .. 406

13.5.7. Example of Using Memory Management System Services 406
Chapter 14. Using Run-Time Routines for Memory Allocation 411

14.1. Allocating and Freeing Pages ... 411
14.2. Interactions with Other Run-Time Library Routines ... 412

xii

Programming Concepts Manual, Volume I

14.3. Interactions with System Services ... 413
14.4. Zones ... 415

14.4.1. Zone Attributes .. 417
14.4.2. Default Zone .. 420
14.4.3. Zone Identification .. 421
14.4.4. Creating a Zone .. 421
14.4.5. Deleting a Zone .. 422
14.4.6. Resetting a Zone ... 422

14.5. Allocating and Freeing Blocks .. 422
14.6. Allocation Algorithms .. 423

14.6.1. First Fit Algorithm ... 424
14.6.2. Quick Fit Algorithm ... 424
14.6.3. Frequent Sizes Algorithm .. 424
14.6.4. Fixed Size Algorithm .. 424

14.7. User-Defined Zones ... 424
14.8. Debugging Programs That Use Virtual Memory Zones ... 427

Chapter 15. Alignment on VAX, Alpha, and I64 Systems ... 429
15.1. Alignment ... 429

15.1.1. Alignment and Performance .. 430
15.1.1.1. Alignment on OpenVMS VAX (VAX Only) .. 430
15.1.1.2. Alignment on OpenVMS Alpha and I64 .. 430

15.2. Using Compilers for Alignment (Alpha and I64 Only) .. 431
15.2.1. The VSI C Compiler (Alpha and I64 Only) .. 431

15.2.1.1. Compiler Example of Memory Structure of VAX C and VSI C 432
15.2.2. The BLISS Compiler .. 433
15.2.3. The VSI Fortran Compiler (Alpha and I64 Only) .. 433
15.2.4. The MACRO-32 Compiler (Alpha and I64) .. 434

15.2.4.1. Precedence of Alignment Controls ... 436
15.2.4.2. Recommendations for Aligning Data ... 436

15.2.5. The VAX Environment Software Translator – VEST (Alpha Only) 436
15.3. Using Tools for Finding Unaligned Data ... 437

15.3.1. The OpenVMS Debugger .. 437
15.3.2. The Performance and Coverage Analyzer – PCA ... 438
15.3.3. System Services (Alpha and I64 Only) ... 438
15.3.4. Alignment Fault Utility (Alpha and I64 Only) ... 439

Chapter 16. Memory Management with VLM Features ... 441
16.1. Overview of VLM Features ... 441
16.2. Memory-Resident Global Sections .. 442
16.3. Fast I/O and Buffer Objects for Global Sections ... 443

16.3.1. Comparison of $QIO and Fast I/O ... 444
16.3.2. Overview of Locking Buffers .. 444
16.3.3. Overview of Buffer Objects ... 444
16.3.4. Creating and Using Buffer Objects ... 445

16.4. Shared Page Tables .. 445
16.4.1. Memory Requirements for Private Page Tables .. 446
16.4.2. Shared Page Tables and Private Data .. 447

16.5. Expandable Global Page Table ... 447

Part IV. Appendixes: Macros and Examples of 64-Bit
Programming

xiii

Programming Concepts Manual, Volume I

Appendix A. C Macros for 64-Bit Addressing ... 451
DESCRIPTOR64 ... 451
$is_desc64 ... 451
$is_32bits .. 452

Appendix B. 64-Bit Example Program ... 453
Appendix C. VLM Example Program .. 459

xiv

Preface
1. About VSI
VMS Software, Inc. (VSI) is an independent software company licensed by Hewlett Packard Enterprise
to develop and support the OpenVMS operating system.

2. Intended Audience
This manual is intended for system and application programmers. It presumes that its readers have some
familiarity with the VSI OpenVMS programming environment.

3. Document Structure
The printed copy of the VSI OpenVMS Programming Concepts Manual is a two-volume manual. The
first volume contains four parts; the four parts are as follows:

• Part I, Process and Synchronization

• Part II, Interrupts and Condition Handling

• Part III, Addressing and Memory Management

• Part IV, Appendixes: Macros and Examples of 64-Bit Programming

Within the parts of Volume I, chapters provide information about the programming features of the
OpenVMS operating system. A list of the chapters and a summary of their content follows:

• Chapter 1 describes the structure of the two-volume manual, and offers an introduction to the
OpenVMS operating system and to the tools that are available in the programming environment.

• Chapter 2 defines the two types of processes, and describes what constitutes the context of a process,
and the modes of execution of a process. It also describes kernel threads and the kernel threads
process structure.

• Chapter 3 describes communication within a process and between processes.

• Chapter 4 describes how to use the creation and control of a process or kernel thread for
programming tasks. It also describes how to gather information about a process or kernel thread and
how to synchronize a program by using time.

• Chapter 5 describes overview concepts of symmetric multiprocessing (SMP) systems.

• Chapter 6 describes synchronization concepts and the differences between synchronization
techniques on VAX systems, Alpha systems, and I64 systems. It presents methods of synchronization
such as event flags, asynchronous system traps (ASTs), parallel processing RTLs, and process
priorities, and the effects of kernel threads upon synchronization. It also describes how to use
synchronous and asynchronous system services, and how to write applications in a multiprocessing
environment.

• Chapter 7 describes the use of the lock manager system services to synchronize access to shared
resources. This chapter presents the concept of resources and locks; it also describes the use of the
SYS$ENQ and SYS$DEQ system services to queue and dequeue locks.

xv

Preface

• Chapter 8 describes how to use asynchronous system traps (ASTs). It describes access modes and
service routines for ASTs and how ASTs are declared and delivered. It also describes the effects of
kernel threads on AST delivery.

• Chapter 9 describes the OpenVMS Condition Handling facility. It describes VAX system, Alpha
system, and I64 system exceptions, arithmetic exceptions, and Alpha and I64 system unaligned
access traps. It describes the condition value field, exception dispatcher, signaling, and the argument
list passed to a condition handler. Additionally, types of condition handlers and various types of
actions performed by them are presented. This chapter also describes how to write and debug a
condition handler, and how to use an exit handler.

• Chapter 10 describes the 32-bit and 64-bit use of virtual address space.

• Chapter 11 describes all the services, routines, tools, and programs that support 64-bit addressing.

• Chapter 12 describes system services and RTLs of Alpha and I64 systems to manage memory. It
describes the page size and layout of virtual address space on Alpha and I64 systems. This chapter
also describes how to add virtual address space, adjust working sets, control process swapping, and
create and manage sections on Alpha and I64 systems.

• Chapter 13 describes the of system services and RTLs of VAX systems to manage memory. It
describes the page size and layout of virtual address space on VAX systems. This chapter also
describes how to add virtual address space, adjust working sets, control process swapping, and create
and manage sections on VAX systems.

• Chapter 14 describes how to use RTLs to allocate and free pages and blocks of memory, and how to
use RTLs to create, manage, and debug virtual memory zones.

• Chapter 15 describes the importance and techniques of instruction and data alignment.

• Chapter 16 describes the VLM memory management features, such as the following:

Memory-resident global sections
Fast I/O and buffer objects for global sections
Shared page tables
Expandable global page table
Reserved memory registry

• Appendix A describes the C language macros for manipulating 64-bit addresses, for checking the
sign extension of the low 32 bits of 64-bit values, and for checking descriptors for the 64-bit format.

• Appendix B illustrates writing a program with a 64-bit region that was created and deleted by system
services.

• Appendix C demonstrates the memory management VLM features described in Chapter 16.

4. Related Documents
For a detailed description of each run-time library and system service routine mentioned in this manual,
see the OpenVMS Run-Time Library documentation and the VSI OpenVMS System Services Reference
Manual.

You can find additional information about calling OpenVMS system services and Run-Time Library
routines in your language processor documentation. You may also find the following documents useful:

xvi

Preface

• VSI OpenVMS DCL Dictionary

• VSI OpenVMS User's Manual

• VSI OpenVMS Guide to OpenVMS File Applications

• VSI OpenVMS Guide to System Security

• OpenVMS Record Management Services documentation

• VSI OpenVMS Utility Routines Manual

• VSI OpenVMS I/O User's Reference Manual

5. VSI Encourages Your Comments
You may send comments or suggestions regarding this manual or any VSI document by sending
electronic mail to the following Internet address: <docinfo@vmssoftware.com>. Users who have
VSI OpenVMS support contracts through VSI can contact <support@vmssoftware.com> for
help with this product.

6. OpenVMS Documentation
The full VSI OpenVMS documentation set can be found on the VMS Software Documentation webpage
at https://docs.vmssoftware.com.

7. Typographical Conventions
The following conventions are used in this manual:

Convention Meaning

Ctrl/x A sequence such as Ctrl/x indicates that you must hold down the key labeled
Ctrl while you press another key or a pointing device button.

PF1 x A sequence such as PF1 x indicates that you must first press and release
the key labeled PF1 and then press and release another key (x) or a pointing
device button.

Enter In examples, a key name in bold indicates that you press that key.
… A horizontal ellipsis in examples indicates one of the following possibilities:

• Additional optional arguments in a statement have been omitted.

• The preceding item or items can be repeated one or more times.

• Additional parameters, values, or other information can be entered.
.
.
.

A vertical ellipsis indicates the omission of items from a code example or
command format; the items are omitted because they are not important to the
topic being discussed.

() In command format descriptions, parentheses indicate that you must enclose
choices in parentheses if you specify more than one.

[] In command format descriptions, brackets indicate optional choices. You
can choose one or more items or no items. Do not type the brackets on the

xvii

https://docs.vmssoftware.com

Preface

Convention Meaning
command line. However, you must include the brackets in the syntax for
directory specifications and for a substring specification in an assignment
statement.

| In command format descriptions, vertical bars separate choices within
brackets or braces. Within brackets, the choices are optional; within braces,
at least one choice is required. Do not type the vertical bars on the command
line.

{ } In command format descriptions, braces indicate required choices; you
must choose at least one of the items listed. Do not type the braces on the
command line.

bold type Bold type represents the name of an argument, an attribute, or a reason.
In command and script examples, bold indicates user input. Bold type also
represents the introduction of a new term.

italic type Italic type indicates important information, complete titles of manuals, or
variables. Variables include information that varies in system output (Internal
error number), in command lines (/PRODUCER=name), and in command
parameters in text (where dd represents the predefined code for the device
type).

UPPERCASE TYPE Uppercase type indicates a command, the name of a routine, the name of a
file, or the abbreviation for a system privilege.

Example This typeface indicates code examples, command examples, and interactive
screen displays. In text, this type also identifies website addresses, UNIX
commands and pathnames, PC-based commands and folders, and certain
elements of the C programming language.

– A hyphen at the end of a command format description, command line, or
code line indicates that the command or statement continues on the following
line.

numbers All numbers in text are assumed to be decimal unless otherwise noted.
Nondecimal radixes—binary, octal, or hexadecimal—are explicitly indicated.

xviii

Chapter 1. Overview of Manuals
and Introduction to Development on
OpenVMS Systems
This chapter describes the structure of this two-volume manual. This chapter also provides an overview
of the OpenVMS operating system, its components, and the tools in programming software.

1.1. Overview of the Manual
This two-volume manual introduces the resources and features of the OpenVMS operating system that
are available to help you develop programs. Table 1.1 describes the parts of each volume.

Table 1.1. Manual Description

Volume Part Description

Volume I
Part I Process and Synchronization. Describes the creation,

communication, and control of processes. It also describes
symmetric multiprocessing (SMP), and the synchronizing of data
access, programming operations, and access to resources.

Part II Interrupts and Condition Handling. Describes the use of
asynchronous system traps (ASTs), and the use of routines and
services for handling conditions.

Part III Addressing and Memory Management. Describes 32-bit and
64-bit address space, and the support offered for 64-addressing.
It also provides guidelines for 64-bit application programming
interfaces (APIs); and Alpha, I64, VAX, and VLM memory
management with run-time routines for memory management, and
alignment on OpenVMS Alpha, VAX, and I64 systems.

Part IV Appendixes: Macros and Examples of 64-Bit Programming.
Describes the macros used in 64-bit programming, along with two
examples of 64-bit programming.

Volume II
Part I OpenVMS Programming Interfaces: Calling a System Routine.

Describes the basic calling format for OpenVMS routines and
system services. It also describes the STARLET structures and
definitions for C programmers.

Part II I/O, System and Programming Routines. Describes the I/O
operations, and the system and programming routines used by run-
time libraries and system services.

Part III Generic Macros for Calling System Services. Describes in
appendixes the generic macros used for calling system services,
OpenVMS data types, and the distributed name services on
OpenVMS VAX systems.

1

Chapter 1. Overview of Manuals and Introduction to Development on OpenVMS Systems

1.2. Overview of the OpenVMS Operating
System
The OpenVMS operating system is a highly flexible, general-purpose, multiuser system that supports
the full range of computing capabilities, providing the high integrity and dependability of commercial-
strength systems along with the benefits of open, distributed client/server systems.

OpenVMS operating systems can be integrated with systems from different vendors in open systems
computing environments. OpenVMS supports software that conforms to international standards for an
open environment. These industry-accepted, open standards specify interfaces and services that permit
applications and users to move between systems and allow applications on different systems to operate
together.

The OpenVMS operating system configuration includes OpenVMS integrated software, services and
routines, applications, and networks. The system supports all styles of computing, from time-sharing to
real-time processing to transaction processing. OpenVMS systems configured with optional software
support distributed computing capabilities and can function as servers in multivendor client/server
configurations.

The OpenVMS operating system is designed to provide software compatibility across all the processors
on which it runs.

The following sections describe the components of the OpenVMS operating system, give a general
overview of the system software, and describe the various styles of computing that OpenVMS software
supports. The sections also summarize the basic ways in which OpenVMS software can be configured
and connected to other software, and the hardware platforms and processors on which the OpenVMS
software runs.

1.3. Components of the OpenVMS Operating
System
The OpenVMS operating system is a group of software programs (or images) that control computing
operations. The base operating system is made up of core components and an array of services, routines,
utilities, and related software. The OpenVMS operating system serves as the foundation from which all
optional software products and applications operate. The services and utilities in the base OpenVMS
operating system support functions such as system management, data management, and program
development. Other integrated software that adds value to the system provides functions such as
clustering and volume shadowing.

Optional software products, including application programs developed by OpenVMS programmers
and other programmers, run on the core operating system. The OpenVMS system supports a powerful,
integrated development environment with a wide selection of software development tools. Application
programs written in multiple languages provide computational, data-processing, and transaction-
processing capabilities.

Compatibility Between Software Versions
OpenVMS VAX, OpenVMS Alpha, and OpenVMS I64 software exhibits compatibility from version to
version:

2

Chapter 1. Overview of Manuals and Introduction to Development on OpenVMS Systems

• User-mode programs and applications created under earlier versions of OpenVMS VAX, OpenVMS
Alpha, and OpenVMS I64 run under subsequent versions with no change.

• Command procedures written under one version of OpenVMS continue to run under newer versions
of the software.

OpenVMS software developed on VAX platforms can migrate easily to Alpha and I64 platforms (see
Section 1.3.1.1):

• Most user-mode OpenVMS VAX sources can be recompiled, relinked, and run on an OpenVMS
Alpha and OpenVMS I64 system without modification. Code that explicitly relies on the VAX
architecture requires modification.

• Most OpenVMS Alpha images run under translation on OpenVMS I64.

• Translation is available for OpenVMS VAX applications without sources or that you do not want to
recompile.

1.3.1. OpenVMS Systems on Multiple Platforms
The OpenVMS operating system is available on three hardware platforms:

• A complex instruction set computer (CISC) architecture based on the VAX architecture.

• A reduced instruction set computer (RISC) architecture based on the Alpha architecture.

• The explicitly parallel instruction computing (EPIC) architecture used by Itanium systems.

1.3.1.1. System Compatibility and Program Portability Across
Platforms

The OpenVMS Alpha and OpenVMS I64 operating systems are compatible with OpenVMS VAX
systems in terms of user, system manager, and programmer environments. For general users and system
managers, OpenVMS Alpha and OpenVMS I64 have the same interfaces as OpenVMS VAX. Virtually
all OpenVMS VAX system management utilities, command formats, and tasks are identical in the
OpenVMS Alpha and OpenVMS I64 environments. Mixed-architecture and mixed-version clusters that
contain both Alpha systems and VAX systems are supported.

1.3.2. OpenVMS Computing Environments
The OpenVMS operating system provides an array of capabilities that support the full range of
computing environments. A computing environment is made up of resources that are compatible with
each other and all work together toward a common goal. In general, OpenVMS environments can supply
the following kinds of capabilities (which can exist in any combination):

• Open system capabilities

• Distributed processing capabilities

• Production system capabilities

• System and network management capabilities

3

Chapter 1. Overview of Manuals and Introduction to Development on OpenVMS Systems

OpenVMS software capabilities include both the standardized features of open systems computing
and the commercial-strength functionality of traditional OpenVMS systems. System and network
management software provides for control of heterogeneous, integrated environments.

The following sections describe the capabilities supported in OpenVMS computing environments and
summarize the software resources available in each kind of environment.

1.3.2.1. Open System Capabilities
OpenVMS offers the benefits of an open system environment, which permits both applications and users
to move between systems. In addition, applications on different open systems can operate together.

The OpenVMS operating system makes available a set of services in an open domain, while still offering
its traditional high-integrity computing services. Incorporation of open computing capabilities enhances
the traditional feature-rich OpenVMS environment.

Software in the OpenVMS open systems environment enables the development and use of portable
applications and consistent user interfaces and also permits systems to operate together. The keys to
openness of OpenVMS systems are standard programming interfaces, standardized user interfaces, and
standard protocols.

1.3.2.2. Application Portability
Application portability is the capability to easily move an application from one system to another.
Standard programming interfaces permit application and data portability. Portable applications written
strictly to a suite of open specifications provide the following benefits:

• Applications can be written once and run on other open platforms that support the standards used in
the applications.

• Users can access the wide range of applications available on open platforms.

• Applications can be supplied by different vendors.

Applications that are developed on the three supported platforms and conform to open standards can be
easily ported to other systems that conform to the same standard interfaces. Applications written in ISO
and ANSI languages are portable to other systems. In addition, the Open Group/Motif graphical user
interface supports application portability.

1.3.2.2.1. Other Application Portability Features

Applications written in ISO/ANSI languages are easily portable to other platforms that support them.
OpenVMS VAX, OpenVMS Alpha, and OpenVMS I64 provide support for such languages as C,
COBOL, and Fortran.

1.3.3. Distributed Computing Capabilities
In a distributed computing environment, an application is distributed over two or more systems or
processors, each of which has its own autonomous operating environment. A distributed application
is composed of separate modules, running on different systems, that communicate with each other by
passing data between modules or by sharing access to files or databases. A distributed application must
be able to coordinate its activities over a dispersed operating environment.

The distributed computing environment can consist of software located either in a single box or a single
room or can comprise a worldwide network of computers. The systems in the distributed configuration

4

Chapter 1. Overview of Manuals and Introduction to Development on OpenVMS Systems

can be uniprocessor, multiprocessor, or OpenVMS Cluster systems; systems from different vendors can
be included in the same configuration.

1.3.3.1. Client/Server Style of Computing

One style of distributed computing that permits resource sharing between different systems is client/
server computing. In the client/server environment, portions of an application are distributed across the
network between servers and clients:

• A server is any system that provides a service or resource to other systems.

• The client is the system requesting the service.

This style of computing allows each portion of a distributed application to run in its own optimal
environment. The whole application does not have to run on one centralized system (such as a
mainframe system), but enterprisewide cohesiveness can still be maintained. For example, individuals or
local offices, using their own computers and running software appropriate to their needs, can be linked
to large computers or OpenVMS Cluster systems in a network. A distributed computing system can
function as though it were a single system that connects all parts of an enterprise. The client can have
transparent access to the integrated resources of the enterprise.

Any system can be a client or a server, and some systems may include both client software for certain
applications and server software for other applications. Servers can be connected to many clients, and a
client can be connected to more than one server at a time. (Client and server relationships may change
frequently: at times it may not be possible to tell which is the client and which is the server.) In some
cases, the application is stored on the server and run on the client, using the resources of the client. The
user, who does not need to know what system is serving the application, can function in a familiar, local
environment.

1.3.3.2. OpenVMS Client/Server Capabilities

OpenVMS systems support a wide variety of client/server configurations. Clients requiring resources can
be personal computers, workstations, point-of-sale devices, OpenVMS systems, or systems from other
vendors that are running the appropriate client software. Users on client systems can use character-cell
terminals or windowing desktops.

Servers fulfilling clients' requests can be located on OpenVMS systems or other operating systems
running appropriate server software. OpenVMS servers, for example, can provide file access, printing,
application services, communication services, and computing power as application engines to clients
on desktop devices or in laboratories or factories. Client/server configurations permit the commercial-
strength capabilities of OpenVMS host systems to be integrated with the personal-computing capabilities
of desktop systems.

Middleware, which runs on OpenVMS and other systems from multiple vendors, can be used to tie
together clients and servers. Middleware integrates various client and server systems through application,
communication, data interchange, and multivendor support. Complex information-sharing environments
involving PC clients and operating system servers are supported.

An essential feature of the OpenVMS operating system is its support of a rich environment for
developing software application programs. The programming software integrated in the OpenVMS
system provides the tools required to effectively develop new software applications. You also have the
option of using additional powerful tools to enhance the productivity of software development in the
OpenVMS environment.

5

Chapter 1. Overview of Manuals and Introduction to Development on OpenVMS Systems

The following sections summarize the primary program development features available on all three
supported platforms. The sections also introduce the OpenVMS programming environment and present
brief functional descriptions of the OpenVMS programming tools.

1.4. The OpenVMS Programming Environment
The OpenVMS system supports a flexible programming environment that offers a wide range of
tools and resources to support efficient program development. This robust OpenVMS programming
environment permits the development of mixed-language application programs and portable programs,
as well as application programs with distributed functions that run in client/server environments. This
environment also provides tools that allow you to use the web and other information technologies.

In the OpenVMS programming environment, you can use OpenVMS resources to perform the following
tasks:

• Creating, controlling, and deleting processes

• Communicating with other components

• Sharing resources

• Implementing input/output procedures

• Using security features

• Managing memory

• Managing files

• Synchronizing events

• Providing for condition handling

• Calling utility routines

The components of an OpenVMS application are the main program, shared libraries, functional
routines, and a user interface. Software tools that support development of applications in the OpenVMS
programming environment include:

• Language compilers, interpreters, and assemblers

• Linkers and debuggers

• Text processors and other program development utilities

• Callable system routines such as run-time routines, system services, and other utility routines

• Record Management Services (RMS) routines and utilities

Optional software development tools that run on the OpenVMS system enhance programmer
productivity, saving programming time and promoting the development of error-free code. OpenVMS
supports optional integrated software products that enhance program development capabilities in an
organization. These software development products can make use of middleware services that facilitate
the development of applications for multivendor networks and for web-enabling tools to help develop
client/server applications.

6

Chapter 1. Overview of Manuals and Introduction to Development on OpenVMS Systems

Middleware and web-enabling tools allow you to access data and information by using the web. The
various middleware and web-enabling tools perform the following:

• Provide web access to data

• Provide web access to applications

• Provide web tools for commercial web servers

• Provide other web tools including freeware

Middleware products and capabilities include Distributed Computing Environment (DCE), COM for
OpenVMS, and Reliable Transaction Router for OpenVMS. Web-enabling tools include DECforms Web
Connector, and TP Web Connector.

1.4.1. Programming to Standards
Coding of programs for the OpenVMS environment and for other environments involves conforming to
software development standards. OpenVMS standards that define modular programming techniques and
procedure calling and condition handling practices pertain to applications specific to OpenVMS. IEEE
and international standards apply to applications developed on OpenVMS that are designed to run on
other systems as well as on OpenVMS.

1.4.1.1. Common Environment for Writing Code

OpenVMS software programmers can write code in a common environment, following standard
OpenVMS modular programming practices. This standard approach establishes the minimum criteria
necessary to ensure the correct interface at the procedure level between software written by different
programmers. If all programmers coding OpenVMS applications follow this standard approach, modular
procedures added to a procedure library will not conflict with other procedures in the library. Standard
modular programming practices apply to OpenVMS programs that have a public entry point. For details
of this standard approach, see the Guide to Creating OpenVMS Modular Procedures.

1.4.1.2. Common Language Environment

The OpenVMS system supports a common language environment, which permits using a mixture
of languages in programming. A program written in any of the programming languages supported
by OpenVMS can contain calls to procedures written in other supported languages. Mixed-language
programming is possible because all supported languages adhere to the OpenVMS calling standard. This
standard describes the techniques used by all supported languages for invoking routines and passing data
between them. It also defines the mechanisms that ensure consistency in error and exception handling
routines, regardless of the mix of programming languages. Information about the calling standard
appears in the VSI OpenVMS Calling Standard, and descriptions of how to use the calling interface are
given in VSI OpenVMS Programming Concepts Manual, Volume II.

1.5. OpenVMS Programming Software
This section describes the integrated programming tools available on the OpenVMS operating system to
help implement software development.

The phases of a typical software development life cycle can include proposal of the concept; formulation
of requirements and specifications for the software product; design, implementation, and testing of the

7

Chapter 1. Overview of Manuals and Introduction to Development on OpenVMS Systems

software; and integration and maintenance of the product. Implementing the software product involves
building and modifying source code modules and compiling, linking, and executing the resulting images.
Testing involves refining code to optimize performance.

As part of the software development life cycle, OpenVMS operating system components and optional
software products that run on OpenVMS are used to develop applications. Some of the major OpenVMS
programming software components, such as editors and utilities, are listed in Table 1.2. Programming
language software supported by OpenVMS is described in Section 1.5.2. Optional program development
software tools that run on OpenVMS are described in Section 1.8.

Table 1.2. OpenVMS Programming Software

Type of Software OpenVMS Software Components

Text processors DEC Text Processing Utility/Extensible Versatile Editor (DECTPU/EVE)
EDT editor
vi, ed, and ex editors (POSIX)
VSI Language-Sensitive Editor/Source Code Analyzer

Major programming
utilities

Linker
OpenVMS Debugger
Delta/XDelta Debugger
OpenVMS Alpha System-Code Debugger1

Other program
development utilities

Command Definition utility
Librarian utility
Message utility
Patch utility2

SUMSLP utility
National Character Set utility
System Dump Analyzer
POSIX for OpenVMS utilities

Callable system routines Run-time library routines
System services
Utility routines
Record Management Services (RMS) routines and utilities

1Alpha specific.
2VAX specific.

The commands used to invoke some of the programming utilities (for example, linker, debugger,
LIBRARIAN) vary slightly for the three supported platforms.

1.5.1. Creating Program Source Files
OpenVMS text-processing utilities can be used to create and modify program source files. The DEC
Text Processing Utility (DECTPU) is a high-performance text processor that can be used to create
text-editing interfaces such as EVE. DECTPU includes a high-level procedure language with its own
compiler and interpreter, as well as the customizable EVE editing interface. DECTPU features multiple
buffers, windows, and subprocesses, and provides for text processing in batch mode. The EDT editor is
an interactive text editor that provides editing in keypad and line modes. EDT supports multiple buffers,
startup command files, and journaling. In general, the EVE editing interface offers more capability than
EDT for complex editing tasks.

The vi editor is a display-oriented interactive text editor used in the POSIX for OpenVMS environment.
POSIX also supports the ed and ex editors.

8

Chapter 1. Overview of Manuals and Introduction to Development on OpenVMS Systems

Other optional tools for creating source files on OpenVMS systems are available separately or as part
of the VSI software development environment. The Language-Sensitive Editor/Source Code Analyzer
for OpenVMS (LSE/SCA) provides a multilanguage, multivendor editor for program development and
maintenance and also supplies cross-referencing features and the capability to analyze source code.

1.5.2. Creating Object Files
OpenVMS supports a variety of optional language compilers, interpreters, and assemblers that translate
source code to object code (in the form of object modules). These language implementations adhere
to industry standards, including ISO, ANSI, and X/Open standards as well as U.S. Federal Information
Processing Standards (FIPS) and Military Standards (MIL-STD), as applicable.

Table 1.3 lists language compilers, interpreters, and assemblers supported in the OpenVMS VAX,
OpenVMS Alpha, and OpenVMS I64 environments.

Table 1.3. Compilers, Interpreters, and Assemblers

Language Characteristics

VSI Ada Complete production-quality implementation of Ada language; fully
conforms to ANSI and MIL-STD standards; has Ada validation.

VAX APL Interpreter with built-in editor, debugger, file system, communication facility.
VAX BASIC Either an interpreter or a compiler; fully supported by the OpenVMS

debugger; fully reentrant code.
VSI BASIC for
OpenVMS

An optimizing compiler; highly compatible with VAX BASIC; no
environment or interpreter support; also available on I64.

BLISS-32 for OpenVMS Advanced set of language features supporting development of modular
software according to structured programming concepts; also available on
I64.

BLISS-64 for OpenVMS Development of modular software support for 64-bit programs; not available
on VAX.

VAX C Full implementation of C programming language with added features for
performance enhancement in the OpenVMS environment.

VSI C for OpenVMS
Alpha and I64 systems

Compliant with ANSI/ISO C International Standard with VSI extensions;
includes standard-conformance checking and many optional code-quality
and portability diagnostics; supports 64-bit virtual addressing; generates
optimized and position-independent code.

VSI C++ for OpenVMS
Alpha and I64 systems

Compliant with ANSI/ISO C++ International Standard with VSI extensions;
supports the ARM, GNU, and MS dialects; supports 64-bit virtual
addressing; generates highly optimized object code; facilitates object-oriented
program design.

VSI COBOL for
OpenVMS

Compliant with ANSI-standard COBOL; includes as enhancements screen-
handling, file-sharing, and report-writing facilities; is supported on I64.

VAX DIBOL For interactive data processing; includes a compiler, debugger, and utility
programs for data handling, data storing, and interprogram communication.

VSI Fortran 77 for
OpenVMS VAX

Extended implementation of full language FORTRAN-77, conforming to
American National Standard FORTRAN, ANSI X3.9-1978. It includes
optional support for programs conforming to ANSI X3.9-1966 (FORTRAN
IV) and meets Federal Information Processing Standard Publication
FIPS-69-1 and MIL-STD-1753.

9

Chapter 1. Overview of Manuals and Introduction to Development on OpenVMS Systems

Language Characteristics

VSI Fortran for
OpenVMS

ANSI-standard Fortran 90 and Fortran 95 optimizing compiler; available on
I64 and Alpha systems.

VAX MACRO Assembly language for programming the VAX computer under the
OpenVMS operating system; uses all OpenVMS resources; supports large
instruction set enabling complex programming statements.

MACRO-32 Compiler Available on OpenVMS I64 and Alpha systems to port existing VAX
MACRO code to an Alpha or I64 system.

MACRO-64 Assembler Available on OpenVMS Alpha systems; a RISC assembly language that
provides precise control of instructions and data.

VSI Pascal for
OpenVMS

ANSI-standard Pascal features and language extensions that go beyond the
standard; available on VAX, Alpha, and I64.

1.5.3. Creating Runnable Programs
After a program source file is coded, it must be compiled or assembled into object modules by a
language processor and then linked. The OpenVMS Linker binds the object modules into an image that
can be executed on the OpenVMS operating system.

The linker processes object modules and shareable image files, as well as symbol table files, library files,
and options files (used to manage the linking operation and simplify the use of complex, repetitious
linker operations). The most common output of the linker is an executable image of the program. The
linker can also produce a shareable image, a system image, an image map, or a symbol table file to
be used by other programs being linked. Certain linking tasks, such as creating shareable images, are
performed differently on OpenVMS VAX than on OpenVMS Alpha and OpenVMS I64 systems.

The Librarian utility provides for efficient storage in central, easily accessible files of object modules,
image files, macros, help text, or other record-oriented information.

1.5.4. Testing and Debugging Programs
The debugger allows users to trace program execution and to display and modify register contents using
the same symbols as are in the source code.

The following debugger utilities available on the OpenVMS VAX, OpenVMS Alpha, and OpenVMS I64
operating systems contain some system-specific features related to the platform architecture:

• The OpenVMS Debugger (debugger), which debugs user-mode code.

• TheDelta/XDelta Debugger (DELTA/XDELTA), which debugs code in other modes as well as user
mode. (The DELTA debugger has not yet been ported to the OpenVMS I64 operating system).

The OpenVMS symbolic debugger is more useful than DELTA/XDELTA for most programs: the
symbolic commands entered using different interfaces (keypad, command line, or file of commands)
display source code lines on the screen, have more descriptive error messages, and provide help
information.

The debugger command language specified in the VSI OpenVMS Debugger Manual provides more than
100 commands to control a debugging session, including these tasks:

• Control program execution on a line-by-line basis or at a user-specified breakpoint

10

Chapter 1. Overview of Manuals and Introduction to Development on OpenVMS Systems

• Display breakpoints, tracepoints, watchpoints, active routine calls, stack contents, variables, symbols,
source code, and source directory search list

• Define symbols

• Create key definitions

• Change values in variables

• Evaluate a language or address expression

• Create or execute debugger command procedures

The OpenVMS symbolic debugger provides enhanced support for programs that have multiple threads
of execution within an OpenVMS process, including any program that uses POSIX Threads Library for
developing real-time applications.

The debugger has been modified to support debugging of programs that contain 64-bit data addresses.

An additional debugger utility is available only on an OpenVMS Alpha system: the OpenVMS Alpha
System-Code Debugger, which can be used to debug non-pageable system code and device drivers. The
system-code debugger is a symbolic debugger that lets the user employ the familiar OpenVMS Debugger
interface to observe and manipulate system code interactively as it executes. The system-code debugger
can display the source code where the software is executing and allows the user to advance by source
line.

Users can perform the following tasks using the system-code debugger:

• Control the system software's execution, stopping at points of interest, resuming execution,
intercepting fatal exceptions, and so on

• Trace the execution path of the system software

• Monitor exception conditions

• Examine and modify the value of variables

• In some cases, test the effect of modifications without having to edit the source code, recompile, and
relink

You can use the OpenVMS Alpha System-Code Debugger to debug code written in the following
languages: C, BLISS, and MACRO. Information about using the system-code debugger and how it
differs from the OpenVMS Debugger is given in Writing OpenVMS Alpha Device Drivers in C.

1.5.4.1. Special Modes of Operation for Debugging
The OpenVMS operating system has a number of special modes of operation designed to aid in
debugging complex hardware and software problems. In general terms, these special modes enable an
extra level of tracing, data recording, and consistency checking that is useful in identifying a failing
hardware or software component. These modes of operation are controlled by the following system
parameters:

• MULTIPROCESSING

• POOLCHECK

• BUGCHECKFATAL

11

Chapter 1. Overview of Manuals and Introduction to Development on OpenVMS Systems

• SYSTEM_CHECK

MULTIPROCESSING is useful for debugging privileged code that uses spinlocks, such as device driver
code. POOLCHECK is useful for investigating frequent and inexplicable failures in a system. When
POOLCHECK is enabled, pool-checking routines execute whenever pool is deallocated or allocated.
BUGCHECKFATAL is useful for debugging the executive. SYSTEM_CHECK turns on the previous
three system parameters and also activates other software that aids in detecting problems. It enables a
number of run-time consistency checks on system operation and records some trace information.

If you are using one of these special modes, for example, to debug a device driver or other complex
application, under certain conditions generally related to high I/O loads, it is possible to incur a
CPUSPINWAIT bugcheck. To prevent a CPUSPINWAIT bugcheck, use either the system default
settings for these system parameters, or reduce the loading of the system.

If you have reason to change the default settings, you can reduce the likelihood of encountering a
problem by setting the SMP_LNGSPINWAIT system parameter to a value of 9000000.

1.5.5. Using Other Program Development Utilities
Other OpenVMS utility programs used for program development are listed in Table 1.4. RMS utilities,
which permit file analysis and tuning, are covered in Section 1.9.2.

Table 1.4. Other OpenVMS Program Development Utilities

Utility Function

Command Definition
Utility (CDU)

Enables an application developer to create commands with a syntax similar to
DIGITAL Command Language (DCL) commands.

Message utility Permits user to create application messages to supplement the OpenVMS
system messages.

Patch utility1 Permits users to make changes (in the form of patches) to an image or data
file. If the change was made to an image, the new version can then be run
without recompiling or relinking.

SUMSLP utility Supplies batch-oriented editor used to make several updates to a single source
file; one update program can be applied to all versions of a file.

National character set
utility

Permits users to define non-ASCII string collating sequences and to define
conversion functions; allows an RMS indexed file to be collated using user-
specified collating sequences.

System Dump Analyzer
utility

Determines the cause of system failures; reads the crash dump file and
formats and displays it; also used to diagnose root causes that lead to an error.

1PATCH/IMAGE is VAX only

1.5.6. Managing Software Development Tasks
You can use optional products that run on OpenVMS systems to manage the complexity of software
development tasks:

• VSI Code Management System (CMS) for OpenVMS provides an efficient method of storing project
files (such as documents, object files, and other records) and tracking all changes to these files.

• VSI Module Management System (MMS) for OpenVMS automates building of software
applications.

12

Chapter 1. Overview of Manuals and Introduction to Development on OpenVMS Systems

1.6. Using Callable System Routines
OpenVMS provides extensive libraries of prewritten and debugged routines that can be accessed by
programs. Libraries specific to the supported platforms supply commonly needed routines optimized
for the OpenVMS environment; these libraries include run-time library routines, system services, utility
routines, and RMS services. These libraries are described in this section.

1.6.1. Using the POSIX Threads Library Routines
OpenVMS includes a user-mode, multithreading capability called POSIX Threads Library. POSIX
Threads Library provides a POSIX 1003.1-1996 standard style threads interface. Additionally, POSIX
Threads Library provides an interface that is the OpenVMS implementation of Distributed Computing
Environment (DCE) threads as defined by The Open Group.

POSIX Threads Library is a library of run-time routines that allows the user to create multiple threads of
execution within a single address space. With POSIX Threads Library Kernel Threads features enabled,
POSIX Threads Library provides for concurrent processing across all CPUs by allowing a multithreaded
application to have a thread executing on every CPU (on both symmetric and asymmetric multiprocessor
systems). Multithreading allows computation activity to overlap I/O activity. Synchronization elements,
such as mutexes and condition variables, are provided to help ensure that shared resources are accessed
correctly. For scheduling and prioritizing threads, POSIX Threads Library provides multiple scheduling
policies. For debugging multithreaded applications, POSIX Threads Library is supported by the
OpenVMS Debugger. POSIX Threads Library also provides Thread Independent Services (TIS), which
assist in the development of threadsafe APIs.

On OpenVMS Alpha and OpenVMS I64 systems, POSIX threads provide support to accept 64-bit
parameters.

The highly portable POSIX threads interface contains routines grouped in the following functional
categories:

• General threads

• Object attributes

• Mutex

• Condition variable

• Thread context

• Thread cancellation

• Thread priority and scheduling

• Debugging

For more information about threads, see the Guide to POSIX Threads Library.

1.6.2. Using OpenVMS Run-Time Library Routines
The OpenVMS Run-Time Library (RTL) is a set of language-independent procedures for programs
to be run specifically in the OpenVMS environment. RTL routines establish a common run-time
environment for application programs written in any language supported in the OpenVMS common

13

Chapter 1. Overview of Manuals and Introduction to Development on OpenVMS Systems

language environment. RTL procedures adhere to the OpenVMS calling standard and can be called from
any program or program module in a language supported by OpenVMS (see Section 1.5.2).

The run-time library provides general-purpose functions for application programs. Table 1.5 summarizes
the groups of RTL routines.

Table 1.5. Groups of OpenVMS Run-Time Library Routines

Routine Description

LIB$ routines Library routines that perform generally needed system functions such as
resource allocation and common I/O procedures; provide support for 64-bit
virtual addressing on Alpha and I64 systems.

MTH$ routines1 Math routines that perform arithmetic, algebraic, and trigonometric functions.
DPML$ routines Portable Mathematics Library for OpenVMS Alpha and OpenVMS I64; a set

of highly accurate mathematical functions.
OTS$ routines Language-independent routines that perform tasks such as data conversion.
SMG$ routines Screen management routines used in the design of complex images on a

video screen.
STR$ routines String manipulation routines.

1VAX specific

In addition, language-specific RTL routines support procedures in Ada, BASIC, C, COBOL, Fortran,
Pascal, and PL/I (VAX only) as well as in POSIX C. VSI C RTL routines support 64-bit programming
on OpenVMS Alpha and OpenVMS I64 systems.

CXML is a collection of mathematical routines optimized for Alpha systems. These subroutines perform
numerically intensive operations that occur frequently in engineering and scientific computing, such
as linear algebra and signal processing. CXML can help reduce the cost of computation, enhance
portability, and improve productivity.

1.6.3. Using OpenVMS System Services
OpenVMS system services are procedures that control resources available to processes, provide
for communication among processes, and perform basic operating system functions such as I/O
coordination. Application programs can call OpenVMS system services to perform the same operations
that the system services provide for the OpenVMS operating system (for example, creating a process or
subprocess).

At run time, an application program calls a system service and passes control of the process to it. After
execution of the system service, the service returns control to the program and also returns a condition
value. The program analyzes the condition value, determines the success or failure of the system service
call, and alters program execution flow as required.

OpenVMS system services are divided into functional groups, as shown in Table 1.6. System services
can be used to protect and fine-tune the security of the OpenVMS environment, handle event flags and
system interrupts, designate condition handlers, and provide logical name services and timer services to
the application. Other system services control and provide information about processes, manage virtual
memory use, and synchronize access to shared resources.

Table 1.6. Groups of OpenVMS System Services

Service Group Function

Security Provides mechanisms to enhance and control system security

14

Chapter 1. Overview of Manuals and Introduction to Development on OpenVMS Systems

Service Group Function

Event flag Clears, sets, and reads event flags; places process in wait state until flags are
set

AST Controls handling of software interrupts called asynchronous system traps
(ASTs)

Logical names Provide a generalized logical name service
Input/output Performs input and output operations directly at the device driver level,

bypassing RMS
Process control Creates, deletes, and controls the execution of processes (on a clusterwide

basis); permits a process on one node to request creation of a detached
process on another node

Process information Provides information about processes
Timer and time
conversion

Permits scheduling of program events at specific times or time intervals;
supplies binary time values

Condition handling Designates condition-handling procedures that gain control when an
exception/condition occurs

Memory management Permits control of an application program's virtual address space
Change mode Changes the access mode of a process
Lock management Permits cooperating processes to synchronize their access to shared resources
DECdtm services Provide for complete and consistent execution of distributed transactions and

for data integrity
Cluster event
notification1

Requests notification when an OpenVMS Cluster configuration event occurs

1Alpha and I64 specific

OpenVMS I/O system services perform logical, physical, and virtual I/O and network operations,
and queue messages to system processes. The $QIO system service provides a direct interface to the
operating system's I/O routines. These services are available from within most programming languages
supported by OpenVMS and can be used to perform low-level I/O operations efficiently with a minimal
amount of system overhead for time-critical applications.

On OpenVMS Alpha and OpenVMS I64 systems, new system services provide access to 64-bit virtual
address space for process private use. Additionally, new system services are available to provide high
CPU performance and improved symmetric multiprocessing (SMP) scaling of I/O operations. These
services exhibit high-performance gains over the $QIO service.

DECdtm services ensure consistent execution of applications on the OpenVMS operating system. In
transaction processing applications, many users may be simultaneously making inquiries and updating a
database. The distributed transaction processing environment typically involves communication between
networked systems at different locations. DECdtm services coordinate distributed transactions by using
the two-phase commit protocol and implementing special logging and communication techniques.
DECdtm services ensure that all parts of a transaction are completed or the transaction is aborted.

1.6.4. Using OpenVMS Utility Routines
OpenVMS programs can access some OpenVMS utilities through callable interfaces. Utility routines
enable programs to invoke the utility, execute utility-specific functions, and exit the utility, returning to
the program. Table 1.7 lists the OpenVMS utility routines.

15

Chapter 1. Overview of Manuals and Introduction to Development on OpenVMS Systems

Table 1.7. OpenVMS Utility Routines

Routine Utility/Facility

ACL$ Access control list editor (ACL editor)
CLI$ Command Definition Utility (CDU)
CONV$ Convert and Convert/Reclaim utilities (CONVERT and CONVERT/RECLAIM)
DCX$ Data Compression/Expansion facility (DCX)
EDT$ EDT editor
FDL$ File Definition Language utility (FDL)
LBR$ Librarian utility (LIBRARIAN)
LGI$ LOGINOUT routines
MAIL$ Mail utility (MAIL)
NCS$ National Character Set utility (NCS)
PSM$ Print Symbiont Modification facility (PSM)
SMB$ Symbiont/Job-Controller Interface facility (SMB)
SOR$ Sort/Merge utility (SORT/MERGE)
TPU$ DEC Text Processing Utility (DECTPU)

You can use an optional, portable library of user-callable routines to perform high-performance sorting
on OpenVMS Alpha systems. The high-performance sort supports a subset of the functionality present
on the OpenVMS Sort/Merge utility, using the callable interface to the SOR$ routine. The high-
performance sort/merge provides better performance for most sort and merge operations.

1.7. Programming User Interfaces
User interfaces to the OpenVMS VAX, OpenVMS Alpha, and OpenVMS I64 operating systems include
the DCL interface and the optional DECwindows Motif for OpenVMS graphical user interface. Another
user interface is through electronic forms.

You can use DCL commands to invoke program development software (compilers, editors, linkers) and
to run and control execution of programs. You can use DCL command procedures to perform repetitious
operations in software development.

The Command Definition Utility (CDU) enables application developers to create DCL-level commands
with a syntax similar to OpenVMS DCL commands. Using CDU, the developer can create applications
with user interfaces similar to those of operating system applications. The Message utility permits an
application developer to create application messages to supplement the system messages supplied by the
OpenVMS operating system.

The DECwindows Motif for OpenVMS software provides a consistent user interface for developing
software applications and includes an extensive set of programming libraries and tools. DECwindows
Motif for OpenVMS supports both the OSF/Motif standards-based graphical user interface and the X
user interface (XUI) in a single run-time and development environment. DECwindows Motif requires a
DECwindows X11 display server (device driver and fonts) that supports the portable compiled format
(PCF), permitting use of vendor-independent fonts.

An applications programmer can use the following DECwindows Motif for OpenVMS software to
construct a graphical user interface:

16

Chapter 1. Overview of Manuals and Introduction to Development on OpenVMS Systems

• A user interface toolkit composed of graphical user interface objects (widgets and gadgets); widgets
provide advanced programming capabilities that permit users to create graphic applications; gadgets,
similar to widgets, require less memory to create labels, buttons, and separators

• A user interface language to describe visual aspects of objects (menus, labels, forms) and to specify
changes resulting from user interaction

• The OSF/Motif Window Manager, which allows users to customize the interface

The DECwindows Motif for OpenVMS programming libraries provided include:

• Standard X Window System libraries such as Xlib and the intrinsics

• Libraries needed to support the current base of XUI applications

• OSF/Motif toolkit support for developing applications using the Motif user interface style

• VSI libraries that give users capabilities beyond the standards

1.8. Optional VSI Software Development Tools
VSI supplies optional software development tools for the OpenVMS environment, such as DECset.
DECset is a set of tools that supports software coding, testing, and maintenance of applications and data.
These tools can be used individually or as part of the optional VSI software development environment.

1.9. Managing Data
The basic OpenVMS tool for transparent, intuitive management of data is the Record Management
Services (RMS) subsystem. RMS is a collection of routines that gives programmers a device-
independent method for storing, retrieving, and modifying data for their application. RMS also provides
extensive protection and reliability features to ensure data integrity.

RMS is a higher level interface to the file system and OpenVMS I/O subsystem. It is used by all products
that run on OpenVMS VAX, OpenVMS Alpha, and OpenVMS I64 for file and record operations. A
subset of RMS services permits network file operations that are generally transparent to the user.

On OpenVMS Alpha and OpenVMS I64 systems, RMS supports I/O operations to and from 64-bit
addressable space.

1.9.1. RMS Files and Records
RMS supports a variety of file organizations, record formats, and record-access modes. RMS supports
sequential, relative, and indexed disk file organizations, and fixed- and variable-length records. It
supports a number of record-access modes: sequential, by key value, by relative record number, or by
record file address. RMS is designed primarily for mass storage devices (disks and tapes), but also
supports unit-record devices such as terminals or printers.

RMS routines assist user programs in processing and managing files and their contents. RMS routines
perform these services for application programs:

• Creating new files, accessing existing files, extending disk space for files, closing files, and obtaining
file characteristics

• Getting, locating, inserting, updating, and deleting records in files

17

Chapter 1. Overview of Manuals and Introduction to Development on OpenVMS Systems

RMS promotes safe and efficient file sharing by providing multiple access modes, automatic record
locking when applicable, and optional buffer sharing by multiple processes.

1.9.2. RMS Utilities
RMS file utilities allow users to analyze the internal structure of an RMS file and to determine the most
appropriate set of parameters to tune an RMS file. RMS utilities can also be used to create, efficiently
load, and reclaim space in an RMS file.

RMS file maintenance utilities include the following:

• Analyze/RMS_File utility

• File Definition Language utilities (Create/FDL and Edit/FDL)

• Convert and Convert/Reclaim utilities

The Analyze/RMS_File utility allows the programmer to analyze the internal structure of an OpenVMS
RMS file and generate a report on its structure and use, as well as interactively explore the file's
structure. The utility can generate an FDL file from an RMS file for use with the Edit/FDL utility to
optimize the data file.

File Definition Language (FDL) is a special-purpose language for specifying file characteristics; it is
useful with higher level languages or for ensuring that files are properly tuned. FDL makes use of RMS
control blocks: the file access block (FAB), the record access block (RAB), and the extended attribute
block (XAB).

The Edit/FDL utility creates a new FDL file according to user specifications. The Create/FDL utility
uses the specifications of an existing FDL file to create a new empty data file.

You can use the Convert utility to copy records from one file to another, while changing the record
format and file organization, and to append records to an existing file. The Convert/Reclaim utility
reclaims empty bucket space in an indexed file to allow new records to be written to it.

18

Part I. Process and Synchronization
This part describes the creation, communication, and control of processes. It also describes symmetric
multiprocessing (SMP), and the synchronizing of data access, programming operations, and access to
resources.

19

20

Chapter 2. Process Creation
This chapter describes process creation and the different types of processes. It also describes kernel
threads and the kernel threads process structure.

2.1. Process Types
A process is the environment in which an image executes. Two types of processes can be created with
the operating system: spawned subprocesses or detached processes.

A spawned subprocess is dependent on the process that created it (its parent), and receives a portion of
its parent process's resource quotas. The system deletes the spawned subprocess when the parent process
exits.

A detached process is independent of the process that created it. The process the system creates when
you log in is, for example, a detached process. If you want a created process to continue after the parent
exits, or not to share resources with the parent, use a detached process.

Table 2.1 compares the characteristics of subprocesses and detached processes.

Table 2.1. Characteristics of Subprocesses and Detached Processes

Characteristic Subprocess Detached Process

Privileges Received from creating process. Specified by creating process.
Quotas and limits Some shared with creating process. Specified by creating process, but

not shared with creating process.
User authorization file Used for information not given by

creating process.
Used for most information not
given by creating process.

User identification code Received from creating process. Specified by creating process.
Restrictions Exist as long as creating process

exists.
None.

How created SYS$CREPRC, or LIB$SPAWN
from another process.

SYS$CREPRC from another
process.

When deleted When creating process exits, or at
image exit or logout, depending on
whether a CLI is present.

At image exit or logout, depending
on whether a CLI is present.

Command language
interpreter (CLI) present

Usually not if created with
SYS$CREPRC; always yes if
spawned.

Usually present, but not
necessarily.

2.2. Execution Context of a Process
The execution context of a process defines a process to the system and includes the following:

• Image that the process is executing

• Input and output streams for the image executing in the process

• Disk and directory defaults for the process

21

Chapter 2. Process Creation

• System resource quotas and user privileges available to the process

When the system creates a detached process as the result of a login, it uses the system user authorization
file (SYSUAF.DAT) to determine the process's execution context.

For example, the following occurs when you log in to the system:

1. The process created for you executes the image LOGINOUT.

2. The terminal you are using is established as the input, output, and error stream device for images that
the process executes.

3. Your disk and directory defaults are taken from the user authorization file.

4. The resource quotas and privileges you have been granted by the system manager are associated with
the created process.

5. A command language interpreter (CLI) is mapped into the created process.

2.3. Modes of Execution of a Process
A process executes in one of the following modes:

• Interactive—Receives input from a record-oriented device, such as a terminal or mailbox

• Batch—Is created by the job controller and is not interactive

• Network—Is created by the network ancillary control program (ACP)

• Other—Is not running in any of the other modes (for example, a spawned subprocess where input is
received from a command procedure)

2.4. Creating a Subprocess
You can create a subprocess using the LIB$SPAWN run-time library routines, the SYS$CREPRC system
service, or the C system() call. A subprocess created with LIB$SPAWN is called a spawned subprocess.

Table 2.2 lists the context values provided by LIB$SPAWN, SYS$CREPRC, and the C system() call for
a subprocess when you are using the default values in the routine calls.

Table 2.2. Comparison of LIB$SPAWN, SYS$CREPRC, and C system() Call Context
Values

Context LIB$SPAWN SYS$CREPRC C system ()

DCL Yes No1 Yes
Default device and directory Parent's Parent's Parent's
Symbols Parent's No Parent's
Logical names Parent's2 No2 Parent's2

Privileges Parent's Parent's3 Parent's
Priority Parent's 0 or 2, depending

on language
Parent's

1The created subprocess can include DCL by executing the system image SYS$SYSTEM:LOGINOUT.EXE.
2Plus group job and system logical name tables.

22

Chapter 2. Process Creation

3Parent's is default, can also be specified.

2.4.1. Naming a Spawned Subprocess
As of OpenVMS Version 7.3-1, the way OpenVMS names spawned subprocesses was changed to
improve performance. Prior to OpenVMS Version 7.3-1, if no process name was supplied, the system
constructed a name by appending _n to the user name, where n was the next available nonduplicate
integer for any process currently in the system. For example, the first spawned process from the
SYSTEM would be called SYSTEM_1, the second, SYSTEM_2, and so on. The next available number
was chosen as soon as a gap was found.

With OpenVMS Version 7.3-1, the default-constructed process name for subprocesses was changed.
Instead of searching incrementally for the next unique number, a random number is chosen to append
to the user name. Therefore, the first processes that are spawned from user SYSTEM might be
SYSTEM_154, SYSTEM_42, SYSTEM_87, and so on. This procedure results in a very high probability
of finding a unique name on the first try, because it is unlikely that the same number is already in use.
This procedure greatly reduces the cost of process creation, and applications that rely on spawned
subprocesses might see a dramatic performance improvement with this change.

However, some applications might rely on the prior method of assigning subprocess names. The
DCL_CTLFLAGS parameter, a bitmask used to alter default behavior for certain commands on a
systemwide basis, is available to allow you to configure the system as necessary. The low bit of the
bitmask is defined, and it controls the default process-name assignment for a subprocess created using
the SPAWN command or LIB$SPAWN routine.

Bit 0 of DCL_CTLFLAGS selects the behavior for assigning the default subprocess names:

• If the bit is clear, the new behavior (beginning with OpenVMS Version 7.3-1) is used. If you do not
specify a process name, the system assigns the user name with a random number suffix. This is the
default setting.

• If the bit is set, the old behavior is used. If you do not specify a process name, the system assigns the
user name with the next available number.

2.4.2. Using LIB$SPAWN to Create a Spawned
Subprocess
The LIB$SPAWN routine enables you to create a subprocess and to set some context options for
the new subprocess. LIB$SPAWN creates a subprocess with the same priority as the parent process
(generally priority 4). The format for LIB$SPAWN is:

LIB$SPAWN
 ([command_string],[input_file],[output_file],[flags],[process-name],
 [process_id],[completion_status],[completion_efn],[completion_astadr],
 [completion_astarg],[prompt],[cli])

For complete information on using each argument, refer to the LIB$SPAWN routine in VSI OpenVMS
RTL Library (LIB$) Manual.

Specifying a Command String
Use the command_string argument to specify a single DCL command to execute once the
subprocess is initiated. You can also use this argument to execute a command procedure that, in turn,
executes several DCL commands (@command_procedure_name).

23

Chapter 2. Process Creation

Redefining SYS$INPUT and SYS$OUTPUT
Use the input_file and output_file arguments to specify alternate input and output devices for
SYS$INPUT and SYS$OUTPUT. Using alternate values for SYS$INPUT and SYS$OUTPUT can be
particularly useful when you are synchronizing processes that are executing concurrently.

Passing Parent Process Context Information to the Subprocess
Use the flags argument to specify which characteristics of the parent process are to be passed on to
the subprocess. With this argument, you can reduce the time required to create a subprocess by passing
only a part of the parent's context. You can also specify whether the parent process should continue to
execute (execute concurrently) or wait until the subprocess has completed execution (execute in line).

After the Subprocess Completes Execution
Use the completion_status, completion_efn, and completion_astadr arguments to
specify the action to be taken when the subprocess completes execution (send a completion status, set a
local event flag, or invoke an AST procedure). For more information about event flags and ASTs, refer
to Chapter 8.

The LIB$SPAWN routine and SPAWN command do not return a completion status code of 0 from a
subprocess command procedure.

The LIB$SPAWN routine can fail in a detached process as well, because it is dependent upon and
requires the presence of a command language interpreter (CLI), such as DCL. Without a CLI present in
the current process, this call fails with a"NOCLI, no CLI present to perform function" error. Note that a
detached process may not have a CLI present.

You can use SYS$CREPRC in place of LIB$SPAWN; though with SYS$CREPRC the context of the
parent process (symbols and logical names) is not propagated into the subprocess.

When using LIB$SPAWN asynchronously (with CLI$M_NOWAIT), you have to synchronize
completion. For if the parent process should exit, all subprocesses exit, potentially resulting in an
unexpected series of failures of all subprocesses of the exiting parent process.

Specifying an Alternate Prompt String
Use the prompt argument to specify a prompt string for the subprocess.

Specifying an Alternate Command Language Interpreter
Use the cli argument to specify a command language interpreter for the subprocess.

Examples of Creating Subprocesses
The following examples create a subprocess that executes the commands in the COMMANDS.COM
command procedure, which must be a command procedure on the current default device in the current
default directory. The created subprocess inherits symbols, logical names (including SYS$INPUT and
SYS$OUTPUT), keypad definitions, and other context information from the parent. The subprocess
executes while the parent process hibernates.

! Declare status and library routine
INTEGER STATUS, LIB$SPAWN

STATUS = LIB$SPAWN ('@COMMANDS')

The equivalent C code follows:

24

Chapter 2. Process Creation

#include <descrip.h>
#include <lib$routines.h>
#include <ssdef.h>
#include <stsdef.h>
main()
 {
 int RetStat;
 $DESCRIPTOR(CmdDsc, "@COMMANDS");
 RetStat = lib$spawn(&CmdDsc);
 if (!$VMS_STATUS_SUCCESS(RetStat))
 return RetStat;
 return SS$_NORMAL;
 }

The following Fortran program segment creates a subprocess that does not inherit the parent's
symbols, logical names, or keypad definitions. The subprocess reads and executes the commands in
the COMMANDS.COM command procedure. (The CLI$ symbols are defined either in the $CLIDEF
module of the system object or in shareable image library. See VSI OpenVMS Programming Concepts
Manual, Volume II for more information).

! Mask for LIB$SPAWN
INTEGER MASK
EXTERNAL CLI$M_NOCLISYM,
2 CLI$M_NOLOGNAM,
2 CLI$M_NOKEYPAD
! Declare status and library routine
INTEGER STATUS, LIB$SPAWN

! Set mask and call LIB$SPAWN
MASK = %LOC(CLI$M_NOCLISYM) .OR.
2 %LOC(CLI$M_NOLOGNAM) .OR.
2 %LOC(CLI$M_NOKEYPAD)

STATUS = LIB$SPAWN ('@COMMANDS.COM',
2 ,,
2 MASK)

The equivalent C program follows:

#include <clidef.h>
#include <descrip.h>
#include <lib$routines.h>
#include <ssdef.h>
#include <stsdef.h>
main()
 {
 int RetStat;
 int FlagsMask = CLI$M_NOCLISYM | CLI$M_NOLOGNAM | CLI$M_NOKEYPAD;
 $DESCRIPTOR(CmdDsc, "@COMMANDS.COM");
 RetStat = lib$spawn(&CmdDsc, 0, 0, &FlagsMask);
 if (!$VMS_STATUS_SUCCESS(RetStat))
 return RetStat;
 return SS$_NORMAL;
 }

The following Fortran program segment creates a subprocess to execute the image $DISK1:
[USER.MATH]CALC.EXE. CALC, reads data from DATA84.IN, and writes the results to
DATA84.RPT. The subprocess executes concurrently. (CLI$M_NOWAIT is defined in the $CLIDEF

25

Chapter 2. Process Creation

module of the system object or shareable image library; see VSI OpenVMS Programming Concepts
Manual, Volume II).

! Mask for LIB$SPAWN
EXTERNAL CLI$M_NOWAIT
! Declare status and library routine
INTEGER STATUS, LIB$SPAWN

STATUS = LIB$SPAWN ('RUN $DISK1:[USER.MATH]CALC', ! Image
2 'DATA84.IN', ! Input
2 'DATA84.RPT', ! Output
2 %LOC(CLI$M_NOWAIT)) ! Concurrent

The C version of the example follows:

#include <clidef.h>
#include <descrip.h>
#include <lib$routines.h>
#include <ssdef.h>
#include <stsdef.h>
main()
 {
 int RetStat;
 int FlagsMask = CLI$M_NOWAIT;
 $DESCRIPTOR(CmdDsc, "RUN $DISK1:[USER.MATH]CALC");
 $DESCRIPTOR(InpDsc, "DATA84.IN");
 $DESCRIPTOR(OutDsc, "DATA84.RPT");
 RetStat = lib$spawn(&CmdDsc, &InpDsc, &OutDsc, &FlagsMask);
 if (!$VMS_STATUS_SUCCESS(RetStat))
 return RetStat;
 return SS$_NORMAL;
 }

2.4.3. Using the C system() Call
The following example shows the calling of a C system() function:

#include <ssdef.h>
#include <stdio.h>
#include <stdlib.h>
main()
 {
 printf("calling system() \n");
 system("show system");
 printf("done\n");
 return SS$_NORMAL;
 }

This example shows the use of the system() call to spawn a DCLSHOW SYSTEM command; it
subsequently returns and the execution of the main() image continues.

2.4.4. Using SYS$CREPRC to Create a Subprocess
The Create Process (SYS$CREPRC) system service creates both subprocesses and detached processes.
This section discusses creating a subprocess; Section 2.5 describes creating a detached process. When
you call the SYS$CREPRC system service to create a process, you define the context by specifying
arguments to the service. The number of subprocesses a process can create is controlled by its
PQL$_PRCLM subprocess quota, an individual quota description under the quota argument.

26

Chapter 2. Process Creation

Though SYS$CREPRC does not set many context values for the subprocess by default, it does allow you
to set many more context values than LIB$SPAWN. For example, you cannot specify separate privileges
for a subprocess with LIB$SPAWN directly, but you can with SYS$CREPRC.

By default, SYS$CREPRC creates a subprocess rather than a detached process. The format for
SYS$CREPRC is as follows:

SYS$CREPRC
 ([pidadr] ,[image] ,[input] ,[output] ,[error] ,[prvadr] ,[quota],
 [prcnam] ,[baspri] ,[uic] ,[mbxunt] ,[stsflg] ,[itemlst] ,[node])

Ordinarily, when you create a subprocess, you need only assign it an image to execute and, optionally,
the SYS$INPUT, SYS$OUTPUT, and SYS$ERROR devices. The system provides default values for the
process's privileges, resource quotas, execution modes, and priority. In some cases, however, you may
want to define these values specifically. The arguments to the SYS$CREPRC system service that control
these characteristics follow. For details, see the descriptions of arguments to the SYS$CREPRC system
service in the VSI OpenVMS System Services Reference Manual.

The default values passed into the subprocess might not be complete enough for your use. The following
sections describe how to modify these default values with SYS$CREPRC.

Redefining SYS$INPUT, SYS$OUTPUT, and SYS$ERROR
Use the input, output, and error arguments to specify alternate input, output, and error devices
for SYS$INPUT, SYS$OUTPUT, and SYS$ERROR. Using alternate values for SYS$INPUT,
SYS$OUTPUT, and SYS$ERROR can be particularly useful when you are synchronizing processes
that are executing concurrently. By providing alternate equivalence names for the logical names
SYS$INPUT, SYS$OUTPUT, and SYS$ERROR, you can place these logical name/equivalence name
pairs in the process logical name table for the created process.

The following C program segment is an example of defining input, output, and error devices for a
subprocess:

#include <descrip.h>
#include <ssdef.h>
#include <starlet.h>
#include <stdio.h>
#include <stsdef.h>
// Comment syntax here assumes compiler support
main()
 {
 int RetStat;
 $DESCRIPTOR(input,"SUB_MAIL_BOX"); // Descriptor for input stream
 $DESCRIPTOR(output,"COMPUTE_OUT"); // Descriptor for output and error
 $DESCRIPTOR(image,"COMPUTE.EXE"); // Descriptor for image name

 // Create the subprocess
 RetStat = sys$creprc(0, // process id
 &image, // image
 &input, // input SYS$INPUT device
 &output, // output SYS$OUTPUT device
 &output, // error SYS$ERROR device
 0,0,0,0,0,0,0);
 if (!$VMS_STATUS_SUCCESS(RetStat))
 return RetStat;

 return SS$_NORMAL;

27

Chapter 2. Process Creation

 }
}

The input argument equates the equivalence name SUB_MAIL_BOX to the logical name
SYS$INPUT. This logical name may represent a mailbox that the calling process previously
created with the Create Mailbox and Assign Channel (SYS$CREMBX) system service. Any input
the subprocess reads from the logical device SYS$INPUT is from the mailbox.
The output argument equates the equivalence name COMPUTE_OUT to the logical name
SYS$OUTPUT. All messages the program writes to the logical device SYS$OUTPUT are to
this file. When a workstation (WSA0) device is specified with LOGINOUT as the image, the
target (created) process receives the specified workstation as its DECwindows default display
(DECW$DISPLAY).
The error argument equates the equivalence name COMPUTE_OUT to the logical name
SYS$ERROR. All system-generated error messages are written into this file. Because this is the
same file as that used for program output, the file effectively contains a complete record of all
output produced during the execution of the program image.

The SYS$CREPRC system service does not provide default equivalence names for the logical names
SYS$INPUT, SYS$OUTPUT, and SYS$ERROR. If none are specified, any entries in the group or
system logical name tables, if any, may provide equivalences. If, while the subprocess executes, it reads
or writes to one of these logical devices and no equivalence name exists, an error condition results.

The SYS$CREPRC system service also does not provide default equivalence names for the logical
names SYS$LOGIN, SYS$LOGIN_DEVICE, and SYS$SCRATCH. These logical names are available
to the created process only when the specified image is LOGINOUT, and when the PRC$M_NOUAF
flag is not set.

In a program that creates a subprocess, you can cause the subprocess to share the input, output, or error
device of the creating process. You must first follow these steps:

1. Use the Get Device/Volume Information (SYS$GETDVIW) system service to obtain the device
name for the logical name SYS$INPUT, SYS$OUTPUT, or SYS$ERROR.

2. Specify the address of the descriptor returned by the SYS$GETDVIW service when you specify the
input, output, or error argument to the SYS$CREPRC system service.

This procedure is illustrated in the following example:

#include <descrip.h>
#include <dvidef.h>
#include <efndef.h>
#include <lib$routines.h>
#include <ssdef.h>
#include <starlet.h>
#include <stdio.h>
#include <stsdef.h>
// Comment syntax used here assumes compiler support
main()
 {
#define MAXTERMLEN 64
#define MAXITMLST 3
 char TermName[MAXTERMLEN];
 int BasPri = 4;
 int RetStat;
 int TermLen;
 unsigned short int IOSB[4];

28

Chapter 2. Process Creation

 // ItemList data structures used to acquire device name
 int i;
 struct
 {
 unsigned short int BufLen;
 unsigned short int ItmCod;
 void *BufAdr;
 void *BufRLA;
 } ItmLst[MAXITMLST];

 // Descriptors for sys$getdviw call
 $DESCRIPTOR(SysInput, "SYS$INPUT");

 // Descriptors for sys$creprc call
 $DESCRIPTOR(ImageDesc,"SYS$SYSTEM:LOGINOUT.EXE");
 struct dsc$descriptor TermDesc =
 { MAXTERMLEN, DSCK_DTYPE_T, DSCK_CLASS_S, TermName };

 // Assign values to the item list
 i = 0;
 ItmLst[i].BufLen = MAXTERMLEN;
 ItmLst[i].ItmCod = DVI$_DEVNAM;
 ItmLst[i].BufAdr = &TermName;
 ItmLst[i++].BufRLA = &TermLen;
 ItmLst[i].BufLen = 0;
 ItmLst[i].ItmCod = 0;
 ItmLst[i].BufAdr = NULL;
 ItmLst[i++].BufRLA = NULL;

 // Acquire the terminal device name
 RetStat = sys$getdviw(
 EFN$C_ENF, // no event flag needed here
 0, // Channel (not needed here)
 &SysInput, // Device Name
 ItmLst, // item list
 IOSB, // Address of I/O Status Block
 0,0,0);
 if (!$VMS_STATUS_SUCCESS(RetStat))
 lib$signal(RetStat);
 if (!$VMS_STATUS_SUCCESS(IOSB[0]))
 lib$signal(IOSB[0]);

 // Create the subprocess
 RetStat = sys$creprc(
 0,
 &ImageDesc, // The image to be run
 &TermDesc, // Input (SYS$INPUT device)
 &TermDesc, // Output (SYS$OUTPUT device)
 &TermDesc, // Error (SYS$ERROR device)
 0,0,0,
 &BasPri, // Process base priority

29

Chapter 2. Process Creation

 0,0,0);
 if (!$VMS_STATUS_SUCCESS(RetStat))
 lib$signal(RetStat);

 return SS$_NORMAL;
 }

In this example, the subprocess executes, and the logical names SYS$INPUT, SYS$OUTPUT, and
SYS$ERROR are equated to the device name of the logical input device of the creating process. The
subprocess can then do one of the following:

• Use OpenVMS RMS to open the device for reading or writing, or both.

• Use the Assign I/O Channel (SYS$ASSIGN) system service to assign an I/O channel to the device
for input/output operations.

In the following example, the program assigns a channel to the device specified by the logical name
SYS$OUTPUT:

 int RetStat;
 unsigned short int IOchan;
 $DESCRIPTOR(DevNam,"SYS$OUTPUT");
 .
 .
 .
 RetStat = sys$assign(&DevNam, /* Device name */
 &IOchan, /* Channel */
 0, 0, 0);
 if ($!VMS_STATUS_SUCCESS(RetStat))
 return RetStat;

For more information about channel assignment for I/O operations, see VSI OpenVMS Programming
Concepts Manual, Volume II.

Setting Privileges

Set different privileges by defining the privilege list for the subprocess using the prvadr argument.
This is particularly useful when you want to dedicate a subprocess to execute privileged or sensitive code.
If you do not specify this argument, the privileges of the calling process are used. If you specify the
prvadr argument, only the privileges specified in the bit mask are used; the privileges of the calling
process are not used. For example, a creating process has the user privileges GROUP and TMPMBX.
It creates a process, specifying the user privilege TMPMBX. The created process receives only the user
privilege TMPMBX; it does not have the user privilege GROUP.

If you need to create a process that has a privilege that is not one of the privileges of your current
process, you must have the user privilege SETPRV.

Symbols associated with privileges are defined by the $PRVDEF macro. Each symbol begins with
PRV$M_ and identifies the bits in the bit mask that must be set to specify a given privilege. The
following example shows the data definition for a bit mask specifying the GRPNAM and GROUP
privileges:

unsigned int PrivQuad[2] = { (PRV$M_GRPNAM | PRV$M_GROUP), 0};
// could also use: __int64 PrivQuad = PRV$M_GRPNAM | PRV$M_GROUP;

30

Chapter 2. Process Creation

Setting Process Quotas

Set different process quotas by defining the quota list of system resources for the subprocess using
the quota argument. This option can be useful when managing a subprocess to limit use of system
resources (such as AST usage, I/O, CPU time, lock requests, and working set size and expansion). If you
do not specify this argument, the system defines default quotas for the subprocess.

The following example shows how to construct the process quota array for the SYS$CREPRC call using
VSI C, and particularly how to avoid problems on OpenVMS Alpha due to the default use of member
alignment. Without the nomember_alignment setting, there would be three pad bytes embedded within
each element of the array, and SYS$CREPRC would not perform as expected.

#pragma environment save
#pragma nomember_alignment
 struct
 {
 unsigned char pql_code;
 unsigned long int pql_value;
 } pql[] =
 {
 { PQL$_ASTLM, 600 },
 { PQL$_BIOLM, 100 },
 { PQL$_BYTLM, 131072 },
 { PQL$_CPULM, 0 },
 { PQL$_DIOLM, 100 },
 { PQL$_FILLM, 50 },
 { PQL$_PGFLQUOTA, 40960 },
 { PQL$_PRCLM, 16 },
 { PQL$_TQELM, 600 },
 { PQL$_WSDEFAULT, 512 },
 { PQL$_WSQUOTA, 2048 },
 { PQL$_ENQLM, 600 },
 { PQL$_WSEXTENT, 4096 },
 { PQL$_JTQUOTA, 4096 },
 { PQL$_LISTEND, 0 }
 };
#pragma environment restore

For more information about process quotas and process quota lists, see Section 2.6.

Setting the Subprocess Priority

Set the subprocess priority by setting the base execution priority with the baspri argument. If you do
not set the subprocess priority, the priority defaults to 2 for MACRO and BLISS and to 0 for all other
languages. If you want a subprocess to have a higher priority than its creator, you must have the user
privilege ALTPRI to raise the priority level.

Specifying Additional Processing Options

Enable and disable parent and subprocess wait mode, control process swapping, control process
accounting, control process dump information, control authorization checks, and control working
set adjustments using the stsflg argument. This argument defines the status flag, a set of bits that
controls some execution characteristics of the created process, including resource wait mode and process
swap mode.

31

Chapter 2. Process Creation

Defining an Image for a Subprocess to Execute

When you call the SYS$CREPRC system service, use the image argument to provide the process with
the name of an image to execute. For example, the following lines of C create a subprocess to execute the
image named CARRIE.EXE:

 $DESCRIPTOR(image,"CARRIE");
 .
 .
 .
 RetStat = sys$creprc(0, &image, ...);

In this example, only a file name is specified; the service uses current disk and directory defaults,
performs logical name translation, uses the default file type .EXE, and locates the most recent version of
the image file. When the subprocess completes execution of the image, the subprocess is deleted. Process
deletion is described in Chapter 4.

2.4.4.1. Disk and Directory Defaults for Created Processes

When you use the SYS$CREPRC system service to create a process to execute an image, the system
locates the image file in the default device and directory of the created process. Any created process
inherits the current default device and directory of its creator.

If a created process runs an image that is not in its default directory, you must identify the directory and,
if necessary, the device in the file specification of the image to be run.

There is no way to define a default device or directory for the created process that is different from
that of the creating process in a call to SYS$CREPRC. The created process can, however, define an
equivalence for the logical device SYS$DISK by calling the Create Logical Name ($CRELNM) system
service.

If the process is a subprocess, you, in the creating process, can define an equivalence name in the group
logical name table, job logical name table, or any logical name table shared by the creating process and
the subprocess. The created process then uses this logical name translation as its default directory. The
created process can also set its own default directory by calling the OpenVMS RMS default directory
system service, SYS$SETDDIR.

A process can create a process with a default directory that is different from its own by completing the
following steps in the creating process:

1. Make a call to SYS$SETDDIR to change its own default directory.

2. Make a call to SYS$CREPRC to create the new process.

3. Make a call to SYS$SETDDIR to change its own default directory back to the default directory it
had before the first call to SYS$SETDDIR.

The creating process now has its original default directory. The new process has the different default
directory that the creating process had when it created the new process. If the default device is to change,
you must also redefine the SYS$DISK logical name. For details on how to call SYS$SETDDIR, see the
VSI OpenVMS System Services Reference Manual.

32

Chapter 2. Process Creation

2.5. Creating a Detached Process
The creation of a detached process is primarily a task the operating system performs when you log in.
In general, an application creates a detached process only when a program must continue executing after
the parent process exits. To do this, you should use the SYS$CREPRC system service.

You can use the uic argument to the SYS$CREPRC system service to define whether a process
is a subprocess or a detached process. The uic argument provides the created process with a user
identification code (UIC). If you omit the uic argument, the SYS$CREPRC system service creates a
subprocess that executes under the UIC of the creating process. If you specify a uic argument with the
same UIC as the creating process, the system service creates a detached process with the same UIC as
the creating process.

You can also create a detached process with the same UIC as the creating process by specifying the
detach flag in the stsflg argument. You do not need the IMPERSONATE privilege to create a
detached process with the same UIC as the creating process. The IMPERSONATE privilege controls the
ability to create a detached process with a UIC that is different from the UIC of the creating process.

Examples of Creating a Detached Process
The following Fortran program segment creates a process that executes the image SYS$USER:
[ACCOUNT]INCTAXES.EXE. INCTAXES reads input from the file TAXES.DAT and writes output to
the file TAXES.RPT. (TAXES.DAT and TAXES.RPT are in the default directory on the default disk).
The last argument specifies that the created process is a detached process (the UIC defaults to that of
the parent process). (The symbol PRC$M_DETACH is defined in the $PRCDEF module of the system
macro library).

EXTERNAL PRC$M_DETACH

! Declare status and system routines
INTEGER STATUS,SYS$CREPRC
 .
 .
 .
STATUS = SYS$CREPRC (,
2 'SYS$USER:[ACCOUNT]INCTAXES', ! Image
2 'TAXES.DAT', ! SYS$INPUT
2 'TAXES.RPT', ! SYS$OUTPUT
2 ,,,,
2 %VAL(4), ! Priority
2 ,,
2 %VAL(%LOC(PRC$M_DETACH))) ! Detached

The following program segment creates a detached process to execute the DCL commands
in the command file SYS$USER:[TEST]COMMANDS.COM. The system image
SYS$SYSTEM:LOGINOUT.EXE is executed to include DCL in the created process. The DCL
commands to be executed are specified in a command procedure that is passed to SYS$CREPRC as the
input file. Output is written to the file SYS$USER:[TEST]OUTPUT.DAT.

 .
 .
 .
STATUS = SYS$CREPRC (,
2 'SYS$SYSTEM:LOGINOUT', ! Image
2 'SYS$USER:[TEST]COMMANDS.COM',! SYS$INPUT

33

Chapter 2. Process Creation

2 'SYS$USER:[TEST]OUTPUT.DAT', ! SYS$OUTPUT
2 ,,,,
2 %VAL(4), ! Priority
2 ,,
2 %VAL(%LOC(PRC$M_DETACH))) ! Detached

2.6. Process Quota Lists
The SYS$CREPRC system service uses the quota argument to create a process quota list (PQL).
Individual quota items such as paging file quota (PQL_PGFLQUOTA) and timer queue entry quota
(PQL_TQELM) of the SYS$CREPRC system service make up the PQL. In allocating the PQL,
SYS$CREPRC constructs a default PQL for the process being created, assigning it the default values
for all individual quota items. Default values are SYSGEN parameters and so can be changed from
system to system. SYS$CREPRC then reads the specified quota list, if any is indicated, and updates the
corresponding items in the default PQL. Any missing values are filled in from the default items (PQL_D
xxxxx) SYSGEN parameter, where xxxxx are the characters of the quota name that follow PQL$_ in
the quota name. The PQL is then complete.

The SYS$CREPRC service next reads the PQL, comparing each value against the corresponding
minimum (PQL_M xxxxx) SYSGEN parameter. If the SYSGEN parameter is greater than the resulting
value, SYS$CREPRC replaces it with the SYSGEN value. Thus no process on the system has a quota
value lower than the minimum (PQL_M xxxxx) SYSGEN parameter.

The SYS$CREPRC service also determines what kind of process is being created — whether batch,
interactive, or detached. If it is a batch or interactive process, the process derives all its quotas from the
user authorization file (UAF) and completely overwrites the PQL. These quotas are unaffected by the
default (PQL_D xxxxx) SYSGEN parameters, but are affected by the minimum (PQL_M xxxxx)
values. If the process is a detached process, it determines what items have been passed in the quota list
and only then overwrites these items in the PQL. SYS$CREPRC makes sure the PQL values are greater
than the minimum (PQL_M xxxxx) values.

With subprocesses, some quotas are pooled, such as PQL_PGFLQUOTA and PQL_TQELM.
SYS$CREPRC establishes pooled quotas when it creates a detached process, and they are shared by that
process and all its descendant subprocesses. All the related processes report the same quota because they
are accessing a common location in the job information block (JIB).

To determine the maximum virtual page count of the paging file quota of a process, use the
JPI$_PGFLQUOTA item code of the SYS$GETJPI system service. The JPI$_PGFLQUOTA on VAX
systems returns the longword integer value of the paging file quota in pages; on Alpha and I64 systems, it
returns the longword integer value of the paging file quota in pagelets.

To determine the remaining paging file quota of the process, use the JPI$_PAGFILCNT item code of
the SYS$GETJPI system service. The JPI$_PAGFILCNT on VAX systems returns the longword integer
value of the paging file quota in pages; on Alpha and I64 systems, it returns the longword integer value
of the paging file quota in pagelets.

For a complete description of quotas, refer to the VSI OpenVMS System Services Reference Manual: A-
GETUAI.

2.7. Debugging a Subprocess or a Detached
Process
You have several ways to debug a subprocess or a detached process including the following:

34

Chapter 2. Process Creation

• Using the kept debugger configuration

• Using DBG$ logical names

• Using the workstation device (see Section 2.4.4)

• Using a DECwindows DECterm display

See the VSI OpenVMS Debugger Manual for more details on debugging subprocesses and detached
processes.

Kept Debugger
With the kept debugger configuration, you start the debugger user interface using the DCL command
DEBUG/KEEP.

At the DBG> prompt, you then issue either the RUN or the CONNECT command, depending on
whether or not the program you want to debug is already running.

If the program is not running, use the debugger's RUN command to start the program in a subprocess.

If the program is running, use the debugger's CONNECT command to interrupt a running program and
bring it under debug control. CONNECT can be used to attach to a program running in a subprocess
or to attach to a program running in a detached process. Detached processes must meet both of the
following requirements:

• The detached process UIC must be in the same group as your process.

• The detached process must have a CLI mapped.

The second requirement effectively means that the program must have been started with a command
similar to:

$ RUN/DETACH/INPUT=xxx.com SYS$SYSTEM:LOGINOUT

where xxx.com is a command procedure that starts the program with /NODEBUG.

After you have started or connected to the program, the remainder of the debugging session is the same
as a normal debugger session.

DBG$ Logical Names
You can allow a program to be debugged within a subprocess or a detached process by using
DBG$INPUT and DBG$OUTPUT. To allow debug operations with DBG$INPUT and
DBG$OUTPUT, equate the subprocess logical names DBG$INPUT and DBG$OUTPUT to the
terminal. When the subprocess executes the program, which has been compiled and linked with the
debugger, the debugger reads input from DBG$INPUT and writes output to DBG$OUTPUT.

If you are executing the subprocess concurrently, you should restrict debugging to the program in the
subprocess. The debugger prompt DBG> should enable you to differentiate between input required
by the parent process and input required by the subprocess. However, each time the debugger displays
information, you must press the Return key to display the DBG> prompt. (By pressing the Return
key, you actually write to the parent process, which has regained control of the terminal following the

35

Chapter 2. Process Creation

subprocess' writing to the terminal. Writing to the parent process allows the subprocess to regain control
of the terminal).

DECwindows DECterm Display
If you have DECwindows installed, you can use display for debugging a subprocess or detached process.
The following debugging example with DECterm shows how to create a DECterm display, and pass it
into the SYS$CREPRC call for use with an application that is built using the OpenVMS Debugger:

#pragma module CREATE_DECTERM

#include <descrip.h>
#include <lib$routines.h>
#include <pqldef.h>
#include <prcdef.h>
#include <ssdef.h>
#include <starlet.h>
#include <stsdef.h>

// To build and run:
// $ cc CREATE_DECTERM
// $ link CREATE_DECTERM,sys$input/option
// sys$share:DECW$TERMINALSHR.EXE/share
// $ run CREATE_DECTERM

// This routine is not declared in a currently-available library
extern int decw$term_port(void *,...);

main(void)
 {
 int RetStat;
 int StsFlg;
 int DbgTermLen = 0;
#define DBGTERMBUFLEN 50
 char DbgTermBuf[DBGTERMBUFLEN];
 $DESCRIPTOR(Customization,
"DECW$TERMINAL.iconName:\tDebugging Session\n\
DECW$TERMINAL.title:\tDebugging Session");
 $DESCRIPTOR(Command, "SYS$SYSDEVICE:[HOFFMAN]DEBUG_IMAGE.EXE");
 struct dsc$descriptor DbgTerm;

 DbgTerm.dsc$w_length = DBGTERMBUFLEN;
 DbgTerm.dsc$b_dtype = DSC$K_DTYPE_T;
 DbgTerm.dsc$b_class = DSC$K_CLASS_S;
 DbgTerm.dsc$a_pointer = DbgTermBuf;

 // Request creation of a DECterm display
 RetStat = decw$term_port(
 0, // display (use default)
 0, // setup file (use default)
 &Customization, // customization
 &DbgTerm, // resulting device name
 &DbgTermLen, // resulting device name length
 0, // controller (use default)

36

Chapter 2. Process Creation

 0, // char buffer (use default)
 0); // char change buffer (default)
 if (!$VMS_STATUS_SUCCESS (RetStat))
 lib$signal(RetStat);

 DbgTerm.dsc$w_length = DbgTermLen;

 // Create the process as detached.
 StsFlg = PRC$M_DETACH;

 // Now create the process
 RetStat = sys$creprc(
 0, // PID
 &Command, // Image to invoke
 &DbgTerm, // Input
 &DbgTerm, // Output
 0, 0, 0, 0, 0, 0, 0,
 StsFlg); // Process creation flags
 if (!$VMS_STATUS_SUCCESS(RetStat))
 lib$signal(RetStat);

 return SS$_NORMAL;
 }

2.8. Kernel Threads and the Kernel Threads
Process Structure
(Alpha and I64 Only)
This section defines and describes some advantages of using kernel threads. It also describes some kernel
threads features, as well as the design changes made to the OpenVMS operating system.

Note

For information about the concepts and implementation of user threads with POSIX Threads Library,
refer to the Guide to POSIX Threads Library.

2.8.1. Definition and Advantages of Kernel Threads
A thread is a single, sequential flow of execution within a process's address space. A single process
contains an address space wherein either a single thread or multiple threads execute concurrently.
Programs typically have a single flow of execution and therefore a single thread; whereas multithreaded
programs have multiple points of execution at any one time.

By using threads as a programming model, you can gain the following advantages:

• More modular code design

• Simpler application design and maintenance

• The potential to run independent flows of execution in parallel on multiple CPUs

• The potential to make better use of available CPU resources through parallel execution

37

Chapter 2. Process Creation

2.8.2. Kernel Threads Features
With kernel threads, the OpenVMS operating system implements the following two features:

• Multiple execution contexts within a process

• Efficient use of the OpenVMS and POSIX Threads Library schedulers

2.8.2.1. Multiple Execution Contexts Within a Process
Before the implementation of kernel threads, the scheduling model for the OpenVMS operating system
was per process. The only scheduling context was the process itself, that is, only one execution context
per process. Since a threaded application could create thousands of threads, many of these threads
could potentially be executing at the same time. But because OpenVMS processes had only a single
execution context, in effect, only one of those application threads was running at any one time. If this
multithreaded application was running on a multiprocessor system, the application could not make use of
more than a single CPU.

After the implementation of kernel threads, the scheduling model allows for multiple execution contexts
within a process; that is, more than one application thread can be executing concurrently. These
execution contexts are called kernel threads. Kernel threads allow a multithreaded application to have a
thread executing on every CPU in a multiprocessor system. Therefore, kernel threads allow a threaded
application to take advantage of multiple CPUs in a symmetric multiprocessing (SMP) system.

The maximum number of kernel threads that can be created in a process is 256.

2.8.2.2. Efficient Use of the OpenVMS and POSIX Threads Library
Schedulers
The user mode thread manager schedules individual user mode application threads. On OpenVMS,
POSIX Threads Library is the user mode threading package of choice. Before the implementation
of kernel threads, POSIX Threads Library multiplexed user mode threads on the single OpenVMS
execution context – the process. POSIX Threads Library implemented parts of its scheduling by using
a periodic timer. When the AST executed and the thread manager gained control, the thread manager
could then select a new application thread for execution. But because the thread manager could not
detect that a thread had entered an OpenVMS wait state, the entire application blocked until that
periodic AST was delivered. That resulted in a delay until the thread manager regained control and
could schedule another thread. Once the thread manager gained control, it could schedule a previously
preempted thread unaware that the thread was in a wait state. The lack of integration between the
OpenVMS and POSIX Threads Library schedulers could result in wasted CPU resources.

After the implementation of kernel threads, the scheduling model provides for scheduler callbacks,
which is not the default. A scheduler callback is an upcall from the OpenVMS scheduler to the thread
manager whenever a thread changes state. This upcall allows the OpenVMS scheduler to inform the
thread manager that the current thread is stalled and that another thread should be scheduled. Upcalls
also inform the thread manager that an event a thread is waiting on has completed. The two schedulers
are now better integrated, minimizing application thread scheduling delays.

2.8.2.3. Terminating a POSIX Threads Image
To avoid hangs or a disorderly shutdown of a multithreaded process, VSI recommends that you issue an
upcall with an EXIT command at the DCL prompt ($). This procedure causes a normal termination of
the image currently executing. If the image declared any exit-handling routines, for instance, they are
then given control. The exit handlers are run in a separate thread, which allows them to be synchronized

38

Chapter 2. Process Creation

with activities in other threads. This allows them to block without danger of entering a self-deadlock due
to the handler having been involved in a context which already held resources.

The effect of calling the EXIT command on the calling thread is the same as calling pthread_exit():
the caller's stack is unwound and the thread is terminated. This allows each frame on the stack to have
an opportunity to be notified and to take action during the termination, so that it can then release any
resource which it holds that might be required for an exit handler. By using upcalls, you have a way out
of self-deadlock problems that can impede image rundown.

You can optionally perform a rundown by using the control y EXIT (Ctrl–Y/EXIT) command. By
doing this and with upcalls enabled, you release the exit handler thread. All other threads continue to
execute untouched. This removes the possibility of the self-deadlock problem which is common when
you invoke exit handlers asynchronously in an existing context. However, by invoking exit handlers, you
do not automatically initiate any kind of implicit shutdown of the threads in the process. Because of this,
it is up to the application to request explicitly the shutdown of its threads from its exit handler and to
ensure that their shutdown is complete before returning from the exit handler. By having the application
do this, you ensure that subsequent exit handlers do not encounter adverse operating conditions, such
as threads which access files after they have been closed, or the inability to close files because they are
being accessed by threads.

Along with using control y EXIT (Ctrl–Y/EXIT) to perform shutdowns, you can issue a control y (Ctrl–
Y/STOP) command. If you use a control y STOP (Ctrl–Y/STOP) command, it is recommended that
you do this with upcalls. To use a control y STOP (Ctrl–Y/STOP) command, can cause a disorderly or
unexpected outcome.

2.8.3. Kernel Threads Model and Design Features
This section presents the type of kernel threads model that OpenVMS Alpha and OpenVMS I64
implement, and some features of the operating system design that changed to implement the kernel
thread model.

2.8.3.1. Kernel Threads Model
The OpenVMS kernel threads model is one that implements a few kernel threads to many user threads
with integrated schedulers. With this model, there is a mapping of many user threads to only several
execution contexts or kernel threads. The kernel threads have no knowledge of the individual threads
within an application. The thread manager multiplexes those user threads on an execution context,
though a single process can have multiple execution contexts. This model also integrates the user mode
thread manager scheduler with the OpenVMS scheduler.

2.8.3.2. Kernel Threads Design Features
Design additions and modifications have been made to various features of OpenVMS and include:

• Process structure

• Access to inner modes

• Scheduling

• ASTs

• Event flags

• Process control services

39

Chapter 2. Process Creation

2.8.3.2.1. Process Structure

With the implementation of OpenVMS kernel threads, all processes are a threaded process with at
least one kernel thread. Every kernel thread gets stacks for each access mode. Quotas and limits are
maintained and enforced at the process level. The process virtual address space remains per process
and is shared by all threads. The scheduling entity moves from the process to the kernel thread. In
general, ASTs are delivered directly to the kernel threads. Event flags and locks remain per process. See
Section 2.8.4 for more information.

2.8.3.2.2. Access to Inner Modes

With the implementation of kernel threads, a single threaded process continues to function exactly as it
has in the past. A multithreaded process may have multiple threads executing in user mode or in user
mode ASTs, as is also possible for supervisor mode. Except in cases where an activity in inner mode
is considered thread safe, a multithreaded process may have only a single thread executing in an inner
mode at any one time. Multithreaded processes retain the normal preemption of inner mode by more
inner mode ASTs. A special inner mode semaphore serializes access to inner mode.

2.8.3.2.3. Scheduling

With the implementation of kernel threads, the OpenVMS scheduler concerns itself with kernel threads,
and not processes. At certain points in the OpenVMS executive at which the scheduler could wait a
kernel thread, it can instead transfer control to the thread manager. This transfer of control, known as a
callback or upcall, allows the thread manager the chance to reschedule stalled application threads.

2.8.3.2.4. ASTs

With the implementation of kernel threads, ASTs are not delivered to the process. They are delivered to
the kernel thread on which the event was initiated. Inner mode ASTs are generally delivered to the kernel
thread already in inner mode. If no thread is in inner mode, the AST is delivered to the kernel thread that
initiated the event.

2.8.3.2.5. Event Flags

With the implementation of kernel threads, event flags continue to function on a per-process basis,
maintaining compatibility with existing application behavior.

2.8.3.2.6. Process Control Services

With the implementation of kernel threads, many process control services continue to function at the
process level. SYS$SUSPEND and SYS$RESUME system services, for example, continue to change the
scheduling state of the entire process, including all of its threads. Other services such as SYS$HIBER
and SYS$SCHDWK act on individual kernel threads instead of the entire process.

2.8.4. Kernel Threads Process Structure
This section describes the components that make up a kernel threads process. It describes the following
components:

• Process control block (PCB) and process header (PHD)

• Kernel thread block (KTB)

• Floating-point registers and execution data block (FRED)

• Kernel threads region

40

Chapter 2. Process Creation

• Per-kernel thread stacks

• Per-kernel thread data cells

• Process status bits

• Kernel thread priorities

2.8.4.1. Process Control Block (PCB) and Process Header (PHD)
Two primary data structures exist in the OpenVMS executive that describe the context of a process:

• Software process control block (PCB)

• Process header (PHD)

The PCB contains fields that identify the process to the system. The PCB comprises contexts that pertain
to quotas and limits, scheduling state, privileges, AST queues, and identifiers. In general, any information
that is required to be resident at all times is in the PCB. Therefore, the PCB is allocated from nonpaged
pool.

The PHD contains fields that pertain to a process's virtual address space. The PHD contains the process
section table. The PHD also contains the hardware process control block (HWPCB) and a floating-point
register save area. The HWPCB contains the hardware execution context of the process. The PHD is
allocated as part of a balance set slot.

2.8.4.1.1. Effect of a Multithreaded Process on the PCB and PHD

With multiple execution contexts within the same process, the multiple threads of execution all share
the same address space, but have some independent software and hardware context. This change to
a multithreaded process results in an impact on the PCB and PHD structures, and on any code that
references them.

Before the implementation of kernel threads, the PCB contained much context that was per-process.
Now, with the introduction of multiple threads of execution, much context becomes per-thread. To
accommodate per-thread context, a new data structure, the kernel thread block (KTB), is created, with
the per-thread context removed from the PCB. However, the PCB continues to contain context common
to all threads, such as quotas and limits. The new per-kernel thread structure contains the scheduling
state, priority, and the AST queues.

The PHD contains the HWPCB that gives a process its single execution context. The HWPCB remains
in the PHD; this HWPCB is used by a process when it is first created. This execution context is also
called the initial thread. A single threaded process has only this one execution context. A new structure,
the floating-point registers and execution data block (FRED), is created to contain the hardware context
of the newly created kernel threads. Since all threads in a process share the same address space, the PHD
and page tables continue to describe the entire virtual memory layout of the process.

2.8.4.2. Kernel Thread Block (KTB)
The kernel thread block (KTB) is a new per-kernel-thread data structure. The KTB contains all per-
thread software context moved from the PCB. The KTB is the basic unit of scheduling, a role previously
performed by the PCB, and is the data structure placed in the scheduling state queues.

Typically, the number of KTBs a multithreaded process has is the same as the number of CPUs on the
system. Actually, the number of KTBs is limited by the value of the system parameter MULTITHREAD.
If MULTITHREAD is zero, the OpenVMS kernel support is disabled. With kernel threads disabled,

41

Chapter 2. Process Creation

user-level threading is still possible with POSIX Threads Library. The environment is identical to the
OpenVMS environment prior to the OpenVMS Version 7.0 release. If MULTITHREAD is nonzero,
it represents the maximum number of execution contexts or kernel threads that a process can own,
including the initial one.

The KTB, in reality, is not an independent structure from the PCB. Both the PCB and KTB are defined
as sparse structures. The fields of the PCB that move to the KTB retain their original PCB offsets in the
KTB. In the PCB, these fields are unused. In effect, if the two structures are overlaid, the result is the
PCB as it currently exists with new fields appended at the end. The PCB and KTB for the initial thread
occupy the same block of nonpaged pool; therefore, the KTB address for the initial thread is the same as
for the PCB.

2.8.4.3. Floating-Point Registers and Execution Data Blocks
(FREDs)
To allow for multiple execution contexts, not only are additional KTBs required to maintain the software
context, but additional HWPCBs must be created to maintain the hardware context. Each HWPCB has
allocated with it space for preserving the contents of the floating-point registers across context switches.
Additional bytes are allocated for per-kernel thread data.

The combined structure that contains the HWPCB, floating-point register save area, and the per-kernel
thread data is called the floating-point registers and execution data (FRED) block. Prior to Version
7.2, OpenVMS supported 16 kernel threads per process. As of Version 7.2, OpenVMS supports 256
kernel threads per process. Also, prior to Version 7.3-1, OpenVMS allocated the maximum number of
FRED blocks for a given process when that process was created, even if the process did not become
multithreaded. With Version 7.3-1 and higher, OpenVMS allocated all FRED blocks as needed.

2.8.4.4. Kernel Threads Region
Much process context resides in P1 space, taking the form of data cells and the process stacks. Some of
these data cells need to be per kernel thread, as do the stacks. During initialization of the multithread
environment, a kernel thread region in P1 space is initialized to contain the per-kernel-thread data cells
and stacks. The region begins at the boundary between P0 and P1 space at address 40000000x, and it
grows toward higher addresses and the initial thread's user stack. The region is divided into per-kernel-
thread areas. Each area contains pages for data cells and the access mode stacks.

2.8.4.5. Per-Kernel Thread Stacks
A process is created with separate stacks in P1 space for the four access modes. On Alpha systems, each
access mode has a memory stack. A memory stack is used for storing data local to a procedure, saving
register contents temporarily, and recording nested procedure call information. On I64 systems, memory
stacks are used for storing data local to a procedure and for saving register contents temporarily, but not
for recording nested procedure call information.

To reduce procedure call overhead, the Intel ® Itanium ® architecture provides a large number of
registers. Some, the so-called static registers, are shared by a caller and the procedure it calls; others, the
dynamic or stacked registers, are not shared. When a procedure is called, it allocates as many dynamic
general registers as it needs. On I64 systems, nested procedure call information is recorded in the
dynamic registers.

The I64 systems manage the dynamic registers like a stack, keeping track of each procedure's allocation.
Each procedure could, in fact, allocate all the dynamic registers for its own use. Whenever the dynamic
register use by nested procedures cannot be accommodated by physical registers, the hardware saves the
dynamic registers in an in-memory area established by OpenVMS called the register backing store or

42

Chapter 2. Process Creation

register stack. On I64 systems, OpenVMS creates a register stack whenever it creates a memory stack.
Unlike memory stacks, register stacks grow from low addresses to high addresses.

Stack sizes are either fixed, determined by a SYSGEN parameter, or expandable. The parameter
KSTACKPAGES controls the size of the kernel stack. Supervisor and executive mode stack sizes are
fixed.

For the user stack, a more complex situation exists. OpenVMS allocates P1 space from high to lower
addresses. The user stack is placed after the lowest P1 space address allocated. This allows the user stack
to expand on demand toward P0 space. With the introduction of multiple sets of stacks, the locations of
these stacks impose a limit on the size of each area in which they can reside. With the implementation
of kernel threads, the user stack is no longer boundless. The initial user stack remains semi-boundless; it
still grows toward P0 space, but the limit is the per-kernel thread region instead of P0 space. The default
user stack in a process can expand on demand to be quite large, so single threaded applications do not
typically run out of user stack.

When an application is written using POSIX Threads Library, however, each POSIX thread gets its own
user stack, which is a fixed size. POSIX thread stacks are allocated from the P0 heap. Large stacks might
cause the process to exceed its memory quotas. In an extreme case, the P0 region could fill completely,
in which case the process might need to reduce the number of threads in use concurrently or make other
changes to lessen the demand for P0 memory.

If the application developer underestimates the stack requirements, the application may fail due to a
thread overflowing its stack. This failure is typically reported as an access violation and is very difficult
to diagnose. To address this problem, yellow stack zones were introduced in OpenVMS Version 7.2 and
are available to applications using POSIX Threads Library.

Yellow stack zones are a mechanism by which the stack overflow can be signaled back to the
application. The application can then choose either to provide a stack overflow handler or do nothing.
If the application does nothing, this mechanism helps pinpoint the failure for the application developer.
Instead of an access violation being signaled, a stack overflow error is signaled.

2.8.4.6. Per-Kernel-Thread Data Cells
Several pages in P1 space contain process state in the form of data cells. A number of these cells must
have a per-kernel-thread equivalent. These data cells do not all reside on pages with the same protection.
Because of this, the per-kernel-thread area reserves two pages for these cells. Each page has a different
page protection; one page protection is user read, user write (URUW); the other is user read, executive
write (UREW).

2.8.4.7. Summary of Process Data Structures
Process creation results in a PCB/KTB, a PHD/FRED, and a set of stacks. All processes have a single
kernel thread, the initial thread.

A multithreaded process always begins as a single threaded process. A multithreaded process contains a
PCB/KTB pair and a PHD/FRED pair for the initial thread; for its other threads, it contains additional
KTBs, additional FREDs, and additional sets of stacks. When the multithreaded application exits, the
process returns to its single threaded state, and all additional KTBs, FREDs, and stacks are deleted.

2.8.4.8. Kernel Thread Priorities
The SYS$SETPRI system service and the SET PROCESS/PRIORITY DCL command both take a
process identification value (PID) as an input and therefore affect only a single kernel thread at a time. If

43

Chapter 2. Process Creation

you want to change the base priorities of all kernel threads in a process, you must either make a separate
call to SYS$SETPRI or invoke the SET PROCESS/PRIORITY command for each thread.

In addition, a value for the 'policy' parameter to the SYS$SETPRI system service was added. If
JPI$K_ALL_THREADS is specified, the call to SYS$SETPRI changes the base priorities of all kernel
threads in the target process.

The same support is provided by the ALL_THREADS qualifier to the SET PROCESS/PRIORITY DCL
command.

2.9. THREADCP Command Not Supported on
OpenVMS I64
The THREADCP command is not supported on OpenVMS I64. For OpenVMS I64, the SET
IMAGE and SHOW IMAGE commands can be used to check and modify the state of threads-related
image header bits, similar to the THREADCP command on OpenVMS Alpha. For example, the
THREADCP/SHOW image command is analogous to the SHOW IMAGE image command. As
another example, the THREADCP/ENABLE= flags image command is analogous to the SET
IMAGE/LINKFLAGS= flags image command.

The SHOW IMAGE and SET IMAGE commands are documented in the VSI OpenVMS DCL
Dictionary: N-Z.

2.10. KPS Services
(Alpha and I64 Only)
As of OpenVMS Version 8.2, KPS services enable a thread of execution in one access mode to have
multiple stacks. These services were initially developed to allow a device driver to create a fork process
with a private stack on which to retain execution context across stalls and restarts. They have been
extended to be usable by process context code running in any access mode.

Various OpenVMS components use KPS services to multithread their operations. RMS, for example,
can have multiple asynchronous I/O operations in progress in response to process requests from multiple
access modes. Each request is processed on a separate memory stack and, on I64, separate register stack
as well.

44

Chapter 3. Process Communication
This chapter describes communication mechanisms used within a process and between processes. It also
describes programming with intra-cluster communication (ICC).

The operating system allows your process to communicate within itself and with other processes.
Processes can be either wholly independent or cooperative. This chapter presents considerations for
developing applications that require the concurrent execution of many programs, and how you can use
process communication to perform the following functions:

• Synchronize events

• Share data

• Obtain information about events important to the program you are executing

3.1. Communication Within a Process
Communicating within a process, from one program component to another, can be performed using the
following methods:

• Local event flags

• Logical names (in supervisor mode)

• Global symbols (command language interpreter symbols)

• Common area

For passing information among chained images, you can use all four methods because the image
reading the information executes immediately after the image that deposited it. Only the common area
allows you to pass data reliably from one image to another in the event that another image's execution
intervenes the two communicating images.

For communicating within a single image, you can use event flags, logical names, and symbols. For
synchronizing events within a single image, use event flags. See Chapter 6, for more information about
synchronizing events.

Because permanent mailboxes and permanent global sections are not deleted when the creating image
exits, they also can be used to pass information from the current image to a later executing image.
However, VSI recommends that you use the common area because it uses fewer system resources than
the permanent structures and does not require privilege. (You need the PRMMBX privilege to create a
permanent mailbox and the PRMGBL privilege to create a permanent global section).

You can also use symbols, but only between a parent and a spawned subprocess that has inherited the
parent's symbols.

3.1.1. Using Local Event Flags
Event flags are status-posting bits maintained by the operating system for general programming use.
Programs can set, clear, and read event flags. By setting and clearing event flags at specific points, one
program component can signal when an event has occurred. Other program components can then check
the event flag to determine when the event has been completed. For more information about using local
and common event flags for synchronizing events, refer to Chapter 6.

45

Chapter 3. Process Communication

3.1.2. Using Logical Names
Logical names can store up to 255 bytes of data. When you need to pass information from one program
to another within a process, you can assign data to a logical name when you create the logical name;
then, other programs can access the contents of the logical name. See VSI OpenVMS Programming
Concepts Manual, Volume II for more information about logical name system services.

You can create a logical name under three access modes—user, supervisor, or executive. If you create
a process logical name in user mode, it is deleted after the image exits. If you create a logical name in
supervisor or executive mode, it is retained after the image exits. Therefore, to share data within the
process from one image to the next, use supervisor-mode or executive-mode logical names. Creating an
executive-mode logical name requires privilege.

3.1.2.1. Creating and Accessing Logical Names
Perform the following steps to create and access a logical name:

1. Create the logical name and store data in it. Use LIB$SET_LOGICAL to create a supervisor logical
name. No special privileges are required. You can also use the system service SYS$CRELNM.
SYS$CRELNM also allows you to create a logical name for the system or group table and to create a
logical name in any other mode, assuming you have appropriate privileges.

2. Access the logical name. Use the system service SYS$TRNLNM. SYS$TRNLNM searches for the
logical name and returns information about it.

3. Once you have finished using the logical name, delete it. Use the routine LIB$DELETE_LOGICAL
or SYS$DELLNM. LIB$DELETE_LOGICAL deletes the supervisor logical name without requiring
any special privileges. SYS$DELLNM requires special privileges to delete logical names for
privileged modes. However, you can also use this routine to delete either logical name tables or a
logical name within a system or group table.

Example 3.1 creates a spawned subprocess to perform an iterative calculation. The logical name
REP_NUMBER specifies the number of times that REPEAT, the program executing in the subprocess,
should perform the calculation. Because both the parent process and the subprocess are part of the same
job, REP_NUMBER is placed in the job logical name table LNM$JOB. (Note that logical names are
case sensitive; specifically, LNM$JOB is a system-defined logical name that refers to the job logical
name table, whereas lnm$job is not.) To satisfy the references to LNM$_STRING, the example includes
the file $LNMDEF.

Example 3.1. Performing an Iterative Calculation with a Spawned Subprocess

PROGRAM CALC

! Status variable and system routines
INTEGER*4 STATUS,
2 SYS$CRELNM,
2 LIB$GET_EF,
2 LIB$SPAWN
! Define itmlst structure
STRUCTURE /ITMLST/
 UNION
 MAP
 INTEGER*2 BUFLEN
 INTEGER*2 CODE
 INTEGER*4 BUFADR
 INTEGER*4 RETLENADR

46

Chapter 3. Process Communication

 END MAP
 MAP
 INTEGER*4 END_LIST
 END MAP
 END UNION
END STRUCTURE
! Declare itmlst
RECORD /ITMLST/ LNMLIST(2)
! Number to pass to REPEAT.FOR
CHARACTER*3 REPETITIONS_STR
INTEGER REPETITIONS
! Symbols for LIB$SPAWN and SYS$CRELNM
! Include FORSYSDEF symbol definitions:
INCLUDE '($LNMDEF)'
EXTERNAL CLI$M_NOLOGNAM,
2 CLI$M_NOCLISYM,
2 CLI$M_NOKEYPAD,
2 CLI$M_NOWAIT,
2 LNM$_STRING
 .
 . ! Set REPETITIONS_STR
 .
! Set up and create logical name REP_NUMBER in job table
LNMLIST(1).BUFLEN = 3
LNMLIST(1).CODE = %LOC (LNM$_STRING)
LNMLIST(1).BUFADR = %LOC(REPETITIONS_STR)
LNMLIST(1).RETLENADR = 0
LNMLIST(2).END_LIST = 0
STATUS = SYS$CRELNM (,
2 'LNM$JOB', ! Logical name table
2 'REP_NUMBER',, ! Logical name
2 LNMLIST) ! List specifying
 ! equivalence string
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))
! Execute REPEAT.FOR in a subprocess
MASK = %LOC (CLI$M_NOLOGNAM) .OR.
2 %LOC (CLI$M_NOCLISYM) .OR.
2 %LOC (CLI$M_NOKEYPAD) .OR.
2 %LOC (CLI$M_NOWAIT)
STATUS = LIB$GET_EF (FLAG)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))
STATUS = LIB$SPAWN ('RUN REPEAT',,,MASK,,,,FLAG)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))
 .
 .
 .

REPEAT.FOR

PROGRAM REPEAT
! Repeats a calculation REP_NUMBER of times,
! where REP_NUMBER is a logical name

! Status variables and system routines
INTEGER STATUS,
2 SYS$TRNLNM,
2 SYS$DELLNM

47

Chapter 3. Process Communication

! Number of times to repeat
INTEGER*4 REITERATE,
2 REPEAT_STR_LEN
CHARACTER*3 REPEAT_STR
! Item list for SYS$TRNLNM
! Define itmlst structure
STRUCTURE /ITMLST/
 UNION
 MAP
 INTEGER*2 BUFLEN
 INTEGER*2 CODE
 INTEGER*4 BUFADR
 INTEGER*4 RETLENADR
 END MAP
 MAP
 INTEGER*4 END_LIST
 END MAP
 END UNION
END STRUCTURE
! Declare itmlst
RECORD /ITMLST/ LNMLIST (2)
! Define item code
EXTERNAL LNM$_STRING
! Set up and translate the logical name REP_NUMBER
LNMLIST(1).BUFLEN = 3
LNMLIST(1).CODE = LNM$_STRING
LNMLIST(1).BUFADR = %LOC(REPEAT_STR)
LNMLIST(1).RETLENADR = %LOC(REPEAT_STR_LEN)
LNMLIST(2).END_LIST = 0
STATUS = SYS$TRNLNM (,
2 'LNM$JOB', ! Logical name table
2 'REP_NUMBER',, ! Logical name
2 LNMLIST) ! List requesting
 ! equivalence string
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))
! Convert equivalence string to integer
! BN causes spaces to be ignored
READ (UNIT = REPEAT_STR (1:REPEAT_STR_LEN),
2 FMT = '(BN,I3)') REITERATE
! Calculations
DO I = 1, REITERATE
 .
 .
 .
END DO
! Delete logical name
STATUS = SYS$DELLNM ('LNM$JOB', ! Logical name table
2 'REP_NUMBER',) ! Logical name
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))

END

3.1.3. Using Command Language Interpreter Symbols
The symbols you create and access for process communication are command language interpreter (CLI)
symbols. These symbols are stored in symbol tables maintained for use within the context of DCL, the
default command language interpreter. They can store up to 255 bytes of information. The use of these

48

Chapter 3. Process Communication

symbols is limited to processes using DCL. If the process is not using DCL, an error status is returned by
the symbol routines.

3.1.3.1. Local and Global Symbols
The two kinds of CLI symbols and their definitions are as follows:

• Local – A local symbol is available to the command level that defined it, any command procedure
executed from that command level, and lower command levels.

• Global – A global symbol can be accessed from any command level, regardless of the level at which
it was defined.

3.1.3.2. Creating and Using Global Symbols
If you need to pass information from one program to another within a process, you can assign data
to a global symbol when you create the symbol. Then, other programs can access the contents of the
global symbol. You should use global symbols so the value within the symbol can be accessed by other
programs.

To use DCL global symbols, follow this procedure:

1. Create the symbol and assign data to it using the routine LIB$SET_SYMBOL. Make sure you
specify that the symbol will be placed in the global symbol table in the tbl-ind argument. If you do
not specify the global symbol table, the symbol will be a local symbol.

2. Access the symbol with the LIB$GET_SYMBOL routine. This routine uses DCL to return the value
of the symbol as a string.

3. Once you have finished using the symbol, delete it with the LIB$DELETE_SYMBOL routine. If you
created a global symbol, make sure you specify the global symbol table in the tbl-ind argument. By
default, the system searches the local symbol table.

See the VSI OpenVMS RTL Library (LIB$) Manual for additional information.

3.1.4. Using the Common Area
Use the common area to store data from one image to the next. Such data is unlikely to be corrupted
between the time one image deposits it in a common area and another image reads it from the area. The
common area can store 252 bytes of data. The LIB$PUT_COMMON routine writes information to this
common area; the LIB$GET_COMMON routine reads information from this common area.

3.1.4.1. Creating the Process Common Area
The common area for your process is automatically created for you; no special declaration is necessary.
To pass more than 255 bytes of data, put the data into a file instead of in the common area and use the
common area to pass the specification.

3.1.4.2. Common I/O Routines
The LIB$PUT_COMMON routine allows a program to copy a string into the process's common storage
area. This area remains defined during multiple image activations. LIB$GET_COMMON allows a
program to copy a string from the common area into a destination string. The programs reading and
writing the data in the common area must agree upon its amount and format. The maximum length of
the destination string is defined as follows:

49

Chapter 3. Process Communication

[min(256, the length of the data in the common storage area) - 4]

This maximum length is normally 252.

In BASIC and Fortran, you can use these routines to allow a USEROPEN routine to pass information
back to the routine that called it. A USEROPEN routine cannot write arguments. However, it can call
LIB$PUT_COMMON to put information into the common area. The calling program can then use
LIB$GET_COMMON to retrieve it.

You can also use these routines to pass information between images run successively, such as chained
images run by LIB$RUN_PROGRAM.

3.1.4.3. Modifying or Deleting Data in the Common Block
You cannot modify or delete data in the process common area unless you invoke LIB$PUT_COMMON.
Therefore, you can execute any number of images between one image and another, provided that you
have not invoked LIB$PUT_COMMON. Each subsequent image reads the correct data. Invoking
LIB$GET_COMMON to read the common block does not modify the data.

3.1.4.4. Specifying Other Types of Data
Although the descriptions of the LIB$PUT_COMMON and LIB$GET_COMMON routines in the VSI
OpenVMS RTL Library (LIB$) Manual specify a character string for the argument containing the data
written to or read from the common area, you can specify other types of data. However, you must pass
both noncharacter and character data by descriptor.

The following program segment reads statistics from the terminal and enters them into a binary file.
After all of the statistics are entered into the file, the program places the name of the file into the per-
process common area and exits.

 .
 .
 .
! Enter statistics
 .
 .
 .
! Put the name of the stats file into common
STATUS = LIB$PUT_COMMON (FILE_NAME (1:LEN))
 .
 .
 .

The following program segment reads the file name from the per-process common block and compiles a
report using the statistics from that file.

 .
 .
 .
! Read the name of the stats file from common
STATUS = LIB$GET_COMMON (FILE_NAME,
2 LEN)

! Compile the report
 .
 .
 .

50

Chapter 3. Process Communication

3.2. Communication Between Processes
Communication between processes, or interprocess communication, can be performed in the following
ways:

• Shared files

• Common event flags

• Logical names

• Mailboxes

• Global sections

• Lock management system services

Each approach offers different possibilities in terms of the speed at which it communicates information
and the amount of information it can communicate. For example, shared files offer the possibility of
sharing an unlimited amount of information; however, this approach is the slowest because the disk must
be accessed to share information.

Like shared files, global sections offer the possibility of sharing large amounts of information. Because
sharing information through global sections requires only memory access, it is the fastest communication
method.

Logical names and mailboxes can communicate moderate amounts of information. Because each method
operates through a relatively complex system service, each is faster than files, but slower than the other
communication methods.

The lock management services and common event flag cluster methods can communicate relatively
small amounts of information. With the exception of global sections, they are the fastest of the
interprocess communication methods.

Common event flags: Processes executing within the same group can use common event flags to signal
the occurrence or completion of particular activities. For details about event flags, and an example of
how cooperating processes in the same group use a common event flag, see Chapter 6.

Logical name tables: Processes executing in the same job can use the job logical name table to provide
member processes with equivalence names for logical names. Processes executing in the same group
can use the group logical name table. A process must have the GRPNAM or SYSPRV privilege to place
names in the group logical name table. All processes in the system can use the system logical name table.
A process must have the SYSNAM or SYSPRV privilege to place names in the system logical name
table. Processes can also create and use user-defined logical name tables. For details about logical names
and logical name tables, see VSI OpenVMS Programming Concepts Manual, Volume II.

Mailboxes: You can use mailboxes as virtual input/output devices to pass information, messages, or data
among processes. For additional information on how to create and use mailboxes, see Section 3.2.2.
Mailboxes may also be used to provide a creating process with a way to determine when and under
what conditions a created subprocess was deleted. For an example of a termination mailbox, see
Section 4.9.4.3.

Global sections: Global sections can be either disk files or page-file sections that contain shareable
code or data. Through the use of memory management services, these files can be mapped to the virtual
address space of more than one process. In the case of a data file on disk, cooperating processes can

51

Chapter 3. Process Communication

synchronize reading and writing the data in physical memory; as data is updated, system paging results
in the updated data being written directly back into the disk file. Global page-file sections are useful for
temporary storage of common data; they are not mapped to a disk file. Instead, they page only to the
system default page file. Global sections are described in more detail in Chapter 13 and Chapter 12.

Lock management system services: Processes can use the lock management system services to control
access to resources (any entity on the system that the process can read, write, or execute). In addition to
controlling access, the lock management services provide a mechanism for passing information among
processes that have access to a resource (lock value blocks). Blocking ASTs can be used to notify a
process that other processes are waiting for a resource. Using lock value blocks is a practical technique
for communicating in cluster environments. With lock value blocks, communication between two
processes from node to node in a distributed environment is an effective way of implementing cluster
communication. For more information about the lock management system services, see Chapter 7.

While common event flags and lock management services establish communication, they are most useful
for synchronizing events and are discussed in Chapter 6. Global sections and shared files are best used
for sharing data and are discussed in VSI OpenVMS Programming Concepts Manual, Volume II.

3.2.1. Using Logical Name Tables
If both processes are part of the same job, you can place the logical name in the process logical name
table (LNM$PROCESS) or in the job logical name table (LNM$JOB). If a subprocess is prevented from
inheriting the process logical name table, you must communicate using the job logical name table. If the
processes are in the same group, place the logical name in the group logical name table LNM$GROUP
(requires GRPNAM or SYSPRV privilege). If the processes are not in the same group, place the logical
name in the system logical name table LNM$SYSTEM (requires SYSNAM or SYSPRV privilege).

3.2.2. Mailboxes
A mailbox is a virtual device used for communication among processes. You must call OpenVMS RMS
services, language I/O statements, or I/O system services to perform actual data transfers.

3.2.2.1. Creating a Mailbox
To create a mailbox, use the SYS$CREMBX system service. SYS$CREMBX creates the mailbox and
returns the number of the I/O channel assigned to the mailbox.

The format for the SYS$CREMBX system service is as follows:

SYS$CREMBX
 ([prmflg] ,chan ,[maxmsg] ,[bufquo] ,[promsk] ,[acmode] , [lognam],
 [flags] ,[nullarg])

When you invoke SYS$CREMBX, you usually specify the following two arguments:

• Specify a variable to receive the I/O channel number using the chan argument. This argument is
required.

• Specify the logical name to be associated with the mailbox using the lognam argument. The logical
name identifies the mailbox for other processes and for input/output statements.

The SYS$CREMBX system service also allows you to specify the message size, buffer size, mailbox
protection code, and access mode of the mailbox; however, the default values for these arguments are
usually sufficient. For more information on SYS$CREMBX, refer to the VSI OpenVMS System Services
Reference Manual.

52

Chapter 3. Process Communication

3.2.2.2. Creating Temporary and Permanent Mailboxes
By default, a mailbox is deleted when no I/O channel is assigned to it. Such a mailbox is called a
temporary mailbox. If you have PRMMBX privilege, you can create a permanent mailbox (specify the
prmflg argument as 1 when you invoke SYS$CREMBX). A permanent mailbox is not deleted until it
is marked for deletion with the SYS$DELMBX system service (requires PRMMBX). Once a permanent
mailbox is marked for deletion, it is like a temporary mailbox; when the last I/O channel to the mailbox
is deassigned, the mailbox is deleted.

The following statement creates a mailbox named MAIL_BOX. The I/O channel assigned to the
mailbox is returned in MBX_CHAN.

! I/O channel
INTEGER*2 MBX_CHAN

! Mailbox name
CHARACTER*(*) MBX_NAME
PARAMETER (MBX_NAME = 'MAIL_BOX')

STATUS = SYS$CREMBX (,
2 MBX_CHAN, ! I/O channel
2 ,,,,
2 MBX_NAME) ! Mailbox name

Note

If you use MAIL as the logical name for a mailbox, then the system will not execute the proper image in
response to the DCL command MAIL.

The following program segment creates a permanent mailbox, then creates a subprocess that marks that
mailbox for deletion:

INTEGER STATUS,
2 SYS$CREMBX
INTEGER*2 MBX_CHAN

! Create permanent mailbox
STATUS = SYS$CREMBX (%VAL(1), ! Permanence flag
2 MBX_CHAN, ! Channel
2 ,,,,
2 'MAIL_BOX') ! Logical name
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))
! Create subprocess to delete it
STATUS = LIB$SPAWN ('RUN DELETE_MBX')
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))

END

The following program segment executes in the subprocess. Notice that the subprocess must assign
a channel to the mailbox and then use that channel to delete the mailbox. Any process that deletes a
permanent mailbox, unless it is the creating process, must use this technique. (Use SYS$ASSIGN to
assign the channel to the mailbox to ensure that the mailbox already exists. SYS$CREMBX system
service assigns a channel to a mailbox; however, SYS$CREMBX also creates the mailbox if it does not
already exist).

INTEGER STATUS,

53

Chapter 3. Process Communication

2 SYS$DELMBX,
2 SYS$ASSIGN
INTEGER*2 MBX_CHAN

! Assign channel to mailbox
STATUS = SYS$ASSIGN ('MAIL_BOX',
2 MBX_CHAN,,)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))
! Delete the mailbox
STATUS = SYS$DELMBX (%VAL(MBX_CHAN))
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))

END

3.2.2.3. Assigning an I/O Channel Along with a Mailbox
A mailbox is a virtual device used for communication between processes. A channel is the
communication path that a process uses to perform I/O operations to a particular device. The
LIB$ASN_WTH_MBX routine assigns a channel to a device and associates a mailbox with the device.

Normally, a process calls the SYS$CREMBX system service to create a mailbox and assign a channel
and logical name to it. In the case of a temporary mailbox, this service places the logical name
corresponding to the mailbox in the job logical name table. This implies that any process running in the
same job and using the same logical name uses the same mailbox.

Sometimes it is not desirable to have more than one process use the same mailbox. For example, when
a program connects explicitly with another process across a network, the program uses a mailbox both
to obtain the data confirming the connection and to store the asynchronous messages from the other
process. If that mailbox is shared with other processes in the same group, there is no way to determine
which messages are intended for which processes; the processes read each other's messages, and the
original program does not receive the correct information from the cooperating process across the
network link.

The LIB$ASN_WTH_MBX routine avoids this situation by associating the physical mailbox name
with the channel assigned to the device. To create a temporary mailbox for itself and other processes
cooperating with it, your program calls LIB$ASN_WTH_MBX. The run-time library routine assigns
the channel and creates the temporary mailbox by using the system services $GETDVI, $ASSIGN, and
$CREMBX. Instead of a logical name, the mailbox is identified by a physical device name of the form
MBcu. The elements that make up this device name are as follows:

MB indicates that the device is a mailbox.
c is the controller.
u is the unit number.

The routine returns this device name to the calling program, which then must pass the mailbox channel
to the other programs with which it cooperates. In this way, the cooperating processes access the mailbox
by its physical name instead of by its jobwide logical name.

The calling program passes the routine a device name, which specifies the device to which the channel
is to be assigned. For this argument (called dev-nam), you can use a logical name. If you do so, the
routine attempts one level of logical name translation.

The privilege restrictions and process quotas required for using this routine are those required by the
$GETDVI, $CREMBX, and $ASSIGN system services.

54

Chapter 3. Process Communication

3.2.2.4. Reading and Writing Data to a Mailbox
The following list describes the three ways you can read and write to a mailbox:

• Synchronous I/O—Reads or writes to a mailbox and then waits for the cooperating image to perform
the other operation. Use I/O statements for your programming language. This is the recommended
method of addressing a mailbox.

• Immediate I/O—Queues a read or write operation to a mailbox and continues program execution
after the operation completes. To do this, use the SYS$QIOW system service.

• Asynchronous I/O—Queues a read or write operation to a mailbox and continues program execution
while the request executes. To do this, use the SYS$QIO system service. When the read or write
operation completes, the I/O status block (if specified) is filled, the event flag (if specified) is set, and
the AST routine (if specified) is executed.

VSI OpenVMS Programming Concepts Manual, Volume II describes the SYS$QIO and SYS$QIOW
system services and provides further discussion of mailbox I/O. See the VSI OpenVMS System Services
Reference Manual for more information. VSI recommends that you supply the optional I/O status block
parameter when you use these two system services. The contents of the status block varies depending on
the QIO function code; refer to the function code descriptions in the VSI OpenVMS I/O User's Reference
Manual for a description of the appropriate status block.

3.2.2.5. Using Synchronous Mailbox I/O
Use synchronous I/O when you read or write information to another image and cannot continue until
that image responds.

The program segment shown in Example 3.2 opens a mailbox for the first time. To open a
mailbox for Fortran I/O, use the OPEN statement with the following specifiers: UNIT, FILE,
CARRIAGECONTROL, and STATUS. The value for the keyword FILE should be the logical name of
a mailbox (SYS$CREMBX allows you to associate a logical name with a mailbox when the mailbox
is created). The value for the keyword CARRIAGECONTROL should be 'LIST'. The value for the
keyword STATUS should be 'NEW' for the first OPEN statement and 'OLD' for subsequent OPEN
statements.

Example 3.2. Opening a Mailbox

! Status variable and values
INTEGER STATUS

! Logical unit and name for mailbox
INTEGER MBX_LUN
CHARACTER(*) MBX_NAME
PARAMETER (MBX_NAME = MAIL_BOX)
! Create mailbox
STATUS = SYS$CREMBX (,
2 MBX_CHAN, ! Channel
2 ,,,,
2 MBX_NAME) ! Logical name
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))

! Get logical unit for mailbox and open mailbox
STATUS = LIB$GET_LUN (MBX_LUN)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))
OPEN (UNIT = MBX_LUN,
2 FILE = MBX_NAME,

55

Chapter 3. Process Communication

2 CARRIAGECONTROL = 'LIST',
2 STATUS = 'NEW')

In Example 3.3, one image passes device names to a second image. The second image returns the
process name and the terminal associated with the process that allocated each device. A WRITE
statement in the first image does not complete until the cooperating process issues a READ statement.
(The variable declarations are not shown in the second program because they are very similar to those in
the first program).

Example 3.3. Synchronous I/O Using a Mailbox

! DEVICE.FOR

PROGRAM PROCESS_DEVICE

! Status variable
INTEGER STATUS

! Name and I/O channel for mailbox
CHARACTER*(*) MBX_NAME
PARAMETER (MBX_NAME = 'MAIL_BOX')
INTEGER*2 MBX_CHAN
! Logical unit number for FORTRAN I/O
INTEGER MBX_LUN
! Character string format
CHARACTER*(*) CHAR_FMT
PARAMETER (CHAR_FMT = '(A50)')
! Mailbox message
CHARACTER*50 MBX_MESSAGE
 .
 .
 .
! Create the mailbox
STATUS = SYS$CREMBX (,
2 MBX_CHAN, ! Channel
2 ,,,,
2 MBX_NAME) ! Logical name
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))
! Get logical unit for mailbox and open mailbox
STATUS = LIB$GET_LUN (MBX_LUN)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))
OPEN (UNIT = MBX_LUN,
2 FILE = MBX_NAME,
2 CARRIAGECONTROL = 'LIST',
2 STATUS = 'NEW')
! Create subprocess to execute GETDEVINF.EXE
STATUS = SYS$CREPRC (,
2 'GETDEVINF', ! Image
2 ,,,,,
2 'GET_DEVICE', ! Process name
2 %VAL(4),,,) ! Priority
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))
! Pass device names to GETDEFINF
WRITE (UNIT=MBX_LUN,
2 FMT=CHAR_FMT) 'SYS$DRIVE0'
! Read device information from GETDEFINF
READ (UNIT=MBX_LUN,
2 FMT=CHAR_FMT) MBX_MESSAGE

56

Chapter 3. Process Communication

 .
 .
 .
END

GETDEVINF.FOR

 .
 .
 .
! Create mailbox
STATUS = SYS$CREMBX (,
2 MBX_CHAN, ! I/O channel
2 ,,,,
2 MBX_NAME) ! Mailbox name
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))
! Get logical unit for mailbox and open mailbox
STATUS = LIB$GET_LUN (MBX_LUN)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))
OPEN (UNIT=MBX_LUN,
2 FILE=MBX_NAME,
2 CARRIAGECONTROL='LIST',
2 STATUS = 'OLD')
! Read device names from mailbox
READ (UNIT=MBX_LUN,
2 FMT=CHAR_FMT) MBX_MESSAGE
! Use SYS$GETJPI to find process and terminal
! Process name: PROC_NAME (1:P_LEN)
! Terminal name: TERM (1:T_LEN)
 .
 .
 .
MBX_MESSAGE = MBX_MESSAGE//' '//
2 PROC_NAME(1:P_LEN)//' '//
2 TERM(1:T_LEN)
! Write device information to DEVICE
WRITE (UNIT=MBX_LUN,
2 FMT=CHAR_FMT) MBX_MESSAGE

END

3.2.2.6. Using Immediate Mailbox I/O
Use immediate I/O to send or receive a message from another process without waiting for a response
from that process. To ensure that the other process receives the information that you write, either do not
exit until the other process has a channel to the mailbox, or use a permanent mailbox.

Queueing an Immediate I/O Request

To queue an immediate I/O request, invoke the SYS$QIOW system service. See the VSI OpenVMS
System Services Reference Manual for more information.

Reading Data from the Mailbox

Since immediate I/O is asynchronous, a mailbox may contain more than one message or no message
when it is read. If the mailbox contains more than one message, the read operation retrieves the
messages one at a time in the order in which they were written. If the mailbox contains no message, the
read operation generates an end-of-file error.

57

Chapter 3. Process Communication

To allow a cooperating program to differentiate between an empty mailbox and the end of the data being
transferred, the process writing the messages should use the IO$_WRITEOF function code to write an
end-of-file message to the mailbox as the last piece of data. When the cooperating program reads an
empty mailbox, the end-of-file message is returned and the second longword of the I/O status block is
0. When the cooperating program reads an end-of-file message explicitly written to the mailbox, the
end-of-file message is returned and the second longword of the I/O status block contains the process
identification number of the process that wrote the message to the mailbox.

In Example 3.4, the first program creates a mailbox named MAIL_BOX, writes data to it, and then
indicates the end of the data by writing an end-of-file message. The second program creates a mailbox
with the same logical name, reads the messages from the mailbox into an array, and stops the read
operations when a read operation generates an end-of-file message and the second longword of the I/O
status block is nonzero, confirming that the writing process sent the end-of-file message. The processes
use common event flag 64 to ensure that SEND.FOR does not exit until RECEIVE.FOR has established
a channel to the mailbox. (If RECEIVE.FOR executes first, an error occurs because SYS$ASSIGN
cannot find the mailbox).

Example 3.4. Immediate I/O Using a Mailbox

!SEND.FOR

 .
 .
 .

INTEGER*4 STATUS

! Name and channel number for mailbox
CHARACTER*(*) MBX_NAME
PARAMETER (MBX_NAME = 'MAIL_BOX')
INTEGER*2 MBX_CHAN
! Mailbox message
CHARACTER*80 MBX_MESSAGE
INTEGER LEN
CHARACTER*80 MESSAGES (255)
INTEGER MESSAGE_LEN (255)
INTEGER MAX_MESSAGE
PARAMETER (MAX_MESSAGE = 255)
! I/O function codes and status block
INCLUDE '($IODEF)'
INTEGER*4 WRITE_CODE
STRUCTURE /STATUS_BLOCK/
 INTEGER*2 IOSTAT,
2 MSG_LEN
 INTEGER*4 READER_PID
END STRUCTURE
RECORD /STATUS_BLOCK/ IOSTATUS
! System routines
INTEGER SYS$CREMBX,
2 SYS$ASCEFC,
2 SYS$WAITFR,
2 SYS$QIOW
! Create the mailbox
STATUS = SYS$CREMBX (,
2 MBX_CHAN,
2 ,,,,
2 MBX_NAME)

58

Chapter 3. Process Communication

IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))
! Fill MESSAGES array
 .
 .
 .
! Write the messages
DO I = 1, MAX_MESSAGE
 WRITE_CODE = IO$_WRITEVBLK .OR. IO$M_NOW
 MBX_MESSAGE = MESSAGES(I)
 LEN = MESSAGE_LEN(I)
 STATUS = SYS$QIOW (,
2 %VAL(MBX_CHAN), ! Channel
2 %VAL(WRITE_CODE), ! I/O code
2 IOSTATUS, ! Status block
2 ,,
2 %REF(MBX_MESSAGE), ! P1
2 %VAL(LEN),,,,) ! P2
 IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))
 IF (.NOT. IOSTATUS.IOSTAT)
2 CALL LIB$SIGNAL (%VAL(IOSTATUS.STATUS))
END DO
! Write end-of-file
WRITE_CODE = IO$_WRITEOF .OR. IO$M_NOW
STATUS = SYS$QIOW (,
2 %VAL(MBX_CHAN), ! Channel
2 %VAL(WRITE_CODE), ! End-of-file code
2 IOSTATUS, ! Status block
2 ,,,,,,,)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))
IF (.NOT. IOSTATUS.IOSTAT)
2 CALL LIB$SIGNAL (%VAL(IOSTATUS.IOSTAT))
 .
 .
 .
! Make sure cooperating process can read the information
! by waiting for it to assign a channel to the mailbox
STATUS = SYS$ASCEFC (%VAL(64),
2 'CLUSTER',,)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))
STATUS = SYS$WAITFR (%VAL(64))
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))

END

RECEIVE.FOR

INTEGER STATUS

INCLUDE '($IODEF)'
INCLUDE '($SSDEF)'

! Name and channel number for mailbox
CHARACTER*(*) MBX_NAME
PARAMETER (MBX_NAME = 'MAIL_BOX')
INTEGER*2 MBX_CHAN
! QIO function code
INTEGER READ_CODE
! Mailbox message

59

Chapter 3. Process Communication

CHARACTER*80 MBX_MESSAGE
INTEGER*4 LEN
! Message arrays
CHARACTER*80 MESSAGES (255)
INTEGER*4 MESSAGE_LEN (255)
! I/O status block
STRUCTURE /STATUS_BLOCK/
 INTEGER*2 IOSTAT,
2 MSG_LEN
 INTEGER*4 READER_PID
END STRUCTURE
RECORD /STATUS_BLOCK/ IOSTATUS
! System routines
INTEGER SYS$ASSIGN,
2 SYS$ASCEFC,
2 SYS$SETEF,
2 SYS$QIOW
! Create the mailbox and let the other process know
STATUS = SYS$ASSIGN (MBX_NAME,
2 MBX_CHAN,,,)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))
STATUS = SYS$ASCEFC (%VAL(64),
2 'CLUSTER',,)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))
STATUS = SYS$SETEF (%VAL(64))
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))
! Read first message
READ_CODE = IO$_READVBLK .OR. IO$M_NOW
LEN = 80
STATUS = SYS$QIOW (,
2 %VAL(MBX_CHAN), ! Channel
2 %VAL(READ_CODE), ! Function code
2 IOSTATUS, ! Status block
2 ,,
2 %REF(MBX_MESSAGE), ! P1
2 %VAL(LEN),,,,) ! P2
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))
IF ((.NOT. IOSTATUS.IOSTAT) .AND.
2 (IOSTATUS.IOSTAT .NE. SS$_ENDOFFILE)) THEN
 CALL LIB$SIGNAL (%VAL(IOSTATUS.IOSTAT))
ELSE IF (IOSTATUS.IOSTAT .NE. SS$_ENDOFFILE) THEN
 I = 1
 MESSAGES(I) = MBX_MESSAGE
 MESSAGE_LEN(I) = IOSTATUS.MSG_LEN
END IF
! Read messages until cooperating process writes end-of-file
DO WHILE (.NOT. ((IOSTATUS.IOSTAT .EQ. SS$_ENDOFFILE) .AND.
2 (IOSTATUS.READER_PID .NE. 0)))

 STATUS = SYS$QIOW (,
2 %VAL(MBX_CHAN), ! Channel
2 %VAL(READ_CODE), ! Function code
2 IOSTATUS, ! Status block
2 ,,
2 %REF(MBX_MESSAGE), ! P1
2 %VAL(LEN),,,,) ! P2
 IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))
 IF ((.NOT. IOSTATUS.IOSTAT) .AND.

60

Chapter 3. Process Communication

2 (IOSTATUS.IOSTAT .NE. SS$_ENDOFFILE)) THEN
 CALL LIB$SIGNAL (%VAL(IOSTATUS.IOSTAT))
 ELSE IF (IOSTATUS.IOSTAT .NE. SS$_ENDOFFILE) THEN
 I = I + 1
 MESSAGES(I) = MBX_MESSAGE
 MESSAGE_LEN(I) = IOSTATUS.MSG_LEN
 END IF

END DO
 .
 .
 .

3.2.2.7. Using Asynchronous Mailbox I/O
Use asynchronous I/O to queue a read or write request to a mailbox. To ensure that the other process
receives the information you write, either do not exit the other process until the other process has a
channel to the mailbox, or use a permanent mailbox.

To queue an asynchronous I/O request, invoke the SYS$QIO system service; however, when specifying
the function codes, do not specify the IO$M_NOW modifier. The SYS$QIO system service allows you
to specify either an AST to be executed or an event flag to be set when the I/O operation completes.

Example 3.5 calculates gross income and taxes and then uses the results to calculate net income.
INCOME.FOR uses SYS$CREPRC, specifying a termination mailbox, to create a subprocess to calculate
taxes (CALC_TAXES) while INCOME calculates gross income. INCOME issues an asynchronous
read to the termination mailbox, specifying an event flag to be set when the read completes. (The read
completes when CALC_TAXES completes, terminating the created process and causing the system to
write to the termination mailbox.) After finishing its own gross income calculations, INCOME.FOR
waits for the flag that indicates CALC_TAXES has completed and then figures net income.

CALC_TAXES.FOR passes the tax information to INCOME.FOR using the installed common block
created from INSTALLED.FOR.

Example 3.5. Asynchronous I/O Using a Mailbox

!INSTALLED.FOR

! Installed common block to be linked with INCOME.FOR and
! CALC_TAXES.FOR.
! Unless the shareable image created from this file is
! in SYS$SHARE, you must define a group logical name
! INSTALLED and equivalence it to the full file specification
! of the shareable image.
INTEGER*4 INCOME (200),
2 TAXES (200),
2 NET (200)
COMMON /CALC/ INCOME,
2 TAXES,
2 NET

END

!INCOME.FOR
! Status and system routines
 .
 .
 .

61

Chapter 3. Process Communication

INCLUDE '($SSDEF)'
INCLUDE '($IODEF)'
INTEGER STATUS,
2 LIB$GET_LUN,
2 LIB$GET_EF,
2 SYS$CLREF,
2 SYS$CREMBX,
2 SYS$CREPRC,
2 SYS$GETDVIW,
2 SYS$QIO,
2 SYS$WAITFR
! Set up for SYS$GETDVI
! Define itmlst structure
STRUCTURE /ITMLST/
 UNION
 MAP
 INTEGER*2 BUFLEN
 INTEGER*2 CODE
 INTEGER*4 BUFADR
 INTEGER*4 RETLENADR
 END MAP
 MAP
 INTEGER*4 END_LIST
 END MAP
 END UNION
END STRUCTURE
! Declare itmlst
RECORD /ITMLST/ DVILIST (2)
INTEGER*4 UNIT_BUF,
2 UNIT_LEN
EXTERNAL DVI$_UNIT
! Name and I/O channel for mailbox
CHARACTER*(*) MBX_NAME
PARAMETER (MBX_NAME = 'MAIL_BOX')
INTEGER*2 MBX_CHAN
INTEGER*4 MBX_LUN ! Logical unit number for I/O
CHARACTER*84 MBX_MESSAGE ! Mailbox message
INTEGER*4 READ_CODE,
2 LENGTH
! I/O status block
STRUCTURE /STATUS_BLOCK/
 INTEGER*2 IOSTAT,
2 MSG_LEN
 INTEGER*4 READER_PID
END STRUCTURE
RECORD /STATUS_BLOCK/ IOSTATUS
! Declare calculation variables in installed common
INTEGER*4 INCOME (200),
2 TAXES (200),
2 NET (200)
COMMON /CALC/ INCOME,
2 TAXES,
2 NET
! Flag to indicate taxes calculated
INTEGER*4 TAX_DONE
! Get and clear an event flag
STATUS = LIB$GET_EF (TAX_DONE)
IF (.NOT. STATUS) CALL LIB$SIGNAL(%VAL(STATUS))

62

Chapter 3. Process Communication

STATUS = SYS$CLREF (%VAL(TAX_DONE))
IF (.NOT. STATUS) CALL LIB$SIGNAL(%VAL(STATUS))
! Create the mailbox
STATUS = SYS$CREMBX (,
2 MBX_CHAN,
2 ,,,,
2 MBX_NAME)
IF (.NOT. STATUS) CALL LIB$SIGNAL(%VAL(STATUS))
! Get unit number of the mailbox
DVILIST(1).BUFLEN = 4
DVILIST(1).CODE = %LOC(DVI$_UNIT)
DVILIST(1).BUFADR = %LOC(UNIT_BUF)
DVILIST(1).RETLENADR = %LOC(UNIT_LEN)
DVILIST(2).END_LIST = 0
STATUS = SYS$GETDVIW (,
2 %VAL(MBX_CHAN), ! Channel
2 MBX_NAME, ! Device
2 DVILIST, ! Item list
2 ,,,)
IF (.NOT. STATUS) CALL LIB$SIGNAL(%VAL(STATUS))
! Create subprocess to calculate taxes
STATUS = SYS$CREPRC (,
2 'CALC_TAXES', ! Image
2 ,,,,,
2 'CALC_TAXES', ! Process name
2 %VAL(4), ! Priority
2 ,
2 %VAL(UNIT_BUF),)
IF (.NOT. STATUS) CALL LIB$SIGNAL(%VAL(STATUS))
! Asynchronous read to termination mailbox
! sets flag when tax calculations complete
READ_CODE = IO$_READVBLK
LENGTH = 84
STATUS = SYS$QIO (%VAL(TAX_DONE), ! Indicates read complete
2 %VAL(MBX_CHAN), ! Channel
2 %VAL(READ_CODE), ! Function code
2 IOSTATUS,,, ! Status block
2 %REF(MBX_MESSAGE),! P1
2 %VAL(LENGTH),,,,) ! P2
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))
! Calculate incomes
 .
 .
 .
! Wait until taxes are calculated
STATUS = SYS$WAITFR (%VAL(TAX_DONE))
IF (.NOT. STATUS) CALL LIB$SIGNAL(%VAL(STATUS))
! Check mailbox I/O
IF (.NOT. IOSTATUS.IOSTAT)
2 CALL LIB$SIGNAL (%VAL(IOSTATUS.IOSTAT))

! Calculate net income after taxes
 .
 .
 .
END

CALC_TAXES.FOR

63

Chapter 3. Process Communication

! Declare calculation variables in installed common
INTEGER*4 INCOME (200),
2 TAXES (200),
2 NET (200)
COMMON /CALC/ INCOME,
2 TAXES,
2 NET

! Calculate taxes
 .
 .
 .
END

3.3. Intracluster Communication
Intracluster communication (ICC), available through ICC system services, forms an application
program interface (API) for process-to-process communications. For large data transfers, intracluster
communication is the highest performance OpenVMS application communication mechanism, better
than standard network transports and mailboxes.

Intracluster communication enables application program developers to create distributed applications
with connections between different processes on a single system or between processes on different
systems within a single OpenVMS Cluster system. Intracluster communication does not require a
network product. It uses memory or System Communication Services (SCS).

The intracluster system services used to implement intracluster communication do the following:

• Allow the creation of both client and server processes

• Maintain a simple registry of servers and services

• Manage security of the server process namespace and access to server processes

• Establish connections between these processes and transmit data between these processes

• Provide 64-bit buffer and address support

Intracluster system services provide the following benefits when implementing ICC:

• An easy-to-use conventional system service interface for interprocess communications within a
cluster

• An interface usable for communications between processes within a single, nonclustered node

• An interface callable from all modes and from execlets as well as from images

• An easy-to-use interface giving access to high-speed interconnects such as Memory Channel

• An interface independent of the installation of any networking product

• An interface usable for nonprivileged clients and authorized (but not necessarily privileged) servers

The intracluster communication system services are as follows:

• Open Association: SYS$ICC_OPEN_ASSOC

64

Chapter 3. Process Communication

• Close Association: SYS$ICC_CLOSE_ASSOC

• Connect: SYS$ICC_CONNECT and SYS$ICC_CONNECTTW

• Accept: SYS$ICC_ACCEPT

• Reject: SYS$ICC_REJECT

• Disconnect: SYS$ICC_DISCONNECT and SYS$ICC_DISCONNECTW

• Transmit Data: SYS$ICC_TRANSMIT and SYS$ICC_TRANSMITW

• Receive Data: SYS$ICC_RECEIVE and SYS$ICC_RECEIVEW

• Transceive Data: SYS$ICC_TRANSCEIVE and SYS$ICC_TRANSCEIVEW

• Reply: SYS$ICC_REPLY and SYS$ICC_REPLYW

See the VSI OpenVMS System Services Reference Manual: GETUTC-Z for additional information about
the ICC system services.

3.3.1. Programming with Intracluster Communications
The following sections provide information on how to program with intracluster communications (ICC)
using ICC system services.

3.3.1.1. ICC Concepts
The following terms and their definitions are central to creating and using intracluster communication.

An ASSOCIATION is a named link between an application and ICC. The association name, combined
with the node name of the system on which the application is running, identifies this application to other
applications that want to communicate within a node or cluster.

An ASSOCIATION NAME is a string that identifies an ASSOCIATION. Association Names are 1
to 31 characters in length and must be unique within a node. Association Names are case-sensitive.
Associations are created by calling the SYS$ICC_OPEN_ASSOC service (or by the first call to
SYS$ICC_CONNECT if OPEN was not previously called) and are identified by an Association Handle.

An ASSOCIATION HANDLE is an opaque identifier that represents an association to ICC. Association
Handles are passed as unsigned longwords.

A NODE is either a standalone system or a member of an OpenVMS Cluster. It is identified by a one-to-
six-character case-blind name that matches the SYSGEN parameter SCSNODE.

A CONNECTION is a link between two associations created by calling the SYS$ICC_CONNECT or
SYS$ICC_ACCEPT service. An association may have multiple simultaneous connections at any given
time. A connection is identified by a Connection Handle. A given application may choose to either only
initiate connections, or initiate and accept connections as well. Connections support both synchronous
and asynchronous communications.

A CONNECTION HANDLE is an opaque identifier that represents a connection to ICC. Connection
Handles are passed as unsigned longwords.

In ICC terminology, a SERVER is an application that has declared to ICC that it is willing to accept
connections. A server must call SYS$ICC_OPEN_ASSOC and supply the address of a connection

65

Chapter 3. Process Communication

routine. Upon receipt of a connection request AST, a server completes its side of the connection by
calling the SYS$ICC_ACCEPT service. It may also choose not to accept the connection request by
calling SYS$ICC_REJECT.

A CLIENT, in the ICC model, is an application that calls SYS$ICC_CONNECT to request a connection
to a server. Note that a server may also be a client. A client need not call SYS$ICC_OPEN_ASSOC
(although there are certain benefits to doing so) but may instead call SYS$ICC_CONNECT using the
supplied constant Default Association Handle. An association opened in this manner is called the Default
Association. Only one default association is permitted per process; however, any number of connections
may be established even when there is only one association.

The ICC SIMPLE CLUSTERWIDE REGISTRY provides a method for servers to register their node
and association names under a single logical name, thus eliminating the need for clients to determine
on which node the server process is running. Multiple servers can register under the same logical name,
and ICC will randomly select one from the list. The selection algorithm leads to load sharing, but not
necessarily to load balancing.

3.3.1.2. Design Considerations
This section contains information about ICC design considerations.

3.3.1.2.1. Naming

An ICC server may have two visible names – the association name and, if the ICC registry is used, a
registry name. The registry name may be the same as the association name.

If, however, you wish to run multiple copies of the server on a single node, the registry name should be
the more general name, while the association name should reference a particular instance of the server.

3.3.1.2.2. Message Ordering

ICC guarantees that messages will be delivered in the order in which they were transmitted. There is no
provision for out-of-order delivery.

3.3.1.2.3. Flow Control

ICC implements flow control on a per-association basis. You can change this value by specifying a value
for the MAXFLOWBUFCNT parameter to the SYS$ICC_OPEN_ASSOC service.

In addition to flow control, ICC uses the value of MAXFLOWBUFCNT to determine preallocation of
certain resources cached by the services for performance reasons. Increasing this value results in a larger
charge against process quotas. The default value of MAXFLOWBUFCNT is 5.

Because all ICC connections within the association are subject to flow control, failure to receive data in a
timely manner will eventually cause all connections in the association to stall.

3.3.1.2.4. Transfer Sizes and Receiving Data

ICC supports two models for receiving data. In the simple receive model, a SYS$ICC_RECEIVE call
either completes immediately if data is present, or else the receive buffer is queued up to be filled when
data arrives from the sender. SYS$ICC_RECEIVEW does not return to the caller until either data is
present, or the connection has disconnected.

The major disadvantage to this method is that the buffer you supply to SYS$ICC_RECEIVE must be
large enough to receive the largest message the sender might transmit. Receipt of a message larger than

66

Chapter 3. Process Communication

the queued buffer causes ICC to disconnect the link to preserve order. There is no provision within ICC
to break a single message over multiple receive calls.

The second model is data event driven. In this method, the application provides
SYS$ICC_OPEN_ASSOC (parameter recv_rtn) the address of a routine to be called whenever a
connection established over this particular association is the target of a TRANSMIT. The data routine is
called at AST level in the original mode of the caller and supplied with the size of the incoming transfer,
the connection handle for this transfer, and a user-supplied context value. Once notified of incoming
data, the application must then allocate a sufficiently large buffer and issue a SYS$ICC_RECEIVE call
to obtain the data. The maximum transfer size using this method is 1 Mb.

The SYS$ICC_RECEIVE call does not have to be made from the data routine; however, a receive
request cannot be made before receipt of a data event. Therefore, receive operations are never queued
within ICC when you use a data event.

Because there is a single data routine per association, all connections on the association share the same
data routine. To have some connections use both methods, at least two associations must be opened.

3.3.1.2.5. Transfer Sizes and Transceive

SYS$ICC_TRANSCEIVE is a single service that sends a message and completes when the other side
responds with a call to SYS$ICC_REPLY. The maximum size of the return message is fixed by the size
of the buffer the caller provides to the transceive service at the time the call is made. The maximum
transmission size for both SYS$ICC_TRANSCEIVE and SYS$ICC_REPLY is 1 Mb. The minimum
length of the reply transmission is zero bytes.

3.3.1.2.6. Disconnection

In a properly coded communications protocol, responsibility for disconnecting the connection should be
left to the side of the protocol that last received data. This rule assures that there is no data in transit in
which the state may be uncertain at the time the disconnect event occurs.

An ICC connection may be disconnected under any of the following circumstances:

• One side of the connection calls either SYS$ICC_DISCONNECT or SYS$ICC_CLOSE_ASSOC.

• The client or server process in the connection is deleted.

• The node on which one side of the connection is running is either shut down, crashes, or loses
communication with the rest of the cluster.

• An unrecoverable error within the ICC services occurs, and the only possible recovery by the service
is to disconnect the link.

• A pending receive buffer is too small to receive all the incoming data. To preserve message order,
ICC will disconnect the link.

No matter what the cause of the disconnection, the application should be prepared to deal with
disconnection other than that as an expected part of the application communication protocol.

3.3.1.2.7. Error Recovery

Whenever possible, ICC services attempt to return an appropriate status value to the caller, either as
the routine status value or in the status fields of the IOSB or IOS_ICC structure. Sometimes the only

67

Chapter 3. Process Communication

recovery method available to ICC is to disconnect the connection. ICC disconnects only when it lacks
sufficient context to return status to the calling application.

3.3.1.3. General Programming Considerations
The ICC public structures and constants are declared in the module $ICCDEF (MACRO), within
STARLET.REQ for BLISS and ICCDEF.H in SYS$LIBRARY:SYS$STARLET_C.TLB for C.
STARLET.H provides full system service prototypes for C.

3.3.1.4. Servers
To open an association to ICC, call $ICC_OPEN_ASSOC, which provides the following parameters:

Parameter Description

assoc_handle Address to receive the association handle. (longword) Required.
assoc_name Address of a string descriptor pointing to the desired association name. If you

omit this argument, the ICC default association will be opened. Association
names are case sensitive. This is also the name used in the ICC security
object for this association.

logical_name
logical_table

Address of string descriptors describing the logical name and logical table
name for use by the ICC simple registry. The logical name table must exist
at the time of the call, and the caller must have write access to the table.
Unless your application requires a logical name table for exclusive use of the
application, use of the default ICC$REGISTRY_TABLE is recommended.

The logical name is case sensitive. Table names are always converted to
uppercase. The logical name supplied here is the name by which the client
using the registry will know the server. If either of these arguments is
supplied, they must both be supplied.

conn_event_rtn Address of a routine to be called whenever a client requests a connection
to this server. A server may not omit this parameter. See the sections on
connection and disconnection routines for more details about what actions a
connection routine must take.

disc_event_rtn Optional address of a routine to be called when a disconnect event occurs.
This may be the same routine as the connection routine. See the section on
connection and disconnection routines for more details about what actions a
disconnection routine may take.

recv_rtn Address of routine to be called whenever a connection receives data. Note
that all connections on this association use the same routine. Please see the
discussion on transfer sizes in Section 3.3.1.2.4 for information on how
having or not a having a data routine affects maximum receive size. Optional.

maxflowbufcnt Pass by value the maximum number of inbound messages per connection that
ICC will allow before initiating flow control on the connection. The default
value for this parameter is 5. Optional.

prot The default protection for this association. Refer to VSI OpenVMS Guide to
System Security for information on the security attributes of ICC associations.

This parameter is effective only if no Permanent Security Object has been
created for this association.

If prot is zero (0) or not specified, all users may connect to this association.

68

Chapter 3. Process Communication

Parameter Description
If prot is one (1), only members of the same UIC group, or users with
SYSPRV, may connect.

If prot is two (2), only the owner or users with SYSPRV may connect.

Object protection specified by a Permanent Security Object overrides this
parameter. Additionally, if no Permanent Security Object exists, the value
specified here may be overridden by the SET SECURITY command issued
for the Temporary Security Object while the association is open.

3.3.1.4.1. Connection Events

Once the association is opened, connection requests are delivered as asynchronous calls to the server's
connection routine.

The connection routine (and disconnection routine, if supplied) are each called with seven arguments
as described in the $ICC_OPEN_ASSOC system service, located in the VSI OpenVMS System Services
Reference Manual: GETUTC-Z.

A single connection or disconnection routine may distinguish between the events based on
the first argument (event_type), which will either be the code ICC$C_EV_CONNECT or
ICC$C_EV_DISCONNECT.

A connection routine must either call SYS$ICC_ACCEPT to complete the connection or
SYS$ICC_REJECT to reject the connection. The EPID and user name of the requesting process are
supplied by ICC. Any additional information required by the application for verification either must be
supplied by the client via the connection data parameter or must be obtainable by the server itself (for
example, via SYS$GETJPI).

Failure to ACCEPT or REJECT the connection will stall all additional attempts to connect to this server.

3.3.1.4.2. Disconnection Events

A disconnection event signals that the partner application of the connection has requested a
disconnect, the partner process has been deleted, or that the remote node has left the cluster. Upon
receiving a disconnect event, the server should call SYS$ICC_DISCONNECT to clean up the
server side of the connection. However, when the partner that received the disconnect event calls
SYS$ICC_DISCONNECT, the connection has already been terminated and the link is already gone. The
return status from this call to SYS$ICC_DISCONNECT should be SS$_NORMAL, but the completion
status returned in the IOSB is SS$_LINKDISCON.

Failure to call DISCONNECT may leave resources allocated to the connection that are not released
until the image terminates. In the case of inner mode associations, resources will be released at process
termination.

3.3.1.5. Clients
A simple client need not call SYS$ICC_OPEN_ASSOC although there may be some benefits for even
the simplest clients. For a client, the major benefit of calling OPEN is declaring a data receive routine.

In cases where a client may wish to connect to multiple servers, calling OPEN_ASSOC multiple times
can help isolate the routines related to data receipt and disconnection.

Call SYS$ICC_CONNECT[W] with the following arguments:

69

Chapter 3. Process Communication

Argument Description

IOS_ICC Address of an IOS_ICC structure (defined in ICCDEF).
astadr
astprm

Optional AST address and parameter.

assoc_handle Either the value returned from the OPEN_ASSOC call or the constant
ICC$DEFAULT_ASSOC if OPEN_ASSOC was not called.

conn_handle Address of a longword to receive the connection handle for this connection.
remote_assoc A string descriptor pointing to either the association name of the server or the

registry name of the server if the server is using the ICC simple registry. Either use
is case sensitive.

remote_node If omitted, then the assoc_name argument will be treated as a name to look up in
the ICC simple registry. A zero length or blank string represents the local node.
Any other string will be converted to uppercase and must match the name of a
node in the cluster.

user_context A unique context value for this connection. This value will be passed to data event
and disconnection routines.

conn_buf
conn_buf_len

Address and length of any connection data. This could include additional
authentication or protocol setup data required by the application.

return_buf
return_buf_len
retlen_addr

Address and length of a buffer to receive any data (accept or reject data) returned
from the server. The buffer must be large enough to receive the maximum amount
of data the server might return. The actual number of bytes will be written to
retlen_addr.

flags The only valid flag is ICC$M_SYNCH_MODE. If you select synch mode,
the data transmission routines (TRANSMIT, REPLY, and RECEIVE –
TRANSCEIVE can never complete synchronously) may return the alternate
success status SS$_SYNCH and not call the AST completion routine. If you do not
specify synch mode, the AST routine, if provided, will always be called.

When the CONNECT call completes, the connection is established and useable only if success status
was returned as both the return value of the service and in the status fields (ios_icc$w_status and
ios_icc$l_remstat) of the IOS_ICC.

70

Chapter 4. Process Control
This chapter describes how to use operating system features to control a process or kernel thread.

4.1. Using Process Control for Programming
Tasks
Process control features in the operating system allow you to employ the following techniques to design
your application:

• Modularize application programs so that each process or kernel thread of the application executes a
single task

• Perform parallel processing, in which one process or kernel thread executes one part of a program
while another process or kernel thread executes another part

• Implement application program control, in which one process manages and coordinates the activities
of several other processes

• Schedule program execution

• Dedicate a process to execute DCL commands

• Isolate code for one or more of the following reasons:

• To debug logic errors

• To execute privileged code

• To execute sensitive code

Among the services and routines the operating system provides to help you monitor and control the
processes or kernel threads involved in your application are those that perform the following functions:

• Obtaining process information

• Obtaining kernel thread information

• Setting process privileges

• Setting process name

• Setting process scheduling

• Hibernating or suspending a process or kernel thread

• Deleting a process

• Synchronizing process execution

You can use system routines and DCL commands to accomplish these tasks. Table 4.1 summarizes
which routines and commands to use. You can use the DCL commands in a command procedure that is
executed as soon as the subprocess (or detached process) is created.

71

Chapter 4. Process Control

For process synchronization techniques other than specifying a time for program execution, refer to
Chapter 6, Chapter 7, and Chapter 8.

Table 4.1. Routines and Commands for Controlling Processes and Kernel Threads

Routine DCL Command Task

LIB$GETJPI
SYS$GETJPI
SYS$GETJPIW

SHOW PROCESS Return process or kernel thread information.
SYS$GETJPI(W) can request process and thread
information from a specific PID or PRCNAM. If no
specific thread is identified, then the data represents the
initial thread.

SYS$SETPRV SET PROCESS Set process privileges.
SYS$SETPRI SET PROCESS Set process or kernel thread priority. This service affects

the base and current priority of a specified kernel thread
and not the entire process.

SYS$SETSWM SET PROCESS Control swapping of process.
SYS$HIBER
SYS$SUSPND
SYS$RESUME

SET PROCESS Hibernate, suspend, and resume a process or kernel
threads. These services hibernate, suspend, or resume all
kernel threads associated with the specified process.

SYS$SETPRN SET PROCESS Set process name.
SYS$FORCEX
SYS$EXIT

EXIT and STOP Initiate process and image rundown. All associated
kernel threads of a specified process are run down and
deleted.

SYS$DELPRC EXIT and STOP Delete process.
SYS$CANTIM CANCEL Cancel timer for process or kernel threads. This service

finds and cancels all timers for all threads associated
with the specified process.

SYS$ADJSTK SET PROCESS Adjust or initialize a stack pointer. Stack adjustments are
performed for the kernel thread requesting the service.

SYS$PROCESS_SCAN SHOW PROCESS Scan for a process or kernel thread on the local system,
or across the nodes in an OpenVMS Cluster system.

SYS$SETSTK None available Allow the current process or kernel thread to change
the size of its stacks. This service adjusts the size of the
stacks of the kernel thread that invoked the service.

By default, the routines and commands reference the current process or kernel thread. To reference
another process, you must specify either the process identification (PID) number or the process name
when you call the routine or a command qualifier when you enter commands. You must have the
GROUP privilege to reference a process with the same group number and a different member number in
its UIC, and WORLD privilege to reference a process with a different group number in its UIC.

The information presented in this section covers using the routines. If you want to use the DCL
commands in a command procedure, refer to the VSI OpenVMS DCL Dictionary.

4.1.1. Determining Privileges for Process Creation and
Control
There are three levels of process control privilege:

72

Chapter 4. Process Control

• Processes with the same UIC can always issue process control services for one another.

• You need the GROUP privilege to issue process control services for other processes executing in the
same group.

• You need the WORLD privilege to issue process control services for any process in the system.

You need additional privileges to perform some specific functions; for example, raising the base priority
of a process requires ALTPRI privilege.

4.1.2. Determining Process Identification
There are two types of process identification:

• Process identification (PID) number

The system assigns this unique 32-bit number to a process when it is created. If you provide
the pidadr argument to the SYS$CREPRC system service, the system returns the process
identification number at the location specified. You can then use the process identification number in
subsequent process control services.

• Process name

There are two types of process names:

• Process name

A process name is a 1- to 15-character name string. Each process name must be unique within
its group (processes in different groups can have the same name). You can assign a name to a
process by specifying the prcnam argument when you create it. You can then use this name
to refer to the process in other system service calls. Note that you cannot use a process name to
specify a process outside the caller's group; you must use a process identification (PID) number.

• Full process name

The full process name is unique for each process in the cluster. Full process name strings can be
up to 23 characters long and are configured in the following way:

1–6 characters for the node name
2 characters for the colons (::) that follow the node name
1–15 characters for the local process name

For example, you could call the SYS$CREPRC system service, as follows:

unsigned int orionid=0, status;
$DESCRIPTOR(orion,"ORION");
 .
 .
 .
status = SYS$CREPRC(&orionid, /* pidadr (process id returned) */
 &orion, /* prcnam - process name */
 ...);

The service returns the process identification in the longword at ORIONID. You can now use either the
process name (ORION) or the PID (ORIONID) to refer to this process in other system service calls.

73

Chapter 4. Process Control

A process can set or change its own name with the Set Process Name ($SETPRN) system service. For
example, a process can set its name to CYGNUS, as follows:

/* Descriptor for process name */
 $DESCRIPTOR(cygnus,"CYGNUS");

 status = SYS$SETPRN(&cygnus); /* prcnam - process name */

Most of the process control services accept the prcnam or the pidadr argument or both. However,
you should identify a process by its process identification number for the following reasons:

• The service executes faster because it does not have to search a table of process names.

• For a process not in your group, you must use the process identification number (see Section 4.1.3).

If you specify the PID address, the service uses the PID address. If you specify the process name without
a PID address, the service uses the process name. If you specify both – the process name and PID
address – it uses the PID address unless the contents of the PID is 0. In that case, the service uses the
process name. If you specify a PID address of 0 without a process name, then the service is performed
for the calling process.

If you specify neither the process name argument nor the process identification number argument, the
service is performed for the calling process. If the PID address is specified, the service returns the PID
of the target process in it. Table 4.2 summarizes the possible combinations of these arguments and
explains how the services interpret them.

Table 4.2. Process Identification

Process Name
Specified?

PID Address
Specified?

Contents of PID Resultant Action by Services

No No – The process identification of the calling process
is used, but is not returned.

No Yes 0 The process identification of the calling process
is used and returned.

No Yes PID The process identification is used and returned.
Yes No – The process name is used. The process

identification is not returned.
Yes Yes 0 The process name is used and the process

identification is returned.
Yes Yes PID The process identification is used and returned;

the process name is ignored.

4.1.3. Qualifying Process Naming Within Groups
Process names are always qualified by their group number. The system maintains a table of all process
names and the UIC associated with each. When you use the prcnam argument in a process control
service, the table is searched for an entry that contains the specified process name and the group number
of the calling process.

To use process control services on processes within its group, a calling process must have the GROUP
user privilege; this privilege is not required when you specify a process with the same UIC as the caller.

74

Chapter 4. Process Control

The search for a process name fails if the specified process name does not have the same group number
as the caller. The search fails even if the calling process has the WORLD user privilege. To execute a
process control service for a process that is not in the caller's group, the requesting process must use a
process identification and must have the WORLD user privilege.

4.2. Obtaining Process Information
The operating system's process information procedures enable you to gather information about processes
and kernel threads. You can obtain information about either one process or a group of processes on
either the local system or on remote nodes in an OpenVMS Cluster system. You can also obtain process
lock information. DCL commands such as SHOW SYSTEM and SHOW PROCESS use the process
information procedures to display information about processes. You can also use the process information
procedures within your programs.

The following are process information procedures:

• Get Job/Process Information (SYS$GETJPI(W))

• Get Job/Process Information (LIB$GETJPI)

• Process Scan (SYS$PROCESS_SCAN)

• Get Lock Information (SYS$GETLKI)

The SYS$GETJPI(W) and SYS$PROCESS_SCAN system services can also be used to get kernel
threads information. SYS$GETJPI(W) can request threads information from a particular process ID
or process name. SYS$PROCESS_SCAN can request information about all threads in a process, or all
threads for each multithreaded process on the system.

For more information about SYS$GETJPI, SYS$PROCESS_SCAN, and SYS$GETLKI, see the VSI
OpenVMS System Services Reference Manual.

The differences among these procedures are as follows:

• SYS$GETJPI operates asynchronously.

• SYS$GETJPIW and LIB$GETJPI operate synchronously.

• SYS$GETJPI and SYS$GETJPIW can obtain one or more pieces of information about a process or
kernel thread in a single call.

• LIB$GETJPI can obtain only one piece of information about a process or kernel thread in a single
call.

• SYS$GETJPI and SYS$GETJPIW can specify an AST to execute at the completion of the routine.

• SYS$GETJPI and SYS$GETJPIW can use an I/O status block (IOSB) to test for completion of the
routine.

• LIB$GETJPI can return some items either as strings or as numbers. It is often the easiest to call from
a high-level language because the caller is not required to construct an item list.

• SYS$GETLKI returns information about the lock database.

75

Chapter 4. Process Control

4.2.1. Using the PID to Obtain Information
The process information procedures return information about processes by using the process
identification (PID) or the process name. The PID is a 32-bit number that is unique for each process in
the cluster. Specify the PID by using the pidadr argument. You must specify all the significant digits
of a PID; you can omit leading zeros.

With kernel threads, the PID continues to identify a process, but it can also identify a kernel thread
within that process. In a multithreaded process each kernel thread has its own PID that is based on the
initial threads PID.

4.2.2. Using the Process Name to Obtain Information
To obtain information about a process using the process name, specify the prcnam argument. Although
a PID is unique for each process in the cluster, a process name is unique (within a UIC group) only
for each process on a node. To locate information about processes on the local node, specify a process
name string of 1 to 15 characters. To locate information about a process on a particular node, specify
the full process name, which can be up to 23 characters long. The full process name is configured in the
following way:

• 1 to 6 characters for the node name

• 2 characters for the colons (::) that follow the node name

• 1 to 15 characters for the local process name

Note that a local process name can look like a remote process name. Therefore, if you specify
ATHENS::SMITH, the system checks for a process named ATHENS::SMITH on the local node before
checking node ATHENS for a process named SMITH.

VSI OpenVMS Programming Concepts Manual, Volume II and the VSI OpenVMS System Services
Reference Manual describe these routines completely, listing all items of information that you can
request. LIB$GETJPI, SYS$GETJPI, and SYS$GETJPIW share the same item codes with the following
exception: LIB$K_ items can be accessed only by LIB$GETJPI.

In the following example, the string argument rather than the numeric argument is specified, causing
LIB$GETJPI to return the UIC of the current process as a string:

! Define request codes
INCLUDE '($JPIDEF)'

! Variables for LIB$GETJPI
CHARACTER*9 UIC
INTEGER LEN

STATUS = LIB$GETJPI (JPI$_UIC,
2 ,,,
2 UIC,
2 LEN)

To specify a list of items for SYS$GETJPI or SYS$GETJPI(W) (even if that list contains only one item),
use a record structure. Example 4.1 uses SYS$GETJPI(W) to request the process name and user name
associated with the process whose process identification number is in SUBPROCESS_PID.

76

Chapter 4. Process Control

Example 4.1. Obtaining Different Types of Process Information

 .
 .
 .
! PID of subprocess
INTEGER SUBPROCESS_PID

! Include the request codes
INCLUDE '($JPIDEF)'
! Define itmlst structure
STRUCTURE /ITMLST/
 UNION
 MAP
 INTEGER*2 BUFLEN
 INTEGER*2 CODE
 INTEGER*4 BUFADR
 INTEGER*4 RETLENADR
 END MAP
 MAP
 INTEGER*4 END_LIST
 END MAP
 END UNION
END STRUCTURE
! Declare GETJPI itmlst
RECORD /ITMLST/ JPI_LIST(3)
! Declare buffers for information
CHARACTER*15 PROCESS_NAME
CHARACTER*12 USER_NAME
INTEGER*4 PNAME_LEN,
2 UNAME_LEN
! Declare I/O status structure
STRUCTURE /IOSB/
 INTEGER*2 STATUS,
2 COUNT
 INTEGER*4 %FILL
END STRUCTURE
! Declare I/O status variable
RECORD /IOSB/ JPISTAT
! Declare status and routine
INTEGER*4 STATUS,
2 SYS$GETJPIW
 .
 . ! Define SUBPROCESS_PID
 .
! Set up itmlst
JPI_LIST(1).BUFLEN = 15
JPI_LIST(1).CODE = JPI$_PRCNAM
JPI_LIST(1).BUFADR = %LOC(PROCESS_NAME)
JPI_LIST(1).RETLENADR = %LOC(PNAME_LEN)
JPI_LIST(2).BUFLEN = 12
JPI_LIST(2).CODE = JPI$_USERNAME
JPI_LIST(2).BUFADR = %LOC(USER_NAME)
JPI_LIST(2).RETLENADR = %LOC(UNAME_LEN)
JPI_LIST(3).END_LIST = 0
! Request information and wait for it
STATUS = SYS$GETJPIW (,
2 SUBPROCESS_PID,

77

Chapter 4. Process Control

2 ,
2 JPI_LIST,
2 JPISTAT,
2 ,)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))
! Check final return status
IF (.NOT. JPISTAT.STATUS) THEN
 CALL LIB$SIGNAL (%VAL(JPISTAT.STATUS))
END IF
 .
 .
 .

4.2.3. Using SYS$GETJPI and LIB$GETJPI
SYS$GETJPI uses the PID or the process name to obtain information about one process and the -1
wildcard as the pidadr to obtain information about all processes on the local system. If a PID or process
name is not specified, SYS$GETJPI returns information about the calling process. SYS$GETJPI cannot
perform a selective search – it can search for only one process at a time in the cluster or for all processes
on the local system. If you want to perform a selective search for information or get information about
processes across the cluster, use SYS$GETJPI with SYS$PROCESS_SCAN.

4.2.3.1. Requesting Information About a Single Process
Example 4.2 is a Fortran program that displays the process name and the PID of the calling program.
If you want to get the same information about each process on the system, specify the initial process
identification argument as -1 when you invoke LIB$GETJPI or SYS$GETJPI(W). Call the GETJPI
routine (whichever you choose) repeatedly until it returns a status of SS$_NOMOREPROC, indicating
that all processes on the system have been examined.

Example 4.2. Using SYS$GETJPI to Obtain Calling Process Information

! No process name or PID is specified; $GETJPI returns data on the
! calling process.

 PROGRAM CALLING_PROCESS

 IMPLICIT NONE ! Implicit none

 INCLUDE '($jpidef) /nolist' ! Definitions for $GETJPI

 INCLUDE '($ssdef) /nolist' ! System status codes

 STRUCTURE /JPIITMLST/ ! Structure declaration for
 UNION ! $GETJPI item lists
 MAP
 INTEGER*2 BUFLEN,
 2 CODE
 INTEGER*4 BUFADR,
 2 RETLENADR
 END MAP
 MAP ! A longword of 0 terminates
 INTEGER*4 END_LIST ! an item list
 END MAP
 END UNION
 END STRUCTURE

78

Chapter 4. Process Control

 RECORD /JPIITMLST/ ! Declare the item list for
 2 JPILIST(3) ! $GETJPI

 INTEGER*4 SYS$GETJPIW ! System service entry points

 INTEGER*4 STATUS, ! Status variable
 2 PID ! PID from $GETJPI

 INTEGER*2 IOSB(4) ! I/O Status Block for $GETJPI

 CHARACTER*16
 2 PRCNAM ! Process name from $GETJPI
 INTEGER*2 PRCNAM_LEN ! Process name length
 ! Initialize $GETJPI item list

 JPILIST(1).BUFLEN = 4
 JPILIST(1).CODE = JPI$_PID
 JPILIST(1).BUFADR = %LOC(PID)
 JPILIST(1).RETLENADR = 0
 JPILIST(2).BUFLEN = LEN(PRCNAM)
 JPILIST(2).CODE = JPI$_PRCNAM
 JPILIST(2).BUFADR = %LOC(PRCNAM)
 JPILIST(2).RETLENADR = %LOC(PRCNAM_LEN)
 JPILIST(3).END_LIST = 0
 ! Call $GETJPI to get data for this process

 STATUS = SYS$GETJPIW (
 2 , ! No event flag
 2 , ! No PID
 2 , ! No process name
 2 JPILIST, ! Item list
 2 IOSB, ! Always use IOSB with $GETJPI!
 2 , ! No AST
 2) ! No AST arg
 ! Check the status in both STATUS and the IOSB, if
 ! STATUS is OK then copy IOSB(1) to STATUS

 IF (STATUS) STATUS = IOSB(1)

 ! If $GETJPI worked, display the process, if done then
 ! prepare to exit, otherwise signal an error

 IF (STATUS) THEN
 TYPE 1010, PID, PRCNAM(1:PRCNAM_LEN)
1010 FORMAT (' ',Z8.8,' ',A)
 ELSE
 CALL LIB$SIGNAL(%VAL(STATUS))
 END IF

 END

Example 4.3 creates the file PROCNAME.RPT that lists, using LIB$GETJPI, the process name of each
process on the system. If the process running this program does not have the privilege necessary to
access a particular process, the program writes the words NO PRIVILEGE in place of the process name.
If a process is suspended, LIB$GETJPI cannot access it and the program writes the word SUSPENDED
in place of the process name. Note that, in either of these cases, the program changes the error value in
STATUS to a success value so that the loop calling LIB$GETJPI continues to execute.

79

Chapter 4. Process Control

Example 4.3. Obtaining the Process Name

 .
 .
 .
! Status variable and error codes
INTEGER STATUS,
2 STATUS_OK,
2 LIB$GET_LUN,
2 LIB$GETJPI
INCLUDE '($SSDEF)'
PARAMETER (STATUS_OK = 1)

! Logical unit number and file name
INTEGER*4 LUN
CHARACTER*(*) FILE_NAME
PARAMETER (FILE_NAME = 'PROCNAME.RPT')
! Define item codes for LIB$GETJPI
INCLUDE '($JPIDEF)'

! Process name
CHARACTER*15 NAME
INTEGER LEN
! Process identification
INTEGER PID /-1/
 .
 .
 .
! Get logical unit number and open the file
STATUS = LIB$GET_LUN (LUN)
OPEN (UNIT = LUN,
2 FILE = 'PROCNAME.RPT',
2 STATUS = 'NEW')
! Get information and write it to file
DO WHILE (STATUS)
 STATUS = LIB$GETJPI(JPI$_PRCNAM,
2 PID,
2 ,,
2 NAME,
2 LEN)
 ! Extra space in WRITE commands is for
 ! FORTRAN carriage control
 IF (STATUS) THEN
 WRITE (UNIT = LUN,
2 FMT = '(2A)') ' ', NAME(1:LEN)
 STATUS = STATUS_OK
 ELSE IF (STATUS .EQ. SS$_NOPRIV) THEN
 WRITE (UNIT = LUN,
2 FMT = '(2A)') ' ', 'NO PRIVILEGE'
 STATUS = STATUS_OK
 ELSE IF (STATUS .EQ. SS$_SUSPENDED) THEN
 WRITE (UNIT = LUN,
2 FMT = '(2A)') ' ', 'SUSPENDED'
 STATUS = STATUS_OK
 END IF

END DO
! Close file

80

Chapter 4. Process Control

IF (STATUS .EQ. SS$_NOMOREPROC)
2 CLOSE (UNIT = LUN)
 .
 .
 .

Example 4.4 demonstrates how to use the process name to obtain information about a process.

Example 4.4. Using SYS$GETJPI and the Process Name to Obtain Information About a
Process

! To find information for a particular process by name,
! substitute this code, which includes a process name,
! to call $GETJPI ! in Example 4.2
! Call $GETJPI to get data for a named process

STATUS = SYS$GETJPIW (
2 , ! No event flag
2 , ! No PID
2 'SMITH_1', ! Process name
2 JPILIST, ! Item list
2 IOSB, ! Always use IOSB with $GETJPI!
2 , ! No AST
2) ! No AST arg

4.2.3.2. Requesting Information About All Processes on the Local
System
You can use SYS$GETJPI to perform a wildcard search on all processes on the local system. When the
initial pidadr argument is specified as -1, SYS$GETJPI returns requested information for each process
that the program has privilege to access. The requested information is returned for one process per call to
SYS$GETJPI.

To perform a wildcard search, call SYS$GETJPI in a loop, testing the return status.

When performing wildcard searches, SYS$GETJPI returns an error status for processes that are
inaccessible. When a program that uses a -1 wildcard checks the status value returned by SYS$GETJPI,
it should test for the following status codes:

Status Explanation

SS$_NOMOREPROC All processes have been returned.
SS$_NOPRIV The caller lacks sufficient privilege to examine a process.
SS$_SUSPENDED The target process is being deleted or is suspended and cannot return the

information.

Example 4.5 is a C program that demonstrates how to use the SYS$GETJPI -1 wildcard to search for all
processes on the local system.

Example 4.5. Using SYS$GETJPI to Request Information About All Processes on the
Local System

#include <stdio.h>
#include <jpidef.h>
#include <stdlib.h>
#include <ssdef.h>

81

Chapter 4. Process Control

/* Item descriptor */

struct {
 unsigned short buflen, item_code;
 void *bufaddr;
 void *retlenaddr;
 unsigned int terminator;
}itm_lst;

/* I/O Status Block */

struct {
 unsigned short iostat;
 unsigned short iolen;
 unsigned int device_info;
}iosb;

main() {

 unsigned short len;
 unsigned int efn=1,pidadr = -1,status, usersize;
 char username[12];

/* Initialize the item list */

 itm_lst.buflen = 12;
 itm_lst.item_code = JPI$_USERNAME;
 itm_lst.bufaddr = username;
 itm_lst.retlenaddr = &usersize;
 itm_lst.terminator = 0;

 do{

 status = SYS$GETJPIW(0, /* no event flag */
 &pidadr, /* process id */
 0, /* process name */
 &itm_lst, /* item list */
 &iosb, /* I/O status block */
 0, /* astadr (AST routine) */
 0); /* astprm (AST parameter) */
 switch(status)
 {
case SS$_NOPRIV:
 printf("\nError: No privileges for attempted operation");
 break;
case SS$_SUSPENDED:
 printf("\nError: Process is suspended");
 break;
case SS$_NORMAL:
 if (iosb.iostat == SS$_NORMAL)
 printf("\nUsername: %s",username);
 else
 printf("\nIOSB condition value %d
 returned",iosb.iostat);
 }

 }while(status != SS$_NOMOREPROC);

82

Chapter 4. Process Control

}

4.2.4. Using SYS$GETJPI with SYS$PROCESS_SCAN
Using the SYS$PROCESS_SCAN system service greatly enhances the power of SYS$GETJPI.
With this combination, you can search for selected groups of processes or kernel threads on the local
system as well as for processes or kernel threads on remote nodes or across the cluster. When you use
SYS$GETJPI alone, you specify the pidadr or the prcnam argument to locate information about one
process. When you use SYS$GETJPI with SYS$PROCESS_SCAN, the pidctx argument generated
by SYS$PROCESS_SCAN is used as the pidadr argument to SYS$GETJPI. This context allows
SYS$GETJPI to use the selection criteria that are set up in the call to SYS$PROCESS_SCAN.

When using SYS$GETJPI with a PRCNAM specified, SYS$GETJPI returns data for only the initial
thread. This parallels the behavior of the DCL commands SHOW SYSTEM, SHOW PROCESS, and
MONITOR PROCESS. If a valid PIDADR is specified, then the data returned describes only that
specific kernel thread. If a PIDADR of zero is specified, then the data returned describes the calling
kernel thread.

SYS$GETJPI has the flag, JPI$_THREAD, as part of the JPI$_GETJPI_CONTROL_FLAGS item code.
The JPI$_THREAD flag designates that the service call is requesting data for all of the kernel threads
in a multithreaded process. If the call is made with JPI$_THREAD set, then SYS$GETJPI begins with
the initial thread, and SYS$GETJPI returns SS$_NORMAL. Subsequent calls to SYS$GETJPI with
JPI$_THREAD specified returns data for the next thread until there are no more threads, at which time
the service returns SS$_NOMORETHREAD.

If you specify a wildcard PIDADR -1 along with JPI$_THREAD, you cause SYS$GETJPI to return
information for all threads for all processes on the system on subsequent calls. SYS$GETJPI returns the
status SS$_NORMAL until there are no more processes, at which time it returns SS$_NOMOREPROC.
If you specify a wildcard search, you must request either the JPI$_PROC_INDEX or the
JPI$_INITIAL_THREAD_PID item code to distinguish the transition from the last thread of a
multithreaded process to the next process. The PROC_INDEX and the INITIAL_THREAD_PID are
different for each process on the system.

Table 4.3 shows four item codes of SYS$GETJPI that provide kernel threads information.

Table 4.3. SYS$GETJPI Kernel Threads Item Codes

Item Code Meaning

JPI$_INITIAL_THREAD_PID Returns the PID of the initial thread for the target process
JPI$_KT_COUNT Returns the current count of kernel threads for the target process
JPI$_MULTITHREAD Returns the maximum kernel thread count allowed for the target

process
JPI$_THREAD_INDEX Returns the kernel thread index for the target thread or process

This wildcard search is initiated by invoking SYS$GETJPI with a -1 specified for the PID, and is
available only on the local node. With kernel threads, a search for all threads in a single process is
available, both on the local node and on another node on the cluster.

In a dual architecture or mixed-version cluster, one or more nodes in the cluster may not support
kernel threads. To indicate this condition, a threads capability bit (CSB$M_CAP_THREADS) exists
in the CSB$L_CAPABILITY cell in the cluster status block. If this bit is set for a node, it indicates
that the node supports kernel threads. This information is passed around as part of the normal cluster
management activity when a node is added to a cluster. If a SYS$GETJPI request that requires threads

83

Chapter 4. Process Control

support needs to be passed to another node in the cluster, a check is made on whether the node supports
kernel threads before the request is sent to that node. If the node supports kernel threads, the request is
sent. If the node does not support kernel threads, the status SS$_INCOMPAT is returned to the caller,
and the request is not sent to the other node.

You can use SYS$PROCESS_SCAN only with SYS$GETJPI; you cannot use it alone. The process
context generated by SYS$PROCESS_SCAN is used like the -1 wildcard except that it is initialized
by calling the SYS$PROCESS_SCAN service instead of by a simple assignment statement. However,
the SYS$PROCESS_SCAN context is more powerful and more flexible than the -1 wildcard.
SYS$PROCESS_SCAN uses an item list to specify selection criteria to be used in a search for processes
and produces a context longword that describes a selective search for SYS$GETJPI.

Using SYS$GETJPI with SYS$PROCESS_SCAN to perform a selective search is a more efficient way
to locate information because only information about the processes you have selected is returned. For
example, you can specify a search for processes owned by one user name, and SYS$GETJPI returns
only the processes that match the specified user name. You can specify a search for all batch processes,
and SYS$GETJPI returns only information about processes running as batch jobs. You can specify a
search for all batch processes owned by one user name and SYS$GETJPI returns only information about
processes owned by that user name that are running as batch jobs.

By default, SYS$PROCESS_SCAN sets up a context for only the initial thread of a
multithreaded process. However, if the value PSCAN$_THREAD is specified for the item code
PSCAN$_PSCAN_CONTOL_FLAGS, then threads are included in the scan. The PSCAN$_THREAD
flag takes precedence over the JPI$_THREAD flag in the SYS$GETJPI call. With PSCAN$_THREAD
specified, threads are included in the entire scan. With PSCAN$_THREAD not specified, threads are
included in the scan for a specific SYS$GETJPI call only if JPI$_THREAD is specified.

Table 4.4 shows two item codes of SYS$PROCESS_SCAN that provide kernel thread information.

Table 4.4. SYS$PROCESS_SCAN Kernel Threads Item Codes

Item Code Meaning

PSCAN$_KT_COUNT Uses the current count of kernel threads for the process as a
selection criteria. The valid item-specific flags for this item code
are EQL, GEQ, GTR, LEQ, LSS, NEQ, and OR.

PSCAN$_MULTITHREAD Uses the maximum count of kernel threads for the process as a
selection criteria. The valid item-specific flags for this item code
are EQL, GEQ, GTR, LEQ, LSS, NEQ, and OR.

4.2.4.1. Using SYS$PROCESS_SCAN Item List and Item-Specific
Flags
SYS$PROCESS_SCAN uses an item list to specify the selection criteria for the SYS$GETJPI search.

Each entry in the SYS$PROCESS_SCAN item list contains the following:

• The attribute of the process to be examined

• The value of the attribute or a pointer to the value

• Item-specific flags to control how to interpret the value

Item-specific flags enable you to control selection information. For example, you can use flags to select
only those processes that have attribute values that correspond to the value in the item list, as shown in
Table 4.5.

84

Chapter 4. Process Control

Table 4.5. Item-Specific Flags

Item-Specific Flag Description

PSCAN$M_OR Match this value or the next value
PSCAN$M_EQL Match value exactly (the default)
PSCAN$M_NEQ Match if value is not equal
PSCAN$M_GEQ Match if value is greater than or equal to
PSCAN$M_GTR Match if value is greater than
PSCAN$M_LEQ Match if value is less than or equal to
PSCAN$M_LSS Match if value is less than
PSCAN$M_CASE_BLIND Match without regard to case of letters
PSCAN$M_PREFIX_MATCH Match on the leading substring
PSCAN$M_WILDCARD Match string is a wildcard pattern

The PSCAN$M_OR flag is used to connect entries in an item list. For example, in a program that
searches for processes owned by several specified users, you must specify each user name in a separate
item list entry. The item list entries are connected with the PSCAN$M_OR flag as shown in the
following Fortran example. This example connects all the processes on the local node that belong to
SMITH, JONES, or JOHNSON.

PSCANLIST(1).BUFLEN = LEN('SMITH')
PSCANLIST(1).CODE = PSCAN$_USERNAME
PSCANLIST(1).BUFADR = %LOC('SMITH')
PSCANLIST(1).ITMFLAGS = PSCAN$M_OR
PSCANLIST(2).BUFLEN = LEN('JONES')
PSCANLIST(2).CODE = PSCAN$_USERNAME
PSCANLIST(2).BUFADR = %LOC('JONES')
PSCANLIST(2).ITMFLAGS = PSCAN$M_OR
PSCANLIST(3).BUFLEN = LEN('JOHNSON')
PSCANLIST(3).CODE = PSCAN$_USERNAME
PSCANLIST(3).BUFADR = %LOC('JOHNSON')
PSCANLIST(3).ITMFLAGS = 0
PSCANLIST(4).END_LIST = 0

Use the PSCAN$M_WILDCARD flag to specify that a character string is to be treated as a
wildcard. For example, to find all process names that begin with the letter A and end with the
string ER, use the string A*ER with the PSCAN$M_WILDCARD flag. If you do not specify the
PSCAN$M_WILDCARD flag, the search looks for the 4-character process name A*ER.

The PSCAN$M_PREFIX_MATCH defines a wildcard search to match the initial characters of a
string. For example, to find all process names that start with the letters AB, use the string AB with the
PSCAN$M_PREFIX_MATCH flag. If you do not specify the PSCAN$M_PREFIX_MATCH flag, the
search looks for a process with the 2-character process name AB.

4.2.4.2. Requesting Information About Processes That Match One
Criterion

You can use SYS$GETJPI with SYS$PROCESS_SCAN to search for processes that match an item
list with one criterion. For example, if you specify a search for processes owned by one user name,
SYS$GETJPI returns only those processes that match the specified user name.

85

Chapter 4. Process Control

Example 4.6 demonstrates how to perform a SYS$PROCESS_SCAN search on the local node to select
all processes that are owned by user SMITH.

Example 4.6. Using SYS$GETJPI and SYS$PROCESS_SCAN to Select Process
Information by User Name

 PROGRAM PROCESS_SCAN

 IMPLICIT NONE ! Implicit none

 INCLUDE '($jpidef) /nolist' ! Definitions for $GETJPI
 INCLUDE '($pscandef) /nolist' ! Definitions for $PROCESS_SCAN
 INCLUDE '($ssdef) /nolist' ! Definitions for SS$_NAMES

 STRUCTURE /JPIITMLST/ ! Structure declaration for
 UNION ! $GETJPI item lists
 MAP
 INTEGER*2 BUFLEN,
 2 CODE
 INTEGER*4 BUFADR,
 2 RETLENADR
 END MAP
 MAP ! A longword of 0 terminates
 INTEGER*4 END_LIST ! an item list
 END MAP
 END UNION
 END STRUCTURE
 STRUCTURE /PSCANITMLST/ ! Structure declaration for
 UNION ! $PROCESS_SCAN item lists
 MAP
 INTEGER*2 BUFLEN,
 2 CODE
 INTEGER*4 BUFADR,
 2 ITMFLAGS
 END MAP
 MAP ! A longword of 0 terminates
 INTEGER*4 END_LIST ! an item list
 END MAP
 END UNION
 END STRUCTURE
 RECORD /PSCANITMLST/ ! Declare the item list for
 2 PSCANLIST(12) ! $PROCESS_SCAN

 RECORD /JPIITMLST/ ! Declare the item list for
 2 JPILIST(3) ! $GETJPI

 INTEGER*4 SYS$GETJPIW, ! System service entry points
 2 SYS$PROCESS_SCAN

 INTEGER*4 STATUS, ! Status variable
 2 CONTEXT, ! Context from $PROCESS_SCAN
 2 PID ! PID from $GETJPI

 INTEGER*2 IOSB(4) ! I/O Status Block for $GETJPI

 CHARACTER*16
 2 PRCNAM ! Process name from $GETJPI
 INTEGER*2 PRCNAM_LEN ! Process name length

86

Chapter 4. Process Control

 LOGICAL*4 DONE ! Done with data loop

 !**
 !* Initialize item list for $PROCESS_SCAN *
 !**

 ! Look for processes owned by user SMITH

 PSCANLIST(1).BUFLEN = LEN('SMITH')
 PSCANLIST(1).CODE = PSCAN$_USERNAME
 PSCANLIST(1).BUFADR = %LOC('SMITH')
 PSCANLIST(1).ITMFLAGS = 0
 PSCANLIST(2).END_LIST = 0
 !**
 !* End of item list initialization *
 !**

 STATUS = SYS$PROCESS_SCAN (! Set up the scan context
 2 CONTEXT,
 2 PSCANLIST)

 IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))

 ! Loop calling $GETJPI with the context

 DONE = .FALSE.
 DO WHILE (.NOT. DONE)

 ! Initialize $GETJPI item list

 JPILIST(1).BUFLEN = 4
 JPILIST(1).CODE = JPI$_PID
 JPILIST(1).BUFADR = %LOC(PID)
 JPILIST(1).RETLENADR = 0
 JPILIST(2).BUFLEN = LEN(PRCNAM)
 JPILIST(2).CODE = JPI$_PRCNAM
 JPILIST(2).BUFADR = %LOC(PRCNAM)
 JPILIST(2).RETLENADR = %LOC(PRCNAM_LEN)
 JPILIST(3).END_LIST = 0
 ! Call $GETJPI to get the next SMITH process

 STATUS = SYS$GETJPIW (
 2 , ! No event flag
 2 CONTEXT, ! Process context
 2 , ! No process name
 2 JPILIST, ! Item list
 2 IOSB, ! Always use IOSB with $GETJPI!
 2 , ! No AST
 2) ! No AST arg

 ! Check the status in both STATUS and the IOSB, if
 ! STATUS is OK then copy IOSB(1) to STATUS

 IF (STATUS) STATUS = IOSB(1)

 ! If $GETJPI worked, display the process, if done then

87

Chapter 4. Process Control

 ! prepare to exit, otherwise signal an error
 IF (STATUS) THEN
 TYPE 1010, PID, PRCNAM(1:PRCNAM_LEN)
1010 FORMAT (' ',Z8.8,' ',A)
 ELSE IF (STATUS .EQ. SS$_NOMOREPROC) THEN
 DONE = .TRUE.
 ELSE
 CALL LIB$SIGNAL(%VAL(STATUS))
 END IF

 END DO

 END

4.2.4.3. Requesting Information About Processes That Match
Multiple Values for One Criterion

You can use SYS$PROCESS_SCAN to search for processes that match one of a number of values for a
single criterion, such as processes owned by several specified users.

You must specify each value in a separate item list entry, and connect the item list entries with the
PSCAN$M_OR item-specific flag. SYS$GETJPI selects each process that matches any of the item
values.

For example, to look for processes with user names SMITH, JONES, or JOHNSON, substitute code such
as that shown in Example 4.7 to initialize the item list in Example 4.6.

Example 4.7. Using SYS$GETJPI and SYS$PROCESS_SCAN with Multiple Values for
One Criterion

!**
!* Initialize item list for $PROCESS_SCAN *
!**

! Look for users SMITH, JONES and JOHNSON

PSCANLIST(1).BUFLEN = LEN('SMITH')
PSCANLIST(1).CODE = PSCAN$_USERNAME
PSCANLIST(1).BUFADR = %LOC('SMITH')
PSCANLIST(1).ITMFLAGS = PSCAN$M_OR
PSCANLIST(2).BUFLEN = LEN('JONES')
PSCANLIST(2).CODE = PSCAN$_USERNAME
PSCANLIST(2).BUFADR = %LOC('JONES')
PSCANLIST(2).ITMFLAGS = PSCAN$M_OR
PSCANLIST(3).BUFLEN = LEN('JOHNSON')
PSCANLIST(3).CODE = PSCAN$_USERNAME
PSCANLIST(3).BUFADR = %LOC('JOHNSON')
PSCANLIST(3).ITMFLAGS = 0
PSCANLIST(4).END_LIST = 0

!**
!* End of item list initialization *
!**

88

Chapter 4. Process Control

4.2.4.4. Requesting Information About Processes That Match
Multiple Criteria
You can use SYS$PROCESS_SCAN to search for processes that match values for more than one
criterion. When multiple criteria are used, a process must match at least one value for each specified
criterion.

Example 4.8 demonstrates how to find any batch process owned by either SMITH or JONES. The
program uses syntax like the following logical expression to initialize the item list:

((username = "SMITH") OR (username = "JONES"))

 AND

 (MODE = JPI$K_BATCH)

Example 4.8. Selecting Processes That Match Multiple Criteria

!**
!* Initialize item list for $PROCESS_SCAN *
!**

! Look for BATCH jobs owned by users SMITH and JONES

PSCANLIST(1).BUFLEN = LEN('SMITH')
PSCANLIST(1).CODE = PSCAN$_USERNAME
PSCANLIST(1).BUFADR = %LOC('SMITH')
PSCANLIST(1).ITMFLAGS = PSCAN$M_OR
PSCANLIST(2).BUFLEN = LEN('JONES')
PSCANLIST(2).CODE = PSCAN$_USERNAME
PSCANLIST(2).BUFADR = %LOC('JONES')
PSCANLIST(2).ITMFLAGS = 0
PSCANLIST(3).BUFLEN = 0
PSCANLIST(3).CODE = PSCAN$_MODE
PSCANLIST(3).BUFADR = JPI$K_BATCH
PSCANLIST(3).ITMFLAGS = 0
PSCANLIST(4).END_LIST = 0

!**
!* End of item list initialization *
!**

See the VSI OpenVMS System Services Reference Manual for more information about
SYS$PROCESS_SCAN item codes and flags.

4.2.5. Specifying a Node as Selection Criterion
Several SYS$PROCESS_SCAN item codes do not refer to attributes of a process, but to the VMScluster
node on which the target process resides. When SYS$PROCESS_SCAN encounters an item code that
refers to a node attribute, it creates an alphabetized list of node names. SYS$PROCESS_SCAN then
directs SYS$GETJPI to compare the selection criteria against processes on these nodes.

SYS$PROCESS_SCAN ignores a node specification if it is running on a node that is not part of a
VMScluster system. For example, if you request that SYS$PROCESS_SCAN select all nodes with
the hardware model name VAX 6360, this search returns information about local processes on a
nonclustered system, even if it is a MicroVAX system.

89

Chapter 4. Process Control

A remote SYS$GETJPI operation currently requires the system to send a message to the
CLUSTER_SERVER process on the remote node. The CLUSTER_SERVER process then collects the
information and returns it to the requesting node. This has several implications for clusterwide searches:

• All remote SYS$GETJPI operations are asynchronous and must be synchronized properly. Many
applications that are not correctly synchronized might seem to work on a single node because some
SYS$GETJPI operations are actually synchronous; however, these applications fail if they attempt
to examine processes on remote nodes. For more information on how to synchronize SYS$GETJPI
operations, see Chapter 6.

• The CLUSTER_SERVER process is always a current process, because it is executing on behalf of
SYS$GETJPI.

• Attempts by SYS$GETJPI to examine a node do not succeed during a brief period between the time
a node joins the cluster and the time that the CLUSTER_SERVER process is started. Searches that
occur during this period skip such a node. Searches that specify only such a booting node fail with a
SYS$GETJPI status of SS$_UNREACHABLE.

• SS$_NOMOREPROC is returned after all processes on all specified nodes have been scanned.

4.2.5.1. Checking All Nodes on the Cluster for Processes
The SYS$PROCESS_SCAN system service can scan the entire cluster for processes. For example, to
scan the cluster for all processes owned by SMITH, use code like that in Example 4.9 to initialize the
item list to find all processes with a nonzero cluster system identifier (CSID) and a user name of SMITH.

Example 4.9. Searching the Cluster for Process Information

!**
!* Initialize item list for $PROCESS_SCAN *
!**

! Search the cluster for jobs owned by SMITH

PSCANLIST(1).BUFLEN = 0
PSCANLIST(1).CODE = PSCAN$_NODE_CSID
PSCANLIST(1).BUFADR = 0
PSCANLIST(1).ITMFLAGS = PSCAN$M_NEQ
PSCANLIST(2).BUFLEN = LEN('SMITH')
PSCANLIST(2).CODE = PSCAN$_USERNAME
PSCANLIST(2).BUFADR = %LOC('SMITH')
PSCANLIST(2).ITMFLAGS = 0
PSCANLIST(3).END_LIST = 0

!**
!* End of item list initialization *
!**

4.2.5.2. Checking Specific Nodes on the Cluster for Processes
You can specify a list of nodes as well. Example 4.10 demonstrates how to design an item list to search
for batch processes on node TIGNES, VALTHO, or 2ALPES.

Example 4.10. Searching for Process Information on Specific Nodes in the Cluster

!**

90

Chapter 4. Process Control

!* Initialize item list for $PROCESS_SCAN *
!**

! Search for BATCH jobs on nodes TIGNES, VALTHO and 2ALPES

PSCANLIST(1).BUFLEN = LEN('TIGNES')
PSCANLIST(1).CODE = PSCAN$_NODENAME
PSCANLIST(1).BUFADR = %LOC('TIGNES')
PSCANLIST(1).ITMFLAGS = PSCAN$M_OR
PSCANLIST(2).BUFLEN = LEN('VALTHO')
PSCANLIST(2).CODE = PSCAN$_NODENAME
PSCANLIST(2).BUFADR = %LOC('VALTHO')
PSCANLIST(2).ITMFLAGS = PSCAN$M_OR
PSCANLIST(3).BUFLEN = LEN('2ALPES')
PSCANLIST(3).CODE = PSCAN$_NODENAME
PSCANLIST(3).BUFADR = %LOC('2ALPES')
PSCANLIST(3).ITMFLAGS = 0
PSCANLIST(4).BUFLEN = 0
PSCANLIST(4).CODE = PSCAN$_MODE
PSCANLIST(4).BUFADR = JPI$K_BATCH
PSCANLIST(4).ITMFLAGS = 0
PSCANLIST(5).END_LIST = 0

!**
!* End of item list initialization *
!**

4.2.5.3. Conducting Multiple Simultaneous Searches with
SYS$PROCESS_SCAN
Only one asynchronous remote SYS$GETJPI request per SYS$PROCESS_SCAN context is permitted
at a time. If you issue a second SYS$GETJPI request using a context before a previous remote request
using the same context has completed, your process stalls in a resource wait until the previous remote
SYS$GETJPI request completes. This stall in the RWAST state prevents your process from executing in
user mode or receiving user-mode ASTs.

If you want to run remote searches in parallel, create multiple contexts by calling
SYS$PROCESS_SCAN once for each context. For example, you can design a program that
calls SYS$GETSYI in a loop to find the nodes in the VMScluster system and creates a separate
SYS$PROCESS_SCAN context for each remote node. Each of these separate contexts can run in
parallel. The DCL command SHOW USERS uses this technique to obtain user information more
quickly.

Only requests to remote nodes must wait until the previous search using the same context has completed.
If the SYS$PROCESS_SCAN context specifies the local node, any number of SYS$GETJPI requests
using that context can be executed in parallel (within the limits implied by the process quotas for
ASTLM and BYTLM).

Note

When you use SYS$GETJPI to reference remote processes, you must properly synchronize
all SYS$GETJPI calls. Before the operating system's Version 5.2, if you did not follow these
synchronization rules, your programs might have appeared to run correctly. However, if you attempt to
run such improperly synchronized programs using SYS$GETJPI with SYS$PROCESS_SCAN with a
remote process, your program might attempt to use the data before SYS$GETJPI has returned it.

91

Chapter 4. Process Control

To perform a synchronous search in which the program waits until all requested information is available,
use SYS$GETJPIW with an iosb argument.

See the VSI OpenVMS System Services Reference Manual for more information about process
identification, SYS$GETJPI, and SYS$PROCESS_SCAN.

4.2.6. Programming with SYS$GETJPI
The following sections describe some important considerations for programming with SYS$GETJPI.

4.2.6.1. Using Item Lists Correctly
When SYS$GETJPI collects data, it makes multiple passes through the item list. If the item list is self-
modifying – that is, if the addresses for the output buffers in the item list point back at the item list –
SYS$GETJPI replaces the item list information with the returned data. Therefore, incorrect data might
be read or unexpected errors might occur when SYS$GETJPI reads the item list again. To prevent
confusing errors, VSI recommends that you do not use self-modifying item lists.

The number of passes that SYS$GETJPI needs depends on which item codes are referenced and the
state of the target process. A program that appears to work normally might fail when a system has
processes that are swapped out of memory, or when a process is on a remote node.

4.2.6.2. Improving Performance by Using Buffered $GETJPI
Operations
To request information about a process located on a remote node, SYS$GETJPI must send a message
to the remote node, wait for the response, and then extract the data from the message received. When
you perform a search on a remote system, the program must repeat this sequence for each process that
SYS$GETJPI locates.

To reduce the overhead of such a remote search, use SYS$PROCESS_SCAN with the
PSCAN$_GETJPI_BUFFER_SIZE item code to specify a buffer size for SYS$GETJPI. When the
buffer size is specified by SYS$PROCESS_SCAN, SYS$GETJPI packs information for several
processes into one buffer and transmits them in a single message. This reduction in the number of
messages improves performance.

For example, if the SYS$GETJPI item list requests 100 bytes of information, you might specify a
PSCAN$_GETJPI_BUFFER_SIZE of 1000 bytes so that the service can place information for at least
10 processes in each message. (SYS$GETJPI does not send fill data in the message buffer; therefore,
information for more than 10 processes can be packed into the buffer).

The SYS$GETJPI buffer must be large enough to hold the data for at least one process. If the buffer is
too small, the error code SS$_IVBUFLEN is returned from the SYS$GETJPI call.

You do not have to allocate space for the SYS$GETJPI buffer; buffer space is allocated by
SYS$PROCESS_SCAN as part of the search context that it creates. Because SYS$GETJPI buffering
is transparent to the program that calls SYS$GETJPI, you do not have to modify the loop that calls
SYS$GETJPI.

If you use PSCAN$_GETJPI_BUFFER_SIZE with SYS$PROCESS_SCAN, all calls to SYS$GETJPI
using that context must request the same item code information. Because SYS$GETJPI collects
information for more than one process at a time within its buffers, you cannot change the item codes
or the lengths of the buffers in the SYS$GETJPI item list between calls. SYS$GETJPI returns the error
SS$_BADPARAM if any item code or buffer length changes between SYS$GETJPI calls. However, you
can change the buffer addresses in the SYS$GETJPI item list from call to call.

92

Chapter 4. Process Control

The SYS$GETJPI buffered operation is not used for searching the local node. When a search specifies
both multiple nodes and SYS$GETJPI buffering, the buffering is used on remote nodes but is ignored on
the local node. Example 4.11 demonstrates how to use a SYS$GETJPI buffer to improve performance.

Example 4.11. Using a SYS$GETJPI Buffer to Improve Performance

!**
!* Initialize item list for $PROCESS_SCAN *
!**

! Search for jobs owned by users SMITH and JONES
! across the cluster with $GETJPI buffering

PSCANLIST(1).BUFLEN = 0
PSCANLIST(1).CODE = PSCAN$_NODE_CSID
PSCANLIST(1).BUFADR = 0
PSCANLIST(1).ITMFLAGS = PSCAN$M_NEQ
PSCANLIST(2).BUFLEN = LEN('SMITH')
PSCANLIST(2).CODE = PSCAN$_USERNAME
PSCANLIST(2).BUFADR = %LOC('SMITH')
PSCANLIST(2).ITMFLAGS = PSCAN$M_OR
PSCANLIST(3).BUFLEN = LEN('JONES')
PSCANLIST(3).CODE = PSCAN$_USERNAME
PSCANLIST(3).BUFADR = %LOC('JONES')
PSCANLIST(3).ITMFLAGS = 0
PSCANLIST(4).BUFLEN = 0
PSCANLIST(4).CODE = PSCAN$_GETJPI_BUFFER_SIZE
PSCANLIST(4).BUFADR = 1000
PSCANLIST(4).ITMFLAGS = 0
PSCANLIST(5).END_LIST = 0

!**
!* End of item list initialization *
!**

4.2.6.3. Fulfilling Remote SYS$GETJPI Quota Requirements
A remote SYS$GETJPI request uses system dynamic memory for messages. System dynamic memory
uses the process quota BYTLM. Follow these steps to determine the number of bytes required by a
SYS$GETJPI request:

1. Add the following together:

• The size of the SYS$PROCESS_SCAN item list

• The total size of all reference buffers for SYS$PROCESS_SCAN (the sum of all buffer length
fields in the item list)

• The size of the SYS$GETJPI item list

• The size of the SYS$GETJPI buffer

• The size of the calling process RIGHTSLIST

• Approximately 300 bytes for message overhead

2. Double this total.

93

Chapter 4. Process Control

The total is doubled because the messages consume system dynamic memory on both the sending
node and the receiving node.

This formula for BYTLM quota applies to both buffered and nonbuffered SYS$GETJPI
requests. For buffered requests, use the value specified in the SYS$PROCESS_SCAN item,
PSCAN$_GETJPI_BUFFER_SIZE, as the size of the buffer. For nonbuffered requests, use the total
length of all data buffers specified in the SYS$GETJPI item list as the size of the buffer.

If the BYTLM quota is insufficient, SYS$GETJPI (not SYS$PROCESS_SCAN) returns the error
SS$_EXBYTLM.

4.2.6.4. Using the SYS$GETJPI Control Flags
The JPI$_GETJPI_CONTROL_FLAGS item code, which is specified in the SYS$GETJPI item list,
provides additional control over SYS$GETJPI. Therefore, SYS$GETJPI may be unable to retrieve all the
data requested in an item list because JPI$_GETJPI_CONTROL_FLAGS requests that SYS$GETJPI not
perform certain actions that may be necessary to collect the data. For example, a SYS$GETJPI control
flag may instruct the calling program not to retrieve a process that has been swapped out of the balance
set.

If SYS$GETJPI is unable to retrieve any data item because of the restrictions imposed by the control
flags, it returns the data length as 0. To verify that SYS$GETJPI received a data item, examine the data
length to be sure that it is not 0. To make this verification possible, be sure to specify the return length
for each item in the SYS$GETJPI item list when any of the JPI$_GETJPI_CONTROL_FLAGS flags is
used.

Unlike other SYS$GETJPI item codes, the JPI$_GETJPI_CONTROL_FLAGS item is an input item.
The item list entry should specify a longword buffer. The desired control flags should be set in this
buffer.

Because the JPI$_GETJPI_CONTROL_FLAGS item code tells SYS$GETJPI how to interpret the
item list, it must be the first entry in the SYS$GETJPI item list. The error code SS$_BADPARAM is
returned if it is not the first item in the list.

The following are the SYS$GETJPI control flags.

JPI$M_NO_TARGET_INSWAP

When you specify JPI$M_NO_TARGET_INSWAP, SYS$GETJPI does not retrieve a process that has
been swapped out of the balance set. Use JPI$M_NO_TARGET_INSWAP to avoid the additional load
of swapping processes into a system. For example, use this flag with SHOW SYSTEM to avoid bringing
processes into memory to display their accumulated CPU time.

If you specify JPI$M_NO_TARGET_INSWAP and request information from a process that has been
swapped out, the following consequences occur:

• Data stored in the virtual address space of the process is not accessible.

• Data stored in the process header (PHD) may not be accessible.

• Data stored in resident data structures, such as the process control block (PCB) or the job
information block (JIB), is accessible.

You must examine the return length of an item to verify that the item was retrieved. The information
may be located in a different data structure in another release of the operating system.

94

Chapter 4. Process Control

JPI$M_NO_TARGET_AST

When you specify JPI$M_NO_TARGET_AST, SYS$GETJPI does not deliver a kernel-mode AST
to the target process. Use JPI$M_NO_TARGET_AST to avoid executing a target process in order to
retrieve information.

If you specify JPI$M_NO_TARGET_AST and cannot deliver an AST to a target process, the following
consequences occur:

• Data stored in the virtual address space of the process is not accessible.

• Data stored in system data structures, such as the process header (PHD), the process control block
(PCB), or the job information block (JIB), is accessible.

You must examine the return length of an item to verify that the item was retrieved. The information
may be located in a different data structure in another release of the operating system.

The use of the flag JPI$M_NO_TARGET_AST also implies that SYS$GETJPI does not swap in a
process, because SYS$GETJPI would only bring a process into memory to deliver an AST to that
process.

JPI$M_IGNORE_TARGET_STATUS

When you specify JPI$M_IGNORE_TARGET_STATUS, SYS$GETJPI attempts to retrieve
as much information as possible, even if the process is suspended or being deleted. Use
JPI$M_IGNORE_TARGET_STATUS to retrieve all possible information from a process. For example,
use this flag with SHOW SYSTEM to display processes that are suspended, being deleted, or in
miscellaneous wait states.

Example 4.12 demonstrates how to use SYS$GETJPI control flags to avoid swapping processes during a
SYS$GETJPI call.

Example 4.12. Using SYS$GETJPI Control Flags to Avoid Swapping a Process into the
Balance Set

 PROGRAM CONTROL_FLAGS

 IMPLICIT NONE ! Implicit none

 INCLUDE '($jpidef) /nolist' ! Definitions for $GETJPI
 INCLUDE '($pscandef) /nolist' ! Definitions for $PROCESS_SCAN
 INCLUDE '($ssdef) /nolist' ! Definitions for SS$_ names

 STRUCTURE /JPIITMLST/ ! Structure declaration for
 UNION ! $GETJPI item lists
 MAP
 INTEGER*2 BUFLEN,
 2 CODE
 INTEGER*4 BUFADR,
 2 RETLENADR
 END MAP
 MAP ! A longword of 0 terminates
 INTEGER*4 END_LIST ! an item list
 END MAP
 END UNION
 END STRUCTURE
 STRUCTURE /PSCANITMLST/ ! Structure declaration for
 UNION ! $PROCESS_SCAN item lists

95

Chapter 4. Process Control

 MAP
 INTEGER*2 BUFLEN,
 2 CODE
 INTEGER*4 BUFADR,
 2 ITMFLAGS
 END MAP
 MAP ! A longword of 0 terminates
 INTEGER*4 END_LIST ! an item list
 END MAP
 END UNION
 END STRUCTURE
 RECORD /PSCANITMLST/ ! Declare the item list for
 2 PSCANLIST(5) ! $PROCESS_SCAN

 RECORD /JPIITMLST/ ! Declare the item list for
 2 JPILIST(6) ! $GETJPI

 INTEGER*4 SYS$GETJPIW, ! System service entry points
 2 SYS$PROCESS_SCAN

 INTEGER*4 STATUS, ! Status variable
 2 CONTEXT, ! Context from $PROCESS_SCAN
 2 PID, ! PID from $GETJPI
 2 JPIFLAGS ! Flags for $GETJPI

 INTEGER*2 IOSB(4) ! I/O Status Block for $GETJPI

 CHARACTER*16
 2 PRCNAM, ! Process name from $GETJPI
 2 NODENAME ! Node name from $GETJPI
 INTEGER*2 PRCNAM_LEN, ! Process name length
 2 NODENAME_LEN ! Node name length

 CHARACTER*80
 2 IMAGNAME ! Image name from $GETJPI
 INTEGER*2 IMAGNAME_LEN ! Image name length

 LOGICAL*4 DONE ! Done with data loop

 !**
 !* Initialize item list for $PROCESS_SCAN *
 !**

 ! Look for interactive and batch jobs across
 ! the cluster with $GETJPI buffering

 PSCANLIST(1).BUFLEN = 0
 PSCANLIST(1).CODE = PSCAN$_NODE_CSID
 PSCANLIST(1).BUFADR = 0
 PSCANLIST(1).ITMFLAGS = PSCAN$M_NEQ
 PSCANLIST(2).BUFLEN = 0
 PSCANLIST(2).CODE = PSCAN$_MODE
 PSCANLIST(2).BUFADR = JPI$K_INTERACTIVE
 PSCANLIST(2).ITMFLAGS = PSCAN$M_OR
 PSCANLIST(3).BUFLEN = 0
 PSCANLIST(3).CODE = PSCAN$_MODE
 PSCANLIST(3).BUFADR = JPI$K_BATCH
 PSCANLIST(3).ITMFLAGS = 0

96

Chapter 4. Process Control

 PSCANLIST(4).BUFLEN = 0
 PSCANLIST(4).CODE = PSCAN$_GETJPI_BUFFER_SIZE
 PSCANLIST(4).BUFADR = 1000
 PSCANLIST(4).ITMFLAGS = 0
 PSCANLIST(5).END_LIST = 0

 !**
 !* End of item list initialization *
 !**

 STATUS = SYS$PROCESS_SCAN (! Set up the scan context
 2 CONTEXT,
 2 PSCANLIST)

 IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))

 ! Initialize $GETJPI item list

 JPILIST(1).BUFLEN = 4
 JPILIST(1).CODE = IAND ('FFFF'X, JPI$_GETJPI_CONTROL_FLAGS)
 JPILIST(1).BUFADR = %LOC(JPIFLAGS)
 JPILIST(1).RETLENADR = 0
 JPILIST(2).BUFLEN = 4
 JPILIST(2).CODE = JPI$_PID
 JPILIST(2).BUFADR = %LOC(PID)
 JPILIST(2).RETLENADR = 0
 JPILIST(3).BUFLEN = LEN(PRCNAM)
 JPILIST(3).CODE = JPI$_PRCNAM
 JPILIST(3).BUFADR = %LOC(PRCNAM)
 JPILIST(3).RETLENADR = %LOC(PRCNAM_LEN)
 JPILIST(4).BUFLEN = LEN(IMAGNAME)
 JPILIST(4).CODE = JPI$_IMAGNAME
 JPILIST(4).BUFADR = %LOC(IMAGNAME)
 JPILIST(4).RETLENADR = %LOC(IMAGNAME_LEN)
 JPILIST(5).BUFLEN = LEN(NODENAME)
 JPILIST(5).CODE = JPI$_NODENAME
 JPILIST(5).BUFADR = %LOC(NODENAME)
 JPILIST(5).RETLENADR = %LOC(NODENAME_LEN)
 JPILIST(6).END_LIST = 0
 ! Loop calling $GETJPI with the context

 DONE = .FALSE.
 JPIFLAGS = IOR (JPI$M_NO_TARGET_INSWAP, JPI$M_IGNORE_TARGET_STATUS)
 DO WHILE (.NOT. DONE)

 ! Call $GETJPI to get the next process

 STATUS = SYS$GETJPIW (
 2 , ! No event flag
 2 CONTEXT, ! Process context
 2 , ! No process name
 2 JPILIST, ! Itemlist
 2 IOSB, ! Always use IOSB with $GETJPI!
 2 , ! No AST
 2) ! No AST arg
 ! Check the status in both STATUS and the IOSB, if
 ! STATUS is OK then copy IOSB(1) to STATUS

97

Chapter 4. Process Control

 IF (STATUS) STATUS = IOSB(1)

 ! If $GETJPI worked, display the process, if done then
 ! prepare to exit, otherwise signal an error

 IF (STATUS) THEN
 IF (IMAGNAME_LEN .EQ. 0) THEN
 TYPE 1010, PID, NODENAME, PRCNAM
 ELSE
 TYPE 1020, PID, NODENAME, PRCNAM,
 2 IMAGNAME(1:IMAGNAME_LEN)
 END IF
 ELSE IF (STATUS .EQ. SS$_NOMOREPROC) THEN
 DONE = .TRUE.
 ELSE
 CALL LIB$SIGNAL(%VAL(STATUS))
 END IF

 END DO

1010 FORMAT (' ',Z8.8,' ',A6,':: ',A,' (no image)')
1020 FORMAT (' ',Z8.8,' ',A6,':: ',A,' ',A)

 END

4.2.7. Using SYS$GETLKI
The SYS$GETLKI system service allows you to obtain process lock information. Example 4.13 is a C
program that illustrates the procedure for obtaining process lock information for both Alpha and VAX
systems. However, to compile on Alpha systems, you need to supply the /DEFINE=Alpha=1 qualifier.

Example 4.13. Procedure for Obtaining Process Lock Information

#pragma nostandard
#ifdef Alpha
#pragma module LOCK_SCAN
#else /* Alpha */
#module LOCK_SCAN
#endif /* Alpha */
#pragma standard

#include <ssdef.h>
#include <lkidef.h>

#pragma nostandard
globalvalue
 ss$_normal, ss$_nomorelock;
#pragma standard

struct lock_item_list
 {
 short int buffer_length;
 short int item_code;
 void *bufaddress;
 void *retaddress;
 };

98

Chapter 4. Process Control

typedef struct lock_item_list lock_item_list_type;

unsigned long lock_id;
long int value_block[4];

#pragma nostandard
static lock_item_list_type
 getlki_item_list[] = {
 {sizeof(value_block), LKI$_VALBLK, &value_block, 0},
 {sizeof(lock_id), LKI$_LOCKID, &lock_id, 0},
 {0,0,0,0}
};
globalvalue ss$_normal, ss$_nomorelock;
#pragma standard

main()
{
 int status = ss$_normal;
 unsigned long lock_context = -1; /* init for wild-card operation */

 while (status == ss$_normal) {
 status = sys$getlkiw(1, &lock_context, getlki_item_list,0,0,0,0);
 /* */
 /* Dequeue the lock if the value block contains a 1 */
 /* */
 if ((status == ss$_normal) & (value_block[0] == 1)){
 status = sys$deq(lock_id, 0, 0, 0);
 }
 }
 if (status != ss$_nomorelock){
 exit(status);
 }
}

4.2.8. Setting Process Privileges
Use the SYS$SETPRV system service to set process privileges. Setting process privileges allows you
to limit executing privileged code to a specific process, to limit functions within a process, and to limit
access from other processes. You can either enable or disable a set of privileges and assign privileges
on a temporary or permanent basis. To use this service, the creating process must have the appropriate
privileges.

4.3. Changing Process and Kernel Threads
Scheduling
Prior to kernel threads, the OpenVMS scheduler selected a process to run. With kernel threads, the
OpenVMS scheduler selects a kernel thread to run. All processes are thread-capable processes with at
least one kernel thread. A process may have only one kernel thread, or a process may have a variable
number of kernel threads. A single-threaded process is equivalent to a process before OpenVMS Version
7.0.

With kernel threads, all base and current priorities are per kernel thread. To alter a thread's scheduling,
you can change the base priority of the thread with the SYS$SETPRI system service, which affects the
specified kernel thread and not the entire process.

99

Chapter 4. Process Control

To alter a process's scheduling, you can lock the process into physical memory so that it is not swapped
out. Processes that have been locked into physical memory are executed before processes that have been
swapped out. For kernel threads, the thread with the highest priority level is executed first.

If you create a subprocess with the LIB$SPAWN routine, you can set the priority of the subprocess
by executing the DCL command SET PROCESS/PRIORITY as the first command in a command
procedure. You must have the ALTPRI privilege to increase the base priority above the base priority of
the creating process.

If you create a subprocess with the LIB$SPAWN routine, you can inhibit swapping by executing the
DCL command SET PROCESS/NOSWAP as the first command in a command procedure. Use the
SYS$SETSWM system service to inhibit swapping for any process. A process must have the PSWAPM
privilege to inhibit swapping.

If you alter a kernel thread's scheduling, you must do so with care. Review the following considerations
before you attempt to alter the standard kernel threads or process scheduling with either SYS$SETPRI or
SYS$SETSWM:

• Priority—Increasing a kernel thread's base priority gives that thread more processor time at the
expense of threads that execute at lower priorities. VSI does not recommend this unless you have a
program that must respond immediately to events (for example, a real-time program). If you must
increase the base priority, return it to normal as soon as possible. If the entire image must execute at
an increased priority, reset the base priority before exiting; image termination does not reset the base
priority.

• Swapping—Inhibiting swapping keeps your process in physical memory. VSI does not recommend
inhibiting swapping unless the effective execution of your image depends on it (for example, if the
image executing in the process is collecting statistics about processor performance).

4.4. Using Affinity and Capabilities in CPU
Scheduling (Alpha and I64 Only)
On Alpha and I64 systems, the affinity and capabilities mechanisms allow CPU scheduling to be
adapted to larger CPU configurations by controlling the distribution of processes or threads throughout
the active CPU set. Control of the distribution of processes throughout the active CPU set becomes more
important as higher-performance server applications, such as databases and real-time process-control
environments, are implemented. Affinity and capabilities provide the user with opportunities to perform
the following tasks:

• Create and modify a set of user-defined process capabilities

• Create and modify a set of user-defined CPU capabilities to match those in the process

• Allow a process to apply the affinity mechanisms to a subset of the active CPU set in a symmetric
multiprocessing (SMP) configuration

4.4.1. Defining Affinity and Capabilities
The affinity mechanism allows a process, or each of its kernel threads, to specify an exact set of CPUs
on which it can execute. The capabilities mechanism allows a process to specify a set of resources
that a CPU in the active set must have defined before it is allowed to contend for process execution.
Presently, both of these mechanisms are present in the OpenVMS scheduling mechanism; both are used

100

Chapter 4. Process Control

extensively internally and externally to implement parts of the I/O and timing subsystems. Now, however,
the OpenVMS operating system provides user access to these mechanisms.

4.4.1.1. Using Affinity and Capabilities with Caution
It is important for users to understand that inappropriate and abusive use of the affinity and capabilities
mechanisms can have a negative impact on the symmetric aspects of the current multi-CPU scheduling
algorithm.

4.4.2. Types of Capabilities
Capabilities are resources assigned to CPUs that a process needs to execute correctly. There are four
defined capabilities. They are restricted to internal system events or functions that control system states
or functions. Table 4.6 describes the four capabilities.

Table 4.6. Capabilities

Capability Description

Primary Owned by only one CPU at a time, since the primary could possibly migrate from
CPU to CPU in the configuration. For I/O and timekeeping functions, the system
requires that the process run on the primary CPU. The process requiring this
capability is allowed to run only on the processor that has it at the time.

Run Controls the ability of a CPU to execute processes. Every process requires this
resource; if the CPU does not have it, scheduling for that CPU comes to a halt in a
recognized state. The command STOP/CPU uses this capability when it is trying to
make the CPU quiescent, bringing it to a halted state.

Quorum Used in a cluster environment when a node wants another node to come to a
quiescent state until further notice. Like the Run capability, Quorum is a required
resource for every process and every CPU in order for scheduling to occur.

Vector Like the primary capability, it reflects a feature of the CPU; that is, that the CPU
has a vector processing unit directly associated with it. Obsolete on OpenVMS
Alpha and OpenVMS I64 systems but is retained as a compatibility feature with
OpenVMS VAX.

4.4.3. Looking at User Capabilities
Previously, the use of capabilities was restricted to system resources and control events. However, it is
also valuable for user functions to be able to indicate a resource or special CPU function.

There are 16 user-defined capabilities added to both the process and the CPU structures. Unlike the
static definitions of the current system capabilities, the user capabilities have meaning only in the context
of the processes that define them. Through system service interfaces, processes or individual threads of a
multithreaded process, can set specific bits in the capability masks of a CPU to give it a resource, and can
set specific bits in the kernel thread's capability mask to require that resource as an execution criterion.

The user capability feature is a direct superset of the current capability functionality. All currently
existing capabilities are placed into the system capability set; they are not available to the process
through system service interfaces. These system service interfaces affect only the 16 bits specifically set
aside for user definition.

The OpenVMS operating system has no direct knowledge of what the defined capability is that is being
used. All responsibility for the correct definition, use, and management of these bits is determined by

101

Chapter 4. Process Control

the processes that define them. The system controls the impact of these capabilities through privilege
requirements; but, as with the priority adjustment services, abusive use of the capability bits could affect
the scheduling dynamic and CPU loads in an SMP environment.

4.4.4. Using the Capabilities System Services
The SYS$CPU_CAPABILITIES and SYS$PROCESS_CAPABILITIES system services
provide access to the capability features. By using the SYS$CPU_CAPABILITIES and
SYS$PROCESS_CAPABILITIES services, you can assign user capabilities to a CPU and to a specific
kernel thread. Assigning a user capability to a CPU lasts either for the life of the system or until another
explicit change is made. This operation has no direct effect on the scheduling dynamics of the system;
it only indicates that the specified CPU is capable of handling any process or thread that requires that
resource. If a process does not indicate that it needs that resource, it ignores the CPU's additional
capability and schedules the process on the basis of other process requirements.

Assigning a user capability requirement to a specific process or thread has a major impact on the
scheduling state of that entity. For the process or thread to be scheduled on a CPU in the active set, that
CPU must have the capability assigned prior to the scheduling attempt. If no CPU currently has the
correct set of capability requirements, the process is placed into a wait state until a CPU with the right
configuration becomes available. Like system capabilities, user process capabilities are additive; that is,
for a CPU to schedule the process, the CPU must have the full complement of required capabilities.

These services reference both sets of 16-bit user capabilities by the common symbolic constant names of
CAP$M_USER1 through CAP$M_USER16. These names reflect the corresponding bit position in the
appropriate capability mask; they are nonzero and self-relative to themselves only.

Both services allow multiple bits to be set or cleared, or both, simultaneously. Each takes as parameters
a select mask and a modify mask that define the operation set to be performed. The service callers are
responsible for setting up the select mask to indicate the user capabilities bits affected by the current
call. This select mask is a bit vector of the ORed bit symbolic names that, when set, states that the value
in the modify mask is the new value of the bit. Both masks use the symbolic constants to indicate the
same bit; alternatively, if appropriate, you can use the symbolic constant CAP$K_USER_ALL in the
select mask to indicate that the entire set of capabilities is affected. Likewise, you can use the symbolic
constant CAP$K_USER_ADD or CAP$K_USER_REMOVE in the modify mask to indicate that all
capabilities specified in the select mask are to be either set or cleared.

For information about using the SYS$CPU_CAPABILITIES and SYS$PROCESS_CAPABILITIES
system services, see the VSI OpenVMS System Services Reference Manual: A-GETUAI and VSI OpenVMS
System Services Reference Manual: GETUTC-Z.

4.4.5. Types of Affinity
There are two types of affinity: implicit and explicit. This section describes both.

4.4.5.1. Implicit Affinity
Implicit affinity, sometimes known as soft affinity, is a variant form of the original affinity mechanism
used in the OpenVMS scheduling mechanisms. Rather than require a process to stay on a specific
CPU regardless of conditions, implicit affinity maximizes cache and translation buffer (TB) context by
maintaining an association with the CPU that has the most information about a given process.

Currently, the OpenVMS scheduling mechanism already has a version of implicit affinity. It keeps track
of the last CPU the process ran on and tries to schedule itself to that CPU, subject to a fairness algorithm.

102

Chapter 4. Process Control

The fairness algorithm makes sure a process is not skipped too many times when it normally would have
been scheduled elsewhere.

The Alpha architecture lends itself to maintaining cache and TB context that has significant potential
for performance improvement at both the process and system level. Because this feature contradicts the
normal highest-priority process-scheduling algorithms in an SMP configuration, implicit affinity cannot
be a system default.

The SYS$SET_IMPLICIT_AFFINITY system service provides implicit affinity support. This
service works on an explicitly specified process or kernel thread block (KTB) through the
pidadr and prcnam arguments. The default is the current process, but if the symbolic constant
CAP$K_PROCESS_DEFAULT is specified in pidadr, the bit is set in the global default cell
SCH$GL_DEFAULT_PROCESS_CAP. Setting implicit affinity globally is similar to setting a capability
bit in the same mask, because every process creation after the modification picks up the bit as a default
that stays in effect across all image activations.

The protections required to invoke SYS$SET_IMPLICIT_AFFINITY depend on the process
that is being affected. Because the addition of implicit affinity has the same potential as the
SYS$ALTPRI service for affecting the priority scheduling of processes in the COM queue, ALTPRI
protection is required as the base which all modification forms of the serve must have to invoke
SYS$SET_IMPLICIT_AFFINITY. If the process is the current one, no other privilege is required. To
affect processes in the same UIC group, the GROUP privilege is required. For any other processes in the
system, the WORLD privilege is required.

4.4.5.2. Explicit Affinity
Even though capabilities and affinity overlap considerably in their functional behavior, they are
nonetheless two discrete scheduling mechanisms. Affinity, the subsetting of the number of CPUs on
which a process can execute, has precedence over the capability feature and provides an explicit binding
operation between the process and CPU. It forces the scheduling algorithm to consider only the CPU set
it requires, and then applies the capability tests to see whether any of them are appropriate.

Explicit affinity allows database and high-performance applications to segregate application functions to
individual CPUs, providing improved cache and TB performance as well as reducing context switching
and general scheduling overhead. During the IPL 8 scheduling pass, the process is investigated to see to
which CPUs it is bound and whether the current CPU is one of those. If it passes that test, capabilities
are also validated to allow the process to context switch. The number of CPUs that can be supported is
32.

The SYS$PROCESS_AFFINITY system service provides access to the explicit affinity functionality.
SYS$PROCESS_AFFINITY resolves to a specific process, defaulting to the current one, through
the pidadr and prcnam arguments. Like the other system services, the CPUs that are affected are
indicated through select_mask, and the binding state of each CPU is specified in modify_mask.

Specific CPUs can be referenced in select_mask and modify_mask using the symbolic constants
CAP$M_CPU0 through CAP$M_CPU31. These constants are defined to match the bit position of their
associated CPU ID. Alternatively, specifying CAP$K_ALL_ACTIVE_CPUS in select_mask sets or
clears explicit affinity for all CPUs in the current active set.

Explicit affinity, like capabilities, has a permanent process as well as current image copy. As each
completed image is run down, the permanent explicit affinity values overwrite the running image set,
superseding any changes that were made in the interim. Specifying CAP$M_FLAG_PERMANENT
in the flags parameter indicates that both the current and permanent processes are to be modified
simultaneously. As a result, unless explicitly changed again, this operation has a scope from the current
image through the end of the process life.

103

Chapter 4. Process Control

For information about the SYS$SET_IMPLICIT_AFFINITY and SYS$PROCESS_AFFINITY system
services, see the VSI OpenVMS System Services Reference Manual: A-GETUAI and VSI OpenVMS System
Services Reference Manual: GETUTC-Z.

4.5. Using the Class Scheduler in CPU
Scheduling
The class scheduler gives you the ability to limit the amount of CPU time that a system's users may
receive by placing the users into scheduling classes. Each class is assigned a percentage of the overall
system's CPU time. As the system runs, the combined set of users in a class are limited to the percentage
of CPU execution time allocated to their class. The users may get some additional CPU time if the
qualifier /WINDFALL is enabled for their scheduling class. Enabling the qualifier /WINDFALL allows
the system to give a small amount of CPU time to a scheduling class when a CPU is idle and the
scheduling class's allotted time has been depleted.

To invoke the class scheduler, you use the SYSMAN interface. SYSMAN allows a user to create, delete,
modify, suspend, resume, and display scheduling classes. Table 4.7 shows the SYSMAN command,
class_schedule, and its subcommands.

Table 4.7. SYSMAN Command: Class_Schedule

Subcommand Meaning

Add Creates a new scheduling class
Delete Deletes a scheduling class
Modify Modifies the characteristics of a scheduling class
Show Shows the characteristics of a scheduling class
Suspend Suspends temporarily a scheduling class
Resume Resumes a scheduling class

4.5.1. Specifications for the Class_Schedule Command
The full specifications for Class_Schedule and its subcommands are as follows:

4.5.1.1. The Add Subcommand
The format for the Add subcommand is as follows:

SYSMAN>class_schedule add "class name"
/cpulimit = ([primary], [h1-h2=time%],[h1=time%],
 [,...],[secondary],[h1-h2=time%],[h1=time%],[,...])
 [/primedays = ([no]day[,...])]
 [/username = (name1, name2,...name"n")]
 [/account = (name1, name2,...name"n")]
 [/uic = (uic1,uic2,...uic"n")]
 [/windfall]

The Class Name and Qualifiers

The class name is the name of the scheduling class. It must be specified and the maximum length for this
name is 16 characters.

104

Chapter 4. Process Control

Table 4.8 shows the qualifiers and their meanings for this SYSMAN command.

Table 4.8. Class Name Qualifiers

Qualifier Meaning

/CPULIMIT Defines the maximum amount of CPU time that this scheduling class can receive
for the specified days and hours. You must specify this qualifier when adding a
class.

The h1-h2=time% syntax allows you to specify a range of hours followed by the
maximum amount of CPU time (expressed as a percentage) to be associated with
this set of hours. The first set of hours after the keyword PRIMARY specifies
hours on primary days; the set of hours after the keyword SECONDARY specifies
hours on secondary days. The hours are inclusive; if you class schedule a given
hour, access extends to the end of that hour.

/PRIMEDAYS Allows you to define which days are primary days and which days are secondary
days. You specify primary days as MON, TUE, WED, THU, FRI, SAT, and
SUN. You specify secondary days as NOMON, NOTUE, NOWED, NOTHU,
NOFRI, NOSAT, and NOSUN. The default is MON through FRI and NOSAT
and NOSUN. Any days omitted from the list take their default value. You can use
the DCL command, SET DAY, to override the class definition of primary and
secondary days.

/USERNAME Specifies which user is part of this scheduling class. This is part of a user's
SYSUAF record.

/ACCOUNT Specifies which user is part of this scheduling class. This is part of a user's
SYSUAF record.

/UIC Specifies which users are part of this scheduling class. This is part of a user's
SYSUAF record.

/WINDFALL Specifies that all processes in the scheduling class are eligible for windfall.
By enabling windfall, you allow processes in the scheduling class to receive a
"windfall," that is, a small percentage of CPU time, when the class' allotted CPU
time has been depleted and a CPU is idle. Rather than let the CPU remain idle, you
might decide that it is better to let these processes execute even if it means giving
them more than their allotted time.

The default value is for windfall to be disabled.

4.5.1.2. The Delete Subcommand
The format for the Delete subcommand is as follows:

SYSMAN>class_schedule delete "class name"

The Delete subcommand deletes the scheduling class from the class scheduler database file, and all
processes that are members of this scheduling class are no longer class scheduled.

4.5.1.3. The Modify Subcommand
The format for the Modify subcommand is as follows:

SYSMAN>class_schedule modify "class name"
/cpulimit = ([primary], [h1-h2=time%],[h1=time%],

105

Chapter 4. Process Control

 [,...],[secondary],[h1-h2=time%],[h1=time%],[,...])
 [/primedays = ([no]day[,...])]
 [/username = (name1, name2,...name"n")]
 [/account = (name1, name2,...name"n")]
 [/uic = (uic1,uic2,...uic"n")]
 [/(no)windfall]

The Modify subcommand changes the characteristics of a scheduling class. The qualifiers are the same
qualifiers as for the add subcommand. To remove a time restriction, specify a zero (0) for the time
percentage associated with a particular range of hours.

To remove a name or uic value, you must specify a minus sign in front of each name or value.

4.5.1.4. The Show Subcommand
The format for the Show subcommand is as follows:

SYSMAN>class_schedule show [class name] [/all] [/full]

Table 4.9 shows the qualifiers and their meanings for this SYSMAN command.

Table 4.9. Show Subcommand Qualifiers

Qualifier Meaning

/ALL Displays all scheduling classes. The qualifier must be specified if no class name is
given.

/FULL Displays all information about his scheduling class.

Note

By default, a limited display of data is shown by this subcommand. The default shows the following:

• Name

• Maximum CPU times for reach range of hours

• Primary days and secondary days

• Windfall settings

4.5.1.5. The Suspend Subcommand
The format for the Suspend subcommand is as follows:

SYSMAN>class_schedule suspend "class name"

The Suspend subcommand suspends the specified scheduling class. All processes that are part of this
scheduling class remain as part of this scheduling class but are granted unlimited CPU time.

4.5.1.6. The Resume Subcommand
The format of the Resume subcommand is as follows:

106

Chapter 4. Process Control

SYSMAN>class_schedule resume "class name"

The Resume subcommand complements the suspend command. You use this command to resume a
scheduling class that is currently suspended.

4.5.2. The Class Scheduler Database
The class scheduler database is a permanent database that allows OpenVMS to class schedule processes
automatically after a system has been booted and rebooted. This database resides on the system disk in
SYS$SYSTEM:VMS$CLASS_SCHEDULE.DATA. SYSMAN creates this file as an RMS indexed file
when the first scheduling class is created by the SYSMAN command, class_schedule add.

4.5.2.1. The Class Scheduler Database and Process Creation
By using a permanent class scheduler, a process is placed into a scheduling class, if appropriate, at
process creation time. When a new process is created, it needs to be determined whether this process
belongs to a scheduling class. Since to determine this relies upon data in the SYSUAF file, and the
Loginout image already has the process' information from this file, Loginout class schedules the process
if it determines that the process belongs to a scheduling class.

There are two other types of processes to consider during process creation: subprocess and detached
process. A subprocess becomes part of the same scheduling class as the parent process, even though it
may not match the class's criteria. That is, its user and account name and/or UIC may not be part of
the class's record. A detached process only joins a scheduling class if it executes the Loginout image
(Loginout.exe) during process creation.

Though a process can join a scheduling class at process creation time, you can change or modify its
scheduling class during runtime with the SET PROCESS/SCHEDULING_CLASS command.

4.5.3. Determining If a Process Is Class Scheduled
You can determine whether a process is class scheduled by the following:

• The SHOW SYSTEM DCL command

• The SYS$GETJPI system service

• The Authorize utility

The SHOW SYSTEM DCL Command
The DCL command, SHOW SYSTEM, with the qualifier, /SCHEDULING_CLASS ="name", displays
processes that belong to a specific scheduling class, or if no name is specified, it displays all class
scheduled processes and the name of their scheduling class. The SHOW SYSTEM/FULL command
shows the scheduling class name of all processes that are class scheduled.

For more information about the DCL command SHOW SYSTEM, see VSI OpenVMS DCL Dictionary:
N-Z.

The SYS$GETJPI System Service
The SYS$GETJPI system service item code, JPI$_CLASS_NAME, returns the name of the scheduling
class, as a character string, that this process belongs to. If the process is not class scheduled, then a return
length of zero (0) is returned to the caller.

107

Chapter 4. Process Control

For more information about the SYS$GETJPI system service, see the VSI OpenVMS System Services
Reference Manual: A-GETUAI.

The Authorize Utility
When a new user is added to the SYSUAF file, or when a user's record is modified. Authorize searches
the class scheduler database file to determine if this user is a member of a scheduling class. If it is, then
Authorize displays the following message: UAF-I-SCHEDCLASS, which indicates that the user is a
member of a scheduling class.

4.5.4. The SYS$SCHED System Service
The SYS$SCHED system service allows you to create a temporary class scheduling database. The
processes are class-scheduled by PID, after the process has been created. The SYSMAN interface
creates a separate and permanent class scheduling database that schedules you at process creation time.
A process cannot belong to both databases, the SYS$SCHED and SYSMAN database. Therefore, the
SYS$SCHED system service checks to see if the process to be inserted into a scheduling class is already
class scheduled before it attempts to place the specified process into a scheduling class. If it is already
class scheduled, then the error message, SS$_INSCHEDCLASS, is returned from SYS$SCHED.

For more information about the SYS$SCHED system service, see the VSI OpenVMS System Services
Reference Manual: GETUTC-Z.

4.6. Changing Process Name
Use the system service SYS$SETPRN to change the name of your process. SYS$SETPRN can be used
only on the calling process. Changing process names might be useful when a lengthy image is being
executed. You can change names at significant points in the program; then monitor program execution
through the change in process names. You can obtain a process name by calling a SYS$GETJPI routine
from within a controlling process, either by pressing the Ctrl/T key sequence if the image is currently
executing in your process, or by entering the DCL command SHOW SYSTEM if the program is
executing in a detached process.

The following program segment calculates the tax status for a number of households, sorts the
households according to tax status, and writes the results to a report file. Because this is a time-
consuming process, the program changes the process name at major points so that progress can be
monitored.

 .
 .
 .
! Calculate approximate tax rates
STATUS = SYS$SETPRN ('INCTAXES')
IF (.NOT. STATUS) CALL LIB$SIGNAL(%VAL(STATUS))
STATUS = TAX_RATES (TOTAL_HOUSES,
2 PERSONS_HOUSE,
2 ADULTS_HOUSE,
2 INCOME_HOUSE,
2 TAX_PER_HOUSE)
IF (.NOT. STATUS) CALL LIB$SIGNAL(%VAL(STATUS))
! Sort
STATUS = SYS$SETPRN ('INCSORT')
IF (.NOT. STATUS) CALL LIB$SIGNAL(%VAL(STATUS))
STATUS = TAX_SORT (TOTAL_HOUSES,

108

Chapter 4. Process Control

2 TAX_PER_HOUSE)
IF (.NOT. STATUS) CALL LIB$SIGNAL(%VAL(STATUS))

! Write report
STATUS = SYS$SETPRN ('INCREPORT')
IF (.NOT. STATUS) CALL LIB$SIGNAL(%VAL(STATUS))
 .
 .
 .

4.7. Accessing Another Process's Context
On OpenVMS VAX systems, a system programmer must sometimes develop code that performs various
actions (such as performance monitoring) on behalf of a given process, executing in that process's
context. To do so, a programmer typically creates a routine consisting of position-independent code
and data, allocates sufficient space in nonpaged pool, and copies the routine to it. On OpenVMS VAX
systems, such a routine can execute correctly no matter where it is loaded into memory.

On OpenVMS Alpha and I64 systems, the practice of moving code in memory is more difficult and
complex. It is not enough to simply copy code from one memory location to another. On OpenVMS
Alpha and I64 systems, you must relocate both the routine and its linkage section, being careful to
maintain the relative distance between them, and then apply all appropriate fixups to the linkage section.

The OpenVMS Alpha and I64 systems provide two mechanisms to enable one process to access the
context of another:

• Code that must read from or write to another process's registers or address space can use the
EXE$READ_PROCESS and EXE$WRITE_PROCESS system routines, as described in
Section 4.7.1.

• Code that must perform other operations in another process's context (for instance, to execute a
system service to raise a target process's quotas) can be written as an OpenVMS Alpha or OpenVMS
I64 executive image, as described in Section 4.7.2.

4.7.1. Reading and Writing in the Address Space of
Another Process (Alpha and I64 Only)
EXE$READ_PROCESS and EXE$WRITE_PROCESS are OpenVMS Alpha and OpenVMS
I64 system routines in nonpaged system space. EXE$READ_PROCESS reads data from a target
process's address space or registers and writes it to a buffer in the local process's address space.
EXE$WRITE_PROCESS obtains data from a local process's address space and transfers it to the target
process's context. Both routines must be called from kernel mode at IPL 0.

One of the arguments to these procedures specifies whether or not the procedure is to access memory
and registers in the target process. Another argument specifies the memory address or register number.
The contents of these arguments are symbolic names (beginning with the prefix EACB$) that are
defined by the $PROCESS_READ_WRITE macro in SYS$LIBRARY:LIB.MLB. (They are also
defined in LIB.REQ for BLISS programmers).

4.7.1.1. EXE$READ_PROCESS and EXE$WRITE_PROCESS
The following are descriptions of the callable interfaces to EXE$READ_PROCESS and
EXE$WRITE_PROCESS.

109

Chapter 4. Process Control

EXE$READ_PROCESS

EXE$READ_PROCESS — Reads data from a target process's address space or registers and writes it to
a buffer in the local process's address space.

Module

PROC_READ_WRITE

Format

status = EXE$READ_PROCESS
 (ipid, buffer_size, target_address, local_address,
 target_address_type, ast_counter_address)

Arguments

ipid

OpenVMS usage ipid

type longword (unsigned)

access read only

mechanism by value

Internal process ID of the target process. The internal PID, or internal process ID, is distinct from the
extended PID, or PID. The internal PID does not include any node information, and is used only in
internal routines that operate on a single node within a cluster. The two types of pids are described in
the PCBDEF.SDL file. Note that the bit layout of the pids is dependent upon the version of OpenVMS
in use, and may change from one version of OpenVMS to the next. However, the internal PID can be
derived from the extended PID using the routine EXE_STD$CVT_EPID_TO_IPID. This routine takes
a single argument (the extended pid, unsigned longword by value) and returns the internal pid (unsigned
longword by value) as the return value of the routine. If an error occurs, the return value is set to zero.

buffer_size

OpenVMS usage longword_unsigned

type longword (unsigned)

access read only

mechanism by value

Number of bytes to transfer. If target_address_type is EACB$K_GENERAL_REGISTER, the values
of target_address and buffer_size together determine how many 64-bit registers are written, in numeric
order, to the buffer. A partial register is written for any value that is not a multiple of 8.

If you specify buffer_size to be larger than 8, more than one register is written from the buffer.
Registers are written in numeric order, followed by the PC and PS, starting at the register indicated by
target_address.

If target_address_type is EACB$K_GENERAL_REGISTER and the values of buffer_size and
target_address would cause a target process read extending beyond the last available register (based on
the value of EACB$K_GEN_REGS_LENGTH), EXE$READ_PROCESS returns SS$_ILLSER status.

target_address

110

Chapter 4. Process Control

OpenVMS usage longword_unsigned

type longword (unsigned)

access read only

mechanism by reference (if address); by value (if constant)

If target_address_type is EACB$K_MEMORY, address in target process at which the transfer is to
start.

If target_address_type is EACB$K_GENERAL_REGISTER, symbolic constant indicating at which
general register the transfer should start. Possible constant values include EACB$K_R0 through
EACB$K_R29, EACB$K_PC, and EACB$K_PS.

For I64, if target_address_type is EACB$K_GENERAL_REGISTER, register values extend from
eacb$k_r0 through eacb$k_isr (see proc_read_write.h).

If target_address_type type is EACB$K_INVOCATION_CONTEXT, register values represent
values in an INVOCATION_CONTEXT. See the VSI OpenVMS Calling Standard for the definition of
invocation context.

local_address

OpenVMS usage longword_unsigned

type longword (unsigned)

access read only

mechanism by reference

Address of buffer in local process to which data is to be written.

target_address_type

OpenVMS usage integer

type longword (unsigned)

access read only

mechanism by value

Symbolic constant indicating whether the target_address argument is a memory address
(EACB$K_MEMORY) or a general register (EACB$K_GENERAL_REGISTER). Floating-point
registers are not supported as target addresses.

For I64, symbolic constant indicating whether the target_address argument is a memory address
(eacb$k_memory), or a general register (eacb$k_general_register), or an invocation context
(eacb$k_invocation_context). Floating point registers are not supported as target addresses.

ast_counter_address

OpenVMS usage longword_unsigned

type longword (unsigned)

access read only

mechanism by reference

111

Chapter 4. Process Control

Address of a longword used internally as an AST counter by EXE$READ_PROCESS and
EXE$WRITE_PROCESS to detect errors. Supply the same address in the ast_counter_address
argument for every call to these routines.

Returns

OpenVMS usage cond_value

type longword (unsigned)

access write only

mechanism by value

Return Values

SS$_ACCVIO Unable to write to the location indicated by local_address or
ast_counter_address.

SS$_ILLSER Routine was called with IPL greater than 0, or an illegal
target_address_type was specified. If target_address_type is
EACB$K_GENERAL_REGISTER, this status can indicate that the
values of buffer_size and target_address would cause a target process
read extending beyond the last available register (based on the value of
EACB$K_GEN_REGS_LENGTH).

SS$_INSFMEM Insufficient memory available for specified buffer.
SS$_NONEXPR The ipid argument does not correspond to an existing process.
SS$_NORMAL The interprocess read finished successfully.
SS$_TIMEOUT The read operation did not finish within a few seconds.

Context

The caller of EXE$READ_PROCESS must be executing in kernel mode at IPL 0. Kernel mode ASTs
must be enabled.

Description

EXE$READ_PROCESS reads data from a target process's address space and writes it to a buffer in the
local process's address space.

EXE$READ_PROCESS allocates nonpaged pool for an AST control block (ACB), an ACB extension,
and a buffer of the specified size. It initializes the extended ACB with information describing the data
transfer and then delivers an AST to the target process to perform the operation. The data is read in the
context of the target process from its address space or registers into nonpaged pool. An AST is then
queued to the requesting process to complete the read operation by copying the data from pool to the
process's buffer.

EXE$READ_PROCESS does not return to its caller until the read is completed, an error is encountered,
or it has timed out. (The current timeout value is 3 seconds).

EXE$WRITE_PROCESS

EXE$WRITE_PROCESS — Reads data from the local process’s address space and writes it either to a
target process’s registers or a buffer in a target process’s address space.

112

Chapter 4. Process Control

Module

PROC_READ_WRITE

Format

status = EXE$WRITE_PROCESS
 (ipid, buffer_size, local_address, target_address,
 target_address_type, ast_counter_address)

Arguments

ipid

OpenVMS usage idip

type longword (unsigned)

access read only

mechanism by value

Internal process ID of the target process. The internal PID, or internal process ID, is distinct from the
extended PID, or PID. The internal PID does not include any node information, and is used only in
internal routines that operate on a single node within a cluster. The two types of pids are described in
the PCBDEF.SDL file. Note that the bit layout of the pids is dependent upon the version of OpenVMS
in use, and may change from one version of OpenVMS to the next. However, the internal PID can be
derived from the extended PID using the routine EXE_STD$CVT_EPID_TO_IPID. This routine takes
a single argument (the extended pid, unsigned longword by value) and returns the internal pid (unsigned
longword by value) as the return value of the routine. If an error occurs, the return value is set to zero.

buffer_size

OpenVMS usage longword_unsigned

type longword (unsigned)

access read only

mechanism by value

Number of bytes to transfer. If target_address_type is EACB$K_GENERAL_REGISTER, the values
of target_address and buffer_size together determine how many 64-bit registers are written, in numeric
order, from the buffer. A partial register is written for any value that is not a multiple of 8.

If you specify buffer_size to be larger than 8, more than one register is written from the buffer.
Registers are written in numeric order, followed by the PC and PS, starting at the register indicated by
target_address.

If target_address_type is EACB$K_GENERAL_REGISTER and the values of buffer_size and
target_address would cause a write extending beyond the last available register (based on the value of
EACB$K_GEN_REGS_LENGTH), EXE$WRITE_PROCESS returns SS$_ILLSER status.

local_address

OpenVMS usage longword_unsigned

type longword (unsigned)

access read only

113

Chapter 4. Process Control

mechanism by reference

Address in local process from which data is to be transferred.

target_address

OpenVMS usage longword_unsigned

type longword (unsigned)

access read only

mechanism by reference (if address) by value (if constant)

If target_address_type is EACB$K_MEMORY, address in target process at which the transfer is to
start.

If target_address_type is EACB$K_GENERAL_REGISTER, symbolic constant indicating at which
general register the transfer should start. Possible constant values include EACB$K_R0 through
EACB$K_R29, EACB$K_PC, and EACB$K_PS.

For I64, if target_address_type is EACB$K_GENERAL_REGISTER, register values extend from
each$k_r0 through eacb$k_isr (see proc_read_write.h).

For Alpha and I64, target_address_type may not be set to EACB$K_INVOCATION_CONTEXT.

target_address_type

OpenVMS usage longword_unsigned

type longword (unsigned)

access read only

mechanism by value

Symbolic constant indicating whether the target_address argument is a memory address
(EACB$K_MEMORY) or a general register (EACB$K_GENERAL_REGISTER). Floating-point
registers are not supported as target addresses.

ast_counter_address

OpenVMS usage longword_unsigned

type longword (unsigned)

access read only

mechanism by reference

Address of a longword used internally as an AST counter by EXE$READ_PROCESS and
EXE$WRITE_PROCESS to detect errors. Supply the same address in the ast_counter_address
argument for every call to these routines.

Returns

OpenVMS usage cond_value

type longword (unsigned)

access write only

mechanism by value

114

Chapter 4. Process Control

Return Values

SS$_ACCVIO Unable to read from the location indicated by local_address or write to the
location indicated by ast_counter_address.

SS$_ILLSER Routine was called with IPL greater than 0, or an illegal
target_address_type was specified. If target_address_type is
EACB$K_GENERAL_REGISTER, this status can indicate that the
values of buffer_size and target_address would cause a process write
extending beyond the last available register (based on the value of
EACB$K_GEN_REGS_LENGTH).

SS$_INSFMEM Insufficient memory available for specified buffer.
SS$_NONEXPR The ipid argument does not correspond to an existing process.
SS$_NORMAL The interprocess write finished successfully.
SS$_TIMEOUT The write operation did not finish within a few seconds.

Context

The caller of EXE$WRITE_PROCESS must be executing in kernel mode at IPL 0. Kernel mode ASTs
must be enabled.

Description

EXE$WRITE_PROCESS reads data from the local process's address space and writes it to a target
process's registers or a buffer in a target process's address space.

EXE$WRITE_PROCESS allocates nonpaged pool for an AST control block (ACB), an ACB extension,
and a buffer of the specified size. It initializes the extended ACB with information describing the data
transfer, copies the data to be written to the target process into the buffer, and then delivers an AST to
the target process to perform the operation.

The AST routine copies the data from pool into the target location and then queues an AST to the
requesting process to complete the write operation.

EXE$WRITE_PROCESS does not return to its caller until the read is completed, an error is
encountered, or it has timed out. (The current timeout value is 3 seconds).

4.7.2. Writing an Executive Image (Alpha and I64 Only)
An executive image is an image that is mapped into system space as part of the OpenVMS executive. It
contains data, routines, and initialization code specific to an image's functions and features. An executive
image is implemented as a form of shareable image. Like any shareable image, it has a global symbol
table, image section descriptors, and an image activator fixup section. Unlike a shareable image, however,
an executive image does not usually contain a symbol vector.

Universally available procedures and data cells in system-supplied executive images are accessed through
entries provided by the symbol vectors in the system base images SYS$BASE_IMAGE.EXE and
SYS$PUBLIC_VECTORS.EXE. References to an executive image are resolved through these symbol
vectors, whether from an executive image or from a user executable or shareable image.

Unlike a system-supplied executive image, an executive image that you create cannot provide universally
accessible entry points and symbols in this manner. Instead, it must establish its own vector of procedure
descriptors for its callable routines and make the address of that vector available systemwide.

115

Chapter 4. Process Control

The OpenVMS executive loader imposes several requirements on the sections of any executive image.
These requirements include the following:

• On Alpha, an executive image can contain at most one image section of the following types and no
others:

• Nonpaged execute section (for code)

• Nonpaged read/write section (for read-only and writable data, locations containing addresses that
must be relocated at image activation, and the linkage section for nonpaged code)

• Paged execute section (for code)

• Paged read/write section (for read-only and writable data, locations containing addresses that
must be relocated at image activation, and the linkage section for pageable code)

• Initialization section (for initialization procedures and their associated linkage section and data)

• Image activator fixup section

The modules of an executive image define program sections (PSECT) with distinct names. The
named PSECT is necessary so that the program sections can be collected into clusters, by means of
the COLLECT= linker option, during linking. A COLLECT= option specified in the linking of an
executive image generates each of the first five image sections.

The linker creates the image activator fixup section to enable the image activator to finally resolve
references to SYS$BASE_IMAGE.EXE and SYS$PUBLIC_VECTORS.EXE with addresses within
the loaded executive image. Once the executive image has been initialized, the OpenVMS executive
loader deallocates the memory for both the fixup section and the initialization section.

• On I64, an executive image can have any number of image sections of various types. Image sections
are loaded using the actual image size, and a type-specific allocation granularity less than the page
size. Having more than a minimum number of image sections has some impact on physical memory
consumption, but much less than on Alpha. All image sections are loaded into non-pagable memory
of the following types:

• Nonpaged execute section (for code)

• Nonpaged read/write section (for read-only and writable data, and locations containing addresses
that must be relocated by the exec loader)

• Initialization read/write section (for initialization procedures and their associated data)

• Image activator fixup section (the 'dynamic' segment)

An executive image may have a symbol vector, which defines procedures and data that are to be
accessed by other executive images. Most procedure and data references between executive images
are resolved through the symbol vector in SYS$BASE_IMAGE, which reduces the dependencies
between executive images.

Once the executive image has been initialized, the OpenVMS executive loader deallocates the
memory for both the fixup section and the initialization section.

• You link an executive image as a type of shareable image that can be loaded by the executive
loader. When linking an executive image, VSI strongly recommends using the linker options file
SYS$LIBRARY:VMS_EXECLET_LINK.OPT, which sets PSECT attributes on COLLECT options

116

Chapter 4. Process Control

to link an executive image appropriately. The option file contents differ between Alpha and I64 for
appropriate linking for each architecture.

Note that on OpenVMS Alpha and I64 systems the execute section cannot contain data. You must
collect all data, whether read-only or writable, into one of the read/write sections.

• On OpenVMS Alpha systems, VSI recommends linking executive images using the
/SECTION_BINDING qualifier to the LINK command. The executive loader can then consolidate
image sections into granularity hint regions. This process yields a tangible performance benefit. See
the VSI OpenVMS Linker Utility Manual for more information about section binding.

• On OpenVMS I64 systems, the executive loader may always consolidate image sections into
granularity hint regions. No special linker qualifiers are required. However, for compatibility with
Alpha, the I64 linker allows, but ignores, the /SECTION_BINDING qualifier.

See Section 4.7.2.2 for a template of a LINK command and linker options file used to produce an
executive image.

An executive image can contain one or more initialization procedures that are executed when the image
is loaded. If the image is listed in SYS$LOADABLE_IMAGES:VMS$SYSTEM_IMAGES.DAT as
created by means of System Management utility (SYSMAN) commands, initialization procedures can be
run at various stages of system initialization.

An initialization routine performs a variety of functions, some specific to the features supported by
the image and others required by many executive images. An executive image declares an initialization
routine (see Section 4.7.2.1).

The initialization routine may return information to the caller of LDR$LOAD_IMAGE via a caller-
supplied buffer.

4.7.2.1. INITIALIZATION_ROUTINE Macro (Alpha and I64 Only)
The following describes the invocation format of the INITIALIZATION_ROUTINE macro. An
equivalent macro, $INITIALIZATION_ROUTINE is provided for BLISS programmers. For C
programmers, INIT_RTN_SETUP.H in SYS$LIB_C.TLB is available.

INITIALIZATION_ROUTINE

INITIALIZATION_ROUTINE — Declares a routine to be an initialization routine.

Format

INITIALIZATION_ROUTINE name [,system_rtn=0] [,unload=0] [,priority=0]

Parameters

name

Name of the initialization routine.

[system_rtn=0]

Indicates whether the initialization routine is external to the module invoking the macro. The default
value of 0, indicating that the initialization routine is part of the current module, is the only option
supported.

117

Chapter 4. Process Control

[unload=0]

Indicates whether the name argument specifies an unload routine. The default value of 0, indicating that
the argument specifies an initialization routine, is the only option supported.

[priority=0]

Indicates the PSECT in which the entry for this initialization routine should be placed. Routines that
specify the priority argument as 0 are placed in the first PSECT (EXEC$INIT_000); those that
specify a value of 1 are placed in the second (EXEC$INIT_001). The routines in the first PSECT are
called before those in the second.

Description

The INITIALIZATION_ROUTINE macro declares a routine to be an initialization routine.

4.7.2.2. Linking an Executive Image (Alpha or I64 Only)
The following template can serve as the basis of a LINK command and linker options file used to create
an OpenVMS executive image. See the VSI OpenVMS Linker Utility Manual for a full description of
most linker qualifiers and options referenced by this example.

Note

Use of the linker to create executive images (specifically the use of the /ATTRIBUTES switch on the
COLLECT= option in SYS$LIBRARY:VMS_EXECLET_LINK.OPT) is not documented elsewhere
and is not supported by VSI OpenVMS.

! Replace 'execlet' with your image name

$ LINK /NATIVE_ONLY/BPAGES=14 -
/REPLACE/SECTION/NOTRACEBACK-
/SHARE=execlet-
/MAP=execlet /FULL /CROSS -
/SYMBOL=execlet -
SYS$LIBRARY:VMS_EXECLET_LNK /OPTION, -
SYS$INPUT/OPTION
!
SYMBOL_TABLE=GLOBALS
! Creates .STB for System Dump Analyzer
CLUSTER=execlet,,,- !
SYS$LIBRARY:STARLET/INCLUDE:(SYS$DOINIT), -
! Insert executive object code here
sys$disk:[]execlet.obj
! end of executive object code here
SYS$LOADABLE_IMAGES:SYS$BASE_IMAGE.EXE/SHAREABLE/SELECTIVE

The CLUSTER= option creates the named cluster execlet, specifying the order in which the linker
processes the listed modules.
The object module SYS$DOINIT (in STARLET.OLB) is explicitly linked into an executive image.
This module declares the initialization routine table and provides routines to drive the actual
initialization of an executive image.

4.7.2.3. Loading an Executive Image (Alpha or I64 Only)
There are two methods of loading an executive image:

118

Chapter 4. Process Control

• Calling LDR$LOAD_IMAGE to load the executive image at run time. This method lets you pass
the address of a buffer to the image's initialization routine by which the caller and the initialization
routine can exchange data. Section 4.7.2.4 describes LDR$LOAD_IMAGE. Note that you must
link the code that calls LDR$LOAD_IMAGE against the system base image, using the /SYSEXE
qualifier to the LINK command.

• Using the SYSMAN SYS_LOADABLE ADD command and updating the OpenVMS system images
file (SYS$LOADABLE_IMAGES:VMS$SYSTEM_IMAGES.DATA). This method causes the
executive image to be loaded and initialized during the phases of system initialization.(See VMS
for Alpha Platforms Internals and Data Structures for information about how an executive image's
initialization routine is invoked during system initialization).

To load an executive image with the System Management utility (SYSMAN), perform the following
tasks:

1. Copy the executive image to SYS$LOADABLE_IMAGES.

2. Add an entry for the executive image in the data file
SYS$UPDATE:VMS$SYSTEM_IMAGES.IDX, as follows:

SYSMAN SYS_LOADABLE ADD _LOCAL_ executive-image -
/LOAD_STEP = SYSINIT -
/SEVERITY = WARNING -
/MESSAGE = "failure to load executive-image"

3. Invoke the SYS$UPDATE:VMS$SYSTEM_IMAGES.COM command procedure to generate a new
system image data file (file name SYS$LOADABLE_IMAGES:VMS$SYSTEM_IMAGES.DATA).
During the bootstrap, the system uses this data file to load the appropriate images.

4. Reboot the system. This causes the new executive image to be loaded into the system.

4.7.2.4. LDR$LOAD_IMAGE (Alpha or I64 Only)
The following is a description of the callable interface to LDR$LOAD_IMAGE.

LDR$LOAD_IMAGE

LDR$LOAD_IMAGE — Loads an OpenVMS executive image into the system.

Module

SYSLDR_DYN

Format

LDR$LOAD_IMAGE filename ,flags ,ref_handle ,user_buf

Arguments

filename

OpenVMS usage character string

type character string

access read only

119

Chapter 4. Process Control

mechanism by descriptor

The longword address of a character string descriptor containing the file name of the executive image to
be loaded. The file name can include a directory specification and image name, but no device name. If
you omit the directory specification, LDR$LOAD_IMAGE supplies SYS$LOADABLE_IMAGES as the
default.

flags

OpenVMS usage flags

type longword (unsigned)

access read only

mechanism value

A flags longword, containing the following bit fields. (Symbolic names for these bit fields are defined by
the $LDRDEF macro in SYS$LIBRARY:LIB.MLB).

Bit Field Description

LDR$V_PAG When set, indicates that the image should be loaded with its pageable
sections resident. The flag is generally based on the value of the bit 0 in the
S0_PAGING system parameter. This flag is ignored on I64, as all executive
image sections are loaded resident (nonpaged).

LDR$V_UNL When set, indicates that the image may be removed from memory.
LDR$V_OVR When set, indicates that the image's read-only sections should not be

overwritten during bugcheck processing. This flag is not used on OpenVMS
Alpha or I64 systems.

LDR$V_USER_BUF When set, indicates that the caller has passed the address of a buffer that
should be passed to the initialization routine.

LDR$V_NO_SLICE When set, indicates that the image's sections should not be loaded into a
granularity hint region. This flag is ignored on I64, as all executive image
sections may be loaded into a granularity hint region.

ref_handle

OpenVMS usage address

type longword (signed)

access write only

mechanism by reference

The longword address of a reference handle, a three-longword buffer to be filled by
LDR$LOAD_IMAGE as follows:

+00 Address of loaded image or zero if image was loaded sliced.
+04 Address of loaded image data block (LDRIMG). See the $LDRIMGDEF macro

definition in SYS$LIBRARY:LIB.MLB and VMS for Alpha Platforms Internals and
Data Structures for a description of the LDRIMG structure.

+08 Loaded image sequence number.

user_buf

120

Chapter 4. Process Control

OpenVMS usage address

type longword (signed)

access read only

mechanism by reference

The longword address of a user buffer passed to executive image's initialization routine if
LDR$V_USER_BUF is set in the flags longword.

Context

LDR$LOAD_IMAGE must be called in executive mode.

Returns

OpenVMS usage cond_value

type longword (unsigned)

access write only

mechanism by value

Status indicating the success or failure of the operation.

Return Values

SS$_ACCVIO Unable to read the character string descriptor containing the file name
of the executive image to be loaded or to write the reference handle.

LOADER$_BAD_GSD An executive image was loaded containing a global symbol that
is not vectored through either the SYS$BASE_IMAGE or the
SYS$PUBLIC_VECTORS image.

SS$_BADIMGHDR Image header is larger than two blocks or was built with a version of the
linker that is incompatible with LDR$LOAD_IMAGE.

LOADER$_BADIMGOFF During a sliced image load request, a relocation or fixup operation was
attempted on an image offset that has no resultant address within the
image.

LOADER$_DZRO_ISD A load request was made for an executive image that illegally contains
demand zero sections.

SS$_INSFARG Fewer than three arguments were passed to LDR$LOAD_IMAGE, or,
with LDR$V_USER_BUF set in the flags longword, fewer than four
arguments.

SS$_INSFMEM Insufficient nonpaged pool for the LDRIMG structure or insufficient
physical memory to load nonpageable portion of an executive image
(that is, an image loaded as nonsliced).

SS$_INSFSPTS Insufficient system page table entries (SPTEs) to describe the address
space required for the executive image to be loaded as nonsliced.

LOADER$_MULTIPLE_
ISDS

A load request was made for an image that was not linked correctly
because it contains more than one each of the following types of
sections:

fixup
initialization

121

Chapter 4. Process Control

nonpaged code
nonpaged data
paged code
paged data

LOADER$_NO_PAGED_
ISDS

SYSBOOT failed to load the executive image because it contains either
paged code or paged data sections.

SS$_NOPRIV LDR$LOAD_IMAGE was called from user or supervisor mode.
LOADER$_NO_SUCH_
IMAGE

A load request was made for an executive image that was linked
against a shareable image that is not loaded. The only legal
shareable images for executive images are SYS$BASE_IMAGE and
SYS$PUBLIC_VECTORS.

SS$_NORMAL Normal, successful completion.
LOADER$_PAGED_
GST_TOBIG

An executive image has more global symbols in the fixup data than can
fit in the loader's internal tables.

LOADER$_PSB_FIXUPS A load request was made for an executive image that contains LPPSB
fixup because it was linked /NONATIVE_ONLY. Executive images
must be linked /NATIVE_ONLY.

LOADER$_SPF_TOBIG The loader's internal tables cannot accommodate all of the executive
image fixups that must be postponed to later in the bootstrap operation.

SS$_SYSVERDIF Image was linked with versions of executive categories incompatible
with those of the running system.

LOADER$_VEC_TOBIG An attempt to load an executive image failed because the
image's symbol vector updates for SYS$BASE_IMAGE and
SYS$PUBLC_VECTORS exceed the size of the loader's internal tables.

Other Any RMS error status returned from $OPEN failures. Any I/O error
status returned from $QIO failures.

Description

LDR$LOAD_IMAGE loads an executive image into system space and calls its initialization routine.
Optionally, LDR$LOAD_IMAGE returns information about the loaded image to its caller.

The initialization routine is passed by two or three longword arguments, depending upon the setting of
LDR$V_USER_BUF:

• Address of loaded image data block (LDRIMG)

• The flags longword

• The longword address of a user buffer passed to the executive image's initialization routine (if
LDR$V_USER_BUF is set in the flags longword)

4.7.2.5. LDR$UNLOAD_IMAGE (Alpha or I64 Only)
The following is a description of the callable interface to LDR$UNLOAD_IMAGE.

LDR$UNLOAD_IMAGE

LDR$UNLOAD_IMAGE — Unloads a removable executive image. This routine is called to unload an
execlet. All resources are returned.

122

Chapter 4. Process Control

Module

SYSLDR_DYN

Format

LDR$UNLOAD_IMAGE filename ,ref_handle

Arguments

filename

OpenVMS usage character string

type character string

access read only

mechanism by descriptor

The longword address of a character string descriptor containing the file name of the executive image to
be unloaded. The file name must be supplied exactly as it was supplied to LDR$LOAD_IMAGE when
the executive image was loaded.

ref_handle

OpenVMS usage address

type longword (signed)

access read only

mechanism by reference

The longword address of the reference handle containing the three-longword block returned by
LDR$LOAD_IMAGE when the executive image was loaded. You can set the first longword of the block
to -1 to bypass reference handle checks and simply unload the named executive image.

Context

LDR$UNLOAD_IMAGE must be called in kernel mode.

Returns

OpenVMS usage cond_value

type longword (unsigned)

access write only

mechanism by value

Status indicating the success or failure of the operation.

Return Values

SS$_INSFARG LDR$UNLOAD_IMAGE was not called with two parameters.
SS$_BADPARAMS Reference handle data inconsistent with LDRIMG block that matches the

name in the first argument.
LOADER$_
MARKUNL

A call was made to the LDR$UNLOAD_IMAGE routine to unload a
removable executive image that already has an outstanding unload request
against it.

123

Chapter 4. Process Control

SS$_NOPRIV LDR$UNLOAD_IMAGE was not called in kernel mode.
SS$_NORMAL Executive image was successfully removed from the system.
LOADER$_NOT_UNL A call was made to LDR$UNLOAD_IMAGE to unload an executive image

that is not loaded or that was not loaded with the LDR$V_UNL flag bit set.
LOADER$_UNL_PEN A call was made to LDR$UNLOAD_IMAGE to unload an executive image

that is in use. The image is marked to be unloaded later.

Description

LDR$UNLOAD_IMAGE removes an executive image from system space and returns all memory
resources allocated when the image was loaded. Images can only be removed if they were originally
loaded with the bit LDR$V_UNL set in the input flags to LDR$LOAD_IMAGE.

4.8. Synchronizing Programs by Specifying a
Time for Program Execution
You can synchronize timed program execution in the following ways:

• Executing a program at a specific time

• Executing a program at timed intervals

4.8.1. Obtaining the System Time
The process control procedures that allow you to synchronize timed program execution require you to
supply a system time value.

You can use either system services or RTL routines for obtaining and reading time. They are
summarized in Table 4.10. With these routines, you can determine the system time, convert it to an
external time, and pass a time back to the system. The system services use the operating system's default
date format. With the RTL routines, you can use the default format or specify your own date format.
However, if you are just using the time and date for program synchronization, using the operating
system's default format is probably sufficient.

When using the RTL routines to change date/time formats, initialization routines are required. Refer to
the VSI OpenVMS RTL Library (LIB$) Manual for more information.

See VSI OpenVMS Programming Concepts Manual, Volume II for a further discussion of using timing
operations with the operating system.

Table 4.10. Time Manipulation System Services and Routines

Routine Description

SYS$GETTIM Obtains the current date and time in 64-bit binary format
SYS$NUMTIM Converts system date and time to numeric integer values
SYS$ASCTIM Converts an absolute or delta time from 64-bit system time

format to an ASCII string
SYS$ASCUTC Converts an absolute time from 128-bit Coordinated

Universal Time (UTC) format to an ASCII string
LIB$SYS_ASCTIM Converts binary time to an ASCII string

124

Chapter 4. Process Control

Routine Description

SYS$BINTIM Converts a date and time from ASCII to system format
SYS$BINUTC Converts an ASCII string to an absolute time value in the

128-bit UTC format
SYS$FAO Converts a binary value into an ASCII character string in

decimal, hexadecimal, or octal notation and returns the
character string in an output string

SYS$GETUTC Returns the current time in 128-bit UTC format
SYS$NUMUTC Converts an absolute 128-bit binary time into its numeric

components. The numeric components are returned in local
time

SYS$TIMCON Converts 128-bit UTC to 64-bit system format or 64-bit
system format to 128-bit UTC based on the value of the
convert flag

LIB$ADD_TIMES Adds two quadword times
LIB$CONVERT_DATE_STRING Converts an input date/time string to an operating system

internal time
LIB$CVT_FROM_INTERNAL_TIME Converts internal time to external time
LIB$CVTF_FROM_INTERNAL_
TIME

Converts internal time to external time (F-floating value)

LIB$CVT_TO_INTERNAL_TIME Converts external time to internal time
LIB$CVTF_TO_INTERNAL_TIME Converts external time to internal time (F-floating value)
LIB$CVT_VECTIM Converts 7-word vector to internal time
LIB$DAY Obtains offset to current day from base time, in number of

days
LIB$DATE_TIME Obtains the date and time in user-specified format
LIB$FORMAT_DATE_TIME Formats a date and/or time for output
LIB$FREE_DATE_TIME_CONTEXT Frees date/time context
LIB$GET_DATE_FORMAT Returns the user's specified date/time input format
LIB$GET_MAXIMUM_DATE_
LENGTH

Returns the maximum possible length of an output date/time
string

LIB$GET_USERS_LANGUAGE Returns the user's selected language
LIB$INIT_DATE_TIME_CONTEXT Initializes the date/time context with a user-specified format
LIB$SUB_TIMES Subtracts two quadword times

4.8.1.1. Executing a Program at a Specified Time
To execute a program at a specified time, use LIB$SPAWN to create a process that executes a command
procedure containing two commands—the DCL command WAIT and the command that invokes the
desired program. Because you do not want the parent process to remain in hibernation until the process
executes, execute the process concurrently.

You can also use the SYS$CREPRC system service to execute a program at a specified time. However,
because a process created by SYS$CREPRC hibernates rather than terminates after executing the desired
program, VSI recommends you use the LIB$SPAWN routine unless you need a detached process.

125

Chapter 4. Process Control

Example 4.14 executes a program at a specified delta time. The parent program prompts the user for
a delta time, equates the delta time to the symbol EXECUTE_TIME, and then creates a subprocess to
execute the command procedure LATER.COM. LATER.COM uses the symbol EXECUTE_TIME as
the parameter for the WAIT command. (You might also allow the user to enter an absolute time and
have your program change it to a delta time by subtracting the current time from the specified time. VSI
OpenVMS Programming Concepts Manual, Volume II discusses time manipulation).

Example 4.14. Executing a Program Using Delta Time

! Delta time
CHARACTER*17 TIME
INTEGER LEN
! Mask for LIB$SPAWN
INTEGER*4 MASK

! Declare status and library routine
INTEGER STATUS, LIB$SPAWN

! Get delta time
STATUS = LIB$GET_INPUT (TIME,
2 'Time (delta): ',
2 LEN)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))
! Equate symbol to TIME
STATUS = LIB$SET_SYMBOL ('EXECUTE_TIME',
2 TIME(1:LEN))
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))
! Set the mask and call LIB$SPAWN
MASK = IBSET (MASK,0) ! Execute subprocess concurrently
STATUS = LIB$SPAWN('@LATER',
2 'DATA84.IN',
2 'DATA84.RPT',
2 MASK)

END

LATER.COM

$ WAIT 'EXECUTE_TIME'
$ RUN SYS$DRIVE0:[USER.MATH]CALC
$ DELETE/SYMBOL EXECUTE_TIME

4.8.1.2. Executing a Program at Timed Intervals
To execute a program at timed intervals, you can use either LIB$SPAWN or SYS$CREPRC.

Using LIB$SPAWN

Using LIB$SPAWN, you can create a subprocess that executes a command procedure containing
three commands: the DCL command WAIT, the command that invokes the desired program, and a
GOTO command that directs control back to the WAIT command. Because you do not want the parent
process to remain in hibernation until the subprocess executes, execute the subprocess concurrently. See
Section 4.8.1.1 for an example of LIB$SPAWN.

Using SYS$CREPRC

Using SYS$CREPRC, create a detached process to execute a program at timed intervals as follows:

126

Chapter 4. Process Control

1. Create and hibernate a process – Use SYS$CREPRC to create a process that executes the desired
program. Set the PRC$V_HIBER bit of the stsflg argument of the SYS$CREPRC system service
to indicate that the created process should hibernate before executing the program.

2. Schedule a wakeup call for the created subprocess – Use the SYS$SCHDWK system service to
specify the time at which the system should wake up the subprocess, and a time interval at which the
system should repeat the wakeup call.

Example 4.15 executes a program at timed intervals. The program creates a subprocess that immediately
hibernates. (The identification number of the created subprocess is returned to the parent process so
that it can be passed to SYS$SCHDWK.) The system wakes up the subprocess at 6:00 a.m. on the 23rd
(month and year default to system month and year) and every 10 minutes thereafter.

Example 4.15. Executing a Program at Timed Intervals

! SYS$CREPRC options and values
INTEGER OPTIONS
EXTERNAL PRC$V_HIBER
! ID of created subprocess
INTEGER CR_ID
! Binary times
INTEGER TIME(2),
2 INTERVAL(2)
 .
 .
 .
! Set the PRC$V_HIBER bit in the OPTIONS mask and
! create the process
OPTIONS = IBSET (OPTIONS, %LOC(PRC$V_HIBER))
STATUS = SYS$CREPRC (CR_ID, ! PID of created process
2 'CHECK', ! Image
2 ,,,,,
2 'SLEEP', ! Process name
2 %VAL(4), ! Priority
2 ,,
2 %VAL(OPTIONS)) ! Hibernate
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))
! Translate 6:00 a.m. (absolute time) to binary
STATUS = SYS$BINTIM ('23-- 06:00:00.00', ! 6:00 a.m.
2 TIME)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))
! Translate 10 minutes (delta time) to binary
STATUS = SYS$BINTIM ('0 :10:00.00', ! 10 minutes
2 INTERVAL)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))
! Schedule wakeup calls
STATUS = SYS$SCHDWK (CR_ID, ! ID of created process
2 ,
2 TIME, ! Initial wakeup time
2 INTERVAL) ! Repeat wakeup time
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))
 .
 .
 .

4.8.2. Placing Entries in the System Timer Queue

127

Chapter 4. Process Control

When you use the system timer queue, you use the timer expiration to signal when a routine is to be
executed. It allows the caller to request a timer that will activate sometime in the future. The timer is
requested for the calling kernel thread. When the timer activates, the event is reported to that thread. It
does not affect any other thread in the process.

For the actual signal, you can use an event flag or AST. With this method, you do not need a separate
process to control program execution. However, you do use up your process's quotas for ASTs and timer
queue requests.

Use the system service SYS$SETIMR to place a request in the system timer queue. The format of this
service is as follows:

SYS$SETIMR ([efn] ,daytim ,[astadr] ,[reqidt] ,[flags])

Specifying the Starting Time
Specify the absolute or delta time at which you want the program to begin execution using the daytim
argument. Use the SYS$BINTIM system service to convert an ASCII time to the binary system format
required for this argument.

Signaling Timer Expiration
Once the system has reached this time, the timer expires. To signal timer expiration, set an event flag
in the efn argument or specify an AST routine to be executed in the astadr argument. Refer to
Section 6.8 and Chapter 8 for more information about using event flags and ASTs.

How Timer Requests Are Identified
The reqidt argument identifies each system time request uniquely. Then, if you need to cancel a
request, you can refer to each request separately.

To cancel a timer request, use the SYS$CANTIM system service.

4.9. Controlling Kernel Threads and Process
Execution
You can control kernel threads and process execution in the following ways:

• Suspending a process – All kernel threads associated with the specified process are suspended.

• Hibernating a process – Only the calling kernel thread is hibernated.

• Stopping a process – All kernel threads associated with the specified process are stopped.

• Resuming a process – All kernel threads associated with the specified process are resumed.

• Exiting an image – All kernel threads associated with the specified process are exited.

• Deleting a process – All kernel threads associated with the specified process are deleted, and then the
process is deleted.

4.9.1. Process Hibernation and Suspension
There are two ways to halt the execution of a kernel thread or process temporarily:

128

Chapter 4. Process Control

• Hibernation – Performed by the Hibernate (SYS$HIBER) system service, which affects the calling
kernel thread.

• Suspension – Performed by the Suspend Process (SYS$SUSPND) system service, which affects all
of the kernel threads associated with the specified process.

The kernel thread can continue execution normally only after a corresponding Wake from Hibernation
(SYS$WAKE) system service (if it is hibernating), or after a Resume Process (SYS$RESUME) system
service, if it is suspended.

Suspending or hibernating a kernel thread puts it into a dormant state; the thread is not deleted.

A process in hibernation can control itself; a process in suspension requires another process to control it.
Table 4.11 compares hibernating and suspended processes.

Table 4.11. Process Hibernation and Suspension

Hibernation Suspension

Can cause only self to hibernate. Can suspend self or another process, depending on privilege;
suspends all threads associated with the specified process.

Reversed by
SYS$WAKE/SYS$SCHDWK system
service.

Reversed by SYS$RESUME system service.

Interruptible; can receive ASTs. Noninterruptible; cannot receive ASTs1.
Can wake self. Cannot cause self to resume.
Can schedule wake up at an absolute
time or at a fixed time interval.

Cannot schedule resumption.

1If a process is suspended in kernel mode (a hard suspension), it cannot receive any ASTs. If a process is suspended at supervisor mode (a soft
suspension), it can receive executive or kernel mode ASTs. See the description of SYS$SUSPND in the VSI OpenVMS System Services Reference
Manual: GETUTC-Z.

Table 4.12 summarizes the system services and routines that can place a process in or remove a process
from hibernation or suspension.

Table 4.12. System Services and Routines Used for Hibernation and Suspension

Routine Function

Hibernating Processes

SYS$HIBER Places the requesting kernel thread in the hibernation state. An AST can
be delivered to the thread while it is hibernating. The service puts only the
calling thread into HIB; no other thread is affected.

SYS$WAKE Resumes execution of a kernel thread in hibernation. This service wakes all
hibernating kernel threads in a process regardless of the caller. Any thread
that is not hibernating when the service is called is marked wake pending.
Because of the wake pending, the next call to SYS$HIBER completes
immediately and the thread does not hibernate. Premature wakeups must be
handled in the code.

SYS$SCHDWK Resumes execution of a kernel thread in hibernation at a specified time.
This service schedules a wakeup request for a thread that is about to call
SYS$HIBER. The wakeup affects only the requesting thread; any other
hibernating kernel threads are not affected.

LIB$WAIT Uses the services SYS$SCHDWK and SYS$HIBER.

129

Chapter 4. Process Control

Routine Function

SYS$CANWAK Cancels a scheduled wakeup issued by SYS$SCHDWK. Unless called with a
specific timer request ID, this service cancels all timers for all threads in the
process regardless of the calling thread.

Suspended Kernel Threads and Processes

SYS$SUSPEND Puts in a suspended state all threads associated with the specified process.
SYS$RESUME Puts in an execution state all threads of the specified process.

4.9.1.1. Using Process Hibernation
The hibernate/wake mechanism provides an efficient way to prepare an image for execution and then to
place it in a wait state until it is needed.

If you create a subprocess that must execute the same function repeatedly and must execute immediately
when it is needed, you could use the SYS$HIBER and SYS$WAKE system services, as shown in the
following example:

/* Process TAURUS */

#include <stdio.h>
#include <descrip.h>

main() {

 unsigned int status;
 $DESCRIPTOR(prcnam,"ORION");
 $DESCRIPTOR(image,"COMPUTE.EXE");

/* Create ORION */
 status = SYS$CREPRC(0, /* Process id */
 &image, /* Image */
 0, 0, 0, 0, 0,
 &prcnam, /* Process name */
 0, 0, 0, 0);
 if ((status & 1) != 1)
 LIB$SIGNAL(status);
 .
 .
 .
/* Wake ORION */
 status = SYS$WAKE(0, &prcnam);
 if ((status & 1) != 1)
 LIB$SIGNAL(status);
 .
 .
 .
/* Wake ORION again */
 status = SYS$WAKE(0, &prcnam);
 if ((status & 1) != 1)
 LIB$SIGNAL(status);
 .
 .
 .
}

130

Chapter 4. Process Control

/* Process ORION and image COMPUTE */

#include <stdio.h>
#include <ssdef.h>
 .
 .
 .
sleep:
 status = SYS$HIBER();
 if ((status & 1) != 1)
 LIB$SIGNAL(status);
 .
 .
 .
 goto sleep;
}

Process TAURUS creates the process ORION, specifying the descriptor for the image named
COMPUTE.
At an appropriate time, TAURUS issues a SYS$WAKE request for ORION.ORION continues
execution following the SYS$HIBER service call. When it finishes its job, ORION loops back to
repeat the SYS$HIBER call and to wait for another wakeup.
The image COMPUTE is initialized, and ORION issues the SYS$HIBER system service.

The Schedule Wakeup (SYS$SCHDWK) system service, a variation of the SYS$WAKE system service,
schedules a wakeup for a hibernating process at a fixed time or at an elapsed (delta) time interval. Using
the SYS$SCHDWK service, a process can schedule a wakeup for itself before issuing a SYS$HIBER
call. For an example of how to use the SYS$SCHDWK system service, see VSI OpenVMS Programming
Concepts Manual, Volume II.

Hibernating processes can be interrupted by asynchronous system traps (ASTs), as long as AST delivery
is enabled. The process can call SYS$WAKE on its own behalf in the AST service routine, and continue
execution following the execution of the AST service routine. For a description of ASTs and how to use
them, see Chapter 8.

4.9.1.2. Using Alternative Methods of Hibernation
You can use two additional methods to cause a process to hibernate:

• Specify the stsflg argument for the SYS$CREPRC system service, setting the bit that requests
SYS$CREPRC to place the created process in a state of hibernation as soon as it is initialized.

• Specify the /DELAY, /SCHEDULE, or /INTERVAL qualifier to the RUN command when you
execute the image from the command stream.

When you use the SYS$CREPRC system service, the creating process can control when to wake the
created process. When you use the RUN command, its qualifiers control when to wake the process.

If you use the /INTERVAL qualifier and the image to be executed does not call the SYS$HIBER system
service, the image is placed in a state of hibernation whenever it issues a return instruction (RET). Each
time the image is awakened, it begins executing at its entry point. If the image does call SYS$HIBER,
each time it is awakened it begins executing at either the point following the call to SYS$HIBER or at its
entry point (if it last issued a RET instruction).

If wakeup requests are scheduled at time intervals, the image can be terminated with the Delete
Process (SYS$DELPRC) or Force Exit (SYS$FORCEX) system service, or from the command level

131

Chapter 4. Process Control

with the STOP command. The SYS$DELPRC and SYS$FORCEX system services are described in
Section 4.9.3.4 and in Section 4.9.4. The RUN and STOP commands are described in the VSI OpenVMS
DCL Dictionary.

These methods allow you to write programs that can be executed once, on request, or cyclically. If an
image is executed more than once in this manner, normal image activation and termination services are
not performed on the second and subsequent calls to the image. Note that the program must ensure both
the integrity of data areas that are modified during its execution and the status of opened files.

4.9.1.3. Using SYS$SUSPND
Using the Suspend Process (SYS$SUSPND) system service, a process can place itself or another
process into a wait state similar to hibernation. Suspension, however, is a more pronounced state of
hibernation. The operating system provides no system service to force a process to be swapped out, but
the SYS$SUSPND system service can accomplish the task in the following way. Suspended processes
are the first processes to be selected for swapping. A suspended process cannot be interrupted by ASTs,
and it can resume execution only after another process calls a Resume Process (SYS$RESUME) system
service on its behalf. If ASTs are queued for the process while it is suspended, they are delivered when
the process resumes execution. This is an effective tool for blocking delivery of all ASTs.

At the DCL level, you can suspend a process by issuing the SET PROCESS command with the
/SUSPEND qualifier. This command temporarily stops the process's activities. The process remains
suspended until another process resumes or deletes it. To allow a suspended process to resume operation,
use either the /NOSUSPEND or /RESUME qualifier.

4.9.2. Passing Control to Another Image
The RTL routines LIB$DO_COMMAND and LIB$RUN_PROGRAM allow you to invoke the next
image from the current image. That is, they allow you to perform image rundown for the current image
and pass control to the next image without returning to DCL command level. The routine you use
depends on whether the next image is a command image or a noncommand image.

4.9.2.1. Invoking a Command Image
The following DCL command executes the command image associated with the DCL command COPY:

$ COPY DATA.TMP APRIL.DAT

To pass control from the current image to a command image, use the run-time library (RTL) routine
LIB$DO_COMMAND. If LIB$DO_COMMAND executes successfully, control is not returned to the
invoking image, and statements following the LIB$DO_COMMAND statement are not executed. The
following statement causes the current image to exit and executes the DCL command in the preceding
example:

 .
 .
 .
STATUS = LIB$DO_COMMAND ('COPY DATA.TMP APRIL.DAT')
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))

END

To execute a number of DCL commands, specify a DCL command procedure. The following
statement causes the current image to exit and executes the DCL command procedure
[STATS.TEMP]CLEANUP.COM:

132

Chapter 4. Process Control

 .
 .
 .
STATUS = LIB$DO_COMMAND ('@[STATS.TEMP]CLEANUP')
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))END

4.9.2.2. Invoking a Noncommand Image

You invoke a noncommand image at DCL command level with the DCL command RUN. The following
command executes the noncommand image[STATISTICS.TEMP]TEST.EXE:

$ RUN [STATISTICS.TEMP]TEST

To pass control from the current image to a noncommand image, use the run-time library routine
LIB$RUN_PROGRAM. If LIB$RUN_PROGRAM executes successfully, control is not returned to
the invoking image, and statements following the LIB$RUN_PROGRAM statement are not executed.
The following program segment causes the current image to exit and passes control to the noncommand
image[STATISTICS.TEMP]TEST.EXE on the default disk:

 .
 .
 .
STATUS = LIB$RUN_PROGRAM ('[STATISTICS.TEMP]TEST.EXE')
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))

END

4.9.3. Performing Image Exit
When image execution completes normally, the operating system performs a variety of image rundown
functions. If the image is executed by the command interpreter, image rundown prepares the process for
the execution of another image. If the image is not executed by the command interpreter—for example,
if it is executed by a subprocess—the process is deleted.

Main programs and main routines terminate by executing a return instruction (RET). This instruction
returns control to the caller, which could have been LIB$INITIALIZE, the debugger, or the command
interpreter. The completion code, SS$_NORMAL, which has the value 1, should be used to indicate
normal successful completion.

Any other condition value can be used to indicate success or failure. The command language interpreter
uses the condition value as the parameter to the Exit (SYS$EXIT) system service. If the severity field
(STS$V_SEVERITY) is SEVERE or ERROR, the continuation of a batch job or command procedure is
affected.

These exit activities are also initiated when an image completes abnormally as a result of any of the
following conditions:

• Specific error conditions caused by improper specifications when a process is created. For example,
if an invalid device name is specified for the SYS$INPUT, SYS$OUTPUT, or SYS$ERROR logical
name, or if an invalid or nonexistent image name is specified, the error condition is signaled in the
created process.

• An exception occurring during execution of the image. When an exception occurs, any user-specified
condition handlers receive control to handle the exception. If there are no user-specified condition

133

Chapter 4. Process Control

handlers, a system-declared condition handler receives control, and it initiates exit activities for the
image. Condition handling is described in Chapter 9.

• A Force Exit (SYS$FORCEX) system service issued on behalf of the process by another process.

4.9.3.1. Performing Image Rundown

The operating system performs image rundown functions that release system resources obtained by a
process while it is executing in user mode. These activities occur in the following order:

1. Any outstanding I/O requests on the I/O channels are canceled, and I/O channels are deassigned.

2. Memory pages occupied or allocated by the image are deleted, and the working set size limit of the
process is readjusted to its default value.

3. All devices allocated to the process at user mode are deallocated (devices allocated from the
command stream in supervisor mode are not deallocated).

4. Timer-scheduled requests, including wakeup requests, are canceled.

5. Common event flag clusters are disassociated.

6. Locks are dequeued as a part of rundown.

7. User mode ASTs that are queued but have not been delivered are deleted, and ASTs are enabled for
user mode.

8. Exception vectors declared in user mode, compatibility mode handlers, and change mode to user
handlers are reset.

9. System service failure exception mode is disabled.

10. All process private logical names and logical name tables created for user mode are deleted. Deletion
of a logical name table causes all names in that table to be deleted. Note that names entered in
shareable logical name tables, such as the job or group table, are not deleted at image rundown,
regardless of the access mode for which they were created.

4.9.3.2. Initiating Rundown

To initiate the rundown activities described in Section 4.9.3.1, the system calls the Exit (SYS$EXIT)
system service on behalf of the process. In some cases, a process can call SYS$EXIT to terminate the
image itself (for example, if an unrecoverable error occurs).

You should not call the SYS$EXIT system service directly from a main program. By not calling
SYS$EXIT directly from a main program, you allow the main program to be more like ordinary
modular routines and therefore usable by other programmers as callable routines.

The SYS$EXIT system service accepts a status code as an argument. If you use SYS$EXIT to terminate
image execution, you can use this status code argument to pass information about the completion of the
image. If an image returns without calling SYS$EXIT, the current value in R0 is passed as the status
code when the system calls SYS$EXIT.

This status code is used as follows:

134

Chapter 4. Process Control

• The command interpreter uses the status code to display optionally an error message when it receives
control following image rundown.

• If the image has declared an exit handler, the status code is written in the address specified in the exit
control block.

• If the process was created by another process, and the creator has specified a mailbox to receive
a termination message, the status code is written into the termination mailbox when the process is
deleted.

4.9.3.3. Performing Cleanup and Rundown Operations
Use exit handlers to perform image-specific cleanup or rundown operations. For example, if an image
uses memory to buffer data, an exit handler can ensure that the data is not lost when the image exits as
the result of an error condition.

To establish an exit-handling routine, you must set up an exit control block and specify the address of
the control block in the call to the Declare Exit Handler (SYS$DCLEXH) system service. You can call
an exit handler by using standard calling conventions; you can provide arguments to the exit handler in
the exit control block. The first argument in the control block argument list must specify the address of a
longword for the system to write the status code from SYS$EXIT.

If an image declares more than one exit handler, the control blocks are linked together on a last-in,
first-out (LIFO) basis. After an exit handler is called and returns control, the control block is removed
from the list. You can remove exit control blocks prior to image exit by using the Cancel Exit Handler
(SYS$CANEXH) system service.

Exit handlers can be declared from system routines executing in supervisor or executive mode. These
exit handlers are also linked together in other lists, and they receive control after exit handlers that are
declared from user mode are executed.

Exit handlers are called as a part of the SYS$EXIT system service. While a call to the SYS$EXIT
system service often precedes image rundown activities, the call is not a part of image rundown. There is
no way to ensure that exit handlers will be called if an image terminates in a nonstandard way.

To see examples of exit handler programs, refer to Section 9.15.4.

4.9.3.4. Initiating Image Rundown for Another Process
The Force Exit (SYS$FORCEX) system service provides a way for a process to initiate image rundown
for another process. For example, the following call to SYS$FORCEX causes the image executing in the
process CYGNUS to exit:

 $DESCRIPTOR(prcnam,"CYGNUS");
 .
 .
 .
 status = SYS$FORCEX(0, /* pidadr - Process id */
 &prcnam, /* prcnam - Process name */
 0); /* code - Completion code */

Because the SYS$FORCEX system service calls the SYS$EXIT system service, any exit handlers
declared for the image are executed before image rundown. Thus, if the process is using the command
interpreter, the process is not deleted and can run another image. Because the SYS$FORCEX system
service uses the AST mechanism, an exit cannot be performed if the process being forced to exit

135

Chapter 4. Process Control

has disabled the delivery of ASTs. AST delivery and how it is disabled and reenabled is described in
Chapter 8.

The SYS$DCHEXH system service causes the target process to execute the exit handler. For additional
information about exit handlers and examples, see Chapter 9 and Section 9.15.4.

4.9.4. Deleting a Process
Process deletion completely removes a process from the system. A process can be deleted by any of the
following events:

• The Delete Process (SYS$DELPRC) system service is called.

• A process that created a subprocess is deleted.

• An interactive process uses the DCL command LOGOUT.

• A batch job reaches the end of its command file.

• An interactive process uses the DCL command STOP/ID= pid or STOP username.

• A process that contains a single image calls the Exit (SYS$EXIT) system service.

• The Force Exit (SYS$FORCEX) system service forces image exit on a process that contains a single
image.

When the system is called to delete a process as a result of any of these conditions, it first locates all
subprocesses, and searches hierarchically. No process can be deleted until all the subprocesses it has
created have been deleted.

The lowest subprocess in the hierarchy is a subprocess that has no descendant subprocesses of its own.
When that subprocess is deleted, its parent subprocess becomes a subprocess that has no descendant
subprocesses and it can be deleted as well. The topmost process in the hierarchy becomes the parent
process of all the other subprocesses.

The system performs each of the following procedures, beginning with the lowest process in the
hierarchy and ending with the topmost process:

• The image executing in the process is run down. The image rundown that occurs during process
deletion is the same as that described in Section 4.9.3.1. When a process is deleted, however, the
rundown releases all system resources, including those acquired from access modes other than user
mode.

• Resource quotas are released to the creating process, if the process being deleted is a subprocess.

• If the creating process specifies a termination mailbox, a message indicating that the process is being
deleted is sent to the mailbox. For detached processes created by the system, the termination message
is sent to the system job controller.

• The control region of the process's virtual address space is deleted. (The control region consists of
memory allocated and used by the system on behalf of the process).

• All system-maintained information about the process is deleted.

Figure 4.1 illustrates the flow of events from image exit through process deletion.

136

Chapter 4. Process Control

Figure 4.1. Image Exit and Process Deletion

4.9.4.1. Deleting a Process By Using System Services
A process can delete itself or another process at any time, depending on the restrictions outlined in
Section 4.1.1. Any one of the following system services can be used to delete a subprocess or a detached
process. Some services terminate execution of the image in the process; others terminate the process
itself.

• SYS$EXIT—Initiates normal exit in the current image. Control returns to the command language
interpreter. If there is no command language interpreter, the process is terminated. This routine
cannot be used to terminate an image in a detached process.

• SYS$FORCEX—Initiates a normal exit on the image in the specified process. GROUP or WORLD
privilege may be required, depending on the process specified. An AST is sent to the specified

137

Chapter 4. Process Control

process. The AST calls on the SYS$EXIT routine to complete the image exit. Because an AST is
used, you cannot use this routine on a suspended process. You can use this routine on a subprocess
or detached process. See Section 4.9.3.4 for an example.

• SYS$DELPRC—Deletes the specified process. GROUP or WORLD privilege may be required,
depending on the process specified. A termination message is sent to the calling process's mailbox.
You can use this routine on a subprocess, a detached process, or the current process. For example, if
a process has created a subprocess named CYGNUS, it can delete CYGNUS, as follows:

$DESCRIPTOR(prcnam,"CYGNUS");
 .
 .
 .
status = SYS$DELPRC(0, /* Process id */
 &prcnam); /* Process name */

Because a subprocess is automatically deleted when the image it is executing terminates (or when the
command stream for the command interpreter reaches end of file), you normally do not need to call
the SYS$DELPRC system service explicitly.

4.9.4.2. $DELPRC System Service Can Invoke Exit Handlers (Alpha
and I64 only)
As of OpenVMS Version 7.3-1, the system parameter DELPRC_EXIT provides the default system
setting for whether an exit handler is called and at what access mode.

DELPRC_EXIT allows you to specify the least-privileged mode for which exit handling will be
attempted, or that no exit handling will be attempted. The possible DELPRC_EXIT values are as
follows:

• 0= Do not enable the EXIT functionality with $DELPRC

• 4= Execute kernel mode exit handlers

• 5= Execute exec and more privileged mode exit handlers

• 6= Execute supervisor and more privileged mode exit handlers

• 7= Execute user and more privileged mode exit handlers

The system default is 5, which allows components with exec mode exit handlers to execute normal
rundown activity, but prevents continued execution of user mode application code or command
procedures. In particular, the RMS exec-mode exit handler completes file updates in progress. This
prevents file inconsistencies or loss of some file updates made just prior to a process deletion.

As of OpenVMS Version 7.3-1, the $DELPRC system service can call exit handlers prior to final
cleanup and deletion of a process. This allows you to override the system default setting determined by
the system parameter DELPRC_EXIT.

The $DELPRC flags argument controls whether exit handlers are called by $DELPRC. You can use
the flags argument to specify the least-privileged mode for which exit handling will be attempted, or to
specify that no exit handling will be attempted.

The $DELPRCSYMDEF macro defines a symbolic name for EXIT and NOEXIT. The EXIT flag
should be or'd with the access mode defined by the $PSLDEF macro for the initial exit handler.
Table 4.13 describes each flag:

138

Chapter 4. Process Control

Table 4.13. Contents of $DELPRC Flag Argument

Flag Description

DELPRC$M_EXIT When set, exit handlers as specified by DELPRC$M_MODE are called. This
flag is ignored for a hard suspended process.

DELPRC$M_MODE 2 bit field: values pslc_kernel, pslc_exec, pslc_super, pslc_user (from
the $PSLDEF macro).

DELPRC$M_NOEXIT Set to disable any exit handler execution.

For example, to delete a process executing exec mode exit handlers from a macro program:

$DELPRC_S PIDADR = pid,-
FLAGS = #<DELPRC$M_EXIT!PSL$C_EXEC>

If the flags argument is not specified or is specified with a zero, the system parameter DELPRC_EXIT
controls what exit handlers, if any, are called by $DELPRC.

As of OpenVMS Version 7.3-1 you can also use the DCL STOP command qualifier
[NO]EXIT[=access-mode] to override the system default setting determined by the system parameter
DELPRC_EXIT. If you specify an access mode of user_mode, supervisor_mode, executive_mode, or
kernel_mode, the resulting $DELPRC flag argument is set accordingly.

You should be aware of the following differences:

• If you use the DCL STOP command with the /EXIT qualifier but do not specify an access mode,
executive_mode is used by default.

• If you use the DCL STOP command without the /EXIT qualifier, the system parameter
DELPRC_EXIT is used instead.

If you use the DCL STOP command without either the /IDENTIFICATION qualifier or the process-
name parameter, then the currently executing image is terminated; the process is not deleted.

In a mixed version or mixed architecture cluster, any explicit control specified to $DELPRC or a DCL
STOP command is passed to the node on which the process is executing. The process deletion on the
remote node executes as defined for the version of OpenVMS running on the target node. Therefore,
consider the following configuration examples.

Version How Exit Handler Determined

OpenVMS Alpha version 7.3-1 and later
(local) to OpenVMS Alpha Version 7.3-1 and
later (remote)

Either through exit default in the system parameter
DELPRC_EXIT on the remote system, or by setting in
the flags argument on the local system and passed to the
remote system.

OpenVMS Alpha version prior to 7.3-1 or
OpenVMS VAX (local) to OpenVMS Alpha
Version 7.3-1 or later (remote)

Exit default in the system parameter DELPRC_EXIT on
the remote system.

Any mix of OpenVMS Alpha prior to
Version 7.3-1 or any OpenVMS VAX version

No support for exit functionality in system service
$DELPRC.

Note

Deleting the current process: When $DELPRC is used to delete the current process, execution cannot
continue in the mode from which $DELPRC was called. The first exit handlers that are called will be in

139

Chapter 4. Process Control

the next more privileged mode relative to the mode from which $DELPRC was called (subject to options
defined). For example:

• $DELPRC called from user mode could call supervisor mode exit handlers.

• $DELPRC called from exec mode could only execute kernel mode exit handlers.

• $DELPRC called from kernel mode cannot call exit handlers.

4.9.4.3. Terminating Mailboxes
A termination mailbox provides a process with a way of determining when, and under what conditions,
a process that it has created was deleted. The Create Process (SYS$CREPRC) system service accepts
the unit number of a mailbox as an argument. When the process is deleted, the mailbox receives a
termination message.

The first word of the termination message contains the symbolic constant, MSG$_DELPROC, which
indicates that it is a termination message. The second longword of the termination message contains the
final status value of the image. The remainder of the message contains system accounting information
used by the job controller and is identical to the first part of the accounting record sent to the system
accounting log file. The description of the SYS$CREPRC system service in the VSI OpenVMS System
Services Reference Manual provides the complete format of the termination message.

If necessary, the creating process can determine the process identification of the process being deleted
from the I/O status block (IOSB) posted when the message is received in the mailbox. The second
longword of the IOSB contains the process identification of the process being deleted.

A termination mailbox cannot be located in memory shared by multiple processors.

The following example illustrates a complete sequence of process creation, with a termination mailbox:

#include <stdio.h>
#include <descrip.h>
#include <ssdef.h>
#include <msgdef.h>
#include <dvidef.h>
#include <iodef.h>
#include <accdef.h>

unsigned short unitnum;
unsigned int pidadr;

/* Create a buffer to store termination info */

struct accdef exitmsg;

/* Define and initialize the item list for $GETDVI */

static struct {
 unsigned short buflen,item_code;
 void *bufaddr;
 void *retlenaddr;
 unsigned int terminator;
}mbxinfo = { 4, DVI$_UNIT, &unitnum, 0, 0};

/* I/O Status Block for QIO */

140

Chapter 4. Process Control

struct {
 unsigned short iostat, mblen;
 unsigned int mbpid;
}mbxiosb;

main() {

 void exitast(void);
 unsigned short exchan;
 unsigned int status,maxmsg=84,bufquo=240,promsk=0;
 unsigned int func=IO$_READVBLK;
 $DESCRIPTOR(image,"LYRA");

/* Create a mailbox */
 status = SYS$CREMBX(0, /* prmflg (permanent or temporary) */
 &exchan, /* channel */
 maxmsg, /* maximum message size */
 bufquo, /* no. of bytes used for buffer */
 promsk, /* protection mask */
 0,0,0,0);
 if ((status & 1) != 1)
 LIB$SIGNAL(status);

/* Get the mailbox unit number */
 status = SYS$GETDVI(0, /* efn - event flag */
 exchan, /* chan - channel */
 0, /* devnam - device name */
 &mbxinfo, /* item list */
 0,0,0,0);
 if ((status & 1) != 1)
 LIB$SIGNAL(status);

/* Create a subprocess */
 status = SYS$CREPRC(&pidadr, /* process id */
 &image, /* image to be run */
 0,0,0,0,0,0,0,0,
 unitnum, /* mailbox unit number */
 0); /* options flags */
 if ((status & 1) != 1)
 LIB$SIGNAL(status);

/* Read from mailbox */
 status = SYS$QIOW(0, /* efn - event flag */
 exchan, /* chan - channel number */
 func, /* function modifier */
 &mbxiosb, /* iosb - I/O status block */
 &exitast, /* astadr - astadr AST routine */
 0, /* astprm - astprm AST parameter */
 &exitmsg, /* p1 - buffer to receive message*/
 ACC$K_TERMLEN, /* p2 - length of buffer */
 0,0,0,0); /* p3, p4, p5, p6 */

 if ((status & 1) != 1)
 LIB$SIGNAL(status);

141

Chapter 4. Process Control

}

void exitast(void) {

 if(mbxiosb.iostat == SS$_NORMAL)
 {
 printf("\nMailbox successfully written...");
 if (exitmsg.acc$w_msgtyp == MSG$_DELPROC)
 {
 printf("\nProcess deleted...");
 if (pidadr == mbxiosb.mbpid)
 {
 printf("\nPIDs are equal...");
 if (exitmsg.acc$l_finalsts == SS$_NORMAL)
 printf("\nNormal termination...");
 else
 printf("\nAbnormal termination status: %d",
 exitmsg.acc$l_finalsts);
 }
 else
 printf("\nPIDs are not equal");
 }
 else
 printf("\nTermination message not received... status:
 %d",
 exitmsg.acc$w_msgtyp);
 }
 else
 printf("\nMailbox I/O status block: %d",mbxiosb.iostat);

 return;
}

The item list for the Get Device/Volume Information (SYS$GETDVI) system service specifies that
the unit number of the mailbox is to be returned.
The Create Mailbox and Assign Channel (SYS$CREMBX) system service creates the mailbox and
returns the channel number at EXCHAN.
The Create Process (SYS$CREPRC) system service creates a process to execute the image
LYRA.EXE and returns the process identification at LYRAPID. The mbxunt argument
refers to the unit number of the mailbox, obtained from the Get Device/Volume Information
(SYS$GETDVI) system service.
The Queue I/O Request (SYS$QIO) system service queues a read request to the mailbox,
specifying both an AST service routine to receive control when the mailbox receives a message and
the address of a buffer to receive the message. The information in the message can be accessed by
the symbolic offsets defined in the $ACCDEF macro. The process continues executing.
When the mailbox receives a message, the AST service routine EXITAST receives control.
Because this mailbox can be used for other interprocess communication, the AST routine does the
following:

• Checks for successful completion of the I/O operation by examining the first word in the IOSB

• Checks that the message received is a termination message by examining the message type field
in the termination message at the offset ACC$W_MSGTYPE

• Checks for the process identification of the process that has been deleted by examining the
second longword of the IOSB

142

Chapter 4. Process Control

• Checks for the completion status of the process by examining the status field in the termination
message at the offset ACC$L_FINALSTS

In this example, the AST service routine performs special action when the subprocess is deleted.

The Create Mailbox and Assign Channel (SYS$CREMBX), Get Device/Volume Information
(SYS$GETDVI), and Queue I/O Request (SYS$QIO) system services are described in greater detail in
VSI OpenVMS Programming Concepts Manual, Volume II.

143

Chapter 4. Process Control

144

Chapter 5. Symmetric Multiprocessing
(SMP) Systems
5.1. Introduction to Symmetric
Multiprocessing
OpenVMS Alpha and OpenVMS I64 support tightly coupled symmetric multiprocessing (SMP). This
chapter presents a brief overview of symmetric multiprocessing terms and characteristics. For more
information about SMP concepts and hardware configurations, refer to VMS for Alpha Platforms
Internals and Data Structures.

A multiprocessing system consists of two or more CPUs that address common memory and that can
execute instructions simultaneously. If all CPUs in the system execute the same copy of the operating
system, the multiprocessing system is said to be tightly coupled. If all CPUs have equal access to
memory, interrupts, and I/O devices, the system is said to be symmetric.

In most respects the members of an OpenVMS SMP system are symmetric. Each member can perform
the following tasks:

• Initiate an I/O request

• Service exceptions

• Service software interrupts

• Service hardware interrupts, such as interprocessor and interval timer interrupts

• Execute process context code in any access mode

5.2. CPU Characteristics of an SMP System
The members of an SMP system are characterized in several ways. One important characteristic is
that of primary CPU. During system operation the primary CPU has several unique responsibilities for
system timekeeping, writing messages to the console terminal, and accessing any other I/O devices that
are not accessible to all members. Although the hardware and software permit device interrupts to be
serviced by any processor, in practice all device interrupts are serviced on the primary CPU. An SMP
configuration may include some devices that are not accessible from all SMP members. The console
terminal, for example, is accessible only from the primary processor.

5.2.1. Booting an SMP System
Booting the system is initiated on a CPU with full access to the console subsystem and terminal, called
the BOOT CPU. The BOOT CPU controls the bootstrap sequence and boots the other available CPUs.
On OpenVMS Alpha and OpenVMS I64 systems, the BOOT CPU and the primary CPU are always the
same; the others are called secondary processors.

The booted primary and all currently booted secondary processors are called members of the active
set. These processors actively participate in system operations and respond to interprocessor interrupts,
which coordinate systemwide events.

145

Chapter 5. Symmetric Multiprocessing (SMP) Systems

5.2.2. Interrupt Requests on SMP System
In an SMP system, each processor services its own software interrupt requests, of which the most
significant are the following:

• When a current Kernel thread is preempted by a higher priority computable resident thread, the IPL
3 rescheduling interrupt service routine, running on that processor, takes the current thread out of
execution and switches to the higher priority Kernel thread.

• When a device driver completes an I/O request, an IPL 4 I/O post-processing interrupt is requested:
some completed requests are queued to a CPU-specific post-processing queue and are serviced on
that CPU; others are queued to a systemwide queue and serviced on the primary CPU.

• When the current Kernel thread has used its quantum of CPU time, the software timer interrupt
service routine, running on that CPU, performs quantum-end processing.

• Software interrupts at IPLs 6 and 8 through 11 are requested to execute fork processes. Each
processor services its own set of fork queues. A fork process generally executes on the same CPU
from which it was requested. However, since many fork processes are requested from device
interrupt service routines, which currently execute only on the primary CPU, more fork processes
execute on the primary than on other processors.

5.3. Symmetric Multiprocessing Goals
SMP supports the following goals:

• One version of the operating system. As part of the standard OpenVMS Alpha and OpenVMS I64
product, SMP support does not require its own version. The synchronization methodology and the
interface to synchronization routines are the same on all systems. However, as described in VMS for
Alpha Platforms Internals and Data Structures, there are different versions of the synchronization
routines themselves in different versions of the OpenVMS Alpha executive image that implement
synchronization. Partly for that reason, SMP support imposes relatively little additional overhead on a
uniprocessor system.

• Parallelism in kernel mode. SMP support might have been implemented such that any single
processor, but not more than one at a time, could execute kernel mode code. However, more
parallelism was required for a solution that would support configurations with more CPUs. The
members of an SMP system can be executing different portions of the Executive concurrently.

The executive has been divided into different critical regions, each with its own lock, called a
spinlock. A spinlock is one type of system synchronization element that guarantees atomic access to
the functional divisions of the Executive using instructions specifically designed for multi-processor
configurations. Section 6.6 and Section 6.7 describe both the underlying architecture and software
elements that provide this level of SMP synchronization.

The spinlock is the heart of the SMP model, allowing system concurrency at all levels of the
operating system. All components that want to benefit from multiple-CPU configurations must
incorporate these elements to guarantee consistency and correctness. Device drivers, in particular,
use a variant of the static system spinlock (a devicelock) to ensure its own degree of synchronization
and ownership within the system.

• Symmetric scheduling mechanisms. The standard, default behavior of the operating system is to
impose as little binding between system executable entities and specific CPUs in the active set as

146

Chapter 5. Symmetric Multiprocessing (SMP) Systems

possible. That is, in general, each CPU is equally able to execute any Kernel thread. The multi-
processor scheduling algorithm is an extension of the single-CPU behavior, providing consistent
preemption and real-time behavior in all cases.

However, there are circumstances when an executable Kernel thread needs system resources and
services possessed only by certain CPUs in the configuration. In those non-symmetric cases,
OpenVMS provides a series of privileged, system-level CPU scheduling routines that supersedes
the standard scheduling mechanisms and binds a Kernel thread to one or more specific CPUs.
System components that are tied to the primary CPU, such as system timekeeping and console
processing, use these mechanisms to guarantee that their functions are performed in the correct
context. Also, because the Alpha hardware architecture shows significant performance benefits for
Kernel threads run on CPUs where the hardware context has been preserved from earlier execution,
the CPU scheduling mechanisms have been introduced as a series of system services and user
commands. Through the use of explicit CPU affinity and user capabilities, an application can be
placed throughout the active set to take advantage of the hardware context. Section 4.4 describes
these features in greater detail.

147

Chapter 5. Symmetric Multiprocessing (SMP) Systems

148

Chapter 6. Synchronizing Data Access
and Program Operations
This chapter describes the operating system's synchronization features. It focuses on referencing memory
and the techniques used to synchronize memory access. These techniques are the basis for mechanisms
OpenVMS itself uses and for mechanisms OpenVMS provides for applications to use.

6.1. Overview of Synchronization
Software synchronization refers to the coordination of events in such a way that only one event happens
at a time. This kind of synchronization is a serialization or sequencing of events. Serialized events are
assigned an order and processed one at a time in that order. While a serialized event is being processed,
no other event in the series is allowed to disrupt it.

By imposing order on events, synchronization allows reading and writing of several data items
indivisibly, or atomically, in order to obtain a consistent set of data. For example, all of process A's
writes to shared data must happen before or after process B's writes or reads, but not during process
B's writes or reads. In this case, all of process A's writes must happen indivisibly for the operation to
be correct. This includes process A's updates – reading of a data item, modifying it, and writing it back
(read-modify-write sequence). Other synchronization techniques are used to ensure the completion of an
asynchronous system service before the caller tries to use the results of the service.

6.1.1. Threads of Execution
Code threads that can execute within a process include the following:

• Mainline code in an image being executed by a kernel thread, or multiple threads

• User-mode application threads managed and scheduled through the POSIX threads library thread
manager

• Asynchronous system traps (ASTs) that interrupt a kernel thread

• Condition handlers established by the process, which run after exceptions occur

• Inner access-mode threads of execution that run as a result of system service, OpenVMS Record
Management Services (RMS), and command language interpreter (CLI) callback requests

Process-based threads of execution can share any data in the per-process address space and must
synchronize access to any data they share. A thread of execution can incur an exception, which results
in passing of control to a condition handler. Alternatively, the thread can receive an AST, which results
in passing of control to an AST procedure. Further, an AST procedure can incur an exception, and a
condition handler's execution can be interrupted by an AST delivery. If a thread of execution requests a
system service or RMS service, control passes to an inner access-mode thread of execution. Code that
executes in the inner mode can also incur exceptions, receive ASTs, and request services.

Multiple processes, each with its own set of threads of execution, can execute concurrently. Although
each process has private address space, processes can share data in a global section mapped into each
process's address spaces. You need to synchronize access to global section data because a thread of
execution accessing the data in one process can be rescheduled, allowing a thread of execution in another
process to access the same data before the first process completes its work. Although processes access

149

Chapter 6. Synchronizing Data Access and Program Operations

the same system address space, the protection on system space pages usually prevents outer mode access.
However, process-based code threads running in inner access modes can access data concurrently in
system space and must synchronize access to it.

Interrupt service routines access only system space. They must synchronize access to shared system space
data among themselves and with process-based threads of execution.

A CPU-based thread of execution and an I/O processor must synchronize access to shared data
structures, such as structures that contain descriptions of I/O operations to be performed.

Multiprocessor execution increases synchronization requirements when the threads that must synchronize
can run concurrently on different processors. Because a process with only one kernel thread executes on
only one processor at a time, synchronization of threads of execution within such a process is unaffected
by whether the process runs on a uniprocessor or on an SMP system. However, a process with multiple
kernel threads can be executing on multiple processors at the same time on an SMP system. The threads
of such a process must synchronize their access to writable per-process address space.

Also, multiple processes execute simultaneously on different processors. Because of this, processes
sharing data in a global section can require additional synchronization for SMP system execution.
Further, process-based inner mode and interrupt-based threads can execute simultaneously on different
processors and can require synchronization of access to system space beyond what is sufficient on a
uniprocessor.

6.1.2. Atomicity
Atomicity is a type of serialization that refers to the indivisibility of a small number of actions, such
as those occurring during the execution of a single instruction or a small number of instructions. With
more than one action, no single action can occur by itself. If one action occurs, then all the actions occur.
Atomicity must be qualified by the viewpoint from which the actions appear indivisible: an operation
that is atomic for threads running on the same processor can appear as multiple actions to a thread of
execution running on a different processor.

An atomic memory reference results in one indivisible read or write of a data item in memory. No other
access to any part of that data can occur during the course of the atomic reference. Atomic memory
references are important for synchronizing access to a data item that is shared by multiple writers or by
one writer and multiple readers. References need not be atomic to a data item that is not shared or to one
that is shared but is only read.

6.2. Memory Read and Memory Write
Operations for VAX and Alpha
This section presents the important concepts of alignment and granularity and how they affect the
access of shared data on VAX and Alpha systems. It also discusses the importance of the order of reads
and writes completed on VAX and Alpha systems, and how VAX and Alpha systems perform memory
reads and writes.

6.2.1. Accessing Memory
The term alignment refers to the placement of a data item in memory. For a data item to be naturally
aligned, its lowest-addressed byte must reside at an address that is a multiple of the size of the data item
in bytes. For example, a naturally aligned longword has an address that is a multiple of 4. The term
naturally aligned is usually shortened to “aligned”.

150

Chapter 6. Synchronizing Data Access and Program Operations

On VAX systems, a thread on a VAX uniprocessor or multiprocessor can read and write aligned byte,
word, and longword data atomically with respect to other threads of execution accessing the same data.

In contrast to the variety of memory accesses allowed on VAX systems, an Alpha processor may allow
atomic access only to an aligned longword or an aligned quadword. Reading or writing an aligned
longword or quadword of memory is atomic with respect to any other thread of execution on the same
processor or on other processors. Newer Alpha processors with the byte-word extension also provide
atomic access to bytes and aligned words.

VAX and Alpha systems differ in granularity of data access. The phrase granularity of data access
refers to the size of neighboring units of memory that can be written independently and atomically
by multiple processors. Regardless of the order in which the two units are written, the results must be
identical.

VAX systems have byte granularity: individual adjacent or neighboring bytes within the same longword
can be written by multiple threads of execution on one or more processors, as can aligned words and
longwords.

VAX systems provide instructions that can manipulate byte-sized and aligned word-sized memory data
in a single, noninterruptible operation. On VAX systems, a byte-sized or word-sized data item that is
shared can be manipulated individually.

Alpha systems guarantee longword and quadword granularity. That is, adjacent aligned longwords or
quadwords can be written independently. Because earlier Alpha systems support instructions that load or
store only longword-sized and quadword-sized memory data, the manipulation of byte-sized and word-
sized data on such Alpha systems may require that the entire longword or quadword containing the byte-
or word-sized item be manipulated. Thus, simply because of its proximity to an explicitly shared data
item, neighboring data might become shared unintentionally.

Manipulation of byte-sized and word-sized data on such Alpha systems requires multiple instructions
that:

1. Fetch the longword or quadword that contains the byte or word

2. Mask the nontargeted bytes

3. Manipulate the target byte or word

4. Store the entire longword or quadword

On such Alpha systems, because this sequence is interruptible, operations on byte and word data are not
atomic. Also, this change in the granularity of memory access can affect the determination of which data
is actually shared when a byte or word is accessed.

On such Alpha systems, the absence of byte and word granularity has important implications for access
to shared data. In effect, any memory write of a data item other than an aligned longword or quadword
must be done as a multiple-instruction read-modify-write sequence. Also, because the amount of data
read and written is an entire longword or quadword, programmers must ensure that all accesses to fields
within the longword or quadword are synchronized with each other.

Alpha systems with the byte-word extension provide instructions that can read or write byte-size and
aligned word-sized memory data in a single noninterruptible operation.

6.2.2. Ordering of Read and Write Operations
On VAX uniprocessor and multiprocessor systems, write operations and read operations appear to occur
in the same order in which you specify them from the viewpoint of all types of external threads of

151

Chapter 6. Synchronizing Data Access and Program Operations

execution. Alpha uniprocessor systems also guarantee that read and write operations appear ordered for
multiple threads of execution running within a single process or within multiple processes running on a
uniprocessor.

On Alpha multiprocessor systems, you must order reads and writes explicitly to ensure that they occur in
a specific order from the viewpoint of threads of execution on other processors. To provide the necessary
operating system primitives and compatibility with VAX systems, Alpha systems provide instructions
that impose an order on read and write operations.

6.2.3. Memory Reads and Memory Writes
On VAX systems, most instructions that read or write memory are noninterruptible. A memory write
done with a noninterruptible instruction is atomic from the viewpoint of other threads on the same CPU.

On VAX systems, on a uniprocessor system, reads and writes of bytes, words, longwords, and quadwords
are atomic with respect to any thread on the processor. On a multiprocessor, not all of those accesses
are atomic with respect to any thread on any processor; only reads and writes of bytes, aligned words,
and aligned longwords are atomic. Accessing unaligned data can require multiple operations. As a result,
even though an unaligned longword is written with a noninterruptible instruction, if it requires multiple
memory accesses, a thread on another CPU might see memory in an intermediate state. VAX systems do
not guarantee multiprocessor atomic access to quadwords.

On Alpha systems, there is no instruction that performs multiple memory accesses. Each load or store
instruction performs a maximum of one load from or one store to memory. On an Alpha processor
without the byte-word extension, a load can occur only from an aligned longword or quadword; a
store can occur only to an aligned longword or quadword. On an Alpha processor with the byte-word
extension, a load can also occur from a byte or an aligned word; a store can also occur to a byte or an
aligned word.

On Alpha systems, although reads and writes from one thread appear to occur ordered from the
viewpoint of other threads on the same processor, there is no implicit ordering of reads and writes as
seen by threads on other processors.

6.3. Memory Read and Memory Write
Operations for I64 Systems
OpenVMS I64 systems provide memory access only through register load and store instructions and
special semaphore instructions. This section describes how alignment and granularity affect the access of
shared data on I64 systems. It also discusses the importance of the order of reads and writes completed
on I64 systems, and how I64 systems perform memory reads and writes.

6.3.1. Atomic Semaphore Instructions on I64
On I64 systems, the semaphore instructions have implicit ordering. If there is a write, it always follows
the read. In addition, the read and write are performed atomically with no intervening accesses to the
same memory region.

6.3.2. Accessing Memory on I64
I64 integer store instructions can write either 1, 2, 4, or 8 bytes, and floating-point store instructions
can write 4, 8, or 10 bytes. For example, a st4 instruction writes the low-order four bytes of an integer
register to memory. In addition, semaphore instructions can read and write memory.

152

Chapter 6. Synchronizing Data Access and Program Operations

For highest performance, data should be aligned on natural boundaries; 10-byte floating-point data
should be stored on 16-byte aligned boundaries.

If a load or store instruction accesses naturally aligned data, the reference is atomic with respect to the
threads on the same CPU and on other SMP nodes. If the data is not naturally aligned, its access is not
atomic with respect to threads on other SMP nodes.

I64 can load and store aligned bytes, words, longwords, quadwords, and 10-byte floating-point values
that are aligned on 16-byte boundaries.

6.3.3. Ordering of Read and Write Operations for I64
Systems
On an I64 uniprocessor, write and read operations appear to occur in the same order in which you
specify them from the viewpoint of other threads of execution. On an I64 multiprocessor, except for
multiple accesses to the same location, a processor's memory accesses are not necessarily ordered from
the viewpoint of threads of execution on other processors. The Intel Itanium architecture provides
specific instructions that impose ordering. There are three kinds of ordering:

• Release semantics — all previous memory accesses are made visible before a reference that imposes
release semantics (st.rel, fetchadd.rel instructions).

• Acquire semantics — the reference imposing acquire semantics is visible before any subsequent ones
(ld.acq, ld.c.clr.acq, xchg, fetchadd.acq, cmpxchg.acq instructions).

• Fence semantics — combines release and acquire semantics (mf instruction).

6.4. Memory Read-Modify-Write Operations for
VAX and Alpha
A fundamental synchronization primitive for accessing shared data is an atomic read-modify-write
operation. This operation consists of reading the contents of a memory location and replacing them with
new contents based on the old. Any intermediate memory state is not visible to other threads. Both VAX
systems and Alpha systems provide this synchronization primitive, but they implement it in significantly
different ways.

6.4.1. Uniprocessor Operations
On VAX systems, many instructions are capable of performing a read-modify-write operation in a single,
noninterruptible (atomic) sequence from the viewpoint of multiple application threads executing on a
single processor.

If you code in VAX MACRO, you can code to guarantee an atomic read-modify-write operation. If you
code in a high-level language, however, you must tell the compiler to generate an atomic update. For
further information, refer to the documentation for your high-level language.

On Alpha systems, there is no single instruction that performs an atomic read-modify-write operation.
As a result, even uniprocessing applications in which processes access shared data must provide explicit
synchronization of these accesses, usually through compiler semantics.

On Alpha systems, read-modify-write operations that can be performed atomically on VAX systems
require a sequence of instructions. Because this sequence can be interrupted, the data may be left in

153

Chapter 6. Synchronizing Data Access and Program Operations

an unstable state. For example, the VAX increment long (INCL) instruction fetches the contents of a
specified longword, increments its value, and stores the value back in the longword, performing the
operations without interruption. On Alpha systems, each step – fetching, incrementing, storing – must
be explicitly performed by a separate instruction. Therefore, another thread in the process (for example,
an AST routine) could execute before the sequence completes. However, because atomic updates are the
basis of synchronization, and to provide compatibility with VAX systems, Alpha systems provide the
following mechanisms to enable atomic read-modify-write updates:

• Privileged architecture library (PALcode) routines perform queue insertions and removals.

• Load-locked and store-conditional instructions create a sequence of instructions that implement an
atomic update.

6.4.2. Multiprocessor Operations
On multiprocessor systems, you must use special methods to ensure that a read-modify-write sequence
is atomic. On VAX systems, interlocked instructions provide synchronization; on Alpha systems, load-
locked and store-conditional instructions provide synchronization.

On VAX systems, a number of uninterruptible instructions are provided that both read and write
memory with one instruction. When used with an operand type that is accessible in a single memory
operation, each instruction provides an atomic read-modify-write sequence. The sequence is atomic
with respect to threads of execution on the same VAX processor, but it is not atomic to threads on
other processors. For instance, when a VAX CPU executes the instruction INCL x, it issues two
separate commands to memory: a read, followed by a write of the incremented value. Another thread
of execution running concurrently on another processor could issue a command to memory that reads
or writes location x between the INCL's read and write. Section 6.6.4 describes read-modify-write
sequences that are atomic with respect to threads on all VAX CPUs in an SMP system.

On a VAX multiprocessor system, an atomic update requires an interlock at the level of the memory
subsystem. To perform that interlock, the VAX architecture provides a set of interlocked instructions that
include Add Aligned Word Interlocked (ADAWI), Remove from Queue Head Interlocked (REMQHI),
and Branch on Bit Set and Set Interlocked (BBSSI).

If you code in MACRO-32, you use the assembler to generate whatever instructions you tell it. If you
code in a high-level language, you cannot assume that the compiler will compile a particular language
statement into a specific code sequence. That is, you must tell the compiler explicitly to generate an
atomic update. For further information, see the documentation for your high-level language.

On Alpha systems, there is no single instruction that performs an atomic read-modify-write operation.
An atomic read-modify-write operation is only possible through a sequence that includes load-locked
and store-conditional instructions, (see Section 6.6.2). Use of these instructions provides a read-modify-
write operation on data within one aligned longword or quadword that is atomic with respect to threads
on all Alpha CPUs in an SMP system.

6.5. Memory Read-Modify-Write Operations for
I64 Systems
This section summarizes information described in the Intel® Itanium® Architecture Software Developer's
Manual. Refer to that manual for complete information.

On I64 systems, the semaphore instructions perform read-modify-write operations that are atomic with
respect to threads in the same system and other SMP nodes.

154

Chapter 6. Synchronizing Data Access and Program Operations

Three types of atomic semaphore instructions are defined: exchange (xchg), compare and exchange
(cmpxchg), and fetch and add (fetchadd).

I64 includes the following atomic instructions:

• xchg1, xchg2, xchg4, xchg8 to atomically fetch and store (swap) a byte, word, longword or quadword.

• cmpxchg1, cmpxchg2, cmpxchg4, cmpxchg8 to atomically compare and store a byte, word, longword
or quadword. Atomic bit set and clear, as well as the bit-test-and-set/clear operations can be
implemented using the cmpxchg instruction.

• fetchadd4, fetchadd8 to atomically increment or decrement a longword or quadword by 1, 4, 8 or 16
bytes.

Note that memory operands of the semaphore instructions must be on aligned boundaries. Unaligned
access by a semaphore instruction results in a nonrecoverable unaligned data fault.

6.5.1. Preserving Atomicity with MACRO-32
On an OpenVMS VAX or I64 single-processor system, an atomic memory modification instruction is
sufficient to provide synchronized access to shared data. However, such an instruction is not available on
OpenVMS Alpha systems.

In the case of code written in MACRO-32, the compiler provides the /PRESERVE=ATOMICITY option
to guarantee the integrity of read-modify-write operations for VAX instructions that have a memory
modify operand. Alternatively, you can insert the .PRESERVE ATOMICITY and .NOPRESERVE
ATOMICITY directives in sections of MACRO-32 source code as required to enable and disable
atomicity.

For instance, assume the following instruction, which requires a read, modify, and write sequence on the
data pointed to by R1:

INCL (R1)

In an OpenVMS VAX system, the microcode performs these three operations. Therefore, an interrupt
cannot occur until the sequence is fully completed. In an OpenVMS I64 system, the following four
instructions are required to perform the one VAX instruction:

ld4 r22 = [r9]
sxt4 r22 = r22
adds r22 = 1, r22
st4 [r9] = r22

Note that MACRO-32 R1 corresponds to I64 R9.

The problem with the I64 code sequence is that an interrupt can occur between any of the instructions.
For example, if the interrupt causes an AST routine to execute or causes another process to be scheduled
between the ld4 and the st4, and the AST or other process updates the data pointed to by R1, the STL
will store the result (R9) based on stale data.

When an atomic operation is required, and /PRESERVE=ATOMICITY (or .PRESERVE ATOMICITY)
is specified, the compiler generates the following I64 instruction sequence:

$L3: ld4 r23 = [r9]

155

Chapter 6. Synchronizing Data Access and Program Operations

 mov.m apccv = r23
 mov r22 = r23
 sxt4 r23 = r23
 adds r23 = 1, r23
 cmpxchg4.acq r23, [r9] = r23
 cmp.eq pr0, pr6 = r22, r23
 (pr6) br.cond.dpnt.few $L3

This code uses the compare-exchange instruction (cmpxchg) to implement the locked access. If another
thread of execution has modified the location being modified here, this code loops back and retries the
operation.

6.6. Synchronization Primitives
On VAX systems, the following features assist with synchronization at the hardware level:

• Atomic memory references

• Noninterruptible instructions

• Interrupt priority level (IPL)

• Interlocked memory accesses

On VAX systems, many read-modify-write instructions, including queue manipulation instructions,
are noninterruptible. These instructions provide an atomic update capability on a uniprocessor. A
kernel-mode code thread can block interrupt and process-based threads of execution by raising the IPL.
Hence, it can execute a sequence of instructions atomically with respect to the blocked threads on a
uniprocessor. Threads of execution that run on multiple processors of an SMP system synchronize access
to shared data with read-modify-write instructions that interlock memory.

On Alpha systems, some of these mechanisms are provided by hardware, while others have been
implemented in PALcode routines.

Alpha processors provide several features to assist with synchronization. Even though all instructions
that access memory are noninterruptible, no single one performs an atomic read-modify-write. A kernel-
mode thread of execution can raise the IPL in order to block other threads on that processor while it
performs a read-modify-write sequence or while it executes any other group of instructions. Code that
runs in any access mode can execute a sequence of instructions that contains load-locked (LD x_L) and
store-conditional (ST x_C) instructions to perform a read-modify-write sequence that appears atomic to
other threads of execution. Memory barrier instructions order a CPU's memory reads and writes from
the viewpoint of other CPUs and I/O processors. Other synchronization mechanisms are provided by
PALcode routines.

On I64 systems, some of these mechanisms are provided by hardware, while others have been
implemented in the OpenVMS executive.

I64 systems provide atomic semaphore instructions, as described in Section 6.3.1, acquire/release
semantics on certain loads and stores, and the memory fence (MF) instruction, which is equivalent to the
memory barrier (MB) on Alpha, to ensure correct memory ordering. Read-modify-write operations on
an I64 system can be performed only by nonatomic, interruptible instruction sequences. I64 systems have
hardware interrupt levels in maskable in groups of 16. On I634, most, but not all, Alpha PALcall builtins
result in system service calls.

156

Chapter 6. Synchronizing Data Access and Program Operations

The sections that follow describe the features of interrupt priority level, load-locked (LD x_L),
and store-conditional (ST x_C) instructions and their I64 equivalents, memory barriers and fences,
interlocked instructions, and PALcode routines.

6.6.1. Interrupt Priority Level
The OpenVMS operating system in a uniprocessor system synchronizes access to systemwide data
structures by requiring that all threads sharing data run at the IPL of the highest-priority interrupt that
causes any of them to execute. Thus, a thread's accessing of data cannot be interrupted by any other
thread that accesses the same data.

The IPL is a processor-specific mechanism. Raising the IPL on one processor has no effect on another
processor. You must use a different synchronization technique on SMP systems where code threads run
concurrently on different CPUs that must have synchronized access to shared system data.

On VAX systems, the code threads that run concurrently on different processors synchronize through
instructions that interlock memory in addition to raising the IPL. Memory interlocks also synchronize
access to data shared by an I/O processor and a code thread.

On Alpha systems, access to a data structure that is shared either by executive code running concurrently
on different CPUs or by an I/O processor and a code thread must be synchronized through a load-
locked/store-conditional sequence.

I64 systems have 256 hardware interrupt levels, which are maskable in groups of 16. On I64 systems,
an OpenVMS executive component called software interrupt services (SWIS) handles I64 hardware
interrupt masking and simulates IPL.

6.6.2. LD x_L and ST x_C Instructions (Alpha Only)
Because Alpha systems do not provide a single instruction that both reads and writes memory or
mechanism to interlock memory against other interlocked accesses, you must use other synchronization
techniques. Alpha systems provide the load-locked/store-conditional mechanism that allows a sequence
of instructions to perform an atomic read-modify-write operation.

Load-locked (LD x_L) and store-conditional (ST x_C) instructions guarantee atomicity that is
functionally equivalent to that of VAX systems. The LD x_L and ST x_C instructions can be used
only on aligned longwords or aligned quadwords. The LD x_L and ST x_C instructions do not provide
atomicity by blocking access to shared data by competing threads. Instead, when the LD x_L instruction
executes, a CPU-specific lock bit is set. Before the data can be stored, the CPU uses the ST x_C
instruction to check the lock bit. If another thread has accessed the data item in the time since the load
operation began, the lock bit is cleared and the store is not performed. Clearing the lock bit signals the
code thread to retry the load operation. That is, a load-locked/store-conditional sequence tests the lock
bit to see whether the store succeeded. If it did not succeed, the sequence branches back to the beginning
to start over. This loop repeats until the data is untouched by other threads during the operation.

By using the LD x_L and ST x_C instructions together, you can construct a code sequence that performs
an atomic read-modify-write operation to an aligned longword or quadword. Rather than blocking other
threads' modifications of the target memory, the code sequence determines whether the memory locked
by the LD x_L instruction could have been written by another thread during the sequence. If it is written,
the sequence is repeated. If it is not written, the store is performed. If the store succeeds, the sequence is
atomic with respect to other threads on the same processor and on other processors. The LD x_L and ST
x_C instructions can execute in any access mode.

157

Chapter 6. Synchronizing Data Access and Program Operations

Traditional VAX usage is for interlocked instructions to be used for multiprocessor synchronization. On
Alpha systems, LD x_L and ST x_C instructions implement interlocks and can be used for uniprocessor
synchronization. To achieve protection similar to the VAX interlock protection, you need to use memory
barriers along with the load-locked and store-conditional instructions.

Some Alpha system compilers make the LD x_L and ST x_C instruction mechanism available as
language built-in functions. For example, VSI C on Alpha systems includes a set of built-in functions
that provides for atomic addition and for logical AND and OR operations. Also, Alpha system compilers
make the mechanism available implicitly, because they use the LD x_L and ST x_C instructions to access
declared data as requiring atomic accesses in a language-specific way.

6.6.3. Interlocking Memory References (Alpha Only)
The Alpha Architecture Reference Manual, Third Edition (AARM) describes strict rules for interlocking
memory references. The Alpha 21264 (EV6) processor and all subsequent Alpha processors are more
stringent than their predecessors in their requirement that these rules be followed. As a result, code that
has worked in the past, despite noncompliance, could fail when executed on systems featuring the 21264
and subsequent processors. Occurrences of these noncompliant code sequences are believed to be rare.
The Alpha 21264 processor was first supported by OpenVMS Alpha Version 7.1–2.

Noncompliant code can result in a loss of synchronization between processors when interprocessor locks
are used, or can result in an infinite loop when an interlocked sequence always fails. Such behavior has
occurred in some code sequences in programs compiled on old versions of the BLISS compiler, some
versions of the MACRO–32 compiler and the MACRO–64 assembler, and in some VSI C and VSI C++
programs.

For recommended compiler versions, see Section 6.6.3.5.

The affected code sequences use LDx_L/STx_C instructions, either directly in assembly language
sources or in code generated by a compiler. Applications most likely to use interlocked instructions are
complex, multithreaded applications or device drivers using highly optimized, hand-crafted locking and
synchronization techniques.

6.6.3.1. Required Code Checks

OpenVMS recommends that code that will run on the 21264 and later processors be checked for these
sequences. Particular attention should be paid to any code that does interprocess locking, multithreading,
or interprocessor communication.

The SRM_CHECK tool (named after the System Reference Manual, which defines the Alpha
architecture) has been developed to analyze Alpha executables for noncompliant code sequences. The
tool detects sequences that might fail, reports any errors, and displays the machine code of the failing
sequence.

6.6.3.2. Using the Code Analysis Tool

The SRM_CHECK tool can be found in the following location on the OpenVMS Alpha Version 7.2 and
later Operating System CD–ROM:

SYS$SYSTEM:SRM_CHECK.EXE

To run the SRM_CHECK tool, define it as a foreign command (or use the DCL$PATH mechanism) and
invoke it with the name of the image to check. If a problem is found, the machine code is displayed and

158

Chapter 6. Synchronizing Data Access and Program Operations

some image information is printed. The following example illustrates how to use the tool to analyze an
image called myimage.exe:

$ define DCL$PATH []
$ srm_check myimage.exe

The tool supports wildcard searches. Use the following command line to initiate a wildcard search:

$ srm_check [*...]* -log

Use the -log qualifier to generate a list of images that have been checked. You can use the -output
qualifier to write the output to a data file. For example, the following command directs output to a file
named CHECK.DAT:

$ srm_check 'file' -output check.dat

You can use the output from the tool to find the module that generated the sequence by looking in the
image's MAP file. The addresses shown correspond directly to the addresses that can be found in the
MAP file.

The following example illustrates the output from using the analysis tool on an OpenVMS executive
image named SYSTEM_SYNCHRONIZATION.EXE:

 ** Potential Alpha Architecture Violation(s) found in file...
 ** Found an unexpected ldq at 00003618
 0000360C AD970130 ldq_l R12, 0x130(R23)
 00003610 4596000A and R12, R22, R10
 00003614 F5400006 bne R10, 00003630
 00003618 A54B0000 ldq R10, (R11)
 Image Name: SYSTEM_SYNCHRONIZATION
 Image Ident: X-3
 Link Time: 5-NOV-1998 22:55:58.10
 Build Ident: X6P7-SSB-0000
 Header Size: 584
 Image Section: 0, vbn: 3, va: 0x0, flags: RESIDENT EXE (0x880)

The MAP file for SYSTEM_SYNCHRONIZATION.EXE contains the following:

EXEC$NONPAGED_CODE 00000000 0000B317 0000B318 (45848.) 2 ** 5
SMPROUT 00000000 000047BB 000047BC (18364.) 2 ** 5
SMPINITIAL 000047C0 000061E7 00001A28 (6696.) 2 ** 5

The address 360C is in the SMPROUT module, which contains the addresses from 0-47BB. By looking
at the machine code output from the module, you can locate the code and use the listing line number
to identify the corresponding source code. If SMPROUT had a nonzero base, it would be necessary to
subtract the base from the address (360C in this case) to find the relative address in the listing file.

Note that the tool reports potential violations in its output. Although SRM_CHECK can normally
identify a code section in an image by the section's attributes, it is possible for OpenVMS images to
contain data sections with those same attributes. As a result, SRM_CHECK may scan data as if it were
code, and occasionally, a block of data may look like a noncompliant code sequence. This circumstance
is rare and can be detected by examining the MAP and listing files.

6.6.3.3. Characteristics of Noncompliant Code
The areas of noncompliance detected by the SRM_CHECK tool can be grouped into the following four
categories. Most of these can be fixed by recompiling with new compilers. In rare cases, the source code
may need to be modified. See Section 6.6.3.5 for information about compiler versions.

159

Chapter 6. Synchronizing Data Access and Program Operations

• Some versions of OpenVMS compilers introduce noncompliant code sequences during an
optimization called "loop rotation." This problem can only be triggered in C or C++ programs that
use LDx_L/STx_C instructions in assembly language code that is embedded in the C/C++ source
using the ASM function, or in assembly language written in MACRO–32 or MACRO–64. In some
cases, a branch was introduced between the LDx_L and STx_C instructions.

This can be addressed by recompiling.

• Some code compiled with very old BLISS, MACRO–32, or DEC Pascal compilers may contain
noncompliant sequences. Early versions of these compilers contained a code scheduling bug where a
load was incorrectly scheduled after a load_locked.

This can be addressed by recompiling.

• In rare cases, the MACRO–32 compiler may generate a noncompliant code sequence for a BBSSI or
BBCCI instruction where there are too few free registers.

This can be addressed by recompiling.

• Errors may be generated by incorrectly coded MACRO–64 or MACRO–32 and incorrectly coded
assembly language embedded in C or C++ source using the ASM function.

This requires source code changes. The new MACRO–32 compiler flags noncompliant code at
compile time.

If the SRM_CHECK tool finds a violation in an image, the image should be modified if necessary and
recompiled with the appropriate compiler (see Section 6.6.3.5). After recompiling, the image should be
analyzed again. If violations remain after recompiling, the source code must be examined to determine
why the code scheduling violation exists. Modifications should then be made to the source code.

6.6.3.4. Coding Requirements
The Alpha Architecture Reference Manual describes how an atomic update of data between processors
must be formed. The Third Edition, in particular, has much more information on this topic.

Exceptions to the following two requirements are the source of all known noncompliant code:

• There cannot be a memory operation (load or store) between the LDx_L (load locked) and STx_C
(store conditional) instructions in an interlocked sequence.

• There cannot be a branch taken between an LDx_L and an STx_C instruction. Rather, execution
must "fall through" from the LDx_L to the STx_C without taking a branch.

Any branch whose target is between an LDx_L and matching STx_C creates a noncompliant
sequence. For instance, any branch to "label" in the following example would result in noncompliant
code, regardless of whether the branch instruction itself was within or outside of the sequence:

 LDx_L Rx, n(Ry)
 ...
 label: ...
 STx_C Rx, n(Ry)

Therefore, the SRM_CHECK tool looks for the following:

• Any memory operation (LDx/STx) between an LDx_L and an STx_C

160

Chapter 6. Synchronizing Data Access and Program Operations

• Any branch that has a destination between an LDx_L and an STx_C

• STx_C instructions that do not have a preceding LDx_L instruction

This typically indicates that a backward branch is taken from an LDx_L to the STx_C. Note that
hardware device drivers that do device mailbox writes are an exception. These drivers use the STx_C
to write the mailbox. This condition is found only on early Alpha systems and not on PCI based
systems.

• Excessive instructions between an LDx_L and an STxC

The AARM recommends that no more than 40 instructions appear between an LDx_l and an
STx_c. In theory, more than 40 instructions can cause hardware interrupts to keep the sequence from
completing. However, there are no known occurrences of this.

To illustrate, the following are examples of code flagged by SRM_CHECK.

 ** Found an unexpected ldq at 0008291C
 00082914 AC300000 ldq_l R1, (R16)
 00082918 2284FFEC lda R20, 0xFFEC(R4)
 0008291C A6A20038 ldq R21, 0x38(R2)

In the above example, an LDQ instruction was found after an LDQ_L before the matching STQ_C.
The LDQ must be moved out of the sequence, either by recompiling or by source code changes. (See
Section 6.6.3.3).

 ** Backward branch from 000405B0 to a STx_C sequence at 0004059C
 00040598 C3E00003 br R31, 000405A8
 0004059C 47F20400 bis R31, R18, R0
 000405A0 B8100000 stl_c R0, (R16)
 000405A4 F4000003 bne R0, 000405B4
 000405A8 A8300000 ldl_l R1, (R16)
 000405AC 40310DA0 cmple R1, R17, R0
 000405B0 F41FFFFA bne R0, 0004059C

In the above example, a branch was discovered between the LDL_L and STL_C. In this case, there is no
"fall through" path between the LDx_L and STx_C, which the architecture requires.

Note

This branch backward from the LDx_L to the STx_C is characteristic of the noncompliant code
introduced by the "loop rotation" optimization.

The following MACRO–32 source code demonstrates code where there is a "fall through" path, but this
case is still noncompliant because of the potential branch and a memory reference in the lock sequence.

 getlck: evax_ldql r0, lockdata(r8) ; Get the lock data
 movl index, r2 ; and the current index.
 tstl r0 ; If the lock is zero,
 beql is_clear ; skip ahead to store.
 movl r3, r2 ; Else, set special index.
 is_clear:
 incl r0 ; Increment lock count
 evax_stqc r0, lockdata(r8) ; and store it.
 tstl r0 ; Did store succeed?

161

Chapter 6. Synchronizing Data Access and Program Operations

 beql getlck ; Retry if not.

To correct this code, the memory access to read the value of INDEX must first be moved outside the
LDQ_L/STQ_C sequence. Next, the branch between the LDQ_L and STQ_C, to the label IS_CLEAR,
must be eliminated. In this case, it could be done using a CMOVEQ instruction. The CMOVxx
instructions are frequently useful for eliminating branches around simple value moves. The following
example shows the corrected code:

 movl index, r2 ; Get the current index
 getlck: evax_ldql r0, lockdata(r8) ; and then the lock data.
 evax_cmoveq r0, r3, r2 ; If zero, use special index.
 incl r0 ; Increment lock count
 evax_stqc r0, lockdata(r8) ; and store it.
 tstl r0 ; Did write succeed?
 beql getlck ; Retry if not.

6.6.3.5. Compiler Versions
This section contains information about versions of compilers that may generate noncompliant code
sequences and the minimum recommended versions to use when recompiling.

Table 6.1 contains information for OpenVMS compilers.

Table 6.1. OpenVMS Compilers

Old Version Recommended Minimum Version

BLISS V1.1 BLISS V1.3
DEC C V5.x HP C V6.0
DEC C++ V5.x HP C++ V6.0
DEC Pascal V5.0-2 HP Pascal V5.1-11
MACRO–32 V3.0 V3.1 for OpenVMS Version 7.1–2

V4.1 for OpenVMS Version 7.2
MACRO–64 V1.2 See below.

Current versions of the MACRO–64 assembler may still encounter the loop rotation issue. However,
MACRO–64 does not perform code optimization by default, and this problem occurs only when
optimization is enabled. If SRM_CHECK indicates a noncompliant sequence in the MACRO–64 code, it
should first be recompiled without optimization. If the sequence is still flagged when retested, the source
code itself contains a noncompliant sequence that must be corrected.

6.6.3.6. Interlocked Memory Sequence Checking for the MACRO–
32 Compiler
The MACRO–32 Compiler for OpenVMS Alpha Version 4.1 and later performs additional code
checking and displays warning messages for noncompliant code sequences. The following warning
messages can display under the circumstances described:

BRNDIRLOC, branch directive ignored in locked memory sequence

Explanation: The compiler found a .BRANCH_LIKELY directive within an LDx_L/STx_C sequence.

User Action: None. The compiler ignores the .BRANCH_LIKELY directive and, unless other coding
guidelines are violated, the code works as written.

162

Chapter 6. Synchronizing Data Access and Program Operations

BRNTRGLOC, branch target within locked memory sequence in routine ’routine_name’

Explanation: A branch instruction has a target that is within an LDx_L/STx_C sequence.

User Action: To avoid this warning, rewrite the source code to avoid branches within or into LDx_L/
STx_C sequences. Branches out of interlocked sequences are valid and are not flagged.

MEMACCLOC, memory access within locked memory sequence in routine ’routine_name ’

Explanation: A memory read or write occurs within an LDx_L/STx_C sequence. This can be either an
explicit reference in the source code, such as "MOVL data, R0", or an implicit reference to memory. For
example, fetching the address of a data label (for example, "MOVAB label, R0") is accomplished by a
read from the linkage section, the data area that is used to resolve external references.

User Action: To avoid this warning, move all memory accesses outside the LDx_L/STx_C sequence.

RETFOLLOC, RET/RSB follows LDx_L instruction

Explanation: The compiler found a RET or RSB instruction after an LDx_L instruction and before
finding an STx_C instruction. This indicates an ill-formed lock sequence.

User Action: Change the code so that the RET or RSB instruction does not fall between the LDx_L
instruction and the STx_C instruction.

RTNCALLOC, routine call within locked memory sequence in routine ’routine_name’

Explanation: A routine call occurs within an LDx_L/STx_C sequence. This can be either an explicit
CALL/JSB in the source code, such as "JSB subroutine", or an implicit call that occurs as a result of
another instruction. For example, some instructions such as MOVC and EDIV generate calls to run-time
libraries.

User Action: To avoid this warning, move the routine call or the instruction that generates it, as
indicated by the compiler, outside the LDx_L/STx_C sequence.

STCMUSFOL, STx_C instruction must follow LDx_L instruction

Explanation: The compiler found an STx_C instruction before finding an LDx_L instruction. This
indicates an ill-formed lock sequence.

User Action: Change the code so that the STx_C instruction follows the LDx_L instruction.

6.6.3.7. Recompiling Code with ALONONPAGED_INLINE or
LAL_REMOVE_FIRST Macros
Any MACRO–32 code on OpenVMS Alpha that invokes either the ALONONPAGED_INLINE or the
LAL_REMOVE_FIRST macros from the SYS$LIBRARY:LIB.MLB macro library must be recompiled
on OpenVMS Version 7.2 and later to obtain a correct version of these macros. The change to these
macros corrects a potential synchronization problem that is more likely to be encountered on the Alpha
21264 (EV6) and subsequent processors.

163

Chapter 6. Synchronizing Data Access and Program Operations

Note

Source modules that call the EXE$ALONONPAGED routine (or any of its variants) do not need to be
recompiled. These modules transparently use the correct version of the routine that is included in this
release.

6.6.4. Interlocked Instructions (VAX Only)
On VAX systems, seven instructions interlock memory. A memory interlock enables a VAX CPU or
I/O processor to make an atomic read-modify-write operation to a location in memory that is shared by
multiple processors. The memory interlock is implemented at the level of the memory controller. On
a VAX multiprocessor system, an interlocked instruction is the only way to perform an atomic read-
modify-write on a shared piece of data. The seven interlock memory instructions are as follows:

• ADAWI – Add aligned word, interlocked

• BBCCI – Branch on bit clear and clear, interlocked

• BBSSI – Branch on bit set and set, interlocked

• INSQHI – Insert entry into queue at head, interlocked

• INSQTI – Insert entry into queue at tail, interlocked

• REMQHI – Remove entry from queue at head, interlocked

• REMQTI – Remove entry from queue at tail, interlocked

The VAX architecture interlock memory instructions are described in detail in the VAX Architecture
Reference Manual.

The following description of the interlocked instruction mechanism assumes that the interlock is
implemented by the memory controller and that the memory contents are fresh.

When a VAX CPU executes an interlocked instruction, it issues an interlock-read command to the
memory controller. The memory controller sets an internal flag and responds with the requested data.
While the flag is set, the memory controller stalls any subsequent interlock-read commands for the same
aligned longword from other CPUs and I/O processors, even though it continues to process ordinary
reads and writes. Because interlocked instructions are noninterruptible, they are atomic with respect to
threads of execution on the same processor.

When the VAX processor that is executing the interlocked instruction issues a write-unlock command,
the memory controller writes the modified data back and clears its internal flag. The memory interlock
exists for the duration of only one instruction. Execution of an interlocked instruction includes paired
interlock-read and write-unlock memory controller commands.

When you synchronize data with interlocks, you must make sure that all accessors of that data use them.
This means that memory references of an interlocked instruction are atomic only with respect to other
interlocked memory references.

On VAX systems, the granularity of the interlock depends on the type of VAX system. A given VAX
implementation is free to implement a larger interlock granularity than that which is required by the set

164

Chapter 6. Synchronizing Data Access and Program Operations

of interlocked instructions listed above. On some processors, for example, while an interlocked access to
a location is in progress, interlocked access to any other location in memory is not allowed.

6.6.5. Memory Barriers (Alpha Only)
On Alpha systems, there are no implied memory barriers except those performed by the PALcode
routines that emulate the interlocked queue instructions. Wherever necessary, you must insert explicit
memory barriers into your code to impose an order on references to data shared with threads of
execution that could be running on other members of an SMP system. Memory barriers are required
to ensure both the order in which other members of an SMP system or an I/O processor see writes to
shared data, and the order in which reads of shared data complete.

There are two types of memory barrier:

• The MB instruction

• The instruction memory barrier (IMB) PALcode routine

The MB instruction guarantees that all subsequent loads and stores do not access memory until after all
previous loads and stores have accessed memory from the viewpoint of multiple threads of execution.
Alpha compilers provide semantics for generating memory barriers when needed for specific operations
on data items.

Code that modifies the instruction stream must be changed to synchronize the old and new instruction
streams properly. Use of an REI instruction to accomplish this does not work on OpenVMS Alpha
systems.

The instruction memory barrier (IMB) PALcode routine must be used after a modification to the
instruction stream to flush prefetched instructions. In addition, it also provides the same ordering effects
as the MB instruction.

If a kernel mode code sequence changes the expected instruction stream, it must issue an IMB
instruction after changing the instruction stream and before the time the change is executed. For
example, if a device driver stores an instruction sequence in an extension to the unit control block (UCB)
and then transfers control there, it must issue an IMB instruction after storing the data in the UCB but
before transferring control to the UCB data.

The MACRO-32 compiler for OpenVMS Alpha provides the EVAX_IMB built-in to insert explicitly an
IMB instruction in the instruction stream.

6.6.6. Memory Fences (I64 Only)
The I64 memory fence (mf) instruction causes all memory operations before the mf instruction to
complete before any memory operations after the mf instruction are allowed to begin. Fence instructions
combine the release and acquire semantics into a bidirectional fence; that is, they guarantee that all
previous orderable instructions are made visible prior to any subsequent orderable instruction being made
visible.

6.6.7. PALcode Routines (Alpha Only)
Privileged architecture library (PALcode) routines include Alpha instructions that emulate VAX queue
and interlocked queue instructions. PALcode executes in a special environment with interrupts blocked.

165

Chapter 6. Synchronizing Data Access and Program Operations

This feature results in noninterruptible updates. A PALcode routine can perform the multiple memory
reads and memory writes that insert or remove a queue element without interruption.

6.6.8. I64 Emulation of PALcode Built-ins
The VAX interlocked queue instructions work unchanged on OpenVMS I64 systems and result in the
SYS$PAL_xxxx run-time routine PALcode equivalents being called, which incorporate the necessary
interlocks and memory barriers.

Whenever possible, the OpenVMS I64BLISS, C, and MACRO compilers convert CALL_PAL macros to
the equivalent OpenVMS-provided SYS$PAL_xxxx operating system calls for backward compatibility.

The BLISS compiler compiles each of the queue manipulation PALcode builtins into SYS$PAL_xxxx
system service requests.

Refer to Porting Applications from VSI OpenVMS Alpha to VSI OpenVMS Industry Standard 64 for
Integrity Servers for complete information on the BLISS implementation.

6.7. Software-Level Synchronization
The operating system uses the synchronization primitives provided by the hardware as the basis for
several different synchronization techniques. The following sections summarize the operating system's
synchronization techniques available to application software.

6.7.1. Synchronization Within a Process
On Alpha and I64 systems without kernel threads, only one thread of execution can execute within a
process at a time, so synchronization of threads that execute simultaneously is not a concern. However, a
delivery of an AST or the occurrence of an exception can intervene in a sequence of instructions in one
thread of execution. Because these conditions can occur, application design must take into account the
need for synchronization with condition handlers and AST procedures.

On Alpha systems without the byte-word extension, writing bytes or words or performing a read-modify-
write operation requires a sequence of Alpha instructions. If the sequence incurs an exception or is
interrupted by AST delivery or an exception, another process code thread can run. If that thread accesses
the same data, it can read incompletely written data or cause data corruption. Aligning data on natural
boundaries and unpacking word and byte data reduce this risk.

On Alpha and I64 systems, an application written in a language other than MACRO-32 must identify
to the compiler data accessed by any combination of mainline code, AST procedures, and condition
handlers to ensure that the compiler generates code that is atomic with respect to other threads. Also,
data shared with other processes must be identified.

With process-private data accessed from both AST and non-AST threads of execution, the non-AST
thread can block AST delivery by using the Set AST Enable (SYS$SETAST) system service. If the code
is running in kernel mode, it can also raise IPL to block AST delivery. The Guide to Creating OpenVMS
Modular Procedures describes the concept of AST reentrancy.

On a uniprocessor or in a symmetric multiprocessing (SMP) system, access to multiple locations with
a read or write instruction or with a read-modify-write sequence is not atomic on OpenVMS systems.
Additional synchronization methods are required to control access to the data. See Section 6.7.4 and the
sections following it, which describe the use of higher-level synchronization techniques.

166

Chapter 6. Synchronizing Data Access and Program Operations

6.7.2. Synchronization in Inner Mode
(Alpha and I64 Only)
On Alpha and I64 systems with kernel threads, the system allows multiple execution contexts, or threads
within a process, that all share the same address space to run simultaneously. The synchronization
provided by spinlocks continues to allow thread safe access to process data structures such as the process
control block (PCB). However, access to process address space and any structures currently not explicitly
synchronized with spin locks are no longer guaranteed exclusive access solely by access mode. In the
multithreaded environment, a new process level synchronization mechanism is required.

Because spin locks operate on a systemwide level and do not offer the process level granularity required
for inner-mode access synchronization in a multithreaded environment, a process level semaphore is
necessary to serialize inner mode (kernel and executive) access. User and supervisor mode threads are
allowed to run without any required synchronization.

The process level semaphore for inner-mode synchronization is the inner mode (IM) semaphore. The
IM semaphore is created in the first floating-point registers and execution data block (FRED) page
in the balance set slot process for each process. In a multithreaded environment, a thread requiring
inner mode access acquires ownership of the IM semaphore. That is, in general, two threads associated
with the same process cannot execute in inner mode simultaneously. If the semaphore is owned by
another thread, then the requesting thread spins until inner mode access becomes available, or until some
specified timeout value has expired.

6.7.3. Synchronization Using Process Priority
In some applications (usually real-time applications), a number of processes perform a series of tasks. In
such applications, the sequence in which a process executes can be controlled or synchronized by means
of process priority. The basic method of synchronization by priority involves executing the process with
the highest priority while preventing the other application processes from executing.

If you use process priority for synchronization, be aware that if the higher-priority process is blocked,
either explicitly or implicitly (for example, when doing an I/O), the lower-priority processes can run,
resulting in corruption on the data of the higher process's activities.

Because each processor in a multiprocessor system, when idle, schedules its own work load, it is
impossible to prevent all other processes in the system from executing. Moreover, because the scheduler
guarantees only that the highest-priority and computable process is scheduled at any given time, it is
impossible to prevent another process in an application from executing.

Thus, application programs that synchronize by process priority must be modified to use a different
serialization method to run correctly in a multiprocessor system.

6.7.4. Synchronizing Multiprocess Applications
The operating system provides the following techniques to synchronize multiprocess applications:

• Common event flags

• Lock management system services

The operating system provides basic event synchronization through event flags. Common event flags
can be shared among cooperating processes running on a uniprocessor or in an SMP system, though
the processes must be in the same user identification code (UIC) group. Thus, if you have developed
an application that requires the concurrent execution of several processes, you can use event flags to

167

Chapter 6. Synchronizing Data Access and Program Operations

establish communication among them and to synchronize their activity. A shared, or common, event flag
can represent any event that is detectable and agreed upon by the cooperating processes. See Section 6.8
for information about using event flags.

The lock management system services – Enqueue Lock Request (SYS$ENQ), and Dequeue Lock
Request (SYS$DEQ) – provide multiprocess synchronization tools that can be requested from all access
modes. For details about using lock management system services, see Chapter 7.

Synchronization of access to shared data by a multiprocess application should be designed to support
processes that execute concurrently on different members of an SMP system. Applications that share
a global section can use MACRO-32 interlocked instructions or the equivalent in other languages to
synchronize access to data in the global section. These applications can also use the lock management
system services for synchronization.

Most application programs that run on an operating system in a uniprocessor system also run without
modification in a multiprocessor system. However, applications that access writable global sections or
that rely on process priority for synchronizing tasks should be reexamined and modified according to the
information contained in this section.

In addition, some applications may execute more efficiently on a multiprocessor if they are specifically
adapted to a multiprocessing environment. Application programmers may want to decompose an
application into several processes and coordinate their activities by means of event flags or a shared
region in memory.

6.7.5. Synchronization Using Locks
A spin lock is a device used by a processor to synchronize access to data that is shared by members
of a symmetric multiprocessing (SMP) system. A spin lock enables a set of processors to serialize their
access to shared data. The basic form of a spin lock is a bit that indicates the state of a particular set of
shared data. When the bit is set, it shows that a processor is accessing the data. A bit is either tested and
set or tested and cleared; it is atomic with respect to other threads of execution on the same or other
processors.

A processor that needs access to some shared data tests and sets the spin lock associated with that data.
To test and set the spin lock, the processor uses an interlocked bit-test-and-set instruction. If the bit is
clear, the processor can have access to the data. This is called locking or acquiring the spin lock. If the bit
is set, the processor must wait because another processor is already accessing the data.

Essentially, a waiting processor spins in a tight loop; it executes repeated bit test instructions to test the
state of the spin lock. The term spin lock derives from this spinning. When the spin lock is in a loop,
repeatedly testing the state of the spin lock, the spin lock is said to be in a state of busy wait. The busy
wait ends when the processor accessing the data clears the bit with an interlocked operation to indicate
that it is done. When the bit is cleared, the spin lock is said to be unlocked or released.

Spin locks are used by the operating system executive, along with the interrupt priority level (IPL), to
control access to system data structures in a multiprocessor system.

6.7.6. Writable Global Sections
A writable global section is an area of memory that can be accessed (read and modified) by more than
one process. On uniprocessor or SMP systems, access to a single global section with an appropriate read
or write instruction is atomic on OpenVMS systems. Therefore, no other synchronization is required.

An appropriate read or write on VAX systems is an instruction that is a naturally aligned byte, word, or
longword, such as a MOVx instruction, where x is a B for a byte, W for a word, or L for a longword. On

168

Chapter 6. Synchronizing Data Access and Program Operations

Alpha systems, an appropriate read or write instruction is a naturally aligned longword or quadword, for
instance, an LDx or write STx instruction where x is an L for an aligned longword or Q for an aligned
quadword.

On multiprocessor systems, for a read-modify-write sequence on a multiprocessor system, two or more
processes can execute concurrently, one on each processor. As a result, it is possible that concurrently
executing processes can access the same locations simultaneously in a writable global section. If this
happens, only partial updates may occur, or data could be corrupted or lost, because the operation is not
atomic. Unless proper interlocked instructions are used on VAX systems or load-locked/store-conditional
instructions are used on Alpha systems, invalid data may result. You must use interlocked or load-locked/
store-conditional instructions, their high-level language equivalents, or other synchronizing techniques,
such as locks or event flags.

On a uniprocessor or SMP system, access to multiple locations within a global section with read or write
instructions or a read-modify-write sequence is not atomic. On a uniprocessor system, an interrupt can
occur that causes process preemption, allowing another process to run and access the data before the
first process completes its work. On a multiprocessor system, two processes can access the global section
simultaneously on different processors. You must use a synchronization technique such as a spin lock or
event flags to avoid these problems.

Check existing programs that use writable global sections to ensure that proper synchronization
techniques are in place. Review the program code itself; do not rely on testing alone, because an instance
of simultaneous access by more than one process to a location in a writable global section is rare.

If an application must use queue instructions to control access to writable global sections, ensure that it
uses interlocked queue instructions.

6.8. Using Event Flags
Event flags are maintained by the operating system for general programming use in coordinating thread
execution with asynchronous events. Programs can use event flags to perform a variety of signaling
functions. Event flag services clear, set, and read event flags. They also place a thread in a wait state
pending the setting of an event flag or flags.

Table 6.2 shows the two usage styles of event flags.

Table 6.2. Usage Styles of Event Flags

Style Meaning

Explicit Uses SET, CLEAR, and READ functions that are commonly used when one
thread deals with multiple asynchronous events.

Implicit Uses the SYS$SYNCH and wait form of system services when one or more
threads wish to wait for a particular event. For multithreaded applications, only the
implicit use of event flags is recommended.

The wait form of system services is a variant of asynchronous services; there is a service request and
then a wait for the completion of the request. For reliable operation in most applications, WAIT form
services must specify a status block. The status prevents the service from completing prematurely and
also provides status information.

6.8.1. General Guidelines for Using Event Flags
Explicit use of event flags follows these general steps:

169

Chapter 6. Synchronizing Data Access and Program Operations

1. Allocate or choose local event flags or associate common event flags for your use.

2. Set or clear the event flag.

3. Read the event flag.

4. Suspend thread execution until an event flag is set.

5. Deallocate the local event flags or disassociate common event flags when they are no longer needed.

Implicit use of event flags may involve only step 4, or steps 1, 4, and 5.

Use run-time library routines and system services to accomplish these event flag tasks. Table 6.3
summarizes the event flag routines and services.

Table 6.3. Event Flag Routines and Services

Routine or Service Task

LIB$FREE_EF Deallocate a local event flag.
LIB$GET_EF Allocate any local event flag.
LIB$RESERVE_EF Allocate a specific local event flag.
SYS$ASCEFC Associate a common event flag cluster.
SYS$CLREF Clear a local or common event flag.
SYS$DACEFC Disassociate a common event flag cluster.
SYS$DLCEFC Delete a common event flag cluster.
SYS$READEF Read a local or common event flag.
SYS$SETEF Set a local or common event flag.
SYS$SYNCH Wait for a local or common event flag to be set and for nonzero status block

– recommended to be used with threads.
SYS$WAITFR Wait for a specific local or common event flag to be set – not recommended

to be used with threads.
SYS$WFLAND Wait for several local or common event flags to be set – logical AND of

event flags.
SYS$WFLOR Wait for one of several local or common event flags to be set – logical OR of

event flags.

Some system services set an event flag to indicate the completion or the occurrence of an event; the
calling program can test the flag. Other system services use event flags to signal events to the calling
process, such as SYS$ENQ(W), SYS$QIO(W), or SYS$SETIMR.

6.8.2. Introducing Local and Common Event Flag
Numbers and Event Flag Clusters
Each event flag has a unique number; event flag arguments in system service calls refer to these
numbers. For example, if you specify event flag 1 in a call to the SYS$QIO system service, then event
flag 1 is set when the I/O operation completes.

To allow manipulation of groups of event flags, the flags are ordered in clusters of 32 numbers
corresponding to bits 0 through 31 (<31:0>) in a longword. The clusters are also numbered from 0 to
4. The range of event flag numbers encompasses the flags in all clusters: event flag 0 is the first flag in
cluster 0, event flag 32 is the first flag in cluster 1, and so on.

170

Chapter 6. Synchronizing Data Access and Program Operations

Event flags are divided into five clusters: two for local event flags and two for common event flags.
There is also a special local cluster 4 that supports EFN 128.

• A local event flag cluster is process specific and is used to synchronize events within a process.

• A common event flag cluster can be shared by cooperating processes in the same UIC group. A
common event flag cluster is identified by name and is specific to a UIC group and VMScluster
node. Before a process can use a common event flag cluster, it must explicitly “associate” with the
cluster. (Association is described in Section 6.8.6.) Use them to synchronize events among images
executing in different processes.

• A special local cluster 4 supports only EFN 128, symbolically EFN$C_ENF.EFN$C_ENF is
intended for use with wait form services, such as SYS$QIOW and SYS$ENQW, or SYS$SYNCH
system service. However, EFN 128 can also be used with ASTs and the SYS$QIO service. By
using EFN 128 with ASTs, for example, you can avoid setting event flag zero (0), which eliminates
possible event flag contention in processes. The EFN 128 allows you to bypass all event flag
processing in system services. Using EFN 128 also allows for faster processing.

For more information, see Section 6.8.4.

Table 6.4 summarizes the ranges of event flag numbers and the clusters to which they belong.

The same system services manipulate flags in either local and common event flag clusters. Because the
event flag number implies the cluster number, you need not specify the cluster number when you call a
system service that refers to an event flag.

When a system service requires an event flag cluster number as an argument, you need only specify the
number of any event flag in the cluster. Thus, to read the event flags in cluster 1, you could specify any
number in the range 32 through 63.

Table 6.4. Event Flags

Cluster Number Flag Number Type Usage

0 0 Local Default flag used by system routines.
0 1 to 23 Local May be used in system routines. When

an event flag is requested, it is not
returned unless it has been previously
and specifically freed by calls to
LIB$FREE_EF.

0 24 to 31 Local Reserved for use only.
1 32 to 63 Local Available for general use.
2 64 to 95 Common Available for general use.
3 96 to 127 Common Available for general use.
4 128 Local Available for general use without explicit

allocation.

6.8.3. Using Event Flag Zero (0)
Event flag 0 is the default event flag. Whenever a process requests a system service with an event flag
number argument, but does not specify a particular flag, event flag 0 is used. Therefore, event flag 0 is
more likely than other event flags to be used incorrectly for multiple concurrent requests.

171

Chapter 6. Synchronizing Data Access and Program Operations

Code that uses any event flag should be able to tolerate spurious sets, assuming that the only real danger
is a spurious clear that causes a thread to miss an event. Since any system service that uses an event
flag clears the flag, there is a danger that an event which has occurred but has not been responded to is
masked which can result in a hang. For further information, see the SYS$SYNCH system service in VSI
OpenVMS System Services Reference Manual: GETUTC-Z.

6.8.4. Using EFN$C_ENF Local Event Flag
The combination of EFN$C_ENF and a status block should be used with the wait form of system
services, or with SYS$SYNCH system service. EFN$C_ENF does not need to be initialized, nor does it
need to be reserved or freed. Multiple threads of execution may concurrently use EFN$C_ENF without
interference as long as they use a unique status block for each concurrent asynchronous service. When
EFN$C_ENF is used with explicit event flag system services, it performs as if always set. You should
use EFN$C_ENF to eliminate the chance for event flag overlap.

6.8.5. Using Local Event Flags
Local event flags are automatically available to each program. They are not automatically initialized.
However, if an event flag is passed to a system service such as SYS$GETJPI, the service initializes the
flag before using it.

When using local event flags, use the event flag routines as follows:

1. To ensure that the event flag you are using is not accessed and changed by other uses within your
process, allocate local event flags. The VSI OpenVMS RTL Library (LIB$) Manual describes routines
you can use to allocate an arbitrary event flag (LIB$GET_EF), and to allocate a particular event flag
(LIB$RESERVE_EF) from the processwide pool of available local event flags. Similar routines do
not exist for common event flags.

The LIB$GET_EF routine by default allocates flags from event flag cluster 1 (event flags 32 through
63). Event flags 1 through 32 (in event flag cluster 0) can also optionally be allocated by calls to
LIB$GET_EF. To maintain compatibility with older application software that used event flags
1 through 23 in an uncoordinated fashion, these event flags must be initially marked as free by
application calls to the LIB$FREE_EF routine before these flags can be allocated by subsequent
calls to the LIB$GET_EF routine.

2. Before using the event flag, initialize it using the SYS$CLREF system service, unless you pass the
event flag to a routine that clears it for you.

3. When an event that is relevant to other program components is completed, set the event flag with the
SYS$SETEF system service.

4. A program component can read the event flag to determine what has happened and act accordingly.
Use the SYS$READEF system service to read the event flag.

5. The program components that evaluate event flag status can be placed in a wait state. Then, when the
event flag is set, execution is resumed. Use the SYS$WAITFR, SYS$WFLOR, SYS$WFLAND, or
SYS$SYNCH system service to accomplish this task.

6. When a local event flag is no longer required, free it by using the LIB$FREE_EF routine.

The following Fortran example uses LIB$GET_EF to choose a local event flag and then uses
SYS$CLREF to set the event flag to 0 (clear the event flag). (Note that run-time library routines require

172

Chapter 6. Synchronizing Data Access and Program Operations

an event flag number to be passed by reference, and system services require an event flag number to be
passed by value).

INTEGER FLAG,
2 STATUS,
2 LIB$GET_EF,
2 SYS$CLREF

STATUS = LIB$GET_EF (FLAG)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))
STATUS = SYS$CLREF (%VAL(FLAG))
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))

6.8.5.1. Example of Event Flag Services
Local event flags are used most commonly with other system services. For example, you can use the Set
Timer (SYS$SETIMR) system service to request that an event flag be set either at a specific time of day
or after a specific interval of time has passed. If you want to place a process in a wait state for a specified
period of time, specify an event flag number for the SYS$SETIMR service and then use the Wait for
Single Event Flag (SYS$WAITFR) system service, as shown in the C example that follows:

 .
 .
 .
main() {

 unsigned int status, daytim[1], efn=3;

/* Set the timer */
 status = SYS$SETIMR(efn, /* efn - event flag */
 &daytim, /* daytim - expiration time */
 0, /* astadr - AST routine */
 0, /* reqidt - timer request id */
 0); /* flags */
 if ((status & 1) != 1)
 LIB$SIGNAL(status);
 .
 .
 .

/* Wait until timer expires */
 status = SYS$WAITFR(efn);
 if ((status & 1) != 1)
 LIB$SIGNAL(status);
 .
 .
 .
}

In this example, the daytim argument refers to a 64-bit time value. For details about how to obtain
a time value in the proper format for input to this service, see VSI OpenVMS Programming Concepts
Manual, Volume II.

6.8.6. Using Common Event Flags
Common event flags are manipulated like local event flags. However, before a process can use event
flags in a common event flag cluster, the cluster must be created. The Associate Common Event

173

Chapter 6. Synchronizing Data Access and Program Operations

Flag Cluster (SYS$ASCEFC) system service creates a named common event flag cluster. By calling
SYS$ASCEFC, other processes in the same UIC group can establish their association with the cluster so
they can access flags in it. Each process that associates with the cluster must use the same name to refer
to it; the SYS$ASCEFC system service establishes correspondence between the cluster name and the
cluster number that a process assigns to the cluster.

The first program to name a common event flag cluster creates it; all flags in a newly created cluster are
clear. Other processes on the same OpenVMS cluster node that have the same UIC group number as
the creator of the cluster can reference the cluster by invoking SYS$ASCEFC and specifying the cluster
name.

Different processes may associate the same name with different common event flag numbers; as long as
the name and UIC group are the same, the processes reference the same cluster.

Common event flags act as a communication mechanism between images executing in different
processes in the same group on the same OpenVMS cluster node. Common event flags are often used as
a synchronization tool for other, more complicated communication techniques, such as logical names and
global sections. For more information about using event flags to synchronize communication between
processes, see Chapter 3.

If every cooperating process that is going to use a common event flag cluster has the necessary privilege
or quota to create a cluster, the first process to call the SYS$ASCEFC system service creates the cluster.

The following example shows how a process might create a common event flag cluster named
COMMON_CLUSTER and assign it a cluster number of 2:

 .
 .
 .
#include <descrip.h>
 .
 .
 .
 unsigned int status, efn=65;
 $DESCRIPTOR(name,"COMMON_CLUSTER"); /* Cluster name */
 .
 .
 .
/* Create cluster 2 */
 status = SYS$ASCEFC(efn, &name, 0, 0);

Other processes in the same group can now associate with this cluster. Those processes must use the
same character string name to refer to the cluster; however, the cluster numbers they assign do not have
to be the same.

6.8.6.1. Using the name Argument with SYS$ASCEFC

The name argument to the Associate Common Event Flag Cluster (SYS$ASCEFC) system service
identifies the cluster that the process is creating or associating with. The name argument specifies a
descriptor pointing to a character string.

Translation of the name argument proceeds in the following manner:

1. CEF$ is prefixed to the current name string, and the result is subjected to logical name translation.

174

Chapter 6. Synchronizing Data Access and Program Operations

2. If the result is a logical name, step 1 is repeated until translation does not succeed or until the
number of translations performed exceeds the number 10.

3. The CEF$ prefix is stripped from the current name string that could not be translated. This current
string is the cluster name.

For example, assume that you have made the following logical name assignment:

$ DEFINE CEF$CLUS_RT CLUS_RT_001

Assume also that your program contains the following statements:

#include <ssdef.h>
#include <descrip.h>
 .
 .
 .
 unsigned int status;
 $DESCRIPTOR(name,"CLUS_RT"); /* Logical name of cluster */
 .
 .
 .
 status = SYS$ASCEFC(...,&name,...);

The following logical name translation takes place:

1. CEF$ is prefixed to CLUS_RT.

2. CEF$CLUS_RT is translated to CLUS_RT_001. (Further translation is unsuccessful. When logical
name translation fails, the string is passed to the service).

There are two exceptions to the logical name translation method discussed in this section:

• If the name string starts with an underscore (_), the operating system strips the underscore and
considers the resultant string to be the actual name (that is, further translation is not performed).

• If the name string is the result of a logical name translation, the name string is checked to see
whether it has the terminal attribute. If it does, the operating system considers the resultant string to
be the actual name (that is, further translation is not performed).

6.8.6.2. Temporary Common Event Flag Clusters
Common event flag clusters are either temporary or permanent. The perm argument to the
SYS$ASCEFC system service defines whether the cluster is temporary or permanent.

Temporary clusters require an element of the creating process's quota for timer queue entries (TQELM
quota). They are deleted automatically when all processes associated with the cluster have disassociated.
Disassociation can be performed explicitly with the Disassociate Common Event Flag Cluster
(SYS$DACEFC) system service, or implicitly when the image that called SYS$ASCEFC exits.

6.8.6.3. Permanent Common Event Flag Clusters
If you have the PRMCEB privilege, you can create a permanent common event flag cluster (set the
perm argument to 1 when you invoke SYS$ASCEFC). A permanent event flag cluster continues to exist
until it is marked explicitly for deletion with the Delete Common Event Flag Cluster (SYS$DLCEFC)
system service (requires the PRMCEB privilege). Once a permanent cluster is marked for deletion, it is

175

Chapter 6. Synchronizing Data Access and Program Operations

like a temporary cluster; when the last process that associated with the cluster disassociates from it, the
cluster is deleted.

In the following examples, the first program segment associates common event flag cluster 3 with the
name CLUSTER and then clears the second event flag in the cluster. The second program segment
associates common event flag cluster 2 with the name CLUSTER and then sets the second event flag in
the cluster (the flag cleared by the first program segment).

Example 1

STATUS = SYS$ASCEFC (%VAL(96),
2 'CLUSTER',,)
STATUS = SYS$CLREF (%VAL(98))

Example 2

STATUS = SYS$ASCEFC (%VAL(64),
2 'CLUSTER',,)
STATUS = SYS$SETEF (%VAL(66))

For clearer code, rather than using a specific event flag number, use one variable to contain the bit offset
you need and one variable to contain the number of the first bit in the common event flag cluster that
you are using. To reference the common event flag, add the offset to the number of the first bit. The
following examples accomplish the same result as the preceding two examples:

Example 1

INTEGER*4 BASE,
2 OFFSET
PARAMETER (BASE = 96)

OFFSET=2
STATUS = SYS$ASCEFC (%VAL(BASE),
2 'CLUSTER',,)
STATUS = SYS$CLREF (%VAL(BASE+OFFSET))

Example 2

INTEGER*4 BASE,
2 OFFSET
PARAMETER (BASE = 64)

OFFSET=2
STATUS = SYS$ASCEFC (%VAL(BASE),
2 'CLUSTER',,)
STATUS = SYS$SETEF (%VAL(BASE+OFFSET))

Common event flags are often used for communicating between a parent process and a created
subprocess. The following parent process associates the name CLUSTER with a common event flag
cluster, creates a subprocess, and then waits for the subprocess to set event flag 64:

INTEGER*4 BASE,
2 OFFSET
PARAMETER (BASE = 64,
2 OFFSET = 0)
 .
 .

176

Chapter 6. Synchronizing Data Access and Program Operations

 .
! Associate common event flag cluster with name
STATUS = SYS$ASCEFC (%VAL(BASE),
2 'CLUSTER',,)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))

! Create subprocess to execute concurrently
MASK = IBSET (MASK,0)
STATUS = LIB$SPAWN ('RUN REPORTSUB', ! Image
2 'INPUT.DAT', ! SYS$INPUT
2 'OUTPUT.DAT', ! SYS$OUTPUT
2 MASK)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))

! Wait for response from subprocess
STATUS = SYS$WAITFR (%VAL(BASE+OFFSET))
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))
 .
 .
 .

REPORTSUB, the program executing in the subprocess, associates the name CLUSTER with a common
event flag cluster, performs some set of operations, sets event flag 64 (allowing the parent to continue
execution), and continues executing:

INTEGER*4 BASE,
2 OFFSET
PARAMETER (BASE = 64,
2 OFFSET = 0)
 .
 .
 .
 ! Do operations necessary for
 ! continuation of parent process
 .
 .
 .
! Associate common event flag cluster with name
STATUS = SYS$ASCEFC (%VAL(BASE),
2 'CLUSTER',,)
IF (.NOT. STATUS)
2 CALL LIB$SIGNAL (%VAL(STATUS))

! Set flag for parent process to resume
STATUS = SYS$SETEF (%VAL(BASE+OFFSET))
 .
 .
 .

6.8.7. Wait Form Services and SYS$SYNCH
A wait form system service is a variant of an asynchronous service in which there is a service request
and then a wait for the completion of the request. The SYS$SYNCH system service checks the
completion status of a system service that completes asynchronously. For reliable operation in most
applications, the service whose completion status is to be checked must have been called with the efn
and iosb arguments specified. The SYS$SYNCH service uses the event flag and I/O status block of the
service to be checked.

177

Chapter 6. Synchronizing Data Access and Program Operations

VSI recommends that only EFN$C_ENF be used for concurrent use of event flags.

6.8.8. Event Flag Waits
The following three system services place the process or thread in a wait state until an event flag or a
group of event flags is set:

• The Wait for Single Event Flag (SYS$WAITFR) system service places the process or thread in a wait
state until a single flag has been set.

• The Wait for Logical OR of Event Flags (SYS$WFLOR) system service places the process or thread
in a wait state until any one of a specified group of event flags has been set.

• The Wait for Logical AND of Event Flags (SYS$WFLAND) system service places the process or
thread in a wait state until all of a specified group of event flags have been set.

Another system service that accepts an event flag number as an argument is the Queue I/O Request
(SYS$QIO) system service. The following example shows a program segment that issues two SYS$QIO
system service calls and uses the SYS$WFLAND system service to wait until both I/O operations
complete before it continues execution:

 .
 .
 .
#include <lib$routines.h>
#include <starlet.h>
#include <stsdef.h>
 .
 .
 .
 unsigned int RetStat, Efn1=1, Efn2=2, EFMask;
 unsigned short int IOSB1[4], IOSB2[4];
 unsigned int EFMask = 1L<<Efn1 | 1L<<Efn2;
 .
 .
 .

// Issue first I/O request and check for error */
 RetStat = sys$qio(Efn1, Chan1, FuncCode1, IOSB1, ...)
 if (!$VMS_STATUS_SUCCESS(RetStat))
 lib$signal(RetStat);

// Issue second I/O request and check for error
 RetStat = sys$qio(Efn2, Chan2, FuncCode2, IOSB2, ...)
 if (!$VMS_STATUS_SUCCESS(RetStat))
 lib$signal(RetStat);

// Wait until both complete and check for error
 RetStat = sys$wfland(Efn1, EFMask);
 if (!$VMS_STATUS_SUCCESS(RetStat))
 lib$signal(status);

// Determine which asynchronous operation has completed.
// If set to zero, the particular $qio call has not completed.
 if (IOSB1[0])
 CallOneCompleted();

178

Chapter 6. Synchronizing Data Access and Program Operations

 if (IOSB2[0])
 CallTwoCompleted();
 .
 .
 .

The event flag argument is specified in each SYS$QIO request. Both of these event flags are
explicitly declared in event flag cluster 0. These variables contain the event flag numbers, and not
the event flag masks.
The I/O Status Blocks are declared. Ensure that the storage associated with these structures is valid
over the lifetime of the asynchronous call. Ensure that these structures are not declared within the
local context of a call frame of a function that can exit before the asynchronous call completes.
Be sure that these calls are declared with static or external context, within the stack frame of a
function that will either remain active, or was located within other non-volatile storage.

The use of either LIB$GET_EF or EFN$C_ENF (defined in efndef.h) is strongly recommended
over the static declaration of local event flags, because the consistent use of either of these
techniques will avoid the unintended reuse of local event flags within different parts of the same
program, and the intermittent problems that can ensue. Common event flags are somewhat less
likely to encounter similar problems due to the requirement to associate with the cluster before
use. But the use and switching of event flag clusters and the use of event flags within each cluster
should still be carefully coordinated.
Set up the event flag mask. Since both of these event flags are located in the same event flag
cluster, you can use a simple OR to create the bit mask. Since these event flags are in the same
cluster, you can use them in the SYS$WSFLAND call.
After both I/O requests are queued successfully, the program calls the SYS$WFLAND system
service to wait until the I/O operations complete. In this service call, the Efn1 argument can
specify any event flag number within the event flag cluster containing the event flags to be
waited for, since the argument indicates which event flag cluster is associated with the mask. The
EFMask argument specifies to wait for flags 1 and 2.

You should specify a unique event flag and a unique I/O status block for each asynchronous call.
Note that the SYS$WFLAND system service (and the other wait system services) waits for the
event flag to be set; it does not wait for the I/O operation to complete. If some other event were to
set the required event flags, the wait for event flag would complete prematurely. Use of event flags
must be coordinated carefully.
Use the I/O status block to determine which of the two calls have completed. The I/O status block
is initialized to zero by the SYS$QIO call, and is set to a nonzero value when the call is completed.
An event flag can be set spuriously – typically if there is unintended sharing or reuse of event
flags – and thus you should check the I/O status block. For a mechanism that can check both the
event flag and the IOSB and thus ensure that the call has completed, see the SYS$SYNCH system
service call.

6.8.9. Setting and Clearing Event Flags
System services that use event flags clear the event flag specified in the system service call before they
queue the timer or I/O request. This ensures that the process knows the state of the event flag. If you
are using event flags in local clusters for other purposes, be sure the flag's initial value is what you want
before you use it.

The Set Event Flag (SYS$SETEF) and Clear Event Flag (SYS$CLREF) system services set and clear
specific event flags. For example, the following system service call clears event flag 32:

$CLREF_S EFN=#32

179

Chapter 6. Synchronizing Data Access and Program Operations

The SYS$SETEF and SYS$CLREF services return successful status codes that indicate whether the
specified flag was set or cleared when the service was called. The caller can thus determine the previous
state of the flag, if necessary. The codes returned are SS$_WASSET and SS$_WASCLR.

All event flags in a common event flag cluster are initially clear when the cluster is created.
Section 6.8.10 describes the creation of common event flag clusters.

6.8.10. Example of Using a Common Event Flag Cluster
The following example shows four cooperating processes that share a common event flag cluster. The
processes are named COLUMBIA, ENDEAVOUR, ATLANTIS, and DISCOVERY, and are all in the
same UIC group.

/* **** Common Header File ****

 .
 .
 .
#define EFC0 0 // EFC 0 (Local)
#define EFC1 32 // EFC 1 (Local)
#define EFC2 64 // EFC 2 (Common)
#define EFC3 96 // EFC 3 (Common)
 int Efn0 = 0, Efn1 = 1, Efn2 = 2, Efn3 = 3;
 int EFMask;
 $DESCRIPTOR(EFCname,"ENTERPRISE");
 .
 .
 .

// **** Process COLUMBIA ****
//
// The image running within process COLUMBIA creates a common
// event flag cluster, associating it with Cluster 2

 .
 .
 .
 RetStat = sys$ascefc(EFC2, &EFCname,...);
 if (!$VMS_STATUS_SUCCESS(RetStat))
 lib$signal(RetStat);
 .
 .
 .
 EFMask = 1L<<Efn1 | 1L<<Efn2 | 1L<<Efn3;

// Wait for the specified event flags

 RetStat = sys$wfland(EFC2, EFMask);
 if (!$VMS_STATUS_SUCCESS(RetStat))
 lib$signal(RetStat);
 .
 .
 .
// Disassociate the event flag cluster

 RetStat = sys$dacefc(EFC2);

180

Chapter 6. Synchronizing Data Access and Program Operations

// **** Process ENDEAVOUR ****
//
// The image running within process ENDEAVOUR associates with the
// specified event flag cluster, specifically associating it with
// the common event flag cluster 3.

 .
 .
 .
// Associate the event flag cluster, using Cluster 3
 RetStat = sys$ascefc(EFC3,&EFCname,...);
 if (!$VMS_STATUS_SUCCESS(RetStat))
 lib$signal(RetStat);

// Set the event flag, and check for errors
 RetStat = sys$setef(Efn2+EFC3);
 if (!$VMS_STATUS_SUCCESS(RetStat))
 lib$signal(RetStat);
 .
 .
 .
 RetStat = sys$dacefc(EFC3);

// **** Process ATLANTIS ****
//
// The image running within process ATLANTIS associates with the
// specified event flag cluster, specifically associating it with
// the common event flag cluster 2.

// Associate the event flag cluster, using Cluster 2
 RetStat = sys$ascefc(EFC2, &EFCname);
 if (!$VMS_STATUS_SUCCESS(RetStat))
 lib$signal(RetStat);

// Set the event flag, and check for errors
 RetStat = sys$setef(Efn2+EFC2);
 if (!$VMS_STATUS_SUCCESS(RetStat))
 lib$signal(RetStat);
 .
 .
 .
 retstat = sys$dacefc(EFC2);

// **** Process DISCOVERY ****
// The image running within process DISCOVERY associates with the
// specified event flag cluster, specifically associating it with
// the common event flag cluster 3.

 RetStat = sys$ascefc(EFC3, &EFCname);
 if (!$VMS_STATUS_SUCCESS(RetStat))
 lib$signal(RetStat);

// Wait for the flag, and check for errors
 RetStat = sys$waitfr(Efn2+EFC3);
 if (!$VMS_STATUS_SUCCESS(RetStat))
 lib$signal(RetStat);

181

Chapter 6. Synchronizing Data Access and Program Operations

// Set event flag 2, and check for errors
 RetStat = sys$setef(Efn2+EFC3);
 if (!$VMS_STATUS_SUCCESS(RetStat))
 lib$signal(RetStat);
 .
 .
 .
 RetStat = sys$dacefc(EFC2);

Set up some common definitions used by the various applications, including preprocessor defines
for the event flag clusters, and some variables and values for particular event flags within the
clusters.
Assume that COLUMBIA is the first process to issue the SYS$ASCEFC system service and
therefore is the creator of the ENTERPRISE event flag cluster. Because this is a newly created
common event flag cluster, all event flags in it are clear. COLUMBA then waits for the specified
event flags, and then exits – the process will remain in a common event flag (CEF) wait state.
Use bit-shifts and an OR operation to create a bit mask from the bit numbers.
The SYS$ASCEFC call creates the relationship of the named event flag cluster, the specified range
of common event flags, and the process. It also creates the event flag cluster, if necessary.
The SYS$DACEFC call disassociates the specified event flag cluster from the COLUMBIA
process.
In process ENDEAVOUR, the argument EFCname in the SYS$ASCEFC system service call is
a pointer to the string descriptor containing the name to be assigned to the event flag cluster; in
this example, the cluster is named ENTERPRISE and was created by process COLUMBIA. While
COLUMBIA mapped this cluster as cluster 2, this service call associates this name with cluster 3,
event flags 96 through 127. Cooperating processes ENDEAVOUR, ATLANTIS, and DISCOVERY
must use the same character string name to refer to this cluster.
The continuation of process COLUMBIA depends on (unspecified) work done by processes
ENDEAVOUR, ATLANTIS, and DISCOVERY. The SYS$WFLAND system service call specifies
a mask indicating the event flags that must be set before process COLUMBIA can continue. The
mask in this example (binary 1110) indicates that the second, third, and fourth flags in the cluster
must be set. Process ENDEAVOUR sets the second event flag in the event flag cluster longword,
using the SYS$SETEF system service call.
Process ATLANTIS associates with the cluster, but instead of referring to it as cluster 2, it refers to
it as cluster 3 (with event flags in the range 96 through 127). Thus, when process ATLANTIS sets
the event flag, it must bias the flag for the particular event flag cluster longword.
Process DISCOVERY associates with the cluster, waits for an event flag set by process
ENDEAVOUR, and sets an event flag itself.

6.8.11. Example of Using Event Flag Routines and
Services
This section contains an example of how to use event flag services.

Common event flags are often used for communicating between a parent process and a
created subprocess. In the following example, REPORT.FOR creates a subprocess to execute
REPORTSUB.FOR, which performs a number of operations.

After REPORTSUB.FOR performs its first operation, the two processes can perform in parallel.
REPORT.FOR and REPORTSUB.FOR use the common event flag cluster named JESSIER to
communicate.

182

Chapter 6. Synchronizing Data Access and Program Operations

REPORT.FOR associates the cluster name with a common event flag cluster, creates a subprocess to
execute REPORTSUB.FOR and then waits for REPORTSUB.FOR to set the first event flag in the
cluster. REPORTSUB.FOR performs its first operation, associates the cluster name JESSIER with a
common event flag cluster, and sets the first flag. From then on, the processes execute concurrently.

 REPORT.FOR
.
.
.
! Associate common event flag cluster
STATUS = SYS$ASCEFC (%VAL(64),
2 'JESSIER',,)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))

! Create subprocess to execute concurrently
MASK = IBSET (MASK,0)
STATUS = LIB$SPAWN ('RUN REPORTSUB', ! Image
2 'INPUT.DAT', ! SYS$INPUT
2 'OUTPUT.DAT', ! SYS$OUTPUT
2 MASK
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))

! Wait for response from subprocess.
STATUS = SYS$WAITFR (%VAL(64))
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))
.
.
.

REPORTSUB.FOR
.
.
.
! Do operations necessary for
! continuation of parent process.
.
.
.
! Associate common event flag cluster
STATUS = SYS$ASCEFC (%VAL(64),
2 'JESSIER',,)
IF (.NOT. STATUS)
2 CALL LIB$SIGNAL (%VAL(STATUS))

! Set flag for parent process to resume
STATUS = SYS$SETEF (%VAL(64))
.
.
.

6.9. Synchronizing System Services
Operations
A number of system services, such as the following, can be executed either synchronously or
asynchronously:

183

Chapter 6. Synchronizing Data Access and Program Operations

• SYS$GETJPI and SYS$GETJPIW

• SYS$QIO and SYS$QIOW

The W at the end of the system service name indicates the synchronous version of the service.

The asynchronous version of a system service queues a request and immediately returns control to your
program pending the completion of the request. You can perform other operations while the system
service executes. To avoid data corruptions, you should not attempt any read or write access to any of
the buffers or itemlists referenced by the system service call prior to the completion of the asynchronous
portion of the system service call. Further, no self-referential or self-modifying itemlists should be used.

Typically, you pass an event flag and a status block to an asynchronous system service. When the system
service completes, it sets the event flag and places the final status of the request in the status block.
Use the SYS$SYNCH system service to ensure that the system service has completed. You pass to
SYS$SYNCH the event flag and status block that you passed to the asynchronous system service;
SYS$SYNCH waits for the event flag to be set and then examines the status block to be sure that
the system service rather than some other program set the event flag. If the status block is still zero,
SYS$SYNCH waits until the status block is filled.

The following example shows the use of the SYS$GETJPI system service:

! Data structure for SYS$GETJPI
 .
 .
 .
INTEGER*4 STATUS,
2 FLAG,
2 PID_VALUE
! I/O status block
STRUCTURE /STATUS_BLOCK/
 INTEGER*2 JPISTATUS,
2 LEN
 INTEGER*4 ZERO /0/
END STRUCTURE
RECORD /STATUS_BLOCK/ IOSTATUS
 .
 .
 .
! Call SYS$GETJPI and wait for information
STATUS = LIB$GET_EF (FLAG)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))
STATUS = SYS$GETJPI (%VAL(FLAG),
2 PID_VALUE,
2 ,
2 NAME_BUF_LEN,
2 IOSTATUS,
2 ,)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))
 .
 .
 .
STATUS = SYS$SYNCH (%VAL(FLAG),
2 IOSTATUS)
IF (.NOT. IOSTATUS.JPISTATUS) THEN
 CALL LIB$SIGNAL (%VAL(IOSTATUS.JPISTATUS))
END IF

184

Chapter 6. Synchronizing Data Access and Program Operations

END

The synchronous version of a system service acts as if you had used the asynchronous version followed
immediately by a call to SYS$SYNCH; however, it behaves this way only if you specify a status block. If
you omit the status block, the result is as though you called the asynchronous version followed by a call
to SYS$WAITFR. Regardless of whether you use the synchronous or asynchronous version of a system
service, if you omit the efn argument, the service uses event flag 0.

185

Chapter 6. Synchronizing Data Access and Program Operations

186

Chapter 7. Synchronizing Access to
Resources
This chapter describes the use of the lock manager to synchronize access to shared resources.

7.1. Synchronizing Operations with the Lock
Manager
Cooperating processes can use the lock manager to synchronize access to a shared resource (for example,
a file, program, or device). This synchronization is accomplished by allowing processes to establish
locks on named resources. All processes that access the shared resources must use the lock management
services; otherwise, the synchronization is not effective.

Note

The use of the term resource throughout this chapter means shared resource.

To synchronize access to resources, the lock management services provide a mechanism that allows
processes to wait in a queue until a particular resource is available.

The lock manager does not ensure proper access to the resource; rather, the programs must respect the
rules for using the lock manager. The rules required for proper synchronization to the resource are as
follows:

• The resource must always be referred to by an agreed-upon name.

• Access to the resource is always accomplished by queuing a lock request with the SYS$ENQ or
SYS$ENQW system service.

• All lock requests that are placed in a wait queue must wait for access to the resource.

A process can choose to lock a resource and then create a subprocess to operate on this resource. In this
case, the program that created the subprocess (the parent program) should not exit until the subprocess
has exited. To ensure that the parent program does not exit before the subprocess, specify an event
flag to be set when the subprocess exits (use the completion-efn argument of LIB$SPAWN).
Before exiting from the parent program, use SYS$WAITFR to ensure that the event flag is set. (You can
suppress the logout message from the subprocess by using the SYS$DELPRC system service to delete
the subprocess instead of allowing the subprocess to exit).

Table 7.1 summarizes the lock manager services.

Table 7.1. Lock Manager Services

Routine Description

SYS$ENQ(W) Queues a new lock or lock conversion on a resource
SYS$DEQ Releases locks and cancels lock requests
SYS$GETLKI(W) Obtains information about the lock database

187

Chapter 7. Synchronizing Access to Resources

7.2. Concepts of Resources and Locks
A resource can be any entity on the operating system (for example, files, data structures, databases, or
executable routines). When two or more processes access the same resource, you often need to control
their access to the resource. You do not want to have one process reading the resource while another
process writes new data, because a writer can quickly invalidate anything being read by a reader. The
lock management system services allow processes to associate a name with a resource and request access
to that resource. Lock modes enable processes to indicate how they want to share access with other
processes.

To use the lock management system services, a process must request access to a resource (request a lock)
using the Enqueue Lock Request (SYS$ENQ) system service. The following three arguments to the
SYS$ENQ system service are required for new locks:

• Resource name—The lock management services use the resource name to look for other lock
requests that use the same name.

• Lock mode to be associated with the requested lock—The lock mode indicates how the process
wants to share the resource with other processes.

• Address of a lock status block—The lock status block receives the completion status for a lock
request and the lock identification. The lock identification refers to a lock request after it has been
queued.

The lock management services compare the lock mode of the newly requested lock to the mode of other
locks with the same resource name. New locks are granted in the following instances:

• If no other process has a lock on the resource.

• If another process has a lock on the resource and the mode of the new request is compatible with the
existing lock.

• If another process already has a lock on the resource and the mode of the new request is not
compatible with the lock mode of the existing lock, the new request is placed in a queue, where it
waits until the resource becomes available. When the resource becomes available, the process is
notified that the lock has been granted.

Processes can also use the SYS$ENQ system service to change the lock mode of a lock. This is called a
lock conversion.

7.2.1. Resource Granularity
Many resources can be divided into smaller parts. As long as a part of a resource can be identified by a
resource name, the part can be locked. The term resource granularity describes the part of the resource
being locked.

Figure 7.1 depicts a model of a database. The database is divided into areas, such as a file, which in turn
are subdivided into records. The records are further divided into items.

188

Chapter 7. Synchronizing Access to Resources

Figure 7.1. Model Database

The processes that request locks on the database shown in Figure 7.1 may lock the whole database, an
area in the database, a record, or a single item. Locking the entire database is considered locking at a
coarse granularity; locking a single item is considered locking at a fine granularity.

In this example, overall access to the database can be represented by a root resource name. Access either
to areas in the database or records within areas can be represented by sublocks.

Root resources consist of the following:

• Resource domain

• Resource name

• Access mode

Subresources consist of the following:

• Parent resource

• Resource name

• Access mode

7.2.2. Resource Domains
Because resource names are arbitrary names chosen by applications, one application may interfere
(either intentionally or unintentionally) with another application. Unintentional interference can be easily
avoided by careful design, such as by using a registered facility name as a prefix for all root resource
names used by an application.

Intentional interference can be prevented by using resource domains. A resource domain is a
namespace for root resource names and is identified by a number. Resource domain 0 is used as a system
resource domain. Usually, other resource domains are used by the UIC group corresponding to the
domain number.

By using the SYS$SET_RESOURCE_DOMAIN system service, a process can gain access to any
resource domain subject to normal operating system access control. By default, each resource domain
allows read, write, and lock access by members of the corresponding UIC group. See the VSI OpenVMS
Guide to System Security for more information about access control.

189

Chapter 7. Synchronizing Access to Resources

7.2.3. Resource Names
The lock management system services refer to each resource by a name composed of the following four
parts:

• A name specified by the caller

• The caller's access mode

• The caller's UIC group number (unless the resource is systemwide)

• The identification of the lock's parent (optional)

For two resources to be considered the same, these four parts must be identical for each resource.

The name specified by the process represents the resource being locked. Other processes that need to
access the resource must refer to it using the same name. The correlation between the name and the
resource is a convention agreed upon by the cooperating processes.

The access mode is determined by the caller's access mode unless a less privileged mode is specified in
the call to the SYS$ENQ system service. Access modes, their numeric values, and their symbolic names
are discussed in the VSI OpenVMS Calling Standard.

The default resource domain is selected by the UIC group number for the process. You can access the
system domain by setting the LCK$M_SYSTEM when you request a new root lock. Other domains
can be accessed using the optional RSDM_ID parameter to SYS$ENQ. You need the SYSLCK user
privilege to request systemwide locks from user or supervisor mode. No additional privilege is required
to request systemwide locks from executive or kernel mode.

When a lock request is queued, it can specify the identification of a parent lock, at which point it
becomes a sublock (see Section 7.4.8). However, the parent lock must be granted, or the lock request is
not accepted. This enables a process to lock a resource at different degrees of granularity.

7.2.4. Choosing a Lock Mode
The mode of a lock determines whether the resource can be shared with other lock requests. Table 7.2
describes the six lock modes.

Table 7.2. Lock Modes

Mode Name Meaning

LCK$K_NLMODE Null mode. This mode grants no access to the resource. The null mode
is typically used either as an indicator of interest in the resource or as a
placeholder for future lock conversions.

LCK$K_CRMODE Concurrent read. This mode grants read access to the resource and allows
sharing of the resource with other readers. The concurrent read mode is
generally used either to perform additional locking at a finer granularity
with sublocks or to read data from a resource in an “unprotected” fashion
(allowing simultaneous writes to the resource).

LCK$K_CWMODE Concurrent write. This mode grants write access to the resource and allows
sharing of the resource with other writers. The concurrent write mode is
typically used to perform additional locking at a finer granularity, or to write
in an “unprotected” fashion.

190

Chapter 7. Synchronizing Access to Resources

Mode Name Meaning

LCK$K_PRMODE Protected read. This mode grants read access to the resource and allows
sharing of the resource with other readers. No writers are allowed access to
the resource. This is the traditional “share lock.”

LCK$K_PWMODE Protected write. This mode grants write access to the resource and allows
sharing of the resource with users at concurrent read mode. No other writers
are allowed access to the resource. This is the traditional “update lock.”

LCK$K_EXMODE Exclusive. The exclusive mode grants write access to the resource and
prevents the sharing of the resource with any other readers or writers. This is
the traditional “exclusive lock.”

7.2.5. Levels of Locking and Compatibility
Locks that allow the process to share a resource are called low-level locks; locks that allow the process
almost exclusive access to a resource are called high-level locks. Null and concurrent read mode locks
are considered low-level locks; protected write and exclusive mode locks are considered high-level. The
lock modes, from lowest- to highest-level access, are:

• Null

• Concurrent read

• Concurrent write

Protected read

• Protected write

• Exclusive

Note that the concurrent write and protected read modes are considered to be of the same level.

Locks that can be shared with other locks are said to have compatible lock modes. High-level lock
modes are less compatible with other lock modes than are low-level lock modes. Table 7.3 shows the
compatibility of the lock modes.

Table 7.3. Compatibility of Lock Modes

 Mode of Currently Granted Locks

Mode of
Requested
Lock

NL CR CW PR PW EX

NL Yes Yes Yes Yes Yes Yes
CR Yes Yes Yes Yes Yes No
Key to Lock Modes:

NL = Null
CR = Concurrent read
CW = Concurrent write
PR = Protected read
PW = Protected write
EX = Exclusive

191

Chapter 7. Synchronizing Access to Resources

 Mode of Currently Granted Locks

Mode of
Requested
Lock

NL CR CW PR PW EX

CW Yes Yes Yes No No No
PR Yes Yes No Yes No No
PW Yes Yes No No No No
EX Yes No No No No No
Key to Lock Modes:

NL = Null
CR = Concurrent read
CW = Concurrent write
PR = Protected read
PW = Protected write
EX = Exclusive

7.2.6. Lock Management Queues
A lock on a resource can be in one of the following three states:

• Granted—The lock request has been granted.

• Waiting—The lock request is waiting to be granted.

• Conversion—The lock request has been granted at one mode and is waiting to be granted a high-
level lock mode.

A queue is associated with each of the three states (see Figure 7.2).

Figure 7.2. Three Lock Queues

192

Chapter 7. Synchronizing Access to Resources

When you request a new lock, the lock management services first determine whether the resource is
currently known (that is, if any other processes have locks on that resource). If the resource is new
(that is, if no other locks exist on the resource), the lock management services create an entry for the
new resource and the requested lock. If the resource is already known, the lock management services
determine whether any other locks are waiting in either the conversion or the waiting queue. If other
locks are waiting in either queue, the new lock request is queued at the end of the waiting queue. If both
the conversion and waiting queues are empty, the lock management services determine whether the new
lock is compatible with the other granted locks. If the lock request is compatible, the lock is granted; if it
is not compatible, it is placed in the waiting queue. You can use a flag bit to direct the lock management
services not to queue a lock request if one cannot be granted immediately.

7.2.7. Concepts of Lock Conversion
Lock conversions allow processes to change the level of locks. For example, a process can maintain a
low-level lock on a resource until it limits access to the resource. The process can then request a lock
conversion.

You specify lock conversions by using a flag bit (see Section 7.4.6) and a lock status block. The lock
status block must contain the lock identification of the lock to be converted. If the new lock mode is
compatible with the currently granted locks, the conversion request is granted immediately. If the new
lock mode is incompatible with the existing locks in the granted queue, the request is placed in the
conversion queue. The lock retains its old lock mode and does not receive its new lock mode until the
request is granted.

When a lock is dequeued or is converted to a lower-level lock mode, the lock management services
inspect the first conversion request on the conversion queue. The conversion request is granted if it is
compatible with the locks currently granted. Any compatible conversion requests immediately following
are also granted. If the conversion queue is empty, the waiting queue is checked. The first lock request
on the waiting queue is granted if it is compatible with the locks currently granted. Any compatible lock
requests immediately following are also granted.

7.2.8. Deadlock Detection
A deadlock occurs when any group of locks are waiting for each other in a circular fashion.

In Figure 7.3, three processes have queued requests for resources that cannot be accessed until the
current locks held are dequeued (or converted to a lower lock mode).

193

Chapter 7. Synchronizing Access to Resources

Figure 7.3. Deadlock

If the lock management services determine that a deadlock exists, the services choose a process to break
the deadlock. The chosen process is termed the victim. If the victim has requested a new lock, the lock
is not granted; if the victim has requested a lock conversion, the lock is returned to its old lock mode. In
either case, the status code SS$_DEADLOCK is placed in the lock status block. Note that granted locks
are never revoked; only waiting lock requests can receive the status code SS$_DEADLOCK.

Note

Programmers must not make assumptions regarding which process is to be chosen to break a deadlock.

7.2.9. Lock Quotas and Limits
While most processes do not require very many locks simultaneously (typically fewer than 100), large
scale database or server applications can easily exceed this threshold.

If you set an ENQLM value of 32767 in the SYSUAF, the operating system treats it as no limit and
allows an application to own up to 16,776,959 locks, the architectural maximum of the OpenVMS lock
manager. The following sections describe these features in more detail.

7.2.9.1. Enqueue Limit Quota (ENQLM)
An ENQLM value of 32767 in a user's SYSUAF record is treated as if there is no quota limit for that
user. This means that the user is allowed to own up to 16,776,959 locks, the architectural maximum of
the OpenVMS lock manager.

A SYSUAF ENQLM value of 32767 is not treated as a limit. Instead, when a process is created that
reads ENQLM from the SYSUAF, if the value in the SYSUAF is 32767, it is automatically extended to
the maximum. The Create Process (SYS$CREPRC) system service allows large quotas to be passed on
to the target process. Therefore, a process can be created with an arbitrary ENQLM of any value up to
the maximum if it is initialized from a process with the SYSUAF quota of 32767.

7.2.9.2. Subresources and Sublocks
Subresources and sublocks greater than 65535 are allowed. OpenVMS supports sub-resource and sub-
lock counts up to the current architectural limits of the lock manager. The maximum number of locks on

194

Chapter 7. Synchronizing Access to Resources

a single resource is limited to 65,535. If your program attempts to exceed this limit, SS$_EXDEPTH is
returned.

In a mixed-version OpenVMS Cluster, only nodes running OpenVMS Version 7.1 or higher are able
to handle these large lock trees. Large scale locking applications should be restricted to running on a
subset of nodes running OpenVMS Version 7.1 or higher, or the entire cluster should be upgraded to
OpenVMS Version 7.1 or higher to avoid unpredictable results.

7.2.9.3. Resource Hash Table
The resource hash table is an internal OpenVMS lock manager structure used to do quick lookups
on resource names without a lengthy interactive search. Like all such tables, it results in a tradeoff of
consuming memory in order to speed operation. A typical tuning goal is to have the resource hash table
size (RESHASHTBL system parameter) about four times larger than the total number of resources in use
on the system. Systems that have memory constraints or are not critically dependent on locking speed
could set the table to a smaller size.

The maximum for the RESHASHTBL is 16,777,216 (224), which is the current architectural maximum
for the total number of resources possible on the system.

Large memory systems that use very large resource namespaces can take advantage of this value to gain
a performance advantage in many locking operations.

7.2.9.4. LOCKIDTBL System Parameter
The lock ID table is an internal OpenVMS lock manager structure used to find the relevant data
structures for any given lock in the system. OpenVMS dynamically increases the lock ID table as usage
requires and if sufficient physical memory is available. The default, minimum, and maximum values for
the LOCKIDTBL system parameter allow large single tables for lock IDs. The maximum number of
locks is regulated by the amount of available nonpaged pool.

7.3. Queuing Lock Requests
You use the SYS$ENQ or SYS$ENQW system service to queue lock requests. SYS$ENQ queues a lock
request and returns; SYS$ENQW queues a lock request, waits until the lock is granted, and then returns.
When you request new locks, the system service call must specify the lock mode, address of the lock
status block, and resource name.

The format for SYS$ENQ and SYS$ENQW is as follows:

SYS$ENQ(W)
 ([efn] ,lkmode ,lksb ,[flags] ,[resnam] ,[parid] ,[astadr]
 ,[astprm] ,[blkast] ,[acmode] ,[rsdm_id] ,[nullarg])

The following example illustrates a call to SYS$ENQW:

#include <stdio.h>
#include <descrip.h>
#include <lckdef.h>

/* Declare a lock status block */

struct lock_blk {
 unsigned short condition,reserved;

195

Chapter 7. Synchronizing Access to Resources

 unsigned int lock_id;
}lksb;

 .
 .
 .
 unsigned int status, lkmode=LCK$K_PRMODE;
 $DESCRIPTOR(resource,"STRUCTURE_1");

/* Queue a request for protected read mode lock */
 status = SYS$ENQW(0, /* efn - event flag */
 lkmode, /* lkmode - lock mode requested */
 &lksb, /* lksb - lock status block */
 0, /* flags */
 &resource, /* resnam - name of resource */
 0, /* parid - parent lock id */
 0, /* astadr - AST routine */
 0, /* astprm - AST parameter */
 0, /* blkast - blocking AST */
 0, /* acmode - access mode */
 0); /* rsdm_id - resource domain id */

}

In this example, a number of processes access the STRUCTURE_1 data structure. Some processes read
the data structure; others write to the structure. Readers must be protected from reading the structure
while it is being updated by writers. The reader in the example queues a request for a protected read
mode lock. Protected read mode is compatible with itself, so all readers can read the structure at the
same time. A writer to the structure uses protected write or exclusive mode locks. Because protected
write mode and exclusive mode are not compatible with protected read mode, no writers can write the
data structure until the readers have released their locks, and no readers can read the data structure until
the writers have released their locks.

Table 7.3 shows the compatibility of lock modes.

7.3.1. Example of Requesting a Null Lock
The program segment in Example 7.1 requests a null lock for the resource named TERMINAL. After
the lock is granted, the program requests that the lock be converted to an exclusive lock. Note that, after
SYS$ENQW returns, the program checks the status of the system service and the status returned in the
lock status block to ensure that the request completed successfully. (The lock mode symbols are defined
in the $LCKDEF module of the system macro library).

Example 7.1. Requesting a Null Lock

! Define lock modes
INCLUDE '($LCKDEF)'
! Define lock status block
STRUCTURE /STATUS_BLOCK/
 INTEGER*2 LOCK_STATUS,
2 NULL
 INTEGER*4 LOCK_ID
END STRUCTURE
RECORD /STATUS_BLOCK/ IOSTATUS
 .
 .

196

Chapter 7. Synchronizing Access to Resources

 .
! Request a null lock
STATUS = SYS$ENQW (,
2 %VAL(LCK$K_NLMODE),
2 IOSTATUS,
2 ,
2 'TERMINAL',
2 ,,,,,)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))
IF (.NOT. IOSTATUS.LOCK_STATUS)
2 CALL LIB$SIGNAL (%VAL(IOSTATUS.LOCK_STATUS))
! Convert the lock to an exclusive lock
STATUS = SYS$ENQW (,
2 %VAL(LCK$K_EXMODE),
2 IOSTATUS,
2 %VAL(LCK$M_CONVERT),
2 'TERMINAL',
2 ,,,,,)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))
IF (.NOT. IOSTATUS.LOCK_STATUS)
2 CALL LIB$SIGNAL (%VAL(IOSTATUS.LOCK_STATUS))

For more complete information on the use of SYS$ENQ, refer to the VSI OpenVMS System Services
Reference Manual.

7.4. Advanced Locking Techniques
The previous sections discuss locking techniques and concepts that are useful to all applications. The
following sections discuss specialized features of the lock manager.

7.4.1. Synchronizing Locks
The SYS$ENQ system service returns control to the calling program when the lock request is queued.
The status code in R0 indicates whether the request was queued successfully. After the request is queued,
the procedure cannot access the resource until the request is granted. A procedure can use three methods
to check that a request has been granted:

• Specify the number of an event flag to be set when the request is granted, and wait for the event flag.

• Specify the address of an AST routine to be executed when the request is granted.

• Poll the lock status block for a return status code that indicates that the request has been granted.

These methods of synchronization are identical to the synchronization techniques used with the
SYS$QIO system services (described in VSI OpenVMS Programming Concepts Manual, Volume II).

The $ENQW macro performs synchronization by combining the functions of the SYS$ENQ system
service and the Synchronize (SYS$SYNCH) system service. The $ENQW macro has the same
arguments as the $ENQ macro. It queues the lock request and then places the program in an event flag
wait state (LEF) until the lock request is granted.

7.4.2. Notification of Synchronous Completion
The lock management services provide a mechanism that allows processes to determine whether a
lock request is granted synchronously, that is, if the lock is not placed on the conversion or waiting

197

Chapter 7. Synchronizing Access to Resources

queue. This feature can be used to improve performance in applications where most locks are granted
synchronously (as is normally the case).

If the flag bit LCK$M_SYNCSTS is set and a lock is granted synchronously, the status code
SS$_SYNCH is returned in R0; no event flag is set, and no AST is delivered.

If the request is not completed synchronously, the success code SS$_NORMAL is returned; event flags
or AST routines are handled normally (that is, the event flag is set, and the AST is delivered when the
lock is granted).

7.4.3. Expediting Lock Requests
A request can be expedited (granted immediately) if its requested mode, when granted, does not block
any currently queued requests from being granted. The LCK$M_EXPEDITE flag is specified in the
SYS$ENQ operation to expedite a request. Currently, only NLMODE requests can be expedited. A
request to expedite any other lock mode fails with SS$_UNSUPPORTED status.

7.4.4. Lock Status Block
The lock status block receives the final completion status and the lock identification, and optionally
contains a lock value block (see Figure 7.4). When a request is queued, the lock identification is stored
in the lock status block even if the lock has not been granted. This allows a procedure to dequeue locks
that have not been granted. For more information about the Dequeue Lock Request (SYS$DEQ) system
service, see Section 7.5.

Figure 7.4. Lock Status Block

The status code is placed in the lock status block either when the lock is granted or when errors occur in
granting the lock.

The uses of the lock value block are described in Section 7.6.1.

7.4.5. Blocking ASTs
In some applications that use the lock management services, a process must know whether it is
preventing another process from locking a resource. The lock management services inform processes
of this through the use of blocking ASTs. When the lock prevents another lock from being granted, the
blocking routine is delivered as an AST to the process. Blocking ASTs are not delivered when the state
of the lock is either Conversion or Waiting.

To enable blocking ASTs, the blkast argument of the SYS$ENQ system service must contain the
address of a blocking AST service routine. The astprm argument passes a parameter to the blocking

198

Chapter 7. Synchronizing Access to Resources

AST. For more information about ASTs and AST service routines, see Chapter 8. Some uses of blocking
ASTs are also described in that chapter.

7.4.6. Lock Conversions
Lock conversions perform three main functions:

• Maintaining a low-level lock and converting it to a higher lock mode when necessary

• Maintaining values stored in a resource lock value block (described in the following paragraphs)

• Improving performance in some applications

A procedure normally needs an exclusive (or protected write) mode lock while writing data. The
procedure should not keep the resource exclusively locked all the time, however, because writing might
not always be necessary. Maintaining an exclusive or protected write mode lock prevents other processes
from accessing the resource. Lock conversions allow a process to request a low-level lock at first and
convert the lock to a high-level lock mode (protected write mode, for example) only when it needs to
write data.

Some applications of locks require the use of the lock value block. If a version number or other data is
maintained in the lock value block, you need to maintain at least one lock on the resource so that the
value block is not lost. In this case, processes convert their locks to null locks, rather than dequeuing
them when they have finished accessing the resource.

To improve performance in some applications, all resources that might be locked are locked with null
locks during initialization. You can convert the null locks to higher-level locks as needed. Usually a
conversion request is faster than a new lock request because the necessary data structures have already
been built. However, maintaining any lock for the life of a procedure uses system dynamic memory.
Therefore, the approach of creating all necessary locks as null locks and converting them as needed
improves performance at the expense of increased storage requirements.

Note

If you specify the flag bit LCK$M_NOQUEUE on a lock conversion and the conversion fails, the new
blocking AST address and parameter specified in the conversion request replace the blocking AST
address and parameter specified in the previous SYS$ENQ request.

Queuing Lock Conversions

To perform a lock conversion, a procedure calls the SYS$ENQ system service with the flag bit
LCK$M_CONVERT. Lock conversions do not use the resnam, parid, acmode, or prot
argument. The lock being converted is identified by the lock identification contained in the lock status
block. The following program shows a simple lock conversion. Note that the lock must be granted before
it can be converted.

#include <stdio.h>
#include <descrip.h>
#include <lckdef.h>

/* Declare a lock status block */

199

Chapter 7. Synchronizing Access to Resources

struct lock_blk {
 unsigned short lkstat, reserved;
 unsigned int lock_id;
}lksb;

 .
 .
 .
 unsigned int status, lkmode, flags;
 $DESCRIPTOR(resource,"STRUCTURE_1");
 .
 .
 .
 lkmode = LCK$K_NLMODE;

/* Queue a request for protected read mode lock */
 status = SYS$ENQW(0, /* efn - event flag */
 lkmode, /* lkmode - lock mode */
 &lksb, /* lksb - lock status block */
 0, /* flags */
 &resource, /* resnam - name of resource */
 0, 0, 0, 0, 0, 0);
 .
 .
 .
 lkmode = LCK$K_PWMODE;
 flags = LCK$M_CONVERT;

/* Queue a request for protected write mode lock */
 status = SYS$ENQW(0, /* efn - event flag */
 lkmode, /* lkmode - lock mode */
 &lksb, /* lksb - lock status block */
 flags, /* flags */
 0, 0, 0, 0, 0, 0, 0);
 .
 .
 .
}

7.4.7. Forced Queuing of Conversions
It is possible to force certain conversions to be queued that would otherwise be granted. A conversion
request with the LCK$M_QUECVT flag set is forced to wait behind any already queued conversions.

The conversion request is granted immediately if no conversions are already queued.

The QUECVT behavior is valid only for a subset of all possible conversions. Table 7.4 defines
the legal set of conversion requests for LCK$M_QUECVT. Illegal conversion requests fail with
SS$_BADPARAM returned.

200

Chapter 7. Synchronizing Access to Resources

Table 7.4. Legal QUECVT Conversions

 Lock Mode to Which Lock Is Converted

Lock Mode
at Which
Lock Is Held

NL CR CW PR PW EX

NL No Yes Yes Yes Yes Yes
CR No No Yes Yes Yes Yes
CW No No No Yes Yes Yes
PR No No Yes No Yes Yes
PW No No No No No Yes
EX No No No No No No
Key to Lock Modes:

NL = Null
CR = Concurrent read
CW = Concurrent write
PR = Protected read
PW = Protected write
EX = Exclusive

7.4.8. Parent Locks
When a lock request is queued, you can declare a parent lock for the new lock. A lock that has a parent
is called a sublock. To specify a parent lock, the lock identification of the parent lock is passed in the
parid argument to the SYS$ENQ system service. A parent lock must be granted before the sublocks
belonging to the parent can be granted.

The benefits of specifying parent locks are as follows:

• Low-level locks (concurrent read or concurrent write) such as files can be held at a coarse
granularity; whereas high-level (protected write or exclusive mode) sublocks such as records or data
items are held on resources of a finer granularity.

• Resource names are unique with each parent; parent locks are part of the resource name.

The following paragraphs describe the use of parent locks.

Assume that a number of processes need to access a database. The database can be locked at two levels:
the file and individual records. For updating all the records in a file, locking the whole file and updating
the records without additional locking is faster and more efficient. But for updating selected records,
locking each record as it is needed is preferable.

To use parent locks in this way, all processes request locks on the file. Processes that need to update all
records must request protected write or exclusive mode locks on the file. Processes that need to update
individual records request concurrent write mode locks on the file and then use sublocks to lock the
individual records in protected write or exclusive mode.

In this way, the processes that need to access all records can do so by locking the file, while processes
that share the file can lock individual records. A number of processes can share the file-level lock at
concurrent write mode while their sublocks update selected records.

201

Chapter 7. Synchronizing Access to Resources

On VAX systems, the number of levels of sublocks is limited by the size of the interrupt stack. If
the limit is exceeded, the error status SS$_EXDEPTH is returned. The size of the interrupt stack is
controlled by the SYSGEN parameter INTSTKPAGES. The default value for INTSTKPAGES allows 32
levels of sublocks. For more information about SYSGEN and INTSTKPAGES, see the VSI OpenVMS
System Manager's Manual.

On Alpha systems, the number of levels of sublocks is fixed at 127. If that limit is exceeded, the error
status SS$_EXDEPTH is returned.

7.4.9. Lock Value Blocks
The lock value block is an optional, 16- or 64-byte extension of a lock status block. The first time a
process associates a lock value block with a particular resource, the lock management services create a
resource lock value block for that resource. The lock management services maintain the resource lock
value block until there are no more locks on the resource.

To associate a lock value block with a resource, the process must set the flag bit LCK$M_VALBLK in
calls to the SYS$ENQ system service. The lock status block lksb argument must contain the address
of the lock status block for the resource. The LCK$M_XVALBLK flag, which a process can use only
in conjunction with the LCK$M_VALBLK flag, specifies that a 64-byte lock value block is to be used.
Without this flag (which is not valid on VAX systems), only the first 16 bytes of the value block are read
or written.

When a process sets the flag bit LCK$M_VALBLK in a lock request (or conversion request) and the
request (or conversion) is granted, the contents of the resource lock value block are written to the lock
value block of the process.

When a process sets the flag bit LCK$M_VALBLK on a conversion from protected write or exclusive
mode to an equal or lower mode, the contents of the process's lock value block are stored in the resource
lock value block.

In this manner, processes can pass the value in the lock value block along with the ownership of a
resource.

Table 7.5 shows how lock conversions affect the contents of the process's and the resource's lock value
block.

202

Chapter 7. Synchronizing Access to Resources

Table 7.5. Effect of Lock Conversion on Lock Value Block

Lock Mode to Which Lock Is Converted

Lock Mode
at Which
Lock Is Held

NL CR CW PR PW EX

NL Return Return Return Return Return Return
CR Neither Return Return Return Return Return
CW Neither Neither Return Return Return Return
PR Neither Neither Neither Return Return Return
PW Write Write Write Write Write Return
EX Write Write Write Write Write Write
Key to Lock Modes:

NL—Null
CR—Concurrent read
CW—Concurrent write
PR—Protected read
PW—Protected write
EX—Exclusive

Key to Effects:

Return—The contents of the resource lock value block are returned to the lock value block of
the process.
Neither—The lock value block of the process is not written; the resource lock value block is not
returned.
Write—The contents of the process's lock value block are written to the resource lock value
block.

Note that when protected write or exclusive mode locks are dequeued using the Dequeue Lock Request
(SYS$DEQ) system service and the address of a lock value block is specified in the valblk argument,
the contents of that lock value block are written to the resource lock value block.

7.4.10. Interoperation with 16-Byte and 64-Byte Value
Blocks
Beginning with OpenVMS Version 8.2 on Alpha and I64 systems, the lock value block has been
extended from 16 to 64 bytes. To use this feature, applications must explicitly specify both the
LCK$M_XVALBLK flag and the LCK$M_VALBLK flag and provide a 64-byte buffer when reading
and writing the value block.

Existing applications that use the 16-byte buffer and the LCK$M_VALBLK flag continue to operate
without modifications, even when interacting with applications that use the 64-byte lock value block.

In your design of an application using the extended lock value block, you may or may not have to take
interoperability into account. If your new application uses only completely new resource names in a
completely new resource tree that is never referenced by an old application, from a version of OpenVMS
prior to Version 8.2, or from a VAX node, then you need not worry about interoperability.

203

Chapter 7. Synchronizing Access to Resources

If this is not the case, your design may need to take into account the possibility that the lock value block
will be marked invalid as a result of interoperability. There are three situations in which the extended
lock value block can be marked invalid:

• If a program updates the lock value block specifying only LCK$M_VALBLK without
LCK$M_XVALBLK, only the first 16 bytes of the lock value block are written. As long as
the resource is mastered on one of the newer Alpha or I64 systems, the remaining 48 bytes are
unmodified. A future reader that specifies the LCK$M_XVALBLK flag in the $ENQ system service
call is given all 64 bytes but receives the warning status SS$_XVALNOTVALID until a future writer
writes to the value block specifying the LCK$M_XVALBLK flag.

• In a cluster with VAX nodes or nodes running an OpenVMS version prior to Version 8.2, if a
program running on one of the VAX or older version nodes writes to the value block, only the first
16 bytes of the lock value block will be written. As long as the resource is mastered on one of the
newer Alpha or I64 systems, the remaining 48 bytes are unmodified. A future reader who specifies
the LCK$M_XVALBLK flag in the $ENQ system service call is given all 64 bytes but receives the
warning status SS$_XVALNOTVALID until a future writer writes to the value block specifying the
LCK$M_XVALBLK flag.

• The last 48 bytes of the value block are lost if a resource is mastered on or remastered to a VAX
or older version node. In this case, a reader that specifies the LCK$M_XVALBLK flag in the
$ENQ system service call is given the first 16 bytes followed by 48 bytes of zeroes and receives the
warning status SS$_XVALNOTVALID until a future writer writes to the value block specifying the
LCK$M_XVALBLK flag.

Remastering to another node is not under the control of the user or the system manager. It can occur
if a node has an interest in the resource; that is, it holds a lock on some resource in the same tree.
Simply referencing any resource in the tree from a VAX node or from an OpenVMS Alpha node
running a version of OpenVMS prior to Version 8.2 makes it possible for the lock to be remastered
to the old node.

The SS$_XVALNOTVALID condition value is a warning message, not an error message; therefore, the
$ENQ service grants the requested lock and returns this warning on all subsequent calls to $ENQ until
an application writes the value block with the LCK$M_XVALBLK flag set. SS$_XVALNOTVALID
is fully described in the description of the $ENQ System Service in the VSI OpenVMS System Services
Reference Manual: A-GETUAI manual.

If the entire lock status block is invalid, the SS$_VALNOTVALID status is returned and overrides
SS$_XVALNOTVALID status.

7.5. Dequeuing Locks
When a process no longer needs a lock on a resource, you can dequeue the lock by using the Dequeue
Lock Request (SYS$DEQ) system service. Dequeuing locks means that the specified lock request is
removed from the queue it is in. Locks are dequeued from any queue: Granted, Waiting, or Conversion
(see Section 7.2.6). When the last lock on a resource is dequeued, the lock management services delete
the name of the resource from its data structures.

The four arguments to the SYS$DEQ macro (lkid, valblk, acmode, and flags) are optional.
The lkid argument allows the process to specify a particular lock to be dequeued, using the lock
identification returned in the lock status block.

The valblk argument contains the address of a 16-byte lock value block or, if LKC$M_XVALBLK
is specified on Alpha or I64 systems, the 64-byte lock value block. If the lock being dequeued is in

204

Chapter 7. Synchronizing Access to Resources

protected write or exclusive mode, the contents of the lock value block are stored in the lock value block
associated with the resource. If the lock being dequeued is in any other mode, the lock value block is
not used. The lock value block can be used only if a specific lock is being dequeued. It may not be used
when the LCK$M_DEQALL flag is specified.

Three flags are available:

• LCK$M_DEQALL—The LCK$M_DEQALL flag indicates that all locks of the access mode
specified with the acmode argument and less privileged access modes are to be dequeued. The
access mode is maximized with the access mode of the caller. If the flag LCK$M_DEQALL is
specified, then the lkid argument must be 0 (or not specified).

• LCK$M_CANCEL—When LCK$M_CANCEL is specified, SYS$DEQ attempts to cancel a
lock conversion request that was queued by SYS$ENQ. This attempt can succeed only if the
lock request has not yet been granted, in which case the request is in the conversion queue. The
LCK$M_CANCEL flag is ignored if the LCK$M_DEQALL flag is specified. For more information
about the LCK$M_CANCEL flag, see the description of the SYS$DEQ service in the VSI OpenVMS
System Services Reference Manual.

• LCK$M_INVVALBLK—When LCK$M_INVVALBLK is specified, $DEQ marks the lock value
block, which is maintained for the resource in the lock database, as invalid. See the descriptions
of SYS$DEQ and SYS$ENQ in the VSI OpenVMS System Services Reference Manual for more
information about the LCK$M_INVVALBLK flag.

The following is an example of dequeuing locks:

#include <stdio.h>
#include <descrip.h>
#include <lckdef.h>

/* Declare a lock status block */

struct lock_blk {
 unsigned short lkstat ,reserved;
 unsigned int lock_id;
}lksb;

 .
 .
 .
 void read_updates();
 unsigned int status, lkmode=LCK$K_CRMODE, lkid;
 $DESCRIPTOR(resnam,"STRUCTURE_1"); /* resource */

/* Queue a request for concurrent read mode lock */
 status = SYS$ENQW(0, /* efn - event flag */
 lkmode, /* lkmode - lock mode */
 &lksb, /* lksb - lock status block */
 0, /* flags */
 &resnam, /* resnam - name of resource */
 0, /* parid - lock id of parent */
 &read_updates,/* astadr - AST routine */
 0, 0, 0, 0);
 if((status & 1) != 1)
 LIB$SIGNAL(status);

 .

205

Chapter 7. Synchronizing Access to Resources

 .
 .
 lkid = lksb.lock_id;
 status = SYS$DEQ(lkid, /* lkid - id of lock to be dequeued */
 0, 0, 0);
 if((status & 1) != 1)
 LIB$SIGNAL(status);

}

User-mode locks are automatically dequeued when the image exits.

7.6. Local Buffer Caching with the Lock
Management Services
The lock management services provide methods for applications to perform local buffer caching
(also called distributed buffer management). Local buffer caching allows a number of processes to
maintain copies of data (disk blocks, for example) in buffers local to each process and to be notified
when the buffers contain invalid data because of modifications by another process. In applications where
modifications are infrequent, substantial I/O can be saved by maintaining local copies of buffers. You
can use either the lock value block or blocking ASTs (or both) to perform buffer caching.

7.6.1. Using the Lock Value Block
To support local buffer caching using the lock value block, each process maintaining a cache of buffers
maintains a null mode lock on a resource that represents the current contents of each buffer. (For this
discussion, assume that the buffers contain disk blocks.) The value block associated with each resource
is used to contain a disk block “version number.” The first time a lock is obtained on a particular disk
block, the current version number of that disk block is returned in the lock value block of the process.
If the contents of the buffer are cached, this version number is saved along with the buffer. To reuse
the contents of the buffer, the null lock must be converted to protected read mode or exclusive mode,
depending on whether the buffer is to be read or written. This conversion returns the latest version
number of the disk block. The version number of the disk block is compared with the saved version
number. If they are equal, the cached copy is valid. If they are not equal, a fresh copy of the disk block
must be read from disk.

Whenever a procedure modifies a buffer, it writes the modified buffer to disk and then increments the
version number before converting the corresponding lock to null mode. In this way, the next process that
attempts to use its local copy of the same buffer finds a version number mismatch and must read the
latest copy from disk rather than use its cached (now invalid) buffer.

7.6.2. Using Blocking ASTs
Blocking ASTs notify processes with granted locks that another process with an incompatible lock mode
has been queued to access the same resource.

Blocking ASTs support local buffer caching in two ways. One technique involves deferred buffer writes;
the other technique is an alternative method of local buffer caching without using value blocks.

7.6.2.1. Deferring Buffer Writes
When local buffer caching is being performed, a modified buffer must be written to disk before the
exclusive mode lock can be released. If a large number of modifications are expected (particularly over a

206

Chapter 7. Synchronizing Access to Resources

short period of time), you can reduce disk I/O by both maintaining the exclusive mode lock for the entire
time that the modifications are being made and by writing the buffer once. However, this prevents other
processes from using the same disk block during this interval. This problem can be avoided if the process
holding the exclusive mode lock has a blocking AST. The AST notifies the process if another process
needs to use the same disk block. The holder of the exclusive mode lock can then write the buffer to disk
and convert its lock to null mode (thereby allowing the other process to access the disk block). However,
if no other process needs the same disk block, the first process can modify it many times but write it
only once.

7.6.2.2. Buffer Caching
To perform local buffer caching using blocking ASTs, processes do not convert their locks to null mode
from protected read or exclusive mode when finished with the buffer. Instead, they receive blocking
ASTs whenever another process attempts to lock the same resource in an incompatible mode. With this
technique, processes are notified that their cached buffers are invalid as soon as a writer needs the buffer,
rather than the next time the process tries to use the buffer.

7.6.3. Choosing a Buffer-Caching Technique
The choice between using either version numbers or blocking ASTs to perform local buffer caching
depends on the characteristics of the application. An application that uses version numbers performs
more lock conversions; whereas one that uses blocking ASTs delivers more ASTs. Note that these
techniques are compatible; some processes can use one technique, and other processes can use the other
at the same time. Generally, blocking ASTs are preferable in a low-contention environment; whereas
version numbers are preferable in a high-contention environment. You can even invent combined or
adaptive strategies.

In a combined strategy, the applications use specific techniques. If a process is expected to reuse the
contents of a buffer in a short amount of time, the application uses blocking ASTs; if there is no reason
to expect a quick reuse, the application uses version numbers.

In an adaptive strategy, an application makes evaluations based on the rate of blocking ASTs and
conversions. If blocking ASTs arrive frequently, the application changes to using version numbers; if
many conversions take place and the same cached copy remains valid, the application changes to using
blocking ASTs.

For example, suppose one process continually displays the state of a database, while another occasionally
updates it. If version numbers are used, the displaying process must always make sure that its copy of
the database is valid (by performing a lock conversion); if blocking ASTs are used, the display process is
informed every time the database is updated. On the other hand, if updates occur frequently, the use of
version numbers is preferable to continually delivering blocking ASTs.

7.7. Example of Using Lock Management
Services
The following program segment requests a null lock for the resource named TERMINAL. After the
lock is granted, the program requests that the lock be converted to an exclusive lock. Note that, after
SYS$ENQW returns, the program checks both the status of the system service and the condition value
returned in the lock status block to ensure that the request completed successfully.

! Define lock modes
INCLUDE '($LCKDEF)'

207

Chapter 7. Synchronizing Access to Resources

! Define lock status block
INTEGER*2 LOCK_STATUS,
2 NULL
INTEGER LOCK_ID
COMMON /LOCK_BLOCK/ LOCK_STATUS,
2 NULL,
2 LOCK_ID
 .
 .
 .
! Request a null lock
STATUS = SYS$ENQW (,
2 %VAL(LCK$K_NLMODE),
2 LOCK_STATUS,
2 ,
2 'TERMINAL',
2 ,,,,,)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))
IF (.NOT. LOCK_STATUS) CALL LIB$SIGNAL (%VAL(LOCK_STATUS))

! Convert the lock to an exclusive lock
STATUS = SYS$ENQW (,
2 %VAL(LCK$K_EXMODE),
2 LOCK_STATUS,
2 %VAL(LCK$M_CONVERT),
2 'TERMINAL',
2 ,,,,,)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))
IF (.NOT. LOCK_STATUS) CALL LIB$SIGNAL (%VAL(LOCK_STATUS))

To share a terminal between a parent process and a subprocess, each process requests a null lock on a
shared resource name. Then, each time one of the processes wants to perform terminal I/O, it requests an
exclusive lock, performs the I/O, and requests a null lock.

Because the lock manager is effective only between cooperating programs, the program that created
the subprocess should not exit until the subprocess has exited. To ensure that the parent does not exit
before the subprocess, specify an event flag to be set when the subprocess exits (the num argument of
LIB$SPAWN). Before exiting from the parent program, use SYS$WAITFR to ensure that the event flag
has been set. (You can suppress the logout message from the subprocess by using the SYS$DELPRC
system service to delete the subprocess instead of allowing the subprocess to exit.)

After the parent process exits, a created process cannot synchronize access to the terminal and should
use the SYS$BRKTHRU system service to write to the terminal.

208

Part II. Interrupts and
Condition Handling

This part describes the use of asynchronous system traps (ASTs) and the use of condition-handling
routines and services.

209

210

Chapter 8. Using Asynchronous
System Traps
This chapter describes the use of asynchronous system traps (ASTs).

8.1. Overview of AST Routines
Asynchronous system traps (ASTs) are interrupts that occur asynchronously (out of sequence) with
respect to the process's execution. ASTs are activated asynchronously to the mainline code in response to
an event, usually either as a timer expiration or an I/O completion. An AST provides a transfer of control
to a user-specified procedure that handles the event. For example, you can use ASTs to signal a program
to execute a routine whenever a certain condition occurs.

The routine executed upon delivery of an AST is called an AST routine. AST routines are coded and
referenced like any other routine; they are compiled and linked in the normal fashion. An AST routine's
code must be reentrant. When the AST routine is finished, the routine that was interrupted resumes
execution from the point of interruption.

ASTs provide a powerful programming technique. By using ASTs, you allow other processing to
continue pending the occurrence of one or more events. Polling and blocking techniques, on the other
hand, can use resources inefficiently. A polling technique employs a looping that polls for an event,
which has to wait for an indication that an event has occurred. Therefore, depending on the frequency
of the polling, polling techniques waste resources. If you use less frequent intervals, polling can then be
slow to react to the occurrence of the event.

Blocking techniques force all processing to wait for the completion of a particular event. Blocking
techniques can also be wasteful, for there could well be other activities the process could be performing
while waiting for the occurrence of a specific event.

To deliver an AST, you use system services that specify the address of the AST routine. Then the system
delivers the AST (that is, transfers control to your AST routine) at a particular time or in response to a
particular event.

Some system services allow a process to request that it be interrupted when a particular event occurs.
Table 8.1 shows the system services that are AST services.

Table 8.1. AST System Services

System Service Task Performed

SYS$SETAST Enable or disable reception of AST requests
SYS$DCLAST Declare AST

The system services that use the AST mechanism accept as an argument the address of an AST service
routine, that is, a routine to be given control when the event occurs.

Table 8.2 shows some of the services that use ASTs.

Table 8.2. System Services That Use ASTs

System Service Task Performed

SYS$DCLAST Declare AST

211

Chapter 8. Using Asynchronous System Traps

System Service Task Performed

SYS$ENQ Enqueue Lock Request
SYS$GETDVI Get Device/Volume Information
SYS$GETJPI Get Job/Process Information
SYS$GETSYI Get Systemwide Information
SYS$QIO Queue I/O Request
SYS$SETIMR Set Timer
SYS$SETPRA Set Power Recovery AST
SYS$UPDSEC Update Section File on Disk

The following sections describe in more detail how ASTs work and how to use them.

8.2. Declaring and Queuing ASTs
Most ASTs occur as the result of the completion of an asynchronous event that is initiated by a system
service (for example, a SYS$QIO or SYS$SETIMR request) when the process requests notification by
means of an AST.

The Declare AST (SYS$DCLAST) system service can be called to invoke a subroutine as an AST. With
this service, a process can declare an AST only for the same or for a less privileged access mode.

You may find occasional use for the SYS$DCLAST system service in your programming applications;
you may also find the SYS$DCLAST service useful when you want to test an AST service routine.

The following sections present programming information about declaring and using ASTs.

8.2.1. Reentrant Code and ASTs
Compiled code that is generated by VSI compilers is reentrant. Furthermore, VSI compilers normally
generate AST routine local data that is reentrant. Data that is shared static, shared external data, Fortran
COMMON, and group or system global section data are not inherently reentrant, and usually require
explicit synchronization.

Because the queuing mechanism for an AST does not provide for returning a function value or passing
more than one argument, you should write an AST routine as a subroutine. This subroutine should use
nonvolatile storage that is valid over the life of the AST. To establish nonvolatile storage, you can use the
LIB$GET_VM run-time routine. You can also use a high-level language's storage keywords to create
permanent nonvolatile storage. For instance, you can use the C language's keywords as follows:

extern static routine malloc();

In some cases, a system service that queues an AST (for example, SYS$GETJPI) allows you to specify
an argument for the AST routine. If you choose to pass the argument, the AST routine must be written to
accept the argument.

8.2.1.1. The Call Frame
When a routine is active under OpenVMS, it has available to it temporary storage on a stack, in a
construct known as a stack frame, or call frame. Each time a subroutine call is made, another call frame
is pushed onto the stack and storage is made available to that subroutine. Each time a subroutine returns

212

Chapter 8. Using Asynchronous System Traps

to its caller, the subroutine's call frame is pulled off the stack, and the storage is made available for reuse
by other subroutines. Call frames therefore are nested. Outer call frames remain active longer, and the
outermost call frame, the call frame associated with the main routine, is normally always available.

A primary exception to this call frame condition is when an exit handler runs. With an exit handler
running, only static data is available. The exit handler effectively has its own call frame. Exit handlers are
declared with the SYS$DCLEXH system service.

The use of call frames for storage means that all routine-local data is reentrant; that is, each subroutine
has its own storage for the routine-local data.

The allocation of storage that is known to the AST must be in memory that is not volatile over the
possible interval the AST might be pending. This means you must be familiar with how the compilers
allocate routine-local storage using the stack pointer and the frame pointer. This storage is valid only
while the stack frame is active. Should the routine that is associated with the stack frame return, the AST
cannot write to this storage without having the potential for some severe application data corruptions.

8.2.2. Shared Data Access with Readers and Writers
The following are two types of shared data access:

• Multiple readers with one writer

• Multiple readers with multiple writers

If there is shared data access with multiple readers, your application must be able to tolerate having a
stale counter that allows frequent looping back and picking up a new value from the code.

With multiple writers, often the AST is the writer, and the mainline code is the reader or updater. That is,
the mainline processes all available work until it cannot dequeue any more requests, releasing each work
request to the free queue as appropriate, and then hibernates when no more work is available. The AST
then activates, pulls free blocks off the free queue, fills entries into the pending work queue, and then
wakes the mainline code. In this situation, you should use a scheduled wakeup call for the mainline code
in case work gets into the queue and no wakeup is pending.

Having multiple writers is possibly the most difficult to code, because you cannot always be sure where
the mainline code is in its processing when the AST is activated. A suggestion is to use a work queue and
a free queue at a known shared location, and to use entries in the queue to pass the work or data between
the AST and the mainline code. Interlocked queue routines, such as LIB$INSQHI and LIB$REMQTI,
are available in the Run-Time Library.

8.2.3. Shared Data Access and AST Synchronization
An AST routine might invoke subroutines that are also invoked by another routine. To prevent conflicts,
a program unit can use the SYS$SETAST system service to disable AST interrupts before calling a
routine that might be invoked by an AST. You use the SYS$SETAST service typically only if there are
noninterlocked (nonreentrant) variables, or if the code itself is nonreentrant. Once the shared routine has
executed, the program unit can use the same service to reenable AST interrupts. In general you should
avoid using the SYS$SETAST call because of implications for application performance.

Implicit synchronization can be achieved for data that is shared for write by using only AST routines to
write the data, since only one AST can be running at any one time. You can also use the SYS$DCLAST
system service to call a subroutine in AST mode.

213

Chapter 8. Using Asynchronous System Traps

Explicit synchronization can be achieved through a lack of read-modify cells, in cases of where there
is one writer with one or more readers. However, if there are multiple writers, you must consider
explicit synchronization of access to the data cells. This can be achieved using bitlocks (LIB$BBCCI),
hardware interlocked queues (LIB$INSQHI), interlocked add and subtract (LIB$ADAWI) routines, or
by other techniques. These routines are available directly in assembler by language keywords in C and
other languages, and by OpenVMS RTL routines from all languages. On Alpha systems, you can use
PALcode calls such as load-locked (LD x_L) and store-conditional (ST x_C) instructions to manage
synchronization.

The VAX interlocked queue instructions work unchanged on OpenVMS I64 systems and result in the
SYS$PAL_xxxxx run-time routine PALcode equivalents being called, which incorporate the necessary
interlocks and memory barriers.

Whenever possible, the OpenVMS I64 BLISS, C, and MACRO compilers convert CALL_PAL
macros to the equivalent OpenVMS-provided SYS$PAL_ xxxx operating system calls for backward
compatibility. The supported PAL operations vary among the several environments, although generally
the user-mode PAL operations are the same. You can see which PAL calls have macros supplied by
looking in module PAL_BUILTINS.H in the text library SYS$LIBRARY:SYS$STARLET_C.TLB.

For details of synchronization, see Chapter 6. Also see processor architecture manuals about the
necessary synchronization techniques and for common synchronization considerations.

8.2.4. User ASTs and Asynchronous Completions
OpenVMS asynchronous completions usually activate an inner-mode, which is a privileged mode AST,
to copy any results read into a user buffer, if this is a read operation, and to update the IO status block
(IOSB) and set the event flag. If a use-mode AST has been specified, it is activated once all data is
available and the event flag and IOSB, if requested, have been updated.

8.3. Common Mistakes in Asynchronous
Programming
The following lists common asynchronous programming mistakes and suggests how to avoid them:

• Allocating the IOSB in a routine's call frame and returning before completion of the asynchronous
request that then exits. When the asynchronous operation completes, the IOSB is written, and if the
call frame is no longer valid, then a data corruption of 8 bytes, the size of the IOSB, occurs.

• Failure to specify both an event flag and an IOSB. These are, in essence, required arguments.

• Failure to use SYS$SYNCH, or to check both for an event flag that has been set and for a nonzero
IOSB. If both conditions do not hold, the operation is not yet complete.

• Incorrect sharing of an IOSB among multiple operations that are pending in parallel, or the allocation
of an IOSB in storage that is volatile while the operation is pending.

• Failure to acquire and synchronize the use of event flags using one or more calls to the
LIB$GET_EF and LIB$FREE_EF routines.

• Attempting to access the terminal with language I/O statements using SYS$INPUT or
SYS$OUTPUT may cause a redundant I/O error. You must establish another channel to the terminal
by explicitly opening the terminal, or by using the SMG$ routines.

214

Chapter 8. Using Asynchronous System Traps

8.4. Using System Services for AST Event and
Time Delivery
The following list presents system services and routines that are used to queue the AST routine that
determines whether an AST is delivered after a specified event or time. Note that the system service
(W) calls are synchronous. Synchronous system services can have ASTs, but the code blocks pending
completion, when the AST is activated.

• Event—The following system routines allow you to specify an AST routine to be delivered when the
system routine completes:

• LIB$SPAWN—Signals when the subprocess has been created.

• SYS$ENQ and SYS$ENQW—Signals when the resource lock is blocking a request from another
process.

• SYS$GETDVI and SYS$GETDVIW—Indicate that device information has been received.

• SYS$GETJPI and SYS$GETJPIW—Indicate that process information has been received.

• SYS$GETSYI and SYS$GETSYIW—Indicate that system information has been received.

• SYS$QIO and SYS$QIOW—Signal when the requested I/O is completed.

• SYS$UPDSEC—Signals when the section file has been updated.

• SYS$ABORT_TRANS and SYS$ABORT_TRANSW—Signal when a transaction is aborted.

• SYS$AUDIT_EVENT and SYS$AUDIT_EVENTW—Signal when an event message is
appended to the system security audit log file or send an alarm to a security operator terminal.

• SYS$BRKTHRU and SYS$BRKTHRU(W)—Signal when a message is sent to one or more
terminals.

• SYS$CHECK_PRIVILEGE and SYS$CHECK_PRIVILEGEW—Signal when the caller has the
specified privileges or identifier.

• SYS$DNS and SYS$DNSW—On VAX systems, signal when client applications are allowed to
store resource names and addresses.

• SYS$END_TRANS and SYS$END_TRANSW—Signal an end to a transaction by attempting to
commit it.

• SYS$GETQUI and SYS$GETQUIW—Signal when information is returned about queues and
the jobs initiated from those queues.

• SYS$START_TRANS and SYS$START_TRANSW—Signal the start of a new transaction.

• SYS$SETCLUEVT and SYS$SETCLUEVTW—Signal a request for notification when a
VMScluster configuration event occurs.

• Event – The SYS$SETPRA system service allows you to specify an AST to be delivered when the
system detects a power recovery.

• Time – The SYS$SETIMR system service allows you to specify a time for the AST to be delivered.

215

Chapter 8. Using Asynchronous System Traps

• Time – The SYS$DCLAST system service delivers a specified AST immediately. This makes it an
ideal tool for debugging AST routines.

If a program queues an AST and then exits before the AST is delivered, the AST is deleted before
execution. If a process is hibernating when an AST is delivered, the AST executes, and the process then
resumes hibernating.

If a suspended process receives an AST, the execution of the AST depends on the AST mode and the
mode at which the process was suspended, as follows:

• If the process was suspended from a SYS$SUSPEND call at supervisor mode, user-mode ASTs are
executed as soon as the process is resumed. If more than one AST is delivered, they are executed in
the order in which they were delivered. Supervisor-, executive-, and kernel-mode ASTs are executed
upon delivery.

• If the process was suspended from a SYS$SUSPEND call at kernel mode, all ASTs are blocked and
are executed as soon as the process is resumed.

Generally, AST routines are used with the SYS$QIO or SYS$QIOW system service for handling Ctrl/C,
Ctrl/Y, and unsolicited input.

8.5. Access Modes for AST Execution
Each request for an AST is associated with the access mode from which the AST is requested. Thus, if
an image executing in user mode requests notification of an event by means of an AST, the AST service
routine executes in user mode.

Because the ASTs you use almost always execute in user mode, you do not need to be concerned with
access modes. However, you should be aware of some system considerations for AST delivery. These
considerations are described in Section 8.7.

8.6. Calling an AST
This section shows the use of the Set Time (SYS$SETIMER) system service as an example of calling
an AST. When you call the Set Timer (SYS$SETIMR) system service, you can specify the address of a
routine to be executed when a time interval expires or at a particular time of day. The service schedules
the execution of the routine and returns; the program image continues executing. When the requested
timer event occurs, the system “delivers” an AST by interrupting the process and calling the specified
routine.

Example 8.1 shows a typical program that calls the SYS$SETIMR system service with a request for an
AST when a timer event occurs.

Example 8.1. Calling the SYS$SETIMR System Service

#include <stdio.h>
#include <stdlib.h>
#include <ssdef.h>
#include <descrip.h>
#include <starlet.h>
#include <lib$routines.h>

struct {
 unsigned int lower, upper;
}daytim;

216

Chapter 8. Using Asynchronous System Traps

/* AST routine */
void time_ast(void);

main() {
 unsigned int status;
 $DESCRIPTOR(timbuf,"0 ::10.00");/* 10-second delta */

/* Convert ASCII format time to binary format */

 status = SYS$BINTIM(&timbuf, /* buffer containing ASCII time */
 &daytim); /* timadr (buffer to receive */
 /* binary time) */
 if ((status & 1) != 1)
 LIB$SIGNAL(status);
 else
 printf("Converting time to binary format...\n");

/* Set the timer */

 status = SYS$SETIMR(0, /* efn (event flag) */
 &daytim, /* expiration time */
 &time_ast, /* astadr (AST routine) */
 0, /* reqidt (timer request id) */
 0); /* flags */
 if ((status & 1) != 1)
 LIB$SIGNAL(status);
 else
 printf("Setting the timer to expire in 10 secs...\n");

/* Hibernate the process until the timer expires */

 status = SYS$HIBER();
 if ((status & 1) != 1)
 LIB$SIGNAL(status);

}

void time_ast (void) {

 unsigned int status;

 status = SYS$WAKE(0, /* process id */
 0); /* process name */

 if ((status & 1) != 1)
 LIB$SIGNAL(status);

 printf("Executing AST routine to perform wake up...\n");

 return;
}

The call to the SYS$SETIMR system service requests an AST at 10 seconds from the current time.

The daytim argument refers to the quadword, which must contain the time in system time (64-
bit) format. For details on how this is accomplished, see VSI OpenVMS Programming Concepts
Manual, Volume II. The astadr argument refers to TIME_AST, the address of the AST service
routine.

217

Chapter 8. Using Asynchronous System Traps

When the call to the system service completes, the process continues execution.
The timer expires in 10 seconds and notifies the system. The system interrupts execution of the
process and gives control to the AST service routine.
The user routine TIME_AST handles the interrupt. When the AST routine completes, it issues a
RET instruction to return control to the program. The program resumes execution at the point at
which it was interrupted.

8.7. Delivering ASTs
This section describes the AST service routine, some conditions affecting AST delivery, and the affect
of kernel threads on AST delivery. The order of an AST delivery is not deterministic. The order the
ASTs are entered into the AST queue for delivery to the process is not related to the order the particular
operations that included AST notification requests were queued.

8.7.1. The AST Service Routine
An AST service routine must be a separate procedure. The AST must use the standard call procedure,
and the routine must return using a RET instruction. If the service routine modifies any registers other
than the standard scratch registers, it must preserve those registers.

Because you cannot know when the AST service routine will begin executing, you must take care that
when you write the AST service routine it does not modify any data or instructions used by the main
procedure (unless, of course, that is its function).

On entry to the AST service routine, the arguments shown in Table 8.3 are passed.

Table 8.3. AST Arguments

VAX
System Arguments

Alpha
System Arguments

I64
System Arguments

x86-64
System Arguments

AST parameter AST parameter AST parameter AST parameter
R0 R0 0 0
R1 R1 0 0
PC PC PC PC
PSL PS Synthesized Alpha PS Synthesized Alpha PS

Registers R0 and R1, the program counter (PC), and the processor status longword (PSL) on VAX
systems, or processor status (PS) on 64-bit systems, and were saved when the process was interrupted by
delivery of the AST.

The AST parameter is an argument passed to the AST service routine so that it can identify the
event that caused the AST. When you call a system service requesting an AST, or when you call the
SYS$DCLAST system service, you can supply a value for the AST parameter. If you do not specify a
value, the parameter defaults to 0.

The following example illustrates an AST service routine. In this example, the ASTs are queued by the
SYS$DCLAST system service; the ASTs are delivered to the process immediately so that the service
routine is called following each SYS$DCLAST system service call.

#include <stdio.h>
#include <ssdef.h>
#include <starlet.h>
#include <lib$routines.h>

218

Chapter 8. Using Asynchronous System Traps

/* Declare the AST routine */

void astrtn (int);

main()
{
 unsigned int status, value1=1, value2=2;

 status = SYS$DCLAST(&astrtn, /* astadr - AST routine */
 value1, /* astprm - AST parameter */
 0); /* acmode */
 if((status & 1) != 1)
 LIB$SIGNAL(status);
 .
 .
 .
 status = SYS$DCLAST(&astrtn, value2, 0);
 if((status & 1) != 1)
 LIB$SIGNAL(status);

}

void astrtn (int value) {

/* Evaluate AST parameter */
 switch (value)
 {
 case 1: printf("Executing AST routine with value 1...\n");
 goto handler_1;
 break;

 case 2: printf("Executing AST routine with value 2...\n");
 goto handler_2;
 break;

 default: printf("Error\n");

 };

/* Handle first AST */

handler_1:
 .
 .
 .
 return;

/* Handle second AST */

handler_2:
 .
 .
 .
 return;
}

219

Chapter 8. Using Asynchronous System Traps

The program calls the SYS$DCLAST AST system service twice to queue ASTs. Both ASTs specify
the AST service routine, ASTRTN. However, a different parameter is passed for each call.
The first action this AST routine takes is to check the AST parameter so that it can determine
if the AST being delivered is the first or second one declared. The value of the AST parameter
determines the flow of execution.

8.7.2. Conditions Affecting AST Delivery
When a condition causes an AST to be delivered, the system may not be able to deliver the AST to the
process immediately. An AST cannot be delivered under any of the following conditions:

• An AST service routine is currently executing at the same or at a more privileged access mode.

Because ASTs are implicitly disabled when an AST service routine executes, one AST routine
cannot be interrupted by another AST routine declared for the same access mode. Only one
AST can be running in any particular processor mode at anyone time. If an AST is active in any
particular processor mode, it blocks all the same and less privileged ASTs. An AST can, however, be
interrupted for an AST declared for a more privileged access mode.

• AST delivery is explicitly disabled for the access mode.

A process can disable the delivery of AST interrupts with the Set AST Enable (SYS$SETAST)
system service. This service may be useful when a program is executing a sequence of instructions
that should not be interrupted for the execution of an AST routine.

SYS$SETAST is often used in a main program that shares data with an AST routine in order to
block AST delivery while the program accesses the shared data.

• The process is executing or waiting at an access mode more privileged than that for which the AST is
declared.

For example, if a user-mode AST is declared as the result of a system service but the program is
currently executing at a higher access mode (because of another system service call, for example),
the AST is not delivered until the program is once again executing in user mode.

If an AST cannot be delivered when the interrupt occurs, the AST is queued until the conditions
disabling delivery are removed. Queued ASTs are ordered by the access mode from which they were
declared, with those declared from more privileged access modes at the front of the queue. If more than
one AST is queued for an access mode, the ASTs are delivered in the order in which they are queued.

8.7.3. Kernel Threads AST Delivery
(Alpha and I64)
On 64-bit systems with the kernel threads implementation, ASTs are associated with the kernel thread
that initiates them, though it is not required that they execute on the thread that initiates them. The use
of the kernel thread's PID in the asynchronous system trap control block (ACB) identifies the initiating
thread. Associating an ACB with its initiating thread is required; the arrival of an AST is often the event
that allows a thread, waiting on a flag or resource, to be made computable.

An AST, for example, may set a flag or make a resource available, and when the AST is completed, the
thread continues its execution in non-AST mode and rechecks the wait condition. If the wait condition is
satisfied, the thread continues; if not, the thread goes back into the wait queue.

220

Chapter 8. Using Asynchronous System Traps

On the other hand, if an AST executes on a kernel thread other than the one that initiated it, then when
the AST completes, the kernel thread that initiated the AST must be made computable to ensure that it
rechecks a waiting condition that may now be satisfied.

The queuing and delivery mechanisms of ASTs make a distinction between outer mode ASTs (user and
supervisor modes), and inner mode ASTs (executive and kernel modes). This distinction is necessary
because of the requirement to synchronize inner mode access.

With the kernel threads implementation, the standard process control block (PCB) AST queues now
appear in the kernel thread block (KTB), so that each kernel thread may receive ASTs independently.
These queues receive outer mode ASTs, which are delivered on the kernel thread that initiates them. The
PCB has a new set of inner mode queues for inner mode ASTs that require the inner mode semaphore.
With the creation of multiple kernel threads, inner mode ASTs are inserted in the PCB queues, and are
delivered on whichever kernel thread holds the inner mode semaphore. Inner mode ASTs, which are
explicitly declared as thread-safe, are inserted in the KTB queues, and are delivered on the kernel thread
that initiates them.

If a thread manager declares a user AST callback, then user mode ASTs are delivered to the thread
manager. The thread manager then is responsible for determining the context in which the AST should
be executed.

There are significant programming considerations to be understood when mixing POSIX Threads
Library with ASTs. For information about using POSIX Threads Library with ASTs, see the Guide to
POSIX Threads Library.

8.7.3.1. Outer Mode (User and Supervisor) Nonserial Delivery of
ASTs
Before kernel threads, AST routine code of a given mode has always been able to assume the following:

• It would be processed serially. It would not be interrupted or executed concurrently with any other
AST of the same mode.

• It would be processed without same-mode, non-AST level code executing concurrently.

Further, before kernel threads, user mode code could safely access data that it knows is only used
by other user mode, non-AST level routines without needing any synchronization mechanisms. The
underlying assumption is that only one thread of user mode execution exists. If the current code stream is
accessing the data, then by implication no other code stream can be accessing it.

After kernel threads, this assumed behavior of AST routines and user mode code is no longer valid.
Multiple user-mode, non-AST level code streams can be executing at the same time. The use of any data
that can be accessed by multiple user-mode code streams must be modified to become synchronized
using the load-locked (LDx_L) and store-conditional (STx_C) instructions, or by using some other
synchronization mechanism.

Kernel threads assumes that multiple threads of execution can be active at one time and includes outer
mode ASTs. Within any given kernel thread, outer mode ASTs will still be delivered serially. Also, the
kernel thread model allows any combination of multiple outer mode threads, or multiple outer mode
ASTs. However, outer-mode AST routines, as well as non-AST outer-mode code, has to be aware that
any data structure that can be accessed concurrently by outer-mode code, or by any other outer-mode
AST must be protected by some form of synchronization.

Before kernel threads, same-mode ASTs executed in the order that they were queued. After kernel
threads and within a single kernel thread, that still is true. However, it is not true process-wide. If two

221

Chapter 8. Using Asynchronous System Traps

ACBs are queued to two different KTBs, whichever is scheduled first, executes first. There is no attempt
to schedule kernel threads in such a way to correctly order ASTs that have been queued to them. The
ASTs execute in any order and can, in fact, execute concurrently.

8.7.3.2. Inner Mode (Executive and Kernel) AST Delivery
Before kernel threads, OpenVMS implemented AST preemptions in inner modes as follows:

• An executive mode AST can preempt non-AST executive mode processing.

• A kernel mode AST can preempt non-AST kernel mode processing, or any executive mode
processing.

• A special kernel mode AST can preempt a normal kernel mode AST, non-AST kernel mode, or any
executive mode.

• No ASTs can be delivered when interrupt priority level (IPL) is raised to 2 or above. Special kernel
mode ASTs execute entirely at IPL 2 or above, which is what prevents other kernel mode ASTs from
executing while the special kernel mode AST is active.

After kernel threads, in contrast to the preceding list, kernel threads deliver any non thread-safe inner
mode ASTs to the kernel thread that already owns the semaphore. If no thread currently owns the
semaphore when the AST is queued, then the semaphore is acquired in SCH$QAST, and the owner is
set to the target kernel thread for that AST. Subsequently queued ASTs see that thread as the semaphore
owner and are delivered to that thread. This allows the PALcode and the hardware architecture to
process all the AST preemption and ordering rules.

8.8. ASTs and Process Wait States
A process in a wait state can be interrupted for the delivery of an AST and the execution of an AST
service routine. When the AST service routine completes execution, the process is returned to the wait
state, if the condition that caused the wait is still in effect.

With the exception of suspended waits (SUSP) and suspended outswapped waits (SUSPO), any wait
states can be interrupted.

8.8.1. Event Flag Waits
If a process is waiting for an event flag and is interrupted by an AST, the wait state is restored following
execution of the AST service routine. If the flag is set at completion of the AST service routine (for
example, by completion of an I/O operation), then the process continues execution when the AST service
routine completes.

Event flags are described in Section 6.8.

8.8.2. Hibernation
A process can place itself in a wait state with the Hibernate (SYS$HIBER) system service. This state
can be interrupted for the delivery of an AST. When the AST service routine completes execution, the
process continues hibernation. The process can, however, “wake” itself in the AST service routine or
be awakened either by another process or as the result of a timer-scheduled wakeup request. Then, it
continues execution when the AST service routine completes.

Process suspension is another form of wait; however, a suspended process cannot be interrupted by an
AST. Process hibernation and suspension are described in Chapter 4.

222

Chapter 8. Using Asynchronous System Traps

8.8.3. Resource Waits and Page Faults
When a process is executing an image, the system can place the process in a wait state until a required
resource becomes available, or until a page in its virtual address space is paged into memory. These
waits, which are generally transparent to the process, can also be interrupted for the delivery of an AST.

8.9. Examples of Using AST Services
The following is an example of an VSI Fortran program that finds the process identification (PID)
number of any user working on a particular disk and delivers an AST to a local routine that notifies the
user that the disk is coming down:

 PROGRAM DISK_DOWN
 ! Implicit none
 ! Status variable
 INTEGER STATUS
 STRUCTURE /ITMLST/
 UNION
 MAP
 INTEGER*2 BUFLEN,
 2 CODE
 INTEGER*4 BUFADR,
 2 RETLENADR
 END MAP
 MAP
 INTEGER*4 END_LIST
 END MAP
 END UNION
 END STRUCTURE
 RECORD /ITMLST/ DVILIST(2),
 2 JPILIST(2)
 ! Information for GETDVI call
 INTEGER PID_BUF,
 2 PID_LEN
 ! Information for GETJPI call
 CHARACTER*7 TERM_NAME
 INTEGER TERM_LEN
 EXTERNAL DVI$_PID,
 2 JPI$_TERMINAL
 ! AST routine and flag
 INTEGER AST_FLAG
 PARAMETER (AST_FLAG = 2)
 EXTERNAL NOTIFY_USER

 INTEGER SYS$GETDVIW,
 2 SYS$GETJPI,
 2 SYS$WAITFR

 ! Set up for SYS$GETDVI
 DVILIST(1).BUFLEN = 4
 DVILIST(1).CODE = %LOC(DVI$_PID)
 DVILIST(1).BUFADR = %LOC(PID_BUF)
 DVILIST(1).RETLENADR = %LOC(PID_LEN)
 DVILIST(2).END_LIST = 0
 ! Find PID number of process using SYS$DRIVE0
 STATUS = SYS$GETDVIW (,

223

Chapter 8. Using Asynchronous System Traps

 2 ,
 2 '_MTA0:', ! device
 2 DVILIST, ! item list
 2 ,,,)
 IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))
 ! Get terminal name and fire AST
 JPILIST(1).CODE = %LOC(JPI$_TERMINAL)
 JPILIST(1).BUFLEN = 7
 JPILIST(1).BUFADR = %LOC(TERM_NAME)
 JPILIST(1).RETLENADR = %LOC(TERM_LEN)
 JPILIST(2).END_LIST = 0
 STATUS = SYS$GETJPI (,
 2 PID_BUF, !process id
 2 ,
 2 JPILIST, !itemlist
 2 ,
 2 NOTIFY_USER, !AST
 2 TERM_NAME) !AST arg
 IF (.NOT. STATUS) CALL LIB$SIGNAL(%VAL(STATUS))

 ! Ensure that AST was executed
 STATUS = SYS$WAITFR(%VAL(AST_FLAG))
 IF (.NOT. STATUS) CALL LIB$SIGNAL(%VAL(STATUS))
 END

 SUBROUTINE NOTIFY_USER (TERM_STR)
 ! AST routine that broadcasts a message to TERMINAL
 ! Dummy argument
 CHARACTER*(*) TERM_STR
 CHARACTER*8 TERMINAL
 INTEGER LENGTH
 ! Status variable
 INTEGER STATUS
 CHARACTER*(*) MESSAGE
 PARAMETER (MESSAGE =
 2 'SYS$TAPE going down in 10 minutes')
 ! Flag to indicate AST executed
 INTEGER AST_FLAG

 ! Declare system routines
 INTRINSIC LEN
 INTEGER SYS$BRDCST,
 2 SYS$SETEF
 EXTERNAL SYS$BRDCST,
 2 SYS$SETEF,
 2 LIB$SIGNAL
 ! Add underscore to device name
 LENGTH = LEN (TERM_STR)
 TERMINAL(2:LENGTH+1) = TERM_STR
 TERMINAL(1:1) = '_'

 ! Send message
 STATUS = SYS$BRDCST(MESSAGE,
 2 TERMINAL(1:LENGTH+1))
 IF (.NOT. STATUS) CALL LIB$SIGNAL(%VAL(STATUS))
 ! Set event flag
 STATUS = SYS$SETEF (%VAL(AST_FLAG))

224

Chapter 8. Using Asynchronous System Traps

 IF (.NOT. STATUS) CALL LIB$SIGNAL(%VAL(STATUS))
 END

The following is an example of a C program setting up an AST:

#module SETAST "SRH X1.0-000"
#pragma builtins
/*
**++
** Facility:
**
** Examples
**
** Version: V1.0
**
** Abstract:
**
** Example of working with the $SETAST call and ASTs.
**
** Author:
** Steve Hoffman
**
** Creation Date: 1-Jan-1990
**
** Modification History:
**--
*/
/*
 * AST and $SETAST demo
 * raise the AST shields
 * request an AST, parameter is 1
 * request an AST, parameter is 2
 * lower the shields
 * <bing1><bing2>
 */
main()
 {
 int retstat = 0;
 int bogus();
 int SYS$SETAST();
 int SYS$DCLAST();

 printf("\ndisabling\n");
 /*
 * $SETAST() returns SS$_WASSET and SS$_WASCLR depending
 * on the previous setting of the AST shield. Watch out,
 * SS$_WASSET looks like a SUCCESSFUL SS$_ACCVIO. (ie:
 * a debug EXAMINE/COND shows SS$_WASSET as the error
 * %SYSTEM-S-ACCVIO. *Real* ACCVIO's never have the "-S-"
 * code!)
 */
 retstat = SYS$SETAST(0);
 printf("\n disable/ was: %d\n", retstat);

 retstat = SYS$DCLAST(bogus, 1, 0);
 retstat = SYS$DCLAST(bogus, 2, 0);
 printf("\ndclast %x\n", retstat);

225

Chapter 8. Using Asynchronous System Traps

 printf("\nenabling\n");
 retstat = SYS$SETAST(1);

 /*
 * and, since we just lowered the shields, the ASTs should hit
 * in here somewhere....
 */
 printf("\n enable/ was: %d\n", retstat);

 return(1);
 };

/*
 * and, here's the entire, sophisticated, twisted AST code...
 */
bogus(astprm)
int astprm;
 {
 printf("\nAST tripped. ast parameter was 0x%x\n\n", astprm);
 return(1);
 };

226

Chapter 9. Condition-Handling
Routines and Services
This chapter describes the OpenVMS Condition Handling facility.

9.1. Overview of Run-Time Errors
Run-time errors are hardware- or software-detected events, usually errors, that alter normal program
execution. Examples of run-time errors are as follows:

• System errors—for example, specifying an invalid argument to a system-defined procedure

• Language-specific errors—for example, in Fortran, a data type conversion error during an I/O
operation

• Application-specific errors—for example, attempting to use invalid data

When an error occurs, the operating system either returns a condition code or value identifying the error
to your program or signals the condition code. If the operating system signals the condition code, an
error message is displayed and program execution continues or terminates, depending on the severity of
the error. See Section 9.5 for details about condition values.

When unexpected errors occur, your program should display a message identifying the error and then
either continue or stop, depending on the severity of the error. If you know that certain run-time errors
might occur, you should provide special actions in your program to handle those errors.

Both an error message and its associated condition code identify an error by the name of the facility
that generated it and an abbreviation of the message text. Therefore, if your program displays an error
message, you can identify the condition code that was signaled. For example, if your program displays
the following error message, you know that the condition code SS$_NOPRIV was signaled:

%SYSTEM-F-NOPRIV, no privilege for attempted operation

9.2. Overview of the OpenVMS Condition
Handling Facility
The operating system provides a set of signaling and condition-handling routines and related system
services to handle exception conditions. This set of services is called the OpenVMS Condition
Handling facility (CHF). The OpenVMS Condition Handling Facility is a part of the common run-time
environment of OpenVMS, which includes run-time library (RTL) routines and other components of the
operating system.

The OpenVMS Condition Handling facility provides a single, unified method to enable condition
handlers, signal conditions, print error messages, change the error behavior from the system default, and
enable or disable detection of certain hardware errors. The RTL and all layered products of the operating
system use the CHF for condition handling.

See the VSI OpenVMS Calling Standard for a detailed description of OpenVMS condition handling.

9.2.1. Condition-Handling Terminology
This section defines the terms used to describe condition handling.

227

Chapter 9. Condition-Handling Routines and Services

exception

An event detected by the hardware or software that changes the normal flow of instruction execution. An
exception is a synchronous event caused by the execution of an instruction and often means something
generated by hardware. When an exception occurs, the processor transfers control by forcing a change in
the flow of control from that explicitly indicated in the currently executing process.

Some exceptions are relevant primarily to the current process and normally invoke software in the
context of the current process. An integer overflow exception detected by the hardware is an example
of an event that is reported to the process. Other exceptions, such as page faults, are handled by the
operating system and are transparent to the user.

An exception may also be signaled by a routine (software signaling) by calling the RTL routines
LIB$SIGNAL or LIB$STOP.

condition

An informational state that exists when an exception occurs. Condition is a more general term than
exception; a condition implies either a hardware exception or a software-raised condition. Often, the
term condition is preferred because the term exception implies an error. Section 9.3.1 further defines the
differences between exceptions and conditions.

condition handling

When a condition is detected during the execution of a routine, a signal can be raised by the routine.
The routine is then permitted to respond to the condition. The routine's response is called handling the
condition.

On VAX systems, a non-zero address in the first longword of a procedure call frame or in an exception
vector indicates that a condition handler exists for that call frame or vector.

On Alpha systems, the handler valid flag bit in the procedure descriptor is set to indicate that a condition
handler exists.

On I64 systems, the handler present flag bit in the frame flags field of the invocation context block
indicates the presence of a condition handler.

On x86-64 systems, a "P" in the augmentation string of a DWARF Common Information Entry (CIE)
with a non-zero value in the personality_routine field of the CIE augmentation section or has the
has_personality flag set in a compact unwind information entry, indicates the presence of a condition
handler.

The condition handlers are themselves routines; they have their own call frames. Because they are
routines, condition handlers can have condition handlers of their own. This allows condition handlers to
field exceptions that might occur within themselves in a modular fashion.

On VAX systems, a routine can enable a condition handler by placing the address of the condition
handler in the first longword of its stack frame.

On 64-bit systems, the association of a handler with a procedure is static and must be specified at the
time a procedure is compiled (or assembled). Some languages that lack their own exception-handling
syntax, however, may support emulation of dynamic specified handlers by means of built-in routines.

If you determine that a program needs to be informed of particular exceptions so it can take corrective
action, you can write and specify a condition handler. This condition handler, which receives control
when any exception occurs, can test for specific exceptions.

228

Chapter 9. Condition-Handling Routines and Services

If an exception occurs and you have not specified a condition handler, the default condition handler
established by the operating system is given control. If the exception is a fatal error, the default condition
handler issues a descriptive message and causes the image that incurred the exception to exit.

To declare or enable a condition handler, use the following system services:

• Set Exception Vector (SYS$SETEXV)

• Unwind from Condition Handler Frame (SYS$UNWIND)

• Declare Change Mode or Compatibility Mode Handler (SYS$DCLCMH)

Parallel mechanisms exist for uniform dispatching of hardware and software exception conditions.
Exceptions that are detected and signaled by hardware transfer control to an exception service routine
in the executive. Software-detected exception conditions are generated by calling the run-time library
routines LIB$SIGNAL or LIB$STOP. Hardware- and software-detected exceptions eventually execute
the same exception dispatching code. Therefore, a condition handler may handle an exception condition
generated by hardware or by software identically.

The Set Exception Vector (SYS$SETEXV) system service allows you to specify addresses for a primary
exception handler, a secondary exception handler, and a last-chance exception handler. You can specify
handlers for each access mode. The primary exception vector is reserved for the debugger. In general,
you should avoid using these vectored handlers unless absolutely necessary. If you use a vectored
handler, it must be prepared for all exceptions occurring in that access mode.

9.2.2. Functions of the Condition Handling Facility
The OpenVMS Condition Handling facility and the related run-time library routines and system services
perform the following functions:

• Establish and call condition-handler routines

You can establish condition handlers to receive control in the event of an exception in one of the
following ways:

• On VAX systems, by specifying the address of a condition handler in the first longword of a
procedure call frame.

On 64-bit systems, the method for establishing a dynamic (that is, nonvectored) condition
handler is specified by the language.

• By establishing exception handlers with the Set Exception Vector (SYS$SETEXV) system
service.

The first of these methods is the preferred way to specify a condition handler for a particular image.
The use of dynamic handlers is also the most efficient way in terms of declaration. You should use
vectored handlers for special purposes, such as writing debuggers.

The VAX MACRO programmer can use the following single-move address instruction to place the
address of the condition handler in the longword pointed to by the current frame pointer (FP):

MOVAB HANDLER,(FP)

You can associate a condition handler for the currently executing routine by specifying an address
pointing to the handler, either in the routine's stack frame on VAX systems or in one of the exception

229

Chapter 9. Condition-Handling Routines and Services

vectors. (The Macro-32 compilers for 64-bit systems generate the appropriate code from this VAX
instruction to establish a dynamic condition handler).

On VAX systems, the high-level language programmer can call the common run-time library routine
LIB$ESTABLISH (see the VSI OpenVMS RTL Library (LIB$) Manual), using the name of the
handler as an argument. LIB$ESTABLISH returns as a function value either the address of the
former handler established for the routine or 0 if no former handler existed.

On VAX systems, the new condition handler remains in effect for your routine until you call
LIB$REVERT or control returns to the caller of the caller of LIB$ESTABLISH. Once this happens,
you must call LIB$ESTABLISH again if the same (or a new) condition handler is to be associated
with the caller of LIB$ESTABLISH.

On VAX systems, some languages provide access to condition handling as part of the language.
You can use the ON ERROR GOTO statement in BASIC and the ON statement in PL/I to define
condition handlers. If you are using a language that does provide access to condition handling, use its
language mechanism rather than LIB$ESTABLISH. Each procedure can declare a condition handler.

When the routine signals an exception, the OpenVMS Condition Handling facility calls the condition
handler associated with the routine. See Section 9.8 for more information about exception vectors.
Figure 9.5 shows a sample stack scan for a condition handler.

The following VSI Fortran program segment establishes the condition handler ERRLOG. Because
the condition handler is used as an actual argument, it must be declared in an EXTERNAL
statement.

INTEGER*4 OLD_HANDLER
EXTERNAL ERRLOG
 .
 .
 .
OLD_HANDLER = LIB$ESTABLISH (ERRLOG)

LIB$ESTABLISH returns the address of the previous handler as its function value. If only part
of a program unit requires a special condition handler, you can reestablish the original handler by
invoking LIB$ESTABLISH and specifying the saved handler address as follows:

CALL LIB$ESTABLISH (OLD_HANDLER)

The run-time library provides several condition handlers and routines that a condition handler can
call. These routines take care of several common exception conditions. Section 9.14describes these
routines.

On 64-bit systems, LIB$ESTABLISH and LIB$REVERT are not supported, though a high-level
language may support them for compatibility. (Table 9.5 lists other run-time library routines
supported and not supported on Alpha systems).

• On VAX systems, remove an established condition-handler routine

On VAX systems using LIB$REVERT, you can remove a condition handler from a routine's stack
frame by setting the frame's handler address to 0. If your high-level language provides condition-
handling statements, you should use them rather than LIB$REVERT.

• On VAX systems, enable or disable the detection of arithmetic hardware exceptions

230

Chapter 9. Condition-Handling Routines and Services

On VAX systems, using run-time library routines, you can enable or disable the signaling of floating
point underflow, integer overflow, and decimal overflow, which are detected by the VAX hardware.

• On I64 and x86-64 systems, access is allowed to the Floating Point Status Register, which contains
dynamic control and status information for floating-point operations.

On I64 and x86-64 systems, the services SYS$IEEE_SET_FP_CONTROL,
SYS$IEEE_SET_ROUNDING_MODE, and SYS$IEEE_SET_PRECISION_MODE provide the
supported mechanisms to access and modify the Floating Point Status Register, and to modify
the floating point rounding and precision modes respectively. Volume 1 of the Intel® Itanium®
Architecture Software Developer's Manual contains a thorough description of the floating-point
status register for Itanium, and Volume 1 of the Intel 64 and IA-32 Architectures Software Developer
Manuals has a comparable description for x86-64.

• Signal a condition

When the hardware detects an exception, such as an integer overflow, a signal is raised at that
instruction. A routine may also raise a signal by calling LIB$SIGNAL or LIB$STOP. Signals raised
by LIB$SIGNAL allow the condition handler either to terminate or to resume the normal flow of the
routine. Signals raised by LIB$STOP require termination of the operation that raises the condition.
The condition handler will not be allowed to continue from the point of call to LIB$STOP.

• Display an informational message

The system establishes default condition handlers before it calls the main program. Because these
default condition handlers provide access to the system's standard error messages, the standard
method for displaying a message is by signaling the severity of the condition: informational, warning,
or error. See Section 9.5 for the definition of the severity field of a condition. The system default
condition handlers resume execution of the instruction after displaying the messages associated with
the signal. However, if the condition value indicates a severe condition, then the image exits after the
message is displayed.

• Display a stack traceback on errors

The default operations of the LINK and RUN commands provide a system-supplied handler (the
traceback handler) to print a symbolic stack traceback. The traceback shows the state of the routine
stack at the point where the condition occurred. The traceback information is displayed along with
the messages associated with the signaled condition.

• Compile customer-defined messages

The Message utility allows you to define your own exception conditions and the associated messages.
Message source files contain the condition values and their associated messages. See Section 9.11.3
for a complete description of how to define your own messages.

• Unwind the stack

A condition handler can cause a signal to be dismissed and the stack to be unwound to the establisher
or caller of the establisher of the condition handler when it returns control to the OpenVMS
Condition Handling facility (CHF). During the unwinding operation, the CHF scans the stack. If a
condition handler is associated with a frame, the system calls that handler before removing the frame.
Calling the condition handlers during the unwind allows a routine to perform cleanup operations
specific to a particular application, such as recovering from noncontinuable errors or deallocating
resources that were allocated by the routine (such as virtual memory, event flags, and so forth). See
Section 9.12.3 for a description of the SYS$UNWIND system service.

231

Chapter 9. Condition-Handling Routines and Services

• Log error messages to a file

The Put Message (SYS$PUTMSG) system service permits any user-written handler to include a
message in a listing file. Such message logging can be separate from the default messages the user
receives. See Section 9.11 for a detailed description of the SYS$PUTMSG system service.

• 64-bit systems, perform a nonlocal GOTO unwind.

A GOTO unwind operation is a transfer of control that leaves one procedure invocation and
continues execution in a prior (currently active) procedure. This unified GOTO operation gives
unterminated procedure invocations the opportunity to clean up in an orderly way.

9.3. Exception Conditions
Exceptions can be generated by any of the following:

• Hardware

• Software

Hardware-generated exceptions always result in conditions that require special action if program
execution is to continue.

Software-generated exceptions may result in error or warning conditions. These conditions and their
message descriptions are documented in the online Help Message utility and in the OpenVMS system
messages documentation. To access online message descriptions, use the HELP/MESSAGE command.

More information on using the Help Message utility is available in OpenVMS System Messages:
Companion Guide for Help Message Users. That document describes only those messages that occur
when the system is not fully operational and you cannot access Help Message.

Some examples of exception conditions are as follows:

• Arithmetic exception condition in a user-written program detected and signaled by hardware (for
example, floating-point overflow)

• Error in a user argument to a run-time library routine detected by software and signaled by calling
LIB$STOP (for example, a negative square root)

• Error in a run-time library language-support routine, such as an I/O error or an error in a data-type
conversion

• RMS success condition stating that the record is already locked

• RMS success condition stating that the created file superseded an existing version

There are two standard methods for a VSI- or user-written routine to indicate that an exception condition
has occurred:

• Return a completion code to the calling program using the function value mechanism

Most general-purpose run-time library routines indicate exception conditions by returning a
condition value in R0 (R8 for I64, %rax on x86-64). The calling program then tests bit 0 of R0 (R8
for I64, %rax on x86-64) for success or failure. This method allows better programming structure,
because the flow of control can be changed explicitly after the return from each call.

• Signal the exception condition

232

Chapter 9. Condition-Handling Routines and Services

A condition can be signaled by calling the RTL routine LIB$SIGNAL or LIB$STOP. Any condition
handlers that were enabled are then called by the CHF. See Figure 9.5 for the order in which CHF
invokes condition handlers.

Exception conditions raised by hardware or software are signaled to the routine identically.

For more details, see Section 9.8 and Section 9.8.1.

9.3.1. Conditions Caused by Exceptions
Tables 9.1 and 9.2 summarize common conditions caused by exceptions. The condition names are listed
in the first column. The second column explains each condition more fully by giving information about
the type, meaning, and arguments relating to the condition. The condition type is either trap or fault.
For more information about traps and faults, refer to the VAX Architecture Reference Manual, the Alpha
Architecture Reference Manual, the Intel® Itanium® Architecture Software Developer's Manual, and the
Intel 64 and IA-32 Architectures Software Developer Manuals, Volume 1, respectively. The meaning of
the exception condition is a short description of each condition. The arguments for the condition handler
are listed where applicable; they give specific information about the condition.

Table 9.1. Summary of Exception Conditions

Condition Name Explanation

Type: Fault.
Description: Access Violation.

SS$_ACCVIO

Arguments: 1. Reason for access violation. This is a mask with the
following format:

Bit <0> = type of access violation

0 = page table entry protection code did not permit
intended access
1 = P0LR, P1LR, or SLR length violation1

Bit <1> = page table entry reference

0 = specified virtual address not accessible
1 = associated page table entry not accessible

Bit <2> = intended access

0 = read
1 = modify

Bit <16> = indicates fault on the pre-fetch of the
instruction2

0 = successful execution
1 = fault on fetch

Bit <17> = indicates whether instruction is marked as no
execute2

0 = not marked

233

Chapter 9. Condition-Handling Routines and Services

Condition Name Explanation
1 = indicates instruction is marked as a fault on execute in
its page table entry

2. Virtual address to which access was attempted or, on
some processors, virtual address within the page to which
access was attempted.

Type: Trap.
Description: Reserved arithmetic trap.

SS$_ARTRES2

Arguments: None.
Type: Trap.
Description: Stack invalid during attempt to deliver an AST.

SS$_ASTFLT

Arguments: 1. Stack pointer value when fault occurred.

2. AST parameter of failed AST.

3. Program counter (PC) at AST delivery interrupt.

4. Processor status longword (PSL) for VAX or processor
status (PS) for Alpha or synthesized processor status (PS)
for I64 and x86-64 at AST delivery interrupt.3 For PS, it
is the low-order 32 bits.

5. Program counter (PC) to which AST would have been
delivered.3

6. Processor status longword (PSL) for VAX or processor
status (PS) for Alpha or synthesized processor status
(PS) for I64 and x86-64 to which AST would have been
delivered.3 For PS, it is the low-order 32 bits.

Type: Fault.
Description: Breakpoint instruction encountered.

SS$_BREAK

Arguments: None.
Type: Trap.
Description: Change mode to supervisor instruction encountered.4

SS$_CMODSUPR

Arguments: Change mode code. The possible values are –32,768 through
32,767.

Type: Trap.
Description: Change mode to user instruction encountered.4

SS$_CMODUSER

Arguments: Change mode code. The possible values are –32,768 through
32,767.

Type: Fault.
Description: Compatibility-mode exception. This exception condition can

occur only when executing in compatibility mode.5

SS$_COMPAT1

Arguments: Type of compatibility exception. The possible values are as
follows:

234

Chapter 9. Condition-Handling Routines and Services

Condition Name Explanation
0 = Reserved instruction execution
1 = BPT instruction executed
2 = IOT instruction executed
3 = EMT instruction executed
4 = TRAP instruction executed
5 = Illegal instruction executed
6 = Odd address fault
7 = TBIT trap.

Type: Trap.
Description: Decimal overflow.

SS$_DECOVF1 2

Arguments: None.
Type: Trap.
Description: Floating/decimal divide-by-zero.

SS$_FLTDIV1 2 6

Arguments: None.
Type: Fault.
Description: Floating divide-by-zero.

SS$_FLTDIV_F1

Arguments: None.
Type: Trap.
Description: Floating inexact result.

SS$_FLTINE6

Arguments: None.
Type: Trap.
Description: Floating inexact result fault.

SS$_FLTINE_F

Arguments: None.
Type: Trap.
Description: Floating invalid operation.

SS$_FLTINV6

Arguments: None.
Type: Trap.
Description: Floating invalid operation fault.

SS$_FLTINV_F

Arguments: None.
Type: Trap.
Description: Floating-point overflow.

SS$_FLTOVF1 2 6

Arguments: None.
Type: Fault.
Description: Floating-point overflow fault.

SS$_FLTOVF_F1

Arguments: None.
Type: Trap.
Description: Floating-point underflow.

SS$_FLTUND1 2 6

Arguments: None.
Type: Fault.SS$_FLTUND_F1

Description: Floating-point underflow fault.

235

Chapter 9. Condition-Handling Routines and Services

Condition Name Explanation

Arguments: None.
Type: Trap.
Description: Integer divide-by-zero.

SS$_INTDIV1 2

Arguments: None.
Type: Trap.
Description: Integer overflow.

SS$_INTOVF1 2

Arguments: None.
Type: Fault.
Description: Opcode reserved for customer fault.

SS$_OPCCUS1

Arguments: None.
Type: Fault.
Description: Opcode reserved for OpenVMS fault.

SS$_OPCDEC

Arguments: None.
Type: Fault.
Description: Read error occurred during an attempt to read a faulted page

from disk.

SS$_PAGRDERR

Arguments: 1. Translation not valid reason. This is a mask with the
following format:

Bit <0> = 0

Bit <1> = page table entry reference

0 = specified virtual address not valid
1 = associated page table entry not valid

Bit <2> = intended access

0 = read
1 = modify

2. Virtual address of referenced page.
Type: Fault.
Description: Attempt to use a reserved addressing mode.

SS$_RADRMOD1

Arguments: None.
Type: Fault.
Description: Attempt to use a reserved operand.

SS$_ROPRAND

Arguments: None.
Type: Fault.SS$_SSFAIL
Description: System service failure (when system service failure exception

mode is enabled). Condition occurred as result of the use
of the obsolete feature that was enabled by using $SETSFM
service.

236

Chapter 9. Condition-Handling Routines and Services

Condition Name Explanation

Arguments: Status return from system service (R0). (The same value is in
R0 of the mechanism array).

Type: Trap.
Description: Subscript range trap.

SS$_SUBRNG1 2

Arguments: None.
Type: Fault.
Description: Trace bit is pending following an instruction.

SS$_TBIT1

Arguments: None.
1On VAX systems, this condition is generated by hardware.
2On Alpha systems, this condition is generated by software.
3The PC and PSL (or PS) normally included in the signal array are not included in this argument list. The stack pointer of the access mode
receiving this exception is reset to its initial value.
4If a change mode handler has been declared for user or supervisor mode with the Declare Change Mode or Compatibility Mode Handler
(SYS$DCLCMH) system service, that routine receives control when the associated trap occurs.
5If a compatibility-mode handler has been declared with the Declare Change Mode or Compatibility Mode Handler (SYS$DCLCMH) system
service, that routine receives control when this fault occurs.
6On I64 systems, this condition is generated by hardware.

Table 9.2. I64-Specific Exception Conditions

Condition Name Explanation

Type: Fault.
Description Register NaT consumption fault - A non-speculative

operation, (load, store, control register access, instruction
fetch, and so forth), read a NaT source register, NaTVal
source register, or referenced a NaT Page.

SS$_NATFAULT

Arguments: Reason mask:

Bit <0> Execute exception - interruption is associated with an
instruction fetch
Bit <2> Write exception - interruption is associated with a
write operation.
Bit <19> Register Stack - interruption is associated with a
mandatory RSE fill or spill.

Type: Fault.
Description Normal/unnormal operand exception.

SS$_FLTDENORMAL

Arguments: None.
Type: Fault.
Description An attempt was made to execute an Itanium break

instruction.

SS$_BREAK_SYS

Arguments: Break code is implementation specific. See the Intel®
Itanium® Architecture Software Developer's Manual, Volume
II.

Type: Fault.SS$_BREAK_ARCH
Description An attempt was made to execute an Itanium break

instruction.

237

Chapter 9. Condition-Handling Routines and Services

Condition Name Explanation

Arguments: Break code is one of SS$_ROPRAND, SS$_INTDIV,
SS$_INTOVF, SS$_SUBRNG, SS$_NULPTRERR,
SS$_DECOVF, SS$_DECDIV, SS$_DECINV, or
SS$_STKOVF.

Type: Fault.
Description An attempt was made to execute an Itanium break

instruction.

SS$_BREAK_APPL

Arguments: Break code is one of SS$_ROPRAND, SS$_INTDIV,
SS$_INTOVF, SS$_SUBRNG, SS$_NULPTRERR,
SS$_DECOVF, SS$_DECDIV, SS$_DECINV, or
SS$_STKOVF.

Type: Fault.
Description Debug fault - Either the instruction address matches the

parameters set up in the instruction debug registers, or the
data address of a load, store, semaphore, or mandatory RSE
fill or spill matches the parameters set up in the data debug
registers.

SS$_DEBUG_FAULT

Arguments: 1. Reason mask =

Bit <0> Execute exception - interruption is associated
with an instruction fetch
Bit <2> Write exception - interruption is associated with
a write operation.
Bit <19> Register Stack - interruption is associated with a
mandatory RSE fill or spill.

2. Va = The address of the data being referenced.

Change-Mode and Compatibility-Mode Handlers
Two types of hardware exception can be handled in a way different from the normal condition-handling
mechanism described in this chapter. The two types of hardware exception are as follows:

• Traps caused by change-mode-to-user or change-mode-to-supervisor instructions

• On VAX systems, compatibility mode faults

You can use the Declare Change Mode or Compatibility Mode Handler (SYS$DCLCMH) system
service to establish procedures to receive control when one of these conditions occurs. The
SYS$DCLCMH system service is described in the VSI OpenVMS System Services Reference Manual.

9.3.2. Exception Conditions
The full set of exception conditions, especially for hardware exceptions, varies from architecture to
architecture.

Table 9.3 lists the Alpha exceptions that are not supported on VAX systems and VAX hardware
exceptions that are not supported on Alpha systems. For some arithmetic exceptions, Alpha software
produces VAX compatible exceptions that are not supported by the hardware itself. See Section 9.3.3
for a discussion of SS$_HPARITH, a generic Alpha exception condition that software may replace with
specific VAX exceptions.

238

Chapter 9. Condition-Handling Routines and Services

Table 9.3. Architecture-Specific Hardware Exceptions

Exception Condition Code Comment

New Alpha Exceptions

SS$_HPARITH–High-performance arithmetic
exception

Generated for most Alpha arithmetic
exceptions (see Section 9.3.3)

SS$_ALIGN–Data alignment trap No VAX equivalent
VAX-Specific Hardware Exceptions

SS$_ARTRES–Reserved arithmetic trap No Alpha system equivalent
SS$_COMPAT–Compatibility fault No Alpha system equivalent
SS$_DECOVF–Decimal overflow1 Replaced by SS$_HPARITH on Alpha (see

Section 9.3.3)
SS$_FLTDIV–Float divide-by-zero (trap)1 Replaced by SS$_HPARITH on Alpha (see

Section 9.3.3)
SS$_FLTDIV_F–Float divide-by-zero (fault)2 Replaced by SS$_HPARITH on Alpha (see

Section 9.3.3)
SS$_FLTOVF–Float overflow (trap)1 Replaced by SS$_HPARITH on Alpha (see

Section 9.3.3)
SS$_FLTOVF_F–Float overflow (fault)2 Replaced by SS$_HPARITH on Alpha (see

Section 9.3.3)
SS$_FLTUND–Float underflow (trap)1 Replaced by SS$_HPARITH on Alpha (see

Section 9.3.3)
SS$_FLTUND_F–Float underflow (fault)2 Replaced by SS$_HPARITH on Alpha (see

Section 9.3.3)
SS$_INTDIV–Integer divide-by-zero1 Replaced by SS$_HPARITH on Alpha (see

Section 9.3.3)
SS$_INTOVF–Integer overflow1 Replaced by SS$_HPARITH on Alpha (see

Section 9.3.3)
SS$_TBIT–Trace pending2 No Alpha equivalent
SS$_OPCCUS–Opcode reserved to customer No Alpha equivalent
SS$_RADMOD–Reserved addressing mode No Alpha equivalent
SS$_SUBRNG–INDEX subscript range check No Alpha equivalent

1On Alpha systems, this condition may be generated by software.
2On I64 systems, this condition may be generated by software.

9.3.3. Arithmetic Exceptions
On VAX, I64, and x86-64 systems, the architecture ensures that arithmetic exceptions are reported
synchronously; that is, an arithmetic instruction that causes an exception (such as an overflow) enters
any exception handlers immediately, and subsequent instructions are not executed. The program counter
(PC) reported to the exception handler is that of the failing arithmetic instruction. This allows application
programs, for example, to resume the main sequence, with the failing operation being emulated or
replaced by some equivalent or alternative set of operations.

On Alpha systems, arithmetic exceptions are reported asynchronously; that is, implementations of the
architecture can allow a number of instructions (including branches and jumps) to execute beyond that

239

Chapter 9. Condition-Handling Routines and Services

which caused the exception. These instructions may overwrite the original operands used by the failing
instruction, thus causing the loss of information that is integral to interpreting or rectifying the exception.
The program counter (PC) reported to the exception handler is not that of the failing instruction,
but rather is that of some subsequent instruction. When the exception is reported to an application's
exception handler, it may be impossible for the handler to fix up the input data and restart the instruction.

Because of this fundamental difference in arithmetic exception reporting, Alpha systems define a new
condition code, SS$_HPARITH, to indicate most arithmetic exceptions. Thus, if your application
contains a condition-handling routine that performs processing when an integer overflow exception
occurs, on VAX systems the application expects to receive the SS$_INTOVF condition code. On
Alpha systems, this exception may be indicated by the condition code SS$_HPARITH. It is possible,
however, that some higher level languages using RTL routines, for example, LIB$ routines, might
convert the SS$_HPARITH into a more precise exception code such as SS$_INTOVF, or generate a
precise exception code directly in an arithmetic emulation routine. If a SS$_HPARITH is received as
the condition code, it indicates an imprecise Alpha system exception. If a precise integer overflow is
received, SS$_INTOVF, it indicates either a VAX system condition or a precise Alpha system condition.

Figure 9.1 shows the format of the SS$_HPARITH exception signal array.

Figure 9.1. SS$_HPARITH Exception Signal Array

This signal array contains three arguments that are specific to the SS$_HPARITH exception:
the integer register write mask, floating register write mask, and
exception summary arguments of the exception pc and exception ps. The integer
register write mask and floating register write mask arguments indicate the
registers that were targets of instructions that set bits in the exception summary argument. Each
bit in the mask represents a register. The exception summary argument indicates the type of
exceptions that are being signaled by setting flags in the first 7 bits. Table 9.4 lists the meaning of each of
these bits when set.

Table 9.4. Exception Summary Argument Fields

Bit Meaning When Set

0 Software completion.
1 Invalid floating arithmetic, conversion, or comparison operation.

240

Chapter 9. Condition-Handling Routines and Services

Bit Meaning When Set

2 Invalid attempt to perform a floating divide operation with a divisor of zero. Note that integer
divide-by-zero is not reported.

3 Floating arithmetic or conversion operation overflowed the destination exponent.
4 Floating arithmetic or conversion operation underflowed the destination exponent.
5 Floating arithmetic or conversion operation gave a result that differed from the

mathematically exact result.
6 Integer arithmetic or conversion operation from floating point to integer overflowed the

destination precision.

For more information and recommendations about using arithmetic exceptions on Alpha systems, see
Migrating to an OpenVMS AXP System: Recompiling and Relinking Applications.

9.3.4. Unaligned Access Traps (Alpha and I64)
On Alpha and I64 systems, an unaligned access trap is generated when an attempt is made to load or
store a longword or quadword to or from a register using an address that does not have the natural
alignment of the particular data reference and does not use an instruction that takes an unaligned address
as an operand (for example, LDQ_U on Alpha systems). For more information about data alignment, see
Section 9.4.2.

Alpha and I64 compilers typically avoid triggering alignment faults by:

• Aligning static data on natural boundaries by default. (This default behavior can be overridden by
using a compiler qualifier).

• Generating special inline code sequences for data that is known to be unnaturally aligned at compile
time.

Note, however, that compilers cannot align dynamically defined data. Thus, alignment faults may be
triggered.

An alignment exception is identified by the condition code SS$_ALIGN. Figure 9.2 illustrates the
elements of the signal array returned by the SS$_ALIGN exception.

Figure 9.2. SS$_ALIGN Exception Signal Array

241

Chapter 9. Condition-Handling Routines and Services

This signal array contains two arguments specific to the SS$_ALIGN exception: the virtual
address argument and the register number (ISR for I64) argument. The virtual
address argument contains the address of the unaligned data being accessed. The register
number (ISR for I64) argument identifies the target register of the operation.

9.4. How Run-Time Library Routines Handle
Exceptions
Most general-purpose run-time library routines handle errors by returning a status in R0 (R8 for I64,
%rax for x86-64). In some cases, however, exceptions that occur during the execution of a run-time
library routine are signaled. This section tells how run-time library routines signal exception conditions.

Some calls to the run-time library do not or cannot specify an action to be taken. In this case, the run-
time library signals the proper exception condition by using the operating system's signaling mechanism.

In order to maintain modularity, the run-time library does not use exception vectors, which are
processwide data locations. Thus, the run-time library itself does not establish handlers by using the
primary, secondary, or last-chance exception vectors.

9.4.1. Exception Conditions Signaled from Mathematics
Routines (VAX Only)
On VAX systems, mathematics routines return function values in register R0 or registers R0 and R1,
unless the return values are larger than 64 bits. For this reason, mathematics routines cannot use R0 to
return a completion status and must signal all errors. In addition, all mathematics routines signal an error
specific to the MTH$ facility rather than a general hardware error.

9.4.1.1. Integer Overflow and Floating-Point Overflow

Although the hardware normally detects integer overflow and floating-point overflow errors, run-time
library mathematics routines are programmed with a software check to trap these conditions before the
hardware signaling process can occur. This means that they call LIB$SIGNAL instead of allowing the
hardware to initiate signaling.

The software check is needed because JSB routines cannot set up condition handlers. The check permits
the JSB mathematics routines to add an extra stack frame so that the error message and stack traceback
appear as if a CALL instruction had been performed. Because of the software check, JSB routines do
not cause a hardware exception condition even when the calling program has enabled the detection of
integer overflow. On the other hand, detection of floating-point overflow is always enabled and cannot
be disabled.

If an integer or floating-point overflow occurs during a CALL or a JSB routine, the routine signals a
mathematics-specific error such as MTH$_FLOOVEMAT (Floating Overflow in Math Library) by
calling LIB$SIGNAL explicitly.

9.4.1.2. Floating-Point Underflow

All mathematics routines are programmed to avoid floating-point underflow conditions. Software checks
are made to determine if a floating-point underflow condition would occur. If so, the software makes an
additional check:

242

Chapter 9. Condition-Handling Routines and Services

• If the immediate calling program (CALL or JSB) has enabled floating-point underflow traps, a
mathematics-specific error condition is signaled.

• Otherwise, the result is corrected to zero and execution continues with no error condition.

The user can enable or disable detection of floating-point underflow at runtime by calling the routine
LIB$FLT_UNDER.

9.4.2. System-Defined Arithmetic Condition Handlers
On VAX systems, you can use the following run-time library routines as arithmetic condition handlers to
enable or disable the signaling of decimal overflow, floating-point underflow, and integer overflow:

• LIB$DEC_OVER—Enables or disables the signaling of a decimal overflow. By default, signaling is
disabled.

• LIB$FLT_UNDER—Enables or disables the signaling of a floating-point underflow. By default,
signaling is disabled.

• LIB$INT_OVER—Enables or disables the signaling of an integer overflow. By default, signaling is
enabled.

You can establish these handlers in one of two ways:

• Invoke the appropriate handler as a function specifying the first argument as 1 to enable signaling.

• Invoke the handler with command qualifiers when you compile your program. (Refer to your
program language manuals).

You cannot disable the signaling of integer divide-by-zero, floating-point overflow, and floating-point or
decimal divide-by-zero.

When the signaling of a hardware condition is enabled, the occurrence of the exception condition
causes the operating system to signal the condition as a severe error. When the signaling of a hardware
condition is disabled, the occurrence of the condition is ignored, and the processor executes the next
instruction in the sequence.

The signaling of overflow and underflow detection is enabled independently for activation of each
routine, because the call instruction saves the state of the calling program's hardware enable operations in
the stack and then initializes the enable operations for the called routine. A return instruction restores the
calling program's enable operations.

These run-time library routines are intended primarily for high-level languages, because you can achieve
the same effect in MACRO with the single Bit Set PSW (BISPSW) or Bit Clear PSW (BICPSW) VAX
instructions.

These routines allow you to enable and disable detection of decimal overflow, floating-point underflow,
and integer overflow for a portion of your routine's execution. Note that the VSI BASIC for OpenVMS
VAX Systems and VSI Fortran compilers provide a compile-time qualifier that permits you to enable or
disable integer overflow for your entire routine.

On 64-bit systems, certain RTL routines that process conditions do not exist because the exception
conditions defined by the Alpha and Intel Itanium architectures differ somewhat from those defined by
the VAX architecture. Table 9.5 lists the run-time library condition-handling support routines available
on VAX systems and indicates which are supported on 64-bit systems.

243

Chapter 9. Condition-Handling Routines and Services

Table 9.5. Run-Time Library Condition-Handling Support Routines

Routine Availability on 64-bit Systems

Arithmetic Exception Support Routines

LIB$DEC_OVER–Enables or disables signaling of decimal
overflow

Not supported

LIB$FIXUP_FLT–Changes floating-point reserved operand
to a specified value

Not supported

LIB$FLT_UNDER–Enables or disables signaling of floating-
point underflow

Not supported

LIB$INT_OVER–Enables or disables signaling of integer
overflow

Not supported

General Condition-Handling Support Routines

LIB$DECODE_FAULT—Analyzes instruction context for
fault

Not supported

LIB$ESTABLISH—Establishes a condition handler Not supported (languages may support
for compatibility)

LIB$MATCH_COND—Matches condition value Supported
LIB$REVERT–Deletes a condition handler Not supported (languages may support

for compatibility)
LIB$SIG_TO_STOP—Converts a signaled condition to a
condition that cannot be continued

Supported

LIB$SIG_TO_RET—Converts a signal to a return status Supported
LIB$SIM_TRAP—Simulates a floating-point trap Not supported
LIB$SIGNAL—Signals an exception condition Supported
LIB$STOP—Stops execution by using signaling Supported

9.5. Condition Values
Error conditions are identified by integer values called condition codes or condition values. The
operating system defines condition values to identify errors that might occur during execution of system-
defined procedures. Each exception condition has associated with it a unique, 32-bit condition value
that identifies the exception condition, and each condition value has a unique, systemwide symbol and
an associated message. The condition value is used in both methods of indicating exception conditions,
returning a status and signaling.

From a condition value you can determine whether an error has occurred, which error has occurred, and
the severity of the error. Table 9.6 describes the fields of a condition value.

Table 9.6. Fields of a Condition Value

Field Bits Meaning

FAC_NO <27:16> Indicates the system facility in which the condition occurred
MSG_NO <15:3> Indicates the condition that occurred
SEVERITY <2:0> Indicates whether the condition is a success (bit <0> = 1) or a

failure (bit <0> = 0) as well as the severity of the error, if any

244

Chapter 9. Condition-Handling Routines and Services

Figure 9.3 shows the format of a condition value.

Figure 9.3. Format of a Condition Value

Condition Value Fields
severity

The severity of the error condition. Bit <0> indicates success(logical true)when set and failure (logical
false) when clear. Bits <1> and <2> distinguish degrees of success or failure. The three bits, when taken
as an unsigned integer, are interpreted as described in Table 9.7. The symbolic names are defined in
module $STSDEF.

Table 9.7. Severity of Error Conditions

Value Symbol Severity Response

0 STS$K_WARNING Warning Execution continues, unpredictable results
1 STS$K_SUCCESS Success Execution continues, expected results
2 STS$K_ERROR Error Execution continues, erroneous results
3 STS$K_INFO Information Execution continues, informational message

displayed
4 STS$K_SEVERE Severe error Execution terminates, no output
5 Reserved to OpenVMS
6 Reserved to OpenVMS
7 Reserved to OpenVMS

condition identification

Identifies the condition uniquely on a systemwide basis.

control

Four control bits. Bit <28> inhibits the message associated with the condition value from being printed
by the SYS$EXIT system service. After using the SYS$PUTMSG system service to display an error
message, the system default handler sets this bit. It is also set in the condition value returned by a routine

245

Chapter 9. Condition-Handling Routines and Services

as a function value, if the routine has also signaled the condition, so that the condition has been either
printed or suppressed. Bits <29:31> must be zero; they are reserved to OpenVMS.

When a software component completes execution, it returns a condition value in this format. When a
severity value of warning, error, or severe error has been generated, the status value returned describes
the nature of the problem. Your program can test this value to change the flow of control or to generate
a message. Your program can also generate condition values to be examined by other routines and by the
command language interpreter. Condition values defined by customers must set bits <27> and <15> so
that these values do not conflict with values defined by VSI.

message number

The number identifying the message associated with the error condition. It is a status identification, that
is, a description of the hardware exception condition that occurred or a software-defined value. Message
numbers with bit <15> set are specific to a single facility. Message numbers with bit <15> clear are
systemwide status values.

facility number

Identifies the software component generating the condition value. Bit <27> is set for user facilities and
clear for VSI facilities.

9.5.1. Return Status Convention
Most system-defined procedures are functions of longwords, where the function value is equated to a
condition value. In this capacity, the condition value is referred to as a return status. You can write
your own routines to follow this convention. See Section 9.14.3 for information about how to change a
signal to a return status. Each routine description in the VSI OpenVMS System Services Reference Manual,
VSI OpenVMS RTL Library (LIB$) Manual, VSI OpenVMS Record Management Utilities Reference
Manual, and VSI OpenVMS Utility Routines Manual lists the condition values that can be returned by
that procedure.

9.5.1.1. Testing Returned Condition Values
When a function returns a condition value to your program unit, you should always examine the returned
condition value. To check for a failure condition (warning, error, or severe error), test the returned
condition value for a logical value of false. The following program segment invokes the run-time library
procedure LIB$DATE_TIME, checks the returned condition value (returned in the variable STATUS),
and, if an error has occurred, signals the condition value by calling the run-time library procedure
LIB$SIGNAL (Section 9.8 describes signaling):

INTEGER*4 STATUS,
2 LIB$DATE_TIME
CHARACTER*23 DATE

STATUS = LIB$DATE_TIME (DATE)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))

To check for a specific error, test the return status for a particular condition value. For example,
LIB$DATE_TIME returns a success value (LIB$_STRTRU) when it truncates the string. If you want to
take special action when truncation occurs, specify the condition as shown in the following example (the
special action would follow the IF statement):

INTEGER*4 STATUS,
2 LIB$DATE_TIME
CHARACTER*23 DATE

246

Chapter 9. Condition-Handling Routines and Services

INCLUDE '($LIBDEF)'
 .
 .
 .
STATUS = LIB$DATE_TIME (DATE)
IF (STATUS .EQ. LIB$_STRTRU) THEN
 .
 .
 .

9.5.1.2. Using the $VMS_STATUS_SUCCESS Macro
You can use the $VMS_STATUS_SUCCESS macro, defined in stsdef.h, to test an OpenVMS condition
value. $VMS_STATUS_SUCCESS depends on the documented format of an OpenVMS condition value,
and particularly on the setting of the lowest bit in a condition value. If the lowest bit is set, the condition
indicates a successful status, while the bit is clear for an unsuccessful status.

$VMS_STATUS_SUCCESS is used only with condition values that follow the OpenVMS condition
status value format, and not with C standard library routines and return values that follow C native status
value norms. For details on the OpenVMS condition status value structure, please see Chapter 9. For
information on the return values from the various C standard library routines, see the VSI C Run-Time
Library Reference Manual for OpenVMS Systems [https://docs.vmssoftware.com/vsi-c-run-time-library-
reference-manual-for-openvms-systems/].

For example, the following code demonstrates a test that causes are turn on error.

RetStat = sys$dassgn(IOChan);
if (!$VMS_STATUS_SUCCESS(RetStat))
 return RetStat;

9.5.1.3. Testing SS$_NOPRIV and SS$_EXQUOTA Condition Values
The SS$_NOPRIV and SS$_EXQUOTA condition values returned by a number of system service
procedures require special checking. Any system service that is listed as returning SS$_NOPRIV or
SS$_EXQUOTA can instead return a more specific condition value that indicates the privilege or quota
in question. Table 9.8 list the specific privilege errors, and Table 9.9 lists the quota errors.

Table 9.8. Privilege Errors

SS$_NOACNT SS$_NOALLSPOOL SS$_NOALTPRI
SS$_NOBUGCHK SS$_NOBYPASS SS$_NOCMEXEC
SS$_NOCMKRNL SS$_NODETACH SS$_NODIAGNOSE
SS$_NODOWNGRADE SS$_NOEXQUOTA SS$_NOGROUP
SS$_NOGRPNAM SS$_NOGRPPRV SS$_NOLOGIO
SS$_NOMOUNT SS$_NONETMBX SS$_NOOPER
SS$_NOPFNMAP SS$_NOPHYIO SS$_NOPRMCEB
SS$_NOPRMGBL SS$_NOPRMMBX SS$_NOPSWAPM
SS$_NOREADALL SS$_NOSECURITY SS$_NOSETPRV
SS$_NOSHARE SS$_NOSHMEM SS$_NOSYSGBL
SS$_NOSYSLCK SS$_NOSYSNAM SS$_NOSYSPRV
SS$_NOTMPMBX SS$_NOUPGRADE SS$_NOVOLPRO
SS$_NOWORLD

247

https://docs.vmssoftware.com/vsi-c-run-time-library-reference-manual-for-openvms-systems/
https://docs.vmssoftware.com/vsi-c-run-time-library-reference-manual-for-openvms-systems/
https://docs.vmssoftware.com/vsi-c-run-time-library-reference-manual-for-openvms-systems/
https://docs.vmssoftware.com/vsi-c-run-time-library-reference-manual-for-openvms-systems/

Chapter 9. Condition-Handling Routines and Services

Table 9.9. Quota Errors

SS$_EXASTLM SS$_EXBIOLM SS$_EXBYTLM
SS$_EXDIOLM SS$_EXENQLM SS$_EXFILLM
SS$_EXPGFLQUOTA SS$_EXPRCLM SS$_EXTQELM

Because either a general or a specific value can be returned, your program must test for both. The
following four symbols provide a starting and ending point with which you can compare the returned
condition value:

• SS$_NOPRIVSTRT—First specific value for SS$_NOPRIV

• SS$_NOPRIVEND—Last specific value for SS$_NOPRIV

• SS$_NOQUOTASTRT—First specific value for SS$_EXQUOTA

• SS$_NOQUOTAEND—Last specific value for SS$_EXQUOTA

The following VSI Fortran example tests for a privilege error by comparing STATUS (the returned
condition value) with the specific condition value SS$_NOPRIV and the range provided by
SS$_NOPRIVSTRT and SS$_NOPRIVEND. You would test for SS$_NOEXQUOTA in a similar
fashion.

 .
 .
 .
! Declare status and status values
INTEGER STATUS
INCLUDE '($SSDEF)'
 .
 .
 .
IF (.NOT. STATUS) THEN
 IF ((STATUS .EQ. SS$_NOPRIV) .OR.
2 ((STATUS .GE. SS$_NOPRIVSTRT) .AND.
2 (STATUS .LE. SS$_NOPRIVEND))) THEN
 .
 .
 .
 ELSE
 CALL LIB$SIGNAL (%VAL(STATUS))
 END IF
END IF

9.5.2. Modifying Condition Values
To modify a condition value, copy a series of bits from one longword to another longword. For example,
the following statement copies the first three bits (bits <2:0>) of STS$K_INFO to the first three bits of
the signaled condition code, which is in the second element of the signal array named SIGARGS. As
shown in Table 9.7, STS$K_INFO contains the symbolic severity code for an informational message.

! Declare STS$K_ symbols
INCLUDE '($STSDEF)'
 .
 .
 .
! Change the severity of the condition code

248

Chapter 9. Condition-Handling Routines and Services

! in SIGARGS(2) to informational
CALL MVBITS (STS$K_INFO,
2 0,
2 3,
2 SIGARGS(2),
2 0)

Once you modify the condition value, you can resignal the condition value and either let the default
condition handler display the associated message or use the SYS$PUTMSG system service to display
the message. If your condition handler displays the message, do not resignal the condition value, or the
default condition handler will display the message a second time.

In the following example, the condition handler verifies that the signaled condition value is
LIB$_NOSUCHSYM. If it is, the handler changes its severity from error to informational and then
resignals the modified condition value. As a result of the handler's actions, the program displays an
informational message indicating that the specified symbol does not exist, and then continues executing.

INTEGER FUNCTION SYMBOL (SIGARGS,
2 MECHARGS)
! Changes LIB$_NOSUCHSYM to an informational message

! Declare dummy arguments
INTEGER*4 SIGARGS(*),
2 MECHARGS(*)
! Declare index variable for LIB$MATCH_COND
INTEGER INDEX
! Declare condition codes
INCLUDE '($LIBDEF)'
INCLUDE '($STSDEF)'
INCLUDE '($SSDEF)'
! Declare library procedures
INTEGER LIB$MATCH_COND
INDEX = LIB$MATCH_COND (SIGARGS(2),
2 LIB$NO_SUCHSYM)
! If the signaled condition code is LIB$NO_SUCHSYM,
! change its severity to informational.
IF (INDEX .GT. 0)
2 CALL MVBITS (STS$K_INFO,
2 0,
2 3,
2 SIGARGS(2),
2 0)

SYMBOL = SS$_RESIGNAL

END

9.6. Exception Dispatcher
When an exception occurs, control is passed to the operating system's exception-dispatching routine.
The exception dispatcher searches for a condition-handling routine invoking the first handler it finds and
passes the information to the handler about the condition code and the state of the program when the
condition code was signaled. If the handler resignals, the operating system searches for another handler;
otherwise, the search for a condition handler ends.

The operating system searches for condition handlers in the following sequence:

249

Chapter 9. Condition-Handling Routines and Services

1. Primary exception vectors—Four vectors (lists) of one or more condition handlers; each vector
is associated with an access mode. By default, all of the primary exception vectors are empty.
Exception vectors are used primarily for system programming, not application programming. The
debugger uses the primary exception vector associated with user mode.

When an exception occurs, the operating system searches the primary exception associated with the
access mode at which the exception occurred. To enter or cancel a condition handler in an exception
vector, use the SYS$SETEXV system service. Condition handlers that are entered into the exception
vectors associated with kernel, executive, and supervisor modes remain in effect either until they are
canceled or until you log out. Condition handlers that are entered into the exception vector associated
with user mode remain in effect either until they are canceled or until the image that entered them
exits.

2. Secondary exception vectors—A set of exception vectors with the same structure as the primary
exception vectors. Exception vectors are primarily used for system programming, not application
programming. By default, all of the secondary exception vectors are empty.

3. Call frame condition handlers—Each program unit can establish one condition handler (the address
of the handler is placed in the call frame of the program unit on VAX or specified in the associated
exception handling information on 64-bit systems). The operating system searches for condition
handlers established by your program, beginning with the current program unit. If the current
program unit has not established a condition handler, the operating system searches for a handler that
was established by the program unit that invoked the current program unit, and so on back to the
main program.

4. Traceback handler—If you do not establish any condition handlers and link your program with the /
TRACEBACK qualifier of the LINK command (the default), the operating system finds and invokes
the traceback handler.

5. Catchall handler—If you do not establish any condition handlers and you link your program with
the /NOTRACEBACK qualifier to the LINK command, the operating system finds and invokes
the catchall handler. The catchall handler is at the bottom of the user stack and in the last-chance
exception vector.

6. Last-chance exception vectors—A set of exception vectors with the same structure as the primary
and secondary exception vectors. Exception vectors are used primarily for system programming, not
application programming. By default, the user- and supervisor-mode last-chance exception vectors
are empty. The executive- and kernel-mode last-chance exception vectors contain procedures that
cause a bugcheck (a nonfatal bugcheck results in an error log entry; a fatal bugcheck results in a
system shutdown). The debugger uses the user-mode last-chance exception vector, and DCL uses the
supervisor-mode last-chance exception vector.

The search is terminated when the dispatcher finds a condition handler. If the dispatcher cannot find
a user-specified condition handler, it calls the condition handler whose address is stored in the last-
chance exception vector. If the image was activated by the command language interpreter, the last-chance
vector points to the catchall condition handler. The catchall handler issues a message and either continues
program execution or causes the image to exit, depending on whether the condition was a warning or an
error condition, respectively.

You can call the catchall handler in two ways:

• If the last-chance exception vector either returns to the dispatcher or is empty, then it calls the
catchall condition handler and exits with the return status code SS$_NOHANDLER.

• If the exception dispatcher detects an access violation, it calls the catchall condition handler and exits
with the return status code SS$_ACCVIO.

250

Chapter 9. Condition-Handling Routines and Services

Figure 9.4 illustrates the exception dispatcher's search of the call stack for a condition handler. on VAX
systems. The search on 64-bit systems differs in detail but is logically equivalent in effect.

Figure 9.4. Searching the Stack for a Condition Handler (VAX Only)

251

Chapter 9. Condition-Handling Routines and Services

In cases where the default condition handling is insufficient, you can establish your own handler by
one of the mechanisms described in Section 9.2.1. Typically, you need condition handlers only if your
program must perform one of the following operations:

• Respond to condition values that are signaled rather than returned, such as an integer overflow error.
(Section 9.14.3 describes the system-defined handler LIB$SIG_TO_RET that allows you to treat
signals as return values; Section 9.4.2 describes other useful system-defined handlers for arithmetic
errors).

• Modify part of a condition code, such as the severity. See Section 9.5.2 for more information. If you
want to change the severity of any condition code to a severe error, you can use the run-time library
procedure LIB$STOP instead of writing your own condition handler.

• Add messages to the one associated with the originally signaled condition code or log the messages
associated with the originally signaled condition code.

9.7. Argument List Passed to a Condition
Handler
On VAX systems, the argument list passed to the condition handler is constructed on the stack and
consists of the addresses of two argument arrays, signal and mechanism, as illustrated in Section 9.8.2
and Section 9.8.3.

On 64-bit systems, the arrays are set up on the stack, but any argument is passed in registers.

On VAX systems, you can use the $CHFDEF macro instruction to define the symbolic names to refer to
the arguments listed in Table 9.11.

Table 9.10. $CHFDEF Symbolic Names and Arguments on VAX Systems

Symbolic Name Related Argument

CHF$L_SIGARGLST Address of signal array
CHF$L_MCHARGLST Address of mechanism array
CHF$L_SIG_ARGS Number of signal arguments
CHF$L_SIG_NAME Condition name
CHF$L_SIG_ARG1 First signal-specific argument
CHF$L_MCH_ARGS Number of mechanism arguments
CHF$L_MCH_FRAME Establisher frame address
CHF$L_MCH_DEPTH Frame depth of establisher
CHF$L_MCH_SAVR0 Saved register R0
CHF$L_MCH_SAVR1 Saved register R1

On 64-bit systems, you can use the $CHFDEF2 macro instruction to define the symbolic names to refer
to the arguments listed in Table 9.11.

Table 9.11. $CHFDEF2 Symbolic Names and Arguments on 64-bit Systems

Symbolic Name Related Argument

CHF$L_SIGARGLST Address of signal array

252

Chapter 9. Condition-Handling Routines and Services

Symbolic Name Related Argument

CHF$L_MCHARGLST Address of mechanism array
CHF$IS_SIG_ARGS Number of signal arguments
CHF$IS_SIG_NAME Condition name
CHF$IS_SIG_ARG1 First signal-specific argument
CHF$IS_MCH_ARGS Number of mechanism arguments
CHF$IS_MCH_FLAGS Flag bits <63:0> for related argument mechanism information
CHF$PH_MCH_FRAME Establisher frame address
CHF$IS_MCH_DEPTH Frame depth of establisher
CHF$PH_MCH_DADDR Address of the handler data quadword if the exception handler data

field is present
CHF$PH_MCH_ESF_ADDR Address of the exception stack frame
CHF$PH_MCH_SIG_ADDR Address of the signal array
CHF$IH_MCH_SAVRnn A copy of the saved integer registers at the time of the exception
CHF$FH_MCH_SAVFnn A copy of the saved floating-point registers at the time of the

exception

9.8. Signaling
Signaling can be initiated when hardware or software detects an exception condition. In either case, the
exception condition is said to be signaled by the routine in which it occurred. If hardware detects the
error, it passes control to a condition dispatcher. If software detects the error, it calls one of the run-time
library signal-generating routines: LIB$SIGNAL or LIB$STOP. The RTL signal-generating routines
pass control to the same condition dispatcher. When LIB$STOP is called, the severity code is forced
to severe, and control cannot return to the routine that signaled the condition. See Section 9.12.1 for a
description of how a signal can be dismissed and how normal execution from the point of the exception
condition can be continued.

When a routine signals, it passes to the OpenVMS Condition Handling facility (CHF) the condition
value associated with the exception condition, as well as optional arguments that can be passed to a
condition handler. The CHF uses these arguments to build two data structures on the stack:

• The signal argument vector. This vector contains the information describing the nature of the
exception condition.

• The mechanism argument vector. This vector describes the state of the process at the time the
exception condition occurred.

These two vectors become the arguments that the CHF passes to condition handlers.

These argument vectors are described in detail in Section 9.8.2 and Section 9.8.3.

After the signal and mechanism argument vectors are set up, the CHF searches for enabled condition
handlers. A condition handler is a separate routine that has been associated with a routine in order to
take a specific action when an exception condition occurs. The CHF searches for condition handlers
to handle the exception condition, beginning with the primary exception vector of the access mode in
which the exception condition occurred. If this vector contains the address of a handler, that handler is
called. If the address is 0 or if the handler resignals, then the CHF repeats the process with the secondary

253

Chapter 9. Condition-Handling Routines and Services

exception vector. Enabling vectored handlers is discussed in detail in the VSI OpenVMS Calling Standard.
Because the exception vectors are allocated in static storage, they are not generally used by modular
routines.

If neither the primary nor secondary vectored handlers handle the exception condition by continuing
program execution, then the CHF looks for stack frame condition handlers. It looks for the address of
a condition handler in the first longword of the routine stack frame on VAX systems, in the procedure
descriptor (in which the handler valid bit is set) for the routine stack frame on Alpha systems where the
exception condition occurred, or in the unwind data on I64. At this point, several actions are possible,
depending on the results of this search:

• If this routine has not set up a condition handler, the CHF continues the stack scan by moving to the
previous stack frame (that is, the stack frame of the calling routine).

• If a condition handler is present, the CHF then calls this handler, which may resignal, continue, or
unwind. See Section 9.10

The OpenVMS Condition Handling facility searches for and calls condition handlers from each frame on
the stack until the frame pointer is zero (indicating the end of the call sequence). At that point, the CHF
calls the vectored catchall handler, which displays an error message and causes the program to exit. Note
that, normally, the frame containing the stack catchall handler is at the end of the calling sequence or at
the bottom of the stack. Section 9.9 explains the possible actions of default and user condition handlers
in more detail.

Figure 9.5 illustrates a stack scan for condition handlers in which the main program calls procedure
A, which then calls procedure B. A stack scan is initiated either when a hardware exception condition
occurs or when a call is made to LIB$SIGNAL or LIB$STOP. While Figure 9.5 is specific to VAX
systems, the search on 64-bit systems differs in detail but is logically equivalent in effect.

254

Chapter 9. Condition-Handling Routines and Services

Figure 9.5. Sample Stack Scan for Condition Handlers (VAX Only)

9.8.1. Generating Signals with LIB$SIGNAL and
LIB$STOP
When software detects an exception condition, the software normally calls one of the run-time library
signal-generating routines, LIB$SIGNAL or LIB$STOP, to initiate the signaling mechanism. This call

255

Chapter 9. Condition-Handling Routines and Services

indicates to the calling program that the exception condition has occurred. Your program can also call
one of these routines explicitly to indicate an exception condition.

9.8.1.1. LIB$SIGNAL
You can signal a condition code by invoking the run-time library procedure LIB$SIGNAL and passing
the condition code as the first argument. (The VSI OpenVMS RTL Library (LIB$) Manual contains
the complete specifications for LIB$SIGNAL). The following statement signals the condition code
contained in the variable STATUS:

CALL LIB$SIGNAL (%VAL(STATUS))

When an error occurs in a subprogram, the subprogram can signal the appropriate condition code
rather than return the condition code to the invoking program unit. In addition, some statements also
signal condition codes; for example, an assignment statement that attempts to divide by zero signals the
condition code SS$_INTDIV.

When your program wants to issue a message and allow execution to continue after handling the
condition, it calls the standard routine, LIB$SIGNAL. The calling sequence for LIB$SIGNAL is the
following:

LIB$SIGNAL condition-value [,condition-argument...]
 [,condition-value-n [,condition-argument-n...]...]

Only the condition-value argument must be specified; other arguments are optional. A description of
the arguments is as follows:

condition-value

OpenVMS usage: cond_value
type: longword (unsigned)
access: read only
mechanism: by value

OpenVMS 32-bit condition value. The condition-value argument is an unsigned longword that contains
this condition value. Section 9.5 explains the format of a condition value.

condition-argument

OpenVMS usage: varying_arg
type: unspecified
access: read only
mechanism: by value

As many arguments as are required to process the exception specified by condition-value. These
arguments are also used as FAO (formatted ASCII output) arguments to format a message.

condition-value-n

OpenVMS usage: cond_value
type: longword (unsigned)
access: read only
mechanism: by value

256

Chapter 9. Condition-Handling Routines and Services

OpenVMS 32-bit condition value. The optional condition-value-n argument is an unsigned longword
that contains this condition value. The calling routine can specify additional conditions to be processed
by specifying condition-value-2 through condition-value-n, with each condition value followed by any
arguments required to process the condition specified. However, the total number of arguments in the
call to LIB$SIGNAL must not exceed 253.

condition-argument-n

OpenVMS usage: varying_arg
type: unspecified
access: read only
mechanism: by value

As many arguments as required to create the message reporting the exception specified by condition-
value-n.

9.8.1.2. LIB$STOP
When your program wants to issue a message and stop execution unconditionally, it calls LIB$STOP.
The calling sequence for LIB$STOP is as follows:

LIB$STOP condition-value [,number-of-arguments] [,FAO-argument...]

Only the condition-value argument must be specified; other arguments are optional. The condition-
value argument is an OpenVMS 32-bit condition value. The condition-value argument is an unsigned
longword that contains this condition value.

The number-of-arguments argument, if specified, contains the number of FAO arguments that are
associated with condition-value. The optional number-of-arguments argument is a signed longword
integer that contains this number. If omitted or specified as zero, no FAO arguments follow.

The FAO-argument argument is an optional FAO (formatted ASCII output) argument that is associated
with the specified condition value.

The condition-value argument indicates the condition that is being signaled. However, LIB$STOP
always sets the severity of condition-value to SEVERE before proceeding with the stack-scanning
operation.

The FAO arguments describe the details of the exception condition. These are the same arguments
that are passed to the OpenVMS Condition Handling facility as part of the signal argument vector. The
system default condition handlers pass them to SYS$PUTMSG, which uses them to issue a system
message.

Unlike most routines, LIB$SIGNAL and LIB$STOP preserve all registers. Therefore, a call to
LIB$SIGNAL allows the debugger to display the entire state of the process at the time of the exception
condition. This is useful for debugging checks and gathering statistics.

The behavior of LIB$SIGNAL is the same as that of the exception dispatcher that performs the stack
scan after hardware detects an exception condition. That is, the system scans the stack in the same
way, and the same arguments are passed to each condition handler. This allows a user to write a single
condition handler to detect both hardware and software conditions.

For more information about the RTL routines LIB$SIGNAL and LIB$STOP, see the VSI OpenVMS
RTL Library (LIB$) Manual.

257

Chapter 9. Condition-Handling Routines and Services

9.8.2. Signal Argument Vector
Signaling a condition value causes systems to pass control to a special subprogram called a condition
handler. The operating system invokes a default condition handler unless you have established your own.
The default condition handler displays the associated error message and continues or, if the error is a
severe error, terminates program execution.

The signal argument vector contains information describing the nature of the hardware or software
condition. Figure 9.6 illustrates the open-ended structure of the signal argument vector, which can be
from 3 to 257 longwords in length.

The format of the signal argument array and the data it returns is the same on VAX systems, Alpha
systems, and I64 systems with the exception of the processor status (PS) returned on Alpha systems and
I64 and the processor status longword (PSL) returned on VAX systems. On Alpha and I64 systems, it is
the low-order 32 bits of the PS. Note that the PS in the signal arrays on I64 systems is fabricated.

On Alpha systems, CHF$IS_SIG_ARGS and CHF$IS_SIG_NAME are aliases for CHF$L_SIG_ARGS
and CHF$L_SIG_NAME, as shown in Figure 9.6, and the PSL field for VAX systems is the processor
status (PS) field for Alpha systems.

Figure 9.6. Format of the Signal Argument Vector

Fields of the Signal Argument Vector
SIGARGS(1)

An unsigned integer (n) designating the number of longwords that follow in the vector, not counting the
first, including PC and PSL. (On Alpha systems, the value used for the PSL is the low-order half of the
Alpha processor status [PS] register. For I64 systems the PS is also used, but the PS is fabricated.) For
example, the first entry of a 4-longword vector would contain a 3.

SIGARGS(2)

The argument is a 32-bit condition code value that uniquely identifies a hardware or software exception
condition. The format of the condition code is the same on all OpenVMS systems as described in
Figure 9.3.

If more than one message is associated with the error, this is the condition value of the first message.
Handlers should always check whether the condition is the one that they expect by examining the
STS$V_COND_ID field of the condition value (bits <27:3>). Bits <2:0> are the severity field. Bits
<31:28> are control bits; they may have been changed by an intervening handler and so should not be

258

Chapter 9. Condition-Handling Routines and Services

included in the comparison. You can use the RTL routine LIB$MATCH_COND to match the correct
fields. If the condition is not expected, the handler should resignal by returning false (bit <0> = 0). The
possible exception conditions and their symbolic definitions are listed in Table 9.10.

SIGARGS(3 to n –1)

Optional arguments that provide additional information about the condition. These arguments consist of
one or more message sequences. The format of the message description varies depending on the type of
message being signaled. For more information, see the SYS$PUTMSG description in the VSI OpenVMS
System Services Reference Manual. The format of a message sequence is described in Section 9.11.

SIGARGS(n)

The program counter (PC) of the next instruction to be executed if any handler (including the system-
supplied handlers) returns with the status SS$_CONTINUE. For hardware faults, the PC is that of the
instruction that caused the fault. For hardware traps, the PC is that of the instruction following the one
that caused the trap. The error generated by LIB$SIGNAL is a trap. For conditions signaled by calling
LIB$SIGNAL or LIB$STOP, the PC is the location following the call instruction. See the relevant
architecture or software developer's manual for a detailed description of faults and traps.

SIGARGS(n+1)

On VAX systems the processor status longword (PSL), or on 64-bit systems the processor status (PS)
register (which is fabricated on I64 and x86-64), of the program at the time that the condition was
signaled.

The formats for some conditions signaled by the operating system and the run-time library are shown in
Figure 9.7 and Figure 9.8.

Figure 9.7. Signal Argument Vector for the Reserved Operand Error Conditions

Figure 9.8. Signal Argument Vector for RTL Mathematics Routine Errors

259

Chapter 9. Condition-Handling Routines and Services

The caller's PC is the PC following the calling program's JSB or CALL to the mathematics routine that
detected the error. The PC is that following the call to LIB$SIGNAL.

9.8.3. VAX Mechanism Argument Vector
On VAX systems, the mechanism argument vector is a 5-longword vector that contains all of the
information describing the state of the process at the time of the hardware or software signaled
condition. Figure 9.9 illustrates a mechanism argument vector for VAX systems.

Figure 9.9. Format of a VAX Mechanism Argument Vector

Fields of the VAX Mechanism Argument Vector
MCHARGS(1)

An unsigned integer indicating the number of longwords that follow, not counting the first, in the vector.
Currently, this number is always 4.

MCHARGS(2)

The address of the stack frame of the routine that established the handler being called. You can use this
address as a base from which to reference the local stack-allocated storage of the establisher, as long as
the restrictions on the handler's use of storage are observed. For example, if the call stack is as shown in
Figure 9.4, this argument points to the call frame for procedure A.

You can use this value to display local variables in the procedure that established the condition handler if
the variables are at known offsets from the frame pointer (FP) of the procedure.

MCHARGS(3)

he stack depth, which is the number of stack frames between the establisher of the condition handler and
the frame in which the condition was signaled. To ensure that calls to LIB$SIGNAL and LIB$STOP
appear as similar as possible to hardware exception conditions, the call to LIB$SIGNAL or LIB$STOP is
not included in the depth.

If the routine that contained the hardware exception condition or that called LIB$SIGNAL or
LIB$STOP also handled the exception condition, then the depth is zero; if the exception condition
occurred in a called routine and its caller handled the exception condition, then the depth is 1. If a system
service signals an exception condition, a handler established by the immediate caller is also entered with
a depth of 1.

The following table shows the stack depths for the establisher of condition handlers:

260

Chapter 9. Condition-Handling Routines and Services

Depth Meaning

-3 Condition handler was established in the last-chance exception vector.
-2 Condition handler was established in the primary exception vector.
-1 Condition handler was established in the secondary exception vector.
0 Condition handler was established by the frame that was active when the exception

occurred.
1 Condition handler was established by the caller of the frame that was active when the

exception occurred.
2 Condition handler was established by the caller of the caller of the frame that was active

when the exception occurred.
.
.
.

For example, if the call stack is as shown in Figure 9.4, the depth argument passed to handler A would
have a value of 2.

The condition handler can use this argument to determine whether to handle the condition. For example,
the handler might not want to handle the condition if the exception that caused the condition did not
occur in the establisher frame.

MCHARGS(4) and MCHARGS(5)

Copies of the contents of registers R0 and R1 at the time of the exception condition or the call to
LIB$SIGNAL or LIB$STOP. When execution continues or a stack unwind occurs, these values are
restored to R0 and R1. Thus, a handler can modify these values to change the function value returned to
a caller.

9.8.4. Alpha Mechanism Argument Vector
On Alpha systems, the mechanism array returns much the same data as it does on VAX systems, though
its format is changed. The mechanism array returned on Alpha systems preserves the contents of a
larger set of integer scratch registers as well as the Alpha floating-point scratch registers. In addition,
because Alpha registers are 64 bits long, the mechanism array is constructed of quadwords (64 bits), not
longwords (32 bits) as it is on VAX systems. Figure 9.10 shows the format of the mechanism array on
Alpha systems.

261

Chapter 9. Condition-Handling Routines and Services

Figure 9.10. Mechanism Array on Alpha Systems

262

Chapter 9. Condition-Handling Routines and Services

Table 9.12 describes the arguments in the mechanism array.

Table 9.12. Fields in the Alpha Mechanism Array

Argument Description

CHF$IS_MCH_ARGS Represents the number of quadwords in the mechanism array, not
counting the argument count quadword. (The value contained in
this argument is always 43.)

CHF$IS_MCH_FLAGS Flag bits <63:0> for related argument mechanism information
defined as follows for CHF$V_FPREGS:

Bit <0>: When set, the process has already performed a floating-
point operation and the floating-point registers stored in this
structure are valid.

If this bit is clear, the process has not yet performed any floating-
point operations, and the values in the floating-point register slots
in this structure are unpredictable.

CHF$PH_MCH_FRAME The frame pointer (FP) in the procedure context of the establisher.
CHF$IS_MCH_DEPTH Positive count of the number of procedure activation stack frames

between the frame in which the exception occurred and the frame
depth that established the handler being called.

CHF$PS_MCH_DADDR Address of the handler data quadword if the exception
handler data field is present (as indicated by
PDSC.FLAGS.HANDLER_DATA_VALID); otherwise, contains
zero.

CHF$PH_MCH_ESF_ADDR Address of the exception stack frame (see the Alpha Architecture
Reference Manual).

CHF$PH_MCH_SIG_ADDR Address of the signal array. The signal array is a 32-bit (longword)
array.

CHF$IH_MCH_SAVRnn A copy of the saved integer registers at the time of the exception.
The following registers are saved: R0, R1, and R16—R28.
Registers R2—R15 are implicitly saved in the call chain.

CHF$FM_MCH_SAVFnn A copy of the saved floating-point registers at the time of
the exception or may have unpredictable data as described in
CHF$IS_MCH_FLAGS. If the floating-point register fields are
valid, the following registers are saved: F0, F1, and F10—F30.
Registers F2—F9 are implicitly saved in the call chain.

For more information and recommendations about using the mechanism argument vector on Alpha
systems, see Migrating to an OpenVMS AXP System: Recompiling and Relinking Applications.

9.8.5. I64 Mechanism Vector Format
On I64 systems, the 64-bit-wide mechanism array is the argument mechanism in the handler call. The
array is shown in Figure 9.11.

The CHF$IH_MCH_RETVAL and CHF$FH_MCH_RETVAL2 quadwords save the
state of registers R8 and R9 at the time of the call to LIB$SIGNAL or LIB$STOP.
The CHF$FH_MCH_RETVAL_FLOAT, CHF$FH_MCH_RETVAL2_FLOAT, and

263

Chapter 9. Condition-Handling Routines and Services

CHF$FH_MCH_SAVFnn octawords save the state of the floating-point registers at the time of the call
to LIB$SIGNAL or LIB$STOP. If not modified by a handler during CHF processing (as described
below), these values will become the values of those registers after completion of CHF processing (either
by continuation or by unwinding).

The only supported method for modifying return values in a procedure's invocation context
(CHFIH_MCH_RETVAL, CHFIH_MCH_RETVAL2, CHF$FH_MCH_RETVAL_FLOAT,
CHF$FH_MCH_RETVAL2_FLOAT) is by using routine SYS$SET_RETURN_VALUE. The only
supported method for modifying all other registers in a procedure invocation context is by using routine
LIB$I64_PUT_INVO_REGISTERS (see Section 4.8.3.13 in the VSI OpenVMS Calling Standard).

264

Chapter 9. Condition-Handling Routines and Services

Figure 9.11. I64 Mechanism Vector Format

265

Chapter 9. Condition-Handling Routines and Services

Table 9.13. Contents of the I64 Argument Mechanism Array (MECH)

Field Name Contents

CHF$IS_MCH_ARGS Count of quadwords in this array starting from the next quadword,
CHF$PH_MCH_FRAME (not counting the first quadword that
contains this longword). This value is 71 if CHF$V_FPREGS_VALID
is clear, and 263 if CHF$V_FPREGS_VALID is set.
Flag bits <31:0> for related argument-mechanism information defined
as follows:
CHF$V_FPREGS2_VALID Bit 0. When set, the process has already

performed a floating-point operation in
registers F2-F31 and the contents of the
CHF$FH_MCH_SAVFnn fields of this
structure are valid.

When this bit is clear, the contents of
the CHF$FH_MCH_SAVFnn fields are
undefined.

CHF$IS_MCH_FLAGS

CHF$V_FPREGS2_VALID Bit 1. When set, the process has
already performed a floating-point
operation in registers F32-F127 and
the floating-point registers stored in
the extension to this structure are
valid. If this bit is clear, the process
has not yet performed any floating-
point operations in registers F32-F127,
and the pointer to the extension area
(CHF$FH_MCH_SAVF32_SAVF127)
will be zero.

CHF$PH_MCH_FRAME Contains the previous stack pointer, or PSP (the value of the SP at
procedure entry) for the procedure context of the establisher (see
Section 4.5.1 in the VSI OpenVMS Calling Standard).

CHF$IS_MCH_DEPTH Positive count of the number of procedure activation stack frames
between the frame in which the exception occurred and the frame depth
that established the handler being called (see Section 9.5.1.3 in the VSI
OpenVMS Calling Standard).

CHF$IS_MCH_RESVD1 Reserved to OpenVMS.
CHF$PH_MCH_DADDR Address of the handler data quadword (start of the Language

Specific Data area, LSDA, see Sections A.4.1 and A.4.4 in the
VSI OpenVMS Calling Standard) if the exception-handler data
field is present in the unwind information block (as indicated by
OSSD$V_HANDLER_DATA_VALID); otherwise, contains 0.

CHF$PH_MCH_ESF_ADDR Address of the exception stack frame.
CHF$PH_MCH_SIG_ADDR Address of the 32-bit form of signal array. This array is a 32-bit wide

(longword) array. This is the same array that is passed to a handler as
the signal argument vector.

CHF$IS_MCH_RETVAL Contains a copy of R8 at the time of the exception.
CHF$IS_MCH_RETVAL2 Contains a copy of R9 at the time of the exception.

266

Chapter 9. Condition-Handling Routines and Services

Field Name Contents

CHF$PH_MCH_SIG64_
ADDR

Address of the 64-bit form of signal array. This array is a 64-bit wide
(quadword) array.

CHF$FH_MCH_
SAVF32_SAVF127

Address of the extension to the mechanism array that contains copies of
F32-F127 at the time of the exception.

CHF$IS_MCH_RETVAL_
FLOAT

Contains a copy of F8 at the time of the exception.

CHF$IS_MCH_RETVAL2_
FLOAT

Contains a copy of F9 at the time of the exception.

CHF$FH_MCH_SAVFnn Contain copies of floating-point registers F2-F5 and F12-F31. Registers
F6-F7 and F10-F11 are implicitly saved in the exception frame.

CHF$FH_MCH_SAVBnn Contains copies of branch registers B1-B5 at the time of the exception.
CHF$FH_MCH_AR_LC Contains a copy of the Loop Count Register (AR65) at the time of the

exception.
CHF$FH_MCH_AR_EC Contains a copy of the Epilog Count Register (AR66) at the time of the

exception.
CHF$PH_MCH_OSSD Address of the operating system-specific data area.
CHF$Q_MCH_INVO_
HANDLE

Contains the invocation handle of the procedure context of the
establisher (see VSI OpenVMS Calling Standard).

CHF$PH_MCH_UWR_
START

Address of the unwind region.

CHF$IH_MCH_FPSR Contains a copy of the hardware floating-point status register
(AR.FPSR) at the time of the exception.

CHF$IH_MCH_FPSS Contains a copy of the software floating-point status register (which
supplements CHF$IH_MCH_FPSR) at the time of the exception.

9.8.6. x86-64 Mechanism Vector Format
On x86-64 systems, the 64-bit-wide mechanism array is the argument mechanism in the handler call.
The array is shown in Figure 9.12.

The CHF$IH_MCH_RETVAL and CHF$FH_MCH_RETVAL2 quadwords save the state of general-
purpose registers %rax and %rdx, respectively, at the time of the call to LIB$SIGNAL or LIB$STOP.
The CHF$FH_MCH_RETVAL_FLOAT and CHF$FH_MCH_RETVAL2_FLOAT quadwords save the
state of floating-point registers %xmm0 and %xmm1, respectively, at the time of the call to LIB$SIGNAL
or LIB$STOP. If not modified by a handler during CHF processing (as described below), the values of
these registers will become the values of those registers after completion of CHF processing (either by
continuation or by unwinding).

The only supported method for modifying return values in a procedure's invocation context
(CHFIH_MCH_RETVAL, CHFIH_MCH_RETVAL2, CHF$FH_MCH_RETVAL_FLOAT, and
CHF$FH_MCH_RETVAL2_FLOAT) is by using routine SYS$SET_RETURN_VALUE. The only
supported method for modifying all other registers in a procedure invocation context is by using routine
LIB$I64_PUT_INVO_REGISTERS (see Section 5.8.3.13 in the VSI OpenVMS Calling Standard).

267

Chapter 9. Condition-Handling Routines and Services

Figure 9.12. x86-64 Mechanism Vector Format

268

Chapter 9. Condition-Handling Routines and Services

Table 9.14. Contents of the x86-64 Argument Mechanism Array (MECH)

Field Name Contents

CHF$IS_MCH_ARGS Count of quadwords in this array starting from the next quadword,
CHF$PH_MCH_FRAME (not counting the first quadword that
contains this longword).
Flag bits <31:0> for related argument-mechanism information
defined as follows:

CHF$IS_MCH_FLAGS

CHF$V_FPREGS_VALID Bit 0. When set, the process has
already performed a floating-
point operation in floating-point
registers and the contents of the
CHF$FH_MCH_XSAVE_STATE
and CHF$PH_MCH_XSAVE fields
of this structure are valid.

When this bit is clear, the contents of
the CHF$FH_MCH_XSAVE_STATE
and CHF$PH_MCH_XSAVE fields
are zero.

CHF$PH_MCH_FRAME Contains the Previous Stack Pointer, PSP, (the value of the SP at
procedure entry) for the procedure context of the establisher (see
Section 5.4 in the VSI OpenVMS Calling Standard).

CHF$IS_MCH_DEPTH Positive count of the number of procedure activation stack frames
between the frame in which the exception occurred and the frame
depth that established the handler being called (see Section 9.5.1.3 in
the VSI OpenVMS Calling Standard).

CHF$IS_MCH_RESVD1 Reserved to OpenVMS.
CHF$PH_MCH_DADDR Address of the handler data quadword (start of the Language Specific

Data area, LSDA, see Section B.3.2.3.1 in the VSI OpenVMS Calling
Standard) if the exception handler data field is present in the unwind
information block; otherwise, contains 0.

CHF$PH_MCH_ESF_ADDR Address of the exception stack frame.
CHF$PH_MCH_SIG_ADDR Address of the 32-bit form of signal array. This array is a 32-bit wide

(longword) array. This is the same array that is passed to a handler as
the signal argument vector.

CHF$PH_MCH_SIG64_
ADDR

Address of the 64-bit form of signal array. This array is a 64-bit wide
(quadword) array.

CHF$IH_MCH_RETVAL Contains a copy of %rax at the time of the exception.
CHF$IH_MCH_SAVRCX Contains a copy of %rcx at the time of the exception.
CHF$IH_MCH_RETVAL2 Contains a copy of %rdi at the time of the exception.
CHF$IH_MCH_SAVRSI,
CHF$IH_MCH_SAVRDI,
CHF$IH_MCH_SAVR8,
…
CHF$IH_MCH_SAVR11

Contains a copy of the remaining (scratch) general-purpose registers
at the time of the exception.

CHF$IH_MCH_SAVRFLAGS Contains a copy of the processor flags register at the time of the
exception.

269

Chapter 9. Condition-Handling Routines and Services

Field Name Contents

CHF$IH_MCH_SAVRIP Contains a copy of the instruction pointer at the time of the
exception.

CHF$FH_MCH_RETVAL_
FLOAT

Contains a copy of %xmm0 bits <63:0> at the time of the exception.

CHF$FH_MCH_RETVAL_
FLOATX

Contains a copy of %xmm0 bits <127:64> at the time of the
exception.

CHF$FH_MCH_RETVAL_
FLOAT2

Contains a copy of %xmm1 bits <63:0> at the time of the exception.

CHF$FH_MCH_RETVAL_
FLOAT2X

Contains a copy of %xmm1 bits <127:64> at the time of the
exception.

CHF$IH_MCH_XSAVE_
STATE

Contains a copy of the XSAVE state control value indicating
what information is contained in the XSAVE area. This is the
state-component bit map needed by the XRSTOR instruction to
restore the floating-point state from the XSAVE area (0 if the
CHF$PH_MCH_XSAVE pointer is null).

CHF$PH_MCH_XSAVE Contains a pointer to the XSAVE area described by
CHF$IH_MCH_XSAVE_STATE (0 if none).

CHF$IH_MCH_XSAVE_
LENGTH

The number of bytes in the block pointed to by
CHF$PH_MCH_XSAVE (0 if CHF$PH_MCH_XSAVE is null).

CHF$IH_MCH_APR_SAVR0,
CHF$IH_MCH_APR_SAVR1,
CHF$IH_MCH_APR_SAVR16,
…
CHF$IH_MCH_APR_SAVR31

Contains a copy of the Alpha pseudo-registers R0, R1 and R16
through R31 at the time of the exception.

CHF$PH_MCH_OSSD Address of the operating system-specific data area.
CHF$Q_MCH_INVO_
HANDLE

Contains the invocation handle of the procedure context of the
establisher (see Section 5.8.2.2 in the VSI OpenVMS Calling
Standard).

CHF$PH_MCH_UWR_
START

Address of the unwind region (FDE).

9.8.7. Multiple Active Signals
A signal is said to be active until the routine that signaled regains control or until the stack is unwound
or the image exits. A second signal can occur while a condition handler or a routine it has called is
executing. This situation is called multiple active signals or multiple exception conditions. When
this situation occurs, the stack scan is not performed in the usual way. Instead, the frames that were
searched while processing all of the previous exception conditions are skipped when the current
exception condition is processed. This is done in order to avoid recursively reentering a routine that is
not reentrant. For example, Fortran code typically is not recursively reentrant. If a Fortran handler were
called while another activation of that handler was still going, the results would be unpredictable.

A second exception may occur while a condition handler or a procedure that it has called is still
executing. In this case, when the exception dispatcher searches for a condition handler, it skips the
frames that were searched to locate the first handler.

The search for a second handler terminates in the same manner as the initial search, as described in
Section 9.6.

270

Chapter 9. Condition-Handling Routines and Services

If the SYS$UNWIND system service is issued by the second active condition handler, the depth of the
unwind is determined according to the same rules followed in the exception dispatcher's search of the
stack: all frames that were searched for the first condition handler are skipped.

Primary and secondary vectored handlers, on the other hand, are always entered when an exception
occurs.

If an exception occurs during the execution of a handler that was established in the primary or secondary
exception vector, that handler must handle the additional condition. Failure to do so correctly might
result in a recursive exception loop in which the vectored handler is repeatedly called until the user stack
is exhausted.

The modified search routine is best illustrated with an example. Assume the following calling sequence:

1. Routine A calls routine B, which calls routine C.

2. Routine C signals an exception condition (signal S), and the handler for routine C (CH) resignals.

3. Control passes to BH, the handler for routine B. The call frame for handler BH is located on top
of the signal and mechanism arrays for signal S. The saved frame pointer in the call frame for BH
points to the frame for routine C.

4. BH calls routine X; routine X calls routine Y.

5. Routine Y signals a second exception condition (signal T).

Figure 9.13 illustrates the stack contents after the second exception condition is signaled.

Figure 9.13. Stack After Second Exception Condition Is Signaled

Normally, the OpenVMS Condition Handling facility (CHF) searches all currently active frames for
condition handlers, including B and C. If this happens, however, BH is called again. At this point,
you skip the condition handlers that have already been called. Thus, the search for condition handlers
should proceed in the following order:

YH
XH
BHH (the handler for routine B’s handler)
AH

6. The search now continues in its usual fashion. The CHF examines the primary and secondary
exception vectors, then frames Y, X, and BH. Thus, handlers YH, XH, and BHH are called. Assume
that these handlers resignal.

271

Chapter 9. Condition-Handling Routines and Services

7. The CHF now skips the frames that have already been searched and resumes the search for condition
handlers in routine A's frame. The depths that are passed to handlers as a result of this modified
search are 0 for YH, 1 for XH, 2 for BHH, and 3 for AH.

Because of the possibility of multiple active signals, you should be careful if you use an exception vector
to establish a condition handler. Vectored handlers are called, not skipped, each time an exception
occurs.

9.9. Types of Condition Handlers
On VAX systems, when a routine is activated, the first longword in its stack frame is set to 0. This
longword is reserved to contain an address pointing to another routine called the condition handler. If an
exception condition is signaled during the execution of the routine, the OpenVMS Condition Handling
Facility uses the address in the first longword of the frame to call the associated condition handler.

Each procedure, other than a null frame procedure, can have a condition handler potentially associated
with it, which is identified by the HANDLER_VALID, STACK_HANDLER, or REG_HANDLER
fields of the associated procedure descriptor in an Alpha system, or the handler field in the associated
unwind information block on an I64 or x86-64 system. You establish a handler by including the
procedure value of the handler procedure in that field. See the VSI OpenVMS Calling Standard for
additional information.

The arguments passed to the condition-handling routine are the signal and mechanism argument vectors,
described in Sections 9.8.2, 9.8.3, and 9.8.4.

Various types of condition handlers can be called for a given routine:

• User-supplied condition handlers

You can write your own condition handler and set up its address in the stack frame of your routine
using the run-time library routine LIB$ESTABLISH or the mechanism supplied by your language.

On Alpha and I64 systems, LIB$ESTABLISH is not supported, though high-level languages may
support it for compatibility.

• Language-supplied condition handlers

Many high-level languages provide a means for setting up handlers that are global to a single routine.
If your language provides a condition-handling mechanism, you should always use it. If you also
try to establish a condition handler using LIB$ESTABLISH, the two methods of handling exception
conditions conflict, and the results are unpredictable.

• System default condition handlers

The operating system provides a set of default condition handlers. These take over if there are no
other condition handler addresses on the stack, or if all the previous condition handlers have passed
on (resignaled) the indication of the exception condition.

9.9.1. Default Condition Handlers
The operating system establishes the following default condition handlers each time a new image is
started. The default handlers are shown in the order they are encountered when the operating system
processes a signal. These three handlers are the only handlers that output error messages.

• Traceback handler

272

Chapter 9. Condition-Handling Routines and Services

The traceback handler is established on the stack after the catchall handler. This enables the
traceback handler to get control first. This handler performs three functions in the following order:

1. Outputs an error message using the Put Message (SYS$PUTMSG) system service.
SYS$PUTMSG formats the message using the Formatted ASCII Output (SYS$FAO) system
service and sends the message to the devices identified by the logical names SYS$ERROR and
SYS$OUTPUT (if it differs from SYS$ERROR). That is, it displays the message associated with
the signaled condition code, the traceback message, the program unit name and line number of
the statement that signaled the condition code, and the relative and absolute program counter
values. (On a warning or error, the number of the next statement to be executed is displayed).

2. Issues a symbolic traceback, which shows the state of the routine stack at the time of the
exception condition. That is, it displays the names of the program units in the calling hierarchy
and the line numbers of the invocation statements.

3. Decides whether to continue executing the image or to force an exit based on the severity field of
the condition value:

Severity Error Type Action

1 Success Continue
3 Information Continue
0 Warning Continue
2 Error Continue
4 Severe Exit

The traceback handler is in effect if you link your program with the /TRACEBACK qualifier
of the LINK command (the default). Once you have completed program development, you
generally link your program with the /NOTRACEBACK qualifier and use the catchall handler.

• Catchall handler

The operating system establishes the catchall handler in the first stack frame and thus calls it last.
This handler performs the same functions as the traceback handler except for the stack traceback.
That is, it issues an error message and decides whether to continue execution. The catchall is called
only if you link with the /NOTRACEBACK qualifier. It displays the message associated with the
condition code and then continues program execution or, if the error is severe, terminates execution.

• Last-chance handler

The operating system establishes the last-chance handler with a system exception vector. In most
cases, this vector contains the address of the catchall handler, so that these two handlers are actually
the same. The last-chance handler is called only if the stack is invalid or all the handlers on the stack
have resignaled. If the debugger is present, the debugger's own last-chance handler replaces the
system last-chance handler.

Displays the message associated with the condition code and then continues program execution or, if
the error is severe, terminates execution. The catchall handler is not invoked if the traceback handler is
enabled.

In the following example, if the condition code INCOME_LINELOST is signaled at line 496 of
GET_STATS, regardless of which default handler is in effect, the following message is displayed:

273

Chapter 9. Condition-Handling Routines and Services

%INCOME-W-LINELOST, Statistics on last line lost due to CTRL/Z

If the traceback handler is in effect, the following text is also displayed:

%TRACE-W-TRACEBACK, symbolic stack dump follows
module name routine name line rel PC abs PC

GET_STATS GET_STATS 497 00000306 00008DA2
INCOME INCOME 148 0000015A 0000875A
 0000A5BC 0000A5BC
 00009BDB 00009BDB
 0000A599 0000A599

Because INCOME_LINELOST is a warning, the line number of the next statement to be executed (497),
rather than the line number of the statement that signaled the condition code, is displayed. Line 148 of
the program unit INCOME invoked GET_STATS.

9.9.2. Interaction Between Default and User-Supplied
Handlers
Several results are possible after a routine signals, depending on a number of factors, such as the severity
of the error, the method of generating the signal, and the action of the condition handlers you have
defined and the default handlers. Given the severity of the condition and the method of signaling,
Figure 9.14 lists all combinations of interaction between user condition handlers and default condition
handlers.

274

Chapter 9. Condition-Handling Routines and Services

Figure 9.14. Interaction Between Handlers and Default Handlers

9.10. Types of Actions Performed by
Condition Handlers
When a condition handler returns control to the OpenVMS Condition Handling facility (CHF), the
facility takes one of the following types of actions, depending on the value returned by the condition
handler:

• Signal a condition

Signaling a condition initiates the search for an established condition handler.

• Continue

The condition handler may or may not be able to fix the problem, but the program can attempt
to continue execution. The handler places the return status value SS$_CONTINUE in R0 (R8 for
I64) and issues a return instruction to return control to the dispatcher. If the exception was a fault,
the instruction that caused it is reexecuted; if the exception was a trap, control is returned at the
instruction following the one that caused it. A condition handler cannot continue if the exception
condition was signaled by calling LIB$STOP.

Section 9.12.1 contains more information about continuing.

• Resignal

275

Chapter 9. Condition-Handling Routines and Services

The handler cannot fix the problem, or this condition is one that it does not handle. It places the
return status value SS$_RESIGNAL in R0 (R8 for I64, %rax for x86-64) and issues a return
instruction to return control to the exception dispatcher. The dispatcher resumes its search for a
condition handler. If it finds another condition handler, it passes control to that routine. A handler
can alter the severity of the signal before resignaling.

Section 9.12.2 contains more information about resignaling.

• Unwind

The condition handler cannot fix the problem, and execution cannot continue while using the current
flow. The handler issues the Unwind Call Stack (SYS$UNWIND) system service to unwind the
call stack. Call frames can then be removed from the stack and the flow of execution modified,
depending on the arguments to the SYS$UNWIND service.

When a condition handler has already called SYS$UNWIND, any return status from the condition
handler is ignored by the CHF. The CHF now unwinds the stack.

Unwinding the routine call stack first removes call frames, starting with the frame in which the
condition occurred, and then returns control to an earlier routine in the calling sequence. You can
unwind the stack whether the condition was detected by hardware or signaled using LIB$SIGNAL or
LIB$STOP. Unwinding is the only way to continue execution after a call to LIB$STOP.

Section 9.12.3 describes how to write a condition handler that unwinds the call stack.

• Perform a nonlocal GOTO unwind

On Alpha and I64 systems, a GOTO unwind operation is a transfer of control that leaves one
procedure invocation and continues execution in a prior (currently active) procedure. This unified
GOTO operation gives unterminated procedure invocations the opportunity to clean up in an orderly
way. See Section 9.10.2 for more information about GOTO unwind operations.

9.10.1. Unwinding the Call Stack
One type of action a condition handler can take is to unwind the procedure call stack. The unwind
operation is complex and should be used only when control must be restored to an earlier procedure in
the calling sequence. Moreover, use of the SYS$UNWIND system service requires the calling condition
handler to be aware of the calling sequence and of the exact point to which control is to return.

SYS$UNWIND accepts two optional arguments:

• The depth to which the unwind is to occur. If the depth is 1, the call stack is unwound to the caller of
the procedure that incurred the exception. If the depth is 2, the call stack is unwound to the caller's
caller, and so on. By specifying the depth in the mechanism array, the handler can unwind to the
procedure that established the handler.

• The address of a location to receive control when the unwind operation is complete, that is, a PC to
replace the current PC in the call frame of the procedure that will receive control when all specified
frames have been removed from the stack.

If no argument is supplied to SYS$UNWIND, the unwind is performed to the caller of the procedure
that established the condition handler that is issuing the SYS$UNWIND service. Control is returned to
the address specified in the return PC for that procedure. Note that this is the default and the normal case
for unwinding.

276

Chapter 9. Condition-Handling Routines and Services

Another common case of unwinding is to unwind to the procedure that declared the handler.
On VAX systems, this is done by using the depth value from the exception mechanism array
(CHF$L_MCH_DEPTH) as the depth argument to SYS$UNWIND. On 64-bit systems, this is done
by using the depth value from the exception mechanism array (CHF$IS_MCH_DEPTH) as the depth
argument to SYS$UNWIND.

Therefore, it follows that the default unwind (no depth specified) is equivalent to specifying
CHF$L_MCH_DEPTH plus 1 on VAX systems. On Alpha and I64 systems, the default unwind (no
depth specified) is equivalent to specifying CHF$IS_MCH_DEPTH plus 1. In certain instances of nested
exceptions, however, this is not the case. VSI recommends that you omit the depth argument when
unwinding to the caller of the routine that established the condition handler.

Figure 9.15 illustrates an unwind situation and describes some of the possible results.

The unwind operation consists of two parts:

1. In the call to SYS$UNWIND, the return PCs saved in the stack are modified to point into a routine
within the SYS$UNWIND service, but the entire stack remains present.

2. When the handler returns, control is directed to this routine by the modified PCs. It proceeds to
return to itself, removing the modified stack frames, until the stack has been unwound to the proper
depth.

For this reason, the stack is in an intermediate state directly after calling SYS$UNWIND. Handlers
should, in general, return immediately after calling SYS$UNWIND.

During the actual unwinding of the call stack, the unwind routine examines each frame in the call stack
to see whether a condition handler has been declared. If a handler has been declared, the unwind routine
calls the handler with the status value SS$_UNWIND (indicating that the call stack is being unwound)
in the condition name argument of the signal array. When a condition handler is called with this status
value, it can perform any procedure-specific cleanup operations required. For example, the handler
should deallocate any processwide resources that have been allocated. Then, the handler returns control
to the OpenVMS Condition Handling facility. After the handler returns, the call frame is removed from
the stack.

When a condition handler is called during the unwinding operation, the condition handler must not
generate a new signal. A new signal would result in unpredictable behavior.

Thus, in Figure 9.15, handler B can be called a second time, during the unwind operation. Note that
handler B does not have to be able to interpret the SS$_UNWIND status value specifically; the return
instruction merely returns control to the unwind procedure, which does not check any status values.

Handlers established by the primary, secondary, or last-chance vector are not called, because they are not
removed during an unwind operation.

While it is unwinding the stack, the OpenVMS Condition Handling facility ignores any function value
returned by a condition handler. For this reason, a handler cannot both resignal and unwind. Thus, the
only way for a handler to both issue a message and perform an unwind is to call LIB$SIGNAL and
then call $UNWIND. If your program calls $UNWIND before calling LIB$SIGNAL, the result is
unpredictable.

When the OpenVMS Condition Handling facility calls the condition handler that was established
for each frame during unwind, the call is of the standard form, described in Section 9.2. The

277

Chapter 9. Condition-Handling Routines and Services

arguments passed to the condition handler (the signal and mechanism argument vectors) are shown in
Section 9.8.2, Section 9.8.3, and Section 9.8.4.

On VAX systems, if the handler is to specify the function value of the last function to be unwound, it
should modify the saved copies of R0 and R1 (CHF$L_MCH_SAVR0 and CHF$L_MCH_SAVR1) in
the mechanism argument vector.

On 64-bit systems, the handler can specify the function value of the last function to be unwound by
calling SYS$SET_RETURN_VALUE, which is described in the VSI OpenVMS Calling Standard.

Figure 9.15. Unwinding the Call Stack

278

Chapter 9. Condition-Handling Routines and Services

9.10.2. GOTO Unwind Operations (64-bit Systems)
On Alpha systems, a current procedure invocation is one in whose context the thread of execution
is currently executing. At any instant, a thread of execution has exactly one current procedure. If
code in the current procedure calls another procedure, then the called procedure becomes the current
procedure. As each stack frame or register frame procedure is called, its invocation context is recorded
in a procedure frame. The invocation context is mainly a snapshot of process registers at procedure
invocation. It is used during return from the called procedure to restore the calling procedure's state. The
chain of all procedure frames starting with the current procedure and going all the way back to the first
procedure invocation for the thread is called the call chain. While a procedure is part of the call chain, it
is called an active procedure.

When a current procedure returns to its calling procedure, the most recent procedure frame is removed
from the call chain and used to restore the now current procedure's state. As each current procedure
returns to its calling procedure, its associated procedure frame is removed from the call chain. This is the
normal unwind process of a call chain.

You can bypass the normal return path by forcibly unwinding the call chain. The Unwind Call Chain
(SYS$UNWIND) system service allows a condition handler to transfer control from a series of
nested procedure invocations to a previous point of execution, bypassing the normal return path. The
Goto Unwind (SYS$GOTO_UNWIND) system service allows any procedure to achieve the same
effect. (On I64 systems SYS$GOTO_UNWIND does not exist, use SYS$GOTO_UNWIND_64.)
SYS$GOTO_UNWIND (SYS$GOTO_UNWIND_64) restores saved register context for each nested
procedure invocation, calling the condition handler, if any, for each procedure frame that it unwinds.
Restoring saved register context from each procedure frame from the most recent one to the target
procedure frame ensures that the register context is correct when the target procedure gains control.
Also, each condition handler called during unwind can release any resources acquired by its establishing
procedure.

For information about the GOTO unwind operations and how to use the SYS$GOTO_UNWIND
(SYS$GOTO_UNWIND_64) system service, see the VSI OpenVMS Calling Standard and the VSI
OpenVMS System Services Reference Manual.

9.11. Displaying Messages
The standard format for a message is as follows:

%facility-l-ident, message-text

facility Abbreviated name of the software component that issued the message

279

Chapter 9. Condition-Handling Routines and Services

l Indicator showing the severity level of the exception condition that caused the
message

ident Symbol of up to nine characters representing the message
message-text Brief definition of the cause of the message

The message can also include up to 255 formatted ASCII output (FAO) arguments. These arguments
can be used to display variable information about the condition that caused the message. In the following
examples, the file specification is an FAO argument:

%TYPE-W-OPENIN, error opening _DB0:[FOSTER]AUTHOR.DAT; as input

For information about specifying FAO parameters, see Section 9.11.4.3.

Signaling
Signaling provides a consistent and unified method for displaying messages. This section describes how
the OpenVMS Condition Handling facility translates the original signal into intelligible messages.

Signaling is used to signal exception conditions generated by VSI software. When software detects
an exception condition, it signals the exception condition to the user by calling LIB$SIGNAL or
LIB$STOP. The signaling routine passes a signal argument list to these run-time library routines. This
signal argument list is made up of the condition value and a set of optional arguments that provide
information to condition handlers.

You can use the signaling mechanism to signal messages that are specific to your application. Further,
you can chain your own message to a system message. For more information, see Section 9.11.3.

LIB$SIGNAL and LIB$STOP copy the signal argument list and use it to create the signal argument
vector. The signal argument vector serves as part of the input to the user-established handlers and the
system default handlers.

If all intervening handlers have resignaled, the system default handlers take control. The system-supplied
default handlers are the only handlers that should actually issue messages, whether the exception
conditions are signaled by VSI software or your own programs. That is, a routine should signal exception
conditions rather than issue its own messages. In this way, other applications can call the routine and
override its signal in order to change the messages. Further, this technique decides formatting details, and
it also keeps wording centralized and consistent.

The system default handlers pass the signal argument vector to the Put Message (SYS$PUTMSG)
system service. SYS$PUTMSG formats and displays the information in the signal argument vector.

SYS$PUTMSG performs the following steps:

1. Interprets the signal argument vector as a series of one or more message sequences. Each message
sequence starts with a 32-bit, systemwide condition value that identifies a message in the system
message file. SYS$PUTMSG interprets the message sequences according to type defined by the
facility of the condition.

2. Obtains the text of the message using the Get Message (SYS$GETMSG) system service. The
message text definition is actually a SYS$FAO control string. It may contain embedded FAO
directives. These directives determine how the FAO arguments in the signal argument vector are
formatted. (For more information about SYS$FAO, see the VSI OpenVMS System Services Reference
Manual).

280

Chapter 9. Condition-Handling Routines and Services

3. Calls SYS$FAO to format the message, substituting the values from the signal argument list.

4. Issues the message on device SYS$OUTPUT. If SYS$ERROR is different from SYS$OUTPUT, and
the severity field in the condition value is not success, $PUTMSG also issues the message on device
SYS$ERROR.

You can use the signal array that the operating system passes to the condition handler as the first
argument of the SYS$PUTMSG system service. The signal array contains the condition code,
the number of required FAO arguments for each condition code, and the FAO arguments (see
Figure 9.16). The VSI OpenVMS System Services Reference Manual contains complete specifications for
SYS$PUTMSG.

See Section 9.11.2 for information about how to create and suppress messages on a running log using
SYS$PUTMSG.

The last two array elements, the PC and PSL, are not FAO arguments and should be deleted before the
array is passed to SYS$PUTMSG. Because the first element of the signal array contains the number of
longwords in the array, you can effectively delete the last two elements of the array by subtracting 2 from
the value in the first element. Before exiting from the condition handler, you should restore the last two
elements of the array by adding 2 to the first element in case other handlers reference the array.

In the following example, the condition handler uses the SYS$PUTMSG system service and then returns
a value of SS$_CONTINUE so that the default handler is not executed.

INTEGER*4 FUNCTION SYMBOL (SIGARGS,
2 MECHARGS)
 .
 .
 .
INDEX = LIB$MATCH_COND (SIGARGS(2),
2 LIB$_NOSUCHSYM)
IF (INDEX .GT. 0) THEN
 ! If condition code is LIB$_NOSUCHSYM,
 ! change the severity to informational
 CALL MVBITS (STS$K_INFO,
2 0,
2 3,
2 SIGARGS(2),
2 0)

 ! Display the message
 SIGARGS(1) = SIGARGS(1) - 2 ! Subtract last two elements
 CALL SYS$PUTMSG (SIGARGS,,,)
 SIGARGS(1) = SIGARGS(1) + 2 ! Restore last two elements

 ! Continue program execution;
 SYMBOL = SS$_CONTINUE
ELSE
 ! Otherwise, resignal the condition
 SYMBOL = SS$_RESIGNAL
END IF

END

Each message sequence in the signal argument list produces one line of output. Figure 9.16 illustrates the
three possible message sequence formats.

281

Chapter 9. Condition-Handling Routines and Services

Figure 9.16. Formats of Message Sequences

OpenVMS RMS system services return two related completion values: the completion code and the
associated status value. The completion code is returned in R0 using the function value mechanism. The
same value is also placed in the Completion Status Code field of the RMS file access block (FAB) or
record access block (RAB) associated with the file (FAB$L_STS or RAB$L_STS). The status value
is returned in the Status Value field of the same FAB or RAB (FAB$L_STV or RAB$L_STV). The
meaning of this secondary value is based on the corresponding STS (Completion Status Code) value. Its
meaning could be any of the following:

• An operating system condition value of the form SS$_...

• An RMS value, such as the size of a record that exceeds the buffer size

• Zero

Rather than have each calling program determine the meaning of the STV value, SYS$PUTMSG
performs the necessary processing. Therefore, this STV value must always be passed in place of the FAO
argument count. In other words, an RMS message sequence always consists of two arguments (passed by
immediate value): an STS value and an STV value.

9.11.1. Chaining Messages
You can use a condition handler to add condition values to an originally signaled condition code. For
example, if your program calculates the standard deviation of a series of numbers and the user only
enters one value, the operating system signals the condition code SS$_INTDIV when the program

282

Chapter 9. Condition-Handling Routines and Services

attempts to divide by zero. (In calculating the standard deviation, the divisor is the number of values
entered minus 1.) You could use a condition handler to add a user-defined message to the original
message to indicate that only one value was entered.

To display multiple messages, pass the condition values associated with the messages to the RTL routine
LIB$SIGNAL. To display the message associated with an additional condition code, the handler must
pass LIB$SIGNAL the condition code, the number of FAO arguments used, and the FAO arguments.
To display the message associated with the originally signaled condition codes, the handler must pass
LIB$SIGNAL each element of the signal array as a separate argument. Because the signal array is a
variable-length array and LIB$SIGNAL cannot accept a variable number of arguments, when you write
your handler you must pass LIB$SIGNAL more arguments than you think will be required. Then, during
execution of the handler, zero the arguments that you do not need (LIB$SIGNAL ignores zero values),
as described in the following steps:

1. Declare an array with one element for each argument that you plan to pass LIB$SIGNAL. Fifteen
elements are usually sufficient.

INTEGER*4 NEWSIGARGS(15)

2. Transfer the condition values and FAO information from the signal array to your new array. The first
element and the last two elements of the signal array do not contain FAO information and should not
be transferred.

3. Fill any remaining elements of your new array with zeros.

The following example demonstrates steps 2 and 3:

DO I = 1, 15

 IF (I .LE. SIGARGS(1) - 2) THEN
 NEWSIGARGS(I) = SIGARGS(I+1) ! Start with SIGARGS(2)
 ELSE
 NEWSIGARGS(I) = 0 ! Pad with zeros
 END IF

END DO

Because the new array is a known-length array, you can specify each element as an argument to
LIB$SIGNAL.

The following condition handler ensures that the signaled condition code is SS$_INTDIV. If it is, the
user-defined message ONE_VALUE is added to SS$_INTDIV, and both messages are displayed.

INTEGER FUNCTION HANDLER (SIGARGS,
2 MECHARGS)

! Declare dummy arguments
INTEGER SIGARGS(*),
2 MECHARGS(*)
! Declare new array for SIGARGS
INTEGER NEWSIGARGS (15)
! Declare index variable for LIB$MATCH_COND
INTEGER INDEX
! Declare procedures
INTEGER LIB$MATCH_COND
! Declare condition codes

283

Chapter 9. Condition-Handling Routines and Services

EXTERNAL ONE_VALUE
INCLUDE '($SSDEF)'
INDEX = LIB$MATCH_COND (SIGARGS(2),
2 SS$_INTDIV)
IF (INDEX .GT. 0) THEN

 DO I=1,15
 IF (I .LE. SIGARGS(1) - 2) THEN
 NEWSIGARGS(I) = SIGARGS(I+1) ! Start with SIGARGS(2)
 ELSE
 NEWSIGARGS(I) = 0 ! Pad with zeros
 END IF
 END DO

 ! Signal messages
 CALL LIB$SIGNAL (%VAL(NEWSIGARGS(1)),
2 %VAL(NEWSIGARGS(2)),
2 %VAL(NEWSIGARGS(3)),
2 %VAL(NEWSIGARGS(4)),
2 %VAL(NEWSIGARGS(5)),
2 %VAL(NEWSIGARGS(6)),
2 %VAL(NEWSIGARGS(7)),
2 %VAL(NEWSIGARGS(8)),
2 %VAL(NEWSIGARGS(9)),
2 %VAL(NEWSIGARGS(10)),
2 %VAL(NEWSIGARGS(11)),
2 %VAL(NEWSIGARGS(12)),
2 %VAL(NEWSIGARGS(13)),
2 %VAL(NEWSIGARGS(14)),
2 %VAL(NEWSIGARGS(15)),
2 %VAL(%LOC(ONE_VALUE)),
2 %VAL(0))

 HANDLER = SS$_CONTINUE
ELSE
 HANDLER = SS$_RESIGNAL

END IF

END

A signal argument list may contain one or more condition values and FAO arguments. Each condition
value and its FAO arguments is "chained" to the next condition value and its FAO arguments. You can
use chained messages to provide more specific information about the exception condition being signaled,
along with a general message.

The following message source file defines the exception condition PROG__FAIGETMEM:

 .FACILITY PROG,1 /PREFIX=PROG__

 .SEVERITY FATAL
 .BASE 100

 FAIGETMEM <failed to get !UL bytes of memory>/FAO_COUNT=1

 .END

This source file sets up the exception message as follows:

284

Chapter 9. Condition-Handling Routines and Services

• The .FACILITY directive specifies the facility, PROG, and its number, 1. It also adds the /PREFIX
qualifier to determine the prefix to be used in the message.

• The .SEVERITY directive specifies that PROG__FAIGETMEM is a fatal exception condition.
That is, the SEVERITY field in the condition value for PROG__FAIGETMEM is set to severe (bits
<0:3> = 4).

• The BASE directive specifies that the condition identification numbers in the PROG facility will
begin with 100.

• FAIGETMEM is the symbol name. This name is combined with the prefix defined in the facility
definition to make the message symbol. The message symbol becomes the symbolic name for the
condition value.

• The text in angle brackets is the message text. This is actually a SYS$FAO control string. When
$PUTMSG calls the $FAO system service to format the message, $FAO includes the FAO argument
from the signal argument vector and formats the argument according to the embedded FAO directive
(!UL).

• The .END statement terminates the list of messages for the PROG facility.

9.11.2. Logging Error Messages to a File
You can write a condition handler to obtain a copy of a system error message text and write the message
into an auxiliary file, such as a listing file. In this way, you can receive identical messages at the terminal
(or batch log file) and in the auxiliary file.

To log messages, you must write a condition handler and an action subroutine. Your handler calls the Put
Message (SYS$PUTMSG) system service explicitly. The operation of SYS$PUTMSG is described in
Section 9.11. The handler passes to SYS$PUTMSG the signal argument vector and the address of the
action subroutine. SYS$PUTMSG passes to the action subroutine the address of a string descriptor that
contains the length and address of the formatted message. The action subroutine can scan the message or
copy it into a log file, or both.

It is important to keep the display messages centralized and consistent. Thus, you should use only
SYS$PUTMSG to display or log system error messages. Further, because the system default handlers call
SYS$PUTMSG to display error messages, your handlers should avoid displaying the error messages. You
can do this in two ways:

• Your handler should not call SYS$PUTMSG directly to display an error message. Instead, your
handler should resignal the error. This allows other calling routines either to change or suppress the
message or to recover from the error. The system default condition handlers display the message.

• If the action subroutine that you supply to SYS$PUTMSG returns a success code, SYS$PUTMSG
displays the error message on SYS$OUTPUT or SYS$ERROR, or both. When a program
executes interactively or from within a command procedure, the logical names SYS$OUTPUT and
SYS$ERROR are both equated to the user's terminal by default. Thus, your action routine should
process the message and then return a failure code so that SYS$PUTMSG does not display the
message at this point.

To write the error messages displayed by your program to a file as well as to the terminal, equate
SYS$ERROR to a file specification. When a program executes as a batch job, the logical names
SYS$OUTPUT and SYS$ERROR are both equated to the batch log by default. To write error
messages to the log file and a second file, equate SYS$ERROR to the second file.

285

Chapter 9. Condition-Handling Routines and Services

Figure 9.17 shows the sequence of events involved in calling SYS$PUTMSG to log an error message to
a file.

Figure 9.17. Using a Condition Handler to Log an Error Message

9.11.2.1. Creating a Running Log of Messages Using
SYS$PUTMSG
To keep a running log (that is, a log that is resumed each time your program is invoked) of the messages
displayed by your program, use SYS$PUTMSG. Create a condition handler that invokes SYS$PUTMSG
regardless of the signaled condition code. When you invoke SYS$PUTMSG, specify a function that
writes the formatted message to your log file and then returns with a function value of 0. Have the
condition handler resignal the condition code. One of the arguments of SYS$PUTMSG allows you to
specify a user-defined function that SYS$PUTMSG invokes after formatting the message and before
displaying the message. SYS$PUTMSG passes the formatted message to the specified function. If the
function returns with a function value of 0, SYS$PUTMSG does not display the message; if the function
returns with a value of 1, SYS$PUTMSG displays the message. The VSI OpenVMS System Services
Reference Manual contains complete specifications for SYS$PUTMSG.

9.11.2.2. Suppressing the Display of Messages in the Running Log
To keep a running log of messages, you might have your main program open a file for the error log,
write the date, and then establish a condition handler to write all signaled messages to the error log.
Each time a condition is signaled, a condition handler like the one in the following example invokes
SYS$PUTMSG and specifies a function that writes the message to the log file and returns with a
function value of 0. SYS$PUTMSG writes the message to the log file but does not display the message.
After SYS$PUTMSG writes the message to the log file, the condition handler resignals to continue
program execution. (The condition handler uses LIB$GET_COMMON to read the unit number of the
file from the per-process common block).

ERR.FOR

INTEGER FUNCTION ERRLOG (SIGARGS,
2 MECHARGS)
! Writes the message to file opened on the

286

Chapter 9. Condition-Handling Routines and Services

! logical unit named in the per-process common block
! Define the dummy arguments
INTEGER SIGARGS(*),
2 MECHARGS(*)
INCLUDE '($SSDEF)'

EXTERNAL PUT_LINE
INTEGER PUT_LINE
! Pass signal array and PUT_LINE routine to SYS$PUTMSG
SIGARGS(1) = SIGARGS(1) - 2 ! Subtract PC/PSL from signal array
CALL SYS$PUTMSG (SIGARGS,
2 PUT_LINE,)
SIGARGS(1) = SIGARGS(1) + 2 ! Replace PC/PSL

ERRLOG = SS$_RESIGNAL

END

PUT_LINE.FOR

INTEGER FUNCTION PUT_LINE (LINE)
! Writes the formatted message in LINE to
! the file opened on the logical unit named
! in the per-process common block
! Dummy argument
CHARACTER*(*) LINE
! Logical unit number
CHARACTER*4 LOGICAL_UNIT
INTEGER UNIT_NUM
! Indicates that SYS$PUTMSG is not to display the message
PUT_LINE = 0
! Get logical unit number and change to integer
STATUS = LIB$GET_COMMON (LOGICAL_UNIT)
READ (UNIT = LOGICAL_UNIT,
2 FMT = '(I4)') UNIT_NUMBER
! The main program opens the error log
WRITE (UNIT = UNIT_NUMBER,
2 FMT = '(A)') LINE

END

9.11.3. Using the Message Utility to Signal and Display
User-Defined Messages
Section 9.11 explains how the OpenVMS Condition Handling facility displays messages. The signal
argument list passed to LIB$SIGNAL or LIB$STOP can be seen as one or more message sequences.
Each message sequence consists of a condition value, an FAO count, which specifies the number of
FAO arguments to come, and the FAO arguments themselves. (The FAO count is omitted in the case
of system and RMS messages.) The message text definition itself is actually a SYS$FAO control string,
which may contain embedded $FAO directives. The VSI OpenVMS System Services Reference Manual
describes the Formatted ASCII Output (SYS$FAO) system service in detail.

The Message utility is provided for compiling message sequences specific to your application. When
you have defined an exception condition and used the Message utility to associate a message with
that exception condition, your program can call LIB$SIGNAL or LIB$STOP to signal the exception
condition. You signal a message that is defined in a message source file by calling LIB$SIGNAL

287

Chapter 9. Condition-Handling Routines and Services

or LIB$STOP, as for any software-detected exception condition. Then the system default condition
handlers display your error message in the standard operating system format.

To use the Message utility, follow these steps:

1. Create a source file that specifies the information used in messages, message codes, and message
symbols.

2. Use the MESSAGE command to compile this source file.

3. Link the resulting object module, either by itself or with another object module containing a
program.

4. Run your program so that the messages are accessed, either directly or through the use of pointers.

See also the description of the Message utility in the VSI OpenVMS Command Definition, Librarian, and
Message Utilities Manual.

9.11.3.1. Creating the Message Source File
A message source file contains definition statements and directives. The following message source file
defines the error messages generated by the sample INCOME program:

INCMSG.MSG

 .FACILITY INCOME, 1 /PREFIX=INCOME__

 .SEVERITY WARNING
 LINELOST "Statistics on last line lost due to Ctrl/Z"

 .SEVERITY SEVERE
 BADFIXVAL "Bad value on /FIX"
 CTRLZ "Ctrl/Z entered on terminal"
 FORIOERR "Fortran I/O error"
 INSFIXVAL "Insufficient values on /FIX"
 MAXSTATS "Maximum number of statistics already entered"
 NOACTION "No action qualifier specified"
 NOHOUSE "No such house number"
 NOSTATS "No statistics to report"

 .END

The default file type of a message source file is .MSG. For a complete description of the Message utility,
see the VSI OpenVMS Command Definition, Librarian, and Message Utilities Manual.

9.11.3.1.1. Specifying the Facility

To specify the name and number of the facility for which you are defining the error messages, use
the .FACILITY directive. For instance, the following .FACILITY directive specifies the facility
(program) INCOME and a facility number of 1:

 .FACILITY INCOME, 1

In addition to identifying the program associated with the error messages, the .FACILITY directive
specifies the facility prefix that is added to each condition name to create the symbolic name used to
reference the message. By default, the prefix is the facility name followed by an underscore. For example,
a condition name BADFIXVAL defined following the previous .FACILITY directive is referenced as

288

Chapter 9. Condition-Handling Routines and Services

INCOME_BADFIXVAL. You can specify a prefix other than the specified program name by specifying
the /PREFIX qualifier of the .FACILITY directive.

By convention, system-defined condition values are identified by the facility name, followed by a dollar
sign ($), an underscore (_), and the condition name. User-defined condition values are identified by the
facility name, followed by two underscores (__), and the condition name. To include two underscores in
the symbolic name, use the /PREFIX qualifier to specify the prefix:

 .FACILITY INCOME, 1 /PREFIX=INCOME__

A condition name BADFIXVAL defined following this .FACILITY directive is referenced as
INCOME__BADFIXVAL.

The facility number, which must be between 1 and 2047, is part of the condition code that identifies
the error message. To prevent different programs from generating the same condition values, the facility
number must be unique. A good way to ensure uniqueness is to have the system manager keep a list of
programs and their facility numbers in a file.

All messages defined after a .FACILITY directive are associated with the specified program. Specify
either an .END directive or another .FACILITY directive to end the list of messages for that program.
VSI recommends that you have one .FACILITY directive per message file.

9.11.3.1.2. Specifying the Severity

Use the .SEVERITY directive and one of the following keywords to specify the severity of one or more
condition values:

Success
Informational
Warning
Error
Severe or fatal

All condition values defined after a .SEVERITY directive have the specified severity (unless you use
the /SEVERITY qualifier with the message definition statement to change the severity of one particular
condition code). Specify an .END directive or another .SEVERITY directive to end the group of errors
with the specified severity. Note that when the .END directive is used to end the list of messages for
a .SEVERITY directive, it also ends the list of messages for the previous .FACILITY directive. The
following example defines one condition code with a severity of warning and two condition values with
a severity of severe. The optional spacing between the lines and at the beginning of the lines is used for
clarity.

 .SEVERITY WARNING
 LINELOST "Statistics on last line lost due to Ctrl/Z"

 .SEVERITY SEVERE
 BADFIXVAL "Bad value on /FIX"
 INSFIXVAL "Insufficient values on /FIX"

 .END

9.11.3.1.3. Specifying Condition Names and Messages

To define a condition code and message, specify the condition name and the message text. The condition
name, when combined with the facility prefix, can contain up to 31 characters. The message text can be
up to 255 characters but only one line long. Use quotation marks (" ") or angle brackets (<>) to enclose

289

Chapter 9. Condition-Handling Routines and Services

the text of the message. For example, the following line from INCMSG.MSG defines the condition code
INCOME__BADFIXVAL:

BADFIXVAL "Bad value on /FIX"

9.11.3.1.4. Specifying Variables in the Message Text

To include variables in the message text, specify formatted ASCII output (FAO) directives. For details,
see the description of the Message utility in the VSI OpenVMS Command Definition, Librarian, and
Message Utilities Manual. Specify the /FAO_COUNT qualifier after either the condition name or the
message text to indicate the number of FAO directives that you used. The following example includes an
integer variable in the message text:

NONUMBER <No such house number: !UL. Try again.>/FAO_COUNT=1

The FAO directive !UL converts a longword to decimal notation. To include a character string variable in
the message, you could use the FAO directive !AS, as shown in the following example:

NOFILE <No such file: !AS. Try again.>/FAO_COUNT=1

If the message text contains FAO directives, you must specify the appropriate variables when you signal
the condition code (see Section 9.11.4).

9.11.3.1.5. Compiling and Linking the Messages

Use the DCL command MESSAGE to compile a message source file into an object module. The
following command compiles the message source file INCMSG.MSG into an object module named
INCMSG in the file INCMSG.OBJ:

$ MESSAGE INCMSG

To specify an object file name that is different from the source file name, use the /OBJECT qualifier of
the MESSAGE command. To specify an object module name that is different from the source file name,
use the .TITLE directive in the message source file.

9.11.3.1.6. Linking the Message Object Module

The message object module must be linked with your program so the system can reference the messages.
To simplify linking a program with the message object module, include the message object module in the
program's object library. For example, to include the message module in INCOME's object library, enter
the following:

$ LIBRARY INCOME.OLB INCMSG.OBJ

9.11.3.1.7. Accessing the Message Object Module from Multiple Programs

Including the message module in the program's object library does not allow other programs-access to
the module's condition values and messages. To allow several programs access to a message module,
create a default message library as follows:

1. Create the message library—Create an object module library and enter all of the message object
modules into it.

2. Make the message library a default library—Equate the complete file specification of the object
module library with the logical name LNK$LIBRARY. (If LNK$LIBRARY is already assigned a
library name, you can create LNK$LIBRARY_1, LNK$LIBRARY_2, and so on.) By default, the
linker searches any libraries equated with the LNK$LIBRARY logical names.

290

Chapter 9. Condition-Handling Routines and Services

The following example creates the message library MESSAGLIB.OLB, enters the message object
module INCMSG.OBJ into it, and makes MESSAGLIB.OLB a default library:

$ LIBRARY/CREATE MESSAGLIB
$ LIBRARY/INSERT MESSAGLIB INCMSG
$ DEFINE LNK$LIBRARY SYS$DISK:MESSAGLIB

9.11.3.1.8. Modifying a Message Source Module

o modify a message in the message library, modify and recompile the message source file, and then
replace the module in the object module library. To access the modified messages, a program must relink
against the object module library (or the message object module). The following command enters the
module INCMSG into the message library MESSAGLIB; if MESSAGLIB already contains an INCMSG
module, it is replaced:

$ LIBRARY/REPLACE MESSAGLIB INCMSG

9.11.3.1.9. Accessing Modified Messages Without Relinking

To allow a program to access modified messages without relinking, create a message pointer file.
Message pointer files are useful if you need either to provide messages in more than one language or
frequently change the text of existing messages. See the description of the Message utility in the VSI
OpenVMS Command Definition, Librarian, and Message Utilities Manual.

9.11.4. Signaling User-Defined Values and Messages
with Global and Local Symbols
To signal a user-defined condition value, you use the symbol formed by the facility prefix and the
condition name (for example, INCOME__BADFIXVAL). Typically, you reference a condition value as
a global symbol; however, you can create an include file (similar to the modules in the system library
SYS$LIBRARY:FORSTSDEF.TLB) to define the condition values as local symbols. If the message
text contains FAO arguments, you must specify parameters for those arguments when you signal the
condition value.

9.11.4.1. Signaling with Global Symbols
To signal a user-defined condition value using a global symbol, declare the appropriate condition value in
the appropriate section of the program unit, and then invoke the RTL routine LIB$SIGNAL to signal the
condition value. The following statements signal the condition value INCOME__NOHOUSE when the
value of FIX_HOUSE_NO is less than 1 or greater than the value of TOTAL_HOUSES:

EXTERNAL INCOME__NOHOUSE
 .
 .
 .
IF ((FIX_HOUSE_NO .GT. TOTAL_HOUSES) .OR.
2 FIX_HOUSE_NO .LT. 1)) THEN
 CALL LIB$SIGNAL (%VAL (%LOC (INCOME__NOHOUSE)))
 END IF

9.11.4.2. Signaling with Local Symbols
To signal a user-defined condition value using a local symbol, you must first create a file containing
PARAMETER statements that equate each condition value with its user-defined condition value. To
create such a file, do the following:

291

Chapter 9. Condition-Handling Routines and Services

1. Create a listing file—Compile the message source file with the /LIST qualifier to the MESSAGE
command. The /LIST qualifier produces a listing file with the same name as the source file and a file
type of .LIS. The following line might appear in a listing file:

08018020 11 NOHOUSE "No such house number"

The hexadecimal value in the left column is the value of the condition value, the decimal number in
the second column is the line number, the text in the third column is the condition name, and the text
in quotation marks is the message text.

2. Edit the listing file—For each condition name, define the matching condition value as a longword
variable, and use a language statement to equate the condition value to its hexadecimal condition
value.

Assuming a prefix of INCOME__, editing the previous statement results in the following statements:

INTEGER INCOME__NOHOUSE
PARAMETER (INCOME__NOHOUSE = '08018020'X)

3. Rename the listing file—Name the edited listing file using the same name as the source file and a
file type for your programming language (for example,.FOR for VSI Fortran).

In the definition section of your program unit, declare the local symbol definitions by naming your
edited listing file in an INCLUDE statement. (You must still link the message object file with your
program.) Invoke the RTL routine LIB$SIGNAL to signal the condition code. The following statements
signal the condition code INCOME__NOHOUSE when the value of FIX_HOUSE_NO is less than 1 or
greater than the value of TOTAL_HOUSES:

! Specify the full file specification
INCLUDE '$DISK1:[DEV.INCOME]INCMSG.FOR'
 .
 .
 .
IF ((FIX_HOUSE_NO .GT. TOTAL_HOUSES) .OR.
2 FIX_HOUSE_NO .LT. 1)) THEN
 CALL LIB$SIGNAL (%VAL (INCOME__NOHOUSE))
END IF

9.11.4.3. Specifying FAO Parameters

If the message contains FAO arguments, you must specify the number of FAO arguments as the second
argument of LIB$SIGNAL, the first FAO argument as the third argument, the second FAO argument as
the fourth argument, and so on. Pass string FAO arguments by descriptor (the default). For example, to
signal the condition code INCOME__NONUMBER, where FIX_HOUSE_NO contains the erroneous
house number, specify the following:

EXTERNAL INCOME__NONUMBER
 .
 .
 .
IF ((FIX_HOUSE_NO .GT. TOTAL_HOUSES) .OR.
2 FIX_HOUSE_NO .LT. 1)) THEN
 CALL LIB$SIGNAL (%VAL (%LOC (INCOME__NONUMBER)),
2 %VAL (1),
2 %VAL (FIX_HOUSE_NO))
 END IF

292

Chapter 9. Condition-Handling Routines and Services

To signal the condition code NOFILE, where FILE_NAME contains the invalid file specification,
specify the following:

EXTERNAL INCOME__NOFILE
 .
 .
 .
IF (IOSTAT .EQ. FOR$IOS_FILNOTFOU)
2 CALL LIB$SIGNAL (%VAL (%LOC (INCOME__NOFILE)),
2 %VAL (1),
2 FILE_NAME)

Both of the previous examples use global symbols for the condition values. Alternatively, you could use
local symbols, as described in Section 9.11.4.2.

9.12. Writing a Condition Handler
When you write a condition handler into your program, the process involves one or more of the
following actions:

• Establish the handler in the stack frame of your routine.

• Write a condition-handling routine, or choose one of the run-time library routines that handles
exception conditions.

• Include a call to a run-time library signal-generating routine.

• Use the Message utility to define your own exception conditions.

• Include a call to the SYS$PUTMSG system service to modify or log the system error message.

You can write a condition handler to take action when an exception condition is signaled. When the
exception condition occurs, the OpenVMS Condition Handling facility sets up the signal argument
vector and mechanism argument vector and begins the search for a condition handler. Therefore, your
condition-handling routine must declare variables to contain the two argument vectors. Further, the
handler must indicate the action to be taken when it returns to the OpenVMS Condition Handling
facility. The handler uses its function value to do this. Thus, the calling sequence for your condition
handler has the following format:

handler signal-args ,mechanism-args

signal-args

The address of a vector of longwords indicating the nature of the condition. See Section 9.8.2 fora
detailed description.

mechanism-args

The address of a vector of longwords that indicates the state of the process at the time of the signal. See
Section 9.8.3 and Section 9.8.4 for more details.

result

A condition value. Success (bit <0> = 1) causes execution to continue at the PC; failure (bit <0> = 0)
causes the condition to be resignaled. That is, the system resumes the search for other handlers. If the

293

Chapter 9. Condition-Handling Routines and Services

handler calls the Unwind (SYS$UNWIND) system service, the return value is ignored and the stack is
unwound. (See Section 9.12.3).

Handlers can modify the contents of either the signal-args vector or the mechanism-args
vector.

In order to protect compiler optimization, a condition handler and any routines that it calls can reference
only arguments that are explicitly passed to handlers. They cannot reference COMMON or other external
storage, and they cannot reference local storage in the routine that established the handler unless the
compiler considers the storage to be volatile. Compilers that do not adhere to this rule must ensure that
any variables referenced by the handler are always kept in memory, not in a register.

As mentioned previously, a condition handler can take one of three actions:

• Continue execution

• Resignal the exception condition and resume the stack scanning operation

• Call SYS$UNWIND to unwind the call stack to an earlier frame

The sections that follow describe how to write condition handlers to perform these three operations.

9.12.1. Continuing Execution
To continue execution from the instruction following the signal, with no error messages or traceback, the
handler returns with the function value SS$_CONTINUE (bit <0> = 1). If, however, the condition was
signaled with a call to LIB$STOP, the SS$_CONTINUE return status causes an error message(Attempt
To Continue From Stop), and the image exits. The only way to continue from a call to LIB$STOP is for
the condition handler to request a stack unwind.

If execution is to continue after a hardware fault (such as a reserved operand fault), the condition
handler must correct the cause of the condition before returning the function value SS$_CONTINUE or
requesting a stack unwind. Otherwise, the instruction that caused the fault executed again.

Note

On most VAX systems, hardware floating-point traps have been changed to hardware faults. If you still
want floating-point exception conditions to be treated as traps, use LIB$SIM_TRAP to simulate the
action of floating-point traps.

On Alpha and I64 systems, LIB$SIM_TRAP is not supported. Table 9.5lists the run-time library
routines that are supported and not supported on Alpha and I64 systems.

9.12.2. Resignaling
Condition handlers check for specific errors. If the signaled condition is not one of the expected errors,
the handler resignals. That is, it returns control to the OpenVMS Condition Handling facility with the
function value SS$_RESIGNAL (with bit <0> clear). To alter the severity of the signal, the handler
modifies the low-order 3 bits of the condition value and resignals.

For an example of resignaling, see Section 9.8.7.

294

Chapter 9. Condition-Handling Routines and Services

9.12.3. Unwinding the Call Stack
A condition handler can dismiss the signal by calling the system service SYS$UNWIND. The stack
unwind is initiated when a condition handler that has called SYS$UNWIND returns to OpenVMS
Condition Handling facility. For an explanation of unwinding, see Section 9.10.1;for an example of using
SYS$UNWIND to return control to the program, see Section 9.12.4.5.

9.12.4. Example of Writing a Condition Handler
The operating system passes two arrays to a condition handler. Any condition handler that you write
should declare two arguments as variable-length arrays, as in the following:

INTEGER*4 FUNCTION HANDLER (SIGARGS,
2 MECHARGS)

INTEGER*4 SIGARGS(*),
2 MECHARGS(*)
 .
 .
 .

9.12.4.1. Signal Array
The first dummy argument, the signal array, describes the signaled condition codes that indicate which
error occurred and the state of the process when the condition code was signaled. For the structure of the
signal array, see Section 9.8.2.

9.12.4.2. Mechanism Array
The second dummy argument, the mechanism array, describes the state of the process when the
condition code was signaled. Typically, a condition handler references only the call depth and the saved
function value. Currently, the mechanism array contains exactly five elements except on Alpha and I64;
however, because its length is subject to change, you should declare the dummy argument as a variable-
length array. For the structure of the mechanism array, see Section 9.8.3.

Usually you write a condition handler in anticipation of a particular set of condition values. Because
a handler is invoked in response to any signaled condition code, begin your handler by comparing the
condition code passed to the handler (element 2 of the signal array) against the condition codes expected
by the handler. If the signaled condition code is not one of the expected codes, resignal the condition
code by equating the function value of the handler to the global symbol SS$_RESIGNAL.

9.12.4.3. Comparing the Signaled Condition with an Expected
Condition
You can use the RTL routine LIB$MATCH_COND to compare the signaled condition code to a list of
expected condition values. The first argument passed to LIB$MATCH_COND is the signaled condition
code, the second element of the signal array. The rest of the arguments passed to LIB$MATCH_COND
are the expected condition values. LIB$MATCH_COND compares the first argument with each of the
remaining arguments and returns the number of the argument that matches the first one. For example, if
the second argument matches the first argument, LIB$MATCH_COND returns a value of 1. If the first
argument does not match any of the other arguments, LIB$MATCH_COND returns 0.

The following condition handler determines whether the signaled condition code is one of four VSI
Fortran I/O errors. If it is not, the condition handler resignals the condition code. Note that, when an VSI

295

Chapter 9. Condition-Handling Routines and Services

Fortran I/O error is signaled, the signal array describes operating system's condition code, not the VSI
Fortran error code.

INTEGER FUNCTION HANDLER (SIGARGS,
2 MECHARGS)

! Declare dummy arguments
INTEGER*4 SIGARGS(*),
2 MECHARGS(*)
INCLUDE '($FORDEF)' ! Declare the FOR$_ symbols
INCLUDE '($SSDEF)' ! Declare the SS$_ symbols
INTEGER INDEX
! Declare procedures
INTEGER LIB$MATCH_COND
INDEX = LIB$MATCH_COND (SIGARGS(2),
2 FOR$_FILNOTFOU,
2 FOR$_OPEFAI,
2 FOR$_NO_SUCDEV,
2 FOR$_FILNAMSPE)
IF (INDEX .EQ. 0) THEN
 ! Not an expected condition code, resignal
 HANDLER = SS$_RESIGNAL
ELSE IF (INDEX .GT. 0) THEN
 ! Expected condition code, handle it
 .
 .
 .
END IF

END

9.12.4.4. Exiting from the Condition Handler
You can exit from a condition handler in one of three ways:

• Continue execution of the program—If you equate the function value of the condition handler to
SS$_CONTINUE, the condition handler returns control to the program at the statement that signaled
the condition (fault) or the statement following the one that signaled the condition (trap). The RTL
routine LIB$SIGNAL generates a trap so that control is returned to the statement following the call
to LIB$SIGNAL.

In the following example, if the condition code is one of the expected codes, the condition handler
displays a message and then returns the value SS$_CONTINUE to resume program execution. (
Section 9.11 describes how to display a message).

INTEGER FUNCTION HANDLER (SIGARGS,
2 MECHARGS)

! Declare dummy arguments
INTEGER*4 SIGARGS(*),
2 MECHARGS(*)
INCLUDE '($FORDEF)'
INCLUDE '($SSDEF)'
INTEGER*4 INDEX,
2 LIB$MATCH_COND
INDEX = LIB$MATCH_COND (SIGARGS(2),
2 FOR$_FILNOTFOU,

296

Chapter 9. Condition-Handling Routines and Services

2 FOR$_OPEFAI,
2 FOR$_NO_SUCDEV,
2 FOR$_FILNAMSPE)
IF (INDEX .GT. 0) THEN
 .
 .
 .
 ! Display the message
 .
 .
 .
 HANDLER = SS$_CONTINUE
END IF

• Resignal the condition code—If you equate the function value of the condition handler to
SS$_RESIGNAL or do not specify a function value (function value of 0), the handler allows the
operating system to execute the next condition handler. If you modify the signal array or mechanism
array before resignaling, the modified arrays are passed to the next condition handler.

In the following example, if the condition code is not one of the expected codes, the handler
resignals:

INDEX = LIB$MATCH_COND (SIGARGS(2),
2 FOR$_FILNOTFOU,
2 FOR$_OPEFAI,
2 FOR$_NO_SUCDEV,
2 FOR$_FILNAMSPE)

IF (INDEX .EQ. 0) THEN
 HANDLER = SS$_RESIGNAL
END IF

• Continue execution of the program at a previous location—If you call the SYS$UNWIND system
service, the condition handler can return control to any point in the program unit that incurred the
exception, the program unit that invoked the program unit that incurred the exception, and so on
back to the program unit that established the condition handler.

9.12.4.5. Returning Control to the Program

Your handlers should return control either to the program unit that established the handler or to the
program unit that invoked the program unit that established the handler.

To return control to the program unit that established the handler, invoke SYS$UNWIND and pass the
call depth (third element of the VAX mechanism array, or the CHF$IS_MCH_DEPTH field for Alpha
and I64) as the first argument with no second argument.

! Declare dummy arguments
INTEGER*4 SIGARGS(*),
2 MECHARGS(*)
 .
 .
 .
CALL SYS$UNWIND (MECHARGS(3),)

To return control to the caller of the program unit that established the handler, invoke SYS$UNWIND
without passing any arguments.

297

Chapter 9. Condition-Handling Routines and Services

! Declare dummy arguments
INTEGER*4 SIGARGS(*),
2 MECHARGS(*)
 .
 .
 .
CALL SYS$UNWIND (,)

The first argument SYS$UNWIND specifies the number of program units to unwind (remove from
the stack). If you specify this argument at all, you should do so as shown in the previous example.
MECHARGS(3)(or the CHF$IS_MCH_DEPTH field for Alpha and I64) contains the number of
program units that must be unwound to reach the program unit that established the handler that invoked
SYS$UNWIND.) The second argument SYS$UNWIND contains the location of the next statement
to be executed. Typically, you omit the second argument to indicate that the program should resume
execution at the statement following the last statement executed in the program unit that is regaining
control.

Each time SYS$UNWIND removes a program unit from the stack, it invokes any condition handler
established by that program unit and passes the condition handler the SS$_UNWIND condition
code. To prevent the condition handler from resignaling the SS$_UNWIND condition code (and so
complicating the unwind operation), include SS$_UNWIND as an expected condition code when you
invoke LIB$MATCH_COND. When the condition code is SS$_UNWIND, your condition handler
might perform necessary cleanup operations or do nothing.

In the following example, if the condition code is SS$_UNWIND, no action is performed. If the
condition code is another of the expected codes, the handler displays the message and then returns
control to the program unit that called the program unit that established the condition handler.

INTEGER FUNCTION HANDLER (SIGARGS,
2 MECHARGS)

! Declare dummy arguments
INTEGER*4 SIGARGS(*),
2 MECHARGS(*)
INCLUDE '($FORDEF)'
INCLUDE '($SSDEF)'
INTEGER*4 INDEX,
2 LIB$MATCH_COND
INDEX = LIB$MATCH_COND (SIGARGS(2),
2 SS$_UNWIND,
2 FOR$_FILNOTFOU,
2 FOR$_OPEFAI,
2 FOR$_NO_SUCDEV,
2 FOR$_FILNAMSPE)
IF (INDEX .EQ. 0) THEN
 ! Unexpected condition, resignal
 HANDLER = SS$_RESIGNAL
ELSE IF (INDEX .EQ. 1) THEN
 ! Unwinding, do nothing
ELSE IF (INDEX .GT. 1) THEN
 .
 .
 .
 ! Display the message
 .
 .
 .

298

Chapter 9. Condition-Handling Routines and Services

 CALL SYS$UNWIND (,)
END IF

9.12.5. Example of Condition-Handling Routines
The following example shows two procedures, A and B, that have declared condition handlers. The notes
describe the sequence of events that would occur if a call to a system service failed during the execution
of procedure B.

/* PGMA */

#include <stdio.h>
#include <ssdef.h>

unsigned int sigargs[],mechargs[];

main() {
 unsigned int status, vector=0, old_handler;

 old_handler = LIB$ESTABLISH(handlera);

 status = pgmb (arglst);
 .
 .
 .
}

/* PGMB */

#include <stdio.h>
#include <ssdef.h>

main() {

 old_handler = LIB$ESTABLISH(handlerb);
 .
 .
 .

}

/* Handler A */

int handlera(sigargs, mechargs) {

/* Compare condition value signalled with expected value */

 if (sigargs[1] != SS$_SSFAIL)
 goto no_fail;
 .
 .
 .
/* Signal to continue */

 return SS$_CONTINUE;

299

Chapter 9. Condition-Handling Routines and Services

/* Signal to resignal */
no_fail:
 return SS$_RESIGNAL;

}

/* Handler B */

int handlerb(sigargs, mechargs) {

/* Compare condition value signalled with expected value */
 if (sigargs[1] != SS$_BREAK)
 goto no_fail;
 .
 .
 .
 return SS$_CONTINUE;

no_fail:
 return SS$_RESIGNAL;

}

Procedure A establishes condition handler HANDLER A.HANDLER A is set up to respond to
exceptions caused by failures in system service calls.
During its execution, procedure A calls procedure B.
Procedure B establishes condition handler HANDLER B. HANDLER B is set up to respond to
breakpoint faults.
While procedure B is executing, an exception occurs caused by a system service failure
(SS$_FAIL).
The exception dispatcher gets control and finds the first condition handler (handler b). Handler B is
set to handle SS$_BREAK, not SS$_SSFAIL so it returns SS$_RESIGNAL.
Upon receiving the SS$_RESIGNAL status from HANDLER B, the exception dispatcher resumes
its search for a condition handler. It finds and calls handler a.
HANDLER A handles the system service failure exception, corrects the condition, places the return
value SS$_CONTINUE in r0 (r8 if this example were run on an I64 system), and returns control to
the exception dispatcher, which will, in turn, return control to procedure B. Execution of procedure
B resumes at the instruction following the system service failure.

9.13. Debugging a Condition Handler
You can debug a condition handler as you would any subprogram, except that you cannot use the
DEBUG command STEP/INTO to enter a condition handler. You must set a breakpoint in the handler
and wait for the debugger to invoke the handler.

Typically, to trace execution of a condition handler, you set breakpoints at the statement in your program
that should signal the condition code, at the statement following the one that should signal, and at the
first executable statement in your condition handler.

The SET BREAK debugger command with the /HANDLER qualifier causes the debugger to scan
the call stack and attempt to set a breakpoint on every established frame-based handler whenever the
program being debugged has an exception. The debugger does not discriminate between standard RTL
handlers and user-defined handlers.

300

Chapter 9. Condition-Handling Routines and Services

9.14. Run-Time Library Condition-Handling
Routines
The following sections present information about RTL jacket handlers, and RTL routines that can be
either established as condition handlers or called from a condition handler to handle signaled exception
conditions.

9.14.1. RTL Jacket Handlers (64-bit Systems)
Many RTLs establish a jacket RTL handler on a frame where the user program has defined its own
handler. This RTL jacket does some setup and argument manipulation before actually calling the handler
defined by the user. When processing the exception, the debugger sets the breakpoint on the jacket
RTL jacket handler, because that is the address on the call stack. If the debugger suspends program
execution at a jacket RTL handler, it is usually possible to reach the user-defined handler by entering a
STEP/CALL command followed by a STEP/INTO command. Some cases might require that additional
sequences of STEP/CALL and STEP/INTO commands be entered. For more information about frame-
based handlers, see VSI OpenVMS Calling Standard.

If the jacket RTL handler is part of an installed shared image such as ALPHA LIBOTS, the debugger
cannot set a breakpoint on it. In this case, activate the RTL as a private image by defining the RTL as a
logical name, as in the following example:

$DEFINE LIBOTS SYS$SHARE:LIBOTS.EXE;

Note

In the previous example, the trailing semicolon (;) is required.

9.14.2. Converting a Floating-Point Fault to a Floating-
Point Trap (VAX Only)
On VAX systems, a trap is an exception condition that is signaled after the instruction that caused it
has finished executing. A fault is an exception condition that is signaled during the execution of the
instruction. When a trap is signaled, the program counter (PC) in the signal argument vector points to
the next instruction after the one that caused the exception condition. When a fault is signaled, the PC
in the signal argument vector points to the instruction that caused the exception condition. See the VAX
Architecture Reference Manual for more information about faults and traps.

LIB$SIM_TRAP can be established as a condition handler or be called from a condition handler to
convert a floating-point fault to a floating-point trap. After LIB$SIM_TRAP is called, the PC points
to the instruction after the one that caused the exception condition. Thus, your program can continue
execution without fixing up the original condition. LIB$SIM_TRAP intercepts only floating-point
overflow, floating-point underflow, and divide-by-zero faults.

9.14.3. Changing a Signal to a Return Status

Note

LIB$SIGTORET is the name of the routine for Alpha and I64.

301

Chapter 9. Condition-Handling Routines and Services

When it is preferable to detect errors by signaling but the calling routine expects a returned status,
LIB$SIG_TO_RET can be used by the routine that signals. For instance, if you expect a particular
condition code to be signaled, you can prevent the operating system from invoking the default condition
handler by establishing a different condition handler. LIB$SIG_TO_RET is a condition handler that
converts any signaled condition to a return status. The status is returned to the caller of the routine
that established LIB$SIG_TO_RET. You may establish LIB$SIG_TO_RET as a condition handler by
specifying it in a call to LIB$ESTABLISH.

On Alpha and I64 systems, LIB$ESTABLISH is not supported, though high-level languages may support
it for compatibility.

LIB$SIG_TO_RET can also be called from another condition handler. If LIB$SIG_TO_RET is called
from a condition handler, the signaled condition is returned as a function value to the caller of the
establisher of that handler when the handler returns to the OpenVMS Condition Handling facility. When
a signaled exception condition occurs, LIB$SIG_TO_RET routine does the following:

• Places the signaled condition value in the image of R0 (R8 for I64) that is saved as part of the
mechanism argument vector.

• Calls the Unwind (SYS$UNWIND) system service with the default arguments. After returning
from LIB$SIG_TO_RET (when it is established as a condition handler) or after returning from
the condition handler that called LIB$SIG_TO_RET (when LIB$SIG_TO_RET is called from a
condition handler), the stack unwinds to the caller of the routine that established the handler.

Your calling routine can now both test R0 (R8 for I64), as if the called routine had returned a status, and
specify an error recovery action.

The following paragraphs describe how to establish and use the system-defined condition handler
LIB$SIG_TO_RET, which changes a signal to a return status that your program can examine.

To change a signal to a return status, you must put any code that might signal a condition code into a
function where the function value is a return status. The function containing the code must perform the
following operations:

• Declare LIB$SIG_TO_RET—Declare the condition handler LIB$SIG_TO_RET.

• Establish LIB$SIG_TO_RET—Invoke the run-time library procedure LIB$ESTABLISH to
establish a condition handler for the current program unit. Specify the name of the condition handler
LIB$SIG_TO_RET as the only argument.

• Initialize the function value—Initialize the function value to SS$_NORMAL so that, if no condition
code is signaled, the function returns a success status to the invoking program unit.

• Declare necessary dummy arguments—If any statement that might signal a condition code is a
subprogram that requires dummy arguments, pass the necessary arguments to the function. In the
function, declare each dummy argument exactly as it is declared in the subprogram that requires it
and specify the dummy arguments in the subprogram invocation.

If the program unit GET_1_STAT in the following function signals a condition code,
LIB$SIG_TO_RET changes the signal to the return status of the INTERCEPT_SIGNAL function
and returns control to the program unit that invoked INTERCEPT_SIGNAL. (If GET_1_STAT
has a condition handler established, the operating system invokes that handler before invoking
LIB$SIG_TO_RET).

302

Chapter 9. Condition-Handling Routines and Services

FUNCTION INTERCEPT_SIGNAL (STAT,
2 ROW,
2 COLUMN)

! Dummy arguments for GET_1_STAT
INTEGER STAT,
2 ROW,
2 COLUMN
! Declare SS$_NORMAL
INCLUDE '($SSDEF)'
! Declare condition handler
EXTERNAL LIB$SIG_TO_RET
! Declare user routine
INTEGER GET_1_STAT
! Establish LIB$SIG_TO_RET
CALL LIB$ESTABLISH (LIB$SIG_TO_RET)
! Set return status to success
INTERCEPT_SIGNAL = SS$_NORMAL
! Statements and/or subprograms that
! signal expected error condition codes
STAT = GET_1_STAT (ROW,
2 COLUMN)

END

When the program unit that invoked INTERCEPT_SIGNAL regains control, it should check the return
status (as shown in Section 9.5.1) to determine which condition code, if any, was signaled during
execution of INTERCEPT_SIGNAL.

9.14.4. Changing a Signal to a Stop
LIB$SIG_TO_STOP causes a signal to appear as though it had been signaled by a call to LIB$STOP.

LIB$SIG_TO_STOP can be enabled as a condition handler for a routine or be called from a condition
handler. When a signal is generated by LIB$STOP, the severity code is forced to severe, and control
cannot return to the routine that signaled the condition. See Section 9.12.1for a description of continuing
normal execution after a signal.

9.14.5. Matching Condition Values
LIB$MATCH_COND checks for a match between two condition values to allow a program to branch
according to the condition found. If no match is found, the routine returns zero. The routine matches
only the condition identification field (STS$V_COND_ID) of the condition value; it ignores the control
bits and the severity field. If the facility-specific bit (STS$V_FAC_SP = bit <15>) is clear in cond-val
(meaning that the condition value is systemwide), LIB$MATCH_COND ignores the facility code field
(STS$V_FAC_NO = bits <27:17>) and compares only the STS$V_MSG_ID fields (bits <15:3>).

9.14.6. Correcting a Reserved Operand Condition (VAX
Only)
On VAX systems, after a signal of SS$_ROPRAND during a floating-point instruction,
LIB$FIXUP_FLT finds the operand and changes it from –0.0 to a new value or to +0.0.

303

Chapter 9. Condition-Handling Routines and Services

9.14.7. Decoding the Instruction That Generated a Fault
(VAX Only)
On VAX systems, LIB$DECODE_FAULT locates the operands for an instruction that caused a
fault and passes the information to a user action routine. When called from a condition handler,
LIB$DECODE_FAULT locates all the operands and calls an action routine that you supply. Your
action routine performs the steps necessary to handle the exception condition and returns control to
LIB$DECODE_FAULT. LIB$DECODE_FAULT then restores the operands and the environment, as
modified by the action routine, and continues execution of the instruction.

9.15. Exit Handlers
When an image exits, the operating system performs the following operations:

• Invokes any user-defined exit handlers.

• Invokes the system-defined default exit handler, which closes any files that were left open by the
program or by user-defined exit handlers.

• Executes a number of cleanup operations collectively known as image rundown. The following is a
list of some of these cleanup operations:

• Canceling outstanding ASTs and timer requests.

• Deassigning any channel assigned by your program and not already deassigned by your program
or the system.

• Deallocating devices allocated by the program.

• Disassociating common event flag clusters associated with the program.

• Deleting user-mode logical names created by the program. (Unless you specify otherwise, logical
names created by SYS$CRELNM are user-mode logical names).

• Restoring internal storage (for example, stacks or mapped sections) to its original state.

If any exit handler exits using the EXIT (SYS$EXIT) system service, none of the remaining handlers is
executed. In addition, if an image is aborted by the DCL command STOP (the user presses Ctrl/Y and
then enters STOP), the system performs image rundown and does not invoke any exit handlers. Like the
DCLSTOP/ID, SYS$DELPRC bypasses all exit handlers, except the rundown specified in the privileged
library vector (PLV) privileged shareable images, and deletes the process. (The DCL command EXIT
invokes the exit handlers before running down the image).

When a routine is active under OpenVMS, it has available to it temporary storage on a stack, in a
construct known as a stack frame, or call frame. Each time a subroutine call is made, another call frame
is pushed onto the stack and storage is made available to that subroutine. Each time a subroutine returns
to its caller, the subroutine's call frame is pulled off the stack, and the storage is made available for reuse
by other subroutines. Call frames therefore are nested. Outer call frames remain active longer, and the
outermost call frame, the call frame associated with the main routine, is normally always available.

A primary exception to this call frame condition is when an exit handler runs. With an exit handler
running, only static data is available. The exit handler effectively has its own call frame. Exit handlers are
declared with the SYS$DCLEXH system service.

304

Chapter 9. Condition-Handling Routines and Services

The use of call frames for storage means that all routine-local data is reentrant;that is, each subroutine
has its own storage for the routine-local data.

The allocation of storage that is known to the exit handler must be in memory that is not volatile
over the possible interval the exit handler might be pending. This means you must be familiar with
how the compilers allocate routine-local storage using the stack pointer and the frame pointer. This
storage is valid only while the stack frame is active. Should the routine that is associated with the stack
frame return, the exit handler cannot write to this storage without having the potential for some severe
application data corruptions.

A hang-up to a terminal line causes DCL to delete the master process's subprocesses. However, if the
subprocesses exit handler is in a main image installed with privilege, then that exit handler is run even
with the DCL command STOP. Also, if the subprocess was spawned NOWAIT, then the spawning
process's exit handler is run as well.

Use exit handlers to perform any cleanup that your program requires in addition to the normal rundown
operations performed by the operating system. In particular, if your program must perform some final
action regardless of whether it exits normally or is aborted, you should write and establish an exit
handler to perform that action.

9.15.1. Establishing an Exit Handler
To establish an exit handler, use the SYS$DCLEXH system service. The SYS$DCLEXH system service
requires one argument—a variable-length data structure that describes the exit handler. Figure 9.18
illustrates the structure of an exit handler.

Figure 9.18. Structure of an Exit Handler

The first longword of the structure contains the address of the next handler. The operating system
uses this argument to keep track of the established exit handlers;do not modify this value. The second
longword of the structure contains the address of the exit handler being established. The low-order byte
of the third longword contains the number of arguments to be passed to the exit handler. Each of the
remaining longwords contains the address of an argument.

The first argument passed to an exit handler is an integer value containing the final status of the exiting
program. The status argument is mandatory. However, do not supply the final status value; when the

305

Chapter 9. Condition-Handling Routines and Services

operating system invokes an exit handler, it passes the handler the final status value of the exiting
program.

To pass an argument with a numeric data type, use programming language statements to assign the
address of a numeric variable to one of the longwords in the exit-handler data structure. To pass an
argument with a character data type, create a descriptor of the following form:

Use the language statements to assign the address of the descriptor to one of the longwords in the exit-
handler data structure.

The following program segment establishes an exit handler with two arguments, the mandatory status
argument and a character argument:

 .
 .
 .
! Arguments for exit handler
INTEGER EXIT_STATUS ! Status
CHARACTER*12 STRING ! String
STRUCTURE /DESCRIPTOR/
 INTEGER SIZE,
2 ADDRESS
END STRUCTURE
RECORD /DESCRIPTOR/ EXIT_STRING
! Setup for exit handler
STRUCTURE /EXIT_DESCRIPTOR/
 INTEGER LINK,
2 ADDR,
2 ARGS /2/,
2 STATUS_ADDR,
2 STRING_ADDR
END STRUCTURE
RECORD /EXIT_DESCRIPTOR/ HANDLER
! Exit handler
EXTERNAL EXIT_HANDLER
 .
 .
 .
! Set up descriptor
EXIT_STRING.SIZE = 12 ! Pass entire string
EXIT_STRING.ADDRESS = %LOC (STRING)
! Enter the handler and argument addresses
! into the exit handler description
HANDLER.ADDR = %LOC(EXIT_HANDLER)
HANDLER.STATUS_ADDR = %LOC(EXIT_STATUS)
HANDLER.STRING_ADDR = %LOC(EXIT_STRING)
! Establish the exit handler
CALL SYS$DCLEXH (HANDLER)
 .
 .

306

Chapter 9. Condition-Handling Routines and Services

 .

An exit handler can be established at any time during your program and remains in effect until it is
canceled (with SYS$CANEXH) or executed. If you establish more than one handler, the handlers are
executed in reverse order:the handler established last is executed first; the handler established first is
executed last.

9.15.2. Writing an Exit Handler
Write an exit handler as a subroutine, because no function value can be returned. The dummy arguments
of the exit subroutine should agree in number, order, and data type with the arguments you specified in
the call to SYS$DCLEXH.

In the following example, assume that two or more programs are cooperating with each other. To keep
track of which programs are executing, each has been assigned a common event flag (the common event
flag cluster is named ALIVE). When a program begins, it sets its flag; when the program terminates, it
clears its flag. Because it is important that each program clear its flag before exiting, you create an exit
handler to perform the action. The exit handler accepts two arguments, the final status of the program
and the number of the event flag to be cleared. In this example, since the cleanup operation is to be
performed regardless of whether the program completes successfully, the final status is not examined
in the exit routine. (This subroutine would not be used with the exit handler declaration in the previous
example).

CLEAR_FLAG.FOR
SUBROUTINE CLEAR_FLAG (EXIT_STATUS,
2 FLAG)
! Exit handler clears the event flag

! Declare dummy argument
INTEGER EXIT_STATUS,
2 FLAG
! Declare status variable and system routine
INTEGER STATUS,
2 SYS$ASCEFC,
2 SYS$CLREF
! Associate with the common event flag
! cluster and clear the flag
STATUS = SYS$ASCEFC (%VAL(FLAG),
2 'ALIVE',,)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))
STATUS = SYS$CLREF (%VAL(FLAG))
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))

END

If for any reason you must perform terminal I/O from an exit handler, use appropriate RTL routines.
Trying to access the terminal from an exit handler using language I/O statements may cause a redundant
I/O error.

9.15.3. Debugging an Exit Handler
To debug an exit handler, you must set a breakpoint in the handler and wait for the operating system
to invoke that handler; you cannot use the DEBUG command STEP/INTO to enter an exit handler. In
addition, when the debugger is invoked, it establishes an exit handler that exits using the SYS$EXIT

307

Chapter 9. Condition-Handling Routines and Services

system service. If you invoke the debugger when you invoke your image, the debugger's exit handler does
not affect your program's handlers because the debugger's handler is established first and so executes
last. However, if you invoke the debugger after your program begins executing (the user presses Ctrl/
Y and then types DEBUG), the debugger's handler may affect the execution of your program's exit
handlers, because one or more of your handlers may have been established before the debugger's handler
and so is not executed.

9.15.4. Example of Exit Handler
As in the example in Section 9.15.2, write the exit handler as a subroutine because no function value can
be returned. The dummy arguments of the exit subroutine should agree in number, order, and data type
with the arguments you specify in the call to SYS$DCLEXH.

In the following example, assume that two or more programs are cooperating. To keep track of which
programs are executing, each has been assigned a common event flag (the common event flag cluster is
named ALIVE). When a program begins, it sets its flag; when the program terminates, it clears its flag.
Because each program must clear its flag before exiting, you create an exit handler to perform the action.
The exit handler accepts two arguments: the final status of the program and the number of the event flag
to be cleared.

In the following example, because the cleanup operation is to be performed regardless of whether the
program completes successfully, the final status is not examined in the exit routine.

! Arguments for exit handler
INTEGER*4 EXIT_STATUS ! Status
INTEGER*4 FLAG /64/
! Setup for exit handler
STRUCTURE /EXIT_DESCRIPTOR/
 INTEGER LINK,
2 ADDR,
2 ARGS /2/,
2 STATUS_ADDR,
2 FLAG_ADDR
END STRUCTURE
RECORD /EXIT_DESCRIPTOR/ HANDLER

! Exit handler
EXTERNAL CLEAR_FLAG

INTEGER*4 STATUS,
2 SYS$ASCEFC,
2 SYS$SETEF

! Associate with the common event flag
! cluster and set the flag.
STATUS = SYS$ASCEFC (%VAL(FLAG),
2 'ALIVE',,)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))
STATUS = SYS$SETEF (%VAL(FLAG))
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))
! Do not exit until cooperating program has a chance to
! associate with the common event flag cluster.

! Enter the handler and argument addresses
! into the exit handler description.
HANDLER.ADDR = %LOC(CLEAR_FLAG)

308

Chapter 9. Condition-Handling Routines and Services

HANDLER.STATUS_ADDR = %LOC(EXIT_STATUS)
HANDLER.FLAG_ADDR = %LOC(FLAG)
! Establish the exit handler.
CALL SYS$DCLEXH (HANDLER)

! Continue with program
 .
 .
 .
END

! Exit Subroutine

SUBROUTINE CLEAR_FLAG (EXIT_STATUS,
2 FLAG)
! Exit handler clears the event flag

! Declare dummy argument
INTEGER EXIT_STATUS,
2 FLAG

! Declare status variable and system routine
INTEGER STATUS,
2 SYS$ASCEFC,
2 SYS$CLREF

! Associate with the common event flag
! cluster and clear the flag
STATUS = SYS$ASCEFC (%VAL(FLAG),
2 'ALIVE',,)
2 'ALIVE',,)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))
STATUS = SYS$CLREF (%VAL(FLAG))
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))

309

Chapter 9. Condition-Handling Routines and Services

310

Part III. Addressing and
Memory Management

This part describes 32-bit and 64-bit address space, and the support offered for 64-bit addressing. It also
gives guidelines for 64-bit application programming interfaces (APIs); OpenVMS Alpha, OpenVMS I64,
OpenVMS VAX, and VLM memory management with run-time routines for memory management, and
alignment on OpenVMS Alpha, OpenVMS VAX, and OpenVMS I64 systems.

311

312

Chapter 10. Overview of Alpha and I64
Virtual Address Space
The OpenVMS Alpha and OpenVMS I64 operating systems provide support for 64-bit virtual memory
addressing. This capability makes the 64-bit virtual address space, defined by the Alpha and Intel
Itanium architectures, available to the OpenVMS Alpha and OpenVMS I64 operating systems and to
application programs. For information about Very Large Memory, see Chapter 16.

10.1. Using 64-Bit Addresses
Many OpenVMS Alpha and OpenVMS I64 tools and languages (including the Debugger, run-time
library routines, and VSI C) support 64-bit virtual addressing. Input and output operations can be
performed directly to and from the 64-bit addressable space by means of RMS services, the $QIO
system service, and most of the device drivers supplied with OpenVMS Alpha and OpenVMS I64
systems.

Underlying this are system services that allow an application to allocate and manage the 64-bit virtual
address space, which is available for process-private use.

By using the OpenVMS Alpha and OpenVMS I64 tools and languages that support 64-bit addressing,
programmers can create images that map and access data beyond the limits of 32-bit virtual addresses.
The 64-bit virtual address space design ensures upward compatibility of programs, while providing
a flexible framework that allows 64-bit addresses to be used in many different ways to solve new
problems.

Nonprivileged programs can optionally be modified to take advantage of 64-bit addressing features.
OpenVMS Alpha and OpenVMS I64 64-bit virtual addressing does not affect nonprivileged programs
that are not explicitly modified to exploit 64-bit support. Binary and source compatibility of existing 32-
bit nonprivileged programs is guaranteed.

By using 64-bit addressing capabilities, application programs can map large amounts of data into
memory to provide high levels of performance and make use of very large memory (VLM) systems.
In addition, 64-bit addressing allows for more efficient use of system resources, allowing for larger
user processes, as well as higher numbers of users and client/server processes for virtually unlimited
scalability.

This chapter describes the layout and components of the OpenVMS Alpha and OpenVMS I64 64-bit
virtual memory address space.

For more information about the OpenVMS Alpha and OpenVMS I64 programming tools and languages
that support 64-bit addressing and recommendations for enhancing applications to support 64-bit
addressing and VLM, refer to the subsequent chapters in this guide.

10.2. Traditional OpenVMS 32-Bit Virtual
Address Space Layout
In early versions of the OpenVMS Alpha operating system, the virtual address space layout was largely
based upon the 32-bit virtual address space defined by the VAX architecture. Figure 10.1 illustrates the
OpenVMS Alpha implementation of the OpenVMS VAX layout.

313

Chapter 10. Overview of Alpha and I64 Virtual Address Space

Figure 10.1. 32-Bit Virtual Address Space Layout

The lower half of the OpenVMS VAX virtual address space (addresses between 0 and 7FFFFFFF16) is
called process-private space. This space is further divided into two equal pieces called P0 space and P1
space. Each space is 1 GB long. The P0 space range is from 0 to 3FFFFFFF16. P0 space starts at location
0 and expands toward increasing addresses. The P1 space range is from 4000000016 to 7FFFFFFF16. P1
space starts at location 7FFFFFFF16 and expands toward decreasing addresses.

The upper half of the VAX virtual address space is called system space. The lower half of system
space (the addresses between 8000000016 and BFFFFFFF16) is called S0 space. S0 space begins at
8000000016 and expands toward increasing addresses.

The VAX architecture associates a page table with each region of virtual address space. The processor
translates system space addresses using the system page table. Each process has its own P0 and P1 page
tables. A VAX page table does not map the full virtual address space possible; instead, it maps only the
part of its region that has been created.

10.3. OpenVMS Alpha and OpenVMS I64
64-Bit Virtual Address Space Layout
The OpenVMS Alpha and OpenVMS I64 64-bit address space layout is an extension of the traditional
OpenVMS 32-bit address space layout.

Figure 10.2 illustrates the 64-bit virtual address space layout design.

314

Chapter 10. Overview of Alpha and I64 Virtual Address Space

Note

To reduce the complexity of the figure, Figure 10.2 oversimplifies the virtual address space layout. For
OpenVMS Alpha, there is a gap in the middle of P2 space, as described in Section 10.3.4.

For OpenVMS I64, there is no gap in P2 space. However, as described in Section 10.3.4:

• Itanium Region 0 is used for P0/P1, P2, and the process-private page table space.

• Regions 1 through 6 are not used.

• Itanium Region 7 is used for S0/S1, S2, and the shared page table space.

Only portions of Regions 0 and 7 are used in this release.

For both OpenVMS Alpha and OpenVMS I64, the OpenVMS memory management system services
always return virtually contiguous address ranges.

Figure 10.2. 64-Bit Virtual Address Space Layout

315

Chapter 10. Overview of Alpha and I64 Virtual Address Space

The 64-bit virtual address space layout is designed to accommodate the current and future needs of the
OpenVMS Alpha and OpenVMS I64 operating systems and its users. The address space consists of the
following fundamental areas:

• Process-private space

• System space

• Page table space

10.3.1. Process-Private Space
Supporting process-private address space is a focus of much of the memory management design within
the OpenVMS operating system.

Process-private space, or process space, contains all virtual addresses below PT space. As shown in
Figure 10.2, the layout of process space is further divided into the P0, P1, and P2 spaces. P0 space refers
to the program region. P1 space refers to the control region. P2 space refers to the 64-bit program region.

The P0 and P1 spaces are defined to equate to the P0 and P1 regions defined by the VAX architecture.
Together, they encompass the traditional 32-bit process-private region that ranges from 0.0000000016
to 0.7FFFFFFF16. P2 space encompasses all remaining process space that begins just above P1 space,
0.8000000016, and ends just below the lowest address of PT space.

OpenVMS I64 P2 process space is larger than that of OpenVMS Alpha: 8-TB (-2 GB for P0/P1) for
OpenVMS I64, compared with 4-TB for OpenVMS Alpha.

10.3.2. System Space
64-bit system space refers to the portion of the entire 64-bit virtual address range that is higher than that
which contains PT space. As shown in Figure 10.2, system space is further divided into the S0, S1, and
S2 spaces.

The S0 and S1 spaces are defined to equate to the S0 and S1 regions defined by the VAX
architecture. Together they encompass the traditional 32-bit system space region that ranges from
FFFFFFFF.8000000016 to FFFFFFFF.FFFFFFFF16. S2 space encompasses al remaining system spaces
between the highest address of PT space and the lowest address of the combined S0/S1 space.

OpenVMS I64 S2 process space is larger than that of OpenVMS Alpha: 8-TB (-2 GB for S0/S1) for
OpenVMS I64, compared with 4-TB for OpenVMS Alpha.

S0, S1, and S2 are fully shared by all processes. S0/S1 space expands toward increasing virtual
addresses. S2 space generally expands toward lower virtual addresses.

Addresses within system space can be created and deleted only from code that is executing in kernel
mode. However, page protection for system space pages can be set up to allow any less privileged access
mode read and write access.

System space base is controlled by the S2_SIZE system parameter. S2_SIZE is the number of
megabytes to reserve for S2 space. The default value is based on the sizes required by expected
consumers of 64-bit (S2) system space. Consumers set up by OpenVMS at boot time are the page
frame number (PFN) database and the global page table. (For more information about setting system
parameters with SYSGEN, see the VSI OpenVMS System Management Utilities Reference Manual,
Volume 2: M-Z.

316

Chapter 10. Overview of Alpha and I64 Virtual Address Space

The global page table, also known as the GPT, and the PFN database reside in the lowest-addressed
portion of S2 space. By implementing the GPT and PFN database in S2 space, the size of these areas
is not constrained to a small portion of S0/S1 space. This allows OpenVMS to support large physical
memories and large global sections.

10.3.3. Page Table Space
Page tables are addressed primarily within 64-bit PT space. Page tables refer to this virtual address range;
they are not in 32-bit shared system address space.

The dotted line in Figure 10.2 marks the boundary between process-private space and shared space.
This boundary is in PT space and further serves as the boundary between the process-private page table
entries and the shared page table entries. Together, these sets of entries map the entire address space
available to a given process. PT space is mapped to the same virtual address for each process, typically a
very high address such as FFFFFFFC.0000000016.

I64 has two page table spaces, one for process private in region 0 and one for system space in region 7.
If you use only supported interfaces to manage page table entries, this distinction is not visible. However,
any code that attempts to compute the page table entry address "by hand" for a given virtual address is
not guaranteed to work.

10.3.4. Virtual Address Space Size
Both the Alpha and Intel Itanium architectures support 64-bit addresses.

The Alpha architecture requires that all implementations must use or check all 64 bits of a virtual address
during the translation of a virtual address into a physical memory address. However, implementations
of the Alpha architecture are allowed to materialize a subset of the virtual address space. Current Alpha
hardware implementations support 43 significant bits within a 64-bit virtual address. This results in an 8-
TB address space.

On current Alpha architecture implementations, bit 42 within a virtual address must be sign-extended or
propagated through bit 63 (the least significant bit is numbered from 0). Virtual addresses where bits 42
through 63 are not all zeros or all ones result in an access violation when referenced. Therefore, the valid
8-TB address space is partitioned into two disjoint 4-TB ranges separated by a no access range in the
middle.

The layout of the OpenVMS Alpha address space transparently places this no access range within P2
space. (The OpenVMS Alpha memory management system services always return virtually contiguous
address ranges.) The result of the OpenVMS Alpha address space layout design is that valid addresses in
P2 space can be positive or negative values when interpreted as signed 64-bit integers.

Current OpenVMS I64 implementations support 44 significant bits for up to 8-TB of process space and
8-TB of system space. However, bit 42 within a virtual address need not be sign-extended or propagated
through bit 63, and there is no gap in the I64 P2 space.

The Intel Itanium 64-bit virtual address space is divided into eight virtual regions that are identified by
region IDs (RIDs). (These regions are distinct from, and not related to, the OpenVMS virtual regions
described in Section 10.4). The 8-TB process space is in Region 0 and includes P0/P1, P2, and the
process page table space. The 8-TB system space is in region 7 and includes S0/S1, S2, and the system
page table space.

The Intel Itanium virtual address regions are not currently exposed to OpenVMS system services.

317

Chapter 10. Overview of Alpha and I64 Virtual Address Space

Note that to preserve 32-bit nonprivileged code compatibility, bit 31 in a valid 32-bit virtual address can
still be used to distinguish an address in P0/P1 space from an address in S0/S1 space.

10.4. Virtual Regions
A virtual region is a reserved range of process-private virtual addresses. It may be either a user-
definedvirtual region reserved by the user program at run time or a process-permanent virtual region
reserved by the system on behalf of the process during process creation.

Three process-permanent virtual regions are defined by OpenVMS at the time the process is created:

• Program region (in P0 space)

• Control region (in P1 space)

• 64-bit program region (in P2 space)

These three process-permanent virtual regions exist so that programmers do not have to create virtual
regions if their application does not need to reserve additional ranges of address space.

Virtual regions promote modularity within applications by allowing different components of the
application to manipulate data in different virtual regions. When a virtual region is created, the caller
of the service is returned a region ID to identify that virtual region. The region ID is used when
creating, manipulating, and deleting virtual addresses within that region. Different components within an
application can create separate virtual regions so that their use of virtual memory does not conflict.

Virtual regions exhibit the following characteristics.

• A virtual region is a light-weight object. That is, it does not consume pagefile quota or working
set quota for the virtual addresses specified. Creating a user-defined virtual region by calling a new
OpenVMS system service merely defines a virtual address range as a distinct address object within
which address space can be created, manipulated, and deleted.

• Virtual regions do not overlap. When creating address space within a virtual region, the programmer
must specify a region ID to the OpenVMS system service. The programmer must specify the virtual
region in which the address space is to be created.

• The programmer cannot create, manipulate, or delete address space that does not lie entirely within
the bounds of a defined virtual region.

• Each user-defined virtual region's size is fixed at the time it is created. Given the large range of
virtual addresses in P2 space and the light-weight nature of virtual regions, it is not costly to reserve
more address space than the application component immediately needs within that virtual region.

Note the exception of process-permanent regions, which have no fixed size.

The 64-bit program virtual region is the only virtual region whose size is not fixed when it is created.
At process creation, the 64-bit program region encompasses all of P2 space. When a user-defined
virtual region is created in P2 space, OpenVMS memory management shrinks the 64-bit program
region so that no two regions overlap. When a user-defined virtual region is deleted, the 64-bit
program region expands to encompass the virtual addresses within the deleted virtual region if no
other user-defined virtual region exists at lower virtual addresses.

• Each virtual region has an owner mode and a create mode associated with it. Access modes that are
less privileged than the owner of the virtual region cannot delete the virtual region. Access modes

318

Chapter 10. Overview of Alpha and I64 Virtual Address Space

that are less privileged than the create mode set for the virtual region cannot create virtual addresses
within the virtual region. Owner and create modes are set at the time the virtual region is created and
cannot be changed. The create mode for a virtual region cannot be more privileged than the owner
mode.

• When virtual address space is created within a virtual region, allocation generally occurs within the
virtual region in a densely expanding manner, as is done within the program (P0 space) and control
(P1 space) regions. At the time it is created, each virtual region is set up for the virtual addresses
within that virtual region to expand toward either increasing virtual addresses, like P0 space, or
decreasing virtual addresses, like P1 space. Users can override this allocation algorithm by explicitly
specifying starting addresses.

• All user-defined virtual regions are deleted along with the pages created within each virtual region at
image rundown.

10.4.1. Regions Within P0 Space and P1 Space
There is one process-permanent virtual region for all of P0 space that starts at virtual address 0 and
ends at virtual address 0.3FFFFFFF16. This is called the program region. There is also one process-
permanent region for all of P1 space that starts at virtual address 0.4000000016 and ends at virtual
address 0.7FFFFFFF16. This is called the control region.

The program and control regions are considered to be owned by kernel mode and have a create mode of
user, because user mode callers can create virtual address space within these virtual regions.

These program and control regions cannot be deleted. They are considered to be process-permanent.

10.4.2. 64-Bit Program Region
P2 space has a densely expandable virtual region starting at the lowest virtual address of P2 space,
0.8000000016. This region is called the 64-bit program region. Having a 64-bit program region in
P2 space allows an application that does not need to take advantage of explicit virtual regions to avoid
incurring the overhead of creating a virtual region in P2 space. This virtual region always exists, so
addresses can be created within P2 space immediately.

As described in Section 10.4.3, a user can create a virtual region in otherwise unoccupied P2 space. If
the user-defined virtual region is specified to start at the lowest address of the 64-bit program region,
then any subsequent attempt to allocate virtual memory within the region will fail.

The region has a user create mode associated with it;that is, any access mode can create virtual address
space within it.

The 64-bit program region cannot be deleted. It is considered to be process-permanent and survives
image rundown. Note that all created address space within the 64-bit program region is deleted and the
region is reset to encompass all of P2 space as a result of image rundown.

10.4.3. User-Defined Virtual Regions
A user-defined virtual region is a virtual region created by calling the new OpenVMS
SYS$CREATE_REGION_64 system service. The location at which a user-defined virtual region is
created is generally unpredictable. In order to maximize the expansion room for the 64-bit program
region, OpenVMS memory management allocates virtual regions starting at the highest available virtual
address in P2 space that is lower than any existing user-defined virtual region.

319

Chapter 10. Overview of Alpha and I64 Virtual Address Space

For maximum control of the process-private address space, the application programmer can specify the
starting virtual address when creating a virtual region. This is useful in situations when it is imperative
that the user be able to specify exact virtual memory layout.

Virtual regions can be created so that allocation occurs with either increasing addresses or decreasing
virtual addresses. This allows applications with stack like structures to create virtual address space and
expand naturally.

Virtual region creation gives OpenVMS subsystems and the application programmer the ability to
reserve virtual address space for expansion. For example, an application can create a large virtual region
and then create some virtual addresses within that virtual region. Later, when the application requires
more virtual address space, it can expand within the virtual region and create more address space in a
virtually contiguous manner to the previous addresses allocated within that virtual region.

Virtual regions can also be created within P0 and P1 space by specifying VA$M_P0_SPACE or
VA$M_P1_SPACE in the flags argument to the SYS$CREATE_REGION_64 service.

If you do not explicitly delete a virtual region with the SYS$DELETE_REGION_64 system service, the
user-defined virtual region along with all created address space is deleted when the image exits.

320

Chapter 11. Support for 64-Bit
Addressing (Alpha and I64 Only)
This chapter describes the following features that support 64-bit addressing:

• System services, descriptors, and item lists

• RMS interfaces

• File systems

• OpenVMS Alpha and OpenVMS I64 64-bit API guidelines

• OpenVMS Alpha and OpenVMS I64 tools and utilities

• Language and pointers

• VSI C RTLs

For information about MACRO-32 programming support for 64-bit addressing, see VSI OpenVMS
MACRO Compiler Porting and User's Guide.

11.1. System Services Support for 64-Bit
Addressing
This chapter describes the OpenVMS Alpha and OpenVMS I64 system services that support 64-bit
addressing and VLM. It explains the changes made to 32-bit services to support 64-bit addresses, and it
lists the 64-bit system services.

To see examples of system services that support 64-bit addressing in an application program, refer to
Appendix B. For complete information about the OpenVMS system services listed in this chapter, see
the VSI OpenVMS System Services Reference Manual: A-GETUAI and VSI OpenVMS System Services
Reference Manual: GETUTC-Z.

11.1.1. System Services Terminology
The following system services definitions are used throughout this guide.

32-bit system service

A 32-bit system service is a system service that only supports 32-bit addresses on any of its arguments
that specify addresses. If passed by value, on OpenVMS Alpha and OpenVMS I64 a 32-bit virtual
address is actually a 64-bit address that is sign-extended from 32 bits.

64-bit friendly interface

A 64-bit friendly interface is an interface that can be called with all 64-bit addresses. A 32-bit system
service interface is 64-bit friendly if it needs no modification to handle 64-bit addresses. The internal
code that implements the system service might need modification, but the system service interface will
not.

321

Chapter 11. Support for 64-Bit Addressing (Alpha and I64 Only)

Examples of 64-bit friendly system services are $QIO, $SYNCH, $ENQ, and $FAO.

Examples of routines with 64-bit unfriendly interfaces are most of the memory management system
services, such as $CRETVA, $DELTVA, and $CRMPSC. The INADR and RETADR argument arrays
do not promote easily to hold 64-bit addresses.

64-bit system service

A 64-bit system service is a system service that is defined to accept all address arguments as 64-bit
addresses (not necessarily 32-bit, sign-extended values). Also, a 64-bit system service uses the entire 64
bits of all virtual addresses passed to it.

The 64-bit system services include the _64 suffix for services that accept 64-bit addresses by reference.
For promoted services, this distinguishes the 64-bit capable version from its 32-bit counterpart. For
new services, it is a visible reminder that a 64-bit wide address cell will be read/written. This is also
used when a structure is passed that contains an embedded 64-bit address, if the structure is not self-
identifying as a 64-bit structure. Hence, a routine name need not include “_64” simply because it
receives a 64-bit descriptor. Remember that passing an arbitrary value by reference does not mean the
suffix is required; passing a 64-bit address by reference does.

11.1.2. Comparison of 32-Bit and 64-Bit Descriptors
This section describes 32-bit and 64-bit descriptors. Descriptors are a mechanism for passing parameters
where the address of a descriptor is an entry in the argument list. Descriptors contain the address of the
parameter, data type, size, and any additional information needed to describe the passed data.

There are two forms of descriptors:

• One form for use with 32-bit addresses

• One form for use with 64-bit addresses

The two forms are compatible, because they can be identified dynamically at run time, and except for the
size and placement of fields, 32-bit and 64-bit descriptors are identical in content and interpretation.

OpenVMS VAX, OpenVMS Alpha, and OpenVMS I64 systems use 32-bit descriptors. When used on
OpenVMS Alpha and OpenVMS I64 systems, 32-bit descriptors provide full compatibility with their
use on OpenVMS VAX. The 64-bit descriptors are used only on OpenVMS Alpha and OpenVMS I64
systems. They have no counterparts and are not recognized on OpenVMS VAX systems.

Figure 11.1 shows the general descriptor format for a 32-bit descriptor.

Figure 11.1. General Format of a 32-Bit Descriptor

Figure 11.2 shows the general descriptor format for a 64-bit descriptor.

322

Chapter 11. Support for 64-Bit Addressing (Alpha and I64 Only)

Figure 11.2. General Format of a 64-Bit Descriptor

When 32-bit descriptors are used on OpenVMS Alpha and OpenVMS I64 systems, they have no
required alignment for compatibility with OpenVMS VAX systems, even though longword alignment
usually promotes better performance. The 64-bit descriptors on OpenVMS Alpha and OpenVMS I64
systems must be quadword aligned.

Table 11.1 shows the fields and meanings for both 32-bit and 64-bit descriptors. Because CLASS and
DTYPE fields occupy the same offsets in both 32-bit and 64-bit descriptors, these two fields have the
same definition, and can contain the same values with the same meanings in both 32-bit and 64-bit
forms.

Table 11.1. Contents of the General Descriptor Format

Field Description

Length The data item length specific to the descriptor class.
MBO In a 64-bit descriptor, this field must contain the value 1. This field overlays

the length field of a 32-bit descriptor and the value 1 is necessary to distinguish
correctly between the two forms.

Dtype A data-type code.
Class A descriptor class code that identifies the format and interpretation of the other

fields of the descriptor.
Pointer The address of the first byte of the data element described.
MBMO In a 64-bit descriptor, this field must contain the value -1 (all 1 bits). This field

overlays the pointer field of a 32-bit descriptor and the value-1 is necessary to
distinguish correctly between the two forms.

For extensive information about 32-bit and 64-bit descriptors, see VSI OpenVMS Programming Concepts
Manual, Volume II. Section 11.4 provides several recommendations and guidelines on implementing 64-
bit descriptors.

It is recommended programming practice to use STR$ Run-Time Library routines when using
descriptors. Using STR$ RTL procedures helps ensure correct operation of complex language features
and enforces consistent operations on data access languages. For example, STR$ANALYZE_SDESC

323

Chapter 11. Support for 64-Bit Addressing (Alpha and I64 Only)

and STR$ANALYZE_SDESC_64 take as input a 32-bit or 64-bit descriptor argument and extract
from the descriptor the length of the data and the address at which the data starts for a variety of string
descriptor classes. For complete information on using STR$ routines, see the VSI OpenVMS RTL String
Manipulation (STR$) Manual.

11.1.3. Comparison of 32-Bit and 64-Bit Item Lists
The following sections describe item lists and compare the 32-bit and 64-bit type of item lists. Item lists
are a mechanism used in OpenVMS system services to pass a list of options and/or data descriptors to
a service. Occasionally, item lists are used elsewhere, such as in a single routine in LIBRTL, but they
are generally considered specific to the OpenVMS system programming interface. They are not in the
OpenVMS Calling Standard.

Item lists that are of the 32-bit type are structures or arrays that consist of one or more item descriptors
and the list of the item is terminated by a longword containing a zero. Each item descriptor is either a
two or three longword structure that contains either three or four fields.

Like 32-bit item lists, 64-bit item lists are structures or arrays that consist of one or more item
descriptors, but unlike the 32-bit item lists, the list of the item is terminated by a quadword containing a
zero, instead of a longword.

Item List Chaining and Segments

An item list is an array structure that occupies contiguous memory. Some system services support item
codes that allow item lists that are non-contiguous and scattered throughout memory to be chained or
linked together. Chained item lists are distinct item lists because they are directly linked. For example,
the NSA$_CHAIN item code of the $AUDIT_EVENT system service specifies the item list to process
immediately after the current one. The buffer address field in the item descriptor specifies the address
of the next item list to be processed. Similarly, the LNM$_CHAIN item code of $CRELNM and
JPI$_CHAIN item code of $GETJPI system services, point to another item list that the respective system
service is to process immediately after it has processed the current item list.

Item lists of 32-bits and 64-bits can be chained together.

Item list segments are the elements that get linked together to form item lists.

11.1.3.1. 32-Bit Item Lists

Item lists do not have a formal definition. As a result, there is some variance in their use, but nearly
every use consists of a list of one of two forms, referred to as the following:

• item_list_2

• item_list_3

In both forms, an item code typically identifies the data item to be set or fetched, and a buffer length and
address describe the buffer to be read from or written to. The item codes are specific to the facility being
called.

Figure 11.3 shows the format of the item_list_2 item list.

324

Chapter 11. Support for 64-Bit Addressing (Alpha and I64 Only)

Figure 11.3. Item_list_2 Format

Figure 11.4 shows the format of the item_list_3 item list.

Figure 11.4. Item_list_3 Format

The following table defines the fields for 32-bit item list entries:

Field Description

Buffer length A word containing a user-supplied integer specifying the length (in bytes) of
the buffer in which the service is to write the information. The length of the
buffer needed depends on the item code specified in the item code field of
the item descriptor.

Item code A word containing a user-supplied symbolic code specifying the item of
information that a service is to return.

Buffer address A longword containing the user-supplied 32-bit address of the buffer in
which a service is to write the information.

Return length address A longword containing the user-supplied 32-bit address of a word in which a
service writes the length (in bytes) of the information it actually returned.

You typically use the item_list_3 format when the list describes a series of data items to be returned.
This format includes a return length address longword, which is the address of a location in which to
write the (word) length of data actually written to the buffer.

For item_list_3 entries, you can set the Return Length Address field to point to the Buffer Length field
in the item list entry itself. As a result, the "descriptor-like"portion of the entry is updated by the routine
returning the value.

11.1.3.2. 64-Bit Item Lists
To maintain a degree of compatibility with the 32-bit item lists, 64-bit item lists mirror the definition of
64-bit descriptors.

The names of 32-bit item lists (item_list_2 and item_list_3), which expose the number of longwords in
the structure in the name itself, do not apply to 64-bit item lists. The 64-bit versions (item_list_64a and
item_list_64b) do not include an element count.

Figure 11.5 shows the format of the item_list_64a item list.

325

Chapter 11. Support for 64-Bit Addressing (Alpha and I64 Only)

Figure 11.5. Item_list_64a Format

Figure 11.6 shows the format of the item_list_64b item list.

Figure 11.6. Item_list_64b Format

The following table defines the item descriptor fields for 64-bit item list entries:

Field Description

MBO The field must contain a 1. The MBO and MBMO fields are used to
distinguish 32-bit and 64-bit item list entries.

Item code A word containing a user-supplied symbolic code that describes the
information in the buffer or the information to be returned to the buffer,
pointed to by the buffer address field.

MBMO The field must contain a -1. The MBMO and MBO fields are used to
distinguish 32-bit and 64-bit item list entries.

Buffer length A quadword containing a user-supplied integer specifying the length (in
bytes) of the buffer in which a service is to write the information. The length

326

Chapter 11. Support for 64-Bit Addressing (Alpha and I64 Only)

Field Description
of the buffer needed depends on the item code specified in the item code
field of the item descriptor.

Buffer address A quadword containing the user-supplied 64-bit address of the buffer in
which a service is to write the information.

Return length address A quadword containing the user-supplied 64-bit address of a word in which a
service writes the length (in bytes) of the information it actually returned.

Because they contain quadword entries, 64-bit item lists should be quadword aligned. If a misaligned list
is specified, the called routine still functions properly, but a performance penalty results due to alignment
faults.

By maintaining a degree of compatibility between 32-bit and 64-bit item lists, the following advantages
result:

• The 64-bit form is easily distinguished from the 32-bit form by routines receiving themas arguments.

• The item lists continue to demonstrate the behavior that if a 32-bit facility is incorrectly handed as a
64-bit item list, it fails predictably. The buffer address of -1 and the length field of 1 are guaranteed
to result in an access violation. The same result comes from passing a 64-bit item list entry to a
routine expecting a 32-bit string descriptor. Passing a 64-bit item list element to a routine expecting a
64-bit descriptor is as reliable as it is for their 32-bit counterparts.

Section 11.4 provides several recommendations and guidelines on implementing 64-bit item lists.

11.1.4. System Services That Support 64-Bit Addresses
Table 11.2summarizes the OpenVMS Alpha and OpenVMS I64 system services that support 64-bit
addresses.

Although RMS system services provide some 64-bit addressing capabilities, they are not listed in this
table because they are not full 64-bit system services. See Section 11.2 for more details.

Table 11.2. 64-Bit System Services

Service Arguments

Alignment System Services

$GET_ALIGN_FAULT_DATA buffer_64, buffer_size, return_size_64
$GET_SYS_ALIGN_FAULT_DATA buffer_64, buffer_size, return_size_64
$INIT_SYS_ALIGN_FAULT_REPORT match_table_64, buffer_size, flags
AST System Service
$DCLAST astadr_64, astprm_64, acmode
Condition Handling System Services

$FAO ctrstr_64, outlen_64, outbuf_64, p1_64...pn_64
$FAOL ctrstr_64, outlen_64, outbuf_64, long_prmlst_64
$FAOL_64 ctrstr_64, outlen_64, outbuf_64, quad_prmlst_64
$GETMSG msgid, msglen_64, bufadr_64, flags, outadr_64
$PUTMSG msgvec_64, actrtn_64, facnam_64, actprm_64
$SIGNAL_ARRAY_64 mcharg, sigarg_64

327

Chapter 11. Support for 64-Bit Addressing (Alpha and I64 Only)

Service Arguments

CPU Scheduling System Services

$CPU_CAPABILITIES cpu_id, select_mask, modify_mask, prev_mask, flags
$CPU_TRANSITION(W) tran_code, cpu_id, nodename, node_id, flags, efn, iosb,

astadr_64, astprm_64
$FREE_USER_CAPABILITY cap_num, prev_mask, flags
$GET_USER_CAPABILITY cap_num, select_num, select_mask, prev_mask, flags
$PROCESS_AFFINITY pidadr, prcnam, select_mask, modify_mask, prev_mask,

flags
$PROCESS_CAPABILITIES pidadr, prcnam, select_mask, modify_mask, prev_mask,

flags
$SET_IMPLICIT_AFFINITY pidadr, prcnam, state, cpu_id, prev_mask
Event Flag System Service
$READEF efn, state_64
Fast-I/O System Services

$IO_CLEANUP fandle
$IO_PERFORM fandle, chan, iosadr, bufadr, buflen, porint
$IO_PERFORMW fandle, chan, iosadr, bufadr, buflen, porint
$IO_SETUP func, bufobj, iosobj, astadr, flags, return_fandle
Intra-Cluster Communications System Services

SYS$ICC_ACCEPT conn_handle, accept_buf, accept_len, user_context, flags
SYS$ICC_CONNECT(W) ios_icc, astadr, astprm, assoc_handle, conn_handle,

remote_assoc, remote_node, user_context, conn_buf,
conn_buf_len, return_buf, return_buf_len, retlen_addr,
flags

SYS$ICC_DISCONNECT(W) conn_handle, iosb, astadr, astprm, disc_buf, disc_buf_len
SYS$ICC_OPEN_ASSOC asoc_handle, assoc_name, logical_name, logical_table,

conn_event_rtn, disc_event_rtn, recv_rtn, maxflowbufcut,
prot

SYS$ICC_RECEIVE(W) conn_handle, ios_icc, astadr, astprm, recv_buf,
recv_buf_len

SYS$ICC_REJECT conn_handle, reject_buf, reject_buf_len, reason
SYS$ICC_REPLY(W) conn_handle, ios_icc, astadr, astprm, reply_buf, reply_len
SYS$ICC_TRANSCEIVE(W) conn_handle, ios_icc, astadr, astprm, send_buf, send_len
SYS$ICC_TRANSMIT(W) conn_handle, ios_icc, astadr, astprm, send_buf, send_len
I/O System Services

$ASSIGN devnam, chan, acmode, mbxnam, flags
$QIO(W)1 efn, chan, func, iosb_64, astadr_64, astprm_64, p1_64,

p2_64, p3_64, p4_64, p5_64, p6_64
$SYNCH efn, iosb_64
Locking System Services

328

Chapter 11. Support for 64-Bit Addressing (Alpha and I64 Only)

Service Arguments

$DEQ lkid, vablk_64, acmode, flags
$ENQ(W) efn, lkmode, lksb_64, flags, resnam_64, parid, astadr_64,

astprm_64, blkast_64, acmode
Logical Name System Services

$CRELNM attr, tabnam, lognam, acmode, itmlst
$CRELNT ttr, resnam, reslen, quota, promsk, tabnam, partab, acmode
$DELLNM tabnam, lognam, acmode
$TRNLNM attr, tabnam, lognam, acmode, itmlst
Memory Management System Services

$ADJWSL pagcnt, wsetlm_64
$CREATE_BUFOBJ_64 start_va_64, length_64, acmode, flags, return_va_64,

return_length_64, return_buffer_handle_64
$CREATE_GDZRO gsdnam_64, ident_64, prot, length_64, acmode, flags, ...
$CRMPSC_GDZRO_64 gsdnam_64, ident_64, prot, length_64, region_id_64,

section_offset_64, acmode, flags, return_va_64,
return_length_64, ...

$CREATE_GFILE gsdnam_64, ident_64, file_offset_64, length_64, chan,
acmode, flags, return_length_64, ...

$CREATE_GPFILE gsdnam_64, ident_64, prot, length_64, acmode, flags
$CREATE_GPFN gsdnam_64, ident_64, prot, start_pfn, page_count,

acmode, flags
$CREATE_REGION_64 length_64, region_prot, flags, return_region_id_64,

return_va_64, return_length_64, ...
$CRETVA_64 region_id_64, start_va_64, length_64, acmode, flags,

return_va_64, return_length_64
$CRMPSC_FILE_64 region_id_64, file_offset_64, length_64, chan, acmode,

flags, return_va_64, return_length_64, ...
$CRMPSC_GFILE_64 gsdnam_64, ident_64, file_offset_64, length_64, chan,

region_id_64, section_offset, acmode, flags, return_va_64,
return_length_64, ...

$CRMPSC_GPFILE_64 gsdnam_64, ident_64, prot, length_64, region_id_64,
section_offset_64, acmode, flags, return_va_64,
return_length_64, ...

$CRMPSC_GPFN_64 gsdnam_64, ident_64, prot, start_pfn, page_count,
region_id_64, relative_page, acmode, flags, return_va_64,
return_length_64, ...

$CRMPSC_PFN_64 region_id_64, start_pfn, page_count, acmode, flags,
return_va_64, return_length_64, ...

$DELETE_BUFOBJ buffer_handle_64
$DELETE_REGION_64 region_id_64, acmode, return_va_64, return_length_64
$DELTVA_64 region_id_64, start_va_64, length_64, acmode,

return_va_64, return_length_64

329

Chapter 11. Support for 64-Bit Addressing (Alpha and I64 Only)

Service Arguments

$DGBLSC flags, gsdnam_64, ident_64
$EXPREG_64 region_id_64, length_64, acmode, flags, return_va_64,

return_length_64
$GET_REGION_INFO function_code, region_id_64, start_va_64, ,buffer_length,

buffer_address_64, return_length_64
$LCKPAG_64 start_va_64, length_64, acmode, return_va_64,

return_length_64
$LKWSET_64 start_va_64, length_64, acmode, return_va_64,

return_length_64
$MGBLSC_64 gsdnam_64, ident_64, region_id_64, section_offset_64,

length_64, acmode, flags, return_va_64,
return_length_64, ...

$MGBLSC_GPFN_64 gsdnam_64, ident_64, region_id_64, relative_page,
page_count, acmode, flags, return_va_64,
return_length_64, ...

$PURGE_WS start_va_64, length_64
$SETPRT_64 start_va_64, length_64, acmode, prot, return_va_64,

return_length_64, return_prot_64
$ULKPAG_64 start_va_64, length_64, acmode, return_va_64,

return_length_64
$ULWSET_64 start_va_64, length_64, acmode, return_va_64,

return_length_64
$UPDSEC_64(W) start_va_64, length_64, acmode, updflg, efn, iosa_64,

return_va_64, return_length_64, ...
Process Control System Services

$GETJPI(W) efn, pidadr, prcnam, itmlst, iosb, astadr, astprm
$PROCESS_SCAN pidctx, itmlst
$WAKE pidadr, prcnam
Time System Services

$ASCTIM timlen, timbuf, timadr, cvtflg
$ASCUTC timlen, timbuf, utcadr, cvtflg
$BINTIM timbuf, timadr
$BINUTC timbuf, utcadr
$CANTIM reqidt_64, acmode
$GETTIM timadr_64
$GETUTC utcadr
$NUMTIM timbuf, timadr
$NUMUTC timbuf, utcadr
$SETIME timadr
$SETIMR efn, daytim_64, astadr_64, reqidt_64, flags
$TIMCON timadr, utcadr, cvtflg

330

Chapter 11. Support for 64-Bit Addressing (Alpha and I64 Only)

Service Arguments

Other System Services

$ASCTOID name, id, attrib
$CLEAR_UNWIND_TABLE code_base_va
$CMEXEC_64 routine_64, quad_arglst_64
$CMKRNL_64 routine_64, quad_arglst_64
$FINISH_RDB context
$GETSYI(W) efn, csidadr, nodename, itmlst, iosb, astadr, astprm
$GET_UNWIND_ENTRY_INFO pc, get_ue_block, name
$GOTO_UNWIND_64 target_invo, target_pc, [NewRetVal], [NewRetVal2]
$IDTOASC id, namlen, nambuf, resid, attrib, contxt
$SET_UNWIND_TABLE code_base_va, code_size, ut_base_va, ut_size, gp_value,

unwind_info_base, name
1For more information about the $QIO(W) arguments that support 64-bit addressing, see Writing OpenVMS Alpha Device Drivers in C, and VSI
OpenVMS Alpha Guide to Upgrading Privileged-Code Applications.

11.1.5. Sign-Extension Checking
OpenVMS system services not listed in Table 11.2and all user-written system services that are not
explicitly enhanced to accept 64-bit addresses will receive sign-extension checking. Any argument passed
to these services that is not properly sign-extended will cause the error status SS$_ARG_GTR_32_BITS
to be returned.

11.1.6. Language Support for 64-Bit System Services
C function prototypes for system services are available in SYS$LIBRARY:SYS$STARLET_C.TLB (or
STARLET).

No 64-bit MACRO-32 macros are available for system services. The MACRO-32 caller must use
the AMACRO built-in EVAX_CALLG_64 or the $CALL64 macro. For more information about
MACRO-32 programming support for 64-bit addressing, see VSI OpenVMS MACRO Compiler Porting
and User's Guide.

11.2. RMS Interface Features for 64-Bit
Addressing
This section summarizes features that support 64-bit addressing and enable you to use RMS to perform
input and output operations to P2 or S2 space. You can take full advantage of these RMS features by
making only minor modifications to existing RMS code.

For complete information about RMS support for 64-bit addressing, see the VSI OpenVMS Record
Management Services Reference Manual.

The RMS user interface consists of a number of control data structures (FAB, RAB, NAM, XABs).
These are linked together with 32-bit pointers and contain embedded pointers to I/O buffers and various
user data buffers, including file name strings and item lists. RMS support for 64-bit addressable regions
allows 64-bit addresses for the following user I/O buffers:

• UBF (user record buffer)

331

Chapter 11. Support for 64-Bit Addressing (Alpha and I64 Only)

• RBF (record buffer)

• RHB (fixed-length record header buffer; fixed portion of VFC record format)

• KBF (key buffer containing the key value for random access)

The prompt buffer pointed to by RAB$L_PBF is excluded because the terminal driver does not allow
64-bit addresses.

Specific features of the RMS interface for 64-bit addressing are as follows:

• Data buffers can be placed in P2 or S2 space for the following user I/O services:

• Record I/O services: $GET, $FIND, $PUT, $UPDATE

• Block I/O services: $READ, $WRITE

• The RAB structure points to the record and data buffers used by these services.

• An extension of the existing RAB structure is used to specify 64-bit buffer pointers and sizes.

• The buffer size maximum for RMS block I/O services ($READ and $WRITE) is 2 GB, with two
exceptions:

• For RMS journaling, a journaled $WRITE service is restricted to the current maximum (65535
minus 99 bytes of journaling overhead). An RSZ error is returned to RAB$L_STS if the
maximum is exceeded.

• Magnetic tape is still limited to 65535 bytes at the device driver level.

The rest of the RMS interface currently is restricted to 32-bit pointers:

• FAB, RAB, NAM, and XABs must still be allocated in 32-bit space.

• Any descriptors or embedded pointers to file names, item lists, and so on, must continue to use 32-
bit pointers.

• Any arguments passed to the RMS system services remain 32-bit arguments. If you attempt to pass a
64-bit argument, the SS$_ARG_GTR_32_BITS error is returned.

11.2.1. RAB64 Data Structure
The RAB64, a RMS user interface structure, is an extended RAB that can accommodate 64-bit buffer
addresses. The RAB64 data structure consists of a 32-bit RAB structure followed by a 64-bit extension.

The RAB64 contains fields identical to all of the RAB fields except that field names have the RAB64
prefix instead of the RAB prefix. In addition, RAB64 has the following fields in the extension:

332

Chapter 11. Support for 64-Bit Addressing (Alpha and I64 Only)

This field... Is an extension of
this field

Description

RAB64$Q_CTX RAB64$L_CTX User context. This field is not used by RMS but is available
to the user. The CTX field is often used to contain a pointer.
For asynchronous I/O, it provides the user with the equivalent
of an AST parameter.

RAB64$PQ_KBF RAB64$L_KBF Key buffer address containing the key value for random
access (for $GET and $FIND).

RAB64$PQ_RBF RAB64$L_RBF Record buffer address (for $PUT, $UPDATE, and $WRITE).
RAB64$PQ_RHB RAB64$L_RHB Record header buffer address (fixed portion of VFC record

format).
RAB64$Q_RSZ RAB64$W_RSZ Record buffer size.
RAB64$PQ_UBF RAB64$L_UBF User buffer address (for $GET and $READ).
RAB64$Q_USZ RAB64$W_USZ User buffer size.

Note that the fields with the PQ tag in their names can hold either a 64-bit address or a 32-bit address
sign-extended to 64 bits. Therefore, you can use the fields in all applications whether or not you are
using 64-bit addresses.

For most record I/O service requests, there is an RMS internal buffer between the device and the user's
data buffer. The one exception occurs with the RMS service $PUT. If the device is a unit record device
and it is not being accessed over the network, RMS passes the address of the user record buffer (RBF)
to the $QIO system service. If you inappropriately specify a record buffer (RBF) allocated in 64-bit
address space for a $PUT to a unit record device that does not support 64-bit address space (for example,
a terminal), the $QIO service returns SS$_NOT64DEVFUNC. (See Writing OpenVMS Alpha Device
Drivers in C and VSI OpenVMS Alpha Guide to Upgrading Privileged-Code Applications for more
information about $QIO.) RMS returns the error status RMS$_SYS with SS$_NOT64DEVFUNC as the
secondary status value in RAB64$L_STV.

RMS system services support the RAB structure as well as the RAB64 structure.

11.2.2. Using the 64-Bit RAB Extension
Only minimal source code changes are required for applications to use 64-bit RMS support.

RMS allows you to use the RAB64 wherever you can use a RAB. For example, you can use RAB64 in
place of a RAB as the first argument passed to any of the RMS record or block I/O services.

Because the RAB64 is an upwardly compatible extension of the existing RAB, most source modules
can treat references to fields in a RAB64 as if they were references to a RAB. The 64-bit buffer address
counterpart is used by the source module only if the following two conditions are met:

• The RAB64$B_BLN field has been initialized to RAB64$C_BLN64 to show that the extension is
present.

• The 32-bit address field in the 32-bit portion of the RAB contains -1.

The source module uses the value in the quadword size field only if the contents of the 32-bit address
field designate its use. For example:

If this address field contains -1 The address in this field is used And the size in this field is used

RAB64$L_UBF RAB64$PQ_UBF1 RAB64$Q_USZ

333

Chapter 11. Support for 64-Bit Addressing (Alpha and I64 Only)

If this address field contains -1 The address in this field is used And the size in this field is used

RAB64$L_RBF RAB64$PQ_RBF 1 RAB64$Q_RSZ
RAB64$L_KBF RAB64$PQ_KBF RAB64$B_KSZ
RAB64$L_RHB RAB64$PQ_RHB FAB$B_FSZ

1This field can contain either a 64-bit address or a 32-bit address sign-extended to 64 bits.

While RMS allows you to use the RAB64 wherever you can use a RAB, some source languages may
impose other restrictions. Consult the documentation for your source language for more information.

11.2.3. Macros to Support User RAB Structure
The following MACRO-32 and BLISS macros support the 64-bit extension to the user RAB structure:

• MACRO-32 macros

• $RAB64 (counterpart to $RAB)

• $RAB64_STORE (counterpart to $RAB_STORE)

Using these macros has the following results:

• RAB$B_BLN is assigned the constant of RAB$C_BLN64.

• The original longword I/O buffers are initialized to -1, and the USZ and RSZ word sizes are
initialized to 0.

• Values specified using the UBF, USZ, RBF, RSZ, RHB, or KBF keywords are moved into the
quadword fields for these keywords. (In contrast, the $RAB and $RAB_STORE macros move
these values into the longword [or word] fields for these keywords).

• BLISS macros

The following BLISS macros are available only in the STARLET.R64 library because they use the
QUAD keyword, which is available only to BLISS-64. Thus, any BLISS routines referencing them
must be compiled using the BLISS-64 compiler.

• $RAB64 (counterpart to $RAB)

• $RAB64_INIT (counterpart to $RAB_INIT)

• $RAB64_DECL (counterpart to $RAB_DECL)

Using the first two macros has these results:

• RAB$B_BLN is assigned the constant of RAB$C_BLN64.

• The original longword I/O buffers are initialized to -1, and the USZ and RSZ word sizes are
initialized to 0.

• Values assigned to the keywords UBF, USZ, RBF, RSZ, RHB, or KBF are moved into the
quadword fields for these keywords. (In contrast, the $RAB and $RAB_INIT macros move
these values into the longword [or word] fields for these keywords).

The third macro allocates a block structure of bytes with a length of RAB$C_BLN64.

334

Chapter 11. Support for 64-Bit Addressing (Alpha and I64 Only)

11.3. File System Support for 64-Bit
Addressing
The Extended QIO Processor (XQP) file system, which implements the Files-11 On-Disk Structure
Level 2 (ODS-2), and the Magnetic Tape Ancillary Control Process (ACP) both provide support for the
use of 64-bit buffer addresses for virtual read and write functions.

The XQP and ACP translate a virtual I/O request to a file into one or more logical I/O requests to a
device. Because the buffer specified with the XQP or ACP request is passed on to the device driver, the
support for buffers in P2 or S2 space is also dependent on the device driver used by the XQP and ACP.

All OpenVMS supplied disk and tape drivers support 64-bit addresses for data transfers to and from disk
and tape devices on the virtual, logical, and physical read and write functions. Therefore, the XQP and
Magnetic Tape ACP support buffers in P2 or S2 space on the virtual read and write functions.

The XQP and ACP do not support buffer addresses in P2 or S2 space on the control functions
(IO$_ACCESS, IO$_DELETE, IO$_MODIFY, and so on).

For more information about device drivers that support 64-bit buffer addresses, see Writing OpenVMS
Alpha Device Drivers in C.

11.4. OpenVMS Alpha and OpenVMS I64 64-
Bit API Guidelines
This section describes the guidelines used to develop 64-bit interfaces to support OpenVMS Alpha and
OpenVMS I64 64-bit virtual addressing. Application programmers who are developing their own 64-bit
application programming interfaces (APIs) might find this information useful.

These recommendations are not hard and fast rules. Most are examples of good programming practices.

For more information about C pointer pragmas, see the VSI C User Manual [https://
docs.vmssoftware.com/vsi-c-user-s-guide-for-openvms-systems/].

11.4.1. Quadword/Longword Argument Pointer
Guidelines
Because OpenVMS Alpha and OpenVMS I64 64-bit addressing support allows application programs to
access data in 64-bit address spaces, pointers that are not 32-bit sign-extended values(64-bit pointers)
will become more common within applications. Existing 32-bit APIs will continue to be supported, and
the existence of 64-bit pointers creates some potential pitfalls that programmers must be aware of.

For example, 64-bit addresses may be inadvertently passed to a routine that can handle only a 32-bit
address. Another dimension of this would be a new API that includes 64-bit pointers embedded in data
structures. Such pointers might be restricted to point to 32-bit address spaces initially, residing within the
new data structure as a sign-extended 32-bit value.

Routines should guard against programming errors where 64-bit addresses are being passed instead of
32-bit addresses. This type of checking is called sign-extension checking, which means that the address
is checked to ensure that the upper 32 bits are all zeros or all ones, matching the value of bit 31. This
checking can be performed at the routine interface that is imposing this restriction.

335

https://docs.vmssoftware.com/vsi-c-user-s-guide-for-openvms-systems/
https://docs.vmssoftware.com/vsi-c-user-s-guide-for-openvms-systems/
https://docs.vmssoftware.com/vsi-c-user-s-guide-for-openvms-systems/

Chapter 11. Support for 64-Bit Addressing (Alpha and I64 Only)

When defining a new routine interface, you should consider the ease of programming a call to
the routine from a 32-bit source module. You should also consider calls written in all OpenVMS
programming languages, not just those languages initially supporting 64-bit addressing. To avoid
promoting awkward programming practices for the 32-bit caller of a new routine, you should
accommodate 32-bit callers as well as 64-bit callers.

Arguments passed by reference that are restricted to reside in a
32-bit address space (P0/P1/S0/S1) should have their reference
addresses sign-extension checked.

The OpenVMS Calling Standard requires that 32-bit values passed to a routine be sign-extended to 64-
bits before the routine is called. Therefore, the called routine always receives 64-bit values. A 32-bit
routine cannot tell if its caller correctly called the routine with a 32-bit address, unless the reference to
the argument is checked for sign-extension.

This sign-extension checking would also apply to the reference to a descriptor when data is being passed
to a routine by descriptor.

The called routine should return the error status SS$_ARG_GTR_32_BITS if the sign-extension check
fails.

Alternately, if you want the called routine to accept the data being passed in a 64-bit location without
error and if the sign-extension check fails, the data can be copied by the called routine to a 32-bit address
space. The 32-bit address space to which the routine copies the data can be local routine storage (that is,
the current stack). If the data is copied to a 32-bit location other than local storage, memory leaks and
reentrancy issues must be considered.

When new routines are developed, pointers to code and all data pointers passed to the new routines
should be accommodated in 64-bit address spaces where possible. This is desirable even if the data is
a routine or is typically considered static data, which the programmer, compiler, or linker would not
normally put in a 64-bit address space. When code and static data is supported in 64-bit address spaces,
this routine should not need additional changes.

32-bit descriptor arguments should be validated to be 32-bit
descriptors.

Routines that accept descriptors should test the fields that allow you to distinguish the 32-bit and 64-bit
descriptor forms. If a 64-bit descriptor is received, the routine should return an error.

Most existing 32-bit routines will return or signal the error status SS$_ACCVIO when incorrectly
presented with a 64-bit descriptor for the following reasons:

• The 64-bit form of a descriptor contains an MBO (must be one) word at offset 0, where the 32-bit
descriptor LENGTH is located, and

• An MBMO (must be minus one) longword at offset 4, where the 32-bit descriptor's POINTER is
located, as shown in the following figure:

336

Chapter 11. Support for 64-Bit Addressing (Alpha and I64 Only)

Routines that accept arguments passed by 64-bit descriptors
should accommodate 32-bit descriptors as well as 64-bit
descriptors.
New routines should accommodate 32-bit and 64-bit descriptors within the same routine. The same
argument can point to either a 32-bit or 64-bit descriptor. The 64-bit descriptor MBO word at offset 0
should be tested for 1, and the 64-bit descriptor MBMO longword at offset 4 should be tested for a -1 to
distinguish between a 64-bit and 32-bit descriptor.

Consider an existing 32-bit routine that is being converted to handle 64-bit as well as 32-bit descriptors.
If the input descriptor is determined to be a 64-bit descriptor, the data being pointed to by the 64-bit
descriptor can first be copied to a 32-bit memory location, then a 32-bit descriptor would be created
in 32-bit memory. This new 32-bit descriptor can then be passed to the existing 32-bit code, so that no
further modifications need to be made internally to the routine.

32-bit item list arguments should be validated to be 32-bit item
lists.
Two forms of item lists are defined: item_list_2 and item_list_3. The item_list_2 form of an item list
consists of two longwords with the first longword containing a length and item code fields, while the
second longword typically contains a buffer address.

The item_list_3 form of an item list consists of three longwords with the first longword containing a
length and item code fields, while the second and third longwords typically contain a buffer address and
a return length address field.

Since two forms of 32-bit item lists exist, two forms of a 64-bit item list are defined. Dubbed
item_list_64a and item_list_64b, these item list forms parallel their 32-bit counterparts. Both forms of
item list contain the MBO and MBMO fields at offsets 0 and 4 respectively. They also each contain a
word-sized item code field, a quadword-sized length field, and a quadword-sized buffer address field.
The item_list_64b form of an item list contains an additional quadword for the return length address
field. The returned length is 64-bits.

Routines that accept item lists should test the fields that allow you to distinguish the 32-bit and 64-bit
item list forms. If a 64-bit item list is received, the routine should return an error.

Most existing 32-bit routines will return or signal the error status SS$_ACCVIO when incorrectly
presented with a 64-bit item list for the following reasons:

337

Chapter 11. Support for 64-Bit Addressing (Alpha and I64 Only)

• The 64-bit form of an item list contains an MBO (must be one) word at offset 0, where the 32-bit
item list LENGTH is located, and

• An MBMO (must be minus one) longword at offset 4, where the 32-bit item list's BUFFER
ADDRESS is located as shown in Figure 11.7 and Figure 11.8.

Figure 11.7. item_list_64a

Figure 11.8. item_list_64b

Routines that accept arguments passed by 64-bit item list
arguments should accommodate 32-bit item lists as well as 64-bit
item lists.

New routines should accommodate 32-bit and 64-bit item lists within the same routine. The same
argument can point to either a 32-bit or 64-bit item list. The 64-bit item list MBO word at offset 0
should be tested for 1, and the 64-bit item list MBMO longword at offset 4 should be tested for a -1 to
distinguish between a 64-bit and 32-bit item list.

338

Chapter 11. Support for 64-Bit Addressing (Alpha and I64 Only)

Avoid passing pointers by reference.

If passing a pointer by reference is necessary, as with certain memory management routines, the pointer
should be defined to be 64-bit wide.

Mixing 32-bit and 64-bit pointers can cause programming errors when the caller incorrectly passes a 32-
bit wide pointer by reference when a 64-bit wide pointer is expected.

If the called routine reads a 64-bit wide pointer that was allocated only one longword by the
programmer, the wrong address could be used by the routine.

If the called routine returns a 64-bit pointer, and therefore writes a 64-bit wide address into a longword
allocated by the programmer, data corruption can occur.

Existing routines that are passed pointers by reference require new interfaces for 64-bit support. Old
routine interfaces would still be passed the pointer in a 32-bit wide memory location and the new routine
interface would require that the pointer be passed in a 64-bit wide memory location. Keeping the same
interface and passing it 64-bit wide pointers would break existing programs.

Example: The return virtual address used in the SYS$CRETVA_64 service is an example of when it is
acceptable to pass a pointer by reference. Virtual addresses created in P0 and P1 space are guaranteed
to have only 32 bits of significance, however all 64 bits are returned. SYS$CRETVA_64 can also create
address space in 64-bit space and thus return a 64-bit address. The value that is returned must always be
64 bits because a 64-bit address can be returned.

Memory allocation routines should return the pointer to the data allocated by value (that is, in R0), if
possible. The C allocation routines, malloc, calloc, and realloc are examples of this.

New interfaces for routines that are not memory management routines should avoid defining output
arguments to receive addresses. Problems will arise whenever a 64-bit subsystem allocates memory
and then returns a pointer back to a 32-bit caller in an output argument. The caller may not be able to
support or express a 64-bit pointer. Instead of returning a pointer to some data, the caller should provide
a pointer to a buffer and the called routine should copy the data into the user's buffer.

A 64-bit pointer passed by reference should be defined by the programmer in such a way that a call to
the routine can be written in a 64-bit language or a 32-bit language. It should be clearly indicated that a
64-bit pointer is required to be passed by all callers.

Routines must not return 64-bit addresses unless they are
specifically requested.

It is extremely important that routines that allocate memory and return an address to their callers always
allocate 32-bit addressable memory, unless it is known absolutely that the caller is capable of handling
64-bit addresses. This is true for both function return values and output parameters. This rule prevents
64-bit addresses from creeping in to applications that do not expect them. As a result, programmers
developing callable libraries should be particularly careful to follow this rule.

Suppose an existing routine returns the address of memory it has allocated, such as the routine value. If
the routine accepts an input parameter that in some way allows it to determine that the caller is 64-bit
capable, it is safe to return a 64-bit address. Otherwise, it must continue to return a 32-bit, sign-extended
address. In the latter case, a new version of the routine could be provided, which 64-bit callers could
invoke instead of the existing version if they prefer that 64-bit memory be allocated.

339

Chapter 11. Support for 64-Bit Addressing (Alpha and I64 Only)

Example: The routines in LIBRTL that manipulate string descriptors can be sure that a caller is 64-bit
capable if the descriptor passed in is in the new 64-bit format. As a result, it is safe for them to allocate
64-bit memory for string data, in that case. Otherwise, they will continue to use only 32-bit addressable
memory.

Avoid embedded pointers in data structures in public interfaces.
If embedded pointers are necessary for a new structure in a new interface, provide storage within the
structure for a 64-bit pointer (quadword aligned).The called routine, which may have to read the pointer
from the structure, simply reads all 64 bits.

If the pointer must be a 32-bit, sign-extended address (for example, because the pointer will be passed to
a 32-bit routine) a sign-extension check should be performed on the 64-bit pointer at the entrance to the
routine. If the sign-extension check fails, the error status SS$_ARG_GTR_32_BITS may be returned to
the caller, or the data in a 64-bit address space may be copied to a 32-bit address space.

The new structure should be defined by the programmer in such a way that a 64-bit caller or a 32-bit
caller does not contain awkward code. The structure should provide a quadword field for the 64-bit caller
overlaid with two longword fields for the 32-bit caller. The first of these longwords is the 32-bit pointer
field and the next is an MBSE (must be sign-extension) field. For most 32-bit callers, the MBSE field
will be zero because the pointer will be a 32-bit process space address. The key here is to define the
pointer as a 64-bit value and make it clear to the 32-bit caller that the full quadword must be filled in.

In the following example, both 64-bit and 32-bit callers would pass a pointer to the blockstructure
and use the same function prototype when calling the function routine. (Assume data is an unknown
structure defined in another module).

#pragma required_pointer_size save
#pragma required_pointer_size 32

typedef struct block {
 int blk_l_size;
 int blk_l_flags;
 union {
#pragma required_pointer_size 64
 struct data *blk_pq_pointer;
#pragma required_pointer_size 32
 struct {
 struct data *blk_ps_pointer;
 int blk_l_mbse;
 } blk_r_long_struct;
 } blk_r_pointer_union;
 } BLOCK;

#define blk_pq_pointer blk_r_pointer_union.blk_pq_pointer
#define blk_r_long_struct blk_r_pointer_union.blk_r_long_struct
#define blk_ps_pointer blk_r_long_struct.blk_ps_pointer
#define blk_l_mbse blk_r_long_struct.blk_l_mbse

/* Routine accepts 64-bit pointer to the "block" structure */
#pragma required_pointer_size 64
int routine(struct block*);

#pragma required_pointer_size restore

For an existing 32-bit routine specifying an input argument, which is a structure that embeds a pointer,
you can use a different approach to preserve the existing 32-bit interface. You can develop a 64-bit form
of the data structure that is distinguished from the 32-bit form of the structure at run time. Existing code
that accepts only the 32-bit form of the structure should automatically fail when presented with the 64-
bit form.

340

Chapter 11. Support for 64-Bit Addressing (Alpha and I64 Only)

The structure definition for the new 64-bit structure should contain the 32-bit form of the structure.
Including the 32-bit form of the structure allows the called routine to declare the input argument as a
pointer to the 64-bit form of the structure and cleanly handle both cases.

Two different function prototypes can be provided for languages that provide type checking. The default
function prototype should specify the argument as a pointer to the 32-bit form of the structure. The
programmer can select the 64-bit form of the function prototype by defining a symbol, specified by
documentation.

The 64-bit versus 32-bit descriptor is an example of how this can be done.

Example: In the following example, the state of the symbol FOODEF64 selects the 64-bit form of the
structure along with the proper function prototype. If the symbol FOODEF64 is undefined, the old 32-
bit structure is defined and the old 32-bit function prototype is used.

The source module that implements the function foo_print would define the symbol FOODEF64
and be able to handle calls from 32-bit and 64-bit callers. The 64-bit caller would set the field
foo64$l_mbmo to -1. The routine foo_print would test the field foo64$l_mbmo for -1 to
determine if the caller used either the 64-bit form of the structure or the 32-bit form of the structure.

#pragma required_pointer_size save
#pragma required_pointer_size 32

typedef struct foo {
 short int foo$w_flags;
 short int foo$w_type;
 struct data * foo$ps_pointer;
 } FOO;

#ifndef FOODEF64

/* Routine accepts 32-bit pointer to "foo" structure */
int foo_print(struct foo * foo_ptr);

#endif

#ifdef FOODEF64

typedef struct foo64 {
 union {
 struct {
 short int foo64$w_flags;
 short int foo64$w_type;
 int foo64$l_mbmo;
#pragma required_pointer_size 64
 struct data * foo64$pq_pointer;
#pragma required_pointer_size 32
 } foo64$r_foo64_struct;
 FOO foo64$r_foo32;
 } foo64$r_foo_union;
 } FOO64;

#define foo64$w_flags foo64$r_foo_union.foo64$r_foo64_struct.foo64$w_flags
#define foo64$w_type foo64$r_foo_union.foo64$r_foo64_struct.foo64$w_type
#define foo64$l_mbmo foo64$r_foo_union.foo64$r_foo64_struct.foo64$l_mbmo
#define foo64$pq_pointer foo64$r_foo_union.foo64$r_foo64_struct.foo64$pq_pointer
#define foo64$r_foo32 foo64$r_foo_union.foo64$r_foo32

/* Routine accepts 64-bit pointer to "foo64" structure */
#pragma required_pointer_size 64
int foo_print(struct foo64 * foo64_ptr);

341

Chapter 11. Support for 64-Bit Addressing (Alpha and I64 Only)

#endif

#pragma required_pointer_size restore

In the previous example, if the structures foo and foo64 will be used interchangeably within the same
source module, you can eliminate the symbol FOODEF64. The routine foo_print would then be defined
as follows:

int foo_print (void * foo_ptr);

Eliminating the FOODEF64 symbol allows 32-bit and 64-bit callers to use the same function prototype;
however less strict type checking is then available during the C source compilation.

11.4.2. OpenVMS Alpha, OpenVMS VAX, and OpenVMS
I64 Guidelines
The following sections provide guidelines about using arguments on OpenVMS Alpha, OpenVMS VAX,
and OpenVMS I64 systems.

Only address, size, and length arguments should be passed as
quadwords by value.

Arguments passed by value are restricted to longwords on VAX. To be compatible with VAX APIs,
quadword arguments should be passed by reference instead of by value. However, addresses, sizes and
lengths are examples of arguments which, because of the architecture, could logically be longwords on
OpenVMS VAX and quadwords on OpenVMS Alpha and OpenVMS I64.

Even if the API will not be available on OpenVMS VAX, this guideline should still be followed for
consistency across all APIs.

Avoid page size dependent units.

Arguments such as lengths and offsets should be represented in units that are page size independent,
such as bytes.

A pagelet is an awkward unit. It was invented for compatibility with VAX and is used on OpenVMS
Alpha and OpenVMS I64 within OpenVMS VAX compatible interfaces. A pagelet is equivalent in size
to a VAX page and should not be considered a page size independent unit because it is often confused
with a CPU-specific page on Alpha and OpenVMS I64.

Example: Length_64 argument in EXPREG_64 is passed as a quadword byte count by value.

Naturally align all data passed by reference.

The called routine should specify to the compiler that arguments are aligned, and the compiler
can perform more efficient load and store sequences. If the data is not naturally aligned, users will
experience performance penalties.

If the called routine can execute incorrectly because the data passed by reference is not naturally aligned,
the called routine should do explicit checking and return an error if not aligned. For example, if a load/
locked, store/conditional is being done internally in the routine on the data, and the data is not aligned,
the load/locked, store/conditional will notwork properly.

342

Chapter 11. Support for 64-Bit Addressing (Alpha and I64 Only)

11.4.3. Promoting an API from a 32-Bit API to
a 64-Bit API
For ease of use, it is best to separate promoting an API from improving the 32-bit design or adding new
functionality. Calling a routine within the new 64-bit API should be an easy programming task.

64-bit routines should accept 32-bit forms of structures as well as
64-bit forms.
To make it easy to modify calls to an API, the 32-bit form of a structure should be accepted by the
interface as well as the 64-bit form.

Example: If the 32-bit API passed information by descriptor, the new interface should pass the same
information by descriptor.

64-bit routines should provide the same functionality as the 32-bit
routines.
An application currently calling the 32-bit API should be able to completely upgrade to calling the 64-bit
API without having to preserve some of the old calls to the old 32-bit API just because the new 64-bit
API is not a functional superset of the old API.

Example: SYS$EXPREG_64 works for P0, P1 and P2 process space. Callers can replace all calls to
SYS$EXPREG since SYS$EXPREG_64 is a functional superset of $EXPREG.

Use the suffix “_64” when appropriate.
For system services, this suffix is used for routines that accept 64-bit addresses by reference. For
promoted routines, this distinguishes the 64-bit capable version from its 32-bit counterpart. For new
routines, it is a visible reminder that a 64-bit wide address cell will be read/written. This is also used
when a structure is passed that contains an embedded 64-bit address, if the structure is not self-
identifying as a 64-bit structure. Hence, a routine name need not include "_64" simply because it receives
a 64-bit descriptor. Remember that passing an arbitrary value by reference does not mean the suffix is
required, passing a 64-bit address by reference does.

This practice is recommended for other routines as well.

Examples:

SYS$EXPREG_64 (region_id_64, length_64, acmode, return_va_64, return_length_64)
SYS$CMKRNL_64 (routine_64, quad_arglst_64)

11.4.4. Example of a 32-Bit Routine and a 64-Bit
Routine
The following example illustrates a 32-bit routine interface that has been promoted to support 64-bit
addressing. It handles several of the issues addressed in the guidelines.

The C function declaration for an old system service SYS$CRETVA looks like the following:

#pragma required_pointer_size save

343

Chapter 11. Support for 64-Bit Addressing (Alpha and I64 Only)

#pragma required_pointer_size 32
int sys$cretva (
 struct _va_range * inadr,
 struct _va_range * retadr,
 unsigned int acmode);
#pragma required_pointer_size restore

The C function declaration for a new system service SYS$CRETVA_64 looks like the following:

#pragma required_pointer_size save
#pragma required_pointer_size 64
int sys$cretva_64 (
 struct _generic_64 * region_id_64,
 void * start_va_64,
 unsigned __int64 length_64,
 unsigned int acmode,
 void ** return_va_64,
 unsigned __int64 * return_length_64);
#pragma required_pointer_size restore

The new routine interface for SYS$CRETVA_64 corrects the embedded pointers within the
_va_range structure, passes the 64-bit region_id_64 argument by reference and passes the 64-bit
length_64 argument by value.

11.5. OpenVMS Alpha and OpenVMS I64 Tools
and Utilities That Support 64-Bit Addressing
This section briefly describes the following OpenVMS Alpha and OpenVMS I64 tools that support 64-
bit virtual addressing:

• OpenVMS Debugger

• System-code debugger

• XDELTA

• LIB$ and CVT$ facilities of the OpenVMS Run-Time Library

• Watchpoint utility (The Watchpoint utility has not been ported to OpenVMS I64).

• SDA

11.5.1. OpenVMS Debugger
On OpenVMS Alpha and OpenVMS I64 systems, the Debugger can access the extended memory made
available by 64-bit addressing support. You can examine and manipulate data in the complete 64-bit
address space.

You can examine a variable as a quadword by using the option Quad, which is on the Typecast menu of
both the Monitor pull-down menu and the Examine dialog box.

The default type for the debugger is longword, which is appropriate for debugging 32-bit applications.
You should change the default type to quadword for debugging applications that use the 64-bit address
space. To do this, use the SET TYPE QUADWORD command.

344

Chapter 11. Support for 64-Bit Addressing (Alpha and I64 Only)

Note that hexadecimal addresses are 16-digit numbers on Alpha and OpenVMS I64. For example:

DBG> EVALUATE/ADDRESS/HEX %hex 000004A0
00000000000004A0
DBG>

The debugger supports 32-bit and 64-bit pointers.

For more information about using the OpenVMS Debugger, see the VSI OpenVMS Debugger Manual.

11.5.2. OpenVMS Alpha System-Code Debugger
The OpenVMS Alpha system-code debugger accepts 64-bit addresses and uses full 64-bit addresses to
retrieve information.

11.5.3. Delta/XDelta
XDELTA supports 64-bit addressing on OpenVMS Alpha and OpenVMS I64. Quadword display mode
displays full quadwords of information. 64-bit address display mode accepts and displays all addresses as
64-bit quantities.

XDELTA has predefined command strings for displaying the contents of the PFN database.

For more information about Delta/XDelta, see the VSI OpenVMS Delta/XDelta Debugger Manual.

11.5.4. LIB$ and CVT$ Facilities of the OpenVMS Run-
Time Library
For more information about 64-bit addressing support for the LIB$ and CVT$ facilities of the
OpenVMS RTL library, refer to the OpenVMS RTL Library (LIB$) Manual.

11.5.5. Watchpoint Utility
The Watchpoint utility is a debugging tool that maintains a history of modifications that are made to
a particular location in shared system space by setting watchpoints on 64-bit addresses. It watches any
system address, whether in S0, S1, or S2 space.

A $QIO interface to the Watchpoint utility supports 64-bit addresses. The WATCHPOINT command
interpreter (WP) issues $QIO requests to the WATCHPOINT driver(WPDRIVER) from commands that
follow the standard rules of DCL grammar.

Enter commands at the WATCHPOINT> prompt to set, delete, and obtain information from
watchpoints. Before invoking the WATCHPOINT command interpreter (WP) or loading the
WATCHPOINT driver, you must set the SYSGENMAXBUF dynamic parameter to 64000, as follows:

$ RUN SYS$SYSTEM:SYSGEN
SYSGEN> SET MAXBUF 64000
SYSGEN> WRITE ACTIVE
SYSGEN> EXIT

Before invoking WP, you must install the WPDRIVER with SYSMAN, as follows:

$ RUN SYS$SYSTEM:SYSMAN
SYSMAN> IO CONNECT WPA0/DRIVER=SYS$WPDRIVER/NOADAPTER

345

Chapter 11. Support for 64-Bit Addressing (Alpha and I64 Only)

SYSMAN> EXIT

You can then invoke WP with the following command:

$ RUN SYS$SYSTEM:WP

Now you can enter commands at the WATCHPOINT> prompt to set, delete, and obtain information
from watchpoints.

You can best view the WP help screens as well as the output to the Watchpoint utility using a terminal
set to 132 characters, as follows:

$ SET TERM/WIDTH=132

11.5.6. SDA
SDA allows a user to specify 64-bit addresses and 64-bit values in expressions. It also displays full 64-bit
values where appropriate.

The following commands have been enhanced or are new in OpenVMS Version 8.2 for I64 use.

• EVALUATE

• EXAMINE

• FORMAT

• READ

• SET CPU

• SHOW

• CALL_FRAME

• CPU

• CRASH

• DEVICE

• EXCEPTION_FRAME

• EXECUTIVE

• PAGE_TABLE

• PARAMETER

• PROCESS

• SWIS

• UNWIND

For more information about using SDA 64-bit addressing support, see the VSI OpenVMS System Analysis
Tools Manual.

346

Chapter 11. Support for 64-Bit Addressing (Alpha and I64 Only)

11.6. Language and Pointer Support for 64-Bit
Addressing
Full support in VSI C and the VSI C Run-Time Library (RTL) for 64-bit addressing make C the
preferred language for programming 64-bit applications, libraries, and system code for OpenVMS Alpha
and OpenVMS I64. The 64-bit pointers can be seamlessly integrated into existing C code, and new 64-
bit applications can be developed, with natural C coding styles, that take advantage of the 64-bit address
space provided by OpenVMS Alpha and OpenVMS I64.

Support for all 32-bit pointer sizes (the default), all 64-bit pointer sizes, and the mixed 32-bit and 64-bit
pointer size environment provide compatibility as well as flexibility for programming 64-bit OpenVMS
applications in VSI C.

The ANSI-compliant, #pragma approach for supporting the mixed 32-bit and 64-bit pointer environment
is common to Tru64 UNIX. Features of 64-bit C support include memory allocation routine name
mapping (transparent support for _malloc64 and _malloc32) and C-type checking for 32-bit versus 64-
bit pointer types.

The OpenVMS Calling Standard describes the techniques used by all OpenVMS languages for
invoking routines and passing data between them. The standard also defines the mechanisms that ensure
consistency in error and exception handling routines.

The OpenVMS Calling Standard provides the following support for 64-bit addresses:

• Called routines can start to use complete 64-bit addresses.

• Callers can pass either 32-bit or 64-bit pointers.

• Pointers passed by reference often require a new 64-bit variant of the original routine.

• Self-identifying structures, such as those defined for descriptors and item lists, enable an existing API
to be enhanced compatibly.

OpenVMS Alpha and OpenVMS I64 64-bit addressing support for mixed pointers also includes the
following features:

• OpenVMS Alpha and OpenVMS I64 64-bit virtual address space layout that applies to all processes.
(There are no special 64-bit processes or 32-bit processes).

• 64-bit pointer support for addressing the entire 64-bit OpenVMS Alpha and OpenVMS I64 address
space layout including P0, P1, and P2 address spaces and S0/S1, S2, and page table address spaces.

• 32-bit pointer compatibility for addressing P0, P1, and S0/S1 address spaces.

• 64-bit system services that support P0, P1, and P2 space addresses.

• 32-bit sign-extension checking for all arguments passed to 32-bit, pointer- only system services.

• C and MACRO-32 macros for handling 64-bit addresses.

11.7. VSI C RTL Support for 64-Bit Addressing
OpenVMS Alpha and I64 64-bit virtual addressing support makes the 64-bit virtual address space
defined by the Alpha and Itanium architectures available to both the OpenVMS operating system and

347

Chapter 11. Support for 64-Bit Addressing (Alpha and I64 Only)

its users. It also allows per-process virtual addressing for accessing dynamically mapped data beyond
traditional 32-bit limits.

The VSI C Run-Time Library on OpenVMS Alpha and OpenVMS I64 systems includes the following
features in support of 64-bit pointers:

• Guaranteed binary and source compatibility of existing programs

• No impact on applications that are not modified to exploit 64-bit support

• Enhanced memory allocation routines that allocate 64-bit memory

• Widened function parameters to accommodate 64-bit pointers

• Dual implementations of functions that need to know the pointer size used by the caller

• Information available to the VSI C compiler to seamlessly call the correct implementation

• Ability to explicitly call either the 32-bit or 64-bit form of functions for applications that mix pointer
sizes

• A single shareable image for use by 32-bit and 64-bit applications

See the VSI C Run-Time Library Reference Manual for OpenVMS Systems [https://
docs.vmssoftware.com/vsi-c-run-time-library-reference-manual-for-openvms-systems/] for a description
of the 64-bit addressing support provided by the VSI C Run-Time Library.

348

https://docs.vmssoftware.com/vsi-c-run-time-library-reference-manual-for-openvms-systems/
https://docs.vmssoftware.com/vsi-c-run-time-library-reference-manual-for-openvms-systems/
https://docs.vmssoftware.com/vsi-c-run-time-library-reference-manual-for-openvms-systems/

Chapter 12. Memory Management
Services and Routines on OpenVMS
Alpha and OpenVMS I64
This chapter describes the use of memory management system services and run-time routines on Alpha
and I64 systems. Although the operating system's memory management concepts are much the same on
VAX, Alpha, and I64 systems, details of the memory management system are different. These details
may be critical to certain uses of the operating system's memory management system services and
routines on an Alpha and I64 system.

12.1. Virtual Page Sizes
On Alpha systems, in order to facilitate memory protection and mapping, the virtual address space is
subdivided into segments of 8 KB, 16 KB, 32 KB, or 64 KB sizes called CPU-specific pages. On VAX
systems, the page sizes are 512 bytes. Intel Itanium processors support a range of page sizes to assist
operating systems to virtually map system resources. All Intel Itanium processors support page sizes of 4
KB, 8 KB, 16 KB, 64 KB, 256 KB, 1 MB, 4 MB, 16 MB, 64 MB, and 256 MB. For compatibility with
OpenVMS Alpha systems, OpenVMS I64 uses the 8 KB page size by default. (Larger default page sizes
may be used in future versions of OpenVMS).

Wherever possible, the Alpha and I64 system's versions of the system services and run-time library
routines that manipulate memory attempt to preserve compatibility with the VAX system's services and
routines. The Alpha and I64 system's versions of the routines that accept page count values as arguments
still interpret these arguments in 512-byte quantities, which are called pagelets to distinguish them from
CPU-specific page sizes. The routines convert pagelet values into CPU-specific pages. The routines that
return page count values convert from CPU-specific pages to pagelets, so that return values expected by
applications are still measured in the same 512-byte units.

This difference in page size does not affect memory allocation using higher-level routines, such as run-
time library routines that manipulate virtual memory zones or language-specific memory allocation
routines such as the malloc and free routines in C.

To determine system page size, you make a call to the SYS$GETSYI system service, specifying the
SYI$_PAGE_SIZE item code. See the description of SYS$GETSYI and SYI$_PAGE_SIZE in the VSI
OpenVMS System Services Reference Manual for details.

12.2. Levels of Memory Allocation Routines
Sophisticated software systems must often create and manage complex data structures. In these systems,
the size and number of elements are not always known in advance. You can tailor the memory allocation
for these elements by using dynamic memory allocation. By managing the memory allocation, you can
avoid allocating fixed tables that may be too large or too small for your program. Managing memory
directly can improve program efficiency. By allowing you to allocate specific amounts of memory,
the operating system provides a hierarchy of routines and services for memory management. Memory
allocation and deallocation routines allow you to allocate and free storage within the virtual address
space available to your process.

There are three levels of memory allocation routines:

1. Memory management system services

349

Chapter 12. Memory Management Services and Routines on OpenVMS Alpha and OpenVMS I64

The memory management system services comprise the lowest level of memory allocation routines.
64-bit services include, but are not limited to, the following:

• SYS$CREATE_BUFOBJ_64 (Creates a buffer object)

• SYS$CRMPSC_GDZRO_64 (Create and Map to Global Demand-Zero Section)

• SYS$CREATE_REGION_64 (Create Virtual Region)

• SYS$CRETVA_64 (Create Virtual Address Space)

• SYS$CRMPSC_FILE_64 (Create and Map Private Disk File Section)

• SYS$CRMPSC_GFILE_64 (Create and Map Global Disk File Section)

• SYS$CRMPSC_GPFILE_64 (Create and Map Global Page File Section)

• SYS$CRMPSC_GPFN_64 (Create and Map Global Page Frame Section)

• SYS$CRMPSC_PFN_64 (Create and Map Private Page Frame Section)

• SYS$DELETE_REGION_64 (Delete a Virtual Region)

• SYS$DELTVA_64 (Delete Virtual Address Space)

• SYS$DGBLSC (Delete Global Section)

• SYS$EXPREG_64 (Expand Virtual Address Space)

• SYS$LCKPAG_64 (Lock Pages in Memory)

• SYS$LKWSET_64 (Lock Pages in Working Set)

• SYS$MGBLSC_64 (Map to Global Section)

• SYS$MGBLSC_GPFN_64 (Map Global Page Frame Section)

• SYS$PURGE_WS (Purge Working Set)

• SYS$SETPRT_64 (Set Protection on Pages)

• SYS$ULKPAG_64 (Unlock Pages from Memory)

• SYS$ULWSET_64 (Unlock Pages from Working Set)

• SYS$UPDSEC_64(W) (Update Global Section File on Disk)

32-bit services include, but are not limited to, the following:

• SYS$EXPREG (Expand Region)

• SYS$CRETVA (Create Virtual Address Space)

• SYS$DELTVA (Delete Virtual Address Space)

• SYS$CRMPSC (Create and Map Section)350

Chapter 12. Memory Management Services and Routines on OpenVMS Alpha and OpenVMS I64

• SYS$MGBLSC (Map Global Section)

For most cases in which a system service is used for memory allocation, the Expand Region
(SYS$EXPREG or SYS$EXPREG_64) system service is used to create pages of virtual memory.

Because system services provide more control overallocation procedures than RTL routines, you
must manage the allocation precisely. System services provide extensive control over address space
allocation by allowing you to do the following types of tasks:

• Add or delete virtual address space to the process's program region (P0),control region (P1), 64-
bit program region (P2), or user-created virtual region.

• Add or delete virtual address space at a specific range of addresses

• Define memory resident demand-zero sections and map them in to the virtual address space of a
process.

• Increase or decrease the number of pages in a program's working set

• Lock or delete pages of a program's working set in memory

• Lock the entire program's working set in memory (by disabling process swapping)

• Define disk files containing data or shareable images and map the files into the virtual address
space of a process

2. RTL page management routines

The RTL routines exist for creating, deleting, and accessing information about virtual address space.
You can either allocate a specified number of contiguous pages or create a zone of virtual address
space. A zone is a logical unit of the memory pool or subheap that you can control as an independent
area. It can be any size required by your program. Refer to Chapter 14, for more information about
zones.

The RTL page management routines LIBGET_VM_PAGE, LIBGET_VM_PAGE_64,
LIB$FREE_VM_PAGE, and LIB$FREE_VM_PAGE_64 provide a convenient mechanism for
allocating and freeing pages of memory.

These routines maintain a processwide pool of free pages. If unallocated pages are not available
when LIB$GET_VM_PAGE is called, it calls SYS$EXPREG to create the required pages in the
program region (P0 space). For LIB$GET_VM_PAGE_64, if there are not enough contiguous free
pagelets to satisfy an allocation request, additional pagelets are created by calling the system service
SYS$EXPREG_64.

3. RTL heap management routines

The RTL heap management routines LIBGET_VM, LIBGET_VM_64,LIB$FREE_VM, and
LIB$FREE_VM_64 provide a mechanism for allocating and freeing blocks of memory of arbitrary
size.

The following are heap management routines based on the concept of zones:

LIB$CREATE_VM_ZONE
LIB$CREATE_VM_ZONE_64
LIB$CREATE_USER_VM_ZONE

351

Chapter 12. Memory Management Services and Routines on OpenVMS Alpha and OpenVMS I64

LIB$CREATE_USER_VM_ZONE_64
LIB$DELETE_VM_ZONE
LIB$DELETE_VM_ZONE_64
LIB$FIND_VM_ZONE
LIB$FIND_VM_ZONE_64
LIB$RESET_VM_ZONE
LIB$RESET_VM_ZONE_64
LIB$SHOW_VM_ZONE
LIB$SHOW_VM_ZONE_64
LIB$VERIFY_VM_ZONE
LIB$VERIFY_VM_ZONE_64

Modular application programs can call routines in any or all levels of the hierarchy, depending on the
kinds of services the application program needs. You must observe the following basic rule when using
multiple levels of the hierarchy:

Memory that is allocated by an allocation routine at one level of the hierarchy must be freed by calling a
deallocation routine at the same level of the hierarchy. For example, if you allocated a page of memory
by calling LIB$GET_VM_PAGE, you can free it only by calling LIB$FREE_VM_PAGE.

For information about using memory management RTLs, see Chapter 14.

12.3. Using System Services for Memory
Allocation
This section describes how to use system services to perform the following tasks:

• Increase and decrease virtual address space with 64-bit system services

• Increase and decrease virtual address space with 32-bit system services

• Input and return address arrays for the 64-bit system services

• Input and return address arrays for the 32-bit system services

• Control page ownership and protection

• Control working set paging

• Control process swapping

12.3.1. Increasing and Decreasing Virtual Address
Space with 64-Bit System Services
To add address space at the end of P0, P1, P2 or a user created region, use the 64-bit Expand Region
(SYS$EXPREG_64) system service. SYS$EXPREG_64 returns the range of virtual addresses for the
new pages. To add address space in other portions of P0, P1, P2 or user created virtual regions, use
SYS$CRETVA_64.

The format for SYS$EXPREG_64 is as follows:

SYS$EXPREG_64
 region_id_64, length_64, acmode, flags, return_va_64, return_length_64

352

Chapter 12. Memory Management Services and Routines on OpenVMS Alpha and OpenVMS I64

The following example illustrates the addition of 4 pagelets to the 64-bit program region of a process by
writing a call to the SYS$EXPREG_64 system service.

#define __NEW_STARTLET 1
#pragma pointer_size 64

#include <gen64def.h>
#include <stdio.h>
#include <ssdef.h>
#include <starlet.h>
#include <vadef.h>

int main (void) {

 int status;
 GENERIC_64 region_id = {VA$C_P2};
 void * start_va;
 unsigned __int64 length;
 unsigned int pagcnt = 4;

 /* Add 4 pagelets to P0 space */
 status = sys$expreg_64 (®ion_id, pagcnt*512, 0, 0, &start_va,
 &length);
 if ((status&1) != 1)
 LIB$SIGNAL(status);
 else
 printf ("Starting address %016LX Length %016LX'n", start_va,
 length);
}

The value VA$C_P2 is passed in the region_id argument to specify that the pages are to be
added to the 64-bit program region. To add the same number of pages to the 32-bit program region,
you would specify VA$C_P0. To add pages to the control region, you would specify VA$C_P1.
To add pages to a user created virtual region, you would specify the region_id returned by the
SYS$CREATE_REGION_64 system service.

On Alpha and I64 systems the SYS$EXPREG_64 system service can add pagelets only in the direction
of the growth of a particular region.

12.3.2. Increasing and Decreasing Virtual Address
Space with 32-bit System Services
The system services allow you to add address space anywhere within the process's program region (P0)
or control region (P1). To add address space at the end of P0 or P1, use the Expand Program/Control
Region(SYS$EXPREG) system service. SYS$EXPREG optionally returns the range of virtual addresses
for the new pages. To add address space in other portions of P0 or P1, use SYS$CRETVA.

The format for SYS$EXPREG is as follows:

SYS$EXPREG (pagcnt ,[retadr] ,[acmode] ,[region])

Specifying the Number of Pages
Use the pagcnt argument to specify the number of pagelets to add to the end of the region. The Alpha
and I64 systems round the specified pagelet value to the next integral number of pages for the system
where it is executing. To check the exact boundaries of the memory allocated by the system, specify the

353

Chapter 12. Memory Management Services and Routines on OpenVMS Alpha and OpenVMS I64

optional retadrargument. The retadr argument contains the start address and the end address of
the memory allocated by the system service.

Specifying the Access Mode
Use the acmode argument to specify the access to be assigned to the newly created pages.

Specifying the Region
Use the region argument to specify whether to add the pages to the end of the P0 or P1 region.

To deallocate pages allocated with SYS$EXPREG and SYS$CRETVA, use SYS$DELTVA.

For Alpha systems, the following example illustrates the addition of 4 pagelets to the program region of a
process by writing a call to the SYS$EXPREG system service.

#include <stdio.h>
#include <ssdef.h>

main() {
 unsigned int status, retadr[2],pagcnt=4, region=0;

/* Add 4 pages to P0 space */
 status = SYS$EXPREG(pagcnt, &retadr, 0, region);
 if ((status & 1) != 1)
 LIB$SIGNAL(status);
 else
 printf("Starting address: %d Ending address: %d\n",
 retadr[0],retadr[1];
}

The value 0 is passed in the region argument to specify that the pages are to be added to the program
region. To add the same number of pages to the control region, you would specify REGION=1.

Note that the region argument to the SYS$EXPREG service is optional;if it is not specified, the pages
are added to or deleted from the program region by default.

The SYS$EXPREG service can add pagelets only in the direction of the growth of a particular region.
When you need to add pages to the middle of these regions, you can use the Create Virtual Address
Space (SYS$CRETVA) system service. Likewise, when you need to delete pages created by either
SYS$EXPREG or SYS$CRETVA, you can use the Delete Virtual Address Space (SYS$DELTVA)
system service. For example, if you have used the SYS$EXPREG service twice to add pages to the
program region and want to delete the first range of pages but not the second, you could use the
SYS$DELTVA system service, as shown in the following example:

#include <stdio.h>
#include <ssdef.h>

struct {
 unsigned int lower, upper;
}retadr1, retadr2, retadr3;

main() {
 unsigned int status, pagcnt=4, region=0;

/* Add 4 pages to P0 space */

354

Chapter 12. Memory Management Services and Routines on OpenVMS Alpha and OpenVMS I64

 status = SYS$EXPREG(pagcnt, &retadr1, 0, region);
 if ((status & 1) != 1)
 LIB$SIGNAL(status);
 else
 printf("Starting address: %d ending address: %d\n",
 retadr1.lower,retadr1.upper);

/* Add 3 more pages to P0 space */

 pagcnt = 3;
 status = SYS$EXPREG(pagcnt, &retadr2, 0, region);
 if ((status & 1) != 1)
 LIB$SIGNAL(status);
 else
 printf("Starting address: %d ending address: %d\n",
 retadr2.lower,retadr2.upper);

/* Delete original allocation */
 status = SYS$DELTVA(&retadr1, &retadr3, 0);
 if ((status & 1) != 1)
 LIB$SIGNAL(status);
 else
 printf("Starting address: %d ending address: %d\n",
 retadr1.lower,retadr1.upper);

}

In this example, the first call to SYS$EXPREG rounds up the requested pagelet count to an integral
number of CPU-specific pages and adds that number of pages to the program region; the virtual
addresses of the created pages are returned in the 2-longword array at retadr1. The second request
converts the pagelet count to pages, adds them to the program region, and returns the addresses at
retadr2. The call to SYS$DELTVA deletes the area created by the first SYS$EXPREG call.

Caution

Be aware that using SYS$CRETVA presents some risk because it can delete pages that already exist
if those pages are not owned by a more privileged access mode. Further, if those pages are deleted,
notification is not sent. Therefore, unless you have complete control over an entire system, use
SYS$EXPREG or the RTL routines to allocate address space.

Section 12.3.5 mentions some other possible risks in using SYS$CRETVA for allocating memory.

12.3.3. Input Address Arrays and Return Address
Arrays for the 64-Bit System Services
When the SYS$EXPREG_64 system service adds pages to a region, it adds them in the normal direction
of growth for the region. The return address always indicates the lowest-addressed byte in the added
address range. To calculate the highest-addressed byte in the added address range, add the returned
length to the returned address and subtract 1.

When the SYS$DELTVA_64 system service deletes pages from a region, it deletes them in the opposite
direction of growth for the region. The return address always indicates the lowest-addressed byte in
the deleted address range. To calculate the highest-addressed byte in the deleted address range, add the
returned length to the returned address and subtract 1.

355

Chapter 12. Memory Management Services and Routines on OpenVMS Alpha and OpenVMS I64

Table 12.1. Sample Virtual Address Arrays for 64-Bit Services

Start_va Length Return_va Return_length Number of Pages

1010 660 0 2000 1
2450 1 2000 2000 1
4200 6300 4000 8000 4
7FFEC010 90 7FFEC000 2000 1
08000A000 4000 08000A000 4000 2

12.3.4. Input Address Arrays and Return Address
Arrays for the 32-Bit System Services
When the SYS$EXPREG system service adds pages to a region, it adds them in the normal direction of
growth for the region. The return address array, if requested, indicates the order in which the pages were
added. For example:

• If the program region is expanded, the starting virtual address is smaller than the ending virtual
address.

• If the control region is expanded, the starting virtual address is larger than the ending virtual address.

The addresses returned indicate the first byte in the first page that was added or deleted and the last byte
in the last page that was added or deleted, respectively.

When input address arrays are specified for the Create and Delete Virtual Address Space
(SYS$CRETVA and SYS$DELTVA, respectively) system services, these services add or delete pages
beginning with the address specified in the first longword and ending with the address specified in the
second longword.

On Alpha and I64 systems, the order in which the pages are added or deleted does not have to be in the
normal direction of growth for the region. Moreover, because these services add or delete only whole
pages, they ignore the low-order bits of the specified virtual address (the low-order bits contain the byte
offset within the page). Table 12.2 shows the page size and byte offset.

Table 12.2. Page and Byte Offset Within Pages on Alpha and I64 Systems

Page Size (Bytes) Byte Within Page (Bits)

8K 13
16K 14
32K 15
64K 16

Table 12.3 shows some sample virtual addresses in hexadecimal that may be specified as input to
SYS$CRETVA or SYS$DELTVA and shows the return address arrays if all pages are successfully added
or deleted. Table 12.3 assumes a page size of 8 KB = 2000 hex.

356

Chapter 12. Memory Management Services and Routines on OpenVMS Alpha and OpenVMS I64

Table 12.3. Sample Virtual Address Arrays on Alpha and I64 Systems

Input Array Output Array

Start End Region Start End Number of
Pages

1010 1670 P0 0 1FFF 1
2450 2451 P0 2000 3FFF 1
4200 A500 P0 4000 BFFF 4
9450 9450 P0 8000 9FFF 1
7FFEC010 7FFEC010 P1 7FFEDFFF 7FFEC000 1
7FFEC010 7FFEBCA0 P1 7FFEDFFF 7FFEA000 2

For SYS$CRETVA and SYS$DELTVA, note that if the input virtual addresses are the same, as in the
fourth and fifth items in Table 12.3, a single page is added or deleted. The return address array indicates
that the page was added or deleted in the normal direction of growth for the region.

Note that for SYS$CRMPSC and SYS$MGBLSC, which are discussed in Section 12.3.9, the sample
virtual address arrays in Table 12.3 do not apply. The reason is that the lower address value has to be an
even multiple of the machine page size; that is, it must be rounded down to an even multiple page size. In
addition, the higher address value must be one less than the even multiple page size, representing the last
byte on the last page. That is, it must be rounded up to an even multiple page size, minus 1.

The procedure for determining start and end virtual addresses is as follows:

1. Obtain the page size in bytes.

2. Subtract 1 to obtain the byte-with-page mask.

3. Mask the low bits of lower virtual address, which is a round-down operation to round it to the next
lower page boundary.

4. Perform a logical OR operation on the higher virtual address, which is a round-up operation to round
it to the highest address in the last page.

12.3.5. Allocating Memory in Existing Virtual Address
Space on Alpha and I64 Systems Using the 32-Bit
System Service

Note

On Alpha and I64 systems, SYS$CRETVA_64 adds a range of demand-zero allocation pages to a
process's virtual address space for the execution of the current image. The new pages are added at the
virtual address specified by the caller. SYS$CRETVA_64 is the preferred method of adding these pages.

On Alpha and I64 systems, if you reallocate memory that is already in its virtual address space by using
the SYS$CRETVA system service, you may need to modify the values of the following arguments to
SYS$CRETVA:

• If your application explicitly rounds the lower address specified in the inadr argument to be a
multiple of 512 in order to align on a page boundary, you need to modify the address. The Alpha

357

Chapter 12. Memory Management Services and Routines on OpenVMS Alpha and OpenVMS I64

and I64 system's version of the SYS$CRETVA system service rounds down the start address to a
CPU-specific page boundary, which varies with different implementations. It also rounds up the end
address to the last byte in a CPU-specific page boundary.

• The size of the reallocation, specified by the address range in the inadr argument, may be larger
on an Alpha and I64 system than on a VAX system because the request is rounded up to CPU-
specific pages. This can cause the unintended destruction of neighboring data, which may also occur
with single-page allocations. (When the start address and the end address specified in the inadr
argument match, a single page is allocated).

To determine whether you must modify the address as specified in inadr, specify the optional
retadr argument to determine the exact boundaries of the memory allocated by the call to
SYS$CRETVA.

12.3.6. Page Ownership and Protection
Each page in the virtual address space of a process is owned by the access mode that created the page.
For example, pages in the program region that initially provided for the execution of an image are owned
by user mode. Pages that the image creates dynamically are also owned by user mode. Pages in the
control region, except for the pages containing the user stack, are normally owned by more privileged
access modes.

Only the owner access mode or a more privileged access mode can delete the page or otherwise affect it.
The owner of a page can also indicate, by means of a protection code, the type of access that each access
mode will be allowed.

The Set Protection on Pages (SYS$SETPRT or SYS$SETPRT_64) system service changes the
protection assigned to a page or group of pages. The protection is expressed as a code that indicates
the specific type of access (none, read-only, read/write) for each of the four access modes (kernel,
executive, supervisor, user). Only the owner access mode or a more privileged access mode can change
the protection for a page.

When an image attempts to access a page that is protected against the access attempted, a hardware
exception called an access violation occurs. When an image calls a memory management system service,
the service probes the pages to be used to determine whether an access violation would occur if the
image attempts to read or write one of the pages. If an access violation occurs, the service exits with the
status code SS$_ACCVIO.

Because the memory management services add, delete, or modify a single page at a time, one or more
pages can be successfully changed before an access violation is detected. If the retadr argument is
specified in the 32-bit service call, the service returns the addresses of pages changed (added, deleted, or
modified) before the error. If no pages are affected, that is, if an access violation occurs on the first page
specified, the service returns a -1 in both longwords of the return address array.

If the retadr argument is not specified, no information is returned.

The 64-bit system services return the address range (return_va andreturn_length) of the addresses of the
pages changed (added, deleted, or modified) before the error.

12.3.7. Working Set Paging
On Alpha and I64 systems, when a process is executing an image, a subset of its pages resides in physical
memory; these pages are called the working set of the process. The working set includes pages in both
the program region and the control region. The initial size of a process's working set is defined by the

358

Chapter 12. Memory Management Services and Routines on OpenVMS Alpha and OpenVMS I64

process's working set default (WSDEFAULT) quota, which is specified in pagelets. When ample physical
memory is available, a process's working-set upper growth limit can be expanded to its working set
extent (WSEXTENT).

When the image refers to a page that is not in memory, a page fault occurs, and the page is brought into
memory, possibly replacing an existing page in the working set. If the page that is going to be replaced
is modified during the execution of the image, that page is written into a paging file on disk. When this
page is needed again, it is brought back into memory, again replacing a current page from the working
set. This exchange of pages between physical memory and secondary storage is called paging.

The paging of a process's working set is transparent to the process. However, if a program is very large
or if pages in the program image that are used often are being paged in and out frequently, the overhead
required for paging may decrease the program's efficiency. The SYS$ADJWSL, SYS$PURGWS,
SYS$LKWSET, and SYS$LKWSET_64 system services allow a process, within limits, to counteract
these potential problems.

12.3.7.1. SYS$ADJWSL System Service
The Adjust Working Set Limit (SYS$ADJWSL) system service increases or decreases the maximum
number of pages that a process can have in its working set. The format for this routine is as follows:

SYS$ADJWSL ([pagcnt],[wsetlm])

Use the pagcnt argument to specify the number of pagelets to add or subtract from the current
working set size. The system rounds the specified number of pagelets to a multiple of the system's page
size. The new working set size is returned in wsetlm in units of pagelets.

12.3.7.2. SYS$PURGWS System Service
The Purge Working Set (SYS$PURGWS) system service removes one or more pages from the working
set. The format is as follows:

SYS$PURGWS inadr

On Alpha and I64 systems, SYS$PURGE_WS removes a specified range of pages from the current
working set of the calling process to make room for pages required by a new program segment. The
format is as follows:

SYS$PURGE_WS start_va_64 ,length_64

12.3.7.3. SYS$LKWSET and SYS$LKWSET_64 System Services
The Lock Pages in Working Set (SYS$LKWSET) system service makes one or more pages in the
working set ineligible for paging by locking them in the working set. Once locked into the working
set, those pages remain in the working set until they are unlocked explicitly with the Unlock Pages in
Working Set (SYS$ULWSET) system service, or program execution ends. The format is as follows:

SYS$LKWSET (inadr ,[retadr] ,[acmode])

On Alpha and I64 systems, SYS$LKWSET_64 locks a range of virtual addresses in the working set. If
the pages are not already in the working set, the service brings them in and locks them. A page locked in
the working set does not become a candidate for replacement.

SYS$LKWSET_64
 start_va_64 ,length_64 ,acmode ,return_va_64 ,return_length_64

359

Chapter 12. Memory Management Services and Routines on OpenVMS Alpha and OpenVMS I64

12.3.7.4. Specifying a Range of Addresses
Locking a range of pages in the working set is problematic on I64 because the linker generates additional
code that must also be locked and determining the address of that linker code is nontrivial.

The solution, applicable for both Alpha and I64, is to use the LIB$LOCK_IMAGE and
LIB$UNLOCK_IMAGELIBRTL routines to lock the entire image in to the working set. You can
specify an address of a byte within the image to be locked in the working set, or zero for the current
image.

If your privileged program runs on Alpha and I64 and not on VAX, you can remove all the code that
finds the code, data and linkage data and locks these areas in the working set. You can replace this code
with calls to LIB$LOCK_IMAGE and LIB$UNLOCK_IMAGE. These routines are simpler to program
correctly and make your code easier to understand and maintain.

LIB$LOCK_IMAGE and LIB$UNLOCK_IMAGE are preferable to SYS$LKWSET and
SYS$ULKWSET for locking code and related data in the working set. For more information about
locking images in the working set, refer to the VSI OpenVMS RTL Library (LIB$) Manual and to the
descriptions of LIB$LOCK_IMAGE and LIB$UNLOCK_IMAGE in this manual.

12.3.7.5. Specifying a Range of Addresses In OpenVMS Version 8.1
Programs that enter kernel mode and increase IPL to higher than 2 must lock program code and data
in the working set. Locking code and data is necessary to avoid crashing the system with a PGFIPLHI
bugcheck.

On VAX systems, typically only the code and data explicitly referenced by the program need to be
locked. On Alpha, the code, data and linkage data referenced by the program need to be locked. On I64
systems, code, data, short data, and linker generated code need to be locked. To make porting easier and
because the addresses of short data and linker generated data cannot be easily found within an image,
changes were made to the SYS$LKWSET and SYS$LKWSET_64 system services.

As of OpenVMS Alpha Version 8.1 and OpenVMS I64 Version 8.1, the SYS$LKWSET and
SYS$LKWSET_64 system services test the first address passed in. If this address is within an image,
these services attempt to lock the entire image in the working set. If a successful status code is returned,
the program can increase IPL to higher than 2 without crashing the system with a PGFIPLHI bugcheck.

A counter is maintained within the internal OpenVMS image structures that counts the number of times
the image has been successfully locked in the working set. The counter is incremented when locked and
decremented when unlocked. When the counter becomes zero, the entire image is unlocked from the
working set.

If the program's image is too large to be locked in the working set, the status SS$_LKWSETFUL is
returned. If you encounter this status, you can increase the user's working set quota.

12.3.7.6. Specifying a Range of Addresses In OpenVMS Versions
Prior to V8.1
For OpenVMS versions prior to OpenVMS Alpha Version 8.1, you can use the inadr argument
to specify the range of addresses to be locked. SYS$LKWSET rounds the addresses to CPU-specific
page boundaries, if necessary. The range of addresses of the pages actually locked are returned in the
retadr argument.

However, because the Alpha system's instructions cannot contain full virtual addresses, the Alpha
system's images must reference procedures and data indirectly through a pointer to a procedure

360

Chapter 12. Memory Management Services and Routines on OpenVMS Alpha and OpenVMS I64

descriptor. The procedure descriptor contains information about the procedure, including the actual code
address. These pointers to procedure descriptors and data are collected into a program section called a
linkage section. Therefore, it is not sufficient simply to lock a section of code into memory to improve
performance. You must also lock the associated linkage section into the working set.

To lock the linkage section into memory, you must determine the start and end addresses that
encompass the linkage section and pass these addresses as values in the inadr argument to a call
to SYS$LKWSET. For more information about linking, see Migrating to an OpenVMS AXP System:
Recompiling and Relinking Applications. Note that this manual has been archived but is available on the
OpenVMS Documentation Web site at:

http://www.hp.com/go/openvms/doc

12.3.7.7. Specifying the Access Mode
If you use the SYS$LKWSET or SYS$LKWSET_64 system service, use the acmode argument to
specify the access mode to be associated with the pages you want locked.

12.3.8. Process Swapping
The operating system balances the needs of all the processes currently executing, providing each with
the system resources it requires on an as-needed basis. The memory management routines balance the
memory requirements of the process. Thus, the sum of the working sets for all processes currently in
physical memory is called the balance set.

When a process whose working set is in memory becomes inactive—for example, to wait for an I/O
request or to hibernate—the entire working set or part of it may be removed from memory to provide
space for another process's working set to be brought in for execution. This removal from memory is
called swapping.

The working set may be removed in two ways:

• Partially—Also called swapper trimming. Pages are removed from the working set of the target
process so that the number of pages in the working set is fewer, but the working set is not swapped.

• Entirely—Called swapping. All pages are swapped out of memory.

When a process is swapped out of the balance set, all the pages(both modified and unmodified) of its
working set are swapped, including any pages that had been locked in the working set.

A privileged process may lock itself in the balance set. While pages can still be paged in and out of the
working set, the process remains in memory even when it is inactive. To lock itself in the balance set, the
process issues the Set Process Swap Mode(SYS$SETSWM) system service, as follows:

$SETSWM_S SWPFLG=#1

This call to SYS$SETSWM disables process swap mode. You can also disable swap mode by setting
the appropriate bit in the STSFLG argument to the Create Process (SYS$CREPRC) system service;
however, you need the PSWAPM privilege to alter process swap mode.

A process can also lock particular pages in memory with the Lock Pages in Memory (SYS$LCKPAG
or SYS$LCKPAG_64) system service. These pages are forced into the process's working set if they
are not already there. When pages are locked in memory with these services, the pages remain in
memory even when the remainder of the process's working set is swapped out of the balance set. These
remaining pages stay in memory until they are unlocked with SYS$ULKPAG or SYS$ULKPAG_64.

361

Chapter 12. Memory Management Services and Routines on OpenVMS Alpha and OpenVMS I64

The SYS$LCKPAG and SYS$LCKPAG_64 system services can be useful in special circumstances, for
example, for routines that perform I/O operations to devices without using the operating system's I/O
system.

On Alpha and I64 systems, if you are attempting to lock executable code with $LCKPAG, you should
examine if locking these pages in the working set is more correct. See the descriptions of $LKWSET
and LIB$LOCK_IMAGE.

You need the PSWAPM privilege to issue the SYS$LCKPAG, SYS$LCKPAG_64, SYS$ULKPAG, or
SYS$ULKPAG_64 system service.

12.3.9. Sections
A section is a disk file or a portion of a disk file containing data or instructions that can be brought into
memory and made available to a process for manipulation and execution. A section can also be one or
more consecutive page frames in physical memory or I/O space; such sections, which require you to
specify page frame number (PFN) mapping, are discussed in Chapter 13, Section 13.5.6.15.

Sections are either private or global (shared).

• Private sections are accessible only by the process that creates them. A process can define a disk
data file as a section, map it into its virtual address space, and manipulate it.

• Global sections can be shared by more than one process. One copy of the global section resides in
physical memory, and each process sharing it refers to the same copy, except for copy-on-reference
sections. For a copy-on-reference section, each process refers to the same global section, but each
process gets its own copy of each page upon reference. A global section can contain shareable code
or data that can be read, or read and written, by more than one process. Global sections are either
temporary or permanent and can be defined for use within a group or on a systemwide basis. Global
sections can be mapped to a disk file or created as a global page-file section, or they can be a PFN
mapped section.

When modified pages in writable disk file sections are paged out of memory during image execution,
they are written back into the section file rather than into the paging file, as is the normal case with files.
(However, copy-on-reference sections are not written back into the section file).

The use of disk file sections involves these two distinct operations:

1. The creation of a section defines a disk file as a section and informs the system what portions of the
file contain the section.

2. The mapping of a section makes it available to a process and establishes the correspondence between
virtual blocks in the file and specific addresses in the virtual address space of a process.

The Create and Map Section (SYS$CRMPSC) system service creates and maps a private section or
a global section. Because a private section is used only by a single process, creation and mapping are
simultaneous operations. In the case of a global section, one process can create a permanent global
section and not map to it; other processes can map to it. A process can also create and map a global
section in one operation.

The following sections describe the creation, mapping, and use of disk file sections. In each case,
operations and requirements that are common to both private sections and global sections are described
first, followed by additional notes and requirements for the use of global sections. Section 12.3.9.6
discusses global page-file sections.

362

Chapter 12. Memory Management Services and Routines on OpenVMS Alpha and OpenVMS I64

12.3.9.1. Creating Sections with 64-Bit System Services

The $CRMPSC system service allows a process to create a private or global section and to map a section
of its address space to the private or global section. However, although this system service is powerful
and flexible, it is complex. If you are using an Alpha or I64 system, the following routines provide an
easier method of creating and mapping sections:

• $CRMPSC_FILE_64 — Allows a process to map a section of its address space to a specified
portion of a file. This service maps a private disk file section.

• $CRMPSC_GFILE_64 — Allows a process to create a global disk file section and to map a section
of its address space to the global section.

• $CRMPSC_GPFILE_64 — Allows a process to create a global page file section and to map a
section of its address space to the global section.

• $CRMPSC_GPFN_64 — Allows a process to create a permanent global page frame section and to
map a section of its address space to the global page frame section.

• $CRMPSC_PFN_64 — Allows a process to map a section of its address space to a specified
physical address range represented by page frame numbers. This service creates and maps a private
page frame section.

12.3.9.2. PFN-Mapped Sections

Mapped I/O space on an OpenVMS I64 system may require non-cached access. You must set the
SEC$M_UNCACHED flag when a PFN-mapped section is created if this section must be treated as
uncached memory. The following system services accept this flag:

• SYS$CRMPSC_PFN_64

• SYS$CREATE_GPFN

• SYS$CRMPSC_GPFN_64

In addition, the SYS$MGBLSC_GPFN_64 service accepts, but ignores the flag. The cached/uncached
characteristic is stored as a section attribute, and the system uses this attribute when the section is
mapped. On OpenVMS Alpha systems, all four services accept but ignore the SEC$M_UNCACHED
flag. Note that the older services, SYS$CRMPSC and SYS$MGBLSC were not updated and do not
accept the new flag.

See the Intel® Itanium® Architecture Software Developer's Manual for additional information regarding
virtual-addressing memory attributes.

12.3.9.3. Creating Sections with 32-Bit System Services

To create a disk file section, you must follow these steps:

1. Open or create the disk file containing the section.

2. Define which virtual blocks in the file comprise the section.

3. Define the characteristics of the section.

363

Chapter 12. Memory Management Services and Routines on OpenVMS Alpha and OpenVMS I64

12.3.9.3.1. Opening the Disk File

Before you can use a file as a section, you must open it using OpenVMS RMS. The following example
shows the OpenVMS RMS file access block ($FAB) and$OPEN macros used to open the file and the
channel specification to the SYS$CRMPSC system service necessary for reading an existing file:

SECFAB: $FAB FNM=<SECTION.TST>, ; File access block
 FOP=UFO
 RTV= -1
 .
 .
 .
 $OPEN FAB=SECFAB
 $CRMPSC_S -
 CHAN=SECFAB+FAB$L_STV,...

The file options parameter (FOP) indicates that the file is to be opened for user I/O; this option is
required so that OpenVMS RMS assigns the channel using the access mode of the caller. OpenVMS
RMS returns the channel number on which the file is accessed; this channel number is specified as input
to the SYS$CRMPSC system service (chan argument). The same channel number can be used for
multiple create and map section operations.

The option RTV= -1 tells the file system to keep all of the pointers to be mapped in memory at all times.
If this option is omitted, the SYS$CRMPSC service requests the file system to expand the pointer areas
if necessary. Storage for these pointers is charged to the BYTLM quota, which means that opening a
badly fragmented file can fail with an EXBYTLM failure status. Too many fragmented sections may
cause the byte limit to be exceeded.

The file may be a new file that is to be created while it is in use as a section. In this case, use the
$CREATE macro to open the file. If you are creating a new file, the file access block (FAB) for the file
must specify an allocation quantity (ALQ parameter).

You can also use SYS$CREATE to open an existing file; if the file does not exist, it is created. The
following example shows the required fields in the FAB for the conditional creation of a file:

GBLFAB: $FAB FNM=<GLOBAL.TST>, -
 ALQ=4, -
 FAC=PUT,-
 FOP=<UFO,CIF,CBT>, -
 SHR=<PUT,UPI>
 .
 .
 .
 $CREATE FAB=GBLFAB

When the $CREATE macro is invoked, it creates the file GLOBAL.TST if the file does not currently
exist. The CBT (contiguous best try) option requests that, if possible, the file be contiguous. Although
section files are not required to be contiguous, better performance can result if they are.

12.3.9.3.2. Defining the Section Extents

After the file is opened successfully, the SYS$CRMPSC system service can create a section from the
entire file or from only certain portions of it. The following arguments to SYS$CRMPSC define the
extents of the file that comprise the section:

• pagcnt (page count). This argument indicates the number of pages (on VAX systems) or pagelets
(on Alpha and I64 systems) in the section. The pagcnt argument is a longword containing this
number.

364

Chapter 12. Memory Management Services and Routines on OpenVMS Alpha and OpenVMS I64

On Alpha and I64 systems, the smallest allocation is an Alpha or I64 page, which is 8192 bytes.
When requesting pagelets, the size requested is a multiple of 512 bytes, but the actual allocation is
rounded to 8192. For example, when requesting 17 pagelets, the allocation is for two Alpha or I64
pages, 16384 bytes.

On Alpha and I64 systems, if the SEC$M_PFNMAP flag bit is set, the pagcntargument is
interpreted as CPU-specific pages, not as pagelets. On Alpha or I64 and VAX systems, the specified
page count is compared with the number of blocks in the section file; if they are different, the lower
value is used. If you do not specify the page count or specify it as 0 (the default), the size of the
section file is used. However, for physical page frame sections, this argument must not be 0.

• vbn (virtual block number). This argument is optional. It defines the number of the virtual block
in the file that is the beginning of the section. If you do not specify this argument, the value 1 is
passed(the first virtual block in the file is the beginning of the section). If you specified page frame
number mapping (by setting the SEC$M_PFNMAP flag), the vbn argument specifies the CPU-
specific page frame number where the section begins in memory.

12.3.9.3.3. Defining the Section Characteristics

The flags argument to the SYS$CRMPSC system service defines the following section
characteristics:

• Whether it is a private section or a global section. The default is to create a private section.

• How the pages of the section are to be treated when they are copied into physical memory or when a
process refers to them. The pages in a section can be either or both of the following:

• Read/write or read-only

• Created as demand-zero pages or as copy-on-reference pages, depending on how the processes
are going to use the section and whether the file contains any data (see Section 12.3.9.9)

• Whether the section is to be mapped to a disk file or to specific physical page frames (see
Section 12.3.9.15).

When you specify section characteristics, the following restrictions apply:

• Global sections cannot be both demand-zero and copy-on-reference.

• Demand-zero sections must be writable.

12.3.9.3.4. Defining Global Section Characteristics

If the section is a global section, you must assign a character string name (gsdnam argument) to it
so that other processes can identify it when they map it. The format of this character string name is
explained in Section 12.3.9.3.5.

The flags argument specifies the following types of global section:

• Group temporary (the default)

• Group permanent

• System temporary

• System permanent

365

Chapter 12. Memory Management Services and Routines on OpenVMS Alpha and OpenVMS I64

Group global sections can be shared only by processes executing with the same group number. The
name of a group global section is implicitly qualified by the group number of the process that created it.
When other processes map it, their group numbers must match.

A temporary global section is automatically deleted when no processes are mapped to it, but a
permanent global section remains in existence even when no processes are mapped to it. A permanent
global section must be explicitly marked for deletion with the Delete Global Section (SYS$DGBLSC)
system service.

You need the user privileges PRMGBL and SYSGBL to create permanent group global sections or
system global sections (temporary or permanent), respectively.

A system global section is available to all processes in the system.

Optionally, a process creating a global section can specify a protection mask (prot argument) to restrict
all access or a type of access (read, write, execute, delete) to other processes.

12.3.9.3.5. Global Section Name

The gsdnam argument specifies a descriptor that points to a character string.

Translation of the gsdnam argument proceeds in the following manner:

1. The current name string is prefixed with GBL$ and the result is subject to logical name translation.

2. If the result is a logical name, step 1 is repeated until translation does not succeed or until
the number of translations performed exceeds the number specified by the system parameter
LNM$C_MAXDEPTH.

3. The GBL$ prefix is stripped from the current name string that could not be translated. This current
string is the global section name.

For example, assume that you have made the following logical name assignment:

$ DEFINE GBL$GSDATA GSDATA_001

Your program contains the following statements:

#include <descrip.h>
 .
 .
 .
 $DESCRIPTOR(gsdnam,"GSDATA");
 .
 .
 .
 status = sys$crmpsc(&gsdnam, ...);

The following logical name translation takes place:

1. GBL$ is prefixed to GSDATA.

2. GBL$GSDATA is translated to GSDATA_001.(Further translation is not successful. When logical
name translation fails, the string is passed to the service).

There are three exceptions to the logical name translation method discussed in this section:

• If the name string starts with an underscore (_), the operating system strips the underscore and
considers the resultant string to be the actual name(that is, further translation is not performed).

366

Chapter 12. Memory Management Services and Routines on OpenVMS Alpha and OpenVMS I64

• If the name string is the result of a logical name translation, then the name string is checked to
see if it has the terminalattribute. If the name string is marked with the terminal attribute, the
operating system considers the resultant string to be the actual name (that is, further translation is not
performed).

• If the global section has a name in the format name_nnn, the operating system first strips the
underscore and the digits (nnn), then translates the resultant name according to the sequence
discussed in this section, and finally reappends the underscore and digits. The system uses this
method in conjunction with known images and shared files installed by the system manager.

12.3.9.4. Mapping Sections with 32-Bit System Services
When you call the SYS$CRMPSC system service to create or map a section, or both, you must provide
the service with a range of virtual addresses (inadr argument) into which the section is to be mapped.

On Alpha and I64 systems, the inadr argument specifies the size and location of the section by its start
and end addresses. SYS$CRMPSC interprets the inadr argument in the following ways:

• If both addresses specified in the inadr argument are the same and the SEC$M_EXPREG bit is
set in the flags argument, SYS$CRMPSC allocates the memory in whichever program region the
addresses fall but does not use the specified location.

• If both addresses are different, SYS$CRMPSC maps the section into memory using the boundaries
specified.

On Alpha and I64 systems, if you know specifically which pages the section should be mapped into, you
provide these addresses in a 2-longword array. For example, to map a private section of 10 pages into
virtual pages 10 through 19 of the program region, specify the input address array as follows:

 unsigned int maprange[1]; /* Assume page size = 8 KB */

 maprange[0] = 0x14000; /* Address (hex) of page 10 */
 maprange[1] = 0x27FFF; /* Address (hex) of page 19 */

On Alpha and I64 systems, the inadr argument range must have a lower address on an even page
boundary and a higher address exactly one less than a page boundary. You do this to avoid programming
errors that might arise because of incorrect programming assumptions about page sizes. For example, the
range can be expressed as the following on an 8 KB page system:

0 ----> 1FFF
2000 ----> 7FFF
or
inadr[0] = first byte in range
inadr[1] = last byte in range

If the range is not expressed in terms of page-inclusive boundaries, then an SS$_INVARG condition
value is returned.

You do not need to know the explicit addresses to provide an input address range. If you want the
section mapped into the first available virtual address range in the program region (P0) or control region
(P1), you can specify the SEC$M_EXPREG flag bit in the flags argument. In this case, the addresses
specified by the inadr argument control whether the service finds the first available space in the P0 or
P1. The value specified or defaulted for the pagcnt argument determines the amount of space mapped.

On Alpha and I64 systems, the relpag argument specifies the location in the section file at which you
want mapping to begin.

367

Chapter 12. Memory Management Services and Routines on OpenVMS Alpha and OpenVMS I64

On Alpha and I64 systems, the SYS$CRMPSC and SYS$MGBLSC system services map a minimum of
one CPU-specific page. If the section file does not fill a single page, the remainder of the page is filled
with zeros after faulting the page into memory. The extra space on the page should not be used by your
application because only the data that fits into the section file will be written back to the disk.

The following example shows part of a program used to map a section at the current end of the program
region:

 unsigned int status, inadr[1], retadr[1], flags;

/*
 This range used merely to indicate P0 space since SEC$M_EXPREG
 is specified
*/
 inadr[0]= 0x200; /* Any program (P0) region address */
 inadr[1]= 0x200; /* Any P0 address (can be same) */

 .
 .
 .
/* Address range returned in retadr */

 flags = SEC$M_EXPREG;
 status = sys$crmpsc(&inadr, &retadr, flags, ...);

The addresses specified do not have to be currently in the virtual address space of the process. The
SYS$CRMPSC system service creates the required virtual address space during the mapping of the
section. If you specify the retadr argument, the service returns the range of addresses actually
mapped.

On Alpha and I64 systems, the starting retadr address should match inadr, plus relpag if
specified. The ending (higher) address will be limited by the lower of:

• The value of the pagcnt argument

• The actual remaining block count in the file starting with specified starting vbn, or relpag

• The bound dictated by the inadr argument

After a section is mapped successfully, the image can refer to the pages using one of the following:

• A base register or pointer and predefined symbolic offset names

• Labels defining offsets of an absolute program section or structure

The following example shows part of a program used to create and map a process section on Alpha and
I64 systems:

SECFAB: $FAB FNM=<SECTION.TST>, -
 FOP=UFO, -
 FAC=PUT, -
 SHR=<GET,PUT,UPI>
;
MAPRANGE:
 .LONG ^X14000 ; First 8 KB page
 .LONG ^X27FFF ; Last page
RETRANGE:
 .BLKL 1 ; First page mapped
ENDRANGE:

368

Chapter 12. Memory Management Services and Routines on OpenVMS Alpha and OpenVMS I64

 .BLKL 1 ; Last page mapped
 .
 .
 .
 $OPEN FAB=SECFAB ; Open section file
 BLBS R0,10$
 BSBW ERROR

10$: $CRMPSC_S -
 INADR=MAPRANGE,- ; Input address array
 RETADR=RETRANGE,- ; Output array
 PAGCNT=#4,- ; Map four pagelets
 FLAGS=#SEC$M_WRT,- ; Read/write section
 CHAN=SECFAB+FAB$L_STV ; Channel number
 BLBS R0,20$
 BSBW ERROR
20$: MOVL RETRANGE,R6 ; Point to start of section

Notes on Example

1. The OPEN macro opens the section file defined in the file access block SECFAB. (The FOP
parameter to the $FAB macro must specify the UFO option).

2. The SYS$CRMPSC system service uses the addresses specified at MAPRANGE to specify an input
range of addresses into which the section will be mapped. The pagcnt argument requests that only
4 pagelets of the file be mapped.

3. The flags argument requests that the pages in the section have read/write access. The symbolic
flag definitions for this argument are defined in the $SECDEF macro. Note that the file access field
(FAC parameter) in the FAB also indicates that the file is to be opened for writing.

4. When SYS$CRMPSC completes, the addresses of the 4 pagelets that were mapped are returned in
the output address array at RETRANGE. The address of the beginning of the section is placed in
register 6, which serves as a pointer to the section.

12.3.9.5. Mapping Global Sections with 32-Bit Services

Note

This section describes the use of the SYS$MGBLSC system service. However, the SYS$MGBLSC_64
system service is the preferred method for mapping global sections for Alpha and I64 systems.

A process that creates a global section can map that global section. Then other processes can map it by
calling the Map Global Section (SYS$MGBLSC) system service.

When a process maps a global section, it must specify the global section name assigned to the section
when it was created, whether it is a group or system global section, and whether it desires read-only or
read/write access. The process may also specify the following:

• A version identification (ident argument), indicating the version number of the global section
(when multiple versions exist) and whether more recent versions are acceptable to the process.

• A relative pagelet number (relpag argument), specifying the pagelet number, relative to the
beginning of the section, to begin mapping the section. In this way, processes can use only portions
of a section. Additionally, a process can map a piece of a section into a particular address range and
subsequently map a different piece of the section into the same virtual address range.

369

Chapter 12. Memory Management Services and Routines on OpenVMS Alpha and OpenVMS I64

On Alpha and I64 systems, you should specify the retadr argument to determine the exact boundaries
of the memory that was mapped by the call. If your application specifies the relpagargument, you
must specify the retadr argument. In this case, it is not an optional argument.

Cooperating processes can both issue a SYS$CRMPSC system service to create and map the same
global section. The first process to call the service actually creates the global section; subsequent
attempts to create and map the section result only in mapping the section for the caller. The
successful return status code SS$_CREATED indicates that the section did not already exist when the
SYS$CRMPSC system service was called. If the section did exist, the status code SS$_NORMAL is
returned.

The example in Section 12.3.9.9 shows one process (ORION) creating a global section and a second
process (CYGNUS) mapping the section.

12.3.9.6. Global Page-File Sections with 32-Bit System Services
Global page-file sections are used to store temporary data in a global section. A global page-file section
is a section of virtual memory that is not mapped to a file. The section can be deleted when processes
have finished with it. (Contrast this with demand-zero section file pages where no initialization is
necessary, but the pages are saved in a file.) The system parameter GBLPAGFIL controls the total
number of global page-file pages in the system.

To create a global page-file section, you must set the flag bits SEC$M_GBL and SEC$M_PAGFIL
in the flags argument to the Create and Map Section(SYS$CRMPSC) system service. The channel
(chan argument) must be 0.

You cannot specify the flag bit SEC$M_CRF with the flag bit SEC$M_PAGFIL.

12.3.9.7. Mapping into a Defined Address Range With 32-Bit
System Services
On Alpha and I64 systems, SYS$CRMPSC and SYS$MGBLSC interpret some of the arguments
differently than on VAX systems if you are mapping a section into a defined area of virtual address
space. The differences are as follows:

• The addresses specified as values in the inadr argument must be aligned on CPU-specific page
boundaries. On VAX systems, SYS$CRMPSC and the SYS$MGBLSC round these addresses to
page boundaries for you. On Alpha and I64 systems, SYS$CRMPSC does not round the addresses
you specify to page boundaries, because rounding to CPU-specific page boundaries on Alpha and
I64 system affects a much larger portion of memory than it does on VAX systems, where page sizes
are much smaller. Therefore, on Alpha and I64 systems, you must explicitly state where you want the
virtual memory space mapped. If the addresses you specify are not aligned on CPU-specific page
boundaries, SYS$CRMPSC returns an invalid arguments error (SS$_INVARG).

In particular, the lower inadr address must be on a CPU-specific page boundary, and the higher
inadr address must be one less than a CPU-specific page; that is, it indicates the highest-addressed
byte of the inadr range.

• The addresses returned in the retadr argument reflect only the usable portion of the actual
memory mapped by the call, not the entire amount mapped. The usable amount is either the value
specified in the pagcnt argument (measured in pagelets) or the size of the section file, whichever
is smaller. The actual amount mapped depends on how many CPU-specific pages are required to
map the section file. If the section file does not fill a CPU-specific page, the remainder of the page
is filled with zeros. The excess space on this page should not be used by your application. The end
address specified in the retadr argument specifies the upper limit available to your application.

370

Chapter 12. Memory Management Services and Routines on OpenVMS Alpha and OpenVMS I64

Also note that, when the relpag argument is specified, the retadr argument must be included. It
is not optional on Alpha and I64 systems.

12.3.9.8. Mapping from an Offset into a Section File With 32-Bit
System Services
On Alpha and I64 systems, you can map a portion of a section file by specifying the address at which to
start the mapping as an offset from the beginning of the section file. You specify this offset by supplying
a value to the relpag argument of SYS$CRMPSC. The value of the relpag argument specifies the
pagelet number relative to the beginning of the file at which the mapping should begin.

To preserve compatibility, SYS$CRMPSC interprets the value of the relpag argument in 512-byte
units on VAX, Alpha, and I64 systems. However, because the CPU-specific page size on the Alpha
and I64 system is larger than 512 bytes, the address specified by the offset in the relpag argument
probably does not fall on a CPU-specific page boundary on an Alpha and I64 system. SYS$CRMPSC
can map virtual memory in CPU-specific page increments only. Therefore, on Alpha and I64 systems,
the mapping of the section file will start at the beginning of the CPU-specific page that contains the
offset address, not at the address specified by the offset.

Note

Even though the routine starts mapping at the beginning of the CPU-specific page that contains the
address specified by the offset, the start address returned in the retadr argument is the address
specified by the offset, not the address at which mapping actually starts.

If you map from an offset into a section file, you must still provide an inadr argument that abides by
the requirements presented in Section 12.3.9.7 when mapping into a defined address range.

12.3.9.9. Section Paging Resulting from SYS$CRMPSC
The first time an image executing in a process refers to a page that was created during the mapping of a
disk file section, the page is copied into physical memory. The address of the page in the virtual address
space of a process is mapped to the physical page. During the execution of the image, normal paging can
occur; however, pages in sections are not written into the page file when they are paged out, as is the
normal case. Rather, if they have been modified, they are written back into the section file on disk. The
next time a page fault occurs for the page, the page is brought back from the section file.

If the pages in a section were defined as demand-zero pages or copy-on-reference pages when the section
was created, the pages are treated differently, as follows:

• If the call to SYS$CRMPSC requested that pages in the section be treated as demand-zero pages,
these pages are initialized to zeros when they are created in physical memory. If the file is either a
new file being created as a section or a file being completely rewritten, demand-zero pages provide a
convenient way of initializing the pages. The pages are paged back into the section file.

• When the section is deleted, all unreferenced pages are written back to the file as zeros. This causes
the file to be initialized, no matter how few pages were modified.

See Section 12.3.9.11 for details about deleting sections.

• If the call to SYS$CRMPSC requested that pages in the section be copy-on-reference pages, each
process that maps to the section receives its own copy of the section, on a page-by-page basis from
the file, as it refers to them. These pages are never written back into the section file but are paged to
the paging file as needed.

371

Chapter 12. Memory Management Services and Routines on OpenVMS Alpha and OpenVMS I64

In the case of global sections, more than one process can be mapped to the same physical pages. If these
pages need to be paged out or written back to the disk file defined as the section, these operations are
done only when the pages are not in the working set of any process.

In the following example for Alpha and I64 systems, process ORION creates a global section and
process CYGNUS maps to that section:

/* Process ORION */

#include <rms.h>
#include <rmsdef.h>
#include <literal>(<string.h>)
#include <secdef.h>
#include <descrip.h>

struct FAB gblfab;

main() {
 unsigned short chan;
 unsigned int status, flags, efn=65;
 char *fn = "SECTION.TST";
 $DESCRIPTOR(name, "FLAG_CLUSTER"); /* Common event flag cluster
 name */
 $DESCRIPTOR(gsdnam, "GLOBAL_SECTION"); /* Global section name */

status = SYS$ASCEFC(efn, &name, 0);
 if ((status & 1) != 1)
 LIB$SIGNAL(status);

/* Initialize FAB fields */

 gblfab = cc$rms_fab;
 gblfab.fab$l_alq = 4;
 gblfab.fab$b_fac = FAB$M_PUT;
 gblfab.fab$l_fnm = fn;
 gblfab.fab$l_fop = FAB$M_CIF || FAB$M_CBT;

 .
 .
 .

/* Create a file if none exists */

status = SYS$CREATE(&gblfab, 0, 0);
 if ((status & 1) != 1)
 LIB$SIGNAL(status);

 flags = SEC$M_GBL | SEC$M_WRT;
 status = SYS$CRMPSC(0, 0, 0, flags, &gsdnam, ...);
 if ((status & 1) != 1)
 LIB$SIGNAL(status);

 status = SYS$SETEF(efn);
 if ((status & 1) != 1)
 LIB$SIGNAL(status);
 .
 .

372

Chapter 12. Memory Management Services and Routines on OpenVMS Alpha and OpenVMS I64

 .
}

/* Process CYGNUS */

 unsigned int status, efn=65;
 $DESCRIPTOR(cluster,"FLAG_CLUSTER");
 $DESCRIPTOR(section,"GLOBAL_SECTION");
 .
 .
 .

status = SYS$ASCEFC(efn, &cluster, 0);
 if ((status & 1) != 1)
 LIB$SIGNAL(status);

 status = SYS$WAITFR(efn);
 if ((status & 1) != 1)
 LIB$SIGNAL(status);

 status = SYS$MGBLSC(&inadr, &retadr, 0, flags, §ion, 0, 0);
 if ((status & 1) != 1)
 LIB$SIGNAL(status);

}

The processes ORION and CYGNUS are in the same group. Each process first associates with a
common event flag cluster named FLAG_CLUSTER to use common event flags to synchronize its
use of the section.
The process ORION creates the global section named GLOBAL_SECTION, specifying section
flags that indicate that it is a global section (SEC$M_GBL) and has read/write access. Input and
output address arrays, the page count parameter, and the channel number arguments are not shown;
procedures for specifying them are the same, as shown in this example.
The process CYGNUS associates with the common event flag cluster and waits for the flag defined
as FLGSET; ORION sets this flag when it has finished creating the section. To map the section,
CYGNUS specifies the input and output address arrays, the flag indicating that it is a global
section, and the global section name. The number of pages mapped is the same as that specified by
the creator of the section.

12.3.9.10. Reading and Writing Data Sections
Read/write sections provide a way for a process or cooperating processes to share data files in virtual
memory.

The sharing of global sections may involve application-dependent synchronization techniques. For
example, one process can create and map to a global section in read/write fashion; other processes can
map to it in read-only fashion and interpret data written by the first process. Alternatively, two or more
processes can write to the section concurrently. (In this case, the application must provide the necessary
synchronization and protection).

After data in a process private section is modified, the process can release (or unmap) the section. The
modified pages are then written back into the disk file defined as a section.

After data in a global section is modified, the process or processes can release (or unmap) the section.
The modified pages are still maintained in memory until the section is deleted. The data s then written
back into the disk file defined as a section. Applications relying on modified data to be in the file at a

373

Chapter 12. Memory Management Services and Routines on OpenVMS Alpha and OpenVMS I64

specific point in time must use the SYS$UPDSEC_64(W) or SYS$UPDSEC(W) system service to force
the write action. See Section 12.3.9.12.

When the section is deleted, the revision number of the file is incremented, and the version number of
the file remains unchanged. A full directory listing indicates the revision number of the file and the date
and time that the file was last updated.

12.3.9.11. Releasing and Deleting Sections
For Alpha and I64 systems, the SYS$DELTVA_64 and SYS$UPDSEC(W)_64 system service are the
preferred methods for deleting a range of virtual addresses from a process's virtual address space and for
writing all pages (or only those pages modified by the current process) in an active private or global disk
file section back into the section file on disk.

A process unmaps a section by deleting the virtual addresses in its own virtual address space to which
it has mapped the section. If a return address range was specified to receive the virtual addresses
of the mapped pages, this address range can be used as input to the Delete Virtual Address Space
(SYS$DELTVA_64 or SYS$DELTVA) system service. For example, in the case of SYS$DELTVA:

$DELTVA_S INADR=RETRANGE

When a process unmaps a private section, the section is deleted; that is, all control information
maintained by the system is deleted. A temporary global section is deleted when all processes that have
mapped to it have unmapped it. Permanent global sections are not deleted until they are specifically
marked for deletion with the Delete Global Section (SYS$DGBLSC)system service; they are then
deleted when no more processes are mapped.

Note that deleting the pages occupied by a section does not delete the section file, but rather cancels
the process's association with the file. Moreover, when a process deletes pages mapped to a process
private read/write section, all modified pages are written back into the section file. For global sections,
the system's modified page writer starts writing back modified pages when the section is deleted
and all mapping processes have deleted their associated virtual address space. Applications relying
on modified data to be in the file at a specific point in time must use the SYS$UPDSEC_64(W) or
SYS$UPDSEC(W) system service to force the write action. See Section 12.3.9.12.

After a process private section is deleted, the channel assigned to it can be deassigned. The process that
created the section can deassign the channel with the Deassign I/O Channel (SYS$DASSGN) system
service, as follows:

$DASSGN_S CHAN=GBLFAB+FAB$L_STV

For global sections, the channel is only used to identify the file to the system. The system then assigns
a different channel to use for future paging I/O to the file. The used assigned channel can be deleted
immediately after the global section is created.

12.3.9.12. Writing Back Sections
For Alpha and I64 systems, the SYS$UPDSEC(W)_64 system service is the preferred method for
writing all pages (or only those pages modified by the current process) in an active private or global disk
file section back into the section file on disk.

Because read/write sections are not normally updated on disk until either the physical pages they
occupy are paged out, or until the section is deleted, a process should ensure that all modified pages are
successfully written back into the section file at regular intervals.

374

Chapter 12. Memory Management Services and Routines on OpenVMS Alpha and OpenVMS I64

The Update Section File on Disk (SYS$UPDSEC_64 or SYS$UPDSEC) system service writes the
modified pages in a section into the disk file. The SYS$UPDSEC_64 and SYS$UPDSEC system
services are described in the VSI OpenVMS System Services Reference Manual.

12.3.9.13. Memory-Resident Global Sections
Memory-resident global sections allow a database server to keep larger amounts of currently used data
cached in physical memory. The database server then accesses the data directly from physical memory
without performing I/O read operations from the database files on disk. With faster access to the data in
physical memory, runtime performance increases dramatically.

Memory-resident global sections are non-file-backed global sections. Pages within a memory-resident
global section are not backed by the page file or by any other file on disk. Thus, no page file quota
is charged to any processor to the system. When a process maps to a memory-resident global section
and references the pages, working set list entries are not created for the pages. No working set quota is
charged to the process.

For further information about memory-resident global sections, see Chapter 16.

12.3.9.14. Image Sections
Global sections can contain shareable code. The operating system uses global sections to implement
shareable code, as follows:

1. The object module containing code to be shared is linked to produce a shareable image. The
shareable image is not, in itself, executable. It contains a series of sections, called image sections.

2. You link private object modules with the shareable image to produce an executable image. No code
or data from the shareable image is put into the executable image.

3. The system manager uses the INSTALL command to create a permanent global section from the
shareable image file, making the image sections available for sharing.

4. When you run the executable image, the operating system automatically maps the global sections
created by the INSTALL command into the virtual address space of your process.

For details on how to create and identify shareable images and how to link them with private object
modules, see the VSI OpenVMS Linker Utility Manual.For information about how to install shareable
images and make them available for sharing as global sections, see the VSI OpenVMS System Manager's
Manual.

12.3.9.15. Page Frame Sections
A page frame section is one or more contiguous pages of physical memory or I/O space that have been
mapped as a section. One use of page frame sections is to map to an I/O page, thus allowing a process to
read device registers.

A page frame section differs from a disk file section in that it is not associated with a particular disk file
and is not paged. However, it is similar to a disk file section in most other respects: you create, map, and
define the extent and characteristics of a page frame section in essentially the same manner as you do for
a disk file section.

For Alpha and I64 systems, the $CRMPSC_GPFN_64 and $CRMPSC_PFN_64 system services are the
preferred method of creating and mapping global and private page frame sections. This section describes
the use of the 32-bit SYS$CRMPSC system service.

375

Chapter 12. Memory Management Services and Routines on OpenVMS Alpha and OpenVMS I64

To create a page frame section, you must specify page frame number (PFN) mapping by setting the
SEC$M_PFNMAP flag bit in the flags argument to the Create and Map Section (SYS$CRMPSC)
system service. The vbn argument is now used to specify that the first page frame is to be mapped
instead of the first virtual block. You must have the user privilege PFNMAP to either create or delete a
page frame section but not to map to an existing one.

Because a page frame section is not associated with a disk file, you do not use the chan, and pfc
arguments to the SYS$CRMPSC service to create or map this type of section. For the same reason,
the SEC$M_CRF (copy-on-reference) and SEC$M_DZRO (demand-zero) bit settings in the flags
argument do not apply. Pages in page frame sections are not written back to any disk file (including the
paging file). The pagcnt and relpag arguments are in units of CPU-specific pages for page frame
sections.

Caution

You must use caution when working with page frame sections. If you permit write access to the section,
each process that writes to it does so at its own risk. Serious errors can occur if a process writes incorrect
data or writes to the wrong page, especially if the page is also mapped by the system or by another
process. Thus, any user who has the PFNMAP privilege can damage or violate the security of a system.

12.3.9.16. Partial Sections
On Alpha and I64 systems, a partial section is one where not all of the defined section, whether private
or global, is entirely backed up by disk blocks. In other words, a partial section is where a disk file does
not map completely onto an Alpha and I64 system page.

For example, suppose a file for which you wish to create a section consists of 17 virtual blocks on disk.
To map this section, you would need two whole Alpha and I64 8-KB pages, the smallest size Alpha
and I64 page available. The first Alpha and I64 page would map the first 16 blocks of the section, and
the second Alpha and I64 page would map the 17th block of the section. (A block on disk is 512 bytes,
same as on OpenVMS VAX.) This results in 15/16ths of the second Alpha and I64 page not being
backed up by the section file. This is called a partial section because the second Alpha and I64 page of
the section is only partially backed up.

When the partial page is faulted in, a disk read is issued for only as many blocks as actually back up that
page, which in this case is 1. When that page is written back, only the one block is actually written.

If the upper portion of the second Alpha and I64 page is used, it is done so at some risk, because only
the first block of that page is saved on a write-back operation. This upper portion of the second Alpha
and I64 page is not really useful space to the programmer, because it is discarded during page faulting.

12.3.10. Example of Using 32-Bit Memory Management
System Services
In the following example, two programs are communicating through a global section. The first program
creates and maps a global section (by using SYS$CRMPSC) and then writes a device name to the
section. This program also defines the device terminal and process names and sets the event flags that
synchronize the processes.

The second program maps the section (by using SYS$MGBLSC) and then reads the device name and
the process that allocated the device and any terminal allocated to that process. This program also
writes the process named to the terminal global section where the process name can be read by the first
program.

376

Chapter 12. Memory Management Services and Routines on OpenVMS Alpha and OpenVMS I64

The example program uses the SYS$MGBLSC system service. However, the SYS$MGBLSC_64 system
service is the preferred method for mapping global sections for Alpha and I64 systems.

The common event cluster is used to synchronize access to the global section. The first program sets
REQ_FLAG to indicate that the device name is in the section. The second program sets INFO_FLAG to
indicate that the process and terminal names are available.

Data in a section must be page aligned. The following is the option file used at link time that causes the
data in the common area named DATA to be page aligned: PSECT_ATTR = DATA, PAGE

For high-level language usage, use the solitary attribute of the linker. See the VSI OpenVMS Linker
Utility Manual for an explanation of how to use the solitary attribute. The address range requested
for a section must end on a page boundary, so SYS$GETSYI is used to obtain the system page size.

Before executing the first program, you need to write a user-open routine that sets the user-open bit
(FAB$V_UFO) of the FAB options longword (FAB$L_FOP). Because the Fortran OPEN statement
specifies that the file is new, you should use $CREATE to open it rather than $OPEN. No $CONNECT
should be issued. The user-open routine reads the channel number that the file is opened on from
the status longword (FAB$L_STV) and returns that channel number to the main program by using a
common block (CHANNEL in this example).

!This is the program that creates the global section.

! Define global section flags
INCLUDE '($SECDEF)'
! Mask for section flags
INTEGER SEC_MASK

! Logical unit number for section file
INTEGER INFO_LUN
! Channel number for section file
! (returned from useropen routine)
INTEGER SEC_CHAN
COMMON /CHANNEL/ SEC_CHAN
! Length for the section file
INTEGER SEC_LEN
! Data for the section file
CHARACTER*12 DEVICE,
2 PROCESS
CHARACTER*6 TERMINAL
COMMON /DATA/ DEVICE,
2 PROCESS,
2 TERMINAL
! Location of data
INTEGER PASS_ADDR (2),
2 RET_ADDR (2)

! Two common event flags
INTEGER REQUEST_FLAG,
2 INFO_FLAG
DATA REQUEST_FLAG /70/
DATA INFO_FLAG /71/

! Data for SYS$GETSYI
INTEGER PAGE_SIZE
INTEGER*2 BUFF_LEN, ITEM_CODE
INTEGER BUFF_ADDR, LENGTH, TERMINATOR

377

Chapter 12. Memory Management Services and Routines on OpenVMS Alpha and OpenVMS I64

EXTERNAL SYI$_PAGE_SIZE
COMMON /GETSYI_ITEMLST/ BUFF_LEN,
2 ITEM_CODE,
2 BUFF_ADDR,
2 LENGTH,
2 TERMINATOR

! User-open routines
INTEGER UFO_CREATE
EXTERNAL UFO_CREATE
.
.
.
! Open the section file
STATUS = LIB$GET_LUN (INFO_LUN)
IF (.NOT. STATUS) CALL LIB$SIGNAL(%VAL(STATUS))
SEC_MASK = SEC$M_WRT .OR. SEC$M_DZRO .OR. SEC$M_GBL
! (Last element - first element + size of last element + 511)/512
SEC_LEN = ((%LOC(TERMINAL) - %LOC(DEVICE) + 6 + 511)/512)
OPEN (UNIT=INFO_LUN,
2 FILE='INFO.TMP',
2 STATUS='NEW',
2 INITIALSIZE = SEC_LEN,
2 USEROPEN = UFO_CREATE)
! Free logical unit number and map section
CLOSE (INFO_LUN)

! Get the system page size
BUFF_LEN = 4
ITEM_CODE = %LOC(SYI$_PAGE_SIZE)
BUFF_ADDR = %LOC(PAGE_SIZE)
LENGTH = 0
TERMINATOR = 0

STATUS = SYS$GETSYI(,,,BUFF_LEN,,,)

! Get location of data
PASS_ADDR (1) = %LOC (DEVICE)
PASS_ADDR (2) = PASS_ADDR(1) + PAGE_SIZE - 1

STATUS = SYS$CRMPSC (PASS_ADDR, ! Address of section
2 RET_ADDR, ! Addresses mapped
2 ,
2 %VAL(SEC_MASK), ! Section mask
2 'GLOBAL_SEC', ! Section name
2 ,,
2 %VAL(SEC_CHAN), ! I/O channel
2 ,,,)
IF (.NOT. STATUS) CALL LIB$SIGNAL(%VAL(STATUS))

! Create the subprocess
STATUS = SYS$CREPRC (,
2 'GETDEVINF', ! Image
2 ,,,,,
2 'GET_DEVICE', ! Process name
2 %VAL(4),,,) ! Priority
IF (.NOT. STATUS) CALL LIB$SIGNAL(%VAL(STATUS))

378

Chapter 12. Memory Management Services and Routines on OpenVMS Alpha and OpenVMS I64

! Write data to section
DEVICE = '$DISK1'

! Get common event flag cluster and set flag
STATUS = SYS$ASCEFC (%VAL(REQUEST_FLAG),
2 'CLUSTER',,)
IF (.NOT. STATUS) CALL LIB$SIGNAL(%VAL(STATUS))
STATUS = SYS$SETEF (%VAL(REQUEST_FLAG))
IF (.NOT. STATUS) CALL LIB$SIGNAL(%VAL(STATUS))

! When GETDEVINF has the information, INFO_FLAG is set
STATUS = SYS$WAITFR (%VAL(INFO_FLAG))
IF (.NOT. STATUS) CALL LIB$SIGNAL(%VAL(STATUS))
.
.
.

! This is the program that maps to the global section
! created by the previous program.

! Define section flags
INCLUDE '($SECDEF)'
! Mask for section flags
INTEGER SEC_MASK
! Data for the section file
CHARACTER*12 DEVICE,
2 PROCESS
CHARACTER*6 TERMINAL
COMMON /DATA/ DEVICE,
2 PROCESS,
2 TERMINAL

! Location of data
INTEGER PASS_ADDR (2),
2 RET_ADDR (2)

! Two common event flags
INTEGER REQUEST_FLAG,
2 INFO_FLAG
DATA REQUEST_FLAG /70/
DATA INFO_FLAG /71/

! Data for SYS$GETSYI
INTEGER PAGE_SIZE
INTEGER*2 BUFF_LEN, ITEM_CODE
INTEGER BUFF_ADDR, LENGTH, TERMINATOR
EXTERNAL SYI$_PAGE_SIZE
COMMON /GETSYI_ITEMLST/ BUFF_LEN,
2 ITEM_CODE,
2 BUFF_ADDR,
2 LENGTH,
2 TERMINATOR
.
.
.
! Get the system page size
BUFF_LEN = 4
ITEM_CODE = %LOC(SYI$_PAGE_SIZE)

379

Chapter 12. Memory Management Services and Routines on OpenVMS Alpha and OpenVMS I64

BUFF_ADDR = %LOC(PAGE_SIZE)
LENGTH = 0
TERMINATOR = 0

STATUS = SYS$GETSYI(,,,BUFF_LEN,,,)

! Get common event flag cluster and wait
! for GBL1.FOR to set REQUEST_FLAG
STATUS = SYS$ASCEFC (%VAL(REQUEST_FLAG),
2 'CLUSTER',,)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))
STATUS = SYS$WAITFR (%VAL(REQUEST_FLAG))
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))

! Get location of data
PASS_ADDR (1) = %LOC (DEVICE)
PASS_ADDR (2) = PASS_ADDR(1) + PAGE_SIZE - 1

! Set write flag
SEC_MASK = SEC$M_WRT

! Map the section
STATUS = SYS$MGBLSC (PASS_ADDR, ! Address of section
2 RET_ADDR, ! Address mapped
2 ,
2 %VAL(SEC_MASK), ! Section mask
2 'GLOBAL_SEC',,) ! Section name
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))

! Call GETDVI to get the process ID of the
! process that allocated the device, then
! call GETJPI to get the process name and terminal
! name associated with that process ID.
! Set PROCESS equal to the process name and
! set TERMINAL equal to the terminal name.
.
.
.
! After information is in GLOBAL_SEC
STATUS = SYS$SETEF (%VAL(INFO_FLAG))
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))

END

12.4. Large Page-File Sections
Page-file sections are used to store temporary data in private or global (shared) sections of memory.
Images that use 64-bit addressing can map and access an amount of dynamic virtual memory that is
larger than the amount of physical memory available on the system.

With this design, if a process requires additional page-file space, page files can be allocated dynamically.
Space is not longer reserved in a distinct page file, and pages are not bound to an initially assigned page
file. Instead, if modified pages must be written back, they are written to the best available page file.

Each page or swap file can hold approximately 16 million pages (128 GB), and up to 254 page or swap
files can be installed. Files larger than 128 GB are installed as multiple files.

380

Chapter 12. Memory Management Services and Routines on OpenVMS Alpha and OpenVMS I64

Note the following DCL command display changes and system parameter changes as a result of the
larger page-file section design:

• The SHOW MEMORY/FILES display reflects the nonreservable design. For example:

$ SHOW MEMORY/FILES

 System Memory Resources on 22-MAY-2000 19:04:19.67
Swap File Usage (8KB pages): Index Free Size

DISK$ALPHASYS:[SYS48.SYSEXE]SWAPFILE.SYS
 1 904
 904
DISK$SWAP:[SYS48.SYSEXE]SWAPFILE.SYS;1
 2 1048
 1048
 Total size of all swap files:
 1952

Paging File Usage (8KB pages): Index Free Size

DISK$PAGE:[SYS48.SYSEXE]PAGEFILE.SYS;1
 253 16888
 16888
DISK$ALPHASYS:[SYS48.SYSEXE]PAGEFILE.SYS
 254 16888
 16888

 Total size of all paging files: 33776
 Total committed paging file usage: 1964

Number of swap files. Begins with an index value of 1 and increases in count.
Number of page files. Begins with an index value of 254 and decreases in count.
Total committed page file usage. As in previous releases, more pages can reside in page-file
sections systemwide than would fit into installed page files.

• The SHOW MEMORY/FILES/FULL display no longer contains separate usage information for page
and swap files. Because page-file information is no longer reserved, the system does not need to
maintain the number of processes interested in a distinct page or swap file. For example:

$ SHOW MEMORY/FILES/FULL

 System Memory Resources on 22-MAY-2000 18:47:10.21
Swap File Usage (8KB pages): Index Free Size
DISK$ALPHASYS:[SYS48.SYSEXE]SWAPFILE.SYS
 1 904 904
Paging File Usage (8KB pages): Index Free Size
DISK$ALPHASYS:[SYS48.SYSEXE]PAGEFILE.SYS
 254 16888 16888
 Total committed paging file usage: 1960

• Up to 254 page and swap files can be installed.

381

Chapter 12. Memory Management Services and Routines on OpenVMS Alpha and OpenVMS I64

382

Chapter 13. Memory Management
Services and Routines on OpenVMS
VAX
This chapter describes the use of system services and run-time routines that VAX systems use to manage
memory.

13.1. Virtual Page Size
To facilitate memory protection and mapping, the virtual address space on VAX systems is subdivided
into segments of 512-byte sizes called pages. (On Alpha systems, memory page sizes are much larger
and vary from system to system. See Chapter 12, for information about Alpha page sizes). Versions of
system services and run-time library routines that accept page-count values as arguments interpret these
arguments in 512-byte quantities. Services and routines automatically round the specified addresses to
page boundaries.

13.2. Virtual Address Space
The initial size of a process's virtual address space depends on the size of the image being executed. The
virtual address space of an executing program consists of the following three regions:

• Process program region (P0)

The process program region is also referred to as P0 space. P0 space contains the instructions and
data for the current image.

Your program can dynamically allocate storage in the process program region by calling run-time
library (RTL) dynamic memory allocation routines or system services.

• Process control region (P1)

The process control region is also referred to as P1 space. P1 space contains system control
information and the user-mode process stack. The user mode stack expands as necessary toward the
lower-addressed end of P1 space.

• Common system region (S0)

The common system region is also referred to as S0 space. S0 space contains the operating system.
Your program cannot allocate or free memory within the common system region from the user
access mode.

This common system region (S0) of system virtual address space can have appended to it additional
virtual address space, known as a reserved region, or S1 space, that creates a single region of system
space. As a result, the system virtual address space increases from 1 GB to 2 GB.

A summary of these regions appears in Figure 13.1.

383

Chapter 13. Memory Management Services and Routines on OpenVMS VAX

Figure 13.1. Virtual Address Overview on VAX Systems

The memory management routines map and control the relationship between physical memory and the
virtual address space of a process. These activities are, for the most part, transparent to you and your
programs. In some cases, however, you can make a program more efficient by explicitly controlling its
virtual memory usage.

The maximum size to which a process can increase its address space is controlled by the system
parameter VIRTUALPAGECNT.

Using memory management system services, a process can add a specified number of pages to the end of
either the program region or the control region. Adding pages to the program region provides the process
with additional space for image execution, for example, for the dynamic creation of tables or data areas.
Adding pages to the control region increases the size of the user stack. As new pages are referenced,
the stack is automatically expanded, as shown in Figure 13.2. (By using the STACK= option in a linker
options file, you can also expand the user stack when you link the image).

Figure 13.2 illustrates the layout of a process's virtual memory. The initial size of a process's virtual
address space depends on the size of the image being executed.

384

Chapter 13. Memory Management Services and Routines on OpenVMS VAX

Figure 13.2. Layout of VAX Process Virtual Address Space

13.3. Extended Addressing Enhancements on
Selected VAX Systems
Selected VAX systems have extended addressing (XA) as part of the memory management subsystem.
Extended addressing enhancement is supported on the VAX 6000 Model 600, VAX 7000 Model
600, and VAX 10000 Model 600 systems. Extended addressing contains the following two major
enhancements that affect system images, system integrated products (SIPs), privileged layered products
(LPs), and device drivers:

• Extended physical addressing (XPA)

• Extended virtual addressing (XVA)

Extended physical addressing increases the size of a physical address from 30 bits to 32 bits. This
increases the capacity for physical memory from 512 MB to 3.5 GB as shown in Figure 13.3. The 512
MB is still reserved for I/O and adapter space.

385

Chapter 13. Memory Management Services and Routines on OpenVMS VAX

Figure 13.3. Physical Address Space for VAX Systems with XPA

Extended virtual addressing (XVA) increases the size of the virtual page number field in the format of a
system space address from 21 bits to 22 bits. The region of system virtual address space, known as the
reserved region or S1 space, is appended to the existing region of system virtual address space known as
S0 space, thereby creating a single region of system space. As a result, the system virtual address space
increases from 1 GB to 2 GB as shown in Figure 13.4.

Figure 13.4. Virtual Address Space for VAX Systems with XVA

386

Chapter 13. Memory Management Services and Routines on OpenVMS VAX

13.3.1. Page Table Entry for Extended Addresses on
VAX Systems
As shown in Figure 13.3, extended addressing increases the maximum physical address space supported
by VAX systems from 1 GB to 4 GB. This is accomplished by expanding the page frame number
(PFN)field in a page table entry (PTE) from 21 bits to 23 bits, and implementing changes in the memory
management arrays that are indexed by PFN. Both the process page table entry and system page table
entry are changed.

13.4. Levels of Memory Allocation Routines
Sophisticated software systems must often create and manage complex data structures. In these systems,
the size and number of elements are not always known in advance. You can tailor the memory allocation
for these elements by using dynamic memory allocation. By managing the memory allocation, you can
avoid allocating fixed tables that may be too large or too small for your program. Managing memory
directly can improve program efficiency. By allowing you to allocate specific amounts of memory,
the operating system provides a hierarchy of routines and services for memory management. Memory
allocation and deallocation routines allow you to allocate and free storage within the virtual address
space available to your process.

There are three levels of memory allocation routines:

1. Memory management system services

The memory management system services comprise the lowest level of memory allocation routines.
These services include, but are not limited to, the following:

SYS$EXPREG (Expand Region)
SYS$CRETVA (Create Virtual Address Space)
SYS$DELTVA (Delete Virtual Address Space)
SYS$CRMPSC (Create and Map Section)
SYS$MGBLSC (Map Global Section)
SYS$DGBLSC (Delete Global Section)

For most cases in which a system service is used for memory allocation, the Expand Region
(SYS$EXPREG) system service is used to create pages of virtual memory.

Because system services provide more control overallocation procedures than RTL routines, you
must manage the allocation precisely. System services provide extensive control over address space
allocation by allowing you to do the following types of tasks:

• Add or delete virtual address space to the process program region (P0) or process control region
(P1)

• Add or delete virtual address space at a specific range of addresses

• Increase or decrease the number of pages in a program's working set

• Lock or delete pages of a program's working set in memory

• Lock the entire program's working set in memory (by disabling process swapping)

• Define disk files containing data or shareable images and map the files into the virtual address
space of a process

387

Chapter 13. Memory Management Services and Routines on OpenVMS VAX

2. RTL page management routines

RTL routines are available for creating, deleting, and accessing information about virtual address
space. You can either allocate a specified number of contiguous pages or create a zone of virtual
address space. A zone is a logical unit of the memory pool or subheap that you can control as
an independent area. It can be any size required by your program. Refer to Chapter 14, for more
information about zones.

The RTL page management routines LIB$GET_VM_PAGE and LIB$FREE_VM_PAGE provide a
convenient mechanism for allocating and freeing pages of memory.

These routines maintain a processwide pool of free pages. If unallocated pages are not available
when LIB$GET_VM_PAGE is called, it calls SYS$EXPREG to create the required pages in the
program region (P0 space).

3. RTL heap management routines

The RTL heap management routines LIB$GET_VM and LIB$FREE_VM provide a mechanism for
allocating and freeing blocks of memory of arbitrary size.

The following are heap management routines based on the concept of zones:

LIB$CREATE_VM_ZONE
LIB$CREATE_USER_VM_ZONE
LIB$DELETE_VM_ZONE
LIB$FIND_VM_ZONE
LIB$RESET_VM_ZONE
LIB$SHOW_VM_ZONE
LIB$VERIFY_VM_ZONE

If an unallocated block is not available to satisfy a call to LIBGET_VM, LIBGET_VM calls
LIB$GET_VM_PAGE to allocate additional pages.

Modular application programs can call routines at any or all levels of the hierarchy, depending on the
kinds of services the application program needs. You must observe the following basic rule when using
multiple levels of the hierarchy:

Memory that is allocated by an allocation routine at one level of the hierarchy must be freed by calling a
deallocation routine at the same level of the hierarchy. For example, if you allocated a page of memory
by calling LIB$GET_VM_PAGE, you can free it only by calling LIB$FREE_VM_PAGE.

Figure 13.5 shows the three levels of memory allocation routines.

388

Chapter 13. Memory Management Services and Routines on OpenVMS VAX

Figure 13.5. Hierarchy of VAX Memory Management Routines

For information about using memory management RTLs, see Chapter 14.

13.5. Using System Services for Memory
Allocation
This section describes how to use system services to perform the following tasks:

• Increase and decrease virtual address space

• Input and return address arrays

• Control page ownership and protection

• Control working set paging

• Control process swapping

13.5.1. Increasing and Decreasing Virtual Address
Space
The system services allow you to add address space anywhere within the process's program region (P0)
or control region (P1). To add address space at the end of P0 or P1, use the Expand Program/Control
Region (SYS$EXPREG) system service. SYS$EXPREG optionally returns the range of virtual addresses
for the new pages. To add address space in other portions of P0 or P1, use SYS$CRETVA.

The format for SYS$EXPREG is as follows:

389

Chapter 13. Memory Management Services and Routines on OpenVMS VAX

SYS$EXPREG (pagcnt ,[retadr] ,[acmode] ,[region])

Specifying the Number of Pages
Use the pagcnt argument to specify the number of pages to add to the end of the region. The range of
addresses where the new pages are added is returned in retadr.

Specifying the Access Mode
Use the acmode argument to specify the access to be assigned to the newly created pages.

Specifying the Region
Use the region argument to specify whether to add the pages to the end of the P0 or P1 region. This
argument is optional.

To deallocate pages allocated with SYS$EXPREG, use SYS$DELTVA.

The following example illustrates how to add 4 pages to the program region of a process by writing a call
to the SYS$EXPREG system service:

#include <stdio.h>
#include <ssdef.h>

main() {
 unsigned int status, retadr[1],pagcnt=4, region=0;

/* Add 4 pages to P0 space */
 status = SYS$EXPREG(pagcnt, &retadr, 0, region);
 if ((status & 1) != 1)
 LIB$SIGNAL(status);
 else
 printf("Starting address: %d Ending address: %d\n",
 retadr.lower,retadr.upper);
}

The value 0 is passed in the region argument to specify that the pages are to be added to the program
region. To add the same number of pages to the control region, you would specify REGION=#1.

Note that the region argument to SYS$EXPREG is optional; if it is not specified, the pages are added
to or deleted from the program region by default.

The SYS$EXPREG service can add pages only to the end of a particular region. When you need to add
pages to the middle of these regions, you can use the Create Virtual Address Space (SYS$CRETVA)
system service. Likewise, when you need to delete pages created by either SYS$EXPREG or
SYS$CRETVA, you can use the Delete Virtual Address Space (SYS$DELTVA) system service. For
example, if you have used the SYS$EXPREG service twice to add pages to the program region and want
to delete the first range of pages but not the second, you could use the SYS$DELTVA system service, as
shown in the following example:

#include <stdio.h>
#include <ssdef.h>

struct {
 unsigned int lower, upper;

390

Chapter 13. Memory Management Services and Routines on OpenVMS VAX

}retadr1, retadr2, retadr3;

main() {
 unsigned int status, pagcnt=4, region=0;

/* Add 4 pages to P0 space */
 status = SYS$EXPREG(pagcnt, &retadr1, 0, region);
 if ((status & 1) != 1)
 LIB$SIGNAL(status);
 else
 printf("Starting address: %d ending address: %d\n",
 retadr1.lower,retadr1.upper);

/* Add 3 more pages to P0 space */

 pagcnt = 3;
 status = SYS$EXPREG(pagcnt, &retadr2, 0, region);
 if ((status & 1) != 1)
 LIB$SIGNAL(status);
 else
 printf("Starting address: %d ending address: %d\n",
 retadr2.lower,retadr2.upper);

/* Delete original allocation */
 status = SYS$DELTVA(&retadr1, &retadr3, 0);
 if ((status & 1) != 1)
 LIB$SIGNAL(status);
 else
 printf("Starting address: %d ending address: %d\n",
 retadr1.lower,retadr1.upper);

}

In this example, the first call to SYS$EXPREG adds 4 pages to the program region; the virtual addresses
of the created pages are returned in the 2-longword array at retadr1. The second call adds 3 pages and
returns the addresses at retadr2. The call to SYS$DELTVA deletes the first 4 pages that were added.

Caution

Be aware that using SYS$CRETVA presents some risk because it can delete pages that already
exist if those pages are not owned by a more privileged access mode. Further, if those pages are
deleted, no notification is sent. Therefore, unless you have complete control over an entire system, use
SYS$EXPREG or the RTL routines to allocate address space.

13.5.2. Input Address Arrays and Return Address
Arrays
When the SYS$EXPREG system service adds pages to a region, it adds them in the normal direction of
growth for the region. The return address array, if requested, indicates the order in which the pages were
added. For example:

• If the program region is expanded, the starting virtual address is smaller than the ending virtual
address.

• If the control region is expanded, the starting virtual address is larger than the ending virtual address.

391

Chapter 13. Memory Management Services and Routines on OpenVMS VAX

The addresses returned indicate the first byte in the first page that was added or deleted and the last byte
in the last page that was added or deleted.

When input address arrays are specified for the Create and Delete Virtual Address Space
(SYS$CRETVA and SYS$DELTVA, respectively) system services, these services add or delete pages
beginning with the address specified in the first longword and ending with the address specified in the
second longword.

Note

The operating system always adjusts the starting and ending virtual addresses up or down to fit page
boundaries.

The order in which the pages are added or deleted does not have to be in the normal direction of growth
for the region. Moreover, because these services add or delete only whole pages, they ignore the low-
order 9 bits of the specified virtual address (the low-order 9 bits contain the byte offset within the page).
The virtual addresses returned indicate the byte offsets.

Table 13.1 shows some sample virtual addresses in hexadecimal that may be specified as input to
SYS$CRETVA or SYS$DELTVA and shows the return address arrays if all pages are successfully added
or deleted.

Table 13.1. Sample Virtual Address Arrays on VAX Systems

Input Array Output Array

Start End Region Start End Number of
Pages

1010 1670 P0 1000 17FF 4
1450 1451 P0 1400 15FF 1
1200 1000 P0 1000 13FF 2
1450 1450 P0 1400 15FF 1
7FFEC010 7FFEC010 P1 7FFEC1FF 7FFEC000 1
7FFEC010 7FFEBCA0 P1 7FFEC1FF 7FFEBC00 3

Note that if the input virtual addresses are the same, as in the fourth and fifth items in Table 13.1, a
single page is added or deleted. The return address array indicates that the page was added or deleted in
the normal direction of growth for the region.

13.5.3. Page Ownership and Protection
Each page in the virtual address space of a process is owned by the access mode that created the page.
For example, pages in the program region that are initially provided for the execution of an image are
owned by user mode. Pages that the image creates dynamically are also owned by user mode. Pages in
the control region, except for the pages containing the user stack, are normally owned by more privileged
access modes.

Only the owner access mode or a more privileged access mode can delete the page or otherwise affect it.
The owner of a page can also indicate, by means of a protection code, the type of access that each access
mode will be allowed.

The Set Protection on Pages (SYS$SETPRT) system service changes the protection assigned to a page
or group of pages. The protection is expressed as a code that indicates the specific type of access (none,

392

Chapter 13. Memory Management Services and Routines on OpenVMS VAX

read-only, read/write) for each of the four access modes (kernel, executive, supervisor, user). Only the
owner access mode or a more privileged access mode can change the protection for a page.

When an image attempts to access a page that is protected against the access attempted, a hardware
exception called an access violation occurs. When an image calls a system service, the service probes
the pages to be used to determine whether an access violation would occur if the image attempts to
read or write one of the pages. If an access violation would occur, the service exits with the status code
SS$_ACCVIO.

Because the memory management services add, delete, or modify a single page at a time, one or more
pages can be successfully changed before an access violation is detected. If the retadr argument
is specified in the service call, the service returns the addresses of pages changed (added, deleted, or
modified) before the error. If no pages are affected, that is, if an access violation would occur on the first
page specified, the service returns a value of -1 in both longwords of the return address array.

If the retadr argument is not specified, no information is returned.

13.5.4. Working Set Paging
When a process is executing an image, a subset of its pages resides in physical memory; these pages are
called the working set of the process. The working set includes pages in both the program region and
the control region. The initial size of a process's working set is usually defined by the process's working
set default (WSDEFAULT) quota. The maximum size of a process's working set is normally defined by
the process's working set quota (WSQUOTA).When ample memory is available, a process's working-set
upper growth limit can be expanded by its working set extent (WSEXTENT).

When the image refers to a page that is not in memory, a page fault occurs and the page is brought
into memory, replacing an existing page in the working set. If the page that is going to be replaced is
modified during the execution of the image, that page is written into a paging file on disk. When this
page is needed again, it is brought back into memory, again replacing a current page from the working
set. This exchange of pages between physical memory and secondary storage is called paging.

The paging of a process's working set is transparent to the process. However, if a program is very large
or if pages in the program image that are used often are being paged in and out frequently, the overhead
required for paging may decrease the program's efficiency. The SYS$ADJWSL, SYS$PURGWS, and
SYS$LKWSET system services allow a process, within limits, to counteract these potential problems.

SYS$ADJWSL System Service
The Adjust Working Set Limit (SYS$ADJWSL) system service increases or decreases the maximum
number of pages that a process can have in its working set. The format for this routine is as follows:

SYS$ADJWSL ([pagcnt],[wsetlm])

Use the pagcnt argument to specify the number of pages to add or subtract from the current working
set size. The new working set size is returned in wsetlm.

SYS$PURGWS System Service
The Purge Working Set (SYS$PURGWS) system service removes one or more pages from the working
set.

SYS$LKWSET System Service
The Lock Pages in Working Set (SYS$LKWSET) system service makes one or more pages in the
working set ineligible for paging by locking them in the working set. Once locked into the working

393

Chapter 13. Memory Management Services and Routines on OpenVMS VAX

set, those pages remain until they are explicitly unlocked with the Unlock Pages in Working Set
(SYS$ULWSET) system service or until program execution ends. The format is as follows:

SYS$LKWSET (inadr ,[retadr] ,[acmode])

Specifying a Range of Addresses
Use the inadr argument to specify the range of addresses to be locked. The range of addresses of the
pages actually locked are returned in the retadr argument.

Specifying the Access Mode
Use the acmode argument to specify the access mode to be associated with the pages you want locked.

13.5.5. Process Swapping
The operating system balances the needs of all the processes currently executing, providing each with
the system resources it requires on an as-needed basis. The memory management routines balance the
memory requirements of the process. Thus, the sum of the working sets for all processes currently in
physical memory is called the balance set.

When a process whose working set is in memory becomes inactive—for example, to wait for an I/O
request or to hibernate—the entire working set or part of it may be removed from memory to provide
space for another process's working set to be brought in for execution. This removal from memory is
called swapping.

The working set may be removed in two ways:

• Partially—Also called swapper trimming. Pages are removed from the working set of the target
process so that the number of pages in the working set is fewer, but the working set is not swapped.

• Entirely—Called swapping. All pages are swapped out of memory.

When a process is swapped out of the balance set, all the pages (both modified and unmodified) of its
working set are swapped, including any pages that had been locked in the working set.

A privileged process may lock itself in the balance set. While pages can still be paged in and out of the
working set, the process remains in memory even when it is inactive. To lock itself in the balance set, the
process issues the Set Process Swap Mode(SYS$SETSWM) system service, as follows:

$SETSWM_S SWPFLG=#1

This call to SYS$SETSWM disables process swap mode. You can also disable swap mode by setting
the appropriate bit in the STSFLG argument to the Create Process (SYS$CREPRC) system service;
however, you need the PSWAPM privilege to alter process swap mode.

A process can also lock particular pages in memory with the Lock Pages in Memory (SYS$LCKPAG)
system service. These pages are not part of the process's working set, but they are forced into the
process's working set. When pages are locked in memory with this service, the pages remain in memory
even when the remainder of the process's working set is swapped out of the balance set. These remaining
pages stay in memory until they are unlocked with SYS$ULKPAG. SYS$LCKPAG can be useful in
special circumstances, for example, for routines that perform I/O operations to devices without using the
operating system's I/O system.

You need the PSWAPM privilege to issue SYS$LCKPAG or SYS$ULKPAG.

394

Chapter 13. Memory Management Services and Routines on OpenVMS VAX

13.5.6. Sections
A section is a disk file or a portion of a disk file containing data or instructions that can be brought into
memory and made available to a process for manipulation and execution. A section can also be one or
more consecutive page frames in physical memory or I/O space; such sections, which require you to
specify page frame number (PFN) mapping, are discussed in Section 13.5.6.15.

Sections are either private or global (shared).

• Private sections are accessible only by the process that creates them. A process can define a disk
data file as a section, map it into its virtual address space, and manipulate it.

• Global sections can be shared by more than one process. One copy of the global section resides
in physical memory, and each process sharing it refers to the same copy. A global section can
contain shareable code or data that can be read, or read and written, by more than one process.
Global sections are either temporary or permanent and can be defined for use within a group or on a
systemwide basis. Global sections can be either mapped to a disk file or created as a global page-file
section.

When modified pages in writable disk file sections are paged out of memory during image execution,
they are written back into the section file rather than into the paging file, as is the normal case with files.
(However, copy-on-reference sections are not written back into the section file).

The use of disk file sections involves these two distinct operations:

• The creation of a section defines a disk file as a section and informs the system what portions of the
file contain the section.

• The mapping of a section makes it available to a process and establishes the correspondence between
virtual blocks in the file and specific addresses in the virtual address space of a process.

The Create and Map Section (SYS$CRMPSC) system service creates and maps a private section or
a global section. Because a private section is used only by a single process, creation and mapping are
simultaneous operations. In the case of a global section, one process can create a permanent global
section and notmap to it; other processes can map to it. A process can also create and map a global
section in one operation.

The following sections describe the creation, mapping, and use of disk file sections. In each case,
operations and requirements that are common to both private sections and global sections are described
first, followed by additional notes and requirements for the use of global sections. Section 13.5.6.9
discusses global page-file sections.

13.5.6.1. Creating Sections
To create a disk file section, follow these steps:

1. Open or create the disk file containing the section.

2. Define which virtual blocks in the file constitute the section.

3. Define the characteristics of the section.

13.5.6.2. Opening the Disk File
Before you can use a file as a section, you must open it using OpenVMS Record Management Services
(RMS).The following example shows the OpenVMS RMS file access block ($FAB) and$OPEN macros

395

Chapter 13. Memory Management Services and Routines on OpenVMS VAX

used to open the file and the channel specification to the SYS$CRMPSC system service necessary for
reading an existing file:

#include <rms.h>
#include <rmsdef.h>
#include <string.h>
#include <secdef.h>

struct FAB secfab;

main() {
 unsigned short chan;
 unsigned int status, retadr[1], pagcnt=1, flags;
 char *fn = "SECTION.TST";

/* Initialize FAB fields */
 secfab = cc$rms_fab;
 secfab.fab$l_fna = fn;
 secfab.fab$b_fns = strlen(fn);
 secfab.fab$l_fop = FAB$M_CIF;
 secfab.fab$b_rtv = -1;

/* Create a file if none exists */
 status = SYS$CREATE(&secfab, 0, 0);
 if ((status & 1) != 1)
 LIB$SIGNAL(status);

 flags = SEC$M_EXPREG;
 chan = secfab.fab$l_stv;
 status = SYS$CRMPSC(0, &retadr, 0, 0, 0, 0, flags, chan, pagcnt,
 0, 0, 0);
 if ((status & 1) != 1)
 LIB$SIGNAL(status);

}

In this example, the file options parameter (FOP) indicates that the file is to be opened for user I/O;
this parameter is required so that OpenVMS RMS assigns the channel using the access mode of the
caller. OpenVMS RMS returns the channel number on which the file is accessed; this channel number
is specified as input to SYS$CRMPSC (chan argument). The same channel number can be used for
multiple create and map section operations.

The option RTV=–1 tells the file system to keep all of the pointers to be mapped in memory at all
times. If this option is omitted, SYS$CRMPSC requests the file system to expand the pointer areas, if
necessary. Storage for these pointers is charged to the BYTLM quota, which means that opening a badly
fragmented file can fail with an EXBYTLM failure status. Too many fragmented sections may cause the
byte limit to be exceeded.

The file may be a new file that is to be created while it is in use as a section. In this case, use the
$CREATE macro to open the file. If you are creating a new file, the file access block (FAB) for the file
must specify an allocation quantity (ALQ parameter).

You can also use SYS$CREATE to open an existing file; if the file does not exist, it is created. The
following example shows the required fields in the FAB for the conditional creation of a file:

GBLFAB: $FAB FNM=<GLOBAL.TST>, -
 ALQ=4, -

396

Chapter 13. Memory Management Services and Routines on OpenVMS VAX

 FAC=PUT,-
 FOP=<UFO,CIF,CBT>, -
 SHR=<PUT,UPI>
 .
 .
 .
 $CREATE FAB=GBLFAB

When the $CREATE macro is invoked, it creates the file GLOBAL.TST if the file does not currently
exist. The CBT (contiguous best try) option requests that, if possible, the file be contiguous. Although
section files are not required to be contiguous, better performance can result if they are.

13.5.6.3. Defining the Section Extents

After the file is opened successfully, SYS$CRMPSC can create a section either from the entire file or
from certain portions of it. The following arguments to SYS$CRMPSC define the extents of the file that
constitute the section:

• pagcnt (page count). This argument is required. It indicates the number of virtual blocks that will
be mapped. These blocks correspond to pages in the section.

• vbn (virtual block number). This argument is optional. It defines the number of the virtual block
in the file that is the beginning of the section. If you do not specify this argument, the value 1 is
passed(the first virtual block in the file is the beginning of the section). If you have specified physical
page frame number (PFN) mapping, the vbn argument specifies the starting PFN. The system does
not allow you to specify a virtual block number outside of the file.

13.5.6.4. Defining the Section Characteristics

The flags argument to SYS$CRMPSC defines the following section characteristics:

• Whether it is a private section or a global section. The default is to create a private section.

• How the pages of the section are to be treated when they are copied into physical memory or when a
process refers to them. The pages in a section can be either or both of the following:

• Read/write or read-only

• Created as demand-zero pages or as copy-on-reference pages, depending on how the processes
are going to use the section and whether the file contains any data (see Section 13.5.6.10)

• Whether the section is to be mapped to a disk file or to specific physical page frames (see
Section 13.5.6.15).

Table 13.2 shows the flag bits that must be set for specific characteristics.

Table 13.2. Flag Bits to Set for Specific Section Characteristics on VAX Systems

Section to Be Created

Correct Flag
Combinations

Private Global PFN Private PFN Global Shared
Memory

SEC$M_GBL 0 1 0 1 1
SEC$M_CRF Optional Optional 0 0 0

397

Chapter 13. Memory Management Services and Routines on OpenVMS VAX

Section to Be Created

Correct Flag
Combinations

Private Global PFN Private PFN Global Shared
Memory

SEC$M_DZRO Optional Optional 0 0 Optional
SEC$M_WRT Optional Optional Optional Optional Optional
SEC$M_PERM Not used Optional Optional 1 1
SEC$M_SYSGBL Not used Optional Not used Optional Optional
SEC$M_PFNMAP 0 0 1 1 0
SEC$M_EXPREG Optional Optional Optional Optional Optional
SEC$M_PAGFIL 0 Optional 0 0 0

When you specify section characteristics, the following restrictions apply:

• Global sections cannot be both demand-zero and copy-on-reference.

• Demand-zero sections must be writable.

• Shared memory private sections are not allowed.

13.5.6.5. Defining Global Section Characteristics
If the section is a global section, you must assign a character string name (gsdnam argument) to it
so that other processes can identify it when they map it. The format of this character string name is
explained in Section 13.5.6.6.

The flags argument specifies the following types of global sections:

• Group temporary (the default)

• Group permanent

• System temporary

• System permanent

Group global sections can be shared only by processes executing with the same group number. The
name of a group global section is implicitly qualified by the group number of the process that created it.
When other processes map it, their group numbers must match.

A temporary global section is automatically deleted when no processes are mapped to it, but a
permanent global section remains in existence even when no processes are mapped to it. A permanent
global section must be explicitly marked for deletion with the Delete Global Section (SYS$DGBLSC)
system service.

You need the user privileges PRMGBL and SYSGBL to create permanent group global sections or
system global sections (temporary or permanent), respectively.

A system global section is available to all processes in the system.

Optionally, a process creating a global section can specify a protection mask (prot argument),
restricting all access or a type of access (read, write, execute, delete) to other processes.

398

Chapter 13. Memory Management Services and Routines on OpenVMS VAX

13.5.6.6. Global Section Name
The gsdnam argument specifies a descriptor that points to a character string.

Translation of the gsdnam argument proceeds in the following manner:

1. The current name string is prefixed with GBL$ and the result is subject to logical name translation.

2. If the result is a logical name, step 1 is repeated until translation does not succeed or until
the number of translations performed exceeds the number specified by the system parameter
LNM$C_MAXDEPTH.

3. The GBL$ prefix is stripped from the current name string that could not be translated. This current
string is the name of the global section.

For example, assume that you have made the following logical name assignment:

$ DEFINE GBL$GSDATA GSDATA_001

Your program contains the following statements:

#include <descrip.h>
 .
 .
 .
 $DESCRIPTOR(gsdnam,"GSDATA");
 .
 .
 .
 status = sys$crmpsc(&gsdnam, ...);

The following logical name translation takes place:

1. GBL$ is prefixed to GDSDATA.

2. GBL$GSDATA is translated to GSDATA_001.(Further translation is not successful. When logical
name translation fails, the string is passed to the service)

There are three exceptions to the logical name translation method discussed in this section:

• If the name string starts with an underscore (_), the operating system strips the underscore and
considers the resultant string to be the actual name(that is, further translation is not performed).

• If the name string is the result of a logical name translation, then the name string is checked to see
whether it has the terminalattribute. If the name string is marked with the terminal attribute, the
operating system considers the resultant string to be the actual name (that is, further translation is not
performed).

• If the global section has a name in the format name_nnn, the operating system first strips the
underscore and the digits (nnn), then translates the resultant name according to the sequence
discussed in this section, and finally reappends the underscore and digits. The system uses this
method in conjunction with known images and shared files installed by the system manager.

13.5.6.7. Mapping Sections
When you call SYS$CRMPSC to create or map a section, or both, you must provide the service with a
range of virtual addresses (inadr argument) into which the section is to be mapped.

399

Chapter 13. Memory Management Services and Routines on OpenVMS VAX

If you know specifically which pages the section should be mapped into, you provide these addresses in
a 2-longword array. For example, to map a private section of 10 pages into virtual pages 10 through 19
of the program region, specify the input address array as follows:

unsigned int maprange[1];

maprange[0]= 0x1400; /* Address (hex) of page 10 */
maprange[1]= 0x2300; /* Address (hex) of page 19 */

You do not need to know the explicit addresses to provide an input address range. If you want the
section mapped into the first available virtual address range in the program region (P0) or the control
region (P1), you can specify the SEC$M_EXPREG flag bit in the flags argument. In this case, the
addresses specified by the inadr argument control whether the service finds the first available space in
P0 or P1. The value specified or defaulted for the pagcnt argument determines the number of pages
mapped. The following example shows part of a program used to map a section at the current end of the
program region:

 unsigned int status, inadr[1], retadr[1], flags;

 inadr[0]= 0x200; /* Any program (P0) region address */
 inadr[1]= 0x200; /* Any P0 address (can be same) */

 .
 .
 .
/* Address range returned in retadr */

 flags = SEC$M_EXPREG;
 status = sys$crmpsc(&inadr, &retadr, flags, ...);

The addresses specified do not have to be currently in the virtual address space of the process.
SYS$CRMPSC creates the required virtual address space during the mapping of the section. If you
specify the retadr argument, the service returns the range of addresses actually mapped.

After a section is mapped successfully, the image can refer to the pages using one of the following:

• A base register or pointer and predefined symbolic offset names

• Labels defining offsets of an absolute program section or structure

The following example shows part of a program used to create and map a process section:

#include <rms.h>
#include <rmsdef.h>
#include <string.h>
#include <secdef.h>

struct FAB secfab;

main() {
 unsigned short chan;
 unsigned int status, inadr[1], retadr[1], pagcnt=1, flags;
 char *fn = "SECTION.TST";

/* Initialize FAB fields */

 secfab = cc$rms_fab;

400

Chapter 13. Memory Management Services and Routines on OpenVMS VAX

 secfab.fab$b_fac = FAB$M_PUT;
 secfab.fab$b_shr = FAB$M_SHRGET || FAB$V_SHRPUT || FAB$V_UPI;
 secfab.fab$l_fna = fn;
 secfab.fab$b_fns = strlen(fn);
 secfab.fab$l_fop = FAB$V_CIF;
 secfab.fab$b_rtv = -1;

/* Create a file if none exists */

 status = SYS$CREATE(&secfab, 0, 0);
 if ((status & 1) != 1)
 LIB$SIGNAL(status);

 inadr[0] = X1400;
 inadr[1] = X2300;
 flags = SEC$M_WRT;
 chan = secfab.fab$l_stv;
 status = SYS$CRMPSC(&inadr, &retadr, 0, 0, 0, 0, flags, chan, pagcnt,
 0, 0, 0);
 if ((status & 1) != 1)
 LIB$SIGNAL(status);

}

Notes on Example

1. The OPEN macro opens the section file defined in the file access block SECFAB. (The FOP
parameter to the $FAB macro must specify the UFO option.)

2. SYS$CRMPSC uses the addresses specified at MAPRANGE to specify an input range of addresses
into which the section will be mapped. The pagcnt argument requests that only 4 pages of the file
be mapped.

3. The flags argument requests that the pages in the section have read/write access. The symbolic
flag definitions for this argument are defined in the $SECDEF macro. Note that the file access
field(FAC parameter) in the FAB also indicates that the file is to be opened for writing.

4. When SYS$CRMPSC completes, the addresses of the 4 pagesthat were mapped are returned in the
output address array at RETRANGE. The address of the beginning of the section is placed in general
register 6, which serves as a pointer to the section.

13.5.6.8. Mapping Global Sections

A process that creates a global section can map that global section. Then other processes can map it by
calling the Map Global Section (SYS$MGBLSC)system service.

When a process maps a global section, it must specify the global section name assigned to the section
when it was created, whether it is a group or system global section, and whether it wants read-only or
read/write access. The process may also specify the following:

• A version identification (ident argument), indicating the version number of the global section
(when multiple versions exist) and whether more recent versions are acceptable to the process.

• A relative page number (relpag argument) that specifies the page number relative to the beginning
of the section to begin mapping the section. In this way, processes can use only portions of a section.

401

Chapter 13. Memory Management Services and Routines on OpenVMS VAX

Additionally, a process can map a piece of a section into a particular address range and subsequently
map a different piece of the section into the same virtual address range.

To specify that the global section being mapped is located in physical memory that is being shared by
multiple processors, you can include the shared memory name in the gsdnam argument character string
(see Section 13.5.6.6). A demand-zero global section in memory shared by multiple processors must be
mapped when it is created.

Cooperating processes can issue a call to SYS$CRMPSC to create and map the same global section.
The first process to call the service actually creates the global section; subsequent attempts to create
and map the section result only in mapping the section for the caller. The successful return status code
SS$_CREATED indicates that the section did not already exist when the SYS$CRMPSC system service
was called. If the section did exist, the status code SS$_NORMAL is returned.

The example in Section 13.5.6.10 shows one process (ORION) creating a global section and a second
process (CYGNUS) mapping the section.

13.5.6.9. Global Page-File Sections
Global page-file sections are used to store temporary data in a global section. A global page-file section
is a section of virtual memory that is not mapped to a file. The section can be deleted when processes
have finished with it. (Contrast this to demand-zero pages, where initialization is not necessary but the
pages are saved in a file). The system parameter GBLPAGFIL controls the total number of global page-
file pages in the system.

To create a global page-file section, you must set the flag bits SEC$M_GBL and SEC$M_PAGFIL in
the flags argument to the Create and Map Section (SYS$CRMPSC) system service. The channel
(chan argument) must be 0.

You cannot specify the flag bit SEC$M_CRF with the flag bit SEC$M_PAGFIL.

13.5.6.10. Section Paging
The first time an image executing in a process refers to a page that was created during the mapping of a
disk file section, the page is copied into physical memory. The address of the page in the virtual address
space of a process is mapped to the physical page. During the execution of the image, normal paging can
occur; however, pages in sections are not written into the page file when they are paged out, as is the
normal case. Rather, if they have been modified, they are written back into the section file on disk. The
next time a page fault occurs for the page, the page is brought back from the section file.

If the pages in a section were defined as demand-zero pages or copy-on-reference pages when the section
was created, the pages are treated differently, as follows:

• If the call to SYS$CRMPSC requested that pages in the section be treated as demand-zero pages,
these pages are initialized to zero when they are created in physical memory. If the file is either a
new file being created as a section or a file being completely rewritten, demand-zero pages provide a
convenient way of initializing the pages. The pages are paged back into the section file.

• When the virtual address space is deleted, all unreferenced pages are written back to the file as zeros.
This causes the file to be initialized, no matter how few pages were modified.

• If the call to SYS$CRMPSC requested that pages in the section be copy-on-reference pages, each
process that maps to the section receives its own copy of the section, on a page-by-page basis from
the file, as it refers to them. These pages are never written back into the section file but are paged to
the paging file as needed.

402

Chapter 13. Memory Management Services and Routines on OpenVMS VAX

In the case of global sections, more than one process can be mapped to the same physical pages. If these
pages need to be paged out or written back to the disk file defined as the section, these operations are
done only when the pages are not in the working set of any process.

In the following example, process ORION creates a global section, and process CYGNUS maps to that
section:

/* Process ORION */

#include <rms.h>
#include <rmsdef.h>
#include <string.h>
#include <secdef.h>
#include <descrip.h>

struct FAB gblfab;

main() {
 unsigned short chan;
 unsigned int status, flags, efn=65;
 char *fn = "SECTION.TST";
 $DESCRIPTOR(name, "FLAG_CLUSTER"); /* Common event flag cluster
 name */
 $DESCRIPTOR(gsdnam, "GLOBAL_SECTION"); /* Global section name */

status = SYS$ASCEFC(efn, &name, 0);
 if ((status & 1) != 1)
 LIB$SIGNAL(status);

/* Initialize FAB fields */

 gblfab = cc$rms_fab;
 gblfab.fab$l_alq = 4;
 gblfab.fab$b_fac = FAB$M_PUT;
 gblfab.fab$l_fnm = fn;
 gblfab.fab$l_fop = FAB$M_CIF | FABM$_CBT;

 .
 .
 .

/* Create a file if none exists */

status = SYS$CREATE(&gblfab, 0, 0);
 if ((status & 1) != 1)
 LIB$SIGNAL(status);

 flags = SEC$M_GBL || SEC$M_WRT;
 status = SYS$CRMPSC(0, 0, 0, flags, &gsdnam, ...);
 if ((status & 1) != 1)
 LIB$SIGNAL(status);

 status = SYS$SETEF(efn);
 if ((status & 1) != 1)
 LIB$SIGNAL(status);
 .
 .

403

Chapter 13. Memory Management Services and Routines on OpenVMS VAX

 .
}

/* Process CYGNUS */

 unsigned int status, efn=65;
 $DESCRIPTOR(cluster,"FLAG_CLUSTER");
 $DESCRIPTOR(section,"GLOBAL_SECTION");
 .
 .
 .

status = SYS$ASCEFC(efn, &cluster, 0);
 if ((status & 1) != 1)
 LIB$SIGNAL(status);

 status = SYS$WAITFR(efn);
 if ((status & 1) != 1)
 LIB$SIGNAL(status);

 status = SYS$MGBLSC(&inadr, &retadr, 0, flags, §ion, 0, 0);
 if ((status & 1) != 1)
 LIB$SIGNAL(status);

}

The processes ORION and CYGNUS are in the same group. Each process first associates with a
common event flag cluster named FLAG_CLUSTER to use common event flags to synchronize its
use of the section.
The process ORION creates the global section named GLOBAL_SECTION, specifying section
flags that indicate that it is a global section (SEC$M_GBL) and has read/write access. Input and
output address arrays, the page count parameter, and the channel number arguments are not shown;
procedures for specifying them are the same, as shown in this example.
The process CYGNUS associates with the common event flag cluster and waits for the flag defined
as FLGSET; ORION sets this flag when it has finished creating the section. To map the section,
CYGNUS specifies the input and output address arrays, the flag indicating that it is a global
section, and the global section name. The number of pages mapped is the same as that specified by
the creator of the section.

13.5.6.11. Reading and Writing Data Sections
Read/write sections provide a way for a process or cooperating processes to share data files in virtual
memory.

The sharing of global sections may involve application-dependent synchronization techniques. For
example, one process can create and map to a global section in read/write fashion; other processes can
map to it in read-only fashion and interpret data written by the first process. Alternatively, two or more
processes can write to the section concurrently. (In this case, the application must provide the necessary
synchronization and protection).

After a file is updated, the process or processes can release (or unmap) the section. The modified pages
are then written back into the disk file defined as a section.

When this is done, the revision number of the file is incremented, and the version number of the file
remains unchanged. A full directory listing indicates the revision number of the file and the date and
time that the file was last updated.

404

Chapter 13. Memory Management Services and Routines on OpenVMS VAX

13.5.6.12. Releasing and Deleting Sections
A process unmaps a section by deleting the virtual addresses in its own virtual address space to which
it has mapped the section. If a return address range was specified to receive the virtual addresses
of the mapped pages, this address range can be used as input to the Delete Virtual Address Space
(SYS$DELTVA) system service, as follows:

$DELTVA_S INADR=RETRANGE

When a process unmaps a private section, the section is deleted; that is, all control information
maintained by the system is deleted. A temporary global section is deleted when all processes that have
mapped to it have unmapped it. Permanent global sections are not deleted until they are specifically
marked for deletion with the Delete Global Section (SYS$DGBLSC) system service; they are then
deleted when no more processes are mapped.

Note that deleting the pages occupied by a section does not delete the section file but rather cancels
the process's association with the file. Moreover, when a process deletes pages mapped to a read/write
section and no other processes are mapped to it, all modified pages are written back into the section file.

After a section is deleted, the channel assigned to it can be deassigned. The process that created the
section can deassign the channel with the Deassign I/O Channel (SYS$DASSGN) system service, as
follows:

$DASSGN_S CHAN=GBLFAB+FAB$L_STV

13.5.6.13. Writing Back Sections
Because read/write sections are not normally updated on disk until the physical pages they occupy are
paged out or until all processes referring to the section have unmapped it, a process should ensure that all
modified pages are successfully written back into the section file at regular intervals.

The Update Section File on Disk (SYS$UPDSEC) system service writes the modified pages in a section
into the disk file. SYS$UPDSEC is described in the VSI OpenVMS System Services Reference Manual.

13.5.6.14. Image Sections
Global sections can contain shareable code. The operating system uses global sections to implement
shareable code, as follows:

1. The object module containing code to be shared is linked to produce a shareable image. The
shareable image is not, in itself, executable. It contains a series of sections called image sections.

2. You link private object modules with the shareable image to produce an executable image. No code
or data from the shareable image is put into the executable image.

3. The system manager uses the INSTALL command to create a permanent global section from the
shareable image file, making the image sections available for sharing.

4. When you run the executable image, the operating system automatically maps the global sections
created by the INSTALL command into the virtual address space of your process.

For details about how to create and identify shareable images and how to link them with private object
modules, see the VSI OpenVMS Linker Utility Manual. For information about how to install shareable
images and make them available for sharing as global sections, see the VSI OpenVMS System Manager's
Manual.

405

Chapter 13. Memory Management Services and Routines on OpenVMS VAX

13.5.6.15. Page Frame Sections
A page frame section is one or more contiguous pages of physical memory or I/O space that have been
mapped as a section. One use of page frame sections is to map to an I/O page, thus allowing a process to
read device registers. A process mapped to an I/O page can also connect to a device interrupt vector.

A page frame section differs from a disk file section in that it is not associated with a particular disk file
and is not paged. However, it is similar to a disk file section in most other respects: you create, map, and
define the extent and characteristics of a page frame section in essentially the same manner as you do for
a disk file section.

To create a page frame section, you must specify page frame number (PFN) mapping by setting the
SEC$M_PFNMAP flag bit in the flags argument to the Create and Map Section (SYS$CRMPSC)
system service. The vbn argument is now used to specify that the first page frame is to be mapped
instead of the first virtual block. You must have the user privilege PFNMAP to either create or delete a
page frame section but not to map to an existing one.

Because a page frame section is not associated with a disk file, you do not use the relpag, chan, and
pfc arguments to the SYS$CRMPSC service to create or map this type of section. For the same reason,
the SEC$M_CRF (copy-on-reference) and SEC$M_DZRO (demand-zero) bit settings in the flags
argument do not apply. Pages in page frame sections are not written back to any disk file (including the
paging file).

Caution

You must use caution when working with page frame sections. If you permit write access to the section,
each process that writes to it does so at its own risk. Serious errors can occur if a process writes incorrect
data or writes to the wrong page, especially if the page is also mapped by the system or by another
process. Thus, any user who has the PFNMAP privilege can damage or violate the security of a system.

13.5.7. Example of Using Memory Management System
Services
In the following example, two programs are communicating through a global section. The first program
creates and maps a global section (by using SYS$CRMPSC) and then writes a device name to the
section. This program also defines both the device terminal and process names and sets the event flags
that synchronize the processes.

The second program maps the section (by using SYS$MGBLSC) and then reads the device name and
the process that allocated the device and any terminal allocated to that process. This program also
writes the process named to the terminal global section where the process name can be read by the first
program.

The common event cluster is used to synchronize access to the global section. The first program sets
REQ_FLAG to indicate that the device name is in the section. The second program sets INFO_FLAG to
indicate that the process and terminal names are available.

Data in a section must be page aligned. The following is the option file used at link time that causes the
data in the common area named DATA to be page aligned:

PSECT_ATTR = DATA, PAGE

For high-level language usage, use the solitary attribute of the linker. See the VSI OpenVMS Linker
Utility Manual for an explanation of how to use the solitary attribute.

406

Chapter 13. Memory Management Services and Routines on OpenVMS VAX

Before executing the first program, you need to write a user-open routine that sets the user open bit
(FAB$V_UFO) of the FAB options longword (FAB$L_FOP). The user-open routine would then read
the channel number that the file is opened on from the status longword (FAB$L_STV) and return that
channel number to the main program by using a common block (CHANNEL in this example).

!This is the program that creates the global section.

! Define global section flags
INCLUDE '($SECDEF)'
! Mask for section flags
INTEGER SEC_MASK

! Logical unit number for section file
INTEGER INFO_LUN
! Channel number for section file
! (returned from useropen routine)
INTEGER SEC_CHAN
COMMON /CHANNEL/ SEC_CHAN
! Length for the section file
INTEGER SEC_LEN
! Data for the section file
CHARACTER*12 DEVICE,
2 PROCESS
CHARACTER*6 TERMINAL
COMMON /DATA/ DEVICE,
2 PROCESS,
2 TERMINAL
! Location of data
INTEGER PASS_ADDR (2),
2 RET_ADDR (2)

! Two common event flags
INTEGER REQUEST_FLAG,
2 INFO_FLAG
DATA REQUEST_FLAG /70/
DATA INFO_FLAG /71/

! User-open routines
INTEGER UFO_CREATE
EXTERNAL UFO_CREATE
.
.
.
! Open the section file
STATUS = LIB$GET_LUN (INFO_LUN)
IF (.NOT. STATUS) CALL LIB$SIGNAL(%VAL(STATUS))
SEC_MASK = SEC$M_WRT .OR. SEC$M_DZRO .OR. SEC$M_GBL
! (Last element - first element + size of last element + 511)/512
SEC_LEN = ((%LOC(TERMINAL) - %LOC(DEVICE) + 6 + 511)/512)
OPEN (UNIT=INFO_LUN,
2 FILE='INFO.TMP',
2 STATUS='NEW',
2 INITIALSIZE = SEC_LEN,
2 USEROPEN = UFO_CREATE)
! Free logical unit number and map section
CLOSE (INFO_LUN)

! Get location of data

407

Chapter 13. Memory Management Services and Routines on OpenVMS VAX

PASS_ADDR (1) = %LOC (DEVICE)
PASS_ADDR (2) = %LOC (TERMINAL)

STATUS = SYS$CRMPSC (PASS_ADDR, ! Address of section
2 RET_ADDR, ! Addresses mapped
2 ,
2 %VAL(SEC_MASK), ! Section mask
2 'GLOBAL_SEC', ! Section name
2 ,,
2 %VAL(SEC_CHAN), ! I/O channel
2 ,,,)
IF (.NOT. STATUS) CALL LIB$SIGNAL(%VAL(STATUS))

! Create the subprocess
STATUS = SYS$CREPRC (,
2 'GETDEVINF', ! Image
2 ,,,,,
2 'GET_DEVICE', ! Process name
2 %VAL(4),,,) ! Priority
IF (.NOT. STATUS) CALL LIB$SIGNAL(%VAL(STATUS))

! Write data to section
DEVICE = '$FLOPPY1'

! Get common event flag cluster and set flag
STATUS = SYS$ASCEFC (%VAL(REQUEST_FLAG),
2 'CLUSTER',,)
IF (.NOT. STATUS) CALL LIB$SIGNAL(%VAL(STATUS))
STATUS = SYS$SETEF (%VAL(REQUEST_FLAG))
IF (.NOT. STATUS) CALL LIB$SIGNAL(%VAL(STATUS))

! When GETDEVINF has the information, INFO_FLAG is set
STATUS = SYS$WAITFR (%VAL(INFO_FLAG))
IF (.NOT. STATUS) CALL LIB$SIGNAL(%VAL(STATUS))
.
.
.

! This is the program that maps to the global section
! created by the previous program.

! Define section flags
INCLUDE '($SECDEF)'
! Mask for section flags
INTEGER SEC_MASK
! Data for the section file
CHARACTER*12 DEVICE,
2 PROCESS
CHARACTER*6 TERMINAL
COMMON /DATA/ DEVICE,
2 PROCESS,
2 TERMINAL

! Location of data
INTEGER PASS_ADDR (2),
2 RET_ADDR (2)

! Two common event flags

408

Chapter 13. Memory Management Services and Routines on OpenVMS VAX

INTEGER REQUEST_FLAG,
2 INFO_FLAG
DATA REQUEST_FLAG /70/
DATA INFO_FLAG /71/
.
.
.
! Get common event flag cluster and wait
! for GBL1.FOR to set REQUEST_FLAG
STATUS = SYS$ASCEFC (%VAL(REQUEST_FLAG),
2 'CLUSTER',,)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))
STATUS = SYS$WAITFR (%VAL(REQUEST_FLAG))
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))

! Get location of data
PASS_ADDR (1) = %LOC (DEVICE)
PASS_ADDR (2) = %LOC (TERMINAL)

! Set write flag
SEC_MASK = SEC$M_WRT

! Map the section
STATUS = SYS$MGBLSC (PASS_ADDR, ! Address of section
2 RET_ADDR, ! Address mapped
2 ,
2 %VAL(SEC_MASK), ! Section mask
2 'GLOBAL_SEC',,) ! Section name
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))

! Call GETDVI to get the process ID of the
! process that allocated the device, then
! call GETJPI to get the process name and terminal
! name associated with that process ID.
! Set PROCESS equal to the process name and
! set TERMINAL equal to the terminal name.
.
.
.
! After information is in GLOBAL_SEC
STATUS = SYS$SETEF (%VAL(INFO_FLAG))
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))

END

409

Chapter 13. Memory Management Services and Routines on OpenVMS VAX

410

Chapter 14. Using Run-Time Routines
for Memory Allocation
This chapter describes the use of run-time routines (RTLs) to allocate and deallocate pages.

Note

In this chapter, all references to pages include both the 512-byte page size on VAX systems and the 512-
byte pagelet size on Alpha and I64 systems. See Chapter 13, and Chapter 12, for a discussion of page
sizes on VAX and Alpha and I64 systems.

14.1. Allocating and Freeing Pages
The run-time library page management routines LIB$GET_VM_PAGE and LIB$FREE_VM_PAGE
provide a flexible mechanism for allocating and freeing pages (pagelets on Alpha and I64 systems) of
memory. In general, modular routines should use these routines rather than direct system service calls to
manage memory. The page or pagelet management routines maintain a processwide pool of free pages or
pagelets and automatically reuse free pages or pagelets. If your program calls system services directly, it
must do the bookkeeping to keep track of free memory.

LIB$GET_VM_PAGE and LIB$FREE_VM_PAGE are fully reentrant. They can be called by code
running at AST level or in an Ada multitasking environment.

Memory space allocated by LIB$GET_VM_PAGE are created with user-mode read-write access, even if
the call to LIB$GET_VM_PAGE is made from a more privileged access mode.

LIB$GET_VM_PAGE and LIB$FREE_VM_PAGE are designed for request sizes ranging from one
page to a few hundred pages. If you are using very large request sizes of contiguous space in a single
request, the bitmap allocation method that is used may cause fragmentation of your virtual address space
because allocated pages are contiguous. For very large request sizes, use direct calls to SYS$EXPREG
and do not use LIB$GET_VM_PAGE.

The format for LIB$GET_VM_PAGE is as follows:

LIB$GET_VM_PAGE (number-of-pages ,base-address)

With this routine, you need to specify only the number of pages you need in the number-of-pages
argument. The routine returns the base address of the contiguous block of pages that have been allocated
in the base-address argument.

The rules for using LIB$GET_VM_PAGE and LIB$FREE_VM_PAGE are as follows:

• Any memory you free by calling LIB$FREE_VM_PAGE must have been allocated by a previous
call to LIB$GET_VM_PAGE. You cannot allocate memory by calling either SYS$EXPREG or
SYS$CRETVA and then free it using LIB$FREE_VM_PAGE.

• All memory allocated by LIB$GET_VM_PAGE is page aligned; that is, the low-order 9 bits of the
address are all zero. All memory freed by LIB$FREE_VM_PAGE must also be page aligned; an
error status is returned if you attempt to free a block of memory that is not page aligned.

• You can free a smaller group of pages than you allocated. That is, if you allocated a group of 4
contiguous pages by a single call to LIB$GET_VM_PAGE, you can free the memory by using
several calls to LIB$FREE_VM_PAGE; for example, free 1 page, 2 pages, and 1 page.

411

Chapter 14. Using Run-Time Routines for Memory Allocation

• You can combine contiguous groups of pages that were allocated by several calls
to LIB$GET_VM_PAGE into one group of pages that are freed by a single call to
LIB$FREE_VM_PAGE. Before doing this, however, you must compare the addresses to ensure that
the pages you are combining are indeed contiguous. Of course, you must ensure that a routine frees
only pages that it has previously allocated and still owns.

• Be especially careful that you do not attempt to free a set of pages twice. You might free a set of
pages in one routine and reallocate those same pages from another routine. If the first routine then
deallocates those pages a second time, any information that the second routine stored in them is lost.
Because the pages are still allocated to your program (even though to a different routine), this type of
programming mistake does not generate an error.

• The contents of memory allocated by LIB$GET_VM_PAGE are unpredictable. Your program must
assign values to all locations that it uses.

• You should try to minimize the number of request sizes your program uses to avoid fragmentation of
the free page pool. This concept is shown in Figure 14.1.

Figure 14.1. Memory Fragmentation

The straight line running across Figure 14.1 represents the memory allocated to your program. The
blocks represent memory that has already been allocated. At this point, if you request 16 pages,
memory will have to be allocated at the far right end of the memory line shown in this figure, even
though there are 20 free pages before that point. You cannot use 16 of these 20 pages because the 20
free pages are “fragmented” into groups of 15, 3, and 2 pages.

Fragmentation is discussed further in Section 14.4.1.

14.2. Interactions with Other Run-Time Library
Routines
Chapter 13, and Chapter 12, describe at three-level hierarchy of memory allocation routines consisting
of the following:

1. Memory management system services

2. Run-time library page management routines LIB$GET_VM_PAGE and LIB$FREE_VM_PAGE

3. Run-time library heap management routines LIB$GET_VM and LIB$FREE_VM

The run-time library and various programming languages provide another level of more specialized
allocation routines.

• The run-time library dynamic string package provides a set of routines for allocating and freeing
dynamic strings. The set of routines includes the following:

412

Chapter 14. Using Run-Time Routines for Memory Allocation

LIB$SGET1_DD, LIB$SFREE1_DD
LIB$SFREEN_DD
STR$GET1_DX, STR$FREE1_DX

• VSI Ada provides allocators and the UNCHECKED_DEALLOCATION package for allocating and
freeing memory.

• VSI Pascal provides the NEW and DISPOSE routines for allocating and freeing memory.

• VSI C provides malloc and free routines for allocating and freeing memory.

A program containing routines written in several operating system languages may use a number of these
facilities at the same time. This does not cause any problems or impose any restrictions on the user
because all of these are layered on the run-time library heap management routines.

Note

To ensure correct operation, memory that is allocated by one of the higher-level allocators in the
preceding list can be freed only by using the corresponding deallocation routine. That is, memory
allocated by PASCAL NEW must be freed by calling PASCAL DISPOSE, and a dynamic string can be
freed only by calling one of the string package deallocation routines.

14.3. Interactions with System Services
The run-time library page management and heap management routines are implemented as layers
built on the memory management system services. In general, modular routines should use the run-
time library routines rather than directly call memory management system services. However, in some
situations you must use both. This section describes relationships between the run-time library and
memory management. See the VSI OpenVMS System Services Reference Manual for descriptions of the
memory management system services.

You can use the Expand Region (SYS$EXPREG) system service to create pages of virtual memory in
the program region (P0 space) for your process. The operating system keeps track of the first free page
address at the end of P0 space, and it updates this free page address whenever you call YS$EXPREG or
SYS$CRETVA. The LIB$GET_VM_PAGE routine calls SYS$EXPREG to create pages, so there is no
conflicting address assignments when you call SYS$EXPREG directly.

Avoid using the Create Virtual Address Space (SYS$CRETVA) system service, because you must
specify the range of virtual addresses when it is called. If the address range you specify contains pages
that already exist, SYS$CRETVA deletes those pages and recreates them as demand-zero pages. You
may have difficulty avoiding conflicting address assignments if you use run-time library routines and
SYS$CRETVA.

You must not use the Contract Region (SYS$CNTREG) system service, because other routines or the
OpenVMS Record Management Services (RMS) may have allocated pages at the end of the program
region.

You can change the protection on pages your program has allocated by calling the Set Protection
(SYS$SETPRT) system service. All pages allocated by LIB$GET_VM_PAGE have user-mode read/
write access. If you change protection on pages allocated by LIB$GET_VM_PAGE, you must reset the
protection to user-mode read/write before calling LIB$FREE_VM_PAGE to free the pages.

413

Chapter 14. Using Run-Time Routines for Memory Allocation

You can use the Create and Map Section (SYS$CRMPSC) system service to map a file into your virtual
address space. To map a file, you provide a range of virtual addresses for the file. One way to do this is
to specify the Expand Region option (SEC$M_EXPREG) when you call SYS$CRMPSC. This method
assigns addresses at the end of P0 space, similar to the SYS$EXPREG system service. Alternatively,
you can provide a specific range of virtual addresses when you call SYS$CRMPSC; this is similar to
allocating pages by calling SYS$CRETVA. If you assign a specific range of addresses, you must avoid
conflicts with other routines. One way to do this is to allocate memory by calling LIB$GET_VM_PAGE
and then use that memory to map the file.

The complete sequence of steps is as follows:

1. Call LIB$GET_VM_PAGE to allocate a contiguous group of (n+1) pages. The first n pages are used
to map the file; the last page serves as a guard page.

2. Call SYS$CRMPSC using the first n pages to map the file into your process address space.

3. Process the file.

4. Call SYS$DELTVA to delete the first n pages and unmap the file.

5. Call SYS$CRETVA to recreate the n pages of virtual address space as demand-zero pages.

6. Call LIB$FREE_VM_PAGE to free (n+1) pages of memory and return them to the processwide
page pool.

This sequence is satisfactory when mapping small files of a few hundred pages, but it has severe
limitations when mapping very large files. A discussed in Section 14.1, you should not use
LIB$GET_VM_PAGE to allocate very large groups of contiguous pages in a single request. In addition,
when you allocate memory by calling LIB$GET_VM_PAGE (and thus SYS$EXPREG),the pages
are charged against your process page file quota. Your page file quota is not charged if you call
SYS$CRMPSC with the SEC$M_EXPREG option.

You can process very large files using SYS$CRMPSC by first providing a pool of pages that is sufficient
for your program and then by using SYS$CRMPSC and SYS$DELTVA to map and unmap the file.
Use LIB$SHOW_VM to obtain an estimate of how much dynamically allocated memory your program
requires; round this number up and allow for increased memory usage in the future. You can then use
the memory estimate as follows:

1. At the beginning of your program, include code to call LIB$GET_VM_PAGE and allocate
the estimated number of pages. You should not request a large number of pages in one call to
LIB$GET_VM_PAGE, because this would require contiguous allocation of the pages.

2. Call LIB$FREE_VM_PAGE to free all the pages allocated in step 1; this establishes a pool of free
pages for your program.

3. Open files that your program needs; note that RMS may allocate buffers in P0 space.

4. Call SYS$CRMPSC specifying SEC$M_EXPREG to map the file into your process address space at
the end of P0 space.

5. Process the file.

6. Call SYS$DELTVA, specifying the address range to release the file. If additional pages were not
created after you mapped the file, SYS$DELTVA contracts your address space. Your program can
repeat the process of mapping a file without continually expanding its address space.

414

Chapter 14. Using Run-Time Routines for Memory Allocation

14.4. Zones
The run-time library heap management routines LIB$GET_VM and LIB$FREE_VM are based on the
concept of zones. A zone is a logically independent memory pool or subheap that you can control as one
unit. A program may use several zones to structure its heap memory management. You might use a zone
to:

• Store short-lived data structures that you can subsequently delete all at once

• Store a program that does not reference a wide range of addresses

• Specify a memory allocation algorithm specific to your program

• Specify attributes, like block size and alignment, specific to your program

You create a zone with specified attributes by calling the routine LIB$CREATE_VM_ZONE.
LIB$CREATE_VM_ZONE returns a zone identifier value that you can use in subsequent calls to the
routines LIB$GET_VM and LIB$FREE_VM. When you no longer need the zone, you can delete the
zone and free all the memory it controls by a single call to LIB$DELETE_VM_ZONE.

The format for this routine is as follows:

LIB$CREATE_VM_ZONE
 zone_id [,algorithm] [,algorithm_arg] [,flags] [,extend_size]
 [,initial_size] [,block_size] [,alignment] [,page_limit]
 [,smallest-block-size] [,zone-name] [,get-page] [,free-page]

For more information about LIB$CREATE_VM_ZONE, refer to the VSI OpenVMS RTL Library (LIB$)
Manual.

Allocating Address Space
Use the algorithm argument to specify how much space should be allocated—as a linked list of free
blocks, as a set of lookaside list indexes by request size, as a set of lookaside lists for some block sizes, or
as a single queue of free blocks.

Allocating Pages Within the Zone
Use the initial_size argument to allocate a specified number of pages from the zone when it is
created. After zone creation, you can use LIB$GET_VM to allocate space.

Specifying the Block Size
Use the block_size argument to specify the block size in bytes.

Specifying Block Alignment
Use the alignment argument to specify the alignment for each block allocated in bytes.

Once a zone has been created and used, use LIB$DELETE_VM_ZONE to delete the zone and
return the pages allocated to the processwide page pool. LIB$RESET_VM_ZONE frees pages for
subsequent allocation but does not delete the zone or return the pages to the processwide page pool. Use
LIB$SHOW_VM_ZONE to get information about a specific zone.

415

Chapter 14. Using Run-Time Routines for Memory Allocation

If you want a program to deal with each VM zone created during the invocation, including those created
outside of the program, you can call LIB$FIND_VM_ZONE. At each call, LIB$FIND_VM_ZONE
scans the heap management database and returns the zone identifier of the next valid zone.

LIB$SHOW_VM_ZONE returns formatted information about a specified zone, detailing such
information as the zone's name, characteristics, and areas, and then passes the information to the
specified or default action routine. LIB$VERIFY_VM_ZONE verifies the zone header and scans all of
the queues and lists maintained in the zone header.

If you call LIB$GET_VM to allocate memory from a zone and the zone has no free memory to satisfy
the request, LIB$GET_VM calls LIB$GET_VM_PAGE to allocate a block of contiguous pages for the
zone. Each such block of contiguous pages is called an area. You control the number of pages in an area
by specifying the area extension size attribute when you create the zone.

The systematic use of zones provides the following benefits:

• Structuring heap memory management

Data structures in your program may have different life spans or dynamic scopes. Some structures
may continue to grow during the entire execution of your program, while others exist for a very short
time and are then discarded by the program. You can create a separate zone in which you allocate a
particular type of short-lived structure. When the program no longer needs any of those structures,
you can delete all of them in a single operation by calling LIB$DELETE_VM_ZONE.

• Program locality

Program locality is a characteristic of a program that indicates the distance between the references
and virtual memory over a period of time. A program with a high degree of program locality does
not refer to many widely scattered virtual addresses in a short period of time. Maintaining a high
degree of program locality reduces the number of page faults and improves program performance.

It is important to minimize the number of page faults to obtain best performance in a virtual memory
system such as VAX, Alpha, and I64 systems. For example, if your program creates and searches a
symbol table, you can reduce the number of page faults incurred by the search operation by using
as few pages as possible to hold all the symbol table entries. If you allocate symbol table entries and
other items unrelated to the symbol table in the same zone, each page of the symbol table contains
both symbol table entries and other items. Because of the extra unrelated entries, the symbol table
takes up more pages than it actually needs. A search of the symbol table then accesses more pages,
and performance is lower as a result. You may be able to reduce the number of page faults by
creating a separate symbol table zone so that pages that contain symbol table entries do not contain
any unrelated items.

• Specialized allocation algorithms

No single memory allocation algorithm is ideal for all applications. Section 14.6 describes the run-
time library memory allocation algorithms and their performance characteristics so that you can
select an appropriate algorithm for each zone that you create.

• Performance tuning

You can specify a number of attributes that affect performance when you create a zone. The
allocation algorithm you select can have a significant effect on performance. By specifying
the allocation block size, you can improve performance and reduce fragmentation within the
zone at the cost of some extra memory. You can also use boundary tags to improve the speed
of LIB$FREE_VM at the cost of some extra memory. Boundary tags are further discussed in
Section 14.4.1.

416

Chapter 14. Using Run-Time Routines for Memory Allocation

14.4.1. Zone Attributes
You can specify a number of zone attributes when you call LIB$CREATE_VM_ZONE to create the
zone. The attributes that you specify are permanent; that is, you cannot change the attribute values. They
remain constant until you delete the zone. Each zone that you create can have a different set of attribute
values. Thus, you can tailor each zone to optimize program locality, execution time, and memory usage.

This section describes each of the zone attributes, suggested values for the attribute, and the effects of
the attribute on execution time and memory usage. If you do not specify a complete set of attribute
values, LIB$CREATE_VM_ZONE provides defaults form any of the attributes. More detailed
information about argument names and the encoding of arguments is given in the description of
LIB$CREATE_VM_ZONE in the VSI OpenVMS RTL Library (LIB$) Manual.

The zone attributes are as follows:

• Allocation algorithms

The run-time library heap management routines provide four algorithms to allocate and free memory
and to manage blocks of free memory. The algorithms are listed here. (See Section 14.6 for more
details).

• The First Fit algorithm (LIB$K_VM_FIRST_FIT) maintains a linked list of free blocks, sorted
in order of increasing memory address.

• The Quick Fit algorithm (LIB$K_VM_QUICK_FIT) maintains a set of look aside lists indexed
by request size for request sizes in a specified range. For request sizes that are not in the specified
range, a First Fit list of free blocks is maintained by the heap management routines.

• The Frequent Sizes algorithm (LIB$K_VM_FREQ_SIZES) is similar to Quick Fit in that it
maintains a set of lookaside lists for some block sizes. You specify the number of lists when you
create the zone; the sizes associated with those lists are determined by the actual sizes of blocks
that are freed.

• The Fixed Size algorithm (LIB$K_VM_FIXED) maintains a single queue of free blocks.

• Boundary-tagged blocks

You can specify the use of boundary tags (LIB$M_VM_BOUNDARY_TAGS) with any of the
algorithms that handle variable-sized blocks. The algorithms that handle variable-sized blocks are
First Fit, Quick Fit, and Frequent Sizes.

If you specify boundary tags, LIB$GET_VM appends two additional longwords to each block that
you allocate. LIB$FREE_VM uses these tags to speed up the process of merging adjacent free
blocks on the First Fit free list. Using the standard First Fit insertion and merge, the execution time
and number of page faults to free a block are proportional to the number of items on the list; freeing
n blocks takes time proportional to n squared. When boundary tags are used, LIB$FREE_VM does
not have to keep the free list in sorted order. This reduces the time and the number of page faults
for freeing one block to a constant value that is independent of the number of free blocks. By using
boundary tags, you can improve execution time at the cost of some additional memory for the tags.

The use of boundary tags can have a significant effect on execution time if all of the following three
conditions are present:

• You are using the First Fit algorithm.

417

Chapter 14. Using Run-Time Routines for Memory Allocation

• There are many calls to LIB$FREE_VM.

• The free list is long.

Boundary tags do not improve execution time if you are using Quick Fit or Frequent Sizes and if all
the blocks being freed use one of the lookaside lists. Merging or searching is not done for free blocks
on a lookaside list.

The boundary tags specify the length of each block that is allocated, so you do not need to specify
the length of a tagged block when you free it. This reduces the bookkeeping that your program must
perform. Figure 14.2 shows the placement of boundary tags.

Figure 14.2. Boundary Tags

Boundary tags are not visible to the calling program. The request size you specify when calling
LIB$GET_VM is the number of usable bytes your program needs. The address returned by
LIB$GET_VM is the address of the first usable byte of the block, and this same address is used
when you call LIB$FREE_VM.

• Area extension size

Pages of memory are allocated to a zone in contiguous groups called areas. By specifying area
extension parameters for the zone, you can tailor the zone to achieve a satisfactory balance between
locality, memory usage, and execution time for allocating pages. If you specify a large area size,
you improve locality for blocks in the zone, but you may waste a large amount of virtual memory.
Pages can be allocated to an area of a zone, but the memory might never be used to satisfy a
LIB$GET_VM allocation request. If you specify a small area extension size, you reduce the number
of pages used, but you may reduce locality and you increase the amount of overhead for area control
blocks.

You can specify two area extension size values: an initial size and an extend size. If you specify an
initial area size, that number of pages is allocated to the zone when you create the zone. If you do not
specify an initial size, no pages are allocated until the first call to LIB$GET_VM that references the
zone. When an allocation request cannot be satisfied by blocks from the free list or from memory
in any of the areas owned by the zone, a new area is added to the zone. The size of this area is the
maximum of the area extend size and the current request size. The extend size does not limit the size
of blocks you can allocate. If you do not specify extend size when you create the zone, a default of
16 pages is used.

418

Chapter 14. Using Run-Time Routines for Memory Allocation

Choose a few area extension sizes, and use them throughout your program. It is also desirable
to choose extension sizes that are multiples of each other. Memory for areas is allocated by
calling LIB$GET_VM_PAGE. You should choose the area extension sizes in order to minimize
fragmentation. Software supplied by VSI uses extension sizes that are a power of 2.

Also consider the overhead for area control blocks when choosing the area extension parameters.
Each area control block is 64 bytes long. Table 14.1 shows the overhead for various extension sizes.

Table 14.1. Overhead for Area Control Blocks

Area Size (Pages) Overhead Percentage

1 12.5%
2 6.3%
4 3.1%
16 0.8%
128 0.1%

You can also control the way in which zones are extended by using the
LIB$M_VM_EXTEND_AREA attribute. This attribute specifies that when new pages are allocated
for a zone, they should be appended to an existing area if the pages are adjacent to an existing area.

• Block size

The block size attribute specifies the number of bytes in the basic allocation quantum for the zone.

All allocation requests are rounded up to a multiple of the block size.

The block size must be a power of 2 in the range of 8 to 512. Table 14.2 lists the possible block
sizes.

Table 14.2. Possible Values for the Block Size Attribute

Block Size
(Power of 2)

Actual Block Size

23 8
24 16
25 32
26 64
27 128
28 256
29 512

By adjusting the block size, you can control the effects of internal fragmentation and external
fragmentation. Internal fragmentation occurs when the request size is rounded up and more bytes are
allocated than are required to satisfy the request. External fragmentation occurs when there are many
small blocks on the free list, but none of them is large enough to satisfy an allocation request.

If you do not specify a value for block size, a default of 8 bytes is used.

• Alignment

419

Chapter 14. Using Run-Time Routines for Memory Allocation

The alignment attribute specifies the required address boundary alignment for each block allocated.
The alignment value must be a power of 2 in the range of 4 to 512.

The block size and alignment values are closely related. If you are not using boundary-tagged blocks,
the larger value of block size and alignment controls both the block size and alignment. If you are
using boundary-tagged blocks, you can minimize the overhead for the boundary tags by specifying a
block size of 8 and an alignment of 4 (longword alignment).

On VAX systems, note that the VAX interlocked queue instructions require quadword alignment, so
you should not specify longword alignment for blocks that will be inserted on an interlocked queue.

If you do not specify an alignment value, a default of 8 is used(alignment on a quadword boundary).
For I64, the default is 16(alignment on an octaword boundary).

• Page limit

You can specify the maximum number of pages that can be allocated to the zone. If you do not
specify a limit, the only limit is the virtual address limit for the total process imposed by process
quotas and system parameters.

• Fill on allocate

If you do not specify the allocation fill attribute, LIB$GET_VM does not initialize the contents of
the blocks of memory that it supplies. The contents of the memory are unpredictable, and you must
assign a value to each location your program uses.

In many applications, it is convenient to initialize every byte of dynamically allocated memory to the
value 0. You can request that LIB$GET_VM do this initialization by specifying the allocation fill
attribute LIB$M_VM_GET_FILL0 when you create the zone.

If your program does not use the allocation fill attribute, it may be very difficult to locate bugs where
the program does not properly initialize dynamically allocated memory. As a debugging aid, you can
request that LIB$GET_VM initialize every byte to FF (hexadecimal) by specifying the allocation fill
attribute LIB$M_VM_GET_FILL1 when you create the zone.

• Fill on free

In complex programs using heap storage, it can be very difficult to locate bugs where the program
frees a block of memory but continues to make references to that block of memory. As a debugging
aid, you can request that LIB$FREE_VM write bytes containing 0 or FF (hexadecimal) into each
block of memory when it is freed; specify one of the attributes LIB$M_VM_FREE_FILL0 or
LIB$M_VM_FREE_FILL1.

14.4.2. Default Zone
The run-time library provides a default zone that is used if you do not specify a zone-id argument
when you call either LIB$GET_VM or LIB$FREE_VM. The default zone provides compatibility with
earlier versions of LIB$GET_VM and LIB$FREE_VM, which did not support multiple zones.

Programs that do not place heavy demands on heap storage can simply use the default zone
for all heap storage allocation. They do not need to call LIB$CREATE_VM_ZONE and
LIB$DELETE_VM_ZONE, and they can omit the zone-id argument when calling LIB$GET_VM
and LIB$FREE_VM. The zone-id for the default zone has the value 0.

420

Chapter 14. Using Run-Time Routines for Memory Allocation

The default zone has the values shown in Table 14.3.

Table 14.3. Attribute Values for the Default Zone

Attribute Value

Algorithm First Fit
Area extension size 128 pages
Block size 8 bytes
Alignment Quadword boundary for Vax and Alpha; Octaword boundary for I64
Boundary tags No boundary tags
Page limit No limit
Fill on allocate No fill on allocate
Fill on free No fill on free

14.4.3. Zone Identification
A zone is a logically independent memory pool or subheap. You can create zones by calling either
LIB$CREATE_VM_ZONE or LIB$CREATE_USER_VM_ZONE. These routines return as an output
argument a unique 32-bit zone identifier (zone-id) that is used in subsequent routine calls where a
zone identification is needed.

You can specify the zone-id argument as an optional argument when you call LIB$GET_VM to
allocate a block of memory. If you do specify zone-id when you allocate memory, you must specify
the same zone-id value when you call LIB$FREE_VM to free the memory. LIB$FREE_VM returns
an error status if you do not provide the correct value for zone-id.

Modular routines that allocate and free heap storage must use zone identifications in a consistent fashion.
You can use one of several approaches in designing a set of modular routines to ensure consistency in
using zone identifications:

• Each routine that allocates or frees heap storage has a zone-id argument so the caller can specify
the zone to be used.

• The modular routine package provides ALLOCATE and FREE routines for each type of dynamically
allocated object. These routines keep track of zone identifications in an implicit argument, in static
storage, or in the dynamically allocated objects. The caller need not be concerned with the details of
zone identifications.

• By convention, the set of modular routines could do all allocate and free operations in the default
zone.

The zone identifier for the default zone has the value 0 (see Section 14.4.2 for more information on
the default zone).You can allocate and free blocks of memory in the default zone by either specifying
a zone-id value of 0 or by omitting the zone-id argument when you call LIB$GET_VM and
LIB$FREE_VM. You cannot use LIB$DELETE_VM_ZONE or LIB$RESET_VM_ZONE on the
default zone; these routines return an error status if the value for zone-id is 0.

14.4.4. Creating a Zone
The LIB$CREATE_VM_ZONE routine creates a new zone and sets zone attributes according to
arguments that you supply. LIB$CREATE_VM_ZONE returns a zone-id value for the new zone that
you use in subsequent calls to LIBGET_VM, LIBFREE_VM, and LIB$DELETE_VM_ZONE.

421

Chapter 14. Using Run-Time Routines for Memory Allocation

14.4.5. Deleting a Zone
The LIB$DELETE_VM_ZONE routine deletes a zone and returns all pages owned by the zone to the
processwide page pool managed by LIB$GET_VM_PAGE. Your program must not perform any more
operations on the zone after you call LIB$DELETE_VM_ZONE.

It takes less execution time to free memory in a single operation by calling LIB$DELETE_VM_ZONE
than to account individually for and free every block of memory that was allocated by calling
LIB$GET_VM. Of course, you must be sure that your program is no longer using the zone or any of the
memory in the zone before you call LIB$DELETE_VM_ZONE.

If you have specified deallocation filling, LIB$DELETE_VM_ZONE fills all of the allocated blocks that
are freed.

14.4.6. Resetting a Zone
The LIB$RESET_VM_ZONE routine frees all the blocks of memory that were previously allocated
from the zone. The memory becomes available to satisfy further allocation requests for the zone;
the memory is not returned to the processwide page pool managed by LIB$GET_VM_PAGE. Your
program can continue to use the zone after you call LIB$RESET_VM_ZONE.

It takes less execution time to free memory in a single operation by calling LIB$RESET_VM_ZONE
than to account individually for and free every block of memory that was allocated by calling
LIB$GET_VM. Of course, you must be sure that your program is no longer using any of the memory in
the zone before you call LIB$RESET_VM_ZONE.

If you have specified deallocation filling, LIB$RESET_VM_ZONE fills all of the allocated blocks that
are freed.

Because LIB$RESET_VM_ZONE does not return any pages to the processwide page pool, you should
reset a zone only if you expect to reallocate almost all of the memory that is currently owned by the
zone. If the next cycle of reallocation may use much less memory, it is better to delete the zone (with
LIB$DELETE_VM_ZONE) and create it again (with LIB$CREATE_VM_ZONE).

14.5. Allocating and Freeing Blocks
The run-time library heap management routines LIB$GET_VM and LIB$FREE_VM provide the
mechanism for allocating and freeing blocks of memory.

The LIB$GET_VM and LIB$FREE_VM routines are fully reentrant, so they can be called either by
code running at AST level or in an Ada multitasking environment. Several threads of execution can be
allocating or freeing memory simultaneously either in the same zone or in different zones.

All memory allocated by LIB$GET_VM has user-mode read/write access, even if the call to
LIB$GET_VM is made from a more privileged access mode.

The rules for using LIB$GET_VM and LIB$FREE_VM are as follows:

• Any memory you free by calling LIB$FREE_VM must have been allocated by a previous call to
LIB$GET_VM. You cannot allocate memory by calling SYS$EXPREG or SYS$CRETVA and then
free it using LIB$FREE_VM.

• When you free a block of memory by calling LIB$FREE_VM, you must use the same zone-id
value as when you called LIB$GET_VM to allocate the block. If the block was allocated from the

422

Chapter 14. Using Run-Time Routines for Memory Allocation

default zone, you must either specify a zone-id value of 0 or omit the zone-id argument when
you call LIB$FREE_VM.

• You cannot free part of a block that was allocated by a call to LIB$GET_VM; the whole block must
be freed by a single call to LIB$FREE_VM.

• You cannot combine contiguous blocks of memory that were allocated by several calls to
LIB$GET_VM into one larger block that is freed by a single call to LIB$FREE_VM.

• All memory allocated by LIB$GET_VM is aligned according to the alignment attribute for the zone;
all memory freed by LIB$FREE_VM must have the correct alignment for the zone. An error status
is returned if you attempt to free a block that is not aligned properly.

14.6. Allocation Algorithms
The run-time library heap management routines provide four algorithms, listed in Table 14.4, that are
used to allocate and free memory and that are used to manage blocks of free memory.

Table 14.4. Allocation Algorithms

Code Symbol Description

1 LIB$K_VM_FIRST_FIT First Fit
2 LIB$K_VM_QUICK_FIT Quick Fit (maintains lookaside list)
3 LIB$K_VM_FREQ_SIZES Frequent Sizes (maintains lookaside list)
4 LIB$K_VM_FIXED Fixed Size Blocks

The Quick Fit and Frequent Sizes algorithms use lookaside lists to speed allocation and freeing for
certain request sizes. A lookaside list is the software analog of a hardware cache. It takes less time to
allocate or free a block that is on a lookaside list.

For each of the algorithms, LIB$GET_VM performs one or more of the following operations:

• Tries to allocate a block from an appropriate lookaside list.

• Scans the list of areas owned by the zone. For each area, it tries to allocate a block from the free list
and then tries to allocate a block from the block of unallocated memory at the end of the area.

• Adds a new area to the zone and allocates the block from that area.

For each of the algorithms, LIB$FREE_VM performs one or more of the following operations:

• Places the block on a lookaside list associated with the zone if there is an appropriate list.

• Locates the area that contains the block. If the zone has boundary tags, the tags encode the area;
otherwise, it scans the list of areas owned by the zone to find the correct area.

• Inserts the block on the area free list and checks for merges with adjacent free blocks.

If the zone has boundary tags, LIB$FREE_VM checks the tags of adjacent blocks; if a merge does
not occur, it inserts the block at the tail of the free list.

If the zone does not have boundary tags, LIB$FREE_VM scans the sorted free list to find the
correct insertion point. It also checks the preceding and following blocks for merges.

423

Chapter 14. Using Run-Time Routines for Memory Allocation

14.6.1. First Fit Algorithm
The First Fit algorithm (LIB$K_VM_FIRST_FIT) maintains a linked list of free blocks. If the zone
does not have boundary tags, the free list is kept sorted in order of increasing memory address. An
allocation request is satisfied by the first block on the free list that is large enough; if the first free block
is larger than the request size, it is split and the fragment is kept on the free list. When a block is freed,
it is inserted in the free list at the appropriate point; adjacent free blocks are merged to form larger free
blocks.

14.6.2. Quick Fit Algorithm
The Quick Fit algorithm (LIB$K_VM_QUICK_FIT) maintains a set of lookaside lists indexed by
request size for request sizes in a specified range. For request sizes that are not in the specified range, a
First Fit list of free blocks is maintained. An allocation request is satisfied by removing a block from the
appropriate lookaside list; if the lookaside list is empty, a First Fit allocation is done. When a block is
freed, it is placed on either a lookaside list or the First Fit list according to its size.

Free blocks that are placed on a lookaside list are neither merged with adjacent free blocks nor split to
satisfy a request for a smaller block.

14.6.3. Frequent Sizes Algorithm
The Frequent Sizes algorithm (LIB$K_VM_FREQ_SIZES) is similar to the Quick Fit algorithm in that
it maintains a set of lookaside lists for some block sizes. You specify the number of lookaside lists when
you create the zone; the sizes associated with those lists are determined by the actual sizes of blocks that
are freed. An allocation request is satisfied by searching the lookaside lists for a matching size; if no
match is found, a First Fit allocation is done. When a block is freed, the block is placed on a lookaside
list with a matching size, on an empty lookaside list, or on the First Fit list if no lookaside list is available.
As with the Quick Fit algorithm, free blocks on lookaside lists are not merged or split.

14.6.4. Fixed Size Algorithm
The Fixed Size algorithm (LIB$K_VM_FIXED) maintains a single queue of free blocks. There is no
First Fit free list, and splitting or merging of blocks does not occur.

14.7. User-Defined Zones
When you create a zone by calling LIB$CREATE_VM_ZONE, you must select an allocation algorithm
from the fixed set provided by the run-time library. You can tailor the characteristics of the zone by
specifying various zone attributes. User-defined zones provide additional flexibility and control by letting
you supply routines for the allocation and deallocation algorithms.

You create a user-defined zone by calling LIB$CREATE_USER_VM_ZONE. Instead of supplying
values for a fixed set of zone attributes, you provide routines that perform the following operations for
the zone:

• Allocate a block of memory

• Free a block of memory

• Reset the zone

• Delete the zone

424

Chapter 14. Using Run-Time Routines for Memory Allocation

Each time that one of the run-time library heap management routines (LIBGET_VM, LIBFREE_VM,
LIB$RESET_VM_ZONE, LIB$DELETE_VM_ZONE) is called to perform an operation on a user-
defined zone, the corresponding routine that you specified is called to perform the actual operation. You
need not make any changes in the calling program to use user-defined zones; their use is transparent.

You do not need to provide routines for all four of the preceding operations if you know that your
program will not perform certain operations. If you omit some of the operations and your program
attempts to use them, an error status is returned.

Applications of user-defined zones include the following:

• You can provide your own specialized allocation algorithms. These algorithms can in turn invoke
LIBGET_VM, LIBGET_VM_PAGE, SYS$EXPREG, or other system services.

• You can use a user-defined zone to monitor memory allocation operations. Example 14.1 shows a
monitoring program that prints a record of each call to either allocate or free memory in a zone.

Example 14.1. Monitoring Heap Operations with a User-Defined Zone

C+
C This is the main program that creates a zone and exercises it.
C
C Note that the main program simply calls LIB$GET_VM and LIB$FREE_VM.
C It contains no special coding for user-defined zones.
C-

 PROGRAM MAIN
 IMPLICIT INTEGER(A-Z)

 CALL MAKE_ZONE(ZONE)

 CALL LIB$GET_VM(10, I1, ZONE)
 CALL LIB$GET_VM(20, I2, ZONE)
 CALL LIB$FREE_VM(10, I1, ZONE)
 CALL LIB$RESET_VM_ZONE(ZONE)
 CALL LIB$DELETE_VM_ZONE(ZONE)
 END

C+
C This is the subroutine that creates a user-defined zone for monitoring.
C Each GET, FREE, or RESET prints a line of output on the terminal.
C Errors are signaled.
C-

 SUBROUTINE MAKE_ZONE(ZONE)
 IMPLICIT INTEGER (A-Z)
 EXTERNAL GET_RTN, FREE_RTN, RESET_RTN, LIB$DELETE_VM_ZONE

C+
C Create the primary zone. The primary zone supports
C the actual allocation and freeing of memory.
C-

 STATUS = LIB$CREATE_VM_ZONE(REAL_ZONE)
 IF (.NOT. STATUS) CALL LIB$SIGNAL(%VAL(STATUS))

C+
C Create a user-defined zone that monitors operations on REAL_ZONE.

425

Chapter 14. Using Run-Time Routines for Memory Allocation

C-

 STATUS = LIB$CREATE_USER_VM_ZONE(USER_ZONE, REAL_ZONE,
 1 GET_RTN,
 1 FREE_RTN,
 1 RESET_RTN,
 1 LIB$DELETE_VM_ZONE)
 IF (.NOT. STATUS) CALL LIB$SIGNAL(%VAL(STATUS))

C+
C Return the zone-id of the user-defined zone to the caller to use.
C-

 ZONE = USER_ZONE
 END

C+
C GET routine for user-defined zone.
C-

 FUNCTION GET_RTN(SIZE, ADDR, ZONE)
 IMPLICIT INTEGER(A-Z)

 STATUS = LIB$GET_VM(SIZE, ADDR, ZONE)

 IF (.NOT. STATUS) THEN
 CALL LIB$SIGNAL(%VAL(STATUS))
 ELSE
 TYPE 10, SIZE, ADDR
10 FORMAT(' Allocated ',I4,' bytes at ',Z8)
 ENDIF
 GET_RTN = STATUS
 END

C+
C FREE routine for user-defined zone.
C-

 FUNCTION FREE_RTN(SIZE, ADDR, ZONE)
 IMPLICIT INTEGER(A-Z)

 STATUS = LIB$FREE_VM(SIZE, ADDR, ZONE)

 IF (.NOT. STATUS) THEN
 CALL LIB$SIGNAL(%VAL(STATUS))
 ELSE
 TYPE 20, SIZE, ADDR
20 FORMAT(' Freed ',I4,' bytes at ',Z8)
 ENDIF
 FREE_RTN = STATUS
 END

C+
C RESET routine for user-defined zone.
C-

 FUNCTION RESET_RTN(ZONE)
 IMPLICIT INTEGER(A-Z)

426

Chapter 14. Using Run-Time Routines for Memory Allocation

 STATUS = LIB$RESET_VM_ZONE(ZONE)
 IF (.NOT. STATUS) THEN
 CALL LIB$SIGNAL(%VAL(STATUS))
 ELSE
 TYPE 30, ZONE
30 FORMAT(' Reset zone at ', Z8)
 ENDIF

 RESET_RTN = STATUS
 END

14.8. Debugging Programs That Use Virtual
Memory Zones
This section discusses some methods and aids for debugging programs that use virtual memory zones.
Note that this information is implementation dependent and may change at anytime.

The following list offers some suggestions for discovering and tracking problems with memory zone
usage:

• Run the program with both free-fill-zero and free-fill-one set. The results from both executions of
the program should be the same. If the results differ, this could mean that you are referencing a zone
that is already deallocated. It could also mean that, after deallocating a zone, you created a new zone
at the same location, so that you now have two pointers pointing to the same zone.

• Call LIB$FIND_VM_ZONE at image termination. If a virtual memory zone is not deleted,
LIB$FIND_VM_ZONE returns its zone identifier.

• Use LIB$SHOW_VM_ZONE and LIB$VERIFY_VM_ZONE to print zone information and check
for errors in the internal data structures. LIB$SHOW_VM_ZONE allows you to determine whether
any linkage pointers for the virtual memory zones are corrupted. LIB$VERIFY_VM_ZONE
allows you to request verification of the contents of the free blocks, so that if you call
LIB$VERIFY_VM_ZONE with free-fill set, you can determine whether you are writing to any
deallocated zones.

• For zones created with the Fixed Size, Quick Fit, or Frequent Size algorithms, some types of errors
cannot be detected. For example, in a zone that implements the Fixed Size algorithm (or in a Quick
Fit or Frequent Size algorithm when the block is cached on a lookaside list), freeing a block more
than once returns SS$_NORMAL, but the internal data structures are invalid. In this case, change
the algorithm to First Fit. The First Fit algorithm checks whether you are freeing a block that is
already on the free list and, if so, returns the error LIB$_BADBLOADR.

427

Chapter 14. Using Run-Time Routines for Memory Allocation

428

Chapter 15. Alignment on VAX, Alpha,
and I64 Systems
This chapter describes the importance and techniques of alignment for OpenVMS VAX, OpenVMS
Alpha1, and OpenVMS I64 systems.

15.1. Alignment
Alignment is an aspect of a data item that refers to its placement in memory. The mixing of byte,
word, longword, and quadword data types can lead to data that is not aligned on natural boundaries. A
naturally aligned datum of size 2**N is stored in memory at a starting byte address that is a multiple of
2**N, that is, an address that has N low-order zero bits. Data is naturally aligned when its address is an
integral multiple of the size of the data in bytes (for example, when the following occurs):

• A byte is aligned at any address.

• A word is aligned at any address that is a multiple of 2.

• A longword is aligned at any address that is a multiple of 4.

• A quadword is aligned at any address that is a multiple of 8.

Data that is not aligned is referred to as unaligned. Throughout this chapter, the term aligned is used
instead of naturally aligned.

Table 15.1 shows examples of common data sizes, their alignment, the number of zero bits in an aligned
address for that data, and a sample aligned address in hexadecimal.

Table 15.1. Aligned Data Sizes

Data Size Alignment Zero Bits Aligned Address Example

Byte Byte 0 10001, 10002, 10003, 10004
Word Word 1 10002, 10004, 10006, 10008
Longword Longword 2 10004, 10008, 1000C, 10010
Quadword Quadword 4 10008, 10010, 10018, 10020

An aligned structure has all its members aligned. An unaligned structure has one or more unaligned
members. Figure 15.1 shows examples of aligned and unaligned structures.

1Reprinted from an article in the March/April 1993 issue of Digital Systems Journal, Volume 15, Number 2, titled"Alpha AXP(TM) Migration:
Understanding Data Alignment on OpenVMS AXP Systems" by Eric M. LaFranchi and Kathleen D. Morse. Copyright 1993 by Cardinal
Business Media, Inc., 101 Witmer Road, Horsham, PA 19044.

429

Chapter 15. Alignment on VAX, Alpha, and I64 Systems

Figure 15.1. Aligned and Unaligned Structures

15.1.1. Alignment and Performance
To achieve optimal performance, use aligned instruction sequence references and naturally aligned data.
When unaligned data is referenced, more overhead is required than when referencing aligned data. This
condition is true for OpenVMS VAX, OpenVMS Alpha, and OpenVMS I64 systems. Data need not
be aligned to obtain correct processing results: alignment is a concern for performance, not program
correctness. Because natural alignment is not always possible, OpenVMS VAX, OpenVMS Alpha, and
OpenVMS I64 systems provide help to manage the impact of unaligned data references.

Although alignment is not required on VAX systems for stack, data, or instruction stream references,
Alpha systems require that the stack and instructions be longword aligned.

15.1.1.1. Alignment on OpenVMS VAX (VAX Only)
On VAX systems, memory references that are not longword aligned result in a transparent performance
degradation. The full effect of unaligned memory references is hidden by microcode, which detects the
unaligned reference and generates a microtrap to handle the alignment correction. This fix of alignment
is done entirely in microcode. Aligned references, on the other hand, avoid the microtraps to handle
fixes. Even with this microcode fix, an unaligned reference can take up to four times longer than an
aligned reference.

15.1.1.2. Alignment on OpenVMS Alpha and I64
On Alpha and I64 systems, you can check and correct alignment the following three ways:

• For Alpha, allow privileged architecture library code (PALcode) to fix the alignment faults for you.
For I64, allow the OpenVMS fault handler to fix the alignment faults for you.

• Use directives to the compiler.

• Fix the data yourself to make sure data is aligned.

430

Chapter 15. Alignment on VAX, Alpha, and I64 Systems

Though Alpha systems do not use microcode to automatically handle unaligned references, PALcode
traps the faults and corrects unaligned references as the data is processed. If you use the shorter load/
store instruction sequences and your data in unaligned, then you incur an alignment fault PALcode fixup.
The use of PALcode to correct alignment faults results in the slowest of the three ways to process your
data.

By using directives to the compiler, you can tell your compiler to create a safe set of instructions. If it
is unaligned, the compiler uses a set of unaligned load/store instructions. These unaligned load/store
instructions are called safe sequences because they never generate unaligned data exceptions. Code
sequences that use the unaligned load/store instructions are longer than the aligned load/store instruction
sequences. By using unaligned load/store instructions and longer instruction sequences, you can obtain
the desired results without incurring an alignment trap. This technique allows you to avoid the significant
performance impact of a trap and subsequent data fixes.

By fixing the data yourself so that it is aligned, you can use a short instruction stream. This results in the
fastest way to process your data. When aligning data, the following recommendations are suggested:

• If references to the data must be made atomic, then the data must be aligned. Otherwise, an
unaligned fault causes a fatal reserved operand fault in this case.

• If you fix alignment problems in public interfaces, then you could break existing programs.

To detect unaligned reference information, you can use utilities such as the OpenVMS Debugger and
Performance and Coverage Analyzer (PCA). You can also use the OpenVMS Alpha handler to generate
optional informational exceptions for process space references. This allows condition handlers to track
unaligned references. Alignment fault system services allow you to enable and disable the delivery of
these informational exceptions. Section 15.3.3 discusses system services that you can use to report both
image and systemwide alignment problems.

15.2. Using Compilers for Alignment
(Alpha and I64 Only)
On Alpha and I64 systems, compilers automatically align data by default. If alignment problems are not
resolved, they are at least flagged. The following sections present how the compilers for VSI C, BLISS,
VSI Fortran, and MACRO-32 deal with alignment.

15.2.1. The VSI C Compiler (Alpha and I64 Only)
On Alpha and I64 systems, the VSI C compiler naturally aligns all explicitly declared data, including
the elements of data structures. The pragmas member_alignment and nomember_alignment allow
data structures to be aligned or packed (putting the next piece of data on the next byte boundary)
in the same manner as the VAX C compiler. Additional pragmas of member_alignment save and
member_alignment restore exist to save and restore the state of member alignment. These prevent
alignment assumptions in one include file from affecting other source code. The following program
examples show the use of these pragmas:

 #pragma member_alignment save
 #pragma nomember_alignment

 struct
 {
 char byte;
 short word;

431

Chapter 15. Alignment on VAX, Alpha, and I64 Systems

 long longword;
 } mystruct;
 #pragma member_alignment restore

Saves the current alignment setting.
Sets nomember_alignment, c the structure mystruct.
Resets the alignment setting for the code that follows.

The base alignment of a data structure is set to be the alignment of the largest member in the structure.
If the largest element of a data structure is a longword, for example, then the base alignment of the data
structure is longword alignment.

The malloc() function of the VSI C Run-Time Library retrieves pointers that are at least quadword
aligned. Because it is the exception rather than the rule to encounter unaligned data in C programs,
the compiler assumes most data references are aligned. Pointers, for example, are always assumed
to be aligned; only data structures declared with the pragma nomember_alignment are assumed to
contain unaligned data. If the VSI C compiler believes the data might be unaligned, it generates the
safe instruction sequences; that is, it uses the unaligned load/store instructions. Also, you can use the
/WARNING=ALIGNMENT compiler qualifier to turn on alignment checking by the compiler. This
results in a compiler warning for unaligned data references.

On OpenVMS Alpha and OpenVMS I64 systems, dereferencing a pointer to a longword- or quadword-
aligned object is more efficient than dereferencing a pointer to a byte- or word-aligned object. Therefore,
the compiler can generate more optimized code if it makes the assumption that a pointer object of an
aligned pointer type does point to an aligned object.

Because the compiler determines the alignment of the dereferenced object from the type of the pointer,
and the program is allowed to compute a pointer that references an unaligned object (even though
the pointer type indicates that it references an aligned object), the compiler must assume that the
dereferenced object's alignment matches or exceeds the alignment indicated by the pointer type.
Specifying /ASSUME=ALIGNED_OBJECTS (the default) allows the compiler to make such an
assumption. With this assumption made, the compiler can generate more efficient code for pointer
dereferences of aligned pointer types.

To prevent the compiler from assuming the pointer type's alignment for objects that it points to, use the
/ASSUME=NOALIGNED_OBJECTS qualifier.

See the VSI C User Manual [https://docs.vmssoftware.com/vsi-c-user-s-guide-for-openvms-systems/] for
additional information.

15.2.1.1. Compiler Example of Memory Structure of VAX C and VSI
C
The following code examples, and Figure 15.2, and Figure 15.3 illustrate a C data structure containing
byte, word, and longword data and how it would be laid out in memory by VAX C and VSI C.

 struct
 {
 char byte;
 short word;
 long longword;
 }mystruct;

On VAX systems, when compiled using the VAX C compiler, the previous structure has a memory
layout as shown in Figure 15.2, where each piece of data begins on the next byte boundary.

432

https://docs.vmssoftware.com/vsi-c-user-s-guide-for-openvms-systems/
https://docs.vmssoftware.com/vsi-c-user-s-guide-for-openvms-systems/

Chapter 15. Alignment on VAX, Alpha, and I64 Systems

Figure 15.2. Alignment Using VAX C Compiler

On Alpha and I64 systems, when compiled using the VSI C compiler, the structure is padded to achieve
natural alignment, if needed, as shown in Figure 15.3.

Figure 15.3. Alignment Using VSI C Compiler

On Alpha and I64 systems, note where VSI C places some padding to align naturally all the data
structure elements. VSI C would also align the structure itself on a longword boundary. The VSI C
compiler aligns the structure on a longword boundary because the largest element in the structure is a
longword.

15.2.2. The BLISS Compiler
On Alpha and I64 systems, the BLISS compiler provides greater control over alignment than the VSI C
compiler. The BLISS compiler also makes different assumptions about alignment.

The Alpha and I64 BLISS compilers, like the VAX BLISS compiler, allows explicit specification of
program section (PSECT) alignment.

On Alpha and I64 systems, BLISS compilers align all explicitly declared data on naturally aligned
boundaries.

On Alpha and I64 systems, you can align declared data in BLISS source code with the align attribute,
although the alignment specified cannot be greater than that for the PSECT in which the data is
contained. The alignment attribute indicates a specific address boundary by means of a boundary
value, N, which specifies that the binary address of the data segment must end in at least N zeros. To
specify the static byte datum A to be aligned on a longword boundary, for example, use the following
declaration:

OWNA:BYTE ALIGN(2)

On Alpha and I64 systems, when the BLISS compiler cannot determine the base alignment of a BLOCK,
it assumes full word alignment, unless told otherwise by a command qualifier or switch declaration.
Like the VSI C compiler, if the BLISS compilers believe that the data is unaligned, they generate safe
instruction sequences. If you specify the qualifier /CHECK=ALIGNMENT in the BLISS command line,
then warning information is provided when they detect unaligned memory references.

15.2.3. The VSI Fortran Compiler (Alpha and I64 Only)
Fortran 90 Version is supported on OpenVMS I64. Fortran 77 is not supported on OpenVMS I64. VSI
Fortran for OpenVMS I64 Systems features the same command-line options and language features as
VSI Fortran for OpenVMS Alpha Systems with a few exceptions, as described in Porting Applications
from VSI OpenVMS Alpha to VSI OpenVMS Industry Standard 64 for Integrity Servers.

433

Chapter 15. Alignment on VAX, Alpha, and I64 Systems

On Alpha and I64 systems, the defaults for the VSI Fortran compiler emphasize compatibility and
standards conformance. Normal data declarations (data declared outside of COMMON block statements)
are aligned on natural boundaries by default. COMMON block statement data is not aligned by default,
which conforms to the FORTRAN-77 and FORTRAN-90 standards.

The qualifier /ALIGN=(COMMONS=STANDARD) causes COMMON block data to be longword
aligned. This adheres with the FORTRAN-77 and FORTRAN-90 standards, which state that the
compiler is not allowed to put padding between INTEGER*4 and REAL*8 data. This can cause
REAL*8 data to be unaligned. To correct this, apply the NATURAL rule; for instance, apply /
ALIGN=(COMMONS=NATURAL to get natural alignment up to quadwords and the best performance,
though this does not conform to standards.

To pack COMMON block and RECORD statement data, specify/ALIGN=NONE. The qualifier /
ALIGN=NONE is equivalent to /NOALIGN, /ALIGN=PACKED, or /ALIGN=(COMMON=PACKED,
RECORD=PACKED. To pack just RECORD statement data, specify /ALIGN=(RECORD=PACKED).

Besides command line qualifiers, VSI Fortran provides two directives to control the alignment of
RECORD statement data and COMMON block data. The CDEC$OPTIONS directive controls whether
the VSI Fortran compiler naturally aligns fields in RECORD statements or data items in COMMON
blocks for performance reasons, or whether the compiler packs those fields and data items together on
arbitrary byte boundaries. The CDEC$OPTIONS directive, like the /ALIGN command qualifier, takes
class and rule parameters. Also, the CDE$OPTIONS directive overrides the compiler option /ALIGN.

By default, the VSI Fortran compiler emits alignment warnings, but these can be turned off by using the
qualifier /WARNINGS=NOALIGNMENT.

15.2.4. The MACRO-32 Compiler (Alpha and I64)
On Alpha and I64 systems, as with the C, BLISS, and VSI Fortran languages, unaligned data references
in Macro-32 code work correctly, though they perform slower than aligned references because the
system must take an unaligned address fault to complete the unaligned reference. If it is known that
a data reference is unaligned, the compiler can generate unaligned quadword loads and masks to
manually extract the data. This is slower than an aligned load but much faster than taking an alignment
fault. Global data labels that are not longword or quadword aligned are flagged with information-
level messages. In addition, unaligned memory modification references cannot be made atomic with /
PRESERVE=ATOMICITY or .PRESERVE ATOMICITY. If this is attempted, it will cause a fatal
reserved operand fault.

The Macro-32 language provides you with direct control over alignment. There is no implicit padding
for alignment done by the Macro-32 compiler; data remains at the alignment you specify.

The Macro-32 compiler recognizes the alignment of all locally declared data and flags all references to
declared data that is unaligned. By default, the Macro-32 compiler assumes that addresses in registers
used as base pointers are longword aligned at routine entry.

Although the Macro-32 compilers attempt to track information about the values that may appear in
registers as the program proceeds, they only attend to enough information to determine the likelihood
of word and longword alignment. Because the atomicity of the MOVQ instruction can be preserved
only if the address is quadword aligned, in generating code for MOVQ, the Macro-32 compiler assumes
quadword alignment of the address if it believes it to be longword aligned.

External data is data that is not contained in the current source being compiled. External data is assumed
to be longword aligned by the Macro-32 compiler. The compiler detects and flags unaligned global label
references. This enables you to locate external data that is not aligned.

434

Chapter 15. Alignment on VAX, Alpha, and I64 Systems

To preserve atomicity, the compiler assumes that the data is longword aligned. Unaligned data causes a
trap and voids the atomicity. Therefore, you must ensure that such data is aligned.

To fix unaligned data references, the easiest way is for you to align the data, if possible. If you cannot
align the data, the data address can be moved into a register and then the register declared as unaligned.
When you compile with the /UNALIGNED qualifier to the MACRO/MIGRATION command, you tell
the compiler to treat all data references as unaligned and to generate safe unaligned sequences. You can
also use the .SET_REGISTERS directive, which affects data references only for the specified registers
for a section of code.

The .PSECT and .ALIGN directives are supported. The compiler knows the alignment of locally
declared data. The compiler makes certain assumptions about the alignment, but does allow programmer
control over those assumptions. The Macro-32 compiler provides two directives for changing the
compiler's assumptions about alignment, which results in letting the compiler produce more efficient
code. These two directives are as follows:

• .SET_REGISTERS allows you to specify whether a register points to aligned or unaligned data.
You use this directive when the result of an operation is the opposite of what the compiler expects.
Also, use the same directive to declare registers that the compiler would not otherwise detect as input
or output registers.

For example, consider the DIVL instruction. After executing this instruction in the following
example, the Macro-32 compiler assumes that R1 is unaligned. A future attempt at using R1
as a base register will cause the compiler to generate an unaligned fetch sequence. However,
suppose you know that R1 is always aligned after the DIVL instruction. You can then use the
.SET_REGISTERS directive to inform the compiler of this. When the compiler sees the MOVL
from 8(r1),it knows that it can use the shorter aligned fetch (LDL) to retrieve the data. At run time,
however, if R1 is not really aligned, then this results in an alignment trap. The following example
shows the setting of a register to be aligned:

divl r0,r1 ;Compiler now thinks R1 unaligned

.set_registers aligned=r1

movl 8(r1),r2 ;Compiler now treats R1 as aligned

• .SYMBOL_ALIGNMENT allows you to specify the alignment of any memory reference that uses
a symbolic offset. The .SYMBOL_ALIGNMENT directive associates an alignment attribute with
a symbol definition used as a register offset; you can use it when you know the base register will be
aligned for every use of the symbolic offset. This attribute guarantees to the compiler that the base
register has that alignment, and this enables the compiler to generate optimal code.

In the example that follows, QUAD_OFF has a symbol alignment of QUAD, LONG_OFF, a
symbol alignment of LONG, and NONE_OFF has no symbol alignment. In the first MOVL
instruction, the compiler assumes that R0, since it is used as a base register with QUAD_OFF,
is quadword aligned. Since QUAD_OFF has a value of 4, the compiler knows it can generate
an aligned longword fetch. For the second MOVL, R0 is assumed to be longword aligned, but
since LONG_OFF has a value of 5, the compiler realizes that offset+base is not longword aligned
and would generate a safe unaligned fetch sequence. In the third MOVL, R0 is assumed to be
unaligned, unless the compiler knows otherwise from other register tracking, and would generate a
safe unaligned sequence. The .SYMBOL_ALIGNMENT alignment remains in effect until the next
occurrence of the directive.

.symbol_alignment QUAD
 quad_off=4

435

Chapter 15. Alignment on VAX, Alpha, and I64 Systems

.symbol_alignment LONG
long_off=5
.symbol_alignment NONE
none_off=6

movl quad_off(r0),r1 ;Assumes R0 quadword aligned
movl long_off(r0),r2 ;Assumes R0 longword aligned
movl none_off(r0),r3 ;No presumed alignment for R0

15.2.4.1. Precedence of Alignment Controls
The order of precedence of the compiler's alignment controls, from strongest
(.SYMBOL_ALIGNMENT) to weakest (built-in assumptions and tracking mechanisms), is as follows:

1. .SYMBOL_ALIGNMENT directive

2. .SET_REGISTER directive

3. /UNALIGN qualifier

4. Built-in assumptions and tracking mechanisms

15.2.4.2. Recommendations for Aligning Data
The following recommendations apply to aligning data:

• If references to the data must be made atomic with /PRESERVE=ATOMICITY or .PRESERVE
ATOMICITY, the data must be aligned.

• For data in internal or privileged interfaces, do not automatically make changes to improve data
alignment. You should consider the frequency with which the data structure is accessed, the amount
of work involved in realigning the structure, and the risk that things might go wrong. In judging the
amount of work involved, make sure you know all accesses to the data; do not merely guess. If you
own all accesses in the code for which you are responsible and if you are making changes in the
module (or modules)anyway, then it is safe to fix the alignment problem.

• Do not routinely unpack byte and word data into longwords or quadwords. The time to do
this is when you are fixing an alignment problem (word not on word boundary), subject to the
aforementioned cautions and constraints, or if you know the data granularity is a problem.

• If you do not own all the accesses to the data, there still may be circumstances under which fixing
alignment is appropriate. If the data is frequently accessed, if performance is a real issue, and if you
must unavoidably scramble the data structure anyway, it makes sense to align the structure at the
same time.

It is important that you notify other programmers whose code may be affected. Do not assume in
such cases that all related modules will recompile or that program documentation will help others
detect errant data cell separation assumptions. Always assume that changes like this will reveal
irregular programming practices and will not go smoothly.

15.2.5. The VAX Environment Software Translator –
VEST (Alpha Only)
On Alpha systems, the DECmigrate for OpenVMS Alpha VAX Environment Software Translator
(VEST) utility is a tool that translates binary OpenVMS VAX image files into OpenVMS Alpha image

436

Chapter 15. Alignment on VAX, Alpha, and I64 Systems

files. Image files are also called executable files. Though it is similar to compiler, VEST is for binaries
instead of sources.

VEST deals with alignment in two different modes: pessimistic and optimistic. VEST is optimistic by
default; but whether optimistic or pessimistic, the alignment of program counter (PC) relative data is
known at translation time, and the appropriate instruction sequence can be generated.

In pessimistic mode, all non PC-relative references are treated as unaligned using the safe access
sequences. In optimistic mode, the emulated VAX registers (R0–R14) are assumed to be quadword
aligned upon entry to each basic block. Autoincrement and autodecrement changes to the base registers
are tracked. The offset plus the base register alignment are used to determine the alignment and the
appropriate access sequence is generated.

The /OPTIMIZE=NOALIGN qualifier on the VEST command tells VEST to be pessimistic; it assumes
that base registers are not aligned, and should generate the safe instruction sequence. Doing this can slow
execution speed by a factor of two or more, if there are no unaligned data references. On the other hand,
it can result in a performance gain if there are a significant number of unaligned references, since safe
sequences avoid any unaligned data traps.

Additional controls preserve atomicity in longword data that is not naturally aligned. Wherever possible,
data should be aligned in the VAX source code and the image rebuilt before translating the image with
DECmigrate. This results in better performance on both VAX and Alpha systems.

15.3. Using Tools for Finding Unaligned Data
Tools that aid the uncovering of unaligned data include the OpenVMS Debugger, Performance and
Coverage Analyzer (PCA), and eight system services. These tools are discussed in the following sections.

15.3.1. The OpenVMS Debugger
By using the OpenVMS Debugger, you can turn on and off unaligned data exception breakpoints
by using the commands SET BREAK/UNALIGNED_DATA and CANCEL BREAK/
UNALIGNED_DATA. These commands must be used with the SET BREAK/EXCEPTION command.
When the debugger breaks at the unaligned data exception, the context is like any other exception. You
can examine the program counter (PC), processor status (PS), and virtual address of the unaligned data
exception. Example 15.1shows the output from the debugger using the SET OUTPUT LOG command
of a simple program.

Example 15.1. OpenVMS Debugger Output from SET OUTPUT LOG Command

#include <stdio.h>
#include <stdlib.h>

main()
{
 char *p;
 long *lp;

 /* malloc returns at least quadword aligned printer */
 p = (char *)malloc(32);

 /* construct unaligned longword pointer and place into lp */
 lp = (long *)((char *)(p+1));

437

Chapter 15. Alignment on VAX, Alpha, and I64 Systems

 /* load data into unaligned longword */
 lp[0] = 123456;

 printf("data - %d\n", lp[0]);
 return;
}

------- Compile and Link commands -------
$ cc/debug debug_example
$ link/debug debug_example
$ run debug_example
------- DEBUG session using set output log -------
Go
! break at routine DEBUG_EXAMPLE\main
! 598: p - (char *)malloc(32);
set break/unaligned_data
set break/exception
set radix hexadecimal
Go
!Unaligned data access: virtual address - 003CEEA1, PC - 00020048
!break on unaligned data trap preceding DEBUG_EXAMPLE\main\%LINE 602
! 602: printf("data - %d\n", lp[0]);
ex/inst 00020048-4
!DEBUG_EXAMPLE\main\%LINE 600+4: STL R1,(R0)
ex r0
!DEBUG_EXAMPLE\main\%R0: 00000000 003CEEA1

15.3.2. The Performance and Coverage Analyzer – PCA
The PCA allows you to detect and fix performance problems. Because unaligned data handling can
significantly increase overhead, PCA has the capability to collect and present information on aligned data
exceptions. PCA commands that collect and display unaligned data exceptions are:

• SET UNALIGNED_DATA

• PLOT/UNALIGNED_DATA PROGRAM BY LINE

Also, PCA can display data according to the PC of the fault, or by the virtual address of the unaligned
data.

15.3.3. System Services (Alpha and I64 Only)
On Alpha and I64 systems, there are eight system services to help locate unaligned data. The
first three system services establish temporary image reporting; the next two provide process-
permanent reporting, and the last three provide for system alignment fault tracking. The symbols
used in calling all eight of these system services are located in $AFRDEF in the Macro-32 library,
SYS$LIBRARY:STARLET.MLB. You can also call these system services in C with #include
<afrdef.h>.

The first three system services can be used together; they report on the currently executing image. They
are as follows:

• SYS$START_ALIGN_FAULT_REPORT. This service enables unaligned data exception for the
current image. You can use either a buffered or an exception method of reporting, but you can enable
only one method at a time.

438

Chapter 15. Alignment on VAX, Alpha, and I64 Systems

• Buffered method. This method requires that the buffer address and size be specified. You use the
SYS$GET_ALIGN_FAULT_DATA service to retrieve buffered alignment data under program
control.

• Exception method. This method requires no buffer. Unaligned data exceptions are signaled to
the image, at which point a user-written condition handler takes whatever action is desired. If
no user-written handler is setup, then an informational exception message is broadcast for each
unaligned data trap, and the program continues to execute.

• SYS$STOP_ALIGN_FAULT_REPORT. This service cancels unaligned data exception reporting
for the current image if it were previously enabled. If you do not explicitly call this routine, then
reporting is disabled by the operating system's image rundown logic.

• SYS$GET_ALIGN_FAULT_DATA. This service retrieves the accumulated, buffered alignment data
when using the buffered collection method.

You can use two of the eight system services to report unaligned data exceptions for the current process.
The two services are as follows:

• SYS$PERM_REPORT_ALIGN_FAULT. This service enables unaligned data exception reporting
for the process. Once you enable this service, the reporting remains in effect for the process until
you explicitly disable it. Once enabled, the SS$_ALIGN condition is signaled for all unaligned data
exceptions while the process is active. By default, if no user-written exception handler handles the
condition, this results in an information display message for each unaligned data exception.

This service provides a convenient way of running a number of images without modifying the code
in each image, and also of recording the unaligned data exception behavior of each image.

• SYS$PERM_DIS_ALIGN_FAULT_REPORT. This service disables unaligned data exception
reporting for the process.

The three system services that allow you to track systemwide alignment faults are as follows:

• SYS$INIT_SYS_ALIGN_FAULT_REPORT. This service initializes system process alignment fault
reporting.

• SYS$STOP_SYS_ALIGN_FAULT_REPORT. This service disables systemwide alignment fault
reporting.

• SYS$GET_SYS_ALIGN_FAULT_DATA. This service obtains data from the system alignment fault
buffer.

These services require CMKRNL privilege. Alignment faults for all modes and all addresses can be
reported using these services. The user can also setup masks to report only certain types of alignment
faults. For example, you can get reports on only kernel modes, only user PC, or only data in system
space.

15.3.4. Alignment Fault Utility (Alpha and I64 Only)
You can use the Alignment Fault Utility (FLT) to find alignment faults. This utility can be started and
stopped on the fly without the need for a system reboot. It records all alignment faults into a ring buffer,
which can be sized when starting the alignment fault tracing. The summary screen displays the results
sorted by the program counter (PC) that has incurred the most alignment faults. The detailed trace

439

Chapter 15. Alignment on VAX, Alpha, and I64 Systems

output also shows the process identification (PID) of the process that caused the alignment fault, along
with the virtual address that triggered the fault. The following example shows sample summary output.

$ ANALYZE/SYSTEM
SDA> FLT LOAD
SDA> FLT START TRACE
SDA> FLT SHOW TRACE /SUMMARY
Fault Trace Information: (at 18-AUG-2004 04:49:58.61, trace time 00:00:45.229810)

Exception PC Count Exception PC Module Offset
----------------- ------------ ------------ ----------------------------------
FFFFFFFF.80B25621 1260 SECURITY+1B021 SECURITY 0001B021
FFFFFFFF.80B25641 1260 SECURITY+1B041 SECURITY 0001B041
FFFFFFFF.80B25660 1260 SECURITY+1B060 SECURITY 0001B060
FFFFFFFF.80B25671 1260 SECURITY+1B071 SECURITY 0001B071
FFFFFFFF.80B25691 1260 SECURITY+1B091 SECURITY 0001B091
FFFFFFFF.80B39330 1243 NSA$SIZE_NSAB_C+00920SECURITY 0002ED30
FFFFFFFF.807273A1 1144 LOCKING+271A1 LOCKING 000271A1
FFFFFFFF.807273D1 1144 LOCKING+271D1 LOCKING 000271D1
FFFFFFFF.80B25631 1131 SECURITY+1B031 SECURITY 0001B031
FFFFFFFF.80B25661 1131 SECURITY+1B061 SECURITY 0001B061
FFFFFFFF.80B25600 1131 SECURITY+1B000 SECURITY 0001B000
FFFFFFFF.80B25650 1131 SECURITY+1B050 SECURITY 0001B050
FFFFFFFF.80B25680 1131 SECURITY+1B080 SECURITY 0001B080
FFFFFFFF.84188930 999 LIBRTL+00158930 LIBRTL 00158930
FFFFFFFF.80A678E0 991 RMS+001D4EE0 RMS 001D4EE0
FFFFFFFF.841888A0 976 LIBRTL+001588A0 LIBRTL 001588A0
FFFFFFFF.80B25AE0 392 EXE$TLV_TO_PSB_C+003B0SECURITY 0001B4E0
FFFFFFFF.80B26870 392 SECURITY+1C270 SECURITY 0001C270
FFFFFFFF.80B256F0 360 SECURITY+1B0F0 SECURITY 0001B0F0
FFFFFFFF.80B25AC0 336 EXE$TLV_TO_PSB_C+00390SECURITY 0001B4C0
FFFFFFFF.80B25EF0 336 EXE$TLV_TO_PSB_C+007C0SECURITY 0001B8F0
FFFFFFFF.80B256E0 326 SECURITY+1B0E0 SECURITY 0001B0E0
[...............]

SDA> FLT STOP TRACE
SDA> FLT UNLOAD

440

Chapter 16. Memory Management with
VLM Features
OpenVMS Alpha and OpenVMS I64 very large memory (VLM) features for memory management
provide extended support for database, data warehouse, and other very large database (VLDB) products.
The VLM features enable database products and data warehousing applications to realize increased
capacity and performance gains.

By using the extended VLM features, application programs can create large, in-memory global data
caches that do not require an increase in process quotas. These large memory-resident global sections
can be mapped with shared global pages to dramatically reduce the system overhead required to map
large amounts of memory.

This chapter describes the following OpenVMS Alpha and OpenVMS I64 memory management VLM
features:

• Memory-resident global sections

• Fast I/O and buffer objects for global sections

• Shared page tables

• Expandable global page table

• Reserved memory registry

To see an example program that demonstrates many of these VLM features, refer to Appendix C.

16.1. Overview of VLM Features
Memory-resident global sections allow a database server to keep larger amounts of hot data cached
in physical memory. The database server then accesses the data directly from physical memory without
performing I/O read operations from the database files on disk. With faster access to the data in physical
memory, run-time performance increases dramatically.

Fast I/O reduces CPU costs per I/O request, which increases the performance of database operations.
Fast I/O requires data to be locked in memory through buffer objects. Buffer objects can be created for
global pages, including pages in memory-resident sections.

Shared page tables allow that same database server to reduce the amount of physical memory
consumed within the system. Because multiple server processes share the same physical page tables that
map the large database cache, an OpenVMS Alpha or OpenVMS I64 system can support more server
processes. This increases overall system capacity and decreases response time to client requests.

Shared page tables dramatically reduce the database server startup time because server processes can
map memory-resident global sections hundreds of times faster than traditional global sections. With a
multiple gigabyte global database cache, the server startup performance gains can be significant.

The system parameters GBLPAGES and GBLPAGFIL are dynamic parameters. Users with the
CMKRNL privilege can now change these parameter values on a running system. Increasing the value of
the GBLPAGES parameter allows the global page table to expand, on demand, up to the new maximum
size.

441

Chapter 16. Memory Management with VLM Features

The Reserved Memory Registry supports memory-resident global sections and shared page tables.
Through its interface within the SYSMAN utility, the Reserved Memory Registry allows an OpenVMS
system to be configured with large amounts of memory set aside for use within memory-resident
sections or other privileged code. The Reserved Memory Registry also allows an OpenVMS system
to be properly tuned through AUTOGEN, thus accounting for the preallocated reserved memory. For
information about using the reserved memory registry, see the VSI OpenVMS System Manager's Manual.

16.2. Memory-Resident Global Sections
Memory-resident global sections are non-file-backed global sections. This means that the pages within
a memory-resident global section are not backed by the pagefile or by any other file on disk. Thus, no
pagefile quota is charged to any process or charged to the system. When a process maps to a memory-
resident global section and references the pages, working set list entries are not created for the pages. No
working set quota is charged to the process.

Pages within a memory-resident global demand zero (DZRO) section initially have zero contents.

Creating a memory-resident global DZRO section is performed by calling either the
SYS$CREATE_GDZRO system service or the SYS$CRMPSC_GDZRO_64 system service.

Mapping to a memory-resident global DZRO section is performed by calling either the
SYS$CRMPSC_GDZRO_64 system service or the SYS$MGBLSC_64 system service.

To create a memory-resident global section, the process must have been granted the
VMS$MEM_RESIDENT_USER rights identifier. Mapping to a memory-resident global section does
not require this right identifier.

Two options are available when creating a memory-resident global DZRO section:

• Fault option: allocate pages only when virtual addresses are referenced.

• Allocate option: allocate all pages when section is created.

Fault option
To use the fault option, it is recommended, but not required that the pages within the memory-resident
global section be deducted from the system's fluid page count through the Reserved Memory Registry.

Using the Reserved Memory Registry ensures that AUTOGEN tunes the system properly to exclude
memory-resident global section pages in its calculation of the system's fluid page count. AUTOGEN
sizes the system pagefile, number of processes, and working set maximum size based on the system's
fluid page count.

If the memory-resident global section has not been registered through the Reserved Memory Registry,
the system service call fails if there are not enough fluid pages left in the system to accommodate the
memory-resident global section.

If the memory-resident global section has been registered through the Reserved Memory Registry, the
system service call fails if the size of the global section exceeds the size of reserved memory and there
are not enough fluid pages left in the system to accommodate the additional pages.

If memory has been reserved using the Reserved Memory Registry, that memory must be used for the
global section named in the SYSMAN command. To return the memory to the system, SYSMAN can be
run to free the reserved memory, thus returning the pages back into the system's count of fluid pages.

442

Chapter 16. Memory Management with VLM Features

If the name of the memory-resident global section is not known at boot time, or if a large amount
of memory is to be configured out of the system's pool of fluid memory, entries in the Reserved
Memory Registry can be added and the system can be retuned with AUTOGEN. After the system
re-boots, the reserved memory can be freed for use by any application in the system with the
VMS$MEM_RESIDENT_USER rights identifier. This technique increases the availability of fluid
memory for use within memory-resident global sections without committing to which applications or
named global sections will receive the reserved memory.

Allocate option
To use the allocate option, the memory must be pre-allocated during system initialization to ensure that
contiguous, aligned physical pages are available. OpenVMS attempts to allow granularity hints, so that
in many or even most cases, preallocated resident memory sections are physically contiguous. However,
for example on systems supporting resource affinity domains (RADs), OpenVMS intentionally tries to
"stripe" memory across all RADs, unless told to use only a single RAD. Granularity hints can be used
when mapping to the memory-resident global section if the virtual alignment of the mapping is on an
even 8-page, 64-page, or 512-page boundary. (With a system page size of 8 KB, granularity hint virtual
alignments are on 64-KB, 512-KB, and 4-MB boundaries). The maximum granularity hint on Alpha
and I64 covers 512 pages. With 8-KB pages, this is 4 MB. If your selection is below this limit, there
is an excellent chance that it will be contiguous. Currently, there is no guarantee of contiguousness for
application software. OpenVMS chooses optimal virtual alignment to use granularity hints if the flag
SEC$M_EXPREG is set on the call to one of the mapping system services, such as SYS$MGBLSC.

Sufficiently contiguous, aligned PFNs are reserved using the Reserved Memory Registry. These pages
are allocated during system initialization, based on the description of the reserved memory. The
memory-resident global section size must be less than or equal to the size of the reserved memory or an
error is returned from the system service call.

If memory has been reserved using the Reserved Memory Registry, that memory must be used for the
global section named in the SYSMAN command. To return the memory to the system, SYSMAN can be
run to free the prereserved memory. Once the pre-reserved memory has been freed, the allocate option
can no longer be used to create the memory-resident global section.

16.3. Fast I/O and Buffer Objects for Global
Sections
VLM applications can use Fast I/O for memory shared by processes through global sections. Fast I/
O requires data to be locked in memory through buffer objects. Database applications where multiple
processes share a large cache can create buffer objects for the following types of global sections:

• Page file-backed global sections

• Disk file-backed global sections

• Memory-resident global sections

Buffer objects enable Fast I/O system services, which can be used to read and write very large amounts
of shared data to and from I/O devices at an increased rate. By reducing the CPU cost per I/O request,
Fast I/O increases performance for I/O operations.

Fast I/O improves the ability of VLM applications, such as database servers, to handle larger capacities
and higher data throughput rates.

443

Chapter 16. Memory Management with VLM Features

16.3.1. Comparison of $QIO and Fast I/O
The $QIO system service must ensure that a specified memory range exists and is accessible for the
duration of each direct I/O request. Validating that the buffer exists and is accessible is done in an
operation called probing. Making sure that the buffer cannot be deleted and that the access protection
is not changed while the I/O is still active is achieved by locking the memory pages for I/O and by
unlocking them at I/O completion.

The probing and locking/unlocking operations for I/O are costly operations. Having to do this work
for each I/O can consume a significant percentage of CPU capacity. The advantage of Fast I/O is that
memory is locked only for the duration of a single I/O and can otherwise be paged.

Fast I/O must still ensure that the buffer is available, but if many I/O requests are performed from the
same memory cache, performance can increase if the cache is probed and locked only once—instead of
for each I/O. OpenVMS must then ensure only that the memory access is unchanged between multiple I/
Os. Fast I/O uses buffer objects to achieve this goal. Fast I/O gains additional performance advantages by
pre-allocating some system resources and by streamlining the I/O flow in general.

16.3.2. Overview of Locking Buffers
Before the I/O subsystem can move any data into a user buffer, either by moving data from system space
in a buffered I/O, or by allowing a direct I/O operation, it must ensure that the user buffer actually exists
and is accessible.

For buffered I/O, this is usually achieved by assuming the context of the process requesting the I/O
and probing the target buffer. For most QIO requests, this happens at IPL 2 (IPL$_ASTDEL), which
ensures that no AST can execute between the buffer probing and the moving of the data. The buffer is
not deleted until the whole operation has completed. IPL 2 also allows the normal paging mechanisms to
work while the data is copied.

For direct I/O, this is usually achieved by locking the target pages for I/O. This makes the pages that
make up the buffer ineligible for paging or swapping. From there on the I/O subsystem identifies the
buffer by the page frame numbers, the byte offset within the first page, and the length of the I/O request.

This method allows for maximum flexibility because the process can continue to page and can even be
swapped out of the balance set while the I/O is still outstanding or active. No pages need to be locked
for buffered I/O, and for direct I/O, most of the process pages can still be paged or swapped. However,
this flexibility comes at a price: all pages involved in an I/O must be probed or locked and unlocked
for every single I/O. For applications with high I/O rates, the operating system can spend a significant
amount of time on these time-consuming operations.

Buffer objects can help avoid much of this overhead.

16.3.3. Overview of Buffer Objects
A buffer object is a process entity that is associated with a virtual address range within a process. When
the buffer object is created, all pages in this address range are locked in memory. These pages cannot
be freed until the buffer object has been deleted. The Fast I/O environment uses this feature by locking
the buffer object itself during $IO_SETUP. This prevents the buffer object and its associated pages
from being deleted. The buffer object is unlocked during $IO_CLEANUP. This replaces the costly
probe, lock, and unlock operations with simple checks validating that the I/O buffer does not exceed the
buffer object. The trade-off is that the pages associated with the buffer object are permanently locked in
memory. An application may need more physical memory but it can then execute faster.

444

Chapter 16. Memory Management with VLM Features

To control this type of access to the system's memory, a user must hold the
VMS$BUFFER_OBJECT_USER identifier, and the system allows only a certain number of pages
locked for use in buffer objects. This number is controlled by the dynamic SYSGEN parameter
MAXBOBMEM.

A second buffer object property allows Fast I/O to perform several I/O-related tasks entirely from system
context at high IPL, without having to assume process context. When a buffer object is created, the
system maps by default a section of system space (S2) to process pages associated with the buffer object.
This system space window is protected to allow read and write access only from kernel mode. Because
all of system space is equally accessible from within any context, it is now possible to avoid the still
expensive context switch to assume the original user's process context.

The convenience of having system space access to buffer object pages comes at a price. For example,
even though S2 space usually measures several gigabytes, this may still be insufficient if several gigabytes
of database cache should be shared for Fast I/O by many processes. In such an environment all or most I/
O to or from the cache buffers is direct I/O, and the system space mapping is not needed.

Buffer objects can be created with or without an associated system space window. Resources used by
buffer objects are charged as follows:

• Physical pages are charged against MAXBOBMEM unless the page belongs to a memory-resident
section, or the page is already associated with another buffer object.

• By default, system space window pages are charged against MAXBOBS2. They are charged against
MAXBOBS0S1 if CBO$_SVA_32 is specified.

• If CBO$_NOSVA is set, no system space window is created, and only MAXBOBMEM is charged as
appropriate.

For more information about using Fast I/O features, see the VSI OpenVMS I/O User's Reference Manual.

16.3.4. Creating and Using Buffer Objects
When creating and using buffer objects, you must be aware of the following:

• Buffer objects can be associated only with process space (P0, P1, or P2) pages.

• PFN-mapped pages cannot be associated with buffer objects.

• The special type of buffer object without associated system space can be used only to describe Fast /
O data buffers. The IOSA must always be associated with a full buffer object with system space.

• Some Fast I/O operations are not fully optimized if the data buffer is associated with a buffer
object without system space. Copying of data at the completion of buffered I/O or disk-read I/O
through the VIOC cache may happen at IPL 8 in system context for full buffer objects. However,
it must happen in process context for buffer objects without system space. If your application
implements its own caching, VSI recommends bypassing the VIOC for disk I/O by setting the
IO$M_NOVCACHE function code modifier. Fast I/O recognizes this condition and uses the
maximum level of optimization regardless of the type of buffer object.

The virtual I/O cache (VIOC) is not supported in I64.

16.4. Shared Page Tables
Shared page tables enable two or more processes to map to the same physical pages without each
process incurring the overhead of page table construction, page file accounting, and working set

445

Chapter 16. Memory Management with VLM Features

quota accounting. Internally, shared page tables are treated as a special type of global section and are
specifically used to map pages that are part of a memory-resident global section. The special global
section that provides page table sharing is called a shared page table section. Shared page table sections
themselves are memory resident.

Shared page tables are created and propagated to multiple processes by a cooperating set of system
services. No special privileges or rights identifiers are required for a process or application to use shared
page tables. The VMS$MEM_RESIDENT_USER rights identifier is required only to create a memory-
resident global section. Processes that do not have this identifier can benefit from shared page tables (as
long as certain mapping criteria prevail).

Similar to memory reserved for memory-resident global sections, memory for shared page tables must be
deducted from the system's set of fluid pages. The Reserved Memory Registry allows for this deduction
when a memory-resident global section is registered.

There are two types of shared page tables: those that allow write access and those that allow only read
access. A given memory resident section can be associated with shared page tables that allow write
access (the default for shared page tables), or the shared page tables can allow only read access. If most
accessors need write access, the shared page tables should allow that. However, some applications
might allow only write access to one process and have many reading processes. In that case, the
shared page table should allow only read access and the writer can use private page tables. The flag
SEC$M_READ_ONLY_SHPT can be set in $CREATE_GDZRO or $CRMPSC_GDZRO_64 to select
shared page tables for read-only access.

16.4.1. Memory Requirements for Private Page Tables
Table 16.1 highlights the physical memory requirements for private page tables and shared page tables
that map to various sizes of global sections by various numbers of processes. This table illustrates the
amount of physical memory saved systemwide through the use of shared page tables. For example, when
100 processes map to a 1 GB global section, 99 MB of physical memory are saved by mapping to the
global section with shared page tables.

Overall system performance benefits from this physical memory savings because of the reduced
contention for the physical memory system resource. Individual processes benefit from the reduction of
working set usage by page table pages, thus allowing a process to keep more private code and data in
physical memory.

Table 16.1. Page Table Size Requirements

Number
of

Size of Global Section

Mapping 8MB 8MB 1GB 1GB 8GB 8GB 1TB 1TB

Processes PPT SHPT PPT SHPT PPT SHPT PPT SHPT

1 8KB 8KB 1MB 1MB 8MB 8MB 1GB 1GB
10 80KB 8KB 10MB 1MB 80MB 8MB 10GB 1GB
100 800KB 8KB 100MB 1MB 800MB 8MB 100GB 1GB
1000 8MB 8KB 1GB 1MB 8GB 8MB 1TB 1GB
Key

PPT = Private Page Tables
SHPT = Shared Page Tables

446

Chapter 16. Memory Management with VLM Features

16.4.2. Shared Page Tables and Private Data
To benefit from shared page tables, a process does not require any special privileges or rights
identifiers. Only the creator of a memory-resident global section requires the rights identifier
VMS$MEM_RESIDENT_USER. The creation of the memory-resident global section causes the
creation of the shared page tables that map that global section unless the Reserved Memory Registry
indicates that no shared page tables are required. At first glance, it may appear that there is a security
risk inherent in allowing this greater level of data sharing. There is no security risk for the reasons
described in this section.

An application or process that maps to a memory-resident global section with shared page tables must
take the following steps:

1. Create a shared page table region by calling the system service SYS$CREATE_REGION_64.

The starting virtual address of the region is rounded down and the length is rounded up such that the
region starts and ends on an even page table page boundary.

2. Use either the SYS$CRMPSC_GDZRO_64 system service or the SYS$MGBLSC_64 system service
to map to a memory-resident global section. These services enable the caller to use the shared page
tables associated with the global section if the following conditions are met:

• The caller specifies a read/write access mode with the mapping request that is exactly the same
as the access mode associated with the global section to map.

• The caller specifies proper virtual addressing alignments with the mapping request.

A shared page table region can only map memory-resident global sections. An application can map more
than one memory-resident global section into a shared page table region. The starting virtual address
for global sections mapped into a shared page table region are always rounded to a page table page
boundary. This prevents two distinct global sections from sharing the same page table page. Attempts
to create virtual address space in a shared page table region with any other system service except those
listed in Step 2 will fail.

Note

Processes can specify a non-shared page table region for mapping to a memory-resident global section
with shared page tables. In this case, process private page tables are used to map to the global section.

16.5. Expandable Global Page Table
The GBLPAGES system parameter defines the size of the global page table. The value stored in the
parameter file is used at boot time to establish the initial size of the global page table.

The system parameters GBLPAGES and GBLPAGFIL are dynamic parameters. Users with the
CMKRNL privilege can change their effective values on the running system. Increasing the value of the
GBLPAGES parameter at runtime allows the global page table to expand, on demand, up to the new
maximum size. All the following conditions must be met for the global page table to expand or grow:

• The global page table has insufficient contiguous free space to allow the requested creation of a
global section.

• The current setting of the GBLPAGES parameter allows the global page table to expand.

447

Chapter 16. Memory Management with VLM Features

• There is sufficient unused virtual memory at the higher end of the global page table to expand into.

• The system has sufficient fluid memory (pages not locked in memory) to allow the global page table
to expand.

Because the global page table is mapped in 64-bit S2 space, which is a minimum of 6 GB on Alpha
(S2 space on I64 is always 8 TB minus 2 GB), these conditions can be met by almost all systems. Only
extremely memory-starved systems or systems with applications making extensive use of S2 virtual
address space may make it impossible to grow the global page table on demand.

Because global pages are a system resource that also affects other tuning parameters, VSI recommends
using AUTOGEN and rebooting systems to increase GBLPAGES. If a reboot is not possible for
operational reasons, you can change the parameter on the running system using the following commands:

$ RUN SYS$SYSTEM:SYSGEN
SYSGEN> USE ACTIVE
SYSGEN> SET GBLPAGES new_value
SYSGEN> WRITE ACTIVE

The WRITE ACTIVE command requires the CMKRNL privilege.

The same commands also allow you to reduce the effective size of the global page table. The global
page table is actually reduced and full pages are released to the system as fluid pages under the following
conditions:

• A global section is deleted, thus freeing up global page table entries.

• The value of GBLPAGES indicates a smaller size of the global page table than the current size.

• Unused entries exist at the high address end of the global page table that allow you to contract the
structure.

Reducing the active value of GBLPAGES below the number of currently used global pages does not
affect currently used global pages. It only prevents the creation of additional global pages.

Increasing the active value of the GBLPAGFIL parameter always succeeds, up to the maximum positive
integer value. As with GBLPAGES, reducing the value of GBLPAGFIL below the number of global
pages that may be paged against the system's pagefile has no effect on these pages. Doing so simply
prevents the creation of additional global pagefile sections.

Note that an increase of GBLPAGFIL may also require that additional pagefile space be satisfied by
installing an additional pagefile.

448

Part IV. Appendixes: Macros and
Examples of 64-Bit Programming

This part describes macros used in 64-bit programming and presents two examples of 64-bit
programming.

449

450

Appendix A. C Macros for 64-Bit
Addressing
This appendix describes the following C macros for manipulating 64-bit addresses, for checking the sign
extension of the low 32 bits of 64-bit values, and for checking descriptors for the 64-bit format:

• $DESCRIPTOR64

• $is_desc64

• $is_32bits

DESCRIPTOR64
DESCRIPTOR64 — Constructs a 64-bit string descriptor.

Format
$DESCRIPTOR64 name, string

Description
name is name of variable
string is address of string

Example
 int status;
 $DESCRIPTOR64 (gblsec, "GBLSEC_NAME");

 ...

 /* Create global page file section */
 status = sys$create_gpfile (&gblsec, 0, 0, section_size, 0, 0);

 ...

This macro resides in descrip.h in SYS$LIBRARY:DECC$RTLDEF.TLB.

$is_desc64
$is_desc64 — Distinguishes a 64-bit descriptor.

Format
$is_desc64 desc

Description
desc is address of 32-bit or 64-bit descriptor

451

Appendix A. C Macros for 64-Bit Addressing

Returns
0 if descriptor is 32-bit descriptor
1 if descriptor is 64-bit descriptor

Example
#include <descrip.h>
#include <far_pointers.h>
...
 if ($is_desc64 (user_desc))
 {
 /* Get 64-bit address and 64-bit length from descriptor */
 ...
 }
 else
 {
 /* Get 32-bit address and 16-bit length from descriptor */
 ...
 }

This macro resides in descrip.h in SYS$LIBRARY:DECC$RTLDEF.TLB.

$is_32bits
$is_32bits — Tests if a quadword is 32-bit sign-extended.

Format
$is_32bits arg

Description
Input: arg is 64-bit value

Output:

1 if arg is 32-bit sign-extended
0 if arg is not 32-bit sign-extended

Example
 #include <starlet_bigpage.h>
 ...
 if ($is_32bits(user_va))
 counter_32++; /* Count number of 32-bit references */
 else
 counter_64++; /* Count number of 64-bit references */

This macro resides in starlet_bigpage.h in SYS$LIBRARY:SYS$STARLET_C.TLB.

452

Appendix B. 64-Bit Example Program
This example program demonstrates the 64-bit region creation and deletion system services. It
uses SYS$CREATE_REGION_64 to create a region and then uses SYS$EXPREG_64 to allocate
virtual addresses within that region. The virtual address space and the region are deleted by calling
SYS$DELETE_REGION_64.

/*
 This program creates a region in P2 space using the region creation
 service and then creates VAs within that region. The intent is to
 demonstrate the use of the region services and how to allocate virtual
 addresses within a region. The program also makes use of 64-bit
 descriptors and uses them to format return values into messages with
 the aid of SYS$GETMSG.

 To build and run this program type:

 $ CC/POINTER_SIZE=32/STANDARD=RELAXED/DEFINE=(__NEW_STARLET=1) -
 REGIONS.C
 $ LINK REGIONS.OBJ
 $ RUN REGIONS.EXE
*/

#include <descrip.h> /* Descriptor Definitions */
#include <far_pointers.h> /* Long Pointer Definitions */
#include <gen64def.h> /* Generic 64-bit Data Type Definition */
#include <iledef.h> /* Item List Entry Definitions */
#include <ints.h> /* Various Integer Typedefs */
#include <iosbdef.h> /* I/O Status Block Definition */
#include <psldef.h> /* PSL$ Constants */
#include <ssdef.h> /* SS$_ Message Codes */
#include <starlet.h> /* System Service Prototypes */
#include <stdio.h> /* printf */
#include <stdlib.h> /* malloc, free */
#include <string.h> /* memset */
#include <syidef.h> /* $GETSYI Item Code Definitions */
#include <vadef.h> /* VA Creation Flags and Constants */

/* Module-wide constants and macros. */

#define BUFFER_SIZE 132
#define HW_NAME_LENGTH 32
#define PAGELET_SIZE 512
#define REGION_SIZE 128

#define good_status(code) ((code) & 1)

/* Module-wide Variables */

int
 page_size;

$DESCRIPTOR64 (msgdsc, "");

453

Appendix B. 64-Bit Example Program

/* Function Prototypes */

int get_page_size (void);
static void print_message (int code, char *string);

main (int argc, char **argv)
{
 int
 i,
 status;

 uint64
 length_64,
 master_length_64,
 return_length_64;

 GENERIC_64
 region_id_64;

 VOID_PQ
 master_va_64,
 return_va_64;

/* Get system page size, using SYS$GETSYI. */

 status = get_page_size ();
 if (!good_status (status))
 return (status);

/* Get a buffer for the message descriptor. */

 msgdsc.dsc64$pq_pointer = malloc (BUFFER_SIZE);
 printf ("Message Buffer Address = %016LX\n\n",
 msgdsc.dsc64$pq_pointer);

/* Create a region in P2 space. */

 length_64 = REGION_SIZE*page_size;
 status = sys$create_region_64 (
 length_64, /* Size of Region to Create */
 VA$C_REGION_UCREATE_UOWN, /* Protection on Region */
 0, /* Allocate in Region to Higher VAs */
 ®ion_id_64, /* Region ID */
 &master_va_64, /* Starting VA in Region Created */
 &master_length_64); /* Size of Region Created */
 if (!good_status (status))
 {
 print_message (status, "SYS$CREATE_REGION_64");
 return (status);
 }

 printf ("\nSYS$CREATE_REGION_64 Created this Region: %016LX - %016LX
\n",
 master_va_64,

454

Appendix B. 64-Bit Example Program

 (uint64) master_va_64 + master_length_64 - 1);

/* Create virtual address space within the region. */

 for (i = 0; i < 3; ++i)
 {
 status = sys$expreg_64 (
 ®ion_id_64, /* Region to Create VAs In */
 page_size, /* Number of Bytes to Create */
 PSL$C_USER, /* Access Mode */
 0, /* Creation Flags */
 &return_va_64, /* Starting VA in Range Created */
 &return_length_64); /* Number of Bytes Created */
 if (!good_status (status))
 {
 print_message (status, "SYS$EXPREG_64");
 return status;
 }
 printf ("Filling %016LX - %16LX with %0ds.\n",
 return_va_64,
 (uint64) return_va_64 + return_length_64 - 1,
 i);
 memset (return_va_64, i, page_size);
 }

/* Return the virtual addresses created within the region, as well as
 the region itself. */

 printf ("\nReturning Master Region: %016LX - %016LX\n",
 master_va_64,
 (uint64) master_va_64 + master_length_64 - 1);

 status = sys$delete_region_64 (
 ®ion_id_64, /* Region to Delete */
 PSL$C_USER, /* Access Mode */
 &return_va_64, /* VA Deleted */
 &return_length_64); /* Length Deleted */

 if (good_status (status))
 printf ("SYS$DELETE_REGION_64 Deleted VAs Between: %016LX - %016LX
\n",
 return_va_64,
 (uint64) return_va_64 + return_length_64 - 1);
 else
 {
 print_message (status, "SYS$DELTE_REGION_64");
 return (status);
 }

/* Return message buffer. */

 free (msgdsc.dsc64$pq_pointer);
}

/* This routine obtains the system page size using SYS$GETSYI.

455

Appendix B. 64-Bit Example Program

 The return value is recorded in the module-wide location,
 page_size. */

int get_page_size ()
{
int
 status;

IOSB
 iosb;

ILE3
 item_list [2];

/* Fill in SYI item list to retrieve the system page size. */

 item_list[0].ile3$w_length = sizeof (int);
 item_list[0].ile3$w_code = SYI$_PAGE_SIZE;
 item_list[0].ile3$ps_bufaddr = &page_size;
 item_list[0].ile3$ps_retlen_addr = 0;
 item_list[1].ile3$w_length = 0;
 item_list[1].ile3$w_code = 0;

/* Get the system page size. */

 status = sys$getsyiw (
 0, /* EFN */
 0, /* CSI address */
 0, /* Node name */
 &item_list, /* Item list */
 &iosb, /* I/O status block */
 0, /* AST address */
 0); /* AST parameter */

 if (!good_status (status))
 {
 print_message (status, "SYS$GETJPIW");
 return (status);
 }
 if (!good_status (iosb.iosb$w_status))
 {
 print_message (iosb.iosb$w_status, "SYS$GETJPIW IOSB");
 return (iosb.iosb$w_status);
 }

 return SS$_NORMAL;
}

/* This routine takes the message code passed to the routine and then
 uses SYS$GETMSG to obtain the associated message text. That
 message is then printed to stdio along with a user-supplied
 text string. */

#pragma inline (print_message)
static void print_message (int code, char *string)

456

Appendix B. 64-Bit Example Program

{
 msgdsc.dsc64$q_length = BUFFER_SIZE;
 sys$getmsg (
 code, /* Message Code */
 (unsigned short *) &msgdsc.dsc64$q_length, /* Returned Length */
 &msgdsc, /* Message Descriptor */
 15, /* Message Flags */
 0); /* Optional Parameter */
 *(msgdsc.dsc64$pq_pointer+msgdsc.dsc64$q_length) = '\0';
 printf ("Call to %s returned: %s\n",
 string,
 msgdsc.dsc64$pq_pointer);
}

457

Appendix B. 64-Bit Example Program

458

Appendix C. VLM Example Program
This example program demonstrates the memory management VLM features described in Chapter 16.

/*
 This program creates and maps to a memory-resident global section using
 shared page tables. The program requires a reserved memory entry
 (named In_Memory_Database) in the Reserved Memory Registry.

 The entry in the registry is created using SYSMAN as follows:

 $ MCR SYSMAN
 SYSMAN> RESERVED_MEMORY ADD "In_Memory_Database"/ALLOCATE/PAGE_TABLES -
 /ZERO/SIZE=64/GROUP=100

 The above command creates an entry named In_Memory_Database that is
 64M bytes in size and requests that the physical memory be allocated
 during system initialization. This enables the physical memory to
 be mapped with granularity hints by the SYS$CRMPSC_GDZRO_64 system
 service. It also requests that physical memory be allocated for
 page tables for the named entry, requests the allocated memory be
 zeroed, and requests that UIC group number 100 be associated with
 the entry.

 Once the entry has been created with SYSMAN, the system must be
 re-tuned with AUTOGEN. Doing so allows AUTOGEN to re-calculate
 values for SYSGEN parameters that are sensitive to changes in
 physical memory sizes. (Recall that the Reserved Memory Registry
 takes physical pages away from the system.) Once AUTOGEN has
 been run, the system must be rebooted.

 Use the following commands to compile and link this program:

 $ CC/POINTER_SIZE=32 shared_page_tables_example
 $ LINK shared_page_tables_example

 Since 64-bit virtual addresses are used by this program,
 a Version 5.2 HP C compiler or later is required to compile it. */

#define __NEW_STARLET 1

#include <DESCRIP>
#include <FAR_POINTERS>
#include <GEN64DEF>
#include <INTS>
#include <PSLDEF>
#include <SECDEF>
#include <SSDEF>
#include <STARLET>
#include <STDIO>
#include <STDLIB>
#include <STRING>
#include <VADEF>

#define bad_status(status) (((status) & 1) != 1)

459

Appendix C. VLM Example Program

#define ONE_MEGABYTE 0x100000

main ()
{
 int
 status;

 $DESCRIPTOR (section_name, "In_Memory_Database");

 uint32
 region_flags = VA$M_SHARED_PTS, /* Shared PT region. */
 section_flags = SEC$M_EXPREG;

 uint64
 mapped_length,
 requested_size = 64*ONE_MEGABYTE,
 section_length = 64*ONE_MEGABYTE,
 region_length;

 GENERIC_64
 region_id;

 VOID_PQ
 mapped_va,
 region_start_va;

 printf ("Shared Page Table Region Creation Attempt: Size = %0Ld\n",
 requested_size);

/* Create a shared page table region. */

 status = sys$create_region_64 (
 requested_size, /* Size in bytes of region */
 VA$C_REGION_UCREATE_UOWN, /* Region VA creation and owner mode */
 region_flags, /* Region Flags: shared page tables */
 ®ion_id, /* Region ID */
 ®ion_start_va, /* Starting VA for region */
 ®ion_length); /* Size of created region */

 if (bad_status (status))
 {
 printf ("ERROR: Unable to create region of size %16Ld\n\n",
 requested_size);
 return;
 }

 printf ("Shared Page Table Region Created: VA = %016LX, Size
 = %0Ld\n\n",
 region_start_va,
 region_length);

/* Create and map a memory-resident section with shared page tables
 into the shared page table region. */

460

Appendix C. VLM Example Program

 printf ("Create and map to section %s\n", section_name.dsc$a_pointer);
 status = sys$crmpsc_gdzro_64 (
 §ion_name, /* Section name */
 0, /* Section Ident */
 0, /* Section protection */
 section_length, /* Length of Section */
 ®ion_id, /* RDE */
 0, /* Section Offset; map entire section */
 PSL$C_USER, /* Access Mode */
 section_flags, /* Section Creation Flags */
 &mapped_va, /* Return VA */
 &mapped_length); /* Return Mapped Length */

 if (bad_status (status))
 printf ("ERROR: Unable to Create and Map Section %s, status =
 %08x\n\n",
 section_name.dsc$a_pointer,
 status);
 else
 {
 printf ("Section %s created, Section Length = %0Ld\n",
 section_name.dsc$a_pointer,
 section_length);
 printf (" Mapped VA = %016LX, Mapped Length = %0Ld\n\n",
 mapped_va,
 mapped_length);
 }

 /* Delete the shared page table. This will cause the mapping to the
 section and the section itself to be deleted. */

 printf ("Delete the mapping to the memory-resident global section");
 printf (" and the shared\n page table region.\n");
 status = sys$delete_region_64 (
 ®ion_id,
 PSL$C_USER,
 ®ion_start_va,
 ®ion_length);

 if (bad_status (status))
 printf ("ERROR: Unable to delete shared page table region,
 status = %08x\n\n", status);
 else
 printf ("Region Deleted, Start VA = %016LX, Length = %016LX\n\n",
 region_start_va,
 region_length);
 printf ("\n");
}

This example program displays the following output:

Shared Page Table Region Creation Attempt: Size = 67108864
Shared Page Table Region Created: VA = FFFFFFFBFC000000, Size = 67108864

Create and map to section In_Memory_Database
Section In_Memory_Database created, Section Length = 67108864
 Mapped VA = FFFFFFFBFC000000, Mapped Length = 67108864

461

Appendix C. VLM Example Program

Delete the mapping to the memory-resident global section and the shared
 page table region.
Region Deleted, Start VA = FFFFFFFBFC000000, Length = 0000000004000000

462

	Programming Concepts Manual, Volume I
	Table of Contents
	Preface
	1. About VSI
	2. Intended Audience
	3. Document Structure
	4. Related Documents
	5. VSI Encourages Your Comments
	6. OpenVMS Documentation
	7. Typographical Conventions

	Chapter 1. Overview of Manuals and Introduction to Development on OpenVMS Systems
	1.1. Overview of the Manual
	1.2. Overview of the OpenVMS Operating System
	1.3. Components of the OpenVMS Operating System
	1.3.1. OpenVMS Systems on Multiple Platforms
	1.3.1.1. System Compatibility and Program Portability Across Platforms

	1.3.2. OpenVMS Computing Environments
	1.3.2.1. Open System Capabilities
	1.3.2.2. Application Portability
	1.3.2.2.1. Other Application Portability Features

	1.3.3. Distributed Computing Capabilities
	1.3.3.1. Client/Server Style of Computing
	1.3.3.2. OpenVMS Client/Server Capabilities

	1.4. The OpenVMS Programming Environment
	1.4.1. Programming to Standards
	1.4.1.1. Common Environment for Writing Code
	1.4.1.2. Common Language Environment

	1.5. OpenVMS Programming Software
	1.5.1. Creating Program Source Files
	1.5.2. Creating Object Files
	1.5.3. Creating Runnable Programs
	1.5.4. Testing and Debugging Programs
	1.5.4.1. Special Modes of Operation for Debugging

	1.5.5. Using Other Program Development Utilities
	1.5.6. Managing Software Development Tasks

	1.6. Using Callable System Routines
	1.6.1. Using the POSIX Threads Library Routines
	1.6.2. Using OpenVMS Run-Time Library Routines
	1.6.3. Using OpenVMS System Services
	1.6.4. Using OpenVMS Utility Routines

	1.7. Programming User Interfaces
	1.8. Optional VSI Software Development Tools
	1.9. Managing Data
	1.9.1. RMS Files and Records
	1.9.2. RMS Utilities

	Part I. Process and Synchronization
	Chapter 2. Process Creation
	2.1. Process Types
	2.2. Execution Context of a Process
	2.3. Modes of Execution of a Process
	2.4. Creating a Subprocess
	2.4.1. Naming a Spawned Subprocess
	2.4.2. Using LIB$SPAWN to Create a Spawned Subprocess
	2.4.3. Using the C system() Call
	2.4.4. Using SYS$CREPRC to Create a Subprocess
	2.4.4.1. Disk and Directory Defaults for Created Processes

	2.5. Creating a Detached Process
	2.6. Process Quota Lists
	2.7. Debugging a Subprocess or a Detached Process
	2.8. Kernel Threads and the Kernel Threads Process Structure (Alpha and I64 Only)
	2.8.1. Definition and Advantages of Kernel Threads
	2.8.2. Kernel Threads Features
	2.8.2.1. Multiple Execution Contexts Within a Process
	2.8.2.2. Efficient Use of the OpenVMS and POSIX Threads Library Schedulers
	2.8.2.3. Terminating a POSIX Threads Image

	2.8.3. Kernel Threads Model and Design Features
	2.8.3.1. Kernel Threads Model
	2.8.3.2. Kernel Threads Design Features
	2.8.3.2.1. Process Structure
	2.8.3.2.2. Access to Inner Modes
	2.8.3.2.3. Scheduling
	2.8.3.2.4. ASTs
	2.8.3.2.5. Event Flags
	2.8.3.2.6. Process Control Services

	2.8.4. Kernel Threads Process Structure
	2.8.4.1. Process Control Block (PCB) and Process Header (PHD)
	2.8.4.1.1. Effect of a Multithreaded Process on the PCB and PHD

	2.8.4.2. Kernel Thread Block (KTB)
	2.8.4.3. Floating-Point Registers and Execution Data Blocks (FREDs)
	2.8.4.4. Kernel Threads Region
	2.8.4.5. Per-Kernel Thread Stacks
	2.8.4.6. Per-Kernel-Thread Data Cells
	2.8.4.7. Summary of Process Data Structures
	2.8.4.8. Kernel Thread Priorities

	2.9. THREADCP Command Not Supported on OpenVMS I64
	2.10. KPS Services (Alpha and I64 Only)

	Chapter 3. Process Communication
	3.1. Communication Within a Process
	3.1.1. Using Local Event Flags
	3.1.2. Using Logical Names
	3.1.2.1. Creating and Accessing Logical Names

	3.1.3. Using Command Language Interpreter Symbols
	3.1.3.1. Local and Global Symbols
	3.1.3.2. Creating and Using Global Symbols

	3.1.4. Using the Common Area
	3.1.4.1. Creating the Process Common Area
	3.1.4.2. Common I/O Routines
	3.1.4.3. Modifying or Deleting Data in the Common Block
	3.1.4.4. Specifying Other Types of Data

	3.2. Communication Between Processes
	3.2.1. Using Logical Name Tables
	3.2.2. Mailboxes
	3.2.2.1. Creating a Mailbox
	3.2.2.2. Creating Temporary and Permanent Mailboxes
	3.2.2.3. Assigning an I/O Channel Along with a Mailbox
	3.2.2.4. Reading and Writing Data to a Mailbox
	3.2.2.5. Using Synchronous Mailbox I/O
	3.2.2.6. Using Immediate Mailbox I/O
	3.2.2.7. Using Asynchronous Mailbox I/O

	3.3. Intracluster Communication
	3.3.1. Programming with Intracluster Communications
	3.3.1.1. ICC Concepts
	3.3.1.2. Design Considerations
	3.3.1.2.1. Naming
	3.3.1.2.2. Message Ordering
	3.3.1.2.3. Flow Control
	3.3.1.2.4. Transfer Sizes and Receiving Data
	3.3.1.2.5. Transfer Sizes and Transceive
	3.3.1.2.6. Disconnection
	3.3.1.2.7. Error Recovery

	3.3.1.3. General Programming Considerations
	3.3.1.4. Servers
	3.3.1.4.1. Connection Events
	3.3.1.4.2. Disconnection Events

	3.3.1.5. Clients

	Chapter 4. Process Control
	4.1. Using Process Control for Programming Tasks
	4.1.1. Determining Privileges for Process Creation and Control
	4.1.2. Determining Process Identification
	4.1.3. Qualifying Process Naming Within Groups

	4.2. Obtaining Process Information
	4.2.1. Using the PID to Obtain Information
	4.2.2. Using the Process Name to Obtain Information
	4.2.3. Using SYS$GETJPI and LIB$GETJPI
	4.2.3.1. Requesting Information About a Single Process
	4.2.3.2. Requesting Information About All Processes on the Local System

	4.2.4. Using SYS$GETJPI with SYS$PROCESS_SCAN
	4.2.4.1. Using SYS$PROCESS_SCAN Item List and Item-Specific Flags
	4.2.4.2. Requesting Information About Processes That Match One Criterion
	4.2.4.3. Requesting Information About Processes That Match Multiple Values for One Criterion
	4.2.4.4. Requesting Information About Processes That Match Multiple Criteria

	4.2.5. Specifying a Node as Selection Criterion
	4.2.5.1. Checking All Nodes on the Cluster for Processes
	4.2.5.2. Checking Specific Nodes on the Cluster for Processes
	4.2.5.3. Conducting Multiple Simultaneous Searches with SYS$PROCESS_SCAN

	4.2.6. Programming with SYS$GETJPI
	4.2.6.1. Using Item Lists Correctly
	4.2.6.2. Improving Performance by Using Buffered $GETJPI Operations
	4.2.6.3. Fulfilling Remote SYS$GETJPI Quota Requirements
	4.2.6.4. Using the SYS$GETJPI Control Flags

	4.2.7. Using SYS$GETLKI
	4.2.8. Setting Process Privileges

	4.3. Changing Process and Kernel Threads Scheduling
	4.4. Using Affinity and Capabilities in CPU Scheduling (Alpha and I64 Only)
	4.4.1. Defining Affinity and Capabilities
	4.4.1.1. Using Affinity and Capabilities with Caution

	4.4.2. Types of Capabilities
	4.4.3. Looking at User Capabilities
	4.4.4. Using the Capabilities System Services
	4.4.5. Types of Affinity
	4.4.5.1. Implicit Affinity
	4.4.5.2. Explicit Affinity

	4.5. Using the Class Scheduler in CPU Scheduling
	4.5.1. Specifications for the Class_Schedule Command
	4.5.1.1. The Add Subcommand
	4.5.1.2. The Delete Subcommand
	4.5.1.3. The Modify Subcommand
	4.5.1.4. The Show Subcommand
	4.5.1.5. The Suspend Subcommand
	4.5.1.6. The Resume Subcommand

	4.5.2. The Class Scheduler Database
	4.5.2.1. The Class Scheduler Database and Process Creation

	4.5.3. Determining If a Process Is Class Scheduled
	4.5.4. The SYS$SCHED System Service

	4.6. Changing Process Name
	4.7. Accessing Another Process's Context
	4.7.1. Reading and Writing in the Address Space of Another Process (Alpha and I64 Only)
	4.7.1.1. EXE$READ_PROCESS and EXE$WRITE_PROCESS
	EXE$READ_PROCESS
	EXE$WRITE_PROCESS

	4.7.2. Writing an Executive Image (Alpha and I64 Only)
	4.7.2.1. INITIALIZATION_ROUTINE Macro (Alpha and I64 Only)
	INITIALIZATION_ROUTINE

	4.7.2.2. Linking an Executive Image (Alpha or I64 Only)
	4.7.2.3. Loading an Executive Image (Alpha or I64 Only)
	4.7.2.4. LDR$LOAD_IMAGE (Alpha or I64 Only)
	LDR$LOAD_IMAGE

	4.7.2.5. LDR$UNLOAD_IMAGE (Alpha or I64 Only)
	LDR$UNLOAD_IMAGE

	4.8. Synchronizing Programs by Specifying a Time for Program Execution
	4.8.1. Obtaining the System Time
	4.8.1.1. Executing a Program at a Specified Time
	4.8.1.2. Executing a Program at Timed Intervals

	4.8.2. Placing Entries in the System Timer Queue

	4.9. Controlling Kernel Threads and Process Execution
	4.9.1. Process Hibernation and Suspension
	4.9.1.1. Using Process Hibernation
	4.9.1.2. Using Alternative Methods of Hibernation
	4.9.1.3. Using SYS$SUSPND

	4.9.2. Passing Control to Another Image
	4.9.2.1. Invoking a Command Image
	4.9.2.2. Invoking a Noncommand Image

	4.9.3. Performing Image Exit
	4.9.3.1. Performing Image Rundown
	4.9.3.2. Initiating Rundown
	4.9.3.3. Performing Cleanup and Rundown Operations
	4.9.3.4. Initiating Image Rundown for Another Process

	4.9.4. Deleting a Process
	4.9.4.1. Deleting a Process By Using System Services
	4.9.4.2. $DELPRC System Service Can Invoke Exit Handlers (Alpha and I64 only)
	4.9.4.3. Terminating Mailboxes

	Chapter 5. Symmetric Multiprocessing (SMP) Systems
	5.1. Introduction to Symmetric Multiprocessing
	5.2. CPU Characteristics of an SMP System
	5.2.1. Booting an SMP System
	5.2.2. Interrupt Requests on SMP System

	5.3. Symmetric Multiprocessing Goals

	Chapter 6. Synchronizing Data Access and Program Operations
	6.1. Overview of Synchronization
	6.1.1. Threads of Execution
	6.1.2. Atomicity

	6.2. Memory Read and Memory Write Operations for VAX and Alpha
	6.2.1. Accessing Memory
	6.2.2. Ordering of Read and Write Operations
	6.2.3. Memory Reads and Memory Writes

	6.3. Memory Read and Memory Write Operations for I64 Systems
	6.3.1. Atomic Semaphore Instructions on I64
	6.3.2. Accessing Memory on I64
	6.3.3. Ordering of Read and Write Operations for I64 Systems

	6.4. Memory Read-Modify-Write Operations for VAX and Alpha
	6.4.1. Uniprocessor Operations
	6.4.2. Multiprocessor Operations

	6.5. Memory Read-Modify-Write Operations for I64 Systems
	6.5.1. Preserving Atomicity with MACRO-32

	6.6. Synchronization Primitives
	6.6.1. Interrupt Priority Level
	6.6.2. LD x_L and ST x_C Instructions (Alpha Only)
	6.6.3. Interlocking Memory References (Alpha Only)
	6.6.3.1. Required Code Checks
	6.6.3.2. Using the Code Analysis Tool
	6.6.3.3. Characteristics of Noncompliant Code
	6.6.3.4. Coding Requirements
	6.6.3.5. Compiler Versions
	6.6.3.6. Interlocked Memory Sequence Checking for the MACRO–32 Compiler
	6.6.3.7. Recompiling Code with ALONONPAGED_INLINE or LAL_REMOVE_FIRST Macros

	6.6.4. Interlocked Instructions (VAX Only)
	6.6.5. Memory Barriers (Alpha Only)
	6.6.6. Memory Fences (I64 Only)
	6.6.7. PALcode Routines (Alpha Only)
	6.6.8. I64 Emulation of PALcode Built-ins

	6.7. Software-Level Synchronization
	6.7.1. Synchronization Within a Process
	6.7.2. Synchronization in Inner Mode (Alpha and I64 Only)
	6.7.3. Synchronization Using Process Priority
	6.7.4. Synchronizing Multiprocess Applications
	6.7.5. Synchronization Using Locks
	6.7.6. Writable Global Sections

	6.8. Using Event Flags
	6.8.1. General Guidelines for Using Event Flags
	6.8.2. Introducing Local and Common Event Flag Numbers and Event Flag Clusters
	6.8.3. Using Event Flag Zero (0)
	6.8.4. Using EFN$C_ENF Local Event Flag
	6.8.5. Using Local Event Flags
	6.8.5.1. Example of Event Flag Services

	6.8.6. Using Common Event Flags
	6.8.6.1. Using the name Argument with SYS$ASCEFC
	6.8.6.2. Temporary Common Event Flag Clusters
	6.8.6.3. Permanent Common Event Flag Clusters

	6.8.7. Wait Form Services and SYS$SYNCH
	6.8.8. Event Flag Waits
	6.8.9. Setting and Clearing Event Flags
	6.8.10. Example of Using a Common Event Flag Cluster
	6.8.11. Example of Using Event Flag Routines and Services

	6.9. Synchronizing System Services Operations

	Chapter 7. Synchronizing Access to Resources
	7.1. Synchronizing Operations with the Lock Manager
	7.2. Concepts of Resources and Locks
	7.2.1. Resource Granularity
	7.2.2. Resource Domains
	7.2.3. Resource Names
	7.2.4. Choosing a Lock Mode
	7.2.5. Levels of Locking and Compatibility
	7.2.6. Lock Management Queues
	7.2.7. Concepts of Lock Conversion
	7.2.8. Deadlock Detection
	7.2.9. Lock Quotas and Limits
	7.2.9.1. Enqueue Limit Quota (ENQLM)
	7.2.9.2. Subresources and Sublocks
	7.2.9.3. Resource Hash Table
	7.2.9.4. LOCKIDTBL System Parameter

	7.3. Queuing Lock Requests
	7.3.1. Example of Requesting a Null Lock

	7.4. Advanced Locking Techniques
	7.4.1. Synchronizing Locks
	7.4.2. Notification of Synchronous Completion
	7.4.3. Expediting Lock Requests
	7.4.4. Lock Status Block
	7.4.5. Blocking ASTs
	7.4.6. Lock Conversions
	7.4.7. Forced Queuing of Conversions
	7.4.8. Parent Locks
	7.4.9. Lock Value Blocks
	7.4.10. Interoperation with 16-Byte and 64-Byte Value Blocks

	7.5. Dequeuing Locks
	7.6. Local Buffer Caching with the Lock Management Services
	7.6.1. Using the Lock Value Block
	7.6.2. Using Blocking ASTs
	7.6.2.1. Deferring Buffer Writes
	7.6.2.2. Buffer Caching

	7.6.3. Choosing a Buffer-Caching Technique

	7.7. Example of Using Lock Management Services

	Part II. Interrupts and Condition Handling
	Chapter 8. Using Asynchronous System Traps
	8.1. Overview of AST Routines
	8.2. Declaring and Queuing ASTs
	8.2.1. Reentrant Code and ASTs
	8.2.1.1. The Call Frame

	8.2.2. Shared Data Access with Readers and Writers
	8.2.3. Shared Data Access and AST Synchronization
	8.2.4. User ASTs and Asynchronous Completions

	8.3. Common Mistakes in Asynchronous Programming
	8.4. Using System Services for AST Event and Time Delivery
	8.5. Access Modes for AST Execution
	8.6. Calling an AST
	8.7. Delivering ASTs
	8.7.1. The AST Service Routine
	8.7.2. Conditions Affecting AST Delivery
	8.7.3. Kernel Threads AST Delivery (Alpha and I64)
	8.7.3.1. Outer Mode (User and Supervisor) Nonserial Delivery of ASTs
	8.7.3.2. Inner Mode (Executive and Kernel) AST Delivery

	8.8. ASTs and Process Wait States
	8.8.1. Event Flag Waits
	8.8.2. Hibernation
	8.8.3. Resource Waits and Page Faults

	8.9. Examples of Using AST Services

	Chapter 9. Condition-Handling Routines and Services
	9.1. Overview of Run-Time Errors
	9.2. Overview of the OpenVMS Condition Handling Facility
	9.2.1. Condition-Handling Terminology
	9.2.2. Functions of the Condition Handling Facility

	9.3. Exception Conditions
	9.3.1. Conditions Caused by Exceptions
	9.3.2. Exception Conditions
	9.3.3. Arithmetic Exceptions
	9.3.4. Unaligned Access Traps (Alpha and I64)

	9.4. How Run-Time Library Routines Handle Exceptions
	9.4.1. Exception Conditions Signaled from Mathematics Routines (VAX Only)
	9.4.1.1. Integer Overflow and Floating-Point Overflow
	9.4.1.2. Floating-Point Underflow

	9.4.2. System-Defined Arithmetic Condition Handlers

	9.5. Condition Values
	9.5.1. Return Status Convention
	9.5.1.1. Testing Returned Condition Values
	9.5.1.2. Using the $VMS_STATUS_SUCCESS Macro
	9.5.1.3. Testing SS$_NOPRIV and SS$_EXQUOTA Condition Values

	9.5.2. Modifying Condition Values

	9.6. Exception Dispatcher
	9.7. Argument List Passed to a Condition Handler
	9.8. Signaling
	9.8.1. Generating Signals with LIB$SIGNAL and LIB$STOP
	9.8.1.1. LIB$SIGNAL
	9.8.1.2. LIB$STOP

	9.8.2. Signal Argument Vector
	9.8.3. VAX Mechanism Argument Vector
	9.8.4. Alpha Mechanism Argument Vector
	9.8.5. I64 Mechanism Vector Format
	9.8.6. x86-64 Mechanism Vector Format
	9.8.7. Multiple Active Signals

	9.9. Types of Condition Handlers
	9.9.1. Default Condition Handlers
	9.9.2. Interaction Between Default and User-Supplied Handlers

	9.10. Types of Actions Performed by Condition Handlers
	9.10.1. Unwinding the Call Stack
	9.10.2. GOTO Unwind Operations (64-bit Systems)

	9.11. Displaying Messages
	9.11.1. Chaining Messages
	9.11.2. Logging Error Messages to a File
	9.11.2.1. Creating a Running Log of Messages Using SYS$PUTMSG
	9.11.2.2. Suppressing the Display of Messages in the Running Log

	9.11.3. Using the Message Utility to Signal and Display User-Defined Messages
	9.11.3.1. Creating the Message Source File
	9.11.3.1.1. Specifying the Facility
	9.11.3.1.2. Specifying the Severity
	9.11.3.1.3. Specifying Condition Names and Messages
	9.11.3.1.4. Specifying Variables in the Message Text
	9.11.3.1.5. Compiling and Linking the Messages
	9.11.3.1.6. Linking the Message Object Module
	9.11.3.1.7. Accessing the Message Object Module from Multiple Programs
	9.11.3.1.8. Modifying a Message Source Module
	9.11.3.1.9. Accessing Modified Messages Without Relinking

	9.11.4. Signaling User-Defined Values and Messages with Global and Local Symbols
	9.11.4.1. Signaling with Global Symbols
	9.11.4.2. Signaling with Local Symbols
	9.11.4.3. Specifying FAO Parameters

	9.12. Writing a Condition Handler
	9.12.1. Continuing Execution
	9.12.2. Resignaling
	9.12.3. Unwinding the Call Stack
	9.12.4. Example of Writing a Condition Handler
	9.12.4.1. Signal Array
	9.12.4.2. Mechanism Array
	9.12.4.3. Comparing the Signaled Condition with an Expected Condition
	9.12.4.4. Exiting from the Condition Handler
	9.12.4.5. Returning Control to the Program

	9.12.5. Example of Condition-Handling Routines

	9.13. Debugging a Condition Handler
	9.14. Run-Time Library Condition-Handling Routines
	9.14.1. RTL Jacket Handlers (64-bit Systems)
	9.14.2. Converting a Floating-Point Fault to a Floating-Point Trap (VAX Only)
	9.14.3. Changing a Signal to a Return Status
	9.14.4. Changing a Signal to a Stop
	9.14.5. Matching Condition Values
	9.14.6. Correcting a Reserved Operand Condition (VAX Only)
	9.14.7. Decoding the Instruction That Generated a Fault (VAX Only)

	9.15. Exit Handlers
	9.15.1. Establishing an Exit Handler
	9.15.2. Writing an Exit Handler
	9.15.3. Debugging an Exit Handler
	9.15.4. Example of Exit Handler

	Part III. Addressing and Memory Management
	Chapter 10. Overview of Alpha and I64 Virtual Address Space
	10.1. Using 64-Bit Addresses
	10.2. Traditional OpenVMS 32-Bit Virtual Address Space Layout
	10.3. OpenVMS Alpha and OpenVMS I64 64-Bit Virtual Address Space Layout
	10.3.1. Process-Private Space
	10.3.2. System Space
	10.3.3. Page Table Space
	10.3.4. Virtual Address Space Size

	10.4. Virtual Regions
	10.4.1. Regions Within P0 Space and P1 Space
	10.4.2. 64-Bit Program Region
	10.4.3. User-Defined Virtual Regions

	Chapter 11. Support for 64-Bit Addressing (Alpha and I64 Only)
	11.1. System Services Support for 64-Bit Addressing
	11.1.1. System Services Terminology
	11.1.2. Comparison of 32-Bit and 64-Bit Descriptors
	11.1.3. Comparison of 32-Bit and 64-Bit Item Lists
	11.1.3.1. 32-Bit Item Lists
	11.1.3.2. 64-Bit Item Lists

	11.1.4. System Services That Support 64-Bit Addresses
	11.1.5. Sign-Extension Checking
	11.1.6. Language Support for 64-Bit System Services

	11.2. RMS Interface Features for 64-Bit Addressing
	11.2.1. RAB64 Data Structure
	11.2.2. Using the 64-Bit RAB Extension
	11.2.3. Macros to Support User RAB Structure

	11.3. File System Support for 64-Bit Addressing
	11.4. OpenVMS Alpha and OpenVMS I64 64-Bit API Guidelines
	11.4.1. Quadword/Longword Argument Pointer Guidelines
	11.4.2. OpenVMS Alpha, OpenVMS VAX, and OpenVMS I64 Guidelines
	11.4.3. Promoting an API from a 32-Bit API to a 64-Bit API
	11.4.4. Example of a 32-Bit Routine and a 64-Bit Routine

	11.5. OpenVMS Alpha and OpenVMS I64 Tools and Utilities That Support 64-Bit Addressing
	11.5.1. OpenVMS Debugger
	11.5.2. OpenVMS Alpha System-Code Debugger
	11.5.3. Delta/XDelta
	11.5.4. LIB$ and CVT$ Facilities of the OpenVMS Run-Time Library
	11.5.5. Watchpoint Utility
	11.5.6. SDA

	11.6. Language and Pointer Support for 64-Bit Addressing
	11.7. VSI C RTL Support for 64-Bit Addressing

	Chapter 12. Memory Management Services and Routines on OpenVMS Alpha and OpenVMS I64
	12.1. Virtual Page Sizes
	12.2. Levels of Memory Allocation Routines
	12.3. Using System Services for Memory Allocation
	12.3.1. Increasing and Decreasing Virtual Address Space with 64-Bit System Services
	12.3.2. Increasing and Decreasing Virtual Address Space with 32-bit System Services
	12.3.3. Input Address Arrays and Return Address Arrays for the 64-Bit System Services
	12.3.4. Input Address Arrays and Return Address Arrays for the 32-Bit System Services
	12.3.5. Allocating Memory in Existing Virtual Address Space on Alpha and I64 Systems Using the 32-Bit System Service
	12.3.6. Page Ownership and Protection
	12.3.7. Working Set Paging
	12.3.7.1. SYS$ADJWSL System Service
	12.3.7.2. SYS$PURGWS System Service
	12.3.7.3. SYS$LKWSET and SYS$LKWSET_64 System Services
	12.3.7.4. Specifying a Range of Addresses
	12.3.7.5. Specifying a Range of Addresses In OpenVMS Version 8.1
	12.3.7.6. Specifying a Range of Addresses In OpenVMS Versions Prior to V8.1
	12.3.7.7. Specifying the Access Mode

	12.3.8. Process Swapping
	12.3.9. Sections
	12.3.9.1. Creating Sections with 64-Bit System Services
	12.3.9.2. PFN-Mapped Sections
	12.3.9.3. Creating Sections with 32-Bit System Services
	12.3.9.3.1. Opening the Disk File
	12.3.9.3.2. Defining the Section Extents
	12.3.9.3.3. Defining the Section Characteristics
	12.3.9.3.4. Defining Global Section Characteristics
	12.3.9.3.5. Global Section Name

	12.3.9.4. Mapping Sections with 32-Bit System Services
	12.3.9.5. Mapping Global Sections with 32-Bit Services
	12.3.9.6. Global Page-File Sections with 32-Bit System Services
	12.3.9.7. Mapping into a Defined Address Range With 32-Bit System Services
	12.3.9.8. Mapping from an Offset into a Section File With 32-Bit System Services
	12.3.9.9. Section Paging Resulting from SYS$CRMPSC
	12.3.9.10. Reading and Writing Data Sections
	12.3.9.11. Releasing and Deleting Sections
	12.3.9.12. Writing Back Sections
	12.3.9.13. Memory-Resident Global Sections
	12.3.9.14. Image Sections
	12.3.9.15. Page Frame Sections
	12.3.9.16. Partial Sections

	12.3.10. Example of Using 32-Bit Memory Management System Services

	12.4. Large Page-File Sections

	Chapter 13. Memory Management Services and Routines on OpenVMS VAX
	13.1. Virtual Page Size
	13.2. Virtual Address Space
	13.3. Extended Addressing Enhancements on Selected VAX Systems
	13.3.1. Page Table Entry for Extended Addresses on VAX Systems

	13.4. Levels of Memory Allocation Routines
	13.5. Using System Services for Memory Allocation
	13.5.1. Increasing and Decreasing Virtual Address Space
	13.5.2. Input Address Arrays and Return Address Arrays
	13.5.3. Page Ownership and Protection
	13.5.4. Working Set Paging
	13.5.5. Process Swapping
	13.5.6. Sections
	13.5.6.1. Creating Sections
	13.5.6.2. Opening the Disk File
	13.5.6.3. Defining the Section Extents
	13.5.6.4. Defining the Section Characteristics
	13.5.6.5. Defining Global Section Characteristics
	13.5.6.6. Global Section Name
	13.5.6.7. Mapping Sections
	13.5.6.8. Mapping Global Sections
	13.5.6.9. Global Page-File Sections
	13.5.6.10. Section Paging
	13.5.6.11. Reading and Writing Data Sections
	13.5.6.12. Releasing and Deleting Sections
	13.5.6.13. Writing Back Sections
	13.5.6.14. Image Sections
	13.5.6.15. Page Frame Sections

	13.5.7. Example of Using Memory Management System Services

	Chapter 14. Using Run-Time Routines for Memory Allocation
	14.1. Allocating and Freeing Pages
	14.2. Interactions with Other Run-Time Library Routines
	14.3. Interactions with System Services
	14.4. Zones
	14.4.1. Zone Attributes
	14.4.2. Default Zone
	14.4.3. Zone Identification
	14.4.4. Creating a Zone
	14.4.5. Deleting a Zone
	14.4.6. Resetting a Zone

	14.5. Allocating and Freeing Blocks
	14.6. Allocation Algorithms
	14.6.1. First Fit Algorithm
	14.6.2. Quick Fit Algorithm
	14.6.3. Frequent Sizes Algorithm
	14.6.4. Fixed Size Algorithm

	14.7. User-Defined Zones
	14.8. Debugging Programs That Use Virtual Memory Zones

	Chapter 15. Alignment on VAX, Alpha, and I64 Systems
	15.1. Alignment
	15.1.1. Alignment and Performance
	15.1.1.1. Alignment on OpenVMS VAX (VAX Only)
	15.1.1.2. Alignment on OpenVMS Alpha and I64

	15.2. Using Compilers for Alignment (Alpha and I64 Only)
	15.2.1. The VSI C Compiler (Alpha and I64 Only)
	15.2.1.1. Compiler Example of Memory Structure of VAX C and VSI C

	15.2.2. The BLISS Compiler
	15.2.3. The VSI Fortran Compiler (Alpha and I64 Only)
	15.2.4. The MACRO-32 Compiler (Alpha and I64)
	15.2.4.1. Precedence of Alignment Controls
	15.2.4.2. Recommendations for Aligning Data

	15.2.5. The VAX Environment Software Translator – VEST (Alpha Only)

	15.3. Using Tools for Finding Unaligned Data
	15.3.1. The OpenVMS Debugger
	15.3.2. The Performance and Coverage Analyzer – PCA
	15.3.3. System Services (Alpha and I64 Only)
	15.3.4. Alignment Fault Utility (Alpha and I64 Only)

	Chapter 16. Memory Management with VLM Features
	16.1. Overview of VLM Features
	16.2. Memory-Resident Global Sections
	16.3. Fast I/O and Buffer Objects for Global Sections
	16.3.1. Comparison of $QIO and Fast I/O
	16.3.2. Overview of Locking Buffers
	16.3.3. Overview of Buffer Objects
	16.3.4. Creating and Using Buffer Objects

	16.4. Shared Page Tables
	16.4.1. Memory Requirements for Private Page Tables
	16.4.2. Shared Page Tables and Private Data

	16.5. Expandable Global Page Table

	Part IV. Appendixes: Macros and Examples of 64-Bit Programming
	Appendix A. C Macros for 64-Bit Addressing
	DESCRIPTOR64
	$is_desc64
	$is_32bits

	Appendix B. 64-Bit Example Program
	Appendix C. VLM Example Program

