
VSI OpenVMS

Porting Applications from
VSI OpenVMS Alpha to
VSI OpenVMS
Industry Standard 64 for Integrity
Servers

Document Number: DO-DPAI64-01A

Publication Date: April 2024

Operating System and Version: VSI OpenVMS IA-64 Version 8.4-1H1 or higher
VSI OpenVMS Alpha Version 8.4-2L1 or higher

VMS Software, Inc. (VSI)
Boston, Massachusetts, USA

Porting Applications from VSI OpenVMS Alpha to VSI OpenVMS Industry
Standard 64 for Integrity Servers

Copyright © 2024 VMS Software, Inc. (VSI), Boston, Massachusetts, USA

Legal Notice

Confidential computer software. Valid license from VSI required for possession, use or copying. Consistent with FAR 12.211 and 12.212,
Commercial Computer Software, Computer Software Documentation, and Technical Data for Commercial Items are licensed to the U.S.
Government under vendor's standard commercial license.

The information contained herein is subject to change without notice. The only warranties for VSI products and services are set forth in the
express warranty statements accompanying such products and services. Nothing herein should be construed as constituting an additional
warranty. VSI shall not be liable for technical or editorial errors or omissions contained herein.

HPE, HPE Integrity, HPE Alpha, and HPE Proliant are trademarks or registered trademarks of Hewlett Packard Enterprise.

ii

Porting Applications from VSI OpenVMS Alpha to VSI OpenVMS Industry Standard 64 for Integrity Servers

Preface ... vii
1. About VSI .. vii
2. Intended Audience ... vii
3. Document Structure ... vii
4. Related Documents .. vii
5. VSI Encourages Your Comments ... viii
6. OpenVMS Documentation .. viii
7. Typographical Conventions .. viii

Chapter 1. Introduction ... 1
1.1. OpenVMS Industry Standard 64 for Integrity Servers .. 1
1.2. Overview of the Porting Process .. 1

1.2.1. Evaluating the Application .. 1
Chapter 2. Fundamental Differences to Consider ... 5

2.1. Calling Standard ... 5
2.1.1. Changes to the OpenVMS Calling Standard ... 5
2.1.2. Extensions to the OpenVMS Calling Standard .. 6

2.2. Floating-Point Arithmetic .. 7
2.2.1. Overview ... 7
2.2.2. Impact on OpenVMS Applications .. 8

2.3. Object File Format .. 8
Chapter 3. Assessing Needs for Porting Your Application ... 9

3.1. Overview ... 9
3.2. Evaluating the Application ... 10

3.2.1. Selecting the Porting Method .. 10
3.2.2. Identifying Applications to Be Ported ... 11
3.2.3. Assessing Dependencies .. 13

3.2.3.1. Software Dependencies .. 13
3.2.3.2. Development Environment ... 14
3.2.3.3. Operating Environment .. 14

3.2.4. Operational Tasks ... 14
3.3. Additional Considerations .. 15

Chapter 4. Migrating Source Modules ... 17
4.1. Setting Up the Migration Environment ... 18

4.1.1. Hardware ... 18
4.1.2. Software .. 18

4.1.2.1. VSI OpenVMS Migration Software for Alpha to Integrity Servers and
Translated Image Environment (TIE) .. 19

4.1.3. Coexistence with Translated Images ... 21
4.2. Compiling Applications on Alpha With Current Compiler Version 22
4.3. Testing Applications on Alpha for Baseline Information ... 22
4.4. Recompiling and Relinking on an OpenVMS I64 System ... 22
4.5. Debugging the Migrated Application ... 23

4.5.1. Debugging ... 23
4.5.2. Analyzing System Crashes .. 23

4.5.2.1. System Dump Analyzer .. 23
4.5.2.2. Crash Log Utility Extractor .. 23

4.6. Testing the Migrated Application .. 24
4.6.1. Alpha Tests Ported to OpenVMS I64 ... 24
4.6.2. New OpenVMS I64 Tests ... 24
4.6.3. Uncovering Latent Bugs .. 24

iii

Porting Applications from VSI OpenVMS Alpha to VSI OpenVMS Industry Standard 64 for Integrity Servers

4.7. Integrating the Migrated Application into a Software System .. 25
4.8. Modifying Certain Types of Code .. 25

4.8.1. Conditionalized Code .. 26
4.8.1.1. MACRO Sources ... 26
4.8.1.2. BLISS Sources .. 26
4.8.1.3. C Sources ... 27
4.8.1.4. Existing Conditionalized Code .. 27

4.8.2. System Services With Alpha Architecture Dependencies 28
4.8.2.1. SYS$GOTO_UNWIND ... 28
4.8.2.2. SYS$LKWSET and SYS$LKWSET_64 .. 28

4.8.3. Code With Other Dependencies on the Alpha Architecture 28
4.8.3.1. Initialized Overlaid Program Sections .. 28
4.8.3.2. Condition Handlers Use of SS$_HPARITH ... 29
4.8.3.3. Mechanism Array Data Structure .. 29
4.8.3.4. Reliance on Alpha Object File Format ... 29

4.8.4. Code that Uses Floating-Point Data Types .. 29
4.8.4.1. LIB$WAIT Problem and Solution ... 30

4.8.5. Incorrect Command Table Declaration ... 31
4.8.6. Code that Uses Threads .. 32

4.8.6.1. Thread Routines cma_delay and cma_time_get_expiration 33
4.8.7. Code With Unaligned Data ... 33
4.8.8. Code that Relies on the OpenVMS Alpha Calling Standard 34
4.8.9. Privileged Code .. 35

4.8.9.1. Use of SYS$LKWSET and SYS$LKWSET_64 .. 35
4.8.9.2. Use of SYS$LCKPAG and SYS$LCKPAG_64 .. 35
4.8.9.3. Terminal Drivers ... 36
4.8.9.4. Protected Image Sections ... 36

Chapter 5. I64 Development Environment ... 37
5.1. Native OpenVMS I64 Compilers .. 37

5.1.1. VAX MACRO–32 Compiler for I64 .. 37
5.2. Other Development Tools .. 38

5.2.1. Translating Alpha Code .. 38
5.3. Linking Modules ... 39

5.3.1. Differences When Linking on I64 Systems ... 39
5.3.1.1. No Based Clusters ... 40
5.3.1.2. Handling of Initialized Overlaid Program Sections on I64 40
5.3.1.3. Behavior Difference When Linking ELF Common Symbols 41

5.3.2. Expanded Map File Information .. 41
5.3.3. New Linker Qualifiers and Options for I64 .. 42

5.3.3.1. New /BASE_ADDRESS Qualifier ... 42
5.3.3.2. New /SEGMENT_ATTRIBUTE Qualifier ... 42
5.3.3.3. New /FP_MODE Qualifier ... 42
5.3.3.4. New /EXPORT_SYMBOL_VECTOR and
/PUBLISH_GLOBAL_SYMBOLS Qualifiers ... 43
5.3.3.5. New Alignments for the PSECT_ATTRIBUTE Option 43
5.3.3.6. New GROUP_SECTIONS and SECTION_DETAILS keywords for the
/FULL Qualifier .. 44

5.3.4. Mixed-Case Arguments in Linker Options, Revisited ... 44
5.4. Debugging Capabilities on I64 Systems ... 44

5.4.1. OpenVMS Debugger .. 45
5.4.1.1. Architecture Support .. 45
5.4.1.2. Language Support .. 45

iv

Porting Applications from VSI OpenVMS Alpha to VSI OpenVMS Industry Standard 64 for Integrity Servers

5.4.1.3. Functional Areas and Commands .. 46
5.4.1.4. Functionality Not Yet Ported .. 47

5.4.2. XDelta Debugger ... 47
5.4.2.1. XDelta Capabilities on I64 ... 47
5.4.2.2. Differences Between XDelta on I64 and OpenVMS Alpha Systems 47

5.5. I64 Librarian Utility .. 48
5.5.1. Considerations When Using the OpenVMS I64 Librarian 48
5.5.2. Changes to the LBR$ Routines .. 48
5.5.3. OpenVMS I64 Library Format Handles UNIX-Style Weak Symbols 49

5.5.3.1. New ELF Type for Weak Symbols .. 49
5.5.3.2. Version 6.0 Library Index Format ... 49
5.5.3.3. New Group-Section Symbols .. 49
5.5.3.4. Current Library Limitation with Regard to Weak and Group Symbols 49

Chapter 6. Preparing to Port Applications .. 51
6.1. Ada .. 51
6.2. BASIC .. 52
6.3. BLISS Compiler .. 52

6.3.1. BLISS File Types and File Location Defaults ... 52
6.3.2. OpenVMS Alpha BLISS Features Not Available ... 53
6.3.3. I64 BLISS Features .. 55

6.4. COBOL .. 66
6.4.1. Floating-Point Arithmetic .. 66
6.4.2. /ARCH and /OPTIMIZE=TUNE Qualifiers .. 66

6.5. Fortran ... 66
6.5.1. Floating-Point Arithmetic .. 66
6.5.2. Only the F90 Compiler is Supported .. 68
6.5.3. /ARCH and /OPTIMIZE=TUNE Qualifiers .. 68

6.6. VSI C/ANSI C ... 68
6.6.1. OpenVMS I64 Floating-Point Default .. 68
6.6.2. Semantics of /IEEE_MODE Qualifier .. 69
6.6.3. Predefined Macros ... 70

6.7. VSI C++ .. 70
6.7.1. Floating Point and Predefined Macros .. 70
6.7.2. Long Double .. 70
6.7.3. Object Model ... 70
6.7.4. Language Dialects .. 70
6.7.5. Templates .. 70

6.8. Java .. 71
6.9. Macro-32 ... 71

6.9.1. /ARCH and /OPTIMIZE=TUNE Qualifiers .. 71
6.10. VSI Pascal .. 71

6.10.1. /ARCH and /OPTIMIZE=TUNE Qualifiers .. 71
Chapter 7. Other Considerations .. 73

7.1. Hardware Considerations ... 73
7.1.1. Intel Itanium Processor Family Overview ... 73
7.1.2. Alpha Processor Family Overview ... 73

7.2. Endianism Considerations .. 74
Appendix A. Application Evaluation Checklist .. 77
Appendix B. Unsupported Layered Products ... 87
Appendix C. Porting Application-Specific Stack-Switching Code to I64 89

v

Porting Applications from VSI OpenVMS Alpha to VSI OpenVMS Industry Standard 64 for Integrity Servers

C.1. Overview of KP Services .. 89
C.1.1. Terminology .. 90
C.1.2. Stacks and Data Structures ... 90
C.1.3. KPBs .. 92
C.1.4. Supplied KPB Allocation Routines .. 93
C.1.5. Kernel Mode Allocation ... 93
C.1.6. Mode-Independent Allocation ... 94
C.1.7. Stack Allocation APIs .. 96
C.1.8. System-Supplied Allocation and Deallocation Routines .. 97
C.1.9. End Routine .. 97

C.2. KP Control Routines .. 98
C.2.1. Overview .. 98
C.2.2. Routine Descriptions .. 99

C.2.2.1. EXE$KP_START ... 99
C.2.2.2. EXE$KP_STALL_GENERAL ... 99
C.2.2.3. EXE$KP_RESTART ... 100
C.2.2.4. EXE$KP_END ... 100

C.3. Design Considerations ... 100

vi

Preface
1. About VSI
VMS Software, Inc. (VSI) is an independent software company licensed by Hewlett Packard Enterprise
to develop and support the OpenVMS operating system.

2. Intended Audience
Porting Applications from VSI OpenVMS Alpha to VSI OpenVMS Industry Standard 64 for Integrity
Servers is intended for application developers who are planning to migrate applications from the
OpenVMS Alpha operating system to the VSI OpenVMS Industry Standard 64 for Integrity Servers
(I64) operating system.

3. Document Structure
This document is organized as follows:

Chapter 1 includes an overview of the OpenVMS I64 8.2 operating system, including its evolution and
its benefits.

Chapter 2 discusses fundamental differences between the OpenVMS Alpha and OpenVMS I64 operating
systems.

Chapter 3 outlines a process for assessing applications in preparation for porting to OpenVMS I64.

Chapter 4 discusses specific tasks that must be completed to prepare source modules for migration, as
well as information about compiling, linking, testing, and deploying ported applications.

Chapter 5 discusses the OpenVMS I64 development environment.

Chapter 6 discusses porting considerations related to the primary compilers that will be available for
OpenVMS I64.

Chapter 7 discusses other factors to consider when undertaking a porting effort.

Appendix A contains a sample checklist for use when evaluating applications prior to porting.

Appendix B lists the VSI layered products that are supported on OpenVMS Alpha but not on OpenVMS
I64.

Appendix C describes how to use KP routines when porting application-specific stack-switching code to
I64.

4. Related Documents
Users of this manual may also find the following documents useful:

• VSI OpenVMS Calling Standard

• VSI OpenVMS Debugger Manual

vii

Preface

• VSI OpenVMS Linker Utility Manual

• VSI OpenVMS System Analysis Tools Manual

Documentation for individual compilers may also be useful in the porting process.

5. VSI Encourages Your Comments
You may send comments or suggestions regarding this manual or any VSI document by sending
electronic mail to the following Internet address: <docinfo@vmssoftware.com>. Users who have
VSI OpenVMS support contracts through VSI can contact <support@vmssoftware.com> for
help with this product.

6. OpenVMS Documentation
The full VSI OpenVMS documentation set can be found on the VMS Software Documentation webpage
at https://docs.vmssoftware.com.

7. Typographical Conventions
The following conventions may be used in this manual:

Convention Meaning

Ctrl/ x A sequence such as Ctrl/ x indicates that you must hold down the key
labeled Ctrl while you press another key or a pointing device button.

PF1 x A sequence such as PF1 x indicates that you must first press and release
the key labeled PF1 and then press and release another key or a pointing
device button.

... A horizontal ellipsis in examples indicates one of the following
possibilities:

• Additional optional arguments in a statement have been omitted.

• The preceding item or items can be repeated one or more times.

• Additional parameters, values, or other information can be entered.
.
.
.

A vertical ellipsis indicates the omission of items from a code example
or command format; the items are omitted because they are not
important to the topic being discussed.

() In command format descriptions, parentheses indicate that you must
enclose choices in parentheses if you specify more than one.

[] In command format descriptions, brackets indicate optional choices.
You can choose one or more items or no items. Do not type the
brackets on the command line. However, you must include the brackets
in the syntax for OpenVMS directory specifications and for a substring
specification in an assignment statement.

| In command format descriptions, vertical bars separate choices within
brackets or braces. Within brackets, the choices are optional; within
braces, at least one choice is required. Do not type the vertical bars on
the command line.

viii

https://docs.vmssoftware.com

Preface

Convention Meaning

{ } In command format descriptions, braces indicate required choices; you
must choose at least one of the items listed. Do not type the braces on
the command line.

bold type Bold type represents the introduction of a new term. It also represents
the name of an argument, an attribute, or a reason.

italic type Italic type indicates important information, complete titles of manuals,
or variables. Variables include information that varies in system output
(Internal errornumber), in command lines (/PRODUCER= name), and
in command parameters in text (where dd represents the predefined
code for the device type).

UPPERCASE TYPE Uppercase type indicates a command, the name of a routine, the name
of a file, or the abbreviation for a system privilege.

Example This typeface indicates code examples, command examples, and
interactive screen displays. In text, this type also identifies URLs, UNIX
commands and pathnames, PC-based commands and folders, and
certain elements of the C programming language.

- A hyphen at the end of a command format description, command line,
or code line indicates that the command or statement continues on the
following line.

numbers All numbers in text are assumed to be decimal unless otherwise noted.
Nondecimal radixes―binary, octal, or hexadecimal―are explicitly
indicated.

ix

Preface

x

Chapter 1. Introduction
This chapter contains an introduction to OpenVMS on Industry Standard. This chapter contains an
introduction to OpenVMS Industry Standard 64 for Integrity Servers (OpenVMS I64) systems and an
overview of the migration process.

For more information, see the VSI OpenVMS Release Notes.

1.1. OpenVMS Industry Standard 64 for
Integrity Servers
The I64 architecture has a 64-bit model and basic system functions similar to the Alpha architecture;
thus the great majority of applications running on OpenVMS Alpha today can be easily ported to
the OpenVMS I64 architecture with few changes ported to the OpenVMS I64 architecture with few
changes.

The OpenVMS Alpha and I64 architecture variants of OpenVMS are produced from a single-source
code base; thus, non-hardware-dependent features may be incorporated into both versions without
multiple changes to the source code, thereby minimizing the time required to perform qualification
testing, and helping to ensure the availability of critical applications on both OpenVMS platforms.

VSI intends to maintain a strict policy of ensuring and maintaining forward source compatibility so
that "well-behaved" applications that currently run on recommended versions of OpenVMS Alpha
run successfully on I64 systems. If an application takes advantage of published system services and
library interfaces, there should be a high level of confidence that the application will move without
modifications to the latest version of I64. VSI intends to maintain a strict policy of ensuring forward
source compatibility so that “well-behaved” applications that currently run on recommended versions of
OpenVMS Alpha run successfully on I64 systems. If an application takes advantage of published system
services and library interfaces, there should be a high level of confidence that the application will move
without modifications to the latest version of I64.

I64 has the same look and feel that OpenVMS customers are familiar with. Minor changes were needed
to accommodate the new architecture, I64 has the same look and feel familiar to OpenVMS customers.
Minor changes were made to accommodate the new architecture, but the basic structure and capabilities
of OpenVMS are the same.

1.2. Overview of the Porting Process
This section contains a high-level overview of the porting process as it will apply to most applications.
This section provides an overview of the porting process as it applies to most applications.

1.2.1. Evaluating the Application
Evaluating the application identifies the steps necessary for its migration to VSI I64. The result of the
evaluation should be a migration plan that answers the following questions:

• How to migrate the application

• How much time, effort, and cost the migration requires

1

Chapter 1. Introduction

• Whether you require support from VSI services

Evaluation should include the following three stages:

1. A general inventory of the application, including identifying dependencies on other software

2. Source analysis to identify dependencies on other software

3. Selection of a migration method (rebuilding from sources or using a binary translator)

Completing these steps yields the information necessary to write an effective migration plan.

The first step in evaluating an application for migration is to determine exactly what has to be migrated.
This includes not only the application itself, but everything that the application requires in order to run
properly. To begin evaluating your application, identify and locate the following items:

• Parts of the application

• Source modules for the main program

• Shareable images

• Object modules

• Libraries (object module, shareable image, text, or macro)

• Data files and databases

• Message files

• Documentation

• Other software on which your application depends; such as:

• Run-time libraries

• VSI layered products

• Third-party layered products

• Required operating environment

• System characteristics

What sort of system is required to run and maintain your application? For example, how
much memory is required, how much disk space, and so on?

• Build procedures

This includes VSI tools such as Code Management System (CMS) and Module
Management System (MMS).

• Test Suite

Your tests must be able both to confirm that the migrated application runs correctly and
to evaluate its performance.

Many of these items have already been migrated to VSI I64; for example:

2

Chapter 1. Introduction

• Software bundled with the OpenVMS operating system

• Run-time libraries

• Other shareable libraries, such as those supplying callable utility routines and other
application library routines

• VSI layered products

• Compilers and compiler RTLs

• Database managers

• Networking environment

• Third-party products

Many third-party products now run on I64. To determine whether a particular
application has been migrated, contact the application vendor.

You are responsible for migrating your application and your development
environment, including build procedures and test suites.

When you have completed the evaluation of your application, continue with a more
detailed evaluation of each module and image, as described in Chapter 4.

3

Chapter 1. Introduction

4

Chapter 2. Fundamental Differences to
Consider
This chapter discusses the fundamental differences between the Alpha and OpenVMS I64 architectures.

2.1. Calling Standard
As with other components, the implementation of the OpenVMS Calling Standard on the Intel®
Itanium® processor family sought to differ as little as possible from the OpenVMS VAX and Alpha
conventions. The design methodology started with Itanium conventions and made changes only where
necessary. This helped to maintain compatibility with historical OpenVMS design while minimizing the
cost and difficulty of porting applications and the operating system itself to the Itanium architecture.

The following sections contain a high-level description of differences between the Itanium® Software
Conventions and Runtime Architecture Guide and the VSI OpenVMS Calling Standard. For more detailed
information, see the VSI OpenVMS Calling Standard.

2.1.1. Changes to the OpenVMS Calling Standard
Data Terminology–Table 2.1 describes the major changes to the OpenVMS Calling Standard to
for I64.

Table 2.1. OpenVMS Calling Standard Changes

Item Description

Data model OpenVMS on Alpha systems is deliberately ambiguous about the data
model in use: many programs are compiled using what appears to be
an ILP32 model, yet most of the system operates as though using either
a P64 or LP64 model. The sign extension rules for integer parameters
play a key role in making this more or less transparent. I64 preserves this
characteristic, while the Itanium architecture conventions define a pure
LP64 data model.

Data terminology This specification uses the terms word and quadword to mean 2 bytes and 8
bytes, respectively, while the Itanium terminology uses these words to mean
4 bytes and 16 bytes respectively.

General Register Usage–General registers are used for integer
terminology uses these words to mean 4 bytes and 16 bytes, respectively.

General register usage General registers are used for integer arithmetic, some parts of VAX
floating-point emulation, and other general-purpose computation.
OpenVMS uses the same (default) conventions for these registers except for
the following cases:

• R8 and R9 (only) are used for return values.

• R10 and R11 are used as scratch registers and not for return values.

• R25 is used for an AI (argument information) register.
Floating-point register
usage

Floating-point registers are used for floating-point computations, some
parts of VAX floating-point emulation, and certain integer computations.

5

Chapter 2. Fundamental Differences to Consider

Item Description
OpenVMS uses the same (default) conventions for these registers except in
the following cases:

• F8 and F9 (only) are used for return values.

• F10 through F15 are used as scratch registers and not for return values.
Parameter passing OpenVMS parameter passing is similar to the Itanium conventions. Note

the following differences in the OpenVMS standard:

• The OpenVMS standards adds an argument information register (for
argument count and parameter type information).

• No argument is ever duplicated in both general and floating-point
registers.

• For parameters that are passed in registers, the first parameter is passed
in either the first general-register slot (R32) or the first floating-point
register slot (F16), the second parameter in either the second general
register (R33) or second floating-point register (F17) slot, and so on.
Floating-point parameters are not packed into the available floating-
point registers, and a maximum of eight parameters total are passed in
registers.

• For 32-bit parameters passed in the general registers, the 32-bit value
is sign extended to the full 64-bit width of the parameter slot by
replicating bit 31 (even for unsigned types).

• There is no even slot alignment for arguments larger than 64-bits.

• There is no special handling for HFA (homogeneous floating-point
aggregates) in general, although some rules for complex types have a
similar benefit.

• OpenVMS implements __float128 pass-by value semantics using a
reference mechanism.

• OpenVMS supports only little-endian representations.

• OpenVMS supports three additional VAX floating-point types for
backward compatibility: F_floating (32 bits), D_floating (64 bits), and
G_floating (64 bits). Values of these types are passed using the general
registers.

Return values Return values up to at most 16 bytes in size may be returned in registers;
larger return values are returned using a hidden parameter method using the
first or second parameter slot.

2.1.2. Extensions to the OpenVMS Calling Standard
Translated Images – OpenVMS adds support (signature information and special ABIs) for calls
between native and translated VAX or Alpha images. Table 2.2 describes additions to or extensions of
the VSI OpenVMS Calling Standard.

6

Chapter 2. Fundamental Differences to Consider

Table 2.2. OpenVMS Calling Standard Extensions

Item Description

Floating-point data types The OpenVMS calling standard includes support for the VAX F_floating
(32-bit), D_floating (64-bit), and G_floating (64-bit) data types found on
VAX and Alpha systems; it omits support for the 80-bit double-extended
floating-point type of the Itanium architecture.

VAX compatible record
layout

The OpenVMS standard adds a user-optional, VAX-compatible record
layout.

Linkage options OpenVMS allows additional flexibility and user control in the use of the
static general registers as inputs, outputs, global registers and whether used
at all.

Memory stack overflow
checking

OpenVMS defines how memory stack overflow checking should be
performed.

Function descriptors OpenVMS defines extended forms of function descriptors to support
additional functionality for bound procedure values and translated image
support.

Unwind information OpenVMS adds an operating system-specific data area to the unwind
information block of the Itanium architecture. The presence of an operating
system-specific data area is indicated by a flag in the unwind information
header.

Handler invocation OpenVMS does not invoke a handler while control is in either a prologue
or epilogue region of a routine. This difference in behavior is indicated by a
flag in the unwind information header.

Translated images OpenVMS adds support (signature information and special ABIs) for calls
between native and translated VAX or Alpha images.

2.2. Floating-Point Arithmetic
This section discusses the differences in floating-point arithmetic on OpenVMS VAX, OpenVMS Alpha,
and I64 systems.

2.2.1. Overview
The Alpha architecture supports both IEEE and VAX floating-point formats in hardware. OpenVMS
compilers generate code using the VAX formats by default, with options on Alpha to use IEEE formats.
The Itanium architecture implements floating-point arithmetic in hardware using the IEEE floating-point
formats, including IEEE single and IEEE double.

If an application was originally written for OpenVMS VAX or OpenVMS Alpha using the default
floating-point formats, it can be ported to I64 in one of two ways: continue to use VAX floating-point
formats utilizing the conversion features of the VSI compilers or convert the application to use IEEE
floating-point formats. VAX floating-point formats can be used in those situations where access to
previously generated binary floating-point data is required. VSI compilers generate the code necessary to
convert the data between VAX and IEEE formats.

For details about the conversion process, see the OpenVMS Floating-Point Arithmetic on the Intel®
Itanium ® Architecture white paper.

IEEE floating-point format should be used in those situations where VAX floating-point formats are not
required. The use of IEEE floating-point formats will result in more efficient code.

7

Chapter 2. Fundamental Differences to Consider

2.2.2. Impact on OpenVMS Applications
VAX floating-point formats are supported on the Itanium architecture by converting them to IEEE
single and IEEE double floating types. By default, this is a transparent process that will not impact most
applications. VSI is providing compilers for C, C++, Fortran, BASIC, Pascal, and COBOL, all with
the same floating-point options. Application developers need only recompile their applications using
the appropriate compiler. For detailed descriptions of floating-point options, refer to the individual
compilers' documentation.

Because IEEE floating-point format is the default, unless an application explicitly specifies VAX
floating-point format options, a simple rebuild for I64 uses native IEEE formats directly. For programs
that do not depend directly on the VAX formats for correct operation, this is the most desirable way to
build for I64.

2.3. Object File Format
VSI has determined that the most efficient way to utilize the compiler technologies developed by Intel is
to adopt two industry standards, both of which are used by the Itanium compiler:

• ELF (executable and linkable format) describes the object file and executable file formats.

• DWARF (debugging and traceback information format) describes the way debugging and traceback
information is stored in the object and executable files.

One clear advantage of this decision is that development tools can be ported to OpenVMS more easily in
the future. All of the compilers, development tools, and utilities provided with the I64 operating system
will utilize and understand these new formats. Application developers will not need to be concerned with
these formats unless their applications have specific knowledge of them.

In a typical application scenario in which an application is compiled, linked, debugged, and deployed,
the details of the object file format, the executable image file format, and the debugging and traceback
information are of no concern to the developer. However, software engineers who develop compilers,
debuggers, analysis tools, or other utilities that are dependent on these file formats will need to
understand how they are being implemented on OpenVMS.

8

Chapter 3. Assessing Needs for
Porting Your Application
Typically, porting an application to a new platform involves the following procedure:

1. Assessing porting needs

2. Identifying architecture dependencies and nonstandard coding practices in the application to be
ported, and rewriting code accordingly

3. Compiling, linking, and running the application

4. Performing testing before and after porting

5. Recompiling the code and repeating steps 1 through 4, as necessary

6. Shipping the revised application

7. Operating and installing processes or procedures

8. Supporting and maintaining the application

Although you complete these tasks sequentially, you might have to repeat some steps if problems arise.

This chapter addresses the first task ― assessing porting needs. Subsequent chapters discuss the
remaining tasks. This chapter describes the responsibilities and issues that developers should consider
in planning to port an application. In particular, it sets the context for porting applications from an
OpenVMS Alpha to an I64 environment and provides the information necessary to help developers
evaluate needs, plan, and begin porting software.

Appendix A provides a checklist to guide you through the planning and porting process.

3.1. Overview
Most applications running on OpenVMS Alpha today can easily be ported to I64 with few changes. The
Alpha and OpenVMS I64 variants of OpenVMS are produced from a single source-code base, enabling
developers to incorporate features (that are independent of the hardware) into both versions without
requiring multiple changes to the source code. This minimizes the time required to perform qualification
testing and helps to ensure the availability of critical applications on both OpenVMS platforms.

VSI intends to maintain a strict policy of ensuring and maintaining forward source compatibility so
that "well-behaved" applications that run on recommended versions of OpenVMS Alpha will also run
successfully on I64 systems. For the most part, if an application takes advantage of published system
services and library interfaces, the application should be portable (as is) to the latest version of I64.
However, some published system and library interfaces available on OpenVMS Alpha will not be
available or will behave differently on I64. In addition, the Linker utility does not support all qualifiers
supported on OpenVMS Alpha. For more information about these exceptions, see Chapter 4 and
Chapter 5.

I64 has the same look and feel familiar to OpenVMS customers. Minor changes were needed to
accommodate the new architecture, but the basic structure and capabilities of OpenVMS are the same.

9

Chapter 3. Assessing Needs for Porting Your Application

3.2. Evaluating the Application
The first step to porting an application is to evaluate and identify the steps necessary to port the
application to I64. The evaluation process culminates in a porting plan that answers the following
questions:

• How do you port the application?

• How much time, effort, and cost does porting require?

• Do you require support from VSI services?

The evaluation process has the following four steps:

1. Identifying applications to be ported

2. Identify dependencies on other software

3. Selecting a porting method

4. Analyzing operational tasks

Completing these steps yields the information necessary to write an effective porting plan. Section 3.2.1
through Section 3.2.4 suggest the steps for an initial, rudimentary evaluation, after which you can
perform a more detailed evaluation of each module, image, and all dependencies.

After you complete the evaluation steps described in the following sections, compare your results with
the supported product, procedures, and functionality of the target platform. Research any deviations for
schedule mismatches, missing functionality, procedural conflicts, and supportability. To complete your
porting plan, include all costs and time impacts.

3.2.1. Selecting the Porting Method
After you complete the evaluation process described in the following sections, you will have to port your
application and your development environment. In addition to the source modules, you might have to
port other components, such as build procedures, test suites, and in some cases, the application data
structures. You must decide on the best method for porting each part of the application. Usually the issue
is whether to rebuild your application from sources or to use a binary translator. To make this decision,
you need to know which methods are possible for each part of the application, and how much work is
required for each method. To help answer those questions, you should answer the series of questions and
perform the tasks shown in Figure 3.1.

The majority of applications can be ported by recompiling and relinking them. If your application runs
only in user mode and is written in a standard high-level language, it is most likely in this category.

10

Chapter 3. Assessing Needs for Porting Your Application

Figure 3.1. Porting an Application

3.2.2. Identifying Applications to Be Ported
The first step in evaluating an application for porting is to identify exactly what has to be ported. This
includes not only the application itself, but everything that the application requires to run properly. To
begin evaluating your application, identify and locate the following items:

• Source modules for the main program

• Shareable images

• Object modules

• Libraries (object module, shareable image, text, or macro)

• Data files and databases

• Message files

11

Chapter 3. Assessing Needs for Porting Your Application

• Scripts and procedures (build files)

• Application documentation (if any)

Consider the differences between OpenVMS Alpha and I64 described in Chapter 2 and the consequent
changes that are necessary for application components prior to porting. In addition, consider the
processor-related development issues, as described in Chapter 7.

Evaluate the time and costs required for these changes. Any code that depends specifically on the
OpenVMS Alpha architecture must be changed. For example, an application may require changes if it
includes code that:

• Deals with specific machine instructions or that makes assumptions about the number of registers or
the functions of specific registers.

• Relies on particular elements of the OpenVMS Alpha calling standard. (For differences between
OpenVMS Alpha and I64 Calling Standards, see Section 2.1.1.)

• Relies on unpublished system services and library interfaces, or certain system and library interfaces
that are not available or will behave differently on I64. (For more information about the availability
and divergent behavior of certain system and library interfaces, see Chapter 4 and Chapter 5.)

• Relies on the OpenVMS Alpha object file format, the executable image file format, or the debug
symbol table format.

• Is conditionalized or includes logic that assumes it is running on either an OpenVMS VAX or an
OpenVMS Alpha system which might not be able to handle a third platform.

• Depends on OpenVMS Alpha or VAX internal data structures; for example:

• Floating-point formats that are not IEEE standard. (IEEE floating-point formats are the default
for I64 and should be used where VAX floating-point formats are not required; for more
information, see Section 3.2.4 and Section 4.8.4.)

• The mechanism array data structure on I64 differs significantly from that on OpenVMS Alpha
(see Section 4.8.3.3).

Note

VSI recommends that you align your data naturally to achieve optimal performance for data
referencing. On both OpenVMS Alpha and I64 systems, referencing data that is unaligned
degrades performance significantly. In addition, unaligned shared data can cause a program
to execute incorrectly. You must align shared data naturally. Shared data might be between
threads of a single process, between a process and ASTs, or between several processes in a global
section. For more information about data alignment, see Section 4.8.7 and the VSI OpenVMS
Programming Concepts Manual.

• References terminal drivers that do not use the call interface; for example, those using jump to
subroutine (JSB) macros need to be revised to use the call interface

• Contains user-written threading-like, such as code that performs direct stack switching, that
implements a co-routine or tasking model, or that depends on the nature of the procedure call stack
frames. For more details, see Section 4.8.6.

12

Chapter 3. Assessing Needs for Porting Your Application

• Incorporates nonstandard or undocumented code practices or interfaces.

In addition any source code that does not have a supported compiler on I64 must be rewritten or
translated. (For a list of supported compilers, see Chapter 6.) Note also that certain language capabilities
of OpenVMS Alpha are not supported on I64; for more information, see the HP OpenVMS Version 8.2
Release Notes. In addition, applications that run in privileged mode might require changes.

For more details about changes required in your source modules prior to porting them, see Chapter 4.

3.2.3. Assessing Dependencies
The next step is to assess the software and environment on which your application depends.

3.2.3.1. Software Dependencies

Software dependencies might include such components as:

• Run-time libraries

• VSI layered products

• Third-party layered products

• Tools

Many of these items have already been migrated to I64, including the following:

• VSI software bundled with the OpenVMS operating system, including:

• Run-time libraries

• Other shareable libraries, such as those supplying callable utility routines and other application
library routines

• VSI layered products, including:

• Compilers and compiler RTLs

• Database managers

• Networking environment

• Third-party products

Many third-party products now run on I64. To determine whether a particular application has been
migrated, contact the application vendor.

Important

The availability of third-party software can be the biggest obstacle for a porting project. You must
determine the availability and cost of third-party software for the target operating system. This might
include build environment tools, third-party libraries, and automated testing tools. For information
about tools that are freely available on OpenVMS, see Chapter 5.

13

Chapter 3. Assessing Needs for Porting Your Application

3.2.3.2. Development Environment
Consider the development environment upon which your application depends, including the operating
system configuration, hardware, development utilities, build procedures (including software such as Code
Management System [CMS] and Module Management System [MMS]), and so forth.

3.2.3.3. Operating Environment
Consider the following issues regarding the operating environment:

• System characteristics

What sort of system is required to run and maintain your application? For example, how much
memory is required, how much disk space, and so on?

• Test suite

Your tests should confirm that the ported application runs correctly, and they should evaluate its
performance. Regression testing is crucial to the development of any new product, especially to the
porting of an application to a new system. Regression tests aid in testing software on new versions
of the operating system and platform. The regression tests can be any one or combination of the
following:

• A software program written by your development team to exercise all possible code paths and
functions

• A series of DCL command procedures

• Interactive testing conducted manually (instead of automatically by software)

• Digital Test Manager or an equivalent Open Source tool

3.2.4. Operational Tasks
Evaluate the responsibilities for and needs for operational tasks required to port and maintain the
applications, for example:

• Installation requirements

• Compilation requirements

• Is the compiler that you use for your application also supported on this version of I64?

• Prior to porting your application, VSI recommends that you compile your application on an
OpenVMS Alpha system using the latest version of the OpenVMS Alpha compiler. In this way,
you can uncover problems that you might encounter when you compile the ported application
on I64. Some newer versions of compilers apply a stricter interpretation of existing compiler
standards or enforce newer, stricter standards. For more information about compilers supported
on this version of I64, see Chapter 6.

• After testing with a compile on the OpenVMS Alpha system and resolving any problems, you
need to port the application to your I64 system, recompile, relink, and requalify. Plan for these
activities accordingly.

• Can you switch to IEEE floating point data types from VAX floating-point data types? In
general, applications can still use VAX floating point-format on I64. Use VAX floating point

14

Chapter 3. Assessing Needs for Porting Your Application

formats when access to previously generated binary floating-point data is required. VAX floating
point is achieved on I64 systems in software. VSI compilers automatically generate the code
necessary to convert VAX floating-point values to the IEEE floating-point format and perform
the mathematical operation; however, they then convert the value back to VAX floating-point.
This additional conversion adds execution overhead to the application. For this reason, consider
switching your application to use IEEE floating-point format.

Applications on OpenVMS Alpha can be switched to use IEEE floating point with no
performance penalty because IEEE floating-point is supported by the Alpha hardware. This will
make migration of your application to I64 easier. IEEE floating-point is the only floating-point
format supported by the Itanium hardware. In addition, your application will perform better.

You can test an application's behavior with IEEE floating-point values by compiling it on an
OpenVMS Alpha system with an IEEE qualifier. (For many compilers, specify the compiler
option /FLOAT=IEEE. If using OpenVMS I64 BASIC, use the /REAL_SIZE qualifer.) If that
produces acceptable results, you should simply build the application on the I64 system (and on
Alpha, if you wish) using the same qualifier.

For more information, see Section 4.8.4 and the OpenVMS Floating-Point Arithmetic on the
Intel® Itanium ® Architecture white paper.

• Backup and restore functionality

• Operator interface look and feel

• System administration

3.3. Additional Considerations
VSI recognizes that not all layered software and middleware supplier products will port to I64 at first
release. VSI is committed to assist software vendors with information, hardware, support, and tools that
will facilitate this process. Each vendor should monitor the progress of the supplier of their prerequisite
software to ensure that the required components are in place for their development schedules.

VSI intends to implement a tool suite on the existing OpenVMS Alpha platform that will make porting
to the new I64 platform transparent for most developers in terms of the code base, commands, and
process. Nothing will replace the testing that accompanies any quality product release. Rather, this tool
suite will reduce the time required for product porting.

15

Chapter 3. Assessing Needs for Porting Your Application

16

Chapter 4. Migrating Source Modules
This chapter describes the steps common to porting all applications. It then describes certain types of
code and coding practices that may need to be changed before you can recompile your application.

If you have thoroughly analyzed your code and planned the migration process, the final stage of
migrating source modules should be fairly straightforward. You may be able to recompile or translate
many programs with no change. Programs that do not recompile or translate directly will frequently need
only straightforward changes to get them running on an OpenVMS I64 system. Certain types of code
will require changes.

Migrating your application involves the following steps:

1. Setting up the migration environment.

2. Compiling your application on an Alpha system with the latest versions of the Alpha compilers.

3. Testing the application on an Alpha system to establish baselines for evaluating the migration.

4. Recompiling and relinking an application on an OpenVMS I64 system.

5. Debugging the migrated application.

6. Testing the migrated application.

7. Integrating the migrated application into a software system.

These steps, except for setting up the migration environment, are illustrated in Figure 4.1.

Figure 4.1. Migrating an Application from Alpha to OpenVMS I64

If your source files possess any of the following characteristics, you may need to change them:

• Use VAX MACRO-32 or Alpha MACRO-64 assembly language

• Use VAX Macro-32 or Alpha Macro-64 assembly language

• Use conditions to produce the same application for different platforms from a common code base

• Rely on the Alpha architecture, such as the Alpha object code format

• Use floating point data types

17

Chapter 4. Migrating Source Modules

• Use floating point-data types

• Use threads

• Contain unaligned data

• Rely explicitly on the OpenVMS Alpha calling standard

• Rely explicitly on the OpenVMS Alpha Calling Standard

• Use privileged interfaces or operate at inner access modes

For more information, see Section 4.8.

4.1. Setting Up the Migration Environment
The native OpenVMS I64 environment is comparable to the development environment on Alpha
systems. Most of the program development tools that you are accustomed to using on OpenVMS Alpha
are available. Some modifications have been made to these tools to account for the differences in the two
architectures and the calling standard. Most of these modifications are invisible to users.

An important element of the OpenVMS I64 migration process is the availability of support from VSI
Services, which can provide help in modifying, debugging, and testing your application..

4.1.1. Hardware
There are several issues to consider when planning what hardware you will need for your migration. To
begin, consider what resources are required in your normal Alpha development environment:

• CPUs

• Disks

• Memory

In an OpenVMS I64 environment, the following configuration is recommended for this release:

• VSI rx2600 Integrity Server with one or two processors

• 1 to 24 GB of memory

• One to four 36-GB disks

• DVD/CD-ROM drive

For more information, refer to the HP OpenVMS Version 8.2 Release Notes.

4.1.2. Software
To create an efficient migration environment, check the following elements:

• Migration tools

You need a compatible set of migration tools, including the following:

18

Chapter 4. Migrating Source Modules

• Compilers

• Translation tools

• VSI OpenVMS Migration Software for Alpha to Integrity Servers

• TIE

• RTLs

• System libraries

• Include files for C programs

• Logical names

Logical names must be consistently defined to point to Alpha and OpenVMS I64 versions of tools
and files.

• Compile and link procedures

These procedures may need to be adjusted for new tools and the new environment.

• Test tools

You need to port the Alpha test tools to I64, unless they are already ported. You also need test tools
that are designed to test for I64 characteristics, such as changes to the OpenVMS Calling Standard
that are specific to I64.

• Tools for maintaining sources and building images, such as:

• CMS (Code Management System)

• MMS (Module Management System)

Native Alpha Development
The standard development tools you have on Alpha are also available as native tools on OpenVMS I64
systems.

Translation
The software translator VSI OpenVMS Migration Software for Alpha to Integrity Servers runs on both
Alpha and OpenVMS I64 systems. The Translated Image Environment (TIE), which is required to run a
translated image, is part of OpenVMS I64, so final testing of a translated image must either be done on
an OpenVMS I64 system or at an OpenVMS I64 Migration Center. In general, the process of translating
an Alpha image to run on an OpenVMS I64 system is straightforward, although you may have to modify
your code somewhat to get it to translate without error.

4.1.2.1. VSI OpenVMS Migration Software for Alpha to Integrity
Servers and Translated Image Environment (TIE)
The main tools for migrating Alpha user-mode images to I64 are a static translator and a run-time
support environment:

19

Chapter 4. Migrating Source Modules

• The VSI OpenVMS Migration Software for Alpha to Integrity Servers is a utility that analyzes an
Alpha image and creates a functionally equivalent translated image. Using VSI OpenVMS Migration
Software for Alpha to Integrity Servers, you will be able to do the following:

• Determine whether an Alpha image is translatable.

• Translate the Alpha image to an OpenVMS I64 image.

• Identify specific incompatibilities with I64 within the image and, when appropriate, obtain
information on how to correct those incompatibilities in the source files.

• Identify ways to improve the run-time performance of the translated image.

• The Translated Image Environment (TIE) is an OpenVMS I64 shareable image that supports
translated images at run time. TIE provides the translated image with an environment similar to
OpenVMS Alpha and processes all interactions with the native OpenVMS I64 system. Items that
TIE provides include:

• Alpha instruction interpreter, which supports:

• Execution of Alpha instructions (including instruction atomicity) that is similar to their
execution on an Alpha system

• Complex Alpha instructions, as subroutines

• Alpha compatible exception handler

• Jacket routines that allow communication between native and translated code

• Emulated Alpha stack
TIE is invoked automatically for any translated image; you do not need to call it explicitly.

VSI OpenVMS Migration Software for Alpha to Integrity Servers locates and translates as much Alpha
code as possible into OpenVMS I64 code. TIE interprets any Alpha code that cannot be converted into
OpenVMS I64 instructions; for example:

• Instructions that VSI OpenVMS Migration Software for Alpha to Integrity Servers could not
statically identify

• VAX (F_, G_ and D_foating) floating-point operations

Since interpreting instructions is a slow process, VSI OpenVMS Migration Software for Alpha to
Integrity Servers attempts to find and translate as much Alpha code as possible to minimize the need
for interpreting it at run time. A translated image runs at slower than a comparable native Alpha image,
depending on how much Alpha code TIE needs to interpret.

Note that you cannot specify dynamic interpretation of a Alpha image on an OpenVMS I64 system. You
must use VSI OpenVMS Migration Software for Alpha to Integrity Servers to translate the image before
it can run on I64.

Translating a Alpha image produces an image that runs as a native image on OpenVMS I64 hardware.
The OpenVMS I64 image is not merely an interpreted or emulated version of the Alpha image, but
contains OpenVMS I64 instructions that perform operations identical to those performed by the
instructions in the original Alpha image. The I64.EXE file also contains the original Alpha image in its
entirety, which allows TIE to interpret any code that VSI OpenVMS Migration Software for Alpha to
Integrity Servers could not translate.

20

Chapter 4. Migrating Source Modules

The VSI OpenVMS Migration Software for Alpha to Integrity Servers's analysis capability also makes it
useful for evaluating programs that you intend to recompile, rather than translate.

4.1.3. Coexistence with Translated Images
Application components can be migrated from OpenVMS VAX and OpenVMS Alpha to I64 by binary
translation. Because executable and shareable images can be translated on an individual basis, it is
possible (even likely) to construct an environment in which native and translated images are mixed in a
single image activation.

Translated images use the calling standard of their original implementation; that is, the argument lists of
VAX translated images have the same binary format as they did on the VAX platform. Because the I64
calling standard differs from the OpenVMS VAX and OpenVMS Alpha calling standards, direct calls
between native and translated images are not possible. Instead, such calls must be handled by interface
routines (called jacket routines) that transform the arguments from one calling standard to the other.

The jacket routines are provided by TIE. In addition to argument transformation, TIE also handles the
delivery of exceptions to translated code. TIE is loaded as an additional shareable image whenever a
translated image (either main program or shareable image) is activated. The image activator interposes
calls to jacket routines as necessary when it resolves references between native and translated images.

For native code to interoperate with translated code, it must meet the following requirements:

• All function descriptors must contain signature data. The signature data is used by the jacket routines
to transform arguments and return values between their native and VAX or Alpha formats. Native
OpenVMS I64 images contain function descriptors for both outbound calls and all entry points.

• All calls to function variables (that is, where the identity of the called function is contained in
a variable) must be made through the library routine OTS$CALL_PROC. OTS$CALL_PROC
determines at run time whether the function being called is native or translated and calls native code
directly and translated code via the TIE.

These requirements are met by compiling code using the /TIE qualifier and linking it using the
/NONATIVE_ONLY qualifier. /TIE is supported by most I64 compilers including the Macro-32
compiler. (It is not supported on C++.) Both qualifiers must be given explicitly in the compile and
LINK commands, since the defaults are /NOTIE and /NATIVE_ONLY, respectively. Signatures are
not supported by the OpenVMS I64 assembler; therefore, routines coded in OpenVMS I64 assembly
language cannot be directly called from translated images. OpenVMS I64 assembly language can call
translated code only with an explicit call to OTS$CALL_PROC.

Translated image support carries a minor performance penalty: all calls to function variables are made
via OTS$CALL_PROC, at a cost of about 10 instructions for most cases. Performance-critical code
should only be built /TIE and /NONATIVE_ONLY if interoperation with translated images is required.

An additional consideration applies to executable and shareable images that are linked /NOSYSSHR.
Ordinarily, references to OTS$CALL_PROC are resolved by the shareable image LIBOTS.EXE
and require no special attention. Linking an image /NOSYSSHR skips the search of the shareable
image library and instead resolves external references from object modules in STARLET.OLB.
OTS$CALL_PROC makes a reference to a data cell defined in the system symbol table, and if simply
included from STARLET.OLB would result in an unresolved reference to CTL$GQ_TIE_SYMVECT.

Most images linked /NOSYSSHR are so built to avoid interaction with any external images, so
calls to translated code are not an issue. For this reason, STARLET.OLB contains a subset version
of OTS$CALL_PROC that does not support calls to translated images. This module, named

21

Chapter 4. Migrating Source Modules

OTS$CALL_PROC_NATIVE, is loaded by default, and images linked /NOSYSSHR by default cannot
call out to translated code.

In addition, STARLET.OLB also contains the module OTS$CALL_PROC, which is the full version. It
has no entry in the library symbol table and is only loaded by explicit reference. For the rare cases where
images linked /NOSYSSHR need to be able to call out to translated shareable images, the full version of
OTS$CALL_PROC must be explicitly included from STARLET.OLB and the image must also be linked
against the system symbol table. Two options are required in the link command file:

• SYS$LIBRARY:STARLET.OLB/INCLUDE=OTS$CALL_PROC must be present in the input file
list.

• The /SYSEXE qualifier must be included on the LINK command.

4.2. Compiling Applications on Alpha With
Current Compiler Version
Before recompiling your code with a native OpenVMS I64 compiler, VSI recommends that you first
compile the code to run on Alpha with the latest version of the compiler. For example, if the application
is written in Fortran, make sure that the application has been recompiled with Fortran Version 7.5
(Fortran 90) to run on Alpha. Fortran Version 7.5 is the version that was ported to OpenVMS I64.

Using the latest version of the compiler to recompile your application on OpenVMS Alpha might
uncover problems that are attributable to the change in the compiler version only. For example, newer
versions of compilers may enforce programming language standards that were previously ignored,
exposing latent problems in your application code. Newer versions may also enforce changes to the
standard that were not in effect when the earlier versions were created. Fixing such problems on
OpenVMS Alpha simplifies porting that application to OpenVMS I64.

For a list of the native I64 compilers, see Section 5.1.

4.3. Testing Applications on Alpha for
Baseline Information
The first step in testing is to establish baseline values for your application by running your test suite on
the Alpha application. You can do this before or after you port your application to OpenVMS I64. You
can then compare the results of these tests with the results of similar tests on an OpenVMS I64 system,
as described in Section 4.6.

4.4. Recompiling and Relinking on an
OpenVMS I64 System
In general, migrating your application involves repeated cycles of revising, compiling, linking, and
debugging your code. During the process, you resolve all syntax and logic errors noted by the
development tools. Syntax errors are usually simple to fix; logic errors typically require significant
modifications to your code.

Your compile and link commands will likely require some changes, such as new compiler and linker
switches. For more information about the compiler switches, see Chapter 5. If you are porting VAX
MACRO code, refer to the VSI OpenVMS MACRO Compiler Porting and User's Guide.

22

Chapter 4. Migrating Source Modules

4.5. Debugging the Migrated Application
Once you have migrated your application to I64, you may have to debug it. This section describes the
OpenVMS tools available for debugging your application.

For more information about these tools, see Chapter 5, Chapter 6, and the VSI OpenVMS Debugger
Manual.

4.5.1. Debugging
The I64 operating system provides the following debuggers:

• OpenVMS Debugger

The OpenVMS Debugger is a symbolic debugger; that is, the debugger allows you to refer to
program locations by the symbols you used for them in your program ― the names of variables,
routines, labels, and so on. You do not need to specify memory addresses or machine registers when
referring to program locations.

The OpenVMS Debugger does not support debugging of translated images. However, you can debug
a native application that uses a translated image.

• XDelta Debugger

The XDelta Debugger is an address location debugger; that is, the debugger requires you to refer to
program locations by address location. This debugger is primarily used to debug programs that run
in privileged processor mode or at an elevated interrupt level. The related Delta Debugger is not yet
available.

The System-Code Debugger is a symbolic debugger that allows you to debug nonpageable code and
device drivers running at any IPL.

4.5.2. Analyzing System Crashes
OpenVMS provides two tools for analyzing system crashes: the System Dump Analyzer and the Crash
Log Utility Extractor.

4.5.2.1. System Dump Analyzer
The System Dump Analyzer (SDA) utility on I64 systems is almost identical to the utility provided on
OpenVMS Alpha systems. Many commands, qualifiers, and displays are identical, including several for
accessing functions of the Crash Log Utility Extractor (CLUE) utility. Some displays have been adapted
to show information specific to I64 systems.

To use SDA on an Alpha system, you must first familiarize yourself with the OpenVMS calling standard
for Alpha systems. Similarly, to use SDA on an OpenVMS I64 system, you must familiarize yourself
with the OpenVMS Calling Standard for OpenVMS I64 systems before you can decipher the pattern of a
crash on the stack. For more information, refer to the VSI OpenVMS Calling Standard.

4.5.2.2. Crash Log Utility Extractor
The Crash Log Utility Extractor (CLUE) is a tool for recording a history of crash dumps and key
parameters for each crash dump, and for extracting and summarizing key information. Unlike crash

23

Chapter 4. Migrating Source Modules

dumps, which are overwritten with each system failure and are available only for the most recent failure,
the summary crash history file with a separate listing file for each failure is a permanent record of system
failures.

4.6. Testing the Migrated Application
You must test your application to compare the functionality of the migrated version with that of the
Alpha version.

The first step in testing is to establish baseline values for your application by running your test suite on
the Alpha application, as described in Section 4.3.

Once your application is running on an OpenVMS I64 system, there are two types of tests you should
apply:

• Standard tests used for the Alpha version of the application

• New tests to check specifically for problems due to the change in architecture

4.6.1. Alpha Tests Ported to OpenVMS I64
Because the changes in your application are combined with use of a new architecture, testing your
application after it is migrated to I64 is particularly important. Not only can the changes introduce errors
into the application, but the new environment can bring out latent problems in the Alpha version.

Testing your migrated application involves the following steps:

1. Get a complete set of standard data for the application prior to the migration.

2. Migrate your Alpha test suite along with the application (if the tests are not already available on
OpenVMS I64).

3. Validate the test suite on an OpenVMS I64 system.

4. Run the migrated tests on the migrated application.

Both regression tests and stress tests are useful here. Stress tests are important to test for platform
differences in synchronization, particularly for applications that use multiple threads of execution.

4.6.2. New OpenVMS I64 Tests
Although your standard tests should go a long way toward verifying the function of the migrated
application, you should add some tests that look at issues specific to the migration. Points to focus on
include the following:

• Compiler differences

• Architectural differences

• Integration, such as modules written in different languages

4.6.3. Uncovering Latent Bugs
Despite your best efforts, you may encounter bugs that were in your program all along but that never
caused a problem on an OpenVMS Alpha system.

24

Chapter 4. Migrating Source Modules

For example, failure to initialize some variable in your program might have been benign on an Alpha
system but could produce an arithmetic exception on an OpenVMS I64 system. The same could be true
of moving between any other two architectures, because the available instructions and the way compilers
optimize them is bound to change. There is no magic answer for bugs that have been in hiding, but you
should test your programs after porting them and before making them available to other users.

4.7. Integrating the Migrated Application into a
Software System
After you have migrated your application, check for problems that are caused by interactions with other
software and that may have been introduced during the migration.

Sources of problems in interoperability can include the following:

• Alpha and OpenVMS I64 systems within an OpenVMS Cluster environment must use separate
system disks. You must make sure that your application refers to the appropriate system disk.

• Image names

In a mixed architecture environment, be sure that your application refers to the correct version.

• Native Alpha and native OpenVMS I64 versions of an image have the same name.

If you attempt to run an Alpha image on an OpenVMS I64 system, the following error message
is displayed:

$ run alpha_image.exe
%DCL-W-ACTIMAGE, error activating image alpha_image.exe
-CLI-E-IMGNAME, image file alpha_image.exe
-IMGACT-F-NOT_I64, image is not an VSI OpenVMS Industry Standard 64
 image
$

4.8. Modifying Certain Types of Code
Certain coding practices and types of code will require changes. The coding practices and types of code
that may or will require changes are:

• Alpha Macro 64-Assembler code

This code must be rewritten in another language.

• Code that has been conditionalized for running on Alpha or VAX systems

This code must be revised to express an OpenVMS I64 condition.

• Code that uses OpenVMS system services that have dependencies on the Alpha architecture

• Code with other dependencies on the Alpha architecture

• Code that uses floating-point data types

• Code that uses a command definition file

• Code that uses threads, especially custom-written tasking or stack switching

25

Chapter 4. Migrating Source Modules

• Privileged code

4.8.1. Conditionalized Code
This section describes how to conditionalize OpenVMS code when migrating to OpenVMS I64. This
code will be compiled for both Alpha and OpenVMS I64, or for VAX, Alpha, and OpenVMS I64. The
symbol ALPHA, referred to in the following sections, is new. However, the symbol EVAX has not been
eliminated. You do not need to replace EVAX with ALPHA but feel free to do so if convenient. The
architecture symbols available for MACRO and BLISS are VAX, EVAX, ALPHA, and OpenVMS I64.

4.8.1.1. MACRO Sources
For Macro-32 source files, the architecture symbols are in ARCH_DEFS.MAR, which is a prefix file
specified on the command line. On Alpha, ALPHA and EVAX equal 1 while VAX and OpenVMS
I64 are undefined. On OpenVMS I64, OpenVMS I64 equals 1 while VAX, EVAX, and ALPHA are
undefined.

The following example show how to conditionalize Macro-32 source code so that it can run on both
Alpha and OpenVMS I64 systems.

For Alpha-specific code:

.IF DF ALPHA
 .
 .
 .
.ENDC

For OpenVMS I64-specific code:

.IF DF OpenVMS I64
 .
 .
 .
.ENDC

4.8.1.2. BLISS Sources
For BLISS source files, either BLISS-32 or BLISS-64, the macros VAX, EVAX, ALPHA and
OpenVMS I64 are defined in ARCH_DEFS.REQ. On Alpha, EVAX and ALPHA equal 1 while VAX
and OpenVMS I64 equal 0. On OpenVMS I64, OpenVMS I64 equals 1 while VAX, EVAX, and
ALPHA equal 0. You must require ARCH_DEFS.REQ to use these symbols in BLISS conditionals.

Note

The constructs %BLISS(xxx), %TARGET(xxx), and %HOST(xxx) are not recommended. Do not feel
obligated to replace them, but feel free to do so if convenient.

Include the following statement in your source file:

REQUIRE 'SYS$LIBRARY:ARCH_DEFS';

Use the following statements in your source file to conditionalize code so that it can run on both Alpha
and OpenVMS I64 systems.

26

Chapter 4. Migrating Source Modules

For Alpha-specific code:

%if ALPHA %then
 .
 .
 .
%fi

For OpenVMS I64-specific code:

%if OpenVMS I64 %then
 .
 .
 .
%fi

4.8.1.3. C Sources
For C source files, the symbols __alpha , __ALPHA , __ia64 , and __ia64__ are provided by the
compilers on the appropriate platforms. Note that symbols could be defined on the compile command
line but that is not the recommended method, nor is using arch_defs.h . Using #ifdef is considered the
standard C programming practice.

For Alpha-specific code, use the following:

#ifdef __alpha
 .
 .
 .
#endif

For OpenVMS I64-specific code, use the following:

#ifdef __ia64
 .
 .
 .
#endif

4.8.1.4. Existing Conditionalized Code
Existing conditionalized code must be examined to determine whether changes are required. Here is an
example of BLISS code to consider.

%IF VAX %THEN
 vvv
 vvv
%FI

%IF EVAX %THEN
 aaa
 aaa
%FI

If the code is truly architecture specific and you are adding OpenVMS I64 code, then you would add the
following case:

%IF OpenVMS I64 %THEN

27

Chapter 4. Migrating Source Modules

 iii
 iii
%FI

However, if the existing VAX/EVAX conditionals really reflect 32 bits and not 64 bits or an "old" versus
"new" OpenVMS convention (for example, a promoted data structure or different routine to call), then
the following method for conditionalizing code might be more appropriate. That is because Alpha and
OpenVMS I64 code are the same and 64-bit code need to be distinguished from the VAX code.

%IF VAX %THEN
 vvv
 vvv
%ELSE
 aaa
 aaa
%FI

4.8.2. System Services With Alpha Architecture
Dependencies
Certain system services that work well in applications on OpenVMS Alpha do not port successfully to
OpenVMS I64. The following sections describe system services and their replacement services.

4.8.2.1. SYS$GOTO_UNWIND
For OpenVMS Alpha, the SYS$GOTO_UNWIND system service accepts a 32-bit invocation context
handle by reference. You must change instances of this system service to SYS$GOTO_UNWIND_64,
which accepts a 64-bit invocation context. Make sure to alter source code to allocate space for the 64-bit
value. Also, different library routines return invocation context handles for I64. For more information,
refer to the VSI OpenVMS Calling Standard.

SYS$GOTO_UNWIND is most frequently used to support programming language features, so changes
are mostly in compilers or run-time libraries. However, any direct use of SYS$GOTO_UNWIND
requires change.

4.8.2.2. SYS$LKWSET and SYS$LKWSET_64
The SYS$LKWSET and SYS$LKWSET_64 system services have been modified. For more information,
see Section 4.8.9.

4.8.3. Code With Other Dependencies on the Alpha
Architecture
This section describes coding practices on Alpha that produce different results on OpenVMS I64 and
may require changes to your application.

4.8.3.1. Initialized Overlaid Program Sections
Initialized overlaid program sections are handled differently on OpenVMS I64 systems. On OpenVMS
Alpha systems, different portions of an overlaid program section may be initialized by multiple
modules. This is not allowed on I64 systems. For more information about this change in behavior, see
Section 5.3.1.2.

28

Chapter 4. Migrating Source Modules

4.8.3.2. Condition Handlers Use of SS$_HPARITH

On OpenVMS Alpha, SS$_HPARITH is signaled for a number of arithmetic error conditions. On
I64, SS$_HPARITH is never signaled for arithmetic error conditions; instead, the more specialized
SS$_FLTINV and SS$_FLTDIV error codes are signaled on I64.

Update condition handlers to detect these more specialized error codes. In order to keep code common
for both architectures, wherever the code refers to SS$_HPARITH, extend it for I64 to also consider
SS$_FLTINV and SS$_FLTDIV.

4.8.3.3. Mechanism Array Data Structure

The mechanism array data structure on I64 is very different from the one on OpenVMS Alpha. The
return status code RETVAL has been extended to represent the return status register on both Alpha and
OpenVMS I64 platforms. For more information, refer to the VSI OpenVMS Calling Standard.

4.8.3.4. Reliance on Alpha Object File Format

If your code relies on the layout of Alpha object files, you will need to modify it, because the object file
format produced on I64 systems is different.

The object file format conforms to the 64-bit version of the executable and linkable format (ELF), as
described in the System V Application Binary Interface draft of 24 April 2001. This document, published
by Caldera, is available on their web site at:

http://www.caldera.com/developers/gabi

The object file format also conforms to the OpenVMS I64 specific extensions described in the Intel®
Itanium® Processor-specific Application Binary Interface (ABI), May 2001 edition (document number
245270-003). Extensions and restrictions, necessary to support object file and image file features that are
specific to the OpenVMS operating system, will be published in a future release.

The portion of an image which is used by the debugger conforms to the DWARF Version 3 industry
standard, which is available at the following location:

http://www.eagercon.com/dwarf/dwarf3std.htm

The debug symbol table representation on I64 is the industry-standard DWARF debug symbol table
format described at this location. VSI extensions to the DWARF Version 3 format will be published in a
future release.

4.8.4. Code that Uses Floating-Point Data Types
OpenVMS Alpha supports VAX floating-point data types and IEEE floating point data types in
hardware. I64 supports IEEE floating-point in hardware and VAX floating-point data types in software.

Most of the I64 compilers provide the /FLOAT=D_FLOAT and /FLOAT=G_FLOAT qualifiers to
enable you to produce VAX floating-point data types. If you do not specify one of these qualifiers, IEEE
floating-point data types will be used.

to specify a default floating-point data types using the OpenVMS I64 BASIC compiler, you use the
/REAL_SIZE qualifier. The possible values that can be specified are SINGLE (Ffloat), DOUBLE
(Dfloat), GFLOAT, SFLOAT, TFLOAT, and XFLOAT.

29

Chapter 4. Migrating Source Modules

You can test an application's behavior with IEEE floating-point values on Alpha by compiling it with an
IEEE qualifier on OpenVMS Alpha. If that produces acceptable results, you can build the application on
an OpenVMS I64 system using the same qualifier.

When you compile an OpenVMS application that specifies an option to use VAX floating-point on
OpenVMS I64, the compiler automatically generates code for converting floating-point formats.
Whenever the application performs a sequence of arithmetic operations, this code does the following:

1. Converts VAX floating-point formats to either IEEE single or IEEE double floating-point formats, as
appropriate for the length.

2. Performs arithmetic operations in IEEE floating-point arithmetic.

3. Converts the resulting data from IEEE formats back to VAX formats.

Where no arithmetic operations are performed (VAX float fetches followed by stores), conversions do
not occur. The code handles such situations as moves.

In a few cases, arithmetic calculations might have different results because of the following differences
between VAX and IEEE formats:

• Values of numbers represented

• Rounding rules

• Exception behavior

These differences might cause problems for certain applications.

For more information about the differences between floating-point data types on OpenVMS Alpha and
I64 and how these differences might affect ported applications, see Chapter 5 and refer to the OpenVMS
Floating-Point Arithmetic on the Intel® Itanium ® Architecture white paper.

Note

Since the floating-point white paper was written, the default /IEEE_MODE has changed from FAST to
DENORM_RESULTS. This means that, by default, floating-point operations might silently generate
values that print as Infinity or Nan (the industry-standard behavior) instead of issuing a fatal run-time
error as they would using VAX format float or /IEEE_MODE=FAST. Also, the smallest-magnitude
nonzero value in this mode is much smaller because results are permitted to enter the denormal range
instead of being flushed to zero as soon as the value is too small to represent with normalization. This
default is the same default established by OpenVMS I64 at process startup.

4.8.4.1. LIB$WAIT Problem and Solution
The use of LIB$WAIT in code ported to I64 can cause unexpected results. An example in C follows.

float wait_time = 2.0;
lib$wait(&wait_time);

On I64 systems, this code sends an S_FLOATING into LIB$WAIT. LIB$WAIT expects an
F_FLOATING, and gives a FLTINV exception.

LIB$WAIT can accept three arguments. The previous code sequence can be rewritten with LIB$WAIT
using three arguments to run correctly on both OpenVMS I64 and Alpha systems. The following revised
code works correctly when compiled without the /FLOAT qualifier:

30

Chapter 4. Migrating Source Modules

#ifdef __ia64
 int float_type = 4; /* use S_FLOAT for OpenVMS I64 */
#else
 int float_type = 0; /* use F_FLOAT for Alpha */
#endif
 float wait_time = 2.0;
 lib$wait(&wait_time,0,&float_type);

A better coding method is to include LIBWAITDEF (from SYS$STARLET_C.TLB) in your application
and then specify the floating point data types by name. This code can be maintained more easily.

LIBWAITDEF includes the following symbols:

• LIB$K_VAX_F

• LIB$K_VAX_D

• LIB$K_VAX_G

• LIB$K_VAX_H

• LIB$K_IEEE_S

• LIB$K_IEEE_T

The following example shows how to include libwaitdef.h in the code and how to specify the
floating-point data type names. This example also assumes that the program is not compiled with /
FLOAT.

#include <libwaitdef.h>
.
.
.
#ifdef __ia64
 int float_type = LIB$K_IEEE_S; /* use S_FLOAT for IPF */
#else
 int float_type = LIB$K_VAX_F; /* use F_FLOAT for Alpha */
#endif
 float wait_time = 2.0;
 lib$wait(&wait_time,0,&float_type);

4.8.5. Incorrect Command Table Declaration
An incorrect declaration of a command table in code ported to I64 can cause unexpected results. For
example, for an application, the Command Definition Utility is used to create an object module from a
CLD file. The application then calls CLI$DCL_PARSE to parse command lines. CLI$DCL_PARSE may
fail with:

%CLI-E-INVTAB, command tables have invalid format - see documentation

The code must be modified so that the command table is defined as an external data object.

For example, if in an application, on VAX and Alpha, the command table (DFSCP_CLD) is incorrectly
declared in a BLISS module as:

EXTERNAL ROUTINE DFSCP_CLD

31

Chapter 4. Migrating Source Modules

This should be changed to

EXTERNAL DFSCP_CLD

Or if it was in a FORTRAN module incorrectly declared as:

EXTERNAL DFSCP_CLD

then it should be changed to

INTEGER DFSCP_CLD
CDEC$ ATTRIBUTES EXTERN :: DFSCP_CLD

Similarly, in an application written in C, if the command tables previously were defined as follows:

int jams_master_cmd();

The code should be changed to be an external reference:

extern void* jams_master_cmd;

The changed, correct declaration works on all platforms: VAX, Alpha or OpenVMS I64.

4.8.6. Code that Uses Threads
I64 supports all the thread interfaces that have been supported on OpenVMS since thread support was
first introduced. Most OpenVMS Alpha code that uses threads can be ported to I64 without change. This
section describes the exceptions. The major porting issue for code that uses threads is the usage of stack
space. OpenVMS I64 code uses much more stack space than does equivalent Alpha code. Therefore, a
threaded program that works on Alpha might get stack overflow failures on OpenVMS I64.

The default stack size is larger on I64 to help alleviate overflow problems. If the application requests
a specific stack size, then the change to the default will be irrelevant, and the application source code
might need to be changed to request more stack. VSI recommends starting with an increase of three 8-
Kb pages (24576 bytes).

Another side effect of the increased stack size requirement is increased demand on the P0 address
region. Thread stacks are allocated from the P0 heap. Larger stacks might cause the process to exceed its
memory quotas. In an extreme case, the P0 region could fill completely, in which case the process might
need to reduce the number of threads in use concurrently (or make other changes to lessen the demand
for P0 memory).

VSI recommends that you familiarize yourself with thread support in OpenVMS. One change to the
POSIX Threads C language header file PTHREAD_EXCEPTION.H caused problems when porting an
application that relied on its former behavior.

The DCL command THREADCP is not supported on I64. For OpenVMS I64, the DCL commands SET
IMAGE and SHOW IMAGE can be used to check and modify the state of threads-related image header
flags, similar to the THREADCP command on OpenVMS Alpha. For details, refer to the VSI OpenVMS
DCL Dictionary.

The THREADCP command is documented in the Guide to POSIX Threads Library.

If you want to change the setting of threads-related image flags, you need to use the new command SET
IMAGE. For example:

32

Chapter 4. Migrating Source Modules

$ SET IMAGE/FLAGS=(MKTHREADS,UPCALLS) FIRST.EXE

4.8.6.1. Thread Routines cma_delay and cma_time_get_expiration

Two legacy threads API library routines, cma_delay and cma_time_get_expiration, accept a floating
point format parameter using the VAX F FLOAT format. Any application modules that call either
of these routines must be compiled with either the /FLOAT=D_FLOAT or the /FLOAT=G_FLOAT
qualifier to get VAX F FLOAT support. (However, if your application also uses double precision binary
data, then you must use the /FLOAT=G_FLOAT qualifier.) For more information about floating point
support, consult your compiler's documentation.

If a C language module (which uses either cma_delay or cma_time_get_expiration) is compiled by
mistake in an IEEE floating-point mode, a compiler warning similar to the following will be displayed:

cma_delay (
 ^
%CC-W-LONGEXTERN, The external identifier name exceeds 31
characters; truncated to "CMA_DELAY_NEEDS_VAX_FLOAT______".

If an object file which triggered such a warning is linked, the linker will display an undefined-symbol
message for this symbol. (If a linker-produced image was subsequently executed, the calls to these
routines would fail with an ACCVIO.) These compiler and linker diagnostics are intended to alert you
to the fact that these CMA routines require the use of VAX format floating-point values, and that the
compilation was done in a manner that does not satisfy this requirement.

Note

These routines are no longer documented in user documentation but are still supported for use in legacy
applications.

4.8.7. Code With Unaligned Data
VSI recommends that you align your data naturally to achieve optimal performance for data referencing.
Unaligned data can seriously degrade performance on both OpenVMS Alpha and I64.

Data is naturally aligned when its address is an integral multiple of the size of the data in bytes.
For example, a longword is naturally aligned at any address that is a multiple of 4, and a quadword
is naturally aligned at any address that is a multiple of 8. A structure is naturally aligned when all its
members are naturally aligned.

Because natural alignment is not always possible, I64 systems provide help to manage the impact of
unaligned data references. Alpha and OpenVMS I64 compilers automatically correct most potential
alignment problems and flag others.

In addition to performance degradation, unaligned shared data can cause a program to execute
incorrectly. Therefore, you must align shared data naturally. Shared data might be between threads of a
single process, between a process and ASTs, or between several processes in a global section.

Finding the Problem

To find instances of unaligned data, you can use a qualifier provided by most OpenVMS I64 compilers
that allows the compiler to report compile-time references to unaligned data.

33

Chapter 4. Migrating Source Modules

Table 4.1. Compiler Switches for Reporting Compile-Time Reference

Compiler Switch

BLISS /CHECK=ALIGNMENT
C /WARN=ENABLE=ALIGNMENT
Fortran /WARNING=ALIGNMENT
VSI Pascal /USAGE=PERFORMANCE

Additional assistance, such as an OpenVMS Debugger qualifier to reveal unaligned data at run time, is
planned for a future release.

Eliminating the Problem
To eliminate unaligned data, you can use one or more of the following methods:

• Compile with natural alignment, or, when language semantics do not provide for this, move data to
be naturally aligned. Where filler is inserted to ensure that data remains aligned, there is a penalty
in increased memory size. A useful technique for ensuring naturally aligned data while conserving
memory is to declare longer variables first.

• Use high-level-language instructions that force natural alignment within data structures.

• Align data items on quadword boundaries.

Note

Software that is converted to natural alignment may be incompatible with other software that is running
translated in the same OpenVMS Cluster environment or over a network. For example:

• An existing file format may specify records with unaligned data.

• A translated image may pass unaligned data to, or expect it from, a native image.

In such cases, you must adapt all parts of the application to expect the same type of data, either aligned
or unaligned.

4.8.8. Code that Relies on the OpenVMS Alpha Calling
Standard
If your application relies explicitly on characteristics of the OpenVMS Alpha calling standard, you likely
have to change it. The I64 calling standard is based on the Intel calling standard with some OpenVMS
modifications. Significant differences introduced in the I64 calling standard include the following:

• No frame pointer (FP)

• Multiple stacks

• Only four registers preserved across calls

• Register numbers you are familiar with have changed

For more information, see Chapter 2.

34

Chapter 4. Migrating Source Modules

4.8.9. Privileged Code
This section describes categories of privileged code that require examination, and may require
modifications.

4.8.9.1. Use of SYS$LKWSET and SYS$LKWSET_64
If your application uses SYS$LKWSET or SYS$LKWSET_64 to lock itself into memory, and your
application does not run on VAX systems, consider replacing these calls with calls to the new (as of
OpenVMS Version 8.2) LIB$LOCK_IMAGE RTL routine. Similarly, replace the SYS$ULWSET and
SYS$ULWSET_64 calls with calls to the new LIB$UNLOCK_IMAGE RTL routine.

Programs that enter kernel mode and increase IPL to higher than 2 must lock program code and data
in the working set. Locking code and data is necessary to avoid crashing the system with a PGFIPLHI
bugcheck.

On VAX systems, typically only the code and data explicitly referenced by the program need to be
locked. On Alpha, the code, data and linkage data referenced by the program need to be locked. On
OpenVMS I64 systems, code, data, short data, and linker generated code need to be locked. To make
porting easier and because the addresses of short data and linker generated data cannot be easily found
within an image, changes have been made to the SYS$LKWSET and SYS$LKWSET_64 system services
on Alpha and OpenVMS I64.

As of OpenVMS Version 8.2, the SYS$LKWSET and SYS$LKWSET_64 system services test the first
address passed in. If this address is within an image, these services attempt to lock the entire image in
the working set. If a successful status code is returned, the program can increase IPL to higher than 2
and without crashing the system with a PGFIPLHI bugcheck.

A counter is maintained within the internal OpenVMS image structures that counts the number of times
the image has been successfully locked in the working set. The counter is incremented when locked and
decremented when unlocked. When the counter becomes zero, the entire image is unlocked from the
working set.

If your privileged program runs on Alpha and OpenVMS I64 and not VAX, you can remove all the code
that finds the code, data and linkage data and locks these areas in the working set. You can replace this
code with calls to LIB$LOCK_IMAGE and LIB$UNLOCK_IMAGE (available in OpenVMS Version
8.2). These routines are simpler to program correctly and make your code easier to understand and
maintain.

If the program's image is too large to be locked in the working set, the status SS$_LKWSETFUL is
returned. If you encounter this status, you can increase the user's working set quota. Otherwise, you
can split the image into two parts, one that contains the user mode code and another sharable image
that contains the kernel mode code. At the entry to a kernel mode routine, the routine should call
LIB$LOCK_IMAGE to lock the entire image in the working set. Before exiting the kernel mode
routine, the routine should call LIB$UNLOCK_IMAGE.

4.8.9.2. Use of SYS$LCKPAG and SYS$LCKPAG_64
If your application uses SYS$LCKPAG or SYS$LCKAPG_64 to lock code in memory, examine your
use of this service. On OpenVMS I64, this service will not lock the entire image in the working set.

It is likely that you intend to lock the image in the working set so your code can elevate IPL and execute
without incurring a page fault. Refer to Section 4.8.9.1. See also the VSI OpenVMS RTL Library (LIB$)
Manual for information about the LIB$LOCK_IMAGE and LIB$UNLOCK_IMAGE routines.

35

Chapter 4. Migrating Source Modules

4.8.9.3. Terminal Drivers
The interface for terminal class drivers on I64 is a call-based interface. This is a significant difference
from the JSB-based interface on OpenVMS Alpha that uses registers to pass arguments.

The interface for I64 terminal class drivers is documented in the OpenVMS Terminal Driver Port Class
Interface for Itanium. This document is available at the following location:

http://www.hp.com/products1/evolution/alpha_retaintrust/openvms/resources

4.8.9.4. Protected Image Sections
Protected image sections usually occur in shareable images which implement "User Written System
Services."

These image sections are protected by software and hardware mechanisms to assure that an unprivileged
application cannot compromise the integrity of these sections. Changes in hardware pages protection
from VAX and Alpha to OpenVMS I64 have added some subtle restrictions which may require changes
in the protected images.

As on VAX and Alpha, data sections that are writeable in privileged modes (kernel or exec) may be read
by unprivileged (user) mode. The hardware protection for such pages does not allow execute access from
any mode. Protected image sections which are linked as both writeable and executable are protected to
allow inner mode read, write, and execute; no user mode access is allowed. As neither user mode access
to inner mode writeable data, nor code being in writeable sections, is a common practice, it is felt that
few applications are likely to require both in a single section.

While there were exceptions on VAX and Alpha, on OpenVMS I64, all writeable protected image
sections on OpenVMS I64 are protected against user mode write. Protected images which intend
to allow user write to protected image sections must use $SETPRT/$SETPRT_64 to alter the page
protection.

36

Chapter 5. I64 Development
Environment
This chapter contains information about the I64 development environment, including:

• Native OpenVMS I64 Compilers

• Other development tools

• Linker

• Debugger

• Librarian utility

5.1. Native OpenVMS I64 Compilers
For I64, native OpenVMS I64 compilers are available for the following languages:

• BASIC

• BLISS (available on the Freeware CD)

• C++

• COBOL V2.8

• Fortran V8.0 (Fortran 90)

• VSI C V6.5

• VSI Pascal

• Java

• VAX MACRO-32

No support is provided to compile native Alpha Macro-64 assembler code to run on I64.

The OpenVMS I64 compilers provide command-line qualifiers for using VAX floating-point data types.
For more information about these compilers, except for the VAX Macro-32 compiler, see Chapter 6.

5.1.1. VAX MACRO–32 Compiler for I64
For new program development for I64, VSI recommends the use of high-level languages. VSI provides
the VAX Macro-32 compiler for I64 to convert existing VAX MACRO code into machine code that runs
on I64 systems.

Most VAX MACRO code can be compiled without any changes. The exceptions are:

• Programs that call routines that do not comply to the I64 calling standard.

37

Chapter 5. I64 Development Environment

• Programs that use the JSB instruction to call routines written in a language other than Macro-32.

For more information about porting VAX MACRO programs to I64 systems, refer to the VSI OpenVMS
MACRO Compiler Porting and User's Guide.

5.2. Other Development Tools
Several other tools in addition to the compilers are available to develop, debug, and deploy native
OpenVMS I64 applications. These tools are summarized in Table 5.1.

Table 5.1. OpenVMS Development tools

Tool Description

OpenVMS Linker The OpenVMS Linker accepts OpenVMS I64 object files to
produce an OpenVMS I64 image. For more information about the
OpenVMS Linker, see Section 5.3.

OpenVMS Debugger The OpenVMS Debugger running on I64 has the same command
interface as the current OpenVMS Alpha debugger. The graphical
interface on OpenVMS Alpha systems will be available in a later
release. For more information about the OpenVMS Debugger on
OpenVMS I64, see Section 5.4.

XDelta Debugger The XDelta Debugger is an address location debugger that is used
for debugging programs that run in privileged processor mode or at
an elevated interrupt priority level. The XDelta Debugger is available
for this release but the related Delta Debugger is not yet available.

OpenVMS Librarian utility The OpenVMS Librarian utility creates OpenVMS I64 libraries.
OpenVMS Message utility The OpenVMS Message utility allows you to supplement the

OpenVMS system messages with your own messages.
ANALYZE/IMAGE The Analyze/Image utility can analyze OpenVMS I64 images.
ANALYZE/OBJECT The Analyze/Object utility can analyze OpenVMS I64 objects.
DECset DECset, a comprehensive set of development tools, includes the

Language Sensitive Editor (LSE), the Digital Test Manager (DTM),
Code Management System (CMS), and Module Management
System (MMS). The two remaining DECset tools, Performance and
Coverage Analyzer (PCA) and the Source Code Analyzer (SCA),
will be available in a future release.

Command Definition utility The Command Definition utility (CDU) enables application
developers to create commands with a syntax similar to DCL
commands.

System Dump Analyzer (SDA) SDA has been extended to display information specific to I64
systems.

Crash Log Utility Extractor
(CLUE)

CLUE is a tool for recording a history of crash dumps and key
parameters for each crash dump, and for extracting and summarizing
key information.

5.2.1. Translating Alpha Code
The VSI OpenVMS Migration Software for Alpha to Integrity Servers is a binary translator for
translating Alpha user code images to run on I64 systems. This tool is useful in cases where the source

38

Chapter 5. I64 Development Environment

code is no longer available, or when the compiler is not available on OpenVMS I64, or when a third-
party product has not been ported to I64. A third-party product's permission is required from the owner
of the software.

The VSI OpenVMS Migration Software for Alpha to Integrity Servers offers functionality similar to that
of DECmigrate, a binary translator that was used to port OpenVMS VAX images to run on OpenVMS
Alpha systems.

For more information, see Section 4.1.2.1.

5.3. Linking Modules
The purpose of the linker is to create images (files that contain binary code and data). The linker ported
to I64 is different from the linker on OpenVMS VAX and Alpha systems because it accepts I64 object
files and produces I64 images. As on OpenVMS VAX and Alpha systems, the primary type of image
created is an executable image. This image can be activated at the DCL command line by issuing the
RUN command.

The I64 Linker also creates shareable images. A shareable image is a collection of procedures and
data that are exported via the symbol_vector option, that can be called by executable images or other
shareable images. Shareable images are included in an input file via a link operation that creates an
executable or shareable image.

When linking modules, the primary type of input file to the I64 Linker is the object file. Object files
are produced by language processors such as compilers or assemblers. Because the object files produced
by these compilers are unique to the Intel Itanium architecture, some aspects of linking modules on I64
are different. In general, the I64 linker interface as well as functional capabilities (for example, symbol
resolution, virtual memory allocation, and image initialization) are similar to those on OpenVMS VAX
and Alpha systems. This section provides an overview of the differences as well as considerations you
should review before linking programs on I64 systems. These include:

• Differences when linking on OpenVMS I64 systems as compared with linking on VAX and Alpha
systems (Section 5.3.1)

• Expanded linker map file information for OpenVMS I64 (Section 5.3.2)

• New linker qualifiers and options (Section 5.3.3)

• Mixed-Case Arguments in Linker Options, Revisited (Section 5.3.4)

For details of these features and considerations, refer to the HP OpenVMS Version 8.2 New Features and
Documentation Overview.

5.3.1. Differences When Linking on I64 Systems
Although linking on I64 systems is similar to linking on OpenVMS Alpha systems, some differences
exist. The following qualifiers or options are ignored by the I64 linker:

• /REPLACE

• /SECTION_BINDING

• /HEADER

39

Chapter 5. I64 Development Environment

• The per_page keyword in /DEMAND_ZERO=PER_PAGE (the per_page keyword will be
supported, though with a slightly different meaning, in a future release)

• DZRO_MIN

• ISD_MAX

The following qualifiers and options are not allowed by the I64 Linker:

• /SYSTEM

• The file name keyword in /DEBUG=file_spec

• The base address keyword must be null in CLUSTER=cluster_name,base_address …

• BASE=

• UNIVERSAL=

The following are new qualifiers supported by the I64 Linker:

• /BASE_ADDRESS

• /SEGMENT_ATTRIBUTE

• /FP_MODE

• /EXPORT_SYMBOL_VECTOR

• /PUBLISH_GLOBAL_SYMBOLS

• The GROUP_SECTIONS and SECTIONS_DETAILS keywords for the /FULL command

Some of these qualifiers and options are described in the following sections. For more details on these
qualifiers and options see the HP OpenVMS Version 8.2 New Features and Documentation Overview.

5.3.1.1. No Based Clusters
Specifying a base address in a CLUSTER option is permitted on VAX and Alpha. On VAX even
shareable images are allowed to contain based clusters, whereas on Alpha only main images are allowed
to consist of such clusters. For OpenVMS I64 specifying a base address in a CLUSTER option is illegal
for all images.

5.3.1.2. Handling of Initialized Overlaid Program Sections on I64
On Alpha and VAX systems, initializations can be done to portions of an overlaid program section.
Subsequent initializations to the same portions overwrite initializations from previous modules. The last
initialization performed on any byte is used as the final one of that byte for the image being linked.

On OpenVMS I64 systems, the ELF (Executable and Linkable Format) object language does not
implement the feature of the Alpha and VAX object language which allows the initialization of portions
of sections. When an initialization is made, the entire section is initialized. Subsequent initializations of
this section may be performed only if the non-zero portions match in value.

For example, the following condition produces different results on I64 systems than on Alpha systems:

40

Chapter 5. I64 Development Environment

Two program sections (simply termed 'sections' in ELF), each declaring two longwords, are overlaid.
The first program section initializes the first longword and the second program section initializes the
second longword with a non-zero value.

On Alpha systems, the linker is able to produce an image section with the first and second longword
initialized. The VAX and Alpha object languages give the linker the section size and the Text
Information Relocation (TIR) commands to initialize the section.

On OpenVMS I64 systems, the linker gets pre-initialized sections which contain initialization data from
the compilers. The linker does not perform or know about the initializations since there are no TIR
commands in ELF. The linker then produces a segment using the last processed section for initialization.
That is, in the image either the first or second longword has a non-zero value, depending on the order in
which the modules containing the sections were linked. On OpenVMS I64 systems, the linker reads the
sections to be overlaid and checks for compatibility. Any two overlaid sections are compatible if they are
identical in the non-zero values. If they are not compatible, the linker issues the following error:

%ILINK-E-INVOVRINI, incompatible multiple initializations for overlaid
 section
 section: <section name>
 module: <module name for first overlaid section>
 file: <file name for first overlaid section>
 module: <module name for second overlaid section>
 file: <file name for second overlaid section>

In the previous message, the linker lists the first module that contributes a non-zero initialization, and
the first module with an incompatible initialization. Note that this is not a full list of all incompatible
initializations; it is just the first one the linker encounters.

In the Program Section Synopsis of the linker map, each module with a non-zero initialization is
flagged as "Initializing Contribution." Use this information to identify and resolve all the incompatible
initializations. For further examples and more detail on the handling of initialized overlayed sections, see
the HP OpenVMS Version 8.2 New Features and Documentation Overview.

5.3.1.3. Behavior Difference When Linking ELF Common Symbols
The OpenVMS I64 linker behaves differently when ELF common symbols (also known as relaxed ref/
def symbols) are linked selectively against an image that contains a definition for the same symbol. On
Alpha, the linker incorrectly takes the definition from the relaxed ref/def symbol in your module. The
OpenVMS I64 linker takes the definition from the shareable image.

5.3.2. Expanded Map File Information
Information in the linker map file has been expanded for I64 systems:

• On Alpha systems, the map section that was titled Object Module Synopsis has been renamed on
OpenVMS I64 systems to Object and Image Synopsis, and contains expanded object and image
information.

• On Alpha systems, the map section titled Image Section Synopsis has been divided into two sections
for OpenVMS I64 systems: Cluster Synopsis and Image Segment Synopsis. The information has
been moved to the appropriate section.

• In the Program Section Synopsis, the PIC and NOPIC attributes, invalid on OpenVMS I64 systems,
have been removed.

41

Chapter 5. I64 Development Environment

• In the Symbol Cross Reference section, the designation for an external symbol has changed. The
prefix or suffix used on Alpha was RX, meaning relocateable and external. However, the linker does
not know whether an external symbol is relocatable or not. As a result, on OpenVMS I64 systems
the prefix or suffix has been changed to X (external).

• In the Symbols By Value section, Keys for Special Characters have been changed or expanded. For
example, UNIX weak symbols, (very likely only used by C++), designated by the UxWk key, are a
new addition to I64.

For an example linker map illustrating this new information, refer to the HP OpenVMS Version 8.2 New
Features and Documentation Overview.

5.3.3. New Linker Qualifiers and Options for I64
Some new linker options and qualifiers have been added to support linking on I64 systems. This section
describes these features.

5.3.3.1. New /BASE_ADDRESS Qualifier
A new qualifier, /BASE_ADDRESS, is provided on OpenVMS I64 systems. The base address is the
starting address that you want the linker to assign to an executable image. The purpose of this qualifier
is to assign a virtual address for images which are not activated by the OpenVMS image activator, such
as images used in the boot process. The OpenVMS image activator is free to ignore any linker assigned
starting address. This qualifier is primarily used by system developers.

The /BASE_ADDRESS qualifier does not replace the CLUSTER=,[base-address] option, which is
illegal on I64. See Section 5.3.1.1.

For more information on this qualifier, see the HP OpenVMS Version 8.2 New Features and
Documentation Overview.

5.3.3.2. New /SEGMENT_ATTRIBUTE Qualifier
The I64 Linker provides a new /SEGMENT_ATTRIBUTE which accepts two keywords:
SHORT_DATA=WRITE and DYNAMIC_SEGMENT = P0 or P1. The DYNAMIC_SEGMENT
keyword is rarely needed. For more information see the HP OpenVMS Version 8.2 Release Notes.

The SHORT_DATA=WRITE keyword allows you to combine read-only and read-write short data
sections into a single segment, reclaiming up to 65,535 bytes of unused read-only space. When setting
SHORT_DATA to WRITE, your program may accidentally write to formerly read-only data. Therefore
this qualifier is only recommended for users whose short data segment has reached the limit of 4 MB.

For more details on this qualifier, see the HP OpenVMS Version 8.2 Release Notes.

5.3.3.3. New /FP_MODE Qualifier
The I64 Linker determines the program's initial floating point mode using the floating point mode
provided by the module that provides the main transfer address. Use the /FP_MODE qualifier to set an
initial floating point mode only if the module that provides the main transfer address does not provide
an initial floating point mode. The /FP_MODE qualifier will not override an initial floating point mode
provided by the main transfer module. The OpenVMS I64 Linker accepts the following keywords to set
the floating point mode:

• D_FLOAT, G_FLOAT – Sets VAX floating point modes.

42

Chapter 5. I64 Development Environment

• IEEE_FLOAT[=ieee_behavior] – Sets the IEEE floating point mode to the default or a specific
behavior.

The I64 Linker accepts the following IEEE behavior keywords:

• FAST

• UNDERFLOW_TO_ZERO

• DENORM_RESULTS (default)

• INEXACT

The I64 Linker also accepts a floating point mode behavior literal. For more information about the initial
floating point mode, see the VSI OpenVMS Calling Standard.

5.3.3.4. New /EXPORT_SYMBOL_VECTOR and
/PUBLISH_GLOBAL_SYMBOLS Qualifiers
The EXPORT_SYMBOL_VECTOR and PUBLISH_GLOBAL_SYMBOLS qualifiers were added to
the linker to aid customers who are creating shareable images but did not know which symbols to export
through the SYMBOL_VECTOR option. This could be because they were porting an application from
UNIX and were not familiar enough with the application to know which symbols to export, or because
they were coding in C++, and were not able to know what the mangled names looked like.

The I64 Linker provides a new /PUBLISH_GLOBAL_SYMBOLS qualifier to mark an object module,
so that all its global symbols can be exported in a symbol vector option. Additionally, the I64 Linker
provides a new /EXPORT_SYMBOL_VECTOR qualifier to export a symbol vector option and to name
the output file.

Both qualifiers are only accepted if the /SHAREABLE qualifier is present.
/EXPORT_SYMBOL_VECTOR is a command line only qualifier. /PUBLISH_GLOBAL_SYMBOLS
can be used in option files as well. The linker will warn, if there is an /EXPORT_SYMBOL_VECTOR
qualifier but no /PUBLISH_GLOBAL_SYMBOLS qualifier was seen.

When /EXPORT_SYMBOL_VECTOR is present, only the option file is written, no image file is
generated. The generated option file needs to be completed with GSMATCH information by the
developer.

The /PUBLISH_GLOBAL_SYMBOLS qualifier is a positional qualifier and can be used with object
files and libraries. It is compatible with the /INCLUDE and /SELECTIVE qualifiers, for example:

$ link/SHARE public/PUBLISH,implementation/EXPORT=public
$ link/SHARE plib/LIBRARY/PUBLISH/INCLUDE=public/EXPORT=public

The /EXPORT_SYMBOL_VECTOR qualifier is a positional qualifier, which accepts an optional output
file specification. If there is no file name specified the linker will use the name of the last input file and
construct a file name, default file type is ".OPT".

For more detailed information on this qualifier, see the HP OpenVMS Version 8.2 New Features and
Documentation Overview.

5.3.3.5. New Alignments for the PSECT_ATTRIBUTE Option
The PSECT_ATTRIBUTE option now accepts integers 5, 6, 7, and 8 for the alignment attribute. The
integers represent the byte alignment indicated as a power of 2. (For example, 2 ** 6 represents a 64-

43

Chapter 5. I64 Development Environment

byte alignment.) The keyword HEXA (for hexadecimal word) was added for 2 ** 5 (that is, a 32-byte or
16-word alignment).

5.3.3.6. New GROUP_SECTIONS and SECTION_DETAILS keywords
for the /FULL Qualifier
The I64 Linker takes two keywords to the /FULL qualifier. The first keyword, GROUP_SECTIONS,
prints all of the groups that were used in the map. Today the only compiler that takes advantage of
groups is C++. Using this keyword with other languages has no effect.

When /FULL=NOSECTION_DETAILS is specified the I64 Linker suppresses zero length contributions
in the Program Section Synopsis of the map. When the qualifier /FULL is used, it defaults to
/FULL=SECTION_DETAILS, and a full linker map on VAX, Alpha, and OpenVMS I64 systems lists
all the module contributions in the Program Section Synopsis.

5.3.4. Mixed-Case Arguments in Linker Options,
Revisited
On I64 systems, names issued by compilers may be mixed case names. If you need to operate on mixed-
case names in the options file (for example you have a library include statement and the module names
are mixed-case) the linker already has an option to process the names in mixed-case, rather than using its
default behavior (uppercasing all names). That option is the CASE_SENSITIVE option as shown below:

CASE_SENSITIVE=YES.

When the CASE_SENSITIVE option is set to YES, all characters to the right of the left-most equal sign
(such as option arguments) have their case preserved. In other words, these characters are taken "as-is"
without modification. This includes file names, module names, symbol names and keywords. To restore
the linker's default behavior of upcasing the entire option line, specify the CASE_SENSITIVE option
with the NO keyword as follows:

CASE_SENSITIVE=NO

Note that the NO keyword must appear in uppercase or it will not be recognized by the linker.

To maintain VAX and Alpha behavior it is recommended to switch to case sensitivity only when needed.

For more information and examples, refer to the HP OpenVMS Version 8.2 New Features and
Documentation Overview.

5.4. Debugging Capabilities on I64 Systems
Several debuggers are provided on OpenVMS that allow for a wide range of debugging capabilities:

• OpenVMS Debugger (referred to simply as "debugger")

• Delta (not available on I64)

• XDelta

• Source code debugger (SCD) (not available on I64)

The OpenVMS Debugger and XDelta debugger are available on OpenVMS 8.2. The following table
shows the capabilities of these debuggers:

44

Chapter 5. I64 Development Environment

Category OpenVMS
Debugger

XDelta

Debugs operating systems no yes
Debugs applications yes no
Symbolic yes no
IPL greater than 0 no yes
Process content yes no
User mode yes no 1

Supervisor mode no no 1

Exec mode no yes
Kernel mode no yes

1IPLs 0, 1, and 2 only

The following sections describe the capabilities of the OpenVMS Debugger and the XDelta debugger
running on I64 systems. Further information about resolved problems, limitations, and known problems
of the OpenVMS Debugger can be found in the HP OpenVMS Version 8.2 Release Notes.

5.4.1. OpenVMS Debugger
The debugger provided on I64 is different from the OpenVMS VAX and Alpha debugger. Although the
I64 debugger shares a similar command interface and debugging functionality, some differences do exist.
The following sections describe the capabilities of the I64 Debugger and assume a familiarity with the
debugger on OpenVMS VAX and Alpha systems.

5.4.1.1. Architecture Support
I64 debugger supports the following hardware registers:

• General registers R0 through R127

• Floating registers F0 through F127

• Branch registers B0 through B7

• A 64-bit predicate value named PRED, representing predicate registers P0 through P63

• Application registers: AR16 (RSC), AR17 (BSP), AR18 (BSPSTORE), AR19 (RNAT), AR25
(CSD), AR26 (SSD), AR32 (CCV), AR36 (UNAT), AR64 (PFS), AR65 (LC), AR66 (EC)

• A program counter named PC, synthesized from the hardware IP register and the ri field of the PSR
register

• Miscellaneous registers: CFM (current frame marker), UM (user mask), PSP (previous stack
pointer), and IIPA (previously executed bundle address)

5.4.1.2. Language Support
I64 Debugger supports programs written in the following languages:

• BLISS

45

Chapter 5. I64 Development Environment

• C

• C++ (limited)

• COBOL (limited)

• Macro-32

• Fortran

• Intel ® Assembler (IAS)

• Pascal

Some issues exist when debugging supported languages on I64. For information about these issues and
suggested workarounds, refer to the HP OpenVMS Version 8.2 Release Notes.

Support for C++ and COBOL in this release is limited. Generally, Debugger support for C++ is limited
to programming constructs that are common to C, although support for basic C++ features such as
references, classes, and class members is available.

Do not use the SHOW SYMBOL/ADDRESS and SHOW SYMBOL/TYPE commands for C++ data
declarations. Specific examples of these and other problems are described in the HP OpenVMS Version
8.2 Release Notes.

Macro-32 is a compiled language on I64. Because the Itanium architecture has different hardware
register usage than either Alpha or VAX, the IMACRO compiler must transform source code references
to Alpha and VAX registers into a compatible register reference on Itanium. For complete information on
register mapping used by Macro-32, refer to the HP OpenVMS Version 8.2 Release Notes.

5.4.1.3. Functional Areas and Commands
The following functional areas and commands are available:

• Screen mode: source display, instruction display, output display

• Instruction decoding

• Breakpoints

• Watchpoints (non-static)

• Step (all forms)

• DEBUG/KEEP command (kept debugger configuration)

• RUN/DEBUG command (normal debugger configuration)

• Multithreaded programs

• CALL command

• Symbolic debugging of code in shareable images

• Symbolization of all possible static data locations

• Values in floating-point registers are displayed as IEEE T-floating values

46

Chapter 5. I64 Development Environment

• Examines and deposits of floating-point variables

• EXAMINE/ASCII command

5.4.1.4. Functionality Not Yet Ported
The following capabilities have not yet been ported to I64:

• DECwindows graphical user interface

• Heap analyzer

• Screen mode register view

• SHOW STACK command

5.4.2. XDelta Debugger
In general, the XDelta Debugger for I64 systems behaves the same as XDelta on OpenVMS Alpha
systems, with some restrictions. This section describes new capabilities added for OpenVMS and
differences between XDelta on I64 and OpenVMS Alpha systems.

5.4.2.1. XDelta Capabilities on I64
New capabilities have been added for I64 systems:

• XDelta supports the following Itanium registers:

• General registers: R0 through R127

• Floating registers: FP0 through FP127

• Application registers: AR0 through AR127

• Branch registers: BR0 through BR7

• Control registers: CR0 through CR63

• Miscellaneous registers: PC, PS, and CFM

• Software implementation of Alpha registers

• ;D dump memory command

• ;T display interrupt stack command

For descriptions of these registers and capabilities in this release, refer to the HP OpenVMS Version 8.2
New Features and Documentation Overview. This document also describes the ;D and ;T commands,
along with some restrictions.

5.4.2.2. Differences Between XDelta on I64 and OpenVMS Alpha
Systems
This section describes the differences in XDelta behavior on OpenVMS I64 and Alpha systems.

47

Chapter 5. I64 Development Environment

Interrupting a Running System

To interrupt a running system on OpenVMS I64, press Ctrl/P at the system console. Note that XDelta
must have been previously loaded. When you press Ctrl/P, the system halts at the current PC and at the
current IPL. There is no delay in waiting for the IPL to drop lower than 14 as on Alpha systems.

Improved Symbolization

The X-registers are used by programmers to hold frequently used values, such as base addresses of
images and modules. When displaying breakpoints and other address values, XDelta now prints these
values relative to the nearest X-register value. Previously, only certain values were checked for proximity
to X-register values.

5.5. I64 Librarian Utility
The Librarian utility on I64 provides the same features provided by Librarian on OpenVMS Alpha, with
some changes and restrictions. This section describes what is unique about the OpenVMS I64 Librarian.
For information about restrictions or other temporary conditions, refer to the HP OpenVMS Version 8.2
Release Notes.

5.5.1. Considerations When Using the OpenVMS I64
Librarian
You can use the DCL command LIBRARY (or Librarian LBR routines) to create libraries such as an
OpenVMS I64 (ELF) object library, OpenVMS I64 (ELF) shareable image library, macro library, help
library, and text library. You can maintain the modules in a library or display information about a library
and its modules. The OpenVMS I64 Librarian cannot create or process Alpha and VAX objects and
shareable images. Rather, the architecture for the Librarian is Intel Itanium.

There is no architecture switch for OpenVMS I64 libraries. The Librarian works with OpenVMS ELF
object and image libraries when used with the following qualifiers:

• /OBJECT — Uses OpenVMS ELF object libraries (default).

• /SHARE — Uses OpenVMS ELF shareable image libraries.

• /CREATE — Creates an OpenVMS ELF library of an object or shareable image type, depending
whether /OBJECT or /SHARE qualifier is specified.

The default library type created is an object library, if no OBJECT and SHARE qualifiers are specified.

5.5.2. Changes to the LBR$ Routines
Two new library types for the LBR$OPEN routine have been added on OpenVMS I64 systems:

LBR$C_TYP_ELFOBJ (9) — Represents an ELF object library.
LBR$C_TYP_ELFSHSTB (10) — Represents an ELF shareable image library.

In addition, the following library types for the LBR$OPEN routine are not supported in the OpenVMS
I64 Librarian. You cannot use the library types to create or open OpenVMS Alpha or VAX object and
shareable image libraries:

LBR$C_TYP_OBJ (1) - Represents a VAX object library
LBR$C_TYP_SHSTB (5) - Represents a VAX shareable image library
LBR$C_TYP_EOBJ (7) - Represents an Alpha object library

48

Chapter 5. I64 Development Environment

LBR$C_TYP_ESHSTB (8) - Represents an Alpha shareable image library

5.5.3. OpenVMS I64 Library Format Handles UNIX-Style
Weak Symbols
Due to the requirements of the Intel C++ compiler, the OpenVMS I64 library format has been expanded
to accommodate new UNIX-style weak symbols. Multiple modules matching key names of new UNIX-
style weak symbols can now exist in the same library. The Librarian ignores the OpenVMS-style weak
symbol definitions as it has in the past.

UNIX-style weak symbol definitions behave in the same manner as weak transfer addresses on
OpenVMS; that is, their definitions are tentative. If a definition of a stronger binding type is not seen
during a link operation, the tentative definition is designated as the definitive definition.

5.5.3.1. New ELF Type for Weak Symbols
A new Executable and Linkable Format (ELF) type was generated to distinguish between the two types
of weak symbol definitions. For modules with ABI versions equal to 2 (the most common version used
by compilers):

• Type STB_WEAK represents the UNIX-style weak symbol (formerly, the VMS-style weak symbol
definition for ABI Version 1 ELF format)

• Type STB_VMS_WEAK represents the VMS-style of weak symbol definition

The Librarian supports both the ELF ABI versions 1 and 2 of the object and image file formats within
the same library.

Note

The new library format (Version 6.0) applies only to ELF object and shareable image libraries. Other
libraries remain at the version 3.0 format. Applications that reference the library via the currently
defined library services interface should not encounter any change in behavior.

5.5.3.2. Version 6.0 Library Index Format
VSI recommends using the new Version 6.0 libraries. Older (Version 3.0) libraries can be opened by
the Library Services but cannot be not modified. They can be converted to Version 4.0 libraries, with
some restrictions. For more information, refer to the HP OpenVMS Version 8.2 New Features and
Documentation Overview.

5.5.3.3. New Group-Section Symbols
Symbols may be relative to sections contained in an ELF entity called a group. These groups, and
the symbols associated with them, behave in a similar fashion as the new UNIX-style weak symbol
definitions; that is, they are tentative definitions. The librarian now allows multiple symbol definitions in
the library's symbol name index.

5.5.3.4. Current Library Limitation with Regard to Weak and Group
Symbols
Library symbol entries are associated with the module within which they were defined. On I64, more
than one module can define a UNIX-style weak or Group symbol. As such, the OpenVMS I64 Librarian

49

Chapter 5. I64 Development Environment

must keep an ordered list of defining modules. This list allows a previous association to be restored
should the higher precedence association be removed (you can find more information about precedence
ordering rules in the HP OpenVMS Version 8.2 Release Notes.)

Because of current limitations described in the HP OpenVMS Version 8.2 Release Notes, VSI suggests
that you only perform insert operations into the library only for modules that contain UNIX-style weak
definitions. If you remove or replace modules in the library, you need to rebuild the library to make sure
that the association of UNIX-style weak definitions is correct.

50

Chapter 6. Preparing to Port
Applications
This chapter provides an overview of porting considerations related to the primary compilers that are
available for I64. Table 6.1 maps the versions of OpenVMS Alpha compilers that were used to port to
the I64 versions.

Table 6.1. Mapping OpenVMS Alpha Compiler Versions to OpenVMS I64 Compiler
Versions

Compiler OpenVMS Alpha OpenVMS I64 For more information

BASIC V1.6 V1.6 See Section 6.2.
BLISS V1.11-004 V1.12-067 See Section 6.3.
COBOL V2.8 V2.8 See Section 6.4.
Fortran 77 — Not available1 See Section 6.5.2.
Fortran 90 V7.5 V8.0 See Section 6.5.
GNAT Pro Ada 95 Third party — See Section 6.1.
VSI Ada 83 V3.5A Not available 1 —
VSI C V6.5 V7.1 See Section 6.6.
VSI C++ V6.5 7.1 Section 6.7
VSI Pascal V5.9 V5.9 Section 6.10
Java 1.4.2 1.4.2-1 See Section 6.8.
Macro-32 V4.1-18 T1.0-77 See Section 6.9.
Macro-64 V1.2 Not available 1 —

1Compiler is platform specific (for OpenVMS Alpha only).

Most of the I64 compilers share the following characteristics:

• They generate 32-bit code by default; you must use a compiler option to build a 64-bit program.

• The default is for IEEE floating-point data types instead of VAX floating-point data types.

The OpenVMS Floating-Point Arithmetic on the Intel ® Itanium ® Architecture white paper describes
how OpenVMS I64 deals with floating-point issues.

VSI recommends that customers first compile their applications on Alpha with the versions of the
compilers that are being ported to I64 in order to shake out any problems that might result from these
newer compilers. (Some newer versions of compilers apply a stricter interpretation of existing compiler
standards or enforce newer, stricter standards.) Once an application has compiled, linked, and run
without error on the new compiler on an Alpha system, it can be ported to I64.

6.1. Ada
Ada 95 is available on OpenVMS I64 in OpenVMS Version 8.2. Ada 83 is not supported on OpenVMS
I64.

51

Chapter 6. Preparing to Port Applications

6.2. BASIC
The same BASIC is supported on both OpenVMS Alpha and OpenVMS I64. See the VSI BASIC Release
Notes for additional information on using BASIC on I64.

The BASIC compiler on Alpha defaults to /REAL_SIZE=SINGLE (VAX F-float), and on I64 it defaults
to /REAL_SIZE=SFLOAT.

The BASIC compiler does not support the /IEEE_MODE qualifier. The compiler and RTL set up the
run-time environment on OpenVMS I64 to be similar in terms of exception handling and rounding to
what is provided on OpenVMS Alpha.

6.3. BLISS Compiler
This section describes the differences between the Alpha and I64 BLISS compilers.

BLISS-32EN and BLISS-64EN are native compilers running on and generating code for OpenVMS for
OpenVMS Alpha systems.

BLISS-32IN and BLISS-64IN are native compilers running on and generating code for OpenVMS I64
systems.

The BLISS-32xx compilers perform operations 32 bits wide (that is, BLISS values are longwords). The
default width is 32 bits. In this chapter, they are collectively referred to as "the 32-bit compilers."

The BLISS-64xx compilers perform operations 64 bits wide (that is, BLISS values are quadwords). The
default width is 64 bits. In this chapter, they are collectively referred to as "the 64-bit compilers".

The compilers are invoked using the following commands:

Platform Compiler Command

OpenVMS Alpha BLISS-32EN BLISS/A32 or BLISS
OpenVMS Alpha BLISS-64EN BLISS/A64
OpenVMS I64 BLISS-32IN BLISS/I32 or BLISS
OpenVMS I64 BLISS-64IN BLISS/OpenVMS I64

6.3.1. BLISS File Types and File Location Defaults
This section discusses file types and output file location defaults for the BLISS compiler.

File Types
The default file type for object files for the OpenVMS compilers is .OBJ.

The default output file type for library files is .L32 for BLISS-32EN and BLISS-32IN, and .L64 for
BLISS-64EN and BLISS-64IN. Library files are not compatible between dialects.

The search list for BLISS-32EN is as follows:

For source code: .B32E, .B32, .BLI
For require files: .R32E, .R32, .REQ
For library files: .L32E, .L32, .LIB

52

Chapter 6. Preparing to Port Applications

The search list for BLISS-64EN is as follows:

For source code: .B64E, .B64, .BLI
For require files: .R64E, .R64, .REQ
For library files: .L64E, .L64, .LIB

The search list for BLISS-32IN is as follows:

For source code: .B32I, .B32, .BLI
For require files: .R32I, .R32, .REQ
For library files: .L32I, .L32, .LIB

The search list for BLISS-64IN is as follows:

For source code: .B64I, .B64, .BLI
For require files: .R64I, .R64, .REQ
For library files: .L64I, .L64, .LIB

Output File Location Defaults
For the OpenVMS compilers, regardless of whether they run on OpenVMS Alpha or OpenVMS I64, the
location of the output files depends on where in the command line the output qualifier is found.

In both OpenVMS Alpha and OpenVMS I64 BLISS, if an output file qualifier, such as /OBJECT, /LIST,
or /LIBRARY, is used after an input file specification and does not include an output file specification,
the output file specification defaults to the device, directory, and file name of the immediately preceding
input file. For example:

$ BLISS /A32 [FOO]BAR/OBJ ! Puts BAR.OBJ in directory FOO
$ BLISS /I32 [FOO]BAR/OBJ ! Puts BAR.OBJ in directory FOO
$
$ BLISS /A32 /OBJ [FOO]BAR ! Puts BAR.OBJ in default directory
$ BLISS /I32 /OBJ [FOO]BAR ! Puts BAR.OBJ in default directory
$
$ BLISS /A32 [FOO]BAR/OBJ=[] ! Puts BAR.OBJ in default directory
$ BLISS /I32 [FOO]BAR/OBJ=[] ! Puts BAR.OBJ in default directory

6.3.2. OpenVMS Alpha BLISS Features Not Available
This section describes OpenVMS Alpha BLISS features that are not supported by I64 BLISS.

OpenVMS Alpha BLISS Machine-Specific Built-ins
Support for the following OpenVMS Alpha BLISS machine-specific built-ins is no longer available:

CMP_STORE_LONG (replaced by CMP_SWAP_LONG)
CMP_STORE_QUAD (replaced by CMP_SWAP_QUAD)
CMPBGE
DRAINT
RPCC
TRAPB
WRITE_MBX

53

Chapter 6. Preparing to Port Applications

ZAP
ZAPNOT

For information about CMP_SWAP_LONG and CMP_SWAP_QUAD, see the section called “Compare
and Swap Built-in Functions”.

OpenVMS Alpha BLISS PALcode Built-in Functions
Support for the following OpenVMS Alpha BLISS PALcode built-ins is no longer available:

CALL_PAL PAL_MFPR_PCBB PAL_MTPR_SIRR
PAL_BPT PAL_MFPR_PRBR PAL_MTPR_SSP
PAL_BUGCHK PAL_MFPR_PTBR PAL_MTPR_TBIA
PAL_CFLUSH PAL_MFPR_SCBB PAL_MTPR_TBIAP
PAL_CHME PAL_MFPR_SISR PAL_MTPR_TBIS
PAL_CHMK PAL_MFPR_SSP PAL_MTPR_TBISD
PAL_CHMS PAL_MFPR_TBCHK PAL_MTPR_TBISI
PAL_CHMU PAL_MFPR_USP PAL_MTPR_USP
PAL_DRAINA PAL_MFPR_VPTB PAL_MTPR_VPTB
PAL_HALT PAL_MFPR_WHAMI PAL_PROBER
PAL_GENTRAP PAL_MTPR_ASTEN PAL_PROBEW
PAL_IMB PAL_MTPR_ASTSR PAL_RD_PS
PAL_LDQP PAL_MTPR_DATFX PAL_READ_UNQ
PAL_MFPR_ASN PAL_MTPR_ESP PAL_RSCC
PAL_MFPR_ASTEN PAL_MTPR_FEN PAL_STQP
PAL_MFPR_ASTSR PAL_MTPR_IPIR PAL_SWPCTX
PAL_MFPR_ESP PAL_MTPR_IPL PAL_SWASTEN
PAL_MFPR_FEN PAL_MTPR_MCES PAL_WRITE_UNQ
PAL_MFPR_IPL PAL_MTPR_PRBR PAL_WR_PS_SW
PAL_MFPR_MCES PAL_MTPR_SCBB PAL_MTPR_PERFMON

Macros are placed in STARLET.REQ for PALCALL built-ins. OpenVMS supplies the supporting code.
The privileged CALL_PALs call executive routines and the unprivileged CALL_PALs will call system
services.

OpenVMS Alpha BLISS Register Names
The following registers (whose default OpenVMS I64 use is indicated in the following list) are not
supported for naming in REGISTER, GLOBAL REGISTER, and EXTERNAL REGISTER, or as
parameters to LINKAGE declarations.

 R0 zero register
 R1 global pointer
 R2 volatile and GEM scratch register
 R12 stack pointer
 R13 thread pointer
 R14-R16 volatile and GEM scratch registers
 R17-R18 volatile scratch registers

INTERRUPT and EXCEPTION Linkages
INTERRUPT and EXCEPTION linkages are not supported.

BUILTIN Rn

You cannot specify an OpenVMS I64 register name to the BUILTIN keyword.

54

Chapter 6. Preparing to Port Applications

6.3.3. I64 BLISS Features
I64 BLISS provides only those existing OpenVMS Alpha BLISS features necessary to support I64.
Although OpenVMS Alpha BLISS enabled support for features of operating systems other than
OpenVMS, such functionality is not included in the OpenVMS I64 BLISS compiler.

I64 BLISS Built-ins
Only those built-ins necessary for the correct operation of I64 are supported by the BLISS OpenVMS
I64 compilers.

Common BLISS Built-ins
The following existing common BLISS built-ins are supported:

ABS CH$FIND_NOT_CH CH$WCHAR
ACTUALCOUNT CH$FIND_SUB CH$WCHAR_A
ACTUALPARAMETER CH$GEQ MAX
ARGPTR CH$GTR MAXA
BARRIER CH$LEQ MAXU
CH$ALLOCATION CH$LSS MIN
CH$A_RCHAR CH$MOVE MINA
CH$A_WCHAR CH$NEQ MINU
CH$COMPARE CH$PLUS NULLPARAMETER
CH$COPY CH$PTR REF
CH$DIFF CH$RCHAR SETUNWIND
CH$EQL CH$RCHAR_A SIGN
CH$FAIL CH$SIZE SIGNAL
CH$FILL CH$TRANSLATE SIGNAL_STOP
CH$FIND_CH CH$TRANSTABLE

RETURNADDRESS Built-in
A new built-in function RETURNADDRESS returns the PC of the caller's caller.

This built-in takes no arguments. The format is:

RETURNADDRESS()

Machine-Specific Built-ins
The following OpenVMS Alpha BLISS machine-specific built-ins are supported on the OpenVMS I64
BLISS compiler:

BARRIER
ESTABLISH
REVERT

ROT
SLL
SRA
SRL
UMULH

AdaWI

ADD_ATOMIC_LONG AND_ATOMIC_LONG OR_ATOMIC_LONG
ADD_ATOMIC_QUAD AND_ATOMIC_QUAD OR_ATOMIC_QUAD

55

Chapter 6. Preparing to Port Applications

The xxx_ATOMIC_xxx built-ins no longer support the optional retry-count input argument. See the
section called “ADD, AND, Built-in Functions for Atomic Operations” for details.

TESTBITSSI TESTBITCC TESTBITCS
TESTBITCCI TESTBITSS TESTBITSC

TESTBITxx instructions no longer support the optional retry-count input argument or the optional
success-flag output argument. See the section called “TESTBITxxI and TESTBITxx Built-in Functions
for Atomic Operations” for details.

ADDD DIVD MULD SUBD CMPD
ADDF DIVF MULF SUBF CMPF
ADDG DIVG MULG SUBG CMPG
ADDS DIVS MULS SUBS CMPS
ADDT DIVT MULT SUBT CMPT

CVTDF CVTFD CVTGD CVTSF CVTTD
CVTDG CVTFG CVTGF CVTSI CVTTG
CVTDI CVTFI CVTGI CVTSL CVTTI
CVTDL CVTFL CVTGL CVTSQ CVTTL
CVTDQ CVTFQ CVTGQ CVTST CVTTQ
CVTDT CVTFS CVTGT CVTTS

CVTID CVTLD CVTQD
CVTIF CVTLF CVTQF
CVTIG CVTLG CVTQG
CVTIS CVTLS CVTQS
CVTIT CVTLT CVTQT

CVTRDL CVTRDQ
CVTRFL CVTRFQ
CVTRGL CVTRGQ
CVTRSL CVTRSQ
CVTRTL CVTRTQ

New Machine-Specific Built-ins
A number of new built-ins added to I64 BLISS provide access to single OpenVMS I64 instructions that
can be used by the operating system.

Built-ins for Single OpenVMS I64 Instructions
Each name that is capitalized in the following list is a new built-in function that can be specified. The
lowercase name in parenthesis is the actual OpenVMS I64 instruction executed. The arguments to
these instructions (and therefore their associated BLISS built-in names) are detailed in the Intel IA-64
Architecture Software Developer's Manual.

 BREAK (break) LOADRS (loadrs) RUM (rum)
 BREAK2 (break)* PROBER (probe.r) SRLZD (srlz.d)
 FC (fc) PROBEW (probe.w) SRLZI (srlz.i)
 FLUSHRS (flushrs) PCTE (ptc.e) SSM (ssm)
 FWB (fwb) PCTG (ptc.g) SUM (sum)
 INVALAT (invala) PCTGA (ptc.ga) SYNCI (sync.i)
 ITCD (itc.d) PTCL (ptc.l) TAK (tak)
 ITCI (itc.i) PTRD (ptr.d) THASH (thash)
 ITRD (itr.d) PTRI (ptr.i) TPA (tpa)
 ITRI (itr.i) RSM (rsm) TTAG (ttag)

56

Chapter 6. Preparing to Port Applications

Note

The BREAK2 built-in requires two parameters. The first parameter, which must be a compile-time
literal, specifies the 21-bit immediate value of the BREAK instruction. The second parameter, can be
any expression whose value is moved into IPF general register R17 just prior to executing the BREAK
instruction.

Access to Processor Registers
The I64 BLISS compiler provides built-in functions for access to read and write the many and varied
processor registers in the IPF implementations. The built-in functions are as follows:

• GETREG

• SETREG

• GETREGIND

• SETREGIND

These built-ins execute the mov.i instruction, which is detailed in the Intel IA-64 Architecture Software
Developer's Manual. The two GET built-ins return the value of the specified register.

To specify the register, a specially encoded integer constant is used, which is defined in an Intel C header
file. See the Intel IA-64 Architecture Software Developer's Manual for the contents of this file.

PALcode Built-ins
Support for the following OpenVMS Alpha BLISS PALcode built-in functions has been retained:

 PAL_INSQHIL PAL_REMQHIL
 PAL_INSQHILR PAL_REMQHILR
 PAL_INSQHIQ PAL_REMQHIQ
 PAL_INSQHIQR PAL_REMQHIQR
 PAL_INSQTIL PAL_REMQTIL
 PAL_INSQTILR PAL_REMQTILR
 PAL_INSQTIQ PAL_REMQTIQ
 PAL_INSQTIQR PAL_REMQTIQR
 PAL_INSQUEL PAL_REMQUEL
 PAL_INSQUEL_D PAL_REMQUEL_D
 PAL_INSQUEQ PAL_REMQUEQ
 PAL_INSQUEQ_D PAL_REMQUEQ_D

Each of the 24 queue-manipulation PALcalls is implemented by BLISS as a call to an OpenVMS
SYS$PAL_xxxx run-time routine.

BLI$CALLG
The VAX idiom CALLG(.AP, ...) is replaced by an assembly routine BLI$CALLG(ARGPTR(), .RTN)
for Alpha BLISS. This routine as defined for Alpha BLISS has been rewritten for the OpenVMS I64
architecture and is supported for I64 BLISS.

OpenVMS I64 Registers
The OpenVMS I64 general registers, which can be named in REGISTER, GLOBAL REGISTER, and
EXTERNAL REGISTER, and as parameters to LINKAGE declarations, are R3 through R11 and

57

Chapter 6. Preparing to Port Applications

R19 through R31. In addition, parameter registers R32 through R39 can be named for parameters in
LINKAGE declarations only.

Currently, there are no plans to support the naming of the OpenVMS I64 general registers R40 through
R127.

Naming of any of the OpenVMS I64 Floating Point, Predicate, Branch and Application registers via
the REGISTER, GLOBAL REGISTER, EXTERNAL REGISTER, and LINKAGE declarations is not
provided.

A register conflict message is issued when a user request for a particular register cannot be satisfied.

ALPHA_REGISTER_MAPPING Switch
A new module level switch, ALPHA_REGISTER_MAPPING, is provided for I64 BLISS.

This switch can be specified in either the MODULE declaration or a SWITCHES declaration. Use of this
switch causes a remapping of OpenVMS Alpha register numbers to OpenVMS I64 register numbers as
described in this section.

Any register number specified as part of a REGISTER, GLOBAL REGISTER, EXTERNAL
REGISTER, or as parameters to GLOBAL, PRESERVE, NOPRESERVE or NOT USED in linkage
declarations in the range of 0-31 are remapped according to the IMACRO mapping table as follows:

0 = GEM_TS_REG_K_R8 16 = GEM_TS_REG_K_R14
1 = GEM_TS_REG_K_R9 17 = GEM_TS_REG_K_R15
2 = GEM_TS_REG_K_R28 18 = GEM_TS_REG_K_R16
3 = GEM_TS_REG_K_R3 19 = GEM_TS_REG_K_R17
4 = GEM_TS_REG_K_R4 20 = GEM_TS_REG_K_R18
5 = GEM_TS_REG_K_R5 21 = GEM_TS_REG_K_R19
6 = GEM_TS_REG_K_R6 22 = GEM_TS_REG_K_R22
7 = GEM_TS_REG_K_R7 23 = GEM_TS_REG_K_R23
8 = GEM_TS_REG_K_R26 24 = GEM_TS_REG_K_R24
9 = GEM_TS_REG_K_R27 25 = GEM_TS_REG_K_R25
10 = GEM_TS_REG_K_R10 26 = GEM_TS_REG_K_R0
11 = GEM_TS_REG_K_R11 27 = GEM_TS_REG_K_R0
12 = GEM_TS_REG_K_R30 28 = GEM_TS_REG_K_R0
13 = GEM_TS_REG_K_R31 29 = GEM_TS_REG_K_R29
14 = GEM_TS_REG_K_R20 30 = GEM_TS_REG_K_R12
15 = GEM_TS_REG_K_R21 31 = GEM_TS_REG_K_R0

The mappings for register numbers 16-20, 26-28, and 30-31 translate into registers that are considered
invalid specifications for I64 BLISS (see the section called “OpenVMS Alpha BLISS Register Names”
and the section called “OpenVMS I64 Registers”). Declarations that include any of these registers when
ALPHA_REGISTER_MAPPING is specified will generate an error such as the following:

 r30 = 30,
.........^
%BLS64-W-TEXT, OpenVMS Alpha register 30 cannot be declared, invalid
 mapping to
IPF register 12 at line number 9 in file ddd:[xxx]TESTALPHAREGMAP.BLI

Notice that the source line names register number 30 but the error text indicates register 12 is the
problem. It is the translated register for 30, register 12, that is illegal to specify.

There is a special set of mappings for OpenVMS Alpha registers R16 through R21 if those registers are
specified as linkage I/O parameters.

58

Chapter 6. Preparing to Port Applications

Note

For linkage I/O parameters only, the mappings for R16 through R21 are as follows:

16 = GEM_TS_REG_K_R32
17 = GEM_TS_REG_K_R33
18 = GEM_TS_REG_K_R34
19 = GEM_TS_REG_K_R35
20 = GEM_TS_REG_K_R36
21 = GEM_TS_REG_K_R37

ALPHA_REGISTER_MAPPING and "NOTUSED"
When ALPHA_REGISTER_MAPPING is specified, any OpenVMS Alpha register that maps to
an IA64 scratch register and is specified as NOTUSED in a linkage declaration will be placed in the
PRESERVE set.

This will cause the register to be saved on entry to the routine declaring it NOTUSED and restored on
exit.

/ANNOTATIONS Qualifier
The I64 BLISS compiler supports a new compilation qualifier, /ANNOTATIONS. This qualifier provides
information in the source listing regarding optimizations that the compiler is making (or not making)
during compilation.

The qualifier accepts the following keywords that reflect the different listing annotations:

• ALL

• NONE

• CODE — Used for annotations of machine code listing. Currently, only NOP instructions are
annotated.

• DETAIL — Provides greater detail; used in conjunction with other keywords.

The remaining keywords reflect GEM optimizations:

INLINING
LINKAGES
LOOP_TRANSFORMS
LOOP_UNROLLING
PREFETCHING
SHRINKWRAPPING
SOFTWARE_PIPELINING
TAIL_CALLS
TAIL_RECURSION

All keywords, with the exception of ALL and NONE, are negotiable. The qualifier itself is also
negotiable. By default it is not present in the command line.

If the /ANNOTATIONS qualifier is specified without any parameters, the default is ALL.

59

Chapter 6. Preparing to Port Applications

/ALPHA_REGISTER_MAPPING Qualifier
The I64 BLISS compiler supports a new compilation qualifier to enable
ALPHA_REGISTER_MAPPING without having to modify the source. This is a positional
qualifier. Specifying this qualifier on the compilation line for a module is equivalent to setting the
ALPHA_REGISTER_MAPPING switch in the module header.

/ALPHA_REGISTER_MAPPING Informationals
For I64 BLISS, three new informational messages have been added.

• If the /ALPHA_REGISTER_MAPPING qualifier was specified on the command line the following
message is displayed:

 %BLS64-I-TEXT, OpenVMS Alpha Register Mapping enabled by the
 command line

• If the switch ALPHA_REGISTER_MAPPING is specified in the module header or as an argument
to the SWITCH declaration the following message is displayed:

 MODULE SIMPLE (MAIN=TEST, ALPHA_REGISTER_MAPPING)=
 ^
 %BLS64-I-TEXT, OpenVMS Alpha Register Mapping enabled

• If the switch NOALPHA_REGISTER_MAPPING is specified in the module header or as an
argument to the SWITCH declaration the following message is displayed:

 MODULE SIMPLE (MAIN=TEST, NOALPHA_REGISTER_MAPPING)=
 ^
 %BLS64-I-TEXT, OpenVMS Alpha Register Mapping disabled

ADD, AND, Built-in Functions for Atomic Operations
The ADD_ATOMIC_XXXX, AND_ATOMIC_XXXX, and OR_ATOMIC_XXXX built-in functions for
atomic updating of memory are supported by I64 BLISS. They are listed in the section called “Machine-
Specific Built-ins”.

Because the OpenVMS I64 instructions to support these built-ins waits until the operation succeeds, the
optional retry-count input parameter has been eliminated. These built-ins now have the form:

option_ATOMIC_size(ptr, expr [;old_value]) !Optional output

where:

option can be AND, ADD, or OR.

size can be LONG or QUAD.

ptr must be a naturally aligned address.

value can be 0 (operation failed) or 1 (operation succeeded).

The operation is addition (or ANDing or ORing) of the expression EXPR to the data segment pointed to
by PTR in an atomic fashion.

The optional output parameter OLD_VALUE is set to the previous value of the data segment pointed to
by PTR.

60

Chapter 6. Preparing to Port Applications

Any attempt to use the Alpha BLISS optional retry-count parameter results in a syntax error.

TESTBITxxI and TESTBITxx Built-in Functions for Atomic
Operations
The TESTBITxxI and TESTBITxx built-in functions for atomic operations are supported by I64 BLISS.
They are listed in the section called “Machine-Specific Built-ins”.

Because the OpenVMS I64 instruction to support these built-ins waits until the operation succeeds,
the optional input parameter retry-count and the optional output parameter success_flag have been
eliminated. These built-ins now have the following form:

 TESTBITxxx(field)

Any attempt to use the Alpha BLISS optional retry-count or success_flag parameters results in a syntax
error.

Granularity of Longword and Quadword Writes
I64 BLISS supports the /GRANULARITY=keyword qualifier, the switch
DEFAULT_GRANULARITY=n, and the data attribute GRANUALRITY(n) as described in this
section.

Users can control the granularity of stores and fetches by using the command line qualifier
/GRANULARITY=keyword, the switch DEFAULT_GRANULARITY=n, and the data attribute
GRANULARITY(n).

The keyword in the command line qualifier must be either BYTE, LONGWORD, or QUADWORD. The
parameter n must be either 0(byte), 2(longword) or 3(quadword).

When these are used together, the data attribute has the highest priority. The switch, when used in a
SWITCHES declaration, sets the granularity of data declared after it within the same scope. The switch
may also be used in the module header. The command line qualifier has the lowest priority.

Shift Built-in Functions
Built-in functions for shifts in a known direction are supported for I64 BLISS. They are listed in the
section called “Machine-Specific Built-ins”. These functions are valid only for shift amounts in the range
0..%BPVAL-1.

Compare and Swap Built-in Functions
Both Alpha and I64 BLISS provide support for the following new compare and swap built-in functions:

• CMP_SWAP_LONG(addr, comparand, value)

• CMP_SWAP_QUAD(addr, comparand, value)

These functions do the following interlocked operations: compare the longword or quadword at addr
with comparand and, if they are equal, store value at addr. They return an indicator of success (1) or
failure (0).

OpenVMS I64-Specific Multimedia Instructions
There are no plans to support access to the OpenVMS I64-specific multimedia-type instructions.

61

Chapter 6. Preparing to Port Applications

Linkages

CALL Linkage
The CALL linkage, as described in this section for Alpha BLISS, is also supported by I64 BLISS.

Routines compiled with a 32-bit compiler can call routines compiled with a 64-bit compiler and vice
versa. Parameters are truncated when shortened, and sign-extended when lengthened.

By default, CALL linkages pass an argument count. This can be overridden using the NOCOUNT
linkage option.

Although the arguments are passed in quadwords, the 32-bit compilers can "see" only the lower 32 bits.

JSB Linkage
The I64 BLISS compilers have a JSB linkage type. Routines declared with the JSB linkage comply with
the JSB rules developed for I64.

/[NO]TIE Qualifier
Support for this qualifier continues for I64. The default is /NOTIE.

TIE is used to enable the compiled code to be used in combination with translated images, either because
the code might call into a translated image or might be called from a translated image.

In particular, TIE does the following:

• Causes the inclusion of procedure signature information in the compiled program. This may increase
the size and possibly also the number of relocations processed during linking and image activation,
but does not otherwise affect performance.

• Causes calls to procedure values (sometimes called indirect or computed calls) to be compiled using
a service routine (OTS$CALL_PROC); this routine determines whether the target procedure is
native IPF code or in a translated image and proceeds accordingly.

/ENVIRONMENT=([NO]FP) and ENVIRONMENT([NO]FP)
The /ENVIRONMENT=([NO]FP) qualifier and the ENVIRONMENT([NO]FP) switch were provided
for Alpha BLISS to cause the compiler to disable the use of floating point registers for certain integer
division operations.

For I64 BLISS, the /ENVIRONMENT=NOFP command qualifier or ENVIRONMENT(NOFP) switch
does not totally disable floating point because of the architectural features of OpenVMS I64. Instead,
source code is still restricted not to have floating-point operations, but the generated code for certain
operations (in particular, integer multiplication and division and the constructs that imply them) are
restricted to using a small subset of the floating-point registers. Specifically, if this option is specified, the
compiler is restricted to using f6-f11, and sets the ELF EF_IA_64_REDUCEFP option described in the
Intel Itanium Processor-Specific Application Binary Interface.

The /ENVIRONMENT=FP command qualifier and ENVIRONMENT(FP) switch are unaffected.

Floating-Point Support
The following sections discuss support for floating-point operations using the BLISS compiler.

62

Chapter 6. Preparing to Port Applications

Floating-Point Built-in Functions
BLISS does not have a high level of support for floating-point numbers. The extent of the support
involves the ability to create floating-point literals, and there are machine-specific built-ins for floating-
point arithmetic and conversion operations. For a complete list. see the section called “Machine-Specific
Built-ins”.

None of the floating point built-in functions detect overflow, so they do not return a value.

Floating-Point Literals
The floating-point literals supported by I64 BLISS are the same set supported by Alpha BLISS: %E,
%D, %G, %S and %T.

Floating-Point Registers
Direct use of the OpenVMS I64 floating-point registers is not supported.

Calling Non-BLISS Routines with Floating-Point Parameters
It is possible to call standard non-BLISS routines that expect floating-point parameters passed by value
and that return a floating-point or complex value.

The standard functions %FFLOAT, %DFLOAT, %GFLOAT, %SFLOAT and %TFLOAT are supported
by I64 BLISS.

New and Expanded Lexicals
BLISS has added the following new compiler-state lexicals to support the I64 compilers: BLISS32I and
BLISS64I.

• %BLISS now recognizes BLISS32V, BLISS32E, BLISS64E, BLISS32I and BLISS64I.

%BLISS BLISS32 is true for all 32-bit BLISS compilers.

%BLISS BLISS32V is true only for VAX BLISS BLISS-32.

%BLISS BLISS32E is true for all 32-bit OpenVMS Alpha compilers.

%BLISS BLISS64E is true for all 64-bit OpenVMS Alpha compilers.

%BLISS BLISS32I is true for all 32-bit OpenVMS I64 compilers.

%BLISS BLISS64I is true for all 64-bit OpenVMS I64 compilers.

• The lexicals %BLISS32I and %BLISS64I have been added. Their behavior parallels that of the new
parameters to %BLISS.

• Support for the Intel Itanium architecture as a keyword to the %HOST and %TARGET lexicals has
been added for I64 BLISS.

I64 BLISS Support for IPF Short Data Sections
The IPF calling standard requires that all global data objects with a size of 8 bytes or smaller be allocated
in short data sections.

63

Chapter 6. Preparing to Port Applications

Short data sections can be addressed with an efficient code sequence that involves adding a 22-bit literal
to the contents of the GP base register. This code sequence limits the combined size of all the short data
sections. A linker error occurs if the total amount of data allocated to short data sections exceeds a size
of 2**22 bytes. Compilers on IPF can use GP relative addressing when accessing short globals and short
externals.

I64 BLISS exhibits new behavior for the PSECT attribute GP_RELATIVE and for the new PSECT
attribute SHORT, which supports allocating short data sections.

Specifying the GP_RELATIVE keyword as a PSECT attribute causes PSECT to be labeled as containing
short data so that the linker will allocate the PSECT close to the GP base address.

The syntax of the SHORT attribute is as follows:

"SHORT" "(" psect-name ")"

The following rules apply to the SHORT attribute:

• If the PSECT name in a SHORT attribute is not yet declared then its appearance in a SHORT
attribute constitutes a declaration. The attributes of the PSECT containing the SHORT attribute
become the attributes of the PSECT named in the SHORT attribute, except that the PSECT name
declared in the SHORT attribute does not have the SHORT attribute and the PSECT name declared
in the SHORT attribute does have the GP_RELATIVE attribute.

• If the PSECT name in a SHORT attribute has been previously declared then its attributes are not
changed. A warning message is generated if the PSECT named in a SHORT attribute does not have
the GP_RELATIVE attribute.

• If a data object with storage class OWN, GLOBAL or PLIT has a size of 8 or fewer bytes and the
data object is specified to be allocated to a PSECT that includes the SHORT attribute, then that
object is allocated to the PSECT named in the SHORT attribute. Note that this is a one-step process
that is not recursive. If a short data object has it allocation PSECT renamed by the SHORT attribute,
then the SHORT attribute of the renamed PSECT is not considered for any further renaming.

• Data objects with sizes larger then 8 bytes ignore the SHORT attribute.

• Data objects in the CODE, INITIAL and LINKAGE storage classes ignore the SHORT attribute,
regardless of their size.

• For the purposes of PSECT renaming by means of the SHORT attribute, the size of a PLIT object
does not include the size of the count word that precedes the PLIT data.

Example
The following example shows the use of PSECT in BLISS code.

PSECT

 NODEFAULT = $GLOBAL_SHORT$
 (READ,WRITE,NOEXECUTE,NOSHARE,NOPIC,CONCATENATE,LOCAL,ALIGN(3),
 GP_RELATIVE),

! The above declaration of $GLOBAL_SHORT$ is not needed. If the above
! declaration were deleted then the SHORT($GLOBAL_SHORT$) attribute in
! the following declaration would implicitly make an identical
! declaration of $GLOBAL_SHORT$.

64

Chapter 6. Preparing to Port Applications

 GLOBAL = $GLOBAL$
 (READ,WRITE,NOEXECUTE,NOSHARE,NOPIC,CONCATENATE,LOCAL,ALIGN(3),
 SHORT($GLOBAL_SHORT$)),

 NODEFAULT = MY_GLOBAL
 (READ,WRITE,NOEXECUTE,SHARE,NOPIC,CONCATENATE,LOCAL,ALIGN(3)),

 PLIT = $PLIT$
 (READ,NOWRITE,NOEXECUTE,SHARE,NOPIC,CONCATENATE,GLOBAL,ALIGN(3),
 SHORT($PLIT_SHORT$));

GLOBAL
 X1, ! allocated in $GLOBAL_SHORT$
 Y1 : VECTOR[2,LONG], ! allocated in $GLOBAL_SHORT$
 Z1 : VECTOR[3,LONG], ! allocated in $GLOBAL$
 A1 : PSECT(MY_GLOBAL), ! allocated in MY_GLOBAL
 B1 : VECTOR[3,LONG] PSECT(MY_GLOBAL), ! allocated in MY_GLOBAL
 C1 : VECTOR[3,LONG]
 PSECT($GLOBAL_SHORT$); ! allocated in $GLOBAL_SHORT$

PSECT GLOBAL = MY_GLOBAL;
! use MY_GLOBAL as default for both noshort/short

GLOBAL
 X2, ! allocated in MY_GLOBAL
 Y2 : VECTOR[2,LONG], ! allocated in MY_GLOBAL
 Z2 : VECTOR[3,LONG], ! allocated in MY_GLOBAL
 A2 : PSECT($GLOBAL$), ! allocated in $GLOBAL_SHORT$
 B2 : VECTOR[3,LONG] PSECT($GLOBAL$); ! allocated in $GLOBAL$;

! Note that the allocations of A1, X2 and Y2 violate the calling
! standard rules. These variables cannot be shared with other
! languages, such as C or C++.

PSECT GLOBAL = $GLOBAL$;
! back to using $GLOBAL$/$GLOBAL_SHORT$ as default noshort/short

GLOBAL BIND
 P1 = UPLIT("abcdefghi"), ! allocated in $PLIT$
 P2 = PLIT("abcdefgh"), ! allocated in $PLIT_SHORT$
 P3 = PSECT(GLOBAL) PLIT("AB"), ! allocated in $GLOBAL_SHORT$
 p4 = PSECT($PLIT_SHORT$)
 PLIT("abcdefghijklmn"), ! allocated in $PLIT_SHORT$
 P5 = PSECT(MY_GLOBAL) PLIT("AB"); ! allocated in MY_GLOBAL

Note

• The allocations of A1, X2, Y2, and P5 violate the calling standard rules. These variables cannot be
shared with other languages, such as C or C++. They can be shared with modules written in BLISS
and MACRO.

• The current I64 BLISS design does not support GP_RELATIVE addressing mode on EXTERNAL
variable references. However, the usual GENERAL addressing mode used by EXTERNAL
variables correctly references a GP_RELATIVE section. Currently, there are no plans to add an
ADDRESSING_MODE(GP_RELATIVE) attribute to BLISS.

65

Chapter 6. Preparing to Port Applications

6.4. COBOL
COBOL Version 2.8 is supported on both OpenVMS Alpha and OpenVMS I64. See the VSI COBOL
Release Notes for restrictions and known problems related to using COBOL on I64.

6.4.1. Floating-Point Arithmetic
The COBOL compiler on Alpha defaults to /FLOAT=D_FLOAT. For OpenVMS I64, the default is
/FLOAT=IEEE_FLOAT.

The COBOL compiler does not support /IEEE_MODE. The COBOL RTL sets up the run-time
environment on OpenVMS I64 to be similar in terms of exception handling and rounding to what is
provided in the COBOL run-time environment on OpenVMS Alpha.

The COBOL Release Notes and the white paper entitled OpenVMS Floating-Point Arithmetic on the
Intel® Itanium ® Architecture together describe how COBOL deals with floating-point issues on
OpenVMS I64.

6.4.2. /ARCH and /OPTIMIZE=TUNE Qualifiers
For the sake of "compile-and-go" compatibility, OpenVMS Alpha values for the /ARCH and /
OPTIMIZE=TUNE qualifiers are accepted by the COBOL compiler on OpenVMS I64. An
informational message is displayed indicating that they are ignored.

OpenVMS I64 values for /ARCH and /OPTIMIZE=TUNE are defined in the COBOL compiler for
development purposes only. Their behavior is unpredictable and they should not be used.

6.5. Fortran
Fortran 90 V8.0 is supported on I64. Fortran 77 is not supported on I64. (See Section 6.5.2 for details.)

VSI Fortran for I64 systems provides the same command-line options and language features as VSI
Fortran for Alpha systems with a few exceptions. These exceptions are discussed in the following
sections.

6.5.1. Floating-Point Arithmetic
The Fortran release notes and the white paper entitled OpenVMS Floating-Point Arithmetic on the Intel
® Itanium ® Architecture together describe how VSI Fortran for OpenVMS I64 deals with floating-point
issues.

See the Related Documents section in the Preface for the web location of this white paper and other
OpenVMS-to-Itanium architecture resources.

Highlights are summarized as follows:

• IEEE is the default floating-point datatype (that is, the default is /FLOAT=IEEE_FLOAT).

The Alpha compiler defaults to /FLOAT=G_FLOAT. On I64 systems, there is no hardware support
for floating-point representations other than IEEE. The VAX floating-point formats are supported
in the compiler by generating run-time code to convert to IEEE format before performing arithmetic
operations, and then converting the IEEE result back to the appropriate VAX format. This imposes
additional run-time overhead and some loss of accuracy compared to performing the operations in
hardware on OpenVMS Alpha (and VAX).

66

Chapter 6. Preparing to Port Applications

The software support for the VAX formats is an important functional compatibility requirement for
certain applications that need to deal with on-disk binary floating-point data, but its use should not
be encouraged. This change is similar to the change in default from /FLOAT=D_FLOAT on VAX to
/FLOAT=G_FLOAT on OpenVMS Alpha.

If at all possible, users should use /FLOAT=IEEE_FLOAT (the default) for the highest performance
and accuracy.

Note that the changed /FLOAT default has implications for the use of /CONVERT=NATIVE (the
default). This switch causes unformatted data to remain unconverted on input, on the assumption that
it matches the prevailing floating-point datatype.

Files written from Fortran applications built with /FLOAT=G_FLOAT/CONVERT=NATIVE
on OpenVMS Alpha (either explicitly G_FLOAT and NATIVE or defaulting either or
both) will be in G_FLOAT. They can be read by OpenVMS I64 applications built with
/FLOAT=G_FLOAT/CONVERT=NATIVE or /FLOAT=IEEE/CONVERT=VAXG. But they will
not be readable by applications build with /CONVERT=NATIVE, as that will default to the /FLOAT
type, which will have defaulted to IEEE.

• The /IEEE_MODE qualifier defaults to /IEEE_MODE=DENORM_RESULTS.

This differs from OpenVMS Alpha, where the default is /IEEE_MODE=FAST. Despite the name,
/IEEE_MODE=FAST does not have a significant effect on run-time performance on OpenVMS I64
(or on OpenVMS Alpha processors from EV6 onward).

• Users must choose one /FLOAT value and one /IEEE_MODE value and stick with it for the whole
of their application. This is because mixed-mode applications do not (in general) work on I64
systems as a result of architectural differences in the hardware. This is a change from OpenVMS on
OpenVMS Alpha systems, where mixed-mode applications work. In particular, per-routine/per-file/
per-library settings of a mode do not work.

As on OpenVMS Alpha, /IEEE_MODE can only be set if the user has chosen or defaulted to
/FLOAT=IEEE. The IEEE_MODE used for G_FLOAT and D_FLOAT is one the compiler has
picked as appropriate for supporting the IEEE-format calculations which implement VAX-format
support.

• If your code changes the floating-point exception mode, it is your responsibility to change it back
on routine exit, including exits by means of exception handlers. Failure to do so might lead to
unexpected results, since the compilers assume that no called routine changes the current mode. This
is also a requirement on user-written libraries.

• Exception handlers are entered with the floating-point mode in effect at the time the exception was
raised, not the mode with which the handler was compiled.

As specified in the white paper, OpenVMS Floating-Point Arithmetic on the Itanium® Architecture, the
number, type and location of floating-point exceptions raised during the execution of an application on
OpenVMS I64 may not be the same as on OpenVMS Alpha. This is particularly true for VAX-format
floating-point. In that case exceptions are (in general) only raised on the convert back to VAX-format
after the computation is over.

Three consequences may be of interest for users of VAX-format floating-point:

• Intermediate values (such as the "X/Y" in "X*Y + X/Y" which could have raised an exception on
OpenVMS Alpha will probably not raise an exception on OpenVMS I64.

67

Chapter 6. Preparing to Port Applications

• Values not converted back to VAX-format floating-point (such as the "X/Y" in "IF (X/Y > 0.0)" will
probably not raise an exception on OpenVMS I64.

• Alpha and VAX Fortran applications do not report underflows for VAX-format floating-
point operations unless you specifically enable underflow traps by compiling with the
/CHECK=UNDERFLOW qualifier. The same is true on OpenVMS I64 systems, but with an
important caveat.

Since all OpenVMS I64 floating-point operations are implemented using IEEE-format operations,
enabling underflow traps with /CHECK=UNDERFLOW causes exceptions to be raised when values
underflow the IEEE-format representation, not the VAX-format one.

This can result in an increased number of underflow exceptions seen with /CHECK=UNDERFLOW
when compared with equivalent OpenVMS Alpha or VAX programs, as the computed values may be
in the valid VAX-format range, but in the denormalized IEEE-format range.

6.5.2. Only the F90 Compiler is Supported
The F77 compiler, previously invoked with the /OLD_F77 qualifier, is not available. Development
is currently underway to provide the following functionality contained in the OpenVMS Alpha F77
compiler that is not available in the OpenVMS I64 and OpenVMS Alpha F90 compilers:

• CDD and FDML support, which were previously available only in the OpenVMS Alpha F77
compiler, have now been implemented in the OpenVMS I64 Fortran 90 compiler.

• Code previously compiled with the F77 compiler that does not compile with the F90 compiler should
be reported through the problem reporting mechanism.

Note

The lack of support for /OLD_F77 should not be confused with the /F77 qualifier, which indicates
that the compiler uses FORTRAN-77 interpretation rules for those statements that have a meaning
incompatible with FORTRAN-66, and which will be supported.

6.5.3. /ARCH and /OPTIMIZE=TUNE Qualifiers
For the sake of "compile-and-go" compatibility, OpenVMS Alpha values for the /ARCH and
/OPTIMIZE=TUNE qualifiers are accepted on the compiler invocation command. An informational
message is printed saying they are ignored.

OpenVMS I64 values for /ARCH and /OPTIMIZE=TUNE are defined in the I64 compiler for
development purposes only. Their behavior is unpredictable and they should not be used.

6.6. VSI C/ANSI C
VSI C Version 7.1 is supported on OpenVMS I64 systems. Refer to the VSI C documentation, including
the VSI C Release Notes for details and additional porting considerations.

6.6.1. OpenVMS I64 Floating-Point Default
The native OpenVMS Alpha compiler defaults to /FLOAT=G_FLOAT. For OpenVMS I64, the default is
/FLOAT=IEEE_FLOAT/IEEE=DENORM.

68

Chapter 6. Preparing to Port Applications

On I64, there is no hardware support for floating-point representations other than IEEE. The VAX
floating point formats are supported in the compiler by generating run-time code to convert to
IEEE format in order to perform arithmetic operations, and then convert the IEEE result back to the
appropriate VAX format. This imposes additional run-time overhead and a possible loss of accuracy
compared to performing the operations in hardware on the OpenVMS Alpha (and VAX). The
software support for the VAX formats is an important functional compatibility requirement for certain
applications that deal with on-disk binary floating-point data, but its use should not be encouraged by
letting it remain the default. This change is similar to the change in default from /FLOAT=D_FLOAT on
VAX to /FLOAT=G_FLOAT on OpenVMS Alpha.

Note also that the default /IEEE_MODE has changed from FAST (on Alpha) to DENORM_RESULTS
on I64. This means that, by default, floating-point operations silently generate values that print as
Infinity or Nan (the industry-standard behavior) instead of issuing a fatal run-time error as they would
using VAX format float or /IEEE_MODE=FAST. Also, the smallest-magnitude nonzero value in this
mode is much smaller because results are permitted to enter the denormal range instead of being flushed
to zero as soon as the value is too small to represent with normalization.

6.6.2. Semantics of /IEEE_MODE Qualifier
On Alpha, the /IEEE_MODE qualifier generally has its greatest effect on the generated code of a
compilation. When calls are made between functions compiled with different /IEEE_MODE qualifiers,
each function produces the /IEEE_MODE behavior with which it was compiled.

On I64, the /IEEE_MODE qualifier primarily affects only the setting of a hardware register at program
startup. In general, the /IEEE_MODE behavior for a given function is controlled by the /IEEE_MODE
option that was specified on the compilation that produced the main program. The compiler marks the
object module of each compilation with the floating-point control options specified by the compile-time
qualifiers. When the OpenVMS I64 linker produces an executable image, it copies the floating point
controls from the object module that supplied the main entry point transfer address for the image into the
image itself; this is called the "whole program floating-point mode" for the image. Then when the image
is activated for execution, the hardware's floating-point controls are initialized according to this whole
program floating point mode. It is expected that code that modifies the floating-point controls at run-
time will be written to ensure that the whole program floating point mode settings get restored whenever
control passes out of the section of code that required the specific setting of the controls at run-time.

When the /IEEE_MODE qualifier is applied to a compilation that does not contain a main program, the
qualifier does have some effect: it can affect the evaluation of floating-point constant expressions, and it
is used to set the EXCEPTION_MODE used by the math library for calls from that compilation.

The qualifier has no effect on the exceptional behavior of floating-point calculations generated as inline
code for that compilation. Therefore, if floating point exceptional behavior is important to an application,
all of its compilations, including the one containing the main program, should be compiled with the same
/FLOAT and /IEEE_MODE settings.

Note that even on OpenVMS Alpha, setting /IEEE_MODE=UNDERFLOW_TO_ZERO requires the
setting of a run-time status register; therefore, this setting needs to be specified on the compilation
containing the main program in order to be effective in other compilations.

Finally, note that the /ROUNDING_MODE qualifier is affected in the same way as /IEEE_MODE,
and is included in the whole program floating-point mode, and that because VAX floating point
operations are actually performed using IEEE instructions, compilations that use VAX format
floating-point exhibit the same whole program floating-point mode settings as compilations with
/IEEE_MODE=DENORM/ROUND=NEAREST.

69

Chapter 6. Preparing to Port Applications

6.6.3. Predefined Macros
The compiler predefines a number of macros with the same meanings as in the native OpenVMS
Alpha compiler, except that it does not predefine any of the macros that specify the OpenVMS Alpha
architecture. Instead, it predefines the macros __ia64 and __ia64__, as is the practice in the Intel
and gcc compilers for OpenVMS I64. The change in floating-point representation from G_FLOAT to
IEEE is reflected in the macros that are predefined by default.

Some users have tried defining the macro __ALPHA explicitly by using /DEFINE or by putting it in
a header file as a quick way to deal with source code conditionals that were written to assume that if
__ALPHA is not defined, then the target must be a VAX system. Doing this causes the CRTL headers
and other OpenVMS headers to take the wrong path for OpenVMS I64. You must not define any of the
OpenVMS Alpha architecture predefined macros when using this compiler.

6.7. VSI C++
VSI C++ Version 7.1 is supported on I64. Refer to the VSI C++ documentation for details and
additional porting considerations.

6.7.1. Floating Point and Predefined Macros
Exactly the same considerations for floating-point defaults, /IEEE_MODE semantics, and predefined
macros as described for the C compiler above apply to the C++ compiler.

6.7.2. Long Double
The long double type is always represented in 128-bit IEEE quad precision. The /L_DOUBLE_SIZE=64
qualifier is ignored with a warning. Note that on OpenVMS Alpha, C++ library support for 64-bit lon
double was limited - code that requires a 64-bit floating point type should use double instead of long
double.

6.7.3. Object Model
The object model and name mangling schemes used by the C++ compiler on OpenVMS I64 differ
significantly from those used on OpenVMS Alpha. The "ARM" object model is not available, the only
object model is one that supports the ANSI/ISO C++ standard. However, this still differs from the
/MODEL=ANSI object model implemented on OpenVMS Alpha, as the model on OpenVMS I64 is
an implementation of the industry-standard OpenVMS I64 ABI. Programs that rely on the layout of C
++ objects (non "POD" data), or on the external mangles names as encoded in the .obj file, will need
to be reworked. Such programs are inherently highly implementation-dependent. But programs that use
standard C++ features in a reasonable implementation-independent manner should not have difficulty in
porting.

6.7.4. Language Dialects
The "cfront" dialect is no longer supported (and will be removed from OpenVMS Alpha as well).
Compilations specifying /standard=cfront will instead use the "relaxed_ansi" dialect.

6.7.5. Templates
On I64, .OBJ files are implemented in ELF format rather than EOBJ, and along with the OpenVMS
I64 linker they support the notion of "COMDAT" sections that have been used for some time on

70

Chapter 6. Preparing to Port Applications

both Windows and Unix platforms to resolve the issues of duplicate definitions at link-time that arise
when using C++ templates and inline functions. On OpenVMS Alpha, these issues are handled by
the repository mechanism, which arranges to present a single defining instance to the linker. On
OpenVMS I64, no repository mechanism is needed to do this, as duplicates are discarded by the linker
automatically. So the repository-based template instantiation options supported on OpenVMS Alpha
are not supported on IPF. OpenVMS Alpha build procedures that attempt to manipulate objects in the
repository will fail on OpenVMS I64 and will need to be changed (because there are no objects in the
repository on OpenVMS I64, just the demangler database). In most cases, the reason for manipulating
the repository directly in the build procedure has been eliminated by the compiler's use of COMDAT
instantiation.

6.8. Java
Java Version 1.4.2-1 is supported on I64. There are no differences between Java on Alpha and I64.

6.9. Macro-32
Most VAX MACRO programs that compile on Alpha should recompile on I64 without modification.
However, programs that call routines with nonstandard return values or programs that use the JSB
instruction to call routines written in other languages must add some new directives to the source file.
For more information, refer to the VSI OpenVMS MACRO Compiler Porting and User's Guide.

6.9.1. /ARCH and /OPTIMIZE=TUNE Qualifiers
For the sake of “compile-and-go” compatibility, OpenVMS Alpha values for the /ARCH and
/OPTIMIZE=TUNE qualifiers are accepted on the compiler invocation command. An informational
message is printed saying they are ignored.

OpenVMS I64 values for /ARCH and /OPTIMIZE=TUNE are defined in the I64 compiler for
development purposes only. Their behavior is unpredictable and they should not be used.

6.10. VSI Pascal
VSI Pascal Version 5.9 is available for both OpenVMS Alpha and OpenVMS I64.

There are no known language differences between Pascal on Alpha and Pascal on I64. The only
difference is that the default is for IEEE floating datatypes instead of VAX floating datatypes, which is
true for all the VSI OpenVMS I64 compilers.

6.10.1. /ARCH and /OPTIMIZE=TUNE Qualifiers
For the sake of "compile-and-go" compatibility, OpenVMS Alpha values for the /ARCH and
/OPTIMIZE=TUNE qualifiers are accepted on the compiler invocation command. An informational
message is printed saying they are ignored.

OpenVMS I64 values for /ARCH and /OPTIMIZE=TUNE are defined in the I64 compiler for
development purposes only. Their behavior is unpredictable and they should not be used.

71

Chapter 6. Preparing to Port Applications

72

Chapter 7. Other Considerations
This chapter describes additional porting considerations.

7.1. Hardware Considerations
This section contains information about the Alpha, PA-RISC and the Itanium processor families. It
also discusses processor-related development issues and provides examples using both C and assembly
language for typical processor-dependent code.

7.1.1. Intel Itanium Processor Family Overview
The Itanium architecture was developed by HP and Intel as a 64-bit processor for engineering
workstations and e-commerce servers. The Itanium processor family uses a new architecture called
Explicitly Parallel Instruction Computing (EPIC).

Some of the most important goals in the design of EPIC were instruction-level parallelism, software
pipelining, speculation, predication, and large register files. These allow Itanium processors to execute
multiple instructions simultaneously. EPIC exposes many of these parallel features to the compiler (hence
"Explicitly" in the name). This increases the complexity of the compiler, but it allows the compiler to
directly take advantage of these features.

EPIC is designed so future generations of processors can utilize different levels of parallelism, which
increases the flexibility of future designs. This allows the machine code to express where the parallelism
exists without forcing the processor to conform to previous machine widths.

For more information on assembly programming for the Intel Itanium processor family, see the Intel ®
Itanium ® Architecture Assembly Language Reference Guide, available at:

http://developer.intel.com/software/products/opensource/tools1/
tol_whte2.html

7.1.2. Alpha Processor Family Overview
Alpha is a 64-bit load/store RISC architecture that is designed with particular emphasis on the three
elements that most affect performance: clock speed, multiple instruction issue, and multiple processors.

The Alpha architects examined and analyzed current and theoretical RISC architecture design elements
and developed high-performance alternatives for the Alpha architecture.

The Alpha architecture is designed to avoid bias toward any particular operating system or programming
language. Alpha supports the OpenVMS Alpha, Tru64 UNIX, and Linux operating systems and supports
simple software migration for applications that run on those operating systems.

Alpha was designed as a 64-bit architecture. All registers are 64 bits in length and all operations are
performed between 64-bit registers. It is not a 32-bit architecture that was later expanded to 64 bits.

The instructions are very simple. All instructions are 32 bits in length. Memory operations are either
loads or stores. All data manipulation is done between registers.

The Alpha architecture facilitates pipelining multiple instances of the same operations because there are
no special registers and no condition codes.

73

Chapter 7. Other Considerations

The instructions interact with each other only by one instruction writing a register or memory and
another instruction reading from the same place. That makes it particularly easy to build implementations
that issue multiple instructions every CPU cycle.

Alpha makes it easy to maintain binary compatibility across multiple implementations and easy to
maintain full speed on multiple-issue implementations. For example, there are no implementation-
specific pipeline timing hazards, no load-delay slots, and no branch-delay slots.

The Alpha architecture reads and writes bytes between registers and memory with the LDBU and
STB instructions. (Alpha also supports word read/writes with the LDWU and STW instructions.) Byte
shifting and masking are performed with normal 64-bit register-to-register instructions, crafted to keep
instruction sequences short.

As viewed from a second processor (including an I/O device), a sequence of reads and writes issued by
one processor can be arbitrarily reordered by an implementation. This allows implementations to use
multibank caches, bypassed write buffers, write merging, pipelined writes with retry on error, and so
forth. If strict ordering between two accesses must be maintained, explicit memory barrier instructions
can be inserted in the program.

The basic multiprocessor interlocking primitive is a RISC-style load_locked, modify, store_conditional
sequence. If the sequence runs without interrupt, exception, or an interfering write from another
processor, then the conditional store succeeds. Otherwise, the store fails and the program eventually
must branch back and retry the sequence. This style of interlocking scales well with very fast caches and
makes Alpha an especially attractive architecture for building multiple-processor systems.

A privileged architecture library (PALcode) is a set of subroutines that are specific to a particular Alpha
operating system implementation. These subroutines provide operating-system primitives for context
switching, interrupts, exceptions, and memory management. PALcode is similar to the BIOS libraries
that are provided in personal computers.

For more information, refer to the Alpha Architecture Handbook.

7.2. Endianism Considerations
Users who are porting from OpenVMS Alpha or OpenVMS VAX to OpenVMS I64 do not need to
be concerned with endianism issues; OpenVMS on all platforms uses little-endian for data storage and
manipulation. This chapter is being made available more for reference to allow the reader to be aware of
issues, in general, when porting between different hardware architectures where endianisms are different.

Endianism refers to the way data is stored and defines how bytes are addressed in multibyte data types.
This is important because if you try to read binary data on a machine that is of a different endianism
than the machine that wrote the data, the results will be different. This is an especially significant
problem when a database needs to be moved to a different endian architecture.

There are two types of endian machines: big-endian (forward byte ordering or most significant first,
[MSF]) and little-endian (reverse byte ordering or least significant first, [LSF]). The mnemonics "big end
in" and "little end in" can be useful when discussing endianism. Figure 7.1 and Figure 7.2 compare the
two byte-ordering methodologies.

74

Chapter 7. Other Considerations

Figure 7.1. Big-Endian Byte Ordering

Figure 7.2. Little-Endian Byte Ordering

The Alpha microprocessor provides a little-endian environment for operating systems such as OpenVMS
and Tru64 UNIX, while the PA-RISC microprocessor provides a big-endian environment for the HP-UX
operating system.

On a little-endian operating system, such as OpenVMS, the little end, or least-significant byte is stored at
the lowest address. This means a hexadecimal like 0x1234 is stored in memory as 0x34 0x12. The same
is true for a 4-byte value; for example, 0x12345678 is stored as 0x78 0x56 0x34 0x12. A big-endian
operating system does this in reverse fashion, so 0x1234 is stored as 0x12 0x34 in memory.

Consider the number 1025 (2 to the tenth power plus 1) stored in a 4-byte integer. This is represented in
memory as follows:

little endian: 00000000 00000000 00000100 00000001b
 big endian: 00000001 00000100 00000000 00000000b

The Intel Itanium processor family architecture supports both big-endian and little-endian memory
addressing. There are no problems reading and exchanging data between OpenVMS Alpha and
OpenVMS I64 running on Itanium processors. If there is a need to exchange data between OpenVMS
on an Alpha or I64 system and HP-UX on PA-RISC or the Itanium processor family, then byte swapping
might be required.

75

Chapter 7. Other Considerations

76

Appendix A. Application Evaluation
Checklist
Use this checklist to guide you through the planning and porting process.

General Information

What does your application do (brief description)?

1.

Development History and Plans

a. Does the application currently run on other operating systems or
hardware architectures?

[] YES [] NO

b. If yes, does the application currently run on the latest OpenVMS
Alpha system?

[] YES [] NO

2.

[If your application already runs on multiple platforms, it is likely to be platform independent,
and therefore, easier to port to I64. (However, if the application code is conditionalized per
platform, then minor modifications might be required. For more information, see Section 4.8.1.)
If you answer YES to b, your application will be easier to port to I64. If your application is
running on OpenVMS VAX, you must first port it to OpenVMS Alpha. (For more information,
refer to the Migrating an Application from OpenVMS VAX to OpenVMS Alpha Manual.)]

When was the last time the application environment was completely recompiled and rebuilt from
source?
a. Is the application rebuilt regularly? [] YES [] NO
b. How frequently?

3.

[Applications that are not built frequently might require additional work before being ported. For
example, changes in the development environment might cause incompatibilities. Prior to porting
your applications, confirm that they can be built on the latest version of OpenVMS Alpha.]

Is the application actively maintained by developers who know it
well?

[] YES [] NO

List developer names and contact information:
Developer Contact

4.

a. How is a new build of the application tested or verified for proper operation?5.

77

Appendix A. Application Evaluation Checklist

b. Do you have performance characterization tools to assist with
optimization?

[] YES [] NO

c. If yes, list the tools and version numbers used:
Tool Version

d. Which source-code configuration management tools are used? List the tools and their version
numbers:
Tool Version

6. Do you have a development and test environment separate from your

production systems?
[] YES [] NO

7. What procedures are in place for rolling in a new version of the
application into production?

What are your plans for the application after porting it to I64?
a. No further development [] YES [] NO
b. Maintenance releases only [] YES [] NO
c. Additional or changed functionality [] YES [] NO
d. Maintain separate I64 and OpenVMS Alpha sources [] YES [] NO

8.

[If you answer YES to a, you might want to consider translating the application. A YES response
to b or c is reason to evaluate the benefits of recompiling and relinking your application,
although translation is still possible. If you intend to maintain separate I64 and OpenVMS Alpha
sources, as indicated by a YES to d, you might need to consider interoperability and consistency
issues, especially if different versions of the application can access the same database.]

Composition of the Application

Consider the size and components of your application that need to be ported.

How large is your application?
How many modules?
How many lines, disk blocks, or megabytes of code?
How much disk space is required?

[This will help you “size” the effort and the resources required for porting. Most helpful is
knowing the number of disk blocks of code.]

78

Appendix A. Application Evaluation Checklist

a. Do you have access to all source files that make up your
application?

[] YES [] NO

b. If you are considering using VSI Services, will it be possible to
give VSI access to these source files and build procedures?

[] YES [] NO

10.

[If you answer NO to a, translation may be your only porting option for the files with missing
sources. Translate user-mode OpenVMS Alpha images to I64 images.

Note that if you have OpenVMS VAX images, first translate them to OpenVMS Alpha images.
You cannot translate them directly to I64 images.

A YES answer to b allows you to take advantage of a greater range of VSI porting services.]

a. List the languages used to write the application. (If multiple
languages are used, give the percentages of each.)

Language Percentage

b. Do you use Macro--64, PL/I, Ada 83, or Fortran 77 on
OpenVMS Alpha?

[] YES [] NO

11.

[If you use Macro–64 on OpenVMS Alpha, you must rewrite the code because no Macro–
64 compiler exists for I64. If possible, VSI recommends rewriting the code into a high-level
language using documented system interfaces. For machine-specific code that must be written in
assembly language, you must recode the Macro–64 code into I64 assembly code.

Similarly, PL/I, Fortran 77, and ADA 83 are not supported on I64. If your application has code
written in PL/I, VSI recommends rewriting it in another language such as C or C++. Update
code written in Ada 83 to Ada 95, and code written in Fortran 77 to Fortran 90. Analyze your
code to determine whether the newer compiler requires changes to the code.

In general, if the compilers are not available on I64, you must translate or rewrite code in a
different language.

For information on availability of compilers and translators, see Chapters 5 and 6.]

Is there application documentation? [] YES [] NO12.
[If you answer yes, note that if any changes were required to the application, the documentation
might have to be updated accordingly.]

External Dependencies

Consider the system configuration, environment, and software required for developing, testing, and
running your application.

What is the system configuration (CPUs, memory, disks) required to set up a development
environment for the application?

79

Appendix A. Application Evaluation Checklist

[This will help you plan for the resources needed for porting.]

What is the system configuration (CPUs, memory, disks) required to set up a typical user
environment for the application, including installation verification procedures, regression tests,
benchmarks, or work loads?

14.

[This will help you determine whether your entire environment is available on I64.]

Does the application rely on any special hardware? [] YES [] NO15.
[This will help you determine whether the hardware is available on I64, and whether the
application includes hardware-specific code.]

What version of OpenVMS Alpha does your application currently
run on?

Does the application run on OpenVMS Alpha Version 7.3-2 or
7.3-1?

[] YES [] NO

16.

[VSI recommends having your application running on the latest version of OpenVMS Alpha
before porting it to I64.]

Does the application require layered and third-party products to run?
a. From VSI: (other than compiler RTLs) [] YES [] NO
List the VSI layered products and versions:
VSI Product Version

b. From third parties: [] YES [] NO
List the third-party products and versions:
Third-Party Product Version

17.

[If you answer YES to a and are uncertain whether the VSI layered products are yet available
for I64, check with an VSI support representative. For information about VSI's commitment to
support porting of software, see Section 3.3. If you answer YES to b, check with your third-party
product supplier.]

18. a. Do you have regression tests for the application? [] YES [] NO

80

Appendix A. Application Evaluation Checklist

b. If yes, do they require any particular software product such as HP
Digital Test Manager?

[] YES [] NO

[If you answer YES to a, you should consider porting those regression tests. If you answer
YES to b, HP Digital Test Manager (part of the DECset product set) is available with this
release of OpenVMS. If you require other tools for testing purposes, contact your VSI support
representative; see also Chapter 5. VSI recommends a disciplined testing process to check
regressions in product development.]

Dependencies on the OpenVMS Alpha Architecture

Consider differences between OpenVMS Alpha and I64. The following questions will help you account
for the most significant differences. Consider the changes that might be necessary to application
components because of these differences. Any user-written code or assembly code that depends
specifically on the OpenVMS Alpha architecture must be rewritten.

Does the application use OpenVMS VAX floating-point data types? [] YES [] NO19.
[If you answer YES, note that the default for I64 compilers is IEEE floating data types. I64
compilers provide for VAX floating support by automatically converting from OpenVMS VAX
to IEEE floating data types. Slight precision differences might result. In addition, run-time
performance will be somewhat slower (compared to the direct use of IEEE floating data types
without conversion), depending on the extent to which the application is dominated by floating
point calculations. For more information about floating point data types, see Section 4.8.4.]

Is the data naturally aligned? [] YES [] NO20.
[If your data is not naturally aligned, VSI recommends that you align your data naturally
to achieve optimal performance for data referencing. Unaligned data can degrade data
referencing performance significantly. In certain instances, you must align data naturally. For
more information about data structures and alignment, see Section 4.8.7 and refer to the VSI
OpenVMS Programming Concepts Manual.]

Does the application call OpenVMS system services that:
a. Modify the working set? [] YES [] NO
b. Change program control flow using SYS$GOTO_UNWIND? [] YES [] NO

21.

[If you answer YES to a, make sure that calls to the SYS$LKWSET and SYS$LKWSET_64
system services specify the required input parameters correctly.

If you answer YES to b, change any calls to SYS$GOTO_UNWIND to
SYS$GOTO_UNWIND_64. I64 does not support SYS$GOTO_UNWIND.

For more information, see Chapter 4.]

a. Does the application use multiple, cooperating processes? [] YES [] NO
If so:
b. How many processes?
c. What interprocess communication method is used?

22.

[] $CRMPSC [] Mailboxes [] SCS [] Other

81

Appendix A. Application Evaluation Checklist

[] DLM [] SHM, IPC [] SMG$ [] STR$
d. If you use global sections ($CRMPSC) to share data with other
processes, how is data access synchronized?

[This will help you determine whether you will need to use explicit synchronization, and the
level of effort required to guarantee synchronization among the parts of your application. Use of
a high-level synchronization method generally allows you to port an application most easily.]

Does the application currently run in a multiprocessor (SMP)
environment?

[] YES [] NO23.

[If you answer YES, it is likely that your application already uses adequate interprocess
synchronization methods.]

Does the application use AST (asynchronous system trap)
mechanisms?

[] YES [] NO24.

[If you answer YES, you should determine whether the AST and main process share access to
data in process space. If so, you may need to explicitly synchronize such accesses. Note that this
is equally true for applications on Alpha. For more information about ASTs, see VSI OpenVMS
Programming Concepts Manual.]

a. Does the application contain condition handlers? [] YES [] NO
b. Do any handlers modify data in the mechanism array? [] YES [] NO

25.

[The OpenVMS Alpha and OpenVMS I64 mechanism array formats differ significantly. Be
sure to modify any applications that modify register values in the mechanism array. For more
information, see VSI OpenVMS Alpha Guide to Upgrading Privileged-Code Applications.]

a. Does the application run in privileged mode or link against
SYS$BASE_IMAGE?

[] YES [] NO

If so, why?
b. Does the application depend on OpenVMS internal data structures
or interfaces?

[] YES [] NO

26.

[Applications that link against the OpenVMS executive or run in privileged mode might require
additional porting work. Undocumented interfaces in SYS$BASE_IMAGE might have changed
on I64.

Applications that depend on OpenVMS internal data structure definitions (as defined in
SYS$LIBRARY:LIB.INCLUDE, SYS$LIBRARY:LIB.L32, SYS$LIBRARY:LIB.MLB,
SYS$LIBRARY:LIB.R64, SYS$LIBRARY:LIB.REQ, and SYS$LIBRARY:SYS$LIB_C.TLB)
might also require additional porting work, as some internal data structures have changed on
I64.]

Does the application use connect-to-interrupt mechanisms? [] YES [] NO
If yes, with what functionality?

27.

[Connect-to-interrupt is not supported on I64 systems. Contact an VSI representative if you need
this feature.]

82

Appendix A. Application Evaluation Checklist

Does the application create or modify machine instructions? [] YES [] NO28.
[Guaranteeing correct execution of instructions written to the instruction stream requires great
care on I64. Any code dealing with specific machine instructions must be rewritten.]

Does the application include any other user-written code or
assembler code that depends specifically on the OpenVMS Alpha
architecture?

[] YES [] NO29.

[If you answer YES, rewrite such code. Optimally, rewrite it so that it is independent of
architecture.]

Does the application include or depend on any conditionalized
statements in source code or build files, or any code that includes
logic that assumes it is running on either a VAX or an OpenVMS
Alpha system?

[] YES [] NO30.

[If you answer YES, you might have to modify the conditional directives slightly. For example,
change “IF ALPHA” to “IF ALPHA OR IPF”, or change “IF NOT ALPHA” to “IF VAX”. For
more information, see Section 4.8.1.]

What parts of the application are most sensitive to performance? I/O, floating point, memory,
realtime (that is, interrupt latency, and so on).

31.

[This will help you determine how to prioritize work on the various parts of your application and
allow VSI to plan performance enhancements that are most meaningful to customers.]

Does the application use any OpenVMS Alpha Calling Standard
routines?

[] YES [] NO32.

[If you answer YES, note that applications that use the calling standard data
structure named LIBICB, or that make use of the calling standard routines such as
LIB$GET_CURRENT_INVO_CONTEXT, LIB$GET_PREVIOUS_INVO_CONTEXT,
LIB$PUT_INVO_CONTEXT, and LIB$GET_INVO_HANDLE, will have to be modified.
These routines have been renamed in I64 due to changes in the LIBICB data structure. In
addition, the calling standard has changed. Applications with direct knowledge of the OpenVMS
Alpha calling standard must be modified for I64. For more information on the differences
between OpenVMS Alpha and OpenVMS I64 calling standards, see Section 2.1.1. For more
information about OpenVMS calling standards, see the VSI OpenVMS Calling Standard.]

Does the application use non-standard routine linkage declarations? [] YES [] NO33.
[If you answer YES, note that by definition applications with non-standard linkages know the
OpenVMS Alpha calling standard and might need modification to conform to the I64 calling
standard.]

34. a. Does the application depend on the format or content of an object

file?
[] YES [] NO

83

Appendix A. Application Evaluation Checklist

b. Does the application depend on the format or content of an
executable image?

[] YES [] NO

c. Does the application depend on the debug symbol table content of
an image?

[] YES [] NO

[If you answer YES to a, b, or c, note that applications that depend on any of these image and
object file data structures must be modified. The industry-standard object and image file layout
called ELF has been adopted by I64. The industry-standard DWARF debug symbol table format
has also been adopted. Applications with dependencies on OpenVMS Alpha's object, image or
debug symbol table formats must be modified. For more information, see Section 4.8.3.4.]

35. Does the application use the C asm statement? [] YES [] NO

Does the application use BLISS register Built-ins? [] YES [] NO36.
[If you answer YES, note that applications that use the BLISS BUILTIN statement to declare
register built-ins must be modified.]

Porting Your Application

Once the preliminary evaluation and planning stages are completed, these are the main porting tasks.
Have you upgraded your OpenVMS Alpha system to the latest
version available?

[] YES [] NO37.

[If you answer NO, first upgrade your OpenVMS Alpha system before beginning to port the
application.]

a. Have you test compiled your application on the latest version of
OpenVMS Alpha, using the most recent version of the compiler?

[] YES [] NO

b. Have you corrected any problems detected during the compile? [] YES [] NO

38.

[If you answer NO to a, compile your application on the latest OpenVMS Alpha system, using
the latest compiler available. If you answer YES to a but have rewritten some code since, compile
again. After compiling, correct any problems detected. When you have finished this phase, and
when you have responded to all other considerations detailed thus far in this checklist and in
Chapters 4 through 7, your application is ready for porting to I64.]

39. Copy the application source modules and all related code to the I64

system. Have you copied the modules and related code to I64?
[] YES [] NO

Compile, link, and run the application on the I64 system. Application
is compiled, linked, and running?

[] YES [] NO40.

[For details, see Chapter 5.]

Perform unit testing on the I64 system. Have you completed the unit
testing?

[] YES [] NO41.

[For details, see Chapter 5.]

84

Appendix A. Application Evaluation Checklist

Perform system testing on the I64 system. Have you completed the
system testing?

[] YES [] NO42.

[For details, see Chapter 5.]

Perform regression testing on the I64 system. Have you completed
the regression testing?

[] YES [] NO43.

[For details, see Chapter 5.]

Did testing succeed? [] YES [] NO44.
[If you answer NO, resolve the problems, then recompile, relink, and retest the application. For
details, see Chapter 5.]

85

Appendix A. Application Evaluation Checklist

86

Appendix B. Unsupported Layered
Products
VSI has not plans to port some layered products to OpenVMS I64. Table B.1 lists these layered products
and the replacement products recommended by VSI.

Table B.1. Layered Products Not Ported to OpenVMS I64

Product Suggested Replacement

BASEstar Classic BASEstar Open
HP Ada Compiler for OpenVMS Alpha Systems Ada compiler from Ada Core
HP Ada Compiler for OpenVMS Alpha Systems GNAT Ada for OpenVMS Integrity Servers – from

Ada Core Technologies
Pathworks 32 Advanced Server

87

Appendix B. Unsupported Layered Products

88

Appendix C. Porting Application-
Specific Stack-Switching Code to I64
Note

The information in this appendix has been updated to include x86-64.

Many applications support small, private threading packages that switch stacks to perform multiple tasks
within the context of a single process. Many of these packages use one or more small routines written in
assembly language (Macro-32 on VAX or Macro-64 on Alpha) to manipulate the stack pointers and to
cause, in effect, a context switch within a single process. Typically, the ability to stall and restart the tasks
is also required. The replaced stack can be in any mode appropriate to the required task.

On I64, switching stacks is much more difficult. The I64 architecture includes two stacks, a memory
stack and a register stack engine backing store (commonly called the RSE stack or simply theregister
stack.) The RSE stack is maintained by hardware and the architecture provides support for asynchronous
manipulation of the stack. Also, the I64 architecture includes many specialized hardware registers (called
control and application registers) that must be maintained across a context switch. In addition, the IAS
assembler is not a supported part of the OpenVMS distribution.

To accommodate these types of applications, OpenVMS offers a set of system routines called KP
services. Originally written to support device drivers written in higher-level languages, the KP services
have been expanded to work in any mode and at any IPL. While the KP model may not match the needs
of all private stack-switching code, VSI strongly suggests moving to this model.

KP services are available on Alpha, I64, and x86-64 architectures, allowing for common code. There are
some differences in implementation; however, whenever possible, options valid on only one architecture
are ignored on the other.

C.1. Overview of KP Services
The KP model is most accurately described as a co-routine model with voluntary stall and resumption. A
code stream running in process or system context desires to start another stream (called the KP routine)
in the same mode but without disturbing the existing stack context and allowing the KP routine to stall
and resume as necessary while maintaining its own distinct context. Resumption of a KP routine can be
asynchronous to the original code stream that started the KP routine.

The easiest view of a KP routine is that of a routine that operates on a private stack (or on I64, a pair of
stacks.) The routine can be stalled and resumed. To a compiler, the routines to start, stall, and resume
simply appear as outbound procedure calls which obey the OpenVMS calling standard. The saving of
state and stack switch takes place entirely within the context of the KP routines. When a code stream
gives up control, the resumption point is always as if the call that caused transfer of control completed.

The base support includes routines to assist in the allocation of necessary stacks and data structures and
routines to start, stall, restart, and terminate a KP routine.

A KP routine can start another KP routine.

The basic KP support routines are:

89

Appendix C. Porting Application-Specific Stack-Switching Code to I64

• EXE$KP_START ― Start a KP routine.

• EXE$KP_STALL_GENERAL ― stall the current routine and return to the last caller of
EXE$KP_START or EXE$KP_RESTART.

• EXE$KP_RESTART ― Restart a KP routine that has been stalled by a call to
EXE$KP_STALL_GENERAL.

• EXE$KP_END ― Terminate the KP routine.

The routines and required data structures are described in Section C.2.2.

C.1.1. Terminology
The memory stack is the stack that is pointed to the stack pointer register. The memory stack is the only
stack on Alpha and x86-64 systems.

The register stack is the informal name for the register stack engine (RSE) backing store. The I64
architecture includes 96 stacked registers that are used for argument passing between routines and that
can be used for local storage within a routine as well. The hardware maintains the stacked register state
and flushes registers to the backing store as needed.

A KP routine is a sequence of code that runs on a private stack or stacks. It is started via a call to
EXE$KP_START and is terminated by an implicit or explicit call to EXE$KP_END.

A KPB is the data structure that describes the stack or stacks and that maintains state and context
information for the KP routine.

A KPB is valid if it has been used to activate a KP routine via EXE$KP_START. EXE$KP_END
marks the KPB as invalid. The initial state of a KPB is invalid.

A KPB is active when the KP routine has been started via EXE$KP_START or resumed via
EXE$KP_RESTART. EXE$KP_STALL_GENERAL and EXE$KP_END mark the KPB as inactive.
The initial state of a KPB is inactive.

C.1.2. Stacks and Data Structures
On I64, three pieces of memory are associated with a KP routine ― a memory stack, an RSE stack, and
a KPB, which is the data structure that ties them all together.

Note

On non-I64 architectures, there is no RSE stack and all parameters and fields related to the RSE stack
are ignored.

The KPB and stacks each must be allocated from an appropriate region, and at an appropriate mode,
protection, and ownership to match the mode in which the KP routine will execute. When porting
an existing application, it is expected that the application already allocates an appropriate memory
stack. The existing memory stack allocation routine can be adapted to the KP API. As with previous
architectures, the memory stack is accessed from the highest address (the base of the stack) to the lowest
address.

90

Appendix C. Porting Application-Specific Stack-Switching Code to I64

RSE stacks are typically allocated from 64-bit space because the register stack engine is a new entity
with no previous 32-bit dependencies. A number of allocation routines have been supplied that should
cover most common application needs. The RSE stack is accessed from the lowest address to the highest
address.

Table C.1 offers guidelines for allocation by mode and scope of the application.

Table C.1. Allocation Guidelines by Mode and Scope

Mode-Scope1 KPB Memory Stack Register Stack

Kernel – System

EXE$KP_
ALLOC_KPB2

Nonpaged pool

KW

EXE$ALO
NONPAGED

S0/S1

KW

EXE$KP_ALLOC_
MEM_STACK

S2

KW

EXE$KP_ALLOC_
RSE_STACK3

Kernel – Process Non-Paged Pool or P1

KW

EXE$ALO
NONPAGED

or EXE$ALOP1PROC

P1 – Permanent

KW

$CREATE_REGION
/$CRETVA

P2 – Permanent

KW

EXE$KP_ALLOC_
RSE_STACK_P2

Kernel – Image P1

KW

EXE$ALOP1IMAG

P1-Non-permanent

KW

$CREATE_REGION
/$CRETVA

P2 – Non-permanent

KW

$CREATE_REGION
/$CRETVA

Exec – Process P1

EW

EXE$ALOP1PROC

P1 – Permanent

EW

$CREATE_REGION
/$CRETVA

P2 – Permanent

EW

EXE$KP_ALLOC_
RSE_STACK_P2

Exec – Image P1

EW

EXE$ALOP1IMAG

P1 – Non-permanent

EW

$CREATE_REGION
/$CRETVA

P2 – Non-permanent

EW

$CREATE_REGION
/$CRETVA

Super – Process P1

SW

EXE$ALOP1PROC

P1 – Permanent

SW

$CREATE_REGION
/$CRETVA

P2 – Permanent

SW

EXE$KP_ALLOC_
RSE_STACK_P2

Super – Image P1

SW

EXE$ALOP1IMAG

P1 – Non-permanent

SW

$CREATE_REGION

P2 – Non-permanent

SW

$CREATE_REGION

91

Appendix C. Porting Application-Specific Stack-Switching Code to I64

Mode-Scope1 KPB Memory Stack Register Stack
/$CRETVA /$CRETVA

User – Image P0

UW

Heap/
Malloc/LIB$GET_VM

P0 – Non-permanent4

UW

EXE$KP_ALLOC_
MEM_STACK_USER

P2 – Non-permanent

UW

EXE$KP_ALLOC_
RSE_STACK_P2

1Image scope terminates at image exit. Process scope terminates at process exit and will survive image rundown. System scope does not require
process context.
2EXE$KP_ALLOC_KPB allocates kernel mode KPB and kernel mode RSE stacks in a single call
3EXE$KP_ALLOC_RSE_STACK_P2 creates permanent regions.
4Note that permanent memory regions may not be created in user mode.

C.1.3. KPBs
The KPB is a data structure that is used to maintain the necessary context between the initiating code
stream and the KP routine. The KPB is semitransparent. Some fields are maintained by the application,
some by the KP routines and some are shared. The KP routines assume the KPB was zeroed on
allocation and, thus that any nonzero field contains legitimate data.

The structure definitions for a KPB are defined by the $KPBDEF macro for Macro-32 and KPBDEF.H
for C. The KPB definitions are considered system-internal and thus supplied in LIB.MLB and
SYS$LIB_C.TLB. For BLISS, LIB.REQ or LIB.L32/LIB.L64 contain the KPB definitions.

The KPB is a variable-length structure consisting of a number of areas or substructures. Not all areas are
required. The areas are:

• Base area

• Scheduling area

• VEST area

• Spinlock area

• Debug area

• User parameter area

The base area is required. It contains a standard structure header, the stack sizes and base addresses,
flags (including what other areas are present), the memory stack pointer for the nonactive code stream,
pointers to the other areas, and additional fields required by the base KP routines.

The scheduling area includes pointers to stall, restart and end handling routines, a fork block and a
pointer to an additional fork block. With the exception of the end routine, most are required by high-IPL
driver-level code only. Callers of EXE$KP_USER_ALLOC_KPB must supply an end routine to perform
necessary cleanup of the allocated memory.

The VEST and spinlock areas are used primarily by the driver code.

The debug area offers limited tracing capability implemented in the driver support routines.

The user parameter area is simply undefined storage allocated contiguously to the other areas. The
application is free to use this memory for its own needs.

92

Appendix C. Porting Application-Specific Stack-Switching Code to I64

C.1.4. Supplied KPB Allocation Routines
The operating system supplies two standard allocation routines for KPBs with associated stacks.
The original kernel-mode, driver level interface has been retained unchanged from Alpha so that
device drivers using the KP interface do not require source changes in this area. In addition, a mode-
independent routine is available. The mode-independent routine calls application-specified routines to
allocate the KPB and each of the stacks. Most new applications and applications porting to the KP API
will use the latter routine.

Both the kernel and mode-independent routines initialize the KPB. C prototypes for all the supplied
routines can be found in the header file EXE_ROUTINES.H.

C.1.5. Kernel Mode Allocation
The format for kernel mode allocation is as follows.

EXE$KP_ALLOCATE_KPB kpb, stack_size, flags, param_size

C prototype
status = EXE$KP_ALLOCATE_KPB(KPB_PPS kpb,
 int stack_size,
 int flags,
 int param_size)

For kernel mode use only. This routine has the same prototype as the original Alpha routine.

On I64, the RSE stack size equals the memory stack size (in bytes).

Note

On non-I64 architectures, there is no RSE stack and all parameters and fields related to the RSE stack
are ignored.

Parameters
• KPB – Address of a longword to receive the address of the allocated data structure. By convention

within OpenVMS APIs, 32-bit pointers are passed by 32-bit address (short pointer to short pointer to
struct KPB).

• STACK_SIZE – A 32-bit value denoting the size of the stacks to be allocated in bytes. Passed
by value. The supplied value is rounded up to a multiple of the hardware page size. In any
case, the minimum number of pages allocated will be no smaller than the SYSGEN parameter
KSTACKPAGES. The stack is allocated on page boundaries with unmapped guard pages on both
ends. The memory stack is allocated in 32-bit S0/S1 address space.

Note

On I64 systems, the RSE stack is sized identically to the memory stack and is allocated from 64-bit
S2 address space.

• FLAGS – Longword bitmask of flags. Passed by value. Table C.2 describes the flags that are defined
for this parameter.

93

Appendix C. Porting Application-Specific Stack-Switching Code to I64

Table C.2. Kernel Mode Allocation Flags

Flag Description

KP$M_VEST OpenVMS system KPB. In general, this flag
should be set.

KP$M_SPLOCK Allocate a spinlock area within the KPB
KP$M_DEBUG Allocate a debug area within the KPB.
KP$M_DEALLOC_AT_END KPB should be automatically deallocated when

the kernel process routine terminates.
KP$M_SAVE_FP

(IA64 only; ignored on Alpha and x86-64)

Save floating-point context as well as the general
registers. Certain operations, such as integer
multiplication and division on IA64, can be
implemented using floating-point operations.
These operations use the minimal floating-point
register set, which is by definition not part of the
preserved register set. If the application uses only
the minimal floating-point register set, this bit
need not be set. If the application uses floating-
point data, this bit must be set to preserve the
correct floating point context across the stack
switch.

In the x86-64 calling standard, no floating-point
registers are preserved across procedure calls.

KP$M_SET_STACK_LIMITS Call $SETSTK_64 at every stack switch.
Process-scope applications should always set this
flag because condition handling requires accurate
stack limit values.

• PARAM_SIZE – Longword by value. Size, in bytes, of the user parameter area in the KPB. Pass
zero if no parameter area is required.

Return value (status)

SS$_NORMAL
SS$_INSFMEM
SS$_INSFARG
SS$_INSFRPGS

C.1.6. Mode-Independent Allocation
The syntax for mode-independent allocation is as follows.

EXE$KP_USER_ALLOC_KPB kpb, flags, param_size, *kpb_alloc, mem_stack_bytes,
*memstk_alloc, rse_stack_bytes, *rsestk_alloc, *end_rtn

C prototype
status = EXE$KP_USER_ALLOC_KPB(KPB_PPS kpb, int flags,
 int param_size,

94

Appendix C. Porting Application-Specific Stack-Switching Code to I64

 int (*kpb_alloc)(),
 int mem_stack_bytes,
 int(*memstk_alloc)(),
 int rse_stack_bytes,
 int(*rsestk_alloc)(),
 void(*end_rtn)())

Parameters
• KPB – Address of a longword to receive the address of the allocated data structure. By convention

within OpenVMS APIs, 32-bit pointers are passed by 32-bit address (short pointer to short pointer to
struct KPB).

• FLAGS – Longword bitmask of flags. Passed by value. Table C.3 describes the flags that are defined
for this parameter.

Table C.3. Mode-Independent Allocation Flags

Flag Description

KP$M_VEST OpenVMS system KPB. In general, this flag
should be set.

KP$M_SPLOCK Allocate a spinlock area within the KPB.
KP$M_DEBUG Allocate a debug area within the KPB.
KP$M_DEALLOC_AT_END KPB should be automatically deallocated when

the kernel process routine terminates.
KP$M_SAVE_FP

(IA64 only; ignored on Alpha and x86-64)

Save floating-point context as well as the general
registers. Certain operations such as integer
multiplication and division on I64 systems can
be implemented using floating-point operations.
These operations use the minimal floating-point
register set, which is by definition not part of the
preserved register set. If the application uses only
the minimal floating-point register set, this bit
need not be set. If the application uses floating-
point data, this bit must be set to preserve the
correct floating-point context across the stack
switch.

In the x86-64 calling standard, no floating-point
registers are preserved across procedure calls.

KP$M_SET_STACK_LIMITS Call $SETSTK_64 at every stack switch.
Process-scope applications should always set this
flag since condition handling requires accurate
stack limit values.

• PARAM_SIZE – Longword by value. Size, in bytes, of the user parameter area in the KPB. Pass
zero if no parameter area is required.

• KPB_ALLOC – Address of a procedure descriptor for the routine to allocate the KPB. The
allocation routine will be called with two parameters, a length and a longword to receive the address
of the allocated KPB. The length parameter is in bytes and is passed by reference. The allocation
routine must allocate at least the required number of bytes out of 32-bit space appropriate for the

95

Appendix C. Porting Application-Specific Stack-Switching Code to I64

mode in which the KP routine will run. The address is expected to be at least quadword aligned and
the actual allocation size must be written back into the length argument.

• MEM_STACK_BYTES – 32-bit value denoting the size of the memory stack to be allocated in
bytes. Passed by value. The supplied value is rounded up to a multiple of the hardware page size.

• MEMSTK_ALLOC – Address of a procedure descriptor for a routine to allocate the memory stack.
Section C.1.7 describes the format and required actions of this routine.

• RSE_STACK_BYTES – 32-bit value that denotes the size, in bytes, of the memory stack to be
allocated. Passed by value. The supplied value is rounded up to a multiple of the hardware page size.
On non-I64 architectures, this parameter is ignored.

• RSESTK_ALLOC – Address of a procedure descriptor for a routine to allocate the memory stack.
Section C.1.7 describes the format and required actions of this routine. On non-I64 architectures,
this parameter is ignored.

• END_RTN – Address of a procedure descriptor for the end routine. The end routine is called when
the KP routine terminates, either by calling EXE$KP_END or by returning. An end routine is
required to either cache or deallocate the stacks and KPB.

C.1.7. Stack Allocation APIs
The stack allocation routines have identical APIs for both memory and RSE stack allocation. The routine
is called with a 64-bit address of the allocated KPB and an integral number of hardware-specific pages
(not pagelets) to allocate.

The syntax for specifying stack allocation routines is as follows:

status = alloc-routine (KPB_PQ kpb, const int stack_pages)

• KPB – 64-bit address of a previously allocated KPB. Passed by 64-bit reference.

• STACK_PAGES – Integral number of whole pages to allocate. Passed by 32-bit value.

The allocation routine is expected to allocate page-aligned address space. While not strictly necessary,
it is strongly suggested that the stack be protected by no-access guard pages on both ends. VSI
also recommends that the minimum stack size be at least the value of the SYSGEN parameter
KSTACKPAGES (global cell SGN$GL_KSTACKPAG). This allows a certain measure of control of the
stack size without necessitating recompilation of the application. Also, stack usage on I64 is significantly
different than on previous architectures, and the previously allocated stack size might not be adequate.

The memory stack allocation routine must set the following KPB fields as follows:

• KPB$IS_STACK_SIZE – The size of the stack in bytes, not including guard pages.

• KPB$PQ_STACK_BASE – The address of the stack base. For the memory stack, this is the address
of the byte past the end of the allocated stack. In other words, this is the sum of the allocated address
plus the size of the allocation in bytes.

The memory stack allocation routine can set the following KPB field as follows:

• KPB$Q_MEM_REGION_ID – The region ID returned by the $CREATE_REGION system service.
This information is required to deallocate the stack.

96

Appendix C. Porting Application-Specific Stack-Switching Code to I64

The RSE stack allocation routine must set the following KPB fields as follows:

• KPB$IS_STACK_SIZE – The size of the stack in bytes, not including guard pages.

• KPB$PQ_STACK_BASE – The address of the stack base. For the RSE stack, this is the lowest
allocated address.

The RSE stack allocation routine can set the following KPB field as follows:

• KPB$Q_REGION_ID – The region ID returned by the $CREATE_REGION system service. This
information is required to deallocate the stack.

Both routines must return status to the calling routine.

C.1.8. System-Supplied Allocation and Deallocation
Routines
The system supplies a number of standard allocation routines. The routines adhere to the KP allocation
API and can be used in place of a user-written routine if they meet the needs of the application. The
following allocation routines are available:

• EXE$KP_ALLOC_MEM_STACK (kernel mode, S0/S1 space)

• EXE$KP_ALLOC_MEM_STACK_USER (user mode, P0 space)

• EXE$KP_ALLOC_RSE_STACK (caller's mode, S2 space)

• EXE$KP_ALLOC_RSE_STACK_P2 (caller's mode, P2 space)

The following deallocation routines are supplied. All deallocation routines take a single argument, the
address of the KPB.

• EXE$KP_DEALLOCATE_KPB

• Only KPBs allocated by EXE$KP_ALLOCATE_KPB

• Deallocates stacks and KPB

• EXE$KP_DEALLOC_MEM_STACK

• EXE$KP_DEALLOC_MEM_STACK_USER

• EXE$KP_DEALLOC_RSE_STACK

• EXE$KP_DEALLOC_RSE_STACK_P2

C.1.9. End Routine
The end routine is called by the KP services when EXE$KP_END is called, either explicitly or by
reaching the end of the KP routine. Since EXE$KP_USER_ALLOC_KPB allows the specification of
arbitrary allocation routines, the end routine must either cache the KPB for future use by the application
or call the necessary deallocation routines for the stacks and KPB.

97

Appendix C. Porting Application-Specific Stack-Switching Code to I64

The end routine is called with two parameters as follows:

void end_routine (KPB_PQ KPB, int status)

• KPB – 64-bit address of a previously allocated KPB. Passed by 64-bit reference.

• STATUS – optional status value. If EXE$KP_END was called explicitly, the status value is that
supplied as the second argument to EXE$KP_END. If the second argument was omitted, the value
SS$_NORMAL is supplied. If the KP routine terminated by returning, the value supplied is the
return value of the KP routine.

C.2. KP Control Routines
Once the KPB and stacks are allocated, the four routines that determine the state of a KP routine can be
used.

C.2.1. Overview
A KP routine is initiated by a call to EXE$KP_START. While running, the KP routine may elect to give
up control by calling EXE$KP_STALL_GENERAL. A stalled KP routine can be resumed by calling
EXE$KP_RESTART. The KP routine is terminated either by an explicit call to EXE$KP_END or by
returning from the routine. In the latter case, the KP services call EXE$KP_END implicitly.

When a KP routine starts, the current thread of execution state is saved onto the current stack, the KP
stack is loaded, and the KP routine is called.

When the KP routine stalls, the KP routine's context is saved onto the KP stack, the stack is switched to
the original stack, and the main routine's context is loaded from stack. The result is that a stall causes the
original routine to return from the last call to EXE$KP_START or to EXE$KP_RESTART.

When the KP routine is restarted, the current context is saved onto the current stack, the stack is
switched to the KP routine's stack and the KP routine's context is restored from the stack. The KP
routine returns from the last call to EXE$KP_STALL_GENERAL.

The stall/resume sequence can occur zero or more times. The KP routine is not required ever to stall.
A stalled routine cannot stall again until it has been resumed. A running KP routine cannot be restarted
until it has stalled. The full checking version of SYSTEM_PRIMITIVES.EXE enforces these rules.
Failure to follow these rules can result in a KP_INCONSTATE bugcheck, depending on the mode in
which the KP routine is running.

When the KP routine terminates, either by explicitly calling EXE$KP_END or by returning to the caller,
no current context is saved, the stack is switched, and the original thread context is restored. At this
point, if the DEALLOCATE_AT_END flag is set (kernel mode only) or if an end routine address has
been supplied, the appropriate action takes place. The original thread returns from the call that started or
restarted the KP routine.

Figure C.1 shows the overall code flow.

98

Appendix C. Porting Application-Specific Stack-Switching Code to I64

Figure C.1. KP Routine Execution

Note

While the main thread of execution is depicted as a continuous stream in the above diagram, the actual
thread of execution may include asynchronous components. The application is required to perform all
necessary synchronization as well as maintaining the necessary scope of the KPB.

C.2.2. Routine Descriptions
This section describes the routines.

C.2.2.1. EXE$KP_START
Syntax:

status = EXE$KP_START(kpb, routine, reg-mask)

• kpb – Address of a previously allocated and initialized KPB. Passed by 32-bit reference.

• routine – KP routine address

• reg-mask – Register save mask. Longword. Passed by value. This argument is read on Alpha
only. The I64 and x86-64 interfaces supports only the OpenVMS Calling Standard for register
preservation. The constant KPREG$K_HLL_REG_MASK, defined in KPBDEF, can be used for
calls from higher-level languages on Alpha to specify the calling standard register mask.

This routine suspends the current thread of execution, swaps to the new stacks; and calls the specified
routine. The KP routine is called with a single argument – the 32-bit address of the supplied KPB. The
KPB must be invalid and inactive.

C.2.2.2. EXE$KP_STALL_GENERAL
Syntax:

status = EXE$KP_STALL_GENERAL(kpb)

99

Appendix C. Porting Application-Specific Stack-Switching Code to I64

• kpb – Address of the KPB passed at the start of this routine. Passed by 32-bit reference.

This routine stalls the current thread of execution, saving context onto the KP stack, and returns to the
most recent call that started or restarted this routine. The KPB must be valid and active.

The return status from this routine is supplied by the routine that restarts this procedure.

C.2.2.3. EXE$KP_RESTART
Syntax:

EXE$KP_RESTART(kpb [, thread_status])

• kpb – Address of the KPB last used to stall this routine. Passed by 32-bit reference.

• thread_status – Status value to be supplied as the return value for the call to
EXE$KP_STALL_GENERAL that last stalled the KP routine. Passed by value. Optional. If this
parameter is omitted, SS$_NORMAL is returned.

This routine causes the stalled KP routine to restart by returning from the last call to
EXE$KP_STALL_GENERAL. Note that this may be a completely asynchronous operation with respect
to the original thread of execution that started the KP routine. The KPB must be valid and inactive.

C.2.2.4. EXE$KP_END
Syntax:

status = EXE$KP_END(kpb [, status])

• kpb – Address of the KPB last used to start or restart this routine. Passed by 32-bit reference.

• status – Status value to be supplied to the end routine, if any was specified in the KPB. Passed by
value. Optional. If this parameter is omitted, SS$_NORMAL is returned.

This routine terminates the KP routine, returning control to the last thread of execution that started or
restarted the KP routine. The KPB must be valid and active. The KPB is marked as invalid and inactive
and cannot be used in subsequent calls to EXE$KP_RESTART or EXE$KP_STALL_GENERAL
without first calling EXE$KP_START to start another KP routine.

Instead of calling EXE$KP_END, the KP routine can return to the caller. Returning to the caller causes
the KP code to call KP_END automatically. In that case, the return status from the KP procedure is used
for the status argument.

C.3. Design Considerations
• KP routines run in a single process. The KP services by themselves offer no parallelism benefits on

multiple-CPU systems.

• All calls to EXE$KP_STALL_GENERAL, EXE$KP_RESTART and EXE$KP_END must occur in
the same mode as the call to EXE$KP_START. Mode changes can occur between calls, but all calls
must be made at the same mode.

• Multiple KPBs can be valid at the same time.

• Multiple KPBs can be active at the same time. This implies that a KP routine has started or restarted
another KPB. Except in the simplest cases, code flow rapidly becomes exceedingly complex as the

100

Appendix C. Porting Application-Specific Stack-Switching Code to I64

number of active KPBs increases. In such cases, a work queue model with a dispatcher often removes
the need for multiple active KPBs.

• Allocation and deallocation of stacks is sufficiently expensive in system time and resources that
consideration should be given to some level of caching KPBs within the application instead.

• Applications using KP services in process context in kernel mode must lock the stacks into the
working set.

101

Appendix C. Porting Application-Specific Stack-Switching Code to I64

102

	Porting Applications from VSI OpenVMS Alpha to VSI OpenVMS Industry Standard 64 for Integrity Servers
	Table of Contents
	Preface
	1. About VSI
	2. Intended Audience
	3. Document Structure
	4. Related Documents
	5. VSI Encourages Your Comments
	6. OpenVMS Documentation
	7. Typographical Conventions

	Chapter 1. Introduction
	1.1. OpenVMS Industry Standard 64 for Integrity Servers
	1.2. Overview of the Porting Process
	1.2.1. Evaluating the Application

	Chapter 2. Fundamental Differences to Consider
	2.1. Calling Standard
	2.1.1. Changes to the OpenVMS Calling Standard
	2.1.2. Extensions to the OpenVMS Calling Standard

	2.2. Floating-Point Arithmetic
	2.2.1. Overview
	2.2.2. Impact on OpenVMS Applications

	2.3. Object File Format

	Chapter 3. Assessing Needs for Porting Your Application
	3.1. Overview
	3.2. Evaluating the Application
	3.2.1. Selecting the Porting Method
	3.2.2. Identifying Applications to Be Ported
	3.2.3. Assessing Dependencies
	3.2.3.1. Software Dependencies
	3.2.3.2. Development Environment
	3.2.3.3. Operating Environment

	3.2.4. Operational Tasks

	3.3. Additional Considerations

	Chapter 4. Migrating Source Modules
	4.1. Setting Up the Migration Environment
	4.1.1. Hardware
	4.1.2. Software
	4.1.2.1. VSI OpenVMS Migration Software for Alpha to Integrity Servers and Translated Image Environment (TIE)

	4.1.3. Coexistence with Translated Images

	4.2. Compiling Applications on Alpha With Current Compiler Version
	4.3. Testing Applications on Alpha for Baseline Information
	4.4. Recompiling and Relinking on an OpenVMS I64 System
	4.5. Debugging the Migrated Application
	4.5.1. Debugging
	4.5.2. Analyzing System Crashes
	4.5.2.1. System Dump Analyzer
	4.5.2.2. Crash Log Utility Extractor

	4.6. Testing the Migrated Application
	4.6.1. Alpha Tests Ported to OpenVMS I64
	4.6.2. New OpenVMS I64 Tests
	4.6.3. Uncovering Latent Bugs

	4.7. Integrating the Migrated Application into a Software System
	4.8. Modifying Certain Types of Code
	4.8.1. Conditionalized Code
	4.8.1.1. MACRO Sources
	4.8.1.2. BLISS Sources
	4.8.1.3. C Sources
	4.8.1.4. Existing Conditionalized Code

	4.8.2. System Services With Alpha Architecture Dependencies
	4.8.2.1. SYS$GOTO_UNWIND
	4.8.2.2. SYS$LKWSET and SYS$LKWSET_64

	4.8.3. Code With Other Dependencies on the Alpha Architecture
	4.8.3.1. Initialized Overlaid Program Sections
	4.8.3.2. Condition Handlers Use of SS$_HPARITH
	4.8.3.3. Mechanism Array Data Structure
	4.8.3.4. Reliance on Alpha Object File Format

	4.8.4. Code that Uses Floating-Point Data Types
	4.8.4.1. LIB$WAIT Problem and Solution

	4.8.5. Incorrect Command Table Declaration
	4.8.6. Code that Uses Threads
	4.8.6.1. Thread Routines cma_delay and cma_time_get_expiration

	4.8.7. Code With Unaligned Data
	4.8.8. Code that Relies on the OpenVMS Alpha Calling Standard
	4.8.9. Privileged Code
	4.8.9.1. Use of SYS$LKWSET and SYS$LKWSET_64
	4.8.9.2. Use of SYS$LCKPAG and SYS$LCKPAG_64
	4.8.9.3. Terminal Drivers
	4.8.9.4. Protected Image Sections

	Chapter 5. I64 Development Environment
	5.1. Native OpenVMS I64 Compilers
	5.1.1. VAX MACRO–32 Compiler for I64

	5.2. Other Development Tools
	5.2.1. Translating Alpha Code

	5.3. Linking Modules
	5.3.1. Differences When Linking on I64 Systems
	5.3.1.1. No Based Clusters
	5.3.1.2. Handling of Initialized Overlaid Program Sections on I64
	5.3.1.3. Behavior Difference When Linking ELF Common Symbols

	5.3.2. Expanded Map File Information
	5.3.3. New Linker Qualifiers and Options for I64
	5.3.3.1. New /BASE_ADDRESS Qualifier
	5.3.3.2. New /SEGMENT_ATTRIBUTE Qualifier
	5.3.3.3. New /FP_MODE Qualifier
	5.3.3.4. New /EXPORT_SYMBOL_VECTOR and /PUBLISH_GLOBAL_SYMBOLS Qualifiers
	5.3.3.5. New Alignments for the PSECT_ATTRIBUTE Option
	5.3.3.6. New GROUP_SECTIONS and SECTION_DETAILS keywords for the /FULL Qualifier

	5.3.4. Mixed-Case Arguments in Linker Options, Revisited

	5.4. Debugging Capabilities on I64 Systems
	5.4.1. OpenVMS Debugger
	5.4.1.1. Architecture Support
	5.4.1.2. Language Support
	5.4.1.3. Functional Areas and Commands
	5.4.1.4. Functionality Not Yet Ported

	5.4.2. XDelta Debugger
	5.4.2.1. XDelta Capabilities on I64
	5.4.2.2. Differences Between XDelta on I64 and OpenVMS Alpha Systems

	5.5. I64 Librarian Utility
	5.5.1. Considerations When Using the OpenVMS I64 Librarian
	5.5.2. Changes to the LBR$ Routines
	5.5.3. OpenVMS I64 Library Format Handles UNIX-Style Weak Symbols
	5.5.3.1. New ELF Type for Weak Symbols
	5.5.3.2. Version 6.0 Library Index Format
	5.5.3.3. New Group-Section Symbols
	5.5.3.4. Current Library Limitation with Regard to Weak and Group Symbols

	Chapter 6. Preparing to Port Applications
	6.1. Ada
	6.2. BASIC
	6.3. BLISS Compiler
	6.3.1. BLISS File Types and File Location Defaults
	6.3.2. OpenVMS Alpha BLISS Features Not Available
	6.3.3. I64 BLISS Features

	6.4. COBOL
	6.4.1. Floating-Point Arithmetic
	6.4.2. /ARCH and /OPTIMIZE=TUNE Qualifiers

	6.5. Fortran
	6.5.1. Floating-Point Arithmetic
	6.5.2. Only the F90 Compiler is Supported
	6.5.3. /ARCH and /OPTIMIZE=TUNE Qualifiers

	6.6. VSI C/ANSI C
	6.6.1. OpenVMS I64 Floating-Point Default
	6.6.2. Semantics of /IEEE_MODE Qualifier
	6.6.3. Predefined Macros

	6.7. VSI C++
	6.7.1. Floating Point and Predefined Macros
	6.7.2. Long Double
	6.7.3. Object Model
	6.7.4. Language Dialects
	6.7.5. Templates

	6.8. Java
	6.9. Macro-32
	6.9.1. /ARCH and /OPTIMIZE=TUNE Qualifiers

	6.10. VSI Pascal
	6.10.1. /ARCH and /OPTIMIZE=TUNE Qualifiers

	Chapter 7. Other Considerations
	7.1. Hardware Considerations
	7.1.1. Intel Itanium Processor Family Overview
	7.1.2. Alpha Processor Family Overview

	7.2. Endianism Considerations

	Appendix A. Application Evaluation Checklist
	Appendix B. Unsupported Layered Products
	Appendix C. Porting Application-Specific Stack-Switching Code to I64
	C.1. Overview of KP Services
	C.1.1. Terminology
	C.1.2. Stacks and Data Structures
	C.1.3. KPBs
	C.1.4. Supplied KPB Allocation Routines
	C.1.5. Kernel Mode Allocation
	C.1.6. Mode-Independent Allocation
	C.1.7. Stack Allocation APIs
	C.1.8. System-Supplied Allocation and Deallocation Routines
	C.1.9. End Routine

	C.2. KP Control Routines
	C.2.1. Overview
	C.2.2. Routine Descriptions
	C.2.2.1. EXE$KP_START
	C.2.2.2. EXE$KP_STALL_GENERAL
	C.2.2.3. EXE$KP_RESTART
	C.2.2.4. EXE$KP_END

	C.3. Design Considerations

