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In Memoriam 

This  tenth 'in~livcrs,~ry issue o f  tlic I)i,:,i/nl 7i~ch11ic~11,Jri1~1-11~11 is dedicated t o  
the memory o f  l'ctcr E'. Conklin, (:orporatc <:onsulti~ig Engineer, w h o  passed 
,1\\,ay in April 1995 .  Pctcr\iro~.ltcd at  Di~i t ' i l  h)r 26 ye.1rs. H c  \rr.is one  o f  the pio- 
nccrs o f  the DE(:s!,stcm-10 sofi\\,.~rc g r o ~ ~ p ,  contr i lx~t ing its first b ~ t c h  and 1 . i ~ -  

t ~ r ~ i l  mcmol-!, subs\,stcms. H c  \\,,15 a key contl-ibutor i l l  the  clcsign o f  the  VAS 
;~rcliitccturc ,ind ~ t s  language .ind run-t ime cn\.i~-onments. H c  \\rorlted in the 
Pl)l'-11 and 'Terminals and Pl.i~ltcrs groups, helping t o  dc\/clop tlicir tec1inic:il 
and b ~ ~ s i n e s s  stl-atcgics in rapidly cli,inging c n \ i r o ~ i m c n t s .  Anci lie \\,as a PI-inic 
mo\.cr o f  the Alpli,~ program, o\,c~-seejng f rst t l ~ c  sofk\\~arc dc\.clopment and 
tlicli all o f t h c  c ~ ~ g i ~ i c c r i n p ,  as \\>ell ,IS cre,itilig its ~ ~ n i c l ~ l c  c ~ ~ l t ~ ~ r . i l  and man,iscl.i,il 
app~-oach t o  cro>>-org,lni/,dtio~i,~l dc\rclopmcnt. 

l k y o n d  his oi~ts tnnding tcclinical and bi~sincss contributions, Pctcr espouscd 
dnd represented ,111 tli,it \\.as p o d  ill Digital's cult~~rc-respect ~ O I -  and focils oli 

pu'plc; doing tlic r ig l~ t  thing for customers and collcag~lcs; d r i \ ~ i ~ i g  for concrete 
results .ind \\~ork,lblc proccsscs. H c  clianipioncci tlic role o f  \\ ,omen and m i n o r -  
tic3 ,is Inanagcrs and cont r ib~~tors .  H c  helped set L I P  tlic i~itcrnal Notes systcm t o  
ful-tlicr ope11 c o ~ i i ~ i i ~ l n i c ~ ~ t i o n s  a m o n g  e~nployccs,  and bcn \~ccn  criiployccs and 
m,inagclnent. And lie ad \~oc ,~ tcd  ,lnd modclcd tlic uses o f  training and de\lclop- 
mcnt  t o  impro\.c pc1.5onal a n d  o r s . ~ ~ i i z a t i o ~ i d  pcrforma~icc at  '111 Ic\,cls. 

l'ctcr's \\rork is \\.o\.cn tlirougli the f'ibric o f  lligital's Iiistol-\, liltc a bright, 
~~nbrc,iltrlble thl-cad. H c  \\ , i l l  bc sorely liiisscd. 



Editor's 
Introduction 

The Di'qilal 7i.chr~icnI~/o~~r~~zwl marks 
its tenth anni\lcrsary \vith thc publica- 
tion of this issue. Since 1985, tlie 
./ol,~n.ral has chronicled Digital's engi- 
neering achievements from silicon t o  
s o b a r e :  record-breaking micropro- 
cessors, standards-setting network 
technologies, advanced storage arclii- 
tectures, and industr)l-leading imple- 
mentations of  clusters and distributed 
systems. More than simply a record, 
t l ~ e ~ ~ o r r r ~ z a l  offers readers insights into 
the how and why of  Digital's product 
designs-in papers written by the 
design engineers themselves. A look 
back over tlic last ten years, however, 
provides only a partial view t o  engi- 
neering's unique combination of 
vision and pragmatism, a combi- 
nation that has spurred industry 
breakthroughs and established thc 
foundation for the development 
of  today's world-class hardwarc and 
sohvare products. To celebrate 
Digital's outstanding engineering 
achievements, wc have therefore 
included a special section of  historic 
milcstoncs as part of  this anniversary 
issue. The  milestones begin in 1957 
wit11 tlie development of  the com- 
pany's tirst product, a system module 
For scientific use that ran at 5 MHz.  
The milestones continuc through 
the recent introduction of Digital's 
new high-performance scrvcr system 
based on microprocessors that run 
at an extraordinary 300 MHz. 

'The 300-MHz lnicroprocessor and 
thc AlphaScrvcr 8400/8200 system 
that uses it are in h c t  feati~red in this 
issue. As Dick Sites points ou t  in his 
Foreword, tlicsc second -generation 
Alpha products truly take advantage 
of the Alpha 64-bit RISC architecture 
introduced by Digital in 1992. In  

addition to  discussions of three Alpha 
hardware designs and the new micro- 
processor, this issue presents papers 
on database sohvare technologies. 
These papers focus 011 the realities 
of  integrating heterogeneous systems 
and data sources. 

T h e  Database Integrator (DBI) 
directly addresses the heterogeneity 
issue by providing a niultidatabase 
management system for data access 
and integration ofdistributed data 
sources. lXichard Pledereder, Vishu 
Krishnamurtlip, Mike Gagnon, and 
Mayank Vadodaria outline the data 
access issucs and compare the DBI 
approach with others. Their discus- 
sion addresses such topics as hetero- 
gelieous query optimization, location 
transparency, global consistency, reso- 
lution ofsemantic differences, and 
security checks. 

Key t o  solving the problems posed 
by heterogeneous systems are open- 
ness and standards. Both are stressed 
in the ACMSxp transaction processing 
monitor design, described by Bob 
Kaafi, Ian Carrie, Bill Drury, and Oren 
Wiesler. ACMSxp is layered o n  the 
OSF's Distributed (.;omputing Envi- 
ronment and uses Transarc's Encina 
toolkit to  support XA-compliant 
databases. Thc  monitor's applica- 
tion de\~elopnient environment is 
based 011 the Structurcd Transaction 
Definition Language. 

The ACMSxp monitor figures in 
the next paper, written by Norman 
Depledge, Bill Turner, and Alexandra 
Woog, which defines an architecture 
for improving the effectiveness o f  
heterogeneous environments. T h e  
authors first review relevant standards, 
such as CORBA and DCE, and then 
describe an open, distributable client- 

Digital Technical JOL 

server architecture niade up of  three 
ticrs: desktop, middleware (founded 
on the ACMSsp monitor and Digital's 
ObjectBrolter sohvare) ,  and legacy 
interfaces. 

The  next set of  papers features 
high-performance systems built on  
the 300-MHz Alpha 21 1 6 4  micro- 
processor. Presented first is the 
AlphaServer 8000  platform-the 
basis for the highest performance 
systelns yet developed by Digital. 
Dave Fenwick, Denis Foley, Bill Gist, 
Steve VanDoren, and Dan Wissell 
ciiscuss the principal design issues 
relative to  the aggressive goals set for 
system data bandwidth and nicrnory 
read latency. The)] define their design 
approach with seven levels of abstrac- 
tion and review tlie choices made in 
each level; the prevailing thcrne is 
achieving low memory read latency. 
As a result, the AlphaServer 8400  
and 8200  systems feature a minimum 
memoly read latency o f  260 nanosec- 
onds (ns). Moreover, in benchmark 
tests, the 12-processor AlphaServer 
8400  system achieves supercomputer 
performance levels of  5 billion float- 
ing-point operations per second. 

Essential for meeting AlphaServer 
speed reqi~irements was a custom 
application-spccific integrated circuit 
(ASIC) bus intcrface. Jcan Basmaji, 
Kay Fisher, Frank Gatulis, Herb I<olk, 
and Jim Rosencrans describe a 
timing-drivcn layout approach for 
designing and implementing high- 
performance ASICs. Called CSALT, 
i.e., CMOS standard-cell alternative 
technology, the tool suite saved sig- 
nificant project time and provided the 
customization necessary t o  support 
tlie system's 10-11s bus speed. 
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Developers of a second-generation 
processor module for the Alphaserver 
2100 multiprocessjng system also 
took advantage of the Alpha 2 1 164 
microprocessor performance and at 
the same time ensured physical com- 
patibility with the first generation. 
Nitin Godiwala and Barry Maskas 
highlight the designs that most effi- 
ciently used the system bus bandwidth 
and provided a 1.4 SPEC performance 
increase over the first-generation 
module, including a third-level cache, 
duplicate tag store, and a synchro- 
nous cloclung scheme. 

Also based on the Alpha 21 164  
microprocessor, the Alphastation 
600  5-series workstation incorporates 
the 64-bit PC1 bus and supports three - - 

opcrating systems. In their paper, 
John Zurawski, John Murray, and 
Paul k m m o n  focus o n  the chips that 
provide high-bandwidth intercon- 
nects between the CPU, the main 
memory, and the PC1 bus. They also 
recount their experiences in the 
development o f  a hardware-based 
verification technique that improved 
test throughput by five orders of  
magnitude over the sohvare-based 
techniques. 

The  Alpha 2 1 164  n~icroprocessor 
that is at the heart of the thrce systems 
described above delivers an outstand- 
ing microprocessor performance 
(peak) of  1.2 billion instructions per 
second. Three papers examine the 
circuit design, the logic functions, 
and the hnctional verification o f  this 
custom, 64-bit VLSI chip. First, Bill 
Bowhill e t  al. examine the circuit 
design contributions needed t o  
achieve the performance goal of  
300-MHz operation. The  authors 
describe the floorplan choices for 
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laying ou t  the 9.3-million transistor 
c l ip  and the global single-wire clock 
distribution scheme. They then prc- 
sent a set of significant circuit design 
challenges-the speed requirement, 
the con~plicated microarchitecturc, 
and the large physical size o f t h e  chip 
-and explain circuit implementation 
decisions for the instruction, execu- 
tion, and memory units; the system 
clock; and the three caches. 

The  paper by John Edmondson 
e t  al. describes the hnctional units 
o f  the Alpha 2 1164 n~icroprocessor: 
the quad-issue, superscalar instruction 
unit; the 64-bit integer execution pipe- 
lines; two 64-bit floating-point execu- 
tion pipelines; a high-performance 
memory unit; and a cache control 
and bus interface unit. The authors 
note architecti~ral improvements over 
the first-generation 21064 micropro- 
cessor and provide performance data. 

T h e  functional verification of  this 
complex microprocessor is described 
in our  concluding paper. Mike 
Kantrowitz and Lisa Noack review 
the many techniques employed 
t o  veriQ the logic design and the 
PALcode interface, including 
implementation-directed pseudo- 
random exercisers used in combina- 
tion with focused hand-generated 
tests. The  authors relate the lessons 
learned from the few bugs found in 
the tirst prototype of the 
microprocessor. 

An anniversary is a time t o  look 
back and ahead. Looking back to the 
Journal's origins, I want to acknowl- 
edge the wisdom of  Dick Beane, the 
Journal's first editor, and Sam Fuller, 
vice president o f  Corporate Research. 
They established theJournnl's edito- 
rial focus and its structure: t o  publish 

technical papers, written by Digital's 
engineers, that describe the techno- 
logical foundations of our products, 
under the gi~idallce of an ad\~isory 
board responsible for content and 
editorial philosophy. Because readcrs 
responded so  well to  the working 
engineer's perspective on product 
design, the~/owrnc~l has grown from 
a biannual t o  a quarterly publication, 
and was one of  the first industr) j our- 
nals t o  publish electronically o n  the 
\VorldWide Web. Further, sincc 
1992, papers have been peer reviewed 
t o  ensure that readers receive substan- 
tive, accurate information on  a widen- 
ing number of topics covered in 
the~/oz.~rnnl. Ofcourse this growth 
would not  have happened without 
thejotrrnnl's contributors, the engi- 
neers who analyze their unique and 
informative experiences and share 
them with thcir peers. As Digital's 
engineers add to the timeline of  engi- 
neering milestones in computer sys- 
tems, s o h a r e ,  networking, storage, 
semiconductors, and peripherals, 
the j o u r n a l  will continue to scrve its 
readers by publishing this important 
work. 

T h e  editors thank Bob Supnik, 
Senior Corporate Consulting Engi- 
neer, for his help in bringing together 
this special issue of  thc,/otrrncll. 

Upcoming in t h e , / o ~ r n z d  systems 
engineering, Sequoia 2000 research, 
software environments, scientific 
computing, and networking. 

Jane C. Blake 
fManaging Editor 
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Likc race cars, tlic initial Alph;~ 
hard\\larc and sohvarc products were 
criticized For being tc~npcr;imcnml- 
fast indeed for sonic applications, 
but not appropri;irc for others. Some 
observers assumed that rhc first 
generation \\,as a tluke, o r  tliat it 
represented all tliat Alp1~1 computers 
could ever be. The reaction to man!! 
archirect~~ral features, such as 64-bit 
addressing or  relaxed read-\\trite 
ordering, \\'as "\\,ho needs it?" They 
\\,rote Alpha offas a nichc dcsign. 

Delivering on Its Promise 
Three years later, the f i~turc has 
arrived \\tit11 a (muffled) I-o.ir: 

The  sophisticated sccond- 
generation Alpha 2 1 164 chip, 
described in tliis issuc, is 1.5 
to  2 times as efficie~lt as the fi rst- 
g a ~ u r n t i o ~ i  2 1064 chip in t c r ~ ~ i s  
of  work done per clock cycle o n  
real progrinis. 

The  chip clock rate lias bccn 
boosted fon1  200 MHz to 

stunning 300 MHz. 

Efficiency ofcompiled cocic has 
improved by 10 to 6 0  percent 
on  many programs. 

Operating systcrn codc lias been 
expanded and tuned. 

TIie perti)rniancc hctors ro~~gl i ly  
multipl!, togctllcr, producing second- 
generation systems that arc about 2.5 
to  3.5 times hstcr than the cq~~ivalcnt  
first-generation systems. O n e  cxam- 
ple of  the higher speeds oftlicsc ne\ \~ 
s)~stcnis is the AlphaScl-\lc1.8400, 
discusscti in tliis ~SSLIC;  S!~S~CIII perfbr- 
mancc approaches the le\,cl ofsupcr- 
computers with Linpack IIX n r e s ~ ~ l t s  
o f  5 GFLOPS. 

The  second-generation system 
plathrnms cmphasizc industr)! Icadcr- 
ship for a bronti range ofcom~ncrcial 
client-ser\icr applications, not just 
scientific apl>lications. Likc cxpress- 
delivery trucks, much of thc  sccolid- 
generation s o h a r c  is Foc~lscd o n  
enterprise-wide d;it;ibasc access. -1'1.11 I y 
taking ;id\~a~itagc o f  the 64-bit addrcss- 
jng for tile first time, Oracle 7 d;~ub;lsc 
sohvarc can run huge ill-memory 
database clucrics 200(!) t i~ncs Faster 

th'ln traditional 32-bit database sol+ 
\\,arc. The three database papers in 
this issue emphnsize Digital's f o c ~ ~ s  
o n  commercial applications. 

Operating system support is sub- 
stantially more robust and has been 
esp.111ded to tlie fastest U N I S  anti 
Windo\\,s NT implernentations in tlie 
inciustr): FLIII OpenVMS clustering, 
including mixed Alpha and VAX 
clusters, is available. UNIX and NT 
cl~~ster ing is announced. All three 
operating systems no\\: support SMI', 
s!~mmctric ~ l~~~l t ip rocess ing .  The  
64-bit Digital U N I S  implemcncation 
has led the rest of  the industry in  
delivering 64-bit sofh\~are by over 
2 4  months. 

Cmmpiled-cocic impro\lements 
lia\~e been remarkable. In 1992, 
I could read tlie codc generated by 
some o f o ~ ~ r  cori1pi1~1-s and redlinc 
rhrcc ou t  ofevery four instructions 
as unneeded unnccded unneededd 
unneeded. A year ago, I could rc'id 
conipilcd code and redline one 
instruction out  of e\,ery nvo as 
~ ~ n n e c d e d  unneeded. Today, I am 
hard-pressed t o  redline even 15 per- 
cent of  tlie instructions as unoeededd. 

Mo\ing beyond the installed base, 
migration e fhr t s  are no\\? focused 
on bringing in ne\v customers. I n  
addition to ITAX and [MIPS binary 
translation, tlie SPARC-to-Alpha 
binary translation product is a\railable. 
Code fi-om x86 PC platforms runs 
cmulated on  all Alpha operating sys- 
tcnis. A technology demonstratio~i 
of s86-to-Alpha binary translatio~~ 
Ii,is been given at trade sho\vs. 

The growing maturity and sophis- 
tication of  the Alpha products ha\re in 
turn led t o  accelerated sales growth. 
Over 100,000 Alpha systems worth 
over $3.5 billion (harclu~are, sohvare, 
and scrvicc) have been shipped, and 
tlic ship rate has increased 6 6  percent 
in the past year alone. In its tirst three 
years, Alpha is off t o  a 111ucIi faster 
start than other RISC architectures, 
S L I C I ~  3s H1'-PA, iii their first three 
years. Ruying patterns have sliitied 
from try-one-out to  bu!~-~~-fleet-to- 
run-rhc-business. 

111 three short years, Alpha corn- 
p~ltcrs ha\~e become established as 
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t l ~ c  hstcst in tlic industry - the 
yardstick by which others mcnsurc 
computer perk)rmancc. Colnpetitors 
h;ive shortcncd their dc\,elopment 
cycles ;ind ;iggrcssi\,ely increased their 
clock rates. E\,cry single company 
that dcscribcti Alpli,~ fc~ turcs  ns 

un~~cccss;iry in 1992 is no\\, rushing 
t o  bring its o\vn 64-bit ilnd rclascti 
I-cad-\\.rite order SIMP iniplenicnta- 
tions t o  marker. Alpha h;is gro\\In 
from "niclic design" to "industry 
!!ardsrickn in a single generation. 

Digital has in\lested o\ /c~-  S 1 billion 
111 the dcvclopnicnr ofAlpha. Literally 
t h o ~ ~ s n n d s  ofpcoplc have brought 
a paper design t o  life. Rleccling-edge, 
brute-hrcc chip tccli~iology has 
turned into practical engineering, 
\vitli a balance oFsophistic;ltio~i and 
cvcl-yday care: race cars to  express- 
delivery trucks. 

Alpha is evolving much as the 
architects originally cnvisioncd. 
I believe l'cter Conklin, who Icd tlic 
Alpha Progrn~m Office and to \\)lion7 
tliis i s s ~ ~ e  is riedicated in memoriam, 
\vould want t o  illso dedicate this issuc 
t o  all the brilliant and liard\\~orking 
people \\fho ha\.c made it a rc;ility. My 
thanks and ad~niration t o  cadi  of  you. 

So lie\\! arc \\,c doing? A t i c ~  ~ O L I  

read this ~SSLIC,  I tlii~ik ~ O L I  \ \ r i l l  agree, 
"Quite \\,ell, thank you." 



DB Integrator: 
Open Middleware 
for Data Access 

During the last few years, access to hetero- 
geneous data sources and integration of the 
disparate data has emerged as one of the major 
areas for growth of database management 
software. Digital's DB lntegrator provides robust 
data access by supporting heterogeneous query 
optimization, location transparency, global 
consistency, resolution of semantic differences, 
and security checks. A global catalog provides 
location transparency and operates as an 
autonomous metadata repository. Global trans- 
actions are coordinated through two-phase 
commit. Highly available horizontal partitioned 
views support continuous distributed process- 
ing in the presence of loss of connectivity. The 
DB lntegrator enables security checks without 
interfering with the access controls specified 
in the underlying data sources. 

Richard Pledereder 
Vishu IG-ishnarnurthy 
Michael Gagnon 
Mayank Vadodaria 

A problem faced by organizations today is how to 
uniformly access data that is stored in a variety of data- 
bases managed by relational and nonrelatio~lal data 
systems and the11 transform it into an information 
resource that is manageable, functional, and readily 
accessible. Digital's DB Integrator (DBI) is a multi- 
database management system designed to provide 
production-quality data access and integration for 
heterogeneous and distributed data sources. 

This paper describes the data integration needs of 
the enterprise and how the DBI product hlfills those 
needs. I t  then presents the DBI approach to multi- 
database systems and a technical overview of DBI con- 
cepts and ternlinology. The nest section outlines the 
system architecture of the DBI. The paper concludes 
with highlights of some of the technologies incorpo- 
rated in DRI. 

Data Integration Needs 

Companies oken find themselves data rich, but infor- 
mation poor. Propelled by diverse application and 
end-user requirements, companies have made signifi- 
cant investments in incompatible, fragmented, and 
geographically distributed database systems that need 
to be integrated. Companies with centralized jnforma- 
tion systems are seelung methods to distribute this 
data to inexpcnsivc, departmental platforms, which 
would maximize performance, lower cost, and 
increase availability. 

The DB Integrator product family is specifically 
designed and implemented to address the following 
data integration needs: 

Data access. The data integration product must 
provide uniform access to  both relational and 
nonrelational data regardless of  location o r  stor- 
age form. Data access must be extensible to allow 
the user to write special-purpose methods. 

Locatio~i and fi~nctional transparency. The loca- 
tion of the data and the functional differences 
of  the various database systems must be hidden 
to provide end users with a single, logical view of  
the data and a unifor~nly f~~nc t iona l  data access 
system. 



Schema integration and translation. Users of data 
integration software must be presented with an  
environment that lets them easily determine what 
data is available. Such an environment is fie- 
qiiently referred to as a federated database. A data 
integration product must be flexible enough to  
help resolve semantic inconsistencies such as 
variances in field names, data types, and units of  
measurement. 

Data consistency. Maintaining data consistency is 
one of thc most important aspects ofany database 
system. This is also true for fedcrated database. 

Performance. Integrating data from multiple data 
sources can be an expensive operation. Thc  two 
primary goals are to minimize the amount of data 
that is transferred across the netcvorl< and to maxi- 
mize the amount of rows that are proccssed 
within a given unit of time. 

Security. Access to  distributed data must not 
compromise the security of data in the target 
databases. The security model must provide 
authorized access to an integrated schema without - 
violati~lg the security of  the autonomous data 
sources that have been integrated. 

Openness. Any data integration product must 
accommodate tools and applications with stan- 
dard SQL (structurcd quer)! language) interf'~ces, 
both at the  call level (e.g., Open Database 
Connectivity [ODBC] for personal computer 
clients) and the language level (e.g., ANSI SQL)!s2 
It  must be able t o  provide and enable access to  
data over the IIIOS~ commonly deployed tralisports 
such as transmission control protocol/internet 
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protocol (TCP/I13), DECnet, or  Systems Network 
Architecture (SNA).3 
Administration. The  integrated database must 
provide flexibility in configuration and be easy to  
set up, maintain, and usc. 

Figure 1 illustrates the current set of client-server 
data access supported by the DB Integrator product 
family. 

Multidatabase Management  Systems 

A ~nultidatabase management system (IMDBMS) 
enables operations across m ~ ~ l t i p l e  autonomous com- 
ponent databases. Based on the taxonomy for multi- 
database systems presented in  Reference 4, we can 
dcscribe DBI as a loosely coupled, hcterogeneous, and 
federated multidatabase system. DBI is loosely cou- 
pled compared to the component databases: The data- 
base administrator (D13A) that is responsible for DBI 
and the DBAs that are responsible for the component 
databases manage their environments independently 
of one another. DBI is heterogeneous because it sup- 
ports different types of  component database syste11-l~. 
DBI is federated because each colnponent database 
exists as an independent entity. 

Reference Architecture 
The MDBMS provides users with a single system view 
of data distributed over a large number of heteroge- 
IICOLIS databases and file systems. The MDBMS inter- 
operates with the individual component databases 
similar to the way that the SQL query processing 
engine in a relational DBMS interoperatcs with the 
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Client-Server Data Access with the DB Integrator 
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record storage system. Thus, a relational MDBMS, 
such as DBI, is typically composed of the follo\ving 
processing units: 

Language application programming interface 
(API) and SQL parser 

Relatio~ial data system 
- Global catalog manager 
- Distributed query optimizer and compiler 
- Distributed execution system 
- Distributed transaction lnanagemcnt 

Gateways to access data sources 

Catalog Management 
One of the key difkrentiators between MDBMS archi- 
tectures is tlie way that tlie ~netadata catalog is orga- 
nized. Metadata is defined as the attributes of the data 
that are accessible (e.g., naming, location, data types, 
or statistics). The nietadata is stored in a catalog. Two 
common approaches for catalog management are 
described below: 

Autonomous catalog. The  MDBNIS maintains its 
own catalog in a separate database. This catalog 
describes the data available in the multidatabase. 
For data that resides in a relational database, the 
nietadata definitions of table objects, index 
objects, and so forth, are i~npor ted  (i.e., repli- 
cated) into the milltidatabase catalog. For data 
that resides in some other data source such as a 
record file system (e.g., record management sys- 
ten1 [RMS]) o r  a spread sheet, the MDBMS cata- 
log contains a relational description of  that  data 
source. 

Integrated catalog. The  MDBMS is integrated 
with a regular database system that is capable of 
accessing objects (both data and mctadata) in 
remote and foreign databases. A gateway server is 
responsible for making a foreign database appear 
as a homogeneous, remote database instance. For 
data that resides in a relational database, the gate- 
way server stores views of  its system relations into 
that database. For data that resides in a record file 
system o r  spread sheet, the gateway server stores 
the relational metadata description of the data in a 
separate data store. 

OBI Approach 
The DBI approach to  rnultidatabase management very 
closely follows the reference architecture presented 
earlier. The DBI approach emphasizes the following 
design directions: 

Global, autonornous catalog for metadata man- 
agement 

Three-tier integration model (described later in 
this section) 

Simple, mapped-in gateway drivers to  access data 
sources 

Support of  distributed database features for the 
Oracle Rdb  relational database as well as support 
of existing Oracle Rdb applications in the multi- 
database environment 

Global Catalog DBI is addressable as a single inte- 
gration server. Integration clients such as tools and 
applications d o  not need to dcal with the complesities 
of the distributed data. Tlie DBI global catalog is a 
repository in which DBI maintains the description 
of the distributed data. I t  enables DBI to  provide 
tools and applications with a single access point to the 
federated database environment. The global catalog 
enables DBI to tell users what data is available without 
requiring immediate connectivity to the data or its 
data source. It can be managed and maintained as an 
independent database. The maintenance of the DBI 
global catalog is not inherently tied to  a specific data 
manager; currently, the DBI catalog may reside in 
ORACLE, SYBASE, o r  Oracle Rdb databases. 

The use of  a global catalog may result in a system 
with a single point of failure. To eliminate its potential 
failure within a node, a disk, or a network, standard 
high-availability mechanisms may be employed. These 
include shadowed dislzs with shared access (e.g., clus- 
tercd nodes) and data replication of  the DBI catalog 
tables \vith products such as the Digital Data 
Distri butor.5 

Three-tier versus Two-tier Architecture With a two- 
tier data integration model, once the data has becn 
retrieved from the server ticr, the actual integration 
occurs on the client tier. This may result in massive 
integration operations at the client site. In contrast, 
tlie DBI is based on a three-tier architecture that 
performs most integration functions o n  a middle 
tier between tlie client and the various database 
servers. The  three-tier approach avoids unncccssary 
transfer of  data to the client and is essential t o  provid- 
ing production-quality data integration. In another 
comparison, all clients in the two-tier approach need 
to be configured to access tlie various data sourccs; 
however, the three- tier approach significantly reduces 
such management complexities. 

Gateway Driver Model DRI deploys a set of gateway 
drivers to access specific data sources, including other 
DBI databases. These drivers share a single operating 
system process space with DBI to avoid unncccssary 
interprocess comnii~nications. When DBI performs 
parallel query processing, ho\vever, gateway drivers 
may reside in a separate process space. The core of DBI 
interacts with the actual gateway drivers (e.g., a 
SYBASE gateway driver) through the Strategic Data 
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Interface (SDI), an architected interface that is ~ ~ s c d  
within the DBI product family as a design center? A 
gateway driver is implemented as a relatively thin sok- 
ware layer that is SDI compliant and tliat is responsible 
for handling impedance mismatches in data models 
(e.g., RIMS versus relational), query language (e.g., 
different dialects of SQL), and run-time capabilities 
(e.g., SQL statement atomicity). 

Distributed Rdb One  of the des~gn goals for 1)RI was 
to enable distributed database processing for DEC: 
Rdb (no\\! Oracle Rdb) From the pcrspcctlvc ot  ,in 
appl~cat~on, Dl31 therefore looks ltke a d~stnbutcd Rdb 
database svstem. 

DBI Concepts and Terminology 

In this section, \\/e present a briefo\~crvic\v of tllc con- 
cepts and ter~ninolog,/ relevant to 1)1<1. 

DBI Database 
A DRI database consists of ( 1 )  a set of tablcs tliat 1)RI 
creates to maintain the DBI metadata (also rcfcrrcd to 
as the catalog) and (2) the distributed data that is a\.ail- 
able to the user \vlien connected to the 1)Bl catalog. 

A DBA creates '1 DBI database using the 1 ) H '  SQL 
CREATE DATABASE statement. This statenlcnt has 
been extended for 1DRI to allo\v the uscl. to indicate 
the physicdl database (e.g., a SYRASE datiibasc) tliat 
\vill be used to hold the DRI metadata tables. 

The creator of a 1)BI database automatically 
becomes tlie owner and systc~u ad~iiinistrator of that 
database. A DBI system administr:itor may grant 
access privileges on the DBI database to  other users. 
Depending on the level of  privilege, a user may then 
perform system administration f~mctions, esccutc data 
definition languagc (DDI,) operations, and/or clucry 
the tables in  the virtual d.ltabasc. 

DBI Objects 
In addition to regular SQL objects such as t;il>lcs or 
columns, DBI uses objects, links, and prosics tliat arc 
outside the scope of the SQI, language s tanda~d.  

Links and Proxies Tlic link object tells 13BI how to 
connect to an underlying data source (referred to as 
the link datubase). A link objcct has three components: 
a l i l l  k ~ianic, tlic dccess string used to  attach to the link 
database, and, optionall)!, security information used by 
tlie DRI gateway driver to provide authentication 
informatic-111 to the link database system. Tlic prosy 
object is associatecl \vith a link object. I t  can be used 
to spccib user-bpecific ~i~thcnt icar ion information for 
individual links. MJhen users d o  not  \\rant to use pros- 
ics h r  their links, they must speci? the authe~itication 
information for J specific database at the time they 
conncct to 13R1. 

Tables With link and prosy objects in place, the user 
can import mctadata definitions of ~~nder ly ing tables 
into the 1 l B I  catalog. Tlir mctad,ita iniported for a 
tablc incluclcs statistics, and constraint and index infor- 
mation, a11 of which are ~lsed by tlie DBI optimizer. 
The import step is performed with a CREATE TARL.F, 
stntcmcnt that 1x1s \>ec~i cstcndcd to aIlo\\, for '1 link 
reference. For csa~nple:  

- - I m p o r t  " r d b - e m p "  t a b l e  i n t o  D B I  

-- d a t a b a s e  a s  "emp"  f r o m  t h e  l i n k  
-- d a t a b a s e  r e p r e s e n t e d  b y  t h e  L i n k  
-- named  " L i n k - r d b " .  

- - 
C R E A T E  T A B L E  emp L I N K  T O  rdb-emp 

U S I N G  l i n k - r d b ;  

Views Vic\v objects arc L I S C ~ L I I  for making multiple 
tablcs from different link databascs 'Ippenr as a single 
t,tblc. In  13131, \/ic\\s scrvc as po\\,crful mechanisms to  
resolve semantic differences in tablcs from disparate 
databases. supports nvo types of vic\\rs: regular 
SQL \/ic\\/s and horizontall!/ partitioned views (HPVs). 
Rcgul,lr \!ie~\~s arc compliant wit11 ANSI SQL92 Level 
1; they support fill1 query esprcssion c.ipabilitics and 
updat~bil i ty.~ HPVs consist of a view namc, a parti- 
tioning colu~nn,  and partition specifications, Figure 2 
js an ~ s ~ ~ ~ i i p l e  of nn HPV dcf nition. 

HI'Vs provide 3 \!el-y po\vcrfi~l colistruct for dcfi~i- 
ing n logical tablc composed of horizontal partitions 

C R E A T E  V I E W  emp (emp- id ,  f i r s t - n a m e ,  Last -name,  c o u n t r y )  
U S I N G  H O R I Z O N T A L  P A R T I T I O N I N G  O N  ( c o u n t r y )  

P A R T I T I O N  u s  W H E R E  c o u n t r y  = ' U S '  C O M P O S E  A S  
S E L E C T  e m p l o y e e i d ,  f i r s t n a m e ,  L a s t n a m e ,  ' U S '  
F R O M  emp-us 

P A R T I T I O N  e u r o p e  W H E R E  O T H E R W I S E  C O M P O S E  A S  
S E L E C T  emp-id,  f i r s t - n a m e ,  l a s t - n a m e ,  c o u n t r y - c o d e  
F R O M  emp-eur;  

Figure 2 
Esalnplc ofdn HPV 1)cfinirion 
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that may span tables from disparate data sources. Both 
retrieval and update operations on HPVs are opti- 
mized such that unnecessary partition access is elimi- 
nated. In addition, HPVs may be used to implement a 
shared-nothing computing model 011 top of both 
homogeneous and heterogeneous databases? 

Stored Procedures DBI supports stored procedure 
objects. Storcd procedures allow the user to embed 
application logic in the database. They make applica- 
tion code easily shareable and facilitate DBI to  main- 
cain dependencies between the application code and 
database objects. Furthermore, storcd procedures 
reduce message traffic between the clicnt and the 
server. Figure 3 is an example of  a stored proccdure. 

OBI Database Administration 
DBI supports statements that keep the imported 
~netadata consiste~it with the link database. The 
extended ALTER TABLE statement may be used to  
regularly refresh the table ~netadata information or  
update tlie table's statistics. The ALTER LINK state- 
ment may be used to modify the link database specifi- 
cation or  a proxy for a given link object. 

OBI Configuration Capabilities 
Figure 4 shows tlie power of configuration options 
supported by DB1. Follo\ving the three-tier model for 
data integration, the DBl server may access a very large 
number of  databases, including other DBI databases. 

The DBI server is accessible through SQL APIs that 
are available on popular client platforms. DBI's clicnt- 
server protocol is supported on  all common transports 

such as TCP/II>, No\~ell's scque~~ced pacltet exchange/ 
internetwork pacltet exchange (SPX/IPX), DECnet, 
or  Windows Sockets. DBI itself may be deployed on 
Digital UNIX (formerly DEC OSF/l) and OpenVMS 
platforms today. Support for additional platforms is 
being added. 

DBI System Architecture 

In  this section, we describe the system architecture 
of the DBI product family and present some of  its 
specific designs. 

Interfaces 
As shown in Figure 5, the DRI syste~ii architecture is 
anchored by nvo esternal interfaces, SQL, and meta- 
data driver interfaces/data drivel- interfaces (MDI/ 
DDI), and nvo internal interfaces, Digital Standard 
Relational Interface (DSRI) and SDI. 

The SQL interface is used by DBI clients to issue 
requests to  the integration server. The lMDI/DDI 
interface is used by DBI to call gateway drivers that are 
provided by a user. The MDI/DDI interface specifies a 
simple, record-oricnted data access interhce provided 
by Digital to assist ilsers in tlie access and integration 
of data sources for which 110 Digital-supplicd gateway 
drivers are available. 

DSRI is the interface between DRI's SQL parser and 
the DBI processing enginc.YThe SDI jnterface speci- 
fies a canonical data interface that shields the DBI core 
from data-source-specific interfaces and facilitates 
modular development.6 

p r o c e d u r e  m a i n t a i n - s a l a r i e s ( : s t a t e  c h a r ( 2 )  i n ,  
: n - d e c r e a s e d  i n t e g e r  o u t ) ;  

b e g i n  
s e t  : n - d e c r e a s e d  = 0; 
f o r  : e m p f o r  a s  e a c h  row o f  

s e l e c t  * f r o m  e m p l o y e e s  emp w h e r e  s t a t e  = : s t a t e ;  
d  0 

s e t  : l a s t - s a l a r y  = 0; 
h i s t o r y - l o o p :  
f o r  : s a t f o r  a s  f o r  e a c h  row o f  

s e l e c t  s a l a r y - a m o u n t  f r o m  s a l a r y  h i s t o r y  s  
w h e r e  s - e m p l o y e e - i d  = : e m p f o r . e m p l o y e e - i d  

i f  : s a l f o r . s a l a r y - a m o u n t  C l t l  : L a s t - s a l a r y  t h e n  
s e t  : n - d e c r e a s e d  = : n - d e c r e a s e d  + 1; 
Leave  h i s t o r y - l o o p ;  

e n d  i f ;  
s e t  : l a s t - s a l a r y  = : s a l f o r . s a l a r y - a m o u n t  

e n d  f o r ;  
e n d  f o r ;  

end; 

- -- 

Figure 3 
Example ofa Stored Proccdurc 
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DB Integrator Architecture 

Components 
The cornponelit architecture of DBI in Figure 6 
closely resenlbles the multidatabase refcrcnce architcc- 
ture presented earlier: 

The  SQL and ODBC client-server environment 
provides language API and SQL parser functions. 

The AI'I driver and context manager support dis- 
tributcd transaction management and part of  the 
distributed esecution system. 

The ~netadata nianagcr provides global catalog 
management. 

The compiler supports the distributed query opti- 
mizer and compil? c tion. ' 

The  executor supports the remaining part of  the 
distributed execution system. 

The  SDI d isp~tcher  and g-atc\vay drivers provide 
the access to  data sources. 

SQL Environment and Server Infrastructure The SQL 
parser supports DEC SQL,, an ANSI/National Institute 
for Science and Technology (N1ST)-compliant SQL 
iniplementation by mapping DEC SQL syntax into an 
i~itcrnal query graph representation.') 111 ,I c - I '  lent-server 
en\~ironment, the DRJ server infi-astructurc is used to 
managc, monitor, and maintain a DBI scrc.er configu- 
ration that supports \vorkstation and desktop clients. 

API Driver and Context Manager The Al'1 driver is 
responsible for the top-level control tlo\v of client 
requests within the 13131 core. I t  currently accepts 
1)SlU calls from applications such as DEC SQI. and 
dispatches then1 within 1)Bl. Thc  contest manager 
performs deniand-driven propagation of execution 
contest to the gateway drivers and maintains the dis- 
tributed contest of active sessions, transactions, and 
requests. 

Metadata Manager The rnetadata manager is respon- 
sjblc for the overall malyagcment and access to mcta- 
data. The  services provided f i ~ l l  into tlie categories of 
catalog nianagemcnt, data definition, metadata cache 
managcmcnt, and q u c r ) ~  access to lIB1 system rcla- 
tions. The mctadata catalog manager maintains the 
DRI catalog in the form of 1)BI-crcatcd tables in an 
underlyi~lg database (e.g., SYBASE or  OIWCLE). Thc 
DDL processor esecutcs tlie data dctinition statc- 
nicnts. The metadata cache manager is responsible h r  
maintaining metadata in a volatile caclic that provides 
high-speed access to metadata objects. 
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1 METADATA 1 
MANAGER 

1 COMPILER I I EXECUTOR I 
1 SDl DISPATCHER 

Figure 6 
1)R Inrcgrnror (;omponcnts 

- -  

Compiler The compiler pro\/idcs services for tr,lnsl:~t- 
ing SQ1, statements and stored proccd~~rcs  into 1)RI 
csccution plans. A rule-based query optimizer pcr- 
fi)r~iis query rewrite operations, enurncrates diffcrcnt 
csccution strategies, and fi~ctors in f~nctional  capabili- 
tics of the underlying data sources. Each csccution 
~ t ~ i t e g y  is associated with a cost that is based o n  prcdi- 
c;ltc scIccti\~ity cstiniates, table carciinnlitics, :l\r,~ilability 
of inciiccs, nct\vork band\\/idth, and so forth. The lo\\,- 
cst cost s t r a t e s  is chosen as t l ~  final csccution plan. 
Abo\>c a certain th~-csliold of clLIcry co~iiplcxity, the 
optimizer s\\~itchcs from an esliaustivc search mctliod 
to a grccdy scarch method to limit the computational 
complcsity of the optimization phase. Tlic compiler 
guicrxesco'de that can be processed by the csccutor 
cornlx)lwnt ancl the Sateway drivers. 

DBI GATEWAY DRIVER 

Executor Thc csccutor component is responsible for 
proccssi~ig tlic e x c c ~ ~ t i o ~ l  plan that the compiler pro- 
duces. 'l?licsc ncti\~ities includc 

DB INTEGRATOR 

F,schanging data between the 1)RI and tlic c l i e ~ ~ t  

Strcn~ning data bet\\,een the 11131 core and tlic link 
databases 

Performing intermediate dntn mnnipi~l;ition steps 
sucli as joins or  aggregates 

illallaging \\,orkspacc and buffer pool to cfti- 
cicntly linndlc I2irge aniounts of tr,llisicl~t n~ ld  
intcr~ncdintc data 

Supporting parallel processing 

SDI Dispatcher and Gateway Drivers l'hc S1)I dis- 
patcher scpar.ltcs the core of  Dl31 from the gateway 
dri\.cr space. I t  locates and loads s1131~a1dc i~iiagcs that 
rclxcscnt gatc\\,dy dri\~ers and routes SL)I calls to the 
corrcspo~idi~ig entries in the gatc\vny dri\rcl- image. 

The DBI de\,clopnicnt team selected se\leral designs 
and teclinologies that it believes to be crucial for dis- 
tributed and heterogeneous data processing. This sec- 
tion summarizes those designs within the following 
fi~nctional units: distributed execution; distributed 
metadata handling; distributed, hetel.ogeneo~~s query 
process in_^; high a\/ailability; per For~iiance; and 1)R [ 

server con6 guration. 

Distributed Execution 
To support transparent distributed query processing, 
DBI propagates execution contest such as connection 
contest or  transaction contcst t o  the targct data 
sources. Tools and applications scc only the simple 
user session and transaction that they cstablisli wit11 
the DBI integr.ltion scr\'cr. 

1 l R I  uses a tree organization to track tlic distributed 
execution co~itcst .  Wlicn a user connects to a 1)RI 
database, a DRI user session contest is created. This 
session contcxt is subscq~~cntly used to anchor active 
transactions, conipilcd SQL statements, as \veil as tlic 
metadata cache that is created for every user attaching 
to DBI. When Dl31 passes control to  a gatec\q/ clrivcr, 
both scssion and transaction contest are establislicd at 
the targct data soilrcc. 

Distributed transactions must support consistency 
and concurrcnc!l across autonomous database man- 
agers. Consistency rccluircs that a distributcd transac- 
tion manager with nvo-pliasc conlmit logic is available. 
DBI uses the Digital 1)istributcd Transaction Manager 
(DDTM) for that purpose and is adding support for the 
distributed transaction processing (1)TP) SA standard 
intcgration.l".l 1 

Conc~~rrcncy requires that distr ib~~tcd dea3loclts arc 
detcctcd. In  a multiclatnbnsc systeln, distr ib~~tcd dcad- 
Jock prevention is not fc;isiblc because n o  clatabasc 
manager csposcs cstcrnal interfaces to  its lock man- 
agement ser\.iccs--3 proccd 11 re required to per for111 
deadlock detcc t io~~.  1)RI tlicrcforc relics on the simple 
technique of transaction time-out to dctect deacilocks. 
In  addition, a 1)RI ;ipplication may choose to spccifii 
isolation Ic\~cls lo\vcr than scrializability or repeat:~hlc 
read. This is done \\/it11 the SQL SET TRANSACTION 
statement. The D l 3 1  contcst nlanngcr rccords tlic 
transaction attributes specified and for~vards them to 
the underlyi~ig data sources as part of propagating 
transaction contcst. Lower isolation levels will, in 
general, result in fc\\jcr lock requests and thus fc\\fc~- 
deadlock situations. 

Distributed Request Activation DRI supports SQI.  
statement atomicity. This rccli~ircs either that a single 
SQL statement csccutcs ill its e~itiret)' or, i l l  the cilsc o f  
a failure, that the clatabasc is rcsct to its state prior to 
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the executio~l of  the statement. With DBI, the SQL 
statement may be excci~ted as a series of database 
requests at multiple data sources. DBI internally uses 
the concept of  harkpoints to track SQL statement 
boundaries. Gateway drivers are informed of [nark- 
point boundaries, and the driver attempts to map tlie 
markpoint SDI operations into semantically equivalent 
constructs (e.g., savepoints) at thc target data source. 
Some databases support SQL3-style savepoints, nlhicli 
are atomic units of work within a [ransaction. When 
DBI decides to roll back a markpoint, the gateway dri- 
ver may then inform such a data source to roll back to  
the last savepoint. In  the absence of markpoint pri~iii- 
rives in tlie target data source, tlie gateway driver may 
elect t o  roll back the entire transaction to meet the 
roll-back markpoint semantics. 

Gateway Drivers In  contrast with other data integra- 
tion architectures, the DBI gateway drivers are 
designed to be simple protocol and data translators. 
Their primary task is to report the capabilities of tlie 
data-source interface (API and SQL language) to  the 
DBI core and s i~bseq~~en t ly  map between the S1)I 
interface protocol and the data-source interface. The 
gateway drivers typically sliarc process context with 
the DBI server process, thus avoiding the need for an 
intermediate gateway server process that \vould other- 
wise reside benveen the 11BI server and the data- 
source server (e.g., SYBASE SQL Scrver). This reduces 
the amount of contest switching and interprocess 
message transfer. 

The gate\lray drivers are responsible for mapping tlie 
SDI semantics to  the interface primitives provided at 
the target data source. For relational databases such as 
Oracle Rdb, ORACLE, INFOKMIX, SYRASE, o r  
DB2, this requires primarily a mapping to thc product- 
specific SQL dialect and the product-specific data 
types. For file systems such as RMS, the gateway driver 
maps the SDI senianrics to calls to the 1WS run-time 
library. 

Distributed Metadata Handling 
In this section, we disc~~ss  t l~ree  areas of importance to 
the handling of metadata in  DBI: catalog manage- 
ment, security, alld metadata caching. 

Catalog Management Thc DBI requirement of data- 
base independence implies that 1)BI cannot require 
tlie presence o f a  particular DBMS for its persistence 
metadata storage. Rather than devising a private stor- 
age and retrieval system, 1)RI was designed to layer on 
top of common relational DBMSs. 

Static, precompiled native applications are used 
to  access metadata from a given catalog DBMS for 
two reasons: (1)  The pattern of nictadata access for the 
catalog database is known, and (2) The tables housing 

the DRI metadata, in the catalog databasc are prcdetcr- 
mined. Although this approach docs not take advan- 
tage of the existing gate\vay drivers, it results in 
high-performance access to the metadata store. 

T o  siniplify the de\~clopment of a catalog applica- 
tion, the set of priniitivc operations on the catalog 
database was isolated, and a catalog application 
interface (CI) was defined. Catalog applications are 
developed according to the C I  specification and 
implemented as shareable images. DBI dynamically 
loads the appropriate catalog application image bascd 
on  the catalog type specified by a user attaching to a 
DBI database. 

Security The security support in tlie currently 
released version 3.1 of Dl31 is siniple but effective. I t  
uses the security ~nccl~a~i isms of thc underlying link 
database systems in the following areas: 

Authorization t o  connect to  an underlying data- 
base through DBI and acccss data fro111 it. 

Access to the data that is manipulated t l i r o ~ ~ g h  1)BI 
is controlled by the underlying 13BMS. Typically, 
underlying database systems control acccss to data 
based on the identity of the user attached to its 
database. DBI supports objects called proxies that 
enable the client to specitj, its user identity (i.c., 
~~serna~ne/pass \ \~ord) ,  \\/liich is then used to attach 
to  the underlying database. 

Authorization to  perform \larious Dl31 operations. 

All privileges for a 13BI dnt~hase are for the databasc 
itself, ratlicr than for tables o r  colun~ns.  Tllc priv- 
leges are based on hierarchically organized c.itc- 
gories of users: 

-The DBADM privilege is g i \ u  to uscrs rcspo~i- 
sible for setting up and maintaining a 13R1 
database. 

-The CKEATE, DROP privilcgc is granted to 
interactive users and applicatio~i devclopcrs with 
database design responsibility who I ~ L I S ~  pcrform 
data definition operations. 

-The SELECT pri\~ilegc is rcser\lcd for interactive 
users and application dcvclopers who perform 
data manipulation operations but d o  not perform 
any data definition operations. 

When a DBI administrator grants or  revokes pri\li- 
leges for a DBI database, DRI, in turn, grants o r  
revokes the appropriate set of  privileges o n  the DBI 
tables in the databasc system that Inanages the 11131 
catalog. The enforcement of privilegcs is tliercforc car- 
ried out  by that database system. For example, ~ \~ I i cn  
the SELECT privilegc is granted o n  the logicul data- 
base, DBJ grants the SELECT privilege o n  the tables 
that represent the DBI catalog. This ensures that the 
user has access to the metadata for processing clucries. 
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Similarly, when a uscr is granted the CREATE, DROP 
privilege on  the DBI database, DBI grants SELECT, 
INSERT, UPDATE, and DELETE on  the appropriate 
tables in the catalog database to the user. This ensures 
that any DDL actions executed by the user will enable 
DBI to  modify the tables in the catalog database. 

Metadata Manager Cache The in-memory Inetadata 
cache serves a dual purpose. First, it facilitates rapid 
access to the metadata by the DBI compiler. Second, it 
serves as a data store for tlie DBI system relations that 
can be queried by tools and applications. For exaniple, 
DEC SQL, obtains rnetadata for semantic analysis of 
SQL statements by querying the DBI system relations. 

The metadata cache is structured as a single hash 
table representing a flat namespace across all DBI 
objects. An open liasliing scheme is employed in 
which the hash-table entries hang off the buckets in 
the hash table in a linked list. 

To optimize the use of  the cache as well as to  accel- 
erate the attach operation, the metadata manager 
initially obtains only minimal, high-level metadata 
information from the catalog database; for example, 
only names of tables arc fctclied into the cache during 
the Dl31 database attach operation. Subsequently, the 
metadata manager obtains fi~rtlier metadata informa- 
tion from the catalog database on a demand basis. 

DBI allows the creation of ne\v metadata objects. 
These operations are typically performed within mark- 
point and transaction boundaries to enforce proper 
statement and transaction demarcation. The rnetadata 
manager maintains a physical log in cache to  denote 
transaction and markpoint boundaries. The lo, cr 1s ' an 
ordered list of structures, cach representing a DDL 
action, a pointer to the cache structure that was 
changed, and either the previous values of  fields that 
were updatcd o r  a pointer to  a previous image of an 
entire structure. When a markpoint or  transaction is 
committed, the corresponding log part is reset; when 
a markpoint or  transaction is rolled back, the log is 
~ ~ s e d  to restore tlie cache to its state prior to the start of 
the markpoint or transaction. 

An object in cache can become stale when another 
user attaches to the 11131 database and  causes an 
object's metadata to  be changcd in the catalog data- 
base. To  ensure consistency o f the  cached version of an 
object's metadata with tlie actual vcrsion in the catalog 
database, the rnetadata manager uses a time stamp to 
check the currency of the cached object when per- 
forming incremental fetching of the object's metadata. 
If the object in cache is stale, the object is not accessi- 
ble in the session, and an error message is issued to the 
user indicating that the object in cache is inconsistent 
with the catalog database. In a production environ- 
ment, this would be a rare event, given the low fre- 
quency ofdata def nition operations. 

The metadata cache is also the data source for the 
DBI system relation queries. The  metadata manager 
navigates tlie cache structures to obtain data for the 
system relations, making use of the hash table for effi- 
cient access and using DBI's execution component for 
evaluating search conditions and expressions. 

Distributed, Heterogeneous Query Processing 
Distributed query processing in a heterogeneous data- 
base environment poses certain u n i q ~ ~ e  problems. 
Data sources behave differently in terms of data 
transfer cost, and they support different language 
constructs. Many systems employ rudimentary tech- 
niques for decomposing a query, frequently pulling in 
all the data from underlying tables to the processing 
node, and then performing all the operations in the 
integration engine. Others simply use syntactic trans- 
formations, thereby providing the least common 
denominator in language hnctionality. DBI, on the 
other hand, provides a robust query optimizer that 
includes decomposition algorithms to reduce the data 
flow and provide high-performance query execution. 

Cost-based Plan Generation When a query has several 
equivalent means ofproducing the result, tlie plan that 
has the least estimated cost is chosen. Statistics for 
table, CO~LIII~II ,  and index objects are used for estimat- 
ing result size after various relational operations12J3 
Data transmission costs from the underlying link data- 
base to DBI are taken into account when estimating 
how much of tlie query is to be sent to the gateway 
database. The network transmission cost is measured 
dynamically for cach user session, once per gateway 
connection. The cost associated with performing a 
relational operation is also aggregated into the overall 
cost. This crucial step ensures that the plan is not 
skewed toward one database enginc, which \vould be 
the case if only the nenvork transmission costs were 
talten into account. 

Rule-based Transformations A query result may be 
produccd with d~ffcrent sequences of relational opera- 
tions. These sequences are generated using rule-bascd 
transformations. The starting point is the original 
operation set in which the query was syntactically rep- 
resented. From this, permutations are generated to 
form equivalence sets, which then lead to the various 
combinations ofexecution plans that need to be exam- 
ined for cost. Finally, the least costly plan is chosen for 
the query. Heuristics are applied to  limit the amount 
of  search space. 

Capability-based Decomposition The critical charac- 
teristic of a heterogeneous environment is that the 
data sources are nonuniform in their ability to perform 
certain operations and in their support of various 
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language constructs. For exaniple, most databases 
cannot support derived table expressions (i.e., select 
expressions in the FROM clause of another SELECT 
statement). 

The plan generation and deco~nposition phases of 
the optimizer must recognize the u~lderlying data- 
bases' capabilities. Consider the query example shown 
in Figure 7 and the indicated locations of  the tables. 

First, with T1 and T3 located in the same database, 
the optimizer can generate a subplan in which the join 
between these two tables can be executed in the 
ORACLE database. An examination of  the last (third) 
AND predicate indicates that all the tables involved in 
that predicate are located in tlie same ORACLE data- 
base. Due to the limitations in OlWCLE's SQL lan- 
guage support, honlever, it cannot evaluate the 
combined expression between nvo subqueries in thc 
WHERE clause, where thc arjthmetic result is to be 
compared to the columii Tl .c5. 

The DBI optimizer employs a more sopliisticatcd 
alternative. It evaluates the nvo subqueries separately 
and then substitutes them in the predicate in tlie 
subplan for ORACLE as run-time parameter values. 
This technique leads to  tlie most efficient plan: 

1. Retrieve value for (sclect a\lg(T4.c5) from T 4 )  from 
ORACLE. 

2. Assign value to variable X. 

3. Retrieve \laluc for (select T5.c7 from T 5  where 
T5.c8 = 'a') from C1RACL.E. 

4. Assign value to variable Y. 

5. Assign param-1 : = variable X. 

6. Assign param-2 := variable Y 

7. Execute the SELECT statement below in O M C L E  
and fetch the result rows. 

s e l e c t  * 
f r o m  T I ,  T 3  

w h e r e  ( T I  . c 3  = T 3 . c 3 )  
a n d  ( T l . c 5  = p a r a m - I  + param-2) ;  

8. Fetch the rows o f T 2  from DB2 into DBI. 

9. Perform the join in I>DI benvccn the results of 
steps 7 and 8. 

Query Unnesting A nested SQL query, in its simplest 
form, is LI SELECT qucr )~  with tlie WHERE clause 
predicate containing a subquery (i.e., another 
SELECT query). The follo\ving are examples of nested 
SQL queries: 

Example 1 ,  Table Subquery 

s e l e c t  * 
f r o m  A  

w h e r e  A . c l  I N  ( s e l e c t  ( B .  c 2  + 5 )  
f r o m  B  

w h e r e  B . c 3  = A . c 3 ) ;  

s e l e c t  * 
f r o m  A  

w h e r e  A . c l  = ( s e l e c t  m a x ( B . c 2 )  
f r o m  8 

w h e r e  B . c 3  = A . c 3 ) ;  

Using strict SQJ- semantics, \ \ ~ c  can evaluate this 
nested query by c o m p ~ ~ t i n g  the results of  the inner 
subquery for e\,cry tuple in the outer (containing) 
C I L I C ~ ) '  block. The value for the column A.c3 is substi- 
t ~ ~ t e d  in the i1inc1. subcluer)l, and the resulting \lalue (or 
values) are computed for tlie sclect list and used to 
cvaluate the Boolean condition on column A.cl: this is 
repeatcd for cver)l tuple of A. This method of evaluat- 
ing the resi~lts is \/cry expensive, especially in a distrib- 
L I ~ C ~  en\~iron~nelit. 

Query unncsting algorithms provide other methods 
of evaluation that are semantically eqi~ivalent but 
much more efficient in both time and space. 
Unncsting deals \vith the transformation of nested 
SQL q ~ ~ e r i e s  illto an cclui\~alent seclLlcnce of relational 
operations. These relational operations are performed 
as set operations, thcrcby avoiding the expensive tuple 
iteration operators during execution and providing 
large performance gains in most cases. 'The back- 
ground and motivation beliind the L I S ~  of unnesting 
has been presented in several research papcrs.l4.I5 

s e l e c t  * 
f r o m  T I ,  T2, T 3  

w h e r e  ( T I  . c l  = T 2 . c Z )  
a n d  ( T I  . c 3  = T 3 . c 3 )  
a n d  ( T l . c 5  = ( s e l e c t  a v g ( T 4 . c 5 )  f r o m  T 4 )  

+ ( s e l e c t  T 5 . c 7  f r o m  T 5  w h e r e  T 5 . c 8  = ' a ' )  ); 

T I ,  T3, T 4  a n d  T 5  a r e  L o c a t e d  i n  a  O r a c l e  d a t a b a s e  
T a b l e  T 2  i s  L o c a t e d  i n  a  DB2 d a t a b a s e .  

Figure 7 
Example of an SQL Query 
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Depending on the type ofoperations and constructs 
found in the nested select block and its parent select 
block, several different algorithnis can be used. Some 
of  these require n o  special operators over and above 
the regular join operator. Other transformations 
require a special se~nijoin operator. Consider the 
examples shown in Figure 8. 

In the example shown in Figure 9, a special operator 
called semijoin is necessary. The se~nijoin of table R 
with S 011 condition J is defined as the subset of 
R-tuples for which there is at least one matching 
S-tuple satistying,J. Note that this makes the operator 
asymmetric, in that ( K  se~nijoin S )  is not the same as 
(S  seniijoin R) ,  whereas the regular join is symmetric. 
By implementing the special semantics required for 
this semijoin operator, we can transform the nested 
query into this join operator that can again make use 
of high-performance techniques like hash joins within 
the DBI execution engine. 

Predicate Analysis When a query against an HPV can 
be satisfied by simply accessing a single logical parti- 
tion, then the rest of the partitions can be eliminated 
from the execution plan. Partition elimination algo- 
rithms in DBI are used both at compile time, when the 
predicates on the HPV query invol\ie comparison of 

the partitioning column with literals, as well as at 
query execution time (run time), when the partitio~i- 
ing column is compared with run-time parameters. 

During affinity analysis, predicates are situated as 
close to the inner table operation as feasible. For exam- 
ple, consider the following view definition, and the 
si~bscquent select statement on that view: 

c r e a t e  v i e w  V1 (a ,  b )  a s  
s e l e c t  T I  . c l ,  a v g ( T Z . c Z )  

f r o m  T I ,  T2 
w h e r e  ( T I  . c 4  = T 2 . c 4 )  
g r o u p  b y  T I  . c l ;  

s e l e c t  * f r o m  V1 w h e r e  ( a  = 5  a n d  b  > 1 0 ) ;  

The predicate a = 5 (upon further conjunctive normal 
form [CNF] analysis) can be applied on  the base table 
scan itselfasTl.cl = 5. 

Index join is one of the efficient join techniques 
used in DBI. This join technique minimizes the move- 
ment of data from the link databascs by taking advan- 
tage of the indexing schemes in the link database to 
facilitate the join process. Consider the following 
query: 

s e l e c t  * 
f r o m  T I ,  T2 

w h e r e  T I  . c l  = T 2 . c 2  + 5  
a n d  ( .  . . s o m e  r e s t r i c t  p r e d i c a t e c s )  

o n  T 2 . .  . )  

Q 1  - q u e r y  t h a t  w i l l  n o t  r e q u i r e  a  s p e c i a l  j o i n  a f t e r  t r a n s f o r m a t i o n  
- - 

s e l e c t  snum, c i t y ,  s t a t u s  
f r o m  S  

w h e r e  s t a t u s  = ( s e l e c t  a v g ( w e i g h t )  + 5 - -  n e s t i n g  p r e d i c a t e  
f r o m  P  

w h e r e  P . c i t y  = S - c i t y ) ;  c o r r e l a t i o n  p r e d i c a t e  

- - 

- - Q 1 - U  - t h e  u n n e s t e d  v e r s i o n  

s e l e c t  snum, c i t y ,  s t a t u s  
f r o m  S, ( s e l e c t  c i t y ,  a v g c w e i g h t )  + 5 

f r o m  P  
g r o u p  b y  c i t y )  a s  T l ( c l , c 2 )  

w h e r e  T I - c l  = S - c i t y  
a n d  S . s t a t u s  = T I  . c 2 ;  

- - A l g o r i t h m :  
- - 

1 )  T a k e  t h e  i n n e r  b l o c k ' s  FROM t a b l e  t h a t  h a s  a  c o r r e l a t i o n  p r e d i c a t e .  

- - 2 )  Add a  G r o u p - B y  t o  t h e  i n n e r  b l o c k  c o n t a i n i n g  a l l  a t t r i b u t e s  o f  t h i s  
- - t a b l e  t h a t  a p p e a r  i n  o n e  o r  m o r e  c o r r e l a t i o n  p r e d i c a t e s .  T h e  o r d e r  o f  
- - t h e  a t t r i b u t e s  i n  t h e  G r o u p - B y  d o e s  n o t  m a t t e r .  
- - 3 )  A l s o ,  a d d  t h e s e  e l e m e n t s  t o  t h e  s e l e c t  l i s t  o f  t h e  i n n e r  b l o c k ;  a t  t h e  
- - b e g i n n i n g  o r  a t  t h e  end, w h a t e v e r  i s  c o n v e n i e n t .  

-- 4 )  N e x t ,  a d d  t h i s  b l o c k  t o  t h e  FROM L i s t  o f  t h e  o u t e r  b l o c k  - e f f e c t i v e l y  
d o i n g  a  r e g u l a r  j o i n  w i t h  t h e  t a b l e s  i n  t h e  o u t e r  FROM l i s t .  

- - 5 )  L a s t l y ,  r e w r i t e  t h e  c o r r e l a t i o n  a n d  n e s t i n g  p r e d i c a t e s  a s  s h o w n .  

Figure 8 
Query Unnesting AJgorithm 
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- 8 2  - q u e r y  r e q u i r i n g  a  s e m i - j o i n  
- 

s e l e c t  snum 
f r o m  S  

w h e r e  c i t y  I N  ( s e l e c t  c i t y  
f r o m  P  

w h e r e  P - w e i g h t  = S . s t a t u s ) ;  

- 

- Q2-U - t h e  u n n e s t e d  v e r s i o n  

s e l e c t  snum 
f r o m  ( S  s e m i - j o i n  P  

o n  ( P - w e i g h t  = S . s t a t u s  AND S . c i t y  = P - c i t y )  
) ; 

- - I )  Do a  s e m i - j o i n  b e t w e e n  S  a n d  P  u s i n g  t h e  f o l l o w i n g  ( c o m b i n e d )  c o n d i t i o n :  
-- " ( P - w e i g h t  = S - s t a t u s )  AND ( S . c i t y  = P . c i t y ) "  
-- I n  r e a l i t y ,  t h i s  i s  a c t u a l l y  s p e c i f i e d  a s  2  s e p a r a t e  s e m i - j o i n s  b e t w e e n  
- - S  a n d  P, o n e  w i t h  t h e  c o r r e l a t i o n  p r e d i c a t e  a n d  o n e  w i t h  t h e  f o r m  o f  
- - t h e  n e s t i n g  p r e d i c a t e .  B u t  t h e s e  g e t  c o m b i n e d  u s i n g  r u l e s .  
-- 2 )  P r o j e c t  o u t  S - s n u m  f r o m  t h e  r e s u l t  

Figure 9 
Algorith~n with Semijoin Operator 

Given an index o n  column c l  o f  table T 1 ,  and witli 
cardinality and cost estimates permitting, the query 
optimizer can generate an alternate plan. This  plan 
allows t h e  join t o  be pcrfornicd by using efficiently 
indexed access retrieval for table T 1 .  

High Availability 
H i g h  avajlability in DBI results from the use o f  hori 
zolital partitioned views and catalog replication. 

Horizontal Partitioned Views All H P V  is a special 
kind o f  view in which DBI is provided with informa- 
tion about  how data is distributed a m o n g  tables in link 
databases. HPVs offer many advantages over normal 
views, o n e  o f  them being improved pcrformancc 
through partition elimination and use o f  parallclisni. 
T h e  other  advantage is high availability. 

If a partitioned view bas multiple partitions and  if 
some partitions are unavailable when the view is 
queried, then DBI does no t  fail the query bu t  returns 
data from t h e  available partitions. hi csaniplc is 
shown in Figure 10. T h e  example creates a partitioned 
view named ALL-EMPLOYEES, with four c o l ~ ~ m n s  
and three partitions, each ofwhich  obtains rows fi-on1 
three different tables. T h e  partitioning is based o n  a 
specific column,  in this casc the CITY column, as spec- 
ified in the USING HORIZONTAL, PAliTITTONTNG 
ON clause. 

Suppose the following query is submitted 

SQL> SELECT * F R O M  ALL-EMPLOYEES 
WHERE ( C I T Y  = ' M U N I C H ' )  

O R  ( C I T Y  = 'NASHUA ' ) ;  

First, partition P2 is eliminated a t  compile time. 
N o w  suppose partition P 3  js presently no t  available 
d u e  to net\-\iork connecti\iity yroblelns (Figure 11). 
For  each partition that  is una\tailable, a message is 
r e t ~ ~ r n e d  indicating that sonic rows arc missing from 
the  res~ l l t  table: %l)BI-W-HAHPV-UNAiIMLABLE 
Partition 1'3 is currently una\lail'~ble. However ,  DRI 
still attempts t o  return as much data as is accessible. 

Catalog Replication To prevent tlie 1)KI global cata- 
log fi-om becoming a single point o f  failure, multiple 
copies o f  a catalog tablc can bc maintained by using 
replication techniques. Catalog tablc copies can be 
created casily and  maintained using replication tools 
such as the DEC Data D i s t r i b ~ ~ t o r . ~  

Performance 
In  addition t o  its distributed query  optimizer, Dl31 
uses a series of techniques t o  increase tlie speed o f  
query processing, most notably in the areas o f  data 
transfer, memory  management, join processing, paral- 
lclism, and stored procedures. 

Data Transfer T h c  DBI execution engine performs 
bulk data transfer using the bulk fetch m e c l i a ~ u s n ~ s  
provided by tlie SDI interface. \/Vith b ~ ~ l l c  data transfer, 
a single request lnessagc t o  a local o r  remote data 
sourcc returns many t ~ ~ p l e s  witli a single response mes- 
sage. Bull< transfer techniques are mandatory in  a dis- 
tributed environment; they reduce both niessage 
traffic and stall ~va i t s  d u e  t o  niessage delays. T h e  data 
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C R E A T E  V I E W  A L L - E M P L O Y E E S ( I D ,  N A M E ,  A D D R E S S ,  C I T Y )  
U S I N G  H O R I Z O N T A L  P A R T I T I O N I N G  O N  C I T Y  
P A R T I T I O N  P I  W H E R E  C I T Y  = ' M U N I C H '  

C O M P O S E  A S  S E L E C T  I D ,  L A S T - N A M E ,  A D D R E S S ,  ' M U N I C H '  
F R O M  M U N I C H - E M P L O Y E E S  
W H E R E  S T A T U S  = ' Y '  

P A R T I T I O N  P Z  W H E R E  C I T Y  = ' P A R I S '  
C O M P O S E  A S  S E L E C T  I D ,  F U L L - N A M E ,  A D D R E S S ,  ' P A R I S '  

F R O M  P A R I S - E M P L O Y E E S  
W H E R E  S T A T U S  = ' Y ' ;  

P A R T I T I O N  P 3  W H E R E  C I T Y  = ' N A S H U A '  
C O M P O S E  AS S E L E C T  I D ,  F U L L - N A M E ,  A D D R E S S ,  L O C A T I O N  

F R O M  N H - E M P L O Y E E S  
W H E R E  S T A T U S  = ' Y ' ;  

Figure 10 
Example o f  a Partitioned View 

P2: PARIS 

'a@ P3: NASHUA 

MULTIPLE 
PHYSICAL 
DATABASES 

Figure 11 
High Availabil~ty with Partitioned Views 

transfer bandwidth benveen the DBI engine and the 
gateway drivers is hr ther  increased t h r o ~ ~ g h  the use of 
asynchronous SDI operations. 

Memory Management An MDBMS needs to be able 
to process large amounts of data efficiently without 
exceeding platform- or  user-specific operational quo- 
tas such as the page file size or  the working set limit. 
In  addition, standard operating system paging tech- 
niques may easily result in heavy 1/0 thrashing for 
database-centric work loads. 

The DBI executor placcs data streams, intermediate 
query results, or  hash bucltets into individual work- 
spaces. A worltspace is organized as a linear sequence 
o f f  xed-size pages. A standard page-table mechanism 
identifies the allocated pages and records status such as 
~vhether a page is present in memory or  whether it is 
paged out to secondary storage. The worltspace nian- 
ager operates as an intelligent buffer manager and pag- 
ing system that controls fair access to memory across 
all active ~~orkspaccs  of a given DBI user. A buffer pool 
manager holds the workspace pages that reside in 
memory. 

The buffer pool manager supports multiple buffer 
replacement policies, which is important for database 
worltloads that involve sequential access to data that is 
subsequently no longer needed. The two supported 
strategies are least recently used (LRU) and most 
recently used (MRU).I6 Finally, the worltspace nian- 
ager supports write-behind for newly allocated pages. 
This allows newly allocated pages that have been filled 
to  be written asynchronously. 

Join Processing Highly efficient processing of joins 
and unions is important in any co~nmercial database; it 
is crucial for a multidatabase system. DBI supports 
nested loop join, index join, and hash join. In fact, 
DBI supports both a regular hash-join mechanism and 
a hybrid, hash-partitioned variant that is augmented 
with Bloom filt~ring.l7,18,~9 

For both hash-join variants, the inner table rows are 
read aspnchronously into a DBI worltspace. This first 
pass is used to  estimate whether or not to use the hash- 
partitioned variant. An exact estimate for the number 
of partitions to use is well worth the overhead of this 
initial pass.20 In  addition, a Bloom filter with 64 kilo- 
bits is populated as part of this pass. The inner table 
cardinality, an estimate for the outer table cardinality, 
and an estimate of the presently available memory are 
used to determine whether the simple hash-join tech- 
nique is sufficient, or  whether the use of the hybrid 
hash-partitioned join technique is warranted. 

111 general, hash-partitioned join processilig is indi- 
cated \vl~en the inner table and its hash-table buckets 
d o  not fit in memory. In  this case, both the build phase 
for the inner-table hash buckets as well as the probe 
phase of outer-table tuples against the inner-table hash 
buckets may incur massive amounts of random I/O. 
When the hash-partitioned variant is selected, the fol- 
lowing steps are performed. 
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F,acli partition rccci\rcs .I scparntc \\,orl<spacc. 

Tlic inncr tablc is p.lrtitio11cd f r s t .  D u r i n g  tliis 
partitioning step, ,l l{ loo~n filter is gcncratcd from 
the join column o f  innel--t,lblc t ~ ~ p l e s  and is 
applied \\,hen the ou tc r  table ro\\!s urc partitioned. 
Tllis results in a porcnti.lll\r massi\le rcduc t io~i  
of the n l ~ m b c r  o f  ro\\,s th.lt 3rc placed in to  tlie 
ou tc r  partitions, t l i ~ ~ s  cl imi~iat ing cspens i \~e  1 / 0  
operations. 

T h e  \\,orksp:lccs tliat hold the inner-table partition 
1 and the  11;lsh-table buckets for that  partition are 
agcd M U ,  \vhicIi kccps tlicm in memory  for the  
join operation o l i  tlic first partition piiir. 

Tl ic  \vorkspaccs tha t  hold the  remaining inner- 
tablc partitions 2 thl-oi~gli ( 1 1 )  arc agcd M R U ;  
thcsc pages bccomc immcdiatcly available for 
buffer rcplaccmcnt sclcct io~l  once  they have been 
fillccl and tlicir frames u ~ i p i n n c d .  

O n c e  [lie partitioning phase is coniplctc, cacli pair 
o f  i n n u  and o u t e r  partitions is joined s tar t ing 
with partition pair 1 .  T h e  inncr pilrtitions arc agcd 
I,RU, ancl the  o u t c r  partitions arc agcd MRU t o  
kcel.' t h e  inncr partition t i~p lcs  in memory. 

'Thc use o f  tlcsiblc buffcr rcplaccnicnt strategies is 
c r u c i ~ l  for  good  buffcr cuchc bclinvior. 

Parallelism 1)BI employs t \ \ ,o  types of  parallelism: 
pipdincd parallelism ,lnd indcpcndcnt parallelisn1.s 

With hash-join PI-occssing, for instance, the outer  
ta blc ro\\-s arc r c ~ d  b!. ~ c p ~ r ~ t c  1)RI c s c c ~ ~ t i o n  threads 
from the undcrl\ring d n t ~ l n > c .  This mcilns that tlic 
outer  t,thlc t ~ ~ p l c  strean1 is cffccti\~cly gcncratcd in par- 
allel \\,it11 the prohc phase processi~lg o f  the hash-join 
operator o n  the inncr table ~-o\\,s.  Tlic o ~ ~ t c r - t a b l e  t~ lp lc  
stream is directed into tlic hash-join probe phase. 

For  U N I O N  processing on partitioned \,ic\\!s, the 
individual input  strcams t o  the U N I O N  operator are 
generated by separate 1)121 cxccution threads. 'The 
streams 3rc provided in parallel and independently t o  
the  U N I O N  opcmtor. 

Stored Procedures Stored procedures provide a criti- 
cal p c r h r m a n c c  cnlianccmcnt fi)r clie~it-sel-ver pro- 
cessing. They allo\v t h e  1)RA to e n c a p s ~ ~ l a t e  a set o f  
SQL statements plus control logic. Tl ic  client sends 
o n e  message containing a stored procedure rather 
than scvcral messages, each containing o n e  SQI, state- 
ment .  This  rcduccs processing delays that  otherwise 
\\lould be incurrccl d u e  to nct\vork rmftic. 

DBI Server Configuration 
I n  a smndarcl 1)RI configi~rntion, o n e  cxccution 
proccss is c r c ~ t c d  fix cncli l>I<I client. As the  number  
o f  clients incrcascs, morc and  morc operating s!atcni 
resources tare consumeti.  'Tllc 1)13I ~ c r \ ~ c r  configura- 
tion a~idresscs tllib prol)lcm. 

Server Components  A 1)BJ scr\.cl- c o ~ i f i g ~ ~ m t i o n  
includes n~inimally a monitor  proccss, a dispatclicr 
process, ancl a set o f  1>11I executor PI-occsscs. Tlic 
monitor  proccss supports on-line system management  
o f  the s e n f e r  c o n f g ~ ~ ~ . , l t i o ~ ~ .  O n e  o r  morc  dispntchcr 
processes 1ii311agc .dl c l ic~i t  co1n1i1~11iicatio1ls c o ~ ~ t c s t .  
Dispatchers r o ~ ~ t e  c l i c~ l t  11lcss.1gcs t o  a11 .~ppropri,itc 
Dl31 executor proccss t h ~ - o ~ ~ g l l  high-spccd s i i ~ r c d  
memory clucucs. Fig111-c 12 s l~o \ \ , s  '1 npic,ll 1)13I scr-\.el- 
configi~ration. 

Server Infrastructure I n  t l ~ c  I)I<I  sc~- \ , c~-  co\ . i~-onmcnt ,  
a n  OL>13(; client logicall!, colinccts t o  '1 scl-\,ice object 
tliat pro\.idcs access t o  a spccitic 1)13I d ,~ tab~lsc . '  A scr- 
vjce is instautintecl by ,I pool of I l l 3 1  c ~ c c ~ ~ t o l .  PI-occsscs 
that  contain the  L>RI image. T h e  .llnollnt ofproccsscs 
of the pool is configu~-able, both off-line n11d on-line. 
This  allo\vs the administrator t o  match the t l i r o ~ ~ g l i p ~ ~ t  
requirements f ix  3 give11 1)I31 d;ltah;lsc with the appro- 
priate a m o u n t  o f  csccutor  processes. 

Multithreading 1)RI csccutor  processes J ~ I J ~  prcs- 
ently be  configured as session-rcusablc o r  transilction- 
reusable. Sessio~i-reusable Incans that  3 clicnt is bouncl 
t o  an csccutor  proccss for the d u r ~ t i o n  o f  the entire 
database sessio~i. Transac t ion-~-c~~s~~l>Ic  mcnns tli.~t 
multiple clients may share tlic same csccutor  proccss; 
a client is scliedulcd to a 1)111 csccutor  h- o ~ i c  tr.lns- 
action :it a time. 

Summary 

T h e  13B Intcgr,ltor p r o c i ~ ~ c t  cont.~ins m;iny fcnturcs 
that cnablc it to p~.o\ , idc opc11, robust,  ,lnJ high-pcr- 
formance data acccss. Dl31 gu.~ra~i tccs  open d n n  ncccss 
by suppor t i~ ig  de  theto , ~ n d  clc ~ L I I - c  intc~.thcc st,lndnrJs 
such as SQL92 and 01:13(:. (llicnt-scr\.c~- c o ~ l ~ l c c t i \ ~ i n f  
is available over tllc l)F.;.(:nct, 'T'<;l'/[l', ,lnii Sl'X/II'S 
transports. T h e  IMI)I/I)I)I inrcrhcc ,lllo\\,s uscrs t o  
e s t e ~ i d  tlie use o f  I)[',[ t o  gain acccss t o  an!' n l ~ m b c r  of 
data sources. 

Figure 12 
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DBI provides ~.obust  data acccss by s u p p o r t i ~ i g  hct- 
erogencous cluery optimization, location trans- 
parency, g l o t ~ ~ l  consistency, resolution o f  semantic 
d '  I ~ ~ L I L I ~ C C S ,  -. -. and sccur iq~  clicclts. T h e  Dl31 c l ~ ~ c r y  opti- 
mizer taltcs cost f'ictors and capabilities into account t o  
determine tlie optimal plan. A globill catalog provitics 
location transparency and operates as an a u t o ~ i o m o u s  
metadata repository. Global transactions are  coorcii- 
nated through nvo-phasc commit .  Highly available 
horizontal partitiorred \liec\ls suppor t  cont inuous dis- 
tributed processing in t h e  presence o f  loss o f  conncc-  
tivity. Definitions of  vicivs and stored procedures allo\v 
tlie user to hide semantic difkrcnces a m o n g  the  
~ r n d e r l y i n ~  databases. Finally, L>BI enables security 
checks \ \ ~ i t h o ~ ~ t  interfering \\lit11 tlie acccss controls 
specified in the underlying d a r ~  : 5o11rccs. 

1)HI offcl-s high-pcrforma~icc dat<i .iccess t l i r o ~ ~ g l i  
a combination o f  sopliisticnted clucry optimization, 
advanced query csccution algorithms, ,lnd efficient 
use o f  nenvorlc resources. T h e  query optimizer 
decomposes a distributed query b y   s sing as many fen- 
tilrcs o f  the  underlying database as possible and by 
employing state-of-the-art t e c h n i q ~ ~ c s  such as query 
unnesting and partition elimination. T h e  D R I  query 
processor is capable o f  driving indes joins and hybrid 
h'ish-partitioned joins. All intermcdiatc data is cached 
1 / 0  opt i~i i ized.  Connections to remote data sources 
arc established solely o n  demand.  Finnlly, parnllcl 
query execution is supported. 

In  the  future, performance \vill continue t o  be an 
important  t i c to r  for any data acccss product  as \ \ , i l l  
support  for object-oriented data models. By combin-  
ing data-i1itegratio11 technologics such as 1)Rl with 
application-integration standards such as Object  
Request Rrokers, a merger  o f  data integration and 
application integration will bc feasible. 
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ACMSxp Open 
Distributed Transaction 
Processing 

Digital's ACMSxp portable transaction process- 
ing (TP) monitor supports open TP standards and 
provides an environment for the development, 
execution, and administration of robust, distrib- 
uted, client-server applications. The ACMSxp 
TP monitor supports the Structured Transaction 
Definition Language, a modular language that 
simplifies the development of transactional 
applications. ACMSxp software is layered on 
the Open Software Foundation's Distributed 
Computing Environment (DCE) and supports 
XA-compliant databases and other resource 
managers by using the Encina toolkit from 
Transarc Corporation or Digital's distributed 
transaction manager (DECdtm) software. As 
a framework for DCE-based applications, the 
ACMSxp TP monitor simplifies application 
development, integrates system administra- 
tion, and provides the additional capabilities 
of high availability, high performance, fault 
tolerance, and data integrity. 

I 
Robert K. Baafi 
J. Ian Carrie 
William B. D r u r y  
Oren L. Wiesler 

Transaction processing (TP) is a style of  compi~ting 
that guarantees robustness and high availability for 
critical business applications. T P  typically involves a 
large number of  users using display devices to issue 
similar and repetitive requests. The requests result in 
the accessing and updating of  one o r  niore databases 
to reflect the current state of the business. 

The basic building block in a TP system is a transac- 
tion. A transaction is an indivisible unit of work that 
represents the f~indamental construct of recovery, con- 
sistency, and concurrency. Each transaction has the 
properties of atomicity, consistency, isolation, and dura- 
bility (ACID). 'These propcrties are defined as follows: 

Atomicity. Either all the actions of a transaction 
succeed o r  all fail. In case of  failure, the actions are 
rolled back. 
Consistency. M e r  a transaction executes, it must 
either leave the system in a correct state or  abort 
and return the system to its initial state. 

Isolation. The actions carried ou t  by a transaction 
against a shared database cannot become visible to  
other transactions until the transaction commits. 
Durability. The effects of  a committed transaction 
are permanent. 

A T P  monitor manages and coordinates thc flow of 
transactions through the s)rsteni. Transaction requests 
typically originate from clients, arc processed by one 
or  Inore servers, and end at the originating c.lient. 
When a transaction ends, the TP monitor ensures that 
all systems involved in the transaction are left in a con- 
sistent state. 

The development of powerful desktop systems and 
advances in communications technology have fileled 
the growth of distributed client-server computing. The 
systems in a distributed environment map run different 
operating systems, possibly from different vendors. 
Business-critical applications may nun under the con- 
trol of different TP monitors. To coordinate their activ- 
ities, T P  monitors on heterogeneous systerns need to 
conform to  standards for open transaction processing. 

Opcn standards for transaction processing have 
been adopted by the International Organization for 
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Standardization/Open Syste~iis Interconnection 
(ISO/OSI), the X/Open initiative, and the Service 
Pro\.idcrs' Integrated Requirements h r  Information 
Tech~iology (SPIRIT) consortium.l~* The )(/Open 
initiative is a consortii~ni of vendors \\those purpose is 
to define standards for application portability. SPIRIT 
is a consortium of telecommunications service pro- 
viders from the U.S., Europe, and Japan working 
undcr the general spo~isorship of tlie Network 
~Vanagement Forum (NIMF):;-~ The goal of the 
NMF's SPIRIT c o ~ i s o r t i ~ ~ m  is to define standards for 
portability and interopcl-ability across heterogeneous 
systems to be used as the basis for procurement. 

The main standards for open transaction processing 
are 

X/Open distributed transaction processing (DTP), 
which is an architect~~rc that allo\iis rn~~lt iple pro- 
grams to slinre resources (c.g., databases and files) 
provided by milltiple resource managers and allo\vs 
their work to be coordinated. The architecture 
defines application programming interfaces and 
interactions among transactional applications, 
transaction managcrs, resource managers, and 
comrn~~nicatio~is resource managers. Tlie trans'ic- 
tion manager and the resource managcr communi- 
cate by means of the XA i n t ~ r f a c e . ~  

X/Open transactional remote procedure call 
(TsRPC), \vliicli allo\vs an application to invoke 
local and remote resource managers as if they \\,ere 
all local. TsRI'C also allo\vs an  application to be 
decomposed into client and server coniponents on 
different computers interconnected by means of 
reniotc procedure calls ( RPCs). 

SPIRlT Structured Transaction Dcf i~~i t io~l  Language 
(STDL,), \vhicli is a block-str~~ctured languagc for 
transaction proccssi11g.~,3,~ STDL provides transac- 
tional fea t~~res  including demarcation of transaction 
boundaries, transaction recovery, exception han- 
dling, trarlsactional communications, access to data 
qileues, sub~nission of queued nrork requests, and 
invocation of presentation services. 

Digital's Application Control and Management 
Systcni/Cross-plath)rni (ACMSsp) software product 
is a portable T P  nionitor that slipports the open TP 
standards. It provides an environment for tlic develop- 
ment, execution, and administration of STDL appli- 
cations. ACMSsp sohvare is layered on tlie Open 
Software Foundation's (OSF's) Distributed Comput- 
ing Environment (DCE) and supports multiple 
resourcc managcrs through Transarc Corporation's 
Encina toolkit on the L!NIX opcrating system atid 
Digital's distributed transaction manager (DECdtni) 
scrviccs 011 tlie OpenVhllS operating s)!stem.x This 
paper dcscribcs the design of the ACMSxp TI> tiionitor 

Application Development 

AClMSxp applications arc writtell ~lsing 3 combination 
of the STDL and traditional Iang~lages such as C and 
COBOL. STDL is a modular, block-structured lan- 
guage de\ieloped specifically for rransactio~i proccssing. 
It is based 011 the ACMS Task Ilcf  nition l,~i~nguage 
(TDL) and \\?as developed as part of Nippon l'clcgraph 
and Telephone's (NTT's) Multi\.cndor Integration 
Architecture (MIA) initiati\,c.+-" Tlie NMF's SPIRIT 
consortium subsequently adopted STL>L. 

STDL Language Overview 
STDL provides transactional fcati~rcs including trans- 
action demarcation, transactional remote procedure 
call, transactional task and data record clueuing, trans- 
actional display management, transactional exception 
handling, and transactional \itorking stol-age called 
worltspaccs. 

STDL divides nn application into thrcc parts: pre- 
sentation, transaction flow control, and processing, as 
illustrated in Figure 1 .  The presentation part interfaces 
with display devices using a prcscntation manager, 
such as Motif, Windo\vs, or  forms managcr soft\\jarc. 
The transaction flo\v control part is \vrittcn in STI>L 
and controls the tlow of execution, inclucling ~TIIIISLIC- 

tion demarcation, exception handling, and acccss to 
queues. The  processing part is written in traditional 
languages, such as C, COBOL, and SQL,, and provides 
computation and access to I -CSOLI~CC managcrs such as 
databases and files. 

The application hlnctions in the three parts of the 
STDL application model are referred to rcspccti\.cly as 
presentatio~i procedures, tasks, and processing procc- 
dures. The application hnctions arc packagcd into 
groups for the pilrposcs ofcornpilation and e~ccut ion.  
The groups are referred to us presentation groups, taslc 
groups, and processing groups. 

A group specification describes tlic flnctions in the 
group and their intcrfaces. The intcrhcc specification 
includes the arguments that arc pnsscd to tlic fi~nction 
and an indication of\vhcthcr an a r g ~ ~ ~ i i c ~ i t  is ilipllt 011[): 

output only, or both input and o i ~ t p ~ ~ t .  For n task, tlic 
interface specification also indicates \vlicthcr tlic t ~ s k  
begins a new transaction (NON(:OMPOSABLE) or  
joins the caller's transaction (COMI'OSAI%LE). 

STDL variables are defined in constructs called 
worl<spaccs. \Vorks,paces may Ii.i\lc thc transactional 
attribute, thus allowing an application to coordin,ltc 
internal data with the outcomc of tlic tm~ls~~c t ion  
along with other resourcc managcr participants. 
Workspaces have the scope of cithcr PRIVATE or  
SHARED. A I'lUVATE \\lorltspacc is acccssi blc to only 

single task; 3 SHARE11 \\~orlzspacc is accessible to a11 
tasks in a task group. 
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Figure 1 
STDL Application Modcl 

STl3L supports nvo types of clueues: record and 
taslt. Record queues provide a transactional, durable 
scratch pad facility for applications to store and 
retrieve intermediate results. Task queues provide 
a way ofexecuting tasks independently of the  currently 
executing task in both time and location. Storage of  
the task queue element on  the task queue may o r  may 
not be conditional on the outcome of  the currently 
executing task. 

Sample STDL Application 
Figure 2 sho\vs a sample STDL application program. 
The sa~iiple program accepts an integer, increments 
it, and displays it. In addition, shared workspaces are 

defined in the task group to track the number of suc- 
cesshl executions (sz~ccases) and the number of hiled 
executio~is (Jailures). These operations all take place 
within the context of a transaction defined by task 
add l .  If the transaction succeeds, the program incre- 
ments number and the shared workspace st1ccesse.s. 
If the transaction fails, the program restores ~zz~rnber. 
to its initial state and involtes the exception handler. 
The exception handler then updates the shared worlt- 
space fnilzrl-es, 

STDL Compiler 
The STDL compiler simplifies the process of develop- 
ing distributed client-server applications. It generates 

RECORD a r g l  
n u m b e r  I N T E G E R ;  

END RECORD; 

T A S K  GROUP e x a m p l e 1  
T A S K  a d d 1  

T A S K  ARGUMENT I S  a r g l  P A S S E D  AS I N O U T ;  
END T A S K  GROUP; 

T A S K  a d d 1  ARGUMENT I S  a r g l  P A S S E D  AS I N O U T ;  
WORKSPACES ARE s u c c e s s e s  S H A R E D  U P D A T E  R E C O V E R A B L E ,  

f a i l u r e s  SHARED UPDATE,  
a r g l  P R I V A T E  R E C O V E R A B L E ;  

B L O C K  W I T H  T R A N S A C T I O N  
P R O C E S S I N G  

COMPUTE s u c c e s s e s  = s u c c e s s e s  + 1  
P R O C E S S I N G  

COMPUTE n u m b e r  = n u m b e r  + 1 
EXCHANGE 

SEND RECORD n u m b e r  TO i n s c r e e n  
END B L O C K  
E X C E P T I O N  H A N D L E R  I S  

P R O C E S S I N G  
COMPUTE f a i l u r e s  = f a i l u r e s  + 1  

END E X C E P T I O N  HANDLER;  
END T A S K ;  

Figure 2 
Sample STDL Application 
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all tlie code necessary for si~pporting the application in 
the distributed environment, including server initial- 
ization, naniespace registration, namespace lookup, 
and applicatio~~ contest propagation. This allo\\rs tlic 
application programliier to f o c ~ ~ s  on the application 
problem at hand. 

The ACMSsp ST1)L compiler translates STDL spec- 
ifications into escci~table codt .  The compiler itself is 
written i ~ i  the ANSI C: p~.ogramniing la~lguage using 
POSIS 1003.1 library interfaces for platform portabil- 
ity; the generated code consists of only ACMSsp run- 
time service calls and I X E  service calls.12 T o  the 
application progr~nimer,  thc ACMSsp STDL compiler 
looks nii~ch like a classical compiler. The STDL com- 
piler reads source code, converts it to object code, and 
then links it to create an esecutablc program. Figure 3 
shoivs tlic elements \vrittell by tlic application pro- 
grammer and the transforniations required to create 
an executable program. 

Internally, the STDL, compiler consists of  a series of  
steps that ~ L I I I  under the control of a driver program. 
TI i s  processing takes place in tlie steps shown inside 
the dashed-line box of Figure 3. The STDL, driver first 
reads STDL specifications in onc pass and constructs 
internal structurcs that rcprcsent each S7'I)L entity in 
the sourcc file. O ~ i c e  an entity has bccn conipletel!/ 

parsed and the syntas has been checked for errors, the 
driver generates intermediate files by translating 

STDL groups into ACMSsp client and server stubs 
and a DCE RPC Interface Dcfinition 1,anguagc 
(IDL) file 

STDL tasks into C code and ACMSsp run-time ser- 
vice calls 

STDL record definitions illto (: structures con- 
tained in C header files or COBOL copy filcs 

M e r  the STDL driver has generated all the intcrme- 
diate files, it invokes the appropriate language proccs- 
sor to convert the filcs into object files. Tlic lX:E I1)L 
compiler processes the IDL tiles, and tlie C: compiler 
processes tlie tasks and the ACMSsp stubs. T o  keep 
the ~iunibet  of pieces visible to tlic application pro- 
grammer within reason, the AC:MSxp clicnt and scl-ver 
stubs are combined \\lit11 the 1X:E clicnt and server 
stubs. The result is a collection ofobject files similar to 
those found in a conventional DC;E application. The 
platfor111 linltcr then co~nbincs rhe resulting fi lcs jnto 
an executable program. 

The ACMSsp client and server s t ~ ~ b s  arc similar in 
concept to the DCE KPC clic~it and server stubs. Tlic 
client stub is linked \\/it11 other ~pplications that in\~okc 

STDL SOURCE FILES u C OR COBOL 

COMPILER HEADERS 

C OR COBOL 
COMPILER 

t , I LIBR4RY I I MODULES I 
ORJECT MODULES L-J 

LINKER u I EXECUTABLE PROGRAM I 
KEY: 

PROCESSING 0 'ILE ACTIVITY 
?.-; STDL COMPILER 
1-----: PHASES 

Figure 3 
ST131, Col.npilcr Flo\\,s 
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this g r o ~ ~ p ' s  tasks or  procedures. The server stub is 
combined with application codc to crcate the applica- 
tion server image. Tlic A(:MSsp s t ~ ~ b s  call ACMSsp 
run-time services to add to the base DCF, KPC services 
features such as transactions, failover and failback, and 
time-out. 

Execution Environment 

The AC~MSxp.run-time system provides an environ- 
ment for csecuting and invoking STDL applications. 
It also pro\lidcs scr\~iccs that allow components in the 
execution environnicnt to be managed. The esecution 
environment provides many services typically needed 
in T P  en\riro~lmcnts, such as resource sc hcdi~ling, fault 
tolerance, and  clucuing. 

Process Model 
The ACMSsp environment consists of clicnt and 
server components. A TPsystem comprises multiple 
server c o ~ i i p o ~ ~ c ~ l t s  011 3 nodc tlii~t are nianaged as 
a unit. A given TPsyste~ii has a globally unique name 
and is associated with only one nodc, but a node can 
have multiplc TPs)/stcms associated with it. ATl'systcm 
contains a central process called the TPcoutroller, 
\vhich controls the components within the TPsyste~ii. 
The processes in the execution environment are illus- 
trated in Figurc 4. 

As the central point of co11troI for tllc components 
\vithin a TPsystem, the TPcontrollcr performs many 
h~nctions, including license checking, starting and 
stopping scrvcrs, a n d  monitoring scr\,cr processes and 
rest~rt ing them \vhcn they terminate abnorrnall!,. I t  
also receives ad~iiinistr~tion requests and perfornls the 
reqi~csted operations, maintains information in shared 
memory for corn~i i~i~i ica t io~l  with server processes, 
and maintains kc!! ti lcs for scr\<cr n~~tlicntication. 

A task server cxccutcs S?'1)1, task group code and 
uses multiple threads in a single process to achieve 

r - - - - - - -  
I TPSYSTEM 

concurrent execution (multithrcaded). A proccssing 
server executes STDL processing g r o ~ ~ p  code and uses 
a pool of single-threaded processes to achic\,c concur- 
rent execution (multiprocess). 

Systenl servers pro\.ide specific ruli-tinlc scr\ 'ICCS ' to 
the TPcontroller, task servers, and processing servers. 
The sJrstern servers include tlic c\,cnt log serjfer, the 
request queue server, and the record qucuc server. 
System servers arc multithrcadcd. 

Client processes invoke ser\.iccs pro\ridcd by a 
TPsystem and its scr\lcrs. An administration clicnt 
(also referred to as the director) invokes i~dministra- 
tion services provided by the TPcontrollcr and system 
servers. hi application client involics application scr- 
vices provided by taslc scrvcrs. An application clicnt 
can bc a customer-written clicnt or  an A<:IMS 1)csktop 
client. A customer-\vritten clicnt can consist o f  codc 
necessary to support a forms miinagcr o r  cicvicc con- 
trol such as an automatic teller machine 01. a g ~ s  p ~ ~ r n l > .  
An ALMS Desktop clicnt allo\\/s ~x)puIa~- ~icsktop SYS- 

telns such as the Macintosh, S<;O1s UNIX, 1Microsofi 
Windows, and Windo\\ls NT operating systems to be 
used to  access ser\lices pro\iidcd by A<:MSxp applica- 
t ~ o n  servers. 

Run-time Services 
The ACMSsp run-time system pro\lidcs scrviccs 
r eq~~i red  for the esecution ofclient-scrvcr 7'P applicn- 
tions. The run-time scrviccs arc liigl~ly modular and 
are layered on the scr\rices provided by the underlying 
transaction manager, l X E ,  opcrati~ig systc~n, network, 
and other ser\~iccs, 3s sho\\,~i i l l  Fig~11.c 5. 

The run-time ser\~iccs integrate tlic scrviccs of the 
underlying platform and pro\ridc additional f~nct ion-  
ality. Thev export an  application programming intcr- 
face (AI'I) called the transaction proccssing scr\rice 
interf~ce (TI'SI). The rl111-timc scr\,iccs i n c l ~ ~ d c  

Coli i~i~unicatio~i,  \\,Iiich pro\,idcs scr\~iccs ti)r trans- 
actio~lal and nontransactio~lal c o ~ l l ~ n i ~ ~ l i c a t i o ~ i  

Figure 4 
Proccsscs in Exccurion Environmcnr 
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benvcen clients and scrtfcrs using 1lC:k; RPC. The 
supported transports arc transmission control pro- 
tocol/internct protocol (TCP/IP), Dl;(:nct OSI, 
and Fast Local Trunsport. 

Process managcmcnt, which provides services for 
starting and stopping server proccsscs, ~iionitoring 
server processes for abnornial termination, and 
restarting new ones to maintain the specified num- 
ber of proccsscs. 

Thread contcxt managcmcnt, which provides ser- 
vices for creating, setting, and propagating thread 
contcxt. Thrcad contcst includes request contcxt, 
exception contest, transaction contcst, and proce- 
dure contcst. 

T i ~ n c r  alert, \\,hicIi provides scrviccs ti)r accuniulat- 
ing CPU time and transaction (elapsed) time. 

Transaction demarcation, which integrates \kith the 
Encina toolkit o n  the OSF/l platform o r  tlie 
DECdtm sott\\,nrc o n  tlic OpcnVMS platform to 
provide distributed transaction support. 

Queuing, \vhich provides serviccs for request qucu- 
ing and record queuing. l l c q ~ ~ c s t  clucuing allo\vs 
task rcclucsts to bc q ~ ~ c u c d  for dcfcrrcd invoc'lt~on. 
Record clueuing allows data records to be enqueued 
and dequcucd. 

File ~nanagcmcnt, wliicli provides fi lc nianagenicnt 
scrviccs k)r COBOL and C programs. I t  provides 
thread-based transaction scmantics for STDL filc 
access n ~ ~ d  lia~idlcs opening 3nc1 closing of files, 
tile positioning, and filc locking. 

Workspacc managcmcnt, \\lliicli ~>rovides services 
for managing private and shared \\~orltspaces. 
A workspace is an STDL construct and represents 
an area of memory used for data sromge and for 
arguments passed ill n proccdurc c;lll. A \vorltsp;~ce 
can be recoverable or  nonrccovcrable. 

Security, \vliicIi autlicnticntcs users and servers and 
provides access control, b.ised o n  the 1)CE scc~~r i ty  
service, for application invocation as \vcll as man- 
agcnient operations. 

Event posting, \\~liicli provides scr\iiccs (or writing 
events into a log. Logged cvcnts include crror, 
security, status, audit, and trace cvcnts. 

Performance monitoring, which provides services 
for capturing performance measurement data. 

Client-Server Communication 
The ACMSsp com~ii~~nicat ions  scr\,iccs LISC OSF's 
DCE services for locating servers, invoking ~ c r \ ~ c r s ,  
a i d  ensuring secure c o r n n ~ ~ ~ ~ i i c ~ t i o ~ ~ s .  Tlic comniuni- 
cations services maximize the cfficicncy of I X E  scr- 
vice usage, provide robustness in tlic event of failure, 
and add distribution of transaction semantics to l X E  
1U'C communications. 

Figure 6 slio\vs tlie elements and steps in\rolvcd in 
tlie communication between a clicnt 31id n scr\.cr. Tlic 
numeric annotations in the following discussion refer 
to the numbers that sppcar in tlic figure. 

The STDL clicnt application calls the scrlrcr ( 1 ) .  
+ - I. he ilC~MSsp client stub issues I-LIII-time scr\,icc culls 
(2)  to initialize contest blocks ;ind to obtnin a binding 
handle (i.e., server addressing information), and  calls 
the DCE R1'C clicnt stub, passing contcst blocks and 
application data (3 ) .  The 1)CE RPC clicnt stub mar- 
shals data and calls the server (4). 

The DCE RPC serves stiib rccci\~cs the c;~ll, unmar- 
shals data, and calls tlic AC&ISsp server stub (5). The 
ACMSxp server stub issi~cs r ~ ~ n - t i m e  scl-vice calls (6) to 
establish local contcxt nncl to chcclt scc~1rit-y nurlioriza- 
tion, and calls the scrvcl- application (7). The server 
application esecutcs and rcturns the results to tlie 
ACMSxp server stlib, wliicli propag~ltcs any crror 
information. 

Transaction Processing Characteristics 
The run-time s y s t e ~ ~ ~  provides the '1.1' monitor \vitIi 
characteristics such as high availnhilit): l o ~ d  balancing, 
and high performance. Some o f thc  mccli~lnisms ~ ~ s c d  
to achieve these characteristics arc discussed bclo\v. 

Availability The run-tinic systc~ii provides f.~ilo\~cr 
and failhacl< capabilities to cnliancc thc a\~ail,tbilitl\, of 
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Figure 6 
Client-Scrvcr C:oin~~lti~iic;ltio~~ t.'lo\\. 

applications. E'ailovcr is the redirection of an RPC to an 
alternate servcr if the intended server is not reachable. 
The target server can be unrcachablc for many reasons, 
including loss of connectivity, application failurcs, and 
~nacliine failures. Failbnck is tlic redirection ofcalls to 
the original scrvcr when it bccon~es available. 

Failo\ler and failback capabilities are supported for 
task servers but not for processing scrvcrs. The  1)CE 
cell directory scrvicc (C1)S) namcspacc profile mccha- 
11isni s ~ ~ p p o r t s  failovcr aucl fililbaclc. The system admin- 
istrntor configl~rcs the primary and alternate servers by 
placing them in the sanic nanicspacc profile with dif- 
ferent priorities. The scrvcr \vith the lo\-ver priority 
number is the primary server. 

Run-time support k)r failo\rer and Failback is imple- 
mented in the clicnt stub. Failovcr is attempted if an 
1VC: f'iils and rllc rctur~~cci error indicates that no  work 
hacl becn done by the called server in the current 
transaction. Fililovcr is alwavs attcrnpted for a non- 
transactional lW<; but is attc~iiptcd for a transactional 
RP<: only if this is the ti rst call to the intended server in 
the transaction. The hilover mechanism is optimized 
in three w:lys: by reconnecting, b y  pinging, and by 
chcclting the tiilcd servers table. When a fClilurc is 
cietcctcd, the fiilovcr mechanism attcnipts to  recon- 
nect to the scr\!cr in case the failure was caused by 
intermittent commi~nications problcnls. If the recon- 
nect hils, the fiiilovcr mcclianism attempts to find an 
altcrnatc server. Wlicn an altcrnntc server is selected, 
it is pingcd to cnsurc that it is rcnchablc before being 
called \\it11 application work. If a scrvcr cannot be 
reached, it is recorded in n "failed servers" table and 
skipped o n  subscqucnt hilo\lc~- attcnipts. 

Failback is attcmptcd if the binding found is for 
an alternate scrvcr. Failback to the primary server is 
attcmptcd c v c ~ ~  if the binding for the alternate server 
is good, ,IS long as the hilback tirncr has expired. T11e 
failback timer dcbults to 300 seconds and can be set 
by an environment variable. 

Load Balancing The ACMSxp run-time system can 
achieve load balancing for task serwrs t l i ro~~gl i  the 
DCE CDS. The DCE <:L)S group entry contains n ~ u l -  
tiple server entries that provide the same intcrhce. 
Locating a server by means of a group entry results in 
the random selection of one server in the entry. 
A combination of static load balancing and failovcr can 
also be implemented using DCX C1)S f~~nctionality. 

Performance Many parts of the ACMSsp system con- 
tain mechanisms that ace designed to impro\lc perfor- 
mance. A discussion of  some of thcsc niccl~anisms 
follows. 

The server stub cachcs scrvcr bindings to improve 
performance. Servcr bindings arc the addressing infor- 
mation that allows a clicnt process to call a server 
process. Binding caching is a means of retaining the 
server addressing information for reuse. Reading the 
binding from the namespace can be time-consuming. 
For example, a DCE C1)S namespace lookup requires 
a nenvork connection to  fetch the data fro111 iuiotlicr 
process, \vhicli may be o n  a scparnrc node. The cache 
of server bindings is s h ~ r c d  among all the tlircads in 
the client process. This sharing provides a second order 
of performance improvement in that work pre\.iously 
performed on  behalf of other threads can improve the 
perforrnance of all threads by prcloading tlie cnche. 

The scheduler subcomponent of tlic co~n~nunica-  
tions services allocates and dcallocatcs servcr processes. 
I t  maintains n local namespace (also rcfcrrcd to as 
scheduler database) in shared memory to keep track of 
server process allocation. The ilsc of tlie local name- 
space instead of DCE CDS improves the performance 
of RPC calls benveen task scrvcrs and processing 
servers, which are recluired to be in tlic same TPsystcrn. 

The security scrvicc cachcs access cor~trol lists 
( ACLs) to improve performance. The Tl'co~~troller 
maintains in shared memory the ACLs for managed 
objects that the ACMSxp TP monitor accesses at run 
t i ~ n e  (e.g., procedures). The security scrvicc caches 
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each object's ACL into tlie server process niernory 
when the object is first accessed. The server process 
refreshes its cache if the entry in shared memory is 
updated. 

System Administration 

The distributed TP environment is inherently complex 
and requires effective system administration. The 
ACMSsp TP monitor pro\,idcs the following system 
administration facilities for configuring, monitoring, 
and controlling components and resources \vitIiin the 
ACMSsp run-time en \ '  l~ronnient: 

I Integrated user interface. The director (see tlie dis- 
cussion of Figure 7, which follows) provides a con- 
sistent user interface for invoking management 
operations on all managed objects. The command 
.line interface provides features such as command 
scripts, symbol substitution, session logging, default 
session parameters, and on-line help. 

Centralized distributed managcnient. A single direc- 
tor can manage multiple TPsystems on  the local o r  
remote nodes using DCE RPC for communication. 

Extensibility. The object-orientcd approach allows 
the ACMSxp T P  monitor to represent managed 
resources in a consistent manner and to add new 
objects gracef ~lly. 

Management Model 
The ACMSxp management model is object oriented 
and is based on the ISO/C>SI standard for nenvork 
and system manage~nent.?.lVFigure 7 illustrates the 
elements o f the  model. 

A director initiates managcment requests on behalf 
of the systenl adruinistrator and serves as tlie interface 
benveen a system administrator and the objects being 
monitored and controlled.I4 A director consists of nvo 
parts: the user interface and thc managcment service 
interface. The user interface interacts with the user and 
is either command line or  graphical. The nianagemcnt 
service interface interacts with management agents. 
This interface provides ser\~iccs for creating an asso- 
ciation for communication between a director and 

management agents, for initiating management 
requests, for returning results to the director, for can- 
celing an outstanding request \vithout waiting for coni- 
pletion, and for terminating an association normally. 

The  management protocol specifics both tlie mech- 
anism for communication benvecn a director and man- 
agement agents and the ~nodcl  of interaction benvecn 
them. The model specifics ho\\, requests and responses 
are passed benveen the director and thc managcnicnt 
agents, the processing of requests t l ~ a t  in\,olvc \vild 
card object instances, and the buffering of  multiplc 
responses to  optimize perhrnmance. The ACMSxp TP 
monitor uses DCE RPC for cornni~~nicntio~i bcnvccn 
a director and ~ r i a n a g c m e ~ ~ t  agents. 

A managemcnt agent performs operations fix a 
managed object. Each object class has n Inanagcment 
agent that performs managemcnt opcrations for 
instances of that object class. The management agent 
receives a management request from the director, per- 
forms the requested operation, and returns the res~~l ts .  

Management Functions 
Management operations that can be performed on 
managed objects arc grouped into the following f111c- 
tional categories, as def ncd by the OSI managcment 
framework: 

Configuration management. Mnnagcd objccts arc 
instantiated, observed, and controlled. I'crsistcnt 
information about managed objccts is stored in 
a configuration database. 

Fault managemcnt. Events gcncratcd by systcni 
operation are recorded in a log ti lc. Thc contents of 
the log can be examined using ;I variety of search 
critcria. 

Performance Itlanagenlent. Performance metrics arc 
collected as the run-time system executes. The per- 
formance data is captured as attributes of ninnaged 
objects and can be esamined using the director. 

Security management. Principals arc authcnticatcd 
using the DCE. Access to system udministration 
operatiolls and application proccdurcs is controlled 
using an ACL mechanism bascd o n  the 1)CE 
model. 

DIRECTOR 0 

Figure 7 
Management Model 
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Managed Objects 
The resources in the ACMSsp environment that need 
to be managed are represented as objects. A managed 
object encapsulates the functionality of a real resource 
and specifies as visible only those aspects that need to  
be accessed by the manager. A managed object has the 
following properties: 

Attributes. Attributes are pieces of information that 
describe an object and represent internal state \mi- 
ables. Each attribute has a name and a value, which 
can be examined or modified as a rcsiilt of a nial1- 
agcment operation. Esamplcs of attributes are ese- 
curable file name and processing state (for 3 servcr). 

Operations. Operations are activities that the Inan- 
ager can perform on  the managed object. Opera- 
tions allow the manager to  exil~ninc attributes, 
mod@ attributes, and perform actions specific 
to the object. Examples of operations arc create, 
delete, enable, disable, set, and sliowv. 

Events. Events indicate thc occurrence of nor- 
mal and abnormal conditions. Esamples of events 
are the detection of an error and the arrival at 
a threshold. 
Bch,~vior. Behavior defines ho\v attr~butcs, opera- 
tions, and events \vork togcthcr ~ n d  how they affect 
thc managed rcsource. 

For nalnlng purposes, mandgcd objects arc orga- 
nizcd into a containnient liicrarch!l. This hierarchy 
specifies \vhich ~iianaged object is contained ulithin 

Table 1 
ACMSxp Managed Objects 

another and reflects tlie containment relationship of all 
their corresponding managed resources. The top-level 
object in the structure, rererred to as a global object, 
has a globally unique name. Objects contained \\lithi11 
the global object are referred to as local objects and 
have names that are unique only within tlie context of 
their level in the structure. Table 1 describes the man- 
aged objects in the ACMSsp system. 

Conclusion 

The ACMSsp transaction processing monitor employs 
modular design techniques and a proven transaction 
processing architecture to provide a truly open, 
distributed transaction processing system. The 
STDL application development language, which the 
ACMSxp TP monitor supports, has been endorsed 
by an international standards consortium and has 
been implemented on other vendors' platforms. The 
layering on  both the Open Software Foundation's 
Distributed Computing Environment software and 
the Encina toolkit providcs a foundation of open dis- 
tributed processing that has becn accepted by the 
world's largest computcr systems providers. The 
ACMSsp TP monitor provides a comprehensive set of 
facilities for managing thc run-tirnc en\fironrnent. The 
object-oriented nianagcmcnt approach results in a 
consistent representation of  managed objects, a con- 
sistent user interface, a  nodular implementation, and 
este11sibilit)l. 

Object Class Description 

TPsystem A collection of system and application components and resources on a given node that is 
managed as a unit. A TPsystem is referred to  as a global entity because it contains other 
managed objects and is not contained in any other managed object. 

Server 

Process 

Interface 

Procedure 

Queue 

Element 

A managed object that executes procedures. It encapsulates a collection of one or more 
operating system processes that  execute the  same program image. 
The basic unit scheduled by the operating system that  provides the  context within which 
a program image executes. It represents an operating system process. 
A set of procedures that is provided by a server. It represents a DCE RPC interface and has 
a universally unique identifier (UUID) that  distinguishes it from other instances. 
A structured sequence of instructions executed t o  achieve a particular result. It represents 
a DCE RPC operation. 
A repository for storing an ordered collection of elements. The supported queues include 
a request queue, which contains submit requests, and a record queue, which contains data 
records. 
A single entry in a queue. 

Log A named repository where event records are stored. 
Request session The occurrence of a request at  a particular TPsystem. A request is a series of operations 

invoked by a client program on behalf of a user and executed by one or more servers. 
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An Open, Distributable, 
Three-tier Client-Server 
Architecture with 
Transaction Semantics 

This paper describes a distributable, three-tier 
client-server architecture for heterogeneous, 
multivendor environments based on the 
integration of Digital's ObjectBroker and 
ACMSxp transaction processing monitor 
products. ObjectBroker integration software 
provides the flexibility to decouple the tight 
association between desktop devices and spe- 
cific legacy systems. The ACMSxp transaction 
processing monitor provides the transaction 
semantics, system management, scalabilty, and 
high availability that mission-critical production 
systems require. Combining these technologies 
and products in a three-tier architecture pro- 
vides a strategic direction for the development 
of new applications and allows for optimal 
integration of legacy systems. The architecture 
complies with industry standards, which facili- 
tates vendor independence and ensures the 
longevity of the solution. 

I 
Norman  G .  Depledge 
William A. Turner  
Alexandra Woog 

Almost all large global enterprises have developed sep- 
arate systelns to address specific business needs. 
Frequentl)l, these systems are on  disparate platforms 
from different \~endors. Users may have to log in to 
several systelns in order to  process n single service 
reqllest from a customer. T o  improve customer service 
and develop new products, new applications must 
integrate esisting environments and must be capable 
of  accessing and integrating data from existing 
platforms. 

End users nlay be faced with an array ofinconsistent 
and incompatible user interfaces that nrc diffic~~lt  to 
Jearn to use. This source of inefficiency directly 
impacts the level and cost of  service provided to cus- 
tomers and the time-to-market for new products and 
services. 

An analysis of  the above proble~ns leads to some 
fundamental conclusions about esisting 1,usiness sys- 
tems in large enterprises. Generally, thc in-place appli- 
cations are mission-critical legacy systems that record 
transactions performed by the businesses. These sys- 
tems demand superior transactional integrity and 
operational reliability. They servc hundreds to t1io~1- 
sands of  users and yet provide good response at high 
le\,cls of performance. Systems designers \ \ / i l l  not 
introduce changes to them that \vould compromise 
tlicse esacting requirements. Consecluently, enter- 
prises d o  not readily replace their legacy systems but, 
instcad, look for other solutions that integrate them 
with nc\v systelns. 

To impro\~c the effecti\.eness of existing Icgacy sys- 
tems, major enterprises are seeking to reengineer the 
usel- interface. The goal is t o  rcfacc the applications 
with n modern, consistent, easy-to-use intcrfacc that 
directly retlects thc users' and custorncrs' needs. The 
new interface must be fully articulated; that is, it 
should allow any desktop to acccss any permitted 
application, regardless of  its location or  t l ~ c  platform 
on \vliicl~ it is running. The solution should allo\v the 
composition of new c o m p o u ~ ~ d  business fc~nctions by 
combining esisting application transnctions h o r n  mul- 
tiple legacy systems and possibly new or do\vnsizcd 
applications. The new user interface should accom- 
plish this without disrupting tlie level of servicc pro- 
vided to tlie users. 
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All these requirements indicate the need for an 
intermediate architectural layer that provides for isola- 
tion, switching, transaction semantics, compositio~l of 
hnction,  and location transparency. The resultant 
architecture has three tiers: the clients, the intermedi- 
ate layer, and the existing legacy systems and neul 
servers. 

Such an architect~~rc is expected to last a consider- 
able number of pears. It is, therefore, essential that 
the architecture be based on  modern but stable tech- 
nologies and be flesiblc enough to accommodate 
technology evolution. 

The Three-tier Architecture 

The three-tier architecture consists of  the follo~ling 
separate layers of systcnis and sohvarc: 

1. Clients 

2. Transactional middle\vare 

3. Systems of record (legacy systems and new systems) 

The attributes of the proposed intermediate layer 
make this thrcc-tier :~rchitecti~re morc flexible than 
traditional two-tier client-server architect~lres. 

Tier 1 systems (clients) provide a desktop graphical 
user interface (GUI) to  the end users. These systems 
have seamless access to a set of abstract transaction 
services in a locatio11-transparcllt manner through an 
object request broker (Om). The interface between 
tier 1 and tier 2 operates in a client-server manner. The 
security services in the O M  provide a security perime- 
ter around the client. 

Tier 2 is the middleware layer that provides applica- 
tion services to the clients. Tllcsc services appear to the 
clients as business tinctions and may be transactional 
in nature. 

A single tier 2 business function can be conlposed of 
one or  more transactions residing in different applica- 
tions on tier 3. The location and native interfaces of 
these applications are hidden from the tier 1 desktop 
GUI clients by the tier 2 middleware. 

Tier 2 is designed to  support the evolution of the 
application interfaces and protocols between tier 2 and 
tier 3. These interfaces will change as new technolo- 
gies S L I C I ~  as the Ope11 Software Foundation's (OSF's) 
Distributed Computing Environment (DCE) and the 

Object Management Group's (OMG's) Common 
Object Request Broker Architecture (CORBA) 
mature and become more widely available, and as tier 
3 applications are modified or  new ones ndded.'J 
Figure 1 sho\vs the disposition of functions with 
intertier comn~unications paradigms. 

A Standards-based Architecture 

Digital implemented the threr-tier architecture using 
standards-based sohilare to offer the highest level of 
interoperation with systems offered by other standards- 
compliant vendors. Standards compliance also facili- 
tates the porting of applications across platforms. 

The standards organizations most relevant to this 
architecture are 

International Organization for Standardization 

(ISO) 
American National Standards Institute (ANSI) 

Open S o h a r e  Foundation 

Object Management Group 

X/Open Company Limited 

Nippon Telegraph and Telephone's (NTT's) 
Multivendor Integration Architecture (MIA) and 
the Network Management Forum (NMF's) 
Service Providers' I~itegratcd l<equirements for 
Information Technology (SPIRIT), together 
referred to  in this paper as MIA/SPIlUT".' 

I S 0  and ANSI are true standards bodies. The other 
organizations are either influential industry consortia 
aimed at defining common standards for important 
emerging and maturing technologies driven by user 
needs or  customer-drivcn consortia chartered to  
define common pi~rchasing standards backed by sub- 
stantial purchasing power. 

OSF's Distributed Computing Environment 
The Open Sohvare Foundation's Distributed Com- 
puting Environment is an inlportant standard that 
defines a set of services and tools that support the cre- 
ation, use, and ~naintenance of  client-server applica- 
tions in heterogeneous multivendor environments. 
The OSF has defined and assembled this technology; 
Digital is a major provider of  components. As illus- 
trated in Figure 2, the components of  OSF's DCE are 
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OSF's 1)istt.ibuted Computing En\~ironnicnt 

Remote procedure calls (1U'Cs) 

DCE threads, which is a standardized 11111ltl- 
threading service 

Distributed time service, \vhicli synchronizes clock 
time across globally distributed systems 

Cell directory service (CDS) ,  \\lhicli pro\lidcs 
autlicntication, access control, ~ n d  encryption, 
and uses a ICerberos-based private key security 
model 

Global directory service, \vhich provides directory 
services between cells using tlic X.500 standard 

1)istributed file ser\lice, which provides location- 
tralisparcnt access to files across a nct\\lork 

DC:E has been rapidly adopted as a tcchnolobql for dis- 
tributed systems and is no\\! a\jailablc on  a large num- 
ber of vendor platforms, including Digital, IBM, 
Hcwlctt-Packard, Sun, and Microsof?. 

CORBA 
The Comnion Object R e q ~ ~ e s t  Brolter Architecture is 
a standard spccitication for tlic central co~ i imi~n ic~~ t ion  
and integration of sohvare objccts at the cntel.prise 
Ic\,cl and across enterprises. C01UA and its spccifcn- 

tion were de\~elopcd by tlie OMG, a consortium of 
inforn~ation systcnis vendors, i ~ i c l ~ d i ~ i g  Digital, 
Hewlctt-Packard, Hyperl>esk, Symbios Logic (for- 
merly NCR), Object l)csign, and S u ~ i S o f t . ~  Digital's 
COMA-compliant product, namely ObjectBrokcr 
integration soh+~-arc, has bccn ported to the industry's 
leading range of platforms.0 

The 0bjcctR1-oltcr product reduces the time and 
costs associated ulitli p~.o\tiding access to critical busi- 
ness applications across mu1 tivendor plattkorms. I r 
allows legacy applications to be integrated illto hctcro- 
geneous client-scr\/cr cn\lironments u~i thout  source 
code changes. 

Microsoti <;orporation has developed a parallel 
approach ;IS cvidcnccd in its Object [.inking and 
Embedding (01,k) sofi\vare, \\~hicli is focclsed on intc- 
grating objects in a desktop cnviron~i ient .~  Microsoti 
and Digital arc working to integrate the COlUIA and 
OLE sofh+/arc into n combined architecti~re callccl the 
Common Objcct Model (COM), which allows tlie full 
interopcrntion of applications dc\leloped under eithcr 
constituent architecture. 

XIOpen Distributed Transaction Processing 
The X/Opcn ciistrib~~ted transaction processing 
(DTP) committee is dcf ning standards for DTP sys- 
tems that use Hat transactions. In  Figure 3, the TS 
interface allo\vs applications to coordinate global 
transactions via the transaction manager (TIM); the >;A 
interface connects the TIV to resourcc malingers 
( l b ~ s ) ,  typically relational databases or  file s!lstems; 
and the XA+ interface c o n ~ ~ e c t s  the TiM to commi~ni-  
cations resource man;lgcrs (CRMs). The interface 
betwcen an application and a ClWI is specific to the 
CRM type, of\\~liich three are defined. 

'I'ransactional remote proccdure call (TxlWC:), 
\\(hich js derived from the work led by Digital for 
the MIA/Sl'IRIT rc~tiotc task in\rocatio~l protocol 
(disc~~sscd in more dctnil later in this section). 

THIRD-GENERATION LANGUAGE APPLICATION 

A A A  A  A A A 

I I I TxRPC 
XATMI. OR 

MANAGERS 
MANAGERS 

Figure 3 
X/Opcn llisrribured Transaction Proccssitig ~Modcl 
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XATMI, which is a non-RPC-based client-server 
that originated with Unis System Laboratories' 
transaction processing monitor for the UNIX oper- 
ating system, namely the Tuxedo product. 

Peer-to-peer, by which messages are exchanged 
between applications. The  messages are sent and 
received in an order based on  prior agreement 
between the implementers of  the applications. 
Peer-to-peer uses Common Programming Inter- 
face for communications (CPI-C), which is derived 
from 113M's System Nenvork Architecture (SNA) 
message-bascd protocol of the same name. 

MIA/SPIRIT 
MIA is a software architecture developed by a consor- 
tium of five vendors under the sponsorship of  NTT: 
Digital, IBM, Fujitsu, Hitachi, and NEC. MLA 
adopted esisting industry standards and defincd stan- 
dards in areas where J I O J I ~  were available. One of the 
areas most lacking i l l  standards was DTP. NTT 
reqi~ested tcclinologp proposals and received 
responses from all the vendors in the consortium. 
Digital submitted its Application Control and 
Management System (ACMS) transaction processing 
monitor model and was selected to lead the develop- 
ment of the specifications because of ACMS' modern, 
highly structured model and transaction processing 
application programming interface (API). 

MIA achicvcs application portability and interoper- 
ability across a variety of  \lendor operating systems and 
platforms by using standardized APIs as integrative 
constructs and by using standardized systems inter- 
connection interfaces (SIIs) for communication. 

Two significant MIA standards that Digital con- 
tri buted are 

Structured Transaction Definition Language 
(STDL,), which is a high-le\lcl programming lan- 
guage suited to transactional client-server pro- 
gran~rning".~ 

Remote task invocation (RTI), a service definition 
and protocol for R I G  that are in a multivendor 
environment and that use the two-phase commit 
protocol 

As a follow-on to NTT's MIA, the work in the field 
of transaction processing standards has passed to the 
SPIRIT consortium, which is managed by the 
Network Management Forum. NMF's list of  members 
includes telecommunications service providers, such 
as AT&T, BT, Deutsche Telekom, ETIS (itself a 
consortium that represents 27 European Postal, 
Telegraph, and Teleplione Administrations), France 
Teleco~ii, I<DI>, Teleco~n Italia, and Telcfonica; com- 
puter vcndors, such as Digital, Hewlett-Packard, 
Fujits~l/ICL, Hitnchi, IBM, NEC, Siemens Nixdorf, 

and Unisla; and sofnvare vendors, sucli as Microsoft 
and Oracle. The goal of the SPIRIT consortium is to 
produce a common, agreed-upon set of specifications 
for a general-purpose computing platfor~n for the tele- 
communicatio~~s industry by July 1995. The com- 
bined annual computing expenditures are estimated to 
exceed $20 billion. 

MLA/SPIRIT standards are working their way into 
international standards bodies. X/Open and thc NIMF 
have extended their collaborative agreement to 
include the work ofSPIlUT in aclmowledgnient oftlie 
difficulties that diverging standards would create. 
X/Open publishes the SPIRIT documentation along- 
side its own CAE specifications and guides. Further- 
more, after conducting a survey of  major transaction 
processing users, X/Open recently voted to  use its 
fast-tracking process to  accelerate progrcss in the 
adoption of STDL as an X/Open standard. 

Digital delivered a platform that supports STDL in 
January 1993, IBM offered STDL on the CICS plat- 
form in the second quarter of 1993, and Hewlett- 
Packard has made STDL available on Transarc 
Corporation's Encina transaction processing monitor. 
NEC, Hitachi, and Fujitsu have already shipped STDL 
platforms. Unisys plans to demonstrate a SPIIUT plat- 
form \vith STDL in October 1995. 

In July 1994, an interoperability demonstration 
using STDL was conducted s~~ccessfully in Tokyo, 
Japan. The demonstration, which also included RTI, 
involved systems provided by Hewlett-Packard and 
Fujitsu on Transarc Corporation's Encina transaction 
processing monitor, Digital on its Application Control 
and Management System/Cross-platform (ACMSsp) 
transaction processing monitor, and IBM on both the 
MVS/CICS and OS/2 platforms. 

Architecture Components 

Figure 4 illustrates the overall three-tier client- 
server architecture. This section discusses the various 
components. 

Tier 1 Desktop Environment 
The architecture must provide for the connection of 
a \vide variety of desktop platforms to the server layer, 
i.e., the tier 2 middleware services. This connection 
must be accomplished in a secure, extensible, reliable, 
and location-transparent manner. Standards-based 
solutions are always desirable and more effective over 
the multiyear life of an enterprise-wide solution. 
Digital therefore selected its CORBA-compliant 
ObjectBrol<er software as the mechanis~ii to connect 
tier 1 clients to tier 2 rniddlcware servers. 

CORBA provides a flexible approach to  developing 
a distributed application by decoupling the client and 
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Figure 4 
Overall Three-tier <:lic~~t-Server Architcct~~rc 

scnler portions of the application. COIUA specifics a 
comliion set of interfaces that allows clicnt programs 
to rnakc rcclllcsts to 2nd rcccivc rcsponscs fro111 server 
programs \\/itlioi~t direct kno\\~ledge of  the informa- 
tion source or  its location. COIU3A defines the ORR as 
an inter~nediary between clients and servers that 
delivers clicnt requests to the nppropriatu server and 
returns the ser\ler respoIises to the requesting client. 
Figure 5 shoivs how the OR13 allo\vs a client appjica- 
tion to recluest a service \vithout knowing where thc 
server is located or  lie\\, it \ \ r i l l  f i l l  f i l l  the request. 

In  the COlU3A model, clicnt applications need to 
Itno\\! only \ \hat  rcc1ucsts they call make .lnd lio\i~ to 
makc the rcclucsts; the!! clo not nccd to bc coded \\,jth 
a n y  implcmcntatio~~ details about the scrver. Server 
progmnis nccd to Ikno\v ho\v to fillti l l  the requests but 
not l10\\~ to return information to the client program. 
Clients i~sjng objects to rcqLIest a service d o  not need 
to kno\\~ which scrvcr will f i l l f i l l  that request. The 
scrvcl- fillfilling the rcqucst does not need to know 
which clicnt initiated the rcclucst. Thc GUI clients can 
be developed using ally tool that provides a call-level 
interface o r  an object-oricntcd interface to CC)lUA- 
compliant client services o n  the specific platfol-m. 

DIRECTS 
REQUESTS REQUEST 

RETURNS 
RESPONSE RESPONSE 
TO CLIENT 

Communications arc conducted tliroi~gli 1U'C:s. 
The 1WCs are carried over a network transport, c.g., 
a transmission control protocol/intcrnct protocol 
(TCP/IP) o r  a DECnet transport. The RPC connects 
with ObjectRroker's ORB, which thcn reroutes the 
RPC directly to the selected scrvicc instance. 

Digital expects futurc \lersions of its COIUA- 
compliant ObjectBroker product to  support OSF's 
DCE and thus providc standards-based directory, 
security, and RPC services. lX:E provides r i g o r o ~ ~ s  
security ser\,ices for autlie~lticnting uscrs, granting 
pri\~ileges, and controlli~ig acccss to iniportant net- 
worked resources. Thesc scr\~iccs arc based on the 
Iiighly secure ICcrberos model, \vhich is thc standard 
security model for many financial institutions and a 
major reason \vhy they have standardized on LICE. All 
interaction from tier 1 clients must g o  through the 
Kcrberos-based DCE security peri~netcr. Desktop and 
mobile computer uscrs log in to the 1)CE cell to gain 
their credentials for performing their business. lI<:Ii 
authenticates users and grants them the approp~.iatc 
privileges and controlled access to the authorized busi- 
ness functions. N o  clear-tcst pass\vorcls a r c r c q ~ ~ i r c d ,  
even for mobilc uscrs who acccss tlic middlcwarc layer 
by means ofdial-up lines. Kcmote or  mobile users are 
able to perform DCE login over a serial line internet 
protocol (SLIP) connection. Confidentiality is ensured 
by data encryption. 

Tier 2 Middleware Services 
The tier 2 middleware of  this architecture is founded 
on  the ACMSsp transaction processjug monitor. The 
ACMSxp sofhvare product for transactional applica- 

Figure 5 tions conforms to the >(/Open 1)TP and MIA/SPIlUT 
COMA <:licnt-Ser\.el. l<cq~~cst/l<csponsc Flow standards previously dcscl-ibed. 'The sohirare is layered 



on DCE and the transaction manager and Structured 
File Services of the Encina toolkit. The primary API 
to the ACMSxp product is STDL, as defined by 
MIA/SPIRIT. 

STDL js used to define the control flow and transac- 
tion demarcation of applications in a highly structured 
and modular fashion. In addition, STDL supports the 
features needed for RPC-based DTP. 

The ACMSsp software is structured in a three-part 
mode!, which is shown in Figure 6. The model sepa- 
rates client prcsentatio~i fi~nctions from transaction 
flow control and data access and processing filnctions, 
which are typically SQL database code or  communica- 
tions code to  access legacy systems. A very important 
feature ofACMSxp is that the STDL compiler gener- 
ates complete DCE client-server stubs, thus freeing 
the developer from having to perform complex pro- 
gramming at the DCE level. 

ACMSxp applications co~nprise clients that call 
application task servers using DCE LPCs. The applica- 
tion task servers execute the STDL programs in DCE 
multithreaded processes, maintaining the context of 
the users and performing the contro.1 flow and trans- 
action semantics (two-phase commit protocol). 
Application tasks are fkee to call other tasks in tlie same 
group o r  in remote task groups that are reached 
through DCE directory services, either transactional 
(composable) or nontransactional (no~lconiposab~e).  
Tasks can also call processing procedures that are 
grouped in single-threaded procedure servers. 
Processing procedures normally provide data access, 
typically by means of C ,  COBOL, and SQL in con- 
junction with X/Open DTP-compliant databascs. 
Processing procedures are also ideal for applications 
that communicate to legacy systems by means of 
message-based protocols, such as IBM's SNA Logical 
Unit 6.2 (LU 6.2). 

Figure 7 sho\vs client tasks accessing data by means 
of Digital ACMSxp servers. Note that ACMSxp sup- 
ports and manages pools (groups) of servers in a given 
class, i.e., servers that provide the same set of services. 

Through tlie system management interface, operators 
can set and change dynamically the desired number of 
servers in a given pool. If a server fails, ACMSsp 
system management logs the event and automatically 
starts and activates a replacement server. 

Digital's ACMSxp transaction processi~ig monitor, 
in conjunction with the ObjectBroker sofnvare, is 
used to  implement the tier 2 middleware layer. 
ACMSxp clients are n o  more than simple business 
function call statenlents stripped of DCE progrdni- 
ming by tlie STDL client run-time services. ACMSxp 
clients are encapsulated in wrappers to make them 
CORRA objects accessible through thc ObjectBroker 
s o h a r e .  These wrappered client processes can be 
declared as servers to the sophisticated ACMSsp trans- 
action processing monitor systelii management. The 
system management can then be instructed to set 
dynamically the desired number ofinstances, to main- 
tain that number in the event of failures, and to raise 
alcrts. These ACMSxp client processes are wrappcred 
to include the code that registers them as objects with 
the ORB as instances of  COlUA implementations. 
When activated by ACMSsp system managemcnt, 
these processes register with tlie 01U3 and wait for 
requests for the tasks that they invoke. When stopped 
by ACMSxp system management, tlie processes dereg- 
ister from the ORB. 

This architecture can be instantiated using Digital's 
CORBA-compliant ObjectRroker product with tlie 
ACMSxp transaction processing monitor, presenting 
the desktop clients 011 tier I with an object-oriented 
interface to business functions executing on  tier 2 .  As 
shown i l l  Figure 4, ObjectBrol<er is substituted for 
CORBA and tier 2 is implemented on the AClMSxp 
transaction processing monitor. hi unlimited number 
of tier 2 nodes can be configured dyna~iiically, started, 
and stopped. Transactional busincss f ~ ~ n c t i o ~ ~ s  can bc 
distributed and replicated across the nodes as 
required. The clients gain access to these business 
functions in a completely locatio~l-transparent man- 
ner. Thc interface to legacy systel-ns is provided by 

CLIENT TRANSACTION DATA ACCESS 
PRESENTATION FLOW CONTROL AND 
FUNCTIONS PROCESSING 7) FUNCTIONS 

DATABASES, 
FILES, ETC. 1 1 1 ;Tr+pq 

C, COBOL, SQL 

Figure 6 
ACMSxp Three-part Model 
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application code that resides in pl-occssing servers. 
The business fi~nctions arc written as S'TDL tasks 

and can be composed o f  multiple Iegac!~ applica- 
tion transactions. When ticr 3 applications support 
standards-conipliant TslWC, transactions can be 
called directly as taslts in ST1)L from the tier 2 business 
f~~nct ions .  

Sec~~ri ty  into tier 2 is Ilandlcd by the ObjectRroker 
sofnvarc. Witliin ticr 2, sccurity is cnforccd according 
to the rules ofOSF's l>CF,. Security between tier 2 and 
tier 3 is n~andatcd by the rules of cncli specific Icgacy 
s!'Stell'). 

T o  provide operational support for production 
applications, sopliisticatcd systcm management fea- 
tures \\!ere built into tlie A<:MSsp product. A system 
rnanagen~ent intcrfnce is a\/iilablc to any authorized 
operator o n  any node in tlic 1)CE cell. T t i~ .o~~gI i  a sin- 
glc director, all A(;1MSsp objects can be managed in 
multiple transaction processing systen~s on all nodes in 
the nenvork. The managed objects include transaction 
pt-ocessing systems, event logs, rcclllcst sessions, 
scr\lcrs, ~ ~ O C C S S C S ,  i~ltcrfaccs, and procedures. For 
example, system managers can exanline and change 
the properties and execution state of servers. Thc 
number of  instances of a given server class can be set 
and changed dynamically c\~itliout stopping the sys- 
tem. ACMSxp system managcmcnt can be induced to 
adopt servers that arc normally external to its domain, 
such as thc ObjectRroltcr nicthod servers that provide 
the connection bcnvcen the desktop clients and the 
transactional task scrvers in the ACMSxp product. 

Tier 3 Legacy Application Interfaces 
Intercomniunications i s s~~cs  related to the differences 
benvcen hard\.\lare and sohvarc architectures o n  dis- 
parate platforms arc addressed b!/ tcclinologies such as 
DCE. DC;E supports I<l'C:s tliat enable applicatio~ls on 
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different platforms to intcropcratc by means of sinlplc 
call statements with fi~lly typed arguments. Data type 
differences between liardwarc architccti~rcs Arc 
bridged by tlie n~arshaling process that converts d a c ~  
to a canonical form and then to tlic targct form as ;I 

rlormal process. bIcssagc-bnscci protocols, such as L,U 
6.2, cannot adequately deal with mixed data types and 
place a burden 011 the application programmer in a 
multivendor en\rironrnent. 

The  advent of  reduced instruction set computer 
(1USC) architectures has csaccrb,itcd tlicsc problems. 
Gaps are freclucntly left in memory bcn\~ccn variables 
in structures and records tliat contain mixed dam 
types. These gaps in buffers, \\.hen processed b!* com- 
pilers on RISC mncliincs, render the buffers unmnp- 
k>&le unless redundant ti llcr \~ f i r i~ l~ Ics  ;ire adcicd to thc 
structure def nitions. 

Each legacy application n~ctliod is encapsulated in 
an ACMSsp server class that is in\,okcd tl-~nsaction:~lly 
by a simple STDL call. l - l ~ ~ ~ s ,  thc dc\iclopcr o f  tlie 
STDL transactional busil~css fi~nctions is shielded 
from the complexities of the native i~ltcrfillcc to the 
legacy data. This approach permits future update of 
the method without affecting the csisting busi~lcss 
functions. 

The designer must select t l ~ c  most appropriate com- 
munications protocol ti)r each ticr 3 legacy systcm. 
Whenever possible, an application intcrfi~lcc should be 
selected that avoids tlie so-callcd "scrccn scraping" 
techniques, in \vIiich the applic'ition c ~ n ~ ~ l a t c s  ,I user 
interacting with csisting tcrrnin'll scree11 fi)rli~s. 

For IBlM mainframe systems, tlic SNA I,U 6.2 pro- 
tocol \\:itl.r Syncpoint 1,evel 1 or  2 is oticn appropriate 
for interoperating with 113M transaction processing 
environments. This protocol may also bc the appropri- 
ate choice for Irgac!, systems from other \~cndors. If 



the application message protocol is designed in a man- 
ner that simulates a simple procedure call, future 
migration to an RPC model will be sinlplified. 

Recently, IBM has made DCE available on IMVS- 
OpenEdition and has provided application support for 
both the CICS and Information Management Spstcm 
(IMS) transaction processing environments. This 
feature allows DCE client programs to  invoke trans- 
actions on the IG&I niainfra~iir by \\lay of a DCE appli- 
cation server provided by IBhI. An appropriate DCE 
client could be included in a data access processing 
procedure of an ACMSxp processing server as an alter- 
native to SNA LU 6.2. 

I t  should be noted that thc desired throughput level 
for a given legacy systeln conncction can be adjusted 
dynamically. An operator can usc the systeln manage- 
ment of the ACMSsp transaction processing monitor 
to  reset the number of active servers in the pool that 
imple~ucnts that conncction. Also, any number of 
tier 2 nodes can be configured to provide that service 
within the middleware layer. New nodes can be placed 
in scrvice without interrupting currently running 
nodcs. 

Summary 

A three-tier, object-oriented dient-server architecture 
that jncludcs an open systelils transaction processjng 
monitor can provide a basis for connecting users a ~ l d  
customers to  existing enterprise transaction processing 
systems by means of reengineered desktop systems 
that support GUIs. This approach provides 

A clear separation of fi~nctioii, i.e., client activities 
are separate from middleware control and man- 
agcment fi~nctions 

Data location transparency 

Location transpdrcncy for application interfaces 
and topological independence 

A means of  defining new business fi~nctions by 
compounding existing transactions on different 
platforms, regardless of location 

Flesibility to  support the continuous evolution of  
systems without disruption to  cnd users 

Resilience to  enhance overall availability 

Unrcstrictcd scaling o f the  systeln (through rcpli- 
cation of components) for performance adapted 
to thc business growth 

A set ofreusable objects to  the tier 1 client 
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The AlphaServer 8000 
Series: High-end Server 
Platform Development 

The AlphaServer 8400 and the AlphaServer 
8200 are Digital's newest high-end server 
products. Both servers are based on the 
300-MHz Alpha 21164 microprocessor and on 
the AlphaServer 8000-series platform archi- 
tecture. The AlphaServer 8000 platform 
development team set aggressive system data 
bandwidth and memory read latency targets 
in order to achieve high-performance goals. 
The low-latency criterion was factored into 
design decisions made at each of the seven 
layers of platform development. The combi- 
nation of industry-leading microprocessor 
technology and a system platform focused 
on low latency has resulted in a 12-processor 
server implementation-the AlphaServer 
8400-capable of supercomputer levels of 
performance. 

I 
David M. Fenwick 
Denis J. Foley 
William B. Gist 
Stephen R. VanDoren 
Daniel Wissell 

The neb\/ AlphaServer 8000 platform is the fou~idatio~l 
for a series of open, Alpha microprocessor-based, 
high-end server products, beginning \\fit11 the 
AlphaSer\zer 8400 and AlphaSer\!er 8200 systems and 
continuing through at least thrcc generations of 
products. When combined \\,it11 the pou8cr of the 
industry-leading 300-megahertz (MHz)  Alpha 2 1164 
microprocessor, this innovative server plntforni offers 
the outstanding performance and pricc/pcrforrnance 
required in tcclinical and conlmercial markets! In  
uniprocessor pcrformance benchmark tcsts, the 
NphaServer 8400/8200 SPECFp92 I-nting of 512 
is 1.4 tinics the rating of its nearest competitor, the 
SGI Po\\fer <:hallenge SL product. In multiprocessor 
benchmark tcsts of systems with 1 to  12 processors, 
the AlphnScl-vcr 8400 system posts SPF,(:rate levels 
greater tliall 3 .5  t i~nes  those of the H1'9000-SO0 
T500 system. I n  the category of cost for pcrfor~nance, 
NAS l'arallcl Class R SP benchmarks she\\) that the 
AlphaServer 8400  system provides 1.7 tilucs the 
performance per million dollars of  the SGI Powcr 
Challenge SL system? Pcrllaps most imprcssi\zc is the 
AIphaScrvcr 8400 performance on  thc L.inpack n x n  
benchmark:' With a Linpack n x n  rcsult of 5 billion 
floating-point opcratiolls (GFLOPS), a 12-proccssor 
AlphnServcr 8400 achieves the perfor~nancc le\eels of  
supercomputers such as the NEC SX-3/22 systcnl and 
the massively pnrallel Thinking ~Machincs Ckl-200 
system. 

There are n\,o kcys to  the remarkable pcrformance 
of  the AlphaScrvcr 8400 and AlphaScr\,cr 8200 
systems: the Alplia 2 1164 nlicroproccssor chip and 
the AlphaServer 8000 platform architecture. This 
paper is conccrncd with the second of tl~cse, the 
AlphaServer 8000 platform ,~~.i-hitccturc. Specifically, 
i t  discusses thc principal design issues encountered 
and rcsolvcd in the pursuit of thc aggrcssi\:e per- 
formance and product goals for tlic AlphaSer\!er 
8000 series. Thc  paper concludes \\.it11 an c\~aluation 
of  the success of this platform development based 
on the perform3nce ~xsults  of the firht AlphaSer\~cr 
8000-series products, the AlphaScr\,er 8400 and 
AlphaServer 8200 systems. 



AlphaServer 8400 and AlphaServer 8200 
Product Goals 

The AlphaServer 8000 platform technical require- 
ments were derived from a set of product goals. This 
set comprised minimum performance goals and a 
number of specific configuration and expandability 
requirements dcveloped from Digital's server marltct- 
ing profiles. The motivations that sli,lpcd tlic list of 
gods  below were many. Support for Icgncp I/O sub- 
systems and DEC 7000/10000 AXP compatibility, 
for example, \vas motivated by the ~ieed to provide 
lligital's customcr installed base with a cost-effective 
upg-ade path from 7000-series linrd\\~ire to 
AlpliaScr\ler 8000-series hardwrare. -l'he goals for low- 
cost I/O subs)ateni, peripheral coriiponciit intcrcon- 
nect (PCI), and EISA support and for nckniount 
cabinet support were included to take advantage of 
c~nerging industry standards and open systems and 
their markets. The processor, I /O,  and memory 
capacity goals were driven sirnplp by the conipetitivc 
state of the server ~iiarket. 

Provide industr!l-leading enterprise and open- 
office servcr performance. 

Provide twice the overall performance o f t h c  1)EC 
7000/10000 AXP server products. 

Support up to  12 Alpha 21 164 proccssors. 

Support at  least 1 4  gigabytes (GB) of  main 
memory. 

Support multiple 1 / 0  port controllers-up t o  
144 1/0 slots. 

Provide a low-cost, integrated I/O subsystem. 

Support new, industry-standard PC1 and 
I / O  subsystems. 

Cont in i~c  to support Iegacv I / O  subsystems, such 
JS XMI and Futnrebus+. 

Makc centcrplane hard\.r,are conip.ltiblc with an 
inti~~stry-standard rack~iiount cabinet. 

Make centerplane hardware meclinnically com- 
pntiblc \\/it11 tlie DEC 7000/10000 AXP-series 
cabinet. 

Performance Goals and Memory Read 
Latency Issues 

Although "pro\riding industr\l-leatli~ig pcrformancc" 
and L L d o ~ ~ l > l i ~ i g  tlie perforin~iricc" of ;ln existing 
industry-lending server present excellent goals fix- thc 
dc\rclopmcnt of a nc\v server, it is difficult to dcsign to 
S L I C I ~  I ~ C ~ L I I O L I S  goills. To  qi~alititj' the actual tcclinical 
requirements for the new Alphaserver (3000 pli~tform, 
the dcsign team utilized a performance s t i~dy of tlic 
DF,C 7000/10000 ASP systcnis and conducted a 

detailed analysis of s~lrnmetric multiprocessing (SMI') 
system operation. As a result of the analyses, '~ggressi\rc 
systern data band\vidtli and memory read latency goals 
were established, as well as a design philosophy that 
emphasized low mcniory rcad latency in all aspects of 
the platfor~n dc\~clopmcnt. This section addresses the 
read latency issues and goals considered by the design 
team. The 8000 plattbrm development is the focus of 
tlie section follo\ving. 

Read latency is the time it takes a niicroprocessor to 
read a piece ofdata into a register in response to a l ( ~ d  
instruction. If tlic datn to be read is found in a proccs- 
sor's cache, the read latcncy will typically be \.cry small. 
If, howc\,er, the data to be rcad resides in a computer 
system's main mcmor)~, the read latency is typically 
much larger. In either case, a processor m;~y have to 
wait the duration of the rcad latency to make f ~ r t h c r  
progress. The smaller the read latcnql, the less time a 
processor waits for data and thus the better the proccs- 
sor performs. 

Cache nicmorics arc typically i~sed to  minimize rcad 
latency. When caches clo not work well, either because 
data sets arc larger than the cache size o r  as the result 
of  non-locality of reference, a computer systeni's 
processor-lncmory interconnect contributes signih- 
cantly to thc average rcad latency seen by a processor. 
The system characteristics that help determine a 
processol-'s average read latency are tlie system's mini- 
mum memory read latcncy and data band\.\lidth. 

A system's niininium memory read latency is the 
time rcqiiirccl for a processor to fetch data from a sys- 
tem's main memory, ~ ~ n c n c i ~ m b e r e d  by sjlstem traffic 
from o t lx r  processors and 1 / 0  ports. As processors 
and I/O ports arc iiddcd to a system, their con~pcti-  
tion for memory and intcrconncct resources tends to 
degrade the system's mcrnory rcad latency from t l ~ c  
minimum memory rcad Intcncy baseline. A system's 
datn bandwidth, i.c., the amount of data that a system 
can transfer bcn\.ecn nlain mcmory and its processors 
and 1 /0  ports in a gi\lcn pcrioci of time, \ \ r i l l  determine 
the estenr to \\~hich processors and T/O ports \ \ , i l l  
degrade each other's rcad latency. As data bandtvidth 
increases, 50 too docs a s!~stcm's ability to support c o ~ i -  
currelit data rcfcl-cnccs from various processors and 
I/O ports. This incrcascd band\vidth and concurrent 
data referencing scr\)c to rcducc competition fo~.  
resoilrccs and, .is n rcsult, t o  reduce memory rc;ld 
latency. Thus we can conclude that the more a\lailablc 
data bandwidtli in n system, tlie closer the mcmory 
rend 1;ltency \\!ill be to tlic minimn~ii. This conclusion 
is supported by the results of a queuing modcl used to 
support tlic AlplinScr\~cr 8000 platform de\relop~ncnt. 
This queuing moticl, origin.~lly implemented to cvalu- 
ate bus arbitration sclicmcs, outputs the a\,cragc read 
latencies experienced by each processor in a spstcm as 
the n u ~ ~ i b c r  of PI-occssors and tlic number of menlory 
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resoilrces arc varied. I t  is important to note that in 
this model memory rcsources, or  banlts, determine 
the amount of system bandwidth: the more meniory 
banks, tlie rriore bandwidth. I t  is also important to  
note that the minirnum read latency in this model 
is 168 nanoseconds (ns) .  The results of the model 
arc shown in Table 1. These resi~lts cle'~rly show tliat 
latency degrades as the number of  system processors 
is increased and that latency improves as the sys- 
tem's bandwidth-number of  mernorv banks-is 
increased. 

Man!! tccli~iical market benchmarks, such as the 
Linpnck bcnclimarlts and the McCalpin Streams 
benchmark, stress a computer system's data band- 
width capability. The  regularity of data reference pat- 
terns in these benchmarks allocvs a high degree of data 
prcfctching. Consequcntlp, data cun be streamed into 
a processor from main menlory so tliat a piccc of data 
has an ~~nnaturally high probability ofbcing resident in 
the processor's cache when it is needed for sonic calcu- 
lation. Ironically, tliis amounts to using smart sohvare 
to minimize rcad latency. By reading 3 piece of data 
into a ~~rocessor's cache before it is actually needed, 
the softularc presents the processor with a s~iiall cache 
read latcncy instead of  a long memory latcncy when 
the data is needed. Thus the streaming techniques 
applied in tliese benchmarks allo\v processors in Iligli- 
bnnd\\,idth systems to stall for a fill1 memory rcad 
Intcncy pcriod only when starting LIP a stream of data. 
Therefore menlory latency can be amortized over 
lengthy high-bandwidth data streams, minimizing its 
significance. It is important to note, however, that 
although bandwidth is thc system attribute tliat donii- 
nates pcrfor~iiance in these \\~orkloads, it dominates 
pcrk)rmancc through its effect on read latcncy. 

<:onimcrcial cvorkloads like tlie Transaction 
Processing Performance Council's benchmark suite, 
o n  tlic other hand, typically have more complex data 
patterns t l~a t  fi.ec~ucntly defj, attempts to prcfctcli data. 
When some of  tlicse codes parse data structures, in 
fact, tlic address ofeach data access may depc~id o n  the 
results of the last data access. In  any case where a 
processor ~ n t ~ s t  \\fait for nlernory rcxi  data to makc 
progress, a systcni's memory read latency \\,ill detcr- 
mine tlic period of time that the processor \vill be 

stalled. Such stall periods directly affect the perfor- 
mance of  computer systems on  commercial work- 
loads. These assertions supported by a study on  the 
performance of commercial ~ ~ o r k J o a d s  on  Digital's 
Alpha 20164-based 1)EC 7000/1000 AXP server:' 
It is important to note lierc that the latency ills flagged 
in this study cannot be cured with raw system data 
bandwidth o r  sohvarc-enhanced latency reduction. 
Low memory latcncy alone can address the needs of 
these workloads. 

Comparable industry systeliis from IBM and 
He\vlett-Packard ( H P )  d o  not stress lou~  memory 
latency system development in their respective RIS<: 
Systen1/6000 SMP or  Hawks (PA-8000-based) SMP 
~ys te rns .~ .~  In fact, neither directly ackno\vledges mem- 
ory latency as a significant system attribute. :This mind 
set is retlccted in the rcsults: Based on IBlM's docu- 
mentation, we estimate tlie RISC System/6000 SMP's 
minimum main meniory read latency to be in tlie 
neighborhood of 600  to 800  ns. 

IBlM and H P  d o  emphasize system bandwidth 
in their designs. HI' provides a 960-megabyte-per- 
S C C ~ I - I ~  (MB/s) L ' r ~ n ~ a y "  processor-memory b i ~ s  in 
its Hawks system. The actual data bandwidtli of this 
bus is slightly less than the quoted 960  MB/s, since 
the bus is shared benvcen address and data traffic. 
IBM, on tlie other hand, goes to tlie extent of applying 
a data crossbar s~vitch i l l  con junc t io~~  with a serial 
address bus to reach an 800-MB/s rate in its RISC 
System/6000 SMP system. Tlic actual attainable data 
bandwidth in IBM's system is determined by the 
bandwidth of its address bus. 

In the past, lligital's systems have shown much 
the same balance of bandwidth and latency as have 
their competitors. The  DEC 7000/10000 AXP sys- 
tem has a rninin1111i-r main nicmory read latency of  
560 ns and a syste~ii data band\vidth of 640 MR/s. 
The AlphaScrvcr 8000 platform, ho\ve\~er, \Alas devel- 
oped nlith a marked emphasis on lo\v memory read 
latency. This emphasis can be seen through nearly all 
phases of system development, including the system 
topology, clocking strategy, and protocol. This 
latencjf-oriented mindsct is reflected in the results: 
The AlphaServcr SO00 platform boasts minimum 
memory read latencies of 200 ns. The AlpliaServer 

Table 1 
Average Read Latency as a Function of the Number of Processors and Bandwidth (Number of Memory Banks) 

Average Read Latency (Nanoseconds) 

Number of 
Processors 2 Memory Banks 4 Memory Banks 6 Memory Banks 8 Memory Banks 
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8400 and 8200 systems feature a r n i n i ~ n ~ ~ n i  memory 
read latency of 260 ns. To  back up these latencies, the 
AlphaServer 8000 platform supports a tremendous 
2,100 MB/s of  data bandwidth. The AlpliaSer\rer 
8400 and 8200 systems, although not capable of pro- 
viding the fill1 2,100 MR/s, still provide 1,600 MB/s 
of bandwidth. This gives the systems less than half the 
memory latency of comparable industry systcnis while 
providing nearly twice the bandwidth. F ~ ~ r t h e r ~ n o r e ,  
these attributes improve upon the L>EC 7000/10000 
AXI' attributes by factors of 2 to  3. Although difficult 
to determine exactly how these attributes would trans- 
late into overall system performance, they were 
accepted as sufficient to meet tlie AlphaServer 8000 
plattbrm performance goals. A co~nparison of the 
maximum DEC 7000/10000 AYP SPECrates of  
approximately 25,000 integer and 40,000 floating 
point with the r n a x i ~ n ~ ~ r n  AlphaScrvcr 8400 
SPECrates of 91,580 integer and 14,0571 floating 
point indicates tliat these attributes were sound 
choices. 

AlphaServer 8000 Platform Development 

Referring to the Alphaserver 8000 platform as a 
"foundation" for a series of server products does 
not give a clear picture of \\{hat constitutes a server 
platform. The Alphaserver SO00 platti)rrn has both 
physical and architectural components. Thc physical 
component consists of  the basic physical structure 
from which 8000-series server products arc b ~ ~ i l t .  This 
includes power systems, thermal management sys- 
tems, system enclosures, and a centerplane card cage 
that i~nplemcnts the interconnect between processor, 
melnory and 1 /0  port n~odulcs. The processor, mem- 
ory, and 1 /0  modules are printed c i r c~~ i t  board (PCB) 
assemblies that can be implemented with varying com- 
binations of processor, dynamic random-access mem- 
ory (DRAM), and application-specific integrated 
circ~lit (ASIC) components. The assemblies are 
inserted into the platform ce~lterplanc card cage in 
varying configurations and in varying enclosures to 
create the various 8000-series products. The 
Alphasel-ver 8200 system, for exa~ilylc, co~nprises up 
to six Alpha 21 164-based TLE1' processor modules, 
'TMEM lnelnorp modules, or  ITIOI' and TIOP 1 / 0  
port  nodules in an industry-standard rack-niount sps- 
tern. The AlphaServer 8400 system co~npriscs up to 
nine TLEP processor modules, TMEM rncrnory 11iod- 
ules, or  ITlOP and TIOP 1 / 0  port modulcs in a DEC 
7000 AXP-style data center cabinet. 

The architect~~ral component of  the AlphaSer\~er 
8000 platform consists primarily of a collection of 
technological, topological, and protocol standards. 
This collection includes the processor-memory inter- 
connect strategy, the bus interface technology, the 

clock technology and methodology, and the signaling 
protocols. For example, the TLEP, TMEM, and TIOP 
modules all implement bus interfaces in the same inte- 
grated circuit (I(:) packages with tlie same silicon tech- 
nology and drive their cornnion interconnect bus with 
the same standard bus driver cell. Furthermore, all 
these modules apply nearly identical clocking circuits 
and communicate by means of  a common bus proto- 
col. The ephemeral architectural standards that consti- 
tllte the "pl;~tforrn" specitji exact physical requirements 
for designing the Alphaserver processor-rnernory- 
1 / 0  port interconnect and the various niodules that 
will populate it. It is important to note that the kcy to 
AlpliaSer\~er 8000 pel-forniancc is fou~id in these stan- 
dards. As \vc esplore tlic design decisions and trade- 
offs that shaped the AlphaServer 8000 platform, it 
is this collection of ,lrcIiitectural standards that \\JC 

actually probc. 
T h r o u g h o ~ ~ t  this analysis of  the AlphaServer 8000 

architecture, two themes frequently recur: low mem- 
ory latency and practical engineering. As disc~lsscd in 
the contest of the AlphaScrvcr 8000 goals, low nicm- 
ory read latency was identifed as the key t o  systcni 
performance. As such, low latency was factored into 
nearly every system design decision. Design decisions 
jn general can be t l i o~~g l i t  of ils being rcsol\~ed in one 
o fnvo  cvays: by crnpliasizing Digital's superior silicon 
technology or  by efkcting architectural finesse. Use of 
superior technology is self-explanatory; it involves 
pushing leading-edgc technology to simply over- 
whelm and eliminatc a dcsign issue. Architectural 
finesse, on the other hand, typically involves a shiti in 
operating mode o r  configuration tliat allows a prob- 
lem to be avoided altogether. Practical engineer i~~g is 
the art of finding a balance benveen leading-edge 
teclinology and nrchitect~~ral tincsse that produces the 
best product. 

Layered Platform Development 

Platform development typic all!^ involves a simple 
three-layer process: ( 1 ) determine a basic system 
topology, (2)  establish the electrical means by \\*Iiicl~ 
various computer components  ill transmit signals 
across the system topology, and (3 )  apply a signaling 
protocol to the electrical transniissio~is to give them 
meaning and to nllo\v the computer components to 
communicate. System topology determines how 
processor, memory, and I/O components of a coni- 
puter systern arc interconnected. Computer intercon- 
nects may involve simple buses, multiplexed buses, 
switches, and mi~ltiticred buscs. The electrical means 
for transmitting signals across a computer intercon- 
nect ma!! in\rolvc bus driver technology, switch tech- 
nology, and cloclc technology. Signaling proco- 
cols apply namcs to system interconnect signals and 
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define cycles in \vIiich the signals have valid values. 
This naming and dcfinition allows each computer 
component to undcrs ta~~d tlic trans~nissions of otlier 
components. 

As the AlphaScrver 8000 platform developmerit 
progressed, this si~iiple three-layer platforni dcvelop- 
ment model was found to be insufficient. Efforts to 
achieve the Ion-latency performance goal and the sini- 
ple product goals i~nco\!crcd unexpected design issues. 
The resolution of tlicsc design issues led to the crc- 
ation of a Inore robust scvcn-layer platform develop- 
ment model. When certain multi-driver bus signals 
thrc;~tened the cycle tinic of the Alphaserver 8000 sys- 
ten1 bus, For example, the system's latency goals wcrc 
threatened as well. The practical solution to this multi- 
driver signal problem \\Ins the creation of specific sig- 
naling conventions for problematic classes of  signals. 
This innovation lccl to the birth of the Signaling Layer 
of the development model. Similarly, when tlie intc- 
gration of PC1 I/O into the systeni was found to con- 
flict wit11 primary protocol elements that were key to 
lo\\/ latency processor-mcniory commu~~ication,  the 
concept o fa  "supersct protocol" was created. This led 
to the creation of the Supcrset Protocol Layer of  tlie 
dcvclopnient model. The seven-layer platforrn dcvel- 
opment model is coritr.~stcd wjth the simple tlircc- 
layer de\~elopnient model in Figure 1. 

The analysis of tlic AlphaScrver 8000 platform 
dcsign presented here traces tlie key systeni dcsign 
decisions tlirougli each oftlic seven layers oFthc dcvel- 
opnient process. Each layer \\!ill be described in greater 
detail as this analysis proceeds. 

PROTOCOL 
LAYER 

ELECTRICAL 
TRANSPORT 
LAYER 

PHYSICAL 
ARCHITECTURAL 
LAYER 

THREE-LAYER SEVEN-LAYER 
DEVELOPMENT DEVELOPMENT 
MODEL MODEL 

1 .  
Figure 1 
Comparison of Con\/cntionol T h ~ ~ c c - l ~ ~ ~ c r  Model with 
Sc\,cn-layer Platform 1)evcloplncrlt Model 
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Topological Layer 
Server-class computers typically comprise processor, 
memory, and I/O port components. These compo- 
nents are usually fO111id in the form of P<:R modules. 
A computer system's topology defines how these com- 
puter componcnts are jnterconnected. Computer 
topologies are many and varied. The IRM RISC 
System/6000 SIMP, for example, links its modules by 
means ofan address bus and a data switch. Its rnen~ory 
modules are grouped into a single memory subsystem 
witli one connection to the address bus and one co11- 
nection to  the data switch. The HP Hawlts SMP sys- 
tem, by comparison, links its modules by means of 
a single bus onto  which address and data are multi- 
plexed. The Ha\vlts system also groups its memory 
into a single nienior!l subsptern witli one connection 
to the multiplexed bus.7 Digital's DE<: 7000/ 10000 
AYP also uses a single multiplexeii addrcss and data 
bus. Unlike the I13M and HP systems, tlie 1)EC 
7000/10000 AXP system allows its memory to be 
distributed, witli multiple connections to  its multi- 
plexed bus. 

None of the IRM, HP, or  prior Digital systems meet 
the latency goals of the AlphaServer 8000 platform. 
Exactly ho\v much system topology contributes to 
these systenls' latc~icics is ~~ncleiir. A multiplexed 
address and data bus certainly crcatcs a s!/stcm bottle- 
neck and can contribute to latency. Like\visc, ~~n i f i ed  
memory subsystc~ns can often have associated over- 
liead thdt can translate into latency. 111 addition to per- 
formance issues, topologies such 'is tlic II3M switch- 
based system have significant cost issues. If, for exam- 
ple, a custo~iicr \vcre to purchase a sparsely configured 
-nvo processors perhaps-IRM systcm, such a cus- 
tonierulould be required to pay for tlic s\vitcli support 
for up to  eight processors. This crcatcs a high system 
entry cost and a potentially lo\\,er incremental cost as 
functionality js added to the system. In J simple bused 
system, a customer pays only for what is needed to 
support thc specific functionality rcquircd. This cre- 
ates a more manageable entry cost and ,i smooth, if 
slightly steeper, incremental cost. Froni Digital's mar- 
keting perspective, this ~iiakes a bused systcm prefer- 
able, provided it can satis@ bnndwidtli and latency 
requirements. 

Uniprocessor computer topologies, a n  example 
of  which is shown in Figure 2, typically exhibit the 
lowest memory read latencies of any computer class. 
As such, this simple uniprocessor topology was chosen 
as tlie basis from which to  develop tlic Alphaserver 
8000 platform topology. In the uniprocessor model, 
processor chips communicate with D I M  arrays 
t h r o ~ ~ g l i  separate address and data paths. Thcsc paths 
include addrcss and data interfaces and buses. The 
AlphaServcr 8000 topology was created by addi~ig  a 
second sct of interfaces benveen tlie address and data 
buses and tlie L)lW array, and connecting additional 
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Si~nplc Uniprocessor Sysrcm Topology 

nlicroprocessors, nlemory arrays, and 1 / 0  ports to the 
buses by nieans of similar interbces. The resultant 
topology is sIio\vn in Figure 3. 'l'liis topology features 
separate address and data buses. These buses together 
al-e referred to as the Alphaserver SO00 systcni bus. 

The topology presented in Figure 3 is a n  abstract. 
To  Flesh out tliis abstract and nieasurc it against spe- 
cifi c system goals, signal counts, cycle times, and bus 
connection (slot) counts must be added. It is in this 
cffort that practical engineering must be applied. T o  
achieve the system's bandc\.idtli goal, for example, tlie 
data bus could be iniplemcnted as a \vide bus with 
a high clock frequency, or  it coi~ld be replaced with a 
switch-bascd data interconnect, liltc tliat of the IRM 
RISC Systcm/6000 SMP. The liigh-frequency bus 
presents a significant technological challenge in terms 
of  drivers and clocking. This challenge grows as tlie 
number of bus slots grows. The growth of the tech- 
nological challenge is a significant issuc given the 
system's configuration goals. The s\vitcIi interconnect, 
on thc othcr hand, avoids thc tccl~nological cli~illengcs 
by providing more data paths at lo\ver clock frccluen- 
cies. The lo\ver clock frequencies, lho\\lc\~cr, can trans- 
late directly into additional latency. Given tlie 
emphasis placed on Incrnory latcncy and tlic advan- 
tages associated with simple bused systems, the practi- 
cal dcsign choice was to adopt a wide, higli-frequency 
data interconnect. The resultant AlpliaScrvcr 8000 
systcni bus feati~res 9 slots, an address bus that 
supports a 40-bit address space, and ii 256-bit (plus 
error-correcting code [ECC]) data bus. To meet 
configuration goals, processor ~nodulcs ncccssarily 
support at lcast nvo microprocessors per module, 
memory modules support up to  2 GB of DRAM stor- 
age, and I/O port modules support up to 4 8  PC1 
slots. To meet performance goals, both buses must 
operate ;it a frequency of 100 MHz ( 1  0-ns cycle). 

Tlie Alphaserver SO00 platform topology has a 
number of advantages. The most significant advantage 
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is that memory read latcncy from any processor to any 
nieliiory array is comparable to tlie latency of a 
uniprocessor system. The delay associated with nvo 
interhccs-one address interface and one data inter- 
face-is all tliat is addcd into the path. 111 addition, tlic 
platform's simplc bus topology feati~res a low entry 
cost, a simplc gro\vtIi path (just insert another mod- 
ule) and flexible configuration (just about any module 
can be placed in any slot). 

Operational Layer 
Tlie Operational L,aycr is so nnmcd for lack of :I bcttcr 
descriptor. Tlie laycr is actually a place to  clcfint: a 
liigli-level system clocking strategy. This strategy has 
nvo key colnponcnts: definition of target operating 
fiequaicies and definition of n design methodolog!. to 
support operation across all the defined operating fre- 
quencies. Thc dcsign methodology component of tliis 
strategy may seem better suited for a higher order 
development laycr, si1c11 as the 1'1-otocol Layer. 
However, because the methodology is logically associ- 
ated wit11 thc system's operating frequency range and 
the operating frequency range provides a foundation 
for the Electrical Transport Laycr, it seemed appropri- 
ate to  include both components of  tlie strategy in tlic 
Operational Layer. 

In personal computer (PC:)-class rnicroproccssor 
systems, clocl< ratcs arc typicall!! slo\\l (33 M H z  to 6 6  
MHz). Cornplcnicntarp components capable of oper- 
ating at  these speeds arc readily available, e.g., trans- 
ccivel.s, static ral~dom-access memory (SRAM), ASIC, 
DIIAM, and programmable array logic (PAL.). 
Therefore entire PC systems are typically run synchl-o- 
nously, i.e., the systcm logic (typically a motherbo:lrd) 
and thc microprocessor 1.~111 at identical clock speeds. 
Alpha processors, o n  the othcr hand, run at clock ratcs 
exceeding 250 MHz. The current state of comple- 
mentary compollcnts niakcs running systcm logic : ~ t  
Alpha processor r ~ t c s  impractical if not impossible. 
Many of these coniponcnts cannot pcrforni j~ltcrnal 
filnctions at a 250-MHz rate, let a lo~ie  transfers 
benveen componcntb. 

Digital's 1)E(: 7000/10000 &YP systems sol\,ed thc 
probleni of Alplia microprocessor and systcm clock 
disparity by running both the Alplia microproccsso~. 
and tlie DEC 7000/10000 ASP system liard\varc at 
their respective maxinii~~ii  clock rates and synchroniz- 
ing address and data transfers between the micro- 
processor and thc system. Each time a transfcr \\us 
sync.hronjzed, ho\vc\/cr, a synclironizatio~i latcncy 
penalty \\,as addcd to the latcncy of tlie transfcr. In  the 
DEC 7000/10000 AXP systcni, nvo synchronization 
penaltics-one for  Jn addrcss trnnsfer to the s!,stcln 
and one for a Jat.1 transfcr to the processor-arc addcd 
to  each memory rend latency. With nlultiple dat.1 
transfers, tlic data transfer fi-0111 the system to tlic 
processor cnn be particularly large. When combined, 
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the nvo penalties nddcd nearly 125 ns to the 1)EC 
7000/10000 AXP read latency, or approsimately 25 
percent of the total 560-11s latency. The same 125 ns, 
liowc\/c~-, could add another 6 0  percent to  the 
Alphaserver SO00 p1atfi)rm's lower target latency of 
200 ns. 

C;i\~cn its latency goals, the AlphaSer\ler 8000 plat- 
form implements a cloclting methodology that mini- 
mizcs synchronization penalties 2nd t h i ~ s  nii~iiniizcs 
read latency. This methodology involves clocking the 
cntirc Alphaserver systcln-up to the 1 / 0  channels- 
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synchronous to  the microprocessor in such a way 
that the Alpha microprocessor operates at a clock fre- 
q i ~ u ~ c y  that is a direct multiplc of the systern clock 
freql~c~lcy. With a 100-MHz (10-ns cycle) clock rate, 
for esamplc, thc AlpliaScrver 8000 could support 
a 200-MHz (5-11s cyclc) Alpha processor i~sing a 
2X clock multiplier. Sincc the processor must still 
synchronize \\/it11 a system clock edge when transfcr- 
ring address and data to tlie system, synchronization 
penalties are not eliminated altogether. They can, 
however, be limited to less than 10 ns, or  5 percent of  
tlie AlphaServer 8000 platfi)rni's total read latency. 

S~~nclironous cloclting by means of clock m~~l t ip les  
is not L I I I ~ ~ L I ~  and in~~ovntivc in and of itself. The 
uniqueness of the AlphaScrvcr SO00 cloclcing strategy 
lies in its flexibility. Sincc thc LAlpliaSer\~er 8000 plat- 
form must support at  least three generations ofAlpha 
processors to satisfy its product goals and the spccific 
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operating fiequencics of those processors is difficult to 
predict, the AlpliaScr\~cr 8000 platform ~iiust be capa- 
ble of operating across a range of cloclc frequencies. 
Specifically the AlpliaSer\ler 8000  platform is capable 
of operating at clock frequencies between 62.5 MHz 
(16-ns cycle) and 100 MHz (10-ns cycle). 

Operating across a range of  frequencies may seem a 
trivial reqi~irenicnt to meet; if logic \arere designed to 
operate at a 10-ns cycle time, jt should certainly con- 
tinue to hnction electrically at a 16-11s cyclc time. The 
real issues that this frccluency range creates, howcver, 
are much more subtle. DRAMs, for example, require a 
periodic refresh. The refresh period for typical DRAM 
may be 50  niilliseconds (ms). If a system were 
designed to a 10-ns clock rate, the system \vould be 
designed to initiate a DRAM refresh every 5,000,000 
cycles. If the s)lstcni \\)ere to be slowed to a 16-11s clock 
rate, the systern \vould initiate a DRAM refresh cvcry 
8 0  nis based o n  tlic same 5,000,000 cycles. This could 
cause DRAMs to lose state and corrupt s y s t c ~ i ~  opcra- 
tion. Similarly, DRAMS have a fixed read access time. 
The AlphaServer 8400/8200 TMEM module, for 
example, uses 60-11s DRAMs. If the DRAM'S con- 
troller is designed as a '/-cycle controller and clocked at 
a 10-11s clock rate, it \voiild access tlie 60-11s D W M  i l l  

70  11s. If the system were slowed to a 16-11s clock rate, 
the system \ \ ~ O L I I ~ ,  using the same controller, consume 
112 ns in accessing the same 60-ns DRAM. This appli- 
cation of a single simple controller over a frequency 
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range directly increases the DRAM'S rcad latency and 
decreases the 1)RAlM's bandwidth. This non-opt i~na l  
DRAM performance in turn directly increases the sys- 
t em read late~icy and decreases the system bandwicltli. 

T h e  AlphaServer 8 0 0 0  platform design addresses 
these issues by imple~lient ing controllers that can be 
r e c o n f i g ~ ~ r e d  b'ised o n  the  system's specific operating 
frequency. TJic TIMEM module,  for example, iniplc- 
ments  a reconfgurable controller for sequencing the 
reads ancl writes o f  its DRAMS. This controller has 
three settings: o n e  for cycle times between 1 0  ns and 
11 .2  ns, one  for cycle times between 1 1 . 3  ns and 12 .9  
ns, and o n e  for cycle times beb\!ccn 1 3  ns and 1 6  ns. 
Each setting accesses the DRAMS in differing ~ l u m b c r s  
o f  system clock cycles, but  all three modes access 
the DRAlMs in approximately the same number  o f  
nanoseconds. By allowing flexible reconfiguration, 
this c o ~ ~ t r o l l e r  allows the TMEM t o  keep the 1)RAM's 
read latency 'lnd bandwidth as close t o  ideal as pos- 
sible. O t h e r  cxa~nples  o f  reconfgurablc controllers 
are the TMF,l\/l's refresh timer and the TLEP's cache 
controller. 

I t  should be noted here that tlic AlpliaServer 8 0 0 0  
operating frequency range and processor-based fre- 
quency selection account for the  disparities bcbvccn 
the AlphaScrver 8 0 0 0  platform's handwidth capability 
and the  AlphaScrver 8 4 0 0  and 8 2 0 0  products' band- 
width capabilities. T h e  Alpha 2 1  1 6 4  processor is the  
basis for the 8 4 0 0  and 8 2 0 0  products. l'liis 3 0 0 - M H z  
(3 .33-ns  c!rcle) microprocessor, combined ulith a 4x 
clock frequency multiplier, sets the system clock frc- 
quency at 7 5  M H z  (13.3-ns cycle). This 13.3-11s cycle 
time, when applied t o  the 256-b i t  data bus, produccs 
the 1 ,600  MR/s o f  data band\vidtIi. T h e  cycle time 
increases the rcad latency o f  the 8 4 0 0  and the 8 2 0 0  t o  
some extent as \\,ell, bu t  the reconfigurablc DRAM 
controllers help t o  mitigate this effect. 

Electrical Transport Layer 
When the  bused system topology was sclcctcd in the 
Topological Layer o f  the  AlphaScr\lcr 8 0 0 0  platform 
development, a practical cnginccri~lg decision was 
made t o  emphasize leading-edge technology as the 
means t o  accomplish o u r  p e r f o r r n . 1 ~ ~ ~  goals, 2s 

opposed t o  elegant architectural chicanery. I t  \\,as 
observed in the  topological discussion that, with the 
selected system topology, bus cycle time \\!as critical t o  
meeting the platform's performance goals. T b c  
Electrical Transport Layer o f  the  platform develop- 
ment  in\~olved sclccting o r  dc\,cloping the centcr- 
plane, connector, clocking, and silicon interface 
technology that  \\,auld allo\\~ the AlphaScr\~er SO00 
system bus t o  operate at  a 100-i\/IHz clock frequency. 
T h e  most inno\ /~t i \ le  o f  the technological develop- 
ments  that  resulted from this effort were the plat- 
form's clocking system and its ctrstom bus driver/ 
receiver cel I .  

To put  the Alp1iaSe1-ver 8 0 0 0  1 0 0 - M H z  system bus 
goal in perspective, consider the o p e r ~ t i n g  fi-ccluencies 
o f  a number  o f  today's highly competitive micro- 
processors."The NcsCen  N s 5 8 6  operates at  9 3  M H z .  
T h e  Intel Pentiuni,  Cyrix iMl, and AMD KS all oper-  
ate at  1 0 0  M H z .  T h e  Intel 1'6 opcratcs at  1 3 3  l\/IHz. 
In all these microprocessors, the loo+/- M H z  oper-  
ation takes place o n  n silicon die less than 1 inch 
scluxc. To meet its goals, the AlphaSer\rcr 8 0 0 0  s!a- 
tern bus must  transfer data from an interface o n  a 
module in any slot o n  the system bus t o  an interface o n  
another  module in any o ther  slot o n  the system bus 
across a 13-inch-long \\,ire etch, \\/ith ninc etch stubs 
and ninc connectors, in the same 1 0  ns in \\~liicli these 
microprocessors transfer data across 1 -inch dies. By 
any measure this is n daunt ing task. 

A brealzdo\vn o f  the e le~nents  that determine nii11i- 
IIILIIII cycle tirne aptly demonstrates thc significance o f  
clock system design, bus driver dcsign, and b t ~ s  
receiver design in the AlpliaServer 8 0 0 0  system bus 
devc lopn~ent .  b l i n i ~ n u m  b ~ ~ s  c!,clc tirnc is tlic mini- 
mum time requircd hct\\,ecn clock edgcs during \ \hich 
data is dri\!en from a bus dri\rer cell o n  o n e  clock cdgc 
and is received i ~ i t o  a bus rccei\~er cell on the nest  clock 
edge. An equation for determining the minimum cycle 
time is sho\vn below. 7;,,,,,, is the  minimum cycle t i ~ n e .  
7;,,.0i, is the  time, rnc3s~1red from a rising clock edge,  
that is required for a bus driver t o  dri\zc J nc\v bus sig- 
n ~ l  le\,el t o  all system bus rccci\,crs. /;,,,\; is the time a 
bus receiver needs t o  process a nc\\. bus signal le\~el 
before the  signal can be clocked in to  the receiver cell. 
7;kc,11, is the \!ariation bct\\leen the clock used t o  clock 
tlic bus driver and the clock used t o  clock the bus 
receiver. ,,,,[,, 7; ,.,,!,,, and 7;, , , , ,  must  all be n~inimized 
t o  achieve the lo\\icst possible cycle time. T h e  \ A L I C  o f  
7;k,,ll is deterrni~icd by the system clock dcsign. T h e  
\,alucs o f  5,. ,,/, ancl 7; ,,,! ,ire determined by the bus 
dri\~er/recei\,cr cell dcsign. 

AlphaServer 8000 System Bus Interface T o  pro\ridc 
some contes t  f o ~  the clock and bus dl-ivcr/recei\~er 
discussions, it is ncccss,~ry t o  briefly describe the stan- 
dard AlphaSer\~er  SO00 system bus in tc rhcc .  Each 
Alpl~aSer~rer  SO00 module implements a standard 
s)lstcn~ bus i n t c r f ~ ~ c c .  This  in te rhcc  consists o f  five 
ASICs: o n e  interfaces t o  the  AlpliaSer\~cr 8 0 0 0  
address bus, and four interface t o  tlic AlphaServer 
8 0 0 0  data bus." E:~cli ASIC is i ~ n p l e ~ n c n t e d  in 
Digital's 0 .75-~nic romctcr ,  3.3-\volt ( V )  co~i ip lcmcn-  
tnry mctal-oxide semiconductor (CMOS)  tccl i~iologr  
and features u p  t o  100 ,000  gates. Each ASIC is pack- 
dged in a 447-p in  i~~tc rs t i t i a l  pi11 grid array ( IPGA)  
and features u p  t o  2 7 3  user I/Os. 

Essential t o  thc  AlphaScrver 8 0 0 0  dc\lelolxment 
uicrc the speed of t l i c  CIMOS interface ASIC tcchnol- 
on/ and the  dc \ fc lop i iu i t  team's ability t o  influence 
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the ASIC design process. "Influencing tlie design 
process" translated to the ability to develop a standard 
cell design library and proccss that is for and in concert 
with the de\leJopment of the Alphaserver 8000 plat- 
form. The  standard ccll library, together with the 
CMOS silicon technology, provided the A.lphaServer 
8000 platform's required speed; co~nplex logic filnc- 
tions (5 to 8 levels of complex logic gates) can be per- 
fornied within a 10-ns cycle. "Influencing tlie design 
process" also translated to  the ability to  design a Fully 
custom bus driver/rcceiver cell. Thus the develop- 
ment team could create a custom driver/receiver cell 
tailored to the specific needs of the AlphaServer 8000 
system bus. 

Clock Technology The  primary goal of the 
AlphaServer 8000 platform clock distribution systeni 
was to maintain a ske\\! (Ti,,,,.) as small as possible 
benveen any nvo clocks in the systeni, while delivering 
clocks to all clockcd systcm components. :The goal of 
minimum skew is consistent with attaining the lowcst 
possible bus cycle time, the highest possible system 
data bandwidth, and thc lowcst possible memory read 
latency. I t  is important to  note that in the AlpliaScrver 
SO00 platform, skew benveen clocks is not simply 
measured at the clock pins of the various clocked 
components. Ske\v is measurcd and, more important, 
managed at  the actilal "point of use" of the clock, ti)r 
example, at the clock pins ofASIC flip-flops. This is an 
important point when dealing with ASICs. Since dif- 
ferent copies of  even the same ASIC design can have 
different clock insertion delays, additional skew can be 
injected between clocks aher the clocks pass their 
ASIC pins. 

The Alphaserver 8000 clock distribution system is 
implemented according to a two-tier scheme. 'The frst 
tier, tlie skl.yterrl clock ~listrih~.ition, distributes a clean 
radio frequency (W) sinc wave clock to each system 
bus module. The second tier, tlie mod~l le  clock distri- 
hulion, converts tlic systeni RF sine wave clock to a 
digital clock and distributes tlic digital clock to each 
niodi~le's components. TIic module clock distribution 
tier also manages the skcw benveen the system RE' sine 
wave clock and all copies of each module's digital 
clock by means of an innovative "remote delay coni- 
pensation" meclianisni. The system clock distribution 
delivers clocks to the nine system bus niodule slots 
with a maximum of 4 0  picoseconds (ps) of  skcw. 
The module clock distribution delivers clocks to  tlic 
various module components, most notably system 
bus interface ASICs, with a maximum of  980  ps of  
skew. The skew between any ASIC flip-flop on any 
Alphaserver 8000 modulc and any ASIC flip-flop on 
any other AlphaServer 8000 module is guaranteed to  
be less than 1,100 ps. 

The AlphaServer 8000 system clock distribution 
begins on the system clock module with a single- 

ended RF oscillatol., a constant impedance bandpass 
filter, and a ~ii~le-way power splitter. Thc power splitter, 
by way of the bandpass filter, produces nine spectrally 
clean, amplitude-reduced copies of thc oscillator sine 
wave. These nine o ~ ~ t p ~ ~ t s  are tightly matched in phase 
and amplitude. Thcy are distributed to the nine system 
bus module connectors by means of matched-length, 
shrouded, controlled-impedance etch. This design 
provides tlie modules \\lit11 low skew (30 to  4 0  ps), 
high-quality (greater than 20-decibel signal-to-noise 
ratio) clocks. 

The  RF sine wave clock was an ideal selection for 
system clock distribution. By eliminating all high- 
order harnionics, the edge rates and propagation times 
o f t h e  clock wave are fixed and predictable across the 
distribution network. This predictability eliminates 
variation in the clock as perceived by the clock receiver 
on each module, thus niininiizing skew. I t  also greatly 
reduces constraints o n  the design of co~inectors, etch, 
termination, ctc. 

The AlphaServer 8000 module clock distribu- 
tion is a boilerplate design that is replicated on each 
AlphaServer 8000 module. O n  each module, the 
system sinc wave clock is terminated by a single- 
ended-to-dual-differential output transformer. This 
transfor~ner produces two phase- and amplitude- 
matched differential clocks that are fed into one or two 
Alphaserver 8000 clock repeater c.hips (DC285 
chips). These chips convert the sine wave clocks into 
CMOS-compatible digital clocks; distribute multiple 
copies of the digital clocks to various module com- 
ponents, including tlie system bus interface ASICs; 
and perform remote delay clock regulation on each 
clock copy. 

The remote delay clock regulation is performed by a 
custom, digital delay-locked loop (DLL) circuit. This 
DLL circuit \vas devised specifically to deskew clocks 
all the way to their point of use in the system bus inter- 
face ASICs. The principles of DLL-based remote delay 
clock rcg~~la t ion are simple. The sum of the delays 
associated with (1) the clock repeater chips, ( 2 )  the 
module clock distribution ctch, and ( 3 )  the ASIC 
clock distribution l~envork constitutes the insertion 
delay of the ASIC; point-of-use clock \vith respect to 
the systeni sinc wave clock. With no clock regulation, 
this delay appears as skew benveen the system clock 
and the point-of-use ASIC clock. Between ASlCs on 
different modules, a fixed portion of  the clock inser- 
tion delay will correlate and need not be fi~ctored into 
the overall system skew. Since the insertion delay can 
easily approach 7 ns, however, the variation in the 
insertion delays to different ASICs, which must be fac- 
tored into the overall system skew, can also be signifi- 
cant. To reduce the skew between the system sine 
wave clock and the point-of-use ASIC clock, tlie clock 
repeater uses a digital delay line to add delay to the 
clock repeater output clock. Enougli delay is added so 
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that the insertion delay pl i~s  the delay-line delay is 
cqual to an integer multiple of  the system clock. This 
delay moves the point-of-use clock ahcad to  a point 
where it again lines u p  with the system clock. As the 
systern operates, the system and point-of-use clocks 
may drifi apart. 111 response, the clock repeater adjusts 
its delay line to pi111 the cloclts back together. This 
process of delaying clocks and d!mamically adjusting 
the delay is called remote delay clock regulation. 
When the clock separation, or  drift, is measured by a 
clock "replica loop" and the clock delay is inserted by 
means o f a  digital delay line, the process is called DLL- 
based remote delay clock regulation.10 Using the clock 
repeater chips in this way, Alphaserver 8000 n~odules 
are able to acllieve point-of-use t o  point-of-use skew 
of  approxin~ately 930  to 980  ps. Combined \\lit11 the 
system module-to-module skew of 30 to  4 0  ps, this 
provides tlie quoted system-\vide clock skc\v of no 
more than 1,100 ps. 

It is \vorth noting that although the AlpIiaServer 
clock repeater \\/as primarily developed for Llse wit11 
system bus interface ASICs, it is a generally vcrsatilc 
part. It may, for instance, be used with non-ASIC parts 
such as transceivers and synchronous Sl&Vs. In  these 
cases, the clock pin of the 11011-ASIC part is treated as 
the point of  use of tlie clock. The clock repeater may 
also be used for precise positioning of clock edges. O n  
the TLEP module, for example, the Alpha 21 164 
microprocessor's system clock is synchronized to a 
clock repeater output by means of a digital pliase- 
locked loop (PLL) o n  the microproccssor. The Alpha 
2 1 164's PLL operates in such a way that the 2 1 164's 
clock is always in phase with or always trailing the sys- 
ten1 (reference) clock. It can trail by as I I I L I C I I  as 2 11s. 
Such a large clock disparity in this fixed orjentation call 
create setup timc problenis for transfers from the 
Alpha 21164 to the system and hold-tinw problems 
for transfers from the systern to the Alpha 2 1 164. The 
TLEP design addressed this problem by lengthening 
the replica loop associated with the Alpha 21 164 clock 
and thereby shifting the microprocessor clock 1 ns 
earlier than the balance of the clock repeater output 
clocks. Since the Alpha 21 164 clock was either in 
pliase o r  2 ns later than its associated clock repeater 
clock, which is 1 ns carlicr than the rest of  the clock 
repeater clocks, the 2 1164 clock now appears to  be 
either 1 ns earlier or  1 ns later than the rest o f  the clock 
repeater system clocks. This centering of the module 
clocks with respect to the 21164 clock halves the 
required setup or  hold rnargin.ll. l2. I 4  

Bus Driver Technology Like the Alphaserver 8000 
clock system, the AlphaScrvcr 8000 system bus driver/ 
receiver cell was specifically designed to minimize bus 
cycle time. As with the clock logic, the goal of mini- 
mizing cycle time was a result of the  effort to minimize 
system read latency and maximize systcm data band- 

width. In  the effort to minimize tlie b ~ ~ s  cycle time, 
the design of the AlphaServer 8000 bus driver/ 
receiver cell was focused on minimizing the propaga- 
tion delay of the system bus driver circuit and 
minimizing the setup time (5;,, , , , ,) of tlic system bus 
receiver. 

The Alphaserver 8000 system bus driver/receiver 
cell is a fi~lly custom CMOS I/O ccll, \vhich incorpo- 
rates a bus driver, a bus recei\.er, and an output flip- 
flop and an input tlip-flop in a single ccll. Consisting of  
nearly 200 metal oxide semiconductor field-effect 
transistors (MOSFETs), the bus driver cell is powered 
by standard 3.3-V CMOS power, but drives the bus at 
a much lower 1 .S-V level (i.e., voltage s\vings benvecn 
0 and 1.5 V).  This lo\\rvoltagc o u t p ~ ~ t  serves to reduce 
the bus dri\u-'s po\\lcr cons~~niption and permits c o n -  
patibility \vitIi fc~ture CIMOS tcchnologics that are 
po~vercd by voltages less than 3 .3  V. Man\, of the bus 
driver cell's critic,il characteristics arc "programnia- 
blc," such as the 1.5-V output, t l ~ c  receiver s\vitcJiing 
point, the driver's drive current limit, and the driver's 
rise and fall times. These values are programmed and, 
most important, are held constant by  means of ref- 
erence voltages and resistances external to the bus 
driver/reccivcr cell's ASIC package. They allo\v the 
cell to produce unifornm, predictable, high-performance 
waveforms and to transmit and receive data in a clock 
cycle of 10 ns. 

The bus drivcr/receiver's high performnnce begins 
with its o u t p l ~ t  flip-flop and driver logic. The output 
tlip-flop is designed for ~ i~ in i rnum delay and is inte- 
grdlly linked to tlie output driver. This configuration 
produces clocl<-to-outpl~t times of 0 .5  ns to 1 ns. The 
output dri\'cr itself, with its programmable output 
voltage and cdgc rates, allo\vs the shape of the output 
\va\/cform to  be carefully controlled. The cell's pro- 
gramniablc values are set such that the Alphaserver 
system bus waveform balances tlie edge rate effects of 
increased crosstalk cvith increascd propagation delay. 
Furthermore, the bus waveforni is shaped in such a 
way that it allows incident wave transmission of sig- 
nals. As such, a signal can be received o n  its initial 
propagation across the bus centerplane, as opposcd to 
waiting For signal reflections to scttlc. All the driver 
characteristics serve to reduce bus scttli~ig time. When 
combined \vith the lo\\) clock-to-ot~tput timc of the 
output flip-flop, this reduced settling time produces a 
very low driver circuit propagation delay (T,,.,,). 

Tlic bus iiri\lcr/recei\ler cell's receiver and input 
flip-flop f ~r thc r  contribute to  its high performance. 
Dcsigncd with a programmable rcfcrcncc voltagc, the 
receiver has a very precise switching point. Whereas 
typical receivers may have a 200-~nilli\rolt (mV) to 
300-nlV s\vitching \vindow, the bus drivcr/rccciver 
cell's rcccivcr has a switching \ \ , i ~ l d o ~ ~  as small as 
4 0  mV. This diminished switching uncertainty directly 
reduces thc receiver's maximum sct i~p timc. The input 
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tlip-flop's master latch is a sense-amplifier-based latch 
as opposed to a simple inverter-based latch. The sense 
amplifier, with its ability to  resolve small voltage differ- 
entials niucli faster than standard inverters, allows tlie 
master latch to  determine its next state much more 
rapidly than a standard latch. This characteristic serves 
to reduce both the receiver's setup and hold time 
requirements. 

In general, the setup and hold tinie requirements of 
a state elcment are interrelated. The setup time, for 
esample, can be reduced at tlie expense of hold time. 
Since setup time contributes t o  cycle time and hold 
tinie may not, reducing setup time is desirable. The 
AlphaServer 8000  bus driver/receiver cell requires 
at  most 300 ps of combined setup and hold time. 
However, since the edge rates of  the cell driver are so 
well controlled, the minimum propagation time for a 
bus signal is always guaranteed to exceed 300 ps. As 
a result, the bus receiver circuit is designed with all 
300 ps charged as hold time. This renders a minimized 
receiver setup time (T<,,,,J of 0 ps. 

The AlphaServer 8000 bus driver/receiver cells 
have a number of  additional features that further 
reduce the propagation delay ( q>,,,/)) of the  driver cir- 
cuit. The cell, for example, features in-cell bus termi- 
nation, which provides the system bus with full, 
distributed termination. Simulations have shown that 
such distributed termination can provide an advantage 
of 500 ps over common end termination. The bus 
driver/receiver cell's termination resistance, like other 
cell parameters, is programmable and made identical 
throughout all system ASICs by means of  a reference 
resistor external to each ASIC. 

The bus driver/receiver cell also features a special 
preconditioning function that improves the driver's 
propagation delay by as 111uch as 1,500 ps. This feature 
causes all bus drivers to begin driving toward the 
opposite state each time they receive a new value horn 
the bus. If the bus is changing state from one cycle to 
the next, thc feature causes all drivers to begin driving 
the bus to a new state in the next cycle. In doing so, all 
bus driver cell drivers contribute current and acceler- 
ate the bus transition. If the bus is not changing from 
one cycle t o  the next, the drivers simply push the state 
of the bus toward the opposite state, but only to a 
benign voltage urcll short of tlie switching threshold. 

All of the bus driver cell's programmable features, 
such as switching point, output voltage, edge rates, 
and termination resistance, make the bus driver cell a 
very stable and high-performance interface cell. The 
existence of these features, however, is an element of 
the bus driver cell's complernentar)r process-voltage- 
temperature (PVT) compensation function. PVT com- 
pensation is meant to makc a device's operating 
characteristics independent of variations in the semi- 
conductor process, power supply voltage, and operat- 
ing temperature. By applying PVT compensation in 

every AlphaServer system bus interface ASIC, bus dri- 
ver cells in different ASICs, for example, can drive 
nearly identical system bus waveforms even if those 
ASICs come from manufacturing lots with varying 
speed characteristics. Alphaserver 8000 PVT compen- 
sation is based on  reference voltages and resistances 
provided by very precise, low-cost, module-level com- 
ponents. The PVT compensation circuit measures 
these references and configures internal voltages and 
resistances so that all bus driver cells can operate uni- 
formly and predictably. By creating predictability and 
thus reducing uncertainty and skew, bus cycle time is 
minimized. 

Signaling Layer 
Powerful though it may be, the AlphaServer 8000 bus 
driver/receiver cell is not witliout limitations. During 
its development, it was found that the bus driver cell 
could be developed to  drive the AlphaSer\~er 8000 sys- 
tem bus in 10 11s under a limited number of  condi- 
tions. When the driver cell asserted a deasserted (near 
0 V) bus line o r  deasserted a bus line that had been 
asserted (near 1.5 V)  for only one cycle, for example, 
10-ns timing could readily be met. When the driver 
attempted to deassert a bus line tliat had been asserted 
for more than one cycle by multiple drivers, however, 
10-ns timing could not be met. These limitations have 
significant in~plications for protocol development. 
Protocols typically have a number of signals that can 
be driven by multiple drivers. These may include cache 
status signals and bus flow control signals. Protocols 
also typically include a number of  signals that can be 
asserted for many cycles. These map include bank busy 
signals or  arbitration request signals. Clearly the impli- 
cations are that the liniitations of the bus driver/ 
receiver cell would cause the system either to fall short 
of its cycle time and performance goals o r  to be inca- 
pable of  supporting a workable bus protocol. 

With the bus driver/receiver cell pushing tech- 
nology to its limits, the solutions to  this problem 
were extremely limited. The  system cycle time could 
be slowed down to accommodate all signal transitions 
within a single cycle, regardless of the charge state of 
the signal line; or  a signaling protocol could be devel- 
oped that would avoid charging a signal to thc point 
where it could not transition in 10 ns; o r  the physical 
topology of the system could be reconsidered with 
the goal of finding a new topology that met the system 
goals at a slower clock rate. The first option of slow- 
ing the clock was clearly unacceptable; it could not 
satis@ the system's late~icy and bandwidth goals given 
the system's topology. The third option could poten- 
tially satisfjl tlie system's latency and bandwidth goals, 
but came at the expense of tlie favorable qualities 
of the simple bus outlined in the Topological Layer 
and at the risk that the neb\/ topology would suffer 
similar, unforeseen pitfalls. The option of developing a 
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signaling protocol, o n  tlie other hand, could satistj tlic 
s)steni's performance goals \vitli little or no risk. A sig- 
naling protocol was clearly the practical solution to the 
bus driver/reccivcr cell limitations. 

The Signaling Layer of the platform dcvclopnicnt 
model introduces tlie AlphaScr\rer 8000 signaling pro- 
tocol. This protocol was dc\leloped by creating a list of 
signal classes, based o n  driver counts and assertion and 
deassertion characteristics, and by associating a specific 
signaling protocol \\jitli cacli class. The signal classes 
and their protocols are listed in Table 2. As the 
Alphaserver 8000 primary protocol \ifas dc\lclopcd, 
each bus signal was assigned a signal class. As 
AIphaSer\/cr 8400/8200 hardware was developed, 
each bus signal was designed to  operate according to 
tlie signaling protocol associated with its s ignal i~~g 
class. The system bus address and data signals, for 
example, fall into the second class of  signals. As a 
result, the AlphaScrver 8400/8200 modules are 
designed to leave tristate cycles benveen cacli address 
~ n d  data transfer on the svstem bus. 

The AlphaSer\/er system bus cache status sig~lals 
(TLSB-Shared and TLS13-Dirty) and tlie spsteni 
bus t l o ~ l  control signals (TUB-Hold and 
TUB-Arb-Supl>rcss) demonstrate a note\\~ortliy para- 
digm that results fro1i1 the Alphaserver 8000 sig~l;lling 
protocol. All thcsc signals are defined such that at 
times they must be asserted for multiple cycles. All 
these signals also hll into the fourth signal class, which 
expressly prohibits driving the signals for niultiple 
c)lcles. When these t\vo contl-adictory requircmcnts 
exist, the result is n class of signals p ~ ~ l s e d  to indicate 
multiple cycles of constant assertion. Logic inside each 
AlphaSer\w- 8000-based ~iiodule must be designed 
to convert these pulsed signals to constantly asserted 
signals within its system bus interface. Note that \vhcn 
signals such as these are discussed in the protocol 

Table 2 
Al~haServer 8000 Sianal Classes 

sections of this paper, the term "asserted" is used to 
imply constant assertion, \\/it11 the ~~nderstanding that 
the signals may in fact be pulsed. 

Consistency Check Layer 
The Consistcnc)r Check Layer defines a method for 
maintaining system integrity. Specifically, it defines 
methods for detecting errors and inconsistencies in the 
system and, more important, mcthods for logging 
errors in the presence of historically disal~ling errors. 
Although it docs 1101 con t r ib~~ tc  directly to the 
AlpliaScrvcr 8000 platform's performance goals or  
stated product goals, the Consistency Check Layer 
contributes an extremely usefi~l feature to tlie 
MphaScrvcr 8000 products. It is included in the paper 
for the sake of  completeness in the analysis of the 
seven-layer platfi)rm dcvelopnient nlodel. 

The AlpliaScr\lcr 8000-based systems employ a 
number of c~.ror-checking mechanisms. Thcsc include 
transn~it cliecks, sequence chccl<s, assertion checks, 
and time-oi~ts. If any error is dctccted by an 
AlphaScr\~cr 8000  nodule by means of these mecha- 
nisms, the module responds by asserting a special 
" F a ~ ~ l t "  signal on  the AIphaScr\~cr 8000 system bus. 
This Fault signal has the effect ofpartially resetting all 
system bus intcrfaces and processors, and trapping the 
processors to "machine check" error-handling rou- 
tines. The partial reset clears all s)~stc~ii  state, with the 
exception o f  error registers. This rcs)lncIironizes all 
system bus intcrfi1ces and elimin,~tcs all potentially 
unser\~iccablc transactions left pending in the systcni. 
Thus tlie systcm can begin execution of tlie machine- 
check routines in a rcsct system. Although the routines 
are not gi~aranrecd to be able to co~nplete an error log 
in the prcscncc of an error, it is bclicvcd that this 
mechanism will increase the probability of a successf~l 
error log. 

Signal Driver Count and Signal 
Class AssertionIDeassertion Characteristics Signaling Protocol 

1 Single driver with multiple receivers Never driven more than two consecutive cycles 
2 Multiple drivers with multiple receivers Tristate cycle on the  bus when driver changes 

One driver a t  a time Never driven more than two consecutive cycles 
Multiple drivers with multiple receivers 

Many drivers at  once possible 
Assertion time may differ from driver 
to  driver 
Deassertion time is fixed 
Multiple drivers with multiple receivers 

Many drivers a t  once possible 
Timinq is fixed 

Value received on signal deassertion is 
unpredictable and must be ignored 
Tristate cycle on the  bus when driver changes 
Never driven in two consecutive cycles 

Value received on signal deassertion is 
unpredictable and must be ignored 
Tristate cycle on the  bus when driver changes 
Never driven in two  consecutive cycles 



The Alphaserver 8000 platform's Fault crror- 
handling feature is particularly usefill in recovering 
error state from a computer in a "hung" statc. A com- 
puter enters a hung statc \ilhen an error occurs that 
stops all progress in the computer system. If a proccs- 
sor is waiting for a response to a read, for esamplc, and 
the read response is n ~ ) t  forthcoming due to an crror, 
the system hangs while \\!siting for the responsc. Thc 
desktop model for error handling \vouId require J sys- 
tem reset to recover from SLICII an error. The process of 
the system reset, lio~lever, \\lould purge error statc. 
The purge, in turn, makes error diagnosis extremely 
difficult. This desktop model is not unique to desktop 
systems. I t  is also employed in server-class machines 
such as Digital's DEC 7000/10000 AXP systems. 
Although this model may be acceptable on tlie desk- 
top, it is most undesirable in an enterprise server 
system. The AlphaServer 8000-based systems use a 
time-out counter to detect a hung system and tlie 
Fault error-handling technique to recover an error log 
in the event of a Ilung system. The  result is a robust 
error-handling system that is appropriate in an cntcr- 
prise server. 

Primary Protocol Layer 
The Prjmary Protocol L.ayer of the platform dc\jclop- 
ment assigns names and characteristics to thc various 
system bus signals and uses these names and char~cter-  
istics to  define higher-order system bus transactions 
and ti~nctions. System bus transactions may include 
reads of data from memory or  writes of  data to  meni- 
ory. These transactions are the primary business of 
a computer system and its protocol. If a system effi- 
ciently executes read and write transactions, it will per- 
form better than a system that does not. System bus 
functions may includc mapping memory addresses 
to specific memory banks or  arbitrating for access to 
system buses. These functions cnable system bus trans- 
actions to operatc in environments with rn~~l t ip le  
processors arbitrating for access to  the system bus and 
multiple banks of  memory. 

AlphaServer 8000 system bus transactions relate 
directly into the platform's perfoniiance nletrics. Thc 
syste~n's memory read latency, for example, is equal to 
the time it takes for a processor to issue and cornplctc a 
system bus read transaction. The number of s!!stcni 
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bus transactions and their associated data that the sys- 
tem bus can process in a given period of t i ~ u e  define 
the system bus band\vidtIi. 

The components of a typical memory read transac- 
ti011 are shown in a timeline in Figi~rc 4. 'l'his timeline 
of c o m p o ~ ~ c n t s  is based 011 a system that is an abstract 
of tlie DEC 7000/10000 MI' systems. To  minimize 
a system's memory read latency, each component 
of the read transaction timeline must be minimized. 
Components 1,  3,7 ,  and 8 of  the timeline are simply 
data and address transfers across buses and through 
interfaces. The delays associated with tlicse compo- 
nents are largely determined by system cyde time; they 
cannot be affected by the protocol to any great extent. 
Component 5 is the DRAM access time. I t  is mini- 
mized by the rcconfigurable controllers described in 
the Operational Layer. The remaining components, 
(2) address bus arbitration, (4) nlemory bank decode, 
and (6) data bus arbitration, fall into the domain of the  
primary protocol. These elements must be designed to 
contribute minimal delay to the overall latency. 

The effects of protocol on a system's d.lta band- 
cvidth are a little Inore difficult to quantib than the 
effects of protocol on memory read latency. In  gen- 
eral, the theoretical maximum systcm band\vidth is 
equd to either the sum of the bnnd\\,idths o f  the s y -  
tern's memory banks or the maximum system bus 
bandlvidth, whichever is smaller. If the system band- 
width is limited by memory module bandwidth, it is 
essential t o  kccp as many memory modules .I ctlve - ' as 
possible. If, for example, eight banks of  memory are 
required to sustain 100 percent of the maximum sys- 
tem bandwidth, but the system can support only four 
outstanding commands, only four banks can be kept 
busy and only 50 percent of the maximum bandwidth 
can be rendered. 111 another example, if 10 percent of 
the time this system freezes all but one bank of mem- 
ory to perform special atomic functions o n  special data 
blocks, the system's bandwidth will suffer 11e;lrly a 10 
percent penalty (73/80 possible Iiiemorp accesses \a- 
sus 80/80 possible memory accesses). If the system 
band\\!jdth is limited by the band\\,idtli of the system 
bus, the masimum system banduridth can be achieved 
only when the protocol allo\\,s system nlodules to 
drive data onto the systen~ data bus in c\fcry available 
cycle on thc data bus. When a processor reads a block 
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Components of Memory  Rcad Latcncy 
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of data from a second processor's cache, for csamplc, 
the second proccssor may have to stall the data bus to 
allow it t o  drive the rcad data onto  the system's data 
bus as prescribed by the system protocol. A stall of tlie 
data bus translates into ~ ~ n u s e d  data bus cycles and 
degradation of real systc~ii bandwidth. TIILIS to maxi- 
mize real system band\vidtIi, system bus and mcmory 
bank utilization l i i ~ ~ s t  be maximized, and stalls in sjls- 
tem bus activity and stalls in niernory bank acti\.ity 
must be minimized. 

Tlic follo\vi~ig scctio~ls begin \\!it11 an o\jcr\~ic\\: of 
the basic AlphaServcr 8000 platform protocol and 
how this basic protocol influences system pcrfor- 
mance. This section is followed by a discussion of ho\v 
the various protocol coniponents identified as cle- 
nients of memory read latency (i.e., memory bank 
mapping, address bus arbitration, and data bus arbitra- 
tion) affect the latency. These sections concluclc 114th 3 

discussion o f  subbloclt \\trite transactions and their 
effects on system band\vidth. 

Alphaserver 8000 Protocol Overview The platform 
development Topological Layer clef ncd the 
AlphaServer 8000 systcni bus as having separate 
address and data buses. The Alphaserver 8000 systcm 
bus protocol dcf ncs lie\\- system bus transactions arc 
performed using tlicsc n\lo buses. According to the 
protocol, processor ,ind 1 / 0  port m o d ~ ~ l c s  initiate 
rcad and \\?rite transactions by issuing read and write 
commands to the spstcri~ address bus. These addrcss 
bus commands arc ti)llowcd sometime later by an 
associated data transfer on tlie data bus. All data trans- 
fers are initiated in tlic ordcr in which their associated 
addrcss bus comniands arc i s s ~ ~ e d .  Cache coherency 
information for cach systcni bus transaction is 1)road- 
cast on the system bus as cach transaction's data bus 
transfer is initiated. Each data transfer mo\/es 64 bytes 
of data (only 32 bytcs of  \\rhicli arc valid for p ro -  
grammed 1 / 0  transfers). Figure 5 sho\vs ,in csamplc 
of AlphdServer 8000 systcn~ bus traffic. In cyclc 1 a 
read transaction, 1.0, is initiated on the system address 
bus. In  cycle X, the data tmnsfcr for read rO is initiatcd 
on  the system data bus by means of the systcm bus 
Scnci-Data signal, the .~s\crtion of \\diich is indicated 

with a value of iO. As this data transfer is initiated, the 
status, so ,  is also driven on tlie s\.stcm bus. In cycle 
X+2, all system bus modules have an opportunity to 
stall or  to co~itrol  the flow to the system data bus. I n  
this csan~plc,  tlic bus is not  stallcci, ns indicated by a 
value of n. Finally, given that the bus is not stalled, the 
64 bytcs ofrcad data associated \\,it11 rcad t.0 arc trans- 
ferred across the system bus during cycles X + 5  and 
X+6. I11 addition to read 1.0, Figure 5 also illustrates 
the csccution of a \\'rite, (1.1, .lnd ;i~iotIicr read, 1.2. 
Notc tliat cl,ita transfer initiation, dnt:~ 1x1s tlo\\~ con- 
trol, and data transfer are pipclincci o n  the system data 
bus in tlic snmc order as their associated co~nmands 
werc issucd to the addrcss bus. Notc f~ r t l i c r  that this 
diagram represents 100 percent utilization o f  thc slJs- 
tem data b i ~ s  (one data transfcr c\'cr!, tlircc c!jcles). 
Wit11 a 10-ns cyclc timc, this utilization \\!auld trans- 
late to 2.1 C;R per scco~ld of  band\\icitli. 

Thc AlpliaScr\~cr system adcircss bus uses nvo 
mechanisms to control the tlo\\* of systcm bus tl-ansac- 
tions. First, processor iuid I/O port ~nodulcs are not 
allo\vcd to issi~c commands to mcliiory ~not i i~ lcs  t h ~ t  
arc busy performing some DlWlM acccss for a previ- 
ously issucd system bus transaction. The stiitc of each 
memory bank is con~niunicated to each procchsor by 
m e w s  of systcm bus Bank-A\.ailablc signals. If a 
processor or 1 / 0  port seeks access to 3 gi\,cn memory 
bank and that mcmor!l bank's Rank-A\tnilable signal 
indicatcs that the bank is free, the processor or  1 / 0  
port may request acccss to the addrcss bus and, if 
granted acccss by the system arbitration logic, issue its 
transaction to the ndclress bus. If a proccssor or  1 / 0  
port scclcs '~cccss to a given Inemor\* bnnlt Llnci tliat 
Iiiemory bank's Bank-A\*~ilablc signal indicates that 
the bank is not fi-cc, tlie processor o r  1 / 0  port \\.ill not  
request acccss to the system addrcss bus. T l i ~ ~ s ,  ~uiless 
all memory banks are busy 01- ~ ~ n l c s s  the total of the 
busy memory banks includes all banks that are ~iecded 
to service tlic system's processors and 1/0 ports, the 
address bus \\,ill continue to transmit co~i ima~ids .  The 
second mechanism for controlling the tlo\v through 
the addrcss bus is the system 13~1s Arb-Suppress signal. 
Ifany systcm bus m o d ~ ~ l e  runs out  of an!* co~nm,Ind/ 
address-rclurcti rcso~~rce ,  such 2s co~nmand  queue 

Figure 5 
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entries, jt can asscrt this signal anci prc\!cnt tlie system 
arbitration logic from grnnting any more transactions 
access to  the bus. 'flic Arb-Suppress sigrial is useful, 
for esaniple, in a systcm configuration with 16 mem- 
ory banks hut only eight entries \\forth of commnnd 
clucuing in n proccssor. 

The AlpliaScrvcr 8000 system dat3 1x1s Iias its O\ \~II  

tlo\v-control mcchanism, the system bus Hold signal, 
\vhich is indcpcndcnt of the addrcss bus tlow-control 
mechanisms. The Holtl signnl, sho\\fn as Data Bus 
l-'lo\\ Control in Figure 5, is asscrtcti in rcsponsc to  the 
initi.1tion of a data bus transfer. Normally, data bus 
transfers arc initiated on  the data bus when all 
AlpliaScr\lcr 8000 mcniorv ~nodu lc  asserts tlie 
Send-llnta signal. Send-l)~t,l is asserted by a memory 
module based o n  tllc stnrc of the module's DlL41'vls: 
When servicing a read transaction, the memory will 
assert Send-Data when its DKAM rcad is complete; 
\ \~I ICI I  ser\!ici~lg n \\,rite transaction, tlie memory ~ \ l i l l  

assert Send-l),lta as s o o ~ i  '1s its turn on the data bus 
comes L I ~ .  Five cycles after the assertion of Send-Data, 
sonic modulc drives data onto  the data bus. If a mod- 
ule is rcclt~ircd to drive data in rcsponsc to ari assertion 
of Send-Data and  is u ~ ~ u b l c  to d o  so, it will assert 
tlic Hold sig~lal t\\lo cycles aftcr the assertion of 
Send-Data. This may occur if a processor module 
must SoLIrcc rcad data horn its cache and cannot fetch 
the data from tlic caclic ns quicl<ly as the Inemor!/ 
niodulc can fctcli data ti-om its 1)IWiMs. If, on  the 
other hand, a modulc is required to I-cccivc data in 
rcsponsc to an assertion of Send-lhts and is unable to 
d o  so, it too \ \ , i l l  asscrt the Hold signal n\.o cycles after 
tlie assertion o f  Send-l).~ta. Tliis may occur if no  
rccci\.ing m o ~ l ~ ~ l c ' s  clatu buffers arc available to receive 
data. Each ~iioii i~lc that asserts Hold t\\*o c!lcles aftcr 
Send-lhtn \\rill continue to nsscrt Hold every other 
cyclc-ns prcscl-ibcd by tlic AlpllaScrvcr SO00 signal- 
ing protocol-~inril it is ready for the data transfer. 
Three cycles aficr all I~IOJLIICS are ready and deassert 
the Hold line, data is finally transferred. Figure 6 
sho\vs 3 rend, 1 . 0 ,  tli~lt e ~ p e ~ ~ i c ~ i c e ~  o11c pl~lsc of the 
system bus Hold signal. 

I t  is important to note that tlic addrcss bus and tlie 
data bus have indcpendcnt mc.lns and criteria for initi- 
ating transactio~is and controlling tlic flo\\l of transac- 
tions. The address bus initiates addrcss bus commands 
based on  processor and 1 / 0  port module rcqucsts and 
controls tlie flo\\! b ~ s c d  o n  the stnrc of addrcsa-related 
resources. Thc data bus initiates data transfers in the 
same order as the address bus transmitted comnlands 
by means of tlie Send-Data signal. Send-Data is usu- 
ally asserted by a mcmory m o d ~ ~ l c  based o n  the statc 
of the module's 1)lWMs. The data b i ~ s  tlow is con- 
trolled based on the statc of various data-related 
resources. The differing means and criteria For initia- 
ti011 and flow control alloiv tlic nvo lx~scs to operate 
almost indcpcndently of one .~notlicr. Tliis indcpcn- 
dence translates into performance becausc it allo\\a tlie 
address bus to  continue to initiate commands even as 
the data bus may be stalled because of n conflict. 
Continuous conimand initiation translates into more 
continuous system parallelism and thus morc system 
bandwidth. Figures 6 and 7 illustrate this point. Both 
fig~~resillustratc systems that arc issuing a scrics of 
processor reads to lbloclts that must be sourced from 
another processor's caclic. In  both cases, processors 
require two morc c)~cles than main memory banks to 
source read data. As such, two cyclcs of Hold assertion 
must perjodically occur o n  tlic data bus. Figure 6 illus- 
trates tlie operation of the AlpliaScr\lcr SO00 system 
bus, sho\\~ing that a l t l i o~~gh  the data bus had to  be 
held in c!lclc 6 ,  the addrcss bus \\Ins able to continue 
issuing commands. As a r c s ~ ~ l t ,  cacli processor SoLtrc- 
i ~ i g  d ~ t a  begins its rcad of cacllc data as soon  ns possi- 
ble and is guaranteed to be ready to drive data \vithout 
Hold cycles \\!hen its turn comes LIP on thc data bus. 
With the illustrated scrics of five reads, the n\:o Hold 
cycles result in a 12 percent degradation in system 
band\\ridtli. If the scrics of rends is Icngtlicnccl to\vard 
infinity, the percent of degradation approaclies 0. 
Figure 7 illustrates the opcration of a rigidly slotted 
bus, like that of tlie 1)EC 7000/10000 ASI' system, 
normalized to the Alp1i;lScrvcr 8000 topology. As 
slio\vn, each time tlie data bus is stalleel, so too is the 

Figure 6 
Rcnd \\,it11 Onc <:yclc o f  Holct - Five Rcads Sourccd by a Processor 



Figure 7 
Fi\.c Rends Sourccd by 3 Processor in a Rigidly Slotted System 

address bus. Tliis prevents the fourth and fifth reads 
from getting the headstart necessary to prevent subse- 
~ L I ~ I I ~  stalls oftlie data bus. The result is a 20  percent 
degradation in pcrforniance for tlic five reads illus- 
trated. If the serics ofrcads is lengthened toward infin- 
ity, tlie percent of degradation settles to 18 percent. 
Clcarly the AlphaScrvcr 8000 approach produces 
superior data bandwidth characteristics. 

I t  js also important to note that the AlphaServer 
8000 addrcss bus and data bus have dit'fcrent masi- 
nium bandwidths. Commands can be issued to  the 
address bus every other cycle. With a 10-ns cyclc time, 
this translates into 50  million co~nmands pcr second. 
The data bus, on  the othcr hand, can transfer one 
bloclc of  data every three cycles. With a 10-ns cvcle 
time, this translates into 33.3 million data blocks 
per second. Tliis excess of ;~ddrcss bus bandnlidth js 
~1sefi11 in the development of lo\\f-latency arbitration 
schenies. 

CYCLE 

ADDRESS BUS 
COMMAND 

DATA BUS 
SEND-DATA 

CACHE 
STATUS 

DATA BUS 
FLOW CONTROL 

DATA BUS 

Memory Bank Mapping Digital's previous server 
systems, like thc VAX 6000 serics and the LIEC 
7000/10000 AXI' series, h;tve employed a common 
a~-~proach to address- to-me~iior l f -bank mapping. 111 
this approach, all ~ncniory modules implement address 
range registers. As commands and addresses are trans- 
~nitted across tlie system bus, thc memory banks com- 
pare tlie addresses against thcir addrcss range registers 
to determine if they must respond to the command. 
An addrcss range conipal-ison can involve a significant 
number of address bits and, as 3 rcsi~lt, can become 
logically complex enough to consume two 10-ns 
cycles of time. These two cpclcs can be added directly 
to memory rcad latency. 

The low-latency focus of the 141phaSer\~cr 8000 
platform proniptcd a change in bank mapping 
schemes. 111 AJphaServer 8000 systenls, the address 
range registers havc bcen n~ovcd onto  the processor 
and I/O port  modules. Tlic range registers output a 
4-bit bank number that is shipped across tlie system 
bus \vith each command arid addrcss. Each memory 
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bank compares each bank number transmitted across 
the system bus to 4 bits in a programmable bank num- 
ber register to determine if it s l ~ o ~ ~ l d  respond to tlic 
system bus command. 

This bank mapping logic configuration helps to 
reduce AlphaServer SO00 memory rcad latency. 
Because the bank mapping is donc on the nodes that 
issue commands to  the addrcss bus, the lengthy 
address comparison can be donc in parallel with 
address bus arbitration, eli~iiinating its two-cycle delay 
from the memory read latency. The address compari- 
son traditionally done in the mcniorp bank logic is 
n o ~ v  replaced \vitli a simple 4-bit co~nparison, which 
can easily be done in a single cycle. Thc overall c tkct  is 
that the AlphaServer 8000 bank mapping protocol 
consumes at least one cycle less t h m  l'>igital's tradi- 
tional bank mapping protocol. This eclLlatcs to one Jess 
c!lcle-10 ns minimum--of memory read latency. 

Address Bus Arbitration AlpliaScr\~cr 8000 systems 
employ a distributed, rotating-priority arbitration 
scheme to grant acccss to  thcir addrcss buses. 
Processor and I/O port modules recluest acccss to the 
address bus based on requests from microprocessors 
and 1/0 devices, and on the state of the system's 
memory banks, as described in the section 
AlphaServer SO00 Protocol Overview. Each module 
evaluates the requests from all othcr modules and, 
based on a rotating list of niodulc priorities, dcter- 
mines whether or  not it is granted acccss to the bus. 
Each time a module is granted access to  the bus, its 
priority is rotated to the lowest priority spot o n  the pri- 
ority list. 

The AlphaSer\~er 8000 arbitration scheme operates 
in a pipelined fashion. Tliis Incans that modulcs 
request access to the bus in one cyclc, arbitrate h)r 
access to the bus in the nest cycle, and tinally drive 
a command and address onto  the bus one  cycle later. 
In terms of  processor-generated read requests, this 
means that, at best, a systcm bus rcad command can be 
driven onto  the systeril ;~ddrcss b i ~ s  t\vo cycles aker its 
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corresponding cache read niiss is generated on the 
processor module. This adds nvo cyclcs of delay to tlie 
memory read latency. 

To reduce memory read latency in components 
associated with address bus arbitration, the 
AlpliaServcr 8000 platform employs a techniclue 
called "early arbitration." Early arbitration allo\\ls a 
module to  request access to the address bus before it 
has determined if it really needs acccss to the data bus. 
If the module is granted access to  the address bus but 
determines that it does not need or  cannot use tlie 
access, it will drive a No-Operation or NoOp com- 
mand in the command slot th,it jt is granted. This fea- 
tilre is particularly useful on  proccssor modules. It 
allows a proccssor to request acccss to the bus for a 
read command in parallel with determining if the read 
command will hit or  miss in the processor's cache. If 
the read results in a cache hit and tlie processor is 
granted access to the address bus, then tlie processor 
issues a NoOp command. If the rcad results in a cache 
hit and the processor is not granted access to  the 
address bus, the processor disconti~iues requesting 
access to the bus. When applied in this manner, this 
feature can remove two c!icles of delay from the 1nc1i7- 
or!( read latcncv. This feati~rc is also key to tlic 
Alphaserver 8000 memory bank decode feature tliat 
allows address-to-memory bank decode to proceed in 
parallel with system bus arbitration. This is to say, it 
allows a processor or  1/0 port modulc to requcst 
access to thc nddress bus before it can determine 
which nienior!l bank it is trying to access and before it 
can determine if tliat menior!l bank is available. If a 
module is granted access to  the bus and the bank it is 
trying to access is not available, then the module issues 
a NoOp co~nniand. If a modulc is not granted acccss 
to tlie bus and the bank it is trying to access is not 
available, then the  nodule discontinues requesting 
access to the bus until the bank becomes available. 
When applied this way, this feature eliminates at least 
one cycle from the memory read latency, as dcscribcd 
in the section Me~iiory Rank Mapping. 

The excess address b ~ i s  bandwidth noted in the 
protocol overview allows some aliiount of  early arbi- 
tration to take place \\litliout affecting system pcr- 
for~nance. When system traffic increases, however, 
escessivc carly arbitration cJn steal usefill address bus 
slots from nonspeculati\ic transactio~~s and as a result 
degrade bus bandwidth. In fact, in certain pathologi- 
cal cases, excessive carly arbitration by rnodulcs witli 
high arbitration priority can pcrmanentl!l lock ou t  
requests from lo\\ler priority modules. T o  eliminate 
the negative effect of early arbitration, tlic iUpl~aSer\ler 
8000 employs a technique called "lool<-back-n\lo" 
arbitration. This technique relies on  the fact that niod- 
ules must resolve all cache niiss or  bank availability 
uncertainties for early arbitrations within the nvo 
cycles reqi~ired for an early request and its arbitration. 

This fact implies that any module that has been 
requesting acccss to the address ~ L I S  for more than nvo 
consecutive cyclcs is requesting jn a nonspeculative 
manner. As such, the AlpliaServer 8000 arbiter kecps 
a history of address bus requests and creates nvo pri- 
oritized groups of requests bascd o n  this history. I t  
creates a high-priority group of reqilests from those 
requests tliat have been asserted for more than two 
cycles and a lo~v-priority group of r cq~~es t s  from those 
requests that have been asserted for two cycles or  less. 
It applies tlie single set of rotating priorities, described 
above, to both sets of requests. If there are any 
requests in tlic liigli-priority group, the arbiter selects 
one of these b.lscd on the rotating priority set. Ifthere 
are no high-priority requests, tlie arbiter selects a 
request from the lower priority group based on the 
rotating priority set. This fi~nctionality limits carly 
arbitration to only t l~ose  times when there are non- 
speculative requests in tlic systcm. It allo\\,s rlic 
AlphaServcr 8000 platform to take advantage of 
latency gains associated witli carly arbitration .~nd 
processor and 1/0 port based bank decode, without 
degrading bandwidth in tlie process. 

Data Bus Arbitration l:he Alpl~aScr\fcr 8000 data bus 
transfers blocks ofdata in the same order that the com- 
mands corresponding to those blocks are issued on thc 
address bus. This eliminates data bus arbitration per 
se. In-order data return is accomplished by a simple 
system of counters and sequence nt~nibers. Each time 
a command is issued to tlie address bus, it is assigned a 
sequence number. Sequence numbers are assigned in 
ascending order. Each time a block ofdata is dri\fen on 
the data bus, a data bus countcr is incremented. Each 
module waiting to initiate a data transfer in response 
to some address bus co~.nm;ind compares the sequence 
nunlber associated with its command with the data 
bus counter. When a modulc's sequence number 
matches its data bus counter, it is that niodule's turn to  
initiatc a data bus transfer. 

I t  is arguable tliat in-order data return is not the 
optimi1111 d ~ t a  scheduling algorithm. If the scenario 
shown in Figurc 6 were resliapcd such that only rcad 
rO sourced dam from another processor and the 
penalty for sourcing data fro111 ;I processor \\.ere more 
severe-a longer data bus Hold requirement-the 
result \ i ~ o ~ ~ l d  I ~ c  more signifcant bandwidth dcgrada- 
tion. This nc\v scellario is illustrated in Figure 8 .  With 
more efficient data scheduling, it is conceivable that 
data bus utilization could bc improved by using data 
slots abandoned under tlie sizable Hold \vindow in 
Figure 8. The latter scenario is illustrated in Figurc 9 .  
Clearly tlie systcm in Figurc 9 has improved upon the 
bandwidth of thc  system in Figure 8 .  

What Figurc Y cannot sho\\l are all the implica- 
tions of out-of-order data transfers. With as many as 
16 outstanding transactions (8  in the Alphaserver 
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Figure 8 
Randwidth Degradation ns n Rcsult of In-Order Data Transfirs 

Figure 9 
Impro\~ed Bandwidth witli Out-of-01-dcr L > ; l t ~  T1.3nsfers 
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8400/8200) active in the system at any one time, the 
task of producing a logic structure capable ofretiring 
the transactions in order is enornious. Furthermore, 
the retiring of transactions out of order complicates tlie 
business of maintaining colicrcnt, ordered memory 
uptiates. Finally, it was felt that the parallelism n u d e  
possible by the indepcnduit address and data bus 
\vould help to mitigate many of the negative effects 
associated with the in-order dam transfers. For these 
reasons, a practical decision wls taken to transfer data 
on the system data bus in thc order that the associated 
commands were issued to the slatem nddrcss bus. 

3 

r 1  

Subblock Writes To support a range of 1 / 0  subs)~s- 
tems, AlpliaServer 8000 I/O port modules must sup- 
port \\)rites of data as small as long\\jords (32 bits), 
words ( 1 6  bits), and bytes. Given the AlphaSer\lcr 
system bus block size of 6 4  bytes, these writes are 
referred to as subblock writes. The c sec~~t ion  o fa  sub- 
block write consists of  reading a block of data from a 
system memory bank, o\lcrwriting just the portion of 
the block addressed by the subblock write, :lnd writing 
tlic entire block back to memory. The difficulty with 
pcrformiog this operation arises \vhcn a "third-party" 
module-defined here as a module other than the one 
pcrfbrmi~lg the subl.doclt \\trite-modifies the block 
bct\\lecn the read portion of the subblock writc and 
the writc portion of  the subblock write. T o  correctly 
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DATA BUS 

complete the subblock \\trite, tlic I / O  port module 
must Inergc the subblock \vritc c l~~ta  into the block as it 
\\/as aker the third-party module modifed it. This 
problem can be resol\wi in one  of mro ways: (1 )  by 
mcdns of a small caclle on rlie I/O port r n o d ~ ~ l e  
that updates the 1 / 0  port's copy of the block based on 
the third-party writc, o r  (2) by Incans of an atomic 
rend-modit)-write that disallo\vs the third-pa~.t)t writc 
nltogctlier. 

In  an ideal world, 1 / 0  port  nodules would imple- 
ment a small one-block cache fix tlie purpose of sub- 
block \\!rites. This cache \ \ ' o ~ ~ l d  allo~v the I/O module 
pcrfol-ming the subblock \\'rite to update its copy of 
the block targeted by the subblock writc with modi- 
ficd data from third-party motiulcs. Unhrrunatel!!, 
not a11 processors broadcast modified data to the 
system. Many processors, for csamplc, use a read- 
in\talidate protocol. In n reacl-invalidate protocol, 
~vlicn a processor \vishes to ~ n o c i i ~  a block, it issues a 
command that invalidates a11 other copics of that block 
in the systcni and then modifies thc block of  data in its 
cache. If sucll an invalidate co~nrn'lnd invalidated tlie 
block in a n  I/O port module's subblock write cache, 
the I/O port module \\.auld be fol-ccd to re-read tlie 
block. There is no guarantee, Ilo\\,s\,cr, that another 
invnlid~tc \\t i l l  not  occur bctwccn the re-read of the 
block and the write of  mcrgcd data back to memory. 

2 4 

i 0 

60 Digital 'Technical Journal 

- - - - - - - - r O r O  

5 

r 2  

r 3 r 3  

6 

so 

7 

r 3  

r 4 r 4  

8 

so 

9 

r4 

- 

10 

so 

H H H H ~  
- 

11 

- 

12 

so 

- 

13 

- 

15 

i 1 

- 

14 

so 

-- 

18 

i 2 

-- 

16 

-- 

17 

s 1 

n 

19 20 

S2 

n 

22 21 

i 3 

23 

s3 

24 

I 4 



As such, the I/O port module may never be able to  
complete the subblock writc. I/O port  caching is 
therefore not a workable solution. 

Atomic read-moditjr-write sequences disallow third- 
party writes to a given block between the read portion 
ofa sc~bblock cvrite and the write portion ofa  subblock 
write. As S L I C ~ ,  the atomic read-nioditji-write sequence 
does guarantee the timely completion of a subblock 
write. Implementations of  atomic read-modilj-write 
seclucnces arc designed to disallow accesses to s o ~ n c  
size portion of the memory region tliat contains tlic 
subblock address, benveen thc read and write portions 
of the subblock writc. The size of tlie memory region 
can \Jar), from a singlc block of data to a singlc bank of 
memory to the entircty of memory. If the size of the 
memory region is small, such as a single data block, 
design complesity is signifcant; but  the impact of  
locking out access to a single block of memory is 
insignificant to  band\vidth. Conversely, if the size of 
the memory region is largc, such as the entirety of  
memory, design complcsity is insigniticant; but the 
impact of loclcing out accesses to  the entirety of lncm- 
ory for any period of time can be significant to  system 
bandwidth. 

The Alphaserver 8000 platforru srlpports a ton~ic  
rcad-tnoditjr-\\,ritc scque~~ccs  by locking out accesses 
within memory-bank-sized memory regions. This 
middle ground melnorjl-region size provides the 
AlphaServer SO00 \vitli u practical balancc bcnveen 
design complexity and system band~vidtli. The 
AlphaScrver 8000 platform implements memory 
bank granularity atomic read-moditjl-write accesses 
by means of special Rend-Bank-Lock and 
Write-Bank-Unlock address bus commands, and by 
Ic\,craging the existing memory bank flow control 
mcchanisn~s. Speciticnlly, Read-Bank-Lock com- 
mands function like normal read commands, cscept 
that their targeted memory banks are left busy aker 
the read transaction is complete. Memory banks 
locked by Read-Bank-Lock commands relnain busy 
u~itil a Write-Bank-Unlock cornma~ld is issued from 
the same module that issued the Read-Bank-Lock 
command. While a memory ballk is busy, no  module 
other than tlie module that locked the bank by means 
of a Read-Bank-Lock command  ill even recluest 
access to  the bank, as required by standard arbitration 
protocol. This approach provides for atomic rcad- 
modi@-write seqilenccs and coherent subblock c\fritcs. 
This protocol \vorks regardless of  thc number of I/O 
modules in the system and regardless of  arbitration 
priorities. 

Supenet Protocol Layer 
The Alphaserver 8000 primary protocol provides all 
the basic constructs required to  perform basic system 

fi~nctions, such as memory reads and writes, local reg- 
ister reads and writes, and mailbox-based 1 / 0  register 
reads and writes. The protocol performs these basic 
functions with a high level of efficiency and perfor- 
mance. Some additional functionality, such as PC1 
direct-programmed 1 / 0  register accesses, can be func- 
tionally satisfied by the primary protocol but cannot 
be satisfied in a way that does not severely degrade the 
performance of the entire Alphaserver 8000 system. 
As such, the Alphaserver 8000 platform allows for 
Superset l'rotocols, i.c., protocols tliat are built upon 
the basic constructs (reads and writes) of thc 
AlphaServer 8000 primary protocol. 

PC1 direct-programmed 1 / 0  register reads can take 
more than a microsecond to complcte. If tl~cse reads 
were completed by means of the AlphaServcr 8000 
nonpended, strictly ordered primary protocol, the 
AlphaSer\rer systcm data bus would be stalled for a full 
microsecond each time a PC1 programmed [/O rcad 
was executed. Such stalls would have a disastrous effect 
on  system bus bandwidth and system perfi)rmance. 

The PC1 progra~nmed I/O problem is solved on the 
Alphaserver 8000 platform by ilnplerncnting a PCI- 
specific pended read protocol using the simple read 
and \\(rite con~mands  already included in the basic 
AlphaSer\rer 8000 prilnary protocol. This special 
superset protocol works as follo\\~s: 

When a microprocessor issues a PC1 programmed 
I/O read, the rcad is issued to the AlphaServer 
SO00 system bus as a register read. Tliis read is 
pended with a unique identification number that 
is associated with the issuing processor by driving 
the identification number 011 tlic systern bank 
number lines \\/hen the register read command js 
issued to  the systeln address bus. The  bank num- 
ber lines arc otherwise unused during rcgister 
accesses. The  issuing processor also sets a flag, 
indicating t l ~ a t  it has issued a PC1 programmed 
I/O rcad command. 

The I/O port module interfacing to  the addressed 
PC1 local bus responds to  the rcgistcr read by for- 
warding thc read to  the PCI, storing the processor 
identification nilmber specified by the address bus 
bank number lines and driving "dummy data" 
on to  the data bus in the register read's associated 
data slot. The  value of  the dummy data is irrele- 
vant; it is ignored by all systcm bus modules and 
is typically \vhatever was left in the I / O  ports 
register read buffer as a result of the last rcad it 
serviced. 

When the 1'CI local bus retilrns rcad data to  the 
1/0 port module, the I/O n~odu le  issues a regis- 
ter write to  a special PC1 read-data-return register 
address on  the system bus. This write is pended 
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with the issuing processor's identification num- 
ber, which was stored by the 1 / 0  por t  module. 
This identification number is again pended by 
driving it onto  the system bank ni~niber lines as 
the register write comrnand is issued to  the system 
address bus. The  PC1 read data is returned in the 
data cycle associated \vith this register write. 

When a processor module identifies a register 
write that addresses thc PC1 read-data-return reg- 
ister address, it checks the state of its PC1 read flag 
and compares the value driven in the system bank 
number lines with its unique identification num- 
ber. If the PC1 read flag is set and the value on  the 
bank number lines matches the processor's identi- 
fication number, then the processor con~pletes the 
PC1 prograrnmed 1 / 0  read with the data supplied 
by the register write. 

The AlphaServer 8000 PC1 programmed 1/0 read 
superset protocol allows AlphaServer 8000 systems to  
complete PC1 programmed 1 / 0  reads without stalling 
system buses. Furtliern~orc, it allows AlpliaSer\ler sps- 
tems to support PC1 1 / 0  in such a way that system bus 
modules not participating in the superset transaction 
need not be alerted to the presence of spccial bus 
transactions and therefore need not contain logic 
that recognizes and responds to these special cases. 
This approach demonstrates a practical \vay to  si~ii-  
plifj overall system design without affecting system 
performance. 

AlphaServer 8400 and AlphaServer 8200 Systems 

The AlphaServer 8400 and 8200 systems are tlie first 
products based on  the AlphaServer 8000 platform. 
The AlphaServer 8200 system is an "open officem-class 
server (i.e., the AlphaServer 8200 can be located in any 
office area, for example, where photocopier machines 
are typically placed). I t  features up to six system bus 
modules in an industr\r-standard 47.5-centimeter 
(19-inch) rackmount cabinet. The 8200 system can 
support up to six 300-MHz Alpha 21164 niicro- 
processors, 6 GI3 of main memory, and 108 PC1 I/O 
slots. The AlphaServer 8400 system is an "enterprisen- 
class server (i.e., a machine on which a business can be 
run).  I t  features up to ninc system bus nlodules in a 
DEC 7000-style cabinet. I t  can support up to twelve 
300-MHz Alpha 2 1  164 nlicroprocessors, 1 4  GB of  
main memory, and 144 PC1 1 /0  slots. 

The clock freqi~encics of both the AlphaServer 8400 
system and the AlphaServer 8200 system are deter- 
mined by tlie clock Frequency oftlie 300-MHz (3.33-11s 
cycle time) Alpha 2 1  164 microprocessor chip. Both 
systems use a 4X clock multiplier to arrive at a system 
clock frequency of 75 MHz ( 13.3-11s cyclc time). At 

this speed, the systerns feature 265-11s niinimum read 
latencies and 1,600 MB/s ofdata bandwidth. 

Both systems are based on thc same set of 
Alphaserver 8000 architecturally compliant system 
bus modules. In addition, both systems support a new 
PC1 1 / 0  subsystem designed specifically for these 
classes of systems. The constituent modules and 1/0 
subsystems that compose the AlphaServer 8400 and 
the AlphaServer 8200 systems arc as follo\\/s. 

TZEP Processor &Iodzlle-Each TLEP processol- 
module supports nvo 300-MHz Alpha 21 164 micro- 
processors. Each Alpha 2 1 164 processor is paired \\lit11 
a 4-1MB external cache. This cachc is constructed with 
10-ns asynchronous SRAMs. The cachc latency to first 
data is 20 ns, and with one 3.33-11s processor cycle of 
wave pipelining, its maximum bandwidth is 91  5 MB/s. 
The TLEP module operates with a 75-MHz ( 13.33-11s 
cycle time) clock frequency. 

7lWElM rWerno,y Mod~de-Each TMEM rnemory 
module is implemented with two equal-sized 1 ) l M  
banks. TMEM modules arc available in 128-M13, 
256-MB, 512-MB, 1024-MB, and 2048-MB sizes. 
The TMEM module is designed to operatc at n 100- 
MHz ( 1 0-ns cycle time) clock frcquency. 

Z'OP I/O Port Modr~le-The TIOI' niodule inter- 
faces the AlphaServer 8000 systcni bus to four I/O 
channels, called "hoscs." Each hose can interf;lcc to 
one XMI, Futurebus+, or  PCI/EISA I/O subsystem. 
Each TIOP can support up to 400 MR/s of 1 / 0  
data bandwidth and is dcsignccl to operatc at a 
100-MHz (10-ns cycle time) clock frequency. 

m 0 P  Integrated YO Pori Modrrk~--The IT I 0  P 
niodule interfaces the AlphaServcr 8000 s)~stem bus to 
one hose 1 / 0  channel and one scmipl-ccontigured PC1 
local bus, which is integrated onto  the ITIOP nlodule. 
The integrated PC1 bus fcaturcs one single-ended 
small computer systems interface (SCSI ) controller, 
three Fast Wide Differential SCSI controllers, one NI 
port, and optional FDDI and N V I U M  controllers. 
Each ITIOP can support up to 200 MB/s of I/O data 
bandwidth and is designcd to operate at a 100-MHz 
(1 0-ns cycle time) clock frccl~~cncy. 

PCIA PCI VO Suhsyslam-The PCIA PC1 I/O 
subsystem consists of  hose-to-PC1 adapter logic and a 
12-slot PC1 local bus. This 12-slot bus is crcatcd from 
4-slot PC1 buses interfaced such that they appear as a 
single bus. The  high slot count provides the conncc- 
tivity essential in an enterprise-class server. The PCIA 
optimizes direct memory access (DMA) reads by 
means of the 1'CI Read- Memory-Multiple com- 
mand. The Read-Miss-Multiple command allows the 
PCIA to  stream DMA read data fro111 mclnory to the 
PC1 bus. Consequently, the PCIA can increase DMA 
read band\vidtli, offsetting any latency penaltics that 
resi~lt from the AlphaServer 8000  platform's multi- 
level I/O architecture. The PCIA's adapter logic 

62 ~)igital Technical Journ.11 vol. 7 No. I 1995 



includes a 321< entry map R A M  for converting PC1 
addresses (32 bits) t o  AlphaServer 8000 system bus 
addresses (40  bits). This niap R4fVI features a five- 
entry, ti~lly associative tra~lslation cache. 

AlphaServer 8400 and AlphaServer 8200 
Performance 

A number of performance benchmarks have been run 
on the AlphaServer 8400 and Alphaserver 8200 sys- 
tems. The results of some of these bench~narlts are 
su~nn~arized in Table 3. 

The AlphaServer SPECint92 and SPECfp92 ratings 
demonstrate outstanding performance. In both rat- 
ings, the Alphaserver 8400 system performance is 
over 3.5 times the ratings of the HP9000-800 T500 
system. T h e  SPECfp92 rating of 512 is 1.4 times 
its nearest competitor, the SGI Power Challenge XL 
systern. Similarly, a six-processor AlphaServer 8400 

system achie\les the same 1,900 million floating- 
point operations per second (MFLOPS) as an eight- 
processor SGI Po\ver Challenge XL system. Finally, 
the AlphaServer 8400  system's 5-GFLOPS Linpack 
1iXn result is beyond the performance of all other 
open systems servers, placing the AlphaServer at 
supercomputer performance levels with systems such 
as the NEC SX-3/22 system and the massively parallel 
Thinking Machines CM-200 system. 
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Table 3 
AlphaServer 8400 and 8200 System Performance Benchmark Results 

Benchmark Processor 
Name Count Units AlphaServer 8200 AlphaServer 8400 

Linpack 1 0 0 ~ 1 0 0  

Linpack 1000x 1000 

Linpack n x n  

AIM I l l  
Performance Rating 
AIM I l l  
User Loads 
AIM I l l  
Throughput 
McCalpin Copy 

McCalpin Scale 1 
8 

McCalpin Sum 1 
8 

McCalpin Triad 1 
8 

- 

MFLOPS 
MFLOPS 
MFLOPS 
MFLOPS 
MFLOPS 
MFLOPS 
MFLOPS 
GFLOPS 
AIMS 

Maximum quantity 

341.4 

512.9 
8551 

50788 

not applicable 
11981 

71286 
not applicable 
140.3 

410.5 
1821 

not applicable 
not applicable 
428.3 

2445 
not applicable 
not applicable 

not applicable 

not applicable 

not available 
not applicable 
not available 
not applicable 
not available 
not applicable 
not available 
not applicable 
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Digital's High- 
performance 
CMOS ASlC 

A high-performance ASlC has been developed 
to serve as the interface for the 10-ns bus in 
the new Alphaserver 8000 series server systems 
from Digital. The CMOS standard-cell alternative 
(CSALT) technology provides a timing-driven 
layout methodology together with a correct- 
by-construction approach for managing the 
complex device physics issues associated with 
state-of-the-art CMOS processes. The timing- 
driven layout is coupled with an automated 
standard-cell design approach to bring the 
complete design process directly to the logic 
designer. 
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Today, h igh-perfornace  ~nicroproccssors designed 
with conipleriientary metal-oxide se~niconductor 
(ClMOS) processes are I J I L I C ~  ni(.)re demanding on the 
support logic used to interface them to the rest of the 
system. Microprocessors, like Digital Semiconductor's 
Alpha 21 164 chip, are extending the external logic 
cycle times to the point ulherc custonl-integrated 
circuits arc necessary to realize the full performance 
potential. The CiMOS standard-cell alternative 
(CSALT) technology developed at Digital satisfies 
these high-performance needs without resorting to 
a complex, custonl design process. 

CSALT technology provides a timing-driven layout 
niethodology together with a correct-by-co~istr~~ctio~i 
approach for managing the co~tiples device physics 
issues associated with state-of-the-art CMOS pro- 
cesses. The timing-driven layout is coupled with 
an automated standard-cell design approach to  bring 
the complete design process directly to the logic 
designer. Using CSALT, logic designers can take their 
application-specific integrated circuit (ASIC) designs 
from J conccpt on their desktops to  a completed 
layout that is ready for fabrication. 

Other design approaches address portions of the 
process, but the CSALT tool suite is complete and 
automated. Many ASIC vendors tr~nsfer the logic 
designs to a different set of engincers,  sing different 
tools and skills, to complete the physical implementa- 
tion before post-layout timing analysis can take place. 
Any problenis encountered after the layout tend to 
result in the design being returned to  the logic design- 
ers. The artificial boundary erected between logic 
designers and layout implernenters can rcsult in delays. 
In  cornplcs dcsigns, ~ n ~ ~ l t i p l e  iterations may be neces- 
sary before the dcsign converges into an acceptable 
solution. This convergence process becomes more 
complicated with the introduction of  synthesized 
logic, because thc process is exte~lded to include the 
synthesis tools. 

<:SALT'S ti~iii~ig-driven niethodology eliminates the 
need for the many chip layout specialists and ASIC 
vendor experts \vho normally complcte a multichip 
project. In addition, the timing-driven methodology 
eliminates the nced for the traditional chip floorplan- 
ning step in which the designer maps thc logical 



design onto  the physical chip arcliitecturc. The floor- 
planning step often becolnes a critical and time- 
consuming effbrr when the design is being optimized 
for performance. 

The automated and batch-driven CSALT nieth- 
odology can turn a logically complete design into 
a \\lorking, timing-correct chip layout within three 
computc-intensi\,c days. Previous platform deve.lop- 
ment projects used industry-standard ASICs, manual 
layouts, and hundreds of manual cell placements to  
meet the tight design timing requirements \vithin their 
liigh-performance ASICs. These methods typically 
added months to the layout phase of these projects. 
CSALT's timing-driven layout was specifically devel- 
oped to address thcsc I.iigli-pcrforrnance reqi~irements 
and to make tlie complete design process available to 
logic designers. 

This paper discusses some implementation pieces of 
CSALT techliology and elnphasizes the unique timing- 
driven approach and results. I t  explains the goals that 
were establislicd fol- CSALT development as well as 
several features of the physical technoloa .  The paper 
concludes with a discussion of the layout process oper- 
ations and the process controller. 

The Need for CSALT 

During the technology evaluation phase of the 
Alphaserver 8000 series platform, various ASIC tech- 
nology vendors wcrc evaluated and compared against 
the aggressive performance needs demanded by the 
platform's designs and thc customization that was 
necessary within these technologics to  meet system 
bits timing. Bascd on the experience of developing 
designs for the previous platform generation and due 
to tlie anticipated months of iterative and interactive 
manual placc and route necessary to meet timing, it 
becatlie clear that teclinology was a high-risk item to 
the program. Requirenients for the AlpliaServer 8000 
series systems exceeded the performance capabilities of 
esisting ASIC technologies and the available CAD 
tools. In addition, access to the internal silicon struc- 
ture of the ASICs was required to customize bus inter- 
face drivers. The risk and cost of developing these 
capabilities through worlting with ASIC vendors 
would have added months of valuable schedule time 
to the program. 

As a result, the decision was made to focus the effort 
on CSALT technoloby and to move it from its advanced 
development stagc to a production-quality one. Given 
the selection criteria that were emphasized, a set of 
goals was established for tlic (:SALT development: 

Incorporate ,In integrated timing-constrained 
driven placement. 

Implement technology in a 3.3 volt (V) stable 
CMOS process. 

Eliminate chip tloorplanning and let timing con 
straints drive the placement. 

Eliminate manual interaction in the tools to reduce 
design time and defects. 

Develop very conservative layout rules to eliminate 
the need for cross talk and electromigration analysis. 

Automate the de\iclopmcnt and characterization of 
cell elements including thorough checking. 

Deliver more robust and accurate prediction ofcliip 
performance through integrated SPICE simulation 
and expanded cell library perfor~nance tab1es.l 

Use proven algorithms and software whenever 
possible. 

Overview and Description 

The front-end logic design and verification process is 
based on the ASIC standard tools fbr gate array design 
that include schematics capture, timing and logic veri- 
fication, pre-layout delay estimation, and post-layout 
delay feedback and analysis. The performance data for 
thc library elements is housed in lookup tables that 
have multiple slope/intercept data entries based on 
output drive loading as well as input edge rate delay 
correction factors. Unique delays are calculated for 
each cell instance. CSALT supports a low-skew bal- 
anced clock distribution net. 

The back-end layout tools for CSALT include sev- 
eral internally generated tools as well as research tools 
from academia. The heart of the place-and-route 
process is TimberWolf from the University of 
IVashington.2 One  of  thc important features of the 
TimberWolf tools is their ability to be constraint- 
driven. These constraints are automatically generated 
from the timing verification step and then passed to  
the TimberWolf tools. TimberWolf prioritizes these 
critical path nets during the placement process in an 
attempt to meet the timing requirenients. Constraints 
can also be manually generated through a separate 
user-generated file that feeds into the process. Once 
parameter files and constraint files are established, the 
place-and-route process proceeds in a completely 
automated and batch-driven mechanism all the way 
to a completely verified design layout file (DLF). The 
speed of the process execution is limited only by 
the batch queues available and the performance of the 
underlying processor type. 

The silicol~ fabrication process relies on  Digital 
Semiconductor's CMOS line. A I the physical design 
and process fabrication rules are built into the layout 
tools and driven through the parameter files specified at 
s tar tup.  CSALT has built-in correct-by-constructio~~ 
custom design rules that guarantee all aspects of the 
automated layout to be free from any design rule vio- 
lation. The tools account for all aspects of the physical 
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design, such as electromigration rules, coupling capac- 
itance effects on timing, as well as analysis of any elec- 
trical hot spots resulting from excessive logic switching 
in a dense localized arca. 

Physical Technology 

The ASIC designs targeted for this technology needed 
to  meet the physical, electrical, and thermal require- 
ments of tlie PJphaSer\ler SO00 series platform. The 
system fi~nctions that the ASIC designs satisf) belong 
to three classes: 

Class 1-Interface benvccn the system bus and 
the CI'U 

Class 2-Intcrf'lce benveen the CPU and the local 
I/O 
Class 3-Interface bcnveen the local 1 /0  and the 
Peripheral Component I~itercon~iect  (PCI) 

An enhanced ASIC dcsign style was used to reduce 
the time to market and to minimize dcsign and verifi- - 
cation resources. The cnhancements to the convcn- 
tional ASIC design (such as timing- drive^^ l a y o ~ ~ t  and 
autoniated incorporation of SPICE delays) signifi- 
cantly improved ease of design for high-performance, 
100-megahertz (MHz)  very large-scale integration 
(VLSI) chips.l 

Sc\leral fcaturcs of tlie CSAI-T physical teclinology 
and their advantages are discussed jn the follo\ving 
sections. 

Low-skew Clock Distribution 
There is one lo\\l-sl<e\v, single-phase clock net distribu- 
tion available to tlie user. This is implemented through 
three stages. First, the buffcred input clock receiver 
drives nvo Iiigh-power cells located on opposite sides 
o f the  chip. I n  the second stage, the high-power cells 
drive a central trunk that bisects the die and delivers 
the clock signals to each half ro\v. In  tlie third stage, 
separate local clock buffers in each half row are con- 
nected to the central trunk and deliver the clock sig- 
nals to all logic clcmcnts in that particular half row. 

Skew in this distributed net is controlled through 
automatic load balancing on the local clock buffers 
along cach row. Cell capacitive loads are calculated for 
each ro\v, and appropriate bnlance cells arc added to 
bring the capacitive loads to  a predcfi ncd value. This 
method cqi~alized delays across the chip with less than 
100 picoseconds (ps) of skew. 

Other clock distributions, however, arc a\~ailable to 
the user. Thcsc clock nets are distributed t h r o ~ ~ g l i  
a single high-power cell driving a metal trunk along 
the chip. Skew \vitIiin these clocks can be on  tlie order 
of 300 ps, although this skew is niorc dependent o n  
loading 2nd cell distribution for each particular design. 

5.0- V Compatible UO Cells 
CSALT arrays developed in Digital's hurth-generation 
CMOS process are po\vercd by a 3.3-Vsupply for both 
1/0 and internal core. CSAL.T ASI<:s can receive but 
not send 5.0-V I/O. The input receivers for both the 
bidirectional and the inpnt-only cells l i a \ ~  transistor- 
transistor logic (TTL) input Ic\,els and car1 be used in 
either a 3.3-V or  a 5.0-V signaling cn\!ironmcnt. The 
CSALT PC1 interface cell meets the I'CI 5.0-V spccifi- 
cation, \vitliout requiring the csternal n i o d ~ ~ l c  tcrmi- 
nation recornmended by niost ASIC vendors. 

Performance-tuned Library Elements 
The performance targets for tlie cell clcrncnts in 
C S a T  \\)ere determined from 3 number o f  sources. 
First, previous ASIC designs, library pcrfor~nancc, and 
heuristics were used to establish a baseline. The hcuris- 
tics of the number of cell logic Ic\~cIs bct\ \~ec~i two state 
elements in the 1)EC 7000 platform designs \\Icrc ana- 
lyzed. Second, tlie fourth-generation ClMOS silicon 
process, electrical interconnect data, and transistor 
properties were ~rsed to arrivc at  nc\\l scaled cstilnatcs 
based on unit load, cell timing, and intcrcol~nect delay. 
Third, cycle tirncs and systeni sltc\vs of the target plnt- 
form were used to determine a new estimate of the 
le\lels of logic that can be placed ben\lccn two state ele- 
ments. The analyses rcsulted in thc generation of  basc- 
line perfor~nancc targets that \vcrc 11sccl in the dcsign of 
an ASIC library tuned to cyclc 100K gates at 100 [MHz. 

Delay Calculation 

CSALT post-la)fo~~t timing analysis ~ n c l  net dclay gen- 
eration are based on conser\~ativc approximations and 
consist of six uncorrelatcd, additive components: 

1.  Intrinsic gatc delay (also refcrrcci to as intercept) 

2. Effect of lu~npcd total net cap~citancc o n  delay 

3. Effect of  input edge rate o n  delay 

4. Setup/hold time 

5. Effect ofinput edge rate on  s c t ~ ~ p  time 

6.  Wire transit delay 

The  first five conipo1mits arc cicrived h r  each 
standard-cell type from lookup tables crcatcd  s sing 

{Ire translt SPICE sin1ulation.l Thc sixth component, M '  

delay, is calculated d i~ r ing  Iayoi~t for each net in cach 
CSALT design ~ u i n g  a specific mctliodology for 
bounding the solution." 

Both worst-case and bcst-case analyses arc per- 
formed and are guaranteed to be more conscrvati\~c 
than SPICE, becausc components 1,2, and 6 of dclay 
are measured in a conservati\re fashion. Paths that fail 
this timing analysis are then sin~ulatcd \vitli SPICE. 
These paths arc autom~~ticall!/ cstracrcd from thc 
timing an~lysis result files and submitted tbr SPICE 
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simulation. The results of SPICE simulation arc then 
back-annotated into timiug ,~nalyses, and tlie design is 
reanalyzed  sing SPICE accuracy for deluys on critical 
path nets that had Liilcd prc\~iously. Tliis strntcgy 
allows us to timc designs quickly with the accurac)l of 
SPICF, \\/here needed.1 

SPICE Library Characterization 
The entire cell timing c1at.i set and cell pcrf(.)rniancc 
tables are generated a~~to~nat ica l ly  through a suite of 
automated tools called SPICE Library Characteri- 
zation (SLiC). SL,iC's automated procedure \ \ J i l l  crcatc 
SPICE input files to fi~lly characterize a library 
of CSALT cells, csccutc SPICE on  these files, and 
post-process the results into a format readable by tlic 
timing too1s.l 

For cell dclay slopes and intercepts, the SLiC 
process p r o d ~ ~ c c s  dclay tables for each input- to-outp~~t  
path combination throi~gh cach library macrocell. 
Tliis is done by si~nulating in SPICE with 11 discrete 
O L I ~ P L I C  capacitance values attached to the cell output. 
The total range of loads is broken into four windows, 
and a best-fit line through cach \vindo\\l is detcrmincd. 
Each linc is the11 trallslatcd so  that all discrete points 
withiri the \\.indo\\, fall on o r  below this linc (for \vorst- 
casc parameters) o r  abo\,c this line (for best-case 
pnramcters). This tra~isl<~tion is one mechanism ti)r 
ensuring timing conscr\~atisrn. Figure 1 slio\\~s the 
CSAI,T library performance npprosiri~ation. 

For edge-rate cffcct o n  delay, SLiC measures o i~ tpu t  
cdgc ratcs for each of  the 11 capacitance \ralucs 
attachcd to  cacti ou tp l~ t  cell described above and  
stores them. In ad~i i t io~i ,  SLiC creates ten sinlulations 
for cacli i npu t - to -ou tp~~t  patli through cach library 

LOAD 

KEY: 

- BEST-FIT MAXIMUM DELAY PARAMETER 
- - - -  BEST-FIT MINIMUM DELAY PARAMETER 
* SPICE SIMULATION 

Figure 1 
(:SAL,T Library I ' c r fo rn i ;~~~cc  Approsirnation 

macrocell to model the range of input edge ratcs that 
the macrocell is cspected to see. Thcsc n\.o sets of data 
are used to crcatc ( 1 ) a table of delay additives to gate 
propagation delay as a f ~ n c t i o n  o f i ~ i p i ~ t  ecigc rate and 
(2)  a table of output edge rates as a function of gate 
propagation dclay. These tables arc then used during 
tlie timing analysis stcp. 

The last component of delay, \\*ire transit delay, is 
tlie only one 11ot cictcrmined by SLiC. I)LII-ing layout, 
the bounds on tllc twnsit d c l ~ y  througli c\,cry net arc 
calculated. Thcsc bounds are gencrntcd \,cry qllicltly 
and are cli~itc accuratc for short ancl liglltly loaded 
nets. 'For longcr, Inorc hea\~ily loadcd ncts, Sl.,i(: calcu- 
lates morc conscr\/ati\ic b o u ~ ~ d s . ~  l'his co~lscr\~utism 
co~~tr ibutcs  to inaccurac!~ in path timing and is thc pri- 
niary reason \vhy allother methodology \\,as dc\~clopcd 
for determining morc accurate dclays \\,it11 Sl'I(:E.1 

This alternati\lc methodology for cnlculati~ig dclay 
has been veriticcl through comparisons of tho~~sands  
of  path dclays \vitli SPICE. In all cases, the timing was 
found to be conser\lati\re. Sisq-five pcrccnt of all cal- 
culated delays arc within 10 percent of SPI<;E predic- 
tion, and \lirtilally all delays are within 20 percent. This 
methodology co~nplenients the po\\.cr of tlic Eist tum- 
around timc ofstatic timing analysis tools by ~iiodeling 
the delays morc accurately and closely to SI'I<:E pre- 
diction. Llrgc chips can be analyzed in less than one 
hour and be f~llly timed in a fc\\ l i o ~ ~ r s  if .iny SI'ICE 
sirnulation of l a r ~ c  nets becomes necessary.) 

Constraint Generation Overview 

Aher each timing vcritication run, a report is generated 
listing all paths that fail 2nd detailing ,111 ncts kind prim- 
ti\res,witl~in cLich of these failing paths. 'This inti)rma- 
tion is tllen itc~ati\.cly processed through J n  nlgori tlim 
to shortcn cacll net in tlie path proportionately to its 
original length in the p ~ t h ,  s ~ ~ c l i  that it satisfies tlie 
allowable timc rcq~~ircmcnt .  First, the ~lllo\\~ablc total 
wire delay in 3 path is calc~~lated in picosccorlds: 

\vhere K/ is the total i~llo\\rable \\,ire ciclay fi)r all i~idi\ici- 
ual failing path, ~bl~~-vTit~~eLi~nit is the cycle t i ~ n c  that 
the failing path needs to meet, Ccll/'ri~i,rri/i~~c~l)c~I~<~!v is 
the intrinsic dcla)! through all the primitives that csist in 
the failing path, and Setz.1p7B~ne is tlic s e t ~ ~ p  time 
req~~ired by the state clc~ncnt that cnds thc hiling path. 

Then c\lcry net in tlie path is apportio~ied according 
to its contribution in the current (hiling) total \\fire 
delay: 

NetFiili?z~l k&ajl 

Nc~I~Vc~rrdXdg)~ = IF1 ( 
Ac/-lrulPuth Wire 
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where I \~J/I\~./I~/)F/Lo~ is the allo\\f;lble delay on a par- 
tici~lar ~ i c t  in a K~i l i~ ig  p ;~th ,  I V ~ J / / ~ L ~ ~ / I I I ~ ~ I I ~ J / ~ ~ , ] . ~  is 
tlic actual dcluy o n  .I ncr  ithi^ hi^^ n hiling p,ltli, and 
.4c11/all '~r/b Wi~.cj is tlic total acc~11l1ulatcd \\,ire delay of 
,111 nets in the hiling path. 

Since \\tires can be sli;lrcd by more tI1;11l one failing 
path, a cliangc in the Icngrli of a wire in one path ulill 
cause other paths that lia\,c the same \\.ire as an clement 
to be sclicduleci f o r  rccalculatio~i. A \\,ire length may 
clia~igc sc\~clal times bcforc it is stable, l3~1ring rccalcu- 
Intion, the s~nnllcr \\,ire protiucccl is the onc thdt nrjll be 
used. :rIlis itcr.ltio11 .~lgorithni c o ~ l t i ~ i ~ ~ c s  .~111til n o  nets 
arc schcclulcd k)r rcc\,.llu~tion, nncl con\,ergcncc is 
achic\~cd. The ~lurnbc~-  of iterations can be limited if 
convergence is not acliic\fcd in a ti~ncly manner. 

At completion, h c / . V c l /  arc then con\.crtcd 
into wire Icngths: 

where NdLct~gth  is the calculatcci net constraint in i111it 

length, .Sl(~)c~(?/l)r-ircr is the slope of tlic ccll driving 
the failing net in unit time per cnpncita~~cc, G ~ l t e L o ~ l d  
is the sum capacitance ofall cclls tied to tli;lt 11ct, anti 
Ci l l~ l l l ,  is the c~pncitancc pel unit Icngth for intcrcon- 
ncct metal. 

~Vc.ll,o/,y/b is then compnrcci to a quench value, and 
tlic larger o f thc  t\\,o is used 11s the ~ic\\. net co~lstraint 
feeding back to a layout. Q ~ ~ e n c h  ~ a l u c s  define 
the niininium \\sire Ic~lgth that 3 net can Ilavc, based 011 

the nt~nibcr of pins ( h n - o i ~ t )  in that net. 

Physical Die Architecture 

The CSA1,T ciic arcliitccturc, as sho\\,n in Figure 2, 
consists of tlic follo\\ing sections: 

1 / 0  cclls-The outcr~nost  rcgion \\rlicrc the 1 / 0  
cclls arc located is :dso called the pild ring. Bonding 
pads arc built into the 1 / 0  cclls. 

Higli-po\vcr anci ciccouplc cclls-This rcgion of thc  
arra); also callcci the liigli-po\\jcr ring, is fillcd prc- 
clorni~lnntly \virl~ riccouplc cclls. This rcgion also 
allows for placcnicnt of a limited ni~mbcr  o f  liigli- 
power driver cclls designed to drivc licavily loadecl 
ncts such ns clock lines anci reset lines. 

Corc-This region holds tlic majority of the logic 
in the arrlip implemented as s t and~rd  cells. All these 
cclls arc the same licight but vary in \\,idrli accord- 
ing to ti ~nctional complcsity. (:ore cclls arc arranged 
in rows ~ll~rnbcrccl fi-0111 the bottom ofthc arr.1~. The 
numbcr of ro\vs in the corc is a dcsign-dcpe~ldent 
variable. The space bcn\.ccn the rows \.arics tiorn 
ro\\* to ro\\. and is used h r  routing clianncls. 

TOP 

I10 RING 

MINI-MOAT 

HIGH-POWER AND DECOUPLE CELLS 
I 1 

MOAT 

ROW- 1 . . . 
.- 

Figure 2 
(3AL.T l h c  Arc11ircctu1.c 

Generally, poiver to the corc is distributed hy ccll 
aburnlent on metal 3 o\lcr the cell rows. Horizontal 
signal routing in the corc clinnncls taltcs plncc or1 
nxtal 2. bletal 1 is ~ ~ s c d  for \rcrt~cal corc routing. 
To  route in tlic \lcrtical clircction, the ro\vs contain 
feeds. By design, many standard cclls havc vertical 
feeds to  provide pass t l~roi~gl i .  In addition, a stan- 
dard feed cell can be autoniatically inscrtcd by the 
layout tools \\*lien the clcmanci for fccds is high. 
I /O bristles for each of the core cclls arc made airail- 
able on the top and bottom of thc  cclls to c ~ l l l ~ ~ ~ c c  
routa bili~.. 
- - lr~~nk--fhc region splitting tlic core into lcfi a n d  
right halves js referred to as the trunk. The trunk is 
a routing region i~sed primaril!. to route clocks and 
power signals down the ccntcr o f  the corc. Thcsc 
signals are then distributed to  the left and right 
sides of the corc on a ro\\ , -b~-~-o\v basis. 

Ring-Although not indicated in Figure 2, tlic 
term i . i r 7g  refers to the 1 / 0  ring, the mini-mont, 
and the high-po\\lcr ring regions ns n group. Even 
though the physical size of the ring is fixed, the 
total dimensions arc dctcrrni~icd 1))' tlic package 
size of the array. The size of the ring cstablisl~cs the 
available arca remaining in the ccntcr of  the array 
for the moat and the corc. 

Mini-moat-The mini-mo;lt is the rcgion scp;lrit- 
ing thc I/O ring from the Iligli-po\\lcr ring. 'The 
layout process uses this rcgion to r o ~ ~ t c  a small 
11~11nber of liigli F'ln-o~~t ncts that drivc cclls in the 
1/0 ring. Layout paranicters control the assign- 
ment of ncts to  t l ~ c  mini-moat. 
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Moat-The nioat is a routing region used by the 
layout tools for attaching the ring to the core. The 
size of the moat is determined by the alnoiunt of 
space that is left over when the core and trunk are 
placed and routed. Small arrays (lo\\, gate counts) 
result in srn,ill cores and large moat areas, and large 
arrays (high gate counts) result in large cores and 
small moat areas. During the layout of large chips, 
it is possible for the core to become so  large that 
not c n o ~ ~ g h  moat space remains to make all the 
necessary routing connections. 

Figure 3 is a photomicrograph of a CSALT die for 
one o f  the CPU gate arrays used in the AlphaScr\lcr 
SO00 series server systems. 

Placement and Routing 

The fi~nction of the layout tool suitc is to provide 
a fully placed and routed array that meets or  cxcccds all 
the design timing criteria and that satisfies all electrical 
and pl.lysical layout rules required to rcleasc the array 
for mask generation. Several place-and-route features 
are discussed in the follo\ving sections. 

Constraint-driven Layout System 
When an array is submitted to  layout, it is accompa- 
nied by a set of timing constraints. Timing constraints 
can be thought of as esti~nated restrictions, on a per- 
net basis, for the aliiount of metal lengths allo\\~ed to 
interconnect the net in the layout. These constraints 
drive the Timberwolf placement tool and arc ulti- 
mately respo~lsible for the placement of core cells 

Figure 3 
Photomicrograph ofa CSALT Die 

in the final layout. Because a working design may not 
be achieved on the first Ia!iout iteration, the overall 
CSALT methodoloby pro\,idcs mechanisms for ana- 
lyzing post-layout timing delays and for generating 
a refined set ofconstraints that can be fed back into the 
layout for another pass. The l a y o ~ ~ t  process is iterated 
in this manner ~ ~ n t i l  it converges on a layout solution 
that meets the timing constraints. 

Routability 
T o  ensure 100 percent routing, thc routing process 
had to  be kept simple, \vhich required substantial plan- 
ning during development of the chip architecture 
described above. As a result, the follo\\/ing elements of 
the architecture were dcf ncd: (1  ) Pins are a\iailablc on 
both the top and the bottom of the cells; (2) Power 
and clock connections arc defined by cell abutment; 
and (3) Total routing; of the chip is divided into four 
areas ( thc core, the nioat, the ring, and the niegacell 
interface). This plan kept the routing problems similar 
from chip to  chip, which allocvcd the routing tools to 
focus on particuli~r solutions. 

Quick Turnaround Time 
One significant fcati~rc of the CSALT layout process is 
tliat it can conipl~tc  a layout without n~anual interven- 
tion, saving tinle over manual processes. CSALT con- 
sistently demonstrated that the CAD suite can provide 
co~upletcd layouts in thrcc to ten days from the time 
the wirelist enters the 1,1!~out process. An array tliat bas 
been in layout for ten days is likely to be one that is dif- 
ficult to time and that lhas required four to  six layout 
iterations to converge. 

Cross-talk Effect inclusion 
I11 recent generations of ASIC technologies, intercon- 
nect 111etal widths and pitches have been shrinking 
\vhilc the clock freclucncics have been on the rise. This 
raised sonic concerns about on-chip cross-talk cffcct 
due  to  the ability of  signals traveling on one \\lire 
to affect the spccd of signals traveling o n  adjacent or  
\.ictim ivires. In  extreme cases, this cross talk can c a ~ ~ s c  
signals to spike on  the victim wires. CSALT mcthod- 
ology compensates for such effects on wire delay cal- 
culation, and the compensation is integrated into the 
layout process. 

The integration is i~nplemented by factoring in 
a coupling capacitancc extracted from layout and by 
using a worst-case signal-sulitching scenario. Conscr- 
vative factors \\{ere chosen after analysis of cross t;ill< o n  
a representative cross section of CSALT layouts, i ~ s i ~ l g  
different routing pitches on  signal interconnect n~ctal 
2. The goal was to find the right balance bcnvccn 
metal pitch, area ~ ~ s c d ,  and chip timing. The study 
resulted in an optimunl pitch definition of 3.75 
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micrometers ( p n )  for ~iictal 2, and a coupling capaci- 
tance ~ni~ltiplicr of 2. 'l'lic core arca increase, from that 
ofusing the minimum pitch for metal 2 . ~ t  2.625 I J -~ I ,  
was less than 10 percent k)r the largest design. 
Ho\\lc\,cr, overall die area increase \Ifas negligible due 
to the dcsigns bcirlg I/O-ring-lilnitcd in nature. 

Free of Electrornigration 
Whcn the current density i l l  thc ~ l ~ ~ r n i n ~ ~ r n  intcrcon- 
nect used in today's liigli-density CMOS processes is 
too high, a detrimental pllysical plicnomcnon occurs. 
This phenomenon causes metal reliability problems 
in c\~liicli metal molecules slo\vly migrate, resulting in 
open/sliort circuits inside ASICs. T o  eliminate tllc 
need for a long and manuall!. tedious process of 
looking for tlicsc problcms ahcr la)lout, the CSALT 
strategy is to ,lvoid clcctromigratio~i problems dur- 
ing layotit through analysis and irnplcnicl~tation of 
built-in conscr\lativc l a y o ~ ~ t  disciplines. 

An~lysis of sc\~cral (:SALT clrrays resulted in an 
j~icreasc in tlie contact capacity and the definition of  
masimum output lond limits k)r each macrocell. The 
limit set was n mnsimum of 130 unit loads (7.5 pico- 
farads [pF I )  s\vitching ;it m a s i m ~ ~ n i  frequency ( 100 
MHz).  In  acidition to tliat limit being .~\/~ilable to 
designers during the design phase for proper fan-out 
iniplcmentation, tlic tools automatically flag all ncts 
that escccd tllc limit. 

A number of o t l ~ c r  features arc designed into the 
CSALT proccss to  guarantee tliat layouts arc free fronl 
electrornigration problems: 

1,ibmry data tables arc ~ ~ s c d  to dynamically assign 
n~etal  \vidths a ~ i d  cor~-cspo~idi~ig contact sizes 
according to clri\'cr strengths and loads. This clirni- 
nates clcctromigratio~i problcms for dynamically 
sizc~i met31 r o ~ ~ t c s  S L I C I ~  3s clock nets and other high 
fan-ol~t ncts. 
The bulk of  the po\iicr distr ib~~tion is acliie\,ed by 
cell abutment. Cell po\\'cr rails arc conscrvati\~ely 
dcsig~icd to handle the largest row's current 
demand. 
As a final check o n  correctness, onc of the layout 
process steps incorporates a hot rocv tool. This tool 
flags any ro\\a in the corc wliosc cells collectively 
escccd a preclctcrmincd currcnt threshold def ncd 
bp the I~andling capability of  the power cells in 
tlic rocvs. This ink)rrn<ltion is uscti to Hag a poten- 
tial clcctromigration situation jn the contact struc- 
ture, distributing po\\cr from tlic trunk to the 
row. \iVlicn tlic rob\/ is flagged, the user manu'llly 
reviews the result files a ~ l d  analyzes the ro\v. O u t  
of 15 separate designs completed, not one had to 
be changed due to tlaggcd hot rows. This is due 
to the extremely co~lser\lativc assuniption i~sed by 

the tool-it assumes all logic is s\vitching at  niaxi- 
mum fireqt~ency. 

Correct-by-construction Concept 
As it applies to all the critical dc\'icc issues (for csani- 
ple, clectroniigration, cross talk, hot carrier injection, 
and latchup), acceptance of the concept of a layout 
being correct by construction 11.1s dram,~tic;ill!, 
reduced turnaround time in the I a y o ~ ~ t  proccss b!' 
eliminating the  iced to  perform tlicsc analysis opcrn- 
tions on each array. Why docs it \\lol-lc for <:SAI,TI 
I t  \vorl<s because tlic CSAL'I' layout proccss is \'cry 
deterministic, and correctness has been \ccrifcd o n  
a cross section of arrays. In  tlic final a~ialysis, all drrays 
use the same cells from a \veil-defined arid charactcr- 
izcd library. The architecture of the die is the snlnc in 
all arrays. As a ~.csi~lt, variation is liltcly to enter the sys- 
tem only during the routing proccss. This proccss 
incorporates conservati\/c I a y o ~ ~ t  rules and clicclts to 
avoid and detect potential failure mcclianisms. 

CSAI-T Layout Process 

As shown in F i g ~ ~ r c  4, tlie layout proccss encompasses 
five hasic assembly and clicck opcratio~ls: fill1 \\/irclist 
preparation, pad-ring asscm bly, corc assembly, chip 
assembly, and veriti cation. 

1. During \\/irelist preparation, the input wirelist is 
analyzed, names arc nianipulatcd to conk)rm to lay- 
out naming con\/cntions, and the design is pnrti- 
tioned into pad-ring and corc c o ~ ~ ~ p o ~ i e ~ i t ~ .  

2. Iluring pad-ring assembl!l, I/O and I~igli-po\\~cr 
cell/slot ilsslgnments ~ r c  made ,iccording to bond- 
ing requircnlents. The ring is then globally routed. 

3.  During core asscml~l>r, tloospla~ining for tlic trunk 
and any random-access nieniory (1UiM) dc\,iccs 
takes place; timing constraints from sc\.cral sources 
(prc-layout, user defined, current layol~t, and psc- 
\lious layouts) arc merged into a \\lorst-casc set 
of composite constraints tliat arc L I S C ~  by t l ~ c  
Timberwolf tool to place and globnlly r o ~ ~ t e  
the core. Also during this step, the balanced clock 
system and scan chain arc synthesized and globally 
routed. The SCAR cl ian~~cl  router is tlle~i L I S C ~  

t o  route the standard-cell por t io~l  of  the corc. If 
the design contains RAMS, they arc then placcd in 
their floorplan~icd locations, globally ro~~tccl ,  ~ n d  
finally attached to the corc using the arca router, 
Chameleon. 

4. During chip assembly, the intcrf:iccs between the 
core, nloat, and pad ring arc rcfncd. <:h;lmclcon is 
L I S C ~  to perform final routing of the l-i~ig a11J the 
moat. Thus far the chip has bccn co~nplctcl!l placcd 
and rou tcd using cell outlines contailling only 
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Figure 4 
CSA1.T CAD I.;1yout Ovcrvic\\- 

din~ension i~iformation, rclati\lc coordinates of bris- 
tles, and bristle names. The ring and core cell out- 
lines arc no\\, replaced with the a c t ~ ~ a l  cell layout 
inhrn~at ion h-om the librar!!, and a complete design 
1'1)iout file for the chip is produced. As the file is 
gencmtcd, alignment block and substrate ring data 
is added to makc the physical representation file 
rcady fix mask set procluction. 

5. The hllo\ving proccdurcs occur during the \ferifica- 
tion phase of the layout: 

Physical dcsign I-LIICS ai-c chcckcd. 

A \\/irelist conlpnrison is pcrfonned to ensure 
that the layout file is an csact rnatch to the logi- 
cal representation of the design. 

Capacitance inforniation fioni the layout file is 
extracted, and the proccss procectis to cnlculatc 
a conser\tative metal delay (including compcnsa- 
tion for cross talk) for each net in the Iayoilt. 
Thcse post - layo~~t  1nct3l dela!,~ ; I ~ C  fed back into 
the timing \rcrifi cation proccss. In  addition, 
SPICE is run on clock nets and other critical nets 
predefined by the user, and the delays arc made 
n\isilable for tiniing annl!.scs.l 

The entire proccss runs ai~to~iii~ticall!~ 'ind, \\,lien 

possible, steps are run concurrently. Manual intcr\fcn- 
tion is ilnnecessar!l and is discouraged; it is uscd only 
during tool debugging or spccial customization. 

Process Controller 

CSALT's fi~lly ,lutonintcci process controller (PC)  
ensures optimum use ofsystcm rcsourccs, orchcstratcs 
the entire layout proccss, provides all necessary data 
management fi~nctions, and provides tlie user with 
a very simple set of comn1ancls for operating an othcr- 
wise complex process. 

The power of the PC is in its continuous dynamic 
decompositio~i of every layout into parallel batch 
streams. The PC runs thc entirc I;lyout proccss in 
batch mode, taliing f~ll advantngc o f  opportunities 
to  use multiple processors and run independent parts 
of  the lavout process in parallel streams. Bccausc it 
hides all tlie CAD and process complexity from 3 user, 
no pre\,ious (:AD or 1ayo~1t skiI1s arc rcqui~-cti to itcr'lte 
layouts once initial la!wut paramctcrs have been cstab- 
lished for a given array. 

Figure 5 illustr3tes the flo\v for the <:SALT layout 
process. (A and B i~idicatc connectivity points.) Each 
llallle in the process flo\\f represents the n'lmc o f 3  ~ i ~ i -  

gle process step. Execution of the layout proccss 
is controlled by a single command proccdurc called 
<:SALT place and route (<:l'li). A l t h o i ~ ~ h  other CPR 
command line options exist, <:Pi< is most often i~scd 
in its simplest and most powerfll form, CPK PC. This 
command causes CPR to in\roke thc dynamic PC that 
\\,ill a~lalj~ze the current relationships o f 3  Iayoi~t data- 
base and begin autoiliatic esccutiou of the 1~)lout 
process from the nest eligible proccss step. 

Results and Conclusion 

CSALT gate array technology was ~ ~ s c d  cstcnsi\rcly 
during the de\,clopment of tlic AlpliaScr\lcr 8000 
server s)lstems. This dcsign metliodolog?l rcmo\lccl the 
product's critical dcper~dcncy o n  the p1,lc.e-and-routc 
portion of tlie design proccss. As a result, tiniing- 
correct ASIC layouts were produced in fc\\/cr than 72 
haul-s. In addition, the (:SAL,T ASIC: logic designers 
had access to thc pro\Ien 3.3-V silicon structures 
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dcvclopcd by Digital Scrniconductor. CSAL.T's timing- 
driven layout approach for designing and irnplcmcnt- 
ing a high-performance ASIC made tlie AlphaScrvcr 
8000 server s)atems' aggressive 1 0-nanosecond bus 
speed a reality, with m i ~ i i m ~ ~ m  

Although CSALT's i ~ n p l c n ~ e n t a t i o n  pieces ma)f n o t  
be uniclue, tlie approach that  \vas taken t o  link the set 
o f  front-end design tools \ \~i th  the back-end l ~ l y o ~ ~ t  113s 
proven t o  be i ~ n i q u c ,  wit11 unmatched results. N o  
ASIC vendor today (January 1995) can provide logic 
designers \itit11 thc  ability to d o  their own a ~ ~ t o m n t c d ,  
timing-correct layouts from their desktops. 

I n  less aggressive designs, a large number ofworking 
layol~t  solutions exist. Tlic 11~1n1ber o f  tliesc solutions 
starts t o  shrink \vhcn the technology is niorc aggres- 
sively used. Iterative timing-driven layout cfficicntl!l 
searches through the m'ltris of  possible solutions t o  
find a \vorl<ing layout. Coupling tiniing-driven Iayoi~t  
with logic synthesis can bring us very closc t o  achieving 
the "silicon compiler" goals o f  automatic;lll\! produc- 
ing working designs from high-level logic descriptions. 
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The Second-generation 
Processor Module for 
AlphaServer 21 00 
Systems 

The second-generation KN470 processor module 
for AlphaServer 2100 systems performs signifi- 
cantly better than the first-generation KN460 
module and was designed to be swap-compatible 
as an upgrade. The KN470 processor module 
derives i ts performance improvements from the 
enhanced architecture of Digital's new Alpha 
21 164 microprocessor, the synchronous design 
of the third-level cache and system interface, 
the implementation of a duplicate tag of the 
third-level cache, and the implementation of 
a write-invalidate cache coherence protocol 
for the multiprocessor system bus. Additional 
design features such as read-miss pipelining, 
system bus grant parking, hidden coherence 
transactions to the duplicate tag, and Alpha 
21 164 microprocessor write transactions to the 
system bus back-off and replay were combined 
to produce a higher performance processor 
module. The scope of the project required imple- 
menting functionality in system components 
such as the memory, the backplane, the system 
bus arbiter, and the I10 bridge, which shipped 
one year ahead of the KN470 module. 

I 
Nitin D. Godiwala 
Barry A. Maskas 

The second-generation KN470 processor moclule for 
AlphaServer 2100 systems achieves a higher perfor- 
mance than the first-ge~ieration I(N460 module \\ihile 
~iiaintaining compatibility \vith tlie AlphaServer 2 100 
system environment. This paper describes the proces- 
sor module project and the resulting design. Topics 
discussed are the elements that contribute to tlic com- 
patibility and to the higher performance: coherence 
protocol, system bus protocol, system bus arbitration, 
system interface and shared data, and clocking. Some 
key design trade-offs are described. The paper con- 
cludes with a performance summary that presents 
measured attributes of the higher performance 
KN470 processor in the context of the AlphaServer 
2 100 fi~mily. 

When the AlphaServer 2100 product fiirnily was 
being defined in late 1992, the processor module 
pcrfor~iiance-osier-time roadmap projected three per- 
formance variations based on increasing tlie clock rate 
of the Alpha 21064 microprocessor.l These modules 
were to be compatible with Digital's mid-range niulti- 
processor system bus and ~ ~ u l d  support enlianced 
fi~~ictionality such as direct-mapped I/O, up to four 
microprocessors, an 1 / 0  bridge to 32-bit Peripheral 
Chnponent  Interconnect (PCI) and Extended Indus- 
try Standard Architecture (EISA) buses, and an I/O 
expansion option module with an 1 / 0  bridge to  a 
64-bit PC1 bus.2 Two members of  the DEC 4000 
processor design team were assigned to deliver this 
first-generation processor module. At this time, there 
was no goal to  develop a second-generation processor 
modulr. Therefore, the remainder of the team 
designed the arbiter chip and the enhancements 
required in the processor-module system interface 
chips and at the same time co~ltributed to the Alpha 
2 1 164 ~iiicroprocessor de\lelopment effort. 

Goals for contributions to the Alpha 21 164 niicro- 
processor development effort \\'ere partitioned into 
short- and longer-term goals. A short-term goal \\?as to 
detine a system for the nccv Alpha ~~~ic roprocesso r .~  The 
related longer-tern1 goal was to ensure thdt the Alpha 
2 1 164 microprocessor could operate in that defined 
system. An architectural s t i~dy resi~lted in a proposal 
and a project plan to develop a second-generation 
processor module that extended the perforniance and 
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longevity of  the AlphaServer 2100 family. In  addition, 
the remainder of tlie team ni;ide requests of the Alpha 
2 11 64 microprocessor team to  incorporate specific 
legacy-related AlphaServer 2 100 hnctions such as 
support for 32-byte cachc blocks, control of 1 / 0  
address space read merging, and completion of niem- 
ory barriers on the Alpha 2 1 164 microprocessor. The 
busincss management team accepted the proposal and 
the project plan. The Alpha 2 1  164 microprocessor 
team agreed to support the f lnctionality requests. The 
design team staffing was completed by  march 1993, 
and detailed design work began in lMay 1993. The 
design team's goal was to have a processor module 
ready to accept the Alpha 2 1 164 n~icroprocessor for 
installation when the n~icroprocessor first became 
available. The team met this goal. 

Since tlie first- and second-generation processor 
niodules would operate in the same enclosure and with 
the same power supply, the size and shape (i.e., form 
factor), cooling demands, and power consumption 
o f the  new module had to be compatible with those of 
the first-generation module. Because of  the presence 
of an on-chip, write-back second-level cache and an 
estimated longer access time to that cache from the 
system bus, the Alpha 2 1 164 microprocessor architec- 
ture adopted an invalidate-on-write cache coherence 
protocol. The Alpha 21 064 niicroprocessor supported 
an off-chip, write-back second-level cache that has 
a faster access time fro111 tlic system bus. This faster 
access time enabled the implementation of a good- 
performing update-on-\\!rite cache coherence proto- 
col. Support of these snooping, ~~iultiprocessos system 
bus coherence protocols required enhancements to 
the system bus transaction types. Tliis resulted in minor 
logic changes to the memory interface chips and to tlie 
I/O bridge chip.4.5 These changes were defined and 
implemented in time for the first-generation system 
power-on. Hence, the system components, the 1 / 0  
bridge chip, tlie memory modules, and the system 
bus and backplane are conlpatible with the first- and 
second -generation processors. This basic difference in 
the system bus coherence protocols prevented the s~ls- 
tem from supporting the coexistence of tlie first- and 
second-generation processor modules because such 
a configuration has asymmetric attributes. Alpha oper- 
ating systeni sohvare does not support asymmetric 
multiprocessing; symmetry is assumed. 

Another project goal was to  maintain the 
Alphaserver 2100 family's position among t l ~ e  indus- 
try's leading high-performance server systems. This 
goal was achieved by exploiting the Alpha 21 164 
microprocessor's performance through the design of 
the processor module's third_levcl cache, by imple- 
menting a full-duplicate tag OF this cache, and by 
implementing a synchrono~~s cloclung scheme. 
Combining the processor design attributes with 
a pipelined read transaction of  a faster read-access 

system memory module enabled the team to  achieve 
the project's goal of designing a higher performance 
processor module and multiprocessor system. 

Overview of the Processor Module 

The KN470 processor m o d ~ ~ l e  provides an operational 
envlronmcnt for the Alph.1 21164 rnicroproccssor. 
This environment, which is similar to  that of tlie tirst- 
generation KN460 processor module environment, 
includes tlie follo\\l~ng: 

Alpha 2 1 164 microprocessor-a superscalar, 
superpipelined iniplelnentation of the Alpha archi- 
tecture with low average cycles per instruction 
because of  its four-instruction issue 

B-cache-a module or third-le\iel \\/rite-back cache 

Systmi interface-two application-specific inte- 
grated circiiit (ASIC) chips that interface tlie Alpha 
2 1 164 microprocessor, %cache, and di~plicate tag 
store to  the system bus 

Duplicatc tag store-a tag store of thc third-le\lel 
write-back cache 

System bus clock repeater that provides system bus 
synchronous clocks to thc module 

Systenl bus arbiter that determines which system 
bus node can access the spstcm bus 

Serial control bus subsystem that includes clock and 
reset control circuitry, a microcontroller \\pith a 
scrial interface, serial rcad-only Inenlory \\tit11 
power-on firmurare bits, and non\lolatile niemory 
for processor configuration parameters 

Figure 1 sho\vs a block diagram of the KN470 
processor module. 

The Alpha 2 1164 microprocessor is organized witli 
an on-chip 8-kilobyte (KB) priiilary instruction cache 
and an 8-KB nlrite-through data cache, \vhich are 
referred to  as first-level caches. In addition, a 96-IU3, 
second-le\/el, three-way, sct-associative \vrite-back 
cache is iniple~nented on the chip. 

The module design includes a B-cache or  third-level 
cache to niininiize the miss penalty and to be config- 
urable through the use of  various densities of similarly 
packaged static random-access niemor). (RAh4) chips. 
Such a design enabled final product definition late in 
tlie verification process based on static RAM costs and 
delivered performance from the B-cache. The size of 
tlie B-caclic is either 1 , 2 , 4 , 8 ,  or 16 megabytes (1MB). 
Each 13-cache entry stores 32 bytes of data and the 
associated tag bits and is called 3 cache block. To facili- 
tate read-fill data and victim-write data exchange nith 
the system interface, the Alpha 2 1 164 microprocessor 
and tlic system interface share the B-cache data port. 
The B-cache is controlled by the Alpha 2 11  6 4  micro- 
Drocessor, which has its second-le~el cache configured 
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Figure 1 
Block Diagram of thc KN470 Processor ~Modulr 

to operate in 32-byte instead of 64-byte cache block 
mode. This 32-byte mode of operation for the 
second-level caclie was the most complex request 
made of the Alpha 21164 microprocessor design 
team. Ho\ve\,er, this design element was required to 
achieve the Alphaserver 2100 compatibility goal. 

The system interface is a common boundary 
between the system bus, the Alpha 21164 micro- 
processor, and the third-le\rrl cache. The system inter- 
face provides the protocol and circuitry for the Alpha 
2 1  164 microprocessor to read or  write devices con- 
nected to tlie system bus. Conversely, the system inter- 
face provides the protocol and circuitry for the 
processor ~nodc~ le  to respond to read or write transac- 
tions from the system bus. The system interface com- 
prises two identical bit slices of  an ASIC. The ASICs 
operate as even and odd slices, based on a mode-select 
pin on the module. The system interface selects the 
operating mode of the arbiter cliip. I t  also encodes tlie 
system bus transaction type as read or  write and then 
supplies a control, sjgnal to tlie arbiter cliip. :The arbiter 
chip must Itno\\! the present system bus transaction 
type to remain synchronized wit11 tlie system bus 

A 

CLOCK AND SYSTEM 
SUPPORT CIRCUITRY 

events and to know when to sample new requests for 
the system bus. 

The module maintains a duplicate copy of tag con- 
trol bits of each B-cache block in the duplicate tag 
store. The duplicate tag store is controlled by the 
system interface and is time multiplexed between sys- 
tem bus requests and Alpha 2 1164 microprocessor 
requests. This ability to pipeline transactions to the 
duplicate tag store from the Alpha 21164 micro- 
processor and the systenl bus allowed the Alpha 
21164 microprocessor's requests to fill predictable 
time slots in parallel t o  the system bus transactions, 
hidden from the system bus. This is called cycle- 
stealing because the coherence transactions requested 
by the Alpha 21 164 microprocessor d o  not requirc 
arbitration for or use of the system bus cycles. Cycle- 
stealing provided more usefill system bus bandwidth 
while at the same time reduced the Alpha 2 1  164 
microprocessor latency for colierence transactions to 
the duplicate tag store. 

Thc clock repeater chips generate complementary 
metal-oxide semico~iductor (CMOS)-level cloclts 
from positive emitter-coupled logic (PECL)-driven 
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backplnnc cloclts. These CPIOS-lc\zcl cloclts ure sltc\\s 
regulated and distributed to the ~iiodule's compo- 
nents. Tlie Alpha 21 164 microproccsso~- has digital- 
lock-loop circ~litry, \vhich alig~is tlic Alplia 2 1 164 
r~iicroproccssor's interface clock to tlic rcfcrencc 
clocks tliat run to all other r n o d ~ ~ l c  components. This 
scheme is basically the sp~iclironous clocking scheme. 

'I'lie modulc includes tlic system bus arbiter cliip. 
'The decision to locate this chip on tlic processor 
instead of tlie backplane stemmed from concerns over 
compatibility between the fi rst- and second-generation 
proccssor arbitration algorithms supported by tliis 
chip. 'l'hc system ~ L I S  arbiter cliip \\!as designed ;~nd  h b -  
ricatcd for tlie fi rst-generation proccssor and included 
the fi~nctionality of the second-gcncr:~tio~i proccssor. 
Tlic cliip design \\,as completed prior to the design 
of the L i 4 7 0  processor module's systcm interface. 
7.0 minimize the chance of dcsig~i crror, the team 
performed extensive simulations to  help the project 
realize a fi~ll-function, second-pass chip for L I S ~  in the 
first- and second-generation processor modules. 

'I'lie 1<N470 processor ~iioti i~le i~tiplcmcnts the sys- 
tem bus reset control and serial control bus subsys- 
tems, witli minor modifications, that were designed 
for tlic first-generation processor mot i~~ lc .  

Cache Coherence Protocol 

To inipl-o\,c the in-s!.steni performalice of tlic Alplia 
2 1164 microprocessor and its write-invalidate cache 
coherence protocol, the Kii470 modi~lc implements 
n duplicate tag store of tlie R-cache. Tlic Alpha 2 1 164 
niicroprocessor lias two levels o f  011-chip caclic tlint arc 
maintained as a subset of the B-cache. This discussion 
assumes tliat thc first- and second-level caclies remain 
colicrcnt ~vi th  tlic B-cache and duplicate tag store. 
Operations performed by the Alpha 21 164 micro- 
processor and system interface niaintain tlie B-cache 
and duplicate tag store subset r ~ ~ l c  for the on-cliip 
c~clics. The duplicate tag store and the B-caclic each 
keep three control bits to maintain coherence \\.it11 the 
on-chip caches and also witli s!,steru. ~iicmor-!. and other 
module cL~clies. The three control bits arc called \ralid 
(V),  sliarcd ( S ) ,  and dirty (D). A combination of con- 
trol bits makes LIP a state o fa  cache bl.ock. Thc five pos- 
sible caclic block statcs are as follo\vs: 

1. VSl> = 000 A cache block is eitliel- empty o r  
removed fi-om the B-cache and hence invalid. 

2 .  VSO = 100 A cache block is tlic onlv cacllcd copy 
in the system. 

3 VSI) = 101 A cache block is valid, .lnd tliis copy 
has bccn modified lnorc rcccntl!! than tlic copy In 
mcniory. 

4. VSI) = 110 A \ d i d  cache block may also be 
in another cache. This processor must \\<rite or 

broadcast \\'rite modificat~ons of this block to tlic 
system bus. 

5. VSl) = 11 1 A \,cllid cache block may also be in 
anotlicr iac l~c ,  ,ind the cop!. of this block has been 
~nodificd nlorc rcccntl)~ than the copy in memory. 

Cache statc transitions are synchronized to s)rstcni 
bus transaction cycles beca~~se  the s)~steni bus is the 
common point of  coherence and coherence conflict 
resolution. 

Wlien the Alplin 2 1 164 microproccssor r cq~~cs t s  
a transaction for n caclic bloclt to be read or  f llcd from 
system memory into tlic B-cache and on-chip caches, 
the cache block statc is set to VSL) = 100 in the dupli- 
cate trig store, tlic R-cache, and the on-chip caches. 
The first-Je\.cl instl-uction and write-through data 
caches must maintain only a valid bit. The second-level 
\\>rite-back caclic must riiai~itain the VSD bits consis- 
tent \\,it11 thc R-cache and the duplicate tag store. 

If an Alpha 21 164 microprocessor's read trans- 
action request is of tlic type intent-to-modi$, then 
the cache bloclt statc ~iiakes a direct transit io~~ to 
VSD = 1 0  1 .  A bloclt in the \lalid state of  VSD = 100 
\ \ i l l  make a transition to VSD = 101  \\,hen an Alpha 
21 164 ~nicroproccssor's recluest to m o d $  tlic caclic 
state lias reached the point of coherence, i.e., the sys- 
tem bus. Ho\\~cvcr, tllc cluplicate tag store is maintain- 
ing coherence \\,ith tlic systcm bus, so this request 
n i ~ ~ s t  find ,I nonconflicting c!lclc to effect the statc 
transition. If another proccssor reads the same block 
before this processor's request lias reached the point of 
coherence, then the caclic block state ~iialies a transi- 
tion to VSD = 1 10. In this case, the system interface 
updates the sliarcd statc to VSl) = 110 for the read 
with i n t e n t - t o - m o i  transaction before the bloclt is 
modified. Bccausc tlic hlock is shared, this processor's 
request to moclifjl the block must now also become 
a broadcast \\,rite transaction to the system bus. Once 
the modified block is \\,rittcn to the systc~ii bus, 
thc nest statc transition is to  VSD = 100. Tlie broad- 
cast \\*rite transaction is son~etirnes referred to as an 
~~nsliaring trnns;iction. 

Once a caclic block st.~tc is \,slid, j.e., \lSD = 100, it 
can be invalidated or set to the state VSD = 000 from 
the system bus by another processor's read \\fit11 
intent-to-modi$ or by a \\trite tl-ansaction to  tliat 
block. Tlic Alplia 21 164 niicroprocessor docs not 
allo\v an update of \vritc data from the system bus but 
instead in\,alidatcs the block. Invalidation requires tlic 
duplicate t ~ g  storc, tlic B-caclic, and the on-chip 
caches to clear their V statc. Implementation of systcm 
bus \vrite transactions that cause block invalidation is 
recluired to support tlic caclic coherence protocol of 
the Alpha 2 1 164 microprocessor. 

By filtering out  s!.stcm bus transactions that d o  not 
alter tlic coliercncc states of  tlic Alpha 2 1 164 micro- 
processor, tlic duplicntc tag store serves to minimix 



the frequency \\lit11 \\lliich the system bus transactions 
interrupt the microprocessor operations. Without  the 
duplicate tag store filtering, tlie Alpliu 21 164 micro- 
processor \\ ,oi~ld 11a\~c t o  be jntcrri~pted o n  every system 
bus transaction, thus limiting tlic systcm performance. 

System Bus Protocol 

T h e  I(N470 processor module incorporates both an  
enhanced s!istcm bus protocol and a system bus arbiter 
tliat minimizes the arbjtrcition latency. 

Enhancement of Transactions 
For the first-generation AlphaScr\,cr 2 100 processor, 
the system bus protocol is tlie same as the o n e  imple- 
mented in tlic 1)I-X: 4000 system. Tliis system bus pro- 
tocol is 3 s ~ i o o p i ~ l g  bus p~-otocol in \\~liich all bus 
participants arc required t o  monitor  s!,stcni bus trans- 
actions and t o  lcccp their caclicd copy o f   memo^-\, 

coherent.  For the second-generation processor, tlic 
designcrs enlirinccd the l>E,C 4000 systc~ii bus proto-  
col t o  support  tlic \\~ritc-in\jalid.ltc cache coherence 
protocol o f  the Alpha 2 1 164 microprocessor. 

-The DEC 4000 system bus protocol supports  four 
t \ ~ p c s o f  tr'insactions: read, \\!rite, exchange, and 
n o  operation. l ~ l i c  e x c l i a ~ ~ g e  trri~is.iction performs a 
\~ ic t i~ i i - \ \~~- i tc  tr:~nsaction t o  o n e  rncmory location and 
a read transaction o f  another  rncmory location. Tlic 
nvo  transactions arc separated by the c o m m o n  lo\vcr 
18 bits ofnddrcss. Tlie escliangc transaction combines 
read trans,ictions u ~ i d  \'ictim-\\,rjtc transactions into 
one  transaction, sliari~lg the .iddress cycle o f  the sys- 
ten1 bus. Tlic cschange transaction is used t o  e\rict 
modified caclic I~locks from the  caclics back t o  s!stcln 
memory t o  allow ;i replacement block with a different 
t.13 t o  be allocated. 

To s ~ ~ p p o r t  tlic second-gener'ition processor's 
' CtlOllS \\'ere \\ ,rite-in\,~lidatc coherence protocol,  tr,ins.i - ' 

added t o  the first-generation systcm bus protocol.  
Thcsc addcd transactions \\,crc nccdcd t o  signal o ther  
processors and tlic 1/0 bridgc chip t o  invalidate 
a bloclc \\ilicn a hloclc \\,as being rcaci for tlic purpose o f  
being modified. 'rhe e s c l ~ ~ s i \ ~ c - r e ~ i d  and esclusi\~c- 
cschange t~.,ins'~ctio~is \\,ere addcd t o  the four f rst- 
generation t r a n s a c t i o ~ ~  types. T h e  exclusi\~e-rc'id 
tr'i~isactioii is tlic rcad trans'iction that  also causes 
caclie in\~,ilid,~tio~i hy a bpst,indcr processor m o d i ~ l c  
and the 1 / 0  bridgc cliip o f  the block bcing read. T h e  
esclusi \~e-escl l ,~~igc transaction is the cscliangc tmns-  
action tliat also causes c ~ c l i c  in\r.ilidation by a 
bystander processor moclule ,incl the I/O bridgc chip 
of ' t l~e  I.>locl< bcing read. 

Tlie 1QI470 modulc iniplcmcnted the  esclusi\rc 
transaction types t o  establish p r i v ~ t c  o\vnersliip o f  a 
block. Establishing private owncrsliip t o  J pre\4ousl!/ 
sliarcd bloclc enables \\,rite transactions t o  completc 
\\ , i thout lia\,ing t o  broadcast \\,rite tr ,~nsactions bnck 

t o  the system bus. This  occurs because tlie block is 
invalidated by bystanders ~ v l i o  \\/ere sharing tlie block. 

enl iancc~ncnts  o f  tlie sys tc~n  bus transaction 
types did not  affcct tlie memory module. T h e  iniplc- 
mentation of  the csclusive i~ldic,ltion signal \\.as such 
tliat ~ -ne~i io~- !~  \ \ ~ ) u l d  decode a read o r  esch;uigc trans- 
action and not  know o f  tlie esclusi\~c signaling. Bec,iusc 
the 1/0 bridge cliip caches transl,ition addresses for 
direct memory access o f  de\~iccs o n  tlle PC1 o r  EISA 
buses, minor motiitications \\/ere clesigned into the 1 / 0  
bridgc cliip t o  support these cnliancccl col-n~nands. 

Minimization of Arbitration Latency 
T h e  systcrn bus arbiter imple~ncntcd a bus grant park- 
ing  or pregrant signaling schc~i ie  that  ~ ~ i i n i m i z e d  tlic 
arbitration timing o\icrliead. Tliis scheme combined 
\\(it11 the pipclining o f  tlie read-miss commands from 
the Alplia 2 1 164 ~nicroproccssor enabled tlic systc111 
bus interface t o  use the  a\,,iilable memory band\\.idth. 

T h e  arbiter for tlie first-gcneration processor fol- 
lo\\ied tlie protocol ~ i s e d  in tlic 1)EC 4000 systcm. T h e  
arbiter sa~nplcs  the requests anti then issues the grunts 
according t o  round-robin arbitration rules. Tlie arbi- 
tration r ~ ~ l c s  allo\v processor modules t o  lia\re h i r  acccss 
t o  tlie system bus. T h e  elapscd timc fi-on1 \\,lien a 
proccsmr 1iia11es a system bus request t o  tlie arbiter 
~ ~ n t i l  it rcccivcs a grant is referred t o  as the arbitmtion 
cycle o r  ~rbi t rnt ion o\lerhead. rrlic ,l~.bitmtion o\lcrhcad 
increases the memory and direct-~iiapped 1/0 acccss 
latency, as \\,ell as the cache-miss penalty. Typically, tlie 
arbitration o \ ~ A ~ c a d  for each processor appears lo\\, in 
a ~iiultiproccsso~-- system in \\,liicli bus utilization is 
extremely high. T h e  appear.ince o f  lo\\: arbitration 
o\~erhead results fi-om the timc the systcni bus \\laits t o  
fnish a transaction bcforc the arbitcr can i s s ~ ~ e  tlic nest 
grant.  Ho\\lcvcr, the arbitration overliead m,ly be '1s 
high as 20 percent o f  the trans'lction time in a systcm 
co~ifigumtion in \\,hich one  processor modulc is con-  
suming the ,l\~ailablc grants from tlic ~ r b i t c r .  

? - 1. lie arbiter i~scd  by the  second-generatio11 proccs- 
sor pregrants o r  parks a grant t o  tlic processor modlrle 
\\~liene\ler tlic system bus goes icllc. Tliis t 'eat~~rc climi- 
nates arbitr,\tion o\lerhead. T h e  result is a lo\\zer mias 
penalty and 'in .~bilit!l t o  sust'iin a c o n t i n u o ~ ~ s  stream o f  
read t r~nsac t ions  \\.lien the bus is not  ~ ~ t i l i z e d  by other  
system bus nodes. This  arbiter cnhancenicnt does not  
cost additional xbi t rat ion o \ , e r l i c~d  for other  requests 
becausc tllc cost o f  i~nparlcing a grunt \ I ~ ~ S  eliminated 
through the signaling protocol.  Tliis signaling proto-  
col enabled the pregranted signal t o  be negated ,it the 
sarne timc a nc\\. grant signal is .~sscrtcd. 

7 7 I he  Alp11,i 21 164 microprocessor is cap,Iblc of 
pending rcaci-~niss requests t o  the systcm intcrf,icc. 
Thcsc rcad transaction rcqucsts sometimes h , i \ ~  a n  
rissoci'iteci \~ictinl tliat mus t  be displaced by the 
requested rcad data. By pipelining tlicsc requests in 
relation t o  tlic system bus grants, a c o n t i n ~ ~ o u s  strc.lm 



of back-to-back system bus rcad or exchange transac- 
tion requests can tlo\v because of tlie parked grant. 
Since the Alpha 21164 microprocessor is capable of  
continued execution while miss requests are pended, 
tlie processor designers had to carefully schedule the 
use of the B-cache. The fill data coming from system 
memory and the Alpha 2 1  164 niicroprocessor are in 
contention for use of  the R-cache. The system inter- 
fice minimizes tlie time tliat the B-cache is allocated to 
accept the f i l l  data while maintaining tlie tlo\\! ofcom- 
mands into the read miss transaction pipeline from the 
Alpha 21 164 niicroprocessor. By allowing the micro- 
processor to  have access to the B-cache before and 
after each f i l l ,  a continuous flow of transactions \\,as 
realized. The continuous flow of transactions uses tlie 
available system bus band\vid th. 

Handling of Shared Data 

A shared-database environment in uihich write trans- 
actions are prominent uses the system bus esclusivc 
transaction types to establish ownership of the cachc 
blocks. These transaction types minimize the system 
bus bandwidth usage by avoiding write broadcast 
transactions of modified blocks. 

In  a multiprocessor environment, a block tliat is 
valid in more than one cache is called a shared block. 
The coherence state of a shared block is VSD = 110. 
Tlic follo\ving example summarizes the problem asso- 
ciated with a write transaction to 3 shared caclie block 
in a system bus protocol without the exclusive transac- 
tion types. 

Processor A has a modified but unshared caclie 
block with state VSD = 101. Processor B wants to  
write tlie cache block that Processor A has modified. 
Processor B issues a read transaction on the systeni bus 
and then must immediately folloc\~ tlic read transaction 
with a write broadcast transaction of the modified 
data. The write broadcast transaction lnust be issued 
by Processor B because the read transaction \\!as 
shared. At the end of  the two bus transactions that it 
issued, Processor B's cache block state \ \ r i l l  be VSD = 

101. Processor A has invalidated its cache block. Thus, 
two bus trarlsactions were req~rired frorn Processor B 
to write the modified cache block. With fair arbitra- 
tion, however, Processor R may not have access to the 
system bus after the read transaction. The write trans- 
action may be bloclted, thus creating other coherence 
situations. If two or more processors in a system arc 
trying to  write the same block, Processor B may not 
get access to the system bus to  coniplete the \\,rite 
transaction. The system is potentially in deadlock. 

The system bus protocol implemented by the 
KN470 enables tlie \\Trite transaction to complete but 
requires only one system bus exclwive-read transac- 
tion. In response to the Alpha 21 164 microprocessor's 
request to modify a cache block, the processor initiates 

82 Digital -l'cchnical Journal Vol. 7 No. 1 1995 

an excl~~si\le-read transaction on tlie system bus. Other 
processor modules responding to this exclusive-read 
transaction provide the data if their block is dirty, but 
regardless of the dirty state, they also invalidate their 
cache block. The invalidation eliminates the shared 
state. If n o  other processor module has a dirty block, 
the data is returned from the system nienlory. The 
processor niodulc that is issuing an exclusi\ie-read 
transaction sets its cache block state to VSl3 = 10 1 as 
it f lls. Thc write transaction tliat is pending in thc 
processor can co~iiplcte without broadcasting a write 
transaction to the system bus. 

A systern bus that does not support the exclusive 
transaction types requi rcs a shared write transaction to 
a block to be deco~nposed into two system bus transac- 
tions. This can rcsu l t in system bus bandwidth satura- 
tion. A systun bus that supports tlie esclusive 
transaction types requires only one systeni bus transac- 
tion. I n  a shared-data environment in which write 
transactions to shared data are the prominent cause of 
cache misses, support for the exclusive transaction 
types helps preserve bus bandwidth. Also, the deadlock 
scenario presented above does not exist. The KN470 
processor write transactions to a cached block consume 
only one system bus transaction and can alivays com- 
plete. The invalidate windo\v does not exist during the 
time it takes for thc write transaction to complete. 

Tlie systenl bus protocol implemented by the 
ICN470 ~iiodulc allows for\vard progress during shared 
write transactions in the system. However, system soft- 
ware is expected to avoid repetitive write transactions 
to blocks tliat are shared \vitliout some higher level 
ownership protocol. Write transactions, if issued to 
a shared block by several processors, consume bus 
bandwidth and trigger false invalidations for 
bystanders. This   nay hinder for\ilard progress and 
affect systeni performance. 

Suppor t  of a n  Interlock Mechanism 

The system interface i~nplements an address lock reg- 
ister as specified in the Alpha Architecture Reference 
Ma~zzial to support sofnvare synchronization opera- 
tions.6The address lock register in the system interface 
has a signal that reflects tlie state of a valid bit to the 
Alpha 21164 niicroprocessor. The microprocessor 
manages tlie lock address register in tlie system inter- 
face based on sampling this signal during fi l l  transac- 
tions from tlie system bus. 

Tlie Alpha 2 1 164 11iicroprocessor has an internal 
lock register tliat is maintained consistent with the 
lock register in the system interface, which is referred 
to as the ester~ial lock register. The external lock regis- 
ter is a backup copy of the Alpha 21 164 microproces- 
sor's lock register and is used only when instruction 
stream prefetching causcs the locked address to be 
evicted from the R-cache. Tlie rsecution ofa load with 



lock instruction by an Alpha 2 1  164 microprocessor 
results in a transaction that sets both internal and 
esternal lock flags and lock address registers. 

The external lock flag is cleared by the system 
interhce if the lock address matches the system bus 
address of either a write transaction or  an esclusi\~e 
transaction. The internal lock flag is cleared by the 
Alpha 21 164 niicroprocessor due to system bus probe 
transactions from the write o r  exclusive transaction to 
a valid cache block. 

The lock address resolut io~~ is a single-aligned 
32-byte block and is consistent with the size of cacl~e 
blocks in this system. The Alpha 2 1164 microproces- 
sor has 64-byte internal lock register resolution. Since 
the address o f a  load t o  memory and the correspond- 
ing store to mcmory must both be within the same 
16-byte aligned region, the difkrcnce in the resolu- 
tion of the internal and the esternal lock registers was 
determined to be insignificant to  performance.6 

The KN470 Module and System Bus Clocking 

The IW470 module ~mplemcnts a locv-cost synchro- 
nous clochng schcnic. The sclie~iie exploits the system 
bus clocking to run the Alpha 2 1  164 microprocessor 
synchronous to  the system bus. This scheme conipen- 

sates for the half-cycle correction phase of the Alpha 
2 1  164 microprocessor's digital lock loop (DLL). 

The Alphaserver 2100 system interconnect has an 
edge-to-edge clock architecture, and it implements an 
edge-to-edge data transfer scheme. The n~icroproces- 
sor has an internal DLL that sy~~chronizes to a refer- 
ence clock supplied by the clock repeater chip. Instead 
of trying to precisely control the clock skew across four 
different chips, data valid windows are set around the 
edge-to-edge data transfer clock edges to  avoid setup 
or  hold-time issues. This simpler clocking scherne 
takes ad\rantage of the four delivered clock edges per 
cycle from the clock repeater chips. It also enables a 
simpler synchronous boundary between the Alpha 
21 164 microprocessor and the system interface. The  
synchronous clocking improves data transfer rates, 
lowers the miss penalty, and inlproves the pipeline effi- 
ciency among the components of the system. 

Figure 2 shows the clocking scheme that is iniple- 
mented on the KN470 module. The Alpha 21164 
microprocessor accepts a differential clock at twice the 
desired internal clock frequency. The oscillator for the 
processor runs at 6 ,  7,  8, or  9 times the 41.66 mega- 
hertz (MHz)  system bus clock frequency. The DLL 
subtracts one halfofan internal clock cycle to maintain 
phase alignment with the system bus reference clock. 

Figure 2 
KN470 Clocking Scheme 
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This DLL scheme assumes that tlie intcrnal cloclc fi-e- 
qucncy runs slightly faster than the system bus clock 
frequency. Given these scaling rates, thc interface 
benveen the Alpha 21 164 microprocessor and the sys- 
tem interface are locked at the system bus clock rate. 

The Alphaserver 2 100 backplane distri butcs 1'ECL- 
level system bus cloclts PHI l  L and PHIl  H, and 
PHI3 Land PHI3 H differentially to each module on  
the system bus. Each module receives, terminates, and 
capacitively couples the clock signals into 1'ECL-to- 
CMOS-level converters to provide h ~ l r  rdges per sJa- 
tem bus clock cycle. This level conversion is con~pleted 
in the clock repeater chips. System bus handshake and 
data transfers occur from clock edge to clock edge and 
thus form a primary clock in the system. The remai~i- 
ing three edges in a cloclung cycle are secondary 
clocks. The clock repeater chip, a custom CMOS clock 
chip, provides module-to-module clock skc\v of less 
than I nanosecond (ns) and is implemented to projlide 
sl<e\v-regulated cloclc copies to be consumed by com- 
ponents on the module. The skew regulation is main- 
tained by tlie repeater chip through the use of a 
feedback path or  replica loop of the pri~nary clock 
path. The I m 4 7 0  rnodule uses this clock repeater chip 
to generate tlie references for s y ~ i c h r o n o ~ ~ s  clocking 
from a central point. 

Components o n  the niodule arc cloclced by outputs 
from the clock repeater chips. The clock repeater chips 
generate six copies of the primary clock TPHI l  H. 
TPHI l  H cloclts are distributed as follo\\s: one copy 
to  the Alpha 21 164 microprocessor, two copics to 
each of the t\vo systcm interface ASICs, and one copy 
to the systc~n bus arbiter chip. The Alpha 21 164 
microprocessor uses its copy of the primary clock as a 
reference clock for its 1)LL. The data transfcrs bet\\lccn 
the microprocessor and tlic systcln interface are cdgc- 
to-edge transfcrs n~ id  'Ire referenced to the prin~nry 
clock. The clock repeater chip generates three scc- 
ondary clocks: TPHI 1 L, TPHI3 H, and TPHI3 I,. 
The clock-edge relationships among these four clocks 
are specified sucli that eacli clock edge is 9 0  dcg~.ccs 
out of phase \vith tlie orlicr nvo clock edges. Thc reln- 
tionships among the diffirrent clock phases are shown 
in F i g ~ ~ r e  3 for the case of tlie Alpha 21 164 oscillator 
with o frequency six times that of thc system bus clock. 
The systern ilitcrfacc LISCS all three secondary cloclis for 
on-chip data transfcrs, whereas the arbiter chip i~scs 
one secondary clock, TPHI l  L. 

This synchronous clocking scheme \vorlts \\lcll iftlic 
driver turn-on and turn-offtimes are extremely fast for 
all componcnts. Ho\ve\!er, tlie technologies sclcctcd 
could not guarantee sucli speed. The Alpha 21 164 
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~nicroprocessor driver tu rn-on  and tul-n-off times are 
fast, bu t  tlie ASI<:s ha \~e  slo\v turn-on and turn-off 
times. T o  compensate for the  h s t  , ~ n d  slo\v driver cliar- 
acteristics, the edge-to-edge clocking scheme required 
a modification. 'l'lie Alpha 2 1 1 6 4  microprocessor uses 
its copy of  Tl'HI 1 H as the reference clock edgc 
t o  align its SYSCL,I<1/2 H-generated interface o u t -  
put  clocks. T h o u g h  SYSCL1<1/2 H does no t  pliysi- 
cally connect t o  the system interface, the  Alpha 2 1  1 6 4  
micl-oprocessor uses the  internal copy o f  tlie 
SYSCLI<1/2 H edgc t o  eitlier drive data o r  recei\~e 
ddta. T h e  system interface i ~ s c s  its cop!( o f  the refer- 
ence clock as the data recei\,c edge t i ~ r  signaling from 
tlie Alpha 2 1 1 6 4  ~nicroprocessor. T o  drive the data 
t o  both the  microprocessor and the B-cache, tlie sys- 
tem interface uses the  TPH13 I, secondary clock, 
\\~liicli is phase-delayed 9 0  degrees from the prirn~r!, 
clock T P H I  1 H .  

T h e  above clocking sclielnc achie\,es single-clock, 
edge-to-eclgc d'ltn transfer rates \\ , i thout imposing 
overly strict constraints o n  cloclt rout ing and layout. 
T h c  schelnc can withstand larger than 1 ns o f  clock 
skc\v and compensates for tlie Alplia 2 1 1 6 4  micro- 
processor's 1 l L . L  half-cycle correction bcn i~een  tlic rcf- 
crcnce clock and SYSCLK1/2 H .  

Design Trade-offs 

T h e  I(N470 module dcsign achicvcd aggressi\ie schcd- 
i ~ l e  goals and ncIiie\~ed lower cost by Iileans o f  the bit- 
slice design o f  the system interhcc.  Also, the  Iiigher 
perforniance goal \\-as realizecl \\~Iiilc keeping tlie 
design coniplcsin at a moderntc Icvcl. 

T h e  bit-slice cicsign o f  the system interface \\)as 
nioti\/atcd by the organization o f  the Alpha 21  1 6 4  
microprocessor's 64-b i t  erl-01--correcting code- 
protected data bus. This  forcecl nt le,lst a 64-bi t  slicc 
organization. Other  org'inizations \\.ere found t o  lia\,c 
t o o  many pins o r  \\/auld have cncou~ltered system bus 
signal integrity problems because o f  long s tubs and 
,~dditional l o ~ d s .  Tlie decision t o  also include the 
address and control f i~nct ions \\)as f ~ ~ r t l i e r  moti\~atcd 
by the project's human resourcc constraints and its 
spending constraints. Designing one  ASIC as a slicc t o  
implement the 128-bit-\\aide system interface \ v ~ s  
foillid t o  be t l ~ c  l x s t  choice. 

T h e  systcni i~i tc~-facc c o ~ i t r ~ l s  the address and dd t :~  
p x h s  between the Alpha 2 1 1 6 4  micl-oprocessor and 
the system bus. T h e  system intcrhce does not  stall the 
system ~ L I S  o n  tl-ansactions rhnt require caclie state 
changes in the B-c,lclie. Instead, tlic interface posts 
a pu idcd  rccltlcst t o  the processor for changing tlie 
caclie state o f  the B-cache. T h e  system interface stalls 
the system ~ L I S  \\,lien the  processol- has not  ackno\\rl- 
edged n prc\~iously pended request and the  present 
transaction o n  tlic system bus nccds a cache state 
change request. At tlie cost o f  increased complexity, 

the design could ha\fe been implcmcntcd such t h ~ t  the 
system bus \ \ ~ o i ~ l d  no t  stall in tlic absence o f  ackno\vl- 
cdgments  o f  pre\!iously pendcd requests. This Ic\~cl 
o f  complexity a\,oided the more c o ~ n p l e s  issues o f  
managing a queue  o f  block in\.alidate, set bloclt t o  
shared, and read bloclt transaction requests. 

T h e  l a 4 7 0  module dcsign implelnents '1 scheme of 
\\)rite transaction back-off o r  replay that esploits tlie 
transaction replay queue  o f  tlie Alplia 2 1  1 6 4  micro- 
processor. This rcplay f ~ ~ ~ i c t i o n a l i t y  helps the  system 
interface handle c'1cIie s t ~ t c  cliangcs \\,lien simultane- 
ous  recluests t o  \\>rite t o  the svstcm bus and t o  invali- 
date  6-on1 the systc111 ~ L I S   re m'ldc t o  the snlnc cnclie 
block. T h e  designers simplified the caclie coherence 
management  and logic dcsign by u\~oiding the  use o f  
a pended \\/rite transaction in tlie system intcrfiicc, 
which \\,auld lia\,e required a one-block \\,rite c:lclic. 

A \\;rite trnnsaction from tlic Alpha 2 1  1 6 4  micro- 
processor t o  tlic system L ~ l s  is no t  considered coin- 
plete until the system bus is granted.  This nonpendccl 
scheme for \+!rite transactions enables \\trite tmnsacrion 
rcplay from the Alplia 21  1 6 4  microprocessor and 
avoids the requirement for tlic systcnl interfice t o  pre- 
serve logic states if a system ~ L I S  transaction taltcs 
precedence. When  the system bus tr'1nsactio11 t ~ l < c s  
precedence, the s!!steni intcrfacc rcmo\.es the arbitra- 
tion request,  signals the N p h a  2 1 1 6 4  microproccssor 
t o  replay the \\/rite transaction, and tlushes all states 
associated \vith tlie \\Trite transaction, T h e  N p h a  2 I 164  
microprocessor must  determine \\~licthcr the \\'rite 
transaction lins hecn affected b!, the change in its cncllc 
state and then decide t o  rcpl,l!r the \\)rite t rans~c t ion  o r  
t o  perform ~ l n o t h c r  transaction sucli as a read tr.lns.lc- 
tion t o  re\~,llidate the bloclt. 

Removing a system bus rcqucst from the  arbiter 
chip ratlier than con\icrting tlic  rite transaction t o  a 
no-operation tmnsaction .i\~oicicd ,I li\~clock condition. 
Tlie li\,cloclt conciition could lia\.c rcsulted ti-on1 t11c 
system interface's completion o f  '1 no-operation trans- 
action and re-requesting tlic s\.stem bus t o  complete 
the write transaction. Wliilc \vaitiug for the  gr.lnt t o  
this second drbitration request,  tlic system hus could 
force the A l p h ~  2 1  1 6 4  microprocessor t o  rcpldy tlic 
\\!rite again. In  addition t o  ,~\~oicling the li\~clock condi- 
tion, the replay scheme has tlic ,ldditional benefit of' 
conser\,ing band\\~idth by no t  issuing 110-opcr~t ion 
transactions \\~liilc the system bus interface is \\l;liting 
for tlie Alpha 2 1  1 6 4  micropl-occssor t o  repldy tlic 
write transaction. 

Renio\,ing a system bus request in response to 
o ther  bus transactions reduces the probability o f  J 

timely completion o f  the \\;rite tr,lnsaction from the 
Alpha 21  1 6 4  11iicroproccsso1-. More  complex clcsign 
approaches increase the  proh,lhiIity that tlic \\!rite 
transaction \ \ r i l l  complete, b i ~ t  they d o  n o t  guarantee 
the coniplction. This is a result o f t l i e  i lncej- t in  tirr~c 
for a response from the Alpli,~ 2 1 164  microproccssor 
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t o  replay tlic \\,rite transaction in rel'1tio11 t o  tlic nest  
system bus gr'11it. T h e  designers chose the  simpler 
implementation t o  reduce logic design complexity and 
\rerification time. 

Performance of AlphaServer 2100 Systems with 
KN470 Modules 

T o  \~alidatc the improved pel-for~ii,~ncc goal o f  tlic 
I W 4 7 0  PI-occssor m o d i ~ l c  in Alpli,~Ser\,cr 2 1 0 0  sys- 
tems running Digital UNIX (formcrl!, l)EC OSF/l ) 
\ u s i o n  3.213, project engineers measured sc\.cml 
i~ld~~str!r-stn~ld.lrd bcnchmal-Its. A brief description o f  
each benchm,i~-k follo\\rs. ?'able 1 lists tlie bcnclimarks 
that w c ~ - c  run o n  an AlpliaScrvcr 2 1 0 0  Model  5 /250  
systeln, the 11~1mber ofprocessor  modules in 3 con fig- 
i ~ r ~ ~ t i o n  for c ,~ch  b e n c h m ~ r k ,  the ~iicdsurcd cstim.1tcs 
o r  una~~ci i t cd  results o f  tllc benchmark, and the pel-- 
form,~ncc g i n .  Performance g'li~i is reported as J 1,,1tio 
of  tlic 1CK470 result t o  the top-performing, first- 
gener.ltion ICi460  result. I h e  ratios demonstrate that 
the IOU470 processor m o d l ~ l c  achic\~cs the  primary 
project go.11 by pto\ ' icI i~~g more perform,lncc t o  
iVpliaScr\~cr 2 100 systems th'ln the first-generation 
ILW460 processor. 

T h e  Alp l i~Scr \~er  2100 blodcl 5 , 4 5 0  sjrstcln uses 
the I W 4 7 0  PI-ocessor 1iio11~Ie that incorporates the 
Alpha 2 1 1 6 4  microproccssor opcl-rlting at  2 5 0  MHz 
\\,it11 a 4-h/lR B-cache. T h e  , i lp l~ , iSer \c r  2 1 0 0  A4ocicl 
4 /275  systcm uses tlie IGY460 processor m o t i ~ ~ l c  \\,it11 
tlie Alph ,~  2 1064  microproccsor  operating at  2 7 5  
MHz  \\zitli ,I 4 -MB B-c,iclic. 'l'llc AlpliaSer\,cl- 2 100 

systcm remained fixed as the processor- models \ \zc~-e 
s\\7appcd for these pertbrmnncc mcnsuremcnts. 

T h e  Stnncinrd l'erfol-mancc Evaluation (:orporation 
(SPEC) \\,,IS fi)rli~ed t o  iclentit'\' and crcatc objccti\,e 
sets ofapplic,ltions-oric11tcci rests, \\.hich can scr\.c ,IS 

c o m m o n  reference points. SPEC C I N T 9 2  is a good  
base indic'ltor o f  CI'U pel-for111ance in a commercial 
cn \~ i ronmcnt .  bcnchmarli is the  geometric mean 
o f  ratios Oy 'rvliich ttic six I>c11ch1i~arks in tliis suite 
exceed the pcrformancc o f  the reference ~ n , ~ c l ~ i n c .  
SPEC (X1'92 mJy be llsed t o  compare floating-point 
intensi\~c cn\.i~-onments, t!~pic,~ll!. cnginccl-jng , ~ n d  
scientific ~pplicat ions.  SI'E(: (:F1'92 is the geometric 
mean of ratios by \vhich the 1 4  bencli~nal-ks ill tliis 
suite chcccd the pcrformancc o f  the reference ~nacliine. 
SI'LC Homogeneous  <:ap,iciry  method bcncl~rn,~l-lis 
test ~nultiproccssor cfficicnc!,. The!, pro\ridc a h i r  mcJ-  
sure for tlic processing capacity o f  a system, namely, 
lie\\, ml~c l i  \\.orli the s!,stcln cJn perfor111 in 3 given 
amount  o f  time. Tlic Sl'F,(:1-3tc is a capaci?. nlc~sul-c .  
I t  is no t  .I measure o f  ho\v f.lst ,I s\,stem can pcrforln 
any task but  o f  Ilo\\, many o f  tliosc taslis tlic systcm 
complctcs \\,itliin i l ~ ~  arbitl-nr!, time i n t e n d .  

13c\,clopcd by 41A4 Tccllnolog\,, the AIM Suite I I1 
Renchmarli Suite \\.,IS designed t o  mcasul-c, c\.,llurlte, 
and prcciict UNIX ~ i l ~ ~ l t i ~ ~ s c ~ - s \ ~ s t c m  performal~cc.  T h e  
bcnch~narl i  suite ~ ~ s c s  3 3  f~~nct ion. l l  tests, dnd tliesc 
tests c.ln be groupcd t o  rctlcct tlie computing ,~cti\rities 
o f  \,arious types o f  applicatio~is. T h e  AIh4 l'crforlnnnce 
Ratings identit'\' the r n a \ i r n ~ ~ l n  pcrformancc o f  tlic 
~!~stc1ii L I I ~ C ~ C I .  opt imum usage o f  Cl'U, t loat i~ig-point ,  
and iiisli c.lching. A t  a s!,srcm's peak pel-torm,lncc, an 

Table 1 
Performance Data for  a n  AlphaServer 2100 System That Incorporates t h e  KN470 Processor Module 

Performance Gain 
Number of Processor Expressed As a Ratio of 
Modules per Alphaserver 2100 Model 51250 Performance 

Benchmark Configuration Model 51250 t o  Model 41275 Performance 
- - 

SPEC CINT92 
SPECint92 1 277 1.4 
SPECrate-int92 4 24,996 1.4 

SPEC CFP92 
SPECfp92 1 41 0 1.4 
SPECrate-fp92 4 37,926 1.4 

AIM Suite I l l  Benchmark Suite Performance (Estimated) 
Performance Rating 2 396 
IVlaximum User Loads 2,400 1.4 
Performance Rating 4 719 
Maximum User Loads 3,100 1.3 

LINPACK (IVIFLOPS) 
1000 X 1000 4 1,022 1.6 

McCalpin 
COPY 2 171 1.28 
scale 2 169 1.27 
sum 2 162 1.25 
triad 2 162 1.27 

-- - - -- 
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increase in tlie wroi-l<load will cause a deterioration in 
performance. T h e  AIL\? Maximum User Load Kating 
identifies ssstem capacity under  heav!! multitaslting 
loads, where disk performance also becomes a signifi- 
cant factor. T h r o u g l i p i ~ t  is the total a lnount  o f  work 
the system processes, mcasured in jobs per minute. 
Maximum throughput  is tlic point a t  w~hich the system 
is able t o  process the most jobs per m i n ~ ~ t c .  

T h e  LINPACIC benchmark is a linear equation sol\,er 
written in FORTRAN. I,INPACI< programs consist o f  
floating-point additions and multiplications o f  matri- 
ces. T h e  LINPACIC 1 0 0 0  X 1 0 0 0  sol\,es 3 1 , 0 0 0 - b y  
1,000 matrix o f  s imul t , lnco~~s  linear equations. T h e  
result is a measure of  tlie execution rate in millions of  
floating-point operations per sccond (MFLOPS). 

T h e  McCalpin benchmark is a public domain set o f  
programs that  measures the  effective memory band- 
\\kith available t o  each proccssor in MI3 per s e c o ~ i d .  
T h e  four parts o f th i s  benchmark, which are sho\vn in 
Figure 4 ,  perform a double-precision operation , j  
times, \vhcrc,j  increments 2 million times. Often,  thc  
four nurnbcrs are averaged t o  show an effective m e n -  
ory bandwidth rating for tlie configuratio~i.  

Table 2 shocvs estimated AIM Suite I11 Genchmark 
Suite performance scaling for  iUpliaScr\~cr configi~ra-  
tions o f  o n e  t o  four processor modules. These results 
validate improvements in the ability o f  I(N470 proces- 
sor modi~ les  t o  scale in mi~ltiprocessor configuratio~is. 

Summary 

'The implementation o f  tlie write-invalidate coherence 
protocol combined u~itll  s y ~ i c h r o n o i ~ s  clocking, 3 

duplicate tag store, and pipelining cacl~e-miss requests 

Icd t o  J more  efficient ilsc o f  tlie system bus band- 
\vidtli. A higher complexity design could lia\~e been 
realized but  only at  the risk o f  missing sclicdi~le dead-  
lines. T h e  l(h'470 proccssor de\$elopmcnt project 
achieved tlic goals ofAlpl~:~Ser\ier 2 1 0 0  compatibility 
and performance impro\~erncnt  that were cstablislicd 
early in the project. 
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Table 2 
AIM Suite I l l  Benchmark Suite Performance Scaling (Estimated) 

AlphaServer 2100 System 

Number of Processor Modules 1 2 3 4 

Maximum Throughput  JobslMinute 2,178 3,882 5,249 7,047 
Model 51250 Scaling 1 .O 1.8 2.4 3.2 

Maximum Throughput  JobslMinute 1,451 2,229 2,998 3,587 
Model 41275 Scaling 1 .O 1.5 2.1 2.5 
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The Design and 
Verification of the 
AlphaStation 600 
5-series Workstation 

The AlphaStation 600 5-series workstation 
is a high-performance, uniprocessor design 
based on the Alpha 21 164 microprocessor and 
on the PC1 bus. Six CMOS ASlCs provide high- 
bandwidth, low-latency interconnects between 
the CPU, the main memory, and the I10 sub- 
system. The verification effort used directed, 
pseudorandom testing on a VERILOG software 
model. A hardware-based verification technique 
provided a test throughput that resulted in a 
significant improvement over software tests. 
This technique currently involves the use of 
graphics cards to emulate generic DMA devices. 
A PC1 hardware demon is under development to 
further enhance the capability of the hardware- 
based verification. 

I 
John H. Zurawski 
John E. Murray 
Paul J. Lernmoi~ 

The Ihigh-pcrforrnancc AlpliaStation 600 5-scrics 
\vorkstation is based o n  the fastest Alpha micl-oproccs- 
soy to date-the Alpha 2 1 164.l The 1 / 0  subsystem 
~ ~ s c s  the 64-bit \fersion of the Peripheral Component 
Interconnect (PCI) and the Estendccl lnclustr!l 
Standard Architcct~~rc (EISA) bus. The AlphaStution 
600 supports three operating systems: Digital UNIX 
(formerly 1)EC OSF/l ), OpcnViMS, and ~Micl-osoft's 
Windo\vs NT. Tliis \\~orltstation scrics i~scs the 
1)ECchip 21 171 chip set designed and built by 
1)igital. These chips pro\,ide high-band\\,idtli, lo\\,- 
Intcncy interconnects bcn\rccn the CPU, tlic main 
mcmor!l, and the PC1 bus. 

This paper describes tlic architecture and featurcs 
of the AlphaStation 600 5-series \\forltst~tion 2nd the 
I)F,t;<:chip 2 1171 chip set. T11c system o\~er\ric\\, is first 
presented, follo\\,ed b!. .I cletniled disc~~ssion of the 
chip set. Tlic paper then ticscl-ibcs the cnchc anti mcm- 
ory designs, detailing lio\\r the memory design e\,ol\fcd 
from the \\~orkstatio~i's rcquire~ncnts. The latter part 
of the paper describes the fi~nctional verification of tlic 
workstation. Thc paper concludes with a description 
of the liard\\lare-based \,crific;ltion effort. 

System Overview 

The AlpliaStation 600 5-series ivorkstation consists of 
the Alpha 21 164 microprocessor, a third-lc\~cl cache 
that is external to the Cl'U chip, and a system chip set 
that interfaces benvecn tlic <:l'U, the metnor!: and thc 
P<:I bus. The DECchip 2 1 171 chip set consists o f  tlircc 
designs: a data slice, onc l'<:I interface ancl mcmor!,- 
sonti-ol chip (called the control chip), and n miscclla- 
ncous chip that includes tlic PC1 interrupt logic and 
flash I-end-only meiilory (KOIM) control. The Intel 
82374 and 82375 chip sets provide the bridge to thc 
EISA b t ~ s . ~  F i g ~ ~ r c  1 slio\\~s a block dingr.lm of tlic 
\vorkstation. 

The SysData bus transfers data ben\,ccn the PI-occs- 
sor, the CPU's tertiary cache, and the data slices. 
The 128-bit-\\,ide Sys1)atn bus is protected by cnor-  
correcting code (E<;<:) and is clockcd c\,cry 30 
nanoseconds (ns) .  T17c d,it,l slices provide n 256-bit- 
~\'idc data path to nicmoi-!I. Data transfers bct\vccn the 
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Figure 1 
A l p h a S t a t i o n  600 5 - s e r i c s  Workstation Block Diagram 

PC1 and the processor, the external cache (typically 
4 megabytes [MB]), and memory take place through 
the control chip and four data slices. The control chip 
and the data slices communicate over the 64-bit, ECC- 
protected 1 / 0  data bus. 

The major components and features of  the system 
board are thc following: 

The  Alpha 21164 n~icroprocessor supports all 
speed selections from 266  to 3 3 3  megahertz 
(MHz).  

The plug-in, external write-back cache (2 MB to  
16 MB) has a block size of  6 4  bytes. Access time is 
a multiple of  the processor cycle time and is 
dependent o n  thc static random-access memory 
( S W M )  part used. With 12-ns SlUMs, typical 
access times are 2 4  ns for the first 1 2 8  bits of  data, 
21 ns for remaining data. 

The system board contains a 256-bit data path to  
memory (284  megabytes per second [MB/s] for 
sustained CPU reads of  memory). 

From 32  MB to 1 gigabyte (GB) of main memory 
can be used in industry-standard, 36-bit, single 
in-line memory  nodules (SIMMs). All memory 
banks support single-sided and double-sided 
SIMMs. 

Eight option slots are available for expansion: four 
PCI, three EISA, and one PCI/EISA shared slot. 
The system design minimized logic o n  the mother 
board in favor of  more expansion slots, which 
allow custonlers to configure to thejr require- 
ments. The system uses option cards for small 
computer systems interface (SCSI), Ethernet 
graphics, and audio. 

The system supports 64-bit  PC1 address and data 
capability. 

Due to its synchronous design, the system's 
memory, cache, and PC1 timing are multiples of 
processor cycle time. 
The  system provides an X bus for the real-time 
clock, keyboard controller, control panel logic, 
and the configuration RAM. 
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Data Slice Chips 
Four data slice chips iiiiplc~iieiit tlie priniary data path 
in tlie system. <:ollectivcly, tlie data slices constitute a 
32-byte bus to  main memory, a 16-byte bus to the 
CPU and its secondary cache, and an 8-byte bus to the 
control chip (and then to tlie PC1 bi~s) .  

Figure 2 sho\\ls a block diagram of the data slice 
chip. The dara slice contains internal buffers that pro- 
vide temporary storage for direct memory access 
(DMA), I/O, and (:l'U traffic. A 64-byte victim buffer 
holds the displaced cache entry for a <:PU f i l l  opera- 
tion. Tlie Mcniory-Data-In register accepts 288 bits 
(incltiding EC(:) o f  memory data every 6 0  11s. Tliis 
register clocks the memory data on tlie optimal 15-11s 
clock to reduce nicmory latency. Thc mcniory data 
then proceeds to the CPU on tlie 30-ns, 144-bit 
bidirectional data bus. A set of four, 32-byte I/(> write 
buffers help masirnizc the perforniancc of copy opera- 
tions fioiii Inemor!/ to 1/0 space. A 32-byte buffer 
holds the 1 /0  rcild data. Finall!; tlicrc .ire a pair of 
1)MA buffers, each consisting ofthrce 64-byte storage 
areas. DA4A rend operations ilsc tnro of thcsc three 
loc'uions: the first liolcls the requested menlory data, 
and the other holds the external cache data in tlie case 
ofa  cac.hc hit. 1)iMA \\?rites use all tlirec locations: one 
location holtis the 1)bIA \iirite data, and the other nvo 
hold the memory and c;iclie data i~sed during a 1)MA 
\\,rite merge. 

Tlic data slice allo\vs for sim~~ltancous operations. 
For instance, the I/O \\,rite buffers can empty to tlie 
control chip (and then to the 1'CI) \vhile a concurrent 
read from CPU to main memory is in progress. 

Control Chip 
The control chip controls the data slices and main 
mcniory and pro\lidcs a f ~ l l y  compliant host intcr- 
hcc  to rlic 64-bit PC1 local bus. The 1'CI local bus 
is a Iiig11-performancc, processor-indcpeiidc~it bus, 
intcndcd to  i~itcrconncct peripheral controller com- 
ponents to a processor and nicmory subsysteni. Tlic 
PC1 local bus offers the promise of a n  industr!l- 
standard interconnect, suitable for a large class ofcom- 
putcrs ranging from personal computers to large 
scr\u-s. 

Figure 3 sho\.i's a bloclc diagram of the control chip. 
The control chip contains five segments of logic: 

The address and comniand interface to tllc Alpha 
2 1 164 microprocessor 

The  data path from the P<:I ~ L I S  t o  tlic d a t ~  slices 
by Incans of  the 1 /0  data 1x1s 

I)IMA address logic, including a 32-entry scatter/ 
gather (S/G) map (Tliis is discussed in tlic section 
Scattcr/Gather Address )Map.) 

I'rogrammed I/O rcad/\\.r-itc address logic 

Tlic memory address and control logic 

- 

BUS (TO 
CONTROL 
CHIP) 

----------  

Figure 2 
lhta Slice Block lliagram 
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COMMAND 

Figure 3 
Conrrol (:hi\> ]%lock l)iagr<11n 

CPU Interface A three-deep qLleile can hold two out-  
standing rcild requests, together \\,ith the addrcss ot  
a \lictil.n block associated \\lit11 one of these rcaci 
requests. 1311ring a DMA write, tlic Flush Address rcg- 
ister holds the address of the caclic block that tlic Cl'U 
IIILIS~ move to menlor!! (and invalidate in the cache). 
In this manner, tlic ssstem maintains cache colicrcncy 
duri~ig l>hllA \\,rite operations. 

PC1 Address Space Windows P(:I dcvices use addrcss 
space windows to access main memory. During discus- 
sions wit11 the dc\~elopers of tlic operating system, \ ~ c  
clcterminecl that f o ~ ~ r  P<:I nddrcss space \\,intio\\rs 
\\,auld bc desirable. EISA dc\riccs use one \\,indo\\.. 
S/G mapping ~ 1 s t ~  a second. The third \\indo\\; 
directly maps a con t iguo~~s  PC1 ;~ddress region to .I 
contiguous region of main nicnlory. The fourth \ \ in-  
doc\{ supports 64-hit P<:I addresses. F U ~ L I ~ C  system 
designs may provide more than 4 GP, ofmain ~~iemor-!I, 
thus requiring thc 64-bit addrcss \\,indo\\: 

DMA Write Buffering The control chip pro\,idcs ,I 
single-entr!, 64-byte l>i\/lA \\!rite buffer. Once the 
buffer is f 111, the data is transferred to the DlMA buffers 
in the data slices. The design can s ~ ~ p p o r t  97-MB/s 
DlMA \\,rite band\\fidth fro111 a 32-bit PC1 device. 

DMA Read Buffering IJI i~ddition to the n\lo 64-bvte 
buffers inside tlic data slicc, tlic control chip l i ~ s  t\iro 
32-byte DMA read buffers. These buffcrs prcfctcli 
DMA read clata \\?hen the initiating PC1 read com- 
mand so indicates. This arrangciilerlt provides data to 
a 64-bit PC1 device at a rutc of more than 260 MR/s. 

ScatterIGather Address Map The S/G mapping 
addrcss tablc trunslates c o n t i g u o ~ ~ s  PC1 addresses to 
any arbitrary memory addrcss o n  an S-kilobyte (Im) 
granularity. For sohvare compatibility with other 
Alpha system designs, the S/G map uses a transl~tion 
lookasidc buffer (TLR)."I7ic cicsigncrs enhanced the 
TLB: First, cncli of the eight TLB entries llolds h i ~ r  
consccuti\.c page table entries (PTEs). This is ~lscfi~l  
\\hen addressing lnrgc 32-KI3 c o n t i g ~ ~ o u s  r c g i o ~ ~ s  on 
the PC1 bus. For instance, thc NClIS10 P(:I-to-SCSI 
de\~ice rccl~~ircs nearly 2 4  IU3 o f  script space.4 Second, 
s o h \ ~ a r e  can loclc as many as one  half of tlie TLR 
entries to prevent the hard\\,;lrc-controlled rcplacc- 
ment illgorithm from displacing them. This feature 
reduces T1.R thrashing. 

Programmed I10 (PIO) Writes The designers fi)cuscd 
on improving the performaucc of the fi~nctionalit!r 
that allows 3 processor to copy 6-0111 1neliior)f to  1 / 0  
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space. High-end graphics device drivers use this func- 
tionality to load the graphics command into the 
device's first-in, first-out (FIFO) buffer. The data slice 
has four buffers, and the control chip contains the cor- 
responding four-entry address qilcue. Four buffers 
hold enough I/O write t r a n ~ ~ c t ~ o n s  to mask the 
latency of the processor's read of memory. The control 
chip provides t\vo additional 32-byte data buffers. 
While one drives data on the PC1 bus, the other 
accepts the nest 32 bytes of data from the data slices. 

Memory Controller The memory controller loglc in 
the control chip supports as many as eight banks of 
dynamic random-access memory (DRAM). The  cur- 
rent memory backplane, however, provides for only 4 
banks, allo\ving from 32 MI3 to 1 G13 of memory. The 
nlernory controller supports a \ \ N I ~  range of D l U M  
sizes and speeds across mult~ple banks in a system. 
Registers program the D M  timing parameters, the 
DRAM configuration, and the base address and size 
for each memorv bank. The meniory timing uses a 15- 
11s grani~lar~ty and supports SIMM speeds ranging 
from 80 ns do\vn to 50 ns. 

Cache Design 

The Alpha 2 1 164 microprocessor contains significant 
on-chip caching: an 8-KB virtual instruction cache; an 
8-KK data caclic; and a 96-KR, 3-\vay, set-associative, 
\\!rite-back, second-level mixed instruction and data 
cache. The system allows for an external caclie as a 
plug-in option. This cache is typically 2 MB to 4 MB in 
size, and the block size is 6 4  bytes. The access time for 
the esternal caclic depends on tlie C:PU frequency and 
the speed variant of the cachc. Typically, the first data 
requires 7 to 8 CPU cycles; s i~bsecl~~cnt  data items 
require 1 o r  2 fc\%cr cycles. The a c t ~ ~ a l  value depends 
on both the minimum propagation time through the 
cache loop and on the CPU c!lcle time. The external 
cache data bus is 1 6  bytes wide, providing almost 
1 GB/s of ba~idcvidth with a 333-MHz CPU and a 
5-cycle cuchc access. 

Tlie processor al\vays controls tlie external cachc, 
but during a cachc miss, the systenl and the processor 
\vork together to update tlie cache or  displace thc 
cache victim. For an csternal cachr miss, the system 
performs ~ O L I I *  16-byte loads at 30 ns. Any dirty caclie 
Ibloclt is sent to the victim buffer in the data slices, in 
parallel cvith the rcad of  memory. Fast page-mode 
memory \\,rites arc used to \\.rite the victim into mem- 
ory quickly. (This is discussed in thc section ~Meniory 
Addressing Sclicmc. ) 

During 1)MA transactions, the system interrogates 
the Cl'U for rclc\lant cache data. l'licre is no  duplicate 
tag in the system. DlMA reads cause main meniory to 
be read in parallel with probes of the CPU's caches. If 
a cache probe hits, the cachc data is uscd for the DlMA 

read; otherwise main memory data is used. Each DMA 
write to memory results in a FLUSH command to the 
CPU. If the block is present in any of  the caches, then 
the data is sent to the DMA buffers in the data slice 
and the cache bloclts are invalidated. This cache data is 
discarded if the DMA \\.rite is sent tc) a complete block. 
In the case of a DMA write to  a partial block, the DJMA 
write data is merged with cachc data o r  the memory 
data as appropriate. In this manner, the system main- 
tains cache coherency, removing this burden from the 
sohvare. 

Memory Bandwidth 

Tlie Jnernory bandwidth realized by the CPU depends 
on a number of factors. These include tlie cache block 
size, the latency of the meniory system, and tlie data 
bandwidth into the CPU. 

Cache Block Size 
The Alpha 2 1  164 microprocessor supports either a 
32- or  64-byte cache block size. The Alphastation 600 
\vorkstation uses the 64-byte size, ulhich is ideal for 
many applications, but suffers on  certain vector-type 
programs \vith contiguous Iiiemory references.3 An 
example of  a larger block size design is the RISC 
Systern/6000 Model 590 workstation from Inter- 
national Business Machines C ~ r p o r a t i o n . ~  This design 
supports a 256-byte cache bloclc size, allowing it to 
amortize a long memory latency by a large meliiory 
fetch. For certain vector programs, tlie Model 590 
performs well; but in other applications, the large 
block size wastes bandwidth by fetching more data 
than the CPU requires. 

The Alpl~aStation 600  provides a hard\vare fea- 
ture to gain the benefit of a largcr block size when 
appropriate. The Alpha 2 1 164 nlicroprocessor can 
issue a pair of read requests to mernor!.. If these two 
reads reside in the saliie memory page, the control 
chip treats them as a single 128-byte memory rcad. In 
this way, the system approsi~nates the benefit of  a 
larger block and acliie\~es 284 MR/s of memory read 
bandwidth. 

Memory Latency 
Tlie 180-ns memory latency consists of hve parts. 
First, the address is transferred from the microproccs- 
sor to the control chip in 15 11s. The control chip sends 
the rnernory ro\\r-address p ~ ~ l s e  15 ns later, and tlie 
data is received by tlie data slices 105 ns later. The data 
slices require 15  ns to  merge the \\rider memory data 
onto  the narrower SysData bus, and tlie last 30 ns are 
spent updating the external criche and loading the 
Alpha 21 164 ~nicroprocessor. 

Although the 105 ns to acccss the memory may 
appear to be generous, the designers had to meet tlie 
significant challenge of  implementing the rcquired 
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1 GB of memory with inexpensi\fc 36-bit SIiMMs. The 
JEDEC standard for these SIlMMs only specifies thc 
pinning and dimensions. I t  docs not specifv the etch 
le~igtlis, which can \lary by many inches from \,endor 
to \lendor. Neither does it speci% the electrical loading 
distribution, nor the D M b l  type or  location (1-bit 
parts lia\le 2 data loads \\Thereas 4-bit parts ha \ r  a sin- 
gle, bidirectional load). With a 1-GB memory system, 
the loading \lariation benvccn a lightly loaded memory 
and a firlly loaded rnernor!i is significant. All these fac- 
tors contributed to significant signal-integrity prob- 
lems \\,it11 seirere signal reflections. Tlic mcmory 
mother-board etch was carefi~lly placed and balanced, 
and numerous ter~nination sclicmcs were in\rcstigatcd 
to dampen the signal reflections. 

Data Bandwidth 
Tlie SysData bus transfers dam benvccn the processor, 
the tertiary cachc, and the data slices. This 128-bit bus 
is clocked every 30 ns to satis+ the write tinii~ig of the 
external cache and to  bc synchronous with the I'(:I 
bus. Typical memory DRAM parts cycle at 60  ns, thus 
requiring '1 32-bytc-\vide memory bus to mntcli tlic 
bandwidth of the SysData bus. Tlie data slice chips 
reduce each 32-byte-\vide memory data tl-ansfcr to 
nvo 16-byte transfers on tlic SyslJata bus. Consc- 
quently, tlie n~emory system is logically cquivalcnt to 
a 2-\\~'1y interlcavcd memory design. 

Nc\v memory technologies \\lit11 supel-ior data 
band\\~idtlis are becoming a\,ailablr. S y n c h r o ~ i o ~ ~ s  
D W M s  arc an exciting teclinologv, but they lack 3 

firm standard and are subject to s signiticant price prc- 
mium o\,cr plain 5-volt DRAlM parts. Estenclecl-data- 
out  (E1)O) DRAMS allo\v greater burst mcmory 
band\vidtli, but tlie latency to the first d3ta is 11ot 
reduced. Consecl~~ently, the mcmory band\\.idtli to 
the CPU is not significantly improved. The major 
advantage of using E D 0  parts is tlicir easier meniory 
timing: The output data of  E D 0  parts is valid for a 
longcr period than standard 1>1L41Ms. In addition, an 
E D 0  memory can be cycled a t  30  ns, \\lhicll allo\\ls a 

128-bit memory width instead of the 256-bit width. 
The designers would have ~ ~ s c d  E D 0  parts had they 
been .l\railable earlier. 

Memory Addressing Scheme 

The adopted addressing schenle helps iniprovc m e n -  
ory bandwidth. Whenever tlic CPU requests a new 
block of data, the \vrite-back cache tilay lia\~c to dis- 
place cLll.rent data (the \,ictim block) to allo\\ spncc fix 
the incoming data. The \\,riting of the victim block to  
mernorjr s l i o ~ ~ l d  occur qi~ickly, other\\.ise it \\.ill 
impede thc CPU's request for nc\\. data. 

F i g ~ ~ r c  4 sho\\fs tlic mctlioti used to  adcircss the 
external caclic aiid  memo^-p. The ClPU address 13 1 :6> 
directly accesses the cachc: rlic lo\\r-order bits < 19:6> 
form thc indcs for a 1-MI1 CLICIIC, and the rcmnini~ig 
bits <31:20> for111 the cnchc tag. Thc Cl'U addrcss 
docs not directly address memory. Instead, tlic Inem- 
ory addrcss interchanges the indes portion of the 
addrcss field with the tag portion. Tlie number of 
addrcss [,its interchanged ricpcnds o n  the yo\\. ,~nd col- 
umn dimensions of the 1>IW?vI ~ ~ s e d .  

For the s;il<e of disc11ssio11, ~ S S L I I I I C  a 4-megabit 
( M b )  l)R\lM configured \\.it11 1 1 ro\\. addrcss bits and 
11 column address bits. Hence, bits <30:20> inter- 
change \\.it11 bits <16:6>, and the remaining bits select 
tlie memory bank. This addressing scheme has the fol- 
lon/ing effect: a CPU addrcss tliat is incrementi~~g by 
units of 1 A413 no\v accesses consecuti\,e rncmo1.y loca- 
tions. 1>1UM memory pro\*icics a fast addressing 
modc, called page modc, \\.licnc\,cr accessing consccu- 
tive locations. For a 1-IMR cachc, objects separated by 
a multiple of I iMB correspond to cache victim bloclts. 
Conscqucntly, a CPU read request of Iiicmory t11;it 
involves a \,ictim \\!rite to mcmor!r gains the hcnctit of  
page modc and proceeds f.~stcr than it \vould \\zit11 a 
tradition;illy nddressed mclnory. 

Although this address scheme is ideal fix CPU 
memory accesses, it creates tlic converse effect for 
DlMA n-n~isnctions. It scatters consccuti\ie 1>MA blocks 
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by 1 MB in nielnory. These locations hll outside tlie 
DRAM page-mode region, resulting ill lower perfor- 
mance. The solution is to enlarge the memory blocks; 
for example, start the memory interchange at bit <8> 
instead of bit <6> .  This compromise allo\\ls 256-byte 
DMA bursts to run at fill1 speed. Slightly fewer victim 
blocks, however, gain the benefit of page mode. 

The bit assignment for this address scheme depends 
on the row and column structure of tlie DRAM part 
and on the external cache size. Power-011 s o h a r e  
automatically configures the address-interchange 
hardsvare in the s!.stem. 

Design Considerations 

In this section, we discuss the dcsign choices made 
for system clocking, timing veritication, and tlie 
application-spccifc integrated circuit (ASIC) design. 

System Clocking 
The cliip set is a synchronous design: The system clock 
is an integer ~iiultiple of  thc CPU cycle t i~ne.  
Consequently, tlie PC1 clock, the memory clock, and 
the cache loop are all synchronous to  each other. The 
designers avoided an as!rnchronous design for two rca- 
sons. It suffers tiom longer latencies d ~ ~ e  to the syn-  
chronizers, and it is more difficult to veritjr its timing. 

Unlike tlie memory controller, which uses a doublc- 
freque~icy cloclc to provide a finer 15-11s resolution for 
the memory timing pulses, the s!~ncIironous design of 
the chip set uses a single-phase clock. This simplified 
clocking scheme eased the timing \ferification work. 
Phase-locked-loop (PLL) deviccs control tlie cloclc 
skew on the system board and in the ASICs. Tlie PLL 
in the ASICs also generates the double-frequency 
clock. 

Timing Verification 
The con~plete system was verificd for static t ini~ng. 
A signal-integrity tool similar to  SPICE \\{as used to 
~nalyze all tlic module etch and to feed tlie delays Into 
the modulc t~rning verification cffi)rt. Thc final ASIC 
timing verification used the a c t ~ ~ a l  ASIC etch dela!ls. 
This process WAS so successhl that the actual hard\vare 
svas free of nnv tinling-related bug or signal-integrity 
problem. 

ASIC Design 
The cliip dcsigncrs chose to implcmcnt the gate array 
using the 300K technology from LSI Logic Corpo- 
ration. The control chip uses ovcr lOOK gates, and 
each data slice consumes 24I< gates. Originally, the 
designers considered the slower 100IC technology, but 
it proved unable to satis@ the timing recluirenients for 
a 64-bit-wide PC1 bus. 

Tlie designers used the VElULOG hardware 
description language to define all tlie logic within the 
ASICs. Schematics were not used. The  SYNOI'SIS 
gate-synthesizer tool generated the gates. The  design- 
ers had to partition the logic into small 3,000 to S,000 
gate segments to allow SYNOPSIS to complete within 
12  to 15  hours on a DECstation 5000 workstation. 
Currently, the same synthesis requires 1 hour on the 
AlphaStatiol~ 600  5/260. The designers developed a 
custom program that helped balance the timing con- 
straints across these small gate segments. This allowed 
the SYNOPSIS tool to focus its attention on the scg- 
ments \vitIi the greatest potential for improvement. 

Performance 

Table 1 gives the bandnlidths of the workstation for 
the 32-bit nnd 64-bit PC1 options. A structural siniula- 
tion niodel verified this data, using a 180-ns memory 
latency and a 30-11s system clock. The 285-MB/s read 
band~vidth of  tlie CPU memory is impressive consid- 
ering that the memory systcni is 1 GB. Eventually, the 
memory size will reach 4 GR when 64-Mb memory 
chips become available. 

The 1 / 0  \\:rite band\\,idtli is important for certain 
3D graphics options that rely o n  1'10 to f i l l  tlie 
command queue. Current high-end graphics devices 
require approximately 8 0  MB/s to 100 MB/s. The 
213 MB/s of 1 /0  write bandwidth on  the 64-bit PC1 
can support a double-headed 3D graphics configura- 
tion \\itliout saturating the PC1 bus. Other 3D graph- 
ics options use large DMA reads to fill their command 
queue. This approach offers additional bandjvidth at 
263 MB/s. The system did not optimize DMA writes 
to the same extent as DMA reads. Most options are 
amply satisfied with 100 MB/s of bandwidth. 

Table 1 
Bandwidth Data 

Transaction 32-bit 64-bit 
Type PC1 PC1 

CPU memory read: 
64 bytes 284 284 
I10 write: 
Contiguous 32 bytes 119 213 
Random 4 bytes 44 44 
I10 read: 
4 bytes 12 12 
32 bytes 5 6 5 6 
DMA read: 
64 bytes 79 112 
8 KB 132 263 
DMA write: 
64 bytes 97 102 
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Table 2 gives the performance for several bencli- 
marks. Tlie data is for a system with a 300-MHz 
processor and a 4-MB cache built out  of 12-12s S U M  
parts. The SPECmark dntn is preliminary and clrarly 
\vorld-class. The LINl'ACI< clata is for double- 
precision operands. Even greater performance is pos- 
sible with faster cache options (for instance, a cache 
using 8-11s parts) and faster speed variants of tlie 
Alpha 21 164 microprocessor. 

Functional Verification 

The fi~nctionnl verification is an oilgoing effort. 
Three bctors contribute to the nccd for greater, Inorc 
efficient \lcrification. First, the design complesity of  
e.1~11 11e\\l PI-ojcct i~~crcascs with tlie q ~ ~ e s t  for 111o1-e 
performance. Next, the cluality cspcctations arc I ~ S -  
ing-the prototype hardlvare must boot an operating 
system \\it11 no liard\\fare problems. Finally, time to 
market is dccrc;~sing, PI-o\riding less time for f i~nc- 
tional veriti cation. 

A number of projects at Digital have succcssf~~lly 
used the SEGUE higli-level I ang~~age  for fi~nctional 
\~erif icatio~~.~. '  SEGUE allo\\,s simple handling of ran-  
domness and percentage \\~eigIitings. As an esa~nplc, n 
code secluc1ice niay express that 30  percult of the 
DMA tests sliou Id target the scattcr/gather TLB, and 
that the DMA length should be selected at random 
from a specjfied range. Each evocation ofSEGUE gcn- 
erates a tcst sequence with difkrent random \,aria- 
tions. Thcsc test sequences are run across many 
\vorkstations to achieve a high throughput. The proj- 
ect uscd 20 \\,orlcstatio~is for 12 montlis. 

The test suite focused on  the ASIC verification in 
the contest of the complete system. I t  \\,as not a goal 
to \reri@ the Alpha 2 1 164 microprocessor; neitlicr \\.as 
the EISA logic \,crifed (tliis logic \\,as copied fro111 
other projects). The test en\rironment uscd the 
VEIULOG simulator and included tlie Alpha 2 1 164 
behavioral modcl, a PC1 tra~isactor (a bus fiuictional 
model), and '1 memory and cache modcl. Tlie SEGUE 
code gcncratcd (:-language ccst programs for Cl'U- 
to-nlemory and CPU-to-1/0 transactions, as as 
Dh4A scripts for the PC1 transactor. 

The goal o f  \.crificatio~i \\'elit beyond ensuring tli.it 
the prototylx Ii~l'dware f~~nct ioncd correctly. Thc 

Table 2 
Benchmark Performance 

Benchmark Performance 

LINPACK 100 X 100 
LINPACK 1000 X 1000 

major objecti\le was to ensure that the hardware is reli- 
able 111a1ip )'cars hence, when new, as yet undeveloped, 
PC1 options populate the s)rstem. Today, the l"CI bus 
uses only a sninll number of expansion option cards. It 
is q ~ ~ i t c  probable that a perf~~nctory  verification oftlie 
PC1 logic \\.auld result in a \\,orking system at the time 
of hardware po\\rer-on 2nd for Inany months tliere- 
after. I t  is only as more option cards become a\~nilablc 
that the likelihood of systcni failure grocvs. Conse- 
quently, the verification team developed a detailed 1'CI 
transactor and subjected tlic PC1 interface in the c o ~ i -  
trol chip to lica\~!, stressors. The comple.\it\f of the PC1 
transactor F J ~  exceeds that o f  the PC1 intcrfilcc logic 
\vitlii~i the ASIC. The reason is that the ASIC: design 
implements only the subset of the PC1 arc1iitcct~11-e 
appropriate to its design. The I'CI transactor, lie\\,- 
ever, has to  emulate any possible PC1 de\ricc and thus 
must implement all possible cases. Furthermore, it 
ni i~st  modcl poorly designcd PC1 option cards (tlie 
\vord "slioi~ld" is comliion in tlic PC1 specification). 

Thc vcrifcation experience included the following: 

Directed tests. Specific, directed tests arc ~iccdcd 
to  supplement pscudorancio~n testing. For cs,im- 
plc, a certain intricate sccluc~icc of e\.cnts is best 
\verified \\,it11 a specific test, rather than relying o n  
the random process to  generate the sequence by 
cliancc. 

Staff hours. I n  prior projects, tlie hard\\/arc tcam 
exceeded tlie \.crification tcam in size. O\lcr the 
years, the iniportancc of  \,critication has gro\\-n. 
O n  tliis project, t\vicc as much time \\.as spent o n  
the \,crifcntion effort ns on thc hardu,arc coding. 

Dcgrcc of I-andomncss. Pure randomness is not 
al\vays desirable. For instance, an i~itercsti~ig tcst 
can he conducted \vlicn 3 1)MA \\rrite nncl a (;PU 
rend tnrgct tlie same bloclc in memor!r (alrliougli, 
for coherency reasons, not tlie samc data). 
Random addresses arc unlikel!, t o  create this 
interaction; instead carefill address scltction is 
l1ccCSS;lI')~. 

Error tcsts. The pseuclornndo~n test process added 
a different error condition, s i~ch  as a PC1 address- 
ing error, uitliin each tcst. The  hard\\.arc logic, 
L I ~ O I I  dctccti~ig the error, \ \ r o ~ ~ I d  \'ccto~- b!' sc~icii~ig 
an interrupt to the error-handling code. The Inn- 
dler \\lould check if the liard\\,are had captu~.cd the 
corrcct error status and, if it had, \voi~ld ~ C S L I I ~ ~ C  

tile csccution of t l ~ c  tcst program. 7'his strategy 
uncovered ~ L I ~ S  \\'hen the linrd\\rare c o n t i ~ i ~ ~ c d  
functioning after- an error co~idit ion,  only to  fail 
man!, cycles later. 

H~ll-d\\~arc simulation ~~ccclcrator. Thc project 
team ciid not use a liardwarc simulation accclcra- 
tor for 3 n ~ ~ ~ i i b c r  of  reasons. 111 the early pliasc of  



\rerification, bugs arc so  frcclucnt that there is n o  
\,aluc in finding morc bugs. The  limiting resource 
is tlie isolation ,ind fixing of the bugs. Second, 
porting tlic codc o ~ i t o  thc hardware simulator 
LISCS I-esoi~rces t l i ~ t  arc bcttcr spc~ i t  impro\-ing the 
tcst suite: running poor tcsts faster is of n o  value. 
Finally, the hard\varc-based verification technique 
offcrs far greater perfor~iiancc. 

Rug curvc. The projcct team maintained a bug 
cur\.c. The first-pass ASIC \\.as released \\(hen the 
bug; cur\<c \\'as falling b i ~ t  \\,.is still abo\'e zero. The 
tests \\.ere s t r ~ c t ~ ~ r c d  to test tlic importallt f i~nc-  
tionality first. Tliis nllo\\~ccl verification to con- 
tinue \\~liilc tlic operating system cic\,elopcrs 
debuggcd their coclc on the prototype. To  help 
this strategy, any pcrfortiiancc-c1il1:111ce1i1e11t logic 
in the ASICs could be disablcd in case an error \\,as 
discovcrcd in that logic. Espcricnce on prior pro- 
jects had shown that such logic has a predilection 
toward bugs. 

Hardware-based Verification 

Tlie Iiard\\,a~-c-based verification Mias developed to 
achieve a signif cant, ti\c-orders-of-ni;ig~~it~~dc improve- 
ment in tcst t l ~ r o ~ ~ g l i p i ~ t .  Tlic CPU pcrfor~us pseudo- 
random memory a~ici I/O-space transactio~is, and a 
number of lY:I graphics options emulate generic PC1 
dcviccs. l'lic harci\\w-c-bascd verification has so far 
i~nco\~crcd thrcc bugs. To  f ~ ~ r t h c r  impro\,e this tech- 
nicluc, .I liard\\~arc PC1 cicmo~i is under dc\~cloprnent. 
This dc\.icc has the capability to mimic nny PC1 dc\rice. 

The random nature of tlic tcst suite ~iieans that thc 
bug curve has a long tail: Tlic probability of finding 
thc nest bug decrcascs as each bug is discovel-ed. For 
csample, an cnrlicr projcct tea111 disco\,ered the last 
bug akcr six months but uccdcd only one week to  f nd 
tlie penultimate bug. Grcatcr tcst t l i r o ~ ~ g l i p ~ ~ t  helps 
unco\.cr the final bug(s) sooner. O L I ~  project team 
achie\rcci grcatcr t l i ro~~gl iput  by migrating the test 
strategy o~ito tlic acti~nl liard\varc. 

A self-checking, pscudora~ldom, test-generating 
progr.i~n runs on tlic ha~.d\varc, testing tlic memory, 
the c.~chc, and tlic I'<:I. On clctccting a mism'ltch, the 
soft\ir,~~.c triggers a digital anal yzcr connected to visi- 
bility points 011  tlic hard\\~arc. (:urrently, a number 
of I'C:I graphics cards arc emulating different DMA 
dcviccs. E\~cnti1;111)1, a custom PC1 test device, the PC1 
demon, will repl~icc tlic graphics cards and provide 
grcatcr tlcsibility and fi~nctionalit), (especially \\iith 
regard to error cases). 

The soft~varc-based \~crification, running across 20  
\\:orkstations, avcragccl approxiniatcly 100 DhlA 
ti-ansactions per minute (\vith concurrent memory and 
P I 0  ;lcti\;ity). The hard\varc-based verifi cation runs 6 0  
million compnrablc 1)MA tra~lsactions per minute per 

\\lorkstation. Tliis 5-orders-of-~i iag~~i t~idc  impro\fe- 
ment suggests that all the tests performed in the past 
12 months of sohvare-based \.erif cation can be coni- 
pleted during tlie liard\\lare-based debugging in 5 
minutes. 

A secondary, but very iiscfi~l, adva~itagc ofliard\\rare- 
based testing is the ability to stress the chips clectri- 
cally. For instance, by selccti~ig a data pattern of 1's 
and 0's for tlie DMA, memory, and P I 0  tcsts, verifica- 
tion engineers can severely test tlie capability of the 
chips to s\\litcli si~nultaneo~~sly. 

Hardware Test Strategy 
7 - .I he SEGUE s o h \ ~ a r c  proved n o t  to bc useft11 for tlie 
hard\\lare-based \icrification effort. Instcacl ne\\  soti- 
\\!are was \vritten in the C Iangi~ng-c for tlic follo\\!ing 
reasons: 

Verification must Iia\lc fill1 control o f the  hard\\larc 
and thus cannot run on  top of an operating sys- 
tem. Consequently, SEGUE and the operating 
system functionality arc not a\~ailable. 

Unlike the softwarc environment, \lisibility into 
the logic signals is restricted in tlie hard\vnre cnvi- 
ronmcnt. The  test software has to  be \\rritten to  
make debugging simpler. 

O n e  possjblc strategy is to down1o:id the SEGUE 
tests onto  the hard\varc and t h i ~ s  tre;it the hard- 
\J8arc as a s i~i l i~ la t io~i  ;~cccIcr.itor. Ho\\,c\.er, tlie 
resultant performance impro\re~ncnt is small: The  
SEGUE codc t a l a  2 minutes to gcncr,lte a l -hour 
sofn\.are-sini~~lation run. Tlicsc tcsts r u n  :\cross 20 
urorkstntions \\lit11 a resultant th ro~~g l ipu t  of 1 test 
e\.er!$ 3 minutes. Assuming the same test csccutcd 
in zero t i~ i ic  on  tlie l i~rd\snrc,  the total tcst time 
\\!auld equal 1 test c\*cry 2 minutes-a minor 
impro\lement. 

Tlie liard\vare-based \,crifi cation sohvarc relics on 
the following rationale: Tlic liarJ\vare is almost totally 
bug free, and any remaining bugs ;Ire most likely to be 
due  to a rare interaction of events. Indeed, one of tlie 
bugs discovcrcd was a special-case 1)MA PI-cfetcli coin- 
ciding with a niemory refresh. C:onsccli~cnrly, no rest is 
likely to detect morc than one bug. For instance, if a 
DLMA operation suffcrs an error, then it is unlikely that 
a s~tbsecl~~ell t ,  identical 1)lMA operation \ \ t i l l  suffer an 
error. The second DMA \vill espericncc a different set 
of interactions inside the chip set. 

The adoptcd test environment has nvo graphics 
cards, each pcrforniing ide~lticnl 1)MA operations to 
nvo different regions of riicmor!l. 13cca~1sc of tlic serial 
nature of the I'CT bus, lio\\~cvcr, thcsc cards will 
perform tlie DMA operations at different times. 
Furtherniorc, other traffic on the PC1 bus (for 
instance, the CPU ~vill be executing random PIO) \\till 
h r t h e r  randomize tlie cards' bcIi;i\ior. While tlie 
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DMA transactions run, self-checking, random CPU 
traffic to memory and I/C) will also run. These events 
provide the random mis of interacting instructions. At 
the completion of the test, a miscon~parsion of the nvo 
DlMA write regions indicates an error. 

Graphics Demon 
A number of I'CI option c'~rds were investigated as 
potential PC1 demon cards. The requirements for a 
PC1 demon card are twofold: it must be able to  per- 
form DMA of various lengths, and it must have meni- 
or)! for tlie storage of  DMA and P I 0  data. The DEC; 
ZLXp-El graphics card was selected because it offers 
the Following advantages: 

Independent DMA. Most PC1 options start a 
DMA operatio~i instantly after tlie CPU has writ- 
ten to a specific register in the option. This is 
undesirable because it makes it impossible to 
emulate options that start DMA operations 
autonomously (e.g., a network card). To break 
this coupling, the test program should first make 
the graphics card paint a portion of the screen. 
While the graphics device is busy, tlie graphics 
command FIFO buffer is filled with the DMA 
comniands. The graphics device will not  start tlie 
DMA until it has finished painting. Furthermore, 
the delay is progranin~able by varying the number 
of pisels painted. 

Programmable 1)MA. The graphics card allo\vs 
tlie DMA to  be an\! size, whereas most PC1 
options are constrained to  a fixed length. 
Moreover, it is possible to  arrange for PC1 discon- 
nects o n  a ~I IMA read. The graphics card nlodifies 
incoming data with the contents of tlie frame 
buffer (e.g., frame buffer = frame buffer XOK 
data). This feature throttles the internal band- 
width of  thc graphics card, \vliicli disconnccts it 
from the PCI. 

Frame buffer. The graphics franie buffcr is the tar- 
get of the 1)MA and P I 0  operations. A useful soft- 
ware debugging feature \\?as to  observe the frame 
buffer while running the tests. 

PC1 Demon 
The PC1 denion is designcd to mimic any possible PC1 
device. Sofnvare has total control of  the behavior of  
tlie device, including the assertion of error conditions 
(e.g., parity crrors on  any specified data word). The 
architecture of the PC1 dcnlon is very siniple so  that 
the debugging of the PC1 demon is straightforward. 
(The objective is to fincl bugs in the chip set and not in 
the PC1 demon.) Consequently, the complexity in 
using the PC1 demon is co~nplctely in the sohvare. 

The ideal architecture of a PC1 demon is a I.irge 
memory whose output drives tlie PC1 data and control 
signals directly; the s o h a r e  programs the desired PC1 

operation by loading the appropriate pattern into this 
nienior)~. In  reality, the architccturc o f the  PC1 demon 
has to diverge from this ideal model for at least nvo 
reasons. First, the PC1 denion has to  be able to emu- 
late the fastest possible PC1 device, and this forces the 
use ofan ASIC. Ho\\fever, ASICs have limited memory 
capacity. I t  is desirable to store the scripts for many 
thousa~lds of DMAs this memory. The scripts arc 
approximately 100-bits \\,idc (64-bit PC1 data and 
control) and require se\wal megabytes of niemor!: 
This menlory requirenicnt forces the design to 11sc 
external nienlor!r. Sccond, the PC1 architecture has a 
few handsIial<e control signals that require tlie ~1st  of 
a fast state machine. 

The PC1 demon has thc fi~nctionality to act as a his- 
togram unit (a PC1 event counter). Internal counters 
measure timing information sucll as I)MA latency and 
the frequency of specified PC1 transactions. The PC1 
demon observes these states by snooping tlic PC1 bus. 

Summary 

The AlphaStatio11 600 5-series workstatiol~ ofkrs high 
compute performance, together wit11 substantial 1 / 0  
subsystem performance. The project team designed a 
low-cost, 1-GB memory system with a 180-ns mcni- 
or!! latency. Timing verification and placement of the 
plug-in, external cache resulted in a workstation with 
considerable flexibility in memory cspansion, cache 
variants, and I/O option slots. 

The  most time-consuming portion of the project 
was the fi~nctional verification. T o  datc, different rest 
programs Iia\rc run concurrentl!~ across 20 Iiig11- 
performance ~vorkstations, day and  light, fix o \ r r  12 
months. The release of the prototype chip set 
occurred after 5 months of \.crification; this chip set 
successfi~lly booted the operating system. The remain- 
ing 7 months ofvcrification \\)ere focuseti on the lower 
priority functionality (e.g. ,  error cases and slo\v nicm- 
ory configurations). 

The hardware-based verification approach proved 
its value by uncovering three bugs. The most signif - 
cant bug involved the interaction of a n ~ ~ n i b c r  of 
events, including an optimized, prefetcliing 1)MA read 
and a nlemory refresh. The verification process helped 
create a very high quality product. 
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Circuit Implementation 
of a 300-MHz 64-bit 
Second-generation 
CMOS Alpha CPU 

A 300-MHz, cus tom 64-bit VLSI, second- 

genera t ion Alpha CPU chip has  been developed.  

The chip w a s  des igned in a 0.5-krn CMOS 
technology using f o u r  levels of  metal .  The d i e  

size is 16.5 m m  b y  18.1 mm, contains 9.3 million 

transistors, ope ra te s  at  3.3 V. a n d  suppor t s  

3.3-Vl5.0-V interfaces. Power  dissipation is 5 0  W. 
It contains a n  8-KB instruction cache; a n  8-KB 

d a t a  cache; a n d  a 96-KB unified second-level 

cache. The chip can issue f o u r  instructions per  

cycle a n d  delivers 1,200 mipsl600 MFLOPS 
(peak). Several no tewor thy  circuit a n d  imple- 

menta t ion techniques  w e r e  used to a t t a in  t h e  

t a rge t  opera t ing frequency. 

William J. Bowhill, Shane L. Bell, 
Bradley J. Benschneider, Andrew J. Black, 
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Shekhar Mehta, Rober t  0. Mueller, 
Ronald P. Preston, Sribalan Santhanam, 
Timothy A. Shedd, Michael J. Smith, 
Stephen C .  Thierauf 

Tlie Alpha 21 164 chip is a 300-mcgnlicrtz (MHz) ,  
quad-issue, custom \,cry large-scale integration (VLSI) 
implementation of the Alplia arcliircct~~rc tliat dcli\~ers 
peak performance of 1,200 n~illion instructions per 
second (niips)/600 nlillion tloating-point operations 
per second (IMFLOPS). The chip is designed in a 
0.5-micrometer ( ~ m )  complcmcntary metal-oxide 
semiconductor (CMOS) technology using four levels 
ofmetal. The die measures 16.5 ~nilli~nctcrs ( m m )  by 
18.1 nlm and contains 9.3 million transistol-a. It opcr- 
ates at 3.3 \lolts (V)  n~ld s ~ ~ p p o r t s  3.3-V nnd 5.0-V 
interfaces. The chip dissipates 50  wrutts (W) at 300 
MHz (internal clock frequency). S\vitcliing noise o n  
the power supplies is controlled by an  on-chip distrib- 
uted coupling capacitance bcn\,ccn po\ver and ground 
of 160 nanofarads (nF). The chip contains an 8-kilobyte 
(IU3), first-level ( L l )  instruction cachc; nn 8-IU3 L1 
data cache; and a 96-IU3 sccond-le\lel (L2)  unif cd ciatn 
and instruction cache. 

This paper focuses on thc circuit implementation 
of  tlie Alpha 21 164  CPU. Space does not permit a 
description of the complete dcsign process utilizcd 
throughout the project. I~isteaci, somc of the signif - 
cant circuit design challenges cncounterccl d ~ ~ r i n g  tlic 
project are discussed. T11c papcr begins \\lit11 nn intro- 
ductory o\~er\rie\v of thc chip micronl-cliitect~~re. It 
continues with a dcscriptio~l of the floorplan and tht: 
physical layout of the chip. Tlie next section discusses 
the clock distribution and latch dcsign. This is fol- 
lowed by an overview of the circuit dcsign strategy and 
some specific circuit design cxa~nplcs. Thc papcr con-  
cludes \ilitli information about dcsign (~?liysical  id 
electrical) \lcrification nncl CAD tools. 

Microarchitecture Overview 

The Alpha 21 164 chip is a complctcly new i~nplcmcn- 
tation of the Alpha i~rchitecture. Figure 1 slio\vs a 
bloclc diagram of the Alpha 21 164 chip. The micro- 
processor consists of fve f~nctional units: tlie i n s t r ~ ~ c -  
tion fetch, decode, and branch unit (I-box);  the 
integer executio~i unit (E-box); the memory nianage- 
nlent unit (IM-box); the cachc co~itrol  and bus inter- 
hce  unit (C-box); and the floating point illlit (F-box). 
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Figure 2 
Floorplan o f  rlic hlplin 21 164 <:hip 

much as possjblc. The S-caclic \\!,IS i~nplemcntcd \\,it11 

metal 4 reiicl and \\trite b~lscs spanning the clitircl 
height. This providcd the acccss nccdcd to both the 
top and bottom of the S-c,lchc f o ~ .  routing to the 
I-cache and 1)-cache. 

The D-cache supports tu7o loads pcr cycle, rcquir- 
ing a dual-ported read dcsign. The 1)-caclic was 
ilnplcnicntcd as n v o  single-ported caches containing 
identical data jnstcad of one dual-ported caclle. The 
major consideration that Icd to this ciccision \\,as the 
ability to share the single-ported dcsign writ11 the 
I-cache. Sharing the dcsign also reduced the overall 
analysis and \lerificntion rccl~~ired. 

Intcrcon~lect routing \\.;is ;~no thc~-  important part of 
the floorplanning process. Four mcml layers \\!ere 
available for routing. The lo\\,cr mctal layers, metal 1 
and 111etal 2, \\.crc used fix local transistor h o o k ~ ~ p  and 
signal routing. The L I ~ ~ C I -  111~~11 I;~!.CI-S, nictal 3 and 
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~netal 4,  \Irere used primarily fo~. clock, po\\.cl-, 2nd 
g r o ~ ~ i d  distribution. When necessary, the ~ ~ p p c l -  mctal 
Iiq~crs \verc also uscci to r o ~ ~ t c  critical signals m c l  long 
~ L ~ S C S .  The metal oriclltatio~is \\,ere clioscn to accom- 
modate both the cache s t ruc t~~rcs  ilnci tllc clnta p;ltlls 
of the fi~nctional i~nits .  With rcfcrcncc to Figure 2, 
metal 2 and lrletal 4 lincs \vcrc ;irrangcd to run vcrti- 
cally and nletal 1 and mctal 3 ~+lcrc arranged to run 
horizontally. Most of the global routing was donc by 
hand. I.ocal cell routing \\Ins donc hy hand with some 
assista~ice ti-om auto-routing <:AD tools. 

The upper metal layers arc organixcd ns a fine- 
pitched regular grid s t r ~ ~ c t ~ ~ r c  placed over rlic cntil-c 
chip. Thc typical dra\\,n line \\*idth uscci ill this grid is 
12 p n .  Po\\~cr and ground lincs arc alternated \\:it11 a 
single clock line interspersed circry fen. pairs. A limited 
number of critic;11 sigllals and buses arc also routed in 
metal 3 and men1 4. In the pad ring, mctnl 4 is used to 





Figure 3 
Schematic o f  Clock 1)isrrihutioll Systcm 

usage and allo\\led dcsig~lcrs to utilize latches that had 
already been \lcrificd over a range of operating condi- 
tions and process corners. 

Tlic Alpha 2 11 64  chip uses Ic\rcl-sensitive, transmis- 
sion gatc latches as sho\wn in Figure 6.  T\vo basic types 
of latchcs \ \ w e  dc\~clopcd: A-latches (Figures 6a and 
6c) and U-latches ( F i g ~ ~ r c s  6 b  n~id 6d) .  Tlle A-latclics 
are opcn \\~licn C;I,I<is high, and thc 12-latchcs arc opcn 
\\hen CI,K is lo\v. The latch input inverter c a i  be 
replaced by a logic gatc (slio\\w i l l  Figures 6c and 6d), 
thus rcdl~cing gate delays in otlicl. logic. This style of 
latch is very f.lst 2nd arcn-cfficicnt, yet it docs have ,In 
inherent r a c e - t h ~ - o ~ ~ g I ~  problem. I t  \\,as estimated that 

the use of this latch stylr yiclds J 10 percent iniprove- 
luent in speed o\rer tlic 2 1064 micropsoccssor. 

The additio~ial skc\v in thc cloclc, ~.cs~llting ti-0111 tlic 
local clock buffer delay, increases the possibility that 
data could racc through a pair of  Intclics during the 
transition of tlic clock. Althougli thc o\,crall slcc\\l of 
tlic internal clock is lo\\/, this \\!as not considcrcci suffi- 
cicnt to avoid race conditions. T\\'o significant steps 
were taken to guarantee that no  racc coulci exist 
between latches. First, the buffered cloclc i~lsidc the 
latch \\,as sized to minimize the ,~dciitiolial sltc\\, result- 
ing f rom its delay. Second, rules 'ind \rcrification tools 
\\,ere de\*eloped to malte sure that thc Jcsign includes 
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Figure 5 
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Alpha 2 1 164 Sundnrd Latch Esamplcs 

at least one additional g ~ t c  ciclay bct\\,een all latches, 
thus g~~aranteeing a race-free design. Designers had 
the option ofdesignating these gates as logic Functions 
or  simple inverters. The cielay did not affect critical 
speed pnths, since critical paths tended to have lnorc 
than one delay bcnveen Intclics. 

Circuit Design Strategy 

D L I ~  to the cornplcsit)~ of the Alpl1~1 2 1 1  64 chip and 
the large size of the dcsign team, a comprehensive 
design methodology \\$as dc\relopcd. A design guide 
\vas created to provide a consistent sct of rules and 
methods for tlie dc\tlopnient of circuit schcmntics 
and layout. This docun-~ent helped ensure that all 
designers worltcd under the sanlc design assumptions. 
In addition, it relieved time-consu~ning analysis of 
eacll circuit by providing guidelines and "rules of 
thumb" that guaranteed correct operation and mini- 
mized the possibility of  reliability problems. 

Guidelincs for conlmon circuit structures such as 
complenlentary, c'~scodc, dyn'lnlic, and static circuits 
were creatcd by characterizing their bch;lvior over 311 
process comers. A d e q ~ ~ a t e  noise margins were ensured 
by specitjling operating envelopes k)r such design 
parameters as device sizc, stack height, .lnd beta rutio. 
Reliability guidelines were specified For electromigra- 
tion, hot carrier effects, and substrntc charge injection. 
Most circuits were designed within the rules specified 
j l i  tlie guide; ho\\,cvc~., a fe\v circuit designs violated 
the rules. These designs were allowcd only \\/hen per- 
formance and area advantages would be gained. These 

exceptions were ca~-efi~ll!f \icrified for f~~nctionality anti 
reliability. 

An extensive suite of in-house CAI> tools w.~s used 
to aid and structure thc design proccss. In all cases, the 
tools supplcmentcd the desig~l process und automatccl 
repetitive \\,ark. Engineering j~~clgmcnt , ~ n d  itcrnti\.e 
use of the sofn'tarc \\Icrc required to crcatc the final 
production schematics. Tools r l~at  ;~idcd schematic 
generation includcd a schcm'ltiic editor, n logic s!~ntlic- 
sis tool, and n cie\ricc-sizing tool. I'osr-schematic tools 
included a latchi~lg mctl~odology chccltcr, a c i r c ~ ~ i t  
verifier that highlighted cicsign rncthotlology \%)la- 
tions, and a timing \-criticr that an:llyzcd potential crit- 
ical spced paths. The use o f  the dcsign tools \cn~.icd 
across the chip, based on the dcgrcc of customized 
logic requircd. For example, thc I-box did not rely 
heavily on the synthesis tools bccausc of  the 11ccd for 
optimized circuit strilcturcs. Ho\\v\lcr, the (:-bos 
used the synthesis tools extensively to produce bnsc- 
line schematics, which were then modificcl by hand 
as necessary. 

Circuit Design Examples 

The designers of the Alpha 2 1 164 cliip \\,ere fi~ccd 
u~ i th  a number of i rnplc~i ie tn t io~i  cliallcngcs. The 
most significant challenge \\,as to dcsign a chip that 
c o ~ ~ l d  run at 300 IMHz, 50 percent tistel- than the 
previous Alpha i ~ ~ ~ p l e m c n t a t i o n . ~  l>e\,icc scaling, 
process de\,elopme~lt, and architccrur.~l inipro\.cments 
delivered part, but not all, of the rccluircd speedup. 
The additional improvernc~lt had to be obtained using 
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circuit dcsign tcclinicl~~cs. Other challenges included a 
niuch more coniplicatcd microarcliitect~~re and the 
r ed~~c t ion  in latency of ;I nurubcr o f  instructions from 
the previous implemcnntion. Finally, the large phys- 
ical size of the chip also Icd to challenges in circuit 
dcsign and po\\lcr management. 

The fc)llo\\ring sections dcscribc several circuit 
design challcngcs cnco~~ntcrcd during the implerncn- 
tation of the Alpha 2 1 164 chip. 

I-box Design-Issue Stage Dynamic Dirty/Bypass Logic 
Tlie i s s ~ ~ e  stagc of the I-box coordinates the release 
of instructions into tllc F,-box, F-bos,  and IM-bos 
pipelines. The deep pipelines and sophisticated rnem- 
ory managenicnt  n nit along with tlie high clock 
frequency prcscntcd significnnt cliallengcs to the 
implementatio~i team. The Alpha 2 1 164 niicroarchi- 
tccturc nllo\\is LIP  to 37 instructions to be in progress 
at tlie same time ( 7  intcgcr operates, 9 floating opcr- 
ates, and 21 loads tliat missed). Superscalar issue of 
4 instructions ~.cqi~ircs tllat S operands and 4 ne\\~ des- 
tinations must be checked against these 37  outstand- 
ing i~istructions in c\rcr)r cycle. Jn addition, 4 4  bypass 
paths ;~ rc  built into the F,-bos and F-box pipelines in 
tlie Alplin 2 1 164 chip. Each of the 8 operands must be 
cliccltrd agninst sc\,cral o f  thcsc bypass paths to cnsurc 
that the most up-to-date data is hr\ \arded to tlie issu- 
ing instruction. 

The rcgistcr comparisons \\)ere i~uplcmented L I S ~ I I ~  

domino logic. As each instruction is issued, its destina- 
tion rcgistcr adci~.css is decoded into a 3 1-bjt mask that 
is entered into 3 sliift register that ~niniics tlic appro- 
priate esccution pipclinc. <:liccl<s arc pcrfornled for 
stalls ~ n c i  b!,pnsscs hy sclccting the appropriate niasks 
from each Icvcl of the shift register and comparing 
tlicm to the rcgistcr nddrcsscs of tlie nc\v instructions. 
Integer ancl tloating-point instructions arc liandlcd in 
separate 31 -bit-\\*idc data paths. 

lkcoding tlic register ,~ddrcsscs allows a logical OR 
of several destinations to crcatc "dirty" bit masks, 
greatly reducing the required number of comparators. 
This r c d ~ ~ c t i o ~ l  i l l  co~ii l~ar~ltors more than conipcl~- 
sates ti)r tlic additional logic in\lol\lcd in carrying the 
decoded rcgistcr ncld~.csscs for all pipe stages (31 bits 
\lersus 6 bits tbr encoded registel- numbers). With this 
schemc, ill1 stall calculntions are performed using only 
38 compar:ltors. 1Sypiiss detection is performed in a 
manner similar to the stall gcncratio~i using an addi- 
tional 4 4  comparators, one ti)r cnch I-',-box and F-box 
bypass path. 

The implementation of the comparators reqi~ires 
thrcc ciomino st:igcs (scc Figi~re 7).  The first stage is 
a n \ .o - inp~ t  dynamic multiplexer tliat selects the 
operand/dcstination decode field for the necv instruc- 
tion or the ti clcl o f  tlic prc\~ious cycle's instruction if 
a stall \\!as detected. The dirty bit mask is created in a 
similar dynamic O R  structure. The second domillo 

stage is a bit-\\rise AND fi~nction of tlic opcrand/desti- 
nation decode mask and the dirty bit niask followed by 
a zero detector (logical OR of the 31 hits). A trunsmis- 
sion gate forms a second AN1) f ~ n c t i o n  in this stage 
that qualifies the detected I-egister conflict with an 
instruction valid signal. The tliirci domino stagc js used 
to further qualifil tlie detected contlict \\.it11 instruction 
type decode information and to start a logical O R  of 
the 38 conflict o i~tputs  into a single stall wire. In  the 
case of bypasses, the third domino sr.igc is i~scd to  
priorit!!-encode the b!,pnsscs so that only tlic most up- 
to-date data is bypassed. 

Special attention \\,:IS gi\,cn to scvcral circuit dcsign 
issues \\.hen the domino logic was jmplcmcntcd. 
Carefill preplanning of the routing provided large 
lateral spiicing on the dyna~iiic Ii~ics to reduce cou- 
pling. Noise margins \\,ere protected by ensuring tliat 
all dyncimic inputs \\.ere ciri\.cn from local in\lcrtcrs 
cvith a comliion ground rcfcrcncc. Charge-share prob- 
lenis in tlie large sccond domino stngc ( 3  1 -bit-wide 
AND-OR fi~nction) \ \ w e  minimized due to tlie hc t  
that only a single bit \\ , i l l  be set in the nc\v instruction's 
operand decode bit niask, c\~liicli is used as the upper 
input in tlie 31 A N D  staclts. :Tlicrcforc, only a single 
internal ~ i o d c  may cliargc-share \\lit11 the large output 
capacitance. 

Another critical concern in s ~ ~ c l i  ;I Iargc dynamic 
structure \vas po\\.cr consumption. The logic \\,as 
implenlcnted in such a \\lay as to minirnizc the ni~mber 
of nodes that ciiscliargc cacli phase. To minimize 
short-circuit currents, the sccond and third d o ~ n i n o  
stages arc precLiargcd i i i c ~ ~ l s  o f  matched delay sjg- 
nals. These self-timed ~ ~ ~ l i a r g c c i  lines also help to 
~nini~nizc  clock loading since (:LK ih  uscci to precliarge 
only the f rst stage. 

E-box Design-Bypass Logic 
The E-box prese~itcd a number ofintcrcsting circuit 
clialle~~gcs. The Alpha 2 I 164 implcmcntation con- 
tains n\'o integer pipelines, as compared to one in tlic 
21064. This significantly increased the circuit design 
co~nplcxity ;~ssoci;lrccJ \\'it11 pro\,iiling rcsl~lt L)yp~ssj~lg 
from all fi~nctional units. 

Tlie E-box bypass logic is rcspol~siblc for suppl\~ing 
inpiit operand data to the fi~ncriondl units in both 
integcr pipelines. Input operand data can be supplied 
from the register file or b\~passcd fi-om the output of 
any pipeline stage in the E-box (Figure 8) .  Functional 
operations 3re pcrfor~ncd in pipclinc stagc 4 (S4), and 
register file \\!rites occur i l l  stage 6 (Sb).  Witllol~t 
bypass logic, instructions that rccluirc data from tlie 
pipeline c\lo~~ld h;ivc to be stalled ~ ~ n t i l  the data reaches 
S6 and is written into tlie rcgistcr file. These stalls 
\rould impact the intcgcr pcrformnnce sc\rerely. 
Therefore, the ability to bypas5 operand data fi.0111 
pipeline stages S4 t h r o ~ ~ g h  S6   as critical to obtaining 
high integer performance. 
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Figure 7 
l h r n i n o  1,ogic Ibr Issuc Scorcboard 

Four 64-bit dual-rail operand buses are used to 
bypass data. Two buses in each pipeline arc used to 
si~pply A ali~l  l3 opcr~ind d~t.1 to the f~nctio~l;il ~ ~ n i t s .  
The buses ;ire controlled by the BYl'ASS-ENABLE-L 
signals ge~icrated in the I-box n11d are driven during 
the 13-phase (see Figure 9). A typical o p e r ~ n d  bus dri- 
\.cr is shown as \ \ ~ l l  ;is t l ~ c  shiftcr operand bus dl-i\.er. 
The sl~ificr dri \u- is ~ ~ n i q i ~ c  beca~~se  it has byte zap (set 
byte to zero) logic capability. 

Data is rcad from the opcl-and buses during tlie early 
portion of the A-ph;1sc by operand bus receivers 
located at the input of cacli fi~nctional unit. Tlie 
receiver is a dynamic gatc structure that can be con- 
figured to rccci\rc one or more inputs 2nd generate 
a logical function o ~ ~ t p u t .  The adder ilscs the logical 
function capability to generate propagate and kill 
signals. 

T l ~ e  operilnd bus is prcchargcd by 3 dclaycd A-phase 
clock. This delay allows the dynamic bus receiver gate 
to act as a latch and climinntes the need for a true 
B-latch (see Fig~11.c 9). 1>~1ri1ig the beginning of tlic 
A-phase, operand data propagates through the 
receiver and is captured bv the receiver gatc o ~ ~ t p u t  
latch node before tlie delayed A-phase clock pre- 
charges the opcra~id bus. Once t l ~ c  opcrand bus is 
precliarged, the latch node is clccoupled fro111 the 
operand bus. 
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E-box Design-64-bit Shifter 
The E-bos shiftcr executes all 64-bit shift, estract, 
insert, and zap (set to zero) instructions o n  botli little 
and big endian data types using n 128-bit I-ight-only 
sliifter. All shift instructions n k c  one cycle to csccutc, 
an improvement of one cycle rclati\ec to the 2 1064 
desigli. 

The data path portion of the shificr logic uses 
d!lnamic and cascode circuitry to  rcad the opcrancl 
buses, to present tlie data to cithcr the lo\\, or  liigli 
64 bits of data, a i d  to sign-cxtend the high 64 bits, 
\\?hen necessary, in the A-phase. In  the R-phase, the 
input data is shifted, a byte zap is pcrfor~ncd \\llicn 
necessary, and the result js dri\!cn onto the r c s ~ ~ l t  [,us. 
7 

l h e  result can be bypassed onto  an opcr-and bus. 
Right shifis are performed by loading the A-operand 
data into the  lo\\^ 6 4  bits a ~ ~ d  shifti~ig based on the 
\~alue of the B-operand; Icft shifts .Ire pcrfornicd by 
loading the A-operand data into the liigli 6 4  bits and 
sliifiing based on  the two's conlplc~ncnt of the valuc of 
the B-operand. Thc shiftcr array is i~iiplcmentccl ;is a 
differential d!inamic gatc. The la\~out uses mctal 1 for 
the input data, metal 2 for the output valuc, and mcr.11 
3 for the sliifi amount. 

The chief impro\lcment in this dcsig~i over the 
21064 design is tlie single-pliasc seneration of the 65 
sliifi enable signals iiud byte zap mask. The shift cnablc 
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generation is accomplislicd by c o m b i ~ ~ i ~ l g  the sliiti 
requirements of the extract ,111d insert i~lstructions 
with tlic R-operand dccodc logic for normal shifts. 
An 8-bit sliiftcr is ~ ~ s c d  to implcnicnt tlic byte zap 
mask to acliicvc tlic single-phase goal. Tlie 8-bit zap 
niask sliit'tcr is built  s sing diffcrc~ltial dyna~iiic logic. 
Its control rcscmblcs thnt of  tlic 64-bit shifter, 
employing cascodc data input circi~itry and dynamic 
dccodc logic. The shift amount is dctcrniincd froni 
tlic B-operand or bits in the instr~lction based o n  tlie 
opcodc. 

Cache Design- Power Savings 
Spccial design considerations were given to  tlie three 
caches on the Alplia 21 164 chip beca~~sc  they com- 
prise, b!! Lnr, the largest number of dc\ficcs and Iia\/e 
thc grcatcst impact on  picld. Since the caches are 
accesscd frecluentl!!, tlie po\\,cr co~isumprion of the 
C ~ C ~ I C S  also n c a ~ ~ s c  h r  concern. 

Tlie 8-ICE I-c;iclic includes n\Io pairs of fuse- 
programm;iblc r cdu l~ ian t  ro\vs to offict any yield 

loss. The D-cache le\!eragcs the I-cnchc dcsign by 
combining two of these c;~clies to h r r n  n singlc, d ~ ~ a l -  
read-ported, 8-1(R data cache. Tlie 1)-caclic employs 
the same ro\\, redundancy sclicmc as tlic I-caclic. Tlie 
Alpha 21 164 chip also contains tlic S-c;~chc, \vliicli 
is a large, second-lc\fel cache for both data and instruc- 
tions. The S-cache data a!-l-ny is organized into 24 
banks of 4 KR each. T\\,elvc banks arc placed o n  tlie 
left and right sides of the chip. Figure 10 slio\\.s the 
arrangement of the banks o n  tlic right sidc. Eacll bank 
of both the tag and data arrays implcmcnts ro\v redun- 
dancy. Tlie S-cache data array also implcmcnts column 
redundancy. 

Pipeline processing of tlic S-cache nllo\\.s tlic inclu- 
S~OJI  of power-saving features. Tlic S-cache opcmtes i l l  

a four-stage pipeline: nvo stages for tag lookup and 
modification, and two for data access and transfer. 
Addrcss decoding during tlic tag lookup rcsults in the 
clocking of only 2 of the 8 banks in each of tlic 3 sets 
( 6  of 24 in the whole cache). 'The bit lines and scnse 
amplifiers ill the disabled 18 banlts ~ r c  frozen in tlic 
precharge mode, consuming minimal po\\lcr. 

Hit  signals from the tag-lookup logic control tlie 
word lines and sense amplifiers of the six c~iablcd 
banks. Therefore, of the six banlts enabled, only tlie 
nvo banlts for the set that hit arc nctivntcd ~ ~ n d  dis- 
charged. Tliis design results in an  estimated po\jfcr 
savings of 10 W. 

System Clock Design-Synchronization 
Tlie Alpha 21 164 chip is designed to acco~nmodate 
multiprocessor s)cstenis using II s!,nclironous bus. Tliis 
requires the synchronization of the Alplia 21 164 
chip's generated reference clock (SYS-(:I,K) to  the 
systems-generated reference clock (Kl<Fp<:Ll<). To 
achieve the masin~um system pcrfornlancc, this must 
be done svith as little crror as possible. 

In other designs, this synclironizatio~i is achicvcd 
using an on-chip phase-locked loop (PLL).-' Ho\\.evcr, 
the on-chip noise en\~ironmcnt of tlic Alpha 2 1 164 
could cause esccssi\:e I'LL jitter. Jjttcr can rcducc tlic 
width of a clock phase and create a pulse too narrow to 
clock on-chip logic. Tliis ~~nccrrui~i ty  \ \ ' o ~ ~ l d  ciictntc 
slowing the clock fi-cqucncy, t l i ~ ~ s  rcciucing system 
performance. 

The dcsign challcngc \ v ~ s  to find a lo\i,-risk digit.11 
solution that would nicct tlic high-frcq~~cncy pcr- 
for~nance require~ncnts of  tlic Alpha 2 1 164. To mcct 
this challenge, a state niachinc I'LL (SIMI'LL,) \ v ~ s  
designed. This all-digital approach Iins much bcttcr 
noise i rnm~~ni ty  tli,ln a tl-aciitionnl PLL, but it docs 
introduce a cluantizing crror, or  skew, into the system 
cloclc timing. Tliis skc\\f can complicate systcn.1 timing 
but bas minimal inipact o n  CPU performance, since 
it allows tlie Alpha 21 164 chip to r u n  at tlic highest 
possible clock frequency. 
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Figure 11 slio\\~s n f~lncrional block diagram of tlie 
SIM~'LL. The Alpha 2 1 164 generates a s!,stcm bus 
clock (SYS-CLIC) by dividing the internal CL,I< by a 
preprogramrncd amount. Tliis SYS-CLI< is then 
aligned to the system-gcncratcd rcfcrcnce cloclc 
(KEF-CLI<). To  d o  this, the fi.ecluency of lU:F-<:LI< 
must be slightly lo\\icr t l~an t h ~ t  of SYS-CLI<. A pli;~se 
detector compares the arrival of rhc rising c d ~ e  of 
REF-CL1< \\lit11 the rising cdgc of SYS-CLK. If the 
edges are coincident, thc SMPLL. strctchcs SYS-CLK 
by tlie peric-)d of the cliip oscillntor. l ? l ~ i ~ s ,  tlic rising 
edge c.)f IW,E'_(;l,IC .tlc\tays leads the rising eclgc of 
SYS-CLIC. Howc\lcr, because SYS-CLI< is slightly 
hster than REF-CLK, the rising edge of SYS-(:LI< \ \ i l l  
evc~ltl~ally catch LIP to REF-CLK When this happens, 
the phase detector once again strctchcs SYS-CI,I<, and 
the p-ocess of c3tcliing up starts anc\i1. 

The SMPLL design takes admntagc of tlie 011-cliip 
clock divider circuitry by suppressing the divide for a 
single count wlienc\~cr a pliasc alignment is required. 
This sclie~iie adjusts the pliasc ; i l ig~~ment in increments 
o f1 .67  nanoseconds (ns) (assuming 11 600-MHz input 
clock) and allows the rising edge of the 1GF-CLK, 
measured at the input pin of the Alpha 21 164, to coin- 
cide with the SYS-CLI< to within 1.67 ns. 

Physical and Electrical Verification 

The ability to \.eri+ the la!-out ofa 9.3-million-[I- isist is tor 

VLSI chip, both physically ,lnd clcctricall!~, \\.itIiout 
hampering its pcrfonnancc o r  impactilig its dc\.clop- 
mcnt schedule, \\rns a primar!, concern horn the o ~ ~ r s c t  
of  the project, &Ian? tccllniil~~cs \\.ere dc\.cloped 
to accomplish this task. Somc of  the more s i p i f c a n t  
ad\.ances are disc~~ssed in the fi)llo\\.ing section. 

Physical Layout Verification 
The size and coniplcsity o f thc  Alplin 2 1 164 dicr,ltcd 
the use of physical asscnibly ~ i i c t l~ods  that dicl not 
require the CAD tool suitc to v c r i ~  the complete cliip 
layout database ill one pass. 

Full-custom designs likc tlic Alphn 2 1 164 chip nre 
cornposcd of large blocl<s of random logic that ~1-c  not 
easily di\lisible into highly rcpctiti\,c instantiations of 
common cclls. Recause of the relatively few instances 
of  repetitive structures, there \\'as n o  nccci to clesisn 
usirlg 3 deep cell hiel-arcl~y. Siniilnr to p~.c\,ious, 1'11-gc, 
fi~ll-custom clcsigns, tlic Alphn 2 1 164 floorplan 
di\,ided the cliip along major box b o i ~ ~ i d n r i c s . ~ ~ h i s  
partitioning reduced the dc\,icc count per pnrricion 
allo\\.ing each to be \,esjfied indcpcndcntl!: 
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The Alpha 21 164 caclic partitions, containing 7.2 
million of the 9.3 million total devices, are, in them- 
selves, vcr)l large 2nd difficult to \wit\. Accordingly, all 
thrcc cachcs \\,ere designed and assembled hicrarchi- 
cally. Spccificnlll; c:~cli cache bank con t~ ins  several ref- 
erences to the same prcchnrgc, decoder, control, and 
random access memory (1WM) array logic and layout, 
\\~hich arc tlicn instantinteci to form thc overall cache. 
Subdividing the cache p~rti t ions into major hierarchi- 
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cal blocks reduced thc dc\iice count pcr block. I n  addi- 
tion, since each bank was identical, only the de\lices 
within one bank needed to bc \lerified. 

Although the hierarchical nlcthod is typically uscd 
in semicustom designs, it \\!as nc\v for 1)igital's FLIII- 
custom microprocessors. Prior to the dc\lelopmcnt of 
the Alpha 21 164, the c:lchcs \irere designed and veri- 
tied \ \ ~ i t I i o ~ ~ t  an established hierarchy, as was the rest of 
the chip. Digital's CAD tools handled large databases 
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without hierarchy; tlie layout verification niethods 
\Irere trusted; and the pcrccntage of duplicated cir- 
cuitry \\.as small. Conseclucntly, there had been n o  
prior co~npelling need to design \\fit11 deep hierarchies. 

To\vard tlic end of tile cliip dc\rclopme~nt, ~ ~ s j ~ l g  a 
considerable amount of computer resources, all three 
Alpha 21 164 cache layouts were also verified \vithout 
hierarch!! to proire the ne\ir hierarchical niethod and 
CAD tools. The large size of the Alpha 2 1 164 1i1ade it 
the prime candidate for \.cri@ing ne\v hierarchical veri- 
fication tools (\\lhich \\!ere run concul.relitly \\'it11 tlie 
traditional ones). Table 1 colnpares the processing 
time of tlie S-cache for both the nonhierarchical and 
the hierarchical \!crification methods. The hicrarchical 
approach resultcd in a significant improvement in 
CPU time. 

Capacitive Coupling and Carrier Injection Verification 
Since capacitive coupling benvcen cidjacent signals can 
l~a\je u disastrous effect o n  tlic logical fi~nctionality and 
long-ter~n rcliability of a design, it was a major con- 
cern throughout the project. When adjacent nodes 
sc\itch, coupling benvcen tlicni can result in their logic 
statc being degraded or  lost by adding o r  re~noving 
charge to or  f ron~  the coupled node. For static cases, 
coupling results in a loss jn perform.~ncc, since the 
node recovers statc if tlie chip c!rclc time is slo\ved. For 
dynsmic nodes, lho\\,ever, statc may be lost, leading to 
a logic hilure that occurs rcgardlcss of cycle time. 

Interconnect coupling capacitance can also lead to 
\.oltage excursions a b o ~ c  the power supply \roltage 
(L;,,) nnd belo\\, ground (!is) o n  signsls in tlie chip. 
For the case of an cxci~rsion belo\-\, I:;:,, the n-type 
source/drains con~iected to the signal beconic for\\,ard 
biased, injecting minority carriers (clcctrons) into tllc 
substrate. If thcsc minority carriers arc collected by 
i\'-diffi~sions connected to dynamic nodes, the charge 
stored on the dynamic nodc can be c o r r ~ ~ p t e d ,  as 
sho\vn in Figi~rc 12. Similarly, cscursions above $,, 
for\\rard bias p-type sourcc/drains, \vhich can also lead 
to data corruption. 

An cxtensivc set of CAD tools was used to identifj 
potential coupling and charge injection problems. In 

Table 1 
Alpha 21 164 S-cache Verification Compute Time 

Nonhierarchical Hierarchical 
Operation Processing Processing 

Netlist extraction 11 hours 6 hours 
Netlist comparison 6 hours 30 minutes 
Geometric 
verification 18 hours 10 minutes 

the case of  injection checks, ;I circi~it \virclist of the 
chip \\/as estractcd from tlic I ,~yoi~t  that included A'-Y 
location coordinates for all transistors. An electrical 
analysis, using capacitances extracted from layout, \\,as 
then run to identifir all noclcs that madc voltage cscur- 
sions outside tlie power supply \.oltages and that \\.ere 
potential minority carrier jnjectors. Once tlicsc nodes 
\Irere identified, the CAD tool, \\~hicli ~.cfcrcnccci tlic 
coordinates from the extracted \\,irelist, checked all cir- 
cuitry in the \vicinity of  the injectors to ensure that 
there \\,ere no dynamic nodcs pl-csc~it t l i ~ t  could be 
corrupted. When a potential corruption problem \\.as 
found, a layout fi x \\.as implemented to eliminate the 
coupling causing the injcction. If the col~pling c o ~ ~ l d  
not be reduced o r  eliminated, a diff~~sion collccto~ tied 
to a pourer mil \vas placed bcnx~ccn the injector 'ind the 
dynamic node (Figi~rc 13). 

Antenna-induced Device Damage Analysis 
During the nietal ctch process, \\/lien interconnect is 
being formed from a blanket la)~cr of mctal, stray 
charge fro111 tlic ctch plasma can be captured by the 
visible metal. The ch31.g~ is coIIecte~1 on ;11i)l polysili- 
con gate capacitors attached to the nodc. If enough 
charge is collected, the gatc \roltagc may risc high 
enough for tilnneling jnto the gatc oxide to occur. 
This new concern, called antcnnn-induced de\ricc 
damage, can cause breakdo\\ln of the gatc oxide, tmn- 
sister threshold \foltagc sliihs, a n d  long-tcr~n reliability 
problems. 

Antcnna-induced de\~icc damage can be prc\.cntcd 
ifan alternate path is pro\,idcci for the collected charge. 
A diodc connection on  tlie antcnna nodc, such as a 
diffusion connectio~i in either the \\.ell or  the sub- 
strate, acts as sucli n path. Although all nodcs in thc 
Alpha 2 1164 chip hair  a diodc co~lncction, this con- 
nection may not be prescnt at the first or  second mct- 
alization steps, thcreb!. .illo\\ring ilaningc to occu~-. The 
magniti~de of the damage is dependent o n  the antcnna 
ratio, defined as the ratio bct\\ccn thc area of the 
\risible metal layer being processed 2nd the ,irca of 
the gates attachcd to that nodc t h r o i ~ ~ l i  lo\\zc~--level 
connecting layers. 

To analyze the cliip, .I special computcr-bnscd l ~ y -  
ou t  design rule check was dc\~clopcd. This clicck 
extracted partial nodc layout as it \\loi~ld appcar during 
each ~ ~ i e t a l i z a t i o n - p a t t c r ~ ~ i ~ ~ g  etch step and fi ltcrcd all 
nodes that did not have a dioclc shunt connection. For 
these nodes, antcnna ratios \\<re con~putcd and coni- 
pared to their corresponding ratio limit. To reduce rlic 
antenna ratio o f a  failing nodc, the antcnna mctal \\Ins 
broken into sections and lnetal jumpers, \\~Iiich \\,ere 
placed in the nest-higher ndjciccnt rnct~~l  I,lycr, to con- 
nect the sections into a single nodc. This reduced the 
charge-collecting arcn for the section of intcrconncct 
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Figure 12 
l)yna~~iic Nodc Corruption (:aused by Minorin' Carricr I~ijcctio~i 

that  had t h e  polysilicon gate attached and,  as a result, 
reduced the  antenna r~tio. If this approach was n o t  
feasible o r  did no t  r c d i ~ c e  the antenna ratio adcquntcly, 
a diffi~sion diode \\!;IS attached t o  the offending 
antenna to s h i ~ n t  thc  charge n\\la)!. 

Electromigration Reliability Analysis 
T h e  methods and algorithms used t o  perform thc 
electro~iiigration ( E M )  anal)~sis o n  the Alpha 2 1  1 6 4  
chip Ii~\re greatly improved since previously reported.3 
7- 

1 lie chief cnhancemcnts arc the analysis o f  ~ ~ n i d i r c c -  
tional and bidirectional current  flo\v, the additiori o f  
tl iern~al heating nlodcls, and the  introduction o f  sta- 
tistical electrornigration budgeting. 

From a design perspective, o n e  o f  the main 
improvements in EIM analysis was the introduction o f  
unidirectional and bidirectional current  flo\\l limits. 
Unidirectional current is the  tlo\\/ o f  current  in o n e  
direction, for example in wires connecting devices t o  
power o r  g round .  T h c  segment  o f  \\!ire connecting a 

cornplemcntar!~ logic gate t o  its load is considered 
bidirectional since the current flouis to \wrd  the load t o  
charge its capacitance and flows back t o  the driver as 
the capacitance is discharged. T h e  bidirectional bclia\~- 
ior o f  current I ~ a s  been sIi0\\~11 t o  inipro\ic EM reliabil- 
i t \ ,  by at  least a factor o f  two.  This is ,I t r e ~ n c n d o u s  
benefit as 11car1y all on-chip signal \\)iring is bidirec- 
tional. (Po\\zer s ~ ~ p p l y  metal is not  and must be treated 
accordingly.) 

T h e  niost stringent EM requirement is meeting 
the  traditional average current density limit o f  2 . 0  
milliampere/pm2. Statistical electromigration bud-  
geting (SEE)  was used for the  first t ime during design 
\ierification t o  assess the impact o f  allowing small por- 
tions o f  the  Alpha 2 1 164 design to exceed the  fixed 
ELM average cLlrrent liniits.6 Statistical parameters char- 
acterizing EIM risk for the  0.5-pm CiMOS interconnect 
process were conibined with the  average node  cur-  
rents and layout geometry t o  cornputc the  magnitude 
o f  t h e  EM risk of  all design rule \liolations taken 
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1)yn.irnic Nodc Prorcctcd tiom Minority Carricr Injection 
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together. Only t11c)sc \~iolations that  added significant 
risk \\)ere required t o  be fiscd. This  reduced design 
verif cation timc and retained performance advantages 
while ensuring that  thc Alpha 2 1  164 design met  its 
chip-le\/el reliability goals. 

Conclusion 

T h e  irnplcnicntation details o f  the Alpha 2 1 1 6 4  
microprocessor lha\,c bccn described. T h e  custom 
VLSI chip con ta i~ l s  9.3 million transistol-s, including a 
96-KR second-level cache, in an area o f 2 9 9  mm'. T h e  
chip implerne~lts t h e  Alpha instruction set architecture 
and can issuc itp t o   LIT instructions a t  a timc. I t  
reaches a peak c s c c ~ ~ t i o n  rate o f  1.2 billion instruc- 
tions per second (hips) and 6 0 0  MFLOPS. T h e  Alpha 
2 1  164 is thc  hstcst  and highest-pcrfor111a11ce micro- 
processor designed t o  date  in the i n d ~ s t r y . ~  

T h e  chip achie\led its performance goal o f 3 0 0 - M H z  
operation in a 0 . 5 - p m  C M O S  technology by e n ~ p l o y -  
ing a fine-pitch, lo\v-resistance power grid; a low-skew 
clock distribution nctuiork; fast latches; and high- 
speed circi~i t  tcchniclucs. Extcnsi\ie 5,erification o f t l l e  
functionality, electrical circuits, and physical layout \\(as 
performed to ensurc the h~nctionality and relial>ility o f  
t h e  design. T h e  chip operates from a 3.3-V supply and 
dissipates 5 0  W. I t  is easily air-cooled using conven- 
tional tecl~~lolog)'. First-pass silicon \vns f i ~ n c t i o ~ ~ n l  and 
booted tllrec operating systenls running o n  a n~r rnber  
ofdifferent system platfornis. 
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Internal Organization 
of the Alpha 21164, 
a 300-MHz 64-bit 
Quad-issue CMOS 
RlSC Microprocessor 
A new CMOS microprocessor, the Alpha 21 164, 
reaches 1,200 mipsl600 MFLOPS (peak perfor- 
mance). This new implementation of the Alpha 
architecture achieves SPECint921SPECfp92 
performance of 3451505 (estimated). At these 
performance levels, the Alpha 21 164 has 
delivered the highest performance of any 
commercially available microprocessor in 
the world as of January 1995. It contains 
a quad-issue, superscalar instruction unit; 
two 64-bit integer execution pipelines; two 
64-bit floating-point execution pipelines; and 
a high-performance memory subsystem with 
multiprocessor-coherent write-back caches. 

I 
John H. Edmondson, Paul I. Rubinfeld, 
Peter J. B m l o n ,  Bradley J. Benschneider, 
Debra Bernstein, Ruben W. Castelino, 
Elizabeth M.  Cooper, Daniel E. Dever, 
Dale R. Donchin, Timothy C. Fischer, 
Anil K. Jain, Shekhar Mehta, Jeanne E. Meyer, 
Ronald P. Preston, Vidya Rajagopalan, 
Chandrasekhara Somanathan, 
Scott A. Taylor, Gilbert M. Wolrich 

Overview of the Alpha 21 164 

The Alpha 2 1  164 mict-oprocessor is now a product of 
Digital Semiconductor. The chip is the second com- 
pletely new microprocessor to  implement the Alpha 
instruction set architecture. I t  was designed in Digital's 
0.5-micrometer ( p m )  con~plementary metal-oxide 
semiconductor (CMOS) process. First silicon was pow- 
ered on in February 1994; the part has been commer- 
cially available since January 1995. At SPECint92/ 
SPECfp92 ratings of 345/505 (estimated), the Alpha 
21 164 achieved new heights of performance. 

The performance of this new implementation 
results from aggressive circuit design using the latest 
0.5-pm CMOS technology and significant architec- 
tural improvements over the first Alpha implementa- 
tion.] The chip is designed to operate at 300 MHz, an 
operating frequency 10 percent faster than the previ- 
ous i~nplen~entation (the DECchip 21064 chip) 
would have if it were scaled into the new 0.5-pni  
CMOS te~l inology.~ Relative to  the previous imple- 
mentation, the key improvements in machine organi- 
zatio~i are a doubling of the superscalar dimension to 
four-way superscalar instruction issue; reduction of 
many operational latencies, including the latency in 
the primary data cache; a memory subsystem that does 
not block other operations aker a cache miss; and a 
large, on-chip, second-level, cvrite-back cache. 

The 21 164 nlicroprocessor iniplements the Alpha 
instruction set architecture. It runs existing Alpha pro- 
grams without modification. It supports a 43-bit vir- 
tual address and a 40-bit physical address. The page 
size is 8 kilobytes (KB). 

In  the follo\ving sections, we describe the five func- 
tional units of  the Alpha 2 1164 microprocessor and 
relate some of  the design decisions that improved the 
performance of the microprocessor. First, we give an 
overvie\v of the chip's internal organization and 
pipeline layout. 

Internal Organization 
Figure 1 shows a block diagram of the chip's five filnc- 
tional units: the instruction unit, the integer function 
unit, the floating-point unit, the memory unit, and 
the cache control and bus interface unit (called the 
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C-box). The  three on-chip caches are also sho\vn. The 
instruction cache and data cache are primary, direct- 
mapped caches. They ,Ire backed by the second-level 
cache, which is a set-associative cache that holds 
instructions and d m .  

Alpha 21 164 Pipeline 
The Alpha 2 1  164 pipeline length js 7 stages for integer 
execution, 9 stages for floating-point esecution, and 
as niany as 1 2  stages for on-chip memory instruction 
execution. Additional stages are required for off-chip 
lneniorv instruction execution. Figure 2 depicts 
the pipeline for integer, floating-point, and memory 
operations. 

Instruction Unit 

The jnstruction unit contains an 8-KB, direct-mapped 
instruction cache, an instruction prefetcher and asso- 
ciated refill buffer, branch prediction logic, and an 
instructio~l translation buffer (ITB). 

The instruction    nit fetches and decodes instruc- 
tions from the instruction cache and dispatches them 
to the appropriate fi~nction units after resol\ling all 
register and f~~nction-unit  conflicts. I t  controls pro- 
gram flow and all aspccts of esception, trap, and inter- 
rupt handling. In addition, it manages pipeline control 

for the integer and floating-point units, controlling all 
data bypasses and register file writes. 

The instruction cache has 32-byte Isloclis. The 
cache tags hold virtual address information. Its tags 
also support PAL,code through a bit which indicates 
that the tag contains a physical address. (PAL stands 
for privileged architecture library and refers to physi- 
cally addressed code executed in a privileged hard\\fare 
mode that in~plements an architecti~rall!l defined inter- 
face between the operating system and the hardivare.) 

Instruction Pipeline 
The first four pipeline stages of thc Alpha 21164 
microprocessor are the instruction unit pipeline stages, 
stage 0 through stage 3. The logic in the stage before 
stage 0 is normally considered to operate in stage 1 of 
the pipeline. In that stage, the necv instruction cache 
address is calculated either by incrementing the previ- 
ous address or by selecting a new address in response to 
a predicted or  actual flow change operation. 

During stage 0, the 8-KB instruction cache is 
accessed. It returns a naturally aligned block of four 
instructions (16 bytes) \vjth 20 bits of previously 
decoded instruction information (5 bits per instruc- 
tion). The precalculated decode information is used in 
stage 1 for branch and jump processing and in stage 2 
for instruction slotting. 

READ INSTRUCTION CACHE 
BUFFER INSTRUCTIONS. DECODE BRANCHES, 
DETERMINE NEXT INSTRUCTION CACHE ADDRESS 
7 SLOT: STEER TO EXECUTION PIPELINE 

I l l r  DETERMINE WHETHER INSTRUCTIONS CAN ISSUE 
READ INTEGER REGISTER FlLE 

FIRST INTEGER PIPELINE STAGE 
SECOND INTEGER PIPELINE STAGE 
WRITE INTEGER REGISTER FlLE 

READ FLOATING-POINT REGISTER FlLE 
FIRST FLOATING-POINT PIPELINE STAGE 
LAST FLOATING-POINT OPERATE STAGE, 
WRITE FLOATING-POINT REGISTER FlLE 

CALCULATE VIRTUAL ADDRESS. BEGIN DATA CACHE READ 
r END DATA CACHE READ, TRANSLATE VIRTUAL ADDRESS IN DTB I I 

MEMORY ACCESS PIPELINE 

USE DATA CACHE DATA, 
DATA TO DATA CACHE, BEGIN 

SECOND-LEVEL CACHE TAG ACCESS 
END SECOND-LEVEL CACHE TAG ACCESS 

BEGIN SECOND-LEVEL CACHE DATA ACCESS 
END SECOND-LEVEL CACHE DATA ACCESS 

BEGIN DATA CACHE FlLL 
END DATA CACHE FlLL 

USE SECOND-LEVEL CACHE DATA 

Figure 2 
Alpha 21 164 Pipeline Stagcs 
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In  stage 1, the four-instruction block is copied into 
one entry of  the two-entry instruction buffer (IB). 
Also in stage 1, the instruction cache and ITB each 
check for hits, and the branch-and-jump prediction 
logic determines new fetch addresses. 

The main function of stage 2 is steering each 
instruction to an appropriate fi~nction unit. This 
process, called instruction slotting, resolves all static 
execution conflicts. The instruction slotter accepts the 
next four-instruction block from the IB into a staging 
register at the beginning ofstage 2 and routes the indi- 
vidual instructions to the appropriate functional 
pipelines as it advances them to stage 3. If  the block 
contains certain mixes of instruction types, it is able to 
slot all four instructions in a single cycle. Otherwise, it 
advances as mally instructions as possible in the first 
cycle. The remaining instructions in the block are slot- 
ted during subsequent cycles. Instructions are slotted 
strictly in program order. A new four-instruction block 
enters stage 2 when every instruction in the prior 
block has been slotted and advanced to stage 3. 

The issue stage operates in stage 3. I t  performs all 
dynamic conflict checks on the set of instructions 
advanced from stage 2. The issue stage contains a corn- 
plex register scoreboard to check for read-after-write 
and write-after-write register conflicts. This stage also 
detects hnction-unit-busy co~~flicts, which can occur 
because the integer multiplier and floating-poult divider 
are not fi~lly pipelined. The register scoreboard logic 
detects all integer and floating-point operand bypass 
cases and sends the necessary bypass control signals. 

The issue stage issues instructions to the appropriate 
function units unless it encounters a dynamic conflict. 
If a conflict O C C U ~ S ,  the instruction and logically subse- 
quent instructions are stalled (not issued). A stall in 
stage 3 also stalls the advance of the next set of slotted 
instructions from stage 2. This stall ends when all 
instructions in stage 3 have been issued. 

To perform conflict checking and to hand1.e excep- 
tions (including traps and interrupts), the instruction 
unit tracks the instructions issued during stage 4 
through stage 8. The instruction unit sends register 
file write strobes and addresses to the integer and 
floating-point register files for instructions that reach 
the retire point (stage 6) without an exception. In the 
event of an exception, write strobes are withheld 
(gated) to prevent incomplete instructions from 
updating the register file. These instructions d o  not 
complete either because they caused an exception or  
because they are in the "shadow" of an esception. The 
shadow of an exception includes all instructions that 
are in the pipeline when an exception is recognized 
but are logically subsequent to the instruction taking 
the exception. 

The issue stage stalls for a single cycle to permit the 
integer multiplier or  floating-point divider to return 
a result into its associated pipeline. This is necessary 

because the register files d o  not  have extra write ports 
dedicated to receiving these results. The issue stage 
also stalls for one cycle in similar cases to permit data 
fills for load instructions that missed in the data cache 
to write to thc register file and data cache. The issue 
stage stalls indefinitely when necessary to execute the 
trap barrier and memory barrier instructions. 

No-op Instructions 
New instructions are shifted into the slotting and issue 
stages when a given stage becomes completely empty. 
Compared to an ideal design in which instructions are 
shifted to fill a given stage partially, this design has a 
slightly increased average cycles-per-instruction ratio. 
We considered the alternative in which instructions are 
shifted in as slots become available. This alternative 
would have created critical paths that would increase 
the CPU cycle time by approsimately 10 percent. An 
evaluation of our trace-driven performance model 
showed that the alternative did not reduce the cycles- 
per-instructio~i ratio enough to compensate for the 
reduction in cycle time. As a result, we chose the sim- 
pler and faster design. 

Compilers and assembly language progralnmers can 
insert no-op instructions to minimize and, in most 
cases, to eliminate any negative performance effect. To  
facilitate this process, the Alpha 21 164 microprocessor 
handles three different kinds of no-op instruction. 

The first two kinds of no-op instruction are the 
integer no-op (NOP) and the floating-point 
no-op (FNOP). NOP (BIS R31,R31,R31) can issue 
in either integer execution pipeline. FNOP (CPYS 
F31,F31,F31) can issue in either floating-point execu- 
tion pipeline. The compiler uses these to improve per- 
formance when two instructions would be slotted 
together even though they cannot issue in the same 
cycle. If one instructioi'l in a pair is dependent 011 the 
other, issuing them together guarantees the second 
will stall in the issue stage and prevent later instruc- 
tions from entering that stage. The compiler inserts a 
NOP o r  FNOP to delay the issue of the second instruc- 
tion. With this improvement, the second instruction 
can be issued with later instructions. 

The third kind of  no-op instruction, the universal 
no-op (UNOP),  is detected in stage 2. UNOP 
[LDQ-U R3l ,O(lhn)]  is discarded in stage 2 so that 
it does not require an issue slot in either pipeline. 
UNOP allows compilers to align instructions without 
the unnecessary use of  pipeline issue slots. For exam- 
ple, the compiler can align the target of a branch with- 
out  necessarily slowing execution of the fall-through 
path to that branch. 

Instruction Prefetcher and Refill Buffer 
The instruction prefetcher operates in parallel with the 
instruction cache. When an instruction is not in either 
the instruction cache o r  refill buffer, the prefetcher 
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generates a stream of 32-byte instruction block fetch 
requests to f i l l  the 4-entry refill buffer with instruction 
data. Each instruction block contains 8 instructions. 
Fetched instruction data is stored in the refill buffer 
when it is returned. Four-instruction subblocks of 
jnstruction data are moved from the refill buffer to the 
IB when needed. At that time, the instr~~ction cache is 
also updated. If this data movement empties an entry 
in the refill buffer, an additional fetch request is initi- 
ated. Fetched instruction data is buffered in the refill 
buffer rather than the instruction cache to avoid evict- 
ing valid cache blocks i~nnecessarily. 

The refill buffer is a type of stream buffer. Each 
entry stores a virtual address and has a comparator so 
the refill buffer can be probed for instruction data on  
a cache miss. Instruction fetching begins only if an 
access misses in bod1 the instruction cache and the 
refill buffer. Fetching stops when any instruction flow 
change occurs (i.e., branch, jump, exception, etc.). I t  
also stops if at any time the instructions needed in 
stage 1 are found in the instruction cache. 

The combi~lation of the on-chip, 96-KB second- 
level cache and the instruction prefetcher significantly 
reduces the benefit of  enlarging tlie instruction cache 
beyond its current size of 8 KB. The prefetcher gener- 
atcs requests at a high rate. Because it is on-chip, the 
second-level cache has the bandwidth to handle 
requests quickly and with relatively little effect on 
data-stream requests. In general, tlie performance 
benefit from making the jnstruction cache larger is 
very small. This is one of  tlie benefits of  thc two-level 
on-chip cache hierarchy. 

Instruction Stream Address Translation and the 
Instruction Translation Buffer 
The instruction unit contains a 48-entry, fully associa- 
tive instruction translation buffer (ITB) that holds 
instruction stream address translations and protection 
information. Each entry in the ITR can map 1 , 8 , 6 4 ,  
or  512 contiguous 8-KB pages. 

During stage 1, the ITB entries are checked for 
a match with the program counter (PC). Iftlie page is 
found, its protection bits are checked against the cur- 
rent operating mode. I f the  page is not found, an ITB 
miss trap occurs. If the page is found in the ITB and 
tlie access is an  instruction cache miss, the ITB supplies 
the physical page address to the prefetcher. 

Branch and Jump Prediction 
The branch prediction logic examines tlie block of 
instructions coming from the instruction cache or  
refill buffer during stage 1 .  I t  checks the block for con- 
trol instructions (taken conditio~ial branches, jumps, 
subroutine return instructions, and other tlo\ii-change 
instructions) and calculates the new fetch address. 
Since the new fetch address is available at the end of 
stage 1, the read of the instruction cache for the target 

instruction occurs in the next cycle. This means the 
control instruction is in stage 2 at  tlie same time as the 
target instruction is in stage 0, resulting in a one-cycle 
branch delay that creates an empty cycle in the 
pipeline. The IB quashes this empty cycle if any stall 
occurs ahead of it in the pipcline. 

The branch prediction logic predicts conditional 
branch illstructions using a branch history table with 
2K entries addressed by lobv-order bits of the PC. Each 
is a two-bit counter that increments when branches are 
taken and decrements when branches are not taken. 
The counter saturates at the top and bottom counts. 
A branch is predicted to be taken if the current 
counter value is one of the nvo highest counts; other- 
wise, it is predicted to be not-taken. This method is 
more effective than the method used in the first Alpha 
microprocessor (which had only one bit of history per 
entry), partly because it reduces the misprediction rate 
for typical loop branches by half. 

A 12-entry return address stack is used to predict 
the target address on s ~ ~ b r o u t i n e  returns (i.e., RET, 
JSR-COROUTINE) and returns from PALcode. Each 
entry stores 11 bits of address, which is sufficient to 
address the 8-KB instruction cache. The upper 32 bits 
of the target address are predicted by using the value in 
the instruction cache tag that is addressed by the 
return address stack. The same basic meclianisni is 
used to  predict the fill1 target address of jump and 
jump-type subroutine call instructions since the Alpha 
architecture provides a hint field in these instructions 
that indicates the target cache address. 

The Alpha 21 164 microprocessor recovers from 
incorrect branch and PC predictions by taking a mis- 
predict trap when the incorrectly predicted branch or  
jump-type instruction executes in the execution unit. 
For a typical branch misprediction, the execution time 
is five cycles longer. 

Replay Traps 
In  a replay trap, the instruction unit prevents coniple- 
tion of a given instruction by trapping the instruction 
and then restarting execution immediately with that 
instruction. The trap mechanism prevents completion 
of  subseq~~en t  instructions. This mechanism replays 
the instruction from the beginning of  the Alpha 
21 164 pipeline. It is used when a stall after stage 3 
would otherwise be required. 

There are three main reasons stalls are not iniple- 
mented for stages later than stage 3. The ability to stall 
adds complexity to clocking circuits, particularly in 
execution unit data paths. In addition, it adds control 
complexity. An example of  this is a stalled two-input 
function unit in which one input operand is invalid. To 
end tlie stall, certain latches must be enabled while 
others are not, because the valid data must be held in 
one pipeline latch while the invalid data is replaced 
in another. Finally, adding stall logic would create 
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additional critical paths. The elimination of  stalls 
beyond stage 3 and the use of the replay trap mecha- 
nism avoid these co~i~plesities. 

The replay trap mechanism is used for a number of 
unusual memory instruction conflicts and memory 
unit resource overruns. For esanlple, the load-miss- 
and-use replay trap is used \vlien a load misses in the 
data cache and a dependent instruction issues exactly 
nvo cycles atier the load. The issue decision for such 
a dependent instruction is made prior to the actual 
determination of cache hit, so a hit is predicted. If 
this prediction is wrong, the dependent instruction is 
restarted from the front of  the pipeline and will arrive 
at the issue stage one cycle before data arrives from the 
second-level cache. Because the instruction arrives 
before the data, tliere is no  performance loss due to 
the trap mechanism. 

lnteger Function Unit 

The integer function unit executes integer operate 
instructions, calculates virtual addresses for all load 
and store instructions, and executes all control instruc- 
tions escept floating-point conditional branches. It 
includes tlie register file and several integer fi~nctional 
subunits, most of  which are contained in two parallel 
four-stage pipelines. Both pipelines contain an adder 
and a Boolean logic unit. The  first pipeline contains 
the shifter, and the second pipeline contains the con- 
trol instruction execution unit. The first pipeline also 
attaches to the partially pipelined integer multiplier, 
which operates in the background. Except for the issue 
cycle and a cycle to  return tlie result, the first pipeline 
and integer multiplier operate in parallel. 

lnteger Register File and Bypasses 
The integer register tile is read during stage 3 and writ- 
ten in stage 6 .  Bypass paths are implemented to allon' 
all subunits other than the nlultiplier to receive and use 
the result ofa  previoirs instruction tiom stage 4 ,5 ,  or  6 
of either pipcline. Due to implementation constraints, 
the multiplier can only receive bypasscd data from stagc 
6 of the pipeline. This increases multiply latency by as 
many as nvo cycles when multiply input operands are 
produced by preceding integer operate instructions. 

The integer register file contains 4 0  registers: the 32 
integer registers specitied by the architecture (RO 
t h r o ~ ~ g h  R31) with R31 always reading as 0; and 8 
shadow registers available to PALcode as scratch space. 
The register file is accessed by 4 read ports ( 2  for each 
pipeline) and 2 write ports (1  for each pipeline). 

Instruction Latencies 
Most i~ is t~-uct~ons  cxeci~ted in the integer fi~nction 
unit have a I'ltencv of 1 cycle. Thcsc ~nstructions ese- 
cute in stage 4 .  Thc conditional move instruction has 
a latency o f 2  cvcles. It executes in stage 4 and stage 5. 

Multiply latency depends o n  the data size and the 
operation being performed. Th i r ry -web i t  multiplies 
have an 8-cycle latency, and the multiplier can start 
a second multipl!l aficr 4 cycles, provided that the 
second multiply lias no data depcndcncy 011 tlic first. 
Sixtyfour-bit signed multiplies have a 12-cycle 
latency; the 64-bit multiply unsigned high instruction 
has a 14-cycle latency; and for both of these 64-bit 
multiplies, the multiplier can start a nondependent 
multiply after 8 cycles. 

Because of a special bypass, compare and Boolea11 
logic irrstructions can lia\~e a latency of 0 cycles \vhen 
a conditional move o r  a branch test input operand is 
the result of an immediately preceding compare or  
Boolean logic instruction. The integer unit uses the 
bypass to a l l o ~ f  dual i s s ~ ~ e  of  tlie producer and con- 
sillner in this case. 

To realize the fill1 beneft  from the increased issue 
width relative to the first Alpha microprocessor, the 
DECchip 21064, it is critical to reduce operational 
latencies. As the issue width increases, the cost in 
instruction execution opportunities for a given latency 
increases. In the integer unit, the follo\ving latencies 
are reduced relative to the 21064: the shifier latency 
(from 2 cycles to  l ) ,  the byte and word operation 
latencies (from 2 cycles to l ) ,  and the multiplier 
latency (from 19  to 2 3  cycles in the 21064 to 8 to 1 6  
cycles in the Alpha 21164). Also the special bypass 
for conditional jnstructions reduces that latency from 
1 cycle in the 21 064 to O cycles in tlie Alpha 2 1 164. 
For the most part, tliesc late~icy red~~ct ions  are 
achieved by circuit design improvements. 

lnteger Load and Store Instructions 
Integer load instructions issue in either pipeline and as 
many as nvo can issue per cycle. Integcr storc instruc- 
tions issue in the first pipeline only. For i~lteger load 
instructions that hit in the data cachc, tlie data is mul- 
tiplesed into the output of  stage 5 of  the pipcline in 
which the load issued; the data is then written to  the 
register file through the write port associated \\ritli that 
pipeline. For integer load instructions that miss in the 
data cache, the data is returued later by thc rncn~ol-!~ 
subsystem. The data is then multiplcxcd into the out-  
put of stage 5 as before, and the i~istruction unit 
inserts a properly timed NOP cycle by stalling the issue 
stage for one cycle to  make the pipeline's register write 
port available. 

Floating-point Unit 

The floating-point unit consists of  the floating-point 
register file and two pipelined f~~nct ional  subunits: an 
add pipeline that executes all floating-point instruc- 
tions escept for multiply, and a multiply pipeline that 
esecutes floating-point m~~ltiplies. All IEEE and VAX 

124 Digital Technical Journal "-)I. 7 No. 1 1995 



rounding modcs are done in hard\vare, including 
IEEE round to plus and minus infinity. 

Pipeline Structure and Operation Latencies 
Each tloating-point subunit on the Alpha 21164 CPU 
chip contains tlirce functional stages implemented in 
four pipeline stages, stage 5 through stage 8.  The 
floating-point register file is read in stage 4 and written 
at the end of stage 8 .  Figurc 3 depicts the physical lay- 
out of the floating-point unit. Figure 4 sho~vs the 
pipelining of instructions executed in the tloating- 
point unit. 

As in the integer unit, latency is reduced in the 
tloating-point unit relative to the previous Alpha 
implementation. The latency of all floating-point 
operate instructions, except floating-point divide, is 4 
cycles. In thc DECchip 21064, most floating-point 
operations take 6 cycles. The tloating-point divide 
late~lcy varies depending on the input data values. For 
a single-precision divide, the latency is reduced from 
34 cycles in the 21064 to an average of 19  in the 
21 164; and for a double-precision divide, it is reduced 
from 6 3  cycles to an average of 3 1. As discussed previ- 
ously, reducing latency is important as issue width 
increases. As in the integer unit, the reduced latency is 
achieved mostly by circuit design i~nprovenients. 

Register File and Bypasses 
The tloating-point register file Iias nine ports: nvo read 
ports and one write port per fi~nctional unit for source 
and destination operand accesses, one read port for 
floating-point stores, and hvo write ports to support 
nvo floating-po~nt loads per c~lcle. Rypass paths forward 
data from each of the four write buses in the floating- 
point register file to each of the five read buses. 

MULTIPLY STAGE 3 

MULTIPLY STAGE 2 

1 MULTIPLY STAGE 1 1 I 

I I I 

64-BIT REGISTER FILE I 

D-CACHE 
LOADISTORE 
BUSES 

I 

Figure 3 
Physical Layout o f  thc Floating-point Unit  

t 

Floating-point Load and Store Instructions 
In Alpha microprocessors, floating-point numbers are 
stored in one format in memory and in another format 
in the tloating-point registers. Floating-point load and 
store instructions convert from one format to  the 
other as they move the data. In  the Alpha 21 164 
pipeline, floating-point input operands are read from 
the floating-point register file one cycle later than inte- 
ger input operands are read from the integer register 
file. This slcew provides an  extra cycle for tloating- 
point load data format conversion. 

Floating-point load and store instructions first issue 
to the integer l ~ n i t  for address calculatjon. The issue 
restrictions are exactly the same 3s for integer load or  
store instructions. For floating-point load instructions, 
the data is written to the register file using one of the 
nvo write ports reserved for that purpose. When a con- 
flict for these write ports occurs bcnveen a \\(rite due to 
a new load that hit in the data cache and a write due 
to a previous load that missed, the conflict is resolved 
by forcing tlie new load to miss in the data cache. 

LOADISTORE FORMAT I . . 

Add Pipeline 
The key components o f the  add pipeline design are the 
fast fraction adder, operand data-path alignment, nor- 
malization shift detection, stickp-bit calculation, and 
round-adder design. The fast-adder design operates in 
a single phase (one phase equals one-half of  a CPU 
cycle). It is used in the f i~nct io~i  stage 1 and stage 3 
fraction adders. To reduce formatting and rounding 
complesity, the least significant bits in fractions are 
aligned to one of nslo different bit positions: one for 
single-precision data (IEEE S and  VAX F)  and 4-byte 
integers, and one for double-precision data (IEEE T, 
and VAX G and D) and 8-byte integers. 

For effective subtracts with exponent differences of  
-1, 0, or 1,  a new normalization shift detect algo- 
rithm uses three leading bit chains to esarnine stage 1 
input operands to  determine tlie required normaliza- 
tion shifi. The norn~alization shift amount is chosen 
by comparing the least significant bit of one exponent 
to the least significant bit of  the other. 

The sticky bit for adds and subtracts is determined 
by comparing the esponerit difference with an encoded 
value for the number of trailing zeros in tlie fraction 
being aligned. 

The stage 3 round adder operates in one cycle and 
consists of  a fi-action adder and an output selector. The 
fraction adder takes one phase and adds two operands 
plus rounding bits based on  the round mode. The 
selector assembles the fraction result based on global 
carry-and-propagate information from the adder. It 
also examines the adder r e s ~ ~ l t  alignment and performs 
a final normalization shifi of  as much as one bit left or  
right. The  exponent result is also selected in stage 3 
before the complete result is sent to the register file 
~vrite bus and bypass logic. 
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Multiply Pipeline 
Multiplication is done using radix-eight Booth encod- 
ing, which requires 18 partial products to be summed.3 
The first stage of the multiply pipeline is used to create 
three times the multiplicand and to  determine the 
Booth encodings. The  multiplier array is composed 
of 14 rows ofcarry-save adders that perform the addi- 
tion of nlultiplicands. The carry and sum outputs of 
the array are reduced by combining carry-save adders 
and then are passed through a half adder to facilitate 
rounding. 

Thc sticky bit for nlultiplication is determined by 
summing the number of  trailing zeros in both 
operands. The carry output from the less significant 
product bits is used by the round selector of the  multi- 
ply pipeline to determine the correct final product. 

HIT) POINT UNIT I 

FORMAT ' DRIVE ! 
CONVERSION DATA TO DATA CACHE WRITE 

DATA I ; 
GENERATE cAcHE 

Divider 
Floating-point divide instructions issue into the add 
pipeline. The operands are immediately passed to the 
divider. Instruction issue to the add pipelinc continues 
while a divide is in progress until the result is ready. At 
that point, the issue stage in the instruction unit stalls 
one cycle to allow the quotient to be sent to the round 
adder and then be written into the register file. 

The divider uses a normalizing nonrestoring algo- 
rithm that determines 1 to 4 bits ofquotient per cycle, 
averaging 2.4 quotient bits per cycle.4 Implementation 
of this algorithm requires that an esact partial remain- 
der be produced every cycle. The implementation uses 
a fast adder that produces its result in half of  a cycle. 

PARITY 

Memory Unit 

The memory unit contains a fully associative, 64-entry, 
data translation buffer (DTB); an 8-I(B, direct- 
mapped, primary data cache; a structure called the miss 
address file (MAF); and a write buffer. I t  processes load, 
store, and memory barrier insui~ctions. 
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The write-through data cache has 32-byte blocks 
and 2 read ports. Its tags hold physical address data. 

The memory unit receives as many as 2 virtual 
addresses from the integer unit each cycle. Because it 
has 2 read ports, the DTB can translate both virtual 
addresses to physical addresses and detect memory 
management faults. (Lilte the ITB, each entry in the 
DTB can map 1 ,8 ,64,  or  512 cont iguo~~s 8-KB pages.) 

Load instructions access the data cache and return 
data to the register file if there is a hit. The latency for 
loads that hit in the data cache is CLVO cycles. Again, 
latency is reduced relative to the DECchip 21064 
microprocessor where the latency is three cycles for 
loads that hit. The reduced latency was achieved by 
circuit design improvements. Reducing this latency is 
particularly important as issue width increases because 
of the  frequent use of loads in programs. 

For loads that miss, the physical addresses are sent 
to  the MAE, wherc they wait to be sent to the C-box. 
Store instructions write the data cache if there is a hit; 
they are always placed in the write buffer, where they 
wait t o  be sent to the C-box. 

Memory Unit Pipeline Structure 
Virtual address calculation begins in the integcr unit 
early in stage 4. The data cache acccss begins later in 
stage 4 and completes early in stage 5. Address trans- 
lation is done in parallel with data cache access. Data 
cachc hit is determined late in stagc 5. If the access 
hits, the data is written to  the register file (for a load 
access) or  the cache (for a store access) in stage 6. In 
the case of a data cache miss, the mernory access 
advances to pipeline stages 111 the C-box. 

Miss Address File 
The M M  consists of two sections that store data. The 
first section holds load misses (called DREADs) in six 
entries, and the other section holds instruction fetch 
addresses (called IREFs) in four entries. For DREADS, 



the blAF stores the physical address, destination regis- 
ter, and instruction type (integer/tloating-point, 
4-bpte/8-byte/IEEE-S-T)rpe/VAX-G-Type, etc.). For 
IREFs, tlie bIAF stores only the physical address. 

Buffered accesses in the MAF and write buffer are 
sent to the C-box at a peak rate of one evcry other 
cycle. II)READs liave highest priority, writes have the 
nest highest priority, and IREFs have lowest priority. 

When the C-box returns data for a DREAD, the 
memory unit pro\~ides the destination register and 
instruction type information from tlie MAF. This 
information is then used t o  convert tlie data to its 
in-register format, to determine which registers to 
write, and to i~pdate the register scoreboard in the 
instruction unit. The DREAD entry is removed from 
the MAF when the second half of the data fill arrives. 

The C-box returns IREF data directly to the 
instruction unit's cache and refill buffer. The IREF 
entry is removed from the MAF as soon as the com- 
mand has been accepted by the C-box. 

Merging Capability One ltep performance feature of 
the MAF is that it merges multiple load misses that 
access the same 32-byte block ofmemory into a single 
C-box DIEAD request. One load instruction requests 
at most 8 bytes of a 32-byte memory block. As niany 
as 4 load misses can be merged into 1 DREAD request. 
This irnpro\les latency and reduces unnecessary band- 
width cons~~mption in the second-level cache. 

To implement merging, the MAE merge logic 
detects any load miss address to a block that has already 
been qireired in the DREAD section of the bLM. The 
logic then adds the new destination register to the 
existing request. iMerging is limited to 1 load miss per 
naturally aligned 8-byte portion of the 32-byte block. 
Also, merging is permitted only for load misses with 
identical instruction types. The memory unit allocates 
a new DREAD entry in the M4F only for load misses 
that d o  not merge. The merge logic supports the peak 
load instruction issue rate. It can merge as niany as 
2 load misses per cycle into the DREA.D section and 
can merge loads that issue together. 

The MAF merge capability is an integral part of the 
two-level cache hierarchy design. It can reduce the rate 
of niemory read operations from nvo loads per cycle in 
the integer pipelines to one read every other cycle 
in the second-level cache pipeline. By doing so, the 
MAF makes the full bandwidth of the second-level 
cache available to the program. 

The MAF can hold as niany as 6 DREADS that can 
represent as many as 21 loads. (The theoretical maxi- 
mum is 24  loads; this limit is a by-product of the over- 
flow prevention algorithm.) Requests are sent to the 
C-box in the order in which they were allocated in 
the bMF. Accesses in the second-level cache can 
hit underneath (behind) second-level cache misses, 

allowing data fills to be returned in a different order 
tlian they were sent to the C-box. 

Two-level Data Cache Many workloads benefit more 
from a reduced latency in the data cache than from 
a large data cache. We considered a single-level design 
for a large data cache. For circuit reasons, physically 
large caches are slower than small caches. To  achieve a 
reduced latency, we chose a fast primary cache backed 
by a large second-level cache. As a result, tlie effective 
latency of reads is better in the Alpha 2 1164 CPU chip 
than it would have been in a single-level design. 

The nvo-level data cache has other benefits. The 
two-level design makes it reasonable to implement set 
associativity in the second-level cache. Set associativity 
enables power reduction by malting data set access 
conditional on a hit in that set. The two-level design 
also allo\vs the second-level cache to hold instructions, 
which makes a larger instruction cache unnecessary. 

In addition, the two-level design was simpler. 
Because performance studies showed that the Alpha 
21164 CPU chip should have write-back caching on- 
chip, the data cache in the single-level design \vould 
have been write-back. Also, because of its larger size, it 
would have been virtually addressed, which would 
have required a solution to the synonym problem. 
Finally, it would liave been difficult to make the single 
large cache set-associative without adding latency. The 
nvo-level design eliminated all these issues. 

Write Buffer 
The write buffer contains 6 entries; each entry holds as 
many as 32 bytes of data and one physical address. 
I t  accumulates store instructions written to the same 
32-byte bloclc by merging them into 1 entry. I t  can 
merge 1 store instruction per cycle, matching the peak 
store instruction issue rate. The write buffer places 
110 restrictions on merging until a write is sent to  the 
second-level cache. At that time, the write buffer stops 
nierging to that entry. 

Once an entry from the write buffer has been sent 
to  the C-box, several steps may be required to coni- 
plete the write, depending on the presence of the 
memory block in the second-level cache and its cache 
coherence state. The C-box signals the memory unit 
upon completion of a store operation, and then the 
memory unit removes the corresponding entry from 
the write buffer. 

Access Ordering 
The memory unit guarantees that all niemory accesses 
to the same address are processed in the order given by 
the instruction stream. This is a design problem in any 
nonbloclung memory subsystem design. Load misses 
that conflict with a store, and stores that conflict with 
a load miss, set conflict bits that prevent the issue of 



the DREAD or write until all conflicts have been 
cleared. If a store matches a valid entry ill the \\/rite 
buffer and cannot merge with that entry, it is allocated 
a nenr entry that is prevented from being sent to the 
C-box ~ ~ n t i l  the earlier write is con~pleted. 

Memory Barrier Instructions 
The memory unit implements the memory barricr 
(MB) instruction by retiring all previous load misses 
and \\!rites before sending the MB to the bus interface 
unit. The instruction unit stalls new memory instruc- 
tions until the MB has bee11 completed. 

The memory unit implements the write memory 
barrier (WMB) instruction as follows: When the WMB 
is executed, the memory unit marks the last write that 
is pending at  that time. Writes added after that time 
are added behind the WMB mark. They are not sent 
to the C-box until all writes ahead of the WMB mark 
are completed. Unlike the MB instruction, executiori 
of the WlMB instruction does not require any stalls in 
the instruction unit. 

Replay Traps in the Memory Unit 
The lnemory unit forces a replay trap if a new load or  
write would cause the buffer to overflo\v. I t  also forces 
a replay trllp when a store that hits in the data cache 
is follo\ved by a load to exactly the same location in 

the next cycle. In this case, because the store \\/rites the 
data cache in stage 6, the data from the store would 
not yet be available to the load. 

Cache Control and Bus Interface Unit 

The cache control and bus interface unit or C-box 
contains the second-level cache and the follo\\iing sub- 
units: the second-level cache arbiter unit (SAU), the 
bus interface unit sequencer (BSQ), the victim address 
file (VAF), the bus interface unit address f le (KAF), 
the write buffer unit (\mu), and the system probc 
arbiter (SPA). Figure 5 shows the functional ~uli ts  of  
the C-box. 

The C-box provides the interface to the system for 
access to lnemory and I/O. It  provides full support for 
multiprocessor systems using a cache coherence pro- 
tocol (described later in this section). I t  manages the 
second-level cache and an optional off-chip third-level 
cache, both of \vhich are multiprocessor-coherent 
write-back caches. 

The SAU arbitrates the requests for access to  the 
second-level cache. The BSQ requests to write data fill 
(due to  previous second-level cache misses). The VAF 
requcsts read accesses of deallocated second- level 
cache blocks that ha\le been modified (called victims). 
The SPA requests access for external cache coherence 

Figure 5 
Functional Units o f  the C-box 
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trarlsactions. The memory unit requests access for 
DREAD, IREF, and write requests. Highest priority is 
given to the RSQ, followed by the VAF, and then tlie 
SPA; lo\vest priority is given to the melnory  n nit. 

The  BSQ controls data movement to  and from the 
Alpha 2 1164 ~nicroprocessor. It accesses the option'll 
off-chip third-lc\,cl caclie. It com~ii~~nicates  with tlie 
systern to reqllest data that is not caclled, to write back 
deallocated cache blocks that have been modified, 
to carry out coherence transactions, and to perfor111 
I/O accesses. 

The 17AF reads and holds \,ictims fro111 the sccond- 
level cache and data for meliiory broadcast writes, 1 / 0  
writes, and esternal cache coherence commands tliat 
require data froni the second-level cache. I t  has nvo 
entries for victims, each ofwhich holds tlie address and 
data for a \,ictini. These victims are written back to 
third-le\d cache or  memor!l \vIicu the BSQ is idle 
or  sooner if necessary to maintain cache coherence. 
These entries also hold data for memory broadcast 
writes and 1 / 0  writes. A separate buffer holds data for 
external caclic coherence comniands tliat require data 
fro111 the second-level cache. 

Tlie WBU handles second-level caclie \\!rites and 
cooperates \\tit11 other C-box S L I ~ ~ L I I ~ ~ ~ S  to maintain 
cache coherence. 

The SPA receives cache coherence requests from the 
external system cn\/ironnient. To  f~~lfill these colier- 
cnce requests, it accesses tlie second-lc\lcl caclie and, if 
the off-chip cache is present, cooperates \\lit11 the 13SQ 
to access tlie off-chip caclie. It then sends an appropri- 
ate response to the esterrial systelii. 

Second-level Cache and Optional Off-chip Cache 
The C-box manages the on-chip second-level cache 
and tlie optional off-chip cache. Both are write-back, 
and both are mixed instruction and data caches. If it 
is present, thc off-chip cache is a third-level caclie. The 
second-level cache is 9 6  KB in size and is 3-wa!1 
set-associative. The off-chip cachc is direct-mapped 
and can be configured to  sizes ranging from 1 nicga- 
byte (MR) to 6 4  MB. The off-chip caclie is not  set- 
associative because it is not  feasible given pin-count 
constraints. Tlie tags in both caches hold physical 
address data and coherence statc bits for each block. 

The block size for the off-chip caclie is c o n f i g ~ ~ r ~ ~ b l e  
to 32 bytes or 6 4  bytes. The second-level cdchc has 
1 tag per 64-byte l,>locl<. It can be configul-ed to oper- 
cite \vitli 64-byte blocks or  with 32-byte subbloclts. 

The second-level caclie tags contain bits to record 
u~hich 16-byte data \vords \\~ithin the block o r  sub- 
block have been modifi ed since tlie block \\.as brought 
on-chip. When a block o r  subblock is copied back to  
the off-chip caclie, only modified 16-byte data words 
are transferred. This reduces tlie tinie required to write 
back second-level cache victims in many cases. 

Transaction Handling 
A maximum of 2 second-level cache misses can be 
queued in the l3AF for external access in the off-chip 
caclie and memory. The RAF merges read requests to 
32-byte blocks within the same 64-byte block. 

For simplicity, only one operation to a given 
second-level cuche address is allo\\,cci in the BAF at 
a time, except \\/lien the two re~111ests merge. A new 
request \vitIi 3 scco~id-level cache address that m,~tcIics 
an existing request in the BAF is aborted. Siniilarly, 
requests tllat require VAF entries \\/lien the VAF is fcrll 
are aborted, and new requests are aborted \\,lien tlie 
BAF is ti~ll. If a request is aborted, thc memory unit 
retries tlie request repeatedly i11lti1 it is accepted. 
Accesses to  second-level blocks that are partially valid 
because thcy are being fillcd arc aborted repeatedly 
until the data fi l l  completes. 

Maintaining Cache Coherence 
The Alpha 2 1 164 CPU chip ~ ~ s e s  a cache coherence 
protocol iniple~nented in hard\vare to provide full sup- 
port for ~nultiprocessor systelils. Tlie instruction cache 
is virtual and is not  kept coherent by the hardware. 
(The Alpha architecture requires sofnvare to manage 
instruction caclie coherence.) Thc data cachc is a s~ rb -  
set of the second-le\.el cache. If tlie off-chip caclic is 
present, the11 the second-level cache is a subset of tlie 
off-chip cachc. 

Three statc bits record the coherence state of each 
block or subblocl< in the second-level cachc and tlie 
off-chip cache: the valid bit, the shared bit, ~ n d  
the dirty bit. Tlie valid bit indicates tliat tlie block con- 
tains valid data. The shared bit indicates that the block 
may be cached in more than one CPU's cache. Tlie 
dirty bit indicates that tlie memory copy of the block 
is not correct and the cache block must eventually 
be written back. These state bits allo\v the follow- 
ing states to be encoded for a given cache block or  
subblock: invaljd, exclusive-u~imodified, esclusi\,e- 
~iiodified, shared-i~~-~modified, and shared-modified. 

The  system bus interface is the coherence reference 
point in the system. Any reqilcst to modify tlie state of 
a block is arbitrated at this bus before the block is 
changed. For esample, \\then the Alpha 21 164 (:PU 
chip must \\'rite to a block in the second-level cache 
that is in the excl~~si\!e-un~iiodificd state, the RSQ 
sends a request to the systeln to changc the state of tlie 
block to the exclusi\~e-~iiodified statc. The C-box waits 
for the syste~ii to aclcnowledgc the request, and the11 
retries tlie write. If another processor reads the same 
block before the request is ackno\\rledged, the block 
is instead changed to the slial-ed-un~nodified state. In 
that situation, the Alpha 21 164 CPU chip subse- 
qi~entlp se~lds a fi~ll-block memory write on the system 
bus that causes all other processors to  iri\,alidate their 
copy of thc  block and leaves thc block in the exclusive- 
unmodified state in this processor. 
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Second-level Cache Transaction Flows 
DREADS, IREFs, and writes from tlie memory  n nit 
access the second-level cachc after winning arbitration 
in the memory unit and the SAU. The second-level 
cache is fully pipelined. Figure 6 shows an example of 
a read that is follo\ved by a \\!rite as both hit in the cachc. 

For tlie read ~cccss  shown in Figure 6 ,  tlie pipeline 
stages are the follo\\ling. TIie SAU arbitrates in stage 5; 
tlie second-level cache tag store is read in stngc 6;  the 
hit is determined in stagc 7; and the reqi~cstcd data is 
read from the cache data store in stage 8 and sent on 
the 128-bit-wide read data bus (R-bus) in stage 9. Tlic 
second halfoftlie 32-byte block is read and sent in the 
next pipeline cycle. The R-bus data is received by tlic 
integer unit, the floating-point unit, or  the instruction 
unit, depending on the nccess type. 

For data returned to the integer unit or  the tlonting- 
point unit, the data cachc till begins in stage 10 and 
completes in stage 11. The register file \\,rite occurs in 
stage 11. An instruction that is dependent o n  the l o ~ d  
can begin execution in the nest cycle. In  this case, tlic 
load latency is ciglit cycles. 

For the write access shown in F i g ~ ~ r e  6, tlic pipelinc 
stages are the follou~ing. The SAU arbitrates in stagc 5; 
tlie tag store is read in stage 6; the hit is determined, 
and data is sent on tlie 128-bit \\,rite data bus (W-bus) 
in stage 7; and the cilche is written in stage 8. As 
before, the second half of thc 32-b!~e \\/rite occurs in  
tlie next pipeline cycle. 

A second-level cache miss that results in a \lictim 
provides an interesting case for discussion. Here, we 
must determine which set to f i l l  and then remove the 
iictim before data can be returned from the off-chip 
cache. Figure 7 sho\vs an esilniple of a DlEA1) that 
misses in the second-level cache, creating a \,ictim, and 
the11 hits in the off-chip cache. The esarnple sho\\rn is 
the fastest possible. In this case, the BSQ is idle so the 
BAF is bypassed and the address is sent irn~iicdiately to 
the off-chip cache. The access time for thc off-chip 
cache is four CPU cycles. 

As sho\\m in Figure 7, the DREAD \$(ins arbitration 
in stage 5, and the miss is detected in s t ~ g c  7. Tlic set 
piclted by the random replacement algorithm contains 
moditied data (a \lictim). Since the block size in the 
second-level cache is 6 4  bytes, nvo 32-byte victim read 
sequences are needed to copy the entire victim into 
the on-chip \fictim buffcr. The nvo victim reads arbi- 
trate at high priority to ensure that the victim is copied 

before the data tills from tlic off-chip cache over\\,rite 
the locations. 

Thc Alpha 21 164 CPU chip begins sending the off- 
chip cache address in stage 8 (bccnusc of'l<At; bypass, 
as described abo\lc). The tag anti tiara are clocked into 
the Alpha 2 1 164 chip at the beginning of stage 12. 
The RSQ arbitrates speculati\.ely for a single cycle on 
the second-level cachc pipeline to  reserve a cyclc on 
the R-bus. That c\,clc is ~ ~ s e d  to send the data fiorn tlie 
off-chip cache to the execution units and data cache. 

If the acccss hits in tlie off-chip c.iclic, the 13SQ arbi- 
trates to f i l l  the second-level cachc. Tlic f i l l  transaction 
takes a single cyclc in tlie pipel.inc to  u~ritc the tag store 
in stagc 6 and the data store in stagc 8. 

The second victim read scqucncc occurs atier the 
first data till. Because of this, thc first \.ictim read 
sequence always reads the dr~ta location ovcr\\rritten by 
the first data fil l .  

PALcode 
The Alpha architecture defines the privileged archi- 
tecture library code (PALcodc) as a sct of software 
routines that interface an operating systcm to a spc- 
cific Alpha implen~entation. PAL.codc presents the 
operating system \\*ith an arcIiitcct~~r.iII\, dcfi ncd inte1.- 
face that is the same in all implcmcntatio~is e\.en 
though tlie undcrl!,ing l i a rd \ \~~rc  dcsigns can be \.cry 
different. PALcode currently exists to interface the 
Alpha 2 1 164 microprocessor to tlie Windows NT, 
Digital UNIX (formerly DEC OSF/l ), and OpenVMS 
operating systems. 

When the processor is esecuti~lg PAL,code, it is in 
PAL mode. I'AL mode is entcreci upon esecution of 
the CALLPAL instruction and upon rlic occurrence of 
interrupts, csceptions, and certain kinds of traps. The 
PALcocie entry point is a liard\va~-c dispatch to  a loca- 
tion that is cietermined by the entering cvc~lt .  In PAL 
mode, instructions are fetched from physical memory 
w i t h o ~ ~ t  addrcss translation. Also, five PAL support 
instructions arc enabled that give ncccs to all hard- 
ware rcgistcrs and special load/stol.c ncccss to  \virtual 
and physical memory. PAL mode is csitcd by cxecut- 
ing a PAL instr~~ction called H\V-W,I. 

T o  mcct pcrti)rmancc goals, n number of  PAL. fea- 
tures arc included in the Alpha 2 1 164 microprocessor. 
For example, the intcgcr register file contains eight 
shadow rcgistcrs that map over RH tliroi~gli R14 
and R25  in I'Al,  node. Al tho~~g l i  this o\~crmappiiig 
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is normally enabled in PAL mode, it can be disabled 
t h r o ~ ~ g l l  a h;lrd\\,are control register. This speeds 
PALcodc entry and exit, because PALcode is free to  
LISC these registers without saving and restoring state. 
The sIiadoc\~ register tilapping is designed to avoid 
overmapping any register used to pass ciata fro111 the 
operating system to  PALcode or  vice versa. 

Several of the operating systems that rill1 011 Alpha 
systems access memory management page tables 
through virtual ~ueniory."Iie Alpha 21 164 micro- 
processor contains hard\\,arc to speed processing of 
the PALcode for translation buffer nliss. These 
PALcode routines access \rirtually mapped pagc tables. 
The 11ardcvat-e calculates the virtual address of the 
pagc table entry (I'TE) based on  the miss addrcss and 
the addrcss of the page table base. This eliminates the 
instruction sequence required for this calculation. 
I'ALcocic thcn executes a loxl instruction to tl.lis vir- 
tilnl addrcss to fetch the recluircd PTE. This load is 
puformcd using a PAL instruction that signals a vir- 
tual PTE fctch. Ifthis load misses in the DT13, a special 
PALcodc trap routine is dispatched to f i l l  the DTB 
using a multilevel, physical-address access method. 
Aftcr that, the original \.irtual PTE rcaci is rest'lrted 
and  \ \ , i l l  succeed. 

Testability Features 

The Alpha 2 1 164 microprocessor incorporates sc\leral 
rest;~bility features. Some enhance chip test, and some 
features provide ~lsefi~l   nodule test 

Repairable On-chip RAMS 
The Alpha 21164 microprocessor requires large 
rundo~n-access niemory (RAM) arrays For its on-chip 
caches. To impro\*e yield, the instruction ancl clnn cache 
arrays Ii;l\*e spare rows and the second-lc\,cl cachc has 
spnrc ro\\,s und spare colu~nns.  

A working instruction cachc is necessary for most 
chip test programs. C;onscquently, it is automatically 
tested by built-in self-test (BiSt) and a~~tomatically 
repaired by built-in self-repair (BiSr). During wafer 
probe, the test result is serially shiticd off-chip for pcr- 
rnanent rcpair by laser. Upon chip reset, BiSt of the 
instruction cachc occurs automatically, but BiSr is not 
necessary if the chip has been repaired. 

The data cache and second-level caches are tested by 
programs loaded into the instruction cache during 
wafer probe. These programs condense the test results 
and ~vrite them off-chip to be capti~red by the tester 
for subsequent laser repair. 

Chip Logic Testability 
To enhance core logic testability, the Alpha 21 164 
~nicroprocessor contains dual-mode registers that can 
operate as scan registers or  as linear feedback shiti rcg- 
isters (LFSR5). 'l'he scan mode is ~ ~ s c d  for initialization, 
for scanning out  s ignat~~rcs ,  and for debugging. l'lle 
LFSR mode is used for manufacturing test. 

Module Manufacturing 
The Alpha 21 164 microprocessor implements the 
lEEE 1149.1 standard for supporting testing during 
module manufacturing. The supported instructions 
are ESTEST, SAMPLE/PIW,L,OAD, BYI'ASS, CLAMP, 
and HIGHZ. 

Summary 

The internal organization of the Alpha 21 164, a nc\\i, 
high-perfor~iiance Alpha microprocessor, has been pre- 
sented. ~Meclianisrns designed to enhance the CPU's 
performance combined \\.ith thc CPU's clock speed 
of 300 MHz produce an extremely high-performance 
microprocessor. First silicon o f  the Alpha 2 1 164 
CPU chip was produced in Fcbruar!, 1994, ;ind thrcc 
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d~ffe ren t  operating s\lstems \\!ere successfully booted 
on the  first-p,lss sr l~con.  T h e  part bc iame commcr-  
cially available 111 January 1995. I t  achic\.cd thc perfor- 
mance levcl o f  345 SPECint92 and 505 SPECfp92 
(estimated), a perfornlance Ie\lcl unmatched by coln- 
mercially available microprocessors. 
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Functional Verification 
of a Multiple-issue, 
Pipelined, Superscalar 
Alpha Processor - the 
Alpha 21 164 CPU Chip 
Digital's Alpha 21 164 processor is a complex 
quad-issue, pipelined, superscalar implemen- 
tation of the Alpha architecture. Functional 
verification was performed on the logic design 
and the PALcode interface. The simulation-based 
verification effort used implementation-directed, 
pseudorandom exercisers, supplemented with 
implementation-specific, hand-generated tests. 
Extensive coverage analysis was performed to 
direct the verification effort. Only eight logical 
bugs, all unobtrusive, were detected in the first 
prototype design, and multiple operating sys- 
tems were booted with these chips in a proto- 
type system. All bugs were corrected before any 
21 164-based systems were shipped to customers. 

The Alpha 21 164 microprocessor is a quad-issue, 
supcncalnr implementation of the Alpha architecture. 
The CI'U chip required a r i g o r o ~ ~ s  verjfication cffort 
t o  ensure that there wcrc 110 logical bugs. World-class 
performance dictated the use of  many advanced ~irclii- 
tectural features, such as on-chip \irtual instruction 
caching \\,ith seven-bit address s p x e  numbers (ASNs), 
an on-chip dual-read ported data cache, out-of-order 
instruction completion, an on-chip three-way sct- 
associntivc \\{rite-back second-le\lel cache, support for 
an optional third-level \\~ritc-back cache, branch prc- 
diction, 3 demand-paged memory management unit, 
a \\lritc buffer unit, a miss-address f le unit, and a com- 
plicatcd bus interface  n nit \\4tli s ~ ~ p p o r t  for \ ~ a r i o ~ ~ s  
CPU-s)lsteni clock ratios, system configurations, and 
third-level cache parameters. 

Function~il \!el-ification \\)as pcrfor~iied by a tcaln of 
engineers from Digital Semiconductor \\,hose primary 
responsibility was to detect and eliminate the logical 
errors in tlic Alpha 21 164 design. The detection and 
elimination of tinling, clcct~.icnl, and physical dcsign 
errors were separate efforts conducted by the chip 
design 

Extcnsi\~c fi~nctional \!critication prior to rclcasing 
the first-pass design to  the rnnn~~f~~c tu r ing  process is 
a common technique used to ensure that time-to- 
market goals are rnct for co~nplex processors. 
Increasingly, thcse irerification cfforts are relying o n  
pseudorandom test gcnerntion to improve the qualit)l 
of the vcrif cation effort. Thcsc techniques have been 
in use at Digital for more tIia11 scjren ycars and arc also 
used else\vlicrc in the industry snd in academia:;." 
This paper describes a fi~nctional verification cffort 
that signif cnntly extended psci~dorandoni testing \\lit11 
extcnsi\lc covcrage analysis and somc hand-gencmtcd 
tests to produce working first-pass parts. 

Goals 

The \;erification team had sc\*cral key goals. Goals for 
first-pass silicon incl~~ded cnsuring that the fi rst proto- 
types C~LIICI  1)oot tlie operati~ig system and providing n 
vehicle for debugging of system-related hard\\,arc and 
sohv'arc. An cldditional sol11 wns to execute a test t o  
checli e\,cry blocli of logic '~nd c\.cry function in the 



chip to ensure that no serious f~inctional bugs 
remained. The goal for second-pass silicon \\.as to  be 
bugfree so that these chips could be shipped to  cus- 
tomers for use in rc\re~~ue-producing systems. Secon- 
dary goals included assisting in the verification of 
Privileged Architecture Library code (PALcode) and 
keeping manufacturing test patterns in mind \\.hen cre- 
ating tlie verification environment and writing tests. 

Modeling Methodology 

Several different model representations of the Alpha 
2 1  164 CPU werc dcvcloped for testing prior to proto- 
npes .  The verification team primarily used a register- 
transfer-level (RTL) model of thc Alplia 21 164 (:PU 
chip. This model accurately represented the detailed 
logic of the design and delivered very high simulation 
performance. 

Modeling Environment 
The design team wrote tlie IWL niodel in the C pro- 
gramming langlragc. Tlie model reprcscntcd all 
latches and combinatorial logic of the design and was 
accurate to tlie clock-phase boundary, The C pro- 
gramming larlg~lagc \\!as chosen because C provides 
tlie speed and flcsibility needed for a large-scale 
design. 13igital's CAD group designed a user interface 
for access into the RTL ~nodcl  of the Alplia 21 164 
CPU. The C command line interface (CCLI) allo\vcd 
access into the \lariables used to define signals and to 
the routines that represented the actual design. It pro- 
vided tlie ability to  create binary traces of signals for 
postprocessing analysis and debugging. A stanclard set 
of m~cro- ins t r i ic t io~~s  simplified bit manipulation of 
signals with arbitrary widths. 

The use of C also allo\\fed the team to simulatc 
portions of the gate-level dcsign in the structural 
siniulntor, CHANGO, and to pcrforrn c!lclc-by-cycle 
comparisons with various states in the RTL model. 
These simulations, called shado\\r-mode simulations, 
\yere fi~lly i~tilized fc>r testing the various fi~nctional 
units of the  chip. 

Pseudosystem Models 
The \verification team de\~elopcd several models to 
interface to the Alpha 2 1  164 CPU RTL model and 
to allow testing of interactions with pseudosystems to 
occur. The C Innguagc provided a level of flexibility 
in the creation of these models that was not a\,ailablc 
on previous \tcrification projects. One  area in \vhich 
this tlcsibility \\,as fi~lly utilized \\/as in the formation 
of a sparsely populated memory model. By using 
a dynamic tree data structure rather tllan a static array, 
the cache, duplicate tag store, and mernor!! system 
models could be written to support the full range 
of 64-bit addressing. Hence, tests could be created 
to use ally set of addresses lvithout restrictions. I n  

addition, co~nparisons with the refcrcncc modcl c o ~ ~ l d  
be dra\vn from the entire contents of memory. This 
significantly enhanced the ability to detect possible 
errors in tlie design. 

The verification engineers creatcd a system   nod el 
( the X-box) to simulatc tr~nsactions on the pin bus. 
The S-box model provided a means to mimic tlic real 
system behavior that the Alpha 2 1 164 CPU would 
encounter when i~seci with a variety of diffcrcnt plat- 
forms. The team i~sed (: to develop an S-box model 
that co~lld be connected to every possible config- 
uration and mode setting of thc Alpha 21 164 <:PU 
chip. This allowed all modes of the Alplia 21 164 
CPU to bc tested with a single, multipurpose system 
interface   nod el. The S-box also performed  man)^ of 
the checks needed to ensure the proper operation 
of the system bus. 

Strategy 

Tlie \~crification strategy ernplo!lcd multiplc tccli- 
niques to  acliieve full fi~nctional \,crification of the 
Alpha 21 164 chip. The primary technique used was 
pseudorandom esercisers. These programs generated 
pseudorandom instruction seqilenccs, csccutcd the 
sequences on both the 21 164 model and a reference 
model, and compared the results. A second major 
techniq~lc used focused, hand-gencl-xed tests to co\.er 
specific arcas of logic. Other mctliods consistcci of 
design reviews, executing esisting tests and bcnch- 
marks, and a few static analysis techniques. Figure 1 
shows the general flo\v for a single simulation. 

This strategy \\,as deployed in tlircc parts: the try- 
anything phase, the tcst-planning pli'~se, and the struc- 
tured completion phasc. Devising a tcst plan was not 
the first step. During the early stage of the project, the 
primary goal \\,as to stabilize the design as cllrickly as 
possible. Any major bug that \ v o ~ ~ l d  Ila\fe had an 
impact on the architectural definition of the chip was 
unco\lered. Circuit dcsign and layout could thcn corn- 
mence \vithout fear of major revisions latcr. If tinie h;id 
been spent structuring detailed tcst plans, less time 
would ha\w been given to actual testing, and 3t this 
point in the design, carcfi~l t l i o i~g l~ t  \\<is not nccdcd to 
find bugs. 

The main purpose oft l ic try-anything phasc \vas to 
csercise 2s much filnctionality of thc  clcsign as possible 
in the shortest time in order to stabilize the dcsign 
quickly. This phase began even before the RTL niodel 
\\.as ready, \vith the construction of tlic pseudorandom 
eserciser programs. The pseudorandom exercisers nnd 
the RTL rnodel werc dcbugged together. This pro- 
duced an atmosplicrc of intensity and challenge in 
\\.hich ever!lone was required to interact constantly to 
help identie the source of problems. This had a sec- 
ondary benefit of bringing the dcsign and verificatio~l 
teams closer together. 
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Figure 1 
Dcsign Verification Test Environment 

Once tlie design stabilized and the bug rate 
declined, the design team began focusing on circuit 
design and layout, and the verification team took a 
step back and created a test plan. The purpose of the 
test plan was to ensure that the verification team 
i~nderstood what needed to  be verified. The test plan 
provided a mecha~iism for reviewing what would be 
tested \\lit11 the design team. The joint rc\lie~l ens~lred 
that the verification team did not miss important 
aspects of  the design. The test plan also allowed a \ ~ ~ a y  
for the design team to  raise issues around specific 
problcni areas in the design or areus tliat emplo)fed 
special logic that \\rere not obvious from the specifica- 
tion. Finally, the test plan provided a means for schcd- 
uling a11d prioritizing the rest of thc  verification effort. 

Tlic test plan consisted of a description of every fea- 
ture or hnction oftlie design tliat nccded to be tested, 
including any special design features that niight 
reqi~ire special testing. I t  did not  describe how the test 
~ l o u l d  actually be created. Past experience had indi- 
cated that test plans describing the specific secjue~ice 
of instructio~~s needed to test chip features quickly 
became outdated. Instead, the test plan focused on the 
"what," not the "Iio\v." 
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The final verification step \\{as the structured com- 
pletion phase. During this time, cach item from the 
test plan was analyzed and \lerificd. The analysis con- 
sisted of deciding which mechallisln \\,as appropriate 
for covering that particular piece of the design. This 
might consist of  a focused test, a psc~~dorandorn eser- 
ciser with coverage analysis, o r  an assertion checker. As 
thc verification of each item \\,as completed, a review 
\\/as hcld \vith tlie design and architccture teams to 
examine \\/hat was vcrifi cd and h o ~ v  it was done. In this 
way, any problems with the verif cation coverage \\rcre 
identified. 

Test Stimulus 

Both hcused and psc~~dorandoni escrcisers were used 
during tlie verification of the Alpha 21 164 chip. More 
than 400 focused tests \\!ere created during the vcriti- 
cation effort, covering a \vide variety ofchip filnctions. 
Six different pseudorandom exercisers \irere uscd. One 
\+{as a general-purpose cserciscr that provided cover- 
age o f  tlie entire architccture. F,ach of the other five 
eserciscd a specific section o f thc  chip in a pseudoran- 
dom \\*a!/. 

The one general-purpose escrciser used was pro- 
vidcd by a separate g r o ~ ~ p  and generated pseudoran- 
dom streams of  instr~~ctions,  data, and chip state. Its 
focus was at the arcliitectural level and generated 
pseudorandom stimulus that t\'ould \\,ark on a n y  
implcmcntation of the Alpha architcctul-c. 

Almost all focused design verification tests (13VTs) 
were written  sing Alpba assembly code. This pro- 
vided the right level of abstl-action to avoid the need 
to toggle ones and zeros directly o n  each pin, yet 
allowcd specific control over the timing of transactions 
and instruction sequences that would not be possible 
from .I compiled language. The ~iiacro-preproccssor 
feature of the  Alpha macro-assembler w,ls used hea\!ily. 
This allo~ved the assembly-lc\,el programs to be con- 
structed in a niodular manner. 

Pseudorandom Testing 

Pseudorandom testing offers sevcr.ll ad\,antages in 
the verification of increasingly coniplcs chips. Thcsc 
include producing test cases that \\!ould be tilnc- 
consuming to  generate by ha~id ,  and providing the 
ability to generate rn~lltiple s im~~l tancous  events that 
t~lould bc estremcly difficult t o  think ofesplicitly. 

Exercisers 
In  support of the pseudorandom testing strategy, vari- 
ous cscrcisers were crcatcd that f o c ~ ~ s c d  o n  differelit 
aspects of the chip. Tfhc tbllo\\ring areas \ircrc targcteil 
esplici tl y : 



Branching 

Data-l.>xtern-dependent transactions 

Flo'iting-point unit 

Traps 

Cache and memorv transactions 

Fundamcntall!; each exerciser \\,as the same. The 
exerciser \\,auld create pseudoranciom assembly- 
language cock, run the codc on the model under test 
and a rcfcre~~ce model, collect I - C S L I I ~ S  from each, and 
compare the results f io~ii  both moclcl runs. Any crrors 
or  discrepancies \\,ere tI1c11 reported to the user. 

The rcfcrcnce ~nodcl  used, callccl the ISP modcl, 
was a very high-level abstraction of thc  Alpha architcc- 
ture \vritten in the (: language. Tlic core of this model 
\\,as crciitcd during the design of the 2 1064, tlic f rst 
Alpha processor. It was modified sliglitl!~ to i ~ ~ c l u d c  
Alpha 2 1 164 specific features such as internal register 
definitions. Tlie ISP modcl integrated the same sparsely 
pop~~la tcd  Inernory model used in the pseudosystem 
modcl in such n \\,n!, that the freedom in creating 
addresses cou Id be cl~~plicated. 

SEGUE, n test gcncration/cspansion tool, \vas 
used cstcnsi\~cly to crcate pseudor.indom codc and 
co~ifigur;itions. Each cserciser used SEGUE templates 
to generate codc. Variables \\,ere pnsscd to the SF.(; UE 
templates that \voulcl determine \\,hat percentage of 
cel.t;ii~i C \ ~ C I I ~ S  or jnstructions \\rould occur in the rcsul- 
talit codc. Users \\lould vary the Fxrccntages ;lnd crc- 
ate ;idditional tc~nplatcs to target tlicir eserciscrs to  
certain portions of the chip. AII exerciser coi~ld  focus 
only o n  loads and stores, or  templates could be created 
that \vould generate trapping code. 'l'he verification 
engineers had the flcsibility to creatc \\!hatever code 
\\,as nccilcd. Tlie \,critication cnginccrs \\rorlted closel!l 
\\,it11 tllc desigricrs to unclerstand tlic details of the 
logic. As a result, cases could be generated that \voi~ld 
thorougl~ly test the f~~nc t ions  being designed into the 
Alpha 2 1 164 <:PU chip. 

Configuration Selection 
Each tcst, either pseudorandom or foci~sed, also ~ n a d c  
use of n configuration control block (CCR) parameter 
file. The <:CB \\.as used to set up the type of system 
that \\,auld bc c~nulated for a given simulation. The 
palameter file consisted of variables that could be 
cveightcd to makc certain system cvcnts occur o r  to 
cause certain configi~ratio~is to be clioscn. Once ~ig'lin, 
SEGUE scripts \\.ere utilized to  creatc the command 
files that controllecl tllese events. Esamples of the type 
of cvcnts that could bc chosen \Irere single-bit crror- 
correcting codc (E<:(:) crrors, interrupts, the presence 
of ;In cxrcrnal cachc, the ratio bcnvce11 tlie system 
clock and tlie Cl'U i~ltcrnal cloclt rate, cache size alld 
configur~tion, and other bus-interface timing c\,cnts. 
These ;inel other events were varied throughout the 

course of the project to ensure that the chip could be 
run in real s)lstems using any given configuration. 

The configuratiori chosen \\.as guided through the 
use of a parameter tile that contained \~arious parame- 
ters and weiglltings to be utilized by SEGUF,. Once 
a configuration was chosen using the parameter file, 
it \vas processed to produce two files used in the sirnu- 
lation. The first was a CCLI control file used to set 
LIP state internal to  the pseudosystem-level model. 
The second file \\!as loaded into the memory model to 
be i~scd by the I)\T and to provide information acces- 
sible through ;issembly code regarding the configt~ra- 
tion type. 

Simula tion 
Once the pseudorandom code and configuration had 
l>ccn generated, the test \\,as loaded into the modcl 
undcl- test or  into the ISP model to use as thc stimi~lus. 
A 1)VT loader tvas created for both models tliat \\~ould 
interpret selected data in the CCR and determine the 
memory locations where the test should be located. 
Tlie additional information encoded in tlie CCB 
incluclcd n~hethcr tlic tcst ran in I/O, \vhcrc handlers 
slioi~ld be placed, and what page mapping was ~ ~ s e d .  

Aticr a DVT was loaded, the simulation would start. 
A 1'ALxode reset handler \\;as executed first. I t  read 
information from the CCR and loaded various regis- 
ters with the configurations specified. Tlie DVT was 
esccutcd afier the PALcode completed. 

Capturing Random Events 
I n  some cases, pseudorandom exercisers \\-ere used 
to  captilre events that were unlikely to occur and 
that \\~ould have been difficult t o  obtain by a focused 
tcst. R!! using a 11e\\! tool (called FIGS), engineers were 
able to use the pseutlorandoni cscrcisers nnd postpro- 
cessing to look for events that \\)ere needed to achieve 
coverage of the various functions in the F-box. When 
the event occurred, the event could be saved and 
re-crcatcd for f i~ture regression tcsting. 

Correctness Checking 

A variety of mechanisms \\,ere used for checking 
\vhcther the model behaved correctly. Some liand- 
crafted tests had comparisons built-in to verify that 
they generated tlic expected answer. This self-check- 
ing ~~iccl ianis~n,  lio\\lever, is difficult to include witli 
pscudornndo~ii tcsting. Three categories of clieclci~ig 
mcclianisms \\.ere de\,eloped that could worlc \\fith 
pseudorandom or  focused tests. These \Ifere checks 
perforrued during simulation of a model, postsimu- 
lation checks done automatically every time a model 
completes executing, and test-specific postsimulation 
clicclts. I n  all cuscs, adjusting the clieclung mecha- 
nisms to eliminate reporting false errors was i m p o r t a ~ ~ t  
to keep the debugging time low. 
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The RTL model was augmented with a wide \rariety 
of built-in assertion checkers. These were active any 
time the model \vas run; they verified that various 
assertions and rules of behavior \\!ere not \liolated at 
any tinic during the test execution. Assertion checkers 
ranged from tlie simple to the complex and were 
added to the model by both the design and verifica- 
tion teams. S o ~ n c  assertion checkers \irere added as the 
initial model \\!as coded, and otlicrs \Inere adcicd as 
nccdcd to ensure that certain situations did not occur. 
Examples of  simple assertion checkers include watch- 
ing for a transition to an illegal state in a state machine, 
o r  \\latching for the select lines o f3  multiplexer (MUX) 
to choose an unused MU>; input.  more complex ,lsscr- 
tion checkers \irere used that required explicit lkno\vl- 
edge about illegal sequences. For cxa~nple, the system 
bus had a complicated set of checkers attached to it 
that checked for \,iolations of the bus protocol. 

Wlicn a test completed executing on the model, 
several end-of-run checks were done autoltiatically. 
One  simple check was to  veri@ that the test reached 
its normal completion point and had not ended prc- 
maturely. Complete cache coherency checks \\,ere pcr- 
formed to ensure that all three le\pels of cache contents 
wu-e consistent with the memory im.lge. 

A variety of very powerful end-of-run checks were 
~ ~ s e d .  Tliese conlpared tlie results of running a test o n  
the model and on the ISP model. Information about 
tlic state of tlie model \\#as saved \vhile the test \\,;IS 

executing and thcn co~npared \vjtIi its eq~~ivalent from 
the ISP ~iiodel. State that was compared in this 
included a trace of  the program counter (PC), a trace 
of the updates made to each architectural register, and 
the ti nal memory image upon completion of a test. 

The main problems encountcrcd \vith this tccli- 
n i q ~ ~ c  were due to  inconsistencies between the 1Sl' 
model and tlie Alpha 21 164 design. The IS1' model 
\\/as used across n~i~l t ip le  Alpha design projects. It pro- 
vided arcl~itecturally correct results but had no con- 
cept of tinling, pipelining, or caching. Several fe'1tu1-es 
of the Alplia 21 164 implementation \+!ere difficult to 
\le~-i@ with this rcfercncc machine. 

In  the Alpha architecture, arithmetic traps are inipre- 
cise, in that the!/ might not be reported with the csact 
1)C tli.it c a ~ ~ s e d  t l ic~n.  Since the ISP model had n o  con- 
cept of timing, it reported traps at a different time than 
tlie real design. Thus, the checking mechanisms 
needed to be intelligent enough to takc this possibility 
into account. Arithmetic traps also presented a prob- 
lem beca~~se  the destination register of certain types of 
trapsis unpredictable after a trap occurs. Co~nbincd 
with the imprecise naturc oftraps, unpredictable \ralucs 
could propagate to other registers, making comparison 
agins t  the reference machine difficult. Normally, cer- 
tain so%\iare con\.cntions \vould be follo\ved to control 
these aspects of the architectnre. To achieve the fill1 
benefit from pseudorandom testing, however, no 

restrictio~is \Yere placed on wliich registers o r  instruc- 
tion sequences could be used. Instead, an elaborate 
method \vas devised for tracking which registers \\,ere 
unp-cdictable at any g i \ m  timc. This inforniation \\,as 
then ~ ~ s c d  to filter tilsc mis~natchcs. 

Optional checks made on  a per-test basis could be 
viewed as more complicated assertion checks. These 
\irere performed by tracing internal signals. The spc- 
cihc signals to trace \\,ere selccteci based on tlic par- 
ticular postprocessing to be done. Then, by using 
a library of routines (called SAVES) to simplifil acccss- 
ing and ~nanipi~lating thcse signal traces, particular 
interactions and protocols were verified. These could 
be \ric\\#cd as assertion checks, bur the!! \\,ere Inore 
comp1ic;ited than tlic built-in \raricty. C>ne example 
in\lolved representing the behavior of a large section of 
the design as a single, complicated statc machine. The 
behavior of  this statc machine could be compared \\*it11 
the I / O  behavior of the actual desisn section. Another 
example \\!as the representation of the branch- 
prediction algorith~ii in a Inore abstract form than the 
actual model. The bcha\.ior of the ~ibstract algorithm 
was cornpared wit11 the belia\ior of the model itself. 

Coverage Analysis 

The primary difficulty with fiunctional verification 
is that it is virtually i~npossible to kno\\, \\rIlen tlic vcri- 
fication cffort is complctc. Co~nplcting a predeter- 
mined set of tests merely indicntcs tliat the tests arc 
complctc, not that the design has bccn fully tcstcd. 
Monitoring the bug rate provjdes uscfi~l inforniatiou, 
but a low bug rate might indicate that the testing 
is not csercising tlie problem areas. T o  alle\.iatc this 
problem and provide increased \,isibilit\r into the com- 
pleteness of the vcrific~tion effort, cstcnsi\rc covcr,~gc 
analysis of the focused tcsts and pseudorandom cser- 
cisers \\!as done. Two tvpes of co\w-ngc checking were 
used: inforn~ation gathered \~,hilc a model \\,as ese- 
cuting, a n d  information gathered b\l postprocessing 
signal traces. 

While a ~nodc l  \\,as executing, inhrmation nras 
being stored about tlic occurrence of simple events. 
For example, a record was kept o n  the niunibcr of 
ti~iies the machine i s s ~ ~ c d  instr~~ctions to four pipes 
simult,~ncously, the number of times tlic translation 
b~~ffel-s filled up, o r  the number of  times stalls 
occurred. Since the chip operated in random confgu- 
rations, a record was also kept about the configuration 
information s~rch as tlic B-cache s i x  and timing 
selected, tlie system interface options, 'ind timing. At 
the end of every model run, this recorded information 
was written to a database to collect st~tistics across 
multiplc runs. 

In  'lddition to these simple co\.cragc clieclts, more 
elaborate coileragc anal!rcis was done tlirougl~ postpro- 
cessing. By using the SAVES librar): signal traces \\(ere 



collected while the model \\!as executing; these were 
later analyzed for the specific occurrence of predefined 
events. The events \\)ere composed of complicated 
timing relationships among signals. Often, nvo- 
dimcnsio~lal, nlatrices were crcntcd, in \vliich each asis 
of the matrix reprcscnted a list of events. TIILIS, the 
occurrence patterns ofevery event in one list could be 
\~isualized happcn i~~g  with every event in the second 
list. For example, it was verified that every type of 
system coninland (read, in\.alidate, set-shared, ctc.) 
occurred followed by every type of bus response 
(ACK, NOACK, etc.). 

Automatic coverage-checking methods \\!ere also 
i~scci. The most cominon \\Ins n state machine coverage 
analyzer. It \\/as 3 goal to \!eri@ that every state/arc 
t1-;111sition in cvel-y state macliinc \\!as being eserciscd. 
Programs \\/ere automatically generated to searcli the 
trace files for these transitions and record the infor- 
mation ahout what \\/as and \\(as not covered. This 
concept was extended to  sections of the chip that \\-ere 
not designed as simple state machines. As described 
above, one large section of tlie design was represented 
as a single, monolitl~ic state machine to pro\.ide an 
independent reference for the correct o ~ ~ t p u t s  of the 
section. Tliis conceptual state machine was processed 
through the coverage analysis tool. Altl~ough the tran- 
sitions that were clicclzed did not niap directly to the 
physical design, they did provide an excellent indi- 
cation of Iio\v \\le.ll that section of the design had been 
tested. 

The trace analysis tools could acc~~rnulate data 
across ~iii~ltiple si~ii i~latio~i runs. The data was a~lalyzed 
periodically, and areas that were lacking coverage were 
identified. This allowed the identification of  trends in 
the coverage and provided an iunderstanding as to how 
i\,cll the pseudorandom exercisers \\,ere exercising the 
chip. With this insight, pseudorandom exercisers \\/ere 
nlodified or  ne\v fi)cuscd tests were created t o  improve 
the test co\!erage. R ~ ~ n n i n g  pseudorandom eserciscrs 
\vith co\Ierage analysis pro\~ed to be a very powerful 
tcchniqi~c in functional verification. 

Bug Trends 

lluring tlic Alpha 21 164 CPU verification effort, 
more than 600 b ~ ~ g s  \Yere logged and tracked bcfore 
first-pass parts wcrc manufactured. Figure 2 sho\+s the 
bug rate achieved as a fi~nction oftirne for the duration 
of the project. To track bugs, an action tracking system 
\\,as set up. Tracking of bugs started after all the sub- 
sections of the lCT'1,-level model had been integrated 
and a small subset of  tests \\r:i~ run si~ccessfi~lly. Since 
mLlny areas of the model \ \we  ready bcfore others, the 
action tracking systcm does not represent all tlic issues 
raised. Ho\ve\/er, it is interesting to look at thc trends 
prcscntcd by the data. 

Figure 2 
I3ug liatc '1s a Function ofrTimc 

The first trend to consider is the effecti\lencss of the 
pseudorandom and focused efforts. As sho\vn in 
Figure 3, more than Iialf the bugs \\/ere found using 
pseudorandom techniques. Furthermore, one-third of 
the bugs found by the focused effort were in the error- 
handling fi~nctionality of tlie design, \\.hich had poor 
pseudorandoni test coverage. 

Bugs were thought to lia\fe been introduced in 
a variety of \\rays. Figure 4 shows the breakdo\\,n of the 
causes of bugs. The majority occurred in irnplement- 
ing the architectural ideas that were decided upon for 
tlie project. 

Figure 5 sho\\ls tlle various detection meclinnisms 
that \vcre i~sed to detect bugs. As in thc past, assertion 
checkers placed in the design to c1~1ickly detect \vhcn 
something is not correct arc the ~iiost  successf~~l. 

Results and Conclusions 

As of September 1, 1994, eight logical bugs \\!ere 
found in the first-pass Alpha 2 1164 CPU design. Only 
one of these impacted normal system operation, but it 
did  lot occur very often. The first tcvo issues were 
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foi~nd while debugging test patterns on tlie testcl-; tlic 
third was a variation o n  a lu~o\\ln restriction; tlie tburtli 
o c c ~ ~ r r e d  in a rare prototype system configuration that 
\\*as found through pseudorandom simulation tcst- 
ing (which had continued even after the design \\,as 
released to manuhcturiug); thc titill \\.as 3 race condi- 
tion bcnveen nvo events that rarely \\.ere sti~nulatcd in 
simulation; the sisth was a pcrk)rn~a~ice-related issue 
on the pin interface that \\.as found by thinking about 
t1.1~ design; the s e ~ c n t h  was a vcr!. specific set of c\.cnts 
that resulted in a system hang; and the last \\.as I-clatcd 
to not responding appropriately to an crrol- condition. 

These bugs escaped detection for the follo\\~ing 
rc;Isolls: 

An eserciscr running on a simulator \\,as slo\\~ to  
encounter the conditions that \vould evoke the 
bug.  many conditions nccdcd to occur collcur- 
I-ently, but 'ill of them occurred infi-eclilcntly. 

An asscrtio~i chccltcr ciid not \\,ol-l< properly. 

Comparisons bcnvccn the IYT'L. modcl and the 
structural modcl ~llisscd the bug. 

All bugs \lrerc hsed before any s!,stems \\,crc sliippcci 
to CLIStOlTlCIS. 

l'lctails of tlicse bugs follow. Inc l~~ded  is informatio~i 
about ho\\, tlie bug \\,,IS detectccl, 3 Ii!,pothesis on \\.li!f 
the bug eluded dctcction before first-pass chips \\,ere 
fabricated, and lessons leamed from tlie detection and 
elimination of the bug. 

1. O n e  bug \\,as found by an exerciser running on the 
second-pass RTL model. A c;lche line victim failed 
to write back on a B-cache index match because 
a bypass occurrcd at the same time. This bug 
csisted only in 32-byte cache mode and B-cuchc 
speed con f gurations of 4, 5, and 6. This bug could 
have been found in the first-pass model if this c ~ s c  
had becn gcneratcd pseudorandomly. Running 
many cases is crucial with a pseitdoranciom testing 
strategy. Given unlimited time and computation 
c)lcles, this bug  night have bccn found earlier. 

2. A second bug \\.as cai~sed by the B-cache rend/ 
\\*rite timing being off by one cycle. This bug could 
have caused multiple drivers to  dri1.c thc data LXIS at 
one time. An assertion checltcr for thih bug \\.as in 
rlic l<TL. modcl, but the chccl<er itself \\-as not 
working properly. I n  the f i ~ t i ~ ~ . c ,  assertion checkers 
should be \rerifiecl by c a ~ ~ s i ~ ~ g  the failure to occur 
~ n c l  \\'atcl~ing to scc dint it cictccts the case. In some 
exes, asscrtio~l chccl<crs arc \\nrittcn to flag- an error 
for events that SII~LIICI never liappcn. F o r c i ~ ~ g  an 
illegal situntion to occur call be \,cryr difficult. 

3. Another 1 ~ 1 g  \\'as found by a11 esc~.ciscr \\!lien 
3 WRITE-BLO(:I< conim;~~id  \\!as preceded by a 
single-c!rclc idle-tK: signal asscrtion. Tliis i s s ~ ~ c  \\.as 



directly related to a spccific B-cache speed and \\!as 
related to another system configuration restriction. 
This issue caused a rcstrictio~l to be added, but the 
design \+!as not changed. 

4. If tlie B-cache sequencer is pcrforming a bypass 
ininiediatcly nfier a command loads in the B-cache 
address file and a reference is coniing do\vn the 
S-cache pipe, the B-crtchc indes could change in 
back-to-back cycles. The indcs sliould change 01i1y 
every otlicr cycle. An assertion checker s h o ~ ~ l d  have 
been written to test for this situation and makc sure 
it never occurred. 

5. The performance-monitoring logic that counted 
load merges was not counting these events cor- 
rectly. This bug was not in the KTL model but only 
in tlic actual implemc~~tation.  Possibly, more RTL- 
to-CHANGO comparisons nceded to be run on 
tliis section of logic. 

6. 13ecause of an LDsL/S?'sC bug, an invalidate to a 
locked address was not detected as a hit against the 
LDsL address. As a result, an STsC passed ~ l l i e n  it 
should have failed. This bug could have been 
detected if a focused test had been Ivritten with very 
specific tinling of a FILL. and an LDxL hitting the 
S-cache in consecutivc cycles. Gaining control of  
tliis interaction on the system bus was not possible, 
ho\\!ever, and random simulations were relied upon 
to achieve this case. This was a rare event in the ran- 
dom simulations, but parameters could have been 
adjusted to make this occur more olien. 

7. For one specific system configuration, a W A D  or  
FLUSH coni~nand sent by the system to  the Alpha 
21 164 chip could cause the system to hang. For 
this to happen, three specific events, all with very 
tight tillling windo\vs, needed to occur. We could 
have found this bug during simulation if we had 
enlphasized this typc of cond i t i~n  d ~ ~ r i n p  the 
psc~~dorandoni testing. 

8. When responding to a command, the system had 
tlie option o f  asserting an crror signal instead ofi ts  
normal response. The error signal acted as an inter- 
rupt recluest to tlie Alpha 21 164 chip. Under cer- 
tain conditions, and for a narrow window of time, 
this error signal cvas not properly recognized. 
Testing of crror conditions \\,as a project goal but 
not a liigli priority compared to testing normal 
events. This bug could lia\~e been found carlier if 
additional error-~nodc tests had bccn run. 

The above issues were f~irl!~ minor 2nd all have been 
fixed in tlie version o f  the dcsign that \,vill be released 
to customers. 'The i ~ s c  of pseudorandom testing was 
very successfi~l. Many major, co~nplicated bugs \\/ere 
found over the course o f the  project that would never 

have been found using a focused e fh r t .  Because of the 
number of system configurations possible, a verifi- 
cation effort that consisted only of focused testing 
\vould have been inlpossible. 
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