
Digital
Technical
Journal

I
DATABASE INTEGRATION

ALPHA SERVERS & WORKSTATIONS

ALPHA 21 164 CPU

Editorial
Jane C. Blake, Managing Editor
Helen L. Patterson, Editor
Kathleen M. Stetson, Editor

Circulation
Catherine M. Phillips, Administrator
Dorothea B. Cassady, Secretary

Production
Terri Autieri, Production Editor
Anne S. Katzeff, Typographer
Joanne Murphy, Typographer
Peter R Woodbury, Illustrator

Advisory Board
Samuel H. Fuller, Chairman
Richard W. Beane
Donald Z. Harbert
William R Hawe
Richard J. Hollingworth
Richard F. Lary
Alan G. Nemeth
Jean A. Proulx
Robert M. Supnik
Gayn B. Winters

Cover Design
Key to the remarkable performance of the
Alphaserver 8400/8200 systems is Digital's
new 300-MHz, &-bit Alpha 21 164 micro-
processor. Both subjects are featured in this
tenth anniversary issue of the Journal and
are represented on the cover in the forms
of a photograph of the microprocessor and
an illustration of the Alphaserver system
topology.

The cover was designed by Mario
Furtado of Furtado Communication
Design.

The Digital TechnicalJournal is a refereed
journal published quarterly by Digital
Equipment Corporation, 30 Porter Road
LJ02/D10, Littleton, Massachusetts 01460.
Subscriptions to the Journal are $40.00
(non-U.S. $60) for four issues and $75.00
(non-U.S. $115) for eight issues and must
be prepaid in U.S. funds. University and
college professors and Ph.D. students in
the electrical engineering and computer
science fields receive complimentary sub-
scriptions upon request. Orders, inquiries,
and address changes should be sent to the
Digital TechnicalJournal at the published-
by address. Inquiries can also be sent elec-
tronically to dtj@digital.com. Single copies
and back issues are available for $16.00 each
by calling DECdirect at 1-800-DIGITAL
(1-800-344-4825). Recent back issues of the
Journal are also available on the Internet at
http://www.digital.com/info/D~/home.
hunl. Complete Digital Internet listings can
be obtained by sending an electronic mail
message to info@digital.com.

Digital employees may order subscriptions
through Readers Choice by entering VTX
PROFILE at the system prompt.

Comments on the content of any paper
are welcomed and may be sent to the
managing editor at the published-by or
network address.

Copyright O 1995 Digital Equipment
Corporation. Copying without fee is per-
mitted provided that such copies are made
for use in educational institutions by faculty
members and are not distributed for com-
mercial advantage. Abstracting with credit
of Digital Equipment Corporation's author-
ship is permitted. All rights reserved.

The information in the Journal is subject
to change without notice and should not
be construed as a commitment by Digital
Equipment Corporation or by the compa-
nies herein represented. Digital Equipment
Corporation assumes no responsibility for
any errors that may appear in the Journal.

ISSN 0898-90113

Documentation Number EY-T135E-TJ

Book production was done by Quantic
Communications, Inc.

The following are trademarks of Digital
Equipment Corporation: ACMS,
ACMS Desktop, ACMSxp, Alphasewer,
Alphastation, DEC, DEC OSF/l, DECchip,
DECnet, DECdtm, DECnet, Digital, the
DIGITAL logo, ObjectBroker, OpenVMS,
PATHWORKS, ULTRIX, VAX, and VMS.

ADABAS is a registered trademark of
Software AG of North America, Inc.

AIX, IBM, OS/2, and RISC System/6000
are registered trademarks and AS/400, CICS,
and DB2 are trademarks of International
Business Machines Corporation.

AppleTalk and Macintosh are registered
trademarks of Apple Computer, Inc.

AT&T is a registered trademark of American
Telephone and Telegraph Company.

BT is a registered trademark of British
Telecommunications plc.

Challenge is a trademark of Silicon
Graphics, Inc.

Cyrix is a trademark of Cyrix Corporation.

dBASE is a trademark and Paradox is
a registered trademark of Borland
International, Inc.

EDA/SQL is a trademark of Information
Builders, Inc.

Encina is a registered trademark of Transarc
Corporation.

Excel and Microsoft are registered p d e -
marks and Windows and Windows NT are
trademarks of Microsoft Corporation.

Hewlett-Packard and HP-UX are registered
trademarks of Hewlett-Packard Company.

INGRES is a registered trademark of Ingres
Corporation.

INFORMIX is a registered trademark of
Informix Software, Inc.

Inte1486, Intel, and Pentium are trademarks
of Intel Corporation.

Kerberos is a trademark of Massachusetts
Institute of Technology.

MIPS R4000 is a trademark of MIPS
Computer Systems, Inc.

Motif, OSF, and OSF/1 are registered trade-
marks of the Open Software Foundation,
Inc.

Novell is a registered trademark of Novell,
Inc.

ORACLE is a registered trademark of Oracle
Corporation.

POSIX is a registered trademark of the
Institute of Electrical and Electronics
Engineers, Inc.

SCO is a registered trademark of The Santa
Cruz Operation, Inc.

SequeLink is a registered trademark of
TechGnosis, Inc.

Solaris and Sun are registered trade-
marks and SunOS is a trademark of Sun
Microsystems, Inc.

SPARC is a registered trademark of SPARC
International, Inc.

SPEC, SPEC@, SPECint, SPECfp92,
SPECint92, SPECmark, SPECrate-@92,
and SPECrate-int92 are trademarks of the
Standard Performance Evaluation Council.

SPICE is a trademark of the University of
California at Berkeley.

SPX/IPX is a trademark of Novell, Inc.

SYBASE is a registered trademark of Sybase,
Inc.

Tuxedo is a registered trademark of Unix
Systems Laboratories, Inc.

UNIX is a registered trademark in the
United States and other counmes, licensed
exclusively through X/Open Company Ltd.

X/Open is a trademark of X/Open
Company Ltd.

Foreword Richard L. Sires

Contents

DATABASE INTEGRATION

DB Integrator: Open Middleware for Data Access Ilichard Plcdcrcder, Vishu lirishnamitrthy, 1Michacl G.~gnon,
and Mayank Vadodaria

ACMSxp Open Distributed Transaction Processing Robert K. B;lati, J . Ian Carrtc, Wtlliam B. I)r~~ry,
'inti Oren L. Wicslcr

An Open, Distributable, Three-tier, Client-Server Norman G , l)cplcdge, William A. Turner, c~nti
Architecture wi th Transaction Semantics Alesandm Woog

ALPHA SERVERS & WORKSTATIONS

The AlphaServer 8000 Series: High-end Server
Platform Development

Digital's High-performance CMOS ASIC

The Second-generation Processor Module for
AlphaServer 2100 Systems

lhv id M . Fcn\vick, Denis J . t'ole); Willian~ I<. G~st,
Stcplien R. V;i~ilnDoren, and 1)anicl Wisscll

]can H. Basm~ji, IGy R. Fisher, Frank W. Gatulis,
Herbert R. Kolk, and Jamcs F. Rosenct-a~is

Nitin D. Godi\\,aln and Barry A. maska as

The Design and Verification o f the Alphastation John H. Zurawski, John E. Murray, and Pat11 J . Lrmrnon

600 5-series Workstation

ALPHA 21 164 CPU

Circuit Implementation of a 300-MHz 64-bit
Second-generation CMOS Alpha CPU

Internal Organization of the Alpha 21 164,
a 300-MHz 64-bit Quad-issue CMOS RlSC
Microprocessor

Functional Verification of a Multiple-issue,
Pipelined, Superscalar Alpha Processor -
the Alpha 21 164 CPU Chip

William J. Bo\vllill, Shane L.]',ell, Rradley J. Bcnschncidcr, 100
Andrew J. Black, Sharon M. Britrotl, Rubcn W. (:astclino,
L>alc R. Donch~n, John H. Edmondson, Harry I<. F.l~r, Ill,
Paul E. Grono\\,ski, h i 1 I<. Jain, Ptltricin L. IO-ocscn, Marc E:..
Lanicrc, 13rucc J. L.oughlin, Shskhar Mehra, l<obcrt 0. Mucllcr,
I<onald P. Preston, Sribalan Santhanam, Ti~norli!. A. Shedti,
Michael J. S~nitll, .lnd Stcphcn C:. Thie~.,iut'

John H. Edmondson, Paul I, liubinfeld, Pctcr J. Ikmnon, 119
Rradley J. Benschncider, Dchra Bernsrcin, Ruhcn W.
C~lstelino, Elizabeth M . Coopcr, Diiniel E. L)c*cr, Dale H.
I)onchin, Timotliy C. Fjsclicr, Anil K. Jnin, Slickh.ir Mchr.1,
Jc~nne E. lMcycr, Ronald P. Preston, Vidya IC~jagopalan,
Chandrasckhara Sornanathan, Scott A. Taylor, and
Gilbcrt M. Wolrich

I\/licll.acI I(a~ltro\\ l i t~ and L isa M. Noack

l)igi~.~l Technical Jottrn.~l \ i d . 7 No. 1 1995

In Memoriam

This tenth 'in~livcrs,~ry issue o f tlic I)i,:,i/nl 7i~ch11ic~11,Jri1~1-11~11 is dedicated t o
the memory o f l'ctcr E'. Conklin, (:orporatc <:onsulti~ig Engineer, w h o passed
,1\\,ay in April 1995 . Pctcr\iro~.ltcd at Di~i t ' i l h)r 26 ye.1rs. H c \rr.is one o f the pio-
nccrs o f the DE(:s!,stcm-10 sofi\\,.~rc g r o ~ ~ p , contr i lx~t ing its first b ~ t c h and 1 . i ~ -

t ~ r ~ i l mcmol-!, subs\,stcms. H c \\,,15 a key contl-ibutor i l l the clcsign o f the VAS
;~rcliitccturc ,ind ~ t s language .ind run-t ime cn\.i~-onments. H c \\rorlted in the
Pl)l'-11 and 'Terminals and Pl.i~ltcrs groups, helping t o dc\/clop tlicir tec1inic:il
and b ~ ~ s i n e s s stl-atcgics in rapidly cli,inging c n \ i r o ~ i m c n t s . Anci lie \\,as a PI-inic
mo\.cr o f the Alpli,~ program, o\,c~-seejng f rst t l ~ c sofk\\~arc dc\.clopment and
tlicli all o f t h c c ~ ~ g i ~ i c c r i n p , as \\>ell ,IS cre,itilig its ~ ~ n i c l ~ l c c ~ ~ l t ~ ~ r . i l and man,iscl.i,il
app~-oach t o cro>>-org,lni/,dtio~i,~l dc\rclopmcnt.

l k y o n d his oi~ts tnnding tcclinical and bi~sincss contributions, Pctcr espouscd
dnd represented ,111 tli,it \\.as p o d ill Digital's cult~~rc-respect ~ O I - and focils oli

pu'plc; doing tlic r ig l~ t thing for customers and collcag~lcs; d r i \ ~ i ~ i g for concrete
results .ind \\~ork,lblc proccsscs. H c clianipioncci tlic role o f \\ ,omen and m i n o r -
tic3 ,is Inanagcrs and cont r ib~~tors . H c helped set L I P tlic i~itcrnal Notes systcm t o
ful-tlicr ope11 c o ~ i i ~ i i ~ l n i c ~ ~ t i o n s a m o n g e~nployccs, and bcn \~ccn criiployccs and
m,inagclnent. And lie ad \~oc ,~ tcd ,lnd modclcd tlic uses o f training and de\lclop-
mcnt t o impro\.c pc1.5onal a n d o r s . ~ ~ i i z a t i o ~ i d pcrforma~icc at '111 Ic\,cls.

l'ctcr's \\rork is \\.o\.cn tlirougli the f'ibric o f lligital's Iiistol-\, liltc a bright,
~~nbrc,iltrlble thl-cad. H c \\ , i l l bc sorely liiisscd.

Editor's
Introduction

The Di'qilal 7i.chr~icnI~/o~~r~~zwl marks
its tenth anni\lcrsary \vith thc publica-
tion of this issue. Since 1985, tlie
./ol,~n.ral has chronicled Digital's engi-
neering achievements from silicon t o
s o b a r e : record-breaking micropro-
cessors, standards-setting network
technologies, advanced storage arclii-
tectures, and industr)l-leading imple-
mentations of clusters and distributed
systems. More than simply a record,
t l ~ e ~ ~ o r r r ~ z a l offers readers insights into
the how and why of Digital's product
designs-in papers written by the
design engineers themselves. A look
back over tlic last ten years, however,
provides only a partial view t o engi-
neering's unique combination of
vision and pragmatism, a combi-
nation that has spurred industry
breakthroughs and established thc
foundation for the development
of today's world-class hardwarc and
sohvare products. To celebrate
Digital's outstanding engineering
achievements, wc have therefore
included a special section of historic
milcstoncs as part of this anniversary
issue. The milestones begin in 1957
wit11 tlie development of the com-
pany's tirst product, a system module
For scientific use that ran at 5 MHz.
The milestones continuc through
the recent introduction of Digital's
new high-performance scrvcr system
based on microprocessors that run
at an extraordinary 300 MHz.

'The 300-MHz lnicroprocessor and
thc AlphaScrvcr 8400/8200 system
that uses it are in h c t feati~red in this
issue. As Dick Sites points ou t in his
Foreword, tlicsc second -generation
Alpha products truly take advantage
of the Alpha 64-bit RISC architecture
introduced by Digital in 1992. In

addition to discussions of three Alpha
hardware designs and the new micro-
processor, this issue presents papers
on database sohvare technologies.
These papers focus 011 the realities
of integrating heterogeneous systems
and data sources.

T h e Database Integrator (DBI)
directly addresses the heterogeneity
issue by providing a niultidatabase
management system for data access
and integration ofdistributed data
sources. lXichard Pledereder, Vishu
Krishnamurtlip, Mike Gagnon, and
Mayank Vadodaria outline the data
access issucs and compare the DBI
approach with others. Their discus-
sion addresses such topics as hetero-
gelieous query optimization, location
transparency, global consistency, reso-
lution ofsemantic differences, and
security checks.

Key t o solving the problems posed
by heterogeneous systems are open-
ness and standards. Both are stressed
in the ACMSxp transaction processing
monitor design, described by Bob
Kaafi, Ian Carrie, Bill Drury, and Oren
Wiesler. ACMSxp is layered o n the
OSF's Distributed (.;omputing Envi-
ronment and uses Transarc's Encina
toolkit to support XA-compliant
databases. Thc monitor's applica-
tion de\~elopnient environment is
based 011 the Structurcd Transaction
Definition Language.

The ACMSxp monitor figures in
the next paper, written by Norman
Depledge, Bill Turner, and Alexandra
Woog, which defines an architecture
for improving the effectiveness o f
heterogeneous environments. T h e
authors first review relevant standards,
such as CORBA and DCE, and then
describe an open, distributable client-

Digital Technical JOL

server architecture niade up of three
ticrs: desktop, middleware (founded
on the ACMSsp monitor and Digital's
ObjectBrolter sohvare) , and legacy
interfaces.

The next set of papers features
high-performance systems built on
the 300-MHz Alpha 21 1 6 4 micro-
processor. Presented first is the
AlphaServer 8000 platform-the
basis for the highest performance
systelns yet developed by Digital.
Dave Fenwick, Denis Foley, Bill Gist,
Steve VanDoren, and Dan Wissell
ciiscuss the principal design issues
relative to the aggressive goals set for
system data bandwidth and nicrnory
read latency. The)] define their design
approach with seven levels of abstrac-
tion and review tlie choices made in
each level; the prevailing thcrne is
achieving low memory read latency.
As a result, the AlphaServer 8400
and 8200 systems feature a minimum
memoly read latency o f 260 nanosec-
onds (ns). Moreover, in benchmark
tests, the 12-processor AlphaServer
8400 system achieves supercomputer
performance levels of 5 billion float-
ing-point operations per second.

Essential for meeting AlphaServer
speed reqi~irements was a custom
application-spccific integrated circuit
(ASIC) bus intcrface. Jcan Basmaji,
Kay Fisher, Frank Gatulis, Herb I<olk,
and Jim Rosencrans describe a
timing-drivcn layout approach for
designing and implementing high-
performance ASICs. Called CSALT,
i.e., CMOS standard-cell alternative
technology, the tool suite saved sig-
nificant project time and provided the
customization necessary t o support
tlie system's 10-11s bus speed.

Vol. 7 No. 1 1995 5

Developers of a second-generation
processor module for the Alphaserver
2100 multiprocessjng system also
took advantage of the Alpha 2 1 164
microprocessor performance and at
the same time ensured physical com-
patibility with the first generation.
Nitin Godiwala and Barry Maskas
highlight the designs that most effi-
ciently used the system bus bandwidth
and provided a 1.4 SPEC performance
increase over the first-generation
module, including a third-level cache,
duplicate tag store, and a synchro-
nous cloclung scheme.

Also based on the Alpha 21 164
microprocessor, the Alphastation
600 5-series workstation incorporates
the 64-bit PC1 bus and supports three - -

opcrating systems. In their paper,
John Zurawski, John Murray, and
Paul k m m o n focus o n the chips that
provide high-bandwidth intercon-
nects between the CPU, the main
memory, and the PC1 bus. They also
recount their experiences in the
development o f a hardware-based
verification technique that improved
test throughput by five orders of
magnitude over the sohvare-based
techniques.

The Alpha 2 1 164 n~icroprocessor
that is at the heart of the thrce systems
described above delivers an outstand-
ing microprocessor performance
(peak) of 1.2 billion instructions per
second. Three papers examine the
circuit design, the logic functions,
and the hnctional verification o f this
custom, 64-bit VLSI chip. First, Bill
Bowhill e t al. examine the circuit
design contributions needed t o
achieve the performance goal of
300-MHz operation. The authors
describe the floorplan choices for

Digital Technical Journa l

laying ou t the 9.3-million transistor
c l ip and the global single-wire clock
distribution scheme. They then prc-
sent a set of significant circuit design
challenges-the speed requirement,
the con~plicated microarchitecturc,
and the large physical size o f t h e chip
-and explain circuit implementation
decisions for the instruction, execu-
tion, and memory units; the system
clock; and the three caches.

The paper by John Edmondson
e t al. describes the hnctional units
o f the Alpha 2 1164 n~icroprocessor:
the quad-issue, superscalar instruction
unit; the 64-bit integer execution pipe-
lines; two 64-bit floating-point execu-
tion pipelines; a high-performance
memory unit; and a cache control
and bus interface unit. The authors
note architecti~ral improvements over
the first-generation 21064 micropro-
cessor and provide performance data.

T h e functional verification of this
complex microprocessor is described
in our concluding paper. Mike
Kantrowitz and Lisa Noack review
the many techniques employed
t o veriQ the logic design and the
PALcode interface, including
implementation-directed pseudo-
random exercisers used in combina-
tion with focused hand-generated
tests. The authors relate the lessons
learned from the few bugs found in
the tirst prototype of the
microprocessor.

An anniversary is a time t o look
back and ahead. Looking back to the
Journal's origins, I want to acknowl-
edge the wisdom of Dick Beane, the
Journal's first editor, and Sam Fuller,
vice president o f Corporate Research.
They established theJournnl's edito-
rial focus and its structure: t o publish

technical papers, written by Digital's
engineers, that describe the techno-
logical foundations of our products,
under the gi~idallce of an ad\~isory
board responsible for content and
editorial philosophy. Because readcrs
responded so well to the working
engineer's perspective on product
design, the~/owrnc~l has grown from
a biannual t o a quarterly publication,
and was one of the first industr) j our-
nals t o publish electronically o n the
\VorldWide Web. Further, sincc
1992, papers have been peer reviewed
t o ensure that readers receive substan-
tive, accurate information on a widen-
ing number of topics covered in
the~/oz.~rnnl. Ofcourse this growth
would not have happened without
thejotrrnnl's contributors, the engi-
neers who analyze their unique and
informative experiences and share
them with thcir peers. As Digital's
engineers add to the timeline of engi-
neering milestones in computer sys-
tems, s o h a r e , networking, storage,
semiconductors, and peripherals,
the j o u r n a l will continue to scrve its
readers by publishing this important
work.

T h e editors thank Bob Supnik,
Senior Corporate Consulting Engi-
neer, for his help in bringing together
this special issue of thc,/otrrncll.

Upcoming in t h e , / o ~ r n z d systems
engineering, Sequoia 2000 research,
software environments, scientific
computing, and networking.

Jane C. Blake
fManaging Editor

2661

00061S3 6861

986 1

060E €861

b66 L 086 1

009 IaPoW
0009 XVA 166 1 LL6 1

89 VOLE
002 lapow ~JOU~U

0009 XVA 886 1 IenlJIA bL6 1

L XVAoJ3!WS861 SbLIOLELL61
ssaulsnq

b911Z 5661 OSLIL 1-XVA 2861 S8109E 8961
qllualx

b90 1 Z 266 1 08LIL 1-XVA 8L6 L Obl09E S96 L

686 1 SL6 1 296 1

XVA 09~1lualsh~
wa1

- 7311.11 ,~.13.\![a~3-ssn.rcix3 ill! 01 <I ,is0
-Iwr sc,icpo~ ..a~r,\u;los pllr 3.lr.\\pJrrl

nldl~ t~o!~.~~~~~-piio~~~ ~)CI!.I~SJP
S.I~~LI+LI~ s'Ic~!~!~~ 'anss! SILII 111 ,poo~l

-.roq~lR1;711 II.\\O ~11o.i U! 11x1s IOU 11111

'l~l'j ~~[~~IIzcI~ - JC3 33l'A l' 01 l!1[1ilv
~~LI~>I!I ,iZo~rt~v 1~,3!d,h 3~1,~- .SILIXLI

-ss~~llol~i~c sJr.\u;los pill' J.IUI\\P.I~LI

r'ildlv [I~!JV.IJLI~~-ISJ!J~ 3~11 ~.I~LIA\~S~

PIP s32rd 3saLll LI! Su!~r.rq~ln:, sr,\\
1~1!21(1 'oSc s.IL,~,(1.1011s 55.1111 lsn(

'aj11 . . ,icp,i-l3,\3 olil! ,l2r.11 3111 jjo 3,\o~1
]l~~!lll ,<3111 .I() '~.1~3!< 33JLll ,<.I3,\3 J31S[j

ssul!~ 33.1111 Jnoqr 132 pur >I~C.U mr.1
alp uo .\rls 1rl81iir ,\a~l~ ;sn~ncluro~ sly

,\pp111h sc pn,\lo,\a s.1~2 s3c.1j! 1r11~\
syDnJ1 han!laa

-ssa~dx3 OJ sJe2 a2eu uo~j

Likc race cars, tlic initial Alph;~
hard\\larc and sohvarc products were
criticized For being tc~npcr;imcnml-
fast indeed for sonic applications,
but not appropri;irc for others. Some
observers assumed that rhc first
generation \\,as a tluke, o r tliat it
represented all tliat Alp1~1 computers
could ever be. The reaction to man!!
archirect~~ral features, such as 64-bit
addressing or relaxed read-\\trite
ordering, \\'as "\\,ho needs it?" They
\\,rote Alpha offas a nichc dcsign.

Delivering on Its Promise
Three years later, the f i~turc has
arrived \\tit11 a (muffled) I-o.ir:

The sophisticated sccond-
generation Alpha 2 1 164 chip,
described in tliis issuc, is 1.5
to 2 times as efficie~lt as the fi rst-
g a ~ u r n t i o ~ i 2 1064 chip in t c r ~ ~ i s
of work done per clock cycle o n
real progrinis.

The chip clock rate lias bccn
boosted fon1 200 MHz to

stunning 300 MHz.

Efficiency ofcompiled cocic has
improved by 10 to 6 0 percent
on many programs.

Operating systcrn codc lias been
expanded and tuned.

TIie perti)rniancc hctors ro~~gl i ly
multipl!, togctllcr, producing second-
generation systems that arc about 2.5
to 3.5 times hstcr than the cq~~ivalcnt
first-generation systems. O n e cxam-
ple of the higher speeds oftlicsc ne\ \~
s)~stcnis is the AlphaScl-\lc1.8400,
discusscti in tliis ~SSLIC; S!~S~CIII perfbr-
mancc approaches the le\,cl ofsupcr-
computers with Linpack IIX n r e s ~ ~ l t s
o f 5 GFLOPS.

The second-generation system
plathrnms cmphasizc industr)! Icadcr-
ship for a bronti range ofcom~ncrcial
client-ser\icr applications, not just
scientific apl>lications. Likc cxpress-
delivery trucks, much of thc sccolid-
generation s o h a r c is Foc~lscd o n
enterprise-wide d;it;ibasc access. -1'1.11 I y
taking ;id\~a~itagc o f the 64-bit addrcss-
jng for tile first time, Oracle 7 d;~ub;lsc
sohvarc can run huge ill-memory
database clucrics 200(!) t i~ncs Faster

th'ln traditional 32-bit database sol+
\\,arc. The three database papers in
this issue emphnsize Digital's f o c ~ ~ s
o n commercial applications.

Operating system support is sub-
stantially more robust and has been
esp.111ded to tlie fastest U N I S anti
Windo\\,s NT implernentations in tlie
inciustr): FLIII OpenVMS clustering,
including mixed Alpha and VAX
clusters, is available. UNIX and NT
cl~~ster ing is announced. All three
operating systems no\\: support SMI',
s!~mmctric ~ l~~~l t ip rocess ing . The
64-bit Digital U N I S implemcncation
has led the rest of the industry in
delivering 64-bit sofh\~are by over
2 4 months.

Cmmpiled-cocic impro\lements
lia\~e been remarkable. In 1992,
I could read tlie codc generated by
some o f o ~ ~ r cori1pi1~1-s and redlinc
rhrcc ou t ofevery four instructions
as unneeded unnccded unneededd
unneeded. A year ago, I could rc'id
conipilcd code and redline one
instruction out of e\,ery nvo as
~ ~ n n e c d e d unneeded. Today, I am
hard-pressed t o redline even 15 per-
cent of tlie instructions as unoeededd.

Mo\ing beyond the installed base,
migration e fhr t s are no\\? focused
on bringing in ne\v customers. I n
addition to ITAX and [MIPS binary
translation, tlie SPARC-to-Alpha
binary translation product is a\railable.
Code fi-om x86 PC platforms runs
cmulated on all Alpha operating sys-
tcnis. A technology demonstratio~i
of s86-to-Alpha binary translatio~~
Ii,is been given at trade sho\vs.

The growing maturity and sophis-
tication of the Alpha products ha\re in
turn led t o accelerated sales growth.
Over 100,000 Alpha systems worth
over $3.5 billion (harclu~are, sohvare,
and scrvicc) have been shipped, and
tlic ship rate has increased 6 6 percent
in the past year alone. In its tirst three
years, Alpha is off t o a 111ucIi faster
start than other RISC architectures,
S L I C I ~ 3s H1'-PA, iii their first three
years. Ruying patterns have sliitied
from try-one-out to bu!~-~~-fleet-to-
run-rhc-business.

111 three short years, Alpha corn-
p~ltcrs ha\~e become established as

\Iol. 7 No. 1 1995

t l ~ c hstcst in tlic industry - the
yardstick by which others mcnsurc
computer perk)rmancc. Colnpetitors
h;ive shortcncd their dc\,elopment
cycles ;ind ;iggrcssi\,ely increased their
clock rates. E\,cry single company
that dcscribcti Alpli,~ fc~ turcs ns

un~~cccss;iry in 1992 is no\\, rushing
t o bring its o\vn 64-bit ilnd rclascti
I-cad-\\.rite order SIMP iniplenicnta-
tions t o marker. Alpha h;is gro\\In
from "niclic design" to "industry
!!ardsrickn in a single generation.

Digital has in\lested o\ /c~- S 1 billion
111 the dcvclopnicnr ofAlpha. Literally
t h o ~ ~ s n n d s ofpcoplc have brought
a paper design t o life. Rleccling-edge,
brute-hrcc chip tccli~iology has
turned into practical engineering,
\vitli a balance oFsophistic;ltio~i and
cvcl-yday care: race cars to express-
delivery trucks.

Alpha is evolving much as the
architects originally cnvisioncd.
I believe l'cter Conklin, who Icd tlic
Alpha Progrn~m Office and to \\)lion7
tliis i s s ~ ~ e is riedicated in memoriam,
\vould want t o illso dedicate this issuc
t o all the brilliant and liard\\~orking
people \\fho ha\.c made it a rc;ility. My
thanks and ad~niration t o cadi of you.

So lie\\! arc \\,c doing? A t i c ~ ~ O L I

read this ~SSLIC, I tlii~ik ~ O L I \ \ r i l l agree,
"Quite \\,ell, thank you."

DB Integrator:
Open Middleware
for Data Access

During the last few years, access to hetero-
geneous data sources and integration of the
disparate data has emerged as one of the major
areas for growth of database management
software. Digital's DB lntegrator provides robust
data access by supporting heterogeneous query
optimization, location transparency, global
consistency, resolution of semantic differences,
and security checks. A global catalog provides
location transparency and operates as an
autonomous metadata repository. Global trans-
actions are coordinated through two-phase
commit. Highly available horizontal partitioned
views support continuous distributed process-
ing in the presence of loss of connectivity. The
DB lntegrator enables security checks without
interfering with the access controls specified
in the underlying data sources.

Richard Pledereder
Vishu IG-ishnarnurthy
Michael Gagnon
Mayank Vadodaria

A problem faced by organizations today is how to
uniformly access data that is stored in a variety of data-
bases managed by relational and nonrelatio~lal data
systems and the11 transform it into an information
resource that is manageable, functional, and readily
accessible. Digital's DB Integrator (DBI) is a multi-
database management system designed to provide
production-quality data access and integration for
heterogeneous and distributed data sources.

This paper describes the data integration needs of
the enterprise and how the DBI product hlfills those
needs. I t then presents the DBI approach to multi-
database systems and a technical overview of DBI con-
cepts and ternlinology. The nest section outlines the
system architecture of the DBI. The paper concludes
with highlights of some of the technologies incorpo-
rated in DRI.

Data Integration Needs

Companies oken find themselves data rich, but infor-
mation poor. Propelled by diverse application and
end-user requirements, companies have made signifi-
cant investments in incompatible, fragmented, and
geographically distributed database systems that need
to be integrated. Companies with centralized jnforma-
tion systems are seelung methods to distribute this
data to inexpcnsivc, departmental platforms, which
would maximize performance, lower cost, and
increase availability.

The DB Integrator product family is specifically
designed and implemented to address the following
data integration needs:

Data access. The data integration product must
provide uniform access to both relational and
nonrelational data regardless of location o r stor-
age form. Data access must be extensible to allow
the user to write special-purpose methods.

Locatio~i and fi~nctional transparency. The loca-
tion of the data and the functional differences
of the various database systems must be hidden
to provide end users with a single, logical view of
the data and a unifor~nly f~~nc t iona l data access
system.

Schema integration and translation. Users of data
integration software must be presented with an
environment that lets them easily determine what
data is available. Such an environment is fie-
qiiently referred to as a federated database. A data
integration product must be flexible enough to
help resolve semantic inconsistencies such as
variances in field names, data types, and units of
measurement.

Data consistency. Maintaining data consistency is
one of thc most important aspects ofany database
system. This is also true for fedcrated database.

Performance. Integrating data from multiple data
sources can be an expensive operation. Thc two
primary goals are to minimize the amount of data
that is transferred across the netcvorl< and to maxi-
mize the amount of rows that are proccssed
within a given unit of time.

Security. Access to distributed data must not
compromise the security of data in the target
databases. The security model must provide
authorized access to an integrated schema without -
violati~lg the security of the autonomous data
sources that have been integrated.

Openness. Any data integration product must
accommodate tools and applications with stan-
dard SQL (structurcd quer)! language) interf'~ces,
both at the call level (e.g., Open Database
Connectivity [ODBC] for personal computer
clients) and the language level (e.g., ANSI SQL)!s2
It must be able t o provide and enable access to
data over the IIIOS~ commonly deployed tralisports
such as transmission control protocol/internet

PATHWORKS NOVELL WINDOWS SOCKETS

protocol (TCP/I13), DECnet, or Systems Network
Architecture (SNA).3
Administration. The integrated database must
provide flexibility in configuration and be easy to
set up, maintain, and usc.

Figure 1 illustrates the current set of client-server
data access supported by the DB Integrator product
family.

Multidatabase Management Systems

A ~nultidatabase management system (IMDBMS)
enables operations across m ~ ~ l t i p l e autonomous com-
ponent databases. Based on the taxonomy for multi-
database systems presented in Reference 4, we can
dcscribe DBI as a loosely coupled, hcterogeneous, and
federated multidatabase system. DBI is loosely cou-
pled compared to the component databases: The data-
base administrator (D13A) that is responsible for DBI
and the DBAs that are responsible for the component
databases manage their environments independently
of one another. DBI is heterogeneous because it sup-
ports different types of component database syste11-l~.
DBI is federated because each colnponent database
exists as an independent entity.

Reference Architecture
The MDBMS provides users with a single system view
of data distributed over a large number of heteroge-
IICOLIS databases and file systems. The MDBMS inter-
operates with the individual component databases
similar to the way that the SQL query processing
engine in a relational DBMS interoperatcs with the

LINK DATABASES .

Figure 1
Client-Server Data Access with the DB Integrator

ADABAS SYBASE MODEL-204"
AS1400 SUPRA TOTAL*'
DB2 SOUSERVER
DB212 PC DATA
DB216000 RMS - ACCESS
INFORMIX DBMS - BTRIEVE
INGRES DSM - DBASE
INTERBASE VSAM - EXCEL
ORACLE I M S " - PARADOX
ORACLE RDB FOCUS" - SEQUENTIAL
PROGRES CA-IDMS"
SQUDS TERADATA CUSTOM DATA

DECNET - TCPIIP COMPLIANT TCPllPs
APPLETALK

APls

ODBC SQL-92
DAL SQUSERVICES

OPERATING SYSTEMS

Vo1.7 No. 1 1995

SEQUELINK

DB INTEGRATOR

MACINTOSH WINDOWS
WINDOWS NT OPENVMS

DEC OSFII ULTRIX SUN-OS
HP-UX' SOLARIS'
SCO"

'VIA SEQUELINK DECNET TCPIIP SNA

DB INTEGRATOR "READ-ONLY VIA EDAISQL

record storage system. Thus, a relational MDBMS,
such as DBI, is typically composed of the follo\ving
processing units:

Language application programming interface
(API) and SQL parser

Relatio~ial data system
- Global catalog manager
- Distributed query optimizer and compiler
- Distributed execution system
- Distributed transaction lnanagemcnt

Gateways to access data sources

Catalog Management
One of the key difkrentiators between MDBMS archi-
tectures is tlie way that tlie ~netadata catalog is orga-
nized. Metadata is defined as the attributes of the data
that are accessible (e.g., naming, location, data types,
or statistics). The nietadata is stored in a catalog. Two
common approaches for catalog management are
described below:

Autonomous catalog. The MDBNIS maintains its
own catalog in a separate database. This catalog
describes the data available in the multidatabase.
For data that resides in a relational database, the
nietadata definitions of table objects, index
objects, and so forth, are i~npor ted (i.e., repli-
cated) into the milltidatabase catalog. For data
that resides in some other data source such as a
record file system (e.g., record management sys-
ten1 [RMS]) o r a spread sheet, the MDBMS cata-
log contains a relational description of that data
source.

Integrated catalog. The MDBMS is integrated
with a regular database system that is capable of
accessing objects (both data and mctadata) in
remote and foreign databases. A gateway server is
responsible for making a foreign database appear
as a homogeneous, remote database instance. For
data that resides in a relational database, the gate-
way server stores views of its system relations into
that database. For data that resides in a record file
system o r spread sheet, the gateway server stores
the relational metadata description of the data in a
separate data store.

OBI Approach
The DBI approach to rnultidatabase management very
closely follows the reference architecture presented
earlier. The DBI approach emphasizes the following
design directions:

Global, autonornous catalog for metadata man-
agement

Three-tier integration model (described later in
this section)

Simple, mapped-in gateway drivers to access data
sources

Support of distributed database features for the
Oracle Rdb relational database as well as support
of existing Oracle Rdb applications in the multi-
database environment

Global Catalog DBI is addressable as a single inte-
gration server. Integration clients such as tools and
applications d o not need to dcal with the complesities
of the distributed data. Tlie DBI global catalog is a
repository in which DBI maintains the description
of the distributed data. I t enables DBI to provide
tools and applications with a single access point to the
federated database environment. The global catalog
enables DBI to tell users what data is available without
requiring immediate connectivity to the data or its
data source. It can be managed and maintained as an
independent database. The maintenance of the DBI
global catalog is not inherently tied to a specific data
manager; currently, the DBI catalog may reside in
ORACLE, SYBASE, o r Oracle Rdb databases.

The use of a global catalog may result in a system
with a single point of failure. To eliminate its potential
failure within a node, a disk, or a network, standard
high-availability mechanisms may be employed. These
include shadowed dislzs with shared access (e.g., clus-
tercd nodes) and data replication of the DBI catalog
tables \vith products such as the Digital Data
Distri butor.5

Three-tier versus Two-tier Architecture With a two-
tier data integration model, once the data has becn
retrieved from the server ticr, the actual integration
occurs on the client tier. This may result in massive
integration operations at the client site. In contrast,
tlie DBI is based on a three-tier architecture that
performs most integration functions o n a middle
tier between tlie client and the various database
servers. The three-tier approach avoids unncccssary
transfer of data to the client and is essential t o provid-
ing production-quality data integration. In another
comparison, all clients in the two-tier approach need
to be configured to access tlie various data sourccs;
however, the three- tier approach significantly reduces
such management complexities.

Gateway Driver Model DRI deploys a set of gateway
drivers to access specific data sources, including other
DBI databases. These drivers share a single operating
system process space with DBI to avoid unncccssary
interprocess comnii~nications. When DBI performs
parallel query processing, ho\vever, gateway drivers
may reside in a separate process space. The core of DBI
interacts with the actual gateway drivers (e.g., a
SYBASE gateway driver) through the Strategic Data

Digital l'cchnical Journal Val. 7 No. 1 1995

Interface (SDI), an architected interface that is ~ ~ s c d
within the DBI product family as a design center? A
gateway driver is implemented as a relatively thin sok-
ware layer that is SDI compliant and tliat is responsible
for handling impedance mismatches in data models
(e.g., RIMS versus relational), query language (e.g.,
different dialects of SQL), and run-time capabilities
(e.g., SQL statement atomicity).

Distributed Rdb One of the des~gn goals for 1)RI was
to enable distributed database processing for DEC:
Rdb (no\\! Oracle Rdb) From the pcrspcctlvc ot ,in
appl~cat~on, Dl31 therefore looks ltke a d~stnbutcd Rdb
database svstem.

DBI Concepts and Terminology

In this section, \\/e present a briefo\~crvic\v of tllc con-
cepts and ter~ninolog,/ relevant to 1)1<1.

DBI Database
A DRI database consists of (1) a set of tablcs tliat 1)RI
creates to maintain the DBI metadata (also rcfcrrcd to
as the catalog) and (2) the distributed data that is a\.ail-
able to the user \vlien connected to the 1)Bl catalog.

A DBA creates '1 DBI database using the 1) H ' SQL
CREATE DATABASE statement. This statenlcnt has
been extended for 1DRI to allo\v the uscl. to indicate
the physicdl database (e.g., a SYRASE datiibasc) tliat
\vill be used to hold the DRI metadata tables.

The creator of a 1)BI database automatically
becomes tlie owner and systc~u ad~iiinistrator of that
database. A DBI system administr:itor may grant
access privileges on the DBI database to other users.
Depending on the level of privilege, a user may then
perform system administration f~mctions, esccutc data
definition languagc (DDI,) operations, and/or clucry
the tables in the virtual d.ltabasc.

DBI Objects
In addition to regular SQL objects such as t;il>lcs or
columns, DBI uses objects, links, and prosics tliat arc
outside the scope of the SQI, language s tanda~d.

Links and Proxies Tlic link object tells 13BI how to
connect to an underlying data source (referred to as
the link datubase). A link objcct has three components:
a l i l l k ~ianic, tlic dccess string used to attach to the link
database, and, optionall)!, security information used by
tlie DRI gateway driver to provide authentication
informatic-111 to the link database system. Tlic prosy
object is associatecl \vith a link object. I t can be used
to spccib user-bpecific ~i~thcnt icar ion information for
individual links. MJhen users d o not \\rant to use pros-
ics h r their links, they must speci? the authe~itication
information for J specific database at the time they
conncct to 13R1.

Tables With link and prosy objects in place, the user
can import mctadata definitions of ~~nder ly ing tables
into the 1 l B I catalog. Tlir mctad,ita iniported for a
tablc incluclcs statistics, and constraint and index infor-
mation, a11 of which are ~lsed by tlie DBI optimizer.
The import step is performed with a CREATE TARL.F,
stntcmcnt that 1x1s \>ec~i cstcndcd to aIlo\\, for '1 link
reference. For csa~nple:

- - I m p o r t " r d b - e m p " t a b l e i n t o D B I

-- d a t a b a s e a s "emp" f r o m t h e l i n k
-- d a t a b a s e r e p r e s e n t e d b y t h e L i n k
-- named " L i n k - r d b " .

- -
C R E A T E T A B L E emp L I N K T O rdb-emp

U S I N G l i n k - r d b ;

Views Vic\v objects arc L I S C ~ L I I for making multiple
tablcs from different link databascs 'Ippenr as a single
t,tblc. In 13131, \/ic\\s scrvc as po\\,crful mechanisms to
resolve semantic differences in tablcs from disparate
databases. supports nvo types of vic\\rs: regular
SQL \/ic\\/s and horizontall!/ partitioned views (HPVs).
Rcgul,lr \!ie~\~s arc compliant wit11 ANSI SQL92 Level
1; they support fill1 query esprcssion c.ipabilitics and
updat~bil i ty.~ HPVs consist of a view namc, a parti-
tioning colu~nn, and partition specifications, Figure 2
js an ~ s ~ ~ ~ i i p l e of nn HPV dcf nition.

HI'Vs provide 3 \!el-y po\vcrfi~l colistruct for dcfi~i-
ing n logical tablc composed of horizontal partitions

C R E A T E V I E W emp (emp- id , f i r s t - n a m e , Last -name, c o u n t r y)
U S I N G H O R I Z O N T A L P A R T I T I O N I N G O N (c o u n t r y)

P A R T I T I O N u s W H E R E c o u n t r y = ' U S ' C O M P O S E A S
S E L E C T e m p l o y e e i d , f i r s t n a m e , L a s t n a m e , ' U S '
F R O M emp-us

P A R T I T I O N e u r o p e W H E R E O T H E R W I S E C O M P O S E A S
S E L E C T emp-id, f i r s t - n a m e , l a s t - n a m e , c o u n t r y - c o d e
F R O M emp-eur;

Figure 2
Esalnplc ofdn HPV 1)cfinirion

10 Digital Technical Journal Vol 7 No. 1 199.5

that may span tables from disparate data sources. Both
retrieval and update operations on HPVs are opti-
mized such that unnecessary partition access is elimi-
nated. In addition, HPVs may be used to implement a
shared-nothing computing model 011 top of both
homogeneous and heterogeneous databases?

Stored Procedures DBI supports stored procedure
objects. Storcd procedures allow the user to embed
application logic in the database. They make applica-
tion code easily shareable and facilitate DBI to main-
cain dependencies between the application code and
database objects. Furthermore, storcd procedures
reduce message traffic between the clicnt and the
server. Figure 3 is an example of a stored proccdure.

OBI Database Administration
DBI supports statements that keep the imported
~netadata consiste~it with the link database. The
extended ALTER TABLE statement may be used to
regularly refresh the table ~netadata information or
update tlie table's statistics. The ALTER LINK state-
ment may be used to modify the link database specifi-
cation or a proxy for a given link object.

OBI Configuration Capabilities
Figure 4 shows tlie power of configuration options
supported by DB1. Follo\ving the three-tier model for
data integration, the DBl server may access a very large
number of databases, including other DBI databases.

The DBI server is accessible through SQL APIs that
are available on popular client platforms. DBI's clicnt-
server protocol is supported on all common transports

such as TCP/II>, No\~ell's scque~~ced pacltet exchange/
internetwork pacltet exchange (SPX/IPX), DECnet,
or Windows Sockets. DBI itself may be deployed on
Digital UNIX (formerly DEC OSF/l) and OpenVMS
platforms today. Support for additional platforms is
being added.

DBI System Architecture

In this section, we describe the system architecture
of the DBI product family and present some of its
specific designs.

Interfaces
As shown in Figure 5, the DRI syste~ii architecture is
anchored by nvo esternal interfaces, SQL, and meta-
data driver interfaces/data drivel- interfaces (MDI/
DDI), and nvo internal interfaces, Digital Standard
Relational Interface (DSRI) and SDI.

The SQL interface is used by DBI clients to issue
requests to the integration server. The lMDI/DDI
interface is used by DBI to call gateway drivers that are
provided by a user. The MDI/DDI interface specifies a
simple, record-oricnted data access interhce provided
by Digital to assist ilsers in tlie access and integration
of data sources for which 110 Digital-supplicd gateway
drivers are available.

DSRI is the interface between DRI's SQL parser and
the DBI processing enginc.YThe SDI jnterface speci-
fies a canonical data interface that shields the DBI core
from data-source-specific interfaces and facilitates
modular development.6

p r o c e d u r e m a i n t a i n - s a l a r i e s (: s t a t e c h a r (2) i n ,
: n - d e c r e a s e d i n t e g e r o u t) ;

b e g i n
s e t : n - d e c r e a s e d = 0;
f o r : e m p f o r a s e a c h row o f

s e l e c t * f r o m e m p l o y e e s emp w h e r e s t a t e = : s t a t e ;
d 0

s e t : l a s t - s a l a r y = 0;
h i s t o r y - l o o p :
f o r : s a t f o r a s f o r e a c h row o f

s e l e c t s a l a r y - a m o u n t f r o m s a l a r y h i s t o r y s
w h e r e s - e m p l o y e e - i d = : e m p f o r . e m p l o y e e - i d

i f : s a l f o r . s a l a r y - a m o u n t C l t l : L a s t - s a l a r y t h e n
s e t : n - d e c r e a s e d = : n - d e c r e a s e d + 1;
Leave h i s t o r y - l o o p ;

e n d i f ;
s e t : l a s t - s a l a r y = : s a l f o r . s a l a r y - a m o u n t

e n d f o r ;
e n d f o r ;

end;

- --

Figure 3
Example ofa Stored Proccdurc

lligital Technical Journal Vol. 7 No. 1 1995 1,

NODE A

CLIENT 0,
NODE C , .

NODE D

SYBASE

NODE E

DB1

Figure 4
DBI Config~~rntion Capabilirics

ODBC (SQUSERVICES (SEQUELINK (DEC SQL

""L

SQL

DB INTEGRATOR

snl

DBl RELATIONAL DBI NONRELATIONAL

MDIIDDI
NATIVE DBMS API

Figure 5
DB Integrator Architecture

Components
The cornponelit architecture of DBI in Figure 6
closely resenlbles the multidatabase refcrcnce architcc-
ture presented earlier:

The SQL and ODBC client-server environment
provides language API and SQL parser functions.

The AI'I driver and context manager support dis-
tributcd transaction management and part of the
distributed esecution system.

The ~netadata nianagcr provides global catalog
management.

The compiler supports the distributed query opti-
mizer and compil? c tion. '

The executor supports the remaining part of the
distributed execution system.

The SDI d isp~tcher and g-atc\vay drivers provide
the access to data sources.

SQL Environment and Server Infrastructure The SQL
parser supports DEC SQL,, an ANSI/National Institute
for Science and Technology (N1ST)-compliant SQL
iniplementation by mapping DEC SQL syntax into an
i~itcrnal query graph representation.') 111 ,I c - I ' lent-server
en\~ironment, the DRJ server infi-astructurc is used to
managc, monitor, and maintain a DBI scrc.er configu-
ration that supports \vorkstation and desktop clients.

API Driver and Context Manager The Al'1 driver is
responsible for the top-level control tlo\v of client
requests within the 13131 core. I t currently accepts
1)SlU calls from applications such as DEC SQI. and
dispatches then1 within 1)Bl. Thc contest manager
performs deniand-driven propagation of execution
contest to the gateway drivers and maintains the dis-
tributed contest of active sessions, transactions, and
requests.

Metadata Manager The rnetadata manager is respon-
sjblc for the overall malyagcment and access to mcta-
data. The services provided f i ~ l l into tlie categories of
catalog nianagemcnt, data definition, metadata cache
managcmcnt, and q u c r) ~ access to lIB1 system rcla-
tions. The mctadata catalog manager maintains the
DRI catalog in the form of 1)BI-crcatcd tables in an
underlyi~lg database (e.g., SYBASE or OIWCLE). Thc
DDL processor esecutcs tlie data dctinition statc-
nicnts. The metadata cache manager is responsible h r
maintaining metadata in a volatile caclic that provides
high-speed access to metadata objects.

12 Digital Technical Joutmal 0 1 . I No. 1 1995

Technical Considerations I SQUODBC CLIENTS I

I- API DRIVER

I CONTEXT MANAGER I

1 METADATA 1
MANAGER

1 COMPILER I I EXECUTOR I
1 SDl DISPATCHER

Figure 6
1)R Inrcgrnror (;omponcnts

- -

Compiler The compiler pro\/idcs services for tr,lnsl:~t-
ing SQ1, statements and stored proccd~~rcs into 1)RI
csccution plans. A rule-based query optimizer pcr-
fi)r~iis query rewrite operations, enurncrates diffcrcnt
csccution strategies, and fi~ctors in f~nctional capabili-
tics of the underlying data sources. Each csccution
~ t ~ i t e g y is associated with a cost that is based o n prcdi-
c;ltc scIccti\~ity cstiniates, table carciinnlitics, :l\r,~ilability
of inciiccs, nct\vork band\\/idth, and so forth. The lo\\,-
cst cost s t r a t e s is chosen as t l ~ final csccution plan.
Abo\>c a certain th~-csliold of clLIcry co~iiplcxity, the
optimizer s\\~itchcs from an esliaustivc search mctliod
to a grccdy scarch method to limit the computational
complcsity of the optimization phase. Tlic compiler
guicrxesco'de that can be processed by the csccutor
cornlx)lwnt ancl the Sateway drivers.

DBI GATEWAY DRIVER

Executor Thc csccutor component is responsible for
proccssi~ig tlic e x c c ~ ~ t i o ~ l plan that the compiler pro-
duces. 'l?licsc ncti\~ities includc

DB INTEGRATOR

F,schanging data between the 1)RI and tlic c l i e ~ ~ t

Strcn~ning data bet\\,een the 11131 core and tlic link
databases

Performing intermediate dntn mnnipi~l;ition steps
sucli as joins or aggregates

illallaging \\,orkspacc and buffer pool to cfti-
cicntly linndlc I2irge aniounts of tr,llisicl~t n~ ld
intcr~ncdintc data

Supporting parallel processing

SDI Dispatcher and Gateway Drivers l'hc S1)I dis-
patcher scpar.ltcs the core of Dl31 from the gateway
dri\.cr space. I t locates and loads s1131~a1dc i~iiagcs that
rclxcscnt gatc\\,dy dri\~ers and routes SL)I calls to the
corrcspo~idi~ig entries in the gatc\vny dri\rcl- image.

The DBI de\,clopnicnt team selected se\leral designs
and teclinologies that it believes to be crucial for dis-
tributed and heterogeneous data processing. This sec-
tion summarizes those designs within the following
fi~nctional units: distributed execution; distributed
metadata handling; distributed, hetel.ogeneo~~s query
process in_^; high a\/ailability; per For~iiance; and 1)R [

server con6 guration.

Distributed Execution
To support transparent distributed query processing,
DBI propagates execution contest such as connection
contest or transaction contcst t o the targct data
sources. Tools and applications scc only the simple
user session and transaction that they cstablisli wit11
the DBI integr.ltion scr\'cr.

1 l R I uses a tree organization to track tlic distributed
execution co~itcst . Wlicn a user connects to a 1)RI
database, a DRI user session contest is created. This
session contcxt is subscq~~cntly used to anchor active
transactions, conipilcd SQL statements, as \veil as tlic
metadata cache that is created for every user attaching
to DBI. When Dl31 passes control to a gatec\q/ clrivcr,
both scssion and transaction contest are establislicd at
the targct data soilrcc.

Distributed transactions must support consistency
and concurrcnc!l across autonomous database man-
agers. Consistency rccluircs that a distributcd transac-
tion manager with nvo-pliasc conlmit logic is available.
DBI uses the Digital 1)istributcd Transaction Manager
(DDTM) for that purpose and is adding support for the
distributed transaction processing (1)TP) SA standard
intcgration.l".l 1

Conc~~rrcncy requires that distr ib~~tcd dea3loclts arc
detcctcd. In a multiclatnbnsc systeln, distr ib~~tcd dcad-
Jock prevention is not fc;isiblc because n o clatabasc
manager csposcs cstcrnal interfaces to its lock man-
agement ser\.iccs--3 proccd 11 re required to per for111
deadlock detcc t io~~. 1)RI tlicrcforc relics on the simple
technique of transaction time-out to dctect deacilocks.
In addition, a 1)RI ;ipplication may choose to spccifii
isolation Ic\~cls lo\vcr than scrializability or repeat:~hlc
read. This is done \\/it11 the SQL SET TRANSACTION
statement. The D l 3 1 contcst nlanngcr rccords tlic
transaction attributes specified and for~vards them to
the underlyi~ig data sources as part of propagating
transaction contcst. Lower isolation levels will, in
general, result in fc\\jcr lock requests and thus fc\\fc~-
deadlock situations.

Distributed Request Activation DRI supports SQI.
statement atomicity. This rccli~ircs either that a single
SQL statement csccutcs ill its e~itiret)' or, i l l the cilsc o f
a failure, that the clatabasc is rcsct to its state prior to

Digirnl Tcchnicll Journ.ll Vol. 7 No. I I S 1..

the executio~l of the statement. With DBI, the SQL
statement may be excci~ted as a series of database
requests at multiple data sources. DBI internally uses
the concept of harkpoints to track SQL statement
boundaries. Gateway drivers are informed of [nark-
point boundaries, and the driver attempts to map tlie
markpoint SDI operations into semantically equivalent
constructs (e.g., savepoints) at thc target data source.
Some databases support SQL3-style savepoints, nlhicli
are atomic units of work within a [ransaction. When
DBI decides to roll back a markpoint, the gateway dri-
ver may then inform such a data source to roll back to
the last savepoint. In the absence of markpoint pri~iii-
rives in tlie target data source, tlie gateway driver may
elect t o roll back the entire transaction to meet the
roll-back markpoint semantics.

Gateway Drivers In contrast with other data integra-
tion architectures, the DBI gateway drivers are
designed to be simple protocol and data translators.
Their primary task is to report the capabilities of tlie
data-source interface (API and SQL language) to the
DBI core and s i~bseq~~en t ly map between the S1)I
interface protocol and the data-source interface. The
gateway drivers typically sliarc process context with
the DBI server process, thus avoiding the need for an
intermediate gateway server process that \vould other-
wise reside benveen the 11BI server and the data-
source server (e.g., SYBASE SQL Scrver). This reduces
the amount of contest switching and interprocess
message transfer.

The gate\lray drivers are responsible for mapping tlie
SDI semantics to the interface primitives provided at
the target data source. For relational databases such as
Oracle Rdb, ORACLE, INFOKMIX, SYRASE, o r
DB2, this requires primarily a mapping to thc product-
specific SQL dialect and the product-specific data
types. For file systems such as RMS, the gateway driver
maps the SDI senianrics to calls to the 1WS run-time
library.

Distributed Metadata Handling
In this section, we disc~~ss t l~ree areas of importance to
the handling of metadata in DBI: catalog manage-
ment, security, alld metadata caching.

Catalog Management Thc DBI requirement of data-
base independence implies that 1)BI cannot require
tlie presence o f a particular DBMS for its persistence
metadata storage. Rather than devising a private stor-
age and retrieval system, 1)RI was designed to layer on
top of common relational DBMSs.

Static, precompiled native applications are used
to access metadata from a given catalog DBMS for
two reasons: (1) The pattern of nictadata access for the
catalog database is known, and (2) The tables housing

the DRI metadata, in the catalog databasc are prcdetcr-
mined. Although this approach docs not take advan-
tage of the existing gate\vay drivers, it results in
high-performance access to the metadata store.

T o siniplify the de\~clopment of a catalog applica-
tion, the set of priniitivc operations on the catalog
database was isolated, and a catalog application
interface (CI) was defined. Catalog applications are
developed according to the C I specification and
implemented as shareable images. DBI dynamically
loads the appropriate catalog application image bascd
on the catalog type specified by a user attaching to a
DBI database.

Security The security support in tlie currently
released version 3.1 of Dl31 is siniple but effective. I t
uses the security ~nccl~a~i isms of thc underlying link
database systems in the following areas:

Authorization t o connect to an underlying data-
base through DBI and acccss data fro111 it.

Access to the data that is manipulated t l i r o ~ ~ g h 1)BI
is controlled by the underlying 13BMS. Typically,
underlying database systems control acccss to data
based on the identity of the user attached to its
database. DBI supports objects called proxies that
enable the client to specitj, its user identity (i.c.,
~~serna~ne/pass \ \~ord) , \\/liich is then used to attach
to the underlying database.

Authorization to perform \larious Dl31 operations.

All privileges for a 13BI dnt~hase are for the databasc
itself, ratlicr than for tables o r colun~ns. Tllc priv-
leges are based on hierarchically organized c.itc-
gories of users:

-The DBADM privilege is g i \ u to uscrs rcspo~i-
sible for setting up and maintaining a 13R1
database.

-The CKEATE, DROP privilcgc is granted to
interactive users and applicatio~i devclopcrs with
database design responsibility who I ~ L I S ~ pcrform
data definition operations.

-The SELECT pri\~ilegc is rcser\lcd for interactive
users and application dcvclopers who perform
data manipulation operations but d o not perform
any data definition operations.

When a DBI administrator grants or revokes pri\li-
leges for a DBI database, DRI, in turn, grants o r
revokes the appropriate set of privileges o n the DBI
tables in the databasc system that Inanages the 11131
catalog. The enforcement of privilegcs is tliercforc car-
ried out by that database system. For example, ~ \~ I i cn
the SELECT privilegc is granted o n the logicul data-
base, DBJ grants the SELECT privilege o n the tables
that represent the DBI catalog. This ensures that the
user has access to the metadata for processing clucries.

14 Digital Techn~cal Journal No. 1995

Similarly, when a uscr is granted the CREATE, DROP
privilege on the DBI database, DBI grants SELECT,
INSERT, UPDATE, and DELETE on the appropriate
tables in the catalog database to the user. This ensures
that any DDL actions executed by the user will enable
DBI to modify the tables in the catalog database.

Metadata Manager Cache The in-memory Inetadata
cache serves a dual purpose. First, it facilitates rapid
access to the metadata by the DBI compiler. Second, it
serves as a data store for tlie DBI system relations that
can be queried by tools and applications. For exaniple,
DEC SQL, obtains rnetadata for semantic analysis of
SQL statements by querying the DBI system relations.

The metadata cache is structured as a single hash
table representing a flat namespace across all DBI
objects. An open liasliing scheme is employed in
which the hash-table entries hang off the buckets in
the hash table in a linked list.

To optimize the use of the cache as well as to accel-
erate the attach operation, the metadata manager
initially obtains only minimal, high-level metadata
information from the catalog database; for example,
only names of tables arc fctclied into the cache during
the Dl31 database attach operation. Subsequently, the
metadata manager obtains fi~rtlier metadata informa-
tion from the catalog database on a demand basis.

DBI allows the creation of ne\v metadata objects.
These operations are typically performed within mark-
point and transaction boundaries to enforce proper
statement and transaction demarcation. The rnetadata
manager maintains a physical log in cache to denote
transaction and markpoint boundaries. The lo, cr 1s ' an
ordered list of structures, cach representing a DDL
action, a pointer to the cache structure that was
changed, and either the previous values of fields that
were updatcd o r a pointer to a previous image of an
entire structure. When a markpoint or transaction is
committed, the corresponding log part is reset; when
a markpoint or transaction is rolled back, the log is
~ ~ s e d to restore tlie cache to its state prior to the start of
the markpoint or transaction.

An object in cache can become stale when another
user attaches to the 11131 database and causes an
object's metadata to be changcd in the catalog data-
base. To ensure consistency o f the cached version of an
object's metadata with tlie actual vcrsion in the catalog
database, the rnetadata manager uses a time stamp to
check the currency of the cached object when per-
forming incremental fetching of the object's metadata.
If the object in cache is stale, the object is not accessi-
ble in the session, and an error message is issued to the
user indicating that the object in cache is inconsistent
with the catalog database. In a production environ-
ment, this would be a rare event, given the low fre-
quency ofdata def nition operations.

The metadata cache is also the data source for the
DBI system relation queries. The metadata manager
navigates tlie cache structures to obtain data for the
system relations, making use of the hash table for effi-
cient access and using DBI's execution component for
evaluating search conditions and expressions.

Distributed, Heterogeneous Query Processing
Distributed query processing in a heterogeneous data-
base environment poses certain u n i q ~ ~ e problems.
Data sources behave differently in terms of data
transfer cost, and they support different language
constructs. Many systems employ rudimentary tech-
niques for decomposing a query, frequently pulling in
all the data from underlying tables to the processing
node, and then performing all the operations in the
integration engine. Others simply use syntactic trans-
formations, thereby providing the least common
denominator in language hnctionality. DBI, on the
other hand, provides a robust query optimizer that
includes decomposition algorithms to reduce the data
flow and provide high-performance query execution.

Cost-based Plan Generation When a query has several
equivalent means ofproducing the result, tlie plan that
has the least estimated cost is chosen. Statistics for
table, CO~LIII~II , and index objects are used for estimat-
ing result size after various relational operations12J3
Data transmission costs from the underlying link data-
base to DBI are taken into account when estimating
how much of tlie query is to be sent to the gateway
database. The network transmission cost is measured
dynamically for cach user session, once per gateway
connection. The cost associated with performing a
relational operation is also aggregated into the overall
cost. This crucial step ensures that the plan is not
skewed toward one database enginc, which \vould be
the case if only the nenvork transmission costs were
talten into account.

Rule-based Transformations A query result may be
produccd with d~ffcrent sequences of relational opera-
tions. These sequences are generated using rule-bascd
transformations. The starting point is the original
operation set in which the query was syntactically rep-
resented. From this, permutations are generated to
form equivalence sets, which then lead to the various
combinations ofexecution plans that need to be exam-
ined for cost. Finally, the least costly plan is chosen for
the query. Heuristics are applied to limit the amount
of search space.

Capability-based Decomposition The critical charac-
teristic of a heterogeneous environment is that the
data sources are nonuniform in their ability to perform
certain operations and in their support of various

Digital Technical Journal

language constructs. For exaniple, most databases
cannot support derived table expressions (i.e., select
expressions in the FROM clause of another SELECT
statement).

The plan generation and deco~nposition phases of
the optimizer must recognize the u~lderlying data-
bases' capabilities. Consider the query example shown
in Figure 7 and the indicated locations of the tables.

First, with T1 and T3 located in the same database,
the optimizer can generate a subplan in which the join
between these two tables can be executed in the
ORACLE database. An examination of the last (third)
AND predicate indicates that all the tables involved in
that predicate are located in tlie same ORACLE data-
base. Due to the limitations in OlWCLE's SQL lan-
guage support, honlever, it cannot evaluate the
combined expression between nvo subqueries in thc
WHERE clause, where thc arjthmetic result is to be
compared to the columii Tl .c5.

The DBI optimizer employs a more sopliisticatcd
alternative. It evaluates the nvo subqueries separately
and then substitutes them in the predicate in tlie
subplan for ORACLE as run-time parameter values.
This technique leads to tlie most efficient plan:

1. Retrieve value for (sclect a\lg(T4.c5) from T 4) from
ORACLE.

2. Assign value to variable X.

3. Retrieve \laluc for (select T5.c7 from T 5 where
T5.c8 = 'a') from C1RACL.E.

4. Assign value to variable Y.

5. Assign param-1 : = variable X.

6. Assign param-2 := variable Y

7. Execute the SELECT statement below in O M C L E
and fetch the result rows.

s e l e c t *
f r o m T I , T 3

w h e r e (T I . c 3 = T 3 . c 3)
a n d (T l . c 5 = p a r a m - I + param-2) ;

8. Fetch the rows o f T 2 from DB2 into DBI.

9. Perform the join in I>DI benvccn the results of
steps 7 and 8.

Query Unnesting A nested SQL query, in its simplest
form, is LI SELECT qucr)~ with tlie WHERE clause
predicate containing a subquery (i.e., another
SELECT query). The follo\ving are examples of nested
SQL queries:

Example 1 , Table Subquery

s e l e c t *
f r o m A

w h e r e A . c l I N (s e l e c t (B . c 2 + 5)
f r o m B

w h e r e B . c 3 = A . c 3) ;

s e l e c t *
f r o m A

w h e r e A . c l = (s e l e c t m a x (B . c 2)
f r o m 8

w h e r e B . c 3 = A . c 3) ;

Using strict SQJ- semantics, \ \ ~ c can evaluate this
nested query by c o m p ~ ~ t i n g the results of the inner
subquery for e\,cry tuple in the outer (containing)
C I L I C ~) ' block. The value for the column A.c3 is substi-
t ~ ~ t e d in the i1inc1. subcluer)l, and the resulting \lalue (or
values) are computed for tlie sclect list and used to
cvaluate the Boolean condition on column A.cl: this is
repeatcd for cver)l tuple of A. This method of evaluat-
ing the resi~lts is \/cry expensive, especially in a distrib-
L I ~ C ~ en\~iron~nelit.

Query unncsting algorithms provide other methods
of evaluation that are semantically eqi~ivalent but
much more efficient in both time and space.
Unncsting deals \vith the transformation of nested
SQL q ~ ~ e r i e s illto an cclui\~alent seclLlcnce of relational
operations. These relational operations are performed
as set operations, thcrcby avoiding the expensive tuple
iteration operators during execution and providing
large performance gains in most cases. 'The back-
ground and motivation beliind the L I S ~ of unnesting
has been presented in several research papcrs.l4.I5

s e l e c t *
f r o m T I , T2, T 3

w h e r e (T I . c l = T 2 . c Z)
a n d (T I . c 3 = T 3 . c 3)
a n d (T l . c 5 = (s e l e c t a v g (T 4 . c 5) f r o m T 4)

+ (s e l e c t T 5 . c 7 f r o m T 5 w h e r e T 5 . c 8 = ' a '));

T I , T3, T 4 a n d T 5 a r e L o c a t e d i n a O r a c l e d a t a b a s e
T a b l e T 2 i s L o c a t e d i n a DB2 d a t a b a s e .

Figure 7
Example of an SQL Query

16 l)~giral Technical J o u r n ~ l

Depending on the type ofoperations and constructs
found in the nested select block and its parent select
block, several different algorithnis can be used. Some
of these require n o special operators over and above
the regular join operator. Other transformations
require a special se~nijoin operator. Consider the
examples shown in Figure 8.

In the example shown in Figure 9, a special operator
called semijoin is necessary. The se~nijoin of table R
with S 011 condition J is defined as the subset of
R-tuples for which there is at least one matching
S-tuple satistying,J. Note that this makes the operator
asymmetric, in that (K se~nijoin S) is not the same as
(S seniijoin R) , whereas the regular join is symmetric.
By implementing the special semantics required for
this semijoin operator, we can transform the nested
query into this join operator that can again make use
of high-performance techniques like hash joins within
the DBI execution engine.

Predicate Analysis When a query against an HPV can
be satisfied by simply accessing a single logical parti-
tion, then the rest of the partitions can be eliminated
from the execution plan. Partition elimination algo-
rithms in DBI are used both at compile time, when the
predicates on the HPV query invol\ie comparison of

the partitioning column with literals, as well as at
query execution time (run time), when the partitio~i-
ing column is compared with run-time parameters.

During affinity analysis, predicates are situated as
close to the inner table operation as feasible. For exam-
ple, consider the following view definition, and the
si~bscquent select statement on that view:

c r e a t e v i e w V1 (a , b) a s
s e l e c t T I . c l , a v g (T Z . c Z)

f r o m T I , T2
w h e r e (T I . c 4 = T 2 . c 4)
g r o u p b y T I . c l ;

s e l e c t * f r o m V1 w h e r e (a = 5 a n d b > 1 0) ;

The predicate a = 5 (upon further conjunctive normal
form [CNF] analysis) can be applied on the base table
scan itselfasTl.cl = 5.

Index join is one of the efficient join techniques
used in DBI. This join technique minimizes the move-
ment of data from the link databascs by taking advan-
tage of the indexing schemes in the link database to
facilitate the join process. Consider the following
query:

s e l e c t *
f r o m T I , T2

w h e r e T I . c l = T 2 . c 2 + 5
a n d (. . . s o m e r e s t r i c t p r e d i c a t e c s)

o n T 2 . . .)

Q 1 - q u e r y t h a t w i l l n o t r e q u i r e a s p e c i a l j o i n a f t e r t r a n s f o r m a t i o n
- -

s e l e c t snum, c i t y , s t a t u s
f r o m S

w h e r e s t a t u s = (s e l e c t a v g (w e i g h t) + 5 - - n e s t i n g p r e d i c a t e
f r o m P

w h e r e P . c i t y = S - c i t y) ; c o r r e l a t i o n p r e d i c a t e

- -

- - Q 1 - U - t h e u n n e s t e d v e r s i o n

s e l e c t snum, c i t y , s t a t u s
f r o m S, (s e l e c t c i t y , a v g c w e i g h t) + 5

f r o m P
g r o u p b y c i t y) a s T l (c l , c 2)

w h e r e T I - c l = S - c i t y
a n d S . s t a t u s = T I . c 2 ;

- - A l g o r i t h m :
- -

1) T a k e t h e i n n e r b l o c k ' s FROM t a b l e t h a t h a s a c o r r e l a t i o n p r e d i c a t e .

- - 2) Add a G r o u p - B y t o t h e i n n e r b l o c k c o n t a i n i n g a l l a t t r i b u t e s o f t h i s
- - t a b l e t h a t a p p e a r i n o n e o r m o r e c o r r e l a t i o n p r e d i c a t e s . T h e o r d e r o f
- - t h e a t t r i b u t e s i n t h e G r o u p - B y d o e s n o t m a t t e r .
- - 3) A l s o , a d d t h e s e e l e m e n t s t o t h e s e l e c t l i s t o f t h e i n n e r b l o c k ; a t t h e
- - b e g i n n i n g o r a t t h e end, w h a t e v e r i s c o n v e n i e n t .

-- 4) N e x t , a d d t h i s b l o c k t o t h e FROM L i s t o f t h e o u t e r b l o c k - e f f e c t i v e l y
d o i n g a r e g u l a r j o i n w i t h t h e t a b l e s i n t h e o u t e r FROM l i s t .

- - 5) L a s t l y , r e w r i t e t h e c o r r e l a t i o n a n d n e s t i n g p r e d i c a t e s a s s h o w n .

Figure 8
Query Unnesting AJgorithm

Digital Technical Journal Vo1.7 N o . 1 1995 17

- 8 2 - q u e r y r e q u i r i n g a s e m i - j o i n
-

s e l e c t snum
f r o m S

w h e r e c i t y I N (s e l e c t c i t y
f r o m P

w h e r e P - w e i g h t = S . s t a t u s) ;

-

- Q2-U - t h e u n n e s t e d v e r s i o n

s e l e c t snum
f r o m (S s e m i - j o i n P

o n (P - w e i g h t = S . s t a t u s AND S . c i t y = P - c i t y)
) ;

- - I) Do a s e m i - j o i n b e t w e e n S a n d P u s i n g t h e f o l l o w i n g (c o m b i n e d) c o n d i t i o n :
-- " (P - w e i g h t = S - s t a t u s) AND (S . c i t y = P . c i t y) "
-- I n r e a l i t y , t h i s i s a c t u a l l y s p e c i f i e d a s 2 s e p a r a t e s e m i - j o i n s b e t w e e n
- - S a n d P, o n e w i t h t h e c o r r e l a t i o n p r e d i c a t e a n d o n e w i t h t h e f o r m o f
- - t h e n e s t i n g p r e d i c a t e . B u t t h e s e g e t c o m b i n e d u s i n g r u l e s .
-- 2) P r o j e c t o u t S - s n u m f r o m t h e r e s u l t

Figure 9
Algorith~n with Semijoin Operator

Given an index o n column c l o f table T 1 , and witli
cardinality and cost estimates permitting, the query
optimizer can generate an alternate plan. This plan
allows t h e join t o be pcrfornicd by using efficiently
indexed access retrieval for table T 1 .

High Availability
H i g h avajlability in DBI results from the use o f hori
zolital partitioned views and catalog replication.

Horizontal Partitioned Views All H P V is a special
kind o f view in which DBI is provided with informa-
tion about how data is distributed a m o n g tables in link
databases. HPVs offer many advantages over normal
views, o n e o f them being improved pcrformancc
through partition elimination and use o f parallclisni.
T h e other advantage is high availability.

If a partitioned view bas multiple partitions and if
some partitions are unavailable when the view is
queried, then DBI does no t fail the query bu t returns
data from t h e available partitions. hi csaniplc is
shown in Figure 10. T h e example creates a partitioned
view named ALL-EMPLOYEES, with four c o l ~ ~ m n s
and three partitions, each ofwhich obtains rows fi-on1
three different tables. T h e partitioning is based o n a
specific column, in this casc the CITY column, as spec-
ified in the USING HORIZONTAL, PAliTITTONTNG
ON clause.

Suppose the following query is submitted

SQL> SELECT * F R O M ALL-EMPLOYEES
WHERE (C I T Y = ' M U N I C H ')

O R (C I T Y = 'NASHUA ') ;

First, partition P2 is eliminated a t compile time.
N o w suppose partition P 3 js presently no t available
d u e to net\-\iork connecti\iity yroblelns (Figure 11).
For each partition that is una\tailable, a message is
r e t ~ ~ r n e d indicating that sonic rows arc missing from
the res~ l l t table: %l)BI-W-HAHPV-UNAiIMLABLE
Partition 1'3 is currently una\lail'~ble. However , DRI
still attempts t o return as much data as is accessible.

Catalog Replication To prevent tlie 1)KI global cata-
log fi-om becoming a single point o f failure, multiple
copies o f a catalog tablc can bc maintained by using
replication techniques. Catalog tablc copies can be
created casily and maintained using replication tools
such as the DEC Data D i s t r i b ~ ~ t o r . ~

Performance
In addition t o its distributed query optimizer, Dl31
uses a series of techniques t o increase tlie speed o f
query processing, most notably in the areas o f data
transfer, memory management, join processing, paral-
lclism, and stored procedures.

Data Transfer T h c DBI execution engine performs
bulk data transfer using the bulk fetch m e c l i a ~ u s n ~ s
provided by tlie SDI interface. \/Vith b ~ ~ l l c data transfer,
a single request lnessagc t o a local o r remote data
sourcc returns many t ~ ~ p l e s witli a single response mes-
sage. Bull< transfer techniques are mandatory in a dis-
tributed environment; they reduce both niessage
traffic and stall ~va i t s d u e t o niessage delays. T h e data

18 Digital Technical Journa l Vol. 7 No. 1 1995

C R E A T E V I E W A L L - E M P L O Y E E S (I D , N A M E , A D D R E S S , C I T Y)
U S I N G H O R I Z O N T A L P A R T I T I O N I N G O N C I T Y
P A R T I T I O N P I W H E R E C I T Y = ' M U N I C H '

C O M P O S E A S S E L E C T I D , L A S T - N A M E , A D D R E S S , ' M U N I C H '
F R O M M U N I C H - E M P L O Y E E S
W H E R E S T A T U S = ' Y '

P A R T I T I O N P Z W H E R E C I T Y = ' P A R I S '
C O M P O S E A S S E L E C T I D , F U L L - N A M E , A D D R E S S , ' P A R I S '

F R O M P A R I S - E M P L O Y E E S
W H E R E S T A T U S = ' Y ' ;

P A R T I T I O N P 3 W H E R E C I T Y = ' N A S H U A '
C O M P O S E AS S E L E C T I D , F U L L - N A M E , A D D R E S S , L O C A T I O N

F R O M N H - E M P L O Y E E S
W H E R E S T A T U S = ' Y ' ;

Figure 10
Example o f a Partitioned View

P2: PARIS

'a@ P3: NASHUA

MULTIPLE
PHYSICAL
DATABASES

Figure 11
High Availabil~ty with Partitioned Views

transfer bandwidth benveen the DBI engine and the
gateway drivers is hr ther increased t h r o ~ ~ g h the use of
asynchronous SDI operations.

Memory Management An MDBMS needs to be able
to process large amounts of data efficiently without
exceeding platform- or user-specific operational quo-
tas such as the page file size or the working set limit.
In addition, standard operating system paging tech-
niques may easily result in heavy 1/0 thrashing for
database-centric work loads.

The DBI executor placcs data streams, intermediate
query results, or hash bucltets into individual work-
spaces. A worltspace is organized as a linear sequence
o f f xed-size pages. A standard page-table mechanism
identifies the allocated pages and records status such as
~vhether a page is present in memory or whether it is
paged out to secondary storage. The worltspace nian-
ager operates as an intelligent buffer manager and pag-
ing system that controls fair access to memory across
all active ~~orkspaccs of a given DBI user. A buffer pool
manager holds the workspace pages that reside in
memory.

The buffer pool manager supports multiple buffer
replacement policies, which is important for database
worltloads that involve sequential access to data that is
subsequently no longer needed. The two supported
strategies are least recently used (LRU) and most
recently used (MRU).I6 Finally, the worltspace nian-
ager supports write-behind for newly allocated pages.
This allows newly allocated pages that have been filled
to be written asynchronously.

Join Processing Highly efficient processing of joins
and unions is important in any co~nmercial database; it
is crucial for a multidatabase system. DBI supports
nested loop join, index join, and hash join. In fact,
DBI supports both a regular hash-join mechanism and
a hybrid, hash-partitioned variant that is augmented
with Bloom filt~ring.l7,18,~9

For both hash-join variants, the inner table rows are
read aspnchronously into a DBI worltspace. This first
pass is used to estimate whether or not to use the hash-
partitioned variant. An exact estimate for the number
of partitions to use is well worth the overhead of this
initial pass.20 In addition, a Bloom filter with 64 kilo-
bits is populated as part of this pass. The inner table
cardinality, an estimate for the outer table cardinality,
and an estimate of the presently available memory are
used to determine whether the simple hash-join tech-
nique is sufficient, or whether the use of the hybrid
hash-partitioned join technique is warranted.

111 general, hash-partitioned join processilig is indi-
cated \vl~en the inner table and its hash-table buckets
d o not fit in memory. In this case, both the build phase
for the inner-table hash buckets as well as the probe
phase of outer-table tuples against the inner-table hash
buckets may incur massive amounts of random I/O.
When the hash-partitioned variant is selected, the fol-
lowing steps are performed.

Dig~ral Technical Journal Vol. 7 No. 1 1995 19

F,acli partition rccci\rcs .I scparntc \\,orl<spacc.

Tlic inncr tablc is p.lrtitio11cd f r s t . D u r i n g tliis
partitioning step, ,l l{ loo~n filter is gcncratcd from
the join column o f innel--t,lblc t ~ ~ p l e s and is
applied \\,hen the ou tc r table ro\\!s urc partitioned.
Tllis results in a porcnti.lll\r massi\le rcduc t io~i
of the n l ~ m b c r o f ro\\,s th.lt 3rc placed in to tlie
ou tc r partitions, t l i ~ ~ s cl imi~iat ing cspens i \~e 1 / 0
operations.

T h e \\,orksp:lccs tliat hold the inner-table partition
1 and the 11;lsh-table buckets for that partition are
agcd M U , \vhicIi kccps tlicm in memory for the
join operation o l i tlic first partition piiir.

Tl ic \vorkspaccs tha t hold the remaining inner-
tablc partitions 2 thl-oi~gli (1 1) arc agcd M R U ;
thcsc pages bccomc immcdiatcly available for
buffer rcplaccmcnt sclcct io~l once they have been
fillccl and tlicir frames u ~ i p i n n c d .

O n c e [lie partitioning phase is coniplctc, cacli pair
o f i n n u and o u t e r partitions is joined s tar t ing
with partition pair 1 . T h e inncr pilrtitions arc agcd
I,RU, ancl the o u t c r partitions arc agcd MRU t o
kcel.' t h e inncr partition t i~p lcs in memory.

'Thc use o f tlcsiblc buffcr rcplaccnicnt strategies is
c r u c i ~ l for good buffcr cuchc bclinvior.

Parallelism 1)BI employs t \ \ ,o types of parallelism:
pipdincd parallelism ,lnd indcpcndcnt parallelisn1.s

With hash-join PI-occssing, for instance, the outer
ta blc ro\\-s arc r c ~ d b!. ~ c p ~ r ~ t c 1)RI c s c c ~ ~ t i o n threads
from the undcrl\ring d n t ~ l n > c . This mcilns that tlic
outer t,thlc t ~ ~ p l c strean1 is cffccti\~cly gcncratcd in par-
allel \\,it11 the prohc phase processi~lg o f the hash-join
operator o n the inncr table ~-o\\,s. Tlic o ~ ~ t c r - t a b l e t~ lp lc
stream is directed into tlic hash-join probe phase.

For U N I O N processing on partitioned \,ic\\!s, the
individual input strcams t o the U N I O N operator are
generated by separate 1)121 cxccution threads. 'The
streams 3rc provided in parallel and independently t o
the U N I O N opcmtor.

Stored Procedures Stored procedures provide a criti-
cal p c r h r m a n c c cnlianccmcnt fi)r clie~it-sel-ver pro-
cessing. They allo\v t h e 1)RA to e n c a p s ~ ~ l a t e a set o f
SQL statements plus control logic. Tl ic client sends
o n e message containing a stored procedure rather
than scvcral messages, each containing o n e SQI, state-
ment . This rcduccs processing delays that otherwise
\\lould be incurrccl d u e to nct\vork rmftic.

DBI Server Configuration
I n a smndarcl 1)RI configi~rntion, o n e cxccution
proccss is c r c ~ t c d fix cncli l>I<I client. As the number
o f clients incrcascs, morc and morc operating s!atcni
resources tare consumeti. 'Tllc 1)13I ~ c r \ ~ c r configura-
tion a~idresscs tllib prol)lcm.

Server Components A 1)BJ scr\.cl- c o ~ i f i g ~ ~ m t i o n
includes n~inimally a monitor proccss, a dispatclicr
process, ancl a set o f 1>11I executor PI-occsscs. Tlic
monitor proccss supports on-line system management
o f the s e n f e r c o n f g ~ ~ ~ . , l t i o ~ ~ . O n e o r morc dispntchcr
processes 1ii311agc .dl c l ic~i t co1n1i1~11iicatio1ls c o ~ ~ t c s t .
Dispatchers r o ~ ~ t e c l i c~ l t 11lcss.1gcs t o a11 .~ppropri,itc
Dl31 executor proccss t h ~ - o ~ ~ g l l high-spccd s i i ~ r c d
memory clucucs. Fig111-c 12 s l~o \ \ , s '1 npic,ll 1)13I scr-\.el-
configi~ration.

Server Infrastructure I n t l ~ c I)I<I sc~- \ , c~- co\ . i~-onmcnt ,
a n OL>13(; client logicall!, colinccts t o '1 scl-\,ice object
tliat pro\.idcs access t o a spccitic 1)13I d ,~ tab~lsc . ' A scr-
vjce is instautintecl by ,I pool of I l l 3 1 c ~ c c ~ ~ t o l . PI-occsscs
that contain the L>RI image. T h e .llnollnt ofproccsscs
of the pool is configu~-able, both off-line n11d on-line.
This allo\vs the administrator t o match the t l i r o ~ ~ g l i p ~ ~ t
requirements f ix 3 give11 1)I31 d;ltah;lsc with the appro-
priate a m o u n t o f csccutor processes.

Multithreading 1)RI csccutor processes J ~ I J ~ prcs-
ently be configured as session-rcusablc o r transilction-
reusable. Sessio~i-reusable Incans that 3 clicnt is bouncl
t o an csccutor proccss for the d u r ~ t i o n o f the entire
database sessio~i. Transac t ion-~-c~~s~~l>Ic mcnns tli.~t
multiple clients may share tlic same csccutor proccss;
a client is scliedulcd to a 1)111 csccutor h- o ~ i c tr.lns-
action :it a time.

Summary

T h e 13B Intcgr,ltor p r o c i ~ ~ c t cont.~ins m;iny fcnturcs
that cnablc it to p~.o\ , idc opc11, robust, ,lnJ high-pcr-
formance data acccss. Dl31 gu.~ra~i tccs open d n n ncccss
by suppor t i~ ig de theto , ~ n d clc ~ L I I - c intc~.thcc st,lndnrJs
such as SQL92 and 01:13(:. (llicnt-scr\.c~- c o ~ l ~ l c c t i \ ~ i n f
is available over tllc l)F.;.(:nct, 'T'<;l'/[l', ,lnii Sl'X/II'S
transports. T h e IMI)I/I)I)I inrcrhcc ,lllo\\,s uscrs t o
e s t e ~ i d tlie use o f I)[',[t o gain acccss t o an!' n l ~ m b c r of
data sources.

Figure 12
1>131 Scr\.cr (:onfip~~~-;lrio~~

DBI provides ~.obust data acccss by s u p p o r t i ~ i g hct-
erogencous cluery optimization, location trans-
parency, g l o t ~ ~ l consistency, resolution o f semantic
d ' I ~ ~ L I L I ~ C C S , -. -. and sccur iq~ clicclts. T h e Dl31 c l ~ ~ c r y opti-
mizer taltcs cost f'ictors and capabilities into account t o
determine tlie optimal plan. A globill catalog provitics
location transparency and operates as an a u t o ~ i o m o u s
metadata repository. Global transactions are coorcii-
nated through nvo-phasc commit . Highly available
horizontal partitiorred \liec\ls suppor t cont inuous dis-
tributed processing in t h e presence o f loss o f conncc-
tivity. Definitions of vicivs and stored procedures allo\v
tlie user to hide semantic difkrcnces a m o n g the
~ r n d e r l y i n ~ databases. Finally, L>BI enables security
checks \ \ ~ i t h o ~ ~ t interfering \\lit11 tlie acccss controls
specified in the underlying d a r ~ : 5o11rccs.

1)HI offcl-s high-pcrforma~icc dat<i .iccess t l i r o ~ ~ g l i
a combination o f sopliisticnted clucry optimization,
advanced query csccution algorithms, ,lnd efficient
use o f nenvorlc resources. T h e query optimizer
decomposes a distributed query b y s sing as many fen-
tilrcs o f the underlying database as possible and by
employing state-of-the-art t e c h n i q ~ ~ c s such as query
unnesting and partition elimination. T h e D R I query
processor is capable o f driving indes joins and hybrid
h'ish-partitioned joins. All intermcdiatc data is cached
1 / 0 opt i~i i ized. Connections to remote data sources
arc established solely o n demand. Finnlly, parnllcl
query execution is supported.

In the future, performance \vill continue t o be an
important t i c to r for any data acccss product as \ \ , i l l
support for object-oriented data models. By combin-
ing data-i1itegratio11 technologics such as 1)Rl with
application-integration standards such as Object
Request Rrokers, a merger o f data integration and
application integration will bc feasible.

Acknowledgments

T h e authors \voi~ld like t o recognize cvcryonc w h o
contributed t o the D R I projcct. Jim Gray, H.11
Bcrcnson, l lavc Lomct, and C;ayn Winters hclpcd t o
establish the product vision. l i i~ss H o l d c ~ i a ~ i d 1)311
llicttcrich lent their tcclinical guidancc ' i~id projcct
leadership. T h c l > R I engineering team dcsigncd,
implemented, and delivered the product o n sclicdulc.
T h e DBI management tcaln o f Stcvc Scrra, Rich
Bourdeau, Arlene Lacharite, and Trish Pcndlcton con-
tributed their comniitnicnt t o delivering the vision.
We would also like t o thank the anonymous referees
for their in\laluable comments o n t h e con ten t and
presentation o f this paper.

References

2. In/i)~.~r~u/ior.~ Tech11olo~)~-ll~~/uh~1sc Larig~,iuge
SQL, ANSI X.JH2-92- 1 54//)UL C8K-002 (New York:
Amcrican Nation.11 St,lndurds Institute, 1992).

3. "Middle\\~;lrc: P.lnacc,~ or Boondoggle?," S/r~rte~yic
Artcrl]!.sis /c'cpor'/ (C;,irtncr Group, July 5, 1994).

4. A. Slictli 2nd J . I.nrson, "Fcdcratccl 1)atabasc Systems
for Managing l)istriburcd, Hctcrogcneous, and
Autonomoi~s I)arabascs," AC'III Ci)1n))rtli17,q S S I I I - U ~ ~ S .
\~o l . 22, 110. 3 (1990).

5 . lligilul Il~~/llu Ili.s/r-ilxt/or H~rlt~lhook (Maynard,
Mass.: I)jgital Equipment <:orporation, Ordcr No.
AA-HZ65FI-TE, 1994).

6 . Slmlegic llalu l~r/c~~~/ircc. Vcrsio~i 3.1 (Maynard,
Mass.: 1)igital Equi~mcnt Corporation, 1994). This
i~itcrnnl I'll3 intcgr.itor specification is not avail;~blc to
cstcr~inl rcndcrs.

7 , / I / < (, ' 1c'~Ib f)ocrtrrrc~ri/~i/ior~ ScV, /i)r Ill/C' 1 < ~ / / 7 Vt>rsior?
6 . 0 (bl;iyni~rd, Mass.: l11g1tal I,:quipn~cnt Corporation,
1994).

8. 1). I . 1)cWitt and J. Gra!; "Parallel Database Systems:
Tlic FLIILI~C oFHigli Pcrk)rmancc 1)atabasr Systc~~is,''
Cb1i11lrr~rric~r1io1t.s r!/'lh!,cACIZl. \ ~ l . 35, 110. 6 (1992):
85-98.

9. I l i~i /a l / I S / ? / Ff~t~~dboob. l i ,~s io~r 5 .1 (Maynard,
Mass.: Iligital Equipment Corporation, 1994). This
internal documcnt is not available to cstcrnal readers.

I 1 , l)i.~~/r~iht~t/c~~I '1 ~ ~ ~ / r ~ . i ~ / c / i o r ~ ProccJ.s.si~i~q: TZw XA .Y]I~cI-
,/iccrlio~r,)(/Open C A E Spccific;itio~i: C193, ISBN
1-872630-24-3 (1992).

12. P. Scli~igcr ct al., "Acccss Path Selection in a Relational
Database Management Sysrem," Proceeciirrgs ?/.the
ACiCl .Sl(~MOI) C b r f i ~ r ~ t c e (1979).

13. P. Sclingcr and M. Adiba, "Access Path Sclcction in
1)isrriburcd l>atabasc Managenlent Systcms," /B11/1
lc'o.~curch l<cpor-I (19 80).

14. W. Iti111, "011 Optimizing an SQL,-like Nested Query,"
AC;l/l 'lizrrr.saclro~is or/ /)~t /ah~tse ,S)slon.s, vol. 7, no. 3
(1982).

15. U. l'la)~al, "OFNcsts and Trccs: A Unified Approach to
Processing Qucrics That Cont'lin Ncstcd Subqueries,
Aggregates and Quantificrs," Procee~1i1tg.s (!/'the 13th
Chr~/i.~-c.ncc ort Wty Large) I)cr/uhu,se.s (VLD R),
Rrighton (1987).

16. M. Stoncbrakcr, "Operating System Support
k)r 1)atabasc Management S!lstc~ns," Cornrn~~nicu-
1iorl.s (4 t h ~ AGM. vol. 24, no . 7 (1981): 412.

1 1 . C;. Gracfc, "Query Evaluation Tcch~iiqucs k)r Large
l)anbascs," ACilll Cbnrptrlirrg .Srrr!r<)l.s, vol. 25, no. 2
(1993).

18. D . H.]%loom, "Spacc/ti~nc Tmdcoffs in Hash Coding
\\zit11 Allo\\ ,~blc l,;rrorh," Ck~ttrurrr~ri~~~~/ic~rts qJ' the
ACJf. \.ol. 1 3 , n o . 7 (1970) : 422-426.

19. M . hn i .~k~- i shna , "Practical Pcrform~ncc of B loo~n
Filters anti Par.lllcl Frcc-test Sc.lrching," C ' o ~ ~ ~ t ~ t i r t ~ i -
catiorrs o/'//?c ACM, \wl. 32, no. 10 (1989): 1237.

20. S . <:hristodouI;lkis, "lisrimating 13lock Transfers and
Joi 11 Sizes," l ~ ~ . o ~ ~ ~ ~ ~ ~ l i ~ t , q ~ s I?/' I ~ C A CiLl SIG:.IOL)
cbt!/i,t-cvlc.e (1983) .

Biographies

Richard Pledereder
Fornlcrl!, a consulting soft\vnrc cnginccr in l)igital1s
Sofnvnrc Products C;roup, Iticliard I'lcdcrcdcr \\us thc
systeni architect on rhc I)R I ntcglntor product filniil!/
and contributed to the architccturc and implcn~cntation
o f common 1)BI and Rdb fca t~~rcs sucli ;IS SQL stored
proccd~~rcs . kchal-d also initiated the architecture, design,
and dcvclop~ncnt cSli)rt o f a multirhrcadcd database server
e~i\~ironrncnt, \vhich is no\\. part of the l)BI/OSF and
Rdb/OSF prodilcts. H c is no\\. a soft\\,arc nrcliitcct in tlic
I>istributcJ P r o J ~ ~ c r s G r o ~ ~ p at Syh1sc, 111~. H C rccci\.cd
a R.S. and an h1.S. i l l c o l n p ~ ~ t c r science koln the l'cclinical
Unircrsin ~ ~ l u n i c h , Ravaria. IGchard also collects npcs of
opens h \ the Ra\-ari.ill composer Richard Wagncr.

Vishu IOrishnamurthy
Vishu Krishna~nurtliy is n principal r ~ i g i ~ i c c r in 1)igiral's
1)ntab;isc I n t c ~ r i ~ t i o n nnd Inrcropcmbility C;roup, \vhcrc
he is currcntl!l tlic projcct Icadcr k)r the 1)B Integrator
product. Vishu \\..is tlic tcch11icaI Icndcr fi)r thc mrtadnri
and catalog ninnagcnicnt cotilponcnts o f 1)RI. Sincc join-
ing l>igital in 1988, he has held scniol- dcvclopmcnt posi-
tions in tlic 1)istributcd <:ompilcr C;roup, in the RdbStar
projcct, a ~ i ~ i in tlic I)F.<: Data 1)istributor projccr. Vishu
holds n I3.E. (honol-s) in ~ncclia~iical enginrering from
the 171~i\~crsity of M;idrns and M.S. dcgrccs in computcr
31id i~l for~i ia t io~i SC~CIICCS and ill ~nccha~lical c~lginccr j~lg
(robot~ca) ti.om thc Uni\,crsity o f Florida.

Michael G a g n o n
lLIike Gng~ion joincd 1)ipitil in 198 1 ;uid worked o n rhc
dcsign and develop~ncnt o f D i g i d ' s t t a ~ ~ a c t i o n prtxcst;ing
and databasc s\,stcms. lMikc contriburcd to the dc\~clon-
mclit o f A<:&IS, 1)igital's transaction processing monitor
for \'MS systems, and more recently he contriburcd to the
developl~lent of a distrib~ltcd hctcrogencous darab;lsc sys-
tem. When that s!atem \\.as r c tbc~~sed as the Ill< Integrator
product, Mikc led the tea111 that produccd the csccution
engine for all rclatiolial proccssing. Mike assumed projccr
leadership responsibility for l)Rl version 1.0 and Icd the
project through \lcrsion 3.1. Mikc is currently employed
by Jris Associntcs, 3 subsidinrp o f L.otus Sohvarc.

~ M a y a l k Vadodaria
Formerly a prilicipal soti\\.arc rnpinrcr in I)igiralls 1)atab.isc
Integ-ration and Intcropcrabilit! Ciroup, tMa!,ank Vndocinrin
was the technical group Icadcr for rlic query processing
components o f Digital's I)B Intcgmtor p r o d ~ ~ c t timil\.
H e \\.as also responsible For 13igiml's SQI.. tic\~clopnicnt
c n r i r o n ~ n c ~ i t products. H c has been i n s t r ~ ~ ~ n c n t a l in rlic
design ofnlany key fcaturcs in the co~npilarion and query
optimization *itliin D131. M a p n k holds a B. Tech. from
the Indian I~is t i t~r tc o f T c c h ~ i o l o ~ ~ ? , ~Midras, and an M.S. in
conlputcr scicncc k o m t l ~ c U~)i\.crsity of Illinojs at Urbnna-
C h a ~ n p a i g ~ ~ . H c is currcntly \\,it11 Cupta l'cchnologics.

\'ol. 7 No. 1 1995

ACMSxp Open
Distributed Transaction
Processing

Digital's ACMSxp portable transaction process-
ing (TP) monitor supports open TP standards and
provides an environment for the development,
execution, and administration of robust, distrib-
uted, client-server applications. The ACMSxp
TP monitor supports the Structured Transaction
Definition Language, a modular language that
simplifies the development of transactional
applications. ACMSxp software is layered on
the Open Software Foundation's Distributed
Computing Environment (DCE) and supports
XA-compliant databases and other resource
managers by using the Encina toolkit from
Transarc Corporation or Digital's distributed
transaction manager (DECdtm) software. As
a framework for DCE-based applications, the
ACMSxp TP monitor simplifies application
development, integrates system administra-
tion, and provides the additional capabilities
of high availability, high performance, fault
tolerance, and data integrity.

I
Robert K. Baafi
J. Ian Carrie
William B. D r u r y
Oren L. Wiesler

Transaction processing (TP) is a style of compi~ting
that guarantees robustness and high availability for
critical business applications. T P typically involves a
large number of users using display devices to issue
similar and repetitive requests. The requests result in
the accessing and updating of one o r niore databases
to reflect the current state of the business.

The basic building block in a TP system is a transac-
tion. A transaction is an indivisible unit of work that
represents the f~indamental construct of recovery, con-
sistency, and concurrency. Each transaction has the
properties of atomicity, consistency, isolation, and dura-
bility (ACID). 'These propcrties are defined as follows:

Atomicity. Either all the actions of a transaction
succeed o r all fail. In case of failure, the actions are
rolled back.
Consistency. M e r a transaction executes, it must
either leave the system in a correct state or abort
and return the system to its initial state.

Isolation. The actions carried ou t by a transaction
against a shared database cannot become visible to
other transactions until the transaction commits.
Durability. The effects of a committed transaction
are permanent.

A T P monitor manages and coordinates thc flow of
transactions through the s)rsteni. Transaction requests
typically originate from clients, arc processed by one
or Inore servers, and end at the originating c.lient.
When a transaction ends, the TP monitor ensures that
all systems involved in the transaction are left in a con-
sistent state.

The development of powerful desktop systems and
advances in communications technology have fileled
the growth of distributed client-server computing. The
systems in a distributed environment map run different
operating systems, possibly from different vendors.
Business-critical applications may nun under the con-
trol of different TP monitors. To coordinate their activ-
ities, T P monitors on heterogeneous systerns need to
conform to standards for open transaction processing.

Opcn standards for transaction processing have
been adopted by the International Organization for

Digital Technical Journal \101. 7 No. 1 1995 23

Standardization/Open Syste~iis Interconnection
(ISO/OSI), the X/Open initiative, and the Service
Pro\.idcrs' Integrated Requirements h r Information
Tech~iology (SPIRIT) consortium.l~* The)(/Open
initiative is a consortii~ni of vendors \\those purpose is
to define standards for application portability. SPIRIT
is a consortium of telecommunications service pro-
viders from the U.S., Europe, and Japan working
undcr the general spo~isorship of tlie Network
~Vanagement Forum (NIMF):;-~ The goal of the
NMF's SPIRIT c o ~ i s o r t i ~ ~ m is to define standards for
portability and interopcl-ability across heterogeneous
systems to be used as the basis for procurement.

The main standards for open transaction processing
are

X/Open distributed transaction processing (DTP),
which is an architect~~rc that allo\iis rn~~lt iple pro-
grams to slinre resources (c.g., databases and files)
provided by milltiple resource managers and allo\vs
their work to be coordinated. The architecture
defines application programming interfaces and
interactions among transactional applications,
transaction managcrs, resource managers, and
comrn~~nicatio~is resource managers. Tlie trans'ic-
tion manager and the resource managcr communi-
cate by means of the XA i n t ~ r f a c e . ~

X/Open transactional remote procedure call
(TsRPC), \vliicli allo\vs an application to invoke
local and remote resource managers as if they \\,ere
all local. TsRI'C also allo\vs an application to be
decomposed into client and server coniponents on
different computers interconnected by means of
reniotc procedure calls (RPCs).

SPIRlT Structured Transaction Dcf i~~i t io~l Language
(STDL,), \vhicli is a block-str~~ctured languagc for
transaction proccssi11g.~,3,~ STDL provides transac-
tional fea t~~res including demarcation of transaction
boundaries, transaction recovery, exception han-
dling, trarlsactional communications, access to data
qileues, sub~nission of queued nrork requests, and
invocation of presentation services.

Digital's Application Control and Management
Systcni/Cross-plath)rni (ACMSsp) software product
is a portable T P nionitor that slipports the open TP
standards. It provides an environment for tlic develop-
ment, execution, and administration of STDL appli-
cations. ACMSsp sohvare is layered on tlie Open
Software Foundation's (OSF's) Distributed Comput-
ing Environment (DCE) and supports multiple
resourcc managcrs through Transarc Corporation's
Encina toolkit on the L!NIX opcrating system atid
Digital's distributed transaction manager (DECdtni)
scrviccs 011 tlie OpenVhllS operating s)!stem.x This
paper dcscribcs the design of the ACMSxp TI> tiionitor

Application Development

AClMSxp applications arc writtell ~lsing 3 combination
of the STDL and traditional Iang~lages such as C and
COBOL. STDL is a modular, block-structured lan-
guage de\ieloped specifically for rransactio~i proccssing.
It is based 011 the ACMS Task Ilcf nition l,~i~nguage
(TDL) and \\?as developed as part of Nippon l'clcgraph
and Telephone's (NTT's) Multi\.cndor Integration
Architecture (MIA) initiati\,c.+-" Tlie NMF's SPIRIT
consortium subsequently adopted STL>L.

STDL Language Overview
STDL provides transactional fcati~rcs including trans-
action demarcation, transactional remote procedure
call, transactional task and data record clueuing, trans-
actional display management, transactional exception
handling, and transactional \itorking stol-age called
worltspaccs.

STDL divides nn application into thrcc parts: pre-
sentation, transaction flow control, and processing, as
illustrated in Figure 1 . The presentation part interfaces
with display devices using a prcscntation manager,
such as Motif, Windo\vs, or forms managcr soft\\jarc.
The transaction flo\v control part is \vrittcn in STI>L
and controls the tlow of execution, inclucling ~TIIIISLIC-

tion demarcation, exception handling, and acccss to
queues. The processing part is written in traditional
languages, such as C, COBOL, and SQL,, and provides
computation and access to I -CSOLI~CC managcrs such as
databases and files.

The application hlnctions in the three parts of the
STDL application model are referred to rcspccti\.cly as
presentatio~i procedures, tasks, and processing procc-
dures. The application hnctions arc packagcd into
groups for the pilrposcs ofcornpilation and e~ccut ion.
The groups are referred to us presentation groups, taslc
groups, and processing groups.

A group specification describes tlic flnctions in the
group and their intcrfaces. The intcrhcc specification
includes the arguments that arc pnsscd to tlic fi~nction
and an indication of\vhcthcr an a r g ~ ~ ~ i i c ~ i t is ilipllt 011[):

output only, or both input and o i ~ t p ~ ~ t . For n task, tlic
interface specification also indicates \vlicthcr tlic t ~ s k
begins a new transaction (NON(:OMPOSABLE) or
joins the caller's transaction (COMI'OSAI%LE).

STDL variables are defined in constructs called
worl<spaccs. \Vorks,paces may Ii.i\lc thc transactional
attribute, thus allowing an application to coordin,ltc
internal data with the outcomc of tlic tm~ls~~c t ion
along with other resourcc managcr participants.
Workspaces have the scope of cithcr PRIVATE or
SHARED. A I'lUVATE \\lorltspacc is acccssi blc to only

single task; 3 SHARE11 \\~orlzspacc is accessible to a11
tasks in a task group.

24 Digital 'Tcclmicnl Journ.~l

PRESENTATION

I TRANSACTION I
I FLOW I
I I

PROCESSING

I I I
I
I

I
I
I
I

I SQL
I C, COBOL, RESOURCES

PRESENTATION

Figure 1
STDL Application Modcl

STl3L supports nvo types of clueues: record and
taslt. Record queues provide a transactional, durable
scratch pad facility for applications to store and
retrieve intermediate results. Task queues provide
a way ofexecuting tasks independently of the currently
executing task in both time and location. Storage of
the task queue element on the task queue may o r may
not be conditional on the outcome of the currently
executing task.

Sample STDL Application
Figure 2 sho\vs a sample STDL application program.
The sa~iiple program accepts an integer, increments
it, and displays it. In addition, shared workspaces are

defined in the task group to track the number of suc-
cesshl executions (sz~ccases) and the number of hiled
executio~is (Jailures). These operations all take place
within the context of a transaction defined by task
add l . If the transaction succeeds, the program incre-
ments number and the shared workspace st1ccesse.s.
If the transaction fails, the program restores ~zz~rnber.
to its initial state and involtes the exception handler.
The exception handler then updates the shared worlt-
space fnilzrl-es,

STDL Compiler
The STDL compiler simplifies the process of develop-
ing distributed client-server applications. It generates

RECORD a r g l
n u m b e r I N T E G E R ;

END RECORD;

T A S K GROUP e x a m p l e 1
T A S K a d d 1

T A S K ARGUMENT I S a r g l P A S S E D AS I N O U T ;
END T A S K GROUP;

T A S K a d d 1 ARGUMENT I S a r g l P A S S E D AS I N O U T ;
WORKSPACES ARE s u c c e s s e s S H A R E D U P D A T E R E C O V E R A B L E ,

f a i l u r e s SHARED UPDATE,
a r g l P R I V A T E R E C O V E R A B L E ;

B L O C K W I T H T R A N S A C T I O N
P R O C E S S I N G

COMPUTE s u c c e s s e s = s u c c e s s e s + 1
P R O C E S S I N G

COMPUTE n u m b e r = n u m b e r + 1
EXCHANGE

SEND RECORD n u m b e r TO i n s c r e e n
END B L O C K
E X C E P T I O N H A N D L E R I S

P R O C E S S I N G
COMPUTE f a i l u r e s = f a i l u r e s + 1

END E X C E P T I O N HANDLER;
END T A S K ;

Figure 2
Sample STDL Application

Digital Technical Journal I / 0 1 1995 L>

all tlie code necessary for si~pporting the application in
the distributed environment, including server initial-
ization, naniespace registration, namespace lookup,
and applicatio~~ contest propagation. This allo\\rs tlic
application programliier to f o c ~ ~ s on the application
problem at hand.

The ACMSsp ST1)L compiler translates STDL spec-
ifications into escci~table codt . The compiler itself is
written i ~ i the ANSI C: p~.ogramniing la~lguage using
POSIS 1003.1 library interfaces for platform portabil-
ity; the generated code consists of only ACMSsp run-
time service calls and I X E service calls.12 T o the
application progr~nimer, thc ACMSsp STDL compiler
looks nii~ch like a classical compiler. The STDL com-
piler reads source code, converts it to object code, and
then links it to create an esecutablc program. Figure 3
shoivs tlic elements \vrittell by tlic application pro-
grammer and the transforniations required to create
an executable program.

Internally, the STDL, compiler consists of a series of
steps that ~ L I I I under the control of a driver program.
TI i s processing takes place in tlie steps shown inside
the dashed-line box of Figure 3. The STDL, driver first
reads STDL specifications in onc pass and constructs
internal structurcs that rcprcsent each S7'I)L entity in
the sourcc file. O ~ i c e an entity has bccn conipletel!/

parsed and the syntas has been checked for errors, the
driver generates intermediate files by translating

STDL groups into ACMSsp client and server stubs
and a DCE RPC Interface Dcfinition 1,anguagc
(IDL) file

STDL tasks into C code and ACMSsp run-time ser-
vice calls

STDL record definitions illto (: structures con-
tained in C header files or COBOL copy filcs

M e r the STDL driver has generated all the intcrme-
diate files, it invokes the appropriate language proccs-
sor to convert the filcs into object files. Tlic lX:E I1)L
compiler processes the IDL tiles, and tlie C: compiler
processes tlie tasks and the ACMSsp stubs. T o keep
the ~iunibet of pieces visible to tlic application pro-
grammer within reason, the AC:MSxp clicnt and scl-ver
stubs are combined \\lit11 the 1X:E clicnt and server
stubs. The result is a collection ofobject files similar to
those found in a conventional DC;E application. The
platfor111 linltcr then co~nbincs rhe resulting fi lcs jnto
an executable program.

The ACMSsp client and server s t ~ ~ b s arc similar in
concept to the DCE KPC clic~it and server stubs. Tlic
client stub is linked \\/it11 other ~pplications that in\~okc

STDL SOURCE FILES u C OR COBOL

COMPILER HEADERS

C OR COBOL
COMPILER

t , I LIBR4RY I I MODULES I
ORJECT MODULES L-J

LINKER u I EXECUTABLE PROGRAM I
KEY:

PROCESSING 0 'ILE ACTIVITY
?.-; STDL COMPILER
1-----: PHASES

Figure 3
ST131, Col.npilcr Flo\\,s

26 Digital 'I'ccllnic~l Journal Vol. / N o . 1 199.5

this g r o ~ ~ p ' s tasks or procedures. The server stub is
combined with application codc to crcate the applica-
tion server image. Tlic A(:MSsp s t ~ ~ b s call ACMSsp
run-time services to add to the base DCF, KPC services
features such as transactions, failover and failback, and
time-out.

Execution Environment

The AC~MSxp.run-time system provides an environ-
ment for csecuting and invoking STDL applications.
It also pro\lidcs scr\~iccs that allow components in the
execution environnicnt to be managed. The esecution
environment provides many services typically needed
in T P en\riro~lmcnts, such as resource sc hcdi~ling, fault
tolerance, and clucuing.

Process Model
The ACMSsp environment consists of clicnt and
server components. A TPsystem comprises multiple
server c o ~ i i p o ~ ~ c ~ l t s 011 3 nodc tlii~t are nianaged as
a unit. A given TPsyste~ii has a globally unique name
and is associated with only one nodc, but a node can
have multiplc TPs)/stcms associated with it. ATl'systcm
contains a central process called the TPcoutroller,
\vhich controls the components within the TPsyste~ii.
The processes in the execution environment are illus-
trated in Figurc 4.

As the central point of co11troI for tllc components
\vithin a TPsystem, the TPcontrollcr performs many
h~nctions, including license checking, starting and
stopping scrvcrs, a n d monitoring scr\,cr processes and
rest~rt ing them \vhcn they terminate abnorrnall!,. I t
also receives ad~iiinistr~tion requests and perfornls the
reqi~csted operations, maintains information in shared
memory for corn~i i~i~i ica t io~l with server processes,
and maintains kc!! ti lcs for scr\<cr n~~tlicntication.

A task server cxccutcs S?'1)1, task group code and
uses multiple threads in a single process to achieve

r - - - - - - -
I TPSYSTEM

concurrent execution (multithrcaded). A proccssing
server executes STDL processing g r o ~ ~ p code and uses
a pool of single-threaded processes to achic\,c concur-
rent execution (multiprocess).

Systenl servers pro\.ide specific ruli-tinlc scr\ 'ICCS ' to
the TPcontroller, task servers, and processing servers.
The sJrstern servers include tlic c\,cnt log serjfer, the
request queue server, and the record qucuc server.
System servers arc multithrcadcd.

Client processes invoke ser\.iccs pro\ridcd by a
TPsystem and its scr\lcrs. An administration clicnt
(also referred to as the director) invokes i~dministra-
tion services provided by the TPcontrollcr and system
servers. hi application client involics application scr-
vices provided by taslc scrvcrs. An application clicnt
can bc a customer-written clicnt or an A<:IMS 1)csktop
client. A customer-\vritten clicnt can consist o f codc
necessary to support a forms miinagcr o r cicvicc con-
trol such as an automatic teller machine 01. a g ~ s p ~ ~ r n l > .
An ALMS Desktop clicnt allo\\/s ~x)puIa~- ~icsktop SYS-

telns such as the Macintosh, S<;O1s UNIX, 1Microsofi
Windows, and Windo\\ls NT operating systems to be
used to access ser\lices pro\iidcd by A<:MSxp applica-
t ~ o n servers.

Run-time Services
The ACMSsp run-time system pro\lidcs scrviccs
r eq~~i red for the esecution ofclient-scrvcr 7'P applicn-
tions. The run-time scrviccs arc liigl~ly modular and
are layered on the scr\rices provided by the underlying
transaction manager, l X E , opcrati~ig systc~n, network,
and other ser\~iccs, 3s sho\\,~i i l l Fig~11.c 5.

The run-time ser\~iccs integrate tlic scrviccs of the
underlying platform and pro\ridc additional f~nct ion-
ality. Thev export an application programming intcr-
face (AI'I) called the transaction proccssing scr\rice
interf~ce (TI'SI). The rl111-timc scr\,iccs i n c l ~ ~ d c

Coli i~i~unicatio~i, \\,Iiich pro\,idcs scr\~iccs ti)r trans-
actio~lal and nontransactio~lal c o ~ l l ~ n i ~ ~ l i c a t i o ~ i

Figure 4
Proccsscs in Exccurion Environmcnr

APPLICATION
CLIENT

I
4

I

I J
I I

I
I I

I I

I
TASK SERVER - - - - TPCONTROLLER ADMLNISTRATloN

CLIENT

I
1

PROCESSING SYSTEM
SERVER ' SERVES

I
I - - - - - - - - - - - - - - - A

KEY:

0 APPLICATION COMPONENTS - DCE RPC COMMUNICATION

SYSTEM COMPONENTS - - - - - - MANAGEMENT CONTROL

STDL APPLICATION PROGRAM

ACMSXP RUN-TIME LIBRARY

I - - - - - - - - - - - r - ---------- 7-------7--------

I TRANSACTION I COMMUNICAT!ON I QUEUING I SECURITY I
I DEMARCATION SERVICES I SERVICES I SERVICES "' -

DATABASESANDOTHERRESOURCEMANAGERS

TRANSACTION MANAGER. DCE, OPERATING SYSTEM. NETWORK.
AND OTHER SERVICES

Figure 5
 modular Ibn-time Arcliitccrurc

benvcen clients and scrtfcrs using 1lC:k; RPC. The
supported transports arc transmission control pro-
tocol/internct protocol (TCP/IP), Dl;(:nct OSI,
and Fast Local Trunsport.

Process managcmcnt, which provides services for
starting and stopping server proccsscs, ~iionitoring
server processes for abnornial termination, and
restarting new ones to maintain the specified num-
ber of proccsscs.

Thread contcxt managcmcnt, which provides ser-
vices for creating, setting, and propagating thread
contcxt. Thrcad contcst includes request contcxt,
exception contest, transaction contcst, and proce-
dure contcst.

T i ~ n c r alert, \\,hicIi provides scrviccs ti)r accuniulat-
ing CPU time and transaction (elapsed) time.

Transaction demarcation, which integrates \kith the
Encina toolkit o n the OSF/l platform o r tlie
DECdtm sott\\,nrc o n tlic OpcnVMS platform to
provide distributed transaction support.

Queuing, \vhich provides serviccs for request qucu-
ing and record queuing. l l c q ~ ~ c s t clucuing allo\vs
task rcclucsts to bc q ~ ~ c u c d for dcfcrrcd invoc'lt~on.
Record clueuing allows data records to be enqueued
and dequcucd.

File ~nanagcmcnt, wliicli provides fi lc nianagenicnt
scrviccs k)r COBOL and C programs. I t provides
thread-based transaction scmantics for STDL filc
access n ~ ~ d lia~idlcs opening 3nc1 closing of files,
tile positioning, and filc locking.

Workspacc managcmcnt, \\lliicli ~>rovides services
for managing private and shared \\~orltspaces.
A workspace is an STDL construct and represents
an area of memory used for data sromge and for
arguments passed ill n proccdurc c;lll. A \vorltsp;~ce
can be recoverable or nonrccovcrable.

Security, \vliicIi autlicnticntcs users and servers and
provides access control, b.ised o n the 1)CE scc~~r i ty
service, for application invocation as \vcll as man-
agcnient operations.

Event posting, \\~liicli provides scr\iiccs (or writing
events into a log. Logged cvcnts include crror,
security, status, audit, and trace cvcnts.

Performance monitoring, which provides services
for capturing performance measurement data.

Client-Server Communication
The ACMSsp com~ii~~nicat ions scr\,iccs LISC OSF's
DCE services for locating servers, invoking ~ c r \ ~ c r s ,
a i d ensuring secure c o r n n ~ ~ ~ ~ i i c ~ t i o ~ ~ s . Tlic comniuni-
cations services maximize the cfficicncy of I X E scr-
vice usage, provide robustness in tlic event of failure,
and add distribution of transaction semantics to l X E
1U'C communications.

Figure 6 slio\vs tlie elements and steps in\rolvcd in
tlie communication between a clicnt 31id n scr\.cr. Tlic
numeric annotations in the following discussion refer
to the numbers that sppcar in tlic figure.

The STDL clicnt application calls the scrlrcr (1) .
+ - I. he ilC~MSsp client stub issues I-LIII-time scr\,icc culls
(2) to initialize contest blocks ;ind to obtnin a binding
handle (i.e., server addressing information), and calls
the DCE R1'C clicnt stub, passing contcst blocks and
application data (3) . The 1)CE RPC clicnt stub mar-
shals data and calls the server (4).

The DCE RPC serves stiib rccci\~cs the c;~ll, unmar-
shals data, and calls tlic AC&ISsp server stub (5). The
ACMSxp server stub issi~cs r ~ ~ n - t i m e scl-vice calls (6) to
establish local contcxt nncl to chcclt scc~1rit-y nurlioriza-
tion, and calls the scrvcl- application (7). The server
application esecutcs and rcturns the results to tlie
ACMSxp server stlib, wliicli propag~ltcs any crror
information.

Transaction Processing Characteristics
The run-time s y s t e ~ ~ ~ provides the '1.1' monitor \vitIi
characteristics such as high availnhilit): l o ~ d balancing,
and high performance. Some o f thc mccli~lnisms ~ ~ s c d
to achieve these characteristics arc discussed bclo\v.

Availability The run-tinic systc~ii provides f.~ilo\~cr
and failhacl< capabilities to cnliancc thc a\~ail,tbilitl\, of

Val. 7 No. I I995

- - - - - - - - - - - - - -I
- - - - - - - - - - - - - 1

I CLIENT I I S E R V E R I ;m APPLICATION

1 Fp~Ii
1 SERVICES CLIENT S E R V E R

STUB
SERVICES I

I
STUB

I mi4 I
CLIENT SERVER I

I
I - - - - - - - - - - - - - I I - - - - - - - - - - - - - J

--

Figure 6
Client-Scrvcr C:oin~~lti~iic;ltio~~ t.'lo\\.

applications. E'ailovcr is the redirection of an RPC to an
alternate servcr if the intended server is not reachable.
The target server can be unrcachablc for many reasons,
including loss of connectivity, application failurcs, and
~nacliine failures. Failbnck is tlic redirection ofcalls to
the original scrvcr when it bccon~es available.

Failo\ler and failback capabilities are supported for
task servers but not for processing scrvcrs. The 1)CE
cell directory scrvicc (C1)S) namcspacc profile mccha-
11isni s ~ ~ p p o r t s failovcr aucl fililbaclc. The system admin-
istrntor configl~rcs the primary and alternate servers by
placing them in the sanic nanicspacc profile with dif-
ferent priorities. The scrvcr \vith the lo\-ver priority
number is the primary server.

Run-time support k)r failo\rer and Failback is imple-
mented in the clicnt stub. Failovcr is attempted if an
1VC: f'iils and rllc rctur~~cci error indicates that no work
hacl becn done by the called server in the current
transaction. Fililovcr is alwavs attcrnpted for a non-
transactional lW<; but is attc~iiptcd for a transactional
RP<: only if this is the ti rst call to the intended server in
the transaction. The hilover mechanism is optimized
in three w:lys: by reconnecting, b y pinging, and by
chcclting the tiilcd servers table. When a fClilurc is
cietcctcd, the fiilovcr mechanism attcnipts to recon-
nect to the scr\!cr in case the failure was caused by
intermittent commi~nications problcnls. If the recon-
nect hils, the fiiilovcr mcclianism attempts to find an
altcrnatc server. Wlicn an altcrnntc server is selected,
it is pingcd to cnsurc that it is rcnchablc before being
called \\it11 application work. If a scrvcr cannot be
reached, it is recorded in n "failed servers" table and
skipped o n subscqucnt hilo\lc~- attcnipts.

Failback is attcmptcd if the binding found is for
an alternate scrvcr. Failback to the primary server is
attcmptcd c v c ~ ~ if the binding for the alternate server
is good, ,IS long as the hilback tirncr has expired. T11e
failback timer dcbults to 300 seconds and can be set
by an environment variable.

Load Balancing The ACMSxp run-time system can
achieve load balancing for task serwrs t l i ro~~gl i the
DCE CDS. The DCE <:L)S group entry contains n ~ u l -
tiple server entries that provide the same intcrhce.
Locating a server by means of a group entry results in
the random selection of one server in the entry.
A combination of static load balancing and failovcr can
also be implemented using DCX C1)S f~~nctionality.

Performance Many parts of the ACMSsp system con-
tain mechanisms that ace designed to impro\lc perfor-
mance. A discussion of some of thcsc niccl~anisms
follows.

The server stub cachcs scrvcr bindings to improve
performance. Servcr bindings arc the addressing infor-
mation that allows a clicnt process to call a server
process. Binding caching is a means of retaining the
server addressing information for reuse. Reading the
binding from the namespace can be time-consuming.
For example, a DCE C1)S namespace lookup requires
a nenvork connection to fetch the data fro111 iuiotlicr
process, \vhicli may be o n a scparnrc node. The cache
of server bindings is s h ~ r c d among all the tlircads in
the client process. This sharing provides a second order
of performance improvement in that work pre\.iously
performed on behalf of other threads can improve the
perforrnance of all threads by prcloading tlie cnche.

The scheduler subcomponent of tlic co~n~nunica-
tions services allocates and dcallocatcs servcr processes.
I t maintains n local namespace (also rcfcrrcd to as
scheduler database) in shared memory to keep track of
server process allocation. The ilsc of tlie local name-
space instead of DCE CDS improves the performance
of RPC calls benveen task scrvcrs and processing
servers, which are recluired to be in tlic same TPsystcrn.

The security scrvicc cachcs access cor~trol lists
(ACLs) to improve performance. The Tl'co~~troller
maintains in shared memory the ACLs for managed
objects that the ACMSxp TP monitor accesses at run
t i ~ n e (e.g., procedures). The security scrvicc caches

Digital Tcchnicnl Joul.n.1l

each object's ACL into tlie server process niernory
when the object is first accessed. The server process
refreshes its cache if the entry in shared memory is
updated.

System Administration

The distributed TP environment is inherently complex
and requires effective system administration. The
ACMSsp TP monitor pro\,idcs the following system
administration facilities for configuring, monitoring,
and controlling components and resources \vitIiin the
ACMSsp run-time en \ ' l~ronnient:

I Integrated user interface. The director (see tlie dis-
cussion of Figure 7, which follows) provides a con-
sistent user interface for invoking management
operations on all managed objects. The command
.line interface provides features such as command
scripts, symbol substitution, session logging, default
session parameters, and on-line help.

Centralized distributed managcnient. A single direc-
tor can manage multiple TPsystems on the local o r
remote nodes using DCE RPC for communication.

Extensibility. The object-orientcd approach allows
the ACMSxp T P monitor to represent managed
resources in a consistent manner and to add new
objects gracef ~lly.

Management Model
The ACMSxp management model is object oriented
and is based on the ISO/C>SI standard for nenvork
and system manage~nent.?.lVFigure 7 illustrates the
elements o f the model.

A director initiates managcment requests on behalf
of the systenl adruinistrator and serves as tlie interface
benveen a system administrator and the objects being
monitored and controlled.I4 A director consists of nvo
parts: the user interface and thc managcment service
interface. The user interface interacts with the user and
is either command line or graphical. The nianagemcnt
service interface interacts with management agents.
This interface provides ser\~iccs for creating an asso-
ciation for communication between a director and

management agents, for initiating management
requests, for returning results to the director, for can-
celing an outstanding request \vithout waiting for coni-
pletion, and for terminating an association normally.

The management protocol specifics both tlie mech-
anism for communication benvecn a director and man-
agement agents and the ~nodcl of interaction benvecn
them. The model specifics ho\\, requests and responses
are passed benveen the director and thc managcnicnt
agents, the processing of requests t l ~ a t in\,olvc \vild
card object instances, and the buffering of multiplc
responses to optimize perhrnmance. The ACMSxp TP
monitor uses DCE RPC for cornni~~nicntio~i bcnvccn
a director and ~ r i a n a g c m e ~ ~ t agents.

A managemcnt agent performs operations fix a
managed object. Each object class has n Inanagcment
agent that performs managemcnt opcrations for
instances of that object class. The management agent
receives a management request from the director, per-
forms the requested operation, and returns the res~~l ts .

Management Functions
Management operations that can be performed on
managed objects arc grouped into the following f111c-
tional categories, as def ncd by the OSI managcment
framework:

Configuration management. Mnnagcd objccts arc
instantiated, observed, and controlled. I'crsistcnt
information about managed objccts is stored in
a configuration database.

Fault managemcnt. Events gcncratcd by systcni
operation are recorded in a log ti lc. Thc contents of
the log can be examined using ;I variety of search
critcria.

Performance Itlanagenlent. Performance metrics arc
collected as the run-time system executes. The per-
formance data is captured as attributes of ninnaged
objects and can be esamined using the director.

Security management. Principals arc authcnticatcd
using the DCE. Access to system udministration
operatiolls and application proccdurcs is controlled
using an ACL mechanism bascd o n the 1)CE
model.

DIRECTOR 0

Figure 7
Management Model

MANAGEMENT
MANAGEMENT PROTOCOL MANAGEMENT

INTERFACE AGENT

L:

30 Digital Techrlical lournnl vol. 7 N o . I 1995

MANAGED OBJECTS

A .-

Managed Objects
The resources in the ACMSsp environment that need
to be managed are represented as objects. A managed
object encapsulates the functionality of a real resource
and specifies as visible only those aspects that need to
be accessed by the manager. A managed object has the
following properties:

Attributes. Attributes are pieces of information that
describe an object and represent internal state \mi-
ables. Each attribute has a name and a value, which
can be examined or modified as a rcsiilt of a nial1-
agcment operation. Esamplcs of attributes are ese-
curable file name and processing state (for 3 servcr).

Operations. Operations are activities that the Inan-
ager can perform on the managed object. Opera-
tions allow the manager to exil~ninc attributes,
mod@ attributes, and perform actions specific
to the object. Examples of operations arc create,
delete, enable, disable, set, and sliowv.

Events. Events indicate thc occurrence of nor-
mal and abnormal conditions. Esamples of events
are the detection of an error and the arrival at
a threshold.
Bch,~vior. Behavior defines ho\v attr~butcs, opera-
tions, and events \vork togcthcr ~ n d how they affect
thc managed rcsource.

For nalnlng purposes, mandgcd objects arc orga-
nizcd into a containnient liicrarch!l. This hierarchy
specifies \vhich ~iianaged object is contained ulithin

Table 1
ACMSxp Managed Objects

another and reflects tlie containment relationship of all
their corresponding managed resources. The top-level
object in the structure, rererred to as a global object,
has a globally unique name. Objects contained \\lithi11
the global object are referred to as local objects and
have names that are unique only within tlie context of
their level in the structure. Table 1 describes the man-
aged objects in the ACMSsp system.

Conclusion

The ACMSsp transaction processing monitor employs
modular design techniques and a proven transaction
processing architecture to provide a truly open,
distributed transaction processing system. The
STDL application development language, which the
ACMSxp TP monitor supports, has been endorsed
by an international standards consortium and has
been implemented on other vendors' platforms. The
layering on both the Open Software Foundation's
Distributed Computing Environment software and
the Encina toolkit providcs a foundation of open dis-
tributed processing that has becn accepted by the
world's largest computcr systems providers. The
ACMSsp TP monitor provides a comprehensive set of
facilities for managing thc run-tirnc en\fironrnent. The
object-oriented nianagcmcnt approach results in a
consistent representation of managed objects, a con-
sistent user interface, a nodular implementation, and
este11sibilit)l.

Object Class Description

TPsystem A collection of system and application components and resources on a given node that is
managed as a unit. A TPsystem is referred to as a global entity because it contains other
managed objects and is not contained in any other managed object.

Server

Process

Interface

Procedure

Queue

Element

A managed object that executes procedures. It encapsulates a collection of one or more
operating system processes that execute the same program image.
The basic unit scheduled by the operating system that provides the context within which
a program image executes. It represents an operating system process.
A set of procedures that is provided by a server. It represents a DCE RPC interface and has
a universally unique identifier (UUID) that distinguishes it from other instances.
A structured sequence of instructions executed t o achieve a particular result. It represents
a DCE RPC operation.
A repository for storing an ordered collection of elements. The supported queues include
a request queue, which contains submit requests, and a record queue, which contains data
records.
A single entry in a queue.

Log A named repository where event records are stored.
Request session The occurrence of a request at a particular TPsystem. A request is a series of operations

invoked by a client program on behalf of a user and executed by one or more servers.

Digital Tech~lic<~l Jour111l Vo1.7No.1 1995 31

Acknowledgments

T h r o u g h o u t t h c course: of this project, many people
have participated in t h e dcs ign, implementat ion, a n d
documen ta t ion o f t h e p roduc t . T h c au thor s wou ld
like t o thank 1111 these pcoplc for their dedicat ion and
their contr ibut ions .

References

1 . W0pet1 Il i .s /r- i l~~r/~~/ Tr~r t~ . suc /~o t~ Pt.oc~>s.~irlg l&jbr-
rrzce ~Llodel. ISBN 1-872630-16-2 (Reading, U.K.:
>;/Open Company L,rd., 199 1) .

2. h?forrnalion Proce.xsing Sysfcwrs-Opeti Sy.stetns
1wlercoti~ecli.r~~ -Basic Rq/;.retlce hfodel- Pa 114:
iLl~/tlc~,:,orncr~l 1"1-c/t~1e1oot;C'. ISO/I EC 7498-4:1989
(Gcncva: Intcrnarional Organization for Standardiza-
tion, 1989).

3. .~1)11<rr /'/~r/ji)t-tr~ /~/~rcy)rlvz~ ~~sr~llu7'2.0, 1:oI. /), ISBN
1-859 12-059-8, 1)oculncnt No. J 4 0 1 (Reading, U. K.:
X/Opcn Company I-td., 1994).

4 . SI,/IU'l' S7711, La11glr6~gr~lc .5)1cc(ficalio~ (SPIRIT 2.0,
uol. 3). ISBN 1-85912-063-6, 1)ocument No. J403
(Rcciding, U.K.: &'Open C:on~pany Ltd., 1994) .

5 . Sl~//<17'S7DL L'rr~~ir~orrtno.i/. lhcc'riliorl arid I-'/-orocol
Mappirzg tS/~l/~l'I'2.0, uol. 4 / , IS R N 1-859 1 2-064-4,
Docunicnt No. J404 (Rcading, U.K.: X/Open
Comyx~y I,tci., 1994) .

6 . WOpetr (,:4 E .Ypc~c~/icu/iot~. /lc~cer11/7er- 7 991, Dislrib-
I rtcd TI-utr.scrcliotr l'roc.c>.~.sir I : , : 7 hc ,\':I S/xc(ficatior.c.
ISEN 1-872630-24-3, 1)ocumcnt No. C19.3 01.

SO/CAE/91/300 (lkading, U.K.: X/Opcn Coni-
pany l.td., 1994) .

7. P, 13crnstci11, P. G!illstroni, 2nd T. Wimbcrg, "STl)I,-
Portable Lnngi~agc for Tr~nsacrion Processing," Pro-
cce~1irrg.s c!/'/hc i V i t ~ ~ l f ~ ~ ~ / / h It~/c~rrra/ior rul Chr!/1.1-erzce
0 1 1 I/cr:,'O/,.gc /)ct~ahmc.s, l)ublin, Ireland, 1993.

8 . W. l i n g , J. Johnson, and R. 1.anda~1, "Transaction
~Managcnicnt Support in tllc VMS Operating Systeni
~ < c r ~ ~ c ~ , " /)i,qi/~r/ ~?c/?rlic61/ ,Jorrrtl~~/, \lol. 3, 110. 1
(Winter 1991): 33-44.

9 . T. S p w r and M. Storm, "1)igital's Transaction Pro-
cessing Monitors," I.)iCqi/cr/ ~ ~ ~ ~ / ~ I I ~ ~ ~ / , / O I I I ~ I I L I I , vol . 3,
no. 1 (Wintcr 1994): 18-32.

!O. Mr.rltiuer~~lot- Ir~tc~rulion At-chilcclzrre, Diuisioir 1 ,
Ovo-i?ie~~~, 7i.chl~ical l\'ecloiw~ver~t.s, TR550001
(Tokyo, Japan: Nippon Telegraph and Telcphonc
Corporation, 1991).

11. E. Nc\\,comcr, "Pioneering 1)isrributcci 'Trvisnction
Management," U~~llclirr (?[/he 'l2chrzical Comniiltee
ojr 1)ulu I:ngitrc~o-it~g, vol. 17, no. 1 (March 1994) .

(New York: Thc Institute o f Electrical cind Electronics
Engineers, 1990).

13. M. Sylor, F. l>olan, and L). Shi~rrlcff, "Ncr\\,ork Man-
agcnient," 1)igiIul T C ~ ~ / ? ~ I ~ C ~ (I / , / ~ I I I ~ I I L I / . vol. 5, 110. 1
(Winter 1993): 1 17-129.

14. C. Strutt and j. Sivist, "Design of the 1)ECnlcc Man-
agenicnt Director," I)igi/~rl ~ ~ J C ~ I I ~ L ~ L I / / O I I I ~ I I C / I . vol. 5,
no. 1 (Wintcr 1993): 130-142.

Biographies

Robert K. Baafi
A princip.11 soft\\/arc ~ ~ ~ g i n c c r in tlic Tr.111snctio11 l'roccssi~~g
Engineering Gmup, l lobcrt Baafi is the pri~nary nrchitcct
for thc system management conlpolicnr of the A(:l\.ISsp
transactio~i processing nionitor. I'rior to joining I)igitc~l
in 1989, lie \\,as tlic projccr IC,lcicr for C:ulli~lct Sofnvarc's
IDMS-l>C transaction processing ~ i ~ o n i t o r .]Sob rccci\ui
a 13,s. in electricell engineering from the Uni\.crsit! of
Connectict~t in 1971 and ;11i M.S. in info~.~i l .~ t io~l svstcms
from Lchigl~ Uni \crs in in 1973. Mc is .I mclnhcr o f ACM,
T ~ L I 1jct.1 Pi, and kt.1 K.ippa Nu.

J. Ian Carrie
I an Carrie is the projcct Icndcr for tlic A(;IMS I)clirol>
product. H e is a nlcmbcr of the Tmnsaction I'roccssing
Engineering Group. Since joining I)iginl in 1989, 1:111
has also contributed to the A<:lMSsp transaction procrssing
monitor. H e \\lorkcd o n rbc S'1'I)I. conlpilc~. codc gcncrx-
tor, language run-tinir SLIpport, tile S L I I) P O ~ ~ , and Encina
transaction nianagcr intcgrntion. 111 c,irlicr \vo~-k, he \\.as
eniplo)fed by Ci~llinct Sofn\ .ire , ~ s a project I c ~ d c r ill t l ~ c
ID1MS/lId.lt~b3sc product's (:on~~iiunic.ltions Group.
Ian holds a B.A. (1980) in coniputcr scicncc/~nanagcrial
studics from Ricc Uni\.crsin. H c is a mcmbcr of A < M .

William B. D r u r y
Bill Drury is currentlp employed b y Strdtus Computer as
Engineering i\/Innnger, Tra~~sacr ion I'rocessing and System
Pcrfor~nancc. While a consulting engineer at Digital, he
led thc design and dcvclopment o f tlic ACMSsp trans-
action processing rnonitor. H e presentcd the product
at numerous tcclinical forums, including the STDL
Implementors' Workshop, DECUS, DECORUM '94
(Transarc Corporation's uscr group), and thc OSF DCE
Developers' Conference. H e also contributed to the
specification o f the Multi\~cndor Integmrion Arcli i tcct~~rc
(MIA) on \vhich the ACMSsp product is based. Bill
rccei\~cd B.S.E.E. (1982) and M.S.E.E. (1986) degrccs
from Ohio Uni\,ersity.

O r e n L. Wiesler
Presently, Orcn Wiesler is a Factory Integration Manager
at PRI Auto~nation, a manufacturer of automation equip-
ment used in scmiconductor n i a n ~ f ~ ~ c t u r i n g . At Digital,
lie was a principal software cnginccr in the Transaction
Processing Engineering Group. H c led the ACMSsp for
OSF/l AXP version 2.0 cffort and the support team for
ACMSxp for OpcnVMS VAX vcrsion 1.0, and contributed
to the ACMSxp run-time system. Earlier, Oren worked in
a processor liard\varc group. H e received a B.S.E.E. from
Worccstcr Polytechnic Institute in 1984 and holds nvo
patents: one rclatcd to dynamic control of si~nultaneously
switching o u t p ~ ~ t s , the other on intcrlcavcd control store
addrcssi~ig.

Digival Technical Journal Vol. 7 No. 1 1995 30

An Open, Distributable,
Three-tier Client-Server
Architecture with
Transaction Semantics

This paper describes a distributable, three-tier
client-server architecture for heterogeneous,
multivendor environments based on the
integration of Digital's ObjectBroker and
ACMSxp transaction processing monitor
products. ObjectBroker integration software
provides the flexibility to decouple the tight
association between desktop devices and spe-
cific legacy systems. The ACMSxp transaction
processing monitor provides the transaction
semantics, system management, scalabilty, and
high availability that mission-critical production
systems require. Combining these technologies
and products in a three-tier architecture pro-
vides a strategic direction for the development
of new applications and allows for optimal
integration of legacy systems. The architecture
complies with industry standards, which facili-
tates vendor independence and ensures the
longevity of the solution.

I
Norman G . Depledge
William A. Turner
Alexandra Woog

Almost all large global enterprises have developed sep-
arate systelns to address specific business needs.
Frequentl)l, these systems are on disparate platforms
from different \~endors. Users may have to log in to
several systelns in order to process n single service
reqllest from a customer. T o improve customer service
and develop new products, new applications must
integrate esisting environments and must be capable
of accessing and integrating data from existing
platforms.

End users nlay be faced with an array ofinconsistent
and incompatible user interfaces that nrc diffic~~lt to
Jearn to use. This source of inefficiency directly
impacts the level and cost of service provided to cus-
tomers and the time-to-market for new products and
services.

An analysis of the above proble~ns leads to some
fundamental conclusions about esisting 1,usiness sys-
tems in large enterprises. Generally, thc in-place appli-
cations are mission-critical legacy systems that record
transactions performed by the businesses. These sys-
tems demand superior transactional integrity and
operational reliability. They servc hundreds to t1io~1-
sands of users and yet provide good response at high
le\,cls of performance. Systems designers \ \ / i l l not
introduce changes to them that \vould compromise
tlicse esacting requirements. Consecluently, enter-
prises d o not readily replace their legacy systems but,
instcad, look for other solutions that integrate them
with nc\v systelns.

To impro\~c the effecti\.eness of existing Icgacy sys-
tems, major enterprises are seeking to reengineer the
usel- interface. The goal is t o rcfacc the applications
with n modern, consistent, easy-to-use intcrfacc that
directly retlects thc users' and custorncrs' needs. The
new interface must be fully articulated; that is, it
should allow any desktop to acccss any permitted
application, regardless of its location or t l ~ c platform
on \vliicl~ it is running. The solution should allo\v the
composition of new c o m p o u ~ ~ d business fc~nctions by
combining esisting application transnctions h o r n mul-
tiple legacy systems and possibly new or do\vnsizcd
applications. The new user interface should accom-
plish this without disrupting tlie level of servicc pro-
vided to tlie users.

Digit,~l I'cchnlcal Journal Vol 7 N c ' 1995

All these requirements indicate the need for an
intermediate architectural layer that provides for isola-
tion, switching, transaction semantics, compositio~l of
hnction, and location transparency. The resultant
architecture has three tiers: the clients, the intermedi-
ate layer, and the existing legacy systems and neul
servers.

Such an architect~~rc is expected to last a consider-
able number of pears. It is, therefore, essential that
the architecture be based on modern but stable tech-
nologies and be flesiblc enough to accommodate
technology evolution.

The Three-tier Architecture

The three-tier architecture consists of the follo~ling
separate layers of systcnis and sohvarc:

1. Clients

2. Transactional middle\vare

3. Systems of record (legacy systems and new systems)

The attributes of the proposed intermediate layer
make this thrcc-tier :~rchitecti~re morc flexible than
traditional two-tier client-server architect~lres.

Tier 1 systems (clients) provide a desktop graphical
user interface (GUI) to the end users. These systems
have seamless access to a set of abstract transaction
services in a locatio11-transparcllt manner through an
object request broker (Om). The interface between
tier 1 and tier 2 operates in a client-server manner. The
security services in the O M provide a security perime-
ter around the client.

Tier 2 is the middleware layer that provides applica-
tion services to the clients. Tllcsc services appear to the
clients as business tinctions and may be transactional
in nature.

A single tier 2 business function can be conlposed of
one or more transactions residing in different applica-
tions on tier 3. The location and native interfaces of
these applications are hidden from the tier 1 desktop
GUI clients by the tier 2 middleware.

Tier 2 is designed to support the evolution of the
application interfaces and protocols between tier 2 and
tier 3. These interfaces will change as new technolo-
gies S L I C I ~ as the Ope11 Software Foundation's (OSF's)
Distributed Computing Environment (DCE) and the

Object Management Group's (OMG's) Common
Object Request Broker Architecture (CORBA)
mature and become more widely available, and as tier
3 applications are modified or new ones ndded.'J
Figure 1 sho\vs the disposition of functions with
intertier comn~unications paradigms.

A Standards-based Architecture

Digital implemented the threr-tier architecture using
standards-based sohilare to offer the highest level of
interoperation with systems offered by other standards-
compliant vendors. Standards compliance also facili-
tates the porting of applications across platforms.

The standards organizations most relevant to this
architecture are

International Organization for Standardization

(ISO)
American National Standards Institute (ANSI)

Open S o h a r e Foundation

Object Management Group

X/Open Company Limited

Nippon Telegraph and Telephone's (NTT's)
Multivendor Integration Architecture (MIA) and
the Network Management Forum (NMF's)
Service Providers' I~itegratcd l<equirements for
Information Technology (SPIRIT), together
referred to in this paper as MIA/SPIlUT".'

I S 0 and ANSI are true standards bodies. The other
organizations are either influential industry consortia
aimed at defining common standards for important
emerging and maturing technologies driven by user
needs or customer-drivcn consortia chartered to
define common pi~rchasing standards backed by sub-
stantial purchasing power.

OSF's Distributed Computing Environment
The Open Sohvare Foundation's Distributed Com-
puting Environment is an inlportant standard that
defines a set of services and tools that support the cre-
ation, use, and ~naintenance of client-server applica-
tions in heterogeneous multivendor environments.
The OSF has defined and assembled this technology;
Digital is a major provider of components. As illus-
trated in Figure 2, the components of OSF's DCE are

TIER 2 INTERFACE COMPLIANT TIER 3
CORBA- WITH MESSAGE-BASED

Figure 1
Disposir~on oFFunctions u4tIi Inrcrticr Commu~iications Paradigms

- - ---

COMPLIANT - PROTOCOLS. DCE. OR

Digital Technical Journal

DESKTOP GUI INTERFACE_
CLIENTS n TRANSACTIONAL

MIDDLEWARE
, 'ORBA NEW AND LEGACY

SYSTEMS

I APPLICATIONS
., ,-

DISKLESS SUPPORT

DISTRIBUTED FILE SERVICE

REMOTE PROCEDURE CALLS

THREADS

OPERATING SYSTEM AND TRANSPORT SERVICES

Figure 2
OSF's 1)istt.ibuted Computing En\~ironnicnt

Remote procedure calls (1U'Cs)

DCE threads, which is a standardized 11111ltl-
threading service

Distributed time service, \vhicli synchronizes clock
time across globally distributed systems

Cell directory service (CDS) , \\lhicli pro\lidcs
autlicntication, access control, ~ n d encryption,
and uses a ICerberos-based private key security
model

Global directory service, \vhich provides directory
services between cells using tlic X.500 standard

1)istributed file ser\lice, which provides location-
tralisparcnt access to files across a nct\\lork

DC:E has been rapidly adopted as a tcchnolobql for dis-
tributed systems and is no\\! a\jailablc on a large num-
ber of vendor platforms, including Digital, IBM,
Hcwlctt-Packard, Sun, and Microsof?.

CORBA
The Comnion Object R e q ~ ~ e s t Brolter Architecture is
a standard spccitication for tlic central co~ i imi~n ic~~ t ion
and integration of sohvare objccts at the cntel.prise
Ic\,cl and across enterprises. C01UA and its spccifcn-

tion were de\~elopcd by tlie OMG, a consortium of
inforn~ation systcnis vendors, i ~ i c l ~ d i ~ i g Digital,
Hewlctt-Packard, Hyperl>esk, Symbios Logic (for-
merly NCR), Object l)csign, and S u ~ i S o f t . ~ Digital's
COMA-compliant product, namely ObjectBrokcr
integration soh+~-arc, has bccn ported to the industry's
leading range of platforms.0

The 0bjcctR1-oltcr product reduces the time and
costs associated ulitli p~.o\tiding access to critical busi-
ness applications across mu1 tivendor plattkorms. I r
allows legacy applications to be integrated illto hctcro-
geneous client-scr\/cr cn\lironments u~i thout source
code changes.

Microsoti <;orporation has developed a parallel
approach ;IS cvidcnccd in its Object [.inking and
Embedding (01,k) sofi\vare, \\~hicli is focclsed on intc-
grating objects in a desktop cnviron~i ient .~ Microsoti
and Digital arc working to integrate the COlUIA and
OLE sofh+/arc into n combined architecti~re callccl the
Common Objcct Model (COM), which allows tlie full
interopcrntion of applications dc\leloped under eithcr
constituent architecture.

XIOpen Distributed Transaction Processing
The X/Opcn ciistrib~~ted transaction processing
(DTP) committee is dcf ning standards for DTP sys-
tems that use Hat transactions. In Figure 3, the TS
interface allo\vs applications to coordinate global
transactions via the transaction manager (TIM); the >;A
interface connects the TIV to resourcc malingers
(l b ~ s) , typically relational databases or file s!lstems;
and the XA+ interface c o n ~ ~ e c t s the TiM to commi~ni-
cations resource man;lgcrs (CRMs). The interface
betwcen an application and a ClWI is specific to the
CRM type, of\\~liich three are defined.

'I'ransactional remote proccdure call (TxlWC:),
\\(hich js derived from the work led by Digital for
the MIA/Sl'IRIT rc~tiotc task in\rocatio~l protocol
(disc~~sscd in more dctnil later in this section).

THIRD-GENERATION LANGUAGE APPLICATION

A A A A A A A

I I I TxRPC
XATMI. OR

MANAGERS
MANAGERS

Figure 3
X/Opcn llisrribured Transaction Proccssitig ~Modcl

36 Iligital 'ILcIinicnl Journal Vol. 7 No. I 1995

XATMI, which is a non-RPC-based client-server
that originated with Unis System Laboratories'
transaction processing monitor for the UNIX oper-
ating system, namely the Tuxedo product.

Peer-to-peer, by which messages are exchanged
between applications. The messages are sent and
received in an order based on prior agreement
between the implementers of the applications.
Peer-to-peer uses Common Programming Inter-
face for communications (CPI-C), which is derived
from 113M's System Nenvork Architecture (SNA)
message-bascd protocol of the same name.

MIA/SPIRIT
MIA is a software architecture developed by a consor-
tium of five vendors under the sponsorship of NTT:
Digital, IBM, Fujitsu, Hitachi, and NEC. MLA
adopted esisting industry standards and defincd stan-
dards in areas where J I O J I ~ were available. One of the
areas most lacking i l l standards was DTP. NTT
reqi~ested tcclinologp proposals and received
responses from all the vendors in the consortium.
Digital submitted its Application Control and
Management System (ACMS) transaction processing
monitor model and was selected to lead the develop-
ment of the specifications because of ACMS' modern,
highly structured model and transaction processing
application programming interface (API).

MIA achicvcs application portability and interoper-
ability across a variety of \lendor operating systems and
platforms by using standardized APIs as integrative
constructs and by using standardized systems inter-
connection interfaces (SIIs) for communication.

Two significant MIA standards that Digital con-
tri buted are

Structured Transaction Definition Language
(STDL,), which is a high-le\lcl programming lan-
guage suited to transactional client-server pro-
gran~rning".~

Remote task invocation (RTI), a service definition
and protocol for R I G that are in a multivendor
environment and that use the two-phase commit
protocol

As a follow-on to NTT's MIA, the work in the field
of transaction processing standards has passed to the
SPIRIT consortium, which is managed by the
Network Management Forum. NMF's list of members
includes telecommunications service providers, such
as AT&T, BT, Deutsche Telekom, ETIS (itself a
consortium that represents 27 European Postal,
Telegraph, and Teleplione Administrations), France
Teleco~ii, I<DI>, Teleco~n Italia, and Telcfonica; com-
puter vcndors, such as Digital, Hewlett-Packard,
Fujits~l/ICL, Hitnchi, IBM, NEC, Siemens Nixdorf,

and Unisla; and sofnvare vendors, sucli as Microsoft
and Oracle. The goal of the SPIRIT consortium is to
produce a common, agreed-upon set of specifications
for a general-purpose computing platfor~n for the tele-
communicatio~~s industry by July 1995. The com-
bined annual computing expenditures are estimated to
exceed $20 billion.

MLA/SPIRIT standards are working their way into
international standards bodies. X/Open and thc NIMF
have extended their collaborative agreement to
include the work ofSPIlUT in aclmowledgnient oftlie
difficulties that diverging standards would create.
X/Open publishes the SPIRIT documentation along-
side its own CAE specifications and guides. Further-
more, after conducting a survey of major transaction
processing users, X/Open recently voted to use its
fast-tracking process to accelerate progrcss in the
adoption of STDL as an X/Open standard.

Digital delivered a platform that supports STDL in
January 1993, IBM offered STDL on the CICS plat-
form in the second quarter of 1993, and Hewlett-
Packard has made STDL available on Transarc
Corporation's Encina transaction processing monitor.
NEC, Hitachi, and Fujitsu have already shipped STDL
platforms. Unisys plans to demonstrate a SPIIUT plat-
form \vith STDL in October 1995.

In July 1994, an interoperability demonstration
using STDL was conducted s~~ccessfully in Tokyo,
Japan. The demonstration, which also included RTI,
involved systems provided by Hewlett-Packard and
Fujitsu on Transarc Corporation's Encina transaction
processing monitor, Digital on its Application Control
and Management System/Cross-platform (ACMSsp)
transaction processing monitor, and IBM on both the
MVS/CICS and OS/2 platforms.

Architecture Components

Figure 4 illustrates the overall three-tier client-
server architecture. This section discusses the various
components.

Tier 1 Desktop Environment
The architecture must provide for the connection of
a \vide variety of desktop platforms to the server layer,
i.e., the tier 2 middleware services. This connection
must be accomplished in a secure, extensible, reliable,
and location-transparent manner. Standards-based
solutions are always desirable and more effective over
the multiyear life of an enterprise-wide solution.
Digital therefore selected its CORBA-compliant
ObjectBrol<er software as the mechanis~ii to connect
tier 1 clients to tier 2 rniddlcware servers.

CORBA provides a flexible approach to developing
a distributed application by decoupling the client and

Digital Technical Journal Vo1.7 No. 1 1995 37

TlER 1 TlER 2 TlER 3

DESKTOP
CLIENT

DESKTOP
CLIENT

KEY:

1111 MULTITHREADED

1 SINGLE THREADED

SERVER PROCESSING SERVER
EXECUTES SPECIFIC LEGACY

SYSTEM

PROCESSING SERVER

I 1111
EXECUTES SPECIFIC LEGACY
APPLICATION PROTOCOL

USER CONTEXT

Figure 4
Overall Three-tier <:lic~~t-Server Architcct~~rc

scnler portions of the application. COIUA specifics a
comliion set of interfaces that allows clicnt programs
to rnakc rcclllcsts to 2nd rcccivc rcsponscs fro111 server
programs \\/itlioi~t direct kno\\~ledge of the informa-
tion source or its location. COIU3A defines the ORR as
an inter~nediary between clients and servers that
delivers clicnt requests to the nppropriatu server and
returns the ser\ler respoIises to the requesting client.
Figure 5 shoivs how the OR13 allo\vs a client appjica-
tion to recluest a service \vithout knowing where thc
server is located or lie\\, it \ \ r i l l f i l l f i l l the request.

In the COlU3A model, clicnt applications need to
Itno\\! only \ \hat rcc1ucsts they call make .lnd lio\i~ to
makc the rcclucsts; the!! clo not nccd to bc coded \\,jth
a n y implcmcntatio~~ details about the scrver. Server
progmnis nccd to Ikno\v ho\v to fillti l l the requests but
not l10\\~ to return information to the client program.
Clients i~sjng objects to rcqLIest a service d o not need
to kno\\~ which scrvcr will f i l l f i l l that request. The
scrvcl- fillfilling the rcqucst does not need to know
which clicnt initiated the rcclucst. Thc GUI clients can
be developed using ally tool that provides a call-level
interface o r an object-oricntcd interface to CC)lUA-
compliant client services o n the specific platfol-m.

DIRECTS
REQUESTS REQUEST

RETURNS
RESPONSE RESPONSE
TO CLIENT

Communications arc conducted tliroi~gli 1U'C:s.
The 1WCs are carried over a network transport, c.g.,
a transmission control protocol/intcrnct protocol
(TCP/IP) o r a DECnet transport. The RPC connects
with ObjectRroker's ORB, which thcn reroutes the
RPC directly to the selected scrvicc instance.

Digital expects futurc \lersions of its COIUA-
compliant ObjectBroker product to support OSF's
DCE and thus providc standards-based directory,
security, and RPC services. lX:E provides r i g o r o ~ ~ s
security ser\,ices for autlie~lticnting uscrs, granting
pri\~ileges, and controlli~ig acccss to iniportant net-
worked resources. Thesc scr\~iccs arc based on the
Iiighly secure ICcrberos model, \vhich is thc standard
security model for many financial institutions and a
major reason \vhy they have standardized on LICE. All
interaction from tier 1 clients must g o through the
Kcrberos-based DCE security peri~netcr. Desktop and
mobile computer uscrs log in to the 1)CE cell to gain
their credentials for performing their business. lI<:Ii
authenticates users and grants them the approp~.iatc
privileges and controlled access to the authorized busi-
ness functions. N o clear-tcst pass\vorcls a r c r c q ~ ~ i r c d ,
even for mobilc uscrs who acccss tlic middlcwarc layer
by means ofdial-up lines. Kcmote or mobile users are
able to perform DCE login over a serial line internet
protocol (SLIP) connection. Confidentiality is ensured
by data encryption.

Tier 2 Middleware Services
The tier 2 middleware of this architecture is founded
on the ACMSsp transaction processjug monitor. The
ACMSxp sofhvare product for transactional applica-

Figure 5 tions conforms to the >(/Open 1)TP and MIA/SPIlUT
COMA <:licnt-Ser\.el. l<cq~~cst/l<csponsc Flow standards previously dcscl-ibed. 'The sohirare is layered

on DCE and the transaction manager and Structured
File Services of the Encina toolkit. The primary API
to the ACMSxp product is STDL, as defined by
MIA/SPIRIT.

STDL js used to define the control flow and transac-
tion demarcation of applications in a highly structured
and modular fashion. In addition, STDL supports the
features needed for RPC-based DTP.

The ACMSsp software is structured in a three-part
mode!, which is shown in Figure 6. The model sepa-
rates client prcsentatio~i fi~nctions from transaction
flow control and data access and processing filnctions,
which are typically SQL database code or communica-
tions code to access legacy systems. A very important
feature ofACMSxp is that the STDL compiler gener-
ates complete DCE client-server stubs, thus freeing
the developer from having to perform complex pro-
gramming at the DCE level.

ACMSxp applications co~nprise clients that call
application task servers using DCE LPCs. The applica-
tion task servers execute the STDL programs in DCE
multithreaded processes, maintaining the context of
the users and performing the contro.1 flow and trans-
action semantics (two-phase commit protocol).
Application tasks are fkee to call other tasks in tlie same
group o r in remote task groups that are reached
through DCE directory services, either transactional
(composable) or nontransactional (no~lconiposab~e).
Tasks can also call processing procedures that are
grouped in single-threaded procedure servers.
Processing procedures normally provide data access,
typically by means of C , COBOL, and SQL in con-
junction with X/Open DTP-compliant databascs.
Processing procedures are also ideal for applications
that communicate to legacy systems by means of
message-based protocols, such as IBM's SNA Logical
Unit 6.2 (LU 6.2).

Figure 7 sho\vs client tasks accessing data by means
of Digital ACMSxp servers. Note that ACMSxp sup-
ports and manages pools (groups) of servers in a given
class, i.e., servers that provide the same set of services.

Through tlie system management interface, operators
can set and change dynamically the desired number of
servers in a given pool. If a server fails, ACMSsp
system management logs the event and automatically
starts and activates a replacement server.

Digital's ACMSxp transaction processi~ig monitor,
in conjunction with the ObjectBroker sofnvare, is
used to implement the tier 2 middleware layer.
ACMSxp clients are n o more than simple business
function call statenlents stripped of DCE progrdni-
ming by tlie STDL client run-time services. ACMSxp
clients are encapsulated in wrappers to make them
CORRA objects accessible through thc ObjectBroker
s o h a r e . These wrappered client processes can be
declared as servers to the sophisticated ACMSsp trans-
action processing monitor systelii management. The
system management can then be instructed to set
dynamically the desired number ofinstances, to main-
tain that number in the event of failures, and to raise
alcrts. These ACMSxp client processes are wrappcred
to include the code that registers them as objects with
the ORB as instances of COlUA implementations.
When activated by ACMSsp system managemcnt,
these processes register with tlie 01U3 and wait for
requests for the tasks that they invoke. When stopped
by ACMSxp system management, tlie processes dereg-
ister from the ORB.

This architecture can be instantiated using Digital's
CORBA-compliant ObjectRroker product with tlie
ACMSxp transaction processing monitor, presenting
the desktop clients 011 tier I with an object-oriented
interface to business functions executing on tier 2 . As
shown i l l Figure 4, ObjectBrol<er is substituted for
CORBA and tier 2 is implemented on the AClMSxp
transaction processing monitor. hi unlimited number
of tier 2 nodes can be configured dyna~iiically, started,
and stopped. Transactional busincss f ~ ~ n c t i o ~ ~ s can bc
distributed and replicated across the nodes as
required. The clients gain access to these business
functions in a completely locatio~l-transparent man-
ner. Thc interface to legacy systel-ns is provided by

CLIENT TRANSACTION DATA ACCESS
PRESENTATION FLOW CONTROL AND
FUNCTIONS PROCESSING 7) FUNCTIONS

DATABASES,
FILES, ETC. 1 1 1 ;Tr+pq

C, COBOL, SQL

Figure 6
ACMSxp Three-part Model

Digital Technical Journal Vo1. 7 No. 1 1995 39

-

KEY:
I I

TASK
CLIENT

TASK
CLIENT

TASK
CLIENT

1111 MULTITHREADED

(SINGLE THREADED

PROCESSING

SQL,
STDL LEGACY APPLICATION INTERFACE

-

Figure 7
ACMSsp Application Compo~lcnts

-

application code that resides in pl-occssing servers.
The business fi~nctions arc written as S'TDL tasks

and can be composed o f multiple Iegac!~ applica-
tion transactions. When ticr 3 applications support
standards-conipliant TslWC, transactions can be
called directly as taslts in ST1)L from the tier 2 business
f~~nct ions .

Sec~~ri ty into tier 2 is Ilandlcd by the ObjectRroker
sofnvarc. Witliin ticr 2, sccurity is cnforccd according
to the rules ofOSF's l>CF,. Security between tier 2 and
tier 3 is n~andatcd by the rules of cncli specific Icgacy
s!'Stell').

T o provide operational support for production
applications, sopliisticatcd systcm management fea-
tures \\!ere built into tlie A<:MSsp product. A system
rnanagen~ent intcrfnce is a\/iilablc to any authorized
operator o n any node in tlic 1)CE cell. T t i~ .o~~gI i a sin-
glc director, all A(;1MSsp objects can be managed in
multiple transaction processing systen~s on all nodes in
the nenvork. The managed objects include transaction
pt-ocessing systems, event logs, rcclllcst sessions,
scr\lcrs, ~ ~ O C C S S C S , i~ltcrfaccs, and procedures. For
example, system managers can exanline and change
the properties and execution state of servers. Thc
number of instances of a given server class can be set
and changed dynamically c\~itliout stopping the sys-
tem. ACMSxp system managcmcnt can be induced to
adopt servers that arc normally external to its domain,
such as thc ObjectRroltcr nicthod servers that provide
the connection bcnvcen the desktop clients and the
transactional task scrvers in the ACMSxp product.

Tier 3 Legacy Application Interfaces
Intercomniunications i s s~~cs related to the differences
benvcen hard\.\lare and sohvarc architectures o n dis-
parate platforms arc addressed b!/ tcclinologies such as
DCE. DC;E supports I<l'C:s tliat enable applicatio~ls on

40 Digitdl ~12clinic.11 Journal

different platforms to intcropcratc by means of sinlplc
call statements with fi~lly typed arguments. Data type
differences between liardwarc architccti~rcs Arc
bridged by tlie n~arshaling process that converts d a c ~
to a canonical form and then to tlic targct form as ;I

rlormal process. bIcssagc-bnscci protocols, such as L,U
6.2, cannot adequately deal with mixed data types and
place a burden 011 the application programmer in a
multivendor en\rironrnent.

The advent of reduced instruction set computer
(1USC) architectures has csaccrb,itcd tlicsc problems.
Gaps are freclucntly left in memory bcn\~ccn variables
in structures and records tliat contain mixed dam
types. These gaps in buffers, \\.hen processed b!* com-
pilers on RISC mncliincs, render the buffers unmnp-
k>&le unless redundant ti llcr \~ f i r i~ l~ Ics ;ire adcicd to thc
structure def nitions.

Each legacy application n~ctliod is encapsulated in
an ACMSsp server class that is in\,okcd tl-~nsaction:~lly
by a simple STDL call. l - l ~ ~ ~ s , thc dc\iclopcr o f tlie
STDL transactional busil~css fi~nctions is shielded
from the complexities of the native i~ltcrfillcc to the
legacy data. This approach permits future update of
the method without affecting the csisting busi~lcss
functions.

The designer must select t l ~ c most appropriate com-
munications protocol ti)r each ticr 3 legacy systcm.
Whenever possible, an application intcrfi~lcc should be
selected that avoids tlie so-callcd "scrccn scraping"
techniques, in \vIiich the applic'ition c ~ n ~ ~ l a t c s ,I user
interacting with csisting tcrrnin'll scree11 fi)rli~s.

For IBlM mainframe systems, tlic SNA I,U 6.2 pro-
tocol \\:itl.r Syncpoint 1,evel 1 or 2 is oticn appropriate
for interoperating with 113M transaction processing
environments. This protocol may also bc the appropri-
ate choice for Irgac!, systems from other \~cndors. If

the application message protocol is designed in a man-
ner that simulates a simple procedure call, future
migration to an RPC model will be sinlplified.

Recently, IBM has made DCE available on IMVS-
OpenEdition and has provided application support for
both the CICS and Information Management Spstcm
(IMS) transaction processing environments. This
feature allows DCE client programs to invoke trans-
actions on the IG&I niainfra~iir by \\lay of a DCE appli-
cation server provided by IBhI. An appropriate DCE
client could be included in a data access processing
procedure of an ACMSxp processing server as an alter-
native to SNA LU 6.2.

I t should be noted that thc desired throughput level
for a given legacy systeln conncction can be adjusted
dynamically. An operator can usc the systeln manage-
ment of the ACMSsp transaction processing monitor
to reset the number of active servers in the pool that
imple~ucnts that conncction. Also, any number of
tier 2 nodes can be configured to provide that service
within the middleware layer. New nodes can be placed
in scrvice without interrupting currently running
nodcs.

Summary

A three-tier, object-oriented dient-server architecture
that jncludcs an open systelils transaction processjng
monitor can provide a basis for connecting users a ~ l d
customers to existing enterprise transaction processing
systems by means of reengineered desktop systems
that support GUIs. This approach provides

A clear separation of fi~nctioii, i.e., client activities
are separate from middleware control and man-
agcment fi~nctions

Data location transparency

Location transpdrcncy for application interfaces
and topological independence

A means of defining new business fi~nctions by
compounding existing transactions on different
platforms, regardless of location

Flesibility to support the continuous evolution of
systems without disruption to cnd users

Resilience to enhance overall availability

Unrcstrictcd scaling o f the systeln (through rcpli-
cation of components) for performance adapted
to thc business growth

A set ofreusable objects to the tier 1 client

References and Note

1 . Open SoJiuar-e Foi'ol~udalion DCE Application Deud-
opmerzt Gl~icle. l)oc~~mcnt No. ED-DCEAPDEVl-
1092-2 (Canlbridgc, /Mass.: Opcn Sohvarc Foundation,
1993).

2. C'onzmorz Objecl Reqziest Broker Architect~~re Speciji-
cation, draft 29, revision 1.2 (Fra~ningham, Mass.:
Object Management Group, Document No. 93-12-43,
December 1993).

3. fI/Ifultiuendor- Intcgratiorl Architectzire Technicul
Requiren?erzts. Division 1, Oueruieiu (Tokyo: Niypon
Telegraph and Telephone Corporation Technology
Research Departmcnt, Order No. TR55000 1 , 199 1).

4. ,Y/OPei7 Con.sorlil.lr17 S'cclJj:catioll, SfJIR1T PlulJbrtn
BI~ieprint (SPIlUT Issue 2.0, Volume 1.0), ISBN 1-
85912-059-8 (Reading, U.K.: X/Opcn Company Ltd.,
Network Management Forum, Document No. J401,
1994).

5. Synibios Log~c is the former NCK Microelectronic
Products Division of AT&T Global Information Solu-
tions Company.

6 . ObjectDroker Or~ewieu: aud G/osscrrj' (Maynard,
Mass.: lligital Equipmelit Corporation, Order No.
AA-Q9KJA-TK, 1994).

7. Micr-osojt IVi'indotu.~ G rl/lS-DOS Veniorz 6.0, Chapter 1 1
(Kedmond, Wash.: Microsoft Press, 1993).

8. Sl'IIUT Plc~tfor171. Ul~iepr~iltl, SPIRIT STDL Luiz<qriuge
.Ypc.ciJicatior? Plaljbr-rn (SPIRIT Issuc 2.0, Volume
3.0), ISBN 1-85912-063-6 (Reading, U.K.: X/Opcn
Company Ltd., Nenvork Managcmcnt Forum, I>ocu-
merit No. 1403, 1994).

9 . SPIIUT Pluljbr-rn Ljl~iepr-irzl: SPIIUTSTDL Lrtl~iror~~?~ent,,
Bxectltiorz and Protocol ~Vappirzg Specijication
(SPIRIT lssuc 2.0, Volume 3.0), ISBN 1-85912-064-4
(Reading, U.K.: X/Open Company Ltd., Ncnvork
Management Forum, Documcnr No. 1404, 1994).

Biographies

Norman G . Depledge
As manager of the Trans~ction Proccssing Design Consult-
ing Group n~ithin Digital's I.iyered soft\vasc organization,
Norman 1)cplcdgc is responsible fix managing the rccli-
nolog transfer interface bcn4~ccn the T P engineering
fi~nctions, thc field organization, and strategic customers
on a \~orld\.i~idc bnsis. His background in coniputcrs spans
33 ycars. Hc lias held mallagement positions in clcctrical
cnginccring, sotiware engineering, and marketing. For
the past IS years, he has specialized in on-line transaction
processing a t Honeyell, Gull, and Digital. Norman has an
Honors Degree in electrical cnginccring from Manchcsrcr
University, England, and holds three pdtcnts in electronic
controls.

Digital Technical Journa l Vol. 7 No. 1 1995 41

William A. T u r n e r
William Turner is J cc~nsulnnt in the Tra~lsacrion Proccss-
ing S!.stc~ns G r o ~ ~ p . I Ic succcssfi~ll!. consrr~lctcrl n \\,orking
~llodcl .~nd dcnionstl-;lrion o fan open, distributable, thrcc-
ricr client-scr\,cr- architccturc \\lit11 tr.lnsaction semantics. In
prc\rio~~s work, Willi.11n \\,,is .I co~lsulr;~nr in tlic Norrheast
licgion .uld in the h'c\\. York l'roducrion Systems Kcsourcc
(;enter. Ilcforc joining Dipical in 1987, 11c hcld positions
as n systems manJgcr li)r Elcctric Mutunl and as a technical
support manager- h r Hollc)~\vcll 1nk)rmation S!.srrrns.
William rccci\wi .I R S , in m;lthcm'~tics fi.o~il Villanov;i
Uni\,crsity in 1966.

Alexandra Woog
As n consi~lrnnt \ \ , i t - I ~ 1)igit;ll's ?'r.lns.lcrion Proccss~ng
Systcms Group, Alcx.l~~dr,l \ t V o o ~ consults \\it11 customers
on the design ;uid implcnicnt~t io~i o f production systems.
In prior tvork, slic \\..IS the product manager k)r 1)igital's
Rcmotc Transnetion l<outcr (IYl'R, in Switzcrlnnd), ;I unit
manngcl- fix c o n s ~ ~ l t i n p s c ~ , \ , i c ~ s , 2nd nn operating systcnis
spcci.ll~st.

\k11. 7 No. 1 1995

The AlphaServer 8000
Series: High-end Server
Platform Development

The AlphaServer 8400 and the AlphaServer
8200 are Digital's newest high-end server
products. Both servers are based on the
300-MHz Alpha 21164 microprocessor and on
the AlphaServer 8000-series platform archi-
tecture. The AlphaServer 8000 platform
development team set aggressive system data
bandwidth and memory read latency targets
in order to achieve high-performance goals.
The low-latency criterion was factored into
design decisions made at each of the seven
layers of platform development. The combi-
nation of industry-leading microprocessor
technology and a system platform focused
on low latency has resulted in a 12-processor
server implementation-the AlphaServer
8400-capable of supercomputer levels of
performance.

I
David M. Fenwick
Denis J. Foley
William B. Gist
Stephen R. VanDoren
Daniel Wissell

The neb\/ AlphaServer 8000 platform is the fou~idatio~l
for a series of open, Alpha microprocessor-based,
high-end server products, beginning \\fit11 the
AlphaSer\zer 8400 and AlphaSer\!er 8200 systems and
continuing through at least thrcc generations of
products. When combined \\,it11 the pou8cr of the
industry-leading 300-megahertz (MHz) Alpha 2 1164
microprocessor, this innovative server plntforni offers
the outstanding performance and pricc/pcrforrnance
required in tcclinical and conlmercial markets! In
uniprocessor pcrformance benchmark tcsts, the
NphaServer 8400/8200 SPECFp92 I-nting of 512
is 1.4 tinics the rating of its nearest competitor, the
SGI Po\\fer <:hallenge SL product. In multiprocessor
benchmark tcsts of systems with 1 to 12 processors,
the AlphnScl-vcr 8400 system posts SPF,(:rate levels
greater tliall 3 .5 t i~nes those of the H1'9000-SO0
T500 system. I n the category of cost for pcrfor~nance,
NAS l'arallcl Class R SP benchmarks she\\) that the
AlphaServer 8400 system provides 1.7 tilucs the
performance per million dollars of the SGI Powcr
Challenge SL system? Pcrllaps most imprcssi\zc is the
AIphaScrvcr 8400 performance on thc L.inpack n x n
benchmark:' With a Linpack n x n rcsult of 5 billion
floating-point opcratiolls (GFLOPS), a 12-proccssor
AlphnServcr 8400 achieves the perfor~nancc le\eels of
supercomputers such as the NEC SX-3/22 systcnl and
the massively pnrallel Thinking ~Machincs Ckl-200
system.

There are n\,o kcys to the remarkable pcrformance
of the AlphaScrvcr 8400 and AlphaScr\,cr 8200
systems: the Alplia 2 1164 nlicroproccssor chip and
the AlphaServer 8000 platform architecture. This
paper is conccrncd with the second of tl~cse, the
AlphaServer 8000 platform ,~~.i-hitccturc. Specifically,
i t discusses thc principal design issues encountered
and rcsolvcd in the pursuit of thc aggrcssi\:e per-
formance and product goals for tlic AlphaSer\!er
8000 series. Thc paper concludes \\.it11 an c\~aluation
of the success of this platform development based
on the perform3nce ~xsults of the firht AlphaSer\~cr
8000-series products, the AlphaScr\,er 8400 and
AlphaServer 8200 systems.

AlphaServer 8400 and AlphaServer 8200
Product Goals

The AlphaServer 8000 platform technical require-
ments were derived from a set of product goals. This
set comprised minimum performance goals and a
number of specific configuration and expandability
requirements dcveloped from Digital's server marltct-
ing profiles. The motivations that sli,lpcd tlic list of
gods below were many. Support for Icgncp I/O sub-
systems and DEC 7000/10000 AXP compatibility,
for example, \vas motivated by the ~ieed to provide
lligital's customcr installed base with a cost-effective
upg-ade path from 7000-series linrd\\~ire to
AlpliaScr\ler 8000-series hardwrare. -l'he goals for low-
cost I/O subs)ateni, peripheral coriiponciit intcrcon-
nect (PCI), and EISA support and for nckniount
cabinet support were included to take advantage of
c~nerging industry standards and open systems and
their markets. The processor, I /O, and memory
capacity goals were driven sirnplp by the conipetitivc
state of the server ~iiarket.

Provide industr!l-leading enterprise and open-
office servcr performance.

Provide twice the overall performance o f t h c 1)EC
7000/10000 AXP server products.

Support up to 12 Alpha 21 164 proccssors.

Support at least 1 4 gigabytes (GB) of main
memory.

Support multiple 1 / 0 port controllers-up t o
144 1/0 slots.

Provide a low-cost, integrated I/O subsystem.

Support new, industry-standard PC1 and
I / O subsystems.

Cont in i~c to support Iegacv I / O subsystems, such
JS XMI and Futnrebus+.

Makc centcrplane hard\.r,are conip.ltiblc with an
inti~~stry-standard rack~iiount cabinet.

Make centerplane hardware meclinnically com-
pntiblc \\/it11 tlie DEC 7000/10000 AXP-series
cabinet.

Performance Goals and Memory Read
Latency Issues

Although "pro\riding industr\l-leatli~ig pcrformancc"
and L L d o ~ ~ l > l i ~ i g tlie perforin~iricc" of ;ln existing
industry-lending server present excellent goals fix- thc
dc\rclopmcnt of a nc\v server, it is difficult to dcsign to
S L I C I ~ I ~ C ~ L I I O L I S goills. To qi~alititj' the actual tcclinical
requirements for the new Alphaserver (3000 pli~tform,
the dcsign team utilized a performance s t i~dy of tlic
DF,C 7000/10000 ASP systcnis and conducted a

detailed analysis of s~lrnmetric multiprocessing (SMI')
system operation. As a result of the analyses, '~ggressi\rc
systern data band\vidtli and memory read latency goals
were established, as well as a design philosophy that
emphasized low mcniory rcad latency in all aspects of
the platfor~n dc\~clopmcnt. This section addresses the
read latency issues and goals considered by the design
team. The 8000 plattbrm development is the focus of
tlie section follo\ving.

Read latency is the time it takes a niicroprocessor to
read a piece ofdata into a register in response to a l (~ d
instruction. If tlic datn to be read is found in a proccs-
sor's cache, the read latcncy will typically be \.cry small.
If, howc\,er, the data to be rcad resides in a computer
system's main mcmor)~, the read latency is typically
much larger. In either case, a processor m;~y have to
wait the duration of the rcad latency to make f ~ r t h c r
progress. The smaller the read latcnql, the less time a
processor waits for data and thus the better the proccs-
sor performs.

Cache nicmorics arc typically i~sed to minimize rcad
latency. When caches clo not work well, either because
data sets arc larger than the cache size o r as the result
of non-locality of reference, a computer systeni's
processor-lncmory interconnect contributes signih-
cantly to thc average rcad latency seen by a processor.
The system characteristics that help determine a
processol-'s average read latency are tlie system's mini-
mum memory read latcncy and data band\.\lidth.

A system's niininium memory read latency is the
time rcqiiirccl for a processor to fetch data from a sys-
tem's main memory, ~ ~ n c n c i ~ m b e r e d by sjlstem traffic
from o t lx r processors and 1 / 0 ports. As processors
and I/O ports arc iiddcd to a system, their con~pcti-
tion for memory and intcrconncct resources tends to
degrade the system's mcrnory rcad latency from t l ~ c
minimum memory rcad Intcncy baseline. A system's
datn bandwidth, i.c., the amount of data that a system
can transfer bcn\.ecn nlain mcmory and its processors
and 1 /0 ports in a gi\lcn pcrioci of time, \ \ r i l l determine
the estenr to \\~hich processors and T/O ports \ \ , i l l
degrade each other's rcad latency. As data bandtvidth
increases, 50 too docs a s!~stcm's ability to support c o ~ i -
currelit data rcfcl-cnccs from various processors and
I/O ports. This incrcascd band\vidth and concurrent
data referencing scr\)c to rcducc competition fo~.
resoilrccs and, .is n rcsult, t o reduce memory rc;ld
latency. Thus we can conclude that the more a\lailablc
data bandwidtli in n system, tlie closer the mcmory
rend 1;ltency \\!ill be to tlic minimn~ii. This conclusion
is supported by the results of a queuing modcl used to
support tlic AlplinScr\~cr 8000 platform de\relop~ncnt.
This queuing moticl, origin.~lly implemented to cvalu-
ate bus arbitration sclicmcs, outputs the a\,cragc read
latencies experienced by each processor in a spstcm as
the n u ~ ~ i b c r of PI-occssors and tlic number of menlory

Vol. 7 N o . 1 1095

resoilrces arc varied. I t is important to note that in
this model memory rcsources, or banlts, determine
the amount of system bandwidth: the more meniory
banks, tlie rriore bandwidth. I t is also important to
note that the minirnum read latency in this model
is 168 nanoseconds (ns) . The results of the model
arc shown in Table 1. These resi~lts cle'~rly show tliat
latency degrades as the number of system processors
is increased and that latency improves as the sys-
tem's bandwidth-number of mernorv banks-is
increased.

Man!! tccli~iical market benchmarks, such as the
Linpnck bcnclimarlts and the McCalpin Streams
benchmark, stress a computer system's data band-
width capability. The regularity of data reference pat-
terns in these benchmarks allocvs a high degree of data
prcfctching. Consequcntlp, data cun be streamed into
a processor from main menlory so tliat a piccc of data
has an ~~nnaturally high probability ofbcing resident in
the processor's cache when it is needed for sonic calcu-
lation. Ironically, tliis amounts to using smart sohvare
to minimize rcad latency. By reading 3 piece of data
into a ~~rocessor's cache before it is actually needed,
the softularc presents the processor with a s~iiall cache
read latcncy instead of a long memory latcncy when
the data is needed. Thus the streaming techniques
applied in tliese benchmarks allo\v processors in Iligli-
bnnd\\,idth systems to stall for a fill1 memory rcad
Intcncy pcriod only when starting LIP a stream of data.
Therefore menlory latency can be amortized over
lengthy high-bandwidth data streams, minimizing its
significance. It is important to note, however, that
although bandwidth is thc system attribute tliat donii-
nates pcrfor~iiance in these \\~orkloads, it dominates
pcrk)rmancc through its effect on read latcncy.

<:onimcrcial cvorkloads like tlie Transaction
Processing Performance Council's benchmark suite,
o n tlic other hand, typically have more complex data
patterns t l~a t fi.ec~ucntly defj, attempts to prcfctcli data.
When some of tlicse codes parse data structures, in
fact, tlic address ofeach data access may depc~id o n the
results of the last data access. In any case where a
processor ~ n t ~ s t \\fait for nlernory rcxi data to makc
progress, a systcni's memory read latency \\,ill detcr-
mine tlic period of time that the processor \vill be

stalled. Such stall periods directly affect the perfor-
mance of computer systems on commercial work-
loads. These assertions supported by a study on the
performance of commercial ~ ~ o r k J o a d s on Digital's
Alpha 20164-based 1)EC 7000/1000 AXP server:'
It is important to note lierc that the latency ills flagged
in this study cannot be cured with raw system data
bandwidth o r sohvarc-enhanced latency reduction.
Low memory latcncy alone can address the needs of
these workloads.

Comparable industry systeliis from IBM and
He\vlett-Packard (H P) d o not stress lou~ memory
latency system development in their respective RIS<:
Systen1/6000 SMP or Hawks (PA-8000-based) SMP
~ys te rns .~ .~ In fact, neither directly ackno\vledges mem-
ory latency as a significant system attribute. :This mind
set is retlccted in the rcsults: Based on IBlM's docu-
mentation, we estimate tlie RISC System/6000 SMP's
minimum main meniory read latency to be in tlie
neighborhood of 600 to 800 ns.

IBlM and H P d o emphasize system bandwidth
in their designs. HI' provides a 960-megabyte-per-
S C C ~ I - I ~ (MB/s) L ' r ~ n ~ a y " processor-memory b i ~ s in
its Hawks system. The actual data bandwidtli of this
bus is slightly less than the quoted 960 MB/s, since
the bus is shared benvcen address and data traffic.
IBM, on tlie other hand, goes to tlie extent of applying
a data crossbar s~vitch i l l con junc t io~~ with a serial
address bus to reach an 800-MB/s rate in its RISC
System/6000 SMP system. Tlic actual attainable data
bandwidth in IBM's system is determined by the
bandwidth of its address bus.

In the past, lligital's systems have shown much
the same balance of bandwidth and latency as have
their competitors. The DEC 7000/10000 AXP sys-
tem has a rninin1111i-r main nicmory read latency of
560 ns and a syste~ii data band\vidth of 640 MR/s.
The AlphaScrvcr 8000 platform, ho\ve\~er, \Alas devel-
oped nlith a marked emphasis on lo\v memory read
latency. This emphasis can be seen through nearly all
phases of system development, including the system
topology, clocking strategy, and protocol. This
latencjf-oriented mindsct is reflected in the results:
The AlphaServcr SO00 platform boasts minimum
memory read latencies of 200 ns. The AlpliaServer

Table 1
Average Read Latency as a Function of the Number of Processors and Bandwidth (Number of Memory Banks)

Average Read Latency (Nanoseconds)

Number of
Processors 2 Memory Banks 4 Memory Banks 6 Memory Banks 8 Memory Banks

Digital Technical J o u r n . ~ l

8400 and 8200 systems feature a r n i n i ~ n ~ ~ n i memory
read latency of 260 ns. To back up these latencies, the
AlphaServer 8000 platform supports a tremendous
2,100 MB/s of data bandwidth. The AlpliaSer\rer
8400 and 8200 systems, although not capable of pro-
viding the fill1 2,100 MR/s, still provide 1,600 MB/s
of bandwidth. This gives the systems less than half the
memory latency of comparable industry systcnis while
providing nearly twice the bandwidth. F ~ ~ r t h e r ~ n o r e ,
these attributes improve upon the L>EC 7000/10000
AXI' attributes by factors of 2 to 3. Although difficult
to determine exactly how these attributes would trans-
late into overall system performance, they were
accepted as sufficient to meet tlie AlphaServer 8000
plattbrm performance goals. A co~nparison of the
maximum DEC 7000/10000 AYP SPECrates of
approximately 25,000 integer and 40,000 floating
point with the r n a x i ~ n ~ ~ r n AlphaScrvcr 8400
SPECrates of 91,580 integer and 14,0571 floating
point indicates tliat these attributes were sound
choices.

AlphaServer 8000 Platform Development

Referring to the Alphaserver 8000 platform as a
"foundation" for a series of server products does
not give a clear picture of \\{hat constitutes a server
platform. The Alphaserver SO00 platti)rrn has both
physical and architectural components. Thc physical
component consists of the basic physical structure
from which 8000-series server products arc b ~ ~ i l t . This
includes power systems, thermal management sys-
tems, system enclosures, and a centerplane card cage
that i~nplemcnts the interconnect between processor,
melnory and 1 /0 port n~odulcs. The processor, mem-
ory, and 1 /0 modules are printed c i r c~~ i t board (PCB)
assemblies that can be implemented with varying com-
binations of processor, dynamic random-access mem-
ory (DRAM), and application-specific integrated
circ~lit (ASIC) components. The assemblies are
inserted into the platform ce~lterplanc card cage in
varying configurations and in varying enclosures to
create the various 8000-series products. The
Alphasel-ver 8200 system, for exa~ilylc, co~nprises up
to six Alpha 21 164-based TLE1' processor modules,
'TMEM lnelnorp modules, or ITIOI' and TIOP 1 / 0
port nodules in an industry-standard rack-niount sps-
tern. The AlphaServer 8400 system co~npriscs up to
nine TLEP processor modules, TMEM rncrnory 11iod-
ules, or ITlOP and TIOP 1 / 0 port modulcs in a DEC
7000 AXP-style data center cabinet.

The architect~~ral component of the AlphaSer\~er
8000 platform consists primarily of a collection of
technological, topological, and protocol standards.
This collection includes the processor-memory inter-
connect strategy, the bus interface technology, the

clock technology and methodology, and the signaling
protocols. For example, the TLEP, TMEM, and TIOP
modules all implement bus interfaces in the same inte-
grated circuit (I(:) packages with tlie same silicon tech-
nology and drive their cornnion interconnect bus with
the same standard bus driver cell. Furthermore, all
these modules apply nearly identical clocking circuits
and communicate by means of a common bus proto-
col. The ephemeral architectural standards that consti-
tllte the "pl;~tforrn" specitji exact physical requirements
for designing the Alphaserver processor-rnernory-
1 / 0 port interconnect and the various niodules that
will populate it. It is important to note that the kcy to
AlpliaSer\~er 8000 pel-forniancc is fou~id in these stan-
dards. As \vc esplore tlic design decisions and trade-
offs that shaped the AlphaServer 8000 platform, it
is this collection of ,lrcIiitectural standards that \\JC

actually probc.
T h r o u g h o ~ ~ t this analysis of the AlphaServer 8000

architecture, two themes frequently recur: low mem-
ory latency and practical engineering. As disc~lsscd in
the contest of the AlphaScrvcr 8000 goals, low nicm-
ory read latency was identifed as the key t o systcni
performance. As such, low latency was factored into
nearly every system design decision. Design decisions
jn general can be t l i o~~g l i t of ils being rcsol\~ed in one
o fnvo cvays: by crnpliasizing Digital's superior silicon
technology or by efkcting architectural finesse. Use of
superior technology is self-explanatory; it involves
pushing leading-edgc technology to simply over-
whelm and eliminatc a dcsign issue. Architectural
finesse, on the other hand, typically involves a shiti in
operating mode o r configuration tliat allows a prob-
lem to be avoided altogether. Practical engineer i~~g is
the art of finding a balance benveen leading-edge
teclinology and nrchitect~~ral tincsse that produces the
best product.

Layered Platform Development

Platform development typic all!^ involves a simple
three-layer process: (1) determine a basic system
topology, (2) establish the electrical means by *Iiicl~
various computer components ill transmit signals
across the system topology, and (3) apply a signaling
protocol to the electrical transniissio~is to give them
meaning and to nllo\v the computer components to
communicate. System topology determines how
processor, memory, and I/O components of a coni-
puter systern arc interconnected. Computer intercon-
nects may involve simple buses, multiplexed buses,
switches, and mi~ltiticred buscs. The electrical means
for transmitting signals across a computer intercon-
nect ma!! in\rolvc bus driver technology, switch tech-
nology, and cloclc technology. Signaling proco-
cols apply namcs to system interconnect signals and

46 1)igital Technical Journal Vol. 7 No. 1 1995

define cycles in \vIiich the signals have valid values.
This naming and dcfinition allows each computer
component to undcrs ta~~d tlic trans~nissions of otlier
components.

As the AlphaScrver 8000 platform developmerit
progressed, this si~iiple three-layer platforni dcvelop-
ment model was found to be insufficient. Efforts to
achieve the Ion-latency performance goal and the sini-
ple product goals i~nco\!crcd unexpected design issues.
The resolution of tlicsc design issues led to the crc-
ation of a Inore robust scvcn-layer platform develop-
ment model. When certain multi-driver bus signals
thrc;~tened the cycle tinic of the Alphaserver 8000 sys-
ten1 bus, For example, the system's latency goals wcrc
threatened as well. The practical solution to this multi-
driver signal problem \\Ins the creation of specific sig-
naling conventions for problematic classes of signals.
This innovation lccl to the birth of the Signaling Layer
of the development model. Similarly, when tlie intc-
gration of PC1 I/O into the systeni was found to con-
flict wit11 primary protocol elements that were key to
lo\\/ latency processor-mcniory commu~~ication, the
concept o fa "supersct protocol" was created. This led
to the creation of the Supcrset Protocol Layer of tlie
dcvclopnient model. The seven-layer platforrn dcvel-
opment model is coritr.~stcd wjth the simple tlircc-
layer de\~elopnient model in Figure 1.

The analysis of tlic AlphaScrver 8000 platform
dcsign presented here traces tlie key systeni dcsign
decisions tlirougli each oftlic seven layers oFthc dcvel-
opnient process. Each layer \\!ill be described in greater
detail as this analysis proceeds.

PROTOCOL
LAYER

ELECTRICAL
TRANSPORT
LAYER

PHYSICAL
ARCHITECTURAL
LAYER

THREE-LAYER SEVEN-LAYER
DEVELOPMENT DEVELOPMENT
MODEL MODEL

1 .
Figure 1
Comparison of Con\/cntionol T h ~ ~ c c - l ~ ~ ~ c r Model with
Sc\,cn-layer Platform 1)evcloplncrlt Model

SUPERSET
PROTOCOL
LAYER

PRIMARY
PROTOCOL
LAYER

CONSISTENCY
CHECK
LAYER

SIGNALING
LAYER

ELECTRICAL
TRANSPORT
LAYER

Topological Layer
Server-class computers typically comprise processor,
memory, and I/O port components. These compo-
nents are usually fO111id in the form of P<:R modules.
A computer system's topology defines how these com-
puter componcnts are jnterconnected. Computer
topologies are many and varied. The IRM RISC
System/6000 SIMP, for example, links its modules by
means ofan address bus and a data switch. Its rnen~ory
modules are grouped into a single memory subsystem
witli one connection to the address bus and one co11-
nection to the data switch. The HP Hawlts SMP sys-
tem, by comparison, links its modules by means of
a single bus onto which address and data are multi-
plexed. The Ha\vlts system also groups its memory
into a single nienior!l subsptern witli one connection
to the multiplexed bus.7 Digital's DE<: 7000/ 10000
AYP also uses a single multiplexeii addrcss and data
bus. Unlike the I13M and HP systems, tlie 1)EC
7000/10000 AXP system allows its memory to be
distributed, witli multiple connections to its multi-
plexed bus.

None of the IRM, HP, or prior Digital systems meet
the latency goals of the AlphaServer 8000 platform.
Exactly ho\v much system topology contributes to
these systenls' latc~icics is ~~ncleiir. A multiplexed
address and data bus certainly crcatcs a s!/stcm bottle-
neck and can contribute to latency. Like\visc, ~~n i f i ed
memory subsystc~ns can often have associated over-
liead thdt can translate into latency. 111 addition to per-
formance issues, topologies such 'is tlic II3M switch-
based system have significant cost issues. If, for exam-
ple, a custo~iicr \vcre to purchase a sparsely configured
-nvo processors perhaps-IRM systcm, such a cus-
tonierulould be required to pay for tlic s\vitcli support
for up to eight processors. This crcatcs a high system
entry cost and a potentially lo\\,er incremental cost as
functionality js added to the system. In J simple bused
system, a customer pays only for what is needed to
support thc specific functionality rcquircd. This cre-
ates a more manageable entry cost and ,i smooth, if
slightly steeper, incremental cost. Froni Digital's mar-
keting perspective, this ~iiakes a bused systcm prefer-
able, provided it can satis@ bnndwidtli and latency
requirements.

Uniprocessor computer topologies, a n example
of which is shown in Figure 2, typically exhibit the
lowest memory read latencies of any computer class.
As such, this simple uniprocessor topology was chosen
as tlie basis from which to develop tlic Alphaserver
8000 platform topology. In the uniprocessor model,
processor chips communicate with D I M arrays
t h r o ~ ~ g l i separate address and data paths. Thcsc paths
include addrcss and data interfaces and buses. The
AlphaServcr 8000 topology was created by addi~ig a
second sct of interfaces benveen tlie address and data
buses and tlie L)lW array, and connecting additional

OPERATIONAL
LAYER

TOPOLOGICAL
LAYER

Vol. 7 No. 1 1995 47

PROCESSOR

MICROPROCESSOR

I I t4ERESS
BUS DATA I 1

DRAM ARRAY "I
Figure 2
Si~nplc Uniprocessor Sysrcm Topology

nlicroprocessors, nlemory arrays, and 1 / 0 ports to the
buses by nieans of similar interbces. The resultant
topology is sIio\vn in Figure 3. 'l'liis topology features
separate address and data buses. These buses together
al-e referred to as the Alphaserver SO00 systcni bus.

The topology presented in Figure 3 is a n abstract.
To Flesh out tliis abstract and nieasurc it against spe-
cifi c system goals, signal counts, cycle times, and bus
connection (slot) counts must be added. It is in this
cffort that practical engineering must be applied. T o
achieve the system's bandc\.idtli goal, for example, tlie
data bus could be iniplemcnted as a \vide bus with
a high clock frequency, or it coi~ld be replaced with a
switch-bascd data interconnect, liltc tliat of the IRM
RISC Systcm/6000 SMP. The liigh-frequency bus
presents a significant technological challenge in terms
of drivers and clocking. This challenge grows as tlie
number of bus slots grows. The growth of the tech-
nological challenge is a significant issuc given the
system's configuration goals. The s\vitcIi interconnect,
on thc othcr hand, avoids thc tccl~nological cli~illengcs
by providing more data paths at lo\ver clock frccluen-
cies. The lo\ver clock frequencies, lho\\lc\~cr, can trans-
late directly into additional latency. Given tlie
emphasis placed on Incrnory latcncy and tlic advan-
tages associated with simple bused systems, the practi-
cal dcsign choice was to adopt a wide, higli-frequency
data interconnect. The resultant AlpliaScrvcr 8000
systcni bus feati~res 9 slots, an address bus that
supports a 40-bit address space, and ii 256-bit (plus
error-correcting code [ECC]) data bus. To meet
configuration goals, processor ~nodulcs ncccssarily
support at lcast nvo microprocessors per module,
memory modules support up to 2 GB of DRAM stor-
age, and I/O port modules support up to 4 8 PC1
slots. To meet performance goals, both buses must
operate ;it a frequency of 100 MHz (1 0-ns cycle).

Tlie Alphaserver SO00 platform topology has a
number of advantages. The most significant advantage

48 Iligiral 'I'cchnicnl Journal Vol. 7 No. 1 1995

is that memory read latcncy from any processor to any
nieliiory array is comparable to tlie latency of a
uniprocessor system. The delay associated with nvo
interhccs-one address interface and one data inter-
face-is all tliat is addcd into the path. 111 addition, tlic
platform's simplc bus topology feati~res a low entry
cost, a simplc gro\vtIi path (just insert another mod-
ule) and flexible configuration (just about any module
can be placed in any slot).

Operational Layer
Tlie Operational L,aycr is so nnmcd for lack of :I bcttcr
descriptor. Tlie laycr is actually a place to clcfint: a
liigli-level system clocking strategy. This strategy has
nvo key colnponcnts: definition of target operating
fiequaicies and definition of n design methodolog!. to
support operation across all the defined operating fre-
quencies. Thc dcsign methodology component of tliis
strategy may seem better suited for a higher order
development laycr, si1c11 as the 1'1-otocol Layer.
However, because the methodology is logically associ-
ated wit11 thc system's operating frequency range and
the operating frequency range provides a foundation
for the Electrical Transport Laycr, it seemed appropri-
ate to include both components of tlie strategy in tlic
Operational Layer.

In personal computer (PC:)-class rnicroproccssor
systems, clocl< ratcs arc typicall!! slo\\l (33 M H z to 6 6
MHz). Cornplcnicntarp components capable of oper-
ating at these speeds arc readily available, e.g., trans-
ccivel.s, static ral~dom-access memory (SRAM), ASIC,
DIIAM, and programmable array logic (PAL.).
Therefore entire PC systems are typically run synchl-o-
nously, i.e., the systcm logic (typically a motherbo:lrd)
and thc microprocessor 1.~111 at identical clock speeds.
Alpha processors, o n the othcr hand, run at clock ratcs
exceeding 250 MHz. The current state of comple-
mentary compollcnts niakcs running systcm logic : ~ t
Alpha processor r ~ t c s impractical if not impossible.
Many of these coniponcnts cannot pcrforni j~ltcrnal
filnctions at a 250-MHz rate, let a lo~ie transfers
benveen componcntb.

Digital's 1)E(: 7000/10000 &YP systems sol\,ed thc
probleni of Alplia microprocessor and systcm clock
disparity by running both the Alplia microproccsso~.
and tlie DEC 7000/10000 ASP system liard\varc at
their respective maxinii~~ii clock rates and synchroniz-
ing address and data transfers between the micro-
processor and thc system. Each time a transfcr \\us
sync.hronjzed, ho\vc\/cr, a synclironizatio~i latcncy
penalty \\,as addcd to the latcncy of tlie transfcr. In the
DEC 7000/10000 AXP systcni, nvo synchronization
penaltics-one for Jn addrcss trnnsfer to the s!,stcln
and one for a Jat.1 transfcr to the processor-arc addcd
to each memory rend latency. With nlultiple dat.1
transfers, tlic data transfer fi-0111 the system to tlic
processor cnn be particularly large. When combined,

PROCESSOR 3

DATA ADDRESS
INTERFACE INTERFACE

4 1 1 4 1 I
J 4 4 1 1 1 DATA BUS

C J

/I tit ADDRESS BUS 111 ,,

110 PORT 3

I10 PORT 2

DRAM ARRAY

MEMORY 1

Figure 3
AIpIi.~Scrvcr SO00 Mult~proccssor Systcrn Topology

110 PORT 1

the nvo penalties nddcd nearly 125 ns to the 1)EC
7000/10000 AXP read latency, or approsimately 25
percent of the total 560-11s latency. The same 125 ns,
liowc\/c~-, could add another 6 0 percent to the
Alphaserver SO00 p1atfi)rm's lower target latency of
200 ns.

C;i\~cn its latency goals, the AlphaSer\ler 8000 plat-
form implements a cloclting methodology that mini-
mizcs synchronization penalties 2nd t h i ~ s nii~iiniizcs
read latency. This methodology involves clocking the
cntirc Alphaserver systcln-up to the 1 / 0 channels-

t l l , t l I
- DATA

INTERFACE

synchronous to the microprocessor in such a way
that the Alpha microprocessor operates at a clock fre-
q i ~ u ~ c y that is a direct multiplc of the systern clock
freql~c~lcy. With a 100-MHz (10-ns cycle) clock rate,
for esamplc, thc AlpliaScrver 8000 could support
a 200-MHz (5-11s cyclc) Alpha processor i~sing a
2X clock multiplier. Sincc the processor must still
synchronize \\/it11 a system clock edge when transfcr-
ring address and data to tlie system, synchronization
penalties are not eliminated altogether. They can,
however, be limited to less than 10 ns, or 5 percent of
tlie AlphaServer 8000 platfi)rni's total read latency.

S~~nclironous cloclting by means of clock m~~l t ip les
is not L I I I ~ ~ L I ~ and in~~ovntivc in and of itself. The
uniqueness of the AlphaScrvcr SO00 cloclcing strategy
lies in its flexibility. Sincc thc LAlpliaSer\~er 8000 plat-
form must support at least three generations ofAlpha
processors to satisfy its product goals and the spccific

-
ADDRESS
INTERFACE

operating fiequencics of those processors is difficult to
predict, the AlpliaScr\~cr 8000 platform ~iiust be capa-
ble of operating across a range of cloclc frequencies.
Specifically the AlpliaSer\ler 8000 platform is capable
of operating at clock frequencies between 62.5 MHz
(16-ns cycle) and 100 MHz (10-ns cycle).

Operating across a range of frequencies may seem a
trivial reqi~irenicnt to meet; if logic \arere designed to
operate at a 10-ns cycle time, jt should certainly con-
tinue to hnction electrically at a 16-11s cyclc time. The
real issues that this frccluency range creates, howcver,
are much more subtle. DRAMs, for example, require a
periodic refresh. The refresh period for typical DRAM
may be 50 niilliseconds (ms). If a system were
designed to a 10-ns clock rate, the system \vould be
designed to initiate a DRAM refresh every 5,000,000
cycles. If the s)lstcni \\)ere to be slowed to a 16-11s clock
rate, the systern \vould initiate a DRAM refresh cvcry
8 0 nis based o n tlic same 5,000,000 cycles. This could
cause DRAMs to lose state and corrupt s y s t c ~ i ~ opcra-
tion. Similarly, DRAMS have a fixed read access time.
The AlphaServer 8400/8200 TMEM module, for
example, uses 60-11s DRAMs. If the DRAM'S con-
troller is designed as a '/-cycle controller and clocked at
a 10-11s clock rate, it \voiild access tlie 60-11s D W M i l l

70 11s. If the system were slowed to a 16-11s clock rate,
the system \ \ ~ O L I I ~ , using the same controller, consume
112 ns in accessing the same 60-ns DRAM. This appli-
cation of a single simple controller over a frequency

Digital T'cclinical J o ~ ~ r n a l Vol. 7 No. 1 1995 49

range directly increases the DRAM'S rcad latency and
decreases the 1)RAlM's bandwidth. This non-opt i~na l
DRAM performance in turn directly increases the sys-
t em read late~icy and decreases the system bandwicltli.

T h e AlphaServer 8 0 0 0 platform design addresses
these issues by imple~lient ing controllers that can be
r e c o n f i g ~ ~ r e d b'ised o n the system's specific operating
frequency. TJic TIMEM module, for example, iniplc-
ments a reconfgurable controller for sequencing the
reads ancl writes o f its DRAMS. This controller has
three settings: o n e for cycle times between 1 0 ns and
11 .2 ns, one for cycle times between 1 1 . 3 ns and 12 .9
ns, and o n e for cycle times beb\!ccn 1 3 ns and 1 6 ns.
Each setting accesses the DRAMS in differing ~ l u m b c r s
o f system clock cycles, but all three modes access
the DRAlMs in approximately the same number o f
nanoseconds. By allowing flexible reconfiguration,
this c o ~ ~ t r o l l e r allows the TMEM t o keep the 1)RAM's
read latency 'lnd bandwidth as close t o ideal as pos-
sible. O t h e r cxa~nples o f reconfgurablc controllers
are the TMF,l\/l's refresh timer and the TLEP's cache
controller.

I t should be noted here that tlic AlpliaServer 8 0 0 0
operating frequency range and processor-based fre-
quency selection account for the disparities bcbvccn
the AlphaScrver 8 0 0 0 platform's handwidth capability
and the AlphaScrver 8 4 0 0 and 8 2 0 0 products' band-
width capabilities. T h e Alpha 2 1 1 6 4 processor is the
basis for the 8 4 0 0 and 8 2 0 0 products. l'liis 3 0 0 - M H z
(3 .33-ns c!rcle) microprocessor, combined ulith a 4x
clock frequency multiplier, sets the system clock frc-
quency at 7 5 M H z (13.3-ns cycle). This 13.3-11s cycle
time, when applied t o the 256-b i t data bus, produccs
the 1 ,600 MR/s o f data band\vidtIi. T h e cycle time
increases the rcad latency o f the 8 4 0 0 and the 8 2 0 0 t o
some extent as \\,ell, bu t the reconfigurablc DRAM
controllers help t o mitigate this effect.

Electrical Transport Layer
When the bused system topology was sclcctcd in the
Topological Layer o f the AlphaScr\lcr 8 0 0 0 platform
development, a practical cnginccri~lg decision was
made t o emphasize leading-edge technology as the
means t o accomplish o u r p e r f o r r n . 1 ~ ~ ~ goals, 2s

opposed t o elegant architectural chicanery. I t \\,as
observed in the topological discussion that, with the
selected system topology, bus cycle time \\!as critical t o
meeting the platform's performance goals. T b c
Electrical Transport Layer o f the platform develop-
ment in\~olved sclccting o r dc\,cloping the centcr-
plane, connector, clocking, and silicon interface
technology that \\,auld allo\\~ the AlphaScr\~er SO00
system bus t o operate at a 100-i\/IHz clock frequency.
T h e most inno\ /~t i \ le o f the technological develop-
ments that resulted from this effort were the plat-
form's clocking system and its ctrstom bus driver/
receiver cel I .

To put the Alp1iaSe1-ver 8 0 0 0 1 0 0 - M H z system bus
goal in perspective, consider the o p e r ~ t i n g fi-ccluencies
o f a number o f today's highly competitive micro-
processors."The NcsCen N s 5 8 6 operates at 9 3 M H z .
T h e Intel Pentiuni, Cyrix iMl, and AMD KS all oper-
ate at 1 0 0 M H z . T h e Intel 1'6 opcratcs at 1 3 3 l\/IHz.
In all these microprocessors, the loo+/- M H z oper-
ation takes place o n n silicon die less than 1 inch
scluxc. To meet its goals, the AlphaSer\rcr 8 0 0 0 s!a-
tern bus must transfer data from an interface o n a
module in any slot o n the system bus t o an interface o n
another module in any o ther slot o n the system bus
across a 13-inch-long \\,ire etch, \\/ith ninc etch stubs
and ninc connectors, in the same 1 0 ns in \\~liicli these
microprocessors transfer data across 1 -inch dies. By
any measure this is n daunt ing task.

A brealzdo\vn o f the e le~nents that determine nii11i-
IIILIIII cycle tirne aptly demonstrates thc significance o f
clock system design, bus driver dcsign, and b t ~ s
receiver design in the AlpliaServer 8 0 0 0 system bus
devc lopn~ent . b l i n i ~ n u m b ~ ~ s c!,clc tirnc is tlic mini-
mum time requircd hct\\,ecn clock edgcs during \ \hich
data is dri\!en from a bus dri\rer cell o n o n e clock cdgc
and is received i ~ i t o a bus rccei\~er cell on the nest clock
edge. An equation for determining the minimum cycle
time is sho\vn below. 7;,,,,,, is the minimum cycle t i ~ n e .
7;,,.0i, is the time, rnc3s~1red from a rising clock edge,
that is required for a bus driver t o dri\zc J nc\v bus sig-
n ~ l le\,el t o all system bus rccci\,crs. /;,,,\; is the time a
bus receiver needs t o process a nc\\. bus signal le\~el
before the signal can be clocked in to the receiver cell.
7;kc,11, is the \!ariation bct\\leen the clock used t o clock
tlic bus driver and the clock used t o clock the bus
receiver. ,,,,[,, 7; ,.,,!,,, and 7;, , , , , must all be n~inimized
t o achieve the lo\\icst possible cycle time. T h e \ A L I C o f
7;k,,ll is deterrni~icd by the system clock dcsign. T h e
\,alucs o f 5,. ,,/, ancl 7; ,,,! ,ire determined by the bus
dri\~er/recei\,cr cell dcsign.

AlphaServer 8000 System Bus Interface T o pro\ridc
some contes t f o ~ the clock and bus dl-ivcr/recei\~er
discussions, it is ncccss,~ry t o briefly describe the stan-
dard AlphaSer\~er SO00 system bus in tc rhcc . Each
Alpl~aSer~rer SO00 module implements a standard
s)lstcn~ bus i n t c r f ~ ~ c c . This in te rhcc consists o f five
ASICs: o n e interfaces t o the AlpliaSer\~cr 8 0 0 0
address bus, and four interface t o tlic AlphaServer
8 0 0 0 data bus." E:~cli ASIC is i ~ n p l e ~ n c n t e d in
Digital's 0 .75-~nic romctcr , 3.3-\volt (V) co~i ip lcmcn-
tnry mctal-oxide semiconductor (CMOS) tccl i~iologr
and features u p t o 100 ,000 gates. Each ASIC is pack-
dged in a 447-p in i~~tc rs t i t i a l pi11 grid array (IPGA)
and features u p t o 2 7 3 user I/Os.

Essential t o thc AlphaScrver 8 0 0 0 dc\lelolxment
uicrc the speed of t l i c CIMOS interface ASIC tcchnol-
on/ and the dc \ fc lop i iu i t team's ability t o influence

\loI. 7 No. 1 1995

the ASIC design process. "Influencing tlie design
process" translated to the ability to develop a standard
cell design library and proccss that is for and in concert
with the de\leJopment of the Alphaserver 8000 plat-
form. The standard ccll library, together with the
CMOS silicon technology, provided the A.lphaServer
8000 platform's required speed; co~nplex logic filnc-
tions (5 to 8 levels of complex logic gates) can be per-
fornied within a 10-ns cycle. "Influencing tlie design
process" also translated to the ability to design a Fully
custom bus driver/rcceiver cell. Thus the develop-
ment team could create a custom driver/receiver cell
tailored to the specific needs of the AlphaServer 8000
system bus.

Clock Technology The primary goal of the
AlphaServer 8000 platform clock distribution systeni
was to maintain a ske\\! (Ti,,,,.) as small as possible
benveen any nvo clocks in the systeni, while delivering
clocks to all clockcd systcm components. :The goal of
minimum skew is consistent with attaining the lowcst
possible bus cycle time, the highest possible system
data bandwidth, and thc lowcst possible memory read
latency. I t is important to note that in the AlpliaScrver
SO00 platform, skew benveen clocks is not simply
measured at the clock pins of the various clocked
components. Ske\v is measurcd and, more important,
managed at the actilal "point of use" of the clock, ti)r
example, at the clock pins ofASIC flip-flops. This is an
important point when dealing with ASICs. Since dif-
ferent copies of even the same ASIC design can have
different clock insertion delays, additional skew can be
injected between clocks aher the clocks pass their
ASIC pins.

The Alphaserver 8000 clock distribution system is
implemented according to a two-tier scheme. 'The frst
tier, tlie skl.yterrl clock ~listrih~.ition, distributes a clean
radio frequency (W) sinc wave clock to each system
bus module. The second tier, tlie mod~l le clock distri-
hulion, converts tlic systeni RF sine wave clock to a
digital clock and distributes tlic digital clock to each
niodi~le's components. TIic module clock distribution
tier also manages the skcw benveen the system RE' sine
wave clock and all copies of each module's digital
clock by means of an innovative "remote delay coni-
pensation" meclianisni. The system clock distribution
delivers clocks to the nine system bus niodule slots
with a maximum of 4 0 picoseconds (ps) of skcw.
The module clock distribution delivers clocks to tlic
various module components, most notably system
bus interface ASICs, with a maximum of 980 ps of
skew. The skew between any ASIC flip-flop on any
Alphaserver 8000 modulc and any ASIC flip-flop on
any other AlphaServer 8000 module is guaranteed to
be less than 1,100 ps.

The AlphaServer 8000 system clock distribution
begins on the system clock module with a single-

ended RF oscillatol., a constant impedance bandpass
filter, and a ~ii~le-way power splitter. Thc power splitter,
by way of the bandpass filter, produces nine spectrally
clean, amplitude-reduced copies of thc oscillator sine
wave. These nine o ~ ~ t p ~ ~ t s are tightly matched in phase
and amplitude. Thcy are distributed to the nine system
bus module connectors by means of matched-length,
shrouded, controlled-impedance etch. This design
provides tlie modules \\lit11 low skew (30 to 4 0 ps),
high-quality (greater than 20-decibel signal-to-noise
ratio) clocks.

The RF sine wave clock was an ideal selection for
system clock distribution. By eliminating all high-
order harnionics, the edge rates and propagation times
o f t h e clock wave are fixed and predictable across the
distribution network. This predictability eliminates
variation in the clock as perceived by the clock receiver
on each module, thus niininiizing skew. I t also greatly
reduces constraints o n the design of co~inectors, etch,
termination, ctc.

The AlphaServer 8000 module clock distribu-
tion is a boilerplate design that is replicated on each
AlphaServer 8000 module. O n each module, the
system sinc wave clock is terminated by a single-
ended-to-dual-differential output transformer. This
transfor~ner produces two phase- and amplitude-
matched differential clocks that are fed into one or two
Alphaserver 8000 clock repeater c.hips (DC285
chips). These chips convert the sine wave clocks into
CMOS-compatible digital clocks; distribute multiple
copies of the digital clocks to various module com-
ponents, including tlie system bus interface ASICs;
and perform remote delay clock regulation on each
clock copy.

The remote delay clock regulation is performed by a
custom, digital delay-locked loop (DLL) circuit. This
DLL circuit \vas devised specifically to deskew clocks
all the way to their point of use in the system bus inter-
face ASICs. The principles of DLL-based remote delay
clock rcg~~la t ion are simple. The sum of the delays
associated with (1) the clock repeater chips, (2) the
module clock distribution ctch, and (3) the ASIC
clock distribution l~envork constitutes the insertion
delay of the ASIC; point-of-use clock \vith respect to
the systeni sinc wave clock. With no clock regulation,
this delay appears as skew benveen the system clock
and the point-of-use ASIC clock. Between ASlCs on
different modules, a fixed portion of the clock inser-
tion delay will correlate and need not be fi~ctored into
the overall system skew. Since the insertion delay can
easily approach 7 ns, however, the variation in the
insertion delays to different ASICs, which must be fac-
tored into the overall system skew, can also be signifi-
cant. To reduce the skew between the system sine
wave clock and the point-of-use ASIC clock, tlie clock
repeater uses a digital delay line to add delay to the
clock repeater output clock. Enougli delay is added so

Digital Technical Jol~rnal Vol. 7 N o . 1 1995 51

that the insertion delay pl i~s the delay-line delay is
cqual to an integer multiple of the system clock. This
delay moves the point-of-use clock ahcad to a point
where it again lines u p with the system clock. As the
systern operates, the system and point-of-use clocks
may drifi apart. 111 response, the clock repeater adjusts
its delay line to pi111 the cloclts back together. This
process of delaying clocks and d!mamically adjusting
the delay is called remote delay clock regulation.
When the clock separation, or drift, is measured by a
clock "replica loop" and the clock delay is inserted by
means o f a digital delay line, the process is called DLL-
based remote delay clock regulation.10 Using the clock
repeater chips in this way, Alphaserver 8000 n~odules
are able to acllieve point-of-use t o point-of-use skew
of approxin~ately 930 to 980 ps. Combined \\lit11 the
system module-to-module skew of 30 to 4 0 ps, this
provides tlie quoted system-\vide clock skc\v of no
more than 1,100 ps.

It is \vorth noting that although the AlpIiaServer
clock repeater \\/as primarily developed for Llse wit11
system bus interface ASICs, it is a generally vcrsatilc
part. It may, for instance, be used with non-ASIC parts
such as transceivers and synchronous Sl&Vs. In these
cases, the clock pin of the 11011-ASIC part is treated as
the point of use of tlie clock. The clock repeater may
also be used for precise positioning of clock edges. O n
the TLEP module, for example, the Alpha 21 164
microprocessor's system clock is synchronized to a
clock repeater output by means of a digital pliase-
locked loop (PLL) o n the microproccssor. The Alpha
2 1 164's PLL operates in such a way that the 2 1 164's
clock is always in phase with or always trailing the sys-
ten1 (reference) clock. It can trail by as I I I L I C I I as 2 11s.
Such a large clock disparity in this fixed orjentation call
create setup timc problenis for transfers from the
Alpha 21164 to the system and hold-tinw problems
for transfers from the systern to the Alpha 2 1 164. The
TLEP design addressed this problem by lengthening
the replica loop associated with the Alpha 21 164 clock
and thereby shifting the microprocessor clock 1 ns
earlier than the balance of the clock repeater output
clocks. Since the Alpha 21 164 clock was either in
pliase o r 2 ns later than its associated clock repeater
clock, which is 1 ns carlicr than the rest of the clock
repeater clocks, the 2 1164 clock now appears to be
either 1 ns earlier or 1 ns later than the rest o f the clock
repeater system clocks. This centering of the module
clocks with respect to the 21164 clock halves the
required setup or hold rnargin.ll. l2. I 4

Bus Driver Technology Like the Alphaserver 8000
clock system, the AlphaScrvcr 8000 system bus driver/
receiver cell was specifically designed to minimize bus
cycle time. As with the clock logic, the goal of mini-
mizing cycle time was a result of the effort to minimize
system read latency and maximize systcm data band-

width. In the effort to minimize tlie b ~ ~ s cycle time,
the design of the AlphaServer 8000 bus driver/
receiver cell was focused on minimizing the propaga-
tion delay of the system bus driver circuit and
minimizing the setup time (5;,, , , , ,) of tlic system bus
receiver.

The Alphaserver 8000 system bus driver/receiver
cell is a fi~lly custom CMOS I/O ccll, \vhich incorpo-
rates a bus driver, a bus recei\.er, and an output flip-
flop and an input tlip-flop in a single ccll. Consisting of
nearly 200 metal oxide semiconductor field-effect
transistors (MOSFETs), the bus driver cell is powered
by standard 3.3-V CMOS power, but drives the bus at
a much lower 1 .S-V level (i.e., voltage s\vings benvecn
0 and 1.5 V). This lo\\rvoltagc o u t p ~ ~ t serves to reduce
the bus dri\u-'s po\\lcr cons~~niption and permits c o n -
patibility \vitIi fc~ture CIMOS tcchnologics that are
po~vercd by voltages less than 3 .3 V. Man\, of the bus
driver cell's critic,il characteristics arc "programnia-
blc," such as the 1.5-V output, t l ~ c receiver s\vitcJiing
point, the driver's drive current limit, and the driver's
rise and fall times. These values are programmed and,
most important, are held constant by means of ref-
erence voltages and resistances external to the bus
driver/reccivcr cell's ASIC package. They allo\v the
cell to produce unifornm, predictable, high-performance
waveforms and to transmit and receive data in a clock
cycle of 10 ns.

The bus drivcr/receiver's high performnnce begins
with its o u t p l ~ t flip-flop and driver logic. The output
tlip-flop is designed for ~ i~ in i rnum delay and is inte-
grdlly linked to tlie output driver. This configuration
produces clocl<-to-outpl~t times of 0 .5 ns to 1 ns. The
output dri\'cr itself, with its programmable output
voltage and cdgc rates, allo\vs the shape of the output
\va\/cform to be carefully controlled. The cell's pro-
gramniablc values are set such that the Alphaserver
system bus waveform balances tlie edge rate effects of
increased crosstalk cvith increascd propagation delay.
Furthermore, the bus waveforni is shaped in such a
way that it allows incident wave transmission of sig-
nals. As such, a signal can be received o n its initial
propagation across the bus centerplane, as opposcd to
waiting For signal reflections to scttlc. All the driver
characteristics serve to reduce bus scttli~ig time. When
combined \vith the lo\\) clock-to-ot~tput timc of the
output flip-flop, this reduced settling time produces a
very low driver circuit propagation delay (T,,.,,).

Tlic bus iiri\lcr/recei\ler cell's receiver and input
flip-flop f ~r thc r contribute to its high performance.
Dcsigncd with a programmable rcfcrcncc voltagc, the
receiver has a very precise switching point. Whereas
typical receivers may have a 200-~nilli\rolt (mV) to
300-nlV s\vitching \vindow, the bus drivcr/rccciver
cell's rcccivcr has a switching \ \ , i ~ l d o ~ ~ as small as
4 0 mV. This diminished switching uncertainty directly
reduces thc receiver's maximum sct i~p timc. The input

52 1)igiral Technical Journal Vol. 7 N o . 1 1995

tlip-flop's master latch is a sense-amplifier-based latch
as opposed to a simple inverter-based latch. The sense
amplifier, with its ability to resolve small voltage differ-
entials niucli faster than standard inverters, allows tlie
master latch to determine its next state much more
rapidly than a standard latch. This characteristic serves
to reduce both the receiver's setup and hold time
requirements.

In general, the setup and hold tinie requirements of
a state elcment are interrelated. The setup time, for
esample, can be reduced at tlie expense of hold time.
Since setup time contributes t o cycle time and hold
tinie may not, reducing setup time is desirable. The
AlphaServer 8000 bus driver/receiver cell requires
at most 300 ps of combined setup and hold time.
However, since the edge rates of the cell driver are so
well controlled, the minimum propagation time for a
bus signal is always guaranteed to exceed 300 ps. As
a result, the bus receiver circuit is designed with all
300 ps charged as hold time. This renders a minimized
receiver setup time (T<,,,,J of 0 ps.

The AlphaServer 8000 bus driver/receiver cells
have a number of additional features that further
reduce the propagation delay (q>,,,/)) of the driver cir-
cuit. The cell, for example, features in-cell bus termi-
nation, which provides the system bus with full,
distributed termination. Simulations have shown that
such distributed termination can provide an advantage
of 500 ps over common end termination. The bus
driver/receiver cell's termination resistance, like other
cell parameters, is programmable and made identical
throughout all system ASICs by means of a reference
resistor external to each ASIC.

The bus driver/receiver cell also features a special
preconditioning function that improves the driver's
propagation delay by as 111uch as 1,500 ps. This feature
causes all bus drivers to begin driving toward the
opposite state each time they receive a new value horn
the bus. If the bus is changing state from one cycle to
the next, thc feature causes all drivers to begin driving
the bus to a new state in the next cycle. In doing so, all
bus driver cell drivers contribute current and acceler-
ate the bus transition. If the bus is not changing from
one cycle t o the next, the drivers simply push the state
of the bus toward the opposite state, but only to a
benign voltage urcll short of tlie switching threshold.

All of the bus driver cell's programmable features,
such as switching point, output voltage, edge rates,
and termination resistance, make the bus driver cell a
very stable and high-performance interface cell. The
existence of these features, however, is an element of
the bus driver cell's complernentar)r process-voltage-
temperature (PVT) compensation function. PVT com-
pensation is meant to makc a device's operating
characteristics independent of variations in the semi-
conductor process, power supply voltage, and operat-
ing temperature. By applying PVT compensation in

every AlphaServer system bus interface ASIC, bus dri-
ver cells in different ASICs, for example, can drive
nearly identical system bus waveforms even if those
ASICs come from manufacturing lots with varying
speed characteristics. Alphaserver 8000 PVT compen-
sation is based on reference voltages and resistances
provided by very precise, low-cost, module-level com-
ponents. The PVT compensation circuit measures
these references and configures internal voltages and
resistances so that all bus driver cells can operate uni-
formly and predictably. By creating predictability and
thus reducing uncertainty and skew, bus cycle time is
minimized.

Signaling Layer
Powerful though it may be, the AlphaServer 8000 bus
driver/receiver cell is not witliout limitations. During
its development, it was found that the bus driver cell
could be developed to drive the AlphaSer\~er 8000 sys-
tem bus in 10 11s under a limited number of condi-
tions. When the driver cell asserted a deasserted (near
0 V) bus line o r deasserted a bus line that had been
asserted (near 1.5 V) for only one cycle, for example,
10-ns timing could readily be met. When the driver
attempted to deassert a bus line tliat had been asserted
for more than one cycle by multiple drivers, however,
10-ns timing could not be met. These limitations have
significant in~plications for protocol development.
Protocols typically have a number of signals that can
be driven by multiple drivers. These may include cache
status signals and bus flow control signals. Protocols
also typically include a number of signals that can be
asserted for many cycles. These map include bank busy
signals or arbitration request signals. Clearly the impli-
cations are that the liniitations of the bus driver/
receiver cell would cause the system either to fall short
of its cycle time and performance goals o r to be inca-
pable of supporting a workable bus protocol.

With the bus driver/receiver cell pushing tech-
nology to its limits, the solutions to this problem
were extremely limited. The system cycle time could
be slowed down to accommodate all signal transitions
within a single cycle, regardless of the charge state of
the signal line; or a signaling protocol could be devel-
oped that would avoid charging a signal to thc point
where it could not transition in 10 ns; o r the physical
topology of the system could be reconsidered with
the goal of finding a new topology that met the system
goals at a slower clock rate. The first option of slow-
ing the clock was clearly unacceptable; it could not
satis@ the system's late~icy and bandwidth goals given
the system's topology. The third option could poten-
tially satisfjl tlie system's latency and bandwidth goals,
but came at the expense of tlie favorable qualities
of the simple bus outlined in the Topological Layer
and at the risk that the neb\/ topology would suffer
similar, unforeseen pitfalls. The option of developing a

Dinital Technical Jo~~rnal Vol. 7 No. 1 1995 5 3

signaling protocol, o n tlie other hand, could satistj tlic
s)steni's performance goals \vitli little or no risk. A sig-
naling protocol was clearly the practical solution to the
bus driver/reccivcr cell limitations.

The Signaling Layer of the platform dcvclopnicnt
model introduces tlie AlphaScr\rer 8000 signaling pro-
tocol. This protocol was dc\leloped by creating a list of
signal classes, based o n driver counts and assertion and
deassertion characteristics, and by associating a specific
signaling protocol \\jitli cacli class. The signal classes
and their protocols are listed in Table 2. As the
Alphaserver 8000 primary protocol \ifas dc\lclopcd,
each bus signal was assigned a signal class. As
AIphaSer\/cr 8400/8200 hardware was developed,
each bus signal was designed to operate according to
tlie signaling protocol associated with its s ignal i~~g
class. The system bus address and data signals, for
example, fall into the second class of signals. As a
result, the AlphaScrver 8400/8200 modules are
designed to leave tristate cycles benveen cacli address
~ n d data transfer on the svstem bus.

The AlphaSer\/er system bus cache status sig~lals
(TLSB-Shared and TLS13-Dirty) and tlie spsteni
bus t l o ~ l control signals (TUB-Hold and
TUB-Arb-Supl>rcss) demonstrate a note\\~ortliy para-
digm that results fro1i1 the Alphaserver 8000 sig~l;lling
protocol. All thcsc signals are defined such that at
times they must be asserted for multiple cycles. All
these signals also hll into the fourth signal class, which
expressly prohibits driving the signals for niultiple
c)lcles. When these t\vo contl-adictory requircmcnts
exist, the result is n class of signals p ~ ~ l s e d to indicate
multiple cycles of constant assertion. Logic inside each
AlphaSer\w- 8000-based ~iiodule must be designed
to convert these pulsed signals to constantly asserted
signals within its system bus interface. Note that \vhcn
signals such as these are discussed in the protocol

Table 2
Al~haServer 8000 Sianal Classes

sections of this paper, the term "asserted" is used to
imply constant assertion, \\/it11 the ~~nderstanding that
the signals may in fact be pulsed.

Consistency Check Layer
The Consistcnc)r Check Layer defines a method for
maintaining system integrity. Specifically, it defines
methods for detecting errors and inconsistencies in the
system and, more important, mcthods for logging
errors in the presence of historically disal~ling errors.
Although it docs 1101 con t r ib~~ tc directly to the
AlpliaScrvcr 8000 platform's performance goals or
stated product goals, the Consistency Check Layer
contributes an extremely usefi~l feature to tlie
MphaScrvcr 8000 products. It is included in the paper
for the sake of completeness in the analysis of the
seven-layer platfi)rm dcvelopnient nlodel.

The AlpliaScr\lcr 8000-based systems employ a
number of c~.ror-checking mechanisms. Thcsc include
transn~it cliecks, sequence chccl<s, assertion checks,
and time-oi~ts. If any error is dctccted by an
AlphaScr\~cr 8000 nodule by means of these mecha-
nisms, the module responds by asserting a special
" F a ~ ~ l t " signal on the AIphaScr\~cr 8000 system bus.
This Fault signal has the effect ofpartially resetting all
system bus intcrfaces and processors, and trapping the
processors to "machine check" error-handling rou-
tines. The partial reset clears all s)~stc~ii state, with the
exception o f error registers. This rcs)lncIironizes all
system bus intcrfi1ces and elimin,~tcs all potentially
unser\~iccablc transactions left pending in the systcni.
Thus tlie systcm can begin execution of tlie machine-
check routines in a rcsct system. Although the routines
are not gi~aranrecd to be able to co~nplete an error log
in the prcscncc of an error, it is bclicvcd that this
mechanism will increase the probability of a successf~l
error log.

Signal Driver Count and Signal
Class AssertionIDeassertion Characteristics Signaling Protocol

1 Single driver with multiple receivers Never driven more than two consecutive cycles
2 Multiple drivers with multiple receivers Tristate cycle on the bus when driver changes

One driver a t a time Never driven more than two consecutive cycles
Multiple drivers with multiple receivers

Many drivers at once possible
Assertion time may differ from driver
to driver
Deassertion time is fixed
Multiple drivers with multiple receivers

Many drivers a t once possible
Timinq is fixed

Value received on signal deassertion is
unpredictable and must be ignored
Tristate cycle on the bus when driver changes
Never driven in two consecutive cycles

Value received on signal deassertion is
unpredictable and must be ignored
Tristate cycle on the bus when driver changes
Never driven in two consecutive cycles

The Alphaserver 8000 platform's Fault crror-
handling feature is particularly usefill in recovering
error state from a computer in a "hung" statc. A com-
puter enters a hung statc \ilhen an error occurs that
stops all progress in the computer system. If a proccs-
sor is waiting for a response to a read, for esamplc, and
the read response is n ~) t forthcoming due to an crror,
the system hangs while \\!siting for the responsc. Thc
desktop model for error handling \vouId require J sys-
tem reset to recover from SLICII an error. The process of
the system reset, lio~lever, \\lould purge error statc.
The purge, in turn, makes error diagnosis extremely
difficult. This desktop model is not unique to desktop
systems. I t is also employed in server-class machines
such as Digital's DEC 7000/10000 AXP systems.
Although this model may be acceptable on tlie desk-
top, it is most undesirable in an enterprise server
system. The AlphaServer 8000-based systems use a
time-out counter to detect a hung system and tlie
Fault error-handling technique to recover an error log
in the event of a Ilung system. The result is a robust
error-handling system that is appropriate in an cntcr-
prise server.

Primary Protocol Layer
The Prjmary Protocol L.ayer of the platform dc\jclop-
ment assigns names and characteristics to thc various
system bus signals and uses these names and char~cter-
istics to define higher-order system bus transactions
and ti~nctions. System bus transactions may include
reads of data from memory or writes of data to meni-
ory. These transactions are the primary business of
a computer system and its protocol. If a system effi-
ciently executes read and write transactions, it will per-
form better than a system that does not. System bus
functions may includc mapping memory addresses
to specific memory banks or arbitrating for access to
system buses. These functions cnable system bus trans-
actions to operatc in environments with rn~~l t ip le
processors arbitrating for access to the system bus and
multiple banks of memory.

AlphaServer 8000 system bus transactions relate
directly into the platform's perfoniiance nletrics. Thc
syste~n's memory read latency, for example, is equal to
the time it takes for a processor to issue and cornplctc a
system bus read transaction. The number of s!!stcni

3

READ
DRIVEN
ON
SYSTEM
BUS

PROCESSOR
ISSUES
READ

MEMORY
BANK
DECODES
READ
ADDRESS

INTERFACE
ARBITRATES
FOR
ADDRESS
BUS

bus transactions and their associated data that the sys-
tem bus can process in a given period of t i ~ u e define
the system bus band\vidtIi.

The components of a typical memory read transac-
ti011 are shown in a timeline in Figi~rc 4. 'l'his timeline
of c o m p o ~ ~ c n t s is based 011 a system that is an abstract
of tlie DEC 7000/10000 MI' systems. To minimize
a system's memory read latency, each component
of the read transaction timeline must be minimized.
Components 1, 3,7 , and 8 of the timeline are simply
data and address transfers across buses and through
interfaces. The delays associated with tlicse compo-
nents are largely determined by system cyde time; they
cannot be affected by the protocol to any great extent.
Component 5 is the DRAM access time. I t is mini-
mized by the rcconfigurable controllers described in
the Operational Layer. The remaining components,
(2) address bus arbitration, (4) nlemory bank decode,
and (6) data bus arbitration, fall into the domain of the
primary protocol. These elements must be designed to
contribute minimal delay to the overall latency.

The effects of protocol on a system's d.lta band-
cvidth are a little Inore difficult to quantib than the
effects of protocol on memory read latency. In gen-
eral, the theoretical maximum systcm band\vidth is
equd to either the sum of the bnnd\\,idths o f the s y -
tern's memory banks or the maximum system bus
bandlvidth, whichever is smaller. If the system band-
width is limited by memory module bandwidth, it is
essential t o kccp as many memory modules .I ctlve - ' as
possible. If, for example, eight banks of memory are
required to sustain 100 percent of the maximum sys-
tem bandwidth, but the system can support only four
outstanding commands, only four banks can be kept
busy and only 50 percent of the maximum bandwidth
can be rendered. 111 another example, if 10 percent of
the time this system freezes all but one bank of mem-
ory to perform special atomic functions o n special data
blocks, the system's bandwidth will suffer 11e;lrly a 10
percent penalty (73/80 possible Iiiemorp accesses \a-
sus 80/80 possible memory accesses). If the system
band\\!jdth is limited by the band\\,idtli of the system
bus, the masimum system banduridth can be achieved
only when the protocol allo\\,s system nlodules to
drive data onto the systen~ data bus in c\fcry available
cycle on thc data bus. When a processor reads a block

MEMORY
ACCESSES
DATA
FROM
DRAMS

MEMORY
ARBITRATES
FOR
DATA
BUS

7

DATA
DRIVEN
ON
DATA
BUS

INTERFACE
FORWARDS
DATA
BACK TO
PROCESSOR

Figure 4
Components of Memory Rcad Latcncy

Digital Techllical Jourllal v No I 1995 55

of data from a second processor's cache, for csamplc,
the second proccssor may have to stall the data bus to
allow it t o drive the rcad data onto the system's data
bus as prescribed by the system protocol. A stall of tlie
data bus translates into ~ ~ n u s e d data bus cycles and
degradation of real systc~ii bandwidth. TIILIS to maxi-
mize real system band\vidtIi, system bus and mcmory
bank utilization l i i ~ ~ s t be maximized, and stalls in sjls-
tem bus activity and stalls in niernory bank acti\.ity
must be minimized.

Tlic follo\vi~ig scctio~ls begin \\!it11 an o\jcr\~ic\\: of
the basic AlphaServcr 8000 platform protocol and
how this basic protocol influences system pcrfor-
mance. This section is followed by a discussion of ho\v
the various protocol coniponents identified as cle-
nients of memory read latency (i.e., memory bank
mapping, address bus arbitration, and data bus arbitra-
tion) affect the latency. These sections concluclc 114th 3

discussion o f subbloclt \\trite transactions and their
effects on system band\vidth.

Alphaserver 8000 Protocol Overview The platform
development Topological Layer clef ncd the
AlphaServer 8000 systcni bus as having separate
address and data buses. The Alphaserver 8000 systcm
bus protocol dcf ncs lie\\- system bus transactions arc
performed using tlicsc n\lo buses. According to the
protocol, processor ,ind 1 / 0 port m o d ~ ~ l c s initiate
rcad and \\?rite transactions by issuing read and write
commands to the spstcri~ address bus. These addrcss
bus commands arc ti)llowcd sometime later by an
associated data transfer on tlie data bus. All data trans-
fers are initiated in tlic ordcr in which their associated
addrcss bus comniands arc i s s ~ ~ e d . Cache coherency
information for cach systcni bus transaction is 1)road-
cast on the system bus as cach transaction's data bus
transfer is initiated. Each data transfer mo\/es 64 bytes
of data (only 32 bytcs of \\rhicli arc valid for p ro -
grammed 1 / 0 transfers). Figure 5 sho\vs ,in csamplc
of AlphdServer 8000 systcn~ bus traffic. In cyclc 1 a
read transaction, 1.0, is initiated on the system address
bus. In cycle X, the data tmnsfcr for read rO is initiatcd
on the system data bus by means of the systcm bus
Scnci-Data signal, the .~s\crtion of \\diich is indicated

with a value of iO. As this data transfer is initiated, the
status, so , is also driven on tlie s\.stcm bus. In cycle
X+2, all system bus modules have an opportunity to
stall or to co~itrol the flow to the system data bus. I n
this csan~plc, tlic bus is not stallcci, ns indicated by a
value of n. Finally, given that the bus is not stalled, the
64 bytcs ofrcad data associated \\,it11 rcad t.0 arc trans-
ferred across the system bus during cycles X + 5 and
X+6. I11 addition to read 1.0, Figure 5 also illustrates
the csccution of a \\'rite, (1.1, .lnd ;i~iotIicr read, 1.2.
Notc tliat cl,ita transfer initiation, dnt:~ 1x1s tlo\\~ con-
trol, and data transfer are pipclincci o n the system data
bus in tlic snmc order as their associated co~nmands
werc issucd to the addrcss bus. Notc f~ r t l i c r that this
diagram represents 100 percent utilization o f thc slJs-
tem data b i ~ s (one data transfcr c\'cr!, tlircc c!jcles).
Wit11 a 10-ns cyclc timc, this utilization \\!auld trans-
late to 2.1 C;R per scco~ld of band\\icitli.

Thc AlpliaScr\~cr system adcircss bus uses nvo
mechanisms to control the tlo* of systcm bus tl-ansac-
tions. First, processor iuid I/O port ~nodulcs are not
allo\vcd to issi~c commands to mcliiory ~not i i~ lcs t h ~ t
arc busy performing some DlWlM acccss for a previ-
ously issucd system bus transaction. The stiitc of each
memory bank is con~niunicated to each procchsor by
m e w s of systcm bus Bank-A\.ailablc signals. If a
processor or 1 / 0 port seeks access to 3 gi\,cn memory
bank and that mcmor!l bank's Rank-A\tnilable signal
indicatcs that the bank is free, the processor or 1 / 0
port may request acccss to the addrcss bus and, if
granted acccss by the system arbitration logic, issue its
transaction to the ndclress bus. If a proccssor or 1 / 0
port scclcs '~cccss to a given Inemor* bnnlt Llnci tliat
Iiiemory bank's Bank-A*~ilablc signal indicates that
the bank is not fi-cc, tlie processor o r 1 / 0 port \\.ill not
request acccss to the system addrcss bus. T l i ~ ~ s , ~uiless
all memory banks are busy 01- ~ ~ n l c s s the total of the
busy memory banks includes all banks that are ~iecded
to service tlic system's processors and 1/0 ports, the
address bus \\,ill continue to transmit co~i ima~ids . The
second mechanism for controlling the tlo\v through
the addrcss bus is the system 13~1s Arb-Suppress signal.
Ifany systcm bus m o d ~ ~ l e runs out of an!* co~nm,Ind/
address-rclurcti rcso~~rce , such 2s co~nmand queue

Figure 5
AlphnSer\rer SO00 Spstc~n 811s Traffic

CYCLE

ADDRESS BUS
COMMAND

DATA BUS
SEND-DATA

CACHE
STATUS

DATA BUS
FLOW CONTROL

DATA BUS

X + 7 1

,O

X t 8

s2

n

w l

X + l O X + 1 1 X + 9

w l

2 4 3

wl

r2

X + 1 2

r2

5

r 2

- - -
...
.. .
. . .

. . .

X

i 0

X + l X + 2

so

n

X + 3

i l

X + 4 X + 5

s1

n

rO

X + 6

12

rO

entries, jt can asscrt this signal anci prc\!cnt tlie system
arbitration logic from grnnting any more transactions
access to the bus. 'flic Arb-Suppress sigrial is useful,
for esaniple, in a systcm configuration with 16 mem-
ory banks hut only eight entries \\forth of commnnd
clucuing in n proccssor.

The AlpliaScrvcr 8000 system dat3 1x1s Iias its O\ \~II

tlo\v-control mcchanism, the system bus Hold signal,
\vhich is indcpcndcnt of the addrcss bus tlow-control
mechanisms. The Holtl signnl, sho\\fn as Data Bus
l-'lo\\ Control in Figure 5, is asscrtcti in rcsponsc to the
initi.1tion of a data bus transfer. Normally, data bus
transfers arc initiated on the data bus when all
AlpliaScr\lcr 8000 mcniorv ~nodu lc asserts tlie
Send-llnta signal. Send-l)~t,l is asserted by a memory
module based o n tllc stnrc of the module's DlL41'vls:
When servicing a read transaction, the memory will
assert Send-Data when its DKAM rcad is complete;
\ \~I ICI I ser\!ici~lg n \\,rite transaction, tlie memory ~ \ l i l l

assert Send-l),lta as s o o ~ i '1s its turn on the data bus
comes L I ~ . Five cycles after the assertion of Send-Data,
sonic modulc drives data onto the data bus. If a mod-
ule is rcclt~ircd to drive data in rcsponsc to ari assertion
of Send-Data and is u ~ ~ u b l c to d o so, it will assert
tlic Hold sig~lal t\\lo cycles aftcr the assertion of
Send-Data. This may occur if a processor module
must SoLIrcc rcad data horn its cache and cannot fetch
the data from tlic caclic ns quicl<ly as the Inemor!/
niodulc can fctcli data ti-om its 1)IWiMs. If, on the
other hand, a modulc is required to I-cccivc data in
rcsponsc to an assertion of Send-lhts and is unable to
d o so, it too \ \ , i l l asscrt the Hold signal n\.o cycles after
tlie assertion o f Send-l).~ta. Tliis may occur if no
rccci\.ing m o ~ l ~ ~ l c ' s clatu buffers arc available to receive
data. Each ~iioii i~lc that asserts Hold t*o c!lcles aftcr
Send-lhtn \\rill continue to nsscrt Hold every other
cyclc-ns prcscl-ibcd by tlic AlpllaScrvcr SO00 signal-
ing protocol-~inril it is ready for the data transfer.
Three cycles aficr all I~IOJLIICS are ready and deassert
the Hold line, data is finally transferred. Figure 6
sho\vs 3 rend, 1 . 0 , tli~lt e ~ p e ~ ~ i c ~ i c e ~ o11c pl~lsc of the
system bus Hold signal.

I t is important to note that tlic addrcss bus and tlie
data bus have indcpendcnt mc.lns and criteria for initi-
ating transactio~is and controlling tlic flo\\l of transac-
tions. The address bus initiates addrcss bus commands
based on processor and 1 / 0 port module rcqucsts and
controls tlie flo\\! b ~ s c d o n the stnrc of addrcsa-related
resources. Thc data bus initiates data transfers in the
same order as the address bus transmitted comnlands
by means of tlie Send-Data signal. Send-Data is usu-
ally asserted by a mcmory m o d ~ ~ l c based o n the statc
of the module's 1)lWMs. The data b i ~ s tlow is con-
trolled based on the statc of various data-related
resources. The differing means and criteria For initia-
ti011 and flow control alloiv tlic nvo lx~scs to operate
almost indcpcndently of one .~notlicr. Tliis indcpcn-
dence translates into performance becausc it allo\\a tlie
address bus to continue to initiate commands even as
the data bus may be stalled because of n conflict.
Continuous conimand initiation translates into more
continuous system parallelism and thus morc system
bandwidth. Figures 6 and 7 illustrate this point. Both
fig~~resillustratc systems that arc issuing a scrics of
processor reads to lbloclts that must be sourced from
another processor's caclic. In both cases, processors
require two morc c)~cles than main memory banks to
source read data. As such, two cyclcs of Hold assertion
must perjodically occur o n tlic data bus. Figure 6 illus-
trates tlie operation of the AlpliaScr\lcr SO00 system
bus, sho\\~ing that a l t l i o~~gh the data bus had to be
held in c!lclc 6 , the addrcss bus \\Ins able to continue
issuing commands. As a r c s ~ ~ l t , cacli processor SoLtrc-
i ~ i g d ~ t a begins its rcad of cacllc data as soon ns possi-
ble and is guaranteed to be ready to drive data \vithout
Hold cycles \\!hen its turn comes LIP on thc data bus.
With the illustrated scrics of five reads, the n\:o Hold
cycles result in a 12 percent degradation in system
band\\ridtli. If the scrics of rends is Icngtlicnccl to\vard
infinity, the percent of degradation approaclies 0.
Figure 7 illustrates the opcration of a rigidly slotted
bus, like that of tlie 1)EC 7000/10000 ASI' system,
normalized to the Alp1i;lScrvcr 8000 topology. As
slio\vn, each time tlie data bus is stalleel, so too is the

Figure 6
Rcnd \\,it11 Onc <:yclc o f Holct - Five Rcads Sourccd by a Processor

Figure 7
Fi\.c Rends Sourccd by 3 Processor in a Rigidly Slotted System

address bus. Tliis prevents the fourth and fifth reads
from getting the headstart necessary to prevent subse-
~ L I ~ I I ~ stalls oftlie data bus. The result is a 20 percent
degradation in pcrforniance for tlic five reads illus-
trated. If the serics ofrcads is lengthened toward infin-
ity, tlie percent of degradation settles to 18 percent.
Clcarly the AlphaScrvcr 8000 approach produces
superior data bandwidth characteristics.

I t js also important to note that the AlphaServer
8000 addrcss bus and data bus have dit'fcrent masi-
nium bandwidths. Commands can be issued to the
address bus every other cycle. With a 10-ns cyclc time,
this translates into 50 million co~nmands pcr second.
The data bus, on the othcr hand, can transfer one
bloclc of data every three cycles. With a 10-ns cvcle
time, this translates into 33.3 million data blocks
per second. Tliis excess of ;~ddrcss bus bandnlidth js
~1sefi11 in the development of lo\\f-latency arbitration
schenies.

CYCLE

ADDRESS BUS
COMMAND

DATA BUS
SEND-DATA

CACHE
STATUS

DATA BUS
FLOW CONTROL

DATA BUS

Memory Bank Mapping Digital's previous server
systems, like thc VAX 6000 serics and the LIEC
7000/10000 AXI' series, h;tve employed a common
a~-~proach to address- to-me~iior l f -bank mapping. 111
this approach, all ~ncniory modules implement address
range registers. As commands and addresses are trans-
~nitted across tlie system bus, thc memory banks com-
pare tlie addresses against thcir addrcss range registers
to determine if they must respond to the command.
An addrcss range conipal-ison can involve a significant
number of address bits and, as 3 rcsi~lt, can become
logically complex enough to consume two 10-ns
cycles of time. These two cpclcs can be added directly
to memory rcad latency.

The low-latency focus of the 141phaSer\~cr 8000
platform proniptcd a change in bank mapping
schemes. 111 AJphaServer 8000 systenls, the address
range registers havc bcen n~ovcd onto the processor
and I/O port modules. Tlic range registers output a
4-bit bank number that is shipped across tlie system
bus \vith each command arid addrcss. Each memory

1

rO

2

bank compares each bank number transmitted across
the system bus to 4 bits in a programmable bank num-
ber register to determine if it s l ~ o ~ ~ l d respond to tlic
system bus command.

This bank mapping logic configuration helps to
reduce AlphaServer SO00 memory rcad latency.
Because the bank mapping is donc on the nodes that
issue commands to the addrcss bus, the lengthy
address comparison can be donc in parallel with
address bus arbitration, eli~iiinating its two-cycle delay
from the memory read latency. The address compari-
son traditionally done in the mcniorp bank logic is
n o ~ v replaced \vitli a simple 4-bit co~nparison, which
can easily be done in a single cycle. Thc overall c tkct is
that the AlphaServer 8000 bank mapping protocol
consumes at least one cycle less t h m l'>igital's tradi-
tional bank mapping protocol. This eclLlatcs to one Jess
c!lcle-10 ns minimum--of memory read latency.

Address Bus Arbitration AlpliaScr\~cr 8000 systems
employ a distributed, rotating-priority arbitration
scheme to grant acccss to thcir addrcss buses.
Processor and I/O port modules recluest acccss to the
address bus based on requests from microprocessors
and 1/0 devices, and on the state of the system's
memory banks, as described in the section
AlphaServer SO00 Protocol Overview. Each module
evaluates the requests from all othcr modules and,
based on a rotating list of niodulc priorities, dcter-
mines whether or not it is granted acccss to the bus.
Each time a module is granted access to the bus, its
priority is rotated to the lowest priority spot o n the pri-
ority list.

The AlphaSer\~er 8000 arbitration scheme operates
in a pipelined fashion. Tliis Incans that modulcs
request access to the bus in one cyclc, arbitrate h)r
access to the bus in the nest cycle, and tinally drive
a command and address onto the bus one cycle later.
In terms of processor-generated read requests, this
means that, at best, a systcm bus rcad command can be
driven onto the systeril ;~ddrcss b i ~ s t\vo cycles aker its

3

VOl. / No. 1 1995

4

r 1

I 0

5 6

SO

H

7

r2

-

10

-

8

-

SO

n

9

1 1

-

11

-

s I

n

- r O r O

12

r3

12

14

s2

n

r l r l

13 15

r4

i 3

16 17

s3

H

18

-

r 2 r 2

19

-

s3

n

20

14

-

21 22

s4

n

- r 3 r 3

23 24

corresponding cache read niiss is generated on the
processor module. This adds nvo cyclcs of delay to tlie
memory read latency.

To reduce memory read latency in components
associated with address bus arbitration, the
AlpliaServcr 8000 platform employs a techniclue
called "early arbitration." Early arbitration allo\\ls a
module to request access to the address bus before it
has determined if it really needs acccss to the data bus.
If the module is granted access to the address bus but
determines that it does not need or cannot use tlie
access, it will drive a No-Operation or NoOp com-
mand in the command slot th,it jt is granted. This fea-
tilre is particularly useful on proccssor modules. It
allows a proccssor to request acccss to the bus for a
read command in parallel with determining if the read
command will hit or miss in the processor's cache. If
the read results in a cache hit and tlie processor is
granted access to the address bus, then tlie processor
issues a NoOp command. If the rcad results in a cache
hit and the processor is not granted access to the
address bus, the processor disconti~iues requesting
access to the bus. When applied in this manner, this
feature can remove two c!icles of delay from the 1nc1i7-
or!(read latcncv. This feati~rc is also key to tlic
Alphaserver 8000 memory bank decode feature tliat
allows address-to-memory bank decode to proceed in
parallel with system bus arbitration. This is to say, it
allows a processor or 1/0 port modulc to requcst
access to thc nddress bus before it can determine
which nienior!l bank it is trying to access and before it
can determine if tliat menior!l bank is available. If a
module is granted access to the bus and the bank it is
trying to access is not available, then the module issues
a NoOp co~nniand. If a modulc is not granted acccss
to tlie bus and the bank it is trying to access is not
available, then the nodule discontinues requesting
access to the bus until the bank becomes available.
When applied this way, this feature eliminates at least
one cycle from the memory read latency, as dcscribcd
in the section Me~iiory Rank Mapping.

The excess address b ~ i s bandwidth noted in the
protocol overview allows some aliiount of early arbi-
tration to take place \\litliout affecting system pcr-
for~nance. When system traffic increases, however,
escessivc carly arbitration cJn steal usefill address bus
slots from nonspeculati\ic transactio~~s and as a result
degrade bus bandwidth. In fact, in certain pathologi-
cal cases, excessive carly arbitration by rnodulcs witli
high arbitration priority can pcrmanentl!l lock ou t
requests from lo\\ler priority modules. T o eliminate
the negative effect of early arbitration, tlic iUpl~aSer\ler
8000 employs a technique called "lool<-back-n\lo"
arbitration. This technique relies on the fact that niod-
ules must resolve all cache niiss or bank availability
uncertainties for early arbitrations within the nvo
cycles reqi~ired for an early request and its arbitration.

This fact implies that any module that has been
requesting acccss to the address ~ L I S for more than nvo
consecutive cyclcs is requesting jn a nonspeculative
manner. As such, the AlpliaServer 8000 arbiter kecps
a history of address bus requests and creates nvo pri-
oritized groups of requests bascd o n this history. I t
creates a high-priority group of reqilests from those
requests tliat have been asserted for more than two
cycles and a lo~v-priority group of r cq~~es t s from those
requests that have been asserted for two cycles or less.
It applies tlie single set of rotating priorities, described
above, to both sets of requests. If there are any
requests in tlic liigli-priority group, the arbiter selects
one of these b.lscd on the rotating priority set. Ifthere
are no high-priority requests, tlie arbiter selects a
request from the lower priority group based on the
rotating priority set. This fi~nctionality limits carly
arbitration to only t l~ose times when there are non-
speculative requests in tlic systcm. It allo\\,s rlic
AlphaServcr 8000 platform to take advantage of
latency gains associated witli carly arbitration .~nd
processor and 1/0 port based bank decode, without
degrading bandwidth in tlie process.

Data Bus Arbitration l:he Alpl~aScr\fcr 8000 data bus
transfers blocks ofdata in the same order that the com-
mands corresponding to those blocks are issued on thc
address bus. This eliminates data bus arbitration per
se. In-order data return is accomplished by a simple
system of counters and sequence nt~nibers. Each time
a command is issued to tlie address bus, it is assigned a
sequence number. Sequence numbers are assigned in
ascending order. Each time a block ofdata is dri\fen on
the data bus, a data bus countcr is incremented. Each
module waiting to initiate a data transfer in response
to some address bus co~.nm;ind compares the sequence
nunlber associated with its command with the data
bus counter. When a modulc's sequence number
matches its data bus counter, it is that niodule's turn to
initiatc a data bus transfer.

I t is arguable tliat in-order data return is not the
optimi1111 d ~ t a scheduling algorithm. If the scenario
shown in Figurc 6 were resliapcd such that only rcad
rO sourced dam from another processor and the
penalty for sourcing data fro111 ;I processor \\.ere more
severe-a longer data bus Hold requirement-the
result \ i ~ o ~ ~ l d I ~ c more signifcant bandwidth dcgrada-
tion. This nc\v scellario is illustrated in Figure 8 . With
more efficient data scheduling, it is conceivable that
data bus utilization could bc improved by using data
slots abandoned under tlie sizable Hold \vindow in
Figure 8. The latter scenario is illustrated in Figurc 9 .
Clearly tlie systcm in Figurc 9 has improved upon the
bandwidth of thc system in Figure 8 .

What Figurc Y cannot sho\\l are all the implica-
tions of out-of-order data transfers. With as many as
16 outstanding transactions (8 in the Alphaserver

Digital Tccl~111cx1 Jol~rnal Vol. 7 No. I 1995 59

Figure 8
Randwidth Degradation ns n Rcsult of In-Order Data Transfirs

Figure 9
Impro\~ed Bandwidth witli Out-of-01-dcr L > ; l t ~ T1.3nsfers

CYCLE

COMMAND

DATA BUS
SEND-DATA

CACHE
STATUS

DATA BUS
FLOW CONTROL

8400/8200) active in the system at any one time, the
task of producing a logic structure capable ofretiring
the transactions in order is enornious. Furthermore,
the retiring of transactions out of order complicates tlie
business of maintaining colicrcnt, ordered memory
uptiates. Finally, it was felt that the parallelism n u d e
possible by the indepcnduit address and data bus
\vould help to mitigate many of the negative effects
associated with the in-order dam transfers. For these
reasons, a practical decision wls taken to transfer data
on the system data bus in thc order that the associated
commands were issued to the slatem nddrcss bus.

3

r 1

Subblock Writes To support a range of 1 / 0 subs)~s-
tems, AlpliaServer 8000 I/O port modules must sup-
port \\)rites of data as small as long\\jords (32 bits),
words (1 6 bits), and bytes. Given the AlphaSer\lcr
system bus block size of 6 4 bytes, these writes are
referred to as subblock writes. The c sec~~t ion o fa sub-
block write consists of reading a block of data from a
system memory bank, o\lcrwriting just the portion of
the block addressed by the subblock write, :lnd writing
tlic entire block back to memory. The difficulty with
pcrformiog this operation arises \vhcn a "third-party"
module-defined here as a module other than the one
pcrfbrmi~lg the subl.doclt \\trite-modifies the block
bct\\lecn the read portion of the subblock writc and
the writc portion of the subblock write. T o correctly

1

rO

DATA BUS

complete the subblock \\trite, tlic I / O port module
must Inergc the subblock \vritc c l~~ta into the block as it
\\/as aker the third-party module modifed it. This
problem can be resol\wi in one of mro ways: (1) by
mcdns of a small caclle on rlie I/O port r n o d ~ ~ l e
that updates the 1 / 0 port's copy of the block based on
the third-party writc, o r (2) by Incans of an atomic
rend-modit)-write that disallo\vs the third-pa~.t)t writc
nltogctlier.

In an ideal world, 1 / 0 port nodules would imple-
ment a small one-block cache fix tlie purpose of sub-
block \\!rites. This cache \ \ ' o ~ ~ l d allo~v the I/O module
pcrfol-ming the subblock \\'rite to update its copy of
the block targeted by the subblock writc with modi-
ficd data from third-party motiulcs. Unhrrunatel!!,
not a11 processors broadcast modified data to the
system. Many processors, for csamplc, use a read-
in\talidate protocol. In n reacl-invalidate protocol,
~vlicn a processor \vishes to ~ n o c i i ~ a block, it issues a
command that invalidates a11 other copics of that block
in the systcni and then modifies thc block of data in its
cache. If sucll an invalidate co~nrn'lnd invalidated tlie
block in a n I/O port module's subblock write cache,
the I/O port module \\.auld be fol-ccd to re-read tlie
block. There is no guarantee, Ilo\\,s\,cr, that another
invnlid~tc \\t i l l not occur bctwccn the re-read of the
block and the write of mcrgcd data back to memory.

2 4

i 0

60 Digital 'Technical Journal

- - - - - - - - r O r O

5

r 2

r 3 r 3

6

so

7

r 3

r 4 r 4

8

so

9

r4

-

10

so

H H H H ~
-

11

-

12

so

-

13

-

15

i 1

-

14

so

--

18

i 2

--

16

--

17

s 1

n

19 20

S2

n

22 21

i 3

23

s3

24

I 4

As such, the I/O port module may never be able to
complete the subblock writc. I/O port caching is
therefore not a workable solution.

Atomic read-moditjr-write sequences disallow third-
party writes to a given block between the read portion
ofa sc~bblock cvrite and the write portion ofa subblock
write. As S L I C ~ , the atomic read-nioditji-write sequence
does guarantee the timely completion of a subblock
write. Implementations of atomic read-modilj-write
seclucnces arc designed to disallow accesses to s o ~ n c
size portion of the memory region tliat contains tlic
subblock address, benveen thc read and write portions
of the subblock writc. The size of tlie memory region
can \Jar), from a singlc block of data to a singlc bank of
memory to the entircty of memory. If the size of the
memory region is small, such as a single data block,
design complesity is signifcant; but the impact of
locking out access to a single block of memory is
insignificant to band\vidth. Conversely, if the size of
the memory region is largc, such as the entirety of
memory, design complcsity is insigniticant; but the
impact of loclcing out accesses to the entirety of lncm-
ory for any period of time can be significant to system
bandwidth.

The Alphaserver 8000 platforru srlpports a ton~ic
rcad-tnoditjr-\\,ritc scque~~ccs by locking out accesses
within memory-bank-sized memory regions. This
middle ground melnorjl-region size provides the
AlphaServer SO00 \vitli u practical balancc bcnveen
design complexity and system band~vidtli. The
AlphaScrver 8000 platform implements memory
bank granularity atomic read-moditjl-write accesses
by means of special Rend-Bank-Lock and
Write-Bank-Unlock address bus commands, and by
Ic\,craging the existing memory bank flow control
mcchanisn~s. Speciticnlly, Read-Bank-Lock com-
mands function like normal read commands, cscept
that their targeted memory banks are left busy aker
the read transaction is complete. Memory banks
locked by Read-Bank-Lock commands relnain busy
u~itil a Write-Bank-Unlock cornma~ld is issued from
the same module that issued the Read-Bank-Lock
command. While a memory ballk is busy, no module
other than tlie module that locked the bank by means
of a Read-Bank-Lock command ill even recluest
access to the bank, as required by standard arbitration
protocol. This approach provides for atomic rcad-
modi@-write seqilenccs and coherent subblock c\fritcs.
This protocol \vorks regardless of thc number of I/O
modules in the system and regardless of arbitration
priorities.

Supenet Protocol Layer
The Alphaserver 8000 primary protocol provides all
the basic constructs required to perform basic system

fi~nctions, such as memory reads and writes, local reg-
ister reads and writes, and mailbox-based 1 / 0 register
reads and writes. The protocol performs these basic
functions with a high level of efficiency and perfor-
mance. Some additional functionality, such as PC1
direct-programmed 1 / 0 register accesses, can be func-
tionally satisfied by the primary protocol but cannot
be satisfied in a way that does not severely degrade the
performance of the entire Alphaserver 8000 system.
As such, the Alphaserver 8000 platform allows for
Superset l'rotocols, i.c., protocols tliat are built upon
the basic constructs (reads and writes) of thc
AlphaServer 8000 primary protocol.

PC1 direct-programmed 1 / 0 register reads can take
more than a microsecond to complcte. If tl~cse reads
were completed by means of the AlphaServcr 8000
nonpended, strictly ordered primary protocol, the
AlphaSer\rer systcm data bus would be stalled for a full
microsecond each time a PC1 programmed [/O rcad
was executed. Such stalls would have a disastrous effect
on system bus bandwidth and system perfi)rmance.

The PC1 progra~nmed I/O problem is solved on the
Alphaserver 8000 platform by ilnplerncnting a PCI-
specific pended read protocol using the simple read
and \\(rite con~mands already included in the basic
AlphaSer\rer 8000 prilnary protocol. This special
superset protocol works as follo\\~s:

When a microprocessor issues a PC1 programmed
I/O read, the rcad is issued to the AlphaServer
SO00 system bus as a register read. Tliis read is
pended with a unique identification number that
is associated with the issuing processor by driving
the identification number 011 tlic systern bank
number lines \\/hen the register read command js
issued to the systeln address bus. The bank num-
ber lines arc otherwise unused during rcgister
accesses. The issuing processor also sets a flag,
indicating t l ~ a t it has issued a PC1 programmed
I/O rcad command.

The I/O port module interfacing to the addressed
PC1 local bus responds to the rcgistcr read by for-
warding thc read to the PCI, storing the processor
identification nilmber specified by the address bus
bank number lines and driving "dummy data"
on to the data bus in the register read's associated
data slot. The value of the dummy data is irrele-
vant; it is ignored by all systcm bus modules and
is typically \vhatever was left in the I / O ports
register read buffer as a result of the last rcad it
serviced.

When the 1'CI local bus retilrns rcad data to the
1/0 port module, the I/O n~odu le issues a regis-
ter write to a special PC1 read-data-return register
address on the system bus. This write is pended

Digital Tccllnicnl Jourl1nl I . I . 1 1595 0 1

with the issuing processor's identification num-
ber, which was stored by the 1 / 0 por t module.
This identification number is again pended by
driving it onto the system bank ni~niber lines as
the register write comrnand is issued to the system
address bus. The PC1 read data is returned in the
data cycle associated \vith this register write.

When a processor module identifies a register
write that addresses thc PC1 read-data-return reg-
ister address, it checks the state of its PC1 read flag
and compares the value driven in the system bank
number lines with its unique identification num-
ber. If the PC1 read flag is set and the value on the
bank number lines matches the processor's identi-
fication number, then the processor con~pletes the
PC1 prograrnmed 1 / 0 read with the data supplied
by the register write.

The AlphaServer 8000 PC1 programmed 1/0 read
superset protocol allows AlphaServer 8000 systems to
complete PC1 programmed 1 / 0 reads without stalling
system buses. Furtliern~orc, it allows AlpliaSer\ler sps-
tems to support PC1 1 / 0 in such a way that system bus
modules not participating in the superset transaction
need not be alerted to the presence of spccial bus
transactions and therefore need not contain logic
that recognizes and responds to these special cases.
This approach demonstrates a practical \vay to si~ii-
plifj overall system design without affecting system
performance.

AlphaServer 8400 and AlphaServer 8200 Systems

The AlphaServer 8400 and 8200 systems are tlie first
products based on the AlphaServer 8000 platform.
The AlphaServer 8200 system is an "open officem-class
server (i.e., the AlphaServer 8200 can be located in any
office area, for example, where photocopier machines
are typically placed). I t features up to six system bus
modules in an industr\r-standard 47.5-centimeter
(19-inch) rackmount cabinet. The 8200 system can
support up to six 300-MHz Alpha 21164 niicro-
processors, 6 GI3 of main memory, and 108 PC1 I/O
slots. The AlphaServer 8400 system is an "enterprisen-
class server (i.e., a machine on which a business can be
run). I t features up to ninc system bus nlodules in a
DEC 7000-style cabinet. I t can support up to twelve
300-MHz Alpha 2 1 164 nlicroprocessors, 1 4 GB of
main memory, and 144 PC1 1 /0 slots.

The clock freqi~encics of both the AlphaServer 8400
system and the AlphaServer 8200 system are deter-
mined by tlie clock Frequency oftlie 300-MHz (3.33-11s
cycle time) Alpha 2 1 164 microprocessor chip. Both
systems use a 4X clock multiplier to arrive at a system
clock frequency of 75 MHz (13.3-11s cyclc time). At

this speed, the systerns feature 265-11s niinimum read
latencies and 1,600 MB/s ofdata bandwidth.

Both systems are based on thc same set of
Alphaserver 8000 architecturally compliant system
bus modules. In addition, both systems support a new
PC1 1 / 0 subsystem designed specifically for these
classes of systems. The constituent modules and 1/0
subsystems that compose the AlphaServer 8400 and
the AlphaServer 8200 systems arc as follo\\/s.

TZEP Processor &Iodzlle-Each TLEP processol-
module supports nvo 300-MHz Alpha 21 164 micro-
processors. Each Alpha 2 1 164 processor is paired \\lit11
a 4-1MB external cache. This cachc is constructed with
10-ns asynchronous SRAMs. The cachc latency to first
data is 20 ns, and with one 3.33-11s processor cycle of
wave pipelining, its maximum bandwidth is 91 5 MB/s.
The TLEP module operates with a 75-MHz (13.33-11s
cycle time) clock frequency.

7lWElM rWerno,y Mod~de-Each TMEM rnemory
module is implemented with two equal-sized 1) l M
banks. TMEM modules arc available in 128-M13,
256-MB, 512-MB, 1024-MB, and 2048-MB sizes.
The TMEM module is designed to operatc at n 100-
MHz (1 0-ns cycle time) clock frcquency.

Z'OP I/O Port Modr~le-The TIOI' niodule inter-
faces the AlphaServer 8000 systcni bus to four I/O
channels, called "hoscs." Each hose can interf;lcc to
one XMI, Futurebus+, or PCI/EISA I/O subsystem.
Each TIOP can support up to 400 MR/s of 1 / 0
data bandwidth and is dcsignccl to operatc at a
100-MHz (10-ns cycle time) clock frequency.

m 0 P Integrated YO Pori Modrrk~--The IT I 0 P
niodule interfaces the AlphaServcr 8000 s)~stem bus to
one hose 1 / 0 channel and one scmipl-ccontigured PC1
local bus, which is integrated onto the ITIOP nlodule.
The integrated PC1 bus fcaturcs one single-ended
small computer systems interface (SCSI) controller,
three Fast Wide Differential SCSI controllers, one NI
port, and optional FDDI and N V I U M controllers.
Each ITIOP can support up to 200 MB/s of I/O data
bandwidth and is designcd to operate at a 100-MHz
(1 0-ns cycle time) clock frccl~~cncy.

PCIA PCI VO Suhsyslam-The PCIA PC1 I/O
subsystem consists of hose-to-PC1 adapter logic and a
12-slot PC1 local bus. This 12-slot bus is crcatcd from
4-slot PC1 buses interfaced such that they appear as a
single bus. The high slot count provides the conncc-
tivity essential in an enterprise-class server. The PCIA
optimizes direct memory access (DMA) reads by
means of the 1'CI Read- Memory-Multiple com-
mand. The Read-Miss-Multiple command allows the
PCIA to stream DMA read data fro111 mclnory to the
PC1 bus. Consequently, the PCIA can increase DMA
read band\vidtli, offsetting any latency penaltics that
resi~lt from the AlphaServer 8000 platform's multi-
level I/O architecture. The PCIA's adapter logic

62 ~)igital Technical Journ.11 vol. 7 No. I 1995

includes a 321< entry map R A M for converting PC1
addresses (32 bits) t o AlphaServer 8000 system bus
addresses (40 bits). This niap R4fVI features a five-
entry, ti~lly associative tra~lslation cache.

AlphaServer 8400 and AlphaServer 8200
Performance

A number of performance benchmarks have been run
on the AlphaServer 8400 and Alphaserver 8200 sys-
tems. The results of some of these bench~narlts are
su~nn~arized in Table 3.

The AlphaServer SPECint92 and SPECfp92 ratings
demonstrate outstanding performance. In both rat-
ings, the Alphaserver 8400 system performance is
over 3.5 times the ratings of the HP9000-800 T500
system. T h e SPECfp92 rating of 512 is 1.4 times
its nearest competitor, the SGI Power Challenge XL
systern. Similarly, a six-processor AlphaServer 8400

system achie\les the same 1,900 million floating-
point operations per second (MFLOPS) as an eight-
processor SGI Po\ver Challenge XL system. Finally,
the AlphaServer 8400 system's 5-GFLOPS Linpack
1iXn result is beyond the performance of all other
open systems servers, placing the AlphaServer at
supercomputer performance levels with systems such
as the NEC SX-3/22 system and the massively parallel
Thinking Machines CM-200 system.

Acknowledgments

Several members of the AlphaServer 8000 Develop-
ment Team jn addition to the authors were key con-
tributors to the generation of this technical article.
These individuals are John Bloem, Elbcrt Bloom,
Dick Doucette, Dave Hartwell, Rick Hetherington,
Dale Keck, and h c h Watson.

Table 3
AlphaServer 8400 and 8200 System Performance Benchmark Results

Benchmark Processor
Name Count Units AlphaServer 8200 AlphaServer 8400

Linpack 1 0 0 ~ 1 0 0

Linpack 1000x 1000

Linpack n x n

AIM I l l
Performance Rating
AIM I l l
User Loads
AIM I l l
Throughput
McCalpin Copy

McCalpin Scale 1
8

McCalpin Sum 1
8

McCalpin Triad 1
8

-

MFLOPS
MFLOPS
MFLOPS
MFLOPS
MFLOPS
MFLOPS
MFLOPS
GFLOPS
AIMS

Maximum quantity

341.4

512.9
8551

50788

not applicable
11981

71286
not applicable
140.3

410.5
1821

not applicable
not applicable
428.3

2445
not applicable
not applicable

not applicable

not applicable

not available
not applicable
not available
not applicable
not available
not applicable
not available
not applicable

Digital Technical Jour-1~1l Vol. 7 No. 1 1995 63

References

1. W. Bowhill e t al., "Circuit Irnplemcnution o f a 300-
MHz, 64-bit Scco~id-generatio11 C M O S Alplin (:I'U,"
Digitnl Techt7iwl,/ot11.1~~11, \rol. 7, no. 1 (1995, this
issuc): 100-1 18.

2. S. Saini and 13. Bniley, "NAS Parallel Bcnclilnarks
Results 3-95," Rcporr NAS-95-011 (~Mofl2t Field,
Calif.: Nun~cl~icnl Aerodynamic Sirnulation t:.lcilit!;
NASA Aulics licsc;~rcli Center, sainiti~n;ls.n;~s,i.go\~,
April 1995) .

,. J. Dongarra, "Pcrk)rmancc of Various <:omputcrs
Using Standard Linear Equations Sofnvarc," l locu-
rncnt N u ~ n b c r (;S-89-85, ~lvailablc o n the Ilitcrnet
from Oak Ridyc Nation21 Laboratory, nctlibteornl.go\;
April 13, 1995.

4 . Z. Cventanovic and L). Bhtindarkar, "(:Iiar~ctcrization
of AlpI1.1 ASL' l'crforniancc Using '1.1' .ind Sl'l:<:
Workloads," 1~t~occ~cdrr1g.s oj'thp 1994 l ir /er.~t~t/ iotr~~I
Synzposizltir 0 1 1 (,bni[~ci/et'A~-chikc/t~r~.. 60-70.

5. J. Nicholson, "The RISC Spstcrn/6000 SIMP Systcni,"
COMPCOt\' 95, March 1995: 102-109.

6 . L,. Stale!, "A New M P HW Arclii tect~~rc for 'T'cchnic.ll
and Commercial Environmcnts," C'O,WI'C(.Y)N '95.
March 1995: 129-132.

7. 13. Alliso~l 311d (:. \Inn Ingen, "Tcclinical 1)cscriptioll of
thc DEC 7000 and 1)l-X: 1000 AXP Family," I)i,qil(il
Techlziccrl~~ortrrt~~~, \rol. 4, no. 4 (Special Issue 1992):
100-1 10.

8. L. Gwcnnap, "lntcl's P6 Uses l>ecouplcd Supcrscnlnr
Design," il./ic~ro/~rocc~.~~.so~~I?epo~-t, Fcbr~1.11.y 16, 1995:
15.

9 . J . Basrnaji c t al., "1)iginl's High-performance <:klOS
ASIC," Di'qiilu Tcchttical ,/otit.nal. vol. 7, no. 1
(1995, this i s s ~ ~ c) : 66-76.

10. K. Watson, H. (:ollins, and R. lknaian, "(:lock R~~t 'fcr
Chip with Absolute 1)clay Regulation Over Process
and Environnlcntnl Varilriations," 1992 C'ti.v/ot?r Itrle-
graled CFt-cr.~ll.s (,?)~~/i>rc.trce. papcr 25.2: 1-5.

11. F.. Davidson, "l)cl;~y F.lctors for Mai~ifr .~mc (:omp~lr-
ers," PI-ocwt1i11,q.s ((/he 7991 Bipolat- (.'ii~ctri/.s citr~l
~ ~ ' C ~ T Z O I O ~ ~ , i C f ~ ~ > / i t / ~ ; 1 1 6-1 23.

12. D. Cox e t al., ''VI.SI Performance C o m p c n s ~ t i o ~ l for
Off-Chip 1)rivcl-s nnri Clock Gcncmtion," 1'1.occc~l-
i t rtq.< ([ILiX 1989 C~~s to tn I I ~ / ~ ~ ~ I . L L / ~ J L / (,'it.ctti/.s
C'onJi!t-etzce: 14.3.1-14.3.4.

13. D. Chcngso~i c t nl., "L)y~iarnically Tracking <:lock
Distribution Chip \\,itli Skc\v Control," 1990 C'tislo~tr
Itttegr~t/ed (, ' i t r i i i / s Cot1fetrt;lcc Pt.o~~ocdiitgs:
15.6.1- 15.6.4.

14. M. Johnson c t nl., "A V;lriablc Dclny 1,inc 1'li;lsc
Locked Loop tbr CPU-Coprocessor Sylichro~lizn-
tion ," I,(S(,GS8 I't*occ~c/i~rg.s: 1 42-1 43.

Biographies

David M. Fenwick
Dave Fcnwiclc ib the AlphaScr\~cr 8000-scrics systcni
arcliitcct. As Icnclcr ol'rhc ad\lanccd ilc\.clol)mcrit g r o ~ ~ p
and of tllc dc\igll rcnln, he has hccn ~-cqx)nsiblc for dcf-
inition o f the prod~lc t 2nd its c1iarnctc1-istics, ,111~1 for the
systc~ii iml)lcnicntatio~l. llavc moved fro111 lligial's
Europc.ui Engineering organizatiou in 1985 to join
thc U.S.-b~scd \/AXHI program and s ~ ~ b ~ c q u c ~ ~ t l ! ~ was
prOccs.wr ;~cl l i tcc t &K tllc Va\X 6000 vCCtOr pl'OiCSbOT.
A collsultinp c~ ig j~ ic t r , he holds 3 lnajor U.S. patuits
and has 13 pltcnl applications pcndin9. H c rccci\.cci an
Honoi~rs 1)cgrec in clcitricd and elccr~-otuc c~ipincering
koni I .o~rgl lboro~~gl i University r)f'l-cclirlologv, United
I<ingdo~i~.

Deliis J. Foley
A principal l i~rd\ \ ' ;~rc cligiu~ecr ill tllc fUpliaServcr group,
13enis is the projcct Icadcr for the '1'I.F.P CPU nodule.
H e joined Lligiral in C:lonmcl, Ircl~nci, in 1983 ~ f t c r
recci\irlg a baclic!orls degree i l l clcct~.icnl c~lg i~ lccr iuy t'rom
Uni\oersin Ci)llcyc Cork, Ireland. Hc has contributcd to
the dc\;clopmcnr o f s~~!c ra l coln~nunicarions jod comput-
ing pl.(+cts. Currently, tic is \ vc~k ing 011 tlic dcsigu of
a <:I'U module ti)r the AIphaServcr 8000 pl;itfnrln that is
based on rhc 11cx1 g c ~ i c r ~ ~ t i o n of the Alpl1.1 microl>roccssor.
l)cl~is is listccl 0 1 1 12 pntcnt applicationr tl1.11 rcl.l~c to llis
\vork o n rhc Alpli.iScrvcr CPU nnrl bus dcsisns.

William B. Gis t
Rill Gist's rcccnt rcsl~onsibility \\.,IS the dc\ clopmcnt of thc
l i igll-pcrfor~~i;~~icc 1 / 0 \!.\tern bus circu~it .~rcliitccture fix
tllc All~li .~Scr\~cr 8000-scrrcs ASI(:h. A 1)1-111cipl engineer
and 3 I ~ C I I I L > C I . o f tlic Scr\'cr Plntli)rln I)c\.clopmcnr Group,

hc is crrrrcntly developing high-perfi)rn)ance I/O archi.
tecturcs h r lour-cost plastic packdging technologies. Join
ing Di~i tal in 1977, lie began work 011 PDP- 11 systems
dcvclopmcrit and latcr becnmc a ~nernber of the VAX
6000-series engineering team, k)cusjng on clock chip
dc\iclopn~cnt and vector proccssor ASIC de\~clopment.
Bill h ~ s a U.S. dcgrcc in clcctric,ll engineering from
Worcester Polytechnic Institute and holds three parents
for the AlphaScrvcr 8000-series 1 / 0 circuit architecture.

Stephen R. VanDoren
In 1988, Steve VanDorcn came to Digital to work with
the VAX 6000 veccol. processor design team. He latcr
joincd an ad\mnccd dc\lcloprnenr ream responsible for c\.al-
uating systcln technology rcq~lircments for \vhat wo~lld
becomc the AlphaScrvcr 8000 series of products. During
the Alphaserver projcct, he lead the design of the address
intcrhce on tlic T1.F.P processor module. He is listcd as
a coinventor on 10 patents filcd on the AlphaServcr 5000-
scrics ~~~-c l i i t cc t~ l r~~l fe i~ t~~rcs . Stc\~c is currently \ \ ~ ~ r k i l ~ g 011

new server processor designs. H e is a membcr oCEta b p p a
Nu and T ~ L I Beta Pi and holds a R.S. dcgrcc i l l cornp~lter
systems engineering from the ~niversit)r of ~assachusetrs.

Daniel Wissell
Consulting cl~gincer Dan Wisscll has more than 20 years
ofco~.r l~utcr i ~ l d ~ ~ s t r) ~ exlxriencc in analog and digital cir-
cuit design and test. Wliilc at lligital, he has worked on
the VAXclustcr and 1)EC 7000/1000 s)rstcms dc\~el.oprnent
teams, and more recently hc col~tributed to the AlphaServcr
8000-scrics design efk~rt . Hc is recognized tvithin Digital
ns nn cspcrr in thc arcas ofdistribntcd pojvcr systems,
on-module energy nialiagclncnt, and high-speed clock
systems. L)an holds three patents and has tiled several
patent applications k)r his work on current and h t ~ ~ r e
Digital products. H c has degrees in engineering from
Kcan Collcgc and rhc Mil\vaukcc School ofEngineering.

Digiral Technical Jou1.11al Vo1.7 No. 1 1995 65

Digital's High-
performance
CMOS ASlC

A high-performance ASlC has been developed
to serve as the interface for the 10-ns bus in
the new Alphaserver 8000 series server systems
from Digital. The CMOS standard-cell alternative
(CSALT) technology provides a timing-driven
layout methodology together with a correct-
by-construction approach for managing the
complex device physics issues associated with
state-of-the-art CMOS processes. The timing-
driven layout is coupled with an automated
standard-cell design approach to bring the
complete design process directly to the logic
designer.

66 Digiral Tcchn~cal J o u r n a l Vol. 7 No. 1 1995

Jean H. Basn~aji
I b y R. Fisher
Frank W. Gatulis
Herbe r t R. Kolk
James F. Rosencrans

Today, h igh-perfornace ~nicroproccssors designed
with conipleriientary metal-oxide se~niconductor
(ClMOS) processes are I J I L I C ~ ni(.)re demanding on the
support logic used to interface them to the rest of the
system. Microprocessors, like Digital Semiconductor's
Alpha 21 164 chip, are extending the external logic
cycle times to the point ulherc custonl-integrated
circuits arc necessary to realize the full performance
potential. The CiMOS standard-cell alternative
(CSALT) technology developed at Digital satisfies
these high-performance needs without resorting to
a complex, custonl design process.

CSALT technology provides a timing-driven layout
niethodology together with a correct-by-co~istr~~ctio~i
approach for managing the co~tiples device physics
issues associated with state-of-the-art CMOS pro-
cesses. The timing-driven layout is coupled with
an automated standard-cell design approach to bring
the complete design process directly to the logic
designer. Using CSALT, logic designers can take their
application-specific integrated circuit (ASIC) designs
from J conccpt on their desktops to a completed
layout that is ready for fabrication.

Other design approaches address portions of the
process, but the CSALT tool suite is complete and
automated. Many ASIC vendors tr~nsfer the logic
designs to a different set of engincers, sing different
tools and skills, to complete the physical implementa-
tion before post-layout timing analysis can take place.
Any problenis encountered after the layout tend to
result in the design being returned to the logic design-
ers. The artificial boundary erected between logic
designers and layout implernenters can rcsult in delays.
In cornplcs dcsigns, ~ n ~ ~ l t i p l e iterations may be neces-
sary before the dcsign converges into an acceptable
solution. This convergence process becomes more
complicated with the introduction of synthesized
logic, because thc process is exte~lded to include the
synthesis tools.

<:SALT'S ti~iii~ig-driven niethodology eliminates the
need for the many chip layout specialists and ASIC
vendor experts \vho normally complcte a multichip
project. In addition, the timing-driven methodology
eliminates the nced for the traditional chip floorplan-
ning step in which the designer maps thc logical

design onto the physical chip arcliitecturc. The floor-
planning step often becolnes a critical and time-
consuming effbrr when the design is being optimized
for performance.

The automated and batch-driven CSALT nieth-
odology can turn a logically complete design into
a \\lorking, timing-correct chip layout within three
computc-intensi\,c days. Previous platform deve.lop-
ment projects used industry-standard ASICs, manual
layouts, and hundreds of manual cell placements to
meet the tight design timing requirements \vithin their
liigh-performance ASICs. These methods typically
added months to the layout phase of these projects.
CSALT's timing-driven layout was specifically devel-
oped to address thcsc I.iigli-pcrforrnance reqi~irements
and to make tlie complete design process available to
logic designers.

This paper discusses some implementation pieces of
CSALT techliology and elnphasizes the unique timing-
driven approach and results. I t explains the goals that
were establislicd fol- CSALT development as well as
several features of the physical technoloa . The paper
concludes with a discussion of the layout process oper-
ations and the process controller.

The Need for CSALT

During the technology evaluation phase of the
Alphaserver 8000 series platform, various ASIC tech-
nology vendors wcrc evaluated and compared against
the aggressive performance needs demanded by the
platform's designs and thc customization that was
necessary within these technologics to meet system
bits timing. Bascd on the experience of developing
designs for the previous platform generation and due
to tlie anticipated months of iterative and interactive
manual placc and route necessary to meet timing, it
becatlie clear that teclinology was a high-risk item to
the program. Requirenients for the AlpliaServer 8000
series systems exceeded the performance capabilities of
esisting ASIC technologies and the available CAD
tools. In addition, access to the internal silicon struc-
ture of the ASICs was required to customize bus inter-
face drivers. The risk and cost of developing these
capabilities through worlting with ASIC vendors
would have added months of valuable schedule time
to the program.

As a result, the decision was made to focus the effort
on CSALT technoloby and to move it from its advanced
development stagc to a production-quality one. Given
the selection criteria that were emphasized, a set of
goals was established for tlic (:SALT development:

Incorporate ,In integrated timing-constrained
driven placement.

Implement technology in a 3.3 volt (V) stable
CMOS process.

Eliminate chip tloorplanning and let timing con
straints drive the placement.

Eliminate manual interaction in the tools to reduce
design time and defects.

Develop very conservative layout rules to eliminate
the need for cross talk and electromigration analysis.

Automate the de\iclopmcnt and characterization of
cell elements including thorough checking.

Deliver more robust and accurate prediction ofcliip
performance through integrated SPICE simulation
and expanded cell library perfor~nance tab1es.l

Use proven algorithms and software whenever
possible.

Overview and Description

The front-end logic design and verification process is
based on the ASIC standard tools fbr gate array design
that include schematics capture, timing and logic veri-
fication, pre-layout delay estimation, and post-layout
delay feedback and analysis. The performance data for
thc library elements is housed in lookup tables that
have multiple slope/intercept data entries based on
output drive loading as well as input edge rate delay
correction factors. Unique delays are calculated for
each cell instance. CSALT supports a low-skew bal-
anced clock distribution net.

The back-end layout tools for CSALT include sev-
eral internally generated tools as well as research tools
from academia. The heart of the place-and-route
process is TimberWolf from the University of
IVashington.2 One of thc important features of the
TimberWolf tools is their ability to be constraint-
driven. These constraints are automatically generated
from the timing verification step and then passed to
the TimberWolf tools. TimberWolf prioritizes these
critical path nets during the placement process in an
attempt to meet the timing requirenients. Constraints
can also be manually generated through a separate
user-generated file that feeds into the process. Once
parameter files and constraint files are established, the
place-and-route process proceeds in a completely
automated and batch-driven mechanism all the way
to a completely verified design layout file (DLF). The
speed of the process execution is limited only by
the batch queues available and the performance of the
underlying processor type.

The silicol~ fabrication process relies on Digital
Semiconductor's CMOS line. A I the physical design
and process fabrication rules are built into the layout
tools and driven through the parameter files specified at
s tar tup. CSALT has built-in correct-by-constructio~~
custom design rules that guarantee all aspects of the
automated layout to be free from any design rule vio-
lation. The tools account for all aspects of the physical

Digital Technical J o ~ ~ r n a l Vol. 7 No. 1 1995 67

design, such as electromigration rules, coupling capac-
itance effects on timing, as well as analysis of any elec-
trical hot spots resulting from excessive logic switching
in a dense localized arca.

Physical Technology

The ASIC designs targeted for this technology needed
to meet the physical, electrical, and thermal require-
ments of tlie PJphaSer\ler SO00 series platform. The
system fi~nctions that the ASIC designs satisf) belong
to three classes:

Class 1-Interface benvccn the system bus and
the CI'U

Class 2-Intcrf'lce benveen the CPU and the local
I/O
Class 3-Interface bcnveen the local 1 /0 and the
Peripheral Component I~itercon~iect (PCI)

An enhanced ASIC dcsign style was used to reduce
the time to market and to minimize dcsign and verifi- -
cation resources. The cnhancements to the convcn-
tional ASIC design (such as timing- drive^^ l a y o ~ ~ t and
autoniated incorporation of SPICE delays) signifi-
cantly improved ease of design for high-performance,
100-megahertz (MHz) very large-scale integration
(VLSI) chips.l

Sc\leral fcaturcs of tlie CSAI-T physical teclinology
and their advantages are discussed jn the follo\ving
sections.

Low-skew Clock Distribution
There is one lo\\l-sl<e\v, single-phase clock net distribu-
tion available to tlie user. This is implemented through
three stages. First, the buffcred input clock receiver
drives nvo Iiigh-power cells located on opposite sides
o f the chip. I n the second stage, the high-power cells
drive a central trunk that bisects the die and delivers
the clock signals to each half ro\v. In tlie third stage,
separate local clock buffers in each half row are con-
nected to the central trunk and deliver the clock sig-
nals to all logic clcmcnts in that particular half row.

Skew in this distributed net is controlled through
automatic load balancing on the local clock buffers
along cach row. Cell capacitive loads are calculated for
each ro\v, and appropriate bnlance cells arc added to
bring the capacitive loads to a predcfi ncd value. This
method cqi~alized delays across the chip with less than
100 picoseconds (ps) of skew.

Other clock distributions, however, arc a\~ailable to
the user. Thcsc clock nets are distributed t h r o ~ ~ g l i
a single high-power cell driving a metal trunk along
the chip. Skew \vitIiin these clocks can be on tlie order
of 300 ps, although this skew is niorc dependent o n
loading 2nd cell distribution for each particular design.

5.0- V Compatible UO Cells
CSALT arrays developed in Digital's hurth-generation
CMOS process are po\vercd by a 3.3-Vsupply for both
1/0 and internal core. CSAL.T ASI<:s can receive but
not send 5.0-V I/O. The input receivers for both the
bidirectional and the inpnt-only cells l i a \ ~ transistor-
transistor logic (TTL) input Ic\,els and car1 be used in
either a 3.3-V or a 5.0-V signaling cn\!ironmcnt. The
CSALT PC1 interface cell meets the I'CI 5.0-V spccifi-
cation, \vitliout requiring the csternal n i o d ~ ~ l c tcrmi-
nation recornmended by niost ASIC vendors.

Performance-tuned Library Elements
The performance targets for tlie cell clcrncnts in
C S a T \\)ere determined from 3 number o f sources.
First, previous ASIC designs, library pcrfor~nancc, and
heuristics were used to establish a baseline. The hcuris-
tics of the number of cell logic Ic\~cIs bct\ \~ec~i two state
elements in the 1)EC 7000 platform designs \\Icrc ana-
lyzed. Second, tlie fourth-generation ClMOS silicon
process, electrical interconnect data, and transistor
properties were ~rsed to arrivc at nc\\l scaled cstilnatcs
based on unit load, cell timing, and intcrcol~nect delay.
Third, cycle tirncs and systeni sltc\vs of the target plnt-
form were used to determine a new estimate of the
le\lels of logic that can be placed ben\lccn two state ele-
ments. The analyses rcsulted in thc generation of basc-
line perfor~nancc targets that \vcrc 11sccl in the dcsign of
an ASIC library tuned to cyclc 100K gates at 100 [MHz.

Delay Calculation

CSALT post-la)fo~~t timing analysis ~ n c l net dclay gen-
eration are based on conser\~ativc approximations and
consist of six uncorrelatcd, additive components:

1. Intrinsic gatc delay (also refcrrcci to as intercept)

2. Effect of lu~npcd total net cap~citancc o n delay

3. Effect of input edge rate o n delay

4. Setup/hold time

5. Effect ofinput edge rate on s c t ~ ~ p time

6. Wire transit delay

The first five conipo1mits arc cicrived h r each
standard-cell type from lookup tables crcatcd s sing

{Ire translt SPICE sin1ulation.l Thc sixth component, M '

delay, is calculated d i~ r ing Iayoi~t for each net in cach
CSALT design ~ u i n g a specific mctliodology for
bounding the solution."

Both worst-case and bcst-case analyses arc per-
formed and are guaranteed to be more conscrvati\~c
than SPICE, becausc components 1,2, and 6 of dclay
are measured in a conservati\re fashion. Paths that fail
this timing analysis are then sin~ulatcd \vitli SPICE.
These paths arc autom~~ticall!/ cstracrcd from thc
timing an~lysis result files and submitted tbr SPICE

68 Digiral Tcclinic,ll Journal

simulation. The results of SPICE simulation arc then
back-annotated into timiug ,~nalyses, and tlie design is
reanalyzed sing SPICE accuracy for deluys on critical
path nets that had Liilcd prc\~iously. Tliis strntcgy
allows us to timc designs quickly with the accurac)l of
SPICF, \\/here needed.1

SPICE Library Characterization
The entire cell timing c1at.i set and cell pcrf(.)rniancc
tables are generated a~~to~nat ica l ly through a suite of
automated tools called SPICE Library Characteri-
zation (SLiC). SL,iC's automated procedure \ \ J i l l crcatc
SPICE input files to fi~lly characterize a library
of CSALT cells, csccutc SPICE on these files, and
post-process the results into a format readable by tlic
timing too1s.l

For cell dclay slopes and intercepts, the SLiC
process p r o d ~ ~ c c s dclay tables for each input- to-outp~~t
path combination throi~gh cach library macrocell.
Tliis is done by si~nulating in SPICE with 11 discrete
O L I ~ P L I C capacitance values attached to the cell output.
The total range of loads is broken into four windows,
and a best-fit line through cach \vindo\\l is detcrmincd.
Each linc is the11 trallslatcd so that all discrete points
withiri the \\.indo\\, fall on o r below this linc (for \vorst-
casc parameters) o r abo\,c this line (for best-case
pnramcters). This tra~isl<~tion is one mechanism ti)r
ensuring timing conscr\~atisrn. Figure 1 slio\\~s the
CSAI,T library performance npprosiri~ation.

For edge-rate cffcct o n delay, SLiC measures o i~ tpu t
cdgc ratcs for each of the 11 capacitance \ralucs
attachcd to cacti ou tp l~ t cell described above and
stores them. In ad~i i t io~i , SLiC creates ten sinlulations
for cacli i npu t - to -ou tp~~t patli through cach library

LOAD

KEY:

- BEST-FIT MAXIMUM DELAY PARAMETER
- - - - BEST-FIT MINIMUM DELAY PARAMETER
* SPICE SIMULATION

Figure 1
(:SAL,T Library I ' c r fo rn i ;~~~cc Approsirnation

macrocell to model the range of input edge ratcs that
the macrocell is cspected to see. Thcsc n\.o sets of data
are used to crcatc (1) a table of delay additives to gate
propagation delay as a f ~ n c t i o n o f i ~ i p i ~ t ecigc rate and
(2) a table of output edge rates as a function of gate
propagation dclay. These tables arc then used during
tlie timing analysis stcp.

The last component of delay, *ire transit delay, is
tlie only one 11ot cictcrmined by SLiC. I)LII-ing layout,
the bounds on tllc twnsit d c l ~ y througli c\,cry net arc
calculated. Thcsc bounds are gencrntcd \,cry qllicltly
and are cli~itc accuratc for short ancl liglltly loaded
nets. 'For longcr, Inorc hea\~ily loadcd ncts, Sl.,i(: calcu-
lates morc conscr\/ati\ic b o u ~ ~ d s . ~ l'his co~lscr\~utism
co~~tr ibutcs to inaccurac!~ in path timing and is thc pri-
niary reason \vhy allother methodology \\,as dc\~clopcd
for determining morc accurate dclays \\,it11 Sl'I(:E.1

This alternati\lc methodology for cnlculati~ig dclay
has been veriticcl through comparisons of tho~~sands
of path dclays \vitli SPICE. In all cases, the timing was
found to be conser\lati\re. Sisq-five pcrccnt of all cal-
culated delays arc within 10 percent of SPI<;E predic-
tion, and \lirtilally all delays are within 20 percent. This
methodology co~nplenients the po\\.cr of tlic Eist tum-
around timc ofstatic timing analysis tools by ~iiodeling
the delays morc accurately and closely to SI'I<:E pre-
diction. Llrgc chips can be analyzed in less than one
hour and be f~llly timed in a fc\\ l i o ~ ~ r s if .iny SI'ICE
sirnulation of l a r ~ c nets becomes necessary.)

Constraint Generation Overview

Aher each timing vcritication run, a report is generated
listing all paths that fail 2nd detailing ,111 ncts kind prim-
ti\res,witl~in cLich of these failing paths. 'This inti)rma-
tion is tllen itc~ati\.cly processed through J n nlgori tlim
to shortcn cacll net in tlie path proportionately to its
original length in the p ~ t h , s ~ ~ c l i that it satisfies tlie
allowable timc rcq~~ircmcnt . First, the ~lllo\\~ablc total
wire delay in 3 path is calc~~lated in picosccorlds:

\vhere K/ is the total i~llo\\rable \\,ire ciclay fi)r all i~idi\ici-
ual failing path, ~bl~~-vTit~~eLi~nit is the cycle t i ~ n c that
the failing path needs to meet, Ccll/'ri~i,rri/i~~c~l)c~I~<~!v is
the intrinsic dcla)! through all the primitives that csist in
the failing path, and Setz.1p7B~ne is tlic s e t ~ ~ p time
req~~ired by the state clc~ncnt that cnds thc hiling path.

Then c\lcry net in tlie path is apportio~ied according
to its contribution in the current (hiling) total \\fire
delay:

NetFiili?z~l k&ajl

Nc~I~Vc~rrdXdg)~ = IF1 (
Ac/-lrulPuth Wire

Val. 7 No. 1 199.5 69

where I \~J/I\~./I~/)F/Lo~ is the allo\\f;lble delay on a par-
tici~lar ~ i c t in a K~i l i~ ig p ;~th , I V ~ J / / ~ L ~ ~ / I I I ~ ~ I I ~ J / ~ ~ ,] . ~ is
tlic actual dcluy o n .I ncr ithi^ hi^^ n hiling p,ltli, and
.4c11/all '~r/b Wi~.cj is tlic total acc~11l1ulatcd \\,ire delay of
,111 nets in the hiling path.

Since \\tires can be sli;lrcd by more tI1;11l one failing
path, a cliangc in the Icngrli of a wire in one path ulill
cause other paths that lia\,c the same \\.ire as an clement
to be sclicduleci f o r rccalculatio~i. A \\,ire length may
clia~igc sc\~clal times bcforc it is stable, l3~1ring rccalcu-
Intion, the s~nnllcr \\,ire protiucccl is the onc thdt nrjll be
used. :rIlis itcr.ltio11 .~lgorithni c o ~ l t i ~ i ~ ~ c s .~111til n o nets
arc schcclulcd k)r rcc\,.llu~tion, nncl con\,ergcncc is
achic\~cd. The ~lurnbc~- of iterations can be limited if
convergence is not acliic\fcd in a ti~ncly manner.

At completion, h c / . V c l / arc then con\.crtcd
into wire Icngths:

where NdLct~gth is the calculatcci net constraint in i111it

length, .Sl(~)c~(?/l)r-ircr is the slope of tlic ccll driving
the failing net in unit time per cnpncita~~cc, G ~ l t e L o ~ l d
is the sum capacitance ofall cclls tied to tli;lt 11ct, anti
Ci l l~ l l l , is the c~pncitancc pel unit Icngth for intcrcon-
ncct metal.

~Vc.ll,o/,y/b is then compnrcci to a quench value, and
tlic larger o f thc t\\,o is used 11s the ~ic\\. net co~lstraint
feeding back to a layout. Q ~ ~ e n c h ~ a l u c s define
the niininium \\sire Ic~lgth that 3 net can Ilavc, based 011

the nt~nibcr of pins (h n - o i ~ t) in that net.

Physical Die Architecture

The CSA1,T ciic arcliitccturc, as sho\\,n in Figure 2,
consists of tlic follo\\ing sections:

1 / 0 cclls-The outcr~nost rcgion \\rlicrc the 1 / 0
cclls arc located is :dso called the pild ring. Bonding
pads arc built into the 1 / 0 cclls.

Higli-po\vcr anci ciccouplc cclls-This rcgion of thc
arra); also callcci the liigli-po\\jcr ring, is fillcd prc-
clorni~lnntly \virl~ riccouplc cclls. This rcgion also
allows for placcnicnt of a limited ni~mbcr o f liigli-
power driver cclls designed to drivc licavily loadecl
ncts such ns clock lines anci reset lines.

Corc-This region holds tlic majority of the logic
in the arrlip implemented as s t and~rd cells. All these
cclls arc the same licight but vary in \\,idrli accord-
ing to ti ~nctional complcsity. (:ore cclls arc arranged
in rows ~ll~rnbcrccl fi-0111 the bottom ofthc arr.1~. The
numbcr of ro\vs in the corc is a dcsign-dcpe~ldent
variable. The space bcn\.ccn the rows \.arics tiorn
ro* to ro\\. and is used h r routing clianncls.

TOP

I10 RING

MINI-MOAT

HIGH-POWER AND DECOUPLE CELLS
I 1

MOAT

ROW- 1 . . .
.-

Figure 2
(3AL.T l h c Arc11ircctu1.c

Generally, poiver to the corc is distributed hy ccll
aburnlent on metal 3 o\lcr the cell rows. Horizontal
signal routing in the corc clinnncls taltcs plncc or1
nxtal 2. bletal 1 is ~ ~ s c d for \rcrt~cal corc routing.
To route in tlic \lcrtical clircction, the ro\vs contain
feeds. By design, many standard cclls havc vertical
feeds to provide pass t l~roi~gl i . In addition, a stan-
dard feed cell can be autoniatically inscrtcd by the
layout tools *lien the clcmanci for fccds is high.
I /O bristles for each of the core cclls arc made airail-
able on the top and bottom of thc cclls to c ~ l l l ~ ~ ~ c c
routa bili~..
- - lr~~nk--fhc region splitting tlic core into lcfi a n d
right halves js referred to as the trunk. The trunk is
a routing region i~sed primaril!. to route clocks and
power signals down the ccntcr o f the corc. Thcsc
signals are then distributed to the left and right
sides of the corc on a ro\\ , -b~-~-o\v basis.

Ring-Although not indicated in Figure 2, tlic
term i . i r 7g refers to the 1 / 0 ring, the mini-mont,
and the high-po\\lcr ring regions ns n group. Even
though the physical size of the ring is fixed, the
total dimensions arc dctcrrni~icd 1))' tlic package
size of the array. The size of the ring cstablisl~cs the
available arca remaining in the ccntcr of the array
for the moat and the corc.

Mini-moat-The mini-mo;lt is the rcgion scp;lrit-
ing thc I/O ring from the Iligli-po\\lcr ring. 'The
layout process uses this rcgion to r o ~ ~ t c a small
11~11nber of liigli F'ln-o~~t ncts that drivc cclls in the
1/0 ring. Layout paranicters control the assign-
ment of ncts to t l ~ c mini-moat.

Digital 'l'mh~~icnl Iuurnal

Moat-The nioat is a routing region used by the
layout tools for attaching the ring to the core. The
size of the moat is determined by the alnoiunt of
space that is left over when the core and trunk are
placed and routed. Small arrays (lo\\, gate counts)
result in srn,ill cores and large moat areas, and large
arrays (high gate counts) result in large cores and
small moat areas. During the layout of large chips,
it is possible for the core to become so large that
not c n o ~ ~ g h moat space remains to make all the
necessary routing connections.

Figure 3 is a photomicrograph of a CSALT die for
one o f the CPU gate arrays used in the AlphaScr\lcr
SO00 series server systems.

Placement and Routing

The fi~nction of the layout tool suitc is to provide
a fully placed and routed array that meets or cxcccds all
the design timing criteria and that satisfies all electrical
and pl.lysical layout rules required to rcleasc the array
for mask generation. Several place-and-route features
are discussed in the follo\ving sections.

Constraint-driven Layout System
When an array is submitted to layout, it is accompa-
nied by a set of timing constraints. Timing constraints
can be thought of as esti~nated restrictions, on a per-
net basis, for the aliiount of metal lengths allo\\~ed to
interconnect the net in the layout. These constraints
drive the Timberwolf placement tool and arc ulti-
mately respo~lsible for the placement of core cells

Figure 3
Photomicrograph ofa CSALT Die

in the final layout. Because a working design may not
be achieved on the first Ia!iout iteration, the overall
CSALT methodoloby pro\,idcs mechanisms for ana-
lyzing post-layout timing delays and for generating
a refined set ofconstraints that can be fed back into the
layout for another pass. The l a y o ~ ~ t process is iterated
in this manner ~ ~ n t i l it converges on a layout solution
that meets the timing constraints.

Routability
T o ensure 100 percent routing, thc routing process
had to be kept simple, \vhich required substantial plan-
ning during development of the chip architecture
described above. As a result, the follo\\/ing elements of
the architecture were dcf ncd: (1) Pins are a\iailablc on
both the top and the bottom of the cells; (2) Power
and clock connections arc defined by cell abutment;
and (3) Total routing; of the chip is divided into four
areas (thc core, the nioat, the ring, and the niegacell
interface). This plan kept the routing problems similar
from chip to chip, which allocvcd the routing tools to
focus on particuli~r solutions.

Quick Turnaround Time
One significant fcati~rc of the CSALT layout process is
tliat it can conipl~tc a layout without n~anual interven-
tion, saving tinle over manual processes. CSALT con-
sistently demonstrated that the CAD suite can provide
co~upletcd layouts in thrcc to ten days from the time
the wirelist enters the 1,1!~out process. An array tliat bas
been in layout for ten days is likely to be one that is dif-
ficult to time and that lhas required four to six layout
iterations to converge.

Cross-talk Effect inclusion
I11 recent generations of ASIC technologies, intercon-
nect 111etal widths and pitches have been shrinking
\vhilc the clock freclucncics have been on the rise. This
raised sonic concerns about on-chip cross-talk cffcct
due to the ability of signals traveling on one \\lire
to affect the spccd of signals traveling o n adjacent or
\.ictim ivires. In extreme cases, this cross talk can c a ~ ~ s c
signals to spike on the victim wires. CSALT mcthod-
ology compensates for such effects on wire delay cal-
culation, and the compensation is integrated into the
layout process.

The integration is i~nplemented by factoring in
a coupling capacitancc extracted from layout and by
using a worst-case signal-sulitching scenario. Conscr-
vative factors \\{ere chosen after analysis of cross t;ill< o n
a representative cross section of CSALT layouts, i ~ s i ~ l g
different routing pitches on signal interconnect n~ctal
2. The goal was to find the right balance bcnvccn
metal pitch, area ~ ~ s c d , and chip timing. The study
resulted in an optimunl pitch definition of 3.75

Digital Tcchn~cdl J o l ~ r n d l Vol. / No. 1 1995 71

micrometers (p n) for ~iictal 2, and a coupling capaci-
tance ~ni~ltiplicr of 2. 'l'lic core arca increase, from that
ofusing the minimum pitch for metal 2 . ~ t 2.625 I J -~ I ,
was less than 10 percent k)r the largest design.
Ho\\lc\,cr, overall die area increase \Ifas negligible due
to the dcsigns bcirlg I/O-ring-lilnitcd in nature.

Free of Electrornigration
Whcn the current density i l l thc ~ l ~ ~ r n i n ~ ~ r n intcrcon-
nect used in today's liigli-density CMOS processes is
too high, a detrimental pllysical plicnomcnon occurs.
This phenomenon causes metal reliability problems
in c\~liicli metal molecules slo\vly migrate, resulting in
open/sliort circuits inside ASICs. T o eliminate tllc
need for a long and manuall!. tedious process of
looking for tlicsc problcms ahcr la)lout, the CSALT
strategy is to ,lvoid clcctromigratio~i problems dur-
ing layotit through analysis and irnplcnicl~tation of
built-in conscr\lativc l a y o ~ ~ t disciplines.

An~lysis of sc\~cral (:SALT clrrays resulted in an
j~icreasc in tlie contact capacity and the definition of
masimum output lond limits k)r each macrocell. The
limit set was n mnsimum of 130 unit loads (7.5 pico-
farads [pF I) s\vitching ;it m a s i m ~ ~ n i frequency (100
MHz). In acidition to tliat limit being .~\/~ilable to
designers during the design phase for proper fan-out
iniplcmentation, tlic tools automatically flag all ncts
that escccd tllc limit.

A number of o t l ~ c r features arc designed into the
CSALT proccss to guarantee tliat layouts arc free fronl
electrornigration problems:

1,ibmry data tables arc ~ ~ s c d to dynamically assign
n~etal \vidths a ~ i d cor~-cspo~idi~ig contact sizes
according to clri\'cr strengths and loads. This clirni-
nates clcctromigratio~i problcms for dynamically
sizc~i met31 r o ~ ~ t c s S L I C I ~ 3s clock nets and other high
fan-ol~t ncts.
The bulk of the po\iicr distr ib~~tion is acliie\,ed by
cell abutment. Cell po\\'cr rails arc conscrvati\~ely
dcsig~icd to handle the largest row's current
demand.
As a final check o n correctness, onc of the layout
process steps incorporates a hot rocv tool. This tool
flags any ro\\a in the corc wliosc cells collectively
escccd a preclctcrmincd currcnt threshold def ncd
bp the I~andling capability of the power cells in
tlic rocvs. This ink)rrn<ltion is uscti to Hag a poten-
tial clcctromigration situation jn the contact struc-
ture, distributing po\\cr from tlic trunk to the
row. \iVlicn tlic rob\/ is flagged, the user manu'llly
reviews the result files a ~ l d analyzes the ro\v. O u t
of 15 separate designs completed, not one had to
be changed due to tlaggcd hot rows. This is due
to the extremely co~lser\lativc assuniption i~sed by

the tool-it assumes all logic is s\vitching at niaxi-
mum fireqt~ency.

Correct-by-construction Concept
As it applies to all the critical dc\'icc issues (for csani-
ple, clectroniigration, cross talk, hot carrier injection,
and latchup), acceptance of the concept of a layout
being correct by construction 11.1s dram,~tic;ill!,
reduced turnaround time in the I a y o ~ ~ t proccss b!'
eliminating the iced to perform tlicsc analysis opcrn-
tions on each array. Why docs it \\lol-lc for <:SAI,TI
I t \vorl<s because tlic CSAL'I' layout proccss is \'cry
deterministic, and correctness has been \ccrifcd o n
a cross section of arrays. In tlic final a~ialysis, all drrays
use the same cells from a \veil-defined arid charactcr-
izcd library. The architecture of the die is the snlnc in
all arrays. As a ~.csi~lt, variation is liltcly to enter the sys-
tem only during the routing proccss. This proccss
incorporates conservati\/c I a y o ~ ~ t rules and clicclts to
avoid and detect potential failure mcclianisms.

CSAI-T Layout Process

As shown in F i g ~ ~ r c 4, tlie layout proccss encompasses
five hasic assembly and clicck opcratio~ls: fill1 \\/irclist
preparation, pad-ring asscm bly, corc assembly, chip
assembly, and veriti cation.

1. During \\/irelist preparation, the input wirelist is
analyzed, names arc nianipulatcd to conk)rm to lay-
out naming con\/cntions, and the design is pnrti-
tioned into pad-ring and corc c o ~ ~ ~ p o ~ i e ~ i t ~ .

2. Iluring pad-ring assembl!l, I/O and I~igli-po\\~cr
cell/slot ilsslgnments ~ r c made ,iccording to bond-
ing requircnlents. The ring is then globally routed.

3. During core asscml~l>r, tloospla~ining for tlic trunk
and any random-access nieniory (1UiM) dc\,iccs
takes place; timing constraints from sc\.cral sources
(prc-layout, user defined, current layol~t, and psc-
\lious layouts) arc merged into a \\lorst-casc set
of composite constraints tliat arc L I S C ~ by t l ~ c
Timberwolf tool to place and globnlly r o ~ ~ t e
the core. Also during this step, the balanced clock
system and scan chain arc synthesized and globally
routed. The SCAR cl ian~~cl router is tlle~i L I S C ~

t o route the standard-cell por t io~l of the corc. If
the design contains RAMS, they arc then placcd in
their floorplan~icd locations, globally ro~~tccl , ~ n d
finally attached to the corc using the arca router,
Chameleon.

4. During chip assembly, the intcrf:iccs between the
core, nloat, and pad ring arc rcfncd. <:h;lmclcon is
L I S C ~ to perform final routing of the l-i~ig a11J the
moat. Thus far the chip has bccn co~nplctcl!l placcd
and rou tcd using cell outlines contailling only

7 2 I>igiral Technical Journnl

FULL WlRELlST
PREPARATION WlRELlST

PREPARATION

PARTITIONING
- - - - - - - - - - - - -

PAD-RING
ASSEMBLY

I ADS-POP I

CORE PLACE *
AND ROUTE
PREPARATION

CORE
ASSEMBLY

CHIP
ASSEMBLY

TIMBERWOLF
PLACE AND
GLOBAL ROUTE

COMPLETE fi
CHIP RING AND I MOAT PREPARATION I

ROUTE ROUTE

VERIFICATION ----I-----
INTERCONNECT
VERIFICATION I W I R E S T I
PREPARATION

- -

1 PHYSICAL VERIFICATION 1

CAPACITANCE
EXTRACT

INTERCONNECT VERIFICATION1
DESIGN RULE CHECK

L - - -

Figure 4
CSA1.T CAD I.;1yout Ovcrvic\\-

din~ension i~iformation, rclati\lc coordinates of bris-
tles, and bristle names. The ring and core cell out-
lines arc no\\, replaced with the a c t ~ ~ a l cell layout
inhrn~at ion h-om the librar!!, and a complete design
1'1)iout file for the chip is produced. As the file is
gencmtcd, alignment block and substrate ring data
is added to makc the physical representation file
rcady fix mask set procluction.

5. The hllo\ving proccdurcs occur during the \ferifica-
tion phase of the layout:

Physical dcsign I-LIICS ai-c chcckcd.

A \\/irelist conlpnrison is pcrfonned to ensure
that the layout file is an csact rnatch to the logi-
cal representation of the design.

Capacitance inforniation fioni the layout file is
extracted, and the proccss procectis to cnlculatc
a conser\tative metal delay (including compcnsa-
tion for cross talk) for each net in the Iayoilt.
Thcse post - layo~~t 1nct3l dela!,~ ; I ~ C fed back into
the timing \rcrifi cation proccss. In addition,
SPICE is run on clock nets and other critical nets
predefined by the user, and the delays arc made
n\isilable for tiniing annl!.scs.l

The entire proccss runs ai~to~iii~ticall!~ 'ind, \\,lien

possible, steps are run concurrently. Manual intcr\fcn-
tion is ilnnecessar!l and is discouraged; it is uscd only
during tool debugging or spccial customization.

Process Controller

CSALT's fi~lly ,lutonintcci process controller (PC)
ensures optimum use ofsystcm rcsourccs, orchcstratcs
the entire layout proccss, provides all necessary data
management fi~nctions, and provides tlie user with
a very simple set of comn1ancls for operating an othcr-
wise complex process.

The power of the PC is in its continuous dynamic
decompositio~i of every layout into parallel batch
streams. The PC runs thc entirc I;lyout proccss in
batch mode, taliing f~ll advantngc o f opportunities
to use multiple processors and run independent parts
of the lavout process in parallel streams. Bccausc it
hides all tlie CAD and process complexity from 3 user,
no pre\,ious (:AD or 1ayo~1t skiI1s arc rcqui~-cti to itcr'lte
layouts once initial la!wut paramctcrs have been cstab-
lished for a given array.

Figure 5 illustr3tes the flo\v for the <:SALT layout
process. (A and B i~idicatc connectivity points.) Each
llallle in the process flo\\f represents the n'lmc o f 3 ~ i ~ i -

gle process step. Execution of the layout proccss
is controlled by a single command proccdurc called
<:SALT place and route (<:l'li). A l t h o i ~ ~ h other CPR
command line options exist, <:Pi< is most often i~scd
in its simplest and most powerfll form, CPK PC. This
command causes CPR to in\roke thc dynamic PC that
\\,ill a~lalj~ze the current relationships o f 3 Iayoi~t data-
base and begin autoiliatic esccutiou of the 1~)lout
process from the nest eligible proccss step.

Results and Conclusion

CSALT gate array technology was ~ ~ s c d cstcnsi\rcly
during the de\,clopment of tlic AlpliaScr\lcr 8000
server s)lstems. This dcsign metliodolog?l rcmo\lccl the
product's critical dcper~dcncy o n the p1,lc.e-and-routc
portion of tlie design proccss. As a result, tiniing-
correct ASIC layouts were produced in fc\\/cr than 72
haul-s. In addition, the (:SAL,T ASIC: logic designers
had access to thc pro\Ien 3.3-V silicon structures

Digiral Tcchnic.~l J o u r n a l \ I 1 N o I I > o

PREP
GWLHACK
CLOCKCHK
UNBUNDLE

I ADS-POP I

74 Digital 'li.zlinic.~l Jou1.1131

SMALLPLOTBLOCK

Val. 7 No. 1 1995

T
I TOPAZMERGE

NLS

HLR (PG) I

I

Figure 5
CSALT CAL) 1'1.occss Flo\\~ Diagnm

I

LEASH

MERGE-PATHS

I
AUGPATHS

I

I
SPWMAX SPRMAX
TR2
TOPAZ2

dcvclopcd by Digital Scrniconductor. CSAL.T's timing-
driven layout approach for designing and irnplcmcnt-
ing a high-performance ASIC made tlie AlphaScrvcr
8000 server s)atems' aggressive 1 0-nanosecond bus
speed a reality, with m i ~ i i m ~ ~ m

Although CSALT's i ~ n p l c n ~ e n t a t i o n pieces ma)f n o t
be uniclue, tlie approach that \vas taken t o link the set
o f front-end design tools \ \~i th the back-end l ~ l y o ~ ~ t 113s
proven t o be i ~ n i q u c , wit11 unmatched results. N o
ASIC vendor today (January 1995) can provide logic
designers \itit11 thc ability to d o their own a ~ ~ t o m n t c d ,
timing-correct layouts from their desktops.

I n less aggressive designs, a large number ofworking
layol~t solutions exist. Tlic 11~1n1ber o f tliesc solutions
starts t o shrink \vhcn the technology is niorc aggres-
sively used. Iterative timing-driven layout cfficicntl!l
searches through the m'ltris of possible solutions t o
find a \vorl<ing layout. Coupling tiniing-driven Iayoi~t
with logic synthesis can bring us very closc t o achieving
the "silicon compiler" goals o f automatic;lll\! produc-
ing working designs from high-level logic descriptions.

Acknowledgments

T h e authors \vould likc to acknowledgc the efforts of
tlic follo\ving people, \\,itliout \\,horn thc project
\\.ould n o t have becn succcssfi~l: Meaghan Engcl~lil ,
1)avc Caffo, and Paul Jnnson. We \\~oiild also likc
to ackno\vledgc otlicr mcmbers o f the CSALT team:
Linda Greska, Kevin Gamachc, Llennis Linvinctz, 13ill
Gist, Dave Vanderbcck, John l>raslier, J o h n I<enncdy,
and certainly 13iclc 1)avis and 13an-el Donnldson for
their CSALT vision. Wc \vould also likc t o ~lckno\\,l-
edge Professor Carl Scchcn and Bill S\\lartz ti)r their
continued Ti~iiber\Volf support ,

References and Notes

1. SPICE is a general-pi~rposc circuit sin~ulato~. progl,alii
developed by Lawrc~lce Nagel and Ellis Cohcn of the
J>epartment of Electrical Engineering and Computer
Sciences, Uni\,crsit)f of (:.~lifo~,nia at Rerkclcy.

2. Timberwolf ~Mixcd Macro/Standard Cell Floorplanning
and Routing Pnckagc is a public domain automatic Iay-
out package. l3c\,clopcd and dirccred by Professor <:arl
Scchen from July 1986 through June 1992 at Yale Uni-
vcrsiry and later at the University of Washington, it is
currently maintc~incd and supported by Ti~nbcr\VolF
Systclils, Inc., l)nllns, 'fixas.

3. J . Rubcnstcin, r. Pcnficld, nnd IM. Horo\vitz, "Signal
Delay in liC Trcc Nct\\rorks," lEEE Trz~r~.\~ic.liorts or1
Cor~rptrter-ai~lvcI Ilesigtr c,J'Irrtegr~rtccl C'ire~~il .~ atrcl
S)ster~rs, CAI)-2 (3) (July 1983): 202-21 1.

4. 13. Fellwick, I). Folcy, W. Gist, S. \'i~nl)orcn, .ind
D. Wisscll, "The AlphaScrvcr 8000 Series: High-end
Server Platform I)c\~cloprncnt," Digilul Technical
,jot.~r*~~al, vol. 7, 110. 1 (1995, this issue): 43-65.

Biographies

Jean H. Bas~naji
Jcan Basmnji is a hard\\arc consulting cllgi~iccr in the
Server Platk)rm I)c\~clopn~cnt Group. As the <:SAL;T

'\' 111311- dc\~elopnicnt 17rojcct Icnllcr and ASIC tcchnolob,
agcr, hc \\,as responsible for the transition ol'thc (:SAL'I'
tcchnolog project kom advanced dcvclopmcnt to pro-
duction. Jean has hccn rlic technical director of com-
puter-nidcd c~iginccring arid design \,critication tcsting
for rhc Scrvcr 1'131Ii)rnl l ~ e v e l o p ~ i l c ~ ~ t Cro111) si~lcc the
introduction of 1)igitnl's first multiproccsbing computer,
the VAX 6200 system. Jean joined Digital in 1978 after
recci\~ing a R.S.I:.E, from l,o\vell 'fichnologicd Institi~tc
in 1977.

Kay R. Fisher
IC7y Fisher joilicd 1)igit'll in 1973 as 3 Ilard\\,;ll.c instrr~ctor
and course dcvclopcr. Hc has Inore t11;111 20 years ofsoft-
\\,arc cnginccring cspcricncc in the a r c s o f memory testing,
h ~ r l t-tolerant ~nulticompu tcr s\stcnis, and ITAX systems.
Currently J pri~icipal soft\\,,ire engineer ill rlic Alpha ,~nd
VAS Ser\.crs Group, Kay is respo~~siblc ti)r the process
control softw;u.c t i ~ r 1)igital's CAI) system. His code runs
programs in p;ir;lllcl ; ~ r ~ d synthesizes clock drivers, nct-
works, and scan chains. Kay rcceivcd a R.S. ill co~nputcr
scicnce (magna cum Iaudc, 1978) from Rosto~i U11i\,crsity-
 metropolitan <:ollcgc.

Frank W. Gatulis
As supervisor of tlic (;AD segnicnt of the <:SAI:T tcchnol-
ogy ream, consultant entjneec Frank Chrulis is responsible
for defining nnJ implcmcnti~lg automated I;lyo~lt tools and
processes. .I graduate of Don Bosco Techuical I~lstiti~tc,
he also attended the R.S.E.E. program at Northcastcr~l
Univcrsity. Frank has also supervised the I / O diagnostic

rcalii for DE(:systc~ii I 0 and I)ECs!-stern 2 0 products
ns \re11 as the dc\.clopnlcnr of tlic console-b,~scti hul t
dctcction s!istcm anti ;luronlatcd isol~t ion tool suite
used on tlie VAX 8600 ;uid VAX 8650. His architccturc
scgniellts stratcgics \\lcrc t~scd to hbricate and tcst
m ~ ~ l r i c l ~ i p units In VAX 9000 systems. I3cfi)rc jo i~l i~lg
Digital in 1973, Frank worked a t EG&G wlicrc he
developed real-timc pictul-c acquisition, processing.
J I I ~ con~prcssio~i sofnvarc.

Herbert R. Kolk
A co~isulting sofn\,arc cnginscr \\ilia spccinlizcs in chip
routing, Herb I(olk currently supports and cnha~iccs the
(:SAI:r layout proccss. Prior t o that, he was the architect
of the <:hamelcon routcr, which nlns ascd for routing g ~ t c
~rrays , lli~iltichip I~IOC~LIICS, and CI'U boards for the VAX
9000. This routcr is still being ~ ~ s c d in the (:SAL.lS proccss.
I3cforc joining 1) i ~ i u l in 1983, Hcrb designed soft\varc
s!,stcnls for the (;o1n111u1iic.ltio1is Systerns D i v ~ s i o ~ ~ of GTE.
Hcrb rcceircd a R.S.E.F.. (\\.it11 ho~lors) from the 1l)clicstcr
l n s t i t ~ ~ t e ofTcclinology in 1973.

James F. Rosencrans
J i ~ n Roscncrans is 3 principal hard\\~are e~ lg i~ lcc r in the
AlpliaScr\~cr Engineering Group. As the ASIC tcclinol-
ogist for server system dcvclopmcnt, Jim supports the
AlphaScrver 8000 scrics dcsign reams and acts as liaison
h r both the teams nlid tcst c~iginecring. In additio~i to
lending tlie CSAlll niicrop.lcknging clcfinition 2nd dcsign,
lie contributed to tlic dc\~clopmcnt of CSAI-T tcchnolop.
His previous \\.ark includes co~itriburions to ASIC and
ASI(:/silicon technology sclcction, definition, and ticsign
support. Bcfi~rc joining I)igit.il in 1988, Jim was \\lit11 N<:R
Microclccrro~iics, \\ hcrc lic \\,orkcd on custoni 2nd <:MOS
ASIC: dccign and ,\ilico~l process dc\lclopmcnt. A mcnlbcr
of IEF.l:, Jim rccci\,cd ;I l%.S.F..E. tiom thc Univcrsit)r of
Wisconsin in 1980.

Vol. 7 No. 1 1'9'95

The Second-generation
Processor Module for
AlphaServer 21 00
Systems

The second-generation KN470 processor module
for AlphaServer 2100 systems performs signifi-
cantly better than the first-generation KN460
module and was designed to be swap-compatible
as an upgrade. The KN470 processor module
derives i ts performance improvements from the
enhanced architecture of Digital's new Alpha
21 164 microprocessor, the synchronous design
of the third-level cache and system interface,
the implementation of a duplicate tag of the
third-level cache, and the implementation of
a write-invalidate cache coherence protocol
for the multiprocessor system bus. Additional
design features such as read-miss pipelining,
system bus grant parking, hidden coherence
transactions to the duplicate tag, and Alpha
21 164 microprocessor write transactions to the
system bus back-off and replay were combined
to produce a higher performance processor
module. The scope of the project required imple-
menting functionality in system components
such as the memory, the backplane, the system
bus arbiter, and the I10 bridge, which shipped
one year ahead of the KN470 module.

I
Nitin D. Godiwala
Barry A. Maskas

The second-generation KN470 processor moclule for
AlphaServer 2100 systems achieves a higher perfor-
mance than the first-ge~ieration I(N460 module \\ihile
~iiaintaining compatibility \vith tlie AlphaServer 2 100
system environment. This paper describes the proces-
sor module project and the resulting design. Topics
discussed are the elements that contribute to tlic com-
patibility and to the higher performance: coherence
protocol, system bus protocol, system bus arbitration,
system interface and shared data, and clocking. Some
key design trade-offs are described. The paper con-
cludes with a performance summary that presents
measured attributes of the higher performance
KN470 processor in the context of the AlphaServer
2 100 fi~mily.

When the AlphaServer 2100 product fiirnily was
being defined in late 1992, the processor module
pcrfor~iiance-osier-time roadmap projected three per-
formance variations based on increasing tlie clock rate
of the Alpha 21064 microprocessor.l These modules
were to be compatible with Digital's mid-range niulti-
processor system bus and ~ ~ u l d support enlianced
fi~~ictionality such as direct-mapped I/O, up to four
microprocessors, an 1 / 0 bridge to 32-bit Peripheral
Chnponent Interconnect (PCI) and Extended Indus-
try Standard Architecture (EISA) buses, and an I/O
expansion option module with an 1 / 0 bridge to a
64-bit PC1 bus.2 Two members of the DEC 4000
processor design team were assigned to deliver this
first-generation processor module. At this time, there
was no goal to develop a second-generation processor
modulr. Therefore, the remainder of the team
designed the arbiter chip and the enhancements
required in the processor-module system interface
chips and at the same time co~ltributed to the Alpha
2 1 164 ~iiicroprocessor de\lelopment effort.

Goals for contributions to the Alpha 21 164 niicro-
processor development effort \\'ere partitioned into
short- and longer-term goals. A short-term goal \\?as to
detine a system for the nccv Alpha ~~~ic roprocesso r .~ The
related longer-tern1 goal was to ensure thdt the Alpha
2 1 164 microprocessor could operate in that defined
system. An architectural s t i~dy resi~lted in a proposal
and a project plan to develop a second-generation
processor module that extended the perforniance and

Val. 7 No. 1 1995 7

longevity of the AlphaServer 2100 family. In addition,
the remainder of tlie team ni;ide requests of the Alpha
2 11 64 microprocessor team to incorporate specific
legacy-related AlphaServer 2 100 hnctions such as
support for 32-byte cachc blocks, control of 1 / 0
address space read merging, and completion of niem-
ory barriers on the Alpha 2 1 164 microprocessor. The
busincss management team accepted the proposal and
the project plan. The Alpha 2 1 164 microprocessor
team agreed to support the f lnctionality requests. The
design team staffing was completed by march 1993,
and detailed design work began in lMay 1993. The
design team's goal was to have a processor module
ready to accept the Alpha 2 1 164 n~icroprocessor for
installation when the n~icroprocessor first became
available. The team met this goal.

Since tlie first- and second-generation processor
niodules would operate in the same enclosure and with
the same power supply, the size and shape (i.e., form
factor), cooling demands, and power consumption
o f the new module had to be compatible with those of
the first-generation module. Because of the presence
of an on-chip, write-back second-level cache and an
estimated longer access time to that cache from the
system bus, the Alpha 2 1 164 microprocessor architec-
ture adopted an invalidate-on-write cache coherence
protocol. The Alpha 21 064 niicroprocessor supported
an off-chip, write-back second-level cache that has
a faster access time fro111 tlic system bus. This faster
access time enabled the implementation of a good-
performing update-on-\\!rite cache coherence proto-
col. Support of these snooping, ~~iultiprocessos system
bus coherence protocols required enhancements to
the system bus transaction types. Tliis resulted in minor
logic changes to the memory interface chips and to tlie
I/O bridge chip.4.5 These changes were defined and
implemented in time for the first-generation system
power-on. Hence, the system components, the 1 / 0
bridge chip, tlie memory modules, and the system
bus and backplane are conlpatible with the first- and
second -generation processors. This basic difference in
the system bus coherence protocols prevented the s~ls-
tem from supporting the coexistence of tlie first- and
second-generation processor modules because such
a configuration has asymmetric attributes. Alpha oper-
ating systeni sohvare does not support asymmetric
multiprocessing; symmetry is assumed.

Another project goal was to maintain the
Alphaserver 2100 family's position among t l ~ e indus-
try's leading high-performance server systems. This
goal was achieved by exploiting the Alpha 21 164
microprocessor's performance through the design of
the processor module's third_levcl cache, by imple-
menting a full-duplicate tag OF this cache, and by
implementing a synchrono~~s cloclung scheme.
Combining the processor design attributes with
a pipelined read transaction of a faster read-access

system memory module enabled the team to achieve
the project's goal of designing a higher performance
processor module and multiprocessor system.

Overview of the Processor Module

The KN470 processor m o d ~ ~ l e provides an operational
envlronmcnt for the Alph.1 21164 rnicroproccssor.
This environment, which is similar to that of tlie tirst-
generation KN460 processor module environment,
includes tlie follo\\l~ng:

Alpha 2 1 164 microprocessor-a superscalar,
superpipelined iniplelnentation of the Alpha archi-
tecture with low average cycles per instruction
because of its four-instruction issue

B-cache-a module or third-le\iel \\/rite-back cache

Systmi interface-two application-specific inte-
grated circiiit (ASIC) chips that interface tlie Alpha
2 1 164 microprocessor, %cache, and di~plicate tag
store to the system bus

Duplicatc tag store-a tag store of thc third-le\lel
write-back cache

System bus clock repeater that provides system bus
synchronous clocks to thc module

Systenl bus arbiter that determines which system
bus node can access the spstcm bus

Serial control bus subsystem that includes clock and
reset control circuitry, a microcontroller \\pith a
scrial interface, serial rcad-only Inenlory \\tit11
power-on firmurare bits, and non\lolatile niemory
for processor configuration parameters

Figure 1 sho\vs a block diagram of the KN470
processor module.

The Alpha 2 1164 microprocessor is organized witli
an on-chip 8-kilobyte (KB) priiilary instruction cache
and an 8-KB nlrite-through data cache, \vhich are
referred to as first-level caches. In addition, a 96-IU3,
second-le\/el, three-way, sct-associative \vrite-back
cache is iniple~nented on the chip.

The module design includes a B-cache or third-level
cache to niininiize the miss penalty and to be config-
urable through the use of various densities of similarly
packaged static random-access niemor). (RAh4) chips.
Such a design enabled final product definition late in
tlie verification process based on static RAM costs and
delivered performance from the B-cache. The size of
tlie B-caclic is either 1 , 2 , 4 , 8 , or 16 megabytes (1MB).
Each 13-cache entry stores 32 bytes of data and the
associated tag bits and is called 3 cache block. To facili-
tate read-fill data and victim-write data exchange nith
the system interface, the Alpha 2 1 164 microprocessor
and tlic system interface share the B-cache data port.
The B-cache is controlled by the Alpha 2 11 6 4 micro-
Drocessor, which has its second-le~el cache configured

78 Digital Technical Journal Vo1.7 No. 1 1993

Figure 1
Block Diagram of thc KN470 Processor ~Modulr

to operate in 32-byte instead of 64-byte cache block
mode. This 32-byte mode of operation for the
second-level caclie was the most complex request
made of the Alpha 21164 microprocessor design
team. Ho\ve\,er, this design element was required to
achieve the Alphaserver 2100 compatibility goal.

The system interface is a common boundary
between the system bus, the Alpha 21164 micro-
processor, and the third-le\rrl cache. The system inter-
face provides the protocol and circuitry for the Alpha
2 1 164 microprocessor to read or write devices con-
nected to tlie system bus. Conversely, the system inter-
face provides the protocol and circuitry for the
processor ~nodc~ le to respond to read or write transac-
tions from the system bus. The system interface com-
prises two identical bit slices of an ASIC. The ASICs
operate as even and odd slices, based on a mode-select
pin on the module. The system interface selects the
operating mode of the arbiter cliip. I t also encodes tlie
system bus transaction type as read or write and then
supplies a control, sjgnal to tlie arbiter cliip. :The arbiter
chip must Itno\\! the present system bus transaction
type to remain synchronized wit11 tlie system bus

A

CLOCK AND SYSTEM
SUPPORT CIRCUITRY

events and to know when to sample new requests for
the system bus.

The module maintains a duplicate copy of tag con-
trol bits of each B-cache block in the duplicate tag
store. The duplicate tag store is controlled by the
system interface and is time multiplexed between sys-
tem bus requests and Alpha 2 1164 microprocessor
requests. This ability to pipeline transactions to the
duplicate tag store from the Alpha 21164 micro-
processor and the systenl bus allowed the Alpha
21164 microprocessor's requests to fill predictable
time slots in parallel t o the system bus transactions,
hidden from the system bus. This is called cycle-
stealing because the coherence transactions requested
by the Alpha 21 164 microprocessor d o not requirc
arbitration for or use of the system bus cycles. Cycle-
stealing provided more usefill system bus bandwidth
while at the same time reduced the Alpha 2 1 164
microprocessor latency for colierence transactions to
the duplicate tag store.

Thc clock repeater chips generate complementary
metal-oxide semico~iductor (CMOS)-level cloclts
from positive emitter-coupled logic (PECL)-driven

Digital Technical Journal

SYSTEM BUS
ARBITER

f
SYSTEM BUS
CLOCK

CONTROL-IN
CONTROL-OUT

DATA<127:0>
CHECK<15:0>

TAG-C (VSDP)
TAGc30:20>

INDEX<25:4>,
CONTROLS

Vo1.7 No. 1 1995 79

SYSTEM BUS
ARBITRATION

4

t
REPEATER

ALPHA 21 164
MICROPROCESSOR

MASK<3:O>

CMD<3:O>+PARITY
ADDRc39:4>

SYSTEM BUS
INITIALIZATION

-
*

SYSTEM
BUS

* - - -

4 + - *

*
b

w

1 1 Y Y

w

, B-CACHE
'

1 , 2 , 4 , 8 , O R 1 6 M B

TAG CONTROLS

INDEX<25:4>

SYSTEM INTERFACE
2 BIT-SLICE ASlCS

BUS<127:0>

SYSTEM BUS
CONTROL

INTERRUPTS
AND ERRORS

backplnnc cloclts. These CPIOS-lc\zcl cloclts ure sltc\\s
regulated and distributed to the ~iiodule's compo-
nents. Tlie Alpha 21 164 microproccsso~- has digital-
lock-loop circ~litry, \vhich alig~is tlic Alplia 2 1 164
r~iicroproccssor's interface clock to tlic rcfcrencc
clocks tliat run to all other r n o d ~ ~ l c components. This
scheme is basically the sp~iclironous clocking scheme.

'I'lie modulc includes tlic system bus arbiter cliip.
'The decision to locate this chip on tlic processor
instead of tlie backplane stemmed from concerns over
compatibility between the fi rst- and second-generation
proccssor arbitration algorithms supported by tliis
chip. 'l'hc system ~ L I S arbiter cliip \\!as designed ;~nd h b -
ricatcd for tlie fi rst-generation proccssor and included
the fi~nctionality of the second-gcncr:~tio~i proccssor.
Tlic cliip design \\,as completed prior to the design
of the L i 4 7 0 processor module's systcm interface.
7.0 minimize the chance of dcsig~i crror, the team
performed extensive simulations to help the project
realize a fi~ll-function, second-pass chip for L I S ~ in the
first- and second-generation processor modules.

'I'lie 1<N470 processor ~iioti i~le i~tiplcmcnts the sys-
tem bus reset control and serial control bus subsys-
tems, witli minor modifications, that were designed
for tlic first-generation processor mot i~~ lc .

Cache Coherence Protocol

To inipl-o\,c the in-s!.steni performalice of tlic Alplia
2 1164 microprocessor and its write-invalidate cache
coherence protocol, the Kii470 modi~lc implements
n duplicate tag store of tlie R-cache. Tlic Alpha 2 1 164
niicroprocessor lias two levels o f 011-chip caclic tlint arc
maintained as a subset of the B-cache. This discussion
assumes tliat thc first- and second-level caclies remain
colicrcnt ~vi th tlic B-cache and duplicate tag store.
Operations performed by the Alpha 21 164 micro-
processor and system interface niaintain tlie B-cache
and duplicate tag store subset r ~ ~ l c for the on-cliip
c~clics. The duplicate tag store and the B-caclic each
keep three control bits to maintain coherence \\.it11 the
on-chip caches and also witli s!,steru. ~iicmor-!. and other
module cL~clies. The three control bits arc called \ralid
(V), sliarcd (S) , and dirty (D). A combination of con-
trol bits makes LIP a state o fa cache bl.ock. Thc five pos-
sible caclic block statcs are as follo\vs:

1. VSl> = 000 A cache block is eitliel- empty o r
removed fi-om the B-cache and hence invalid.

2 . VSO = 100 A cache block is tlic onlv cacllcd copy
in the system.

3 VSI) = 101 A cache block is valid, .lnd tliis copy
has bccn modified lnorc rcccntl!! than tlic copy In
mcniory.

4. VSI) = 110 A \ d i d cache block may also be
in another cache. This processor must \\<rite or

broadcast \\'rite modificat~ons of this block to tlic
system bus.

5. VSl) = 11 1 A \,cllid cache block may also be in
anotlicr iac l~c , ,ind the cop!. of this block has been
~nodificd nlorc rcccntl)~ than the copy in memory.

Cache statc transitions are synchronized to s)rstcni
bus transaction cycles beca~~se the s)~steni bus is the
common point of coherence and coherence conflict
resolution.

Wlien the Alplin 2 1 164 microproccssor r cq~~cs t s
a transaction for n caclic bloclt to be read or f llcd from
system memory into tlic B-cache and on-chip caches,
the cache block statc is set to VSL) = 100 in the dupli-
cate trig store, tlic R-cache, and the on-chip caches.
The first-Je\.cl instl-uction and write-through data
caches must maintain only a valid bit. The second-level
\\>rite-back caclic must riiai~itain the VSD bits consis-
tent \\,it11 thc R-cache and the duplicate tag store.

If an Alpha 21 164 microprocessor's read trans-
action request is of tlic type intent-to-modi$, then
the cache bloclt statc ~iiakes a direct transit io~~ to
VSD = 1 0 1 . A bloclt in the \lalid state of VSD = 100
\ \ i l l make a transition to VSD = 101 \\,hen an Alpha
21 164 ~nicroproccssor's recluest to m o d $ tlic caclic
state lias reached the point of coherence, i.e., the sys-
tem bus. Ho\\~cvcr, tllc cluplicate tag store is maintain-
ing coherence \\,ith tlic systcm bus, so this request
n i ~ ~ s t find ,I nonconflicting c!lclc to effect the statc
transition. If another proccssor reads the same block
before this processor's request lias reached the point of
coherence, then the caclic block state ~iialies a transi-
tion to VSD = 1 10. In this case, the system interface
updates the sliarcd statc to VSl) = 110 for the read
with i n t e n t - t o - m o i transaction before the bloclt is
modified. Bccausc tlic hlock is shared, this processor's
request to moclifjl the block must now also become
a broadcast \\,rite transaction to the system bus. Once
the modified block is \\,rittcn to the systc~ii bus,
thc nest statc transition is to VSD = 100. Tlie broad-
cast *rite transaction is son~etirnes referred to as an
~~nsliaring trnns;iction.

Once a caclic block st.~tc is \,slid, j.e., \lSD = 100, it
can be invalidated or set to the state VSD = 000 from
the system bus by another processor's read \\fit11
intent-to-modi$ or by a \\trite tl-ansaction to tliat
block. Tlic Alplia 21 164 niicroprocessor docs not
allo\v an update of \vritc data from the system bus but
instead in\,alidatcs the block. Invalidation requires tlic
duplicate t ~ g storc, tlic B-caclic, and the on-chip
caches to clear their V statc. Implementation of systcm
bus \vrite transactions that cause block invalidation is
recluired to support tlic caclic coherence protocol of
the Alpha 2 1 164 microprocessor.

By filtering out s!.stcm bus transactions that d o not
alter tlic coliercncc states of tlic Alpha 2 1 164 micro-
processor, tlic duplicntc tag store serves to minimix

the frequency \\lit11 \\lliich the system bus transactions
interrupt the microprocessor operations. Without the
duplicate tag store filtering, tlie Alpliu 21 164 micro-
processor \\ ,oi~ld 11a\~c t o be jntcrri~pted o n every system
bus transaction, thus limiting tlic systcm performance.

System Bus Protocol

T h e I(N470 processor module incorporates both an
enhanced s!istcm bus protocol and a system bus arbiter
tliat minimizes the arbjtrcition latency.

Enhancement of Transactions
For the first-generation AlphaScr\,cr 2 100 processor,
the system bus protocol is tlie same as the o n e imple-
mented in tlic 1)I-X: 4000 system. Tliis system bus pro-
tocol is 3 s ~ i o o p i ~ l g bus p~-otocol in \\~liich all bus
participants arc required t o monitor s!,stcni bus trans-
actions and t o lcccp their caclicd copy o f memo^-\,

coherent. For the second-generation processor, tlic
designcrs enlirinccd the l>E,C 4000 systc~ii bus proto-
col t o support tlic \\~ritc-in\jalid.ltc cache coherence
protocol o f the Alpha 2 1 164 microprocessor.

-The DEC 4000 system bus protocol supports four
t \ ~ p c s o f tr'insactions: read, \\!rite, exchange, and
n o operation. l ~ l i c e x c l i a ~ ~ g e trri~is.iction performs a
\~ ic t i~ i i - \ \~~- i tc tr:~nsaction t o o n e rncmory location and
a read transaction o f another rncmory location. Tlic
nvo transactions arc separated by the c o m m o n lo\vcr
18 bits ofnddrcss. Tlie escliangc transaction combines
read trans,ictions u ~ i d \'ictim-\\,rjtc transactions into
one transaction, sliari~lg the .iddress cycle o f the sys-
ten1 bus. Tlic cschange transaction is used t o e\rict
modified caclic I~locks from the caclics back t o s!stcln
memory t o allow ;i replacement block with a different
t.13 t o be allocated.

To s ~ ~ p p o r t tlic second-gener'ition processor's
' CtlOllS \\'ere \\ ,rite-in\,~lidatc coherence protocol, tr,ins.i - '

added t o the first-generation systcm bus protocol.
Thcsc addcd transactions \\,crc nccdcd t o signal o ther
processors and tlic 1/0 bridgc chip t o invalidate
a bloclc \\ilicn a hloclc \\,as being rcaci for tlic purpose o f
being modified. 'rhe e s c l ~ ~ s i \ ~ c - r e ~ i d and esclusi\~c-
cschange t~.,ins'~ctio~is \\,ere addcd t o the four f rst-
generation t r a n s a c t i o ~ ~ types. T h e exclusi\~e-rc'id
tr'i~isactioii is tlic rcad trans'iction that also causes
caclie in\~,ilid,~tio~i hy a bpst,indcr processor m o d i ~ l c
and the 1 / 0 bridgc cliip o f the block bcing read. T h e
esclusi \~e-escl l ,~~igc transaction is the cscliangc tmns-
action tliat also causes c ~ c l i c in\r.ilidation by a
bystander processor moclule ,incl the I/O bridgc chip
of ' t l~e I.>locl< bcing read.

Tlie 1QI470 modulc iniplcmcnted the esclusi\rc
transaction types t o establish p r i v ~ t c o\vnersliip o f a
block. Establishing private owncrsliip t o J pre\4ousl!/
sliarcd bloclc enables \\,rite transactions t o completc
\\ , i thout lia\,ing t o broadcast \\,rite tr ,~nsactions bnck

t o the system bus. This occurs because tlie block is
invalidated by bystanders ~ v l i o \\/ere sharing tlie block.

enl iancc~ncnts o f tlie sys tc~n bus transaction
types did not affcct tlie memory module. T h e iniplc-
mentation of the csclusive i~ldic,ltion signal \\.as such
tliat ~ -ne~i io~- !~ \ \ ~) u l d decode a read o r esch;uigc trans-
action and not know o f tlie esclusi\~c signaling. Bec,iusc
the 1/0 bridge cliip caches transl,ition addresses for
direct memory access o f de\~iccs o n tlle PC1 o r EISA
buses, minor motiitications \\/ere clesigned into the 1 / 0
bridgc cliip t o support these cnliancccl col-n~nands.

Minimization of Arbitration Latency
T h e systcrn bus arbiter imple~ncntcd a bus grant park-
ing or pregrant signaling schc~i ie that ~ ~ i i n i m i z e d tlic
arbitration timing o\icrliead. Tliis scheme combined
\\(it11 the pipclining o f tlie read-miss commands from
the Alplia 2 1 164 ~nicroproccssor enabled tlic systc111
bus interface t o use the a\,,iilable memory band\\.idth.

T h e arbiter for tlie first-gcneration processor fol-
lo\\ied tlie protocol ~ i s e d in tlic 1)EC 4000 systcm. T h e
arbiter sa~nplcs the requests anti then issues the grunts
according t o round-robin arbitration rules. Tlie arbi-
tration r ~ ~ l c s allo\v processor modules t o lia\re h i r acccss
t o tlie system bus. T h e elapscd timc fi-on1 \\,lien a
proccsmr 1iia11es a system bus request t o tlie arbiter
~ ~ n t i l it rcccivcs a grant is referred t o as the arbitmtion
cycle o r ~rbi t rnt ion o\lerhead. rrlic ,l~.bitmtion o\lcrhcad
increases the memory and direct-~iiapped 1/0 acccss
latency, as \\,ell as the cache-miss penalty. Typically, tlie
arbitration o \ ~ A ~ c a d for each processor appears lo\\, in
a ~iiultiproccsso~-- system in \\,liicli bus utilization is
extremely high. T h e appear.ince o f lo\\: arbitration
o\~erhead results fi-om the timc the systcni bus \\laits t o
fnish a transaction bcforc the arbitcr can i s s ~ ~ e tlic nest
grant. Ho\\lcvcr, the arbitration overliead m,ly be '1s
high as 20 percent o f the trans'lction time in a systcm
co~ifigumtion in \\,hich one processor modulc is con-
suming the ,l\~ailablc grants from tlic ~ r b i t c r .

? - 1. lie arbiter i~scd by the second-generatio11 proccs-
sor pregrants o r parks a grant t o tlic processor modlrle
\\~liene\ler tlic system bus goes icllc. Tliis t 'eat~~rc climi-
nates arbitr,\tion o\lerhead. T h e result is a lo\\zer mias
penalty and 'in .~bilit!l t o sust'iin a c o n t i n u o ~ ~ s stream o f
read t r~nsac t ions \\.lien the bus is not ~ ~ t i l i z e d by other
system bus nodes. This arbiter cnhancenicnt does not
cost additional xbi t rat ion o \ , e r l i c~d for other requests
becausc tllc cost o f i~nparlcing a grunt \ I ~ ~ S eliminated
through the signaling protocol. Tliis signaling proto-
col enabled the pregranted signal t o be negated ,it the
sarne timc a nc\\. grant signal is .~sscrtcd.

7 7 I he Alp11,i 21 164 microprocessor is cap,Iblc of
pending rcaci-~niss requests t o the systcm intcrf,icc.
Thcsc rcad transaction rcqucsts sometimes h , i \ ~ a n
rissoci'iteci \~ictinl tliat mus t be displaced by the
requested rcad data. By pipelining tlicsc requests in
relation t o tlic system bus grants, a c o n t i n ~ ~ o u s strc.lm

of back-to-back system bus rcad or exchange transac-
tion requests can tlo\v because of tlie parked grant.
Since the Alpha 21164 microprocessor is capable of
continued execution while miss requests are pended,
tlie processor designers had to carefully schedule the
use of the B-cache. The fill data coming from system
memory and the Alpha 2 1 164 niicroprocessor are in
contention for use of the R-cache. The system inter-
fice minimizes tlie time tliat the B-cache is allocated to
accept the f i l l data while maintaining tlie tlo\\! ofcom-
mands into the read miss transaction pipeline from the
Alpha 21 164 niicroprocessor. By allowing the micro-
processor to have access to the B-cache before and
after each f i l l , a continuous flow of transactions \\,as
realized. The continuous flow of transactions uses tlie
available system bus band\vid th.

Handling of Shared Data

A shared-database environment in uihich write trans-
actions are prominent uses the system bus esclusivc
transaction types to establish ownership of the cachc
blocks. These transaction types minimize the system
bus bandwidth usage by avoiding write broadcast
transactions of modified blocks.

In a multiprocessor environment, a block tliat is
valid in more than one cache is called a shared block.
The coherence state of a shared block is VSD = 110.
Tlic follo\ving example summarizes the problem asso-
ciated with a write transaction to 3 shared caclie block
in a system bus protocol without the exclusive transac-
tion types.

Processor A has a modified but unshared caclie
block with state VSD = 101. Processor B wants to
write tlie cache block that Processor A has modified.
Processor B issues a read transaction on the systeni bus
and then must immediately folloc\~ tlic read transaction
with a write broadcast transaction of the modified
data. The write broadcast transaction lnust be issued
by Processor B because the read transaction \\!as
shared. At the end of the two bus transactions that it
issued, Processor B's cache block state \ \ r i l l be VSD =

101. Processor A has invalidated its cache block. Thus,
two bus trarlsactions were req~rired frorn Processor B
to write the modified cache block. With fair arbitra-
tion, however, Processor R may not have access to the
system bus after the read transaction. The write trans-
action may be bloclted, thus creating other coherence
situations. If two or more processors in a system arc
trying to write the same block, Processor B may not
get access to the system bus to coniplete the \\,rite
transaction. The system is potentially in deadlock.

The system bus protocol implemented by the
KN470 enables tlie \\Trite transaction to complete but
requires only one system bus exclwive-read transac-
tion. In response to the Alpha 21 164 microprocessor's
request to modify a cache block, the processor initiates

82 Digital -l'cchnical Journal Vol. 7 No. 1 1995

an excl~~si\le-read transaction on tlie system bus. Other
processor modules responding to this exclusive-read
transaction provide the data if their block is dirty, but
regardless of the dirty state, they also invalidate their
cache block. The invalidation eliminates the shared
state. If n o other processor module has a dirty block,
the data is returned from the system nienlory. The
processor niodulc that is issuing an exclusi\ie-read
transaction sets its cache block state to VSl3 = 10 1 as
it f lls. Thc write transaction tliat is pending in thc
processor can co~iiplcte without broadcasting a write
transaction to the system bus.

A systern bus that does not support the exclusive
transaction types requi rcs a shared write transaction to
a block to be deco~nposed into two system bus transac-
tions. This can rcsu l t in system bus bandwidth satura-
tion. A systun bus that supports tlie esclusive
transaction types requires only one systeni bus transac-
tion. I n a shared-data environment in which write
transactions to shared data are the prominent cause of
cache misses, support for the exclusive transaction
types helps preserve bus bandwidth. Also, the deadlock
scenario presented above does not exist. The KN470
processor write transactions to a cached block consume
only one system bus transaction and can alivays com-
plete. The invalidate windo\v does not exist during the
time it takes for thc write transaction to complete.

Tlie systenl bus protocol implemented by the
ICN470 ~iiodulc allows for\vard progress during shared
write transactions in the system. However, system soft-
ware is expected to avoid repetitive write transactions
to blocks tliat are shared \vitliout some higher level
ownership protocol. Write transactions, if issued to
a shared block by several processors, consume bus
bandwidth and trigger false invalidations for
bystanders. This nay hinder for\ilard progress and
affect systeni performance.

Suppor t of a n Interlock Mechanism

The system interface i~nplements an address lock reg-
ister as specified in the Alpha Architecture Reference
Ma~zzial to support sofnvare synchronization opera-
tions.6The address lock register in the system interface
has a signal that reflects tlie state of a valid bit to the
Alpha 21164 niicroprocessor. The microprocessor
manages tlie lock address register in tlie system inter-
face based on sampling this signal during fi l l transac-
tions from tlie system bus.

Tlie Alpha 2 1 164 11iicroprocessor has an internal
lock register tliat is maintained consistent with the
lock register in the system interface, which is referred
to as the ester~ial lock register. The external lock regis-
ter is a backup copy of the Alpha 21 164 microproces-
sor's lock register and is used only when instruction
stream prefetching causcs the locked address to be
evicted from the R-cache. Tlie rsecution ofa load with

lock instruction by an Alpha 2 1 164 microprocessor
results in a transaction that sets both internal and
esternal lock flags and lock address registers.

The external lock flag is cleared by the system
interhce if the lock address matches the system bus
address of either a write transaction or an esclusi\~e
transaction. The internal lock flag is cleared by the
Alpha 21 164 niicroprocessor due to system bus probe
transactions from the write o r exclusive transaction to
a valid cache block.

The lock address resolut io~~ is a single-aligned
32-byte block and is consistent with the size of cacl~e
blocks in this system. The Alpha 2 1164 microproces-
sor has 64-byte internal lock register resolution. Since
the address o f a load t o memory and the correspond-
ing store to mcmory must both be within the same
16-byte aligned region, the difkrcnce in the resolu-
tion of the internal and the esternal lock registers was
determined to be insignificant to performance.6

The KN470 Module and System Bus Clocking

The IW470 module ~mplemcnts a locv-cost synchro-
nous clochng schcnic. The sclie~iie exploits the system
bus clocking to run the Alpha 2 1 164 microprocessor
synchronous to the system bus. This scheme conipen-

sates for the half-cycle correction phase of the Alpha
2 1 164 microprocessor's digital lock loop (DLL).

The Alphaserver 2100 system interconnect has an
edge-to-edge clock architecture, and it implements an
edge-to-edge data transfer scheme. The n~icroproces-
sor has an internal DLL that sy~~chronizes to a refer-
ence clock supplied by the clock repeater chip. Instead
of trying to precisely control the clock skew across four
different chips, data valid windows are set around the
edge-to-edge data transfer clock edges to avoid setup
or hold-time issues. This simpler clocking scherne
takes ad\rantage of the four delivered clock edges per
cycle from the clock repeater chips. It also enables a
simpler synchronous boundary between the Alpha
21 164 microprocessor and the system interface. The
synchronous clocking improves data transfer rates,
lowers the miss penalty, and inlproves the pipeline effi-
ciency among the components of the system.

Figure 2 shows the clocking scheme that is iniple-
mented on the KN470 module. The Alpha 21164
microprocessor accepts a differential clock at twice the
desired internal clock frequency. The oscillator for the
processor runs at 6 , 7, 8, or 9 times the 41.66 mega-
hertz (MHz) system bus clock frequency. The DLL
subtracts one halfofan internal clock cycle to maintain
phase alignment with the system bus reference clock.

Figure 2
KN470 Clocking Scheme

Digital Technical Jo~lrllal Vol. 7 No. 1 1995 83

This DLL scheme assumes that tlie intcrnal cloclc fi-e-
qucncy runs slightly faster than the system bus clock
frequency. Given these scaling rates, thc interface
benveen the Alpha 21 164 microprocessor and the sys-
tem interface are locked at the system bus clock rate.

The Alphaserver 2 100 backplane distri butcs 1'ECL-
level system bus cloclts PHI l L and PHIl H, and
PHI3 Land PHI3 H differentially to each module on
the system bus. Each module receives, terminates, and
capacitively couples the clock signals into 1'ECL-to-
CMOS-level converters to provide h ~ l r rdges per sJa-
tem bus clock cycle. This level conversion is con~pleted
in the clock repeater chips. System bus handshake and
data transfers occur from clock edge to clock edge and
thus form a primary clock in the system. The remai~i-
ing three edges in a cloclung cycle are secondary
clocks. The clock repeater chip, a custom CMOS clock
chip, provides module-to-module clock skc\v of less
than I nanosecond (ns) and is implemented to projlide
sl<e\v-regulated cloclc copies to be consumed by com-
ponents on the module. The skew regulation is main-
tained by tlie repeater chip through the use of a
feedback path or replica loop of the pri~nary clock
path. The I m 4 7 0 rnodule uses this clock repeater chip
to generate tlie references for s y ~ i c h r o n o ~ ~ s clocking
from a central point.

Components o n the niodule arc cloclced by outputs
from the clock repeater chips. The clock repeater chips
generate six copies of the primary clock TPHI l H.
TPHI l H cloclts are distributed as follo\\s: one copy
to the Alpha 21 164 microprocessor, two copics to
each of the t\vo systcm interface ASICs, and one copy
to the systc~n bus arbiter chip. The Alpha 21 164
microprocessor uses its copy of the primary clock as a
reference clock for its 1)LL. The data transfcrs bet\\lccn
the microprocessor and tlic systcln interface are cdgc-
to-edge transfcrs n~ id 'Ire referenced to the prin~nry
clock. The clock repeater chip generates three scc-
ondary clocks: TPHI 1 L, TPHI3 H, and TPHI3 I,.
The clock-edge relationships among these four clocks
are specified sucli that eacli clock edge is 9 0 dcg~.ccs
out of phase \vith tlie orlicr nvo clock edges. Thc reln-
tionships among the diffirrent clock phases are shown
in F i g ~ ~ r e 3 for the case of tlie Alpha 21 164 oscillator
with o frequency six times that of thc system bus clock.
The systern ilitcrfacc LISCS all three secondary cloclis for
on-chip data transfcrs, whereas the arbiter chip i~scs
one secondary clock, TPHI l L.

This synchronous clocking scheme \vorlts \\lcll iftlic
driver turn-on and turn-offtimes are extremely fast for
all componcnts. Ho\ve\!er, tlie technologies sclcctcd
could not guarantee sucli speed. The Alpha 21 164

1- 24NS SYSTEM BUS CYCLE TIME -1

TPH13 L

TPHll L

TPH13 H

TPHIl H

TPHll H
(TO ARBITRATIO

SYSCLKlR H
r

SIGNIFICANT RISING CLOCK EDGES -
Figure 3
Relationships among Different Clock Pl~ascs

Digiral Technical Journal

~nicroprocessor driver tu rn-on and tul-n-off times are
fast, bu t tlie ASI<:s ha \~e slo\v turn-on and turn-off
times. T o compensate for the h s t , ~ n d slo\v driver cliar-
acteristics, the edge-to-edge clocking scheme required
a modification. 'l'lie Alpha 2 1 1 6 4 microprocessor uses
its copy of Tl'HI 1 H as the reference clock edgc
t o align its SYSCL,I<1/2 H-generated interface o u t -
put clocks. T h o u g h SYSCL1<1/2 H does no t pliysi-
cally connect t o the system interface, the Alpha 2 1 1 6 4
micl-oprocessor uses the internal copy o f tlie
SYSCLI<1/2 H edgc t o eitlier drive data o r recei\~e
ddta. T h e system interface i ~ s c s its cop!(o f the refer-
ence clock as the data recei\,c edge t i ~ r signaling from
tlie Alpha 2 1 1 6 4 ~nicroprocessor. T o drive the data
t o both the microprocessor and the B-cache, tlie sys-
tem interface uses the TPH13 I, secondary clock,
\\~liicli is phase-delayed 9 0 degrees from the prirn~r!,
clock T P H I 1 H .

T h e above clocking sclielnc achie\,es single-clock,
edge-to-eclgc d'ltn transfer rates \\ , i thout imposing
overly strict constraints o n cloclt rout ing and layout.
T h c schelnc can withstand larger than 1 ns o f clock
skc\v and compensates for tlie Alplia 2 1 1 6 4 micro-
processor's 1 l L . L half-cycle correction bcn i~een tlic rcf-
crcnce clock and SYSCLK1/2 H .

Design Trade-offs

T h e I(N470 module dcsign achicvcd aggressi\ie schcd-
i ~ l e goals and ncIiie\~ed lower cost by Iileans o f the bit-
slice design o f the system interhcc. Also, the Iiigher
perforniance goal \\-as realizecl \\~Iiilc keeping tlie
design coniplcsin at a moderntc Icvcl.

T h e bit-slice cicsign o f the system interface \\)as
nioti\/atcd by the organization o f the Alpha 21 1 6 4
microprocessor's 64-b i t erl-01--correcting code-
protected data bus. This forcecl nt le,lst a 64-bi t slicc
organization. Other org'inizations \\.ere found t o lia\,c
t o o many pins o r \\/auld have cncou~ltered system bus
signal integrity problems because o f long s tubs and
,~dditional l o ~ d s . Tlie decision t o also include the
address and control f i~nct ions \\)as f ~ ~ r t l i e r moti\~atcd
by the project's human resourcc constraints and its
spending constraints. Designing one ASIC as a slicc t o
implement the 128-bit-\\aide system interface \ v ~ s
foillid t o be t l ~ c l x s t choice.

T h e systcni i~i tc~-facc c o ~ i t r ~ l s the address and dd t :~
p x h s between the Alpha 2 1 1 6 4 micl-oprocessor and
the system bus. T h e system intcrhce does not stall the
system ~ L I S o n tl-ansactions rhnt require caclie state
changes in the B-c,lclie. Instead, tlic interface posts
a pu idcd rccltlcst t o the processor for changing tlie
caclie state o f the B-cache. T h e system interface stalls
the system ~ L I S \\,lien the processol- has not ackno\\rl-
edged n prc\~iously pended request and the present
transaction o n tlic system bus nccds a cache state
change request. At tlie cost o f increased complexity,

the design could ha\fe been implcmcntcd such t h ~ t the
system bus \ \ ~ o i ~ l d no t stall in tlic absence o f ackno\vl-
cdgments o f pre\!iously pendcd requests. This Ic\~cl
o f complexity a\,oided the more c o ~ n p l e s issues o f
managing a queue o f block in\.alidate, set bloclt t o
shared, and read bloclt transaction requests.

T h e l a 4 7 0 module dcsign implelnents '1 scheme of
\\)rite transaction back-off o r replay that esploits tlie
transaction replay queue o f tlie Alplia 2 1 1 6 4 micro-
processor. This rcplay f ~ ~ ~ i c t i o n a l i t y helps the system
interface handle c'1cIie s t ~ t c cliangcs \\,lien simultane-
ous recluests t o \\>rite t o the svstcm bus and t o invali-
date 6-on1 the systc111 ~ L I S re m'ldc t o the snlnc cnclie
block. T h e designers simplified the caclie coherence
management and logic dcsign by u\~oiding the use o f
a pended \\/rite transaction in tlie system intcrfiicc,
which \\,auld lia\,e required a one-block \\,rite c:lclic.

A \\;rite trnnsaction from tlic Alpha 2 1 1 6 4 micro-
processor t o tlic system L ~ l s is no t considered coin-
plete until the system bus is granted. This nonpendccl
scheme for \+!rite transactions enables \\trite tmnsacrion
rcplay from the Alplia 21 1 6 4 microprocessor and
avoids the requirement for tlic systcnl interfice t o pre-
serve logic states if a system ~ L I S transaction taltcs
precedence. When the system bus tr'1nsactio11 t ~ l < c s
precedence, the s!!steni intcrfacc rcmo\.es the arbitra-
tion request, signals the N p h a 2 1 1 6 4 microproccssor
t o replay the \\/rite transaction, and tlushes all states
associated \vith tlie \\Trite transaction, T h e N p h a 2 I 164
microprocessor must determine \\~licthcr the \\'rite
transaction lins hecn affected b!, the change in its cncllc
state and then decide t o rcpl,l!r the \\)rite t rans~c t ion o r
t o perform ~ l n o t h c r transaction sucli as a read tr.lns.lc-
tion t o re\~,llidate the bloclt.

Removing a system bus rcqucst from the arbiter
chip ratlier than con\icrting tlic rite transaction t o a
no-operation tmnsaction .i\~oicicd ,I li\~clock condition.
Tlie li\,cloclt conciition could lia\.c rcsulted ti-on1 t11c
system interface's completion o f '1 no-operation trans-
action and re-requesting tlic s\.stem bus t o complete
the write transaction. Wliilc \vaitiug for the gr.lnt t o
this second drbitration request, tlic system hus could
force the A l p h ~ 2 1 1 6 4 microprocessor t o rcpldy tlic
\\!rite again. In addition t o ,~\~oicling the li\~clock condi-
tion, the replay scheme has tlic ,ldditional benefit of'
conser\,ing band\\~idth by no t issuing 110-opcr~t ion
transactions \\~liilc the system bus interface is \\l;liting
for tlie Alpha 2 1 1 6 4 micropl-occssor t o repldy tlic
write transaction.

Renio\,ing a system bus request in response to
o ther bus transactions reduces the probability o f J

timely completion o f the \\;rite tr,lnsaction from the
Alpha 21 1 6 4 11iicroproccsso1-. More complex clcsign
approaches increase the proh,lhiIity that tlic \\!rite
transaction \ \ r i l l complete, b i ~ t they d o n o t guarantee
the coniplction. This is a result o f t l i e i lncej- t in tirr~c
for a response from the Alpli,~ 2 1 164 microproccssor

\'ol 7 So. I 19'95 8.5

t o replay tlic \\,rite transaction in rel'1tio11 t o tlic nest
system bus gr'11it. T h e designers chose the simpler
implementation t o reduce logic design complexity and
\rerification time.

Performance of AlphaServer 2100 Systems with
KN470 Modules

T o \~alidatc the improved pel-for~ii,~ncc goal o f tlic
I W 4 7 0 PI-occssor m o d i ~ l c in Alpli,~Ser\,cr 2 1 0 0 sys-
tems running Digital UNIX (formcrl!, l)EC OSF/l)
\ u s i o n 3.213, project engineers measured sc\.cml
i~ld~~str!r-stn~ld.lrd bcnchmal-Its. A brief description o f
each benchm,i~-k follo\\rs. ?'able 1 lists tlie bcnclimarks
that w c ~ - c run o n an AlpliaScrvcr 2 1 0 0 Model 5 /250
systeln, the 11~1mber ofprocessor modules in 3 con fig-
i ~ r ~ ~ t i o n for c ,~ch b e n c h m ~ r k , the ~iicdsurcd cstim.1tcs
o r una~~ci i t cd results o f tllc benchmark, and the pel--
form,~ncc g i n . Performance g'li~i is reported as J 1,,1tio
of tlic 1CK470 result t o the top-performing, first-
gener.ltion ICi460 result. I h e ratios demonstrate that
the IOU470 processor m o d l ~ l c achic\~cs the primary
project go.11 by pto\ ' icI i~~g more perform,lncc t o
iVpliaScr\~cr 2 100 systems th'ln the first-generation
ILW460 processor.

T h e Alp l i~Scr \~er 2100 blodcl 5 , 4 5 0 sjrstcln uses
the I W 4 7 0 PI-ocessor 1iio11~Ie that incorporates the
Alpha 2 1 1 6 4 microproccssor opcl-rlting at 2 5 0 MHz
\\,it11 a 4-h/lR B-cache. T h e , i lp l~ , iSer \c r 2 1 0 0 A4ocicl
4 /275 systcm uses tlie IGY460 processor m o t i ~ ~ l c \\,it11
tlie Alph ,~ 2 1064 microproccsor operating at 2 7 5
MHz \\zitli ,I 4 -MB B-c,iclic. 'l'llc AlpliaSer\,cl- 2 100

systcm remained fixed as the processor- models \ \zc~-e
s\\7appcd for these pertbrmnncc mcnsuremcnts.

T h e Stnncinrd l'erfol-mancc Evaluation (:orporation
(SPEC) \\,,IS fi)rli~ed t o iclentit'\' and crcatc objccti\,e
sets ofapplic,ltions-oric11tcci rests, \\.hich can scr\.c ,IS

c o m m o n reference points. SPEC C I N T 9 2 is a good
base indic'ltor o f CI'U pel-for111ance in a commercial
cn \~ i ronmcnt . bcnchmarli is the geometric mean
o f ratios Oy 'rvliich ttic six I>c11ch1i~arks in tliis suite
exceed the pcrformancc o f the reference ~ n , ~ c l ~ i n c .
SPEC (X1'92 mJy be llsed t o compare floating-point
intensi\~c cn\.i~-onments, t!~pic,~ll!. cnginccl-jng , ~ n d
scientific ~pplicat ions. SI'E(: (:F1'92 is the geometric
mean of ratios by \vhich the 1 4 bencli~nal-ks ill tliis
suite chcccd the pcrformancc o f the reference ~nacliine.
SI'LC Homogeneous <:ap,iciry method bcncl~rn,~l-lis
test ~nultiproccssor cfficicnc!,. The!, pro\ridc a h i r mcJ-
sure for tlic processing capacity o f a system, namely,
lie\\, ml~c l i \\.orli the s!,stcln cJn perfor111 in 3 given
amount o f time. Tlic Sl'F,(:1-3tc is a capaci?. nlc~sul-c .
I t is no t .I measure o f ho\v f.lst ,I s\,stem can pcrforln
any task but o f Ilo\\, many o f tliosc taslis tlic systcm
complctcs \\,itliin i l ~ ~ arbitl-nr!, time i n t e n d .

13c\,clopcd by 41A4 Tccllnolog\,, the AIM Suite I I1
Renchmarli Suite \\.,IS designed t o mcasul-c, c\.,llurlte,
and prcciict UNIX ~ i l ~ ~ l t i ~ ~ s c ~ - s \ ~ s t c m performal~cc. T h e
bcnch~narl i suite ~ ~ s c s 3 3 f~~nct ion. l l tests, dnd tliesc
tests c.ln be groupcd t o rctlcct tlie computing ,~cti\rities
o f \,arious types o f applicatio~is. T h e AIh4 l'crforlnnnce
Ratings identit'\' the r n a \ i r n ~ ~ l n pcrformancc o f tlic
~!~stc1ii L I I ~ C ~ C I . opt imum usage o f Cl'U, t loat i~ig-point ,
and iiisli c.lching. A t a s!,srcm's peak pel-torm,lncc, an

Table 1
Performance Data for a n AlphaServer 2100 System That Incorporates t h e KN470 Processor Module

Performance Gain
Number of Processor Expressed As a Ratio of
Modules per Alphaserver 2100 Model 51250 Performance

Benchmark Configuration Model 51250 t o Model 41275 Performance
- -

SPEC CINT92
SPECint92 1 277 1.4
SPECrate-int92 4 24,996 1.4

SPEC CFP92
SPECfp92 1 41 0 1.4
SPECrate-fp92 4 37,926 1.4

AIM Suite I l l Benchmark Suite Performance (Estimated)
Performance Rating 2 396
IVlaximum User Loads 2,400 1.4
Performance Rating 4 719
Maximum User Loads 3,100 1.3

LINPACK (IVIFLOPS)
1000 X 1000 4 1,022 1.6

McCalpin
COPY 2 171 1.28
scale 2 169 1.27
sum 2 162 1.25
triad 2 162 1.27

-- - - --

86 Digital 'rtchnic~l Jou l -nd l

increase in tlie wroi-l<load will cause a deterioration in
performance. T h e AIL\? Maximum User Load Kating
identifies ssstem capacity under heav!! multitaslting
loads, where disk performance also becomes a signifi-
cant factor. T h r o u g l i p i ~ t is the total a lnount o f work
the system processes, mcasured in jobs per minute.
Maximum throughput is tlic point a t w~hich the system
is able t o process the most jobs per m i n ~ ~ t c .

T h e LINPACIC benchmark is a linear equation sol\,er
written in FORTRAN. I,INPACI< programs consist o f
floating-point additions and multiplications o f matri-
ces. T h e LINPACIC 1 0 0 0 X 1 0 0 0 sol\,es 3 1 , 0 0 0 - b y
1,000 matrix o f s imul t , lnco~~s linear equations. T h e
result is a measure of tlie execution rate in millions of
floating-point operations per sccond (MFLOPS).

T h e McCalpin benchmark is a public domain set o f
programs that measures the effective memory band-
\\kith available t o each proccssor in MI3 per s e c o ~ i d .
T h e four parts o f th i s benchmark, which are sho\vn in
Figure 4 , perform a double-precision operation , j
times, \vhcrc,j increments 2 million times. Often, thc
four nurnbcrs are averaged t o show an effective m e n -
ory bandwidth rating for tlie configuratio~i.

Table 2 shocvs estimated AIM Suite I11 Genchmark
Suite performance scaling for iUpliaScr\~cr configi~ra-
tions o f o n e t o four processor modules. These results
validate improvements in the ability o f I(N470 proces-
sor modi~ les t o scale in mi~ltiprocessor configuratio~is.

Summary

'The implementation o f tlie write-invalidate coherence
protocol combined u~itll s y ~ i c h r o n o i ~ s clocking, 3

duplicate tag store, and pipelining cacl~e-miss requests

Icd t o J more efficient ilsc o f tlie system bus band-
\vidtli. A higher complexity design could lia\~e been
realized but only at the risk o f missing sclicdi~le dead-
lines. T h e l(h'470 proccssor de\$elopmcnt project
achieved tlic goals ofAlpl~:~Ser\ier 2 1 0 0 compatibility
and performance impro\~erncnt that were cstablislicd
early in the project.

Acknowledgments

T h e development o f tliis new generation o f processor
and its integration into the AlphaServer 2 100 family
required the outstanding dcciication and contribu-
tions from many indi\rid~~nls. T h e authors \\,ish t o
extend .I large thank you t o Steve Holmcs for belicsring
in and support ing tliis project. T h e ,luthors dlso \\,ish
t o ackno\vlcdgc the key contributors t o tlic project. - - I he core design team o f C h e t Pa\\4o\\,sl<i, Jim Padgett,
Judy Wciss Prcscott, and Gary Zeltser devoted long
hours from the concept de\,clopnient through the
empirical \~crification and the rnanufact l~ri~ig s tar tup
o f this proccssor modulc and system model. The veri-
fication team o f Abdollali Ataie, Erik Debriae,
Norbert Eng, Jeff Metzger, L>on Caley, l>iclt Beaven,
and Ginny Lnmere proved tlic design's integrity. Andy
Ebert provided the ASIC tcst stratcgy and applications
support. Peter Woods .111d Traci Post werc responsiblc
for the serial c o ~ i t r o l subs!!stem and diagnostics.
Stcphcn Shirron liiadc the O ~ C I I V I V S system boot o n
the nelv m ~ c h i n e , and ICevin Peterson and Harold
Buchngliarn provided tlic firrn\\iarc and console bits
and consultation regarding sofnvare issues. Janet
\Valsh and Jeff Kcrrigan contributed operations
support . Ste\,c Brooks, Rich Freiss, ancl 13c;in Gagne

c o p y c (j) = a (j) ; c o p y a t o c
s c a l e b (j) = 3 . 0 * c (j) ; m u l t i p l y c t i m e s 3, s t o r e

; r e s u l t i n b
sum c (j) = a (j) + b (j) ; a d d a t o b a n d s t o r e i n c
t r i a d a (j) = b (j) + 3 . 0 * c (j) ; m u l t i p l y c t i m e s 3, a d d t o

; b, s t o r e r e s u l t i n a

--

Figure 4
1-lie Four Pnrts of the Mc<:nlp~n Bencli~nnrk

Table 2
AIM Suite I l l Benchmark Suite Performance Scaling (Estimated)

AlphaServer 2100 System

Number of Processor Modules 1 2 3 4

Maximum Throughput JobslMinute 2,178 3,882 5,249 7,047
Model 51250 Scaling 1 .O 1.8 2.4 3.2

Maximum Throughput JobslMinute 1,451 2,229 2,998 3,587
Model 41275 Scaling 1 .O 1.5 2.1 2.5

developed t h e ope ra t ing system s o h v a r e t h a t suppor t s
this system. S in ion Steely, Zarlta Cvetanovic, a n d J o h n
Shakshobcr carried O L I ~ pcrforniance analysis and
validations. J o h n E d m o n d s o n , Pe te E n ~ i n o n , A ~ i i l
Jain, and l'aul Rubinfeld dcsigncd t h e I(IU47O-specific
functionality in t h e Alplia 2 1 164 microprocessor.

References

2. 13, hilaali.~~, S . Shirron, .lnd N. \Varchol, "1)esign 2nd
Pel-li)rmnncc of thc Dl<: 4000 ASP Dcparrmcnt:il
Scrvcr (:o~nput ing Systems," Ili,qit~~l Ti,clnirical
~/or~i.iir~l. vol. 4 , no. 4 (Special Issue 1992) : 82- 99.

3. J . Eduiondson c t al., "1ntcrn.ll Orpnniy~t ion o f the
L41plla 21 164, a 300-hIHz 64-bit Quad-issuc <:111OS
l<IS(: microprocessor," Di:,i/ril Tcchiricrtl ,/or~i-iral.
vol. 7 , no. 1 (1995, this issue): 1 19-135.

4 . J . Hcnncssy and 1). l'attcrson, Ci~rrlp~terA r c / 7 i / ~ ~ c / i ~ i ~ ~ ~ :
A , Q I I u ~ I / ~ / N / ~ I ' c Approcich (San Mateo, Calif.: ~Uorgan
L iu l i i~ ;~nn , 1990): 467-474.

5. A. Russo, "The AlphaScrvc~- 2100 1/0 Suhby.\tcm,"
I)igi/ol 'li.c/~iric~~l ./orii~rial. vol. 6 , no. 3 (Summer
1994): 20-28.

6 . I t . Sites, cd., Al'lna Arc.k)ilec.lur'~, Kefi.rericc ~I/(ctii~iol
(I%~~r l ing ton , iMass.: Digital Press, Order No. EY-1520E-
L>l', 1992).

Biographies

Nitin D. Godiwala
Nitin Godi\vda is a principal cnginccr in Digital's Sci-\.cr
Product 1)cvclapment Group. His area of expertise is
di$! s).3tc1n archirccnrrc and pipcfinui nlachlnrr;. As
a conrribiltor t4) the P&haSer\.er 2100 wmcr ~ t w l ~ ~ c r ,
hc \\.a rl\c project h d e r ;uld p r i ~ i p a l trclGtect o f the
ntbirrarion ASIC and d ~ e sgsreln ultcrf;~ce ASICs tix the
Alpl1~ 2 1064 and 21 164 micrr~~twcssor-bfficd p r t x ~ s -
sor moddcw. 111 p r c ~ i o t ~ o work, hc H x r a principal archi-
tcct vld dcsignrr d t h c s!'ytcnl i n t d a c t M f C for tlw
DEC: 4000 processor modulc. Rcforc coming to Digital
in 1986, Sirin \\,orked for Analogis COT., Gocld h/lodico~i,
and Honc!.\\.cll Inc. H c rccci\~cd n 11.E. koln Bombay
Uni*crsit* 2nd ~111 h1I.S. in c o l n p ~ ~ t c r ,lnci clcctric,ll cngl
neering froni thc Uni\,crsity of PVisconsln, M ~ d i s o n .
H e holcis four patents a n d has eight p.lrcnts pencling.

Barry A. Maslcas
A consultant engineer in 1)ipical's Server Product I)c\.cl-
op1iic111 C;roup, R.irr! Maskas \\.as the project Icndcr
responhihlc for the dcvclop~ncnt of the Alpha 2 1 164
microprocessor-17ased AlplinScrvcr 2 100 and 2000 PI-o-
ccssors and systcms. H e is cun-cl~tl!. in\,ol\,cd in h ~ r t l i c ~ -
Alpha-b~scd server svsteln dc\,clopmcnt \vork. I n ea1-1icr
\\,ark, 13~rry \t13s the project 1c.idcr nncl architect k)r the
D1.X 4000 system bus, backpl;lnc, and processor ~nodulcs
and For the arcliitect~ue and Jc\ .clopmc~lt of custo~ii \:I.SI
pcriplicral chip scts for VAS 4000 and I\IicroVAS systems.
H e \vas also co-designer of the AlicroVAX I 1 processor
and memory ~iiodules. Barry joined 13igitc~l in 1979 ~ f t c r
rccci\.ing 3 I<.S.F..E. from Pc~~nsyl\;ania State Uni\,crsity.
H e holds eight patents.

\'ol. 7 No. I 199s

The Design and
Verification of the
AlphaStation 600
5-series Workstation

The AlphaStation 600 5-series workstation
is a high-performance, uniprocessor design
based on the Alpha 21 164 microprocessor and
on the PC1 bus. Six CMOS ASlCs provide high-
bandwidth, low-latency interconnects between
the CPU, the main memory, and the I10 sub-
system. The verification effort used directed,
pseudorandom testing on a VERILOG software
model. A hardware-based verification technique
provided a test throughput that resulted in a
significant improvement over software tests.
This technique currently involves the use of
graphics cards to emulate generic DMA devices.
A PC1 hardware demon is under development to
further enhance the capability of the hardware-
based verification.

I
John H. Zurawski
John E. Murray
Paul J. Lernmoi~

The Ihigh-pcrforrnancc AlpliaStation 600 5-scrics
\vorkstation is based o n the fastest Alpha micl-oproccs-
soy to date-the Alpha 2 1 164.l The 1 / 0 subsystem
~ ~ s c s the 64-bit \fersion of the Peripheral Component
Interconnect (PCI) and the Estendccl lnclustr!l
Standard Architcct~~rc (EISA) bus. The AlphaStution
600 supports three operating systems: Digital UNIX
(formerly 1)EC OSF/l), OpcnViMS, and ~Micl-osoft's
Windo\vs NT. Tliis \\~orltstation scrics i~scs the
1)ECchip 21 171 chip set designed and built by
1)igital. These chips pro\,ide high-band\\,idtli, lo\\,-
Intcncy interconnects bcn\rccn the CPU, tlic main
mcmor!l, and the PC1 bus.

This paper describes tlic architecture and featurcs
of the AlphaStation 600 5-series \\forltst~tion 2nd the
I)F,t;<:chip 2 1171 chip set. T11c system o\~er\ric\\, is first
presented, follo\\,ed b!. .I cletniled disc~~ssion of the
chip set. Tlic paper then ticscl-ibcs the cnchc anti mcm-
ory designs, detailing lio\\r the memory design e\,ol\fcd
from the \\~orkstatio~i's rcquire~ncnts. The latter part
of the paper describes the fi~nctional verification of tlic
workstation. Thc paper concludes with a description
of the liard\\lare-based \,crific;ltion effort.

System Overview

The AlpliaStation 600 5-series ivorkstation consists of
the Alpha 21 164 microprocessor, a third-lc\~cl cache
that is external to the Cl'U chip, and a system chip set
that interfaces benvecn tlic <:l'U, the metnor!: and thc
P<:I bus. The DECchip 2 1 171 chip set consists o f tlircc
designs: a data slice, onc l'<:I interface ancl mcmor!,-
sonti-ol chip (called the control chip), and n miscclla-
ncous chip that includes tlic PC1 interrupt logic and
flash I-end-only meiilory (KOIM) control. The Intel
82374 and 82375 chip sets provide the bridge to thc
EISA b t ~ s . ~ F i g ~ ~ r c 1 slio\\~s a block dingr.lm of tlic
\vorkstation.

The SysData bus transfers data ben\,ccn the PI-occs-
sor, the CPU's tertiary cache, and the data slices.
The 128-bit-\\,ide Sys1)atn bus is protected by cnor-
correcting code (E<;<:) and is clockcd c\,cry 30
nanoseconds (ns) . T17c d,it,l slices provide n 256-bit-
~\'idc data path to nicmoi-!I. Data transfers bct\vccn the

128-BIT

SERIAL

kc- \-
MEMORY BANK 0

Figure 1
A l p h a S t a t i o n 600 5 - s e r i c s Workstation Block Diagram

PC1 and the processor, the external cache (typically
4 megabytes [MB]), and memory take place through
the control chip and four data slices. The control chip
and the data slices communicate over the 64-bit, ECC-
protected 1 / 0 data bus.

The major components and features of the system
board are thc following:

The Alpha 21164 n~icroprocessor supports all
speed selections from 266 to 3 3 3 megahertz
(MHz).

The plug-in, external write-back cache (2 MB to
16 MB) has a block size of 6 4 bytes. Access time is
a multiple of the processor cycle time and is
dependent o n thc static random-access memory
(S W M) part used. With 12-ns SlUMs, typical
access times are 2 4 ns for the first 1 2 8 bits of data,
21 ns for remaining data.

The system board contains a 256-bit data path to
memory (284 megabytes per second [MB/s] for
sustained CPU reads of memory).

From 32 MB to 1 gigabyte (GB) of main memory
can be used in industry-standard, 36-bit, single
in-line memory nodules (SIMMs). All memory
banks support single-sided and double-sided
SIMMs.

Eight option slots are available for expansion: four
PCI, three EISA, and one PCI/EISA shared slot.
The system design minimized logic o n the mother
board in favor of more expansion slots, which
allow custonlers to configure to thejr require-
ments. The system uses option cards for small
computer systems interface (SCSI), Ethernet
graphics, and audio.

The system supports 64-bit PC1 address and data
capability.

Due to its synchronous design, the system's
memory, cache, and PC1 timing are multiples of
processor cycle time.
The system provides an X bus for the real-time
clock, keyboard controller, control panel logic,
and the configuration RAM.

90 Digiral T e c h n i c a l Journal "01.7 No. 1 1995

Data Slice Chips
Four data slice chips iiiiplc~iieiit tlie priniary data path
in tlie system. <:ollectivcly, tlie data slices constitute a
32-byte bus to main memory, a 16-byte bus to the
CPU and its secondary cache, and an 8-byte bus to the
control chip (and then to tlie PC1 bi~s) .

Figure 2 sho\\ls a block diagram of the data slice
chip. The dara slice contains internal buffers that pro-
vide temporary storage for direct memory access
(DMA), I/O, and (:l'U traffic. A 64-byte victim buffer
holds the displaced cache entry for a <:PU f i l l opera-
tion. Tlie Mcniory-Data-In register accepts 288 bits
(incltiding EC(:) o f memory data every 6 0 11s. Tliis
register clocks the memory data on tlie optimal 15-11s
clock to reduce nicmory latency. Thc mcniory data
then proceeds to the CPU on tlie 30-ns, 144-bit
bidirectional data bus. A set of four, 32-byte I/(> write
buffers help masirnizc the perforniancc of copy opera-
tions fioiii Inemor!/ to 1/0 space. A 32-byte buffer
holds the 1 /0 rcild data. Finall!; tlicrc .ire a pair of
1)MA buffers, each consisting ofthrce 64-byte storage
areas. DA4A rend operations ilsc tnro of thcsc three
loc'uions: the first liolcls the requested menlory data,
and the other holds the external cache data in tlie case
ofa cac.hc hit. 1)iMA \\?rites use all tlirec locations: one
location holtis the 1)bIA \iirite data, and the other nvo
hold the memory and c;iclie data i~sed during a 1)MA
\\,rite merge.

Tlic data slice allo\vs for sim~~ltancous operations.
For instance, the I/O \\,rite buffers can empty to tlie
control chip (and then to the 1'CI) \vhile a concurrent
read from CPU to main memory is in progress.

Control Chip
The control chip controls the data slices and main
mcniory and pro\lidcs a f ~ l l y compliant host intcr-
hcc to rlic 64-bit PC1 local bus. The 1'CI local bus
is a Iiig11-performancc, processor-indcpeiidc~it bus,
intcndcd to i~itcrconncct peripheral controller com-
ponents to a processor and nicmory subsysteni. Tlic
PC1 local bus offers the promise of a n industr!l-
standard interconnect, suitable for a large class ofcom-
putcrs ranging from personal computers to large
scr\u-s.

Figure 3 sho\.i's a bloclc diagram of the control chip.
The control chip contains five segments of logic:

The address and comniand interface to tllc Alpha
2 1 164 microprocessor

The data path from the P<:I ~ L I S t o tlic d a t ~ slices
by Incans of the 1 /0 data 1x1s

I)IMA address logic, including a 32-entry scatter/
gather (S/G) map (Tliis is discussed in tlic section
Scattcr/Gather Address)Map.)

I'rogrammed I/O rcad/\\.r-itc address logic

Tlic memory address and control logic

-

BUS (TO
CONTROL
CHIP)

Figure 2
lhta Slice Block lliagram

VICTIM
BUFFER

CPU VICTIM PATH MEMORY TO THE

DATA OUT -MEMORY
REGISTER BANKS

DMA READ DATA PATH

I

/
CPU READ MISS PATH

DATA
FROMITO DMA
21 164 CPU WRITE

PATH

.
I

I I10 WRITE I I / \ I
I

I BUFFERS , I - - - - - - - - - - - - - - - - - - -_-
1 1

MEMORY
DATA IN
REGISTER

I I

I -
I
I -
I
I

I
r --------- 1 I

MEMORY B-CACHE I I MEMORY B-CACHE I I I I

- - - - - - - - - - - - - - - I I- _ _ _ _ _ _ _ _ _ _ _ _ - - _ I I

I I I
I
I

I
I DMA READNVRITE BUFFERS
I - - - - - _ _ - - - - _ - - - - _ _ - - - - - - - - - - - - - - - - - - -

110 DATA

-
- 1 - -

- -
- - - - -

I I DMA 1 1

-

-

I I BUFFER 1 I I
I I

I I I I I

1 110 WRITE I I I (
I I I '

I PATH I I I I

I
I I 1 1

I
I I I '
I I 1 1

I 1 I I I

COMMAND

Figure 3
Conrrol (:hi\>]%lock l)iagr<11n

CPU Interface A three-deep qLleile can hold two out-
standing rcild requests, together \\,ith the addrcss ot
a \lictil.n block associated \\lit11 one of these rcaci
requests. 1311ring a DMA write, tlic Flush Address rcg-
ister holds the address of the caclic block that tlic Cl'U
IIILIS~ move to menlor!! (and invalidate in the cache).
In this manner, tlic ssstem maintains cache colicrcncy
duri~ig l>hllA \\,rite operations.

PC1 Address Space Windows P(:I dcvices use addrcss
space windows to access main memory. During discus-
sions wit11 the dc\~elopers of tlic operating system, \ ~ c
clcterminecl that f o ~ ~ r P<:I nddrcss space \\,intio\\rs
\\,auld bc desirable. EISA dc\riccs use one \\,indo\\..
S/G mapping ~ 1 s t ~ a second. The third \\indo\\;
directly maps a con t iguo~~s PC1 ;~ddress region to .I
contiguous region of main nicnlory. The fourth \ \ in-
doc\{ supports 64-hit P<:I addresses. F U ~ L I ~ C system
designs may provide more than 4 GP, ofmain ~~iemor-!I,
thus requiring thc 64-bit addrcss \\,indo\\:

DMA Write Buffering The control chip pro\,idcs ,I
single-entr!, 64-byte l>i\/lA \\!rite buffer. Once the
buffer is f 111, the data is transferred to the DlMA buffers
in the data slices. The design can s ~ ~ p p o r t 97-MB/s
DlMA \\,rite band\\fidth fro111 a 32-bit PC1 device.

DMA Read Buffering IJI i~ddition to the n\lo 64-bvte
buffers inside tlic data slicc, tlic control chip l i ~ s t\iro
32-byte DMA read buffers. These buffcrs prcfctcli
DMA read clata \\?hen the initiating PC1 read com-
mand so indicates. This arrangciilerlt provides data to
a 64-bit PC1 device at a rutc of more than 260 MR/s.

ScatterIGather Address Map The S/G mapping
addrcss tablc trunslates c o n t i g u o ~ ~ s PC1 addresses to
any arbitrary memory addrcss o n an S-kilobyte (Im)
granularity. For sohvare compatibility with other
Alpha system designs, the S/G map uses a transl~tion
lookasidc buffer (TLR)."I7ic cicsigncrs enhanced the
TLB: First, cncli of the eight TLB entries llolds h i ~ r
consccuti\.c page table entries (PTEs). This is ~lscfi~l
\\hen addressing lnrgc 32-KI3 c o n t i g ~ ~ o u s r c g i o ~ ~ s on
the PC1 bus. For instance, thc NClIS10 P(:I-to-SCSI
de\~ice rccl~~ircs nearly 2 4 IU3 o f script space.4 Second,
s o h \ ~ a r e can loclc as many as one half of tlie TLR
entries to prevent the hard\\,;lrc-controlled rcplacc-
ment illgorithm from displacing them. This feature
reduces T1.R thrashing.

Programmed I10 (PIO) Writes The designers fi)cuscd
on improving the performaucc of the fi~nctionalit!r
that allows 3 processor to copy 6-0111 1neliior)f to 1 / 0

Val. I No. I 1995

space. High-end graphics device drivers use this func-
tionality to load the graphics command into the
device's first-in, first-out (FIFO) buffer. The data slice
has four buffers, and the control chip contains the cor-
responding four-entry address qilcue. Four buffers
hold enough I/O write t r a n ~ ~ c t ~ o n s to mask the
latency of the processor's read of memory. The control
chip provides t\vo additional 32-byte data buffers.
While one drives data on the PC1 bus, the other
accepts the nest 32 bytes of data from the data slices.

Memory Controller The memory controller loglc in
the control chip supports as many as eight banks of
dynamic random-access memory (DRAM). The cur-
rent memory backplane, however, provides for only 4
banks, allo\ving from 32 MI3 to 1 G13 of memory. The
nlernory controller supports a \ \ N I ~ range of D l U M
sizes and speeds across mult~ple banks in a system.
Registers program the D M timing parameters, the
DRAM configuration, and the base address and size
for each memorv bank. The meniory timing uses a 15-
11s grani~lar~ty and supports SIMM speeds ranging
from 80 ns do\vn to 50 ns.

Cache Design

The Alpha 2 1 164 microprocessor contains significant
on-chip caching: an 8-KB virtual instruction cache; an
8-KK data caclic; and a 96-KR, 3-\vay, set-associative,
\\!rite-back, second-level mixed instruction and data
cache. The system allows for an external caclie as a
plug-in option. This cache is typically 2 MB to 4 MB in
size, and the block size is 6 4 bytes. The access time for
the esternal caclic depends on tlie C:PU frequency and
the speed variant of the cachc. Typically, the first data
requires 7 to 8 CPU cycles; s i~bsecl~~cnt data items
require 1 o r 2 fc\%cr cycles. The a c t ~ ~ a l value depends
on both the minimum propagation time through the
cache loop and on the CPU c!lcle time. The external
cache data bus is 1 6 bytes wide, providing almost
1 GB/s of ba~idcvidth with a 333-MHz CPU and a
5-cycle cuchc access.

Tlie processor al\vays controls tlie external cachc,
but during a cachc miss, the systenl and the processor
\vork together to update tlie cache or displace thc
cache victim. For an csternal cachr miss, the system
performs ~ O L I I * 16-byte loads at 30 ns. Any dirty caclie
Ibloclt is sent to the victim buffer in the data slices, in
parallel cvith the rcad of memory. Fast page-mode
memory \\,rites arc used to \\.rite the victim into mem-
ory quickly. (This is discussed in thc section ~Meniory
Addressing Sclicmc.)

During 1)MA transactions, the system interrogates
the Cl'U for rclc\lant cache data. l'licre is no duplicate
tag in the system. DlMA reads cause main meniory to
be read in parallel with probes of the CPU's caches. If
a cache probe hits, the cachc data is uscd for the DlMA

read; otherwise main memory data is used. Each DMA
write to memory results in a FLUSH command to the
CPU. If the block is present in any of the caches, then
the data is sent to the DMA buffers in the data slice
and the cache bloclts are invalidated. This cache data is
discarded if the DMA \\.rite is sent tc) a complete block.
In the case of a DMA write to a partial block, the DJMA
write data is merged with cachc data o r the memory
data as appropriate. In this manner, the system main-
tains cache coherency, removing this burden from the
sohvare.

Memory Bandwidth

Tlie Jnernory bandwidth realized by the CPU depends
on a number of factors. These include tlie cache block
size, the latency of the meniory system, and tlie data
bandwidth into the CPU.

Cache Block Size
The Alpha 2 1 164 microprocessor supports either a
32- or 64-byte cache block size. The Alphastation 600
\vorkstation uses the 64-byte size, ulhich is ideal for
many applications, but suffers on certain vector-type
programs \vith contiguous Iiiemory references.3 An
example of a larger block size design is the RISC
Systern/6000 Model 590 workstation from Inter-
national Business Machines C ~ r p o r a t i o n . ~ This design
supports a 256-byte cache bloclc size, allowing it to
amortize a long memory latency by a large meliiory
fetch. For certain vector programs, tlie Model 590
performs well; but in other applications, the large
block size wastes bandwidth by fetching more data
than the CPU requires.

The Alpl~aStation 600 provides a hard\vare fea-
ture to gain the benefit of a largcr block size when
appropriate. The Alpha 2 1 164 nlicroprocessor can
issue a pair of read requests to mernor!.. If these two
reads reside in the saliie memory page, the control
chip treats them as a single 128-byte memory rcad. In
this way, the system approsi~nates the benefit of a
larger block and acliie\~es 284 MR/s of memory read
bandwidth.

Memory Latency
Tlie 180-ns memory latency consists of hve parts.
First, the address is transferred from the microproccs-
sor to the control chip in 15 11s. The control chip sends
the rnernory ro\\r-address p ~ ~ l s e 15 ns later, and tlie
data is received by tlie data slices 105 ns later. The data
slices require 15 ns to merge the \\rider memory data
onto the narrower SysData bus, and tlie last 30 ns are
spent updating the external criche and loading the
Alpha 21 164 ~nicroprocessor.

Although the 105 ns to acccss the memory may
appear to be generous, the designers had to meet tlie
significant challenge of implementing the rcquired

Vol. 7 No. 1 199'5 ~5

1 GB of memory with inexpensi\fc 36-bit SIiMMs. The
JEDEC standard for these SIlMMs only specifies thc
pinning and dimensions. I t docs not specifv the etch
le~igtlis, which can \lary by many inches from \,endor
to \lendor. Neither does it speci% the electrical loading
distribution, nor the D M b l type or location (1-bit
parts lia\le 2 data loads \\Thereas 4-bit parts ha \ r a sin-
gle, bidirectional load). With a 1-GB memory system,
the loading \lariation benvccn a lightly loaded memory
and a firlly loaded rnernor!i is significant. All these fac-
tors contributed to significant signal-integrity prob-
lems \\,it11 seirere signal reflections. Tlic mcmory
mother-board etch was carefi~lly placed and balanced,
and numerous ter~nination sclicmcs were in\rcstigatcd
to dampen the signal reflections.

Data Bandwidth
Tlie SysData bus transfers dam benvccn the processor,
the tertiary cachc, and the data slices. This 128-bit bus
is clocked every 30 ns to satis+ the write tinii~ig of the
external cache and to bc synchronous with the I'(:I
bus. Typical memory DRAM parts cycle at 60 ns, thus
requiring '1 32-bytc-\vide memory bus to mntcli tlic
bandwidth of the SysData bus. Tlie data slice chips
reduce each 32-byte-\vide memory data tl-ansfcr to
nvo 16-byte transfers on tlic SyslJata bus. Consc-
quently, tlie n~emory system is logically cquivalcnt to
a 2-\\~'1y interlcavcd memory design.

Nc\v memory technologies \\lit11 supel-ior data
band\\~idtlis are becoming a\,ailablr. S y n c h r o ~ i o ~ ~ s
D W M s arc an exciting teclinologv, but they lack 3

firm standard and are subject to s signiticant price prc-
mium o\,cr plain 5-volt DRAlM parts. Estenclecl-data-
out (E1)O) DRAMS allo\v greater burst mcmory
band\vidtli, but tlie latency to the first d3ta is 11ot
reduced. Consecl~~ently, the mcmory band\\.idtli to
the CPU is not significantly improved. The major
advantage of using E D 0 parts is tlicir easier meniory
timing: The output data of E D 0 parts is valid for a
longcr period than standard 1>1L41Ms. In addition, an
E D 0 memory can be cycled a t 30 ns, \\lhicll allo\\ls a

128-bit memory width instead of the 256-bit width.
The designers would have ~ ~ s c d E D 0 parts had they
been .l\railable earlier.

Memory Addressing Scheme

The adopted addressing schenle helps iniprovc m e n -
ory bandwidth. Whenever tlic CPU requests a new
block of data, the \vrite-back cache tilay lia\~c to dis-
place cLll.rent data (the \,ictim block) to allo\\ spncc fix
the incoming data. The \\,riting of the victim block to
mernorjr s l i o ~ ~ l d occur qi~ickly, other\\.ise it \\.ill
impede thc CPU's request for nc\\. data.

F i g ~ ~ r c 4 sho\\fs tlic mctlioti used to adcircss the
external caclic aiid memo^-p. The ClPU address 13 1 :6>
directly accesses the cachc: rlic lo\\r-order bits < 19:6>
form thc indcs for a 1-MI1 CLICIIC, and the rcmnini~ig
bits <31:20> for111 the cnchc tag. Thc Cl'U addrcss
docs not directly address memory. Instead, tlic Inem-
ory addrcss interchanges the indes portion of the
addrcss field with the tag portion. Tlie number of
addrcss [,its interchanged ricpcnds o n the yo\\. ,~nd col-
umn dimensions of the 1>IW?vI ~ ~ s e d .

For the s;il<e of disc11ssio11, ~ S S L I I I I C a 4-megabit
(M b) l)R\lM configured \\.it11 1 1 ro\\. addrcss bits and
11 column address bits. Hence, bits <30:20> inter-
change \\.it11 bits <16:6>, and the remaining bits select
tlie memory bank. This addressing scheme has the fol-
lon/ing effect: a CPU addrcss tliat is incrementi~~g by
units of 1 A413 no\v accesses consecuti\,e rncmo1.y loca-
tions. 1>1UM memory pro*icics a fast addressing
modc, called page modc, \\.licnc\,cr accessing consccu-
tive locations. For a 1-IMR cachc, objects separated by
a multiple of I iMB correspond to cache victim bloclts.
Conscqucntly, a CPU read request of Iiicmory t11;it
involves a \,ictim \\!rite to mcmor!r gains the hcnctit of
page modc and proceeds f.~stcr than it \vould \\zit11 a
tradition;illy nddressed mclnory.

Although this address scheme is ideal fix CPU
memory accesses, it creates tlic converse effect for
DlMA n-n~isnctions. It scatters consccuti\ie 1>MA blocks

BLOCK OFFSET PHYSICAL
ADDRESS

BANK SELECT

3 1 4 20 19 4 6

Figure 4
 memory Addrcss Scheme

94 Digital 1~chniz.il Journal

CACHE
ADDRESS TAG INDEX

by 1 MB in nielnory. These locations hll outside tlie
DRAM page-mode region, resulting ill lower perfor-
mance. The solution is to enlarge the memory blocks;
for example, start the memory interchange at bit <8>
instead of bit <6> . This compromise allo\\ls 256-byte
DMA bursts to run at fill1 speed. Slightly fewer victim
blocks, however, gain the benefit of page mode.

The bit assignment for this address scheme depends
on the row and column structure of tlie DRAM part
and on the external cache size. Power-011 s o h a r e
automatically configures the address-interchange
hardsvare in the s!.stem.

Design Considerations

In this section, we discuss the dcsign choices made
for system clocking, timing veritication, and tlie
application-spccifc integrated circuit (ASIC) design.

System Clocking
The cliip set is a synchronous design: The system clock
is an integer ~iiultiple of thc CPU cycle t i~ne.
Consequently, tlie PC1 clock, the memory clock, and
the cache loop are all synchronous to each other. The
designers avoided an as!rnchronous design for two rca-
sons. It suffers tiom longer latencies d ~ ~ e to the syn-
chronizers, and it is more difficult to veritjr its timing.

Unlike tlie memory controller, which uses a doublc-
freque~icy cloclc to provide a finer 15-11s resolution for
the memory timing pulses, the s!~ncIironous design of
the chip set uses a single-phase clock. This simplified
clocking scheme eased the timing \ferification work.
Phase-locked-loop (PLL) deviccs control tlie cloclc
skew on the system board and in the ASICs. Tlie PLL
in the ASICs also generates the double-frequency
clock.

Timing Verification
The con~plete system was verificd for static t ini~ng.
A signal-integrity tool similar to SPICE \\{as used to
~nalyze all tlic module etch and to feed tlie delays Into
the modulc t~rning verification cffi)rt. Thc final ASIC
timing verification used the a c t ~ ~ a l ASIC etch dela!ls.
This process WAS so successhl that the actual hard\vare
svas free of nnv tinling-related bug or signal-integrity
problem.

ASIC Design
The cliip dcsigncrs chose to implcmcnt the gate array
using the 300K technology from LSI Logic Corpo-
ration. The control chip uses ovcr lOOK gates, and
each data slice consumes 24I< gates. Originally, the
designers considered the slower 100IC technology, but
it proved unable to satis@ the timing recluirenients for
a 64-bit-wide PC1 bus.

Tlie designers used the VElULOG hardware
description language to define all tlie logic within the
ASICs. Schematics were not used. The SYNOI'SIS
gate-synthesizer tool generated the gates. The design-
ers had to partition the logic into small 3,000 to S,000
gate segments to allow SYNOPSIS to complete within
12 to 15 hours on a DECstation 5000 workstation.
Currently, the same synthesis requires 1 hour on the
AlphaStatiol~ 600 5/260. The designers developed a
custom program that helped balance the timing con-
straints across these small gate segments. This allowed
the SYNOPSIS tool to focus its attention on the scg-
ments \vitIi the greatest potential for improvement.

Performance

Table 1 gives the bandnlidths of the workstation for
the 32-bit nnd 64-bit PC1 options. A structural siniula-
tion niodel verified this data, using a 180-ns memory
latency and a 30-11s system clock. The 285-MB/s read
band~vidth of tlie CPU memory is impressive consid-
ering that the memory systcni is 1 GB. Eventually, the
memory size will reach 4 GR when 64-Mb memory
chips become available.

The 1 / 0 \\:rite band\\,idtli is important for certain
3D graphics options that rely o n 1'10 to f i l l tlie
command queue. Current high-end graphics devices
require approximately 8 0 MB/s to 100 MB/s. The
213 MB/s of 1 /0 write bandwidth on the 64-bit PC1
can support a double-headed 3D graphics configura-
tion \\itliout saturating the PC1 bus. Other 3D graph-
ics options use large DMA reads to fill their command
queue. This approach offers additional bandjvidth at
263 MB/s. The system did not optimize DMA writes
to the same extent as DMA reads. Most options are
amply satisfied with 100 MB/s of bandwidth.

Table 1
Bandwidth Data

Transaction 32-bit 64-bit
Type PC1 PC1

CPU memory read:
64 bytes 284 284
I10 write:
Contiguous 32 bytes 119 213
Random 4 bytes 44 44
I10 read:
4 bytes 12 12
32 bytes 5 6 5 6
DMA read:
64 bytes 79 112
8 KB 132 263
DMA write:
64 bytes 97 102

Digital Technical Journal Vol. 7 No. 1 1995 93

Table 2 gives the performance for several bencli-
marks. Tlie data is for a system with a 300-MHz
processor and a 4-MB cache built out of 12-12s S U M
parts. The SPECmark dntn is preliminary and clrarly
\vorld-class. The LINl'ACI< clata is for double-
precision operands. Even greater performance is pos-
sible with faster cache options (for instance, a cache
using 8-11s parts) and faster speed variants of tlie
Alpha 21 164 microprocessor.

Functional Verification

The fi~nctionnl verification is an oilgoing effort.
Three bctors contribute to the nccd for greater, Inorc
efficient \lcrification. First, the design complesity of
e.1~11 11e\\l PI-ojcct i~~crcascs with tlie q ~ ~ e s t for 111o1-e
performance. Next, the cluality cspcctations arc I ~ S -
ing-the prototype hardlvare must boot an operating
system \\it11 no liard\\fare problems. Finally, time to
market is dccrc;~sing, PI-o\riding less time for f i~nc-
tional veriti cation.

A number of projects at Digital have succcssf~~lly
used the SEGUE higli-level I ang~~age for fi~nctional
\~erif icatio~~.~. ' SEGUE allo\\,s simple handling of ran-
domness and percentage \\~eigIitings. As an esa~nplc, n
code secluc1ice niay express that 30 percult of the
DMA tests sliou Id target the scattcr/gather TLB, and
that the DMA length should be selected at random
from a specjfied range. Each evocation ofSEGUE gcn-
erates a tcst sequence with difkrent random \,aria-
tions. Thcsc test sequences are run across many
\vorkstations to achieve a high throughput. The proj-
ect uscd 20 \\,orlcstatio~is for 12 montlis.

The test suite focused on the ASIC verification in
the contest of the complete system. I t \\,as not a goal
to \reri@ the Alpha 2 1 164 microprocessor; neitlicr \\.as
the EISA logic \,crifed (tliis logic \\,as copied fro111
other projects). The test en\rironment uscd the
VEIULOG simulator and included tlie Alpha 2 1 164
behavioral modcl, a PC1 tra~isactor (a bus fiuictional
model), and '1 memory and cache modcl. Tlie SEGUE
code gcncratcd (:-language ccst programs for Cl'U-
to-nlemory and CPU-to-1/0 transactions, as as
Dh4A scripts for the PC1 transactor.

The goal o f \.crificatio~i \\'elit beyond ensuring tli.it
the prototylx Ii~l'dware f~~nct ioncd correctly. Thc

Table 2
Benchmark Performance

Benchmark Performance

LINPACK 100 X 100
LINPACK 1000 X 1000

major objecti\le was to ensure that the hardware is reli-
able 111a1ip)'cars hence, when new, as yet undeveloped,
PC1 options populate the s)rstem. Today, the l"CI bus
uses only a sninll number of expansion option cards. It
is q ~ ~ i t c probable that a perf~~nctory verification oftlie
PC1 logic \\.auld result in a \\,orking system at the time
of hardware po\\rer-on 2nd for Inany months tliere-
after. I t is only as more option cards become a\~nilablc
that the likelihood of systcni failure grocvs. Conse-
quently, the verification team developed a detailed 1'CI
transactor and subjected tlic PC1 interface in the c o ~ i -
trol chip to lica\~!, stressors. The comple.\it\f of the PC1
transactor F J ~ exceeds that o f the PC1 intcrfilcc logic
\vitlii~i the ASIC. The reason is that the ASIC: design
implements only the subset of the PC1 arc1iitcct~11-e
appropriate to its design. The I'CI transactor, lie\\,-
ever, has to emulate any possible PC1 de\ricc and thus
must implement all possible cases. Furthermore, it
ni i~st modcl poorly designcd PC1 option cards (tlie
\vord "slioi~ld" is comliion in tlic PC1 specification).

Thc vcrifcation experience included the following:

Directed tests. Specific, directed tests arc ~iccdcd
to supplement pscudorancio~n testing. For cs,im-
plc, a certain intricate sccluc~icc of e\.cnts is best
\verified \\,it11 a specific test, rather than relying o n
the random process to generate the sequence by
cliancc.

Staff hours. I n prior projects, tlie hard\\/arc tcam
exceeded tlie \.crification tcam in size. O\lcr the
years, the iniportancc of \,critication has gro\\-n.
O n tliis project, t\vicc as much time \\.as spent o n
the \,crifcntion effort ns on thc hardu,arc coding.

Dcgrcc of I-andomncss. Pure randomness is not
al\vays desirable. For instance, an i~itercsti~ig tcst
can he conducted \vlicn 3 1)MA \\rrite nncl a (;PU
rend tnrgct tlie same bloclc in memor!r (alrliougli,
for coherency reasons, not tlie samc data).
Random addresses arc unlikel!, t o create this
interaction; instead carefill address scltction is
l1ccCSS;lI')~.

Error tcsts. The pseuclornndo~n test process added
a different error condition, s i~ch as a PC1 address-
ing error, uitliin each tcst. The hard\\.arc logic,
L I ~ O I I dctccti~ig the error, \ \ r o ~ ~ I d \'ccto~- b!' sc~icii~ig
an interrupt to the error-handling code. The Inn-
dler \\lould check if the liard\\,are had captu~.cd the
corrcct error status and, if it had, \voi~ld ~ C S L I I ~ ~ C

tile csccution of t l ~ c tcst program. 7'his strategy
uncovered ~ L I ~ S \\'hen the linrd\\rare c o n t i ~ i ~ ~ c d
functioning after- an error co~idit ion, only to fail
man!, cycles later.

H~ll-d\\~arc simulation ~~ccclcrator. Thc project
team ciid not use a liardwarc simulation accclcra-
tor for 3 n ~ ~ ~ i i b c r of reasons. 111 the early pliasc of

\rerification, bugs arc so frcclucnt that there is n o
\,aluc in finding morc bugs. The limiting resource
is tlie isolation ,ind fixing of the bugs. Second,
porting tlic codc o ~ i t o thc hardware simulator
LISCS I-esoi~rces t l i ~ t arc bcttcr spc~ i t impro\-ing the
tcst suite: running poor tcsts faster is of n o value.
Finally, the hard\varc-based verification technique
offcrs far greater perfor~iiancc.

Rug curvc. The projcct team maintained a bug
cur\.c. The first-pass ASIC \\.as released \\(hen the
bug; cur\<c \\'as falling b i ~ t \\,.is still abo\'e zero. The
tests \\.ere s t r ~ c t ~ ~ r c d to test tlic importallt f i~nc-
tionality first. Tliis nllo\\~ccl verification to con-
tinue \\~liilc tlic operating system cic\,elopcrs
debuggcd their coclc on the prototype. To help
this strategy, any pcrfortiiancc-c1il1:111ce1i1e11t logic
in the ASICs could be disablcd in case an error \\,as
discovcrcd in that logic. Espcricnce on prior pro-
jects had shown that such logic has a predilection
toward bugs.

Hardware-based Verification

Tlie Iiard\\,a~-c-based verification Mias developed to
achieve a signif cant, ti\c-orders-of-ni;ig~~it~~dc improve-
ment in tcst t l ~ r o ~ ~ g l i p i ~ t . Tlic CPU pcrfor~us pseudo-
random memory a~ici I/O-space transactio~is, and a
number of lY:I graphics options emulate generic PC1
dcviccs. l'lic harci\\w-c-bascd verification has so far
i~nco\~crcd thrcc bugs. To f ~ ~ r t h c r impro\,e this tech-
nicluc, .I liard\\~arc PC1 cicmo~i is under dc\~cloprnent.
This dc\.icc has the capability to mimic nny PC1 dc\rice.

The random nature of tlic tcst suite ~iieans that thc
bug curve has a long tail: Tlic probability of finding
thc nest bug decrcascs as each bug is discovel-ed. For
csample, an cnrlicr projcct tea111 disco\,ered the last
bug akcr six months but uccdcd only one week to f nd
tlie penultimate bug. Grcatcr tcst t l i r o ~ ~ g l i p ~ ~ t helps
unco\.cr the final bug(s) sooner. O L I ~ project team
achie\rcci grcatcr t l i ro~~gl iput by migrating the test
strategy o~ito tlic acti~nl liard\varc.

A self-checking, pscudora~ldom, test-generating
progr.i~n runs on tlic ha~.d\varc, testing tlic memory,
the c.~chc, and tlic I'<:I. On clctccting a mism'ltch, the
soft\ir,~~.c triggers a digital anal yzcr connected to visi-
bility points 011 tlic hard\\~arc. (:urrently, a number
of I'C:I graphics cards arc emulating different DMA
dcviccs. E\~cnti1;111)1, a custom PC1 test device, the PC1
demon, will repl~icc tlic graphics cards and provide
grcatcr tlcsibility and fi~nctionalit), (especially \\iith
regard to error cases).

The soft~varc-based \~crification, running across 20
\\:orkstations, avcragccl approxiniatcly 100 DhlA
ti-ansactions per minute (\vith concurrent memory and
P I 0 ;lcti\;ity). The hard\varc-based verifi cation runs 6 0
million compnrablc 1)MA tra~lsactions per minute per

\\lorkstation. Tliis 5-orders-of-~i iag~~i t~idc impro\fe-
ment suggests that all the tests performed in the past
12 months of sohvare-based \.erif cation can be coni-
pleted during tlie liard\\lare-based debugging in 5
minutes.

A secondary, but very iiscfi~l, adva~itagc ofliard\\rare-
based testing is the ability to stress the chips clectri-
cally. For instance, by selccti~ig a data pattern of 1's
and 0's for tlie DMA, memory, and P I 0 tcsts, verifica-
tion engineers can severely test tlie capability of the
chips to s\\litcli si~nultaneo~~sly.

Hardware Test Strategy
7 - .I he SEGUE s o h \ ~ a r c proved n o t to bc useft11 for tlie
hard\\lare-based \icrification effort. Instcacl ne\\ soti-
\\!are was \vritten in the C Iangi~ng-c for tlic follo\\!ing
reasons:

Verification must Iia\lc fill1 control o f the hard\\larc
and thus cannot run on top of an operating sys-
tem. Consequently, SEGUE and the operating
system functionality arc not a\~ailable.

Unlike the softwarc environment, \lisibility into
the logic signals is restricted in tlie hard\vnre cnvi-
ronmcnt. The test software has to be \\rritten to
make debugging simpler.

O n e possjblc strategy is to down1o:id the SEGUE
tests onto the hard\varc and t h i ~ s tre;it the hard-
\J8arc as a s i~i l i~ la t io~i ;~cccIcr.itor. Ho\\,c\.er, tlie
resultant performance impro\re~ncnt is small: The
SEGUE codc t a l a 2 minutes to gcncr,lte a l -hour
sofn\.are-sini~~lation run. Tlicsc tcsts r u n :\cross 20
urorkstntions \\lit11 a resultant th ro~~g l ipu t of 1 test
e\.er!$ 3 minutes. Assuming the same test csccutcd
in zero t i~ i ic on tlie l i~rd\snrc, the total tcst time
\\!auld equal 1 test c*cry 2 minutes-a minor
impro\lement.

Tlie liard\vare-based \,crifi cation sohvarc relics on
the following rationale: Tlic liarJ\vare is almost totally
bug free, and any remaining bugs ;Ire most likely to be
due to a rare interaction of events. Indeed, one of tlie
bugs discovcrcd was a special-case 1)MA PI-cfetcli coin-
ciding with a niemory refresh. C:onsccli~cnrly, no rest is
likely to detect morc than one bug. For instance, if a
DLMA operation suffcrs an error, then it is unlikely that
a s~tbsecl~~ell t , identical 1)lMA operation \ \ t i l l suffer an
error. The second DMA \vill espericncc a different set
of interactions inside the chip set.

The adoptcd test environment has nvo graphics
cards, each pcrforniing ide~lticnl 1)MA operations to
nvo different regions of riicmor!l. 13cca~1sc of tlic serial
nature of the I'CT bus, lio\\~cvcr, thcsc cards will
perform tlie DMA operations at different times.
Furtherniorc, other traffic on the PC1 bus (for
instance, the CPU ~vill be executing random PIO) \\till
h r t h e r randomize tlie cards' bcIi;i\ior. While tlie

Digiral Tcchnic~l Journal Val. 7 No. 1 1995 97

DMA transactions run, self-checking, random CPU
traffic to memory and I/C) will also run. These events
provide the random mis of interacting instructions. At
the completion of the test, a miscon~parsion of the nvo
DlMA write regions indicates an error.

Graphics Demon
A number of I'CI option c'~rds were investigated as
potential PC1 demon cards. The requirements for a
PC1 demon card are twofold: it must be able to per-
form DMA of various lengths, and it must have meni-
or)! for tlie storage of DMA and P I 0 data. The DEC;
ZLXp-El graphics card was selected because it offers
the Following advantages:

Independent DMA. Most PC1 options start a
DMA operatio~i instantly after tlie CPU has writ-
ten to a specific register in the option. This is
undesirable because it makes it impossible to
emulate options that start DMA operations
autonomously (e.g., a network card). To break
this coupling, the test program should first make
the graphics card paint a portion of the screen.
While the graphics device is busy, tlie graphics
command FIFO buffer is filled with the DMA
comniands. The graphics device will not start tlie
DMA until it has finished painting. Furthermore,
the delay is progranin~able by varying the number
of pisels painted.

Programmable 1)MA. The graphics card allo\vs
tlie DMA to be an\! size, whereas most PC1
options are constrained to a fixed length.
Moreover, it is possible to arrange for PC1 discon-
nects o n a ~I IMA read. The graphics card nlodifies
incoming data with the contents of tlie frame
buffer (e.g., frame buffer = frame buffer XOK
data). This feature throttles the internal band-
width of thc graphics card, \vliicli disconnccts it
from the PCI.

Frame buffer. The graphics franie buffcr is the tar-
get of the 1)MA and P I 0 operations. A useful soft-
ware debugging feature \\?as to observe the frame
buffer while running the tests.

PC1 Demon
The PC1 denion is designcd to mimic any possible PC1
device. Sofnvare has total control of the behavior of
tlie device, including the assertion of error conditions
(e.g., parity crrors on any specified data word). The
architecture of the PC1 dcnlon is very siniple so that
the debugging of the PC1 demon is straightforward.
(The objective is to fincl bugs in the chip set and not in
the PC1 demon.) Consequently, the complexity in
using the PC1 demon is co~nplctely in the sohvare.

The ideal architecture of a PC1 demon is a I.irge
memory whose output drives tlie PC1 data and control
signals directly; the s o h a r e programs the desired PC1

operation by loading the appropriate pattern into this
nienior)~. In reality, the architccturc o f the PC1 demon
has to diverge from this ideal model for at least nvo
reasons. First, the PC1 denion has to be able to emu-
late the fastest possible PC1 device, and this forces the
use ofan ASIC. Ho\\fever, ASICs have limited memory
capacity. I t is desirable to store the scripts for many
thousa~lds of DMAs this memory. The scripts arc
approximately 100-bits \\,idc (64-bit PC1 data and
control) and require se\wal megabytes of niemor!:
This menlory requirenicnt forces the design to 11sc
external nienlor!r. Sccond, the PC1 architecture has a
few handsIial<e control signals that require tlie ~1st of
a fast state machine.

The PC1 demon has thc fi~nctionality to act as a his-
togram unit (a PC1 event counter). Internal counters
measure timing information sucll as I)MA latency and
the frequency of specified PC1 transactions. The PC1
demon observes these states by snooping tlic PC1 bus.

Summary

The AlphaStatio11 600 5-series workstatiol~ ofkrs high
compute performance, together wit11 substantial 1 / 0
subsystem performance. The project team designed a
low-cost, 1-GB memory system with a 180-ns mcni-
or!! latency. Timing verification and placement of the
plug-in, external cache resulted in a workstation with
considerable flexibility in memory cspansion, cache
variants, and I/O option slots.

The most time-consuming portion of the project
was the fi~nctional verification. T o datc, different rest
programs Iia\rc run concurrentl!~ across 20 Iiig11-
performance ~vorkstations, day and light, fix o \ r r 12
months. The release of the prototype chip set
occurred after 5 months of \.crification; this chip set
successfi~lly booted the operating system. The remain-
ing 7 months ofvcrification \\)ere focuseti on the lower
priority functionality (e.g. , error cases and slo\v nicm-
ory configurations).

The hardware-based verification approach proved
its value by uncovering three bugs. The most signif -
cant bug involved the interaction of a n ~ ~ n i b c r of
events, including an optimized, prefetcliing 1)MA read
and a nlemory refresh. The verification process helped
create a very high quality product.

Acknowledgments

Many illdividuals contributed to tlic success of this
project. The design \Itas a team effort involving far
more people in many divcrsc groilps than can be
ackno\vledged here. However, recognition is duc to
the core hard\varc dnd verification team: Ed Arthur,
Connie Riela\\akr, Ernie Crockcr, T r ~ c e y Gustafjon,
J. Grady, John Hackcnberg, 1Gck Hagen, Randy
Hinrichs, Laura men dyke, Sudhin Mishra, Sanciy

98 I l ~ g ~ t a l Tcclinicnl J o u r n a l

~Mcl'licrson, Jim N i c t ~ ~ p s k i , S u b Pal, Nick l'nluzzi,
h c l < R u d ~ n a n , J im I<cillc)~, M a n o o Siarko\i~slti, Rob
Stewart , Hugh I < ~ ~ r t l i , -Tony Carnuso, J im H n m c l ,
IGck Ca lcag~ l i , Carl l\/Iowcr, Peter Spacck, a n d N e d
Utzig.

References

1. J . F,dmondson c t al., "Internal Organization of the
Alphn 2 1164, a 300-MI Iz 64-bit Quad-issue CtvlOS
I\IS<: ~Microproccssor,'' l) igi/~rl Techtzical ,/otrt.tr~rl.
vol. 7, no. 1 (1995, this isbuc): 119-133.

3. S. Nadkarni er nl., "l)c\~clopmcnt of Digital's P<:l <:hip
Sets and E\.nluntion IGt f i ~ rhc l)E<;chip 21064 micro-
~>roccsso~,' ' l)i,qi/(t/ ~ ~ c - ~ 7 ~ ~ i c - ~ r / ~ / o t r ~ ~ t t a / . vol. 6 , IIO. 2
(Spring 1994) : 49-61

4. AClc 5.3CcSlCJ Ilctl~i ill~rtzrtul (l layton, Ohio: N<:R
Corporation, 1992).

5. A. Ag.\rlv.~l, Attrrl)~.xis (!/' Cilc.he P e r / h r t n e ~ t ~ c ~ ,/i)t.
Ol ,oz/ l i~~g .$)slotis atrd iVlrr//iprc~r-c~tn~~iin~~ (Koston:
IUu\vcr Academic Publishers, 1989).

6. S. \White 2nd S. l)lin\\.in, "I'OWEIU: Nes t Gcncl-'ition
o f tlic RIS<: S\ \ icm/6000 Family," IBAll ,/otrt-trc~/ (4'
N(ac,clt.ch L I I I C ~ l) c ~ i ~ e l o /) ~ ~ ~ c ~ ~ c / . \.ol. 35, n o . 5 (Scptcmhcr
l 9 9 4) ,

7 . W. Anderson, "l.ogic.ll \krific,~tion of tlic NVAX CPLJ
(:hip Dcsign," Olgil~11 ' / i ~ c I ~ r ~ i c ~ i l , / o ~ o ~ ~ z ~ t I ~ \,ol. 4 , no . 3
(Surn~ncr 1992): 38-46.

Biographies

Tohn H. Zurawski
J o h n Zumtvski \\.as the system i~rchitcct for the
AlpllnSt~tion 6 0 0 5-scrics \vorksratio~i. Prior t o this
project, John was the system arcliitcct for the L)E<;station
5000 series of MIPS 1<4000 \\,orkstations. H c has also led
the vcri6cation cffol-r ti)]- the 1)1'<: 3000 \\rorltsnrion and
lcri the team that designed rhc tlonting-point unit for tlic
VAS 8800 family. John holds 3 1I.Sc. degree in physics
(1976), and M.Sc. (1977) v id l'h.1). (1980) degrees jn
computcr science, all fi-om Mn~~clicstcr Universiy. John
is a mcmbcr of IEEE. H c holds sc\.cn parents and has
published six papers on computer technology. H c joined
1)igibl in 1982 after completing post-doctoral research
at Manchesrer University.

John E. Murray
A consulting engineer in tlic Alpha Personal Systems
Group, John ~Murray was the logic design architect for thc
Alphastation 6 0 0 5-series. In previous work, John led thc
dcsigi tc.1111 h)r the instruction fetch and decode unit o n
the VAS 9000 systcm. Prior to joining Digital in 1982, he
\\.as \\.it11 l<:L in the Unitcd Kingdom. H e holds clcven
patents.

Paul J. Lemmon
Paul L e m n ~ o n j o i ~ ~ c d Digital in 1987; he is a principal cngi-
neer. Paul \\.as the ASIC tcani lcader and the arcllitect of
the co~i t ro l ASIC: ti)r thc Alphastation 6 0 0 5-scrics. Hc \\.as
previously cml)loycd at lh tapoint , \\~hcre he was a design
engineer/projcct cllginccr. Paul received 3 R.S. in electrical
e~lgineering from Ohio State University in 1980. H e holds
n1.o parcnts.

Digital Tcchnicnl Journ.il I . / 4 . 1 1995 YY

Circuit Implementation
of a 300-MHz 64-bit
Second-generation
CMOS Alpha CPU

A 300-MHz, cus tom 64-bit VLSI, second-

genera t ion Alpha CPU chip has been developed.

The chip w a s des igned in a 0.5-krn CMOS
technology using f o u r levels of metal . The d i e

size is 16.5 m m b y 18.1 mm, contains 9.3 million

transistors, ope ra te s at 3.3 V. a n d suppor t s

3.3-Vl5.0-V interfaces. Power dissipation is 5 0 W.
It contains a n 8-KB instruction cache; a n 8-KB

d a t a cache; a n d a 96-KB unified second-level

cache. The chip can issue f o u r instructions per

cycle a n d delivers 1,200 mipsl600 MFLOPS
(peak). Several no tewor thy circuit a n d imple-

menta t ion techniques w e r e used to a t t a in t h e

t a rge t opera t ing frequency.

William J. Bowhill, Shane L. Bell,
Bradley J. Benschneider, Andrew J. Black,
Sharon M. Britton, Ruben W. Castelino,
Dale R Donchin, John H. Edmondson,
Har ry R Fair, 111, Paul E. Gronowski,
Anil K Jain, Patricia L. IGoesen,
Marc E. Lamere, Bruce J. Loughlhi,
Shekhar Mehta, Rober t 0. Mueller,
Ronald P. Preston, Sribalan Santhanam,
Timothy A. Shedd, Michael J. Smith,
Stephen C . Thierauf

Tlie Alpha 21 164 chip is a 300-mcgnlicrtz (MHz) ,
quad-issue, custom \,cry large-scale integration (VLSI)
implementation of the Alplia arcliircct~~rc tliat dcli\~ers
peak performance of 1,200 n~illion instructions per
second (niips)/600 nlillion tloating-point operations
per second (IMFLOPS). The chip is designed in a
0.5-micrometer (~ m) complcmcntary metal-oxide
semiconductor (CMOS) technology using four levels
ofmetal. The die measures 16.5 ~nilli~nctcrs (m m) by
18.1 nlm and contains 9.3 million transistol-a. It opcr-
ates at 3.3 \lolts (V) n~ld s ~ ~ p p o r t s 3.3-V nnd 5.0-V
interfaces. The chip dissipates 50 wrutts (W) at 300
MHz (internal clock frequency). S\vitcliing noise o n
the power supplies is controlled by an on-chip distrib-
uted coupling capacitance bcn\,ccn po\ver and ground
of 160 nanofarads (nF). The chip contains an 8-kilobyte
(IU3), first-level (L l) instruction cachc; nn 8-IU3 L1
data cache; and a 96-IU3 sccond-le\lel (L2) unif cd ciatn
and instruction cache.

This paper focuses on thc circuit implementation
of tlie Alpha 21 164 CPU. Space does not permit a
description of the complete dcsign process utilizcd
throughout the project. I~isteaci, somc of the signif -
cant circuit design challenges cncounterccl d ~ ~ r i n g tlic
project are discussed. T11c papcr begins \\lit11 nn intro-
ductory o\~er\rie\v of thc chip micronl-cliitect~~re. It
continues with a dcscriptio~l of the floorplan and tht:
physical layout of the chip. Tlie next section discusses
the clock distribution and latch dcsign. This is fol-
lowed by an overview of the circuit dcsign strategy and
some specific circuit design cxa~nplcs. Thc papcr con-
cludes \ilitli information about dcsign (~?liysical id
electrical) \lcrification nncl CAD tools.

Microarchitecture Overview

The Alpha 21 164 chip is a complctcly new i~nplcmcn-
tation of the Alpha i~rchitecture. Figure 1 slio\vs a
bloclc diagram of the Alpha 21 164 chip. The micro-
processor consists of fve f~nctional units: tlie i n s t r ~ ~ c -
tion fetch, decode, and branch unit (I-box); the
integer executio~i unit (E-box); the memory nianage-
nlent unit (IM-box); the cachc co~itrol and bus inter-
hce unit (C-box); and the floating point illlit (F-box).

100 1)ipilal Tcchnicnl J o u r n a l Vo1. 7 No. 1 1995

p

2

n

;
 G.

?
G

S
 z-
.

"
 td

"

g
0
m

""
 2

%
.

g.

0

i
6

2
0
 i
"

;
 0%

+

0

-

Figure 2
Floorplan o f rlic hlplin 21 164 <:hip

much as possjblc. The S-caclic \\!,IS i~nplemcntcd \\,it11

metal 4 reiicl and \\trite b~lscs spanning the clitircl
height. This providcd the acccss nccdcd to both the
top and bottom of the S-c,lchc f o ~ . routing to the
I-cache and 1)-cache.

The D-cache supports tu7o loads pcr cycle, rcquir-
ing a dual-ported read dcsign. The 1)-caclic was
ilnplcnicntcd as n v o single-ported caches containing
identical data jnstcad of one dual-ported caclle. The
major consideration that Icd to this ciccision \\,as the
ability to share the single-ported dcsign writ11 the
I-cache. Sharing the dcsign also reduced the overall
analysis and \lerificntion rccl~~ired.

Intcrcon~lect routing \\.;is ;~no thc~- important part of
the floorplanning process. Four mcml layers \\!ere
available for routing. The lo\\,cr mctal layers, metal 1
and 111etal 2, \\.crc used fix local transistor h o o k ~ ~ p and
signal routing. The L I ~ ~ C I - 111~~11 I;~!.CI-S, nictal 3 and

102 1)i~iral 'li.chnical Journal \id. 7 So. I 1995

~netal 4, \Irere used primarily fo~. clock, po\\.cl-, 2nd
g r o ~ ~ i d distribution. When necessary, the ~ ~ p p c l - mctal
Iiq~crs \verc also uscci to r o ~ ~ t c critical signals m c l long
~ L ~ S C S . The metal oriclltatio~is \\,ere clioscn to accom-
modate both the cache s t ruc t~~rcs ilnci tllc clnta p;ltlls
of the fi~nctional i~nits . With rcfcrcncc to Figure 2,
metal 2 and lrletal 4 lincs \vcrc ;irrangcd to run vcrti-
cally and nletal 1 and mctal 3 ~+lcrc arranged to run
horizontally. Most of the global routing was donc by
hand. I.ocal cell routing \\Ins donc hy hand with some
assista~ice ti-om auto-routing <:AD tools.

The upper metal layers arc organixcd ns a fine-
pitched regular grid s t r ~ ~ c t ~ ~ r c placed over rlic cntil-c
chip. Thc typical dra\\,n line *idth uscci ill this grid is
12 p n . Po\\~cr and ground lincs arc alternated \\:it11 a
single clock line interspersed circry fen. pairs. A limited
number of critic;11 sigllals and buses arc also routed in
metal 3 and men1 4. In the pad ring, mctnl 4 is used to

Figure 3
Schematic o f Clock 1)isrrihutioll Systcm

usage and allo\\led dcsig~lcrs to utilize latches that had
already been \lcrificd over a range of operating condi-
tions and process corners.

Tlic Alpha 2 11 64 chip uses Ic\rcl-sensitive, transmis-
sion gatc latches as sho\wn in Figure 6. T\vo basic types
of latchcs \ \ w e dc\~clopcd: A-latches (Figures 6a and
6c) and U-latches (F i g ~ ~ r c s 6 b n~id 6d) . Tlle A-latclics
are opcn \\~licn C;I,I<is high, and thc 12-latchcs arc opcn
\\hen CI,K is lo\v. The latch input inverter c a i be
replaced by a logic gatc (slio\\w i l l Figures 6c and 6d),
thus rcdl~cing gate delays in otlicl. logic. This style of
latch is very f.lst 2nd arcn-cfficicnt, yet it docs have ,In
inherent r a c e - t h ~ - o ~ ~ g I ~ problem. I t \\,as estimated that

the use of this latch stylr yiclds J 10 percent iniprove-
luent in speed o\rer tlic 2 1064 micropsoccssor.

The additio~ial skc\v in thc cloclc, ~.cs~llting ti-0111 tlic
local clock buffer delay, increases the possibility that
data could racc through a pair of Intclics during the
transition of tlic clock. Althougli thc o\,crall slcc\\l of
tlic internal clock is lo\\/, this \\!as not considcrcci suffi-
cicnt to avoid race conditions. T\\'o significant steps
were taken to guarantee that no racc coulci exist
between latches. First, the buffered cloclc i~lsidc the
latch \\,as sized to minimize the ,~dciitiolial sltc\\, result-
ing f rom its delay. Second, rules 'ind \rcrification tools
\\,ere de*eloped to malte sure that thc Jcsign includes

Figure 4
hlcr.ll 3 .und iMcr.11 4 <:lock Ch~d

Figure 5
<:lock RC l le lay

1)ipiral li.ihnii.1l lou1.11;11 \+)I. 7 No. 1 1 105

1 CLK

DIN-B 4 1 DOUT-B
C

T 1

1 CLK

(s) AND Gntc A-latch

(b) 13-latch

CLK

DINl-B

DIN2-B

Figure 6
Alpha 2 1 164 Sundnrd Latch Esamplcs

at least one additional g ~ t c ciclay bct\\,een all latches,
thus g~~aranteeing a race-free design. Designers had
the option ofdesignating these gates as logic Functions
or simple inverters. The cielay did not affect critical
speed pnths, since critical paths tended to have lnorc
than one delay bcnveen Intclics.

Circuit Design Strategy

D L I ~ to the cornplcsit)~ of the Alpl1~1 2 1 1 64 chip and
the large size of the dcsign team, a comprehensive
design methodology \\$as dc\relopcd. A design guide
\vas created to provide a consistent sct of rules and
methods for tlie dc\tlopnient of circuit schcmntics
and layout. This docun-~ent helped ensure that all
designers worltcd under the sanlc design assumptions.
In addition, it relieved time-consu~ning analysis of
eacll circuit by providing guidelines and "rules of
thumb" that guaranteed correct operation and mini-
mized the possibility of reliability problems.

Guidelincs for conlmon circuit structures such as
complenlentary, c'~scodc, dyn'lnlic, and static circuits
were creatcd by characterizing their bch;lvior over 311
process comers. A d e q ~ ~ a t e noise margins were ensured
by specitjling operating envelopes k)r such design
parameters as device sizc, stack height, .lnd beta rutio.
Reliability guidelines were specified For electromigra-
tion, hot carrier effects, and substrntc charge injection.
Most circuits were designed within the rules specified
j l i tlie guide; ho\\,cvc~., a fe\v circuit designs violated
the rules. These designs were allowcd only \\/hen per-
formance and area advantages would be gained. These

exceptions were ca~-efi~ll!f \icrified for f~~nctionality anti
reliability.

An extensive suite of in-house CAI> tools w.~s used
to aid and structure thc design proccss. In all cases, the
tools supplcmentcd the desig~l process und automatccl
repetitive \\,ark. Engineering j~~clgmcnt , ~ n d itcrnti\.e
use of the sofn'tarc \\Icrc required to crcatc the final
production schematics. Tools r l~at ;~idcd schematic
generation includcd a schcm'ltiic editor, n logic s!~ntlic-
sis tool, and n cie\ricc-sizing tool. I'osr-schematic tools
included a latchi~lg mctl~odology chccltcr, a c i r c ~ ~ i t
verifier that highlighted cicsign rncthotlology \%)la-
tions, and a timing \-criticr that an:llyzcd potential crit-
ical spced paths. The use o f the dcsign tools \cn~.icd
across the chip, based on the dcgrcc of customized
logic requircd. For example, thc I-box did not rely
heavily on the synthesis tools bccausc of the 11ccd for
optimized circuit strilcturcs. Ho\\v\lcr, the (:-bos
used the synthesis tools extensively to produce bnsc-
line schematics, which were then modificcl by hand
as necessary.

Circuit Design Examples

The designers of the Alpha 2 1 164 cliip \\,ere fi~ccd
u~ i th a number of i rnplc~i ie tn t io~i cliallcngcs. The
most significant challenge \\,as to dcsign a chip that
c o ~ ~ l d run at 300 IMHz, 50 percent tistel- than the
previous Alpha i ~ ~ ~ p l e m c n t a t i o n . ~ l>e\,icc scaling,
process de\,elopme~lt, and architccrur.~l inipro\.cments
delivered part, but not all, of the rccluircd speedup.
The additional improvernc~lt had to be obtained using

106 Digital Technical Joul-nnl o . 7 So. 1 1995

circuit dcsign tcclinicl~~cs. Other challenges included a
niuch more coniplicatcd microarcliitect~~re and the
r ed~~c t ion in latency of ;I nurubcr o f instructions from
the previous implemcnntion. Finally, the large phys-
ical size of the chip also Icd to challenges in circuit
dcsign and po\\lcr management.

The fc)llo\\ring sections dcscribc several circuit
design challcngcs cnco~~ntcrcd during the implerncn-
tation of the Alpha 2 1 164 chip.

I-box Design-Issue Stage Dynamic Dirty/Bypass Logic
Tlie i s s ~ ~ e stagc of the I-box coordinates the release
of instructions into tllc F,-box, F-bos, and IM-bos
pipelines. The deep pipelines and sophisticated rnem-
ory managenicnt n nit along with tlie high clock
frequency prcscntcd significnnt cliallengcs to the
implementatio~i team. The Alpha 2 1 164 niicroarchi-
tccturc nllo\\is LIP to 37 instructions to be in progress
at tlie same time (7 intcgcr operates, 9 floating opcr-
ates, and 21 loads tliat missed). Superscalar issue of
4 instructions ~.cqi~ircs tllat S operands and 4 ne\\~ des-
tinations must be checked against these 37 outstand-
ing i~istructions in c\rcr)r cycle. Jn addition, 4 4 bypass
paths ;~ rc built into the F,-bos and F-box pipelines in
tlie Alplin 2 1 164 chip. Each of the 8 operands must be
cliccltrd agninst sc\,cral o f thcsc bypass paths to cnsurc
that the most up-to-date data is hr\ \arded to tlie issu-
ing instruction.

The rcgistcr comparisons \\)ere i~uplcmented L I S ~ I I ~

domino logic. As each instruction is issued, its destina-
tion rcgistcr adci~.css is decoded into a 3 1-bjt mask that
is entered into 3 sliift register that ~niniics tlic appro-
priate esccution pipclinc. <:liccl<s arc pcrfornled for
stalls ~ n c i b!,pnsscs hy sclccting the appropriate niasks
from each Icvcl of the shift register and comparing
tlicm to the rcgistcr nddrcsscs of tlie nc\v instructions.
Integer ancl tloating-point instructions arc liandlcd in
separate 31 -bit-*idc data paths.

lkcoding tlic register ,~ddrcsscs allows a logical OR
of several destinations to crcatc "dirty" bit masks,
greatly reducing the required number of comparators.
This r c d ~ ~ c t i o ~ l i l l co~ii l~ar~ltors more than conipcl~-
sates ti)r tlic additional logic in\lol\lcd in carrying the
decoded rcgistcr ncld~.csscs for all pipe stages (31 bits
\lersus 6 bits tbr encoded registel- numbers). With this
schemc, ill1 stall calculntions are performed using only
38 compar:ltors. 1Sypiiss detection is performed in a
manner similar to the stall gcncratio~i using an addi-
tional 4 4 comparators, one ti)r cnch I-',-box and F-box
bypass path.

The implementation of the comparators reqi~ires
thrcc ciomino st:igcs (scc Figi~re 7). The first stage is
a n \ .o - inp~ t dynamic multiplexer tliat selects the
operand/dcstination decode field for the necv instruc-
tion or the ti clcl o f tlic prc\~ious cycle's instruction if
a stall \\!as detected. The dirty bit mask is created in a
similar dynamic O R structure. The second domillo

stage is a bit-\\rise AND fi~nction of tlic opcrand/desti-
nation decode mask and the dirty bit niask followed by
a zero detector (logical OR of the 31 hits). A trunsmis-
sion gate forms a second AN1) f ~ n c t i o n in this stage
that qualifies the detected I-egister conflict with an
instruction valid signal. The tliirci domino stagc js used
to further qualifil tlie detected contlict \\.it11 instruction
type decode information and to start a logical O R of
the 38 conflict o i~tputs into a single stall wire. In the
case of bypasses, the third domino sr.igc is i~scd to
priorit!!-encode the b!,pnsscs so that only tlic most up-
to-date data is bypassed.

Special attention \\,:IS gi\,cn to scvcral circuit dcsign
issues \\.hen the domino logic was jmplcmcntcd.
Carefill preplanning of the routing provided large
lateral spiicing on the dyna~iiic Ii~ics to reduce cou-
pling. Noise margins \\,ere protected by ensuring tliat
all dyncimic inputs \\.ere ciri\.cn from local in\lcrtcrs
cvith a comliion ground rcfcrcncc. Charge-share prob-
lenis in tlie large sccond domino stngc (3 1 -bit-wide
AND-OR fi~nction) \ \ w e minimized due to tlie hc t
that only a single bit \\ , i l l be set in the nc\v instruction's
operand decode bit niask, c\~liicli is used as the upper
input in tlie 31 A N D staclts. :Tlicrcforc, only a single
internal ~ i o d c may cliargc-share \\lit11 the large output
capacitance.

Another critical concern in s ~ ~ c l i ;I Iargc dynamic
structure \vas po\\.cr consumption. The logic \\,as
implenlcnted in such a \\lay as to minirnizc the ni~mber
of nodes that ciiscliargc cacli phase. To minimize
short-circuit currents, the sccond and third d o ~ n i n o
stages arc precLiargcd i i i c ~ ~ l s o f matched delay sjg-
nals. These self-timed ~ ~ ~ l i a r g c c i lines also help to
~nini~nizc clock loading since (:LK ih uscci to precliarge
only the f rst stage.

E-box Design-Bypass Logic
The E-box prese~itcd a number ofintcrcsting circuit
clialle~~gcs. The Alpha 2 I 164 implcmcntation con-
tains n\'o integer pipelines, as compared to one in tlic
21064. This significantly increased the circuit design
co~nplcxity ;~ssoci;lrccJ \\'it11 pro\,iiling rcsl~lt L)yp~ssj~lg
from all fi~nctional units.

Tlie E-box bypass logic is rcspol~siblc for suppl\~ing
inpiit operand data to the fi~ncriondl units in both
integcr pipelines. Input operand data can be supplied
from the register file or b\~passcd fi-om the output of
any pipeline stage in the E-box (Figure 8) . Functional
operations 3re pcrfor~ncd in pipclinc stagc 4 (S4), and
register file \\!rites occur i l l stage 6 (Sb). Witllol~t
bypass logic, instructions that rccluirc data from tlie
pipeline c\lo~~ld h;ivc to be stalled ~ ~ n t i l the data reaches
S6 and is written into tlie rcgistcr file. These stalls
\rould impact the intcgcr pcrformnnce sc\rerely.
Therefore, the ability to bypas5 operand data fi.0111
pipeline stages S4 t h r o ~ ~ g h S6 as critical to obtaining
high integer performance.

\'(>I. 7 No. 1 1995 107

OPERAND DECODING RECIRCULATE LOGIC
(FIRST DOMINO)

SELF- CONFLICT I T~~~~ ((DIRTY BIT MASK
~ R E C ~ ~ ~ ~ ~ D ~ [~ ~ ~ " , " DYNAMIC OR OF ALL DIRTY REGISTERS

DOMINO1

Figure 7
l h r n i n o 1,ogic Ibr Issuc Scorcboard

Four 64-bit dual-rail operand buses are used to
bypass data. Two buses in each pipeline arc used to
si~pply A ali~l l3 opcr~ind d~t.1 to the f~nctio~l;il ~ ~ n i t s .
The buses ;ire controlled by the BYl'ASS-ENABLE-L
signals ge~icrated in the I-box n11d are driven during
the 13-phase (see Figure 9). A typical o p e r ~ n d bus dri-
\.cr is shown as \ \ ~ l l ;is t l ~ c shiftcr operand bus dl-i\.er.
The sl~ificr dri \u- is ~ ~ n i q i ~ c beca~~se it has byte zap (set
byte to zero) logic capability.

Data is rcad from the opcl-and buses during tlie early
portion of the A-ph;1sc by operand bus receivers
located at the input of cacli fi~nctional unit. Tlie
receiver is a dynamic gatc structure that can be con-
figured to rccci\rc one or more inputs 2nd generate
a logical function o ~ ~ t p u t . The adder ilscs the logical
function capability to generate propagate and kill
signals.

T l ~ e operilnd bus is prcchargcd by 3 dclaycd A-phase
clock. This delay allows the dynamic bus receiver gate
to act as a latch and climinntes the need for a true
B-latch (see Fig~11.c 9). 1>~1ri1ig the beginning of tlic
A-phase, operand data propagates through the
receiver and is captured bv the receiver gatc o ~ ~ t p u t
latch node before tlie delayed A-phase clock pre-
charges the opcra~id bus. Once t l ~ c opcrand bus is
precliarged, the latch node is clccoupled fro111 the
operand bus.

108 Digital -l.cch~lic.~l lout-nnl Vol. 7 No. 1 1995

E-box Design-64-bit Shifter
The E-bos shiftcr executes all 64-bit shift, estract,
insert, and zap (set to zero) instructions o n botli little
and big endian data types using n 128-bit I-ight-only
sliifter. All shift instructions n k c one cycle to csccutc,
an improvement of one cycle rclati\ec to the 2 1064
desigli.

The data path portion of the shificr logic uses
d!lnamic and cascode circuitry to rcad the opcrancl
buses, to present tlie data to cithcr the lo\\, or liigli
64 bits of data, a i d to sign-cxtend the high 64 bits,
\\?hen necessary, in the A-phase. In the R-phase, the
input data is shifted, a byte zap is pcrfor~ncd \\llicn
necessary, and the result js dri\!cn onto the r c s ~ ~ l t [,us.
7

l h e result can be bypassed onto an opcr-and bus.
Right shifis are performed by loading the A-operand
data into the lo\\^ 6 4 bits a ~ ~ d shifti~ig based on the
\~alue of the B-operand; Icft shifts .Ire pcrfornicd by
loading the A-operand data into the liigli 6 4 bits and
sliifiing based on the two's conlplc~ncnt of the valuc of
the B-operand. Thc shiftcr array is i~iiplcmentccl ;is a
differential d!inamic gatc. The la\~out uses mctal 1 for
the input data, metal 2 for the output valuc, and mcr.11
3 for the sliifi amount.

The chief impro\lcment in this dcsig~i over the
21064 design is tlie single-pliasc seneration of the 65
sliifi enable signals iiud byte zap mask. The shift cnablc

, _ - _ _ _ - _ - _ _ - - _ _ _ - _ -

I REGISTER FILE
I
I

I
I - READ (S3)
I

READ (S3)
I

I

I 1 j PIPELINE 0 I 1 1 1

. I I I PIPELINE 1 I

I* I FUNCTIONAL UNITS (S4) 1 *

Figure 8
E-bol I'lpclinc

generation is accomplislicd by c o m b i ~ ~ i ~ l g the sliiti
requirements of the extract ,111d insert i~lstructions
with tlic R-operand dccodc logic for normal shifts.
An 8-bit sliiftcr is ~ ~ s c d to implcnicnt tlic byte zap
mask to acliicvc tlic single-phase goal. Tlie 8-bit zap
niask sliit'tcr is built s sing diffcrc~ltial dyna~iiic logic.
Its control rcscmblcs thnt of tlic 64-bit shifter,
employing cascodc data input circi~itry and dynamic
dccodc logic. The shift amount is dctcrniincd froni
tlic B-operand or bits in the instr~lction based o n tlie
opcodc.

Cache Design- Power Savings
Spccial design considerations were given to tlie three
caches on the Alplia 21 164 chip beca~~sc they com-
prise, b!! Lnr, the largest number of dc\ficcs and Iia\/e
thc grcatcst impact on picld. Since the caches are
accesscd frecluentl!!, tlie po\\,cr co~isumprion of the
C ~ C ~ I C S also n c a ~ ~ s c h r concern.

Tlie 8-ICE I-c;iclic includes n\Io pairs of fuse-
programm;iblc r cdu l~ ian t ro\vs to offict any yield

loss. The D-cache le\!eragcs the I-cnchc dcsign by
combining two of these c;~clies to h r r n n singlc, d ~ ~ a l -
read-ported, 8-1(R data cache. Tlie 1)-caclic employs
the same ro\\, redundancy sclicmc as tlic I-caclic. Tlie
Alpha 21 164 chip also contains tlic S-c;~chc, \vliicli
is a large, second-lc\fel cache for both data and instruc-
tions. The S-cache data a!-l-ny is organized into 24
banks of 4 KR each. T\\,elvc banks arc placed o n tlie
left and right sides of the chip. Figure 10 slio\\.s the
arrangement of the banks o n tlic right sidc. Eacll bank
of both the tag and data arrays implcmcnts ro\v redun-
dancy. Tlie S-cache data array also implcmcnts column
redundancy.

Pipeline processing of tlic S-cache nllo\\.s tlic inclu-
S~OJI of power-saving features. Tlic S-cache opcmtes i l l

a four-stage pipeline: nvo stages for tag lookup and
modification, and two for data access and transfer.
Addrcss decoding during tlic tag lookup rcsults in the
clocking of only 2 of the 8 banks in each of tlic 3 sets
(6 of 24 in the whole cache). 'The bit lines and scnse
amplifiers ill the disabled 18 banlts ~ r c frozen in tlic
precharge mode, consuming minimal po\\lcr.

Hit signals from the tag-lookup logic control tlie
word lines and sense amplifiers of the six c~iablcd
banks. Therefore, of the six banlts enabled, only tlie
nvo banlts for the set that hit arc nctivntcd ~ ~ n d dis-
charged. Tliis design results in an estimated po\jfcr
savings of 10 W.

System Clock Design-Synchronization
Tlie Alpha 21 164 chip is designed to acco~nmodate
multiprocessor s)cstenis using II s!,nclironous bus. Tliis
requires the synchronization of the Alplia 21 164
chip's generated reference clock (SYS-(:I,K) to the
systems-generated reference clock (Kl<Fp<:Ll<). To
achieve the masin~um system pcrfornlancc, this must
be done svith as little crror as possible.

In other designs, this synclironizatio~i is achicvcd
using an on-chip phase-locked loop (PLL).-' Ho\\.evcr,
the on-chip noise en\~ironmcnt of tlic Alpha 2 1 164
could cause esccssi\:e I'LL jitter. Jjttcr can rcducc tlic
width of a clock phase and create a pulse too narrow to
clock on-chip logic. Tliis ~~nccrrui~i ty \ \ ' o ~ ~ l d ciictntc
slowing the clock fi-cqucncy, t l i ~ ~ s rcciucing system
performance.

The dcsign challcngc \ v ~ s to find a lo\i,-risk digit.11
solution that would nicct tlic high-frcq~~cncy pcr-
for~nance require~ncnts of tlic Alpha 2 1 164. To mcct
this challenge, a state niachinc I'LL (SIMI'LL,) \ v ~ s
designed. This all-digital approach Iins much bcttcr
noise i rnm~~ni ty tli,ln a tl-aciitionnl PLL, but it docs
introduce a cluantizing crror, or skew, into the system
cloclc timing. Tliis skc\\f can complicate systcn.1 timing
but bas minimal inipact o n CPU performance, since
it allows tlie Alpha 21 164 chip to r u n at tlic highest
possible clock frequency.

Digital Tcclinicnl Jo~11.1131 7 So 1 1995 I09

TYPICAL OPERAND r - OPERAND BUS RECEIVER
BUS DRIVER I I

I - - - - - - - _ - - - _ _ _ _ -
I CLK \ I

CLK I I d LATCH I - I

I I BUS-L I
NODE I

I-BOX BYPASS I I 1 INPUT I
I I

I OPERAND N-CHANNEL I
I NETWORK I I

I - I BUS-H I : '.\

I I'
I 1
I - - - - - - '+ - - - - - - - -

1 - - - - - - - - - _ _ _ _ _ _ _ 1

SHIFTER OPERAND

A-LATCH

PRECHARGE LOGIC TRISTATE DRIVER (N-INPUT MUX) .
I

I BUS (H OR L) I

CLK I
I
I
I BUS (H OR L)

I

Figure 9
E-box Bypass Bus

Figure 11 slio\\~s n f~lncrional block diagram of tlie
SIM~'LL. The Alpha 2 1 164 generates a s!,stcm bus
clock (SYS-CLIC) by dividing the internal CL,I< by a
preprogramrncd amount. Tliis SYS-CLI< is then
aligned to the system-gcncratcd rcfcrcnce cloclc
(KEF-CLI<). To d o this, the fi.ecluency of lU:F-<:LI<
must be slightly lo\\icr t l~an t h ~ t of SYS-CLI<. A pli;~se
detector compares the arrival of rhc rising c d ~ e of
REF-CL1< \\lit11 the rising cdgc of SYS-CLK. If the
edges are coincident, thc SMPLL. strctchcs SYS-CLK
by tlie peric-)d of the cliip oscillntor. l ? l ~ i ~ s , tlic rising
edge c.)f IW,E'_(;l,IC .tlc\tays leads the rising eclgc of
SYS-CLIC. Howc\lcr, because SYS-CLI< is slightly
hster than REF-CLK, the rising edge of SYS-(:LI< \ \ i l l
evc~ltl~ally catch LIP to REF-CLK When this happens,
the phase detector once again strctchcs SYS-CI,I<, and
the p-ocess of c3tcliing up starts anc\i1.

The SMPLL design takes admntagc of tlie 011-cliip
clock divider circuitry by suppressing the divide for a
single count wlienc\~cr a pliasc alignment is required.
This sclie~iie adjusts the pliasc ; i l ig~~ment in increments
o f1 .67 nanoseconds (ns) (assuming 11 600-MHz input
clock) and allows the rising edge of the 1GF-CLK,
measured at the input pin of the Alpha 21 164, to coin-
cide with the SYS-CLI< to within 1.67 ns.

Physical and Electrical Verification

The ability to \.eri+ the la!-out ofa 9.3-million-[I- isist is tor

VLSI chip, both physically ,lnd clcctricall!~, \\.itIiout
hampering its pcrfonnancc o r impactilig its dc\.clop-
mcnt schedule, \\rns a primar!, concern horn the o ~ ~ r s c t
of the project, &Ian? tccllniil~~cs \\.ere dc\.cloped
to accomplish this task. Somc of the more s i p i f c a n t
ad\.ances are disc~~ssed in the fi)llo\\.ing section.

Physical Layout Verification
The size and coniplcsity o f thc Alplin 2 1 164 dicr,ltcd
the use of physical asscnibly ~ i i c t l~ods that dicl not
require the CAD tool suitc to v c r i ~ the complete cliip
layout database ill one pass.

Full-custom designs likc tlic Alphn 2 1 164 chip nre
cornposcd of large blocl<s of random logic that ~1-c not
easily di\lisible into highly rcpctiti\,c instantiations of
common cclls. Recause of the relatively few instances
of repetitive structures, there \\'as n o nccci to clesisn
usirlg 3 deep cell hiel-arcl~y. Siniilnr to p~.c\,ious, 1'11-gc,
fi~ll-custom clcsigns, tlic Alphn 2 1 164 floorplan
di\,ided the cliip along major box b o i ~ ~ i d n r i c s . ~ ~ h i s
partitioning reduced the dc\,icc count per pnrricion
allo\\.ing each to be \,esjfied indcpcndcntl!:

CLOCK
RECEIVER

CLOCK INVERTER 1 CHAIN . 1

.

. 1 , , , - - , , , , - - - - . . -1

. : CONDITIONAL CLOCK GENERATION ! I
DETAILS FOR SET 3

I (WIRING NOT SHOWN) I NOT SHOWN

OSC-CLK-H

DIVIDE BY 2
LOGIC

OSC-CLK-L O
EXTERNAL
OSCILLATOR

STIJTTER

.--,,-------------------I .
CONDITIONAL CLOCK GENERATION :

A
9
7

v _I

DETAILS FOR SET 2

1 75.0125 MHZ I I I I

CLK

1 300.05 MHz

REF-CLK
PHASE DETECTOR

D
75.000 MHz

I (WIRING NOT SHOWN) I
. - - , , , , - - - - , - - - - - - - - - - - - I

; NOT SHOWN
, , - - - , , , , , - - - . . , - - - - - - - - - - - - - - - - - - - J .

I

j CONDITIONAL CLOCK GENERATION - BANK 3

I

Figure 11
SiMP1,I. Rloclc l)i.~g~.n~n

.-,,,-------------------I .
I : CONDITIONAL CLOCK GENERATION - BANK 2

LT
o
o SENSE a

CONDITIONAL CLOCK

SYS-CLK-GEN
(DIVIDE BY N)

The Alpha 21 164 caclic partitions, containing 7.2
million of the 9.3 million total devices, are, in them-
selves, vcr)l large 2nd difficult to \wit\. Accordingly, all
thrcc cachcs \\,ere designed and assembled hicrarchi-
cally. Spccificnlll; c:~cli cache bank con t~ ins several ref-
erences to the same prcchnrgc, decoder, control, and
random access memory (1WM) array logic and layout,
\\~hich arc tlicn instantinteci to form thc overall cache.
Subdividing the cache p~rti t ions into major hierarchi-

u
a +

I ,-,,,,-----,,,----- .-1
ENABLE --

75.01 25 MHz

cal blocks reduced thc dc\iice count pcr block. I n addi-
tion, since each bank was identical, only the de\lices
within one bank needed to bc \lerified.

Although the hierarchical nlcthod is typically uscd
in semicustom designs, it \\!as nc\v for 1)igital's FLIII-
custom microprocessors. Prior to the dc\lelopmcnt of
the Alpha 21 164, the c:lchcs \irere designed and veri-
tied \ \ ~ i t I i o ~ ~ t an established hierarchy, as was the rest of
the chip. Digital's CAD tools handled large databases

,SET 1
.---- - - - - - - - - - - - - . , - -

PRECHARGE DEVICES
--,,,,-----,,,,----,.- .----------------.

4-KB BANK - - - - - - - - - - - - - - - - -
k
I

I 1 1 1 GENEWTION 1 1

:--,,,,----,,-----------I .
I

CONDITIONAL CLOCK GENERATION :
.-, , , ,-----,------------I

I
I
I

I
I

Val. 7 No. 1 1995 1 1 1

I
I
1 --
I

,. - :
I

--, ,, , J I COLUMN MUX I

-
-

PRECHARGE

PRE-CLK O , 1 2 64-BIT WRITE BUS 64-BIT READ BUS

Figure 10
Schcrnnric o f I G ~ l i r Halfof 1,2 (:.~chc 1)nm Arrays

BANK 1

- -
I
I
I --

: WORD : :- -
I LINE

(I)
t-

% 1
W
(I)

M N K O I

SENSE AMP
-,,,,,----,,,,,----,.-
--,.-----------------

M4 BUS INTERFACE

I
I
J - -
I

--,,,-----,,-- - ----,.- I
J

without hierarchy; tlie layout verification niethods
\Irere trusted; and the pcrccntage of duplicated cir-
cuitry \\.as small. Conseclucntly, there had been n o
prior co~npelling need to design \\fit11 deep hierarchies.

To\vard tlic end of tile cliip dc\rclopme~nt, ~ ~ s j ~ l g a
considerable amount of computer resources, all three
Alpha 21 164 cache layouts were also verified \vithout
hierarch!! to proire the ne\ir hierarchical niethod and
CAD tools. The large size of the Alpha 2 1 164 1i1ade it
the prime candidate for \.cri@ing ne\v hierarchical veri-
fication tools (\\lhich \\!ere run concul.relitly \\'it11 tlie
traditional ones). Table 1 colnpares the processing
time of tlie S-cache for both the nonhierarchical and
the hierarchical \!crification methods. The hicrarchical
approach resultcd in a significant improvement in
CPU time.

Capacitive Coupling and Carrier Injection Verification
Since capacitive coupling benvcen cidjacent signals can
l~a\je u disastrous effect o n tlic logical fi~nctionality and
long-ter~n rcliability of a design, it was a major con-
cern throughout the project. When adjacent nodes
sc\itch, coupling benvcen tlicni can result in their logic
statc being degraded or lost by adding o r re~noving
charge to or f ron~ the coupled node. For static cases,
coupling results in a loss jn perform.~ncc, since the
node recovers statc if tlie chip c!rclc time is slo\ved. For
dynsmic nodes, lho\\,ever, statc may be lost, leading to
a logic hilure that occurs rcgardlcss of cycle time.

Interconnect coupling capacitance can also lead to
\.oltage excursions a b o ~ c the power supply \roltage
(L;,,) nnd belo\\, ground (!is) o n signsls in tlie chip.
For the case of an cxci~rsion belo\-\, I:;:,, the n-type
source/drains con~iected to the signal beconic for\\,ard
biased, injecting minority carriers (clcctrons) into tllc
substrate. If thcsc minority carriers arc collected by
i\'-diffi~sions connected to dynamic nodes, the charge
stored on the dynamic nodc can be c o r r ~ ~ p t e d , as
sho\vn in Figi~rc 12. Similarly, cscursions above $,,
for\\rard bias p-type sourcc/drains, \vhich can also lead
to data corruption.

An cxtensivc set of CAD tools was used to identifj
potential coupling and charge injection problems. In

Table 1
Alpha 21 164 S-cache Verification Compute Time

Nonhierarchical Hierarchical
Operation Processing Processing

Netlist extraction 11 hours 6 hours
Netlist comparison 6 hours 30 minutes
Geometric
verification 18 hours 10 minutes

the case of injection checks, ;I circi~it \virclist of the
chip \\/as estractcd from tlic I ,~yoi~t that included A'-Y
location coordinates for all transistors. An electrical
analysis, using capacitances extracted from layout, \\,as
then run to identifir all noclcs that madc voltage cscur-
sions outside tlie power supply \.oltages and that \\.ere
potential minority carrier jnjectors. Once tlicsc nodes
\Irere identified, the CAD tool, \\~hicli ~.cfcrcnccci tlic
coordinates from the extracted \\,irelist, checked all cir-
cuitry in the \vicinity of the injectors to ensure that
there \\,ere no dynamic nodcs pl-csc~it t l i ~ t could be
corrupted. When a potential corruption problem \\.as
found, a layout fi x \\.as implemented to eliminate the
coupling causing the injcction. If the col~pling c o ~ ~ l d
not be reduced o r eliminated, a diff~~sion collccto~ tied
to a pourer mil \vas placed bcnx~ccn the injector 'ind the
dynamic node (Figi~rc 13).

Antenna-induced Device Damage Analysis
During the nietal ctch process, \\/lien interconnect is
being formed from a blanket la)~cr of mctal, stray
charge fro111 tlic ctch plasma can be captured by the
visible metal. The ch31.g~ is coIIecte~1 on ;11i)l polysili-
con gate capacitors attached to the nodc. If enough
charge is collected, the gatc \roltagc may risc high
enough for tilnneling jnto the gatc oxide to occur.
This new concern, called antcnnn-induced de\ricc
damage, can cause breakdo\\ln of the gatc oxide, tmn-
sister threshold \foltagc sliihs, a n d long-tcr~n reliability
problems.

Antcnna-induced de\~icc damage can be prc\.cntcd
ifan alternate path is pro\,idcci for the collected charge.
A diodc connection on tlie antcnna nodc, such as a
diffusion connectio~i in either the \\.ell or the sub-
strate, acts as sucli n path. Although all nodcs in thc
Alpha 2 1164 chip hair a diodc co~lncction, this con-
nection may not be prescnt at the first or second mct-
alization steps, thcreb!. .illo\\ring ilaningc to occu~-. The
magniti~de of the damage is dependent o n the antcnna
ratio, defined as the ratio bct\\ccn thc area of the
\risible metal layer being processed 2nd the ,irca of
the gates attachcd to that nodc t h r o i ~ ~ l i lo\\zc~--level
connecting layers.

To analyze the cliip, .I special computcr-bnscd l ~ y -
ou t design rule check was dc\~clopcd. This clicck
extracted partial nodc layout as it \\loi~ld appcar during
each ~ ~ i e t a l i z a t i o n - p a t t c r ~ ~ i ~ ~ g etch step and fi ltcrcd all
nodes that did not have a dioclc shunt connection. For
these nodes, antcnna ratios \\<re con~putcd and coni-
pared to their corresponding ratio limit. To reduce rlic
antenna ratio o f a failing nodc, the antcnna mctal \\Ins
broken into sections and lnetal jumpers, \\~Iiich \\,ere
placed in the nest-higher ndjciccnt rnct~~l I,lycr, to con-
nect the sections into a single nodc. This reduced the
charge-collecting arcn for the section of intcrconncct

\?)I. 7 So. 1 1995

DYNAMIC NODE WlTH
STORED "I" CHARGE

NODE COUPLED
BELOW GROUND

N+

\
N+ N+ N+

CHARGE DEPLETION COLLECTED REGION LJ:-\- OF BY

NEARBY TRANSISTOR INJECTED MINORITY CARRIERS

P- EPI SUBSTRATE

Figure 12
l)yna~~iic Nodc Corruption (:aused by Minorin' Carricr I~ijcctio~i

that had t h e polysilicon gate attached and, as a result,
reduced the antenna r~tio. If this approach was n o t
feasible o r did no t r c d i ~ c e the antenna ratio adcquntcly,
a diffi~sion diode \\!;IS attached t o the offending
antenna to s h i ~ n t thc charge n\\la)!.

Electromigration Reliability Analysis
T h e methods and algorithms used t o perform thc
electro~iiigration (E M) anal)~sis o n the Alpha 2 1 1 6 4
chip Ii~\re greatly improved since previously reported.3
7-

1 lie chief cnhancemcnts arc the analysis o f ~ ~ n i d i r c c -
tional and bidirectional current flo\v, the additiori o f
tl iern~al heating nlodcls, and the introduction o f sta-
tistical electrornigration budgeting.

From a design perspective, o n e o f the main
improvements in EIM analysis was the introduction o f
unidirectional and bidirectional current flo\\l limits.
Unidirectional current is the tlo\\/ o f current in o n e
direction, for example in wires connecting devices t o
power o r g round . T h c segment o f \\!ire connecting a

cornplemcntar!~ logic gate t o its load is considered
bidirectional since the current flouis to \wrd the load t o
charge its capacitance and flows back t o the driver as
the capacitance is discharged. T h e bidirectional bclia\~-
ior o f current I ~ a s been sIi0\\~11 t o inipro\ic EM reliabil-
i t \ , by at least a factor o f two. This is ,I t r e ~ n c n d o u s
benefit as 11car1y all on-chip signal \\)iring is bidirec-
tional. (Po\\zer s ~ ~ p p l y metal is not and must be treated
accordingly.)

T h e niost stringent EM requirement is meeting
the traditional average current density limit o f 2 . 0
milliampere/pm2. Statistical electromigration bud-
geting (SEE) was used for the first t ime during design
\ierification t o assess the impact o f allowing small por-
tions o f the Alpha 2 1 164 design to exceed the fixed
ELM average cLlrrent liniits.6 Statistical parameters char-
acterizing EIM risk for the 0.5-pm CiMOS interconnect
process were conibined with the average node cur-
rents and layout geometry t o cornputc the magnitude
o f t h e EM risk of all design rule \liolations taken

DYNAMIC NODE WITH NODE COUPLED
"ss STORED "1" CHARGE "DO BELOW GROUND VSS

N+

\
N+ N+ N+ N+

\ I

COLLECTOR

e- e-

INJECTED MINORITY CARRIERS

P- EPI SUBSTRATE

Figure 13
1)yn.irnic Nodc Prorcctcd tiom Minority Carricr Injection

Digital T'cchnical J o u r n a l o 7 So 1 1995 113

together. Only t11c)sc \~iolations that added significant
risk \\)ere required t o be fiscd. This reduced design
verif cation timc and retained performance advantages
while ensuring that thc Alpha 2 1 164 design met its
chip-le\/el reliability goals.

Conclusion

T h e irnplcnicntation details o f the Alpha 2 1 1 6 4
microprocessor lha\,c bccn described. T h e custom
VLSI chip con ta i~ l s 9.3 million transistol-s, including a
96-KR second-level cache, in an area o f 2 9 9 mm'. T h e
chip implerne~lts t h e Alpha instruction set architecture
and can issuc itp t o LIT instructions a t a timc. I t
reaches a peak c s c c ~ ~ t i o n rate o f 1.2 billion instruc-
tions per second (hips) and 6 0 0 MFLOPS. T h e Alpha
2 1 164 is thc hstcst and highest-pcrfor111a11ce micro-
processor designed t o date in the i n d ~ s t r y . ~

T h e chip achie\led its performance goal o f 3 0 0 - M H z
operation in a 0 . 5 - p m C M O S technology by e n ~ p l o y -
ing a fine-pitch, lo\v-resistance power grid; a low-skew
clock distribution nctuiork; fast latches; and high-
speed circi~i t tcchniclucs. Extcnsi\ie 5,erification o f t l l e
functionality, electrical circuits, and physical layout \\(as
performed to ensurc the h~nctionality and relial>ility o f
t h e design. T h e chip operates from a 3.3-V supply and
dissipates 5 0 W. I t is easily air-cooled using conven-
tional tecl~~lolog)'. First-pass silicon \vns f i ~ n c t i o ~ ~ n l and
booted tllrec operating systenls running o n a n~r rnber
ofdifferent system platfornis.

Acknowledgments

We would like to ackno\\-ledge the contributions o f
many people \\rho helped maltc this chip possible.
These include William Herrick and l'a~11 Rubinfcld for
management and project support ; Alan Ca\,e and
Radenko Cvijetic for in\~alitablc CAI) assistance; and
L x r y Bair, Narain Arora, Lcn GI-itber, and Bjorn
Zetterlund for device and technology nodel ling.
Designers include Randy Allmon, Koy Badeau, Pete
Bannon, T o d d Iienninghoff, l h n d c l Blukc-Campos,
Derek Rrasili, I<cvin l3rocl1, Todd Broth, Milw
Charnoky, Beth Coopcr , Dan l)ever, l<ob L>~~pcak,
T im Fischer, Frank Fox, l cch Fromm, Bruce Gieseke,
h4ary Gowan, Charles Hightowcr, Jim Keller, J o h n
I<owaleski, T i m Mast, Antl-rony Murphy, John Mylius,
Andy Olcsin, T u n g Pham, Natc Ibuglilcy, D o n
Priore, Vidyn R ~ j ~ ~ g o p n l a n , S tc \~c Stricltland, Cliandra
Somanathan, J o n \/Vliitc, Gil Wolricli, and thc authors
o f this paper. Cus tom layout was d o n e by Picco Aircs,
Sandy Carroll, Jeff Ccparski, l>anielle DeMarse, Gina
Franceschi-Bean, Mark Gactz, Natashn Geagan, Jerry
Heath, Susan Lowell, T o m Mcl)crmott, I b r c n
iMcFadden, Rich ~Matthc\\; Stephanie Miller, Sue

R/Ioore, Brian Mulhollcn, l>a\,c Olson, Mrlric Riley,
Avrahal-r~ Slicn\,ald, <:had Stark, Marc ?'.il.ciIa, Lang
Tran, and Greg Wil l i~ms.

References and Note

1. J . Edmondson ct a l . , "l~ltcrnal Or~nniz,~t ion of the
Xlplla 21164, n 30U hdHz 64-hit Q ~ ~ ~ d - i \ \ u c (;ILIOS
liISC hl1icrop1-occ\\o~.," I)i;qi/ril ' / ? I (liiiiccil , / O I I ~ . I ~ (I / .
vol. 7, no. 1 (1995, this isbuc): 119-135.

2. D. Dobbcrpuhl et nl., "i\ 200-kIHz 64-hit 1)ual issuc
CXIOS hlicrok>~-occssor," 11i;41/~1/ ~ ~ , c . / J I / ~ c . ~ I / , / O I I I ~ I I (I / .

vol. 4, no. 4 (Spcsinl Issue 1992): 35-50.

3. SI'ICE is a gcnc~-.~l-pl~sposc ciscuit \ I ~ L I ~ . I ~ ~) I . progr,lm
de\,clopcd b!, L..i\\.rcnsc N.lgcl ;111ti Ellis (:o11~11 of the
l > c ~ > u t ~ i ~ c ~ i t of Elccrrical E~iginccring ~nnd (:omputcr
Scicnccs, Uni\.crsit!. of Cnlifi)sni;l u r Ilcl-kclcy.

4 . K. Kurira ct d., "l'I.l.-13.1scd Bi(:MOS On-Chip Clock
Generator for V~I-y High-Spccti ~Microprocc\sor," 1/99:

. ~) I I ~ - I I (/ / c!/' Solid .Vcl/c (,'i~ci/i/.\'. \ s o l . 26, no. 4 (April
1991): 585-589.

5. 11. Donchi11 ct al., "Tllc NVAS (:1'U (: I I I ~ : I h i g n (:JI.~I-
Icngcs, Mcthotis, anit (:Al) 'l'ools," l)igi/r/l ' l i ~ c l~/iic.(rl
./ort~.t?r~l. \,ol. 4, no. 3 (Sumnlcr 1992): 24-37.

6. J . it it chi^^, "Staristic.ll Elcstromigratio~~ IGsk Iludgcting
for Reljnblc Llcsign and Verification in 3 3001MHz
Microproccssor," Il<qcs/ of ' / i ' c h ~ ~ i ~ c ~ l l-'LipiJts. 'i %.SI
C'i/,ccri/s .5;l!t?1posiri/n. 1995.

7. "Digital Lcnds rhc Pack $\.it11 2 1164," . I l i c ~ . y) ~ ~ o ~ ~ o . s . ~ (. ~ ~ ~
I p o r t . vol. 8, no. 12 (Scpccn~bcs 1994): 1,6-10.

Biographies

William J. Bowhill
Willinn1 llo\\d~ill is n consultallt cnginccr in lligital
Sc~niconducror's Hidl Pcrfornla~lcc <;I'U Group. Hc
co-led the implcmcnt~ t io~~ of the Alpha 2 1 164 (:I'll and
represented the design org~niz3tio11 during the dcvclop-
menr of the 0.5-p111 (:A.IOS proccss in which thc chip i s
fabricdtecl. His psevioils rcspc>irsit>ilitics i n c l ~ ~ d t tcch~~ic~ll
contriburio~ls to both thc VAX 6000 Modcl 400 and
lModel600 chip scts. Bcti)rc joining 1)ipihl ill 1985, hc
\vorkcd for Stnndarcf Tclccom~llunic~~tio~is l~il[>or3torics,
Harlolv, EnglnnJ, udicrc hc ~lcsigned \'IS1 chips h ~ r
tclcio~iimunicatio~i applications. Rill ~~~~~~~ed a B.Eng.
(honors) in clcctro~lic c ~ ~ ~ i ~ l c ~ r i n g ti.o~n t l ~ c tl~livcnity
of Liverpool ill 198 1.

4 Digital Tcchnical Journal

Shane L. Bell
Sllanc Rcll joined Digital alicr rccci\.ing a B.S. in computer
s!.srcn~s engineering from the U~li\ ,crsin of 1h4assachusctts
at Amhcrst in 1993. As ;I Ilard\\~nrc engineer in Digital
Semiconductor, he \\,orkcd on the integer execution unit
of rhc Alpha 21 164 (:PU. H e is c ~ ~ r r c n t l y involved in the
cic.~~gn ofanotlicr Ilig11-pcrk)r~na~lcc microproccssos. Slianc
is a mcmbcr of Eta K.lpp;l NLI , Tau l3eta l'i, and 1EF.E.

Bradley J. Benschneider
Rr.lci Benschncidcr is a principal Ilnrti\\,are engineer In
l h g ~ t a l Scmiconductor. Hc *as rcspotisible for designing
\ > ~ ~ ~ I O L I S scct~ons of tlic ~ l i c ~ ~ i o r ! ~ n~anagemcnt unit o n tlic
2 11 64, as \\'ell as dcf i~l i~lg the Intching nierhodolob~ for
the chip. H e is currently Icadi~lg the implementation effort
of thc rnclnory nlauagclncnr unit for the nest-gcncr.lrion
Alpha <:1'U. Sincc joining Digital in 1987, lie has con-
rl-ibutcd to sevcral custom chip designs in the VAX 6000
hniily and the early Alpha implcmcntatio~~s. H e rcceivcd
a R.S.I:.E. k o m thc U~iivcrsin of Cincinnati, has o ~ l c
~ u t c t ~ t , .~nd has co-authored four papers.

Andrew J. Black
Andy lilack is a scllior hard\varc cnginccr in Digiul's P,llo
Alto Design C:cntcr, \\,Ilcrc 11c is designing the bus intcrbcc
unit for the StrongAI*l]'])A ~nicroprocessor chip. During
his \\.ark o n the Alpha 21 164 <:PU, lie tvas a mcmbcr o f
the dcsign team k)r t l ~ c nlclnor!. management unir and
co~~t r ibu tcd to the chip's clock dcsig11. And!. joincd 1)igital
in 1992 tier jvorking for I~lrcrnational Solar Illcctric
Technology. H c rccci\txi 3 B.S.I;.l<. fi'onl Pennsylv.uni.1
St.ltc University ;lnd nn M.S.E.E. fi'om the Lnivcrsit!. of
S o ~ ~ r h c r ~ ~ (:aliti)rni,~. Andy i s n ~ ~ ~ c r n b c r of IEEE, T;lu Rcm
I'i, and Eta l<.lppn NLI.

Sha ron M. Bri t ton
Sharon Britton is n principal hard\\,arc c~ lg i~ lcc r in Digital
Semiconductor. She received a B.S.E.E. from Hoston
University in 1983 and an M.S.E.E. fi'orn MIT in 1990.
She joined Digital in 1983 to work on the dcsign and
dcvelopmcnt of o p t i c ~ l disk drive controllers. Sincc joining
Digital Semiconductor ill 1990, Sharon has contributed to
[lie design of rllc floating-point unir on the 21064 <:PU
chip and Icd the implcmcntation of the load/srorc unit for
the Alpha 2 1 164 C P U . She is currcntl!, a nlcnlbcs of the
dcsign tc'lm \\,orking o n rlic ~nstruction issue unit for the
nest-gericr~tion Alph,~ c h ~ p .

Ruben W. Castelino
Refore receiving a B.S.E.E. fi'orn the Univcrsit!! of
Cincinnati in 1988, liubcn Castelino u8as a co-op student
at Digital \\#orkillg o n a chip set for tlic \/AS 6000 ivlodel
200. Currc~ltly a senior hard\vare engineer in Digital
Semiconductor, hc \\,as a codesigner of the cache control
and bus interface unir for the ALpha 21 164 <;PU. Prior
t o that, he \\,orkcd 011 the in s t r~~c t ion fetch, dccodc, and
branch unit b r the NVAS chip and performed implemen-
tation work for the NVAS \.irtual instruction cache. Ruben
is currently a codesigner o f t h c cachc control and bus inter-
face unit for a new Alpha microprocessor.

Dale R Donchin
Dale Donchin is ;In engineering manager ;lnd technical
contributor in 1)igital Scrniconductor. H c dcsigncd several
circuits rclatcd to the clock and cachc and contributed to
and led CAI) tool usc for the Alpha 21 164 CPU. H e is
presently pcrli)rming tlicsc duties for the dcvcloplncnt of
the next-gcncration Alpha microprocessor. 1)alc joincd

Digital Teclillicnl Jol1rn.11

Digital in 1978 and was pre\.iously a dcvelopnient manager
in the I<SX Operating Spstelu Croup. Dalc holds a B.S.E.E.
(1976, ho~iors) and an M.S.E.E. (1978) from ltutgers
Uni\lcrsity Collcge of Engineering and is a member of
IEEE and ACM.

John H. Edmondson
John Edmondson is a consultant enginecr in Iligital
Semiconductor. H e \\?as tlic archi tecr~~rc leader of the
design teain for the Alpha 21 164 microprocessor.
Previous to that work, he was a member of the design
team k)r the VAX 6000 Model 600 microprocessor.
Prior t o joining Digital in 1987, John worked a t
Canaan Computcr Corporation and 1Massachusetts
General Hospital. John received a B.S.E.E. from the
Massachl~setts Institute ofTcchnology in 1979.

H a r r y R Fair, I11
Harry Fair is a senior ; I. l\\larc engineer in Digital
Semiconductor's Advanccd Development Group and is
currently \\,orking 01.1 tlie dcsign of the instruction issue
unit for a high-performance rnicroproccssor. Harry came
t o Dig~tal in 1985 as a co-op student and \vorkcd on the
VAX 6000 Model 4 0 0 chip sct. H e joined Digital aftcr
rcccivi~ig a R.S.E.E. frori Purdue University in 1989.
Since then he has contributed to the NVAX and N\IkY+
niicroprocessor designs and most recently was a membcr
of the design teams for tlic integer e s e c ~ ~ t i o n ~ ~ n i r and
Inelllory ~ i ~ a n a g a n u ~ t unit of rhc Alpha 21164. Hnrry
is a ~ i i e ~ n b c r of IEEE.

Paul E. Gronowski
Paul Grono\\~slti joined Digital in 1984 aftcr receiving a
R.S, dcgrcc in electrical engineering fronl tlic University
ofCincinnati. During the past 10 years with lligitnl
Senliconductor, he has contrib~rtcd to the dcsign ofse\~eral

high-pcrformancc microprocessors. For the Alpha 2 1 164
CPU, hc was responsible for thc integer execution nit
and led the physical chip \~erification effort. H c is currently
responsible for the teclin~cal design and management of
the nest-generation processor. H e is the co-author of sev-
eral ISS<:(: papers and holds one patent.

Anil I<. Jain
Anil Jain, a consulting engineer in Digital Se~n~conductor ,
led t l ~ c imple~nentation o f the external interface unit on
the Alpha 2 1 164 microprocessor. Prior t o this, he was thc
project leader for the tloating-point unit on the NVAX
niicroprocessor. H c also made technical contributions
on the CVAX microprocessor and o n device modeling
of Digital's first CMOS process. Anil recei\,ed a B.S.E.E.
fo11i Punjab Engineering Collcge (1978) and a11 M.S.E.E.
from the Uni\lersity of Cincinnati ('1980). H e holds three
patents.

Patricia L. Kroesen
A principal engineer in 13igital Semiconductor, Patricia
I(rocsen is currently a circuit designer of tlie cache
controller and 1 /0 interhce section for thc ncst-
generation Alpha microprocessor. 111 her work o n the
Alpha 21 164, she \\.as an implementer on the floating-
point unit and optimized the clock distribution system for
the PASS2 release. Sincc joining Digital in 1988, Patty has
also u~orked on advanccd dc\,elopment efforts o f bipolar
and GaAs chips. She hns n R.S E.E, f r o ~ n thc University of
Mich ig~n and a n &I.S.E.E. kom Polytechnic Institute. She
holds one patent and has co-authored seveml papers.

Marc E. Lamere
A princ~pal hard\\c~re enginecr in Digital Semiconductor,
ivI;~rc Lamcrc is c~~rrenr ly n <;i\/lOS circuit designer for tlic
nest-generation Alpha microprocessor. In his \\rork o n rhc

116 Digital 'Technical Journal Vol. 7 No. I 1995

"'cr e x e c ~ ~ t ~ o l i Alp1l.l 2 1 1 6 4 , lie \\.as rcsponsiblc for rhc intc,
unit sliiftcr .1nd o ther circuit designs ,IS \\.ell .I\ the physical
2nd clcctricnl \.crlfic.irion o f r h c c l i ~ p . M.11.c joincci 1)igltnl
In 1 9 8 4 .is nu F.:.<:I. clrc~li t designer o n r l ~ c VAS 9 0 0 0 proj-
ccr 2nd liclpcd cicsign c ~ l s t o m and scmicustom bipolar
chip\ . H c Ilolds a 13.S.E.E. (1 9 8 3) t iom I<c~i\scl.icr-
Pol\~tcchnic I n s t i t ~ ~ t c .inti an h4.S.E.E. (1 9 8 8) from
Northcastcrn Uni\,crsinr.

B r u c e J. L o u g h l i n
Consulr.lnt cnginccr B I . L I ~ ~ J>oughlin \+,as I-csponsiblc for
rlic s ~ g n . ~ l i~ltcgriry design for tlic Al l~ l i ,~ 2 1 1 6 4 ellip. Sincc
joining I) I ~ I I . I I In 1975 , Brucc has conrl.ibutcd t o many
111-ojccts, ~ ~ i c l u d i n g the clock dcsign o f the l)E<: 3 0 0 0
\\.orksr.ltion, corporntc FCC shielding stmtcg\r, design o f
tlic F1)l)I ph\~sic.ll in tc rhcc , and ciisk scl-\.o \\,riring equip-
ment for tlic R 8 0 Winchcsrcr disks. From 1971 t o 1975 ,
I3rucc \\,as 11 mcmbcr o f the Eclipse ticsisn rcnm at l)nm
C;cncl.,~l. Prior t o that, lie \\.as tlic \.ice prc\ictcnr o f
cnginccring ti)]- Darn Technolog!, Inc., ,I cornpal\! ' lie
c o h u n d c d in 1 9 6 1 . Brucc holds B.S. dcgrccs in clcctl.ic,ll
cnginccring .Inel mcclinnicc~l cnginccring and .In h t S .
in ncronaurics ,lnd astronautics, all from MI'l'.

She ld ia r M e h t a
Shckh.l~. ~McIir.1 is A scnior Iiarci\\,,irc cnglnccr In I)~gir.ll
Semiconductor's H i g h l'crform~1ncc C o m p ~ ~ t i n g G r o u p .
H c designed rlic mlss .~cldrcss f lc o n the mcmol-y
s ~ ~ b s y s t c m o f tlic A l p l i ~ 2 1 1 6 4 CPU . ~ n d \V.IS I -cs l~onvblc
for tlic clcctro~nigratioli checks o f the chip. H c IS cu1.1-cntly
I c n i i i ~ i ~ the clcsign o f tllc caclics o n a f~1r~1l-c Alphd micro-
procc\\o~-. 13cli)rc joining Digital ill 1 9 8 8 , S l ~ c k l ~ ~ r \jrn nn
cngillccr .lt I . ,~~-scn LY: T o u h r o , Romb.l\r, 1ndi.i. H c rccclvcd
an Al.S.F..E. from the Uni\.crsit!, ofWisconsin .lt h4,ldison
(1 0 8 8) .

R o b e r t 0. M u e l l e r
R o b blucllcr jolncd 1)igitsl in 1 9 9 0 .lfrcr rccci\'ing a 13,s.
in compurcr and \ystcrn\ cnginccring from Rcnssclacr
Polytcchnic Institute. As .I scnior I i .~rd \ \~~i re c n ~ i n c c r in
Digitdl S c m i c o n d ~ ~ c t o r , lie is currently in\.ol\zcd in the
dcsign and i m p l c m c n r a t ~ o ~ i o f the pad ring for '1 ncn. AlpIi.1
~ n i c r o p r o c c s ~ o r . In his \\.ark o n tlic Alpha 2 1 1 6 4 c l i ~ p , R o b
contributed t o tlic c ic ign , ~mplcmentntiol i , 2nd elcct~.icnl
verification o f tlic pdd ring. t l ~ c cnclic control , ,lnd tlic bus
interface unit.

R o n a l d P. P r e s t o n
Ronald Prcuton is apl-incipnl ei-rylnrcr i i ~ h y i d
S c m i c o n d ~ ~ c t o t . Sincc joining Digird in j988, he has
\\.orked on the design o f \ c \ w a I m~crqmxcssor~ and was
t h e l n i p l c l i l e n r n t i ~ ~ Icndcr GK k~c;wtlon orrit un rhc
A p h n 2 1 1 6 4 . Ron \\,.IS .dso ~ . e t i p t m d ~ l e for the architccturc
and i m p l c n ~ c n t ~ ~ r i o n o f tlic i.i~uc/byp,~ss/sco~.cbo~lrd logic.
Ron is the coa l~ t l io r ofsc\'crnl ~ ~ t i c l c s 011 h o t c,~rricr 'i~i.il\~-

sis ofCA4OS circuits. H c rcccivcci 3 B.S.E.E. in 1 9 8 4 and
,111 b1.S F,.E. in 1988 , bo th from Rcnssclacr Polytcchnic
I n s c i t ~ ~ t c . R o n is ,I mcmbcr o f E n I<,ipp,~ NU and IEEE.

Sr iba lan S a n t h a n a m
Sri S a n t h ~ n ' l ~ n ~.cccl \~cd .I I3.E. in clcctricnl cnginccring
from h i n n University, ~\/l.lclras, Incii:~, in 1 9 8 7 , .lnd ,In
A4.S.E. dcgrcc in computer scicncc nlid cligineering kom
tlic Uni\,c~-sir\r o f i\/lichignn In 1 9 8 9 . H e joined Digit'il
ns n dcsign cnginccr for l>lgit.~l Semiconductor, rcsponsiblc
for the f i ~ l l - c ~ ~ \ r o m dcsign .ind d c \ c lopmcnt o f higli-
pcrfosm.incc <:A4OS \ I151 processors. Sri \\,orkcii o n the
design o f the f lonr~ng-point unit o f the 2 1 0 6 4 C;PU .ind
thc dcsign o f r h c c.lcllc control untt o f the Alph ,~ 21 1 6 4
CPU. H c is currcntI\, .i ~ i l c m b c r o f tllc Lo\\ Po\\.cr AlpIi.1
G r o u p \ \~l icrc lie is ~n\ .ol \ ,cd in the cicsign o f .I lo\\ po \ \ , c r
microprocessor.

\lo1 7 No. 1 0 1 17

Timothy A. Shedd
Reforc receiving a R.S.E.E. f-om Purduc Uni\,ersin in
1992, Tim Shcdd I\ ,is a co-op student at Digital \\,orking
on sc\~cral VIAS (:I'L7s .is \\.ell as the floating-point unit of
the 2 1064 <:PU. H c is now a hardware engineer in Digital
Semiconductor's Advancer1 Development Group. Tim
contributed to the circuit dcsign of the Alpha 21 164
microproccssor's instruction issue nit and is c ~ ~ r r c n t l y
working on the memory managclncnt n nit of the next-
generation A l p h ~ CI'U. Tim is 3 mcmbcr ofl'au Bcta Pi
and Eta Kappa Nu.

Michael J. Smi th
A p~incip.d cngillccr in Digital Sc~nicolld~lctor, Michacl
Smith \\.IS n mcmbcr of the instsuction unit design team
for thc AlpI1.1 2 1164 microproce.Fsor, responsible fbr
t looi .~- ' la~~ing, logic, and circuit dcsign. Prior to this,
lie \\.as involved in the dcsign of n\lo memory controller/
bus a d ~ p t c r chips for the VAS 4000 Models 300 and
600. Curl-c~ltly lhc is a mcmhcr of rhc bus intcrfacc and
instruction unit teams of the nest-generation Alpha micro-
procc\sor. I\Iichacl joined I3igital in 1986 aker rcceivi~lg a
I3.S.F.E. ti-om the Koclicstcr Institute ofTechnology.

Stephen C. Thierauf
Stcphcn Tliicraufjoi~lcd Digital in 1976. As a consulting
hard\\:arc engineer in 13igital Sc~niconductor, Stcphcn
is c~rrrc~irly responsible ti)r 1 / 0 circuit design, on - ,lnd
off-chip sisnal i~ltcgrity, and I/O lllodcling for Alpha
~nicl-oproccsors ,111d I'CI peripherals. Hc has dcsigned or
Icd thc c iuc~~i t dcsig~l for :I n i~mber of high-perf'orl-nancc
tclccommunication nnd peripheral chips. Prc\fious rcspon-
sibilit~cs include 1 / 0 c i r c ~ ~ i t design and system-level signal
intcgsity c~n,ll!!sis, micropackaging .~nalysis, and micropack-
. lg i11~ c i c ~ i ~ n for nurncrous high-pcrfor~iiance niicroproccs-
sors and peripherals. H c is a riicnlbcr oFIEEE.

vol. 7 No. 1 1995

Internal Organization
of the Alpha 21164,
a 300-MHz 64-bit
Quad-issue CMOS
RlSC Microprocessor
A new CMOS microprocessor, the Alpha 21 164,
reaches 1,200 mipsl600 MFLOPS (peak perfor-
mance). This new implementation of the Alpha
architecture achieves SPECint921SPECfp92
performance of 3451505 (estimated). At these
performance levels, the Alpha 21 164 has
delivered the highest performance of any
commercially available microprocessor in
the world as of January 1995. It contains
a quad-issue, superscalar instruction unit;
two 64-bit integer execution pipelines; two
64-bit floating-point execution pipelines; and
a high-performance memory subsystem with
multiprocessor-coherent write-back caches.

I
John H. Edmondson, Paul I. Rubinfeld,
Peter J. B m l o n , Bradley J. Benschneider,
Debra Bernstein, Ruben W. Castelino,
Elizabeth M. Cooper, Daniel E. Dever,
Dale R. Donchin, Timothy C. Fischer,
Anil K. Jain, Shekhar Mehta, Jeanne E. Meyer,
Ronald P. Preston, Vidya Rajagopalan,
Chandrasekhara Somanathan,
Scott A. Taylor, Gilbert M. Wolrich

Overview of the Alpha 21 164

The Alpha 2 1 164 mict-oprocessor is now a product of
Digital Semiconductor. The chip is the second com-
pletely new microprocessor to implement the Alpha
instruction set architecture. I t was designed in Digital's
0.5-micrometer (p m) con~plementary metal-oxide
semiconductor (CMOS) process. First silicon was pow-
ered on in February 1994; the part has been commer-
cially available since January 1995. At SPECint92/
SPECfp92 ratings of 345/505 (estimated), the Alpha
21 164 achieved new heights of performance.

The performance of this new implementation
results from aggressive circuit design using the latest
0.5-pm CMOS technology and significant architec-
tural improvements over the first Alpha implementa-
tion.] The chip is designed to operate at 300 MHz, an
operating frequency 10 percent faster than the previ-
ous i~nplen~entation (the DECchip 21064 chip)
would have if it were scaled into the new 0.5-pni
CMOS te~l inology.~ Relative to the previous imple-
mentation, the key improvements in machine organi-
zatio~i are a doubling of the superscalar dimension to
four-way superscalar instruction issue; reduction of
many operational latencies, including the latency in
the primary data cache; a memory subsystem that does
not block other operations aker a cache miss; and a
large, on-chip, second-level, cvrite-back cache.

The 21 164 nlicroprocessor iniplements the Alpha
instruction set architecture. It runs existing Alpha pro-
grams without modification. It supports a 43-bit vir-
tual address and a 40-bit physical address. The page
size is 8 kilobytes (KB).

In the follo\ving sections, we describe the five func-
tional units of the Alpha 2 1164 microprocessor and
relate some of the design decisions that improved the
performance of the microprocessor. First, we give an
overvie\v of the chip's internal organization and
pipeline layout.

Internal Organization
Figure 1 shows a block diagram of the chip's five filnc-
tional units: the instruction unit, the integer function
unit, the floating-point unit, the memory unit, and
the cache control and bus interface unit (called the

Digital Tcchnicnl Joul-nal

I I I FLOATING-POINT EXECUTION UNIT I I
I I

I I I I FLOATING- I I I
I

I POIP"
I

I I I I I I I
I I I I I

I , I

I j
I
I
I
I
I I I
I I I LOOlC I mnON
I I I TRAHVAT10N I

CAWE I* ADDRESS LOGIC I
I I WENTRY I
I -1 ~ O C I A T W E I -
I I I
I I I

I I
INSTRUCTION FETCWDECODE UNlT I I I

I I I
I I I
I I I

DUAL RW-PORTED I I I
I I I

DM-READ

I
I W-ENTFW ASSOCIATNE

OW-WRTED 6 DATA MISSES

I I

BBKB. -BYTE BLOCK.
SWAY, SET-ASSOCIAlTVE
SECONDIEVEL CACHE
IXACHE)

I I
I N S T M O N STREAM MISS (PHYSICAL ADDRESSJ I

I I

ADDRESS TO PINS - - - - - - - - L - - - - - - - - - - - - - - . I
: I

' I.MBTOW-MB DIRECT-MAPPED : I -: BACKUP CACHE (BCACHE] : I
, - - - - - - - - - - - - - - - a I

I STORE - 'IX 3a-BYTE
t DATA

I
I I I I
I I I

MEMORY ADDRESS TRANSLATION UNlT CACHE CONTROL AND BlLS lNTERFAQ U(rT

Figure 1
Fivc t 'u l~i~ion; l l Units o n rhc h lph :~ 21 164 I1Iicroproccsso1-

C-box). The three on-chip caches are also sho\vn. The
instruction cache and data cache are primary, direct-
mapped caches. They ,Ire backed by the second-level
cache, which is a set-associative cache that holds
instructions and d m .

Alpha 21 164 Pipeline
The Alpha 2 1 164 pipeline length js 7 stages for integer
execution, 9 stages for floating-point esecution, and
as niany as 1 2 stages for on-chip memory instruction
execution. Additional stages are required for off-chip
lneniorv instruction execution. Figure 2 depicts
the pipeline for integer, floating-point, and memory
operations.

Instruction Unit

The jnstruction unit contains an 8-KB, direct-mapped
instruction cache, an instruction prefetcher and asso-
ciated refill buffer, branch prediction logic, and an
instructio~l translation buffer (ITB).

The instruction nit fetches and decodes instruc-
tions from the instruction cache and dispatches them
to the appropriate fi~nction units after resol\ling all
register and f~~nction-unit conflicts. I t controls pro-
gram flow and all aspccts of esception, trap, and inter-
rupt handling. In addition, it manages pipeline control

for the integer and floating-point units, controlling all
data bypasses and register file writes.

The instruction cache has 32-byte Isloclis. The
cache tags hold virtual address information. Its tags
also support PAL,code through a bit which indicates
that the tag contains a physical address. (PAL stands
for privileged architecture library and refers to physi-
cally addressed code executed in a privileged hard\\fare
mode that in~plements an architecti~rall!l defined inter-
face between the operating system and the hardivare.)

Instruction Pipeline
The first four pipeline stages of thc Alpha 21164
microprocessor are the instruction unit pipeline stages,
stage 0 through stage 3. The logic in the stage before
stage 0 is normally considered to operate in stage 1 of
the pipeline. In that stage, the necv instruction cache
address is calculated either by incrementing the previ-
ous address or by selecting a new address in response to
a predicted or actual flow change operation.

During stage 0, the 8-KB instruction cache is
accessed. It returns a naturally aligned block of four
instructions (16 bytes) \vjth 20 bits of previously
decoded instruction information (5 bits per instruc-
tion). The precalculated decode information is used in
stage 1 for branch and jump processing and in stage 2
for instruction slotting.

READ INSTRUCTION CACHE
BUFFER INSTRUCTIONS. DECODE BRANCHES,
DETERMINE NEXT INSTRUCTION CACHE ADDRESS
7 SLOT: STEER TO EXECUTION PIPELINE

I l l r DETERMINE WHETHER INSTRUCTIONS CAN ISSUE
READ INTEGER REGISTER FlLE

FIRST INTEGER PIPELINE STAGE
SECOND INTEGER PIPELINE STAGE
WRITE INTEGER REGISTER FlLE

READ FLOATING-POINT REGISTER FlLE
FIRST FLOATING-POINT PIPELINE STAGE
LAST FLOATING-POINT OPERATE STAGE,
WRITE FLOATING-POINT REGISTER FlLE

CALCULATE VIRTUAL ADDRESS. BEGIN DATA CACHE READ
r END DATA CACHE READ, TRANSLATE VIRTUAL ADDRESS IN DTB I I

MEMORY ACCESS PIPELINE

USE DATA CACHE DATA,
DATA TO DATA CACHE, BEGIN

SECOND-LEVEL CACHE TAG ACCESS
END SECOND-LEVEL CACHE TAG ACCESS

BEGIN SECOND-LEVEL CACHE DATA ACCESS
END SECOND-LEVEL CACHE DATA ACCESS

BEGIN DATA CACHE FlLL
END DATA CACHE FlLL

USE SECOND-LEVEL CACHE DATA

Figure 2
Alpha 21 164 Pipeline Stagcs

Digital Tcchnic,ll Journal Vol. 7 No. 1 1995 121

In stage 1, the four-instruction block is copied into
one entry of the two-entry instruction buffer (IB).
Also in stage 1, the instruction cache and ITB each
check for hits, and the branch-and-jump prediction
logic determines new fetch addresses.

The main function of stage 2 is steering each
instruction to an appropriate fi~nction unit. This
process, called instruction slotting, resolves all static
execution conflicts. The instruction slotter accepts the
next four-instruction block from the IB into a staging
register at the beginning ofstage 2 and routes the indi-
vidual instructions to the appropriate functional
pipelines as it advances them to stage 3. If the block
contains certain mixes of instruction types, it is able to
slot all four instructions in a single cycle. Otherwise, it
advances as mally instructions as possible in the first
cycle. The remaining instructions in the block are slot-
ted during subsequent cycles. Instructions are slotted
strictly in program order. A new four-instruction block
enters stage 2 when every instruction in the prior
block has been slotted and advanced to stage 3.

The issue stage operates in stage 3. I t performs all
dynamic conflict checks on the set of instructions
advanced from stage 2. The issue stage contains a corn-
plex register scoreboard to check for read-after-write
and write-after-write register conflicts. This stage also
detects hnction-unit-busy co~~flicts, which can occur
because the integer multiplier and floating-poult divider
are not fi~lly pipelined. The register scoreboard logic
detects all integer and floating-point operand bypass
cases and sends the necessary bypass control signals.

The issue stage issues instructions to the appropriate
function units unless it encounters a dynamic conflict.
If a conflict O C C U ~ S , the instruction and logically subse-
quent instructions are stalled (not issued). A stall in
stage 3 also stalls the advance of the next set of slotted
instructions from stage 2. This stall ends when all
instructions in stage 3 have been issued.

To perform conflict checking and to hand1.e excep-
tions (including traps and interrupts), the instruction
unit tracks the instructions issued during stage 4
through stage 8. The instruction unit sends register
file write strobes and addresses to the integer and
floating-point register files for instructions that reach
the retire point (stage 6) without an exception. In the
event of an exception, write strobes are withheld
(gated) to prevent incomplete instructions from
updating the register file. These instructions d o not
complete either because they caused an exception or
because they are in the "shadow" of an esception. The
shadow of an exception includes all instructions that
are in the pipeline when an exception is recognized
but are logically subsequent to the instruction taking
the exception.

The issue stage stalls for a single cycle to permit the
integer multiplier or floating-point divider to return
a result into its associated pipeline. This is necessary

because the register files d o not have extra write ports
dedicated to receiving these results. The issue stage
also stalls for one cycle in similar cases to permit data
fills for load instructions that missed in the data cache
to write to thc register file and data cache. The issue
stage stalls indefinitely when necessary to execute the
trap barrier and memory barrier instructions.

No-op Instructions
New instructions are shifted into the slotting and issue
stages when a given stage becomes completely empty.
Compared to an ideal design in which instructions are
shifted to fill a given stage partially, this design has a
slightly increased average cycles-per-instruction ratio.
We considered the alternative in which instructions are
shifted in as slots become available. This alternative
would have created critical paths that would increase
the CPU cycle time by approsimately 10 percent. An
evaluation of our trace-driven performance model
showed that the alternative did not reduce the cycles-
per-instructio~i ratio enough to compensate for the
reduction in cycle time. As a result, we chose the sim-
pler and faster design.

Compilers and assembly language progralnmers can
insert no-op instructions to minimize and, in most
cases, to eliminate any negative performance effect. To
facilitate this process, the Alpha 21 164 microprocessor
handles three different kinds of no-op instruction.

The first two kinds of no-op instruction are the
integer no-op (NOP) and the floating-point
no-op (FNOP). NOP (BIS R31,R31,R31) can issue
in either integer execution pipeline. FNOP (CPYS
F31,F31,F31) can issue in either floating-point execu-
tion pipeline. The compiler uses these to improve per-
formance when two instructions would be slotted
together even though they cannot issue in the same
cycle. If one instructioi'l in a pair is dependent 011 the
other, issuing them together guarantees the second
will stall in the issue stage and prevent later instruc-
tions from entering that stage. The compiler inserts a
NOP o r FNOP to delay the issue of the second instruc-
tion. With this improvement, the second instruction
can be issued with later instructions.

The third kind of no-op instruction, the universal
no-op (UNOP), is detected in stage 2. UNOP
[LDQ-U R3l ,O(lhn)] is discarded in stage 2 so that
it does not require an issue slot in either pipeline.
UNOP allows compilers to align instructions without
the unnecessary use of pipeline issue slots. For exam-
ple, the compiler can align the target of a branch with-
out necessarily slowing execution of the fall-through
path to that branch.

Instruction Prefetcher and Refill Buffer
The instruction prefetcher operates in parallel with the
instruction cache. When an instruction is not in either
the instruction cache o r refill buffer, the prefetcher

122 Digital Technical Journal xrll. 7 No. 1 1995

generates a stream of 32-byte instruction block fetch
requests to f i l l the 4-entry refill buffer with instruction
data. Each instruction block contains 8 instructions.
Fetched instruction data is stored in the refill buffer
when it is returned. Four-instruction subblocks of
jnstruction data are moved from the refill buffer to the
IB when needed. At that time, the instr~~ction cache is
also updated. If this data movement empties an entry
in the refill buffer, an additional fetch request is initi-
ated. Fetched instruction data is buffered in the refill
buffer rather than the instruction cache to avoid evict-
ing valid cache blocks i~nnecessarily.

The refill buffer is a type of stream buffer. Each
entry stores a virtual address and has a comparator so
the refill buffer can be probed for instruction data on
a cache miss. Instruction fetching begins only if an
access misses in bod1 the instruction cache and the
refill buffer. Fetching stops when any instruction flow
change occurs (i.e., branch, jump, exception, etc.). I t
also stops if at any time the instructions needed in
stage 1 are found in the instruction cache.

The combi~lation of the on-chip, 96-KB second-
level cache and the instruction prefetcher significantly
reduces the benefit of enlarging tlie instruction cache
beyond its current size of 8 KB. The prefetcher gener-
atcs requests at a high rate. Because it is on-chip, the
second-level cache has the bandwidth to handle
requests quickly and with relatively little effect on
data-stream requests. In general, tlie performance
benefit from making the jnstruction cache larger is
very small. This is one of tlie benefits of thc two-level
on-chip cache hierarchy.

Instruction Stream Address Translation and the
Instruction Translation Buffer
The instruction unit contains a 48-entry, fully associa-
tive instruction translation buffer (ITB) that holds
instruction stream address translations and protection
information. Each entry in the ITR can map 1 , 8 , 6 4 ,
or 512 contiguous 8-KB pages.

During stage 1, the ITB entries are checked for
a match with the program counter (PC). Iftlie page is
found, its protection bits are checked against the cur-
rent operating mode. I f the page is not found, an ITB
miss trap occurs. If the page is found in the ITB and
tlie access is an instruction cache miss, the ITB supplies
the physical page address to the prefetcher.

Branch and Jump Prediction
The branch prediction logic examines tlie block of
instructions coming from the instruction cache or
refill buffer during stage 1 . I t checks the block for con-
trol instructions (taken conditio~ial branches, jumps,
subroutine return instructions, and other tlo\ii-change
instructions) and calculates the new fetch address.
Since the new fetch address is available at the end of
stage 1, the read of the instruction cache for the target

instruction occurs in the next cycle. This means the
control instruction is in stage 2 at tlie same time as the
target instruction is in stage 0, resulting in a one-cycle
branch delay that creates an empty cycle in the
pipeline. The IB quashes this empty cycle if any stall
occurs ahead of it in the pipcline.

The branch prediction logic predicts conditional
branch illstructions using a branch history table with
2K entries addressed by lobv-order bits of the PC. Each
is a two-bit counter that increments when branches are
taken and decrements when branches are not taken.
The counter saturates at the top and bottom counts.
A branch is predicted to be taken if the current
counter value is one of the nvo highest counts; other-
wise, it is predicted to be not-taken. This method is
more effective than the method used in the first Alpha
microprocessor (which had only one bit of history per
entry), partly because it reduces the misprediction rate
for typical loop branches by half.

A 12-entry return address stack is used to predict
the target address on s ~ ~ b r o u t i n e returns (i.e., RET,
JSR-COROUTINE) and returns from PALcode. Each
entry stores 11 bits of address, which is sufficient to
address the 8-KB instruction cache. The upper 32 bits
of the target address are predicted by using the value in
the instruction cache tag that is addressed by the
return address stack. The same basic meclianisni is
used to predict the fill1 target address of jump and
jump-type subroutine call instructions since the Alpha
architecture provides a hint field in these instructions
that indicates the target cache address.

The Alpha 21 164 microprocessor recovers from
incorrect branch and PC predictions by taking a mis-
predict trap when the incorrectly predicted branch or
jump-type instruction executes in the execution unit.
For a typical branch misprediction, the execution time
is five cycles longer.

Replay Traps
In a replay trap, the instruction unit prevents coniple-
tion of a given instruction by trapping the instruction
and then restarting execution immediately with that
instruction. The trap mechanism prevents completion
of subseq~~en t instructions. This mechanism replays
the instruction from the beginning of the Alpha
21 164 pipeline. It is used when a stall after stage 3
would otherwise be required.

There are three main reasons stalls are not iniple-
mented for stages later than stage 3. The ability to stall
adds complexity to clocking circuits, particularly in
execution unit data paths. In addition, it adds control
complexity. An example of this is a stalled two-input
function unit in which one input operand is invalid. To
end tlie stall, certain latches must be enabled while
others are not, because the valid data must be held in
one pipeline latch while the invalid data is replaced
in another. Finally, adding stall logic would create

Digital Technical Journal Vol. 7 No. 1 1995 123

additional critical paths. The elimination of stalls
beyond stage 3 and the use of the replay trap mecha-
nism avoid these co~i~plesities.

The replay trap mechanism is used for a number of
unusual memory instruction conflicts and memory
unit resource overruns. For esanlple, the load-miss-
and-use replay trap is used \vlien a load misses in the
data cache and a dependent instruction issues exactly
nvo cycles atier the load. The issue decision for such
a dependent instruction is made prior to the actual
determination of cache hit, so a hit is predicted. If
this prediction is wrong, the dependent instruction is
restarted from the front of the pipeline and will arrive
at the issue stage one cycle before data arrives from the
second-level cache. Because the instruction arrives
before the data, tliere is no performance loss due to
the trap mechanism.

lnteger Function Unit

The integer function unit executes integer operate
instructions, calculates virtual addresses for all load
and store instructions, and executes all control instruc-
tions escept floating-point conditional branches. It
includes tlie register file and several integer fi~nctional
subunits, most of which are contained in two parallel
four-stage pipelines. Both pipelines contain an adder
and a Boolean logic unit. The first pipeline contains
the shifter, and the second pipeline contains the con-
trol instruction execution unit. The first pipeline also
attaches to the partially pipelined integer multiplier,
which operates in the background. Except for the issue
cycle and a cycle to return tlie result, the first pipeline
and integer multiplier operate in parallel.

lnteger Register File and Bypasses
The integer register tile is read during stage 3 and writ-
ten in stage 6 . Bypass paths are implemented to allon'
all subunits other than the nlultiplier to receive and use
the result ofa previoirs instruction tiom stage 4 ,5 , or 6
of either pipcline. Due to implementation constraints,
the multiplier can only receive bypasscd data from stagc
6 of the pipeline. This increases multiply latency by as
many as nvo cycles when multiply input operands are
produced by preceding integer operate instructions.

The integer register file contains 4 0 registers: the 32
integer registers specitied by the architecture (RO
t h r o ~ ~ g h R31) with R31 always reading as 0; and 8
shadow registers available to PALcode as scratch space.
The register file is accessed by 4 read ports (2 for each
pipeline) and 2 write ports (1 for each pipeline).

Instruction Latencies
Most i~ is t~-uct~ons cxeci~ted in the integer fi~nction
unit have a I'ltencv of 1 cycle. Thcsc ~nstructions ese-
cute in stage 4 . Thc conditional move instruction has
a latency o f 2 cvcles. It executes in stage 4 and stage 5.

Multiply latency depends o n the data size and the
operation being performed. Th i r ry -web i t multiplies
have an 8-cycle latency, and the multiplier can start
a second multipl!l aficr 4 cycles, provided that the
second multiply lias no data depcndcncy 011 tlic first.
Sixtyfour-bit signed multiplies have a 12-cycle
latency; the 64-bit multiply unsigned high instruction
has a 14-cycle latency; and for both of these 64-bit
multiplies, the multiplier can start a nondependent
multiply after 8 cycles.

Because of a special bypass, compare and Boolea11
logic irrstructions can lia\~e a latency of 0 cycles \vhen
a conditional move o r a branch test input operand is
the result of an immediately preceding compare or
Boolean logic instruction. The integer unit uses the
bypass to a l l o ~ f dual i s s ~ ~ e of tlie producer and con-
sillner in this case.

To realize the fill1 beneft from the increased issue
width relative to the first Alpha microprocessor, the
DECchip 21064, it is critical to reduce operational
latencies. As the issue width increases, the cost in
instruction execution opportunities for a given latency
increases. In the integer unit, the follo\ving latencies
are reduced relative to the 21064: the shifier latency
(from 2 cycles to l) , the byte and word operation
latencies (from 2 cycles to l) , and the multiplier
latency (from 19 to 2 3 cycles in the 21064 to 8 to 1 6
cycles in the Alpha 21164). Also the special bypass
for conditional jnstructions reduces that latency from
1 cycle in the 21 064 to O cycles in tlie Alpha 2 1 164.
For the most part, tliesc late~icy red~~ct ions are
achieved by circuit design improvements.

lnteger Load and Store Instructions
Integer load instructions issue in either pipeline and as
many as nvo can issue per cycle. Integcr storc instruc-
tions issue in the first pipeline only. For i~lteger load
instructions that hit in the data cachc, tlie data is mul-
tiplesed into the output of stage 5 of the pipcline in
which the load issued; the data is then written to the
register file through the write port associated \\ritli that
pipeline. For integer load instructions that miss in the
data cache, the data is returued later by thc rncn~ol-!~
subsystem. The data is then multiplcxcd into the out-
put of stage 5 as before, and the i~istruction unit
inserts a properly timed NOP cycle by stalling the issue
stage for one cycle to make the pipeline's register write
port available.

Floating-point Unit

The floating-point unit consists of the floating-point
register file and two pipelined f~~nct ional subunits: an
add pipeline that executes all floating-point instruc-
tions escept for multiply, and a multiply pipeline that
esecutes floating-point m~~ltiplies. All IEEE and VAX

124 Digital Technical Journal "-)I. 7 No. 1 1995

rounding modcs are done in hard\vare, including
IEEE round to plus and minus infinity.

Pipeline Structure and Operation Latencies
Each tloating-point subunit on the Alpha 21164 CPU
chip contains tlirce functional stages implemented in
four pipeline stages, stage 5 through stage 8. The
floating-point register file is read in stage 4 and written
at the end of stage 8 . Figurc 3 depicts the physical lay-
out of the floating-point unit. Figure 4 sho~vs the
pipelining of instructions executed in the tloating-
point unit.

As in the integer unit, latency is reduced in the
tloating-point unit relative to the previous Alpha
implementation. The latency of all floating-point
operate instructions, except floating-point divide, is 4
cycles. In thc DECchip 21064, most floating-point
operations take 6 cycles. The tloating-point divide
late~lcy varies depending on the input data values. For
a single-precision divide, the latency is reduced from
34 cycles in the 21064 to an average of 19 in the
21 164; and for a double-precision divide, it is reduced
from 6 3 cycles to an average of 3 1. As discussed previ-
ously, reducing latency is important as issue width
increases. As in the integer unit, the reduced latency is
achieved mostly by circuit design i~nprovenients.

Register File and Bypasses
The tloating-point register file Iias nine ports: nvo read
ports and one write port per fi~nctional unit for source
and destination operand accesses, one read port for
floating-point stores, and hvo write ports to support
nvo floating-po~nt loads per c~lcle. Rypass paths forward
data from each of the four write buses in the floating-
point register file to each of the five read buses.

MULTIPLY STAGE 3

MULTIPLY STAGE 2

1 MULTIPLY STAGE 1 1 I

I I I

64-BIT REGISTER FILE I

D-CACHE
LOADISTORE
BUSES

I

Figure 3
Physical Layout o f thc Floating-point Unit

t

Floating-point Load and Store Instructions
In Alpha microprocessors, floating-point numbers are
stored in one format in memory and in another format
in the tloating-point registers. Floating-point load and
store instructions convert from one format to the
other as they move the data. In the Alpha 21 164
pipeline, floating-point input operands are read from
the floating-point register file one cycle later than inte-
ger input operands are read from the integer register
file. This slcew provides an extra cycle for tloating-
point load data format conversion.

Floating-point load and store instructions first issue
to the integer l ~ n i t for address calculatjon. The issue
restrictions are exactly the same 3s for integer load or
store instructions. For floating-point load instructions,
the data is written to the register file using one of the
nvo write ports reserved for that purpose. When a con-
flict for these write ports occurs bcnveen a \\(rite due to
a new load that hit in the data cache and a write due
to a previous load that missed, the conflict is resolved
by forcing tlie new load to miss in the data cache.

LOADISTORE FORMAT I . .

Add Pipeline
The key components o f the add pipeline design are the
fast fraction adder, operand data-path alignment, nor-
malization shift detection, stickp-bit calculation, and
round-adder design. The fast-adder design operates in
a single phase (one phase equals one-half of a CPU
cycle). It is used in the f i~nct io~i stage 1 and stage 3
fraction adders. To reduce formatting and rounding
complesity, the least significant bits in fractions are
aligned to one of nslo different bit positions: one for
single-precision data (IEEE S and VAX F) and 4-byte
integers, and one for double-precision data (IEEE T,
and VAX G and D) and 8-byte integers.

For effective subtracts with exponent differences of
-1, 0, or 1, a new normalization shift detect algo-
rithm uses three leading bit chains to esarnine stage 1
input operands to determine tlie required normaliza-
tion shifi. The norn~alization shift amount is chosen
by comparing the least significant bit of one exponent
to the least significant bit of the other.

The sticky bit for adds and subtracts is determined
by comparing the esponerit difference with an encoded
value for the number of trailing zeros in tlie fraction
being aligned.

The stage 3 round adder operates in one cycle and
consists of a fi-action adder and an output selector. The
fraction adder takes one phase and adds two operands
plus rounding bits based on the round mode. The
selector assembles the fraction result based on global
carry-and-propagate information from the adder. It
also examines the adder r e s ~ ~ l t alignment and performs
a final normalization shifi of as much as one bit left or
right. The exponent result is also selected in stage 3
before the complete result is sent to the register file
~vrite bus and bypass logic.

Digital Tcchnicil Journal

PIPELINE
STAGES

! I I REGISTER FLOATING- 1

POINT I FILE READ ; BYPASS MULTIPLY ARRAY
MULTIPLY PIPE RECODE I I
OPERATE I-

FLOATING-
POINT ADD
PlPE OPERATE

REGISTER
FILE READ

FLOATING- !
READ

(DATA CACHE

Figure 4
Floating-point Unit Pipeline

DRIVE 1 I i REGISTER

~ , ! ~ ~ ~ , " G G - /- ,!."o",~~~sION -1 FILE WRITE

FLOATING-
POINT REG'STER BYPASS
STORE / FILE READ

Multiply Pipeline
Multiplication is done using radix-eight Booth encod-
ing, which requires 18 partial products to be summed.3
The first stage of the multiply pipeline is used to create
three times the multiplicand and to determine the
Booth encodings. The multiplier array is composed
of 14 rows ofcarry-save adders that perform the addi-
tion of nlultiplicands. The carry and sum outputs of
the array are reduced by combining carry-save adders
and then are passed through a half adder to facilitate
rounding.

Thc sticky bit for nlultiplication is determined by
summing the number of trailing zeros in both
operands. The carry output from the less significant
product bits is used by the round selector of the multi-
ply pipeline to determine the correct final product.

HIT) POINT UNIT I

FORMAT ' DRIVE !
CONVERSION DATA TO DATA CACHE WRITE

DATA I ;
GENERATE cAcHE

Divider
Floating-point divide instructions issue into the add
pipeline. The operands are immediately passed to the
divider. Instruction issue to the add pipelinc continues
while a divide is in progress until the result is ready. At
that point, the issue stage in the instruction unit stalls
one cycle to allow the quotient to be sent to the round
adder and then be written into the register file.

The divider uses a normalizing nonrestoring algo-
rithm that determines 1 to 4 bits ofquotient per cycle,
averaging 2.4 quotient bits per cycle.4 Implementation
of this algorithm requires that an esact partial remain-
der be produced every cycle. The implementation uses
a fast adder that produces its result in half of a cycle.

PARITY

Memory Unit

The memory unit contains a fully associative, 64-entry,
data translation buffer (DTB); an 8-I(B, direct-
mapped, primary data cache; a structure called the miss
address file (MAF); and a write buffer. I t processes load,
store, and memory barrier insui~ctions.

126 Digital Technical Journal Vol. 7 No. 1 1993

The write-through data cache has 32-byte blocks
and 2 read ports. Its tags hold physical address data.

The memory unit receives as many as 2 virtual
addresses from the integer unit each cycle. Because it
has 2 read ports, the DTB can translate both virtual
addresses to physical addresses and detect memory
management faults. (Lilte the ITB, each entry in the
DTB can map 1 ,8 ,64, or 512 cont iguo~~s 8-KB pages.)

Load instructions access the data cache and return
data to the register file if there is a hit. The latency for
loads that hit in the data cache is CLVO cycles. Again,
latency is reduced relative to the DECchip 21064
microprocessor where the latency is three cycles for
loads that hit. The reduced latency was achieved by
circuit design improvements. Reducing this latency is
particularly important as issue width increases because
of the frequent use of loads in programs.

For loads that miss, the physical addresses are sent
to the MAE, wherc they wait to be sent to the C-box.
Store instructions write the data cache if there is a hit;
they are always placed in the write buffer, where they
wait t o be sent to the C-box.

Memory Unit Pipeline Structure
Virtual address calculation begins in the integcr unit
early in stage 4. The data cache acccss begins later in
stage 4 and completes early in stage 5. Address trans-
lation is done in parallel with data cache access. Data
cachc hit is determined late in stagc 5. If the access
hits, the data is written to the register file (for a load
access) or the cache (for a store access) in stage 6. In
the case of a data cache miss, the mernory access
advances to pipeline stages 111 the C-box.

Miss Address File
The M M consists of two sections that store data. The
first section holds load misses (called DREADs) in six
entries, and the other section holds instruction fetch
addresses (called IREFs) in four entries. For DREADS,

the blAF stores the physical address, destination regis-
ter, and instruction type (integer/tloating-point,
4-bpte/8-byte/IEEE-S-T)rpe/VAX-G-Type, etc.). For
IREFs, tlie bIAF stores only the physical address.

Buffered accesses in the MAF and write buffer are
sent to the C-box at a peak rate of one evcry other
cycle. II)READs liave highest priority, writes have the
nest highest priority, and IREFs have lowest priority.

When the C-box returns data for a DREAD, the
memory unit pro\~ides the destination register and
instruction type information from tlie MAF. This
information is then used t o convert tlie data to its
in-register format, to determine which registers to
write, and to i~pdate the register scoreboard in the
instruction unit. The DREAD entry is removed from
the MAF when the second half of the data fill arrives.

The C-box returns IREF data directly to the
instruction unit's cache and refill buffer. The IREF
entry is removed from the MAF as soon as the com-
mand has been accepted by the C-box.

Merging Capability One ltep performance feature of
the MAF is that it merges multiple load misses that
access the same 32-byte block ofmemory into a single
C-box DIEAD request. One load instruction requests
at most 8 bytes of a 32-byte memory block. As niany
as 4 load misses can be merged into 1 DREAD request.
This irnpro\les latency and reduces unnecessary band-
width cons~~mption in the second-level cache.

To implement merging, the MAE merge logic
detects any load miss address to a block that has already
been qireired in the DREAD section of the bLM. The
logic then adds the new destination register to the
existing request. iMerging is limited to 1 load miss per
naturally aligned 8-byte portion of the 32-byte block.
Also, merging is permitted only for load misses with
identical instruction types. The memory unit allocates
a new DREAD entry in the M4F only for load misses
that d o not merge. The merge logic supports the peak
load instruction issue rate. It can merge as niany as
2 load misses per cycle into the DREA.D section and
can merge loads that issue together.

The MAF merge capability is an integral part of the
two-level cache hierarchy design. It can reduce the rate
of niemory read operations from nvo loads per cycle in
the integer pipelines to one read every other cycle
in the second-level cache pipeline. By doing so, the
MAF makes the full bandwidth of the second-level
cache available to the program.

The MAF can hold as niany as 6 DREADS that can
represent as many as 21 loads. (The theoretical maxi-
mum is 24 loads; this limit is a by-product of the over-
flow prevention algorithm.) Requests are sent to the
C-box in the order in which they were allocated in
the bMF. Accesses in the second-level cache can
hit underneath (behind) second-level cache misses,

allowing data fills to be returned in a different order
tlian they were sent to the C-box.

Two-level Data Cache Many workloads benefit more
from a reduced latency in the data cache than from
a large data cache. We considered a single-level design
for a large data cache. For circuit reasons, physically
large caches are slower than small caches. To achieve a
reduced latency, we chose a fast primary cache backed
by a large second-level cache. As a result, tlie effective
latency of reads is better in the Alpha 2 1164 CPU chip
than it would have been in a single-level design.

The nvo-level data cache has other benefits. The
two-level design makes it reasonable to implement set
associativity in the second-level cache. Set associativity
enables power reduction by malting data set access
conditional on a hit in that set. The two-level design
also allo\vs the second-level cache to hold instructions,
which makes a larger instruction cache unnecessary.

In addition, the two-level design was simpler.
Because performance studies showed that the Alpha
21164 CPU chip should have write-back caching on-
chip, the data cache in the single-level design \vould
have been write-back. Also, because of its larger size, it
would have been virtually addressed, which would
have required a solution to the synonym problem.
Finally, it would liave been difficult to make the single
large cache set-associative without adding latency. The
nvo-level design eliminated all these issues.

Write Buffer
The write buffer contains 6 entries; each entry holds as
many as 32 bytes of data and one physical address.
I t accumulates store instructions written to the same
32-byte bloclc by merging them into 1 entry. I t can
merge 1 store instruction per cycle, matching the peak
store instruction issue rate. The write buffer places
110 restrictions on merging until a write is sent to the
second-level cache. At that time, the write buffer stops
nierging to that entry.

Once an entry from the write buffer has been sent
to the C-box, several steps may be required to coni-
plete the write, depending on the presence of the
memory block in the second-level cache and its cache
coherence state. The C-box signals the memory unit
upon completion of a store operation, and then the
memory unit removes the corresponding entry from
the write buffer.

Access Ordering
The memory unit guarantees that all niemory accesses
to the same address are processed in the order given by
the instruction stream. This is a design problem in any
nonbloclung memory subsystem design. Load misses
that conflict with a store, and stores that conflict with
a load miss, set conflict bits that prevent the issue of

the DREAD or write until all conflicts have been
cleared. If a store matches a valid entry ill the \\/rite
buffer and cannot merge with that entry, it is allocated
a nenr entry that is prevented from being sent to the
C-box ~ ~ n t i l the earlier write is con~pleted.

Memory Barrier Instructions
The memory unit implements the memory barricr
(MB) instruction by retiring all previous load misses
and \\!rites before sending the MB to the bus interface
unit. The instruction unit stalls new memory instruc-
tions until the MB has bee11 completed.

The memory unit implements the write memory
barrier (WMB) instruction as follows: When the WMB
is executed, the memory unit marks the last write that
is pending at that time. Writes added after that time
are added behind the WMB mark. They are not sent
to the C-box until all writes ahead of the WMB mark
are completed. Unlike the MB instruction, executiori
of the WlMB instruction does not require any stalls in
the instruction unit.

Replay Traps in the Memory Unit
The lnemory unit forces a replay trap if a new load or
write would cause the buffer to overflo\v. I t also forces
a replay trllp when a store that hits in the data cache
is follo\ved by a load to exactly the same location in

the next cycle. In this case, because the store \\/rites the
data cache in stage 6, the data from the store would
not yet be available to the load.

Cache Control and Bus Interface Unit

The cache control and bus interface unit or C-box
contains the second-level cache and the follo\\iing sub-
units: the second-level cache arbiter unit (SAU), the
bus interface unit sequencer (BSQ), the victim address
file (VAF), the bus interface unit address f le (KAF),
the write buffer unit (\mu), and the system probc
arbiter (SPA). Figure 5 shows the functional ~uli ts of
the C-box.

The C-box provides the interface to the system for
access to lnemory and I/O. It provides full support for
multiprocessor systems using a cache coherence pro-
tocol (described later in this section). I t manages the
second-level cache and an optional off-chip third-level
cache, both of \vhich are multiprocessor-coherent
write-back caches.

The SAU arbitrates the requests for access to the
second-level cache. The BSQ requests to write data fill
(due to previous second-level cache misses). The VAF
requcsts read accesses of deallocated second- level
cache blocks that ha\le been modified (called victims).
The SPA requests access for external cache coherence

Figure 5
Functional Units o f the C-box

M-BOW8-KB DUAL-PORTED DATA CACHE

128 Digital Tcchnicnl Journ-1

A
/<

DATA ADDR

128

' Q. 128

6-ENTRY

f t

SYSTEM
INDEX

WRITE
BUFFER

ECC

<39:4>

VlCTlM 0 DATA

<25:4>

VlCTlM 1 DATA
, /

T

f

MlSS 0

MlSS 1

VICTIM 0

I- VICTIM DATA t

v 1

CACHE SYSTEM INTERFACE

*

w

v

CACHE

COMMAND AND
ADDRESS FROM
THEEXTERNAL

4 -
,#128

SECOND-
LEVEL

VICTIM 1

UNIFIED,
3-WAY,
96-KB

+

-

trarlsactions. The memory unit requests access for
DREAD, IREF, and write requests. Highest priority is
given to the RSQ, followed by the VAF, and then tlie
SPA; lo\vest priority is given to the melnory n nit.

The BSQ controls data movement to and from the
Alpha 2 1164 ~nicroprocessor. It accesses the option'll
off-chip third-lc\,cl caclie. It com~ii~~nicates with tlie
systern to reqllest data that is not caclled, to write back
deallocated cache blocks that have been modified,
to carry out coherence transactions, and to perfor111
I/O accesses.

The 17AF reads and holds \,ictims fro111 the sccond-
level cache and data for meliiory broadcast writes, 1 / 0
writes, and esternal cache coherence commands tliat
require data froni the second-level cache. I t has nvo
entries for victims, each ofwhich holds tlie address and
data for a \,ictini. These victims are written back to
third-le\d cache or memor!l \vIicu the BSQ is idle
or sooner if necessary to maintain cache coherence.
These entries also hold data for memory broadcast
writes and 1 / 0 writes. A separate buffer holds data for
external caclic coherence comniands tliat require data
fro111 the second-level cache.

Tlie WBU handles second-level caclie \\!rites and
cooperates \\tit11 other C-box S L I ~ ~ L I I ~ ~ ~ S to maintain
cache coherence.

The SPA receives cache coherence requests from the
external system cn\/ironnient. To f~~lfill these colier-
cnce requests, it accesses tlie second-lc\lcl caclie and, if
the off-chip cache is present, cooperates \\lit11 the 13SQ
to access tlie off-chip caclie. It then sends an appropri-
ate response to the esterrial systelii.

Second-level Cache and Optional Off-chip Cache
The C-box manages the on-chip second-level cache
and tlie optional off-chip cache. Both are write-back,
and both are mixed instruction and data caches. If it
is present, thc off-chip cache is a third-level caclie. The
second-level cache is 9 6 KB in size and is 3-wa!1
set-associative. The off-chip cachc is direct-mapped
and can be configured to sizes ranging from 1 nicga-
byte (MR) to 6 4 MB. The off-chip caclie is not set-
associative because it is not feasible given pin-count
constraints. Tlie tags in both caches hold physical
address data and coherence statc bits for each block.

The block size for the off-chip caclie is c o n f i g ~ ~ r ~ ~ b l e
to 32 bytes or 6 4 bytes. The second-level cdchc has
1 tag per 64-byte l,>locl<. It can be configul-ed to oper-
cite \vitli 64-byte blocks or with 32-byte subbloclts.

The second-level caclie tags contain bits to record
u~hich 16-byte data \vords \\~ithin the block o r sub-
block have been modifi ed since tlie block \\.as brought
on-chip. When a block o r subblock is copied back to
the off-chip caclie, only modified 16-byte data words
are transferred. This reduces tlie tinie required to write
back second-level cache victims in many cases.

Transaction Handling
A maximum of 2 second-level cache misses can be
queued in the l3AF for external access in the off-chip
caclie and memory. The RAF merges read requests to
32-byte blocks within the same 64-byte block.

For simplicity, only one operation to a given
second-level cuche address is allo\\,cci in the BAF at
a time, except \\/lien the two re~111ests merge. A new
request \vitIi 3 scco~id-level cache address that m,~tcIics
an existing request in the BAF is aborted. Siniilarly,
requests tllat require VAF entries \\/lien the VAF is fcrll
are aborted, and new requests are aborted \\,lien tlie
BAF is ti~ll. If a request is aborted, thc memory unit
retries tlie request repeatedly i11lti1 it is accepted.
Accesses to second-level blocks that are partially valid
because thcy are being fillcd arc aborted repeatedly
until the data fi l l completes.

Maintaining Cache Coherence
The Alpha 2 1 164 CPU chip ~ ~ s e s a cache coherence
protocol iniple~nented in hard\vare to provide full sup-
port for ~nultiprocessor systelils. Tlie instruction cache
is virtual and is not kept coherent by the hardware.
(The Alpha architecture requires sofnvare to manage
instruction caclie coherence.) Thc data cachc is a s~ rb -
set of the second-le\.el cache. If tlie off-chip caclic is
present, the11 the second-level cache is a subset of tlie
off-chip cachc.

Three statc bits record the coherence state of each
block or subblocl< in the second-level cachc and tlie
off-chip cache: the valid bit, the shared bit, ~ n d
the dirty bit. Tlie valid bit indicates tliat tlie block con-
tains valid data. The shared bit indicates that the block
may be cached in more than one CPU's cache. Tlie
dirty bit indicates that tlie memory copy of the block
is not correct and the cache block must eventually
be written back. These state bits allo\v the follow-
ing states to be encoded for a given cache block or
subblock: invaljd, exclusive-u~imodified, esclusi\,e-
~iiodified, shared-i~~-~modified, and shared-modified.

The system bus interface is the coherence reference
point in the system. Any reqilcst to modify tlie state of
a block is arbitrated at this bus before the block is
changed. For esample, \\then the Alpha 21 164 (:PU
chip must \\'rite to a block in the second-level cache
that is in the excl~~si\!e-un~iiodificd state, the RSQ
sends a request to the systeln to changc the state of tlie
block to the exclusi\~e-~iiodified statc. The C-box waits
for the syste~ii to aclcnowledgc the request, and the11
retries tlie write. If another processor reads the same
block before the request is ackno\\rledged, the block
is instead changed to the slial-ed-un~nodified state. In
that situation, the Alpha 21 164 CPU chip subse-
qi~entlp se~lds a fi~ll-block memory write on the system
bus that causes all other processors to iri\,alidate their
copy of thc block and leaves thc block in the exclusive-
unmodified state in this processor.

Digital Tcclinicll Journal Vol. 7 No. I 1995 129

Second-level Cache Transaction Flows
DREADS, IREFs, and writes from tlie memory n nit
access the second-level cachc after winning arbitration
in the memory unit and the SAU. The second-level
cache is fully pipelined. Figure 6 shows an example of
a read that is follo\ved by a \\!rite as both hit in the cachc.

For tlie read ~cccss shown in Figure 6 , tlie pipeline
stages are the follo\\ling. TIie SAU arbitrates in stage 5;
tlie second-level cache tag store is read in stngc 6; the
hit is determined in stagc 7; and the reqi~cstcd data is
read from the cache data store in stage 8 and sent on
the 128-bit-wide read data bus (R-bus) in stage 9. Tlic
second halfoftlie 32-byte block is read and sent in the
next pipeline cycle. The R-bus data is received by tlic
integer unit, the floating-point unit, or the instruction
unit, depending on the nccess type.

For data returned to the integer unit or the tlonting-
point unit, the data cachc till begins in stage 10 and
completes in stage 11. The register file \\,rite occurs in
stage 11. An instruction that is dependent o n the l o ~ d
can begin execution in the nest cycle. In this case, tlic
load latency is ciglit cycles.

For the write access shown in F i g ~ ~ r e 6, tlic pipelinc
stages are the follou~ing. The SAU arbitrates in stagc 5;
tlie tag store is read in stage 6; the hit is determined,
and data is sent on tlie 128-bit \\,rite data bus (W-bus)
in stage 7; and the cilche is written in stage 8. As
before, the second half of thc 32-b!~e \\/rite occurs in
tlie next pipeline cycle.

A second-level cache miss that results in a \lictim
provides an interesting case for discussion. Here, we
must determine which set to f i l l and then remove the
iictim before data can be returned from the off-chip
cache. Figure 7 sho\vs an esilniple of a DlEA1) that
misses in the second-level cache, creating a \,ictim, and
the11 hits in the off-chip cache. The esarnple sho\\rn is
the fastest possible. In this case, the BSQ is idle so the
BAF is bypassed and the address is sent irn~iicdiately to
the off-chip cache. The access time for thc off-chip
cache is four CPU cycles.

As sho\\m in Figure 7, the DREAD \$(ins arbitration
in stage 5, and the miss is detected in s t ~ g c 7. Tlic set
piclted by the random replacement algorithm contains
moditied data (a \lictim). Since the block size in the
second-level cache is 6 4 bytes, nvo 32-byte victim read
sequences are needed to copy the entire victim into
the on-chip \fictim buffcr. The nvo victim reads arbi-
trate at high priority to ensure that the victim is copied

before the data tills from tlic off-chip cache over\\,rite
the locations.

Thc Alpha 21 164 CPU chip begins sending the off-
chip cache address in stage 8 (bccnusc of'l<At; bypass,
as described abo\lc). The tag anti tiara are clocked into
the Alpha 2 1 164 chip at the beginning of stage 12.
The RSQ arbitrates speculati\.ely for a single cycle on
the second-level cachc pipeline to reserve a cyclc on
the R-bus. That c\,clc is ~ ~ s e d to send the data fiorn tlie
off-chip cache to the execution units and data cache.

If the acccss hits in tlie off-chip c.iclic, the 13SQ arbi-
trates to f i l l the second-level cachc. Tlic f i l l transaction
takes a single cyclc in tlie pipel.inc to u~ritc the tag store
in stagc 6 and the data store in stagc 8.

The second victim read scqucncc occurs atier the
first data till. Because of this, thc first \.ictim read
sequence always reads the dr~ta location ovcr\\rritten by
the first data fil l .

PALcode
The Alpha architecture defines the privileged archi-
tecture library code (PALcodc) as a sct of software
routines that interface an operating systcm to a spc-
cific Alpha implen~entation. PAL.codc presents the
operating system *ith an arcIiitcct~~r.iII\, dcfi ncd inte1.-
face that is the same in all implcmcntatio~is e\.en
though tlie undcrl!,ing l i a rd \ \~~rc dcsigns can be \.cry
different. PALcode currently exists to interface the
Alpha 2 1 164 microprocessor to tlie Windows NT,
Digital UNIX (formerly DEC OSF/l), and OpenVMS
operating systems.

When the processor is esecuti~lg PAL,code, it is in
PAL mode. I'AL mode is entcreci upon esecution of
the CALLPAL instruction and upon rlic occurrence of
interrupts, csceptions, and certain kinds of traps. The
PALcocie entry point is a liard\va~-c dispatch to a loca-
tion that is cietermined by the entering cvc~lt . In PAL
mode, instructions are fetched from physical memory
w i t h o ~ ~ t addrcss translation. Also, five PAL support
instructions arc enabled that give ncccs to all hard-
ware rcgistcrs and special load/stol.c ncccss to \virtual
and physical memory. PAL mode is csitcd by cxecut-
ing a PAL instr~~ction called H\V-W,I.

T o mcct pcrti)rmancc goals, n number of PAL. fea-
tures arc included in the Alpha 2 1 164 microprocessor.
For example, the intcgcr register file contains eight
shadow rcgistcrs that map over RH tliroi~gli R14
and R25 in I'Al, node. Al tho~~g l i this o\~crmappiiig

Figure 6
Second-lc\~el C'ichc Itc,id/Wrirc Flo\\,

PIPELINE

Vol. 7 No. 1 1995

S9

R-BUS RAM

RAM

STAGE

READ

WRITE

S10

R-BUS

5 7

HIT

HITMI-BUS

S8

RAM

RAM W-BUS

S5

ARB

ARB

S6

TAG

TAG

1 86 / 16 1 I 7 I 0. (S9 I Sf0 I L11 / I 1 2 I S I I I Sl4 I
DREAD ARB TAG MISS (RAM 01 (R-611s 01 maus 1)

{RAM 11

OFFCHIP ACCESS
WITH BYPASS)

v l c n M 1

VICTIM 2

FILL DATA CACHE

FILL SECOND-CNEL CACHE

S5
ARB

S5
ARB

S6

56
TAG

S8
RAM 0

S9
R-BUS

S5
ARB

SO
R-BUS 0
RAM 1

65
ARB

S6
TAG-

WRITE

SIO
R-BUS 1

S6
TAG

S7
W-BUS

S8
DATA-
WRITE

Figure 7
Sccond-lcvcl Cachc Miss SC~LICJICC \ \ ~ t l i t'i~stcst Fill I ' o s s ~ b l c

is normally enabled in PAL mode, it can be disabled
t h r o ~ ~ g l l a h;lrd\\,are control register. This speeds
PALcodc entry and exit, because PALcode is free to
LISC these registers without saving and restoring state.
The sIiadoc\~ register tilapping is designed to avoid
overmapping any register used to pass ciata fro111 the
operating system to PALcode or vice versa.

Several of the operating systems that rill1 011 Alpha
systems access memory management page tables
through virtual ~ueniory."Iie Alpha 21 164 micro-
processor contains hard\\,arc to speed processing of
the PALcode for translation buffer nliss. These
PALcode routines access \rirtually mapped pagc tables.
The 11ardcvat-e calculates the virtual address of the
pagc table entry (I'TE) based on the miss addrcss and
the addrcss of the page table base. This eliminates the
instruction sequence required for this calculation.
I'ALcocic thcn executes a loxl instruction to tl.lis vir-
tilnl addrcss to fetch the recluircd PTE. This load is
puformcd using a PAL instruction that signals a vir-
tual PTE fctch. Ifthis load misses in the DT13, a special
PALcodc trap routine is dispatched to f i l l the DTB
using a multilevel, physical-address access method.
Aftcr that, the original \.irtual PTE rcaci is rest'lrted
and \ \ , i l l succeed.

Testability Features

The Alpha 2 1 164 microprocessor incorporates sc\leral
rest;~bility features. Some enhance chip test, and some
features provide ~lsefi~l nodule test

Repairable On-chip RAMS
The Alpha 21164 microprocessor requires large
rundo~n-access niemory (RAM) arrays For its on-chip
caches. To impro*e yield, the instruction ancl clnn cache
arrays Ii;l*e spare rows and the second-lc\,cl cachc has
spnrc ro\\,s und spare colu~nns.

A working instruction cachc is necessary for most
chip test programs. C;onscquently, it is automatically
tested by built-in self-test (BiSt) and a~~tomatically
repaired by built-in self-repair (BiSr). During wafer
probe, the test result is serially shiticd off-chip for pcr-
rnanent rcpair by laser. Upon chip reset, BiSt of the
instruction cachc occurs automatically, but BiSr is not
necessary if the chip has been repaired.

The data cache and second-level caches are tested by
programs loaded into the instruction cache during
wafer probe. These programs condense the test results
and ~vrite them off-chip to be capti~red by the tester
for subsequent laser repair.

Chip Logic Testability
To enhance core logic testability, the Alpha 21 164
~nicroprocessor contains dual-mode registers that can
operate as scan registers or as linear feedback shiti rcg-
isters (LFSR5). 'l'he scan mode is ~ ~ s c d for initialization,
for scanning out s ignat~~rcs , and for debugging. l'lle
LFSR mode is used for manufacturing test.

Module Manufacturing
The Alpha 21 164 microprocessor implements the
lEEE 1149.1 standard for supporting testing during
module manufacturing. The supported instructions
are ESTEST, SAMPLE/PIW,L,OAD, BYI'ASS, CLAMP,
and HIGHZ.

Summary

The internal organization of the Alpha 21 164, a nc\\i,
high-perfor~iiance Alpha microprocessor, has been pre-
sented. ~Meclianisrns designed to enhance the CPU's
performance combined \\.ith thc CPU's clock speed
of 300 MHz produce an extremely high-performance
microprocessor. First silicon o f the Alpha 2 1 164
CPU chip was produced in Fcbruar!, 1994, ;ind thrcc

)I. 7 No. 1 199.5 1 2 1

d~ffe ren t operating s\lstems \\!ere successfully booted
on the first-p,lss sr l~con. T h e part bc iame commcr-
cially available 111 January 1995. I t achic\.cd thc perfor-
mance levcl o f 345 SPECint92 and 505 SPECfp92
(estimated), a perfornlance Ie\lcl unmatched by coln-
mercially available microprocessors.

Acknowledgments

T h e autl7ors wish t o acknowledgc (3corge Chrysos,
Robert C o h n , Zarka Cvetanovic, Kcnt Glossop, Lucy
Harnnet t , Stcvc Hobbs , John Shaltsliobcr, and Paula
Smith for thcir \vork in producing t o the estiniates o f
SPEC benchmark performance q i ~ o t e d in this paper.

References

1. D. Dobbcrp~~li l ct al., "A 200-MI Iz 64-bit 1)ualLissue
CMOS Microproccssor," Digilul 72chrzical Jo~~rr7rrl.
vol. 4, ~ i o . 4 (Special Issue 1992): 35-50.

2 . 14'. 130\\~hiII ct al., "Circ~~it In~plementation ofa 300-MHz
64-bit Seconci-gcncr.lti011 CI\/IOS Alph;~ CI'U," Digital
Teclnrrical ,/oi~r.r~ol. \.ol. 7, no. 1 (199'3, this issue):
100-1 18.

3. E. Swartzlandcr, cd., C'onzpula~~A~-i/h~~ro/ic (Ne\v York:
Dowden, Hutchillson, and Ross, 1980).

4. 0. MacSorlc!; "High-speed Aritlimctic in Binary Com-
pu ters," Yrwwdi~~gs IRE, vol. 49 (1961): 67-91.

3. 11. Sites, cti., A,!/~h(c a tr~chitcc./r~i.c~ l:r;/i~~.c,rtcc, .Ilnrci/al
(Burlington, Mass.: Digital Press, 1992).

6. D. Bhavsar and J . Edmondson, "Tcsnhiliry Strategy of
the Alpha 2 1 164 l\Iic~~oprocessor," lulet-rzntiorzal Ti.sl
Co/zJi.rcncc (Octobcr 1994): 50-59.

Biographies

John H. Edrnondson
John Edrnorldson is a ronsultmt cn@xcr in Digital Serni-
conductor. Hc 1 4 ~ x 3 the architecture Icadcr af'thc dcsign
tcJln for rhc Alp11.1 2 1164 ~nicroprclccssor. Prrvious to that
work, lie \\,as .I mcmbcr of rhe design realn hr the VAX
6000 model 600 micsoprmcsaor. Prior to joi~liny Digital
in 1987, Johu \\~)rkcd at Canaan Computcr Corpomtion
and Massachusccts Genenl Hospital. Jol~ri rccei\,ed a
R.S.E.E. from the Massachusetts Institute ofTeshnology
in 1979. t

Paul I. Rubinfeld
Paul Rubinfeld was the engineering Inanngcr o n thc Alpha
2 1 164 microproccrsor project. During the last 16 year3 at
Digital, hc has \vorkcd o n M>(and PI)l'-ll <:I'U ~lc\.elop-
mcnt projccts and ,I single-instruction, multiple-d.lrn, mas-
si\.cl!r parallel proccssol- s!.stcnl. 1'3~11 rccci\.cd .I B.S. and

M.S. in clcctric;il cnginccring horn C:arncsic 1Mcllor1
ITni\.crsity, \\,liere lic Ilclpcd 1~~1ilci the Cm* mulripsoccs-
$or. Paul is a senior cnginccl-ing nlanagcr \\,irhin 1)i:it;ll
Scmiconductor.

Peter J. Bannon
I'ctc Ban~ion is a consulting engineer in lligital Scmicon-
ductor. Hc has participarcii in rhc design or \,critic,l~ion
ofsc\.cral microprocessor chips and \\Ins a ~ n c ~ n b c r of the
Alphn 21164 architecture ream. Hc joincd lliginl in 1984
ufrcr receiving a B.S. (special honors) in conlputcl- systcm
design from the Univcl-sity of Massachusc~ts. Hc holds
thrrc patents for VAX <;i'U design ;lnd has filed six parent
applications for tlic Alpha 2 1 164.

Bradley J. Benschneider
I3rad licnsclineider is n princil~nl hard\\,arc cnginccr in
1)iginl Sc~nicond~~ctor . Hc \\,as rcsponsiblc for designing
d o m sections of the memory manap;lcmau unit on rhc
21 164, a wd! sl d d b h q d - u t l a t c h ~ mcthPdPIqq 4) r
the hip. Hc u m t l y h imgkmcnhdns rffort
dche memory ,mmagcrnent unlt for the ncxr-~ricmtion
Alpha CPU. Since joining Digid in 1987, kc has can-
rlikuwd to se\.eral custom chip designs in the VAX 6000
hmik and thc early Alpha impkmtntations. He rccci\.cd
a B.S.E.E. from the U~livcrsity ofciulcinnati, h;is onc
patent, and has coauthored b u r papers.

132 Digiral Trchnic.~l Journa l

Debra Bernstein
Debra Rcrnsrein is 3 consultant engineer in Diginl
Scmiconducror. H e r \vork Ihas spanned tlie 31-cas of
a~,cllitccturc, pcrti)~-mn~lcc, s i n i ~ ~ l ~ ~ t i o ~ l , logic dcsig~i,
firrn\\~arc, PALcodc, \,crificatio~l, n~ld hard\varc clcbug
for four generations of lligital <:('Us. Deb IS c u r r c ~ ~ t l y
\\,orking on the 113rci\nrc and sofnvarc components of
a PC:-h.~scd multimedia solution. She reccivcd n R.S. in
computer science (1982, cum Iaudc) from the Universir)~
of Massachusetts.

Daniel E. Dever
Since joining Digital in 1988, Dan 1)cvcr has \\forked
on the design ~ n d logic \pcrilication ol'tlic CMOS \'AX
microprocessors as ~vcll as the 21064 and 21 164 Alpha
~nicroproccssors. Dan is currently in\~ol\~cd in the design
of the memory rnnnagcmcnt l~n i r for rlic nest-gcncmtion
Npha microproccssor. H c rece~\,cd a 13,s. in electrical
engineering k o m the Uni\.crsity of Cincinnati in 1988.

Dale R. Donchin

Ruben W. Castelino
Kdorc re~xbinp~ U,S.E.E, fi.0111 tlic U I) ~ V C I . S I ~ ~ of Cincinnati
In 1988, R&XII Chstclino was a co-op studcnt at lligital
warking tma chip set b r the VAX 6000 lModcl200. Cur-
m t l y s scniur h d i v a r c cnginccr in Digital Scmicon-
ductor, he wu a ~odcs ignc r of tllc cache control arlci bus
mtcrfnce unit hr thc Alpha 21 164 CPU. Prior t o that, he
wi)rkrJ tm tlx innuuction fetch, decode, and branch unit
for dw NVhX chip and pcrformcd implemcntntion \\/ark
for tlx ?WAX virtual i~lstruction cache. Rubc~ i is cl~rrentl!,
3 codesig~er- dth i , ~ c h c control 2nd bus inrcrfi,lcc unit
for a net\. Npha microproccssor.

Elizabeth M. Cooper
Rcrh Cooper rcccivcd R.S. dcgrccs summa cum l a ~ ~ d e)
in electrical ellginccring ;uid colnputcr scic~icc from
Wlshingron University in St. I.ouis (1985) and nn A3.S.
dcprcc in comp~~rc~ . sc i cncc ti-om Stanford Uni\icrsity
(199.5). She is .I member of Ern 1<;1p11~ N u . She joined
l>igir.11 io 1985 n n ~ i h;ls worked o n the implcmcntations
ofsc\.cr;ll CMOS VAS and Alp11a <:PUS since then. Bcth
w;ls the Icad cache designer on the Alpha 21 164 micro-
processor. She is currc~ltly a principal hardware engineer
in the Palo Alto Design Cenrcr.

Dale D o ~ ~ c h i n is an engineering manager ~ n d technical
contributor in Digital Semiconductor. H e designed several
circuits rclnrcd to the clock and cacllc nnci contributcti to
and led CAI) tool use for the Alulil 2 1 164 CI'U. H c is
presently performing thcsc dutics for the dcvelopmcnt
of the nest-gcncratio~i Alpha microprocessor. Dale joined
Digital in 1978 and \ \ r s prc\.iously a dcvclopmelit manager
in the RSX Operating S!jstcrn G r o ~ ~ p . Dale holds a B.S.E.E.
(1976, h o ~ ~ o r s) and an M.S.E.E. (1978) f .o~il Rutgcrs
Uni\rcrsity College of Ellginccring and is a member of
IEEE 311d ACAl.

T i m o t h v C. Fischer
Tim Fischcr is a senior hardware cnginccr in Digiral Scmi-
conductor. H c is currcnrly working o n the i~lsrruction issue
logic for the next-generation Alpha microproccssor. Prior
t o this, Tim \\.orked on the design of the Alpha 21 164
floating-point unit, the NVAX+ bus inrcrhcc unit, and
the NVAX clocks and parchable control store. H c has
coautliorcd sc\iernl papers. Tim joincd 1)igital in 1989
atier rccci\,ing all h4.S. i11 computer engineering from
the Uni\.crsin of Cincinnati.

I)~pic.ll ?'cchriic.il Joul-~inl Vo1. 7 No. 1 1995 133

il

Anil K. la in
h11l Jain, 11 cons~~ l t ing engineer ill 1)igitnl Semiconductor,
led the irnplc~llcntation o f t h c csrcrnal intcrhcc unit o n the
Alpha 21 164 microproccssor. Prior to this, lie \vas the pl-oj-
ecr Icadcr for the tloatincr-mint unit o n the X'VAX niicro-

L' 1

processor. H c dlso rnade iccllnical contributions on the
CVAX microproccssor and on dc\,icc modeling o f Digital's
first (:i\lOS process. Anil recci\,ccl n I<.S.E.E, from Pu~ijub
Eng i~~cc r ing <:ollcgc (1978) and nn M.S.E.E. fi-om the
rnil'crsity of (:incinnati (1980). 1 Ic holds thrcc patents.

Shekhar Meh ta
Shekhar Mchta is 3 senior liard\\,arc engineer in Digital
Se rn icond~~c~or ' s HigIq Perform'i~ncc (:omp~~t ing Group.
H e designed the r n k address file on the memory sub-
system of'thc .L\Iphn 2 1 164 C1'U and \vas responsible for
the clcctromigr,~rio~~ checks of the chip. H e is currently
leading the design of the caclics on a f i~ture Alpha micro-
processor. P,cti)rc joining Digital In 1988, Slicld~ar was
an cnginecr at I.arscn S: Toubro, I3ombn)l, India. H e
rccci\,cd .In M.S.E.E. fiom the Univcrsit!~ ofWisconsi~l
at 7vladiso1l (1988).

Jeanne E. Meyer
Sincc joining 1)igit.ll in 1989, J c ~ n n c Mcycr has \\,orkcd o n
tiu implcinuiution, behavioral modcli~ig, and logic vcrifi-
cutiun;f m e d niicroprocessor chips. 1; her \\lark o n the
Mplu 21 164 CPU, shc was w\ponsihlc for P,4Lcodc vcrifi -
cation, rq;lintcmnce, and support. Slic also conrributccf to
chc n k r d ~ i u c r u r c delinition and bch.lvioral model of
tbc chip's Inelllory management unit. She is currcntl!~ Ic;~d-
ing thc ticsig~i of the memory managcmcnt unit for a net\,
Alpha microproccssor. Jeanne rccci\:cd a R.S.E.E. (summa
cum laudc, 1982) from the Uni\,crsin ofCincinnati. She
holds nvo p;ltcn ts.

Vol 7 No. 1 1995

Ronald P. Pres ton
Ronald Prcsron is 3 principal engineer in D i ~ i t a l Scmicon-
d~lc tor . Sincc joining Digit21 i11 1988, he 11.1s \\.orkcd 0 1 1

the desig~l ofscver.il nlicroprocessors and \\.as the in~plc-
mentation Icadcr for the instruction unit on the Alpha
2 1 164. Icon \\.as also responsible foi- the arcliitcctl~rc and
implci~~cnta t io~l o f the iss~~c/bypass/scoreboard logic.
Ron is rhc co . l~~ thor of sc\,cml ;~rticlcs on hot carrier ;illaly-
sis ofC:MOS circuits. H e rcccivcri a R.S.E.E. in 1984 and
an M.S.E.F.. in 1988, both fi-om l<cnssclacr Polytccllnic
Instirutc. Icon is a ~nembcr of Et.1 I<.lppa Xu and 11-EE.

Vidya Rajagopalan
Vldya h j r p p r h is ~ u m o d y with Qu<intum I~l'fcct
M g u h. Prim ti) j d b d QED, slle was a mcmhcr of
DigrtJ'r Scmicduaw Engineering Group, .i\.llcrc shc
wnrked OII chc A l p h 21 164 and 21 064 microproccssor
d c a i p . Vidya ~ I I v e c I an M.S. i l l electrical e~lgi~lccril lg
ti-om rhe Uidvcrrlry oCMsqland, <:ollegc Park, and a 1).E.
from Vis\~cs\'v.ay,~ 11cgio11;ll Collcgc t lEng~nec r ing ,
N a g p ~ ~ r , India.

Chandrasekhara Sorna~~athan
Chandrasckhara Somanathan rcccivcd on rM.R.A. froln
Northeastern University in 1994, an M.S. in colnputcr
scic~lce from the Rochcstcr Instirule ofTcchnology in
1984, and a 1x5 . in clcctricnl .~nd clcctronics cn9incc.1-ing
from KI'I'S, l'ilani, India in 1982. LVhilc at 1)igiral fi-om
1985 to 1994. lie designed rlic cache colltrollcr unit of
the .4lphn 2 1 164 RISC microproccssor, ant1 the t1o:lting-
point 2nd c.lchc co~ltrollcr units o f tllc VrL\(6000/400
CIS(: microprocessor; lie also dc\,clopcd Digit'll's iMOS
timing analysis CAl) sofnvnrc. H c is currently \\rirh H.11.
Computer Inc., dc\.cloping high-pcrfi~rniancc Sl'AlU:
RISC microproccssors.

Scot t A. Taylor
Scott 'hylor joined 1)i~ital in 1993 after receiving n H.S.
degrcc in clcctrical ensincering fi-0111 rlic Uni\fcrsiy o f
Illinois. Hc was in\,ol\.cd \\.ith the fi~ncrional verification
of thc memory, cachc: control, and crtcrnal interhcc
units on the Alpha 2 1 164 microproccssor. Scott has slso
workctl or1 <:I'U test pntrcrn gcncrnrion and debug ;is
\\.ell as (111-chip cacllc repair stracegics. H e is currently
contributing to the \.cril.ication of thc nest generation
of Alpha high-pcrfc)rm~nc.c ~nicroproccssors.

Gi lber t M. Wolrich
A consultnnt enginccr in 1)igital Semiconductor, Gil
Wolrich \\.Js the Icadcr and architect ti)r the tloati~lg-
point ullit on the Alpha 2 1 164 chip. H c rccci\,cd
a R.S.1-1.E. from Rclmelaer Pol!.tcclinic Insritutc and
a n bI.S.F..E, fro111 Norrlic~stcrn Uni\,crsinr.

I
Michael I h t r o w i t z
Lisa M. Noack

Functional Verification
of a Multiple-issue,
Pipelined, Superscalar
Alpha Processor - the
Alpha 21 164 CPU Chip
Digital's Alpha 21 164 processor is a complex
quad-issue, pipelined, superscalar implemen-
tation of the Alpha architecture. Functional
verification was performed on the logic design
and the PALcode interface. The simulation-based
verification effort used implementation-directed,
pseudorandom exercisers, supplemented with
implementation-specific, hand-generated tests.
Extensive coverage analysis was performed to
direct the verification effort. Only eight logical
bugs, all unobtrusive, were detected in the first
prototype design, and multiple operating sys-
tems were booted with these chips in a proto-
type system. All bugs were corrected before any
21 164-based systems were shipped to customers.

The Alpha 21 164 microprocessor is a quad-issue,
supcncalnr implementation of the Alpha architecture.
The CI'U chip required a r i g o r o ~ ~ s verjfication cffort
t o ensure that there wcrc 110 logical bugs. World-class
performance dictated the use of many advanced ~irclii-
tectural features, such as on-chip \irtual instruction
caching \\,ith seven-bit address s p x e numbers (ASNs),
an on-chip dual-read ported data cache, out-of-order
instruction completion, an on-chip three-way sct-
associntivc \\{rite-back second-le\lel cache, support for
an optional third-level \\~ritc-back cache, branch prc-
diction, 3 demand-paged memory management unit,
a \\lritc buffer unit, a miss-address f le unit, and a com-
plicatcd bus interface n nit \\4tli s ~ ~ p p o r t for \ ~ a r i o ~ ~ s
CPU-s)lsteni clock ratios, system configurations, and
third-level cache parameters.

Function~il \!el-ification \\)as pcrfor~iied by a tcaln of
engineers from Digital Semiconductor \\,hose primary
responsibility was to detect and eliminate the logical
errors in tlic Alpha 21 164 design. The detection and
elimination of tinling, clcct~.icnl, and physical dcsign
errors were separate efforts conducted by the chip
design

Extcnsi\~c fi~nctional \!critication prior to rclcasing
the first-pass design to the rnnn~~f~~c tu r ing process is
a common technique used to ensure that time-to-
market goals are rnct for co~nplex processors.
Increasingly, thcse irerification cfforts are relying o n
pseudorandom test gcnerntion to improve the qualit)l
of the vcrif cation effort. Thcsc techniques have been
in use at Digital for more tIia11 scjren ycars and arc also
used else\vlicrc in the industry snd in academia:;."
This paper describes a fi~nctional verification cffort
that signif cnntly extended psci~dorandoni testing \\lit11
extcnsi\lc covcrage analysis and somc hand-gencmtcd
tests to produce working first-pass parts.

Goals

The \;erification team had sc*cral key goals. Goals for
first-pass silicon incl~~ded cnsuring that the fi rst proto-
types C~LIICI 1)oot tlie operati~ig system and providing n
vehicle for debugging of system-related hard\\,arc and
sohv'arc. An cldditional sol11 wns to execute a test t o
checli e\,cry blocli of logic '~nd c\.cry function in the

chip to ensure that no serious f~inctional bugs
remained. The goal for second-pass silicon \\.as to be
bugfree so that these chips could be shipped to cus-
tomers for use in rc\re~~ue-producing systems. Secon-
dary goals included assisting in the verification of
Privileged Architecture Library code (PALcode) and
keeping manufacturing test patterns in mind \\.hen cre-
ating tlie verification environment and writing tests.

Modeling Methodology

Several different model representations of the Alpha
2 1 164 CPU werc dcvcloped for testing prior to proto-
npes . The verification team primarily used a register-
transfer-level (RTL) model of thc Alplia 21 164 (:PU
chip. This model accurately represented the detailed
logic of the design and delivered very high simulation
performance.

Modeling Environment
The design team wrote tlie IWL niodel in the C pro-
gramming langlragc. Tlie model reprcscntcd all
latches and combinatorial logic of the design and was
accurate to tlie clock-phase boundary, The C pro-
gramming larlg~lagc \\!as chosen because C provides
tlie speed and flcsibility needed for a large-scale
design. 13igital's CAD group designed a user interface
for access into the RTL ~nodcl of the Alplia 21 164
CPU. The C command line interface (CCLI) allo\vcd
access into the \lariables used to define signals and to
the routines that represented the actual design. It pro-
vided tlie ability to create binary traces of signals for
postprocessing analysis and debugging. A stanclard set
of m~cro- ins t r i ic t io~~s simplified bit manipulation of
signals with arbitrary widths.

The use of C also allo\\fed the team to simulatc
portions of the gate-level dcsign in the structural
siniulntor, CHANGO, and to pcrforrn c!lclc-by-cycle
comparisons with various states in the RTL model.
These simulations, called shado\\r-mode simulations,
\yere fi~lly i~tilized fc>r testing the various fi~nctional
units of the chip.

Pseudosystem Models
The \verification team de\~elopcd several models to
interface to the Alpha 2 1 164 CPU RTL model and
to allow testing of interactions with pseudosystems to
occur. The C Innguagc provided a level of flexibility
in the creation of these models that was not a\,ailablc
on previous \tcrification projects. One area in \vhich
this tlcsibility \\,as fi~lly utilized \\/as in the formation
of a sparsely populated memory model. By using
a dynamic tree data structure rather tllan a static array,
the cache, duplicate tag store, and mernor!! system
models could be written to support the full range
of 64-bit addressing. Hence, tests could be created
to use ally set of addresses lvithout restrictions. I n

addition, co~nparisons with the refcrcncc modcl c o ~ ~ l d
be dra\vn from the entire contents of memory. This
significantly enhanced the ability to detect possible
errors in tlie design.

The verification engineers creatcd a system nod el
(the X-box) to simulatc tr~nsactions on the pin bus.
The S-box model provided a means to mimic tlic real
system behavior that the Alpha 2 1 164 CPU would
encounter when i~seci with a variety of diffcrcnt plat-
forms. The team i~sed (: to develop an S-box model
that co~lld be connected to every possible config-
uration and mode setting of thc Alpha 21 164 <:PU
chip. This allowed all modes of the Alplia 21 164
CPU to bc tested with a single, multipurpose system
interface nod el. The S-box also performed man)^ of
the checks needed to ensure the proper operation
of the system bus.

Strategy

Tlie \~crification strategy ernplo!lcd multiplc tccli-
niques to acliieve full fi~nctional \,crification of the
Alpha 21 164 chip. The primary technique used was
pseudorandom esercisers. These programs generated
pseudorandom instruction seqilenccs, csccutcd the
sequences on both the 21 164 model and a reference
model, and compared the results. A second major
techniq~lc used focused, hand-gencl-xed tests to co\.er
specific arcas of logic. Other mctliods consistcci of
design reviews, executing esisting tests and bcnch-
marks, and a few static analysis techniques. Figure 1
shows the general flo\v for a single simulation.

This strategy \\,as deployed in tlircc parts: the try-
anything phase, the tcst-planning pli'~se, and the struc-
tured completion phasc. Devising a tcst plan was not
the first step. During the early stage of the project, the
primary goal \\,as to stabilize the design as cllrickly as
possible. Any major bug that \ v o ~ ~ l d Ila\fe had an
impact on the architectural definition of the chip was
unco\lered. Circuit dcsign and layout could thcn corn-
mence \vithout fear of major revisions latcr. If tinie h;id
been spent structuring detailed tcst plans, less time
would ha\w been given to actual testing, and 3t this
point in the design, carcfi~l t l i o i~g l~ t \\<is not nccdcd to
find bugs.

The main purpose oft l ic try-anything phasc \vas to
csercise 2s much filnctionality of thc clcsign as possible
in the shortest time in order to stabilize the dcsign
quickly. This phase began even before the RTL niodel
\\.as ready, \vith the construction of tlic pseudorandom
eserciser programs. The pseudorandom exercisers nnd
the RTL rnodel werc dcbugged together. This pro-
duced an atmosplicrc of intensity and challenge in
\\.hich ever!lone was required to interact constantly to
help identie the source of problems. This had a sec-
ondary benefit of bringing the dcsign and verificatio~l
teams closer together.

Digital 'l'cd>niz.~l Journa l

SEGUE-BASED SEGUE-BASED
PSEUDORANDOM PSEUDORANDOM / TEST-USE I I CONFIGURATION 1
GENERATOR GENERATOR

FOCUSED
TEST CASE

FOCUSED TEST
CONFIGURATION

ASSERTION
MODEL (ISP) TEST (RTL) CHECKER

FAILURE

STATE
COMPARISON COLLECT

FAILURE SIGNAL TRACES

ANALYZE TRACES
FAILURE 1 1 FINAL CHECKS 1 FOR COVERAGE

(SAVES)

SUCCESS COVERAGE
STATISTICS

Figure 1
Dcsign Verification Test Environment

Once tlie design stabilized and the bug rate
declined, the design team began focusing on circuit
design and layout, and the verification team took a
step back and created a test plan. The purpose of the
test plan was to ensure that the verification team
i~nderstood what needed to be verified. The test plan
provided a mecha~iism for reviewing what would be
tested \\lit11 the design team. The joint rc\lie~l ens~lred
that the verification team did not miss important
aspects of the design. The test plan also allowed a \ ~ ~ a y
for the design team to raise issues around specific
problcni areas in the design or areus tliat emplo)fed
special logic that \\rere not obvious from the specifica-
tion. Finally, the test plan provided a means for schcd-
uling a11d prioritizing the rest of thc verification effort.

Tlic test plan consisted of a description of every fea-
ture or hnction oftlie design tliat nccded to be tested,
including any special design features that niight
reqi~ire special testing. I t did not describe how the test
~ l o u l d actually be created. Past experience had indi-
cated that test plans describing the specific secjue~ice
of instructio~~s needed to test chip features quickly
became outdated. Instead, the test plan focused on the
"what," not the "Iio\v."

vo l . 7 No. 1 1995

The final verification step \\{as the structured com-
pletion phase. During this time, cach item from the
test plan was analyzed and \lerificd. The analysis con-
sisted of deciding which mechallisln \\,as appropriate
for covering that particular piece of the design. This
might consist of a focused test, a psc~~dorandorn eser-
ciser with coverage analysis, o r an assertion checker. As
thc verification of each item \\,as completed, a review
\\/as hcld \vith tlie design and architccture teams to
examine \\/hat was vcrifi cd and h o ~ v it was done. In this
way, any problems with the verif cation coverage \\rcre
identified.

Test Stimulus

Both hcused and psc~~dorandoni escrcisers were used
during tlie verification of the Alpha 21 164 chip. More
than 400 focused tests \\!ere created during the vcriti-
cation effort, covering a \vide variety ofchip filnctions.
Six different pseudorandom exercisers \irere uscd. One
\+{as a general-purpose cserciscr that provided cover-
age o f tlie entire architccture. F,ach of the other five
eserciscd a specific section o f thc chip in a pseudoran-
dom *a!/.

The one general-purpose escrciser used was pro-
vidcd by a separate g r o ~ ~ p and generated pseudoran-
dom streams of instr~~ctions, data, and chip state. Its
focus was at the arcliitectural level and generated
pseudorandom stimulus that t\'ould \\,ark on a n y
implcmcntation of the Alpha architcctul-c.

Almost all focused design verification tests (13VTs)
were written sing Alpba assembly code. This pro-
vided the right level of abstl-action to avoid the need
to toggle ones and zeros directly o n each pin, yet
allowcd specific control over the timing of transactions
and instruction sequences that would not be possible
from .I compiled language. The ~iiacro-preproccssor
feature of the Alpha macro-assembler w,ls used hea\!ily.
This allo~ved the assembly-lc\,el programs to be con-
structed in a niodular manner.

Pseudorandom Testing

Pseudorandom testing offers sevcr.ll ad\,antages in
the verification of increasingly coniplcs chips. Thcsc
include producing test cases that \\!ould be tilnc-
consuming to generate by ha~id , and providing the
ability to generate rn~lltiple s im~~l tancous events that
t~lould bc estremcly difficult t o think ofesplicitly.

Exercisers
In support of the pseudorandom testing strategy, vari-
ous cscrcisers were crcatcd that f o c ~ ~ s c d o n differelit
aspects of the chip. Tfhc tbllo\\ring areas \ircrc targcteil
esplici tl y :

Branching

Data-l.>xtern-dependent transactions

Flo'iting-point unit

Traps

Cache and memorv transactions

Fundamcntall!; each exerciser \\,as the same. The
exerciser \\,auld create pseudoranciom assembly-
language cock, run the codc on the model under test
and a rcfcre~~ce model, collect I - C S L I I ~ S from each, and
compare the results f io~ii both moclcl runs. Any crrors
or discrepancies \\,ere tI1c11 reported to the user.

The rcfcrcnce ~nodcl used, callccl the ISP modcl,
was a very high-level abstraction of thc Alpha architcc-
ture \vritten in the (: language. Tlic core of this model
\\,as crciitcd during the design of the 2 1064, tlic f rst
Alpha processor. It was modified sliglitl!~ to i ~ ~ c l u d c
Alpha 2 1 164 specific features such as internal register
definitions. Tlie ISP modcl integrated the same sparsely
pop~~la tcd Inernory model used in the pseudosystem
modcl in such n \\,n!, that the freedom in creating
addresses cou Id be cl~~plicated.

SEGUE, n test gcncration/cspansion tool, \vas
used cstcnsi\~cly to crcate pseudor.indom codc and
co~ifigur;itions. Each cserciser used SEGUE templates
to generate codc. Variables \\,ere pnsscd to the SF.(; UE
templates that \voulcl determine \\,hat percentage of
cel.t;ii~i C \ ~ C I I ~ S or jnstructions \\rould occur in the rcsul-
talit codc. Users \\lould vary the Fxrccntages ;lnd crc-
ate ;idditional tc~nplatcs to target tlicir eserciscrs to
certain portions of the chip. AII exerciser coi~ld focus
only o n loads and stores, or templates could be created
that \vould generate trapping code. 'l'he verification
engineers had the flcsibility to creatc \\!hatever code
\\,as nccilcd. Tlie \,critication cnginccrs \\rorlted closel!l
\\,it11 tllc desigricrs to unclerstand tlic details of the
logic. As a result, cases could be generated that \voi~ld
thorougl~ly test the f~~nc t ions being designed into the
Alpha 2 1 164 <:PU chip.

Configuration Selection
Each tcst, either pseudorandom or foci~sed, also ~ n a d c
use of n configuration control block (CCR) parameter
file. The <:CB \\.as used to set up the type of system
that \\,auld bc c~nulated for a given simulation. The
palameter file consisted of variables that could be
cveightcd to makc certain system cvcnts occur o r to
cause certain configi~ratio~is to be clioscn. Once ~ig'lin,
SEGUE scripts \\.ere utilized to creatc the command
files that controllecl tllese events. Esamples of the type
of cvcnts that could bc chosen \Irere single-bit crror-
correcting codc (E<:(:) crrors, interrupts, the presence
of ;In cxrcrnal cachc, the ratio bcnvce11 tlie system
clock and tlie Cl'U i~ltcrnal cloclt rate, cache size alld
configur~tion, and other bus-interface timing c\,cnts.
These ;inel other events were varied throughout the

course of the project to ensure that the chip could be
run in real s)lstems using any given configuration.

The configuratiori chosen \\.as guided through the
use of a parameter tile that contained \~arious parame-
ters and weiglltings to be utilized by SEGUF,. Once
a configuration was chosen using the parameter file,
it \vas processed to produce two files used in the sirnu-
lation. The first was a CCLI control file used to set
LIP state internal to the pseudosystem-level model.
The second file \\!as loaded into the memory model to
be i~scd by the I)\T and to provide information acces-
sible through ;issembly code regarding the configt~ra-
tion type.

Simula tion
Once the pseudorandom code and configuration had
l>ccn generated, the test \\,as loaded into the modcl
undcl- test or into the ISP model to use as thc stimi~lus.
A 1)VT loader tvas created for both models tliat \\~ould
interpret selected data in the CCR and determine the
memory locations where the test should be located.
Tlie additional information encoded in tlie CCB
incluclcd n~hethcr tlic tcst ran in I/O, \vhcrc handlers
slioi~ld be placed, and what page mapping was ~ ~ s e d .

Aticr a DVT was loaded, the simulation would start.
A 1'ALxode reset handler \\;as executed first. I t read
information from the CCR and loaded various regis-
ters with the configurations specified. Tlie DVT was
esccutcd afier the PALcode completed.

Capturing Random Events
I n some cases, pseudorandom exercisers \\-ere used
to captilre events that were unlikely to occur and
that \\~ould have been difficult t o obtain by a focused
tcst. R!! using a 11e\\! tool (called FIGS), engineers were
able to use the pseutlorandoni cscrcisers nnd postpro-
cessing to look for events that \\)ere needed to achieve
coverage of the various functions in the F-box. When
the event occurred, the event could be saved and
re-crcatcd for f i~ture regression tcsting.

Correctness Checking

A variety of mechanisms \\,ere used for checking
\vhcther the model behaved correctly. Some liand-
crafted tests had comparisons built-in to verify that
they generated tlic expected answer. This self-check-
ing ~~iccl ianis~n, lio\\lever, is difficult to include witli
pscudornndo~ii tcsting. Three categories of clieclci~ig
mcclianisms \\.ere de\,eloped that could worlc \\fith
pseudorandom or focused tests. These \Ifere checks
perforrued during simulation of a model, postsimu-
lation checks done automatically every time a model
completes executing, and test-specific postsimulation
clicclts. I n all cuscs, adjusting the clieclung mecha-
nisms to eliminate reporting false errors was i m p o r t a ~ ~ t
to keep the debugging time low.

1)igit.d l'cchnicll Journal

The RTL model was augmented with a wide \rariety
of built-in assertion checkers. These were active any
time the model \vas run; they verified that various
assertions and rules of behavior \\!ere not \liolated at
any tinic during the test execution. Assertion checkers
ranged from tlie simple to the complex and were
added to the model by both the design and verifica-
tion teams. S o ~ n c assertion checkers \irere added as the
initial model \\!as coded, and otlicrs \Inere adcicd as
nccdcd to ensure that certain situations did not occur.
Examples of simple assertion checkers include watch-
ing for a transition to an illegal state in a state machine,
o r \\latching for the select lines o f3 multiplexer (MUX)
to choose an unused MU>; input. more complex ,lsscr-
tion checkers \irere used that required explicit lkno\vl-
edge about illegal sequences. For cxa~nple, the system
bus had a complicated set of checkers attached to it
that checked for \,iolations of the bus protocol.

Wlicn a test completed executing on the model,
several end-of-run checks were done autoltiatically.
One simple check was to veri@ that the test reached
its normal completion point and had not ended prc-
maturely. Complete cache coherency checks \\,ere pcr-
formed to ensure that all three le\pels of cache contents
wu-e consistent with the memory im.lge.

A variety of very powerful end-of-run checks were
~ ~ s e d . Tliese conlpared tlie results of running a test o n
the model and on the ISP model. Information about
tlic state of tlie model \\#as saved \vhile the test \\,;IS

executing and thcn co~npared \vjtIi its eq~~ivalent from
the ISP ~iiodel. State that was compared in this
included a trace of the program counter (PC), a trace
of the updates made to each architectural register, and
the ti nal memory image upon completion of a test.

The main problems encountcrcd \vith this tccli-
n i q ~ ~ c were due to inconsistencies between the 1Sl'
model and tlie Alpha 21 164 design. The IS1' model
\\/as used across n~i~l t ip le Alpha design projects. It pro-
vided arcl~itecturally correct results but had no con-
cept of tinling, pipelining, or caching. Several fe'1tu1-es
of the Alplia 21 164 implementation \+!ere difficult to
\le~-i@ with this rcfercncc machine.

In the Alpha architecture, arithmetic traps are inipre-
cise, in that the!/ might not be reported with the csact
1)C tli.it c a ~ ~ s e d t l ic~n. Since the ISP model had n o con-
cept of timing, it reported traps at a different time than
tlie real design. Thus, the checking mechanisms
needed to be intelligent enough to takc this possibility
into account. Arithmetic traps also presented a prob-
lem beca~~se the destination register of certain types of
trapsis unpredictable after a trap occurs. Co~nbincd
with the imprecise naturc oftraps, unpredictable \ralucs
could propagate to other registers, making comparison
agins t the reference machine difficult. Normally, cer-
tain so%\iare con\.cntions \vould be follo\ved to control
these aspects of the architectnre. To achieve the fill1
benefit from pseudorandom testing, however, no

restrictio~is \Yere placed on wliich registers o r instruc-
tion sequences could be used. Instead, an elaborate
method \vas devised for tracking which registers \\,ere
unp-cdictable at any g i \ m timc. This inforniation \\,as
then ~ ~ s c d to filter tilsc mis~natchcs.

Optional checks made on a per-test basis could be
viewed as more complicated assertion checks. These
\irere performed by tracing internal signals. The spc-
cihc signals to trace \\,ere selccteci based on tlic par-
ticular postprocessing to be done. Then, by using
a library of routines (called SAVES) to simplifil acccss-
ing and ~nanipi~lating thcse signal traces, particular
interactions and protocols were verified. These could
be \ric\\#cd as assertion checks, bur the!! \\,ere Inore
comp1ic;ited than tlic built-in \raricty. C>ne example
in\lolved representing the behavior of a large section of
the design as a single, complicated statc machine. The
behavior of this statc machine could be compared *it11
the I / O behavior of the actual desisn section. Another
example \\!as the representation of the branch-
prediction algorith~ii in a Inore abstract form than the
actual model. The bcha\.ior of the ~ibstract algorithm
was cornpared wit11 the belia\ior of the model itself.

Coverage Analysis

The primary difficulty with fiunctional verification
is that it is virtually i~npossible to kno\\, \\rIlen tlic vcri-
fication cffort is complctc. Co~nplcting a predeter-
mined set of tests merely indicntcs tliat the tests arc
complctc, not that the design has bccn fully tcstcd.
Monitoring the bug rate provjdes uscfi~l inforniatiou,
but a low bug rate might indicate that the testing
is not csercising tlie problem areas. T o alle\.iatc this
problem and provide increased \,isibilit\r into the com-
pleteness of the vcrific~tion effort, cstcnsi\rc covcr,~gc
analysis of the focused tcsts and pseudorandom cser-
cisers \\!as done. Two tvpes of co\w-ngc checking were
used: inforn~ation gathered \~,hilc a model \\,as ese-
cuting, a n d information gathered b\l postprocessing
signal traces.

While a ~nodc l \\,as executing, inhrmation nras
being stored about tlic occurrence of simple events.
For example, a record was kept o n the niunibcr of
ti~iies the machine i s s ~ ~ c d instr~~ctions to four pipes
simult,~ncously, the number of times tlic translation
b~~ffel-s filled up, o r the number of times stalls
occurred. Since the chip operated in random confgu-
rations, a record was also kept about the configuration
information s~rch as tlic B-cache s i x and timing
selected, tlie system interface options, 'ind timing. At
the end of every model run, this recorded information
was written to a database to collect st~tistics across
multiplc runs.

In 'lddition to these simple co\.cragc clieclts, more
elaborate coileragc anal!rcis was done tlirougl~ postpro-
cessing. By using the SAVES librar): signal traces \\(ere

collected while the model \\!as executing; these were
later analyzed for the specific occurrence of predefined
events. The events \\)ere composed of complicated
timing relationships among signals. Often, nvo-
dimcnsio~lal, nlatrices were crcntcd, in \vliich each asis
of the matrix reprcscnted a list of events. TIILIS, the
occurrence patterns ofevery event in one list could be
\~isualized happcn i~~g with every event in the second
list. For example, it was verified that every type of
system coninland (read, in\.alidate, set-shared, ctc.)
occurred followed by every type of bus response
(ACK, NOACK, etc.).

Automatic coverage-checking methods \\!ere also
i~scci. The most cominon \\Ins n state machine coverage
analyzer. It \\/as 3 goal to \!eri@ that every state/arc
t1-;111sition in cvel-y state macliinc \\!as being eserciscd.
Programs \\/ere automatically generated to searcli the
trace files for these transitions and record the infor-
mation ahout what \\/as and \\(as not covered. This
concept was extended to sections of the chip that \\-ere
not designed as simple state machines. As described
above, one large section of tlie design was represented
as a single, monolitl~ic state machine to pro\.ide an
independent reference for the correct o ~ ~ t p u t s of the
section. Tliis conceptual state machine was processed
through the coverage analysis tool. Altl~ough the tran-
sitions that were clicclzed did not niap directly to the
physical design, they did provide an excellent indi-
cation of Iio\v \\le.ll that section of the design had been
tested.

The trace analysis tools could acc~~rnulate data
across ~iii~ltiple si~ii i~latio~i runs. The data was a~lalyzed
periodically, and areas that were lacking coverage were
identified. This allowed the identification of trends in
the coverage and provided an iunderstanding as to how
i\,cll the pseudorandom exercisers \\,ere exercising the
chip. With this insight, pseudorandom exercisers \\/ere
nlodified or ne\v fi)cuscd tests were created t o improve
the test co\!erage. R ~ ~ n n i n g pseudorandom eserciscrs
\vith co\Ierage analysis pro\~ed to be a very powerful
tcchniqi~c in functional verification.

Bug Trends

lluring tlic Alpha 21 164 CPU verification effort,
more than 600 b ~ ~ g s \Yere logged and tracked bcfore
first-pass parts wcrc manufactured. Figure 2 sho\+s the
bug rate achieved as a fi~nction oftirne for the duration
of the project. To track bugs, an action tracking system
\\,as set up. Tracking of bugs started after all the sub-
sections of the lCT'1,-level model had been integrated
and a small subset of tests \\r:i~ run si~ccessfi~lly. Since
mLlny areas of the model \ \we ready bcfore others, the
action tracking systcm does not represent all tlic issues
raised. Ho\ve\/er, it is interesting to look at thc trends
prcscntcd by the data.

Figure 2
I3ug liatc '1s a Function ofrTimc

The first trend to consider is the effecti\lencss of the
pseudorandom and focused efforts. As sho\vn in
Figure 3, more than Iialf the bugs \\/ere found using
pseudorandom techniques. Furthermore, one-third of
the bugs found by the focused effort were in the error-
handling fi~nctionality of tlie design, \\.hich had poor
pseudorandoni test coverage.

Bugs were thought to lia\fe been introduced in
a variety of \\rays. Figure 4 shows the breakdo\\,n of the
causes of bugs. The majority occurred in irnplement-
ing the architectural ideas that were decided upon for
tlie project.

Figure 5 sho\\ls tlle various detection meclinnisms
that \vcre i~sed to detect bugs. As in thc past, assertion
checkers placed in the design to c1~1ickly detect \vhcn
something is not correct arc the ~iiost successf~~l.

Results and Conclusions

As of September 1, 1994, eight logical bugs \\!ere
found in the first-pass Alpha 2 1164 CPU design. Only
one of these impacted normal system operation, but it
did lot occur very often. The first tcvo issues were

STATIC TEST 1% I
OTHER 7% P

L

PERCENTAGE OF TOTAL BUGS FOUND

Figure 3
l<ffecn\~cness o f (;la\\ o f T c r

Digiral Tcctinical Journal Val. 7 No. I 1995 141

61 %

PALCODE ERROR

SCHEMATIC ENTRY 1% I
PROGRAMMABLE

LOGIC PROGRAMMING
ERROR

OTHER 2% r
PERCENTAGE OF TOTAL BUGS

Figure 4
1ntl.oductlon of Bugs

PERCENTAGE OF TOTAL BUGS

ASSERTION CHECKER 34%

SELF-CHECKING TEST

CACHE COHERENCY
CHECK

REGISTER FILE TRACE
COMPARE

Figure 5
Effectiveness o f Bug Detection iLIccli.inisms

MEMORY STATE
COMPARE

142 Digiral Ibchnical Journal

W 7%

foi~nd while debugging test patterns on tlie testcl-; tlic
third was a variation o n a lu~o\\ln restriction; tlie tburtli
o c c ~ ~ r r e d in a rare prototype system configuration that
*as found through pseudorandom simulation tcst-
ing (which had continued even after the design \\,as
released to manuhcturiug); thc titill \\.as 3 race condi-
tion bcnveen nvo events that rarely \\.ere sti~nulatcd in
simulation; the sisth was a pcrk)rn~a~ice-related issue
on the pin interface that \\.as found by thinking about
t1.1~ design; the s e ~ c n t h was a vcr!. specific set of c\.cnts
that resulted in a system hang; and the last \\.as I-clatcd
to not responding appropriately to an crrol- condition.

These bugs escaped detection for the follo\\~ing
rc;Isolls:

An eserciscr running on a simulator \\,as slo\\~ to
encounter the conditions that \vould evoke the
bug. many conditions nccdcd to occur collcur-
I-ently, but 'ill of them occurred infi-eclilcntly.

An asscrtio~i chccltcr ciid not \\,ol-l< properly.

Comparisons bcnvccn the IYT'L. modcl and the
structural modcl ~llisscd the bug.

All bugs \lrerc hsed before any s!,stems \\,crc sliippcci
to CLIStOlTlCIS.

l'lctails of tlicse bugs follow. Inc l~~ded is informatio~i
about ho\\, tlie bug \\,,IS detectccl, 3 Ii!,pothesis on \\.li!f
the bug eluded dctcction before first-pass chips \\,ere
fabricated, and lessons leamed from tlie detection and
elimination of the bug.

1. O n e bug \\,as found by an exerciser running on the
second-pass RTL model. A c;lche line victim failed
to write back on a B-cache index match because
a bypass occurrcd at the same time. This bug
csisted only in 32-byte cache mode and B-cuchc
speed con f gurations of 4, 5, and 6. This bug could
have been found in the first-pass model if this c ~ s c
had becn gcneratcd pseudorandomly. Running
many cases is crucial with a pseitdoranciom testing
strategy. Given unlimited time and computation
c)lcles, this bug night have bccn found earlier.

2. A second bug \\.as cai~sed by the B-cache rend/
*rite timing being off by one cycle. This bug could
have caused multiple drivers to dri1.c thc data LXIS at
one time. An assertion checltcr for thih bug \\.as in
rlic l<TL. modcl, but the chccl<er itself \\-as not
working properly. I n the f i ~ t i ~ ~ . c , assertion checkers
should be \rerifiecl by c a ~ ~ s i ~ ~ g the failure to occur
~ n c l \\'atcl~ing to scc dint it cictccts the case. In some
exes, asscrtio~l chccl<crs arc \\nrittcn to flag- an error
for events that SII~LIICI never liappcn. F o r c i ~ ~ g an
illegal situntion to occur call be \,cryr difficult.

3. Another 1 ~ 1 g \\'as found by a11 esc~.ciscr \\!lien
3 WRITE-BLO(:I< conim;~~id \\!as preceded by a
single-c!rclc idle-tK: signal asscrtion. Tliis i s s ~ ~ c \\.as

directly related to a spccific B-cache speed and \\!as
related to another system configuration restriction.
This issue caused a rcstrictio~l to be added, but the
design \+!as not changed.

4. If tlie B-cache sequencer is pcrforming a bypass
ininiediatcly nfier a command loads in the B-cache
address file and a reference is coniing do\vn the
S-cache pipe, the B-crtchc indes could change in
back-to-back cycles. The indcs sliould change 01i1y
every otlicr cycle. An assertion checker s h o ~ ~ l d have
been written to test for this situation and makc sure
it never occurred.

5. The performance-monitoring logic that counted
load merges was not counting these events cor-
rectly. This bug was not in the KTL model but only
in tlic actual implemc~~tation. Possibly, more RTL-
to-CHANGO comparisons nceded to be run on
tliis section of logic.

6. 13ecause of an LDsL/S?'sC bug, an invalidate to a
locked address was not detected as a hit against the
LDsL address. As a result, an STsC passed ~ l l i e n it
should have failed. This bug could have been
detected if a focused test had been Ivritten with very
specific tinling of a FILL. and an LDxL hitting the
S-cache in consecutivc cycles. Gaining control of
tliis interaction on the system bus was not possible,
ho\\!ever, and random simulations were relied upon
to achieve this case. This was a rare event in the ran-
dom simulations, but parameters could have been
adjusted to make this occur more olien.

7. For one specific system configuration, a W A D or
FLUSH coni~nand sent by the system to the Alpha
21 164 chip could cause the system to hang. For
this to happen, three specific events, all with very
tight tillling windo\vs, needed to occur. We could
have found this bug during simulation if we had
enlphasized this typc of cond i t i~n d ~ ~ r i n p the
psc~~dorandoni testing.

8. When responding to a command, the system had
tlie option o f asserting an crror signal instead ofi ts
normal response. The error signal acted as an inter-
rupt recluest to tlie Alpha 21 164 chip. Under cer-
tain conditions, and for a narrow window of time,
this error signal cvas not properly recognized.
Testing of crror conditions \\,as a project goal but
not a liigli priority compared to testing normal
events. This bug could lia\~e been found carlier if
additional error-~nodc tests had bccn run.

The above issues were f~irl!~ minor 2nd all have been
fixed in tlie version o f the dcsign that \,vill be released
to customers. 'The i ~ s c of pseudorandom testing was
very successfi~l. Many major, co~nplicated bugs \\/ere
found over the course o f the project that would never

have been found using a focused e fh r t . Because of the
number of system configurations possible, a verifi-
cation effort that consisted only of focused testing
\vould have been inlpossible.

Acknowledgments

The Alpha 21164 fi~nctional verjfication effort was
performed by a team of engineers from tlie SEG
rnicroprocessor verification group. lMenibers of this
team included Homayoon Akliiani, David Asher,
Darren Bro\vn, R ~ c k Calcagni, Erik DeBriae, Jim Ellis,
Bill Feaster, Mariano Fernandez, Jim Huggins, Mike
Kant~-~\\ / i tz , Ginger Lin, Chris Mikulis, Lisa Noack,
Kay Rqtchup, Carol Stolicny, Scott Taylor, and
Jonathan White. The CCLI user interface \vould not
have been possible \vithout John Pierce. Walker
Anderson provided quality guidance through all
phases of the project. The Alpha Architecture Group
RAX team (Matt Baddele!?, Larry Camilli, Ed
Freedman, Joe Rantala, Pravin Santiago, Lucy
Tancredi, Steve Torchia), once again, provided and
supported an effective verification tool. L~stly, the suc-
cess of the project and the final quality of the Alpha
21 164 chip logical design are as much a tribute to the
work of the architecture and design teams as they are
to the work of the verification team.

References

1. J. Edmondson et al., "Internal Organization of the
Alpha 21164, a 300-MHz 64-bit Quad-issue CMOS
RlSC Microprocessor," Digital Techniccil ,lournal,
vol. 7, no. 1 (1995, this issue): 119-135.

2. W. Bowhill et al., "Implemcntarion of a 300-MHz
64-bit Second-generation CMOS Alpha CPU," Digitul
Technical Journal, vol. 7, no. 1 (1995, this issue):
100-1 18.

3. W. Anderson, "Logic;ll Verificntion of the W A X CPU
Chip Design," Digital Techrrical,/on~-rt~1.1, vol. 4, no. 3
(Summer 1992): 38-46.

4. A. Aharon, A. Bar-David, 6. Dorfn~an, E. Gofnian,
M. Leibowitz, and V. Schwartzburd, "Verification of
the IBM RISC System/6000 by a Dynamic Biased
Pseudo-ra~idom Tcsr Program Generator," Ilj~MS?;~te~?z.s
Jorrri?ul, vol. 30, no. 4 (1991): 527-538.

5. A. Ahi, G. Burroughs, A. Gorc, S. LaMar, C-Y. Lin, and
A. Wicrnann, "Design Verification of thc HP 9000
Series 700 PA-RISC Workst.~tions," Helillclt-Pnck?nrcl
.Jo/./I.IzLI/ (August 1992): 34-42.

6. D. Wood, G. Gibson, and R. K~tz,, "Vcrijjiing a Multi-
processor Cache Controller Using Rqndonl Test Gencr-
ation," IEEE Dcsigr? and Te.d oJ' Conr/)~ilers (August
1990): 13-25.

Vol. 7 No. 1 1995 143

Biographies

Michael IGn t rowi tz
A p t h ~ rngnrcr, Mike I<nllrro\i.itz is currently leadi~lg
the i ~ d c a t i o n ctfijrr tor a nc\v Alpha micl-oproccssor and
dc~dopi% new \rritir~tion tools and ~nerliods. Prior t o
thi9 p r o w Mikc wai co-lcadcr of the 21 164 chip vcrifica-
ti% rrpllqihk t;nr the instruction fetch and csccute u~iits.
He has &o conuiburtd to the \.cI-ific.~rion of the Maria11,
SVS+, 21064 t b t i n g - p i n t unit, and FAVOR \.ector
ullir. Befwe wing Digital in 1988, mike w,orkcd a t
RayLon Co ally, Hehas a B.S.E.F. konl Stc\,cns
I~rsrici~tr afTec "K nology and dn h,I.S.E.E. t'roni \.Vol.cestcl.
Po1ytccti~1i.c t~mdzutc. Mike is n mcmber of IEEE.

Lisa M. Noack
A principal engineer, Lisa Noock is currentl!. co-lcading
the chip vcdfx;lrion ci'ft~rt Eor 3 ncw Alpha ~iiicroproccssor.
Priar to this w v d , Lim was a co-le;~ckr of thc 21 164 chip
\rriticauorl and was rqxms ib ie hr memos!; cnchc, and
systc~m intcrfdce units. Lisa has dso contributed to the
verification of the W A X + m d NESMI chips 2nd the PVN
m d d c and chip set. Bcbrc shc joincd Digital in 1989,
Lisa was emplo!lcd at Dilta G c n e r ~ l Corpor3rio11 3s a design
cllgiherr mrpcinsiblc for rhc systcat &sign o f 1/0 S L I ~ S ~ S -
rcms and \ ~ ~ L I S gate arrdy design projects. Slic cnrneti
licr B.S. dnd M.S. dcgrccs in colnpurcr cnginccring tiom
Syracuse Uni\,crsity.

\io1. 7 No. 1 1995

ISSN 0898-901X

Printed in U.S.A. EY-T135E-TJ/95 06 14 15.0 Copyright 0 Digital Equipment Corporation. All Rights Reserved.

., A

	Front cover
	Contents
	In Memoriam
	Editor's Introduction
	Foreword
	DB Integrator: Open Middleware for Data Access
	ACMSxp Open Distributed Transaction Processing
	An Open, Distributable, Three-tier Client-Server Architecture with Transaction Semantics
	The AlphaServer 8000 Series: High-end Server Platform Development
	Digital's High-performance CMOS ASlC
	The Second-generation Processor Module for AlphaServer 2100 Systems
	The Design and Verification of the AlphaStation 600 5-series Workstation
	Circuit Implementation of a 300-MHz 64-bit Second-generation CMOS Alpha CPU
	Internal Organization of the Alpha 21164, a 300-MHz 64-bit Quad-issue CMOS RlSC Microprocessor
	Functional Verification of a Multiple-issue, Pipelined, Superscalar Alpha Processor - the Alpha 21164 CPU Chip
	Back cover

