
• RAID Array Controllers
• Workflow Models
• PC LAN and System Management Tools

Digital Technical Journal
Digital Equipment Corporation

Volume 6 Number 4
Fall 1 994

Cover Design
Our cover design is inspired by a system man

agement topic in this issue. Manage WORKS
software is a system and network manage

ment tool that presents an object-oriented,

graphical view of a heterogeneous LAN envi

ronment. The multi color circles on the cover

represent the diverse objects, or entities, on

the networks among which a system adminis

trato-r "navigates" using the integrated com

ponents of the tool.

The cover was designed by Lucinda O'Neill

and joe Pozerycki,jr:, of Digital's Design

Group.

Editorial
Jane C. Blake, Managing Editor
Kathleen M. Stetson, Editor
Helen L. Patterson, Editor

Circulation
Catherine M. Phillips, Administrator
Dorothea B. Cassady, Secretary

Production
Terri Autieri, Production Editor
Anne S. Katzeff, Typographer
Peter R. Woodbury, Illustrator

Advisory Board
Samuel H. Fuller, Chairman
Richard W Beane
Donald Z. Harbert
William R. Hawe
Richard]. Hoi I ingsworth
Richard F Lary
Alan G. Nemeth
Jean A. Proulx
Robert M. Supnik
Gayn B. Winters

The Digital Technical journal is a refereed journal published quarterly by Digital
Equipment Corporation, 30 Porter Road '"102/D 10, Littleton, Massachusetts 01460.
Subscriptions to the journal are $40.00 (non-U.S. $60) for four issues and $75.00
(non-U.S. $115) for eight issues and must be prepaid in U.S. funds. University and
college professors and Ph.D. students in the electrical engineering and computer
science fields receive complimentary subscriptions upon request. Orders, inquiries,
and address changes should be sent to the Digital Technicatjournal at the published
by address. Inquiries can also be sent electronjcally to dtj@digital.com. Single copies
and back issues are available for $16.00 each by calling DECdirect at 1-800-DIGITAL
(1-800-344-4825). Recent back issues of thejou·rnal are also available on the Internet
at http://www.digital.com/info/DTJ/home.html. Complete Digital internet listings can
be obtained by sending an electronic mail message to irtfo@digital.com.

Digital employees may order subscriptions through Readers Choice by entering vrx
PROFILE at the system prompt.

Comments on the content of any paper are welcomed and may be sent to the managing
editor at the published-by or network address.

Copyright© 199 5 Digital Equipment Corporation. Copying without fee is permitted
provided that such copies are made for use in educational institutions by faculty mem
bers and are not distributed for commercial advantage. Abstracting with credit of
Digital Equipment Corporation's authorship is permitted. All rights reserved.

The information in the journal is subject to change without notice and should not be
construed as a commitment by Digital Equipment Corporation or by the companies
herein represented. Digital Equipment Corporation assumes no responsibility for any
errors that may appear in the journal.
ISSN 0898-901X

Documentation Number EY-Tll8E-TJ

The following are trademarks of Digital Equipment Corporation: AXP, Cl, DEC, DEC OSF/1,
DECmcc, DECmodel, DECnet, DECwindows, Digital, the DIGITAL logo, HSC, HSC50,
HSC60, HSC70, HSC90, HSJ, HSZ, InfoServer, KDM, ManageWORKS, Object Flow, Open VMS,
PATHWORKS, POLYCENTER, Storage Works, ULTRIX, VAX, VAXcluster, VAXstation, VMS,
and VMScluster.

Apple and AppleShare are registered trademarks of Apple Computer, Inc.

dBase IV is a registered trademark of Borland International, Inc.

Hewlett-Packard is a registered trademark of Hewlett-Packard Company.

i960 is a trademark of Intel Corporation.

IBM and NetView are registered trademarks of International Business Machines
Corporation.

Knowledge Craft is a registered trademark of Carnegie Group, Inc.

Microsoft and Visual C++ are registered trademarks and Windows and Windows NT
are trademarks of Microsoft Corporation.

NFS is a registered trademark of Sun Microsystems, Inc.

NetWare and Novell are registered trademarks of Novell, Inc.

OSF/ I is a registered trademark of the Open Software Foundation, Inc.

Sun M icrosystems is a registered trademark of Sun Microsystems, Inc.

UNIX is a registered trademark in the United States and other countries, licensed
exclusively byX/Open Company Ltd.

X Window System is a trademark of the Massachusetts Institute ofTechnology.

Book production was done by Quantic Communications, lnc.

I Contents

5 The Architecture and Design of HS-series
StorageWorks Array Controllers
Stephen]. Sicola

26 Policy Resolution in Workflow Management Systems
Christoph]. BuBier

50 The Design ofDECmodel for Windows
Stewart V Hoover and Gary L. Kratkiewicz

RAID Array Controllers

Workflow Models

PC LAN and System Management Tools

63 The Design of ManageWORKS: A User
Interface Framework
Dennis G. Giokas and John C. Rokicki

75 The Structure of the OpenVMS Management Station
James E. Johnson

89 Automatic, Network-directed Operating System
Software Upgrades: A Platform-independent Approach
John R. Lawson , Jr.

I Editor's Introduction

Jane C. Blake

Managing Editor

Three computing topics are presented in this issue

of the journal: a storage array controller for open

system environments, workflow architectures and

tools, ancl PC andlAN system management products.

The opening paper, by Steve Sicola, describes

Digital 's new HS series of StorageWorks array con

tro l lers. Designed for open systems, the con trol

lers i nterface to host computers by means of the

industry-standard SCSI-2 interconnect, as wel l as

Digi tal's CI and OSSI host intercon nects. Equal ly

important to designers as openness were con troller

availabi l i ty and performance. I n novative features

were i ntroduced, i nclud ing dual - redundant con

trol lers and Parity RAID firmware to ensure high

avai lability, and a wri te-back cache that significantly

improves performance. The paper concludes with

a description of the com mon controller processing

core for the SCSI, CI, and DSSI contro l ler variants.

Workflow is the subject of two papers w ith dif

fering perspectives. Christoph BuBier opens his

paper with introd uctory defini t ions and i m p I ica

tions of workflow concepts. He argues that a \ovork

flow t hat uses roles for task assignment is l imited,

especial ly in large. international enterprises. He
states that by adding the d imensio n of organiza

t io nal dependencies for task assignment a complex
workflow is more precisely expressed . Using the

example of a travel expense rei mbursement work
flow, Christoph shows how the Pol icy Resolution

Architecture design principles support en terprise

level workflow deployment-reusabi l ity, security,

general ity, dynamics, and d istribution . He also d is

cusses the Pol icy Definit ion Language that formal ly
describes workJlow elements.

A second paper about workflow presents a tool,

cal led DECmodel for W indows, for the development

of business p rocess models and their graph ical

presentat ion . Stew Hoover and Gary Krat k iewicz

2

explain the reason i ng behind the creation of a pre

sentation layer in DECmoc.lel that provides a graphi

cal view of the business process while h iding the

technical details of the mode l . The authors also

cover implementation detai ls, inc luding the deci

sions to move from the original !.IS!' environment to

a C:++ program m i ng environment and to i mple

ment the knowledge base for DECmodel in ROCK,

a frame-based .knowledge representation .

We t hen shift the focus to ManageWORKS and
POLYCENTER tools that have been developed to

simplify the increasingly compl icated job of system

management. The first of three papers describes

the development of the ManageWORKS Workgroup

Administrator software. Dennis Gio kas ami John

Rokicki d iscuss the design principles adopted for

this product that enables system and network man

agement of heterogeneous L.ANs from a single PC

running Microsoft W i ndows. Key design elements

are plug-in , customizable modu les for system

navigation ancl management, ami the user in ter

face framework, which controls the flow between

modu les. The authors offer scenarios to i l l ustrate

interactions between components.

Managing OpenVMS systems from a PC runn ing

the Microsoft Windows operating system can be

accomplished with the OpenVMS Management

Station, of which ManageWORKS is a key compo

nent. Jim Johnson defines the need for this scalable

and secure cl ient -server tool in OpenVMS envi

ronments, which can be clustered, d istributed ,

expanded, and networked extensively. After a d is

cussion of design alternat ives, Jim describes the

fu nctions of the Stat ion's c l ient, communication,

and server components.
The fi nal paper is about an in itia l system load

(ISL) capabil i ty for automatic, network-directed.

operating system software upgrades. John Lawson

reviews goals for the POLYCENTER Software Distri
bution layered product, compares the POLYCENTER

ISL process with the OpenV:VIS ISL p rocess. and
steps through the requirements for expanding the

l'OLYCENTER Sofnvare Distribution capabi l i ty to

other platforms and operating systems.

Our next issue wi ll celebrate the Journal's tenth

ann iversary of publ ishing the technical ach ieve

ments of Digi tal 's engineers and partners. The issue

will feature database technol ogies and new Alpha

workstations ancl h igh-end server systems.

Biographies

Christoph J. BuBier Christoph BuGler is a faculty member at the Technical

University of Darmstadt, Germany, where he is pursuing a Ph.D. degree. His

research is in workflow and organization modeling, with a focus on organizational

embec.lcling of workflow management, ancJ i n architectures for enterprise-wic.le

deployment of workflow management systems. While at Digital from 1991 to 1994,

Christoph developecJ the Policy Resolu tion Architecture and its prototype imple

mentation. He holds an M .C.S (1990) from the Technical University of Munich ancJ

has published many papers on workflow management and enterprise modeling.

Dennis G. Giokas Dennis Giokas is currently a senior associate with

Symmetrix, Inc. While at Digital from 1984 to 1995, he was a consulting engineer

in the PATHWORKS group. He co-led PA1HWORKS VS.O and architected the user

interface ami system m anagement tools. He was a lso architect and m anager for

the PC DECwindows program. Previously, Dennis worked at Arco Oil & Gas and

The Foxboro Company developing process control software. He holds a Bachelor

of Music from the University of Massachusetts at Lowell , a Master of Music from

the New England Conservatoq', and an M.S.C.S. from Boston U niversity.

Stewart V. Hoover EmployecJ at Digital Equipment Corporation between

1984 and 1994, Stew Hoover is currently an i ndepenc.Jent consu ltant special izing

in modeli ng ancJ simulation. Before jo ining Digital, he was an associate professor

of i ndustrial engineering ancJ inform ation systems at Northeastern University.

Stew contribu ted to the deve lopment of the DECalc-PLUS appl ication, Statistical

Process Control Software (SPCS), and the DECwindows version of Symmod. He

has written many papers and articles on simu lation and is coau thor of

Simulation, A Problem-Soluing Approach, publ ished by Addison-Wesley.

James E. Johnson A consulting software engineer, J im Johnson has worked

in the Open VMS Engineering Group since joining D igital in 1984. He is currently

a member of the Open VMS Engineering team i n Scotland, where he is a technical

consu ltant for transaction processing and file services. His work bas spanned

several areas across OpenVMS, i ncluc.l ing RMS, the DECc.ltm transaction services,

the port of Open VMS to the Alpha architecture, and Open VMS system manage

ment. Jim holds one patent on com mit protocol optimizations. He is a member

of the ACYl.

I

3

Biographies

4

Gary L. Kratkiewicz Gary Kratkiewicz is currently a scientist in the Intel li

gen t Systems R&D Group at Bolt Beranek and Newman Inc. As a principal engi

neer in Digita l 's DECmodel engineering group from 1991 to 1994, Gary

coordinated the architecture and high-level design specifications, and c.lcvel

oped the knowledge base, script engine, API, and several user interface modu les.

Earlier at Digita l , be developed an expert system fo r shipping and was project

leader for a knowledge-based logistics system. Gary holds an S. B . M . E. from ,\'liT

and an M.S. in manufacturing systems engineering from Stanford University.

john R. Lawson, Jr. John Lawson joined D igital in 1984. He has been a mem

ber of the OpenW<lS VAX Development Group and the I'OLYCENTER Software

Distribution Development Group. His code exists in several layered products

a nd in the OpenVMS VAX and OpenVMS AXP operating systems. He holds a B.M.
degree from the Eastman School of Music (1984) and a B.S. in software engineer

ing from the Un iversity of Rochester (1986). He is currently pursuing an M . S. in

mathematics and computer s cience from the Co lorado School of .Mines. John has

a U .S. patent pending for a unique sorting algorithm.

john C. Rokicki John Rokicki, the project leader for ManageWORKS Workgroup

Administrator, is a principal software engineer within Digital's Network

Operating Systems engineering organization . His rrimary responsibility is the

design and implementation of the base services of the ManageWORKS product.

Before joining Digital in 1990, he was employed by Data General Corp. and

Sytron Inc. John holds a B.S. (1989) in computer science from Worcester

Polytechnic Institute.

Stephen). Sicola Consu lting engineer Stephen Sico la is a member of the the

Array Control ler Group in the Storage Business Unit. He is working on the next

generation of contro l lers and was the technical leader for the curren t

StorageWorks control ler product set. I n earlier work, Steve developed software

and hardware for such prod ucts as the 1-JSC, KDi'v\70, and advanced development

controller projects. Steve joined Digital in 1979 after receiving a B.S.E.E from

Stanford University. He received an M.S.C.E. from the National Technological

University in 1992.

StepbenJ Sicola I

The Architecture and Design
of HS-series StorageWorks
Array Controllers

The HS series ofStorageW!orks array controllers is a new fami�J' of Digital products

that includes models for both open systems and systems that use Digital's propri

etary buses. The HS-series controllers combine performance, auailabili(J!, and relia

bili�)J in total storage subsystem solutions that use industry-standard storage

devices. The architecture and design of Storage Works array controllers represents

a balance between the market requirements and the available technology The

engineering trade-ojfs led to an innovative design that incorporates product fea

tures such as a dual-active controller configuration, write-back caching, Pari�)!

RAID technotog11, and SC\'f-2 device handling

The HS series of StorageWorks array control lers, a
new addition to Digital 's storage su bsystem family,

supports an open systems environment by a l lowing
the attachment of industry-standard Small Computer
Systems Interface (SCSJ-2) devices to the control ler. 1

Moreover, these controller products yield h igh avail
abil ity and h igh performance. This paper describes

the architecture a nd the design of the HSJ30, HSJ40,

HSD30, a nd HSZ40 StorageWorks array control lers.

These control lers interface to host computers by
means of existing Digital interconnects, i .e . , the

Computer Interconnect (CI) and the Digital Storage

System Interconnect (DSSJ), as weJ l as a SCSI-2 host
interconnect to VAX , Alpha, and most other com

puters in the industry. The paper documents the
design and development trade-offs and describes

the resulting control lers and their features.
StorageWorks array cont rol lers represent a sig

nifica nt cha nge from Digita l's origina l Hierarchical
Storage Contro l ler (HSC) subsystem, the HSC)O con
tro l ler, which was designed in the late 1970s, a nd

also from other D igital control lers such as the
HSC60, HSC70, HSC90, and KDM70 control lers. The
StorageWorks control lers discussed in this paper
were designed to meet the fo l lowing product goals:

I . Open systems capabi l i ty The goals for open sys

tems capability were to use industry-standard
storage devices attached to the control lers and
to use an industry-standard host interconnect for
one control ler model . Using industry-standard

Digital Teclmicnl]ournnl H,f 6 N". 4 Fall 1994

devices would provide investment protection

for customers because they wou ld not have to
change devices when a new controller was intro
duced or when they changed controller modules

to use a different host i n terco nnect. Industry
standard devices would also redu ce overal l sub

system cost because of the competitive nature of

the storage device industry The long-term use of
both Digital and non-Digital devices was desired
to provide a wide variety of device choices for
customers. The use of an industry-standard host

interconnect would al low StorageWorks con

trol lers to be used with Digital and non-Digital

host computers, fur ther expanding the open sys
tems capability. The SCSI-2 intercon nect was cho
sen as the device in terface and the host interface

over other industry-standard intercon nects for

cost and st rategic reasons.

2. High avail ability. The goa ls for high avai lability
included both control ler fau lt tolerance and
storage (disk configuration) fau l t tolerance.

Control ler fault tolerance was achieved by devel
oping a dual-redu ndant controller configuration

in combination with new StorageWorks enclo

sures that provide redundant power suppl ies
and cool ing fans. The goal of the dual-redundant

configuration was to have the su rviving con
trol ler au tomatica l ly assume control of the fai led
control ler's devices a nd provide 1 10 service to

RAID Array Controllers

them. As a side benefit, such a configuration

would provide Joacl balancing of controiJer

resources across shared device ports.

The storage fault-tolerance goal was to develop

firmware support for controller-based redundant

array of inexpensive disks (RAID). 2 The initial

Parity RAID implementation incorporated the

best attributes of RAJD levels .3 and). The design

provided the basis for later implementations of

other forms of RAJD technology, notably mirror

ing. Parity RAJD supports the goal of storage fault

tolerance by providing tor continued l/0 service

from an array of several disks in the event that

one disk fails. StorageWorks packaging that pro

vides redundant power supplies and cooling

should be combined with the Parity RAJD tech

nology to extend storage fault tolerance.

.3. High performance. The goals for high perfor

mance were to specify controller throughput

(the number of I/O operations per unit of time),

latency (responsiveness). and data transfer rate

(controller bandwidth) for each of the three con

troller platforms: Cl, DSSI, and SCSI. The through

put was specified in the maximum number of

read and write requests executed per second.

The controllers had to speed up the response

time for host I/O operations and thus clel.iver data

with lower command latency than the HSC con

trollers. Storage Works controllers had to achieve

the highest possible data transfer rate and were

to do so on a common platform.

6

The platform-specific controller throughput

goals were as follows. The initial goal for the Cl

to-SCSI controller was 1,100 read requests per

second; the long-term goal was 1,500 to 1,700

read requests per second. The initial goal for the

DSSI-to-SCSI controller was 800 read requests per

second; the long-term goal was I ,300 read

requests per second. The initial goal for the SCSI

to-SCSI controller was 1,400 read requests per

second; the long-term goal was 2,000 read

requests per second. The controller throughput

t()r write operations was slightly lower.

To reduce latency, the controller hardware and

firmware implemented controller l/0 re<Juest

caching. Designers initially decided to include

16 to 32 megabytes (MA) of cache memory on

a separate optional cache module. Read caching

was the beginning goal for the project; however,

write-back caching was added during product

development as a result of RAID technology

investigati<>ns.

Another approach to reduce latency was to

develop controller-based disk striping, i.e.,

implement the HAU) level 0 technology.2 Specific

goals were to achieve parallel access to all RAID

level 0 array members for read and write opera

tions ancl to streamline firmware to increase

RAJD level 0 pert()rmance.

The Parity RAID performance goal was to over

come the well-known weaknesses of RAID level

3 (i.e., poor transaction throughput) and RAID

level 5 (poor small-write performance) and to

approach RAID level 0 striped array performance

for both small and large read and write requests.2

A combination of hardware-assisted parity

computations and write-back caching helped

achieve this goal. Parity calculations in hardware

reduced firmware overhead to complete RAID
level 5 write operations. Write-back caching

minimized the effects of the RAID level) small

write penalty.; To meet the needs of customers

who require high data transfer rates \Vith RAID,

RAID level 3-style algorithms must be added for

the Parity RAID design.

A common controller processing core had to

be architected and designed to meet the perfor

mance nee(ls of all the planned StorageWorks

controllers (based on host interface ca pabili

ties). The platform had to execute the same base

firmware, coupling new host interface firmware

to the specific platforms. A common platform

was believed to ease product development and

to maximize reuse of firmware for the same

"look and feel" in all products.

Open Systems Capability

For Storage Works controllers to enter the open sys

tems market, product designers had to consicler

the following aspects of open systems in the con

troller definition: the use of industry-stanJarc.l

device interconnects and industry-standard devices

attached to the controller, and the use of inc.lustry

standard and Digital host interconnects.

SCSJ-2 Device Interconnect

The SCSI-2 interconnect was chosen for the device

interconnect because of its wide acceptance in the

computer industry. During the controller defini

tion phase. the StorageWorks packaging group was

Vol. (i No . . J /·{1/l 1'.!'.!4 Dig ital Tee/mien/ journal

Tbe A1·c!Jitecture and Design of HS-series StorageWorks Array Controllers

concurrently designing and building storage device
enclosures ca lled shelves that would house up to

seven 3.5 -inch devices or two 5.25-inch devices.
These shelves, connected to the controller, would
allow a wide variety of SCSI-2 devices to be incorpo
rated and would do so at a low cost because of the

widespread use of SCSI-2 as a device interconnect.

Sto rageWorks control lers were designed to sup

port the fol lowing types of SCSI-2 devices:

• Disk-rotating spind le disk drives and sol id

state d isks

• Tape-individuaJ tape drives, tape loaders, and
jukeboxes that contain robotic access to multi

ple drives from a media l ibrary

• CD-ROM

• Optical-i nd ivid ual disks and jukeboxes that

contain robotic access to mu .ltiple drives from
a media l ibrary

StorageWorks Controllers in System
Environments

The desire to produce a control ler with an open
system host interconnect was coupled with a com

mitment to protect the investments of existing
Digital customers who currently use CI and DSSI

host interconnects. The strategy was to produce CI,
DSSJ, ami SCSl variants of the Storage Works array

control ler, a l l based on a common platform. As in
the selection of the device interconnect, the SCSI-2
host interconnect variant was chosen because of its

widespread use and low cost.
The controllers for the CI, DSSI, and SCSI intercon

nects were named the HSJ30/HSJ40, the HSD30, and

the HSZ40, respectively. The designations of "30''
and "40" represent a code for the number of dev ice
ports attached to the control ler. The HSJ30 and

HSD30 contro l lers have three device ports each,
whereas the HS.J40 and HSZ40 have six dev ice ports

each. The number of device ports selected for each
controller type was based on (1) the overal l capabil
ity of the host port interconnect to support the
aggregate capabili ty of a number of device ports
and (2) the desire to amortize controller cost
against as many attached devices as possible.

StorageWorks controller configurations depend

on the control ler host interface. Marked differ
ences exist in the configurations supported by
CI-based OpenVJYlS YAXcluster configurations, DSSJ
based OpenVMS VAXcluster configurations, and
SCSI-based configurations in OpenVMS, DEC OSF/1,

Digital Tecbnicaljounltll Vol. (, No. 4 Fall 1994

and other industry system environments. The basic
differences are the number of hosts connected

and whether or not other storage devices can be
on the same host interconnect as the controller and
the other hosts.

The CI configuration supports up to 32 nodes per
bus. Each node may be either a storage controller

(i.e., an HSJ30, an HSJ40, or an HSC device) or a host

computer (i .e., a VAX or an Alpha system) .
The DSSI configuration supports up to 8 nodes

per bus. Each node may be either a storage con
trol ler (i .e . , an HSD30 or an HSD05), a storage ele
ment (e.g . , an RF73 device), or a VAX or an Alpha
host computer.

The SCSI configuration supports up to 8 targets
per bus. The HSZ40 controller, with its standard

SCSI-2 host interface, may be connected to Digital

Alpha computers (i .e . , DEC 3000 and DEC 7000/10000
computers running the DEC OSF/1 operating sys

tem), Sun Microsystems computers, Hewlett
Packard computers, and IBM computers. Digital
qual ifies the HSZ40 controller for operation with

additional vendors' systems accord ing to market

demand.

High Availability

To meet the goals of controller and storage fault tol
erance, the designers of StorageWorks control lers

developed a number of scenarios from which the

controller can be fau l t tolerant with respect to fail
ures in control ler or attached storage components.

The first aspect of fault tolerance considered is that

of controller fau l t tolerance; the second is configu

ration fault tolerance.

Controller Fault Tolerance

Designers achieved controller faul t tolerance by
investigating the common fau lts that the controller
could tolerate without requiring extreme design
measures and incurring high costs. The results of this
investigation drove the design of what became the
dual-redundant HS-series controller configuration.
This configuration incorporates several patented
hardware and firmware features (patent pending).

The fo l lowing fau lts can exist within a
StorageWorks array controller and the attached
Storage Works packaging and do not make host data

unavailable:

• Controller failure. In a dual-redundant configu

ration, if one controller fa ils, al l attached storage
devices continue to be served. This is ca l led

7

RAlD Array Controllers

fa i lover. Failover occurs because the control lers
in a dual-redundant configuration share SCSI-2

device ports and therefore access to a l l attached

storage devices. If failover is to be achieved, the

surviving control ler should not require access to
the failed control ler.

• Partial memory failure. If portions of the contro l

ler buffer and cache memories fa il, the controller
continues normal operation. Hardware error cor

rection in control ler memory, coupled with

aclvancecl diagnostic firmware, a l lows the con

trol ler to survive dynamic and static memory

fai l ures. In fact, the contro l ler wi l l continue to

operate even if a cache module fails .

• Power supply or fan fai l ure . Storage Works pack
aging supports dual power suppl ies and dual
fans. HS-series control lers can therefore be con

figured to survive a failure of either of these

components.

• SCSI-2 device port failure. A failure in a single
SCSI-2 device port does not cause a control ler

to fai l . The control ler continues to operate on
the remaining device ports.

The controller must be able to sense the fai l

ures just l isted in order to notify the host of a fault

tolerant failure and then to continue to operate
normal ly unt i l the fau lt is repaired. The designers
deemed this feature vital to reducing the time

during which a control ler configuration must oper
ate with a fai lur e present.

Another requ irement of faul t - tolerant systems

is the abi l i ty to "hot swap" or "bot plug" compo

nents, i.e . , to replace components while the system

is stil l operating and thus to not cause the system to
shut down dur ing repairs. The designers made the

control ler and its associated cache module hot

swappable. That is, one control ler in the dual con
figuration can be replaced without shu tting clown
the second control ler, and the second contro l ler

continues to service the requests of the attached
hosts. This feature, coupled with the hot-swap

capabil i ty of StorageWorks devices, creates highly

available systems.

Dual-redundant Controller Configuration Like

a l l StorageWorks components, HS-series con
trollers are packaged in StorageWorks shelves. The
Storage Works control ler shelf contains a backplane
that accommodates one or two control lers and

their associated cache modules, as wel l as SCSI-2

device port connectors. The packaging is common

to a l l system environments. HS-series control lers
mounted in a single shelf may be combined in pairs
to form a dual-redundant control ler configuration

(shown in Figure 1) in which both contro l lers can
access the same set of devices.

Figure 2 shows two HS-series contro l. lers

instal led in a StorageWorks controller shelf in

HOST I NTERFACE

MAINTENANCE
TERMINAL
EIA-423 PORT

HS-SER IES
CONTROLLER

SCSI DEVICE PORTS
SHARED BETWEEN
CONTROLLERS

FAILOVER COMMUNICATION

HS-SERIES
CONTROLLER

MAINTENANCE
TERMINAL
EIA-423 PORT

Figure 1 StorageWorks Controllers: System Block Dia�ram

lt1l. G No. 4 Fall 1')')4 Digital Technical jourua/

The Architecture and Design of HS-series Storage Works Arrc�y Controllers

PROGRAM CARD
(PCMCIA)

CONTROLLER
HSJ40

MAINTENANCE
TERMINAL
CONN ECTION

POWER S U PPLIES
(1 MANDATORY,
1 OPTIONAL FOR
FAULT TOLERANCE)

RESET
BUTTON

PORT
BUTTONS

CONTROLLER A

Figure 2 StorageWorks Controller Shelf

a dual-redu ndant configuration. F igure 3 shows

two dual-red u ndant control ler confi gurati o ns

mounted i n a StorageWorks cabi net w i th several

device shelves. The contr ol lers connect to s torage

devices with cables that emerge from the contr oller

shel f and attach to the device shelves.

The des igners h ad to decide h ow the dual

redu ndant control ler conf igurati o n could ach ieve

high availability through faul t tolera nce . To meet

the high-availabili ty goals, the team addressed the

concept of contro ller failover early in the des ign

process. One fault-tolerant opti on considered w as

to r u n with a "hot-s tandby " controller that would

b ecome o rerational only if the mai n controller

were to fail. A second opti on w as to design a dual

active controller configurati o n in which two con

trol lers wou ld operate simultaneously. They would

share and concurrently use device por t buses (not

devices), thus b a l anci ng the I/O load from h os t

compu ters.

Hoth opti ons a l low for direct fa ilover of devices

wi thou t m a nual i n terventi o n . The hot-s ta ndby con

tro l le r opt ion requ ires either au tomatic configura

tio n of the attached devices when the hot-standby

contro l ler becomes operati o n a l or nonvolatile (i.e.,

impervi ous to rower l oss) shared memory to h old

Digital Technical]Otwnal Vol. 6 No. ·J hill I'J'Il

the configuration i nformation. The dual-active con

troller option requires that each contr oller have

detailed knowledge about the other controlle r a nd

the device s tate; it does n o t requ ire that the con

trollers share a memory. The des igners chos e the

seconcl option because i t provided l oacl b alancing

and therefore pote n tially greater performance.

However, they faced the chall enge of designing a

b ackplane and an interface between the controllers

that woulcl achieve the dual-active configuration but

would not requi re a shared mem01y The result of the

design effon was the StorageWorks co ntroller shelf.

Storage Works Controller Shelf The Storage Works

controller shelf is an archi tected e nclosure th at

allows a pair of Storage W orks contr ollers and their

respective cache memory modules to be placed

i mo the dual-redu ndant configurati o n , as show n in

Figure 4 . A cache mod ule is attached to each con

trolle r for per formance purposes. The controller

shelf contai ns a backpla ne th at includes i n tercon

t roller commu n ication, control li nes be twee n the

controllers. and shared SCSI-2 device p or ts . Si nce

the two controllers share scsr-2 device ports, the

design e nable� conti n ued device availab ili ty i f o ne

contr o ller fails.

9

RAID Array Controllers

] ()

TAP E D R I V E

CONTROLLER ..!;-'-;.---.,.---- S H E L F

H O S T INTERFACE
CABLES

SCSI DEVICE
PORT CABLES (6)

DEVICE SHELF

Figure 3 StorageWorks Cabinet

SLOT 0 SLOT 1

' K I L L B
'

KILL A

COAL BUS

CACHE B LOCK 1 CONTROLLER A CACHE A * CACHE B CONTRO LLER B
LOCK J CACHE A I I CACHE B L

LOCK

CDAL B U S 1 t COAL B U S

C A C H E A LOCK

COAL BUS

�

t FAILOV ER UART COMM U N I CATION L I N E j

s
316 SHARED SCSI DEVICE BUSES

NOTE: Controller and Cache Present signals to each controller are not shown.

Figure 4 StorageWurks Controller !JackjJ!mze: Controllers in a Dual- redundant Conj(r?,umtion

Vol. 6 No. i hill /')')4 Digital Technical journal

The Architecture and Design of HS-series StorageWorks Array Controllers

The backplane contains a direct com munica

tion path between the two controllers by means

of a serial com mu nication un iversal asynchronous

receiver/transmitter (UART) on each control ler. The

control lers use this com munication l i nk to inform

one another about

• Control ler init ial ization status. I n a du al-redu n

dant configuration, a controller that is init ial iz

ing or reinitial izing sends information abou t the

process to the other controller.

• "Keep a l ive " commu nication. Controllers send

keep a live messages to each other at timed

intervals. The cessation of com mu nication by

one control ler causes a failover to occur once

the survivi ng control ler has d isabled the other

controller.

• Configuration information. StorageWorks con

trol lers in a dual- redundant configuration have

the same configu ration i nformation at a l l times.

When configuration information is entered

into one control ler, that con trol ler sends the

new information to the other control ler. Each

control ler stores this information in a controller

resident nonvo lati le memory. If o ne control

ler fails, the surv iving controller continues to

serve the fai led controller's devices to host com

puters, thus obv iating shared memory access.

The con troller resolves a ny d iscrepancies by

using the newest information.

• Synchron ized operations between cont rollers.

Specific firmware components within a control

ler can com municate with the other control ler

to synchronize special events between the hard

ware on both control lers. Some examples of

these special events are SCSI bus resets, cache

state changes, ami d iagnostic tests.

The other signals on the backplane pertain to

the current state of the configuration within the

controller shelf and to specific cont rol l ines that

determ ine the operation of the dual-redundant

contro l ler configuration. The backplane state and

control signals include

• Status about the presence of a control ler's cache

module. Each control ler can sense the presence

or absence of its cache to set up for cache diag

nostics and cache operations.

• Status about the presence of a second control ler,

which ind icates a dual -redundant configura

t ion. Each control ler can sense the presence

D igital Teclmicaljournal Vol. 6 o. 4 Fall 1994

or absence of the other controlle r i n a dual

red undant configuration . Th is assists i n control

ler setup of dual-control ler operation as wel l

as general control ler init ial ization of the dual

red undant configuration .

• Status abou t the p resence of the second coo

trol ler's cache. Each control ler can sense the

presence or absence of the other control ler's

cache for dual-controller setup purposes.

• The " KILL" signal . In a du al-redundant config

urat ion, each control ler has the capability to use

the KILL control sign al to cause a hardware reset

of the other control ler. However, once one coo

trol ler asserts the KILL signal , the other control

ler loses the capabi l ity. The KILL signal ensures

that a fa iled or fail ing controller wi l l not create

t he possi bil ity of data corruption to or from

at tached storage devices.

The KILL signal denotes that fai lover to the surviv

ing contro l ler shou ld occur. A contro ller asserts

the KILL signal when the other control ler sends

a message that it is fa il ing or when normally

scheduled keep al ive commun ication from the

other controller ceases. The KILL signal is also

used when both control lers decide to reset one

another, e .g. , when the communication path has

failed.

The designers had to ensure that only one con

trol ler cou ld succeed in the KILL operation, i .e . ,

that no window existed where both control lers

cou ld use the KJLL signal . After firmware on

a controller asserts the KILL signal to its d ual

redundant partner, the KILL recognition cir

cuitry within the control ler that asserted the

signal is disabled . The probabil ity of true simu l

taneous KILL signal assertion was estimated at

w- 20, based on hardware tim ing and the possi

bility of synchronous dual-control ler operation.

• The cache LOCK signals. The cache LOCK signals

control access to the cache modules. The dual

controller architecture had to prevent one con

trol ler from gaining access to a cache mod ule that

was being used by the other controller and had to

al low the surviving controller to access the failed

con troller's cache. The access control had to be

implemented in either firmware or hardware.

A firmware solution would involve a software

locking mechanism that the controllers wou ld

recognize and cooperatively use to l i mit cache

module access to the associated controller. This

1 1

RAID Array Controllers

method had an in herent problem: firmware
alone may not prevent inadverten t cache access

by a failing control ler. The designers therefore
had to i mplement a hardware lock mechanism

to preven t such inadvertent access.

The hardware lock mechanism was imple

mented with control signals from each control
ler. The signals are u ti lized by h ardware to

prevent i nadvertent access ami by firmware

to limit cache modu le access to the associated

control. l er. From each contro l ler, the designers

implemented two LOCK signa ls that extend i mli
vidual ly to each cache modu le and are visible to

both controllers. The cache LOCK signals are

i l l ustrated in Figure 4.

The LOC K signals al low a control ler to achieve
exclusive access to a specific cache modu le to
ensure data i ntegrity. LOC K signa ls from a con

trol ler that has been "kil led" by its dual-redundant
partner are reset so that the partner may fail over
any unwritten cache data in the write-hack cache.

Failouer Con trol ler faiJover is a feature of the

dua l -redu ndan t configuration for StorageWorks
con tro l lers. Failover of a control ler's devices and

cache to the other con trol ler occurs when

• A control ler fails to send the keep a l ive message.
This situation can occur because of a control ler

failure in the dual UART (DlJART) or in any other
non-fau lt-tolerant portion of the control ler mod

u le. In this scenario, the surviving contro l l er uses
the KILl. s ignal to disable the other controller,
com municates to the failed con tro l ler's devices.
and then serves the failed control ler's devices to

hosts.

The failover of a control ler's cache occurs only if
write-back caching was in use before t he con
tro l ler fai l ure was detected . In this case. the sur
viving control ler uses the failed contro l ler's
cache to write any previously u nwritten data to
the failed control ler's disks before serving these
dis ks to hosts. When the surviving control ler has

written the data to disks (i.e. , f l ushed the data),

it releases the cache to await the failed con

tro l ler's return to the dual-redu ndant con figura
tion through reinitialization or replacement.

• A customer desires to change the load balance of
one or more devices at tached to one co ntrol ler
to the other contro l ler. This specia l ized use

of failover provides a load-ba la ncing feature

1 2

that the designers considered valuable in a
dual -active control ler configuration . Load bal

aiKing is static in the control ler, i . e . , devices are

al located to o ne control ler or to the other, not

s hared dynamica l ly. To change a l location , the
system manager must change the preferred path
of device access. This is accompl ished by access
ing either the maintenance port of the control ler

or the configuration firmware through the host
interface (e . g . , t he diagnostics ancl u ti lities pro

tocol for U and DSSI systems).

• The cache modu le battery is low or has failed.

This specia l case of failover is useLI in conj unc

tion with Parity RAID operations for the reasons

described i n the Parity RAID technology portion

of the h>l lowing sectio n. The main issue is to con
tinue to provide as much data protection as possi
ble for Parity RAID disk configurations when the

battery on the write-back cache is low or bad.

• The control ler is unable to commu nicate with

the devices to which it is currently a l located for

host operations. 'T'his situation can occur if

a device port on a contro l ler fails.

Storage Fault Tolerance

Storage fau lt tolerance is achieved by ensuring t hat
power or e nvironmental factors do not cause

devices to be u navail able for host access a nd by

using firmware to prevent a device failure from

affecting host accessibi l ity.

Enuironmenta/ Factors StorageWorks enclosures
provide for optional redundant power supplies and

cooling fans to prevent power or fan failures from

making devices u navai lable . The SCSI-2 cables that
con nect device shelves to the con trol ler shel f carry

extra signa l s to a lert the control ler to power supply
or fan fail ures so that t hese conditions may be
reported to host computers. 'T'he enclosures must
contain l ight -emitting diodes (LEOs) to a llow a con
trol ler to iden tify failed devices. In addition, a
cache module can fai l , and the con troller wil l con

tinue to O]Jerate.

RAID Technology Tb prevent a device fai l ure

from a ffecting host access to dat a , the designers
i ntroduced a combined firmware and hardware
implement ation of RAID technology. 2 The designers
had to decide which RAID level to choose and what
tvpe of hardware (if any) was required fo r the

implementation .

llri/. 6 ;Vu. i /-{Iff !')') 1 Dip, ita/ Tecbuica/ journal

The Architecture and Design of HS-series StorageWorks Array Controllers

The designers considered RAJD levels 1 through 5
as opti ons fo r solv ing the problem of disk fai l

ures that affect data ava i labil ity. RAID level 1 (disk

mirroring, which is depictecJ in Figure Sa) was

rejected because of its higher cost, i .e . , the cost of

parts to i mplement the mirroring 2 Each d isk to

(a) Mapping fur a RAID Level 1 Array

(c) Mapping for a RAID Leve/ 3 A rray

be protected impl ies an inherent cost of one

add itional housed , powered , and attached d isk.

RAID level 1 was also discounted because software

based solutions were available for many of the

hosts for which the HS-series control lers were in i

tially targeted .

DATA DISKS

CHECK DISKS

(b) Mapping for a RAID Level 2 Array

(d) Mapping for a RAID Leue/ 4 Array

(e) A Typical Mapping for a RAID Level 5 Array

Figure 5 Mapping for RAID Levels 1 through 5

Digital Technical journal Vol. 6 No. 4 Fal/ 1994 1 3

RAlD Array Controllers

RAID levels 2 through 4, i l lustrated in Figures 5 b

through 5d, were rejected because t hey do not pro

vide goo d performance over t he e n t ire range of

1/0 workJoads for which the contro l l ers were tar

geted. 1 In gen era l , these RAID levels provide high,

single-stream data transfer rates b u t relative l y poor

transacti o n processing performance.

RAID level 5 i n its pure for m was rejected because

of its poor write performance, espec i a l ly for small

write operations.! The designers u l timately chose

RAID level 5 data mappi n g (i . e . , data striping with

i nterleaved parity, as i l lustrated in Figure 5e) cou

pled with dynamic update a lgorithms and write

back cac h i ng to overcome t he sm a l l -write pena lty.

Th is i mplementation is cal led Parity RAI D .

An HS-series Parity RAID array appears t o hosts as

an economical , fault- toler a n t virtual d isk u n it .

A Parity RAID v i r t u a l d isk u n i t with a storage capac

i ty equ ivalent to that of n d isks requ i res n + 1 phys

ical d isks to i mplement . Data and parity are

d istributed (stri ped) across a l l d i s k members in the

array, primari ly to equal ize the overbe<td associated

with processing concu rrent sma l l write requests . !

If a d isk i n a Parity RAI D array fai ls, its data can be

recovered by read ing t he correspo n d i ng blocks on

the surviv i ng d isk members and p ert()r m i ng a par

i t y comparison (usi ng excl us ive-OR (XOR] opera

t ions o n data from o ther mem bers) . Figure 6
i l l ustrates this regenerat ion of dara. '

HS-series controller developers ovcrcmne a num

ber of chal lenges. Foremost among them was the

e l imination of the RAID level 5 write hole. Parit y

RAID w i t h i ts RAI D level 5 striping is suscept i b le

to the RAJD level 5 write hole. A \vrite hole is data

corru pt ion that occurs when a l l the fol lowing

events take place.

DATA O E!J DATA 1 E!l
DATA 2 Ell PARITY

APPLICATION

"" ""

I r r

• A con tro l ler fa i l u re occurs with a host's write

request o u tstand ing.

• E ither t h e updated data or the updated parity t()r

the host's write request bas been wri t te n to d is k

but not both .

• A fa i l u re of a d i fferent d isk occurs after t he con

t ro l ler fai l ure has been re paired .

To e l i m i n are this write hole, designers bad to
develop a method of preserving i n formation about

o ngo ing RA I D write operations across power fa i l

u res such t ha t i t cou l d be conveyed between part

n e r contro l lers i n a d u a l - re d u nd a n t configura t io n .
Designers decided to use nonvo l at i l e caching of

IWD write opera t i ons i n progress 5 Three a lterna

tives were considered :

1 . An u n interruptible power supply (UPS) for the

control ler, cache, and a l l a ttached d isk dev ices.

This choice was d eemed to be a costly and

u nwieldy solut ion bec<�use of the range of possi

ble req u i remen ts. The i ndeterminate amount of

data i n the cache to be wri t ten and the power

consumption of a wide variety of devices would

necessitate a very l a rge backup power source to

ensu re enough t i me for a l l cached write data to
be written to a ttached devices.

2. A battery in the contro l ler and device enclosures

(i .e . , shelves) to al l o w enougJ1 t ime for the writ

ing of cached data in the event of a power fa i l ure.

S torageWorks device enc losu res c a n accommo

date either red undant power supplies o r one

power supply and one backup battery for con

figurations that do not requ i re red u n da ncy.

There is no prov ision fo r both recJu ncl<� n t power

REGENERATED
DATA FROM
MEMBER 3

I

IIi... �
MEMBER MEMBER M EMBER � M E M B E R

DISK 4

1 4

DISK 0 DISK 1 D ISK 2 3 (PARITY)

PARITY RAID ARRAY

F(!{ure 6 Regenerating Data in a Pari(y RAID Arrc�y tl 'it/1 a Failed J'vlember Disk

Vol. G No. 4 1-lr/1 /')')4 Digital Tecbnical Journal

The Architecture and Design of HS-series StorageWorks Arr�y Controllers

suppl ies and a battery. This confl ict between

fau lt-tolerant Storage Works shelf configurations

with dual power suppl ies and the desire to add

a battery for write-back caching was u naccept

able to the designers because of the loss of power

redundancy to gain write-back cache integrity.

3. A control ler-based nonvolatile cache. The options

for controller-based nonvolatile caching included

(a) a battery-protected cache for write data, (b) an

additional nonvolatile random-access memory

(NVRAL\1) on the controller to journai !WD writes,

and (c) a battery-protected cache for both read

and write data .

With a battery-protected write cache, data must

be copied if it is to be cached for subsequent

read requests. Designers deemed the potential

performance penalty unacceptable.

Using controller NVRAM as a IV\JD write journal

not only closes the RAID level 5 write hole but

also provides a smal l write cache for data. This

approach also requires data copying and creates

an l\TVRALVJ access problem for the surviving con

troller to the failed controLler NVRA.t\1 to resolve

any outstanding IWD write requests.

The third control ler-based nonvolatile cache

option , to battery-backup the entire cache,

solved the copy issue of option 3a and the

fai lover issue of option 3b.

The designers chose option 3c, the battery

protected read/write cache module. A tota l ly non

vo lati le cache had the advantage of not requ iring

write-cache flushing, i . e . , copying data between

the write cache and the read cache after the write

data has been written to devices. Segregated cache

approaches (part nonvolat i le , part volatile) wou ld

have required either copying or discarding data

after write-cache flushing. Such approaches would

have resulted in a loss of part of the value of using

the caching algorithm by a ll owing only read caching

of read data a l ready read. Another benefit of a non

volatile read/write cache is failover of the cache

module in the event of a contro l ler fai lure. This fu r

ther reduces the risk associated with a RAID level 5

write hole because unwritten write operations to

Parity RAlD arrays can be completed by the surviv

ing control ler after failover.

To achieve a total nonvolatile cache, the design

ers opted for the battery solution, using two 3-by-5-

by-0.125-inch lead-acid batteries that supply up to

Digital Teclmical journal Vol. 6 No. 4 Fall 1994

100 hours of battery backup for a 32-MB cache

modu le . The batteries el iminated the need for

a special (and cost ly) nonvolatile memory write

cache and a l lowed data hold-up after power fai lure.

The designers chose lead-acid batteries over N iCAD

batteries because of their steady power retention

and output over time. This option protects against

most major power outages (of five minutes to five

days) and al l mi nor power outages (of Jess than five

minutes). Most power ou tages (according to stud

ies within D igital) last less than five minutes and are

handled in the same manner as major outages, that

is, by flushing write data immediately after power

has been restored to the control ler configuration.

Battery status is p rovided to firmware, which uses

this information to make pol icy decisions about

RAID arrays and other virtual disk units with write

back caching enabled.

For an HS-series controller to support Parity RAJD,

i ts cache module must have batteries installed. The

batteries make the cache nonvolatile and enable

the algorithms that close the RAlD level 5 write hole

and permit the use of the write-back cache as a per

formance assist, both vital for prope r Parity IWD

operation. If the control ler firmware detects a low

or bad-battery condition, write-back cach ing is d is

abled. The control ler that detects the condi tion

tries to fail over Parity RAID units to the other con

trol ler in the dual-redundant configuration to keep

the u n its available to hosts. If the other contro l ler

cache module has a low- or bad-battery condition,

the Parity RAID unit is made u navailable to hosts to

protect against data loss or data corruption shou ld

a power fai lure occur. When the batteries are no

longer low, Parity RAID units are again made avail

able to hosts. Any Parity RAlD u nits that had been

failed over to the other control ler wou ld fai l back,

i .e . , return , to the control ler that originally con

trolled them. The module hardware and firmware

support read caching regardless of the presence of

a battery.

After solving the RAlD level 5 write-hole problem,

the designers decided to automate the Parity RAJD

recovery process wherever possible. This goal was

adopted so that customers would not have to u nder

stand the technology details in order to use the

technology in the event of a fa ilure. StorageWorks

controller firmware developers, therefore, chose to

add automatic Parity RA.ID management features

rather than requi re manual intervention after fail

u res. Control ler-based automatic array management

is superior to manual techniques because the

1 5

RAID Array Controllers

controLle r h as the best vis ibi l i t y into array problems

and can best manage any situation given proper

guide! i nes for operat ion.

A n important feature of Parity RAm is the a bi l i ty

to automatica l ly bring a predesignated d is k i n to ser

v ice to restore data protection as quickly as possi

ble when a fai l u re occurs. Other control l e rs in the

industry mandate configurations with a hot-standby

d i s k , i .e . , a spare d is k , d edicated to each Parity RAm

u n i t . A hot-stand by d is k is powered and ready fo r

f irmware use if an active membe r d i s k of i t s Parity

RAlD u n i t fai ls. Th is concept is poten t i a l ly wastefu l

since t he probabi l i ty that m u l t iple Parity RAID u n i t s

w i l l have s i m u l ta neous single-member d is k fai l ures

is low. The designers therefore had the options of

m a k i ng spare d isks ava i lable o n a per-Parity RAID

unit basis or having a pool of spares, i .e . , a spare set,

that any configured Parity RAJD u n i t could access.

The designers chose the pool of spares option

because i t was simpler to i mplement a nd less cost l y

for r h e customer, and i t offered the opportunity t o

a d d selection criteria for spare s e t usage a n d t h u s

maxim ize either performance or capacity efficiency.

To al low more flexi bil i t y i n choosing spare set

mem bers, d es igners made t wo spare selection

options ava ilable: best fit and best p er formance.

The best fi t option a l lows for d is k devices of d i ffer

e n t sizes to com pose the pool of spares. When a

spare d i s k is needed after a member of a Parity RAID

unit fai l s, the device with the best fit , that is, whose

size most closely matches that of the fai led disk

(typica l ly of the same size b u t possi b ly of greater

capacity) , is chose n . The best p e rfor m ance option

can reduce the n eed for p hysical reconfigu ration

after a spare is u ti l i zed if a spare attached to the

same device port as the fai led array membe r can be

a l located . The best p erformance option maintains

operat ional para l lel ism by spreading array mem

bers across the con t ro l l e r device ports after a fa i l

ure and subsequent spare uti l ization.

These features a l low a u tomatic sparing of fai led

devices i n Parity RALD u n i ts and a u tomatic recon

struction after a spare device has been added to the

Parity RA I D u n i t (• Furthermore, any d rive of a t least

the size of the s m a l lest member of a Parity RAID u n i t

is a candidate spare, w h i c h redu ces t l1e n eed for

l i ke devices to be used as spares. (Typica l l y, how

ever, spare set members are l i ke mem bers.)

A Parity RAI D u n i t w i t h a failed membe r w i l l

become u nava i l able a nd lose data if a second fa i l u re

occurs. The HS-series a u tomatic sparing feature

red uces t he windo·w of possible data loss to the

1 6

r ime i t t a kes t o reconstruct one Parity RAID u n i t .

M e a n t ime between d a t a loss (NITBDL) is a combina

t i o n of t he mean t ime to rep a i r (MTIR) and the fa i l

ure rate of a second device in a Pari ty RAI D u n i t .

The a u tomatic sparing feature reduces t h e NlTTR

and thus increases the MTBDL. Data loss can occur

o n l y in the h ig h ly u n l i keJy event that a fa i l ure occurs

in anothe r RAI D set member before the reconstruc

t i o n completes o n the c hosen spare. D u r i ng Parity

RAID reconstruction, the contro l ler i m m e d iately

m akes t h e h ost read o r write request to the recon

struct ing m em ber redundant by updating parity

and data o n r t1e spare after t h e host read or write

operat i o n . Parity IWD firmware quick l y recon

structs the rest of the Parity RAI D u n i t as a back

gro u n d task in the controller. If the member that

is being reconstructed happens to fai l a nd other

spare set members rem a i n , reconstruction on a

new spare begins i m mediately, further red ucing t he

probab i l i t y of data loss.

Parity RA[[) member disk fai lure declaration is key

to the efficien t use of spares and to preven ting

u nwarra nted use of spares. If a write command to a

RAID set member fai ls , RAID firmware assumes that

the SCSI-2 d isk d rive has exhausted a ! J i nternal meth

ods to recover from the error. SCSI-2 d isk drives a u to

matica l ly perform bad block replacement on wri te

operations as long as t here is space ava i lable wi thin

the d i s k d rive revector area (the area where spare

data blocks can be mapped to a fai led block). The

designers chose t h i s method over more complex

retry a lgorithms that m ight encou nter i n termittent

fa i l ur e scenarios. Emp i rical information related to

p revious storage devices showed that loca l i zed

write fa i l u res a re rare and that t h is strategy was

souml for the majority of d i s k access fa i l u res.

When read fai l u res occur, data is regenerated

from the rem a i n ing array members, and a forced

bad block repl acement is performed. Metadata on

the d i s k is used to perfor m t h i s function atom ical ly,

that is , to perform rbe bad block replacement even

if a power fai l u re occu rs during the replacement.- I f

rhe d is k cannot repl ace t h e block, t h e n the Parity

RAID membe r disk i s failed o u t and a n attempt is

made to choose a suitable spare from the spare set .

I f no spare is avai l able, the Parity RAID u n it operates

in red uced mode, regenerating data from the fa i led

mem ber when requested by the hosts. '

Parity RAID firmware uses rhe metadata to detect

a loss of data due to catastrophic cache fai lure. i nap

propriate device remova l , or cache replacement

without prior f lush of write data. The designers

Vol. (J No. 4 Fall 1')94 Digital Tecbuicnf jourunl

The A rcbitecture and Design ofHS-series StomgeWorks A rray Controllers

considered i t important that the cont ro l ler
fi rmware he able to detect these data loss cond i
t ions and report them to the host computers.

The fai l u re scenarios j ust described occu r infre
quently, and the StorageWorks Pari ty RAID fi rm
ware is able to recover after such fai l ures. D ur ing
a typ ica l normal operat ion, the main cha l lenge for
Parity RAID firmware is to achieve a high level of
performance during write operations and a high
level of control ler performance in genera l .

High Performance

As d iscussed earl ier, the performance goals for the
Storage Works contro l lers were i n t he areas of
throughpu t ami latency Bandwidth goals were
based on the arch i tecture and technology of the
control ler platform. The designers met the perfor
mance goa ls by producing a contro l ler that bad
a low com mand overhead and that processed
requests with a h igh degree of para l le l ism. The
firmware design ach ieves low overhead by means
of the algor i thms runn ing on the control ler, cou
pled with RAID and caching technology. The hard
ware design that a l lows for low command overhead
and h igh data t ransfer rates (bandwidth) is d is
cussed in the section Common Hardware Platform.

Command Processing

The StorageWorks designers maximized the num
ber of requests the control ler can process per sec
ond by redu cing the command processing latency
within the control ler fi rmware . The firmware u ti
l izes control ler-based caching and also streaml ined
command processing that al lows m u l t iple out
standing commands to be present in the control ler.

To meet the vary i ng needs of customer a ppl ica
t ions, the contro l ler supports both Parity RAID and
Rr\lD l evel 0. The designers decicled to inc l ude RAID

level 0 as a control ler feature because of its i nherent
para l lel ism , even though RATD level 0 i s not fau l t tol
erant without external redundancy.

Storage\'Vorks control lers service a l l device
types, bu t the designers fel t that disk device per
formance was the key metric for determin ing
how wel l a contro l ler supports RAID technology.
The control ler firmware was designed w etficiently
contro l ind iv idua l devices (commonly referred
to as " j ust a bunch of devices" [.JBOD]) and Parity
RAID, priorit iz ing requests to each of the SCSI-2

device ports on the controller. StorageWorks
control lers comply with SC:SI-2 protocols and per
form advanced SC:SI-2 functions, such as tagged

Digital Technical jourual Vol. 6 No . . j ht/1 /')')4

queuing to a l l attached SCSI-2 storage dev ices for
greater performance . 1

D iscussions of the RAil) level 0 technology and
of how the designers used Parity RAI D technology
to overcome some of the performance bottlenecks
follow.

Striping-RAID Level 0
Digital has used RAJ [) level 0 technology, that is,
strip ing, i n systems for at least five years, in its host
computers us ing software as well as in its control
lers. Striping a l lows a set of d isks to be treated as
one v i rtua l un i t . Device data blocks are i nterleaved
in strips, i . e . , cont iguous sets of blocks, across a l l
d isks, which provides high-speed paral le l data
access. F igure 7 i l l ustrates the mapping for a RAI D

level 0 array. ' S ince a striped disk u n i t i nherently
Jacks fau l t tolerance (i . e . , i f one device in the set
fai ls, data is lost), control ler-based striping is typi
ca l ly used i n conjunct ion with host -based m irror
ing or in cases where data can be easi ly reproduced.
Stripe sets achieve h igh performance because of
the potent ia l for para l lel ism by means of the device
and data organ ization. The key difference between
RAJD level 0 and RAI D levels 3 and h igher is that
striping resu l ts in the interdependence of data writ
ten to different dev ices.

Controller Caching

Caching with StorageWorks control lers was origi
nal ly read caching only When the designers
decided to use a nonvo la t i l e cache to el iminate the
RAID level 5 write hole, write-back caching on the
contro l ler became a v iable option.

Controller Read Caching Read caching was
i ntended to reduce latency in the control ler by min
im izing the need to access devices cont inuously for
repeated host read requests to the same locations on
attached devices. Read caching must also address
the issue of how to handle write data for later use.
The design cou ld have incorporated on-board con
trol ler memory to hold write data. However, this
wou ld require copying the write data to the read
cache after the wri te data had been written to the
devices and wou ld resu l t in i nefficient use of the
read cache. Therefore, the designers decided to
have the read cache serve as a w rite- through cache
as wel l . Read caching would be d isabled/enabled
per logical un i t presented to the host instead of hav
i ng global read cach i ng, where a logical u n it is one
or more devices configu red as one virtual device.

1 7

RAID Array Controllers

r'igure 7 MajJjJingfor a RAID Lel 'el 0 Arm)'

Thus, customers can specify fo r which virtual

devices they want cachi ng enabled.

The read and write-through cach i ng firmware

receives requests from other parts of the con troller

fi r m ware (e . g . , a host port , a device port , and the

Parity IWD firmware) and proceeds as f·()l lows.

For reads requests, the cachi ng firmware provides

I. The data poin ters to the cached request, i . e . , the

cache h i t

2 . T h e d a t a pointers for part o f t h e request, i . e . ,

a partial cache h i t , which means t h a t t h e remain

ing data must be retrieved from tbe device or

devices being requested

3. A status response of cache m iss, which means

that storage management m ust ret rieve the data

from the device or dev ices being requested

For write requests, the cac h i ng firmware offers

the cache manager data from the request. The cache
man ager p laces the previous data p o i n ters i nto the
read cache tables after the data is written t h rough

the cache to the devices. Fi rmware tel ls the device

port hardware where to find write data, and the

port hardware tra nsfers the data.

Read caching in the first version of the controller

fi rmware a l lowed the contro l ler to ach ieve tbe i ni

t i a l through p u t goals across the th ree co ntro l ler

platforms. The current software vers i o n , version

2.0, was s hipped i n October 1994 and exhibits even

greater through p u t performance. Table l shows the

1/0 performa nce fo r the t h ree Storage\Xforks con

tro l ler plat forms with read caching enabled.

I R

Table 1 StorageWo rks Control ler 1 /0
Performance with Read Caching

Read Requests Write Requests
Control ler per Second per Second

HSJ30/HSJ40 1 ,550 1 ,050

HSD30 1 ,000 800

HSZ40 2,250 1 ,500

Write-back Cachinp,-lbjonnance Aspects As
noted earl i er, when the cache modu le contains

bat teries, the memory is n o nvolatile for up to 100

hours. The Storage\Xforks con trol ler can use the

n o nvo l a t i le cache to increase contro l l e r perfor
mance by reducing latency fo r write request Parity

RAID p e rformance to a level s imi lar to that of RAID

leve l 0 (s i m ple d isk strip i ng) . The controller can

also u t i l ize the wri te-back cache to reduce the

latency of JllOD and RA I D leve l 0 disk configura
t i o ns. As with read cach ing, write-back cach i n g is
d isabled/enabled per logica l u n it.

The write-back cach i ng firmware controls the
usage of both a surviving controller's cache module

and a fai led control ler's cache· module. When i t

receives a write request, t h e contro l ler p l aces the

data i n the cache, marks the request as comple te,

and writes the data based on i n ternal con trol ler

firmwa re pol icies (write-back cach i ng). To provide

greater performance during Parity RAID operations

than s i m p le wri te-back caching cou ld p rovide, the
write-back c ac he firmware is a lso t ied to the Parity

lWO firmware .

Vol. (, No. 4 htll I'J'J4 Digital Tecbnicaljournal

The Architecture and Design of H'i-series Storage Works Array Controllers

ln addition to dealing with the continual prob
lem of control ler latency on write commands,

designers had to overcome the RAID level 5 sma l l
write penalty with parity updates to RAID set mem
bers. Write-back cach ing was chosen over RAID
level 3 hardware assists as a Parity RAID strategy
because RAID level 3 does not provide a wide range
of benefits for a l l customer workloads. Write-back
caching provides latency reductions for RAID and
non-IWD configurations. Write-back caching also
increases write-request throughput. For example,
the publ ished performance numbers for write

throughput with write-back caching enabled in ver
sion 2 .0 firmware appear in Table 2.

The use of write-back caching resu lted in a 20 to
30 percent increase i n write throughput for a l l plat
forms as compared to write-through caching. Before
d iscussing the effect of write-back caching on
latency for individual devices and for Par i ty RAID
arrays, the paper describes how the write-back
cache firmware was designed and tied directly to
Parity RAID firmware.

The features chosen for write-back caching were

extensively benchmarked against data integri ty
issues. The addition of settable t imers al lows cus
tomers to flush write data destined for devices that
are id le for a specific length of time. To reduce the
number of read/modify/writes required to update
parity on smal l write operations, designers tied
flush algorithms to RAID. Flush algorithms for write
back caching are vital to customer data integrity
ancl to latency reduction. The flush algorithms actu
ally al low Parity lWD to simu late RAID level 3 oper
ations because of the nonvolatile write-back cache.

As mentioned earlier, Parity RAI D configurations

suffer a penalty on small write operations that
includes a series of read and write operations and
XOR operations on blocks of data to update RAI D

parity. The write-back cache firmware was

designed with specific attributes to enhance Parity
RAID write operations in genera l , and not just to

Table 2 StorageWorks Control ler
Write Re quest Throughput
with Write-back Caching

Write Requests
Controller per Second

HSJ30/HSJ40

HSD30

HSZ40

1 ,350

900

1 ,850

Digital Technical journal Vol. 6 No. 4 Fall 1994

enhance small write operations. The designers
intentionally chose to overcome both the small
write penalty and the inheren t lack of high band

width that Parity RAID delivers.
The nonvolatile write-back cache modu le

afforded the firmware designers more choices for
Parity RAID write request processing and data flush

algorithms. The designers pursued techniques
to speed up all write operations by performing
write aggregations (i .e . , combining data from mul

tiple write requests and read cache data) in three

dimensions:

1 . Contiguous aggregation, in which the firmware
looks for consecu tive block requests and ties
them together i nto o ne device request, thus

el iminat ing separate device requests.

2. Vertical aggregation, in which the firmware can
detect two write operations to the same block,
thus el iminating one write operation.

3. Horizontal aggregation (for Parity IWD opera

tions on ly). This type of aggregation occurs
when al l data blocks within a Parity RAJD strip
are present in the write-back cache. I n such
cases, the firmware can write to all RAID set
members at once, in combination with the FX

chip (discussed l ater in this section) on-the-fly
hardware XOR operations duri ng the RAID set
member writes. The original request can cause
horizontal aggregation to take place if all blocks
within a strip are part of the first write request.
The firmware can also perform horizontal aggre
gation after processing several write requests. In

this way, the parity write operation directly fol
lows the data write operations. Horizontal write
aggregation potentially cuts physical device

access in half when compared to normal RAI D
write operations that require data members to
be read 2.B The resu lt is pseudo-RAJ D level 3 oper
ation , because the write-back cache is combined
with the horizontal aggregation cache policy.

The performance gain for individual disks and for
Parity RAID arrays from using write-back caching is
dramatic, result ing in h igher write t hroughput and
low latency The write-back cache actually smoothes
out differences in performance that are typical of
workloads that have d ifferent read/write ratios,

whetller or not Parity RAID is uti l ized.
Figure 8 shows the relative latency for a controller

with and without write-back caching enabled. The
configurations tested comprised individual devices

1 9

RAID Array Controllers

50

(j)
§? 40

0
0 w
� 30

KEY

WORKLOAD 1

J BOD ARRAY MODEL

D READ CACH E

0 WRITE-BACK CAC H E

WORKLOAD 2 WORKLOAD 3

PARITY RAID ARRAY MODEL

• READ CAC H E

0 W R I TE-BACK CAC H E

Figure 8 H�/40 Art'C�J' Latenq Comparisons

and Parity RAID u n i ts (in a five-pl us-one configu ra

t ion) . The performance measu rements were taken

from a versio n 2.0 I-JSJ40 array control ler.

Wor k load 1 has a read/write ratio of 70/30. i . e . ,
70 percent of t h e requests were read requests a n d

:)0 percent were write requests. Workload 2 has

a read/write ratio of 84/ l(>. Workload 3 has a ratio of

20/80 In al l workloa(IS, the latency for i nd iv idua l

devices and for Parity RAm u n i t s i s lower when

write-back caching is enabled than when only read
caching is enabled. I n fact, when write operations

dominate the 1/0 mix, l atency for Parity RAJD u n its
is the same as for the workloads in which read oper

ations are predominant'

RAID/Compare Hardware

Storage Works control lers contain a hardware Parity
RAI D ami data compare accelerator cal led FX, a gate
array that performs on- the-fly XOR operations on
data buffers. Parity RA I D ami data compare firm
ware use this gate array to accelerate Parity R A I D

parity calcu lations ami host data compare requests.
'T'he FX chip is progra m med to (1) observe the bus,

(2) "snoop" t he bus for specific addresses, (3) per

form the XOR operat ion to compare the associated

data on-the-fly with data in a private memory called

XBliF memory, and (4) w rite the data back i n to

the X BUF memory.

XOR operations can take p lace as data is moving

from buffer or cache mem ory to device ports or
vice versa . The FX can also perform d i rect memory

access (Di'vlA) operations to move the contents of

b u ffer or cache mem ory to or from XBUF memory.

20

The designers determined that hardware acceler

at ion of XOR operations t<>r Parity RAID firmware

wou l d speed up RAI D pari t y ca lculat ions and th us
fur ther improve Parity RAID l atency and through

p u t . The firmware also supports FX compare opera

t ions, which e l iminates t he need for SCSI-2 devices

that have implemented compare com mands and for

speeding up compare requests from hosts.

Cmnmon Hardware Platform

To prod uce a h igh-performance contro l l e r i n a l l

three performance d i mensions-latency, through

put, and clara transfer rate-the designers of

StorageWorks control l e rs faced the chal lenge of

crea ting a new controJier arch itectu re ami u sing
new techno logy. In addit io n , t hey bad to do so at

a reasonable cost.
A l though each has i ts own specific host i nterface

hardware, t he Cl, DSS!, am i SCSI contro l ler variants

share a com mon hardware core. Com m o n a l i ty

was desired to contro l the l levelopment costs and

sched u les for such l arge e ngineeri ng projects. To

del iver high performance and commonali ty, the

designers invest igated severa l cont rol ler archi tec

ture al ternatives. T he first archi tectu re considered

was s imi lar to Digita l 's HSC'iO-':)'i con trol ler, i ncor
porat ing s imi lar bus structures, processing ele

ments, and memories, b u t newer technology.
Figure ':) shows the HSC arch itect u re.0

The HSC architecture is a true m u lt iprocessor sys

tem . It contains a private memory for its pol icy pro

cessor, which manages the work that is coming

from the host p o rt i nterface ami queues t h is wo rk

to the device i n terface modu les. Data t hen fl ows

between the host port and device modu les to ami

from hosts. The modu les have two interfaces
(buses) for access to com m and processing and data
movement. These buses are ca l led the control mem

ory i n terface a mi the data memory i nterface. The
pol icy processor queues work to the host port and
device modules through the contro l memory i n ter
face, and t he n the modu les process the clara over

the data memory i nterface.

Using this arch itecture wou l d have been too
expensive. The control ler cost had to be competi
t ive with other pro d ucts in the i nd u stry, most

of w h ich current ly cost considera b l y l ess than t he
HSC contro l ler. The HSC bus arch itecture requ i red

t h ree d i ffe ren t memory interfaces, which wou ld
requ ire three d ifferent , poten t ia l lv large memories.

The designers had to pursue other options that

met the cost goals b u t d i d not significan t ly reduce

\1J/ G No. 4 /·all 1')94 D igital Tee/mica/ jourua/

CONTROL
MEMORY

<
CI BUS

>

DATA
MEMORY

The Architecture and Design of HS-series StorageWorks Array Controllers

CONTROL BUS (6.6 MB/S)

.·· I
I

L
POLICY DISK INTERFACE LOAD HOST INTERFACE PROCESSOR r-- DEVICE OR

8
TAPE INTERFACE
(UP TO 8 TOTAL)

8 r-- TERMINAL

DATA BUS (1 3 .3 MB/S)

Figure 9 Block Diagram of the HSC Architecture

8
I

1-
....:.....

SOl OR S Tl
{4 PER
INTERFA CE)

performance. They considered single internal bus
architectures, but during simulation , these options

were unable to meet either the initial or the long
term cost goals.

icy processor to access one memory whi le a device
or host port processor accesses the other memory.

The architecture achieves a lower overa l l cost
than the HSC architecture yet ach ieves similar

performance. The new architecture, with fewer
memories, does not significantly reduce the perfor

mance, while the newer technology chosen to
implement the contro l ler enhances performance.
The bus bandwidth of the new controller is much

higher than that of the HSC control ler. Conse
quently, a more cost -effective solution that uses

Figure 10 shows the controller architecture
option that became the common hardware base for
StorageWorks control lers. This architecture con
tains three buses ami two memories. A third smal l
memory is used for Parity RAJD and data compare
operations but does not drastical ly increase con

trol ler cost. The architectural design aJ Jows the pol-

,.---------, ,-------, ,.----------, ,.-----..., ;---
32-KB
INSTRUCTION
AND DATA CACHE

I
32-KB
NV RAM

I
i960
MICROPROCESSOR

I

PCMCIA
PROGRAM
CARD (2 MB)

I
DUAL
UART

IBUS BUS

TIMER
HARDWARE

I

1 6- OR 32-MB

CONTROL
REG ISTERS

I

BUFFER
MEMORY
(8 MB)

DRAB
MDAL BUS BUS)C===C=D=A=L=B=U=S=::::)I READ OR

EXCHANGER DRAB BATTERY
BACKED UP
WRITE-BACK
CACHE

CACHE
MODULE

I
HOST PORT
{CI , DSSI , SCSI)

NBUS BUS

DEVICE PORT
53C71 0
PROCESSOR

I
DEVICE PORT
53C71 0
PROCESSOR

DEVICE PORT
53C7 1 0
PROCESSOR

I
DEVICE PORT
53C7 10
PROCESSOR

Figure 10 HSx40 Controller Architecture

I
DEVICE PORT
53C71 0
PROCESSOR

I
DEVICE PORT
53C71 0
PROCESSOR

Digital Teclm icaljournal Vol. 6 Nn. 4 Fall 1994 2 1

RAID Array Controllers

a less-cost ly archi tecture can attain s imi lar to better

performance.

The extreme integration of hardware to the very

large-scale integration (VLSI) level a l lowed for a

much smaller enclosure than that of the HSC control

ler, even with a dual-redundant controller configura

t ion (see Figure 3). A StorageWorks dual-controller

configuration measures 56.5 by 20.9 by 43.2 centi

meters (22 by 8 by 17 inches), which is approxi

mately one-tenth the size of the HSC: control ler.

Common Controller Platform The common con
trol ler platform consists of the control ler withou t

the associated host port. The common core of hard

ware consists of the policy processor hardware, the

SCSI-2 device port hardware, and the cache module.

The control ler-specific host port interface hardware

i ncludes either the CI, the DSSI , or the SCSI interface.

PoliLy Processor Hmdware The StorageWorks

contro l ler pol icy processor is Intel 's 2)-MHz i960CA

m icroprocessor, which contains an i n ternal instruc

t ion cache and is augmented by a secondary cache

external to the processor. The secondary cache

rel ieves the potential bot t leneck created by shared

memory between the policy p rocessor and host/

device port processors.

The designers had to make trade-offs in two

areas: the memory speed/cost and the nu mber of
buses. After simulation, the external instruction

and data cache showed a significant performance

improvement, given the chosen shared-memory

architecture. The cache covers the fi rst 2 MB of

bu ffer memory, where policy processor inst ruc

t io ns and local processor data structures reside and

where most of t he performance gain for the pol icy

processor wou ld be ach ieved .
The pol icy processor uses the J BUS exclusively to

fetch instructions and to access t he program stor
age card, the NVRfu\1 , the DUART, and the t imers.

Program Storage Sto rageWorks firmware is con
tained on a removable program card f(>r qu ick code
upgrades and to el im i nate the need for a boot read

only memory (ROM) on the controller. The program

card is a PCMCIA, 2-MB flash electrical ly erasable,

programm able , read-only memory (EEPROM) card

that contains the firmware i m age . Designers chose
the PCMCIA card to faci l i tate code updates in the

field, where host-based down l i ne loading of

firmware was not supported . Although the PC:MCIA

card cost m o re than EEPR0.\1 chips attached to the

22

modu le, the designers fel t that the benefits o f such
a design outweighed the additional cost.

On each initialization, the control ler reads t he

fir mware image on the program card and cop ies the

image to the shared memory. The firmware exe

cu tes from t he shared bu ffer memory.

Dual UART (IJUART) The DUART is used for two

reasons:

1. Maintenance term inal connect ion. The m a i n

tena nce terminal is a m eans of entering con

trol ler system management commands (with the

com mand l i ne in terpreter, which is the user

interface for con trol ler configuration manage

ment) and is a lso a status and error reporting

interface. Designers made extensive use of this

i n terface for debugging control ler hardware and

fi rmware. Use of t he maintenance terminal con

necti o n is optional . The i nterface rem a i ns on the

contro l ler so that users can d irect control l.er

management and status reporting , if desired.

2. Failover com m u nication between two con trol

lers in a dual -redundant configuration . The com

m unication path is u sed to share configu ration

and status information between the control lers.

Shared Buffer and Cache ;ll/emOIJ' The dyna mic

random-access memory (D RAM) b u ffer (or shared
memory) has at its heart the (lynamic RANI and arbi

tration (DRAB) chip. This chi p supports the bu ffer

and cache memory accesses from the policy pro

cessor and from the host and device ports. The data

t ransfer rate supported by the shared memory is

approximately :)') megabytes per second (MB/s)

The D RAB chip contains error-correcting code
(ECC) hardware to correct s i ngle-bit memo rv, to
detect m u lt ibi t errors, and to check and gen erate

bus parity. This feature a l lows the control ler to
surv ive partial memory fa i l ures, which w<Js a fault

tolerant goal for the control ler.
The decision to use DRAM chips i n the memory

design rather than static random-access memory
(SRA1Vl) chips led to the use of ECC. DRA.i\'ls were

chosen because of their cost and power savi ngs
over equ ivalen t SRA M . However, because the

designers expected large amounts of DRAM (as

much as 40 MB) to be present on a control ler and i ts
associated cache modu le , the stat ist ical error prob

abil it ies were h igh enough to warrant t he use of

ECC on the memory. The combination of DRAM and

ECC was less costly than an equivalent amount of

Vol. (> No. 4 hill I'.I'J4 Digital Tecbuical journal

The Architecture and Design of HS-series StorageWorks Array Controllers

more reliable SRAM. The use of pari ty on the buses
is a standard feature in all Storage Works controllers.
The bus parity feature provides further error detec
tion capabi l ity ou tside the bounds of the memory
because it covers the path from memory to or from
external host or device interfaces.

The DRAB chip also controls access to the cache
mod u le in conjunction with slave DRAB chips on

the cache module associated with the control ler.
These DRAB chips provide refresh signals for the

DRAM buffer or cache memory that they control;
whereas, the master DRAB on the controller module
provides arbitration for cache accesses that origi

nate from the various sources on the contro l ler
mod u le . Slave DRAB chips can also be accessed by

the dual-redundant partner control ler, depending
on the two controller LOCK signal states.

The control ler firmware uses 8 MB of shared
buffer memory to execute the program image, to

hold the firmware data structures, and to read and

write-through cache data (if no cache modu le is
present). The i960CA pol icy processor and the host
and device data processing elements on the N BUS
can all access buffer memory.

Cache Jl!lemory Each cache memory module
contains one slave DRAB chip and 16 or 32 MB of
DRAM, and also two ports into the module (one

from each control ler) for use in failover. Each cache
module optionally contains batteries to supply

power to the DRA..l\1 chips in the event of power

failure for write-back caching and Parity RAID use.
The cache modules are interchangeable between

contro l ler types.

Parity RAID XOR and Compare Hardware The
Parity RAID XOR and compare hardware consists of
the FX gate array and 256 kilobytes (KB) of fast
SRAM . The FX al lows concurrent access by SCSI-2

device port hardware and the policy processor. The
FX compares the XOR of a data buffer (512 bytes of
data) that is entering or exiting an attached device
with the XOR buffers in the fast SRA..M. The pol icy
processor uses the FX to perform compare opera
tions at the request of a host and perform DMA
operations to move data to and from memories.
This hardware is common across a l l the control ler
platforms for Parity RAID and compare firmware.

SCSI-2 Device Port Hardware The device ports
(three or six, dependi ng on the controller model)
are control led by Symbios Logic (the former NCR

Digital Tecbnicaljourrwl Vol. 6 No. 4 Fall 19')4

Microelectronic Products D ivision of AT&T Global
Information Solutions Company) 53C710 SCSI-2

processor chips. The SCSI-2 processor chips reside
on the NBLJS and access the shared-memory cache

for data structure and data buffer access. These pro

cessors receive their work from data structures in

buffer memory and perform commands on their
specific SCSI-2 bus for read or write operations.

The Sym bios Logic chip provided the most pro
cessing power, when compared to the other chips

available when the control lers were designed. The
designers felt that direct control of SCSJ-2 in terfaces

by the policy processor or a separate processor
was too costly in terms of processor utilization

ancl capital expense. The Symbios Logic chips do
require some pol icy processor ut i l ization, but the

designers considered this acceptable because high
performance architectural features in the pol icy

processor hardware compensated for the extra pro
cessor uti l ization.

The SCSJ-2 device port supports the SCSI fast,
single-ended , 8-bit interface. t The data transfer
rate supported by this interface is 10 M B/s.

Host Port Hardware The host port hardware

is ei ther a Cl, a DSSI , or a SCSI interface imple

mented with gate arrays or Symbios Logic 53C720
SCSI-2 processors. The host port hardware, the only

noncom mon hardware on a StorageWorks con
troller, requires a separate platform to support each
host interface.

The CI interface is made up of a gate array and

CI interface hardware that performs DJVIA write

or read operations from shared memory or cache
memory over the NBLJS. The maximum data transfer
rate supported by the Cl hardware is approximately
8 MB/S.

Tbe DSSI interface util izes a Symbios Logic

53C720 chip coupled with a gate array and DSSI

drivers to receive and transmit data to or from the

DSSI bus. The DSSI interface is 8 bits wide, and the
maximum data transfer rate supported by the DSSI

hardware is 4.5 MB/s.
The SCSI interface also uses a Symbios Logic

53C720 chip couplecl with differential drivers to
provide a SCSJ-2, fast-wide (i .e . , 16 -bit) d ifferential
interface to hosts. The maximum data transfer rate
supported by the SCSI-2 in terface is 20 MB/s for

fast-wide operations.

Table 3 shows tl1e current (version 2.0) maxi

mum measured (at the host) data transfer rate per
formance numbers for StorageWorks control lers.

23

RAJD Array Controllers

Table 3 SCSI-2 Host I nterface Performance

Contro l ler
Read Data Transfer Rate
(Megabytes per Second)

HSJ30/HSJ40*

HSD30

HSZ40**

6.7
3.2

1 4

' I n a mult ihost environment

" Measured for t h e HSZ40-B controller

Summary

The Storage\XIorks H S-series array contro l lers were

des igned to meet the storage subsystem needs of

both Digital and non-Digita l systems. t h e reby ente r

ing the world of open systems. The arch itect ure for

t he HSJ:)O, HS]40, HSD30, and HSZ40 cont rol lers has

ach ieved the in i t ia l project goa l s and prov ides

1 . Open systems capabil ity A SCS!-2 device interface
a l lows many types of disk, tape, and optical

devices to he at tached to the HSJ;){), HSJ40. and

fJSD30 contro l lers . The HSZ40 control ler. wh ich is
curren t ly a d isk-only control ler, provides a scsr-2

host i nterface that al lows the contro.l ler to be

attached to Digital a nd non-Digita l computers .

2. High ava i labi l i t y. Co n tro l ler fau lt tolerance and

RAID firmware y ie lded a highly avail able

StorageWorks storage subsystem .

24

The d ua l - red umlant contro l l.er configurat ion
a l lows each of a pair of active control lers to

operate i ndependent ly with host systems. whi le

s haring device ports, configuration i nformation,

and statu s . Th is (lesign al lows both control lers

to achieve maximum performance. The d ua l

red u ndant configurat ion also provides fau l t
tolerance if o n e control ler fai ls, beca use t h e
surviving control ler serves t h e fa i led c o n t rol

ler 's devices t o t h e host compu ters. T h e d ual
con t ro l l e r configurat ion , com binnl w i t h

StorageWorks control ler packaging, resu l t s in
a highly ava i lable contro l l e r configu rat ion with
bui l t - i n fau l t t olerance , error recovery, and bat

tery backup features.

Parit y RAID control ler firmware, combined with

StorageWorks device packaging, a l lows t<H· h ighly
ava i l able disk co nfigurations that a re less cost ly

than m irrored configurations. FurtiH:rm orc.

Parity lWD firmwan: p erforms automatic Parity

RAID management and error recovery fu nctions

Write Data Transfer Rate
(Megabytes per Second)

4.4

2.8

8.0

in the even t of a fai lure and u t i l i zes spare device

pools in conjunction with user-defined Paritv
RAID configurat ion manage m e n t po l icies . The
SrorageWorks Parity R A I D impl ementat ion

exceeds the requ i rements of the HAll) Adv isory
Board ti>r R A I D ava i l ab i l i ty features.

3. H igh perform ance . The HSJ30/HS.J40, HSD:)O, and

HSZ 'iO contro l l ers achieved the respective i n i t i a l

perform a nce goa ls of 1 , 100, HOO, and 1 ,400 r;os
per second . The control lers m e r the l ow request

laten cy goa l s by stream l i ning firmware \vhere

possi bl e ami by introduci ng write-back cachi ng.

Write-back caching firmware d rama tical ly

redu ces la tency on a l l write requests, and write

back cache hardware prov ides bat tery backup for

data i ntegrity across power fa i l u res. Further
more. the wri te-back cache overcomes the RAI D
level ') smal l-write penalty a mi high data transfer

rate i nefficiencies ancl thus prov ides high perfor

mance with Pa r i ty RAI D d is k configurati on s.

StorageWorks Parity RAID firmwMe i m plements

many of t he l{r\ 1 1) Adv isory Bo�ml opriona I perfor

mance features to prod uce a h igh-perfo r m a nce

RAID s o l u t i o n .

A com mon c o n t ro l le r p rocessing co re was

success fu l l y developed for l he f iSJ 50/JlSJ40,

HSD:�O. and HSZ40 control lers. ,VIo re than H5 per

cent ot t he fi rmware is com mon to ; i l l three con

trol le r p l a t fo r ms, w h i c h a l lows fo r ease ot

m a i ntenance and for t he same look and feel for

customers. The arch itecture and t he t echnology

used resul ted i n a core c o n t ro l l e r clesign that

suppo rt s a h igh c lara transfer rate for a l l
S to ragcWorks contro l ler platforms

These ach in-crnenrs represent t h e l a rge e ngi

neering inve:;t m<::nt that Digi ta l has m acle to move

into the open s,·stems market with new techn ology
for its sto rage sol u t ions. These contro l ler p l a t forms

are the basis for fu t ure co ntro l l e r a rchi tectures and

l!rJ/. (, ,\'u. i !-it// !')':)4 Di,�ital Tecllllica/ journal

The Architecture and Design of HS-series StorageWo1·ks Array Controllers

platforms that util ize the knowledge and experi

ence acquired d u ring the deve lopment of the

Storage Works l-IS-series array controllers.

Acknowledgments

The StorageWorks array controller project was the

cooperative effort of a large number of engineers

who sacrificed considerable personal time to

achieve the project goals. The fol lowing people and

groups contributed to the success of the product:

Bob Black ledge, D iana S l1en , Don Anders, Richard

Woerner, El len Lary, J im Pherson, Richard Brame,

Jim jackson, Ron McLean, Bob E l l is, Clark Lubbers,

Susan E l kington, Wayne Umland, Bruce Sardeson,

Randy Marks, Randy Roberson, Diane Edmonds,

Roger Oa key, Rod L i lak, Randy Fu ller, joe Ke ith,

Mary Ruden, lVlike Richard, Tom Lawlor, jim

Pu lsipher, Jim Vagais, Ray Massie, Dan Watt, Jesse

Ya ndell , Jim Zahrobsky, M i ke Wa l ker, Tom Fava,

Jerry Vanderwaal l , Dave Mozey, Brian Schow, Mark

Lyon , Bob Pemberton, Mike Leavitt, Brenda Lieber,

Mark Lewis, Reuben Martinez , J oh n Panneton, Jerry
Lucas, Richie Lary, Dave Clark, Brad Morgan, Ken

Bates, Pau l Massigl ia , Tom Adams, J i l l Gramlich,

Leslie Rivera, Dave Dyer, Joe Krantz, Kel l y Tappan,

Charl i e Zu l lo, Keith Woestehoff, Rachel Zhou,

Kathy Meinzer, and Laura Hagar. Thanks to the CAD

team, the Storage Works packaging and manufactur

ing team, the software verification team, and the

problem management tea m. A final thanks to our

OpenVNIS and DEC OSt/1 operating system partners

and to the corporate test groups, a l l of whom

worked with our engineering team to ensure i nter

operabi l i ty between the operating systems and the

control lers.

References and Notes

1 . information Systems-Small Computer Systems

lnteJface-2 ('>C�1-2), A.t'ISI X1 .131-1994 (New York:

American National Standards Institute, 1994).

2. D. Patterson, G. G ibson, and R. Katz, "A Case for

Redundant Arrays of Inexpensive Disks (RAID) ,"
Report No. UCB/CSD 87/391 (Berkeley: University

of California, December 1987).

3. The RAI D level 5 smal l-write penalty results

when a small write operation does not write a l l

t h e blocks associated with a parity block. This

situation requ ires disk reads to recalculate parity

that must then be written back to the RAID level
5 unit to achieve data redundancy.

Digital Techuica/]ounwl V!Jf. () No. 4 Fall I'J'J4

4. P Massigl ia , ed . , The RAJDbook: A Source Book

for Disk Array Technology, 4th ed. (St. Peter,

Minnesota: The RAID Advisory Board, September

1994)

5. P Biswas, K. Ramakrishnan, D. Towsley, and

C. Krishna, " Performance Analysis of Dis

tributed F i le Systems with Non-Volatile Caches,"

ACM Sigmetrics (1993).

6. Parity !WD unit reconstruction of data and parity

from a failed array member means regenerating

the data block-by-block from the remaining array

members (see Figure 6) and writing the regen

erated data onto a spare disk. Reconstruction

restores data redundancy in a Parity RAID unit.

7 Metadata is information written i n a reserved

area of a disk. The information, wh ich takes up

approximately 0.01 percent of the total disk

capacity, describes the disk's configuration and

state with respect to its use i n a Parity IWD unit.

8. P. Biswas and K. Ramakrishnan, "Trace Driven

Analysis of Write Caching Pol icies for Disks,"

AC.M Sigmetrics (1993).

9. R. Lary and R . Bean, "The Hierarchical Storage

ControJJer, A Tightly Coupled Multiprocessor

as Storage Server," Digital Technical journal,

vol. 1 , no. 8 (February 1989): 8-24.

25

Cbristopb J Bufller I

Policy Resolution in Workflow
Management Systems

One crucial Junction of a Ll'orkflow management .�) 'Stem (W/�11.\) is to assign tasks

to users wbo are eligible to cany them out. Except in simple u•orkjlou· scenarios,

roles such as secretary and nwrwger are not a sujficient basisfor determining eligi

bility AdditionallJ; wr,I!Ss are deployed not only in group settings by small compa

nies but also worldll'ide by large ente1}Jrises. Since local lau·s and business policies

bave to be followed, task assignment policies for tbe same tasl? geueml�J' differfrom

country to counti�J' and, therej(Jre, must be specified locally The Policy Resolution

Architecture (PRA) 1nodel provides more generality and e:xpressil'eness than role

models do and at the same time supports the independent .ljJeufication of task

assignment policies in different parts of an enterprise. PRA can be used to model

arbitrary organization structures and to define realistic task assignment (eligibil

ity) rules by means of precise�v defined OJganizational policies. Tlm�� PRA provides

real-world organizations witb a precise, silnple means of e"ipressing tbeir complex

task assignment policies.

A workflow management system (W F;\1S) i s a soft

ware system t h a t m a n a ges the flow of work

between participants or u sers accord i ng to h>rmaJ

speci fications of business processes cal led work

flows. A workflow specifies tasks to be performed

ami t heir exec u tion order. Addit ional ly, a work flow

specification defi nes the internal flow of data

between tasks as wel l as al l appl ications required to

carry our the t as ks. For example, a travel exrense

rei m bursement workflow specifies the tasks of fi l l

i ng , checking and signing a form . a n d rei m b u rsing

an amount. This wo rkJlow specifies that the fo rm

m u st be signed before an amount is rei mbursed .

The workflow specification a l s o t l efines the flow of

the expense form between tasks a nd the required

spreadsheet app l ication. F i n a l ly, for each task of a

workflow, some ru l e bas to be i n p lace that speci

fies the users who are el igi b le to carry o u t the tas k .

This set of e l igible u sers is deter mined at ru n t ime,

and the task i s subseque n t l y assigned to them.

One of the key issues in successfu l l y d e p l oying

WFtviSs in a n enterprise is the correct assignment

of a given t a s k to e l igible users. An e l igible user i s

o n e who is capab.le o f a n d respo nsib l e for carryi ng

out an assigned task. This d ist inction is impor

tant because not every user who is capable of per

for m i ng a task is necessari l y respo ns i ble fo r i t . The

success ful completion of a task. however, often

requ ires that crucia l , irreversi ble decisions be made

by a person who is responsibl e fo r the task . Making

t h e right decisions and then carefu l ly and responsi

bly carrying out the task is essent ia l to conducting

busi ness successfu l ly.

The criteria used to determ i ne an el igible user t< >r

a task are manit< > l d . A user m u st have a specific set

of capab i l i t ies to he able to carry o u t t he task.
Addit i ona l l y, the posit ion of a user in t h e orga n iza

t ion h ierarchy an d/or the reporting structure of the

orga nization can determine i f the user is resronsi

ble for the task. f u rthermore , l i m i t s r l aced on

a u s er's t lecis i o n - m a k i ng a u thoritv can affect e l igi

bi l ity. For example, not every salesperson is au t ho

rized to accept an o rder that leads to a signi ficant

in crease in m a n u fact1 1 r i ng output . Such an order

requires speci a l attention a n d i n ternal coord i

n a t i o n by a sen ior sales representat ive . When

cost -optimized task assignments are made, the

experience of the user as wel l as the user's s k i l l set

has to be t a ken i nto consid erat i o n . Highly experi

enced users are in most cases expensive resou rces,

hut usu a l ly they can com plete tasks faster than

users with average ex perience . Although users

with either level of experience may have sufficie nt

experience to carry out a sp ecifi c task, if dea d l ines

Vol. (, No. 4 !'off f'J'J4 Digital Tecbuical journal

are involved or extreme caution with respect to
qua l i ty is necessary, a highly experienced user
might be appropriate. ln such cases, the additiona l
cost would be justified .

The previous discussion demonstrates the neces
sity of a precise defin ition of el igible users for a
given task. Such a definition, i .e . , set of task assign
ment rules, should contain a l l the criteria used to

determine eligible users for the task . Early in the
development of Digital 's Objectflow WFMS prod
uct, the concept of roles was considered sufficient

to model the assignment of tasks to users . 1 How
ever, an analysis of distributed enterprise-wide pro
duction workflows clearly showed that using roles
as the only assignment mechanism has l imited
value in determining e ligibil ity 2 The need for a far
more expressive, general, and flexible approach
became obvious. The analysis also revealed that
workflows are often reused in different parts of

an enterprise. A prominent example i s the travel
expense reimbursement workflow, which is dis

cussed throughout this paper. Although a work
flow is reused, however, the task assignment

policies may differ greatly in the various parts of an
enterprise. This difference is due to the need to
adhere to local laws and/or to business-related devi
ations from the general ru les.

Based on the requirements derived from several
case studies of complex workJiows, the Pol icy
Resol ution Architecture (PRA) was developed to
provide a comprehensive way of specifying task
assignment rules. 2 To support the fact that di.fferent
parts of an organization may require different
assignment rules, PRA and i ts implementation were
designed as separate components. PRA incorpo

rates three major elements and thus provides

• Concepts that enable the model ing of any orga
nization structure (not just roles and groups)
without prescribing structures that are applica
tion dependent.

• Task assign ment rules as entit ies in themselves,
separate from a workflow specification. This
makes it possible for each of the d ifferent parts
of an enterprise to have its own set of task assign
mem rules for the same workflow.

• A language that enables the expl icit specification
of organization schemas and task assignment
rules. Specifications are processed by a compo
nent cal led the policy reso lution engine during

workflow execution.

Digital Techllicaljournal Vol 6 No. 4 Fa/1 1994

Policy Resolution in Workflow Management Systems

Before explaining PRA i n detail and providing the
rationale for its development, the paper i ntroduces
the key concepts of workflow management. This

introduction presents a seemingly simple workflow

that specifies travel expense reimbursement, which

is later used to introduce the design objectives of
PRA. Note that a real travel expense reimbursement

workflow for production is by far more complex
than the example used in this paper. A large dis
tributed enterprise endeavors to reuse the same

workflow in all of its parts because reuse faci l itates
administration and leverages the development
investment. At the same time, such an enterprise
probably sponsors numerous business trips, which
makes the travel expense reimbursement workflow
an excellent candidate to use as an example.

Workflow Management

This section introduces a model of workflow man
agement. The discussion begins with a survey of
prel iminary work. The survey suggests the motiva
tion for workflow management and enumerates
some areas in which workflow management is
deployed. The key concepts of the workflow model

are then used to model a workflow example, i .e . ,
the travel expense reimbursement workflow. The
section concludes with a definition of workflow
management systems.

Historical Survey

Looking back i n history reveals that workflow man
agement has many roots. The most important are
office automation, software process management,
manufacturing, and transaction processing. The fol
lowing short su rvey of achieved resu lts is given
to help the reader understand the motivation
for workflow management. The discussion also
explains the choice of workflow management con
cepts. The l ist of previous and related works indi

cates the range of literature that exists.

Office Automation One of the primary roots of
workflow management is undoubtedly office
automation. Early research led to the development
of models and tools to support office workers. :1-Y

What emerged were not only desktop applications
that imitate concepts such as in basket, out basket,

forms, and documents but also models of the pro
cedures that the office workers fol low while doing

their jobs. 1o· 1 1 Furthermore, systems were devel
oped that execute the office procedures to actively
manage the flow of work within offices. Il. l�

27

Workflow Models

Software Process fl!lodeling A second m ajor root

of workflow m an agem ent is soft wa re process m od

eling anll execution. 1� -25 The focus of research in this

area is the a u tomated support of software deve lop

ment processes. Concepts com prise process mod

els l i ke the waterfa l l m ode l or th e s pira l model,

del iverable colle, i nstallation and operat ion manu

a ls , requ i reme n ts docu men ts, a nd test cases 21•.r

JV!anufacturing Trad it i o na lly, fo r m a l i zed proce

(l ures t h a t are exe cuted re p eated ly are i n l1erent to

manu factu ring, another root of workflow m anage

ment. M a n u facturing i nvolves not o n ly product ion

processes b u t a lso preprodu ction procedures start

ing fro m , for exa mple , the release of compu ter

a ided d es ign (CAD) draw ings to t h e p rep ara ti on of
shop floor sched u les . 2K- <I

'fransaction Processing Another imp ort a n t area

that in fl uenced the devel opmen t of workflow

management is transaction processi ng. After the

concept of atomici ty, consistency. iso la t i o n , a nd

llurabi l i ty (ACID) transactions was d evel oped .
resea rc he rs p rop osed m ore advan ced transaction

mod els for processing several i n terdepen d ent tasks

that must be transact io na l and recovera hfe .-<� -.w

Coordination Theory, Entetprise Modelil lf!., and
Speech Act Tbe01y Another area of research t h a t
con tr ib uted to the idea of wo rkfl ow ma nagement i s

coordi nation theor y. ;o. '1 Th i s a rea looks a t p ro

cesses as o ne form of coord i na t ion a n d tries to

apply i nterd isciplinary research res ul ts to it . l'.he

research area of en terp rise mode l ing focuses on

the mod el i ng of the w h o.le mu l t ifaceted enter

prise . •2 •'> En terpri se act ivities are one p a rt of a n

enterprise that d rives the enterprise processes. The

s peech act theory is an attempt to m ode l the con

versation between h u m ans. '" Some research fo l
lows the direc t ion t h a t a workflow is an i n terwoven

cha i n of speec h acts. '1

Ear�J ' AjJjJii cation-indej>e nde n t Appmachcs In
addit ion to the applicat ion-sp ecific roots of work

flow manage ment, ear ly approaches th at mode led

p rocesses i ndependent of appl icat ion a reas pro

vided motivation for workflow m a nagement.'�-' i

The term process appears in a l l the areas of work
mentioned above. Al so, a l l th ese research areas deal

with data, e.g. , docu m en ts , Cr\D d rawings , and
orders. Most approaches h ave some notion of sub

ject or agent . The question arose among researchers,

Does each area need its own defi n i t i on of terms.

2H

model i ng l a nguage . and execu tion mechanism, or

is it p oss ib le to IJrov ide general concepts that need

to be customi zed o n ly for a specific area of applica

tion' This question triggered the devel opment of

the co nce pt of work f low, whose goal it is to serve

as the general and custom izable concept.

Workflow Management Concepts

After the spec i fic appl i ca tio n semant ics (e . g . . docu

ments. office workers, release procedu res, and CAD
clrawings) have been a bstracted , the basic concepts

of workflow m anagement can be disti l l e d from the

vari ous appro aches men tioned above . Al.t hou gll

workfl ow m anage me n t i s i nd ependen t of specific
applicat io n semant ics, it does support a l l the appli

cation areas cited . It prov ides a n i ntegrated se t

of u n derlying con cepts that can b e custo m i zed

to m o d e l the se m antics of each appl icati o n area.

Workflow man age ment i s ana l ogous to rel ational

database system s . Such systems know how to
model a n d i m plement tables and h ow to process

queries: h owe ve r, they do not know about t he

spec if ic concepts of an appl i cat ion area that a re

im p leme nted h�· user-defined tables, e . g . . add resses

and orders.

The fol lowing l ist i n t roduces the basic concepts

of workflow management by e nu merat i ng the m ajor

aspects that make up a workflow specification : 1·•

• Funct ional aspect . The fun c tiona l aspect

describes what has to be done , without sa)'

ing hovv, by w h o m , and with which data. The

fu nctional aspect provides t wo concepts: ele

m enta ry wo rk flows and compos ite workflows.

E lementary workflows a re tasks that can he ca r

ried ou t by one perso n . progra m, or mach ine.

For b revi t y. e lementary workflows are cal led

steps. Com posite workflows bu nd l e e i ther

element ary workflows or other co mpos i te

workflows to h i gher- level t asks . In th i s way.

a re use h ie ra rc hy is bu i l t . s ince the b u nd led
wo rkflows m ay very well stand by themse lves.

Gene ra lly. these h igher- level tasks can no lo nger

be ach i eved by a s i ngle person, progra m .

or machine h ut req u i re severa l such ent ities.

A workf low that hu n d les other workf lows refer

ences them. As a n a m i ng convention, a work

flow tha t is referenced by some other workflow

is c a l led a subworkf l ow. The referen cin g work

f low is ca l led the supe rwo rk fl ow. The topmost

workflow of a reuse hie rarchy is called the top

level wo rkf low.

l'rJ/. (, No. i 1-ii/1 I')'J i Digital Tecbuicnl journal

• Behavioral aspect. The behavioral aspect

describes the execution order of the subwork

flows of a workflow. Constructs that describe

the order include sequence, conditional branch

ing, parallel branch ing, ami the looping and/or

joining of parallel or conditional execution paths.

• Informational aspect. The informational aspect

is twofold: first, it descri bes the local variables of

a workflow and the external data referenced;

second, it describes the flow of data fro m sub

workflow to subworkflow.

• Organizational aspect. The organizational aspect

describes who is eligible tO carry out a step. The

"who" can be a human (e .g. , an office worker) ,

a program (e.g. , a compiler in a software pro

cess), or a mach ine (e .g . , a cell in a shop floor).

The term user was chosen to represent all three.

Most available W FMSs offer the concept of roles to

model the organizational aspect. A role usual ly

groups a set of users. A t run time, tasks are

assigned to roles and all users grouped by these

roles are assigned the task. Although this method

of task assignment is adequate fo r certain work

flows such as departmental workflows, as shown

later in the section Task Assignment in a Travel

Expense Reimbursement Workflow, roles are not

sutficient to hand le workflows that are deployed

in an enterprise-wide or i nternational setting.

The l i terature discusses additional aspects, e .g . ,

a historical aspect and a technological aspect.""

The h istorical aspect is used to specify the kind of

inform ation to be stored in a historical database

dur i ng the execution of a workflow, e.g. , starting

ti mes or val ues of variables. Instead of h aving the

default strategy of saving a l l data, the workflow

specifies in the historical aspect only the important

data that must be stored . The technological aspect

a l lows the definition of which application program

or programs are available to carry out a step. At run

time, these appl ication programs are made avail

able to the user. In pri nciple, it is not possible to

enu merate all necessary aspects completely in

advance. Dep ending on the appl ication area to be

modeled, add itional aspects might appear and

require support.

The paper now shows how the key concepts

of workflow management can be appl ied, i .e . , cus

tomized, to model a specific workflow type. The

example used is a sample travel expense reimburse

ment workflow.

Digital Teclmicaljournal Vol. 6 No. 4 Fall 1994

Policy Resolution in Workflow Management Systems

Travel Expense Reimbursement Worliflow

Figure 1 shows the graphical representation of

a simpl ified workflow for the reimbursement

of travel expenses. (Examples of workflow lan

guage can be found in the l iterature. '''(') The work

f low consists of four steps: (1) fi l l , (2) check,

(3) sign, and (4) reimburse. The graphical represen

tation shows the fu nctional aspect (task strucmre)

as ovals and the behavioral aspect (control flow) as

solid arrows. The informational aspect (data flow)

is d isplayed as forms; dotted arrows indicate the

direction of the flow of data. The organizational

aspect is omitted since the paper will focus later on

t h is topic. The technological aspect is represented

by icons of the software appl ications that are avail

able to carry ou t the steps. The historical aspect is

represented by icons that symbolize logs in wh ich

information must be recorded.

Step 1 of the travel expense reimbursement

workflow, the fi l l step , enables a user to enter the

relevant expenses incu rred during a business trip

into an electronic travel expense form. After a user

has finished entering the data, validation must take

place. The check step enables a user to look at the

contents of the travel expense form . This user is

prompted to val idate the contents but cannot

change entries. If the user who checks the form

detects an error, the form is sent back to the user

who in itially filled it out, with a note that explains

the reason fo r rejection. Otherwise, the form is for

warded to the next user who has to sign the form to

approve the amount. After the sign step is com

plete, the amount can be reimbursed. The last step,

reimburse, enables a user to add the amount spent

to the next paycheck of the user who requested

reimbursement.

Th is sample workflow is intentionally kept sim

ple because beginning with the next section, the

paper focuses solely on task assignment ru les. In

a real organ izational setting, the workflow would

involve more steps and additional execution paths.

For example, a user who has to sign the form m ight

detect an error. In this case, as in the checl< step, the

fo rm would be sent back to the user who initially

fil led i t out.

Workflow Management Systems

Managing the flow of work among users is done by

a software system cal led a workflow management

system (WFMS). A WFMS contains a l l the specifica

tions of the workflow types (e.g . , a travel expense

29

Workflow Models

n�OTE

: - - - - - - - - -u-- - - - - - - -:
Travel Expense Reimbu rsemenl

KEY

C)

[[§]
Q

' '

' ' '
Q Q

l '" " i o C J
TASK

CONTROL FLOW

DATA FLOW

ELECTRONIC FORM S P R EADSHEET
APPLICATION

I N FO R MATION LOG

' ' '
Q Q Q

l o o i o C J

MONEY TRANSFER
AP PLICATION

Figure 1 Travel E\pense Reimbursement Workflow

reimbursement or a capital equ ipment order) that
are modeled and released for production . If a user
issues a request to start a workflow (e .g . , if , after
a business tr ip, a traveler starts a travel expense
reimbursement workflow), the WFJVIS creates an
instance of the requested workflow type. Of course,
more than one i nstance of the same workflow type
can exist s imul taneously. A WFMS assigns the steps
of a workflow to users according to the specified
order of the behavioral , funct ional , and organiza
t ional aspects.

In genera l , a WFJVIS performs the fol lowing
act ions to execute a workflow instance:

• Determine the next steps to be executed .

• Determine the el igible users for these steps.

• Assign steps to el igible users.

• Wait for the result of each step.

• Transfer the resu l t back to the step's superwork
flow and record the step as complete.

The WFMS repeats these actions unt i l all steps of
a workflow are executed . "' ''-)� This l is t of actions
has to be sl ightly modified if. in addition to steps,
a workflow contains composite workflows in its
l ist of subworkflows. In this case, the subworkflow

30

is not assigned to users and the I ist of actions is
appl ied to each of the subworkflows.

Each user who can potentia l ly be i nvolved in
a workflow i s connected to a WFMS by a private
work I ist, which is a graphical representat ion of
a I ist of steps assign eel to the user. Each en t ry in a
user's workl ist represents a task the user is el igible
to carry out. A user can participate i n more than
one workflow at the same t ime. Normal ly, the user
is free to choose from the workl ist any i tem on
which to start . In wel l -designed systems, the WFMS
automatica l ly starts the appl ication programs that
the user wil l requ ire to accompl ish the work. In
th is way, the user can begin work immediately.

Almost a l l prototype i mplementations or prod
uct developments a l low the modeling of the four
main aspects described previously. The J ist of work
flow management systems is growing rapid ly, and
references to relevant l i terature are read i ly avai l
able. 17'7-!' 1 References to l iterature that describes
the deployment of workflow management systems
in an application area are rare, however.'J .(,J .(,)-(,"

The reminder of the paper focuses on the orga
nizat ional aspect of workflow management. The
paper d iscusses the derivation of the requ irements
that concepts of th is aspect m ust meet and then
introduces PRA as the model whose concerts

\In/. 6 Nn. 4 Fall 1994 Digital Teclmical journal

address the requirements. An analysis of the travel

expense reimbursement workflow i l l ustrates some

of these requirements. Add itional requirements are

also described to prov ide a more complete set.

Task Assignment in a Travel Expense
Reimbursement Workflaw
The requirements that must be fulfi l led by the con

cepts of the organi zational aspect were de rived

from the travel expense reimbursement workflow

example, the author's project work experiences,

and Marshak's "Characteristics of a Workflow

System- Mi nd Your P's and R's."68 Tbe fol lowing

l ist describes task assignment rules fo r each step of

the travel expense reimbursement workflow:

• Fi l l. The fi l l step can be executed by anyone i n

an organization w h o h a s t h e potential t o travel .

This assignment rule enables an emp loyee to fil l

in a travel expense reimbursement fo rm after

a business trip. (An employee who did not travel

can also fil l i n a form and claim expenses; how

ever, the check and sign steps are intended to

detect such misbehavior and to reject the form.)

The user who fi l l s in the form is referred to as

the applicant and is known at run t ime.

• Check. The check step must be executed by
a user who is able to play the role of secretary.

To be able to va lidate the contents of the fo rm, a

user i n this role is expected to know how a travel

expense reimbursement form is structured and

how to correctly fill in the form. This user is also

expected to know the destination and the travel

<.lates, and if the travel actual ly took place. Not a ! J

secretaries in an enterprise have this knowledge,

but the secretary of the applicant's manager can

be expected to know the information. This sec

retary usual ly plans the trip and often the meet

i ngs of the traveler. If the user who is able to play

the role of secretary <.letermines that the con

tents of the travel expense reim bu rsement form

are sound, the form is fo rwarded to the next

step ; otherwise it is sent back to the applicant.

The overal l task assignment rule is therefore:

Everyone who is able to play the role of secretary

and reports to the same manager as the appl icant

is eligible to execute the check step . (Note that

the term manager means a user who is able to

play the role of manager.)

• Sign. The sign step has to be executed by a man

ager of the applicant because the manager

Digital Technical journal Vnl. G No. 4 Fall 1994

Policy Resolution in Workflow Management Systems

norm ally has to approve spending by subordi

nates. Usual ly, there is only one user to whom

the applicant reports and who is able to play the

role of man ager. If there are two such users,

either can be responsible for signing the form

and onJy one has to sign it .

The overall task assignment ru le is: Everyone

who is able to play the rol.e of manager and

to whom the appl icant reports is el igible to exe

cute the sign step.

• Rei mburse. The reimburse step must be exe

cuted by a fi nancial c lerk who is responsible for

the grou p to which the applicant belongs.

The overal l task assignment rule is: Everyone

who is able to play the role of financial clerk and

who is responsible for the applicant's group is

el igible to execute the reimburse step .

The requ irements thus far derived from the

example are

• Organization structure dependencies. To select

one user relative to another (e.g . , a user playing

the role of secretary reporting to a user playing

the role of manager) requires describing the

users, the roles, and the dependencies (relation

ships) . This description is cal led an organi zation

structure. An organization structure contains a l l

organ izati onal object types l ike " user," "group,"

or " role," and the relati onships among them l ike

" reports to" or "supervises." Given such a struc

ture, users can be selected based on their rela

tionships to others. Users can also be selected

based on attribu tes such as their absence status

(i .e . , whether they are on vacation or on a busi

ness trip) or their workload .

• H istorical access. In some cases, the el igible user

for a step cannot be <.leterminecl local ly, and his

torical information is required. For example,

determining the user who can p lay the role of

manager in one step m ight require knowing

which user started the workflow. Therefore, it

m ust be possible to query a log of the h istory of

a workflow to derive the i nformation necessary

to make task assignments.

The fol lowing are additional requirements:

• Data depende ncy. In the travel expense reim

bursement example used in this paper, the man

ager to whom the sign step is assigned can sign

for any amou nt. In other cases, however, this

3 1

Workflow Models

signatory power may have l i mitat ions. For
instance, if the amou n t exceeds a certain val ue , a

vice president and n o t the manager of the appl i

cant m ust sign the travel expense rei mbursement

form . As this l ast example shows, task assignment

may depend on data in the workflow.

• Delegation . A manager who is o u t of the office

may want to delegate h is/her tasks to keep busi
ness operations running smoot hly. The appro

priate task assignment rule wou l d then have to

be extended to incorporate the L le legation of

tasks. Depending on the status of the manager

(e .g. , on a business trip or on vacation), the work

wou l d be assigned to someone else (i . e . . dele

gated). However, task assign ment ru les that

i ncorporate delegation c a n be complex. Con
siller t he situation i n which a ma nager l eaves

on a business tr ip after work has a l ready been

assigned . In this situation (ami a lso in the case
where a man ager has a n excessive amount of

work to accompl ish), the manager m ust be able

to dynamically delegate some or a l l of the a l ready

assigned tasks. Further consider that a manager

may want to delegate d ifferent types of t:Jsks not
to the same user but to diffe rent users. depend

ing on the type of task. To avoid leaking informa

t ion or ma king an inexped ient assignment , the

task assignment r u l e m ust make sure that the t ar
get users are el igible to receive the delegated

task assign ment .

• Separation o f d uty. Some scenarios requ i re a sep
aration of d u t y, i . e . , two tasks must be per

formed by d i fferent users. For exa mple, in the

transfer of a large amount of money, two m a n
agers must sign the transfer form to double

check t he transact ion. Rega rd ing the travel

expense rei mbursement workflow, a user who
fi l l s o u t the claim form shou ld not also sign it .

Task assignment rules must ensu re that there is
a separation of duty.

• Responsibi l ity. As previous.ly stated , a subwork
flow can be either a step or a group of steps that

may be a reuse of bui ld ing blocks for larger

workflows. A second use of a com posite work

flow is to exp l i c i t ly express responsi b i l i t y t<Jr

workflows. Sometimes a n application domain
requ ires a user to take responsibi .l i t y fo r a set of

tasks even though the user does n o t actua l ly exe

c u te the tasks. For example. consic ler a work

flow that i mp lements the start of a new p roduct

development. The i nvestment p lan dep e nds on

:) 2

t h e deve lopment p lan , which is based o n a mar

ket a na lysis. A manager or a vice president is usu

a l ly responsible for these th ree complex tasks

(market ana lysis, devel opment p la n , i nvestment

plan) but not i nvolved in the deta i led work. I n

a W FMS, this s i tuat ion wou ld b e modeled a s a

workflow c a l led P roduct Development Start ,

which contains the three complex tasks as sub
workflows. The P roduct Development Start

workflow could then be assignee! to a m a nager
or a vice p resident to model responsibi l i ty. The

assignment to this user means o n ly that the user

must acknowledge the start of the assigned

workflow ami therefore accept responsib i l i ty
for i t . The assignment does not imply that the

user has to perform the cletai led work. Thus.

a WFMS must be able to assign not o n ly steps to
users but also composite workflows.

• Early/ late ;� ! locat ion. Often , the appl ication

semantics clear ly i n d icates the s ingle user who

sho u ld execute a task. I n su c h cases, the related

task assignment r u le (e . g . , the role of m anager
of applicant) passes to this user at ru n t ime. In
other scenarios. hO\vever, successfu l execution

of a task requ ires some capabi l i tv that more than
one user possesses. This capab i l i t y i s often

expressed through a role (e . g . , f inancial clerk,

which is a ro le usua l ly played by more than one

user in large enterprises). In the single-user case.

the task is ass igned to t hat user regard less of the

user's workload ; this process is called early a l lo

cat ion . The user must carry out the task u n less i t

is feasible to delegate i t . In the m u .l tip.lc-user
case, the task appears on t he work l ist of a l l users

able to plav the ro.lc . O ne user starts the tas k ; in
most cases, this user wou ld not have t be bighest

workload . Therefore, the fi nal a l location of t he

task is made not by the Wf\!S b u t by t he set of

el igible users themselves. This p rocess is ca l led

l a te a U ocarion. In this case. if one user starts
wor k on a ste r . t he other u sers are no longer

a l lowed to begin t he tas k . ' '� Subsequen t.ly, their
assignme n t m ust be revoked . " Im plement ing
Agent Coord i nation fo r Workfl ow Management

Systems Using Active Database Systems" describes

a general mecha nism for han d l ing t he revoca

t ion of assignments UJ

The t ravel expense rei m b ursement workflow is
used i n t he fol lowing d iscussion abo u t t he l i m ita

t ions of roles as a basis hJr task assignment ruJes.

These l im itat ions influenced the major design
objectives of i>RA, which are then d iscussed .

Vol. (i No. -i f·i1ff f')'l! Digital Technical journal

Roles As Task Assignment Rules

As stated earl ier, roles have l i mi ted use as task
assignment ru les. Applying the role concept to the
task assignment rules i ntroduced above i l lustrates
t he l imitations. Certain ly, the term role has m any
definit ions. In this paper, a role is a n abstraction of
a set of users. The abstraction criteria are the set
of capabil i t ies of a user. Whether or not a particular
user belongs to the set of users abstracted by a role
is defined by a n explici t relationship between
a user and a role ca l led the "p lays" relatio nship. A
user who has a plays relationship with a role has the
capabi l i ties defined by that role, i .e . , the user is able
to play the role. For example , i f both Ann and Joe
are users who are able to play the role of clerk, t hen
each one has the capabil i t ies defined by th is role
and each is capable of execut ing the task. A user
m ight have a wide range of capabi l i t ies and be able
to play several roles at the same t ime. For example,
a user might be able to play the role of employee
and the role of manager simul taneously. Although
this definit ion of role is not the only one, it is very
common and often applied (, 1 " . 'H o2.626un.ct

For each task assignment rule that was intro
duced in the travel expense reimbursement exam
ple, a d iscussion foJ lows about the exten t to which
roles support the requirements.

• Fi l l . The task assignment rule for the f i l l step is
the only rule of the example that can be modeled
completely with a role. Assume that every user is
able to play the role of employee. If the fi l l step
is assigned to the role of employee, every user
can execute the step, thus modeling exactly the
task assignment ru le of the fill step.

• Check. Assigni ng the check step to the role of
secretary does not model the fu l l semantics
of the desired task assignment ru le. Such an
assignment models o n ly the requirement t hat
a user has to be able to play the role of secretary
to carry out the step. The assignment does not
model the additional requirement that on ly
those users who report to t he same manager as
the appl icant are el igible.

• Sign. Analogous to the situation in the check
step, assigning the sign step to the role of man
ager does not model that only a user to whom
the appl icant reports is el igible but that any man
ager is el igible.

• Reimbu rse. Assigning the reimburse step to the
role of financi a l clerk ensures only that the step

Digital Technical journal Vol. 6 No. 4 Fall 1994

Policy Resolution in Workflow Management Systems

i s assigned to a capable user. The assignment
does not fu l fi l l the addit ional requ iremen t that
th is u ser must a lso be responsible for the group
to which the applicant belongs.

The discussion of the l ast three task assignment
rules demonstrates two tightly coupled l imitations
of using roles to model requirements.

1. The concept of roles cannot express organiza
t ional dependencies, such as relationsh ips
between users (e.g . , " reports to" and " responsi
ble for") . I t on ly relates users to roles by a plays
relationship. Furthermore, roles do not provide
a means of in trod ucing add itional objects of
organization structures l ike "group" and "depart
ment." The on ly two objects the concept of
roles provides are " role" and " user."

2 . The concept of roles, therefore, does not p ro
vide a sufficiently soph isticated language to
express, for i nstance, that a user not only has
to play a certain role but a lso h as to relate to
some other user in a particular way (e .g . ,
" reports to" a particu lar user).

In addi t ion, the other requ irements l ike h istorical
access, delegation, and separat ion of duty cannot
be modeled at all using roles.

To overcome these l imi tations, PRA i ntroduces
the concepts of organization schema and organ iza
t ional pol icy and the Pol icy Defin i tion Language.
A brief introduction fol lows. Details are presentee!
i n the section Po l icy Resolut ion Archi tecture.

Organization Schema

One of the fundamental concepts of PRA is a freely
definable organizat ion schema . An organization
schema contains aU types of organizat ional objects
and re.l at ionsh ips tha t are avai lab1e for model ing
a particular organ izat ion. Figure 2a gives an exam
ple of an organi zat ion schema . Jf a defined schema
is instant iated , i t contains an organization struc
ture. S ince other objects besides roles are requ i red
to model an organizat ion, rel ationships other than
"plays" must be avai lable . Some necessary addi
t ional relationsh ips are " reports to," which relates
two users, and "is responsible for" a nd " belongs to,"
which relate a user and a group. A freely definable
organ ization schema , such as the one provided by
PRA, a l lows designers to define roles as required
by the workflow appl ication .

Such a freely definable organization schema may
seem to be a luxury, and a fixed organ ization

33

Workflow Models

ROLE

PLAYS

R E PORTS RESPONSIBLE D TO / / - - - ' , FO R GROUP
I \ (, 6• - -

BELONGS
' , _ _ _ ,

I
TO

USER

(a) Sample Organization Schema

SALES MANUFACTU R I N G E N G I N E E R I N G A D M I N I STRATION

AL N I N A K E N SUSAN MATT CHARLES

8 8 8

(b) Sample Organ ization Structure

Figure 2 Sample Organization Schema and Organization Structure

for the Travel Expense Reilnbursement Example

M I K E

schema that provides the most relevant objects and

relationships may seem sufficient. An analysis of

various organization structures i n different enter

prises c learly shows, however, that a si ngle organi

zation schema is not adequate for all situations

in which WFMSs can be deployed. An enterprise

that deploys a schema i n w hich the semantics of

the modeled objects are fixed has to fo l l ow the

seman tics completely. Consequen tly, such a

schema does not meet enterprise-specific needs.

Figure 2a shows a graphical representation of a

sample schema for the travel expense reim burse

ment example. Although this schema may appear

general and an adequate alternative tO an a l l

embracing schema, i t does n o t contain required

organizational objects such as task forces with

34 Vol. 6 No. 4 Fall 1994 Digital Tee/mica/ jourrml

a l imited l ife span, committees, and departments.

Also, this sample schema does not consider objects

or relationships necessary for modeling delegation

and relocation of employees. F igure 2b d isplays a

superficial organization structure, i . e . , an instantia

tion of the schema. Objects l ike user and role are

depicted as icons, and relationships are depicted as

arcs and solid, dashed, and dotted l i nes between

the icons.

Approaches that go beyond using roles as a basis

for task assignment commo n.ly prov ide organiza

tional objects in addition to roles and users, usually

group and/or department objects U•.S o9.n The l i tera

ture contains evidence that the schemas and the

task assignment ru les are fixed and have to be used

as they are . Additional ly, these approaches do not

separate the workflow from the workflow specifi

cation, which makes the reuse of a workflow in a

different organizational setting very d ifficu lt.

Organizational Policies As Task
Assignment Rules

A second fundamental PRA concept is that of an

organ izational policy, which up to this point has

been cal led a task assignment ru le. An organiza

tional pol icy specifies a l l the eligible users for a

task by stating the criteria a user must meet. These

criteria can include a role or roles that a user has

to be able to play and relationships that a user has to

.have with other users or groups.

(a }

Policy Resolution in Workflow Management Systems

Figure 3a shows an example of an informal orga

n izational pol icy for the sign step. This organiza

tional pol icy specifies that if the WFMS is to assign

the sign step, it wil l assign the step to the manager

of the appl icant if the amount is less than $ 1 ,000.

Otherwise, it will assign the step to the vice presi

dent respo nsible for the applicant's group. A more

advanced rule would not fix the amount at $ 1 ,000

but wou ld make this amount dependent on the

au thorization level of the manager, as i l lustrated i n

Figure 3b.

The Policy Defin ition Language is PRA's formal

l anguage for specifying organizational pol icies.

Policies written in th is language are precise and

executable by an execution engine cal l ed the pol

icy resolu tion engine. Each t ime the WFMS is about

to assign a step, the system evaluates the corre

sponding organ izational policy to determine the

set of users who can execute the task.

Policy Resolution Architecture

\VFMSs operate in global, open, and distributed

environments and in group, department, enter

prise, and m u ltiple-enterprise settings. The

enterprise- level deployment of workflows is pos

sible only if the u nderlying concepts and sys

tems are developed appropriately. PRA is therefore

based on several design principles that ensure a

general approach that supports enterprise-level

deployment .

WORKFLOW TravelExpenseReimbursement

STEP sign

CRITERIA IF amount < 1 0 0 0

(b)

THEN manager o f applicant

ELSE VP responsible for applicant ' s group

END IF

WORKFLOW TravelExpenseReimbursement

STEP sign

CRITERIA IF amount < authorizat ion leve l of applicant ' s manager

THEN manager of applicant

ELSE VP responsible for applicant ' s group

ENDIF

Figure 3 Informal Organizational Policies for the Sign Step of the

Travel Expense Reimbursement Workflow

Digital Technicaljow·nal Vol. 6 No. 4 Fa/1 1994 3 5

Workflow Models

Design Principles

The PRA design princip les are reusability, sec urity.

general ity, dynam ics, ami d istribution.

Reusability In the travel expense reimbu rsement

example, the sign step was modeled to approve
travel expenses. Other workflows, l ike capital

equipment orde rs, can reuse the sign step for s imi

lar tasks, e .g. , to approve an o rder. I f an orga n i za

t ional pol icy were at tached to the s tep t ype itse l f,
this assign ment ru le wou ld serve to determine eJ igi

ble users independent of the workflow in wh ich

the step is reused . Viewed from an organ izationa l
perspective, however, the reuse of steps in d i ffer

ent wor kflows requ i res several pol icies. For exam

ple, the signing of a t ravel expense reimbu rsement

form is carriecl out by a manager of the appl icant.

whereas the s igning of a capital equ ipment order

for an amount that exceecls a certain value is carried
out hy an appropriate vice president . Therefo re ,

the sign step in the context of a travel expense reim

b u rsement workflow has an organizat ional pol icy
that defines the manager of the appl icant to be el igi

ble, whereas t he sign step in the context of the cap
i t a l equipment o rder workflow has a d iffe rent
pol icy, one that defines an appropriate vice presi

dent as e l igible for the task.

'T"he observation that a policy for a step depends

not only o n the step itself but also on the workfl ow

in which t he step is reused led to t he d ecision

(a)

to m a k e organizat ional pol i cies objects i n them
selves, independent of a workflow specificat ion.

Organizational pol icies name not only the step in

which they are used but a lso the su rrounding work

flow. The design of organizational pol icies fo r a
step depends on the context in which the step is to
he reused .

As mentioned earl ier, making organ izational p o l i

cies i ndependent objects a l lows d i fferen t organi

zation stn�ctures to reuse a workflow. To ach ieve
such reuse, each organ izational sett ing has its own

set of o rgan izationa l pol icies for the workflow to he

reused . These organizational p o l icies are tai l ored
to the specific needs and circumstances of the orga

nizational setting.
Organizational pol icies can themselves be reu sed .

Diffe re nt steps m ay requ ire t he same set of el igible

users, and, therefore, one p o licy wou ld be s u ffi

cient fo r more than one k ind of step (e .g . , sign ami

fi l l) or t(Jr more than one use of t he same kind of

step. For example, a m anager signs not only trave l
expense forms b u t a l so capita l eq u ipment orders.
In bot h workfl ows, the organizat ional pol icy that

defines the m anager of the appl ican t depends on
the authorization leve l . Both workflows can reuse

the sign step, as can be seen in the policy shown

in Pigu re 4a . If the au thorization leve l d epends on

the workflow, the pol icy changes to take i n to con

sicleration the specific k i nd of workflow, as shown

i n Figure 4b.

WORKFLOW TravelExpenseReimbursement I CapitalEquipmentOrder
STEP sign
CRITERIA IF amount < authorization level of appl icant ' s manager

THEN manager of app licant

(b)

ELSE VP responsible for appl icant ' s group

END IF

WORKFLOW TravelExpenseReimbursement I CapitalEquipmentOrder

STEP sign
CRITERIA IF amount < authorization level of applicant ' s

manager depending on workflow type

THEN manager of applicant

ELSE VP responsible for applicant ' s group

END IF

Figure 4 Informal Organizational Policies Showing Reuse of the Sign Step

l '<1l. (> .Vo . .:f Fall 1')')4 Digital Tecbuical jourual

Security Because changing an organ izational pol

icy may affect daily business operations, aJ I users

should not be able to make changes at wil l . For

example, a user (appl icant) should not be able to

approve h is/her own travel request. Organ izational

pol icies are therefore objects that must be properly

secured to prevent users from performing u nau

thorized tasks. The decision to design organiza

tional pol icies as objects m a kes it easier to secure

the pol icies, because secu rity mechanisms such as

access control l ists (ACLs) can be applied direct ly

to objects. '5

Designers considered and rejected the a lter

nat ive approach of sec uring the workflow specifi

cation and , consequ ently, the organ izational

policies included in the specification. Wo rkflow

types do have to be secured to prevent unautho

rized changes; however, securing the workflow

specification wou ld al low those who are e ligible

to change the workflow type to a lso change the

associated organizational po.licies. Such an a l l

encompassing security design i n hibits the separa

tion of d u ty between workflow designers who care

about how a busi ness p rocess is implemented by

a workflow and organization designers who care

about the organ ization structure and the user capa

bil it ies and responsibi l ities. Protecting workflows

independently of organ izational pol icies al lows

users to modify a workflow without al lowing them

to mod ify organizational policies and thus gain or

grant unauthorized e l igibi l i ty. Simi larly, organiza

tion schemas and organization structures must be

secured independent ly to prevent users from

changing roles or relationships to gain or grant

unau thorized authority.

Generality Although several standard orga ni za

tion structures prevail-strong hierarchical, matrix

shaped, function-oriented, and networked-hybrid

organ ization structures exist, which contain a myr

iad of anomal ies and exceptions. Independent of

their organ ization structure, most enterprises have

business processes that are potential candidates for

a WFiviS implementation. A WFMS that claims to be

able to implement business processes in a l l kinds of

enterprises must therefore be able to support a l l

possible organ izat ion structures. A fixed organiza

tion schema is inadequate fo r such a un iversal

implementation capabi l i t y. Consequen t.ly, PRA
supports the modeling of arbitrary organization

schemas and a l lows WFMSs to implement any orga

nization that m ight exist.

Digital Tecfmicaljounwl Vol. 6 No. 4 Fall 1994

Policy Resolution in Workf!o·w Management Systems

Fo l lowing this ge neral approach, it is apparent

that a fixed set of assignment ru les is also inade

quate. The PRA design hence provides a language

that enables users to define task assignment ru les

(organ izational policies) as required by the work

flows of an enterprise.

Dynamics Organ izations change fo r many rea

sons, e.g. , employee nu mbers fluctuate, restructur

ing takes place, groups join or split because of new

product strategies, etc. Business operations and

the refore workflows, however, must cont i nue unin

terrupted. To do so, the organization structure and

the organizational pol icies of a WFMS must cha nge

to reflect the changes in the real organization. The

decision to separate workflows from organization

structu res and organizational pol icies enables users

to change versions independent ly. For example, an

organizational pol icy can change while a workflow

that uses i t is running. If the change takes place

before the WFMS assigns the step to a user, the

WFMS wi l l use the new version of the organiza

tional policy instead of the old version . Policy

changes result in neither the shu tting down of the

WFMS nor the stopping and restarting (from the

beginning) of the workflow. This independence

al lows WFMSs to deal with the dynam ics of an orga

nization and make correct task assignments whi le

changes are taking place .

Distribution Not only are enterprises becom

ing more distribu ted, but they are also increasing

their worldwide operation. Nations have different

local Jaws and pol icies because they decide

autonomously on these issues. A local subsidiary

has to ad here to local law, even though it belongs

to a com pany that operates worldwide. for exam

ple, U.S. compan ies have a posi tion called vice

presid ent. A U.S. company may have the rule

that contracts with external suppl iers of manu

facturing parts must be signed by the vice presi

dent of manufactu ring. If the U. S. company has a

German subsidiary, by German law, this subsidiary

is a company in itself and must have a person cal led

Geschdftsfiihrer who is responsible for the opera

tions of the company. If the subsidiary wa nts to

enter into a contract with a supp l ier, German law

requires the Geschdftsfiih-ret· to sign the contract

even though the U.S. corporate organizational pol

icy requires the vice president of manufacturing

to sign. Al though the same type of workflow is

running in both countries, e.g., the contract with

37

Workflow Models

externa l suppl ier workflow, the organ i zat ional
pol icies for the approval step d iffer. The U.S.
version of the organizational pol icy specifies the
vice president of manufacturing is the only el igible
user, and the German version specifies that the
Geschdftsfiihrer is the only el igible user.

Domains were in troduced to deal with the issue
of autonomous pol ic ies. A domain is an abstract
ent ity of management . Organizat ional pol icies as
wel l as workflows are related to domains. The pre
vious example might involve two domains: " USA"

and "GERMANY." (The domains could be further
subdivided.)

The pr inciples just d iscussed gu ided the PRA
design. As mentioned in the previous section,
PRA defines the concepts of organizat ion schema,
organizational pol icy, and a formal language to
model pol icies. In add i t ion , I 'RA defines in terfaces
for an execut ion engine and their use by a WF!VIS . A
detailed d iscussion of the PRA components fo llows.

Organization Schema and
Organization Structure

The PRA organization schema is a set of objects and
relationships that can be freely defined, thus
enabl ing users to model arbitrary organizat ions.
Each member of t he set can be instantiated to popu
l ate an organization schema, that is. to produce an
organizat ion structure. PRA al lows users to define
constraints on the organization structur e to avoi d
erroneous structures. For example, i f an enterprise
has the policy that an employee m ust not report
to more than two people, PRA enables the user to
define a constrai n t that specifies that one person
can be related to only two others through a " reports
to" relat ionsh ip . If a modeler adds a third reporting
I ine, the system detects the violated constraint .

Organizational Policy

An organizat ional pol icy specifies a set of el igible
users for a given workflow, which can be either ele
mentary (a step) or composite. A set of users is not
stable and therefore fixed but specified through an
expression cal led an organizational expression. An
organizational expression specifies t ile select ion of
users with part icular properties from an organiza
t ion structure. For example, an expression might
enumerate users, select a l l users able to play a par
t icular role, or select a user related to some other in
a specific way. Add i t ional ly, organizat ional expres
sions can refer to the h istory of a workflow or to its

:38

internal data , such as local variables, and thus be
dependent on the workflow state. Consequently,
the set of users for the same step in two different
instances of the same workflow m ight be d iffer
ent . Consider, for example, the travel expense reim
bursement workflow, with the user selection for
the sign step dependent on the authorization level .
In two instances o f the workflow, the amou n ts to
be reimbursed m ight differ such that different peo
ple , e .g . , the manager ami the vice president, must
execute the two sign steps.

To provide a general mechanism for determ in ing
a set of el igible users for a workflow, PRA organ iza
t ional pol icies accom modate operations in addi
t ion to executi ng a step or taking responsib i l i ty for
a composite workflow. Delegating a workflow and
undoing a workflow are two examples. To delegate
a workflow, an organizat ional pol icy has to ensure
that both the person who delegates the workflow
and the person to whom the wor kflow is assigned
are el igible users. The operation of undoing a work
flow (i .e . , to u ndo the resu l t s ach ieved thus far) a nd
start ing aga i n can result in wasted effort and u nre
coverable work. Therefore, a WFMS must carefu l ly
choose el igible users for this operation.

To deal with various workflow operat ions, a PRA
organizat ional pol i cy relates a workflow t ype and
one of its operat ions in a given tlomain tO an organi
zat iona l expression . An organizat ional pol icy is
defined as t l1e tuple <workflow type, operat ion,
domain. organ izat ional expression>. For example,
the organizat ional pol icy for the fi l l step in
the t ravel expense reimbursement example is
<Trave iExpenseReimbursement .F i l l , execute, USA ,

'every user who p lays the role of em ployee '> . Since
an appl icant shou ld be able to undo the step and
start aga in , the WFMS m ust also specify the organ i
zational pol icy <TraveiExpenseReimbursement.Fil l ,
undo, liSA, · the user who started fil l '> . (The next
section describes PRA's formal language for specify
ing organizational pol ic ies.)

When a WFMS determines that a workflow in
a particular domain is to be executed, i t cal ls
the policy resolut ion engine, which looks for the
appropriate organizat ional policy and evaluates
its organizat ional expression . 'fhe engine returns
the results of the evaluat ion, i . e . , the set of el igible
users, to the WFMS, which subsequently assigns the
workflow to those users. One organizat ional policy
can be reused for several workflow types, domains,
etc . , by entering a set in tlw appropriate element
of the tuple. For example , if the organizational

Vol. 6 No. 4 Fall /')')4 Digital Technical journal

Policy Resolution in Workflow Management Systems

pol icy for the fi l l step of the travel expense reim

bursement workflow is the same in the U.S.
as it is i n Europe, the policy cou ld be modeled as

<TravelExpenseReimbursement.Fi l l , execute, {USA,

EUROPE} , 'every user who plays the role of

employee '>.

Policy Definition Language

From the organizational viewpoint, the fol lowing

elements are necessary to run a workflow: an organi

zation schema together with its instantiation, the

organizational policies for this workflow, and the rel

evant organizational expressions. To describe these

elements in a formal way, PRA defines a language

cal led the Policy Definition Language (PDL), which

consists of several parts. The first part enables the

definition of an organization schema and its popu la

tion. The second part is concerned with organiza-

ORGANIZATION_TYPE Role

ATTRIBUTES name : String

tiona! expressions. Final ly, the third part supports

the definition of organizational policies.

The fol lowing figures i l lustrate the POL for a sam

ple organization schema and organization struc

ture, some organizational expressions, and some

organizational pol icies for the travel expense reim

bu rsement workflow. Figure 5 shows the POL for

the organization schema displayed in Figure 2a. The

POL for the instantiation d isplayed i n Figure 2b

appears i n Figure 6.

The organization schema definit ion part of the

POL looks like a d ata definition language (DOL) in a

relational database. Two differences exist, though:

(1) PDL d istinguishes organizational object types

from organizational relationship types, and (2) POL

al lows complex data types (e.g. , sets as attributes).

If a pol icy resolution engine is bu i l t on top of a rela

tional database, a compi ler or a translator within

authorization_level : set (task, amount) ;

KEYS name;

ORGANIZATION_TYPE Group

ATTRIBUTES name : String

KEYS name;

ORGANIZATION_TYPE User

ATTRIBUTES name : String

office_tel_# : String

e_mail : String

absence : {vacation, i l l , busine s s , avai labl e}

KEYS name ;

RELATIONSHIP_TYPE Reports_to

FROM User

TO User

ATTRIBUTES kind : { l ine , functional , none }

RELATIONSHIP_TYPE Plays

FROM User

TO Role

ATTRIBUTES duration_from: date

duration_to : date

RELATIONSHIP_TYPE Responsible_for

FROM User

TO Group

RELATIONSHIP_TYPE Belongs_to

FROM User

TO Group

Note that , for simplicity, we assume user names to be unique . In reality,

this is not the case and the modeling must deal with nonunique names .

Figure 5 Policy Definition Language for the Sample Organization Schema Shown in Figure 2a

Digital Technical journal Vol. 6 No. 4 Fall 1994 39

Workflow Models

...j ()

Role "Employee" , { }

"Manager" , { (TravelExpenseReimbursernent . Sign, 1 0 0 0) ,

(Capi talEquipmentOrder. Sign, 5 0 0 0) }

"Financ ialClerk" , { }

"Secretary" , { }

"Engineer" , { }
"VP" , { (TravelExpenseReimbursement . Sign, *) ,

(CapitalEquipmentOrder . Sign, *) }

Group "Sales"

"Manufacturing"

"Engineering"

"Administration"

User "Al " , " [1) 1 2 5 - 5 5 8 9 " ,

"Nina" , " [1) 1 2 5 - 5 5 9 0 " ,

"Ken', , " (1] 1 2 5 - 5 6 0 1 " ,

"al@center . com" ,

"nina@center . com" ,

"ken@center . corn" ,

"Susan" , " [1) 1 2 5 - 5 6 0 9 " , "susan@center . com" ,

"Matt" , " (1] 1 2 5 - 4 4 9 9 " , "matt@center . com" ,

"Charles" , " [l] 1 2 5 - 4 5 8 0 " , "charles@center . com" ,

"Mike" , " [1) 1 2 5 - 0 1 0 1 " , "mike@center . com" ,

Repcrts_to "Al " , "Nina " , line

"Ken" , "Nina" , line

"Nina" , "Mike " , line

"Susan " , "Matt'' 1 line

"Charles " , "Matt" , line

"Mat t " , \\Mike " , line

"Mike " , none

Plays "Al " , "Employee" , 0 1 - 0 2 - 8 8 , 0 - 0 - 0 (* open

"Al " , "FinancialClerk" , 0 1 - 0 2 - 8 8 , 0 - 0 - 0

"Nina" , "Employee" , 0 1 - 02 - 9 0 ,

"Nina" , "Manager" , 0 1 - 0 2 - 9 0 ,

"Ken" , "Employee" , 0 1 - 0 2 - 9 1 ,

"Ken" , "Secretary" , 0 1 - 0 2 - 9 1 ,

" SUsan" , "Employee" , 0 1 - 0 2 - 9 2 ,

"SUsan" , "Secretary" , 0 1-02 - 9 2 ,

"Matt" , "Employee" , 0 1 - 0 2 - 8 8 ,

"Mat t " , "Manager" , 0 1 - 0 2 - 8 8 ,

"Charles " , "Employee" , 0 1 - 0 2 - 8 8 ,

"Charles" , "Engineer" , 0 1- 0 2 - 8 8 ,

"Mike " , "Employee" , 0 1 - 0 2 - 9 0 ,

"Mike " , "'fPII , 0 1 - 0 2 - 9 3 ,

Respons ible_for "Al " , "Sales"

Belongs_to "Al " ,

"Al " , "Manufacturing"

"Al " , "Engineering"

"Mike " , "Sales"

"Mike " , "Manufacturing"

"Mike" , "Engineering"

"Administration"

"Nina " , "Engineering"

"Ken" , "Administration"

"SUsan" , "Administration"

"Matt" , "Engineering"

"Charles" , "Engineering"

"Mike" ,

0 - 0 - 0

0 - 0 - 0

0 - 0 - 0

0 - 0 - 0

0 - 0 - 0

0 - 0 - 0

0 - 0 - 0

0 - 0 - 0

0 - 0 - 0

0 - 0 - 0

0 - 0 - 0

12 - 3 1 - 9 7

avai lable

avai lable

avai lable

business

avai lable

available

avai lable

ended .)

Figure 6 Policy Definition Language.: for the Sample Organization

Structure (Instantiation) Sbott 'J I in fl�r.;ure 2b

l fJI. () .\'u. 4 Tall 199-1 Digital Tecbuical journal

the engi ne translates the organization schema defi
n ition part of PDL into a set of DDL statements.

F igure 7 l ists the organizational expressions

required to formul ate the orga nizational pol icies

for the travel expense re imbursement workflow.

Note that the organizational expression for employ

ees selects a l l users who p l ay the role of employee.

The R ETURNS statement ind icates the search for

users. The definition of the plays relationship type

i n Figure 5 ind icates that the emp l oyee is of the

type role. This information is sufficie nt to formu

late a query to the underlying database system in an

implementation of a pol icy resolution engine.

The PDL for the organ izatio n a l pol icies for the

travel expense reimbursement example appears in

F igure 8. The WFMS applies the first organizationa l

pol icy when assigning the fil l step in a travel expense

reimbursement workflow. The policy is val i d i n

three dom ains, USA, EUROPE, and ASLA, for t h e exe

c u te operation, which has no parameters. The pol

icy engine returns a set of all users who are able to

play the role of employee. The second pol icy l isted

in Figure 8 returns a set of al I users who play the

Policy Resolution in Workflow Management Systems

role of secretary and who report to the same user

as the app licanr.

Independent from the travel expense reimburse

ment example are the sample separation of duty

and delegation pol icies shown in F igures 9 and 10.
The organizational pol icy that specifies separation

of duty ensures that the user who signs the expense

for m is d ifferent from the user who fi l ls out the

form. The policy that models the delegation opera

t ion contains a parameter that specifies to which

person the sign step is to be delegated. Only the

manager of the applicant can cal l this operation

and then only if the p arameter specifies either the

next higher manager or the responsible vice presi

dent. The step can be delegated only to one of these

two users.

Since the PDL is wel l defined, it can be used not

only by designers to model organizations and poli

cies bm also by developers of graphics-oriented

tools. Such tools could present graphical symbols to

users to be manipu lated . When a user decides to

com mit the changes, the tool generates a PDL script,

which is fed into the pol icy resolution engine.

ORGANIZATIONAL_EXPRESSION employees ()

RETURNS User : user

user plays employee

ORGANIZATIONAL_EXPRESSION secretaries ()

RETURNS User: user

user plays secretary

ORGANIZATIONAL_EXPRESSION rnanager_of (User : a_user)

RETURNS User: user

a_user reports_to user

ORGANIZATIONAL_EXPRESSION subordinates_of (User : a_user)

RETURNS User: user

user report s_to a_user

ORGANIZATIONAL_EXPRESSION group_of (User : a_user)

RETURNS Group : group

a_user belongs_to group

ORGANI ZATIONAL_EXPRESSION VP_responsible_for_group_of (User: a_user)

RETURNS User : user

user plays VP

INTERSECTION

user responsible_for group_of (a_user)

ORGANI ZATIONAL_EXPRESSION executing_agent (Workflow: a_workflow)

RETURNS User

(* provided by the historical services of WFMS *)

Figure 7 Organizational Expressions for the Travel Expense Reimbursement Example

Digital Technicaljourual Vol. 6 No. 4 Fall 1994 4 1

Workflow Models

ORGANIZATIONAL_POLICY

WORKFLOW TravelExpenseReimbursement . Fill

OPERATION Execute ()

DOMAIN USA, EUROPE , ASIA

ORGANIZATIONAL_EXPRESSION employees ()

ORGANIZATIONAL_POLICY

WORKFLOW TravelExpenseReimbursement . Check

OPERATION Execute ()

DOMAIN USA, EUROPE , ASIA

ORGANIZATIONAL_EXPRESSION

secretaries ()

INTERSECTION

subordinates_of (

manager_of (

ORGANIZATIONAL_POLICY

executing_agent (

TravelExpenseReimbursement . Fil l)))

WORKFLOW TravelExpenseReimbursement . S ign

OPERATION Execute ()

DOMAIN USA, EUROPE, ASIA

ORGANIZATIONAL_EXPRESSION

manager_of (

executing_agent (

TravelExpenseReimbursement . Fil l))

ORGANIZATIONAL_ POLICY

WORKFLOW TravelExpenseReimbursernent . Reimburse

OPERATION Execute ()

DOMAIN USA, EUROPE , ASIA

ORGANIZATIONAL_EXPRESSION

f inancial_clerks ()

INTERSECTION

User : user responsible_for

group_of (

executing_agent (

TravelExpenseReimbursement . Fi ll))

Figure 8 Organizational Policiesjor t!Je Tremel Expense Reimbursement Exanzple

ORGANIZATIONAL_POLICY

WORKFLOW TravelExpenseReimbursement . Sign

OPERATION Execute ()

DOMAIN USA, EUROPE, ASIA

ORGANIZATIONAL_EXPRESSION

manager_of (

executing_agent (

TravelExpenseReimbursement . Fi ll))

DIFFERENCE

execut ing_agent (

TravelExpenseReimbursement . Fi l l)

Figure 9 Organizational Polhy for the Separation of Duty

Approaches l i ke the ones mentioned earlier in

the paper provide a fixed set of types fo r model ing

an organi zation or a fixed set of functions, such as

·' role player " or ' ·supervisor," from which to select

users fo r a workflow. None of these approaches

provides a language l i ke PDL that can freely define

tbe organ izationa l aspect as the appl ication seman

tics requires.

4 2 Vol. 6 No. 4 Fall 1994 D igital Tee/mica/ journal

Policy Resolution in Workflow Management Systems

ORGANIZATIONAL_POLICY

WORKFLOW TravelExpenseReimbursement . S ign

OPERATION Delegate {User: a_user)

OOMAIN USA, EUROPE, ASIA
ORGANIZATIONAL_EXPRESSION

IF a_user IN

{manager_of {

manager_of {

executing_agent {

TravelExpenseReimbursement . Fil l)))

OR

VP_responsible_for_group_of {

executing_agent (

TravelExpenseReimbursement . Fill)))

THEN
manager_of (

executing_agent (

TravelExpenseReirnbursement . Fil l))

F(f?ure 10 Organizational Policy for the Delegate Operation

Policy Resolution Engine

The pol icy resol ution engine is a mechanism that
evaluates organizational policies for a WFMS. Serving
as a base service, the policy resoiution engine
manages organizational pol icies and organizational

expressions, as wel l as the organization schema and

its population. The engine also provides i nterfaces
for the defin ition, modification , and evaluation

of these objects. The interfaces are distinguished
by the kind of service they provide. There are basi
cal ly two k i nds of interfaces: evaluation interfaces

and management interfaces.

Evaluation Inte1jaces Policy resolution engine

cl ients use evaluation interfaces to evaluate organ i
zational policies or organizational expressions

when necessary. The engine provides four evalua

tion interfaces: two for organizational policies
("resolve" and "conform to") and two for organi
zational expressions (also "resolve" and "conform

to") . The reso lve operation for organizational poli

cies expects a workflow reference and one of its
operations as input values. This operation selects
an appropriate organizational policy, evaluates i t ,
and returns a set of users el igible to execute the

given task of the workflow. The conform to opera
tion for organizational pol icies expects a workflow

reference, one of its operations, and a user as input
values. This operation resolves the appropriate
organizational pol icy for the workflow and checks

whether the user is contai ned in the set of results
for that organizational pol icy (i .e . , if the user con
forms to the pol icy). If the user is conta ined in the

D igital Techuical]ou1·nal Vol. 6 No. 4 Fall 1994

set of resu lts, the conform to operation returns the

va lue " true " ; otherwise it returns the va lue " fa lse."
Pol icy resolution engine clients use this operation

to validate a request by a user to execute a certain
task of a workflow.

The resolve and conform to operations for orga

nizational expressions work analogously. Instead
of a workflow reference, the operations expect

the name of an organ izational expression as input.
The operations evaluate the named organizational
expression and return the set of resul ts, which
is used if the resolve operation is called . The con

form to operation returns true and false values as

described in the previous paragraph.

Management Interfaces Management interfaces

are used to define, modify, or delete organizational

policies, organizational expressions, or organiza

tion schemas and their populations. These inter

faces look l ike the fol lowing operations that are

provided for organizational policies: create, delete,
modify, l ist, get. The create operation creates an
organizational policy; the delete operation deletes
a policy; the modify operation a l lows users to
change an organizational pol icy to adjust to new
requirements; the l ist operation returns the identi
fiers of all pol icies; and the get operation returns
the complete description of a policy.

Designers do not cal l these management inter
faces directly, since they communicate their
changes through user-friendly interfaces or tools.

These tools are either graphics oriented or language
oriented. In a graphics-oriented tool, a designer

43

Workflow Models

manipu lates icons and graph ical symbols, which i n

tu rn res u l ts in cal l s to t h e appropriate management

interfaces. Al ternatively, a grap h ics tool can ge ner

ate a PDL script accord ing to the manipu lat ions of a
user and submi t t h i s s c r ip t to the pol icy resol u tion

engine. I n this case, the engine interprets the s u b

m i t ted scri pt and cha nges its i n ternal state accord

i ngly. Language-oriented tools e nable a designer to

d irectl y express changes using PDI.. These tools take

specifications and translate them into ma nagement

interface cal ls . Of course, t hey can also submit the

l a nguage specifications d i rect l y as Ill) ! . scripts to

the po l icy reso l u t io n engine, as descri bed above.

Legeny Databases Many large enterprises have

developed databases that contain some or a l l of the

orga n izat ional data the p o l i cy reso l u t i o n engi n e

needs to eva l ua te orga n i zat ional po l ic ies . These

databases, cal led legaqr databases, m igh t he s e l f

implemented or based on standards efforts like

t h ose re lated to prov id i ng d i rectory services on
networks, i . e . , X.500.-' In ge neraL organ iza t i on s

must deal w i t h one of the fol lowing scenarios:

• No legacy da t abase exists. No existi ng dat abas e

h a s t o h e consi dered, and the pol i c y res o l u t i o n

engine can use i ts own database t o b u i ld u p orga

n i zational knowledge .

• Legacy databases contain a l l re levan t data . To

use t h e pol iq' resol u t i o n engin e , the database

m ust provide a sufficiently ex p ressive query

i n terface, on top of which queries issued from

tile engine can be eval uated . The only add it ional

information t h a t has to be s to red is organ iza

t ional po l ic ies and organizat ional express io ns .

The orga n i zation has to choose whether to

extend the legacy databases or to use the

da tabase within the pol icv resolution engine.

• A legacy database conta i ns some relevant data.
l n addit ion to o rganizat ional pol icies and o rga

n i zatio nal expressi o ns, organ izat ional objects

and rel ations h i ps must be stored in e i t her the

legacy d atabase or t h e database of the pol icy res

o lution engine.

If the releva nt data is s tored i n several d atabases,

the queryi ng i n terface must be b u i l t in such a way

that the pol icy resolut ion engine can issue the nec

essary queries, which might span several databases.
Fu rthermore, sem a n t ics i ssues have to be dea lt

with in heterogeneous environments_-,_-(,

Arcbitectuml Considemtiolls-Clients of a PoliLy

Resolution Engine From an arc h itectural point of

view, there are two possible ways to design a pol icy

reso lutio n engine:

1 . Incorporate the p ol icy reso lu ti on engine i n to

a \VF,\1S The engine wou ld be a m od u l e, whose

o perat ions are h idden by the exported inter

faces of t h e WFMS. Al l ca l l s to the engine opera

t i o ns wo u ld he made t h rough the i nterface of

the WI'NJS.

2. M a ke the p o l icy resol ut ion engine an i ndepen

d e n t COI11[10nent . The engine woul d be a server

w i t h a WF�IS system as one of i ts cl ients . Al l

c l ients of the engi ne, i nclu d i ng the WF�IS, wou ld

be able to d irectly access t h e exported opera

t ions of the engi n e .

PRA reco m mends t he i mplementation o f a p o l icy

resolu tion eng i ne as an i ndependent base service .

whi ch can be used by c l ie nt s other t h a n a WF.\1S

For examp le , an electro n i c m a i l system can be

a c l ient of the po l icy reso l u t i o n engi n e . Since e lec

tronic m a i l is sem to use rs, rather than enu merate

the electro n ic mail add resses of the recipients hy

hand, organ izati on a l expressions can provide the

addresses. For example, a m a n ager could send an

electron ic m a i l message to " a l l my subordi n ates " or

an engineer could send an electronic mai l message

to ·' a l l my col leagues who are engineers." The sam

p l e opera t iona l express i o n shown in Figure 1 1
retu rns a l l elec tron ic mail add resses of aJI subord i
n ates of a given user.

Another possible c l ient i s a t ra nsaction procl'ss
ing monito r, which in corporates workflow ma n

age ment.-- Dayal er a l . refe re nce a service ca l l ed

role resol u t i o n , w h i ch is an earl i e r development of

pol icy resolution . -x

ORGANI ZATIONAL_EXPRESSION subordinates (User : a_user)

RETURNS String: user . e_mail

4 4

user reports_to a_user

Figure 11 0Jgwzizationa/ £.\pression for Electmnic .liuil

�bl. (i No. -1 hli/ I'J'J4 Digital Technical journal

Figure 12 shows a schematic represen tation of

a pol icy resolution engine with three cl ients-a

WFMS, a transaction processing monitor, and an

electronic mail system.

Summary
The sample workflow discussed in this pap er, that

is, the travel expense reimbu rsement workflow,

i l l ustrates that roles are sufficient as task assign

ment rules for only the simplest scenarios. Si nce

workflow management systems are deployed in sit

uations where complex workflows are modeled

and executed, a more general and powerful model

cal led the Pol icy Resolution Architecture (PRA) was

developed. PRA provides the concept of an organi

zational policy. An organ izational policy is more

general than a role in that it relates a workflow type

to an organizational expression that determi nes the

set of el igible users for the workflow. Because they

state a l l criteria a user has to fu lfi l l and do not l imit

the selection based on their properties or interrela

tionships, organ izational pol icies specify a l l el igible

users. S ince an organ izational expression is related

to a workflow type by an organizational policy, task

assignment through organ izational policies is a very

general approach. Organizational policies are eval

u ated based on organization schema and their

populations (organization structures). Since PRA
provides a way to model arbitrary complex organi

zation schemas, arbitrary organizat ions can be mod

eled and subsequently popu lated. This general i ty,

i n conjunction with organizational pol icies, pro

v ides a powerful and flexible approach to task

assignment in workflow management.

Ackrwwledgments

I want to thank the anonymous referees whose

remarks helped me a great deal in revising this

WORKFLOW
MANAGEMENT
SYSTEM

TRANSACTION
PROCESSING
MONITOR

POLICY
RESOLUTION
ENGINE

ELECTRONIC
MAIL SYSTEM

Figure 12 Client-server Structure

uf a Puli<-J' Resolution Engine

Digital Technical journal Vol. 6 No. 4 Fall 1994

Policy Resolution in Workflow Management Systems

pap er. Su san Thomas assisted me by im proving my

Engl ish and thus making the paper more readable.

Kathy Stetson was always very helpful in coordinat

ing the writing and revision processes.

References

1 . T. May, " Know Your Wo rk-Flow Tools," BYTE

(Ju ly 1994).

2 . T. Kreifelts a n d P Seu ffert, "Add ressing in

an Office Procedure System," Message Hand

ling Systems, State uf the Art and Future

Directions: Proceedings lf1P WG 65 Working

Conference on Message Handling Systems,

R. Speth, ed . (Amsterdam: North-Hol land,

1987)

3. S. Chang and W Chan , "Transformation

and Ve rification of Office Procedures," IEEE

Transactions on Software Engineering, vo l.

SE-1 1 , no. 8 (August 1985).

4. W Croft and L . Lefkowitz, "Task Support in an

Office System," ACM Transactions on Office

Information Systems, vol. 2, no. 3 (July 1984).

5 . C . E l l is and G . Nutt, " Office I nformation Sys

tems and Computer Science," Comjmting

Surveys, vol. 12, no. 1 (March 1980).

6. C. E l l is and M . Berna l, "Officetalk-D: An
Experimental Office Information System;·

First SIGOA Conference on Office Informa

tion Systems (1982).

7 C. El l is, " Formal and Informal Models of

Office Activity," /nfonnation Processing 83,

R. Mason, eel . (Amsterdam: North-HoJland,

1983).

8. B. Karbe and N. Ramsperger, "Concepts and

Im plementation of Migrating Office Pro

cesses," Verteilte Kii.nstlicbe Jntelligenz und

Kooperatives A rbeiten: 4. Jnternationaler

GI-Kongt-ejs Wissensbasierte Systeme, lnfor

matik Fachberichte 291, W Brauer and

D. Hernandez, eds. (Munich : Spri nger-Verlag,

October 1991).

9. T. Kreifelts, "Coordination of Distributed

Wo rk: From Office Procedures to Custom

i zable Activit ies," Verteilte Kunstliche

Jntelligenz und Kooperatives Arbeiten: 4.

Jnternationaler GT-Kongrejs Wissensbasierte

Systeme, 1nformatik Fachberichte 291,
W Brauer and D. Hernandez, eds. (Munich:

Springer-Verlag, October 1991) .

4 5

Workflow Models

10. C. Cook, "Streaml in ing Office Procedures
An Analysis Using the Information Control
Net Model," Af"'PS Conference Proceedings of

the 1980 National Computer Conference,

Anaheim, Cal ifornia (May 1980).

1 1 . I . Lacld and D Tsichrit is, ''An Office Form F low
Model," AF!PS Conference Proceedings of the

1980 National Computer Conference, Ana
heim, Cal ifornia (May 1980).

12 . L Baumann and R . Coop, "Au tomated Work
flow Control : A Key to Office Productivity,"
AF!PS Conference Proceedings of the 1980

National Computer Conference, Anaheim ,
Cal i fornia (May 1980).

13. M. Zisman, " Representat ion, Specificat ion
and Automation of Office Procedures," Ph . D.
d issertation (Phi ladelph ia : Un iversity of Penn
sylvania, Wharton School, 1977)

14. B . Curt is , M. Kel lner, and J Over, " Process
Model i ng," Communications of the AC!H, voL
35, no. 9 (September 1992).

15. W Deiters and V Gruhn, "The Funsoft Net
Approach to Software Process Management,"
International journal ofSojtware Engineer

ing and Knowledge Engineering, vol . 4, no. 2
(1994)

16. W Deiters, V Gru hn, and H. Weber, ' 'Software
Process Evolution i n M ELMAC," The Impact of

CA SE Technology on Software Processes

Series on Software Engineering and Knowl

edge Engineering, voL 3, D. Cooke, ed . (Singa
pore: World Scientific Publ ishing, 1994) .

17. D. Harel et a l . , " STATE!YIATE: A Working E nvi
ronment for the Development of Complex
Reactive Systems," Proceedings of the Tenth

International Conference on Sojtware Engi

neering (1988).

18. W Humphrey and M. Kel l ner, "Software Pro
cess Model ing: Principles of E n ti ty Process
Models," Proceedings of the Eleventh Inter

national Conference on Software Engineer

ing (May 1989).

19. M. Jaccheri and R. Conrad i , "Techniques for
Process Model Evolut ion in EPOS," fEEt. Trans

actions on Software Engineering (December
1993)

46

20. T Katayama, "A H ierarchical and Functional
Software Process Descriptio n and Its Enac
t ion,'' Proceedings of the E/e"enth Interna

tional Conference on Sojhuare Engineering

(May 1989).

21 . P M i and W Scacch i , Operational Semantics

of Process Enactrnent and Its Prototype

Implementations (Los Angeles: U n iversity
of Southern Ca l i fornia, Computer Science
Department, April 1991) .

22. P Mi and W Scacchi , Modeling Articulation

Work in Software Engineering Processes (Los
Angeles: University of Southern Cal i fornia,

Computer Science Department, Apri l 1991)

23. P Mi and W Scacch i , "A K nowledge-Based
Env i ronment for Mode l ing and S imu lating
Software Engineering Processes," 1/:.I::t:: Trans

actions 011 Knowledge and Oatu Engineer

ing, voL 2, no. 3 (September 1990).

24. L . Osterwei l , "Software Processes Are Soft
ware Too," Proceedings of the Ninth lnternct

tional Conference on Softll'are Engineering

(March/Apri l 1987).

25. L Wil l i ams, "Software Process Model ing:
A Behav ioral Approach," Proceedings of the

Tenth International Conference on Software

Engineering (1988).

26. W Royce. " Managing the Deve lopment of
Large Software Systems," Proceedings of the

Ninth international Con/erence on Software

Engineering (March/Apri l l987) .

27. B. Boehm, "A Spiral Model of Software Devel
opment and Enhancement ," A<:i11 Sojtware

Engineering Noles, voL 11 , no. 4 (August 1986) .

28. C. Hegarty and L. Rowe, " Contro l Loops ami
Dynamic Run Modifications Using the Berke
ley Process-Flow Language ," Proceedings of

the Third International Conference on Data

and Knowledge Systems jiJr klanufacturing

and Engineering, Lyons, France (1992).

29. S. Jablonski , " Data F low Management in D is
t r ibuted OM Systems;· Proceedings of the

Third International Conference (111 Datcl

and KnouAedge Systerns for Jlthmufacturing

and Engineering, Lyons, France (1992).

Vol. 6 No. 4 Fall 1994 Digital TecbnicalJournal

30. Proceedings of the Third International Con

ference on Data and Knowledge Systems for

Manufacturing and Engineering, Lyo ns,

France (1992).

31 . H . Yoshikawa and). Goossenaerts, eds. , Infor

mation Infrastructure Systems for Manufac

turing (Amsterdam: North-Hol land, 1993).

32. T. Harder and A. Reuter, " Pr inciples of

Tra nsaction-oriented Database Recovery,"

ACM ComjJuting Surveys, vol. 15, no. 4

(December 1983).

33. P At tie, M. Singh, A. Shet, and M. Rusinkiewicz,

"Specifying and Enforcing Intertask Depen

dencies,'' Proceedings of the Nineteenth

International Conference on Very Large

Databases (VLDB), Dubl in , Ireland (1993).

34. Y. Brei tbart, A. Deaco n, H. Schek, and

G. Weikum, " Mergi ng Appl ication-centric

and Data-centric Approaches to Support

Transaction-o riented Multi-system Work

flows," S!Gtl'IOD Record, vo l. 22, no. 3 (Sep

tember 1993).

35. U. Daya l , M. Hsu, and R. Laclin, "A Transac

tional Model for Long-Runn ing Activities,"

Proceedings of the Seventeenth Interna

tional Conference on Very Large Databases

(VLDB), Barce lona, Spain (September 1991) .

36. H . Garcia-Molina and K. Sale m , ·'Sagas," Pro

ceedings of the 1993 ACM SIGL'viOD Interna

tional Conference on Management of Data

(1987).

37. Bulletin of the Technical Committee on Data

Engineering, vol. 16, no. 2 (June 1993).

38. S. Jablonski, "Transaction Support for Activity

Management," Proceedings of the Workshop
on High Perforrnance Transaction Processing

Systems (HPTS), Asilomar, California (1993).

39. H . W�ichter and A. Reuter, "The ConTract

Model ," in Transaction Models for Advanced

Database Applications, A. Elmagarmid, ed.

(San Mateo, Cal ifornia: Morgan Kaufma nn,

1992).

40. T. Malone and K. Crowston, "The I n terd isci

pl inary Study of Coord ination," ACM Comput

ing Surveys, vol. 26, no. 1 (March 1994).

Digital Tecb11.ical journal Vol. 6 No. 4 Fall 1994

Policy Resolution in Workfl(YW Management Systems

41 . T. Malone, K . Crowston, J. Lee, and B. Pentland,

"Tools for Inventing Organizations: Toward a

Handbook of Organizational Processes," CCS

WP # 141 , Sloan School WP #3562-93 (Cam

bridge: M assachusetts Institute of Technology,

Center for Coordination Science, May 1993).

42. R. Burkhart, " Process-based Defin ition of

Enterprise Models," Proceedings of the First

International Conference on Enterprise Inte

gration 1\llodeling Technology (ICEIMT),

H i lton Head, South Carolina (June 1992).

43. C. BuGler, " Enterprise Process Modeling and

Enactment in GERAM," Proceedings of the

International Conference on Automation,

Robotics and Computer Vision (ICARCV '94),

Singapore (November 1994)

44. M. Fox , "The TOVE Project: Towards a Com

mon-Sense Model of the Enterprise," Proceed

ings of the First International Conference on

Entetprise Integration Modeling Technology

(ICEIMT), H ilton Head , South Carol ina Qune

1992).

45. Proceedings of the First International Con

ference on Enterprise Integration Modeling

Technology (ICElt'vlT), Hilton Head, South Car

ol ina (June 1992).

46. R. Katz, " Business/en terprise Model ing," IBM

Systems journal, vol. 29, no. 4 (1990).

47.) . Sowa and]. Zachman, " Extending and For

mali zing the Framework for Information Sys

tems Architectu re," IBM Systems journal, vol.

31 , no. 3 (1992).

48. F Vernadat, "Business Process and Enterprise

Activity Model l ing: CIMOSA Contribution to

a General Enterprise Reference Architecture

ancl Methodology (GERAM) ," Proceedings

of the International Conference on Automa

tion, Robotics and Computer Vision (JCARCV

'94), Singapore (November 1994).

49. T. Will iams, "Architectures fo r Integrating

Manufacturing Activities and Enterprises,"

Information Infrastructure Systems for Man

ufacturing, H . Yoshikawa and J. Goossenaerts,

ells. (Amsterdam: North-Holland, 1993).

50. F Flores and T. Winograd , Understanding

Computers and Cognition (Reading, .MA:
Addison-Wesley, 1987).

47

Workflow Models

5 1 . R . Medina-Mores, R . Winograd , T. Flores, and
F Flores, "The Action Workflow Approach to
Workflow Management Technology," Proceed

ings of the AC!l-'1 i992 Conference on Com

puter Supported Cooperatil'e Work (C'\CW),
Toronto, Ontario, Canada (November 1992) .

52. T. Danielsen and U. Pankoke-Babatz, "T'he
Amigo Activ ity Model," i n Research into Net'

works and Distributed Applications, R. Speth,
ed. (Munich: North-Hol land, E lsevier Science
Publ ishers B.V , 1988).

53 R . Fehl ing, K. Joerger, and D. Sagalowicz,
Knowledge Systems for Process Mmwgement

(Palo Alto, C A : Teknowledge Inc . , 1986) .

54. J Guyot, "A Process Model t()r Data Bases," SJG

MOD Record, val. 17, no. 4 (December 19R8) .

55. C. BuSier and S. Jablonski , "An Approach to
Integrate Workflow Model ing and Organ iza
t ion Model ing in an Enterprise," Proceedings

of the Third IEEE international Workshop 011

Enabling Technologies: infrastructure for

Collaborative EnteJ1Jrises (WLT JCT;), Mor
gantown, West Virginia (Apr i l 1 994).

56. S. Jablonsk i , " ;\•IOBI LE: A Mod u lar Workflow
Model and Archi tecture," Proceedings of the

Fourth Working Conference on Dynmnic

Jl!iodelling and Information .�)'stems, Noord
wijkerhout, Netherlands (September 1994}

57. M. Hsu, A. Ghoneimy, and C. Kleissner, "An
Execution Model for an Activ i ty Management
System," Proceedings of the Work�shojJ on High

Perfornumce Transaction .s:vstems (1991) .

58 M . Hsu and .M. Howard . "Work-Flow and
Legacy Systems," B YTE (Ju ly 1994).

59. F Leymann and W AJtenhuber. " Managing Busi
ness Processes as an Int()rrnation Resource,"
IBM .�ystetnsjournal, vo l . 33. no. 2 (1994).

60. Workflow Mmwgement

Business Opportunity

December 1991) .

Soflwa re: The

(Ovum Reports,

(J l . T. White and L. F ischer, " New 7()()/s for New

Times: The Workflow Paradigm (Alameda:
Future Strategies I nc . , Book Divis ion, 1994) .

62. J Ba i r. " Contrasting Workflow Models: Get
t ing to the Roots of Three Vendors," Proceed

ings of the Groupware '93 Conference, San
_lose, Cal ifornia (1993).

48

63. S. Sarin , K. Abbot, and D. McCarthy, "A Process
Model and System for Supporting Col labora
t ive Work," Proceedings of the AOH SIGWS
Conference on Organizational C01npu ting

Systems (November 1991) .

64. M. Shan, " Pegasus Architecture and Design
Princip les," Proceedings of the 1993 ACM SJG

MOD international Conference on lVianage

Jnent of Data. Washington , D.C. (May 1993)

65. M. Ansar i . L. Ness, M. Rusinkiewicz, and
A. Sheth , " Using Flexible Transactions to Sup
p ort M u l t i-System Te lecom munication Appl i
cations," Proceedings of the Eighteen th

International Conference on Very Lmge

Databases (VI.IJR). Vancouver, Br i t ish
Col umbia , Canada (1992).

66. D. Evans, "Putt ing E lves to ·work: Workflow
Technology in a Law Firm," Proceedings of

the Groupware '93 Conference, San Jose,
Cal ifornia (199:3)

67 D. Sng, "A National Information InJrastructure
for the 2 1 st Century Col laborative En ter
prise." Proceedings of the International Con

ference on A u tomation, Robotics and

Computer Vision (ICARCV '94), Singapore
(November 1994)

68. R . Marshak, "Characteristics of a Wor kflow
System-Mind You r P's and R 's," Proceedings

of the Groupware '93 Conference, San Jose ,
Ca l i fornia (1993) .

69. C. Bugler ami S. Jablonski , " Implementing

Agent Coord i na t ion for Workflow lvianage
ment Systems Using Active Database Systems,"
Proceedings of the Fou rth in tenzationol

·worl<.s/.JojJ on Research Issues in Data Engi

neering: Actit•e Database S)'stems (RIDE-ADS

'94), Houston , Texas (February 1994).

70. C. EJ J is, S. G ibbs, and G. Rein , "Groupware
Some Issues and Experiences," Commun ica

tions of the ACM, vo l . :'l4, no . 1 (January 199 1)

71 . L. Lawrence, "The Role of Roles,'' Cmnputers

and Securit_g vol . 12 , no. l (1993).

72. L. Aiel lo, D. Nard i . and ivi . Panti , "Modeling
the Office Structure: A First Step towards the
Office Expert System," Second AC\1 S!GOA

Cm�terence 011 Ojjice information .S) •stems

(AC.II S/C,OA). vol . 5, n os. 1 and 2 (l9R4)

ViJ/. (J No. ·I hill !')') 1 Digital Technical journal

73. D. Denning, Cryptography and Data Security

(Reading, MA: Add ison-Wesley, 1983) .

74. Blue Book, Volume Vl!I, Fascicle VJIJ. 8, Data

Communication Networks: Directory, Rec

ommendations X. 500-X.521 (Study Group

VII), Comite Consu l tat if l nternationa le de
Tell·graphique et Te�lephonique.

7). S. Ceri and .J. Widom, ''Managing Semant ic
Heterogeneity with Production Ru les ami Per
sistent Queues." Proceedings of the Nine

tee1ltb Conference on Very Lorge Databases

(VUJN), Dublin, Ireland (1993) .

7(J. W Kent, "Solving Domain Mismatch a nd
Schema M ismatch Problems with a n Object-

Digital Technical journal Vul. (j No. 4 hill 1')<)4

Policy Resolution in Workflow Management Systems

Oriented Database Program m i ng Language ,"
Proceedings of the Seventeenth Interna

tional Conference on Very Large Databases

(VLDB), Barcelo na , Spain (September 1991) .

77. U. Dayal et al . , "Third Generation TP Moni
tors: A Database Chal lenge," Proceedings of

tbe 1993 ACM S/G/'vJOD International Confer

ence on Nlanagernent of Data, Washington,
D.C. (May 1993).

78. C . BuBier, "Capabi l i ty Based Model ing,"
Proceedings of the First International Con

ference on Ente11Jrise Integration Modeling

Technology (JCEIMT), H ilton Head, South
Carol ina (June 1992).

49

Stewart V. Hoover
Gary L. Kratkiewicz

The Design of DECmodel
for Windows

The DECmodel for Windou•s softlmre tool represents a significant admnce in the

development of business process models. Tbe DECmodel tool allows rapid devel

opment of models and graphical representations of business processes by prot•id

ing a laborator)' enl 'ironment for testing processes before propagating t!Jem into

workflows. Such an appmach can significantly reduce tbe risk associated u·itb

large inuestments in information technology The DECIJ lodel dest�f{ll i11corporates

knowledge-based, simulation, and graphical user intetjace technology on a PC plat

form based on the L'vficrosoft Windml's operating �Tstem. Unique to the design is the

manner in whicb it separates the model of the business processes Fum tbe uiews or

presentations of the model.

Many approaches have been developed for u n d er

stan d i ng, specifying, testing, and val idating busi

ness processes. In t h e late 1980s, D igital began ro
reengineer some of its most comp lex and m ission

critical busi ness processes. It soon became appar

e n t that mode l i ng methodologies and tools were

needed to docu ment, test, ami va I idate the reengi

n eered processes before they were i m plemented ,

as wel l as to provide a high-level specifi cation for

their design and i mp lementat i o n . Consequently,

Digital decided to provide the business process

engi neer with tools similar to those used by archi

tects, mechanical designers, and compute r a n d soft

ware engineers.

The first implementation of Digita l\ drnamic

business modeling technology, Symbolic Model ing,

was developed a t Digita l 's Art if icia l In tel l igence

Techno logy Center. The techn ology was embod ied

i n an application cal led Sym mod. wh ich in 1991 ran

o n ly on a VAXstation system. 1 Sym m ()(J's knowledge

base and simu lat ion engine were i m p lemen ted

using the LISP progra m m ing l a nguage and the

Knowledge Craft prod uct, a fra me-based k nowl

edge represe nt ation package with model i ng a nd

s i m u lation features.l Because models were written

in LISP code, users had to be computer program

mers as we l l as business cons u l tants . The appl ica

t ion contai ned a graphical presentation bui lder and

\'iewer implemented in the C progra m m i ng lan

guage that used a relat ional database for p res e n t a

t i o n storage . The user had to start the knowledge

')()

base compo n e n t aml t he p rese n t ation componen t

as sep arate processes. A pri m i t ive m a i l box system

was used fo r interprocess com m u n icatio n . To serve

the needs of n o n tech n ical business users and to
achieve t he necessary pro d u c t qu a l i t y, Sym mod

needed to be com pletely redesigned and rebu i l t .

I n early 1 9 9 1 . the Model i ng and Visua l ization

Group decided to bui l d a product versi o n of the

Sym mod applicati o n , which wou l d be released as

the DECmoclel tool . The team drafted requ iremen ts,

specifications, ami an architecture. The DECm odel

product was i n i t ia l l y targeted a t two plat forms:

VAXstation workstations r u nning u n der t he

DECwindows operating system and perso n a l com

p u ters (PCs) r u n ni n g u nder the Windows NT oper

ating system. As users were i nterviewed and

req uirements were accu m u l.a ted . i t became clear.

however. that by far the most i m portan t platform

for DECmouel users was the PC platform based

on the Wi n dows opera t i ng system. Consequent ly,

the DECmodel deve lopment eftort shifted to this

p l a t form.
During 199 1 , the team en hance(! the exi s t i ng ver

sion of Sym mod so that i t wou l d meet user needs

u n t i l the release of the pro(l uct version for l'Cs. The

most s ign ificant en hancement was the develop

ment of an X Wind ow System in terface for building

and edit ing models . A second important enhance

men t was a gra p hica l she l l program that tra ns

parently started up t he k n owledge base and

presentation components tor the user.

Vol. o No. 1 h1ll 1')')4 Digital Tecbnical journal

In March 1992, Digital officially announced Phase

0 (the strategy and requirements determination

phase) of the DECmodel for Windows product.

Design and Development Goals
The DECmodel product design team had the fol low

ing goa ls:

• Provide a model ing tool that maps directly to

business processes

• Allow the model ing of both the static and the

dynamic characteristics of the business process

• Allow mult iple views of the busi ness process

model by separating the model from the presen

tation of the business process during simulation

• Allow the user to i nteract with the tool and to

make decisions while the business process is

being simu lated in order to let the user " test

drive" the business process

• Provide a tool that is easy to use for business con

sultants and that requires no programm ing

Note that the designers intentionally omitted the

fol lowing goals from the DECmodel design:

• Include resource constraints and queuing

• Al low the user to perform a statistical analysis

of the behavior of the business process

By far the most important goal for the DECmodel

design was the first one l isted, an obvious mapping

between elements of the model and business p ro

cesses. The antici pated users of the DECmodel tool

were business analysts and consultants, not system

designers and software engineers. The designers

felt that add ing levels of abstractions to a modeli ng

tool would make i t less acceptable to the intended

users. A notable coro l l ary to providing an obvious

mapping was modeling both the static and the

dynamic characteristics of the business process.

To engage the user in interacting with the model

and test-driving the business process required

a graphical interface that was separate from the

model. This " p resentation" layer of the DECmodel

tool provides a layout and graphical appearance

that has the look and feel of the actual business pro

cess, hiding the irrelevant technical details of the

model. The presentation enables the user to step

through the business, watching information and

material flows occur, and thus see where the

dependencies and concurrencies exist.

Digital Technict,l]ournal Vol. 6 No. 4 Fall 1994

The Design of DEC model for Windows

Designers believed that while simulating the

business, the user should be able to interact with

the model and thereby select and test more than

one scenario. The DECmodel tool was intended to

be a working scale model of the business, giving the

user a sense of how the business process wou ld

work as different choices were made. The tool, by

design, neither predicts congestion and through

put as a fu nction of resource constraints nor pro

vides infor mation through statistical reports. The

DECmodel product was designed to provide a slow,

del iberate simulation of the business, not to com

press weeks or years of activities into a few sec

onds, leaving behind only a statistical sum mary.

The team 's development goals for the DECmodel

product were to

• Provide a tool that runs on a popular hardware

platform used by business consultants

• Achieve a short t ime-to-market, i . e . , delivery

within one year

• Util ize a widely accepted software base technol

ogy (for maintainabil ity)

The DECmodel World Vlew
Every m odel ing and simulation tool is based on

a predefined view of the world 5 In the DECmodel

world view, a business process is composed of

aggregate centers capable of perform ing one or

more tasks or work steps. Each aggregation is

referred to as a process, and the tasks that can occur

in a process are called activities. Processes commu

nicate through the exchange of messages, which

are sent by activities and received by another pro

cess or other processes or by the same process that

contains the activity.4

This view differs significantly from the one taken

by the typical workflow model in which work steps

are directly l inked. In the DECmodel model, an

activity that sends a message to a process has no

knowledge of what work steps w i l l occur next. For

example, when a customer (a process) sencls an

order (a message) to a supplier (another process),

the customer does not know what work steps

(activities) the suppl ier will initiate when it

receives the order. It is invisible to the customer

whether or not the supplier decides to change its

work ru les, for instance, by sendi ng the order to a

second source because material s are not available.

Similarly, when the suppl ier's activities have been

completed and the material that was ordered has

5 1

Workflow Models

been sent to the customer, the suppl ier has neither
knowledge of nor dependencies on the work steps
that the customer undertakes next . In contrast, i n
a workflow model each task i s d irect ly l in ked to
another task. Changes in the sup pi ier's way of clo ing
business force changes i n how the customer's tasks
connect to the supp l ier's tasks. More succinct ly, the
DECmodel tool encapsulates the behaviors and
work ru les of each i nd iv idua l process in t he larger
business process. This d i fference between the pro
cess and workflow models is shown in Figu re 1 .

Processes, Activities, and Messages

As described above, the DECmodel model repre
sents a business process as a col lection of smal ler
encapsul a ted processes. The behavior of each pro
cess is defined by the activit ies that it contains. The
DECmodel tool provides three general types of
activit ies: generating activi ties, processing activi
t ies, and terminating activit ies. Generat ing and ter
m i nat ing act ivit ies represent the boundaries of the
model ; processi ng activi ties represent the work
steps i n the business process.

An activ i ty is characterized by (1) a receive ru le ,
which defines the messages that the act ivity neecls
for i n i t iat ion , (2) a durat ion, and (3) a send rule ,
which defines the messages that the act iv i ty semis
out at the end of its durat ion . Generating activ i t ies
have on ly send ru les, and terminat ing activ i t ies
have on ly receive ru les.

52

PROCESS A PROCESS 8

(a) Process Jl!Jodel

(b) Workjlou • ii!Jodel

Figure I Tbe Process ;Hodel uersus

the Workj?ou• Model

Activ i t ies can send messages to processes on l y.
The receiving process m akes the message known to
every act ivity that uses t he message in i ts receive
rule . Messages are u niversal to the model , and the
same message type can be sent by activit ies in d i t�
feren t processes.

Processes can have state knowledge (attr ibu tes)
that can be assigned values as a side effect of an
act ivity being completed . 'The activity can use
a process attr ibute va lue to decide what messages
to send out ancl where to send them. 'That is, pro
cesses have a state that can be a ltered to change the
behav ior of the model .

L ike processes, messages can conta in infor
mat ion , which is stored i n their attr ibu tes. When
a process receives a message and passes i t on to
an activity, information in the message can be used
in both the receive ru le and the send ru le of the
activity. Acld i t iona l ly, t he information i n a received
message can be copied in to the attr ibutes of
any message that an activity sends. In this way, the
DECmodel tool supports informat ion propagat ion.

The DECmoclel representat ion of business bor
rows heavi ly from both the stochastic-t imed Petri
net (STPN) model and the object parad igm fou nd in
object -oriented design. ' 1'

TIJe Stochastic- timed Petri Net Model uersus the

DECrnodel ;lJodel An STPN model represents a
system as a col lect ion of pl aces, transi t ions, arcs.
and tokens. Places conta in tokens and act as inputs
to trans i t ions. A t ransit ion results in the movement
of a token to another p lace i f an arc exists between
the t ransit ion ancl the p lace. Before a t ransit ion can
occur, a token must be present at each place that is
connected to the t ransit ion by an arc. Associated
with each transi t ion is an exponenti a l ly d istributed
random variable that expresses the de l ay between
the enab l ing of the t ransi t ion and the firing of the
transi t ion .

The DECmodel model welds the STPN place, t ran
s i t ion, ancl arc elements in to a s i ng le object ca l led
an activity. The analogous elements of the ST'PN and
DECmodel models are

STPN

Place
Transit ion
Token
Arc

DECmodel

Activity receive r u le
Activity durat ion
Message
Act iv i ty send rule
Process

Vii/. 6 ;\(). cj Fall I 'J') 1 Digital 1ecbuical journal

The DEC:model mode.l goes beyond the STPN

model by

l. Adding the process object between the activity
send rules (arcs) and the activity receive ru les
(places). Each process can have mu ltiple activ ity
send ru les. As the process object receives mes
sages (tokens), it dispatches them to the appro

priate activity receive rule (place).

2. Al lowing more than one type of message (token)
to exist.

:; . Storing information in both the processes and
the messages (tokens).

4. Using AND, OR, and message-m atching receive
ru les in the activity receive ru les (places).

The Des(f.!.11 ofDECmodelfor Windows

5. Not restricting durations to being exponentially
disrribllted random variables.

Like an STPN model , a DECmodel model does not
expl icitly have resources but can represent the

avai labi l i ty of a resource by sending a message to a

process when the resource is avai lable.
Figure 2 shows the workflow system from

Figure 1 as both an STPN model and a DECmodel

model with the process receiving messages from
the activit ies.

The DECmodel !Vlodel and Object-oriented Design

The elements of object-oriented design that the
DECmodel model fu l ly draws upon are encapsu la
tion of information and the message-method para
d igm. Information is encapsu lated within DECmodel

ACTIVITY 1 ACTIVITY 2 ACTIVITY 3 ACTIVITY 4

V-UVl
KEY:

0 PLACE
TRANSITION

J'
ARC

• TOKEN

(a) Stochastic-timed Petri Net Model of a Four-actiuiz)' Workflow

KEY:

c==::> PROCESS

0 ACTIVITY
ACTIVITY RECEIVE RULE

JACTIVITY SEND RULE

• MESSAGE

(b) A DECmodel Model of a Four-activiZJ' Workflow with a Process

Dispatching Messages between A ctivities

Fip,ure 2 The Stocbastic-tirned Petri Net Nlode/ versus the DECmode/ Process-activity J\1/odel

Digital Technical journal Vol. () No. Fa((J'J94

Workflow Models

objects and is not avai lable g loba l ly. However, an
i mportant d ifference exists between DECmodel sys
tems and object-oriented systems. Tn DEC:moclel
systems, a number of messages may by required to
trigger a behavior; whereas, in c lassical object
oriented systems, each m essage triggers a method.

The DECmodel tool supports polymorph ism, in
that the same message can be sent to d ifferent pro
cesses, which can resu l t in different behaviors.
Developers investigated going beyond standard
polymorphism by using one message to trigger d if
ferent activ i t ies within the same process. The
approach considered was to use process " fi l ters" to
examine the information in a message and then
decide which activity or activities in the process
should receive i t. This feature was not completely
developed because of time constra ints a nd a less
than-clear mapping between the concept and the
actua l practices in most business. Further, using
activity send ru les that ut i l i ze the int<>rmation con
ta ined in messages can provide a s imi lar capabil i ty.

The DECmodel tool does not su pport inheri
tance, but the u nderlying technology of the prod
uct does support this feature. As in the case of
nonstandard polymorph ism, time-to-market pres
sures and the lack of clear evidence that the feature
would be used i n business processes drove the
decision not to i nclude inheritance support. Also,
the DECmodel product does not currently support
class types beyond the bui l t - in classes of the rro
cess and the three activity types.

Process Hierarchies

Tb address the goa l of havi ng a strong mapping
between the model ami rea l business processes, t he
DEC:model model supports processes with in pro
cesses. Processes can receive messages in two ways:
h ierarchical routing ami peer-to-reer rout ing.

In a business process, a message sent to a h igh
level process should travel through the process h ier
archy to the activi ty that is to act upon the message.
For example, an activity in the sales process should
be able to send a message to the manufacturing pro
cess and not be concerned that manufacturing con
tains several subprocesses. The knowledge of how
to relay a message shou ld be in the receiving pro
cess, not the send ing process.

In business, however, much com munication
occurs on a peer-to-peer basis, with information
seldom routed up and down the organizat ion hier
archy. For example, the results of a m arketing
research activity go directly to the manufacturing

'5 4

planni ng function without traveling down through
the various levels of the manufacturing organiza
t ion. In a DECmodel model , as in most businesses,
when an activity is completed, a message can be
sent directly to any process in the business.

The DECmodel design feature that a llows pro
cesses to receive messages ami then pass them on to
subprocesses and activ i ties can resu l t in m u lt iple
message receipts h>r a s ingle send operation. That
is, one activity can send a single message that is
received by every act ivity in the model that includes
the message in its receive ru le. Model ing experts d is
agree about bow well this phenomenon maps to
rea l business processes. The DECmodel user can
avoid this effect, if desired, by using uniquely named
messages in the send ru les of activities.

The Presentation

The first DECmoclel design goa l was supported by the
modeling parad igm of processes, activities, and mes
sages. The presentation aspect of the DECmode l tool
supports the goa ls of a strong separation between
the model and the graphical representation of the
business process and the need to support user inter
action ami decisions during moclel simulation.

The presentation of the model is based on v iews
that contain networked nodes. Each node in a view
can represent zero or more processes in the model ;
however, no process can be represented by more
than one node in a single view. This mapping
between the processes in the model and the nodes
in a v iew a l lows the user to develop a ncl an imate
mul tiple v iews of the model s imu l taneously. For
example, one view m ay show the model at its low
est level of deta i l , with each process in the model
m apped to a single node. Another view m ay show
a h igher level of mapping, with m u l tiple processes
m apped to the same node. A third view may map
processes based on attri butes such as geographic
location, the organizational chart, or technology.
T he construction of the v iews is left to the creat iv
i ty of the analyst bui ld ing the model .

D uring model s imulat ion, the DECmoclel tool
uses an imation to show the movement of messages
from one process to another. The user can a lso
v iew the messages and their attributes.

To accom modate user interaction, the D ECmodel
tool provides a menu send ru le in the defi n it ion of
an activity. If an activ ity uses the menu sencl rule ,
just before the activ ity fires, a menu appears that
a l lows the user to make a choice that determ ines
what messages are to be sent by the act iv i ty and

Vol. 6 No. 'l Fall I')'Yi Digital Tecbnical journal

which processes are to receive them. The user is

unaware of the actual send rule; the choice made

forces one of a set of send ru les to be selected. The

use of menus, animation of messages moving

between processes, and user-control led stepping

through the simulation gives the user the feeling of

test-driving the business process.

Architecture and Development Process

The overal l DECmodel architecture, shown in Figure

3, contains two layers. The inner layer of the architec

ture is the internal engine, which provides the means

for representing, storing, and executing (simulating)

models. The internal engine is designed using ROCK,

a frame-based , object-oriented knowledge repre

sentation system, and AMP, a modeling and sim ula

tion frame-class l ibrary implemented in ROCK 7 The

outer layer of the architecture is the user interface,

which provides the means for a l l user interaction

with the DECmodel model and has two major com

ponents: the m odel builder and the presentation

r - - - - - - - - - - - - - - - - - - ,

MODEL PRESENTATION

BUILDER BUILDER

I ��"'' GENERIC USER INTERFACE CLASSES

I MICROSOFT FOUNDATION CLASSES

USER INTERFACE

(A�
SCRIPT ENGINE

SI MULATION
KNOWLEDGE BASE

ENG INE

ANALYSIS

I AMP

l ROCK

I NTERNAL ENGINE

DECMODEL APPLI CATION
- - - - 1- - - - - - - - - - - - - - -

r
- - - - - - - - - - - - - - - - -

I
REPORT

I
DECMODEL

FI LES
MODELING LANGUAGE

FI LES

PERSISTENT STORAGE ll
l _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

Figure 3 DECmodel Architecture

Digital Tecbnicaljournal Vol. 6 No. 4 Fal/ 1994

The Design ojDECmodel for Windows

builder. The user inte rface is designed as a set of

classes specialized from the Microsoft Foundation

Classes. Interaction between the two layers is

achieved with an internal application programming

interface (API).
This architecture was chosen for both technical

and pragmatic organizational reasons. The parti

tioning into two layers al lowed the internal engine

to be built using state-of-the-art knowledge repre

sentation tech nology and the user interface to be

built using sta te-of-the-art graphical user interface

technology. The d isadvantages in this separation

were the necessity of designing an internal API and

the need to dupl icate some data (nominal l y stored

in the knowledge base) in the user interface.

The partition ing m apped well to the human

resources available in the DECmodeJ team. The

DECmodeJ engineers had strong skills i n developing

LISP, knowledge-based, and X Window System appli

cations but l i t t le experience in developi ng C++,

ROCK, or Microsoft Windows applications. With the

architectural separation, one team was able to

focus o n the i nternal engine using C++ a nd ROCK

and, t herefore, did not have to learn much about

Windows program ming. The other team was able to

focus on the user i nterface using C++ and Windows

programming tools and did not have to learn any

th ing about ROCK. The engineering team felt that

the efficient use of human resources in the develop

ment process overcame the technical disadvan

tages of the approach .

DECmodel development proceeded with the two

teams. Since the bul k of their devel opment work

was completed first, the members of the knowl

edge base team also worked on the user interface

team toward the end of the development process.

Design and Implementation

This secti o n describes the design of the two

DECmodel layers: the i nternal engine and the user

interface.

Internal Engine
The internal engine represents models of dynamic

business processes in a knowledge base and exe

cutes these models using discrete event simulation.

This layer provides a set of services for interacting

with the knowledge base. These services are

accessed through the DECm odel tool 's i nternal API .
The internal engine contains t he DECmodel knowl

edge base, simu lation engine, and means of persis

tent storage. Using the DECmodel methodology to

55

Workflow Models

represent and execute business process models,
the i nternal engine

• Represents the structure, attributes, and behavior
descriptions of the business p rocesses in a knowl
edge base. (This representation is the model .)

• Represents the structure, at tri b u tes, and behav
ior descriptions of the an imated v isua l i zat ion
of the model in a knowledge base . (This repre
sentation is the presentat ion.)

• Represents the connections between the model
and the presentation i n a knowledge base .
(This represen tation is the model-presentat ion
mapping.)

• Represents the dynamic behav ior of the business
processes by al lowing for d iscrete event s imu la
t ion of the knowledge base .

Knou•lec(f!,e Base The DECmodel knowledge base
cont a ins the frame-based , object-oriented rep
resentat ion of the model , the presentat ion, and
the connections between them . It a lso ma in
ta ins the model relat ions, attr ibutes, and methods.
The knowledge base contains both classes and
instances. The c lasses specify DECmodel objects;
sets of i nstances make up specific models and pre
sentations. In addit ion to conta in ing a l l the i n for
mation abou t model and presentation behavior and
structure , the k nowledge base contains all the
graphical informat ion usecl by the model bu i lder
ami the presentat ion bu i lder. This i nt<nmation is
updated in real t ime.

Knrnl 'ledge Representation Technology The
DECmodel knowledge base and s imu lation engine
are i mplemented in ROC K , a frame-based . object
oriented knowledge rep resentat ion system writ ten
in the C++ program ming language. ROCK imple
ments the LVI KA knowledge representation technol
ogy and is used as a set of A f'l fu nctions in a C++
programming environment .

ROCK prov ides usefu l features such as frames,
m ult iple inheritance of data ami methods, user
defined relat ionships, and contexts. The basic un i t
of knowledge in ROCK is a frame, which represents
an object or a concept A frame is a col lection of
s lots that contain the attr ibute , relat ionship, and
procedural information about the object or the con
cept. Att ribute slots store values, relation s lots
store user-defined I inks between frames. and mes
sage slots store methods (functions) that are

56

executed when the frame receives the approp
riate message from the appl ication rrogram. Class
frames represent object types or categories.
Instance frames rep resent particu lar members of
a class. ROCK requires frame classes to be organized
in a class h ierarchy. Attr ibu te s lots and message
slots can inherit values and methods from classes at
a higher level in the h ierarchy. This mechanism can
be used to define defa u l t values f(>r frame classes.
Both frame classes and frame i nstances are objects.
ancl both can be dynamically created, operated on .
and deleted dur ing run t ime . With respect to the
C++ language, al l frames appear to have the same
data type. Slots are objects, whose behav ior is
defined independent of the frames.

Portions of the knowledge base are bu i l t using
AMP, a model i ng and simulat ion frame-class l ibrary
imple mented in HOC K . A!YJ I' contains objects for
representing process models that contain ent ity
flow, for constructing ami runn ing (I iscrete-even t
s imu lat ions, and for generat ing, col lect i ng, and
red ucing statistical data .

The DECmodel frame classes are subclasses of
ROCK and AMP classes ami conta in re lat ions,
a t tr ibutes, and methods that describe the content
and behavior of DECmodel objects. Some DECmollel
frame classes are abstract c lasses used only as
a basis for more specific subclasses; others are used
for instant iat ion of DECmodel objects. The
DECmodel tool contains three types of h·ame
classes: model objects. presentat ion objects. and
project objects. A speci fic DECmodel project is rep
resented within the k nowledge base :1s a set of
model. presentat ion, and project instances. These
i nstances are created in the knowledge base by
load i ng a DECmodel model i ng language (DM L) fi le
or through i nteraction with the model bu i lder or
the presentation bu dder.

Persistent Storage The DMJ. is a subset of the
ROCK frame defin i t ion language and is used by
the knowledge base for p ersistent storage .
A DEC:model project is stored as ASC I I text i n three
files that contain the model, presentat ion. and map
p ing objects. The language em ploys ROCK syntax
but uses on ly the frame classes and slots defined in
the DECmodel knowledge base.

The DECmodel tool uti l izes the ROC K frame defi
nit ion interpreter as the DML i nterpreter. Since the
ROCK in terpreter was not intended to he u sed for
persistent storage . the DECmodeJ developers made
several minor modificat ions to obtain the desired

I vi. 6 ,\o. 4 Foii i'J'J·I Digital Teclmical journal

error hand I ing capabi l it ies. The DECmodel tool
contains its own DML code generator.

Simulation Engine The simu lation engine exe
cutes a discrete event simulation of the model in
the knowledge base. This simu lation can be per
formed either in teractively or in a batch mode. The
simul ation engine was designed to be so robust

that a model can be simulated at any stage of its
development, regard less of inconsistencies or
undefined elements.

The simulation engine interacts with the presen
tation bui lder to control simu lation, animation, and
graphics. The user con trols simu lation through
the presentation bu i lder. The presentation bu ilder

cal l s s imulation engine API fu nctions to perform
the requested actions, such as starting, step
ping through, pausing, ending, and reinit ia l izing
the simu l ation .

Script Engine and CmnjJiler Scripts provide
a means of specifying user-defined actions to cus
tomize model animation and to perform spe
cial presentation actions during simulation. The
DECmodel tool contains a language for defin ing
scripts, a script compi ler, and a script engine for
executi ng the scripts. Although the DECmodel team
wanted to avoid requ iring any programming i n the
tool, developers decided that a script language was
the only way to implement these features in the
available time frame.

The script language contains functions for

• Annotating, h id ing, showing, flashing, moving,
highl ighting, and seal ing presentat ion icons

• Playing sounds and sound loops

• Animating connections between nodes

• Showing, h iding, and cleari ng certain kinds of
windows

• Starting other applications

• Temporarily stopping execution

• Loading a new project

• Starting and pausing the simu lation

• Displaying files

• Displaying a list of DECmodel development team
members

Digital Tee/mica/]ou rual l,bl. o No. 4 Fall I'J'Yi

The Design of DECmodel for Windows

A nazysis and Reporting Services The knowledge
base contains services that al low the user to ana
lyze models and presenrations in the knowledge
base and to generate reports.

The consistency advisor checks models, presenta

tions, and mappings for inconsistencies and poten
tial problems at any point in the model development
process. This check is analogous to the syntax check

performed by a compiler. The consistency advisor
check is the primary model-building debugging aid
for users. Inconsistencies in the model do not pre
vent a model from being simulated.

The model description report l ists the descrip
tion, messages sent, and messages received for each

activity and process. The model table report con
tains the basic model information in a table format
for easy access by another application, database, or
spreadsheet. The simulation summary report con
tains information on simulation performance.

Design and Implementation Decisions The inter
nal engine for the first DECmodel product release,
DECmodel for Windows version 1 .0, was imple
mented as a Windows dynamic l ink l ibrary (DLL)

using the Windows version of ROCK version 1 .0, the
Windows version of AMP version 1 .0, and Microsoft
C!C++ version 70. For DECmodel for Windows

version 1 .1 , developers ported the internal engine
to Microsoft Visual C++ version 1 .0.

Several options existed for implementing the
DECmodel knowledge base. The knowledge base of
the Symmod application, the precursor to the

DECmoclel product, was implemented in a LISP envi
ronment. The DECmodel engineering team wanted
to move to a more standard programming environ
ment and, therefore, focused on C++ and C++-based
tools. However, a straight C++ implementation
would have required the reimplementation of

knowledge represent ation, simu lation, and model
ing technology available in other tools.

Another model ing and simu lation technology,
the Model i ng and S imulation System (MSS), had
been developed for Digital 's Artificial Intel l igence
Technology Center by the Carnegie Group, Inc.
(CGf) H This graphical tool was designed at a lower
level than Symmod . I t used a model ing simu lation
language and was developed to implement the next

version of Symmod. However, the MSS model ing

paradigm was not compatible with that of the
DECmodel tool.

IMKA had also been recently developed by
CGl, fu nded by a consortium of companies, as a

57

Workflow Models

repl acemen t for the Know ledge Craft product .

J M KA 's imp lemen t at ion , ROCK, l acked some of the

class l ibraries inc luded in Knowl edge Craft for s i m

u la t i o n and process model i ng but ran s ign i fica nt ly

faster than Know ledge Craft. The engi neer ing team
decided to use ROC K to i mplement the knowledge

base beca use of i ts knowledge represen tat ion
power and its C++ compat ib i l i ty D ig ita l contracted

with CGl to port the class li braries to ROCK . The

team , therefore, had a head start in designing ancl

i mplementing the imernal engine. The portab i l i ty

of ROCK was a l so a n advantage ; swi tch i ng to t h�
Windows p latform from the DECwimlows p latform

caused no d isrup tion in deve lopment .

The origi nal i n tent of t he engineering team was
to i m p lement the DECmodel tool as a s i ngle exe
cutab le file. The know ledge base c o n t a i ns m uch

g loba l data, however, and restrictions on the

n u mber of data segmen ts requ ired developers to

i mplem en t the in terna l engi ne as a D LL. Th is encap

sulat ion of the i n ternal e ng ine al lows i t to be used
in othe r app l icat ions an d enab les easy port ing to
ot her p la tforms. The DECmodel team de veloped

a set of i nterna l API functions and structures to
a l low i nteractions between the DLL-based internal

engine and the executable-based user i n terface.

The Sym mod app l icat ion had a mode l i ng

language based on liSP for pers isten t storage of

models and used a rel ati on a l database f(>r pe rs istent

storage of presentat ions . Consideration was given

to developing a model ing language specific to
the D ECmodel tool. Instead, the engineering team

decided to use t he ROCK frame defi n it i o n l a n

guage, since i t was a lready com plete l y defined and

debugged and had an i n terpreter. 'fhe team used

th is l anguage for persistent storage of both mode ls

and p resentat i ons to al low easy sha ring of proj ects

between users and to simpl ify debugging by users

and DECmo<lel deve lopers .

The knowledge base team was responsible for

implementing the interna l API between the user

i nterface and the know ledge base . Th is i nterface was
spec ified in detail early i n the p roject. The team kept

the specificarion up -to-date th roughou t the project .

It prepared 19 revisions an d produced a fina l docu
ment of more than 200 pages. This specificat ion kept

interface prob lems to a minimum, thus defusing

a potentia l source of major technica l problems.

The team spec ified the objects in great deta i l

early in the project. It also he ld several internal

and externa l design reviews. These measu res
reduced the nu mber of poten t ia l design problems

and thus y iekl ecl a h igher- qua l i ty produ ct and

a faster implemen tatio n .

User Interface

The user i nterface provides the means for a l l user

i n teraction with the DECmodel tooL It has two

major components : the model bui lder and the p re
sentation bui lder.

The user i nt erface is des igned as a set of c lasses

specia l ized from the Microsoft Foundation C lasses .
M ost of t hese speci a l DECmodel user i n terface
classes co rrespond to frame cl asses in the know l
edge base : the rema i nder are necessary for i mple

men t i ng the user interface. The three m a i n types of

user i n terface classes-windows, graph ic obj ec t s ,

and d ia log boxes-are u sed by both the m ()(le l

bu i lder and the presentat ion bu i lde r.

lflindow Classes The user i n terface contains sev

eral types of window c l asses : gra ph ics winduws,

text windows , a nd a frame window.

The gra phics window classes are a l l der ived from

tbe generic DECm odel graph ics window c l ass.

Gra p h i cs windows contain graph i c obj ects , such as

boxes or l ines. Users act upon these w i ndows

through menu com manus or through the Windows

messages generated by the mouse a ncl mouse but

tons . The graph ics windows a re the model window,
the view w indows, ami the paJet tes. Menu com

mands specific to each graphics window are han
d led by message hand lers w i t h i n the w i ndow c l ass .

The text wi ndow cl asses are derived from the

gen eric D ECmodel text window c l ass. Tex t win
dows are genera l ly read-o n ly and display various

types of textual information , such as descr ipt ions ,

t h e text of f i les. a nd clock information. As in the

case of graph ics windmvs, menu commands spe

cific ro each text wi ndow are hand led by message
hand lers w i t h i n t he window class .

The one frame window cl ass, i . e . , the top win

dow cl ass, is derived from the CMDIFrameWnd
Microsoft Foundation Class and serves as the frame
winc low for the appl icat io n . The menu commamls

not spec ific to a part i c u l a r w i ndow are hand led by

(lefauJt message ha nd lers within this window

Graphics Classes Graphics wi ndow c lasses usl·
graphi c ob jects to bu i ld mod e l s an d presen t at ions.

These c l asses i m plement the processes, activ i t ies,

n odes . con necti o ns , a n d annotat ions d isplaved in

the Model Ed i t ing \Vi ndow and i n the v iews.

Vol. (i No. .f F({// I'.I'Ii Digital Tecbuical journal

The Design of DEC model for Windows

Dialog Box Classes The DECmodeJ tool contains
a large nu mber of dialog boxes derived from the
CModa i Dialog Microsoft Foundation Class. The tool
uses these dia log boxes to define the information
and relationships contai ned in the DECmoclel
objects.

Menus The DECmodel tool uses a set of menus
individua l ized to match the capabil i ties of the
window cu rrently in use. When a user starts the
DECmodel app.l ication, the tool presents a reduced
menu that al lows the user to start a new project
or to load an existing one. Once a project is in
memory, the menu changes as the user switches
between the Model Editing Window, the views, and
the other windows. Menu com mands activate mes
sage hand ler functions within the window classes.

Appearance of the User Interjcu;e Figure 4 shows
a small but typical DECmodel model. The figure dis

plays each process and its member activit ies. Note
that each of the three activity types is denoted by
a different icon. Lines ind icate the potential flow
of messages. Figure 5 shows the DECmodel presen

tation for the model that appears in Figure 4. The
presentation contains both a view and the support

ing windows, e .g . , the simulation clock and the
description windows.

Design and Implementation Decisions The team
implemented the user interface for DECmodel for

Windows version 1 .0 using Microsoft C/C++ ver
sion 70 and Microsoft Foundation Classes version
1 .0. For DECmodel for Wi ndows version 1 .1 , devel
opers ported the user interface to Microsoft Visual

-= a...- odc9r
Patien't· /1/ \\; I Ill Make Dia n4�is , ·a

t Home Treatment IJ �1hedul�' l-ab Tests

Ins ranee Carrier

f D � Contact ' �pita! \ D_
Visit octor II ' Evaluat� Lab Tests

Confirm Coverage

12 Notify Ratient a
Prepare for Hospital a Evaluate Symptoms

tJ Arrange Discharge

Begin Tieatment
IJ

Pay Bill
---- Hosp ital

........
Ho.pital Ad missions I --=------'

Laboratory I IJ
Schedu e Room

12
Admit (atient

D
Notify Bil l ing

I I

I
..=1
Hos�ital Records

I
'
IJ

\ Perform Lab Tests
a

Locate or Create Records

Figure 4 Typical DECmodel Model

-.. �
Pat ent Bi l l ing

12
Set u 1 Bil l ing

d
Contac Insurer

III
Close il l ing

IJ
Bil l Patient

D igital Technical journal Vol. () 1'viJ. 4 Fall 199·-i 59

Workflow Models

Patient is Not Well

Admissions

Message sent by : Hospital Admissions
message name : Record Requ est
received by : Hospital Records

Figure 5 T)1Jica/ IJL"C:IIlode/ Presen tation (for the Model Sbou •n in Figure 4)

C++ version 1 .0 and Microsoft fou ndation C lasses

version 1 .'5.

As stated at the begi n n i ng of the paper, t h e

DECmodel prod uct w a s i n i t i a l l y targeted at b o t h

VAXstat i o n workstat i o ns running under the

DECwindows operati ng system and l'Cs running

under t he Windows NT operat ing system . Conse

q uent ly, when deve lopers decided to focus solely

o n the l 'C platform r u nn ing under the st:mdard

Windows operating system, t he user i nte rface

development effort was d isrupted . Engineers had

done a s ignifican t amou n t of design work toward

achieving a DEC:wi n clows implementat ion .
The DECmodel engineering team considered

other cl ass .l i braries and user i nt erface i m plemen ta

t i o n packages (such as A.'VT), but most were defi

c ient in Wi ndows fea t ures o r i n the look and feel .

S i nce the Windows operating system was the only

platform for the foreseeable fu ture, the engineering

team fel t t h a t using Microsoft Fou n d ation C lasses

was the best c hoice . However. t hey made t h is deci

s ion after they had pe rformed a s ignificant amount

of development work with one of the too l s. M u c h

of rhe work had to be redone. w h i ch contribu ted to

the sched u le del av.

60

D uring the design and development of t he

DECmodel product , the team debated how graphica l

to m a ke t he user i n terface, that is, to what extent d ia

log boxes should be used. Although the goal was to

m a ke the user i n terface as graphical as possi ble, the

tight sched u le h>rced the team to postpone plans for

graphical editors i n favor of d ia log boxes, which
were faster to i m plement. for example. the team had

initia l lv plan ned to i m plement a n Act ivity Edi t i n g

Window a n d had parri a l .l y developed i t . This window

was to provide a complete v iew of an activi t y and

al low graphical edit ing of its information . Sched u le

constra ints required the ream to abandon t h i s p lan

and to develop a set of d i a log boxes that were nor as

easy to use but were faster to i mplement.

The user i n terface design was not specified o r

com m i t ted to storyboards i n any detail a t t he begin

n i ng of the project, partially to save t i me after

the disru ptions in the development work. Th is deci

sion Jed to more lost t ime l ater i n the project,

though , because user i nt e r face featu res were

designed quick l y and someti mes incompat ibly. ami

conseque n t ly req u i red reworking. Jn add i t i o n , the

resu l t i ng user i n t t>rface was nor as easy to use as it

could have been if better p lanned.

l'r;/ { > .\'u. i hill I'J'N Digital Technical journal

External review of the user interface design was
not performed unti l late in the project. The review
yielded some ideas that would have resulted in
a more usable product; however, there was not
enough time left in the schedule to implement them.

Delivery
A discussion of the released product and the team's
success in achieving the design and development
goals fol lows.

Release

Digital released version 1 .0 of the DECmodel for
Windows product in November 1993 and version
1.1 in April 1994. Version 1 .0 contained the basic
capabil ities for bui lding models and presentations
of business processes; version 1 .1 added a set of
minor enhancements and bug fixes. Because of its
small , focused market and the large cost savings
that can result from its use, the DECmodel tool was
introduced as a low-volume, h igh-priced product.
The product includes the software, example mod
els, documentation, and a week of hands-on train
ing. The DECmodel tool is an integral part of Digital
Consu lting's reengineering practice.

Success of Design Choices

The separation of the model from the presentation
is the single most i mportant element of the prod
uct's success. This feature, along with animation,

d istingu ishes the DECmodel tool from its competi
tion. Some users have even requested the capability
of bu i lding the presentation first and then gener
ating the corresponding model. Such capabil ity
would require considerable investigation.

The paradigm of process-activity encapsulation
is difficult for some users to become accustomed
to. Many st i l l prefer to build a model using a work

flow approach, wh ich the DECmodel tool can sup
port, rather than by defining each process and i ts
behavior i ndependently.

The exclusion of resource constraints has l imited
the appl ication of the DECmodel tool to system
design, thus preventing its use in mode ling sys
tem performance. AJthough the capability was orig
inally not a product goa l , many users would l ike

a fu ture version of the D ECmodel prod uct to pro
vide this feature.

To perform special user-defined actions during
the simulation, a script language was included in
the DECmodel tool . This design feature violated the

D igital Tecbuicnl]ourual 1-b/. 6 No. 4 Fall I'J')4

The Design of DECmodel for Windows

goal of requ iring no programming, and some users
found scripts hard to use. However, many users have
requested that a future DECmodel version provide
more script functions and extend the script language
to be more like the BASIC programming l anguage.

Also, to enhance the use of the DECmodel tool i n
the design of business processes, a future version
should support classes to make generic processes
available as bui ld ing blocks of a business process.

Development Successes and Lessons

The DECmodel engineering team successfu l ly
released a software product on the Microsoft
Windows platform, the one most popular with busi
ness consu l tants. This achievement was significant

because the group of engineers began the project

with no PC experience. The team did not meet its
one-year del ivery goal , and the goal s l ipped to one
ancl one-half years after the Phase 0 announcement.
However, this t ime frame was sti l l extremely short
for developing a complex PC product from scratch.

The product retained the ex isting Symbol ic
Model ing parad igm (i .e . , a process-activity-message

model and a strong distinction between model and
presentation) and exhibited performance an order
of magnitude better than that of the Symmod prod
uct, which it replaced. The product uti lized the
most widely accepted modern programming tech

nology base (C/C++), which simplified maintain
abil ity and reduced the need for special training
of maintainers.

Splitting the development team into two sub
teams worked wel l . It distributed the amount of
learning about new technologies requ ired by the
engineers and minimized the overal l development

time. Key factors in the success of this approach
were the detailed object and internal API specifica
t ions that were kept up-to-date throughout devel
opment and thus provided a rei iable interface
between the two parts of the project.

After the product was released, the DECmodel
team identified certain factors that cou ld have
made the team and the product even more success
fu l . The entire engineering team would have bene
fited from Windows training at the onset of the
project. The Windmvs design of the user interface
shou ld have been specified and committed to story

board in much greater detail much earl ier in the
project. In addition, the team shou ld have arranged
for Windows experts to review the design . These
changes in the engineering process would have
helped the team produce a cleaner, easier-to-use,

61

Workflow Models

more maintainable user interface and would have

reduced implementation time. The project sched
u le should have been created using a bottom-up
rather than a top-down process. The initial one-year

schedule was based on an unrealistic, management

imposed release date. W11en the engineering team

revised the schedule and calculated a release date

based on their detailed estimates, the team met the
new date.

Summary

Modeling and simulating business processes is an
important part of business process reengineering.

Digital developed the DECmodel tool specifica!Jy
for this type of simulation. Although it borrows

many ideas from other discipl ines of model ing and
simulation, as wel l as from object-oriented design,
the DECmodel product is unique in the way it mod

els business processes, separates the model from
the presentation, and represents the model as

frames in a knowledge base.

Acknowledgments

The authors would l ike to acknowledge the follow
ing people who also contributed to the design of

the DECmodel product: Ty Chaney, David Choi,

62

Laurel Drummond, Peter Floss, Amal Kassatly, Mike

Kiskiel, Kip Landingham, and Janet Rothstein.

References

1 . Symmod User's Guide (Maynard, MA : Digital

Equipment Corporation, 1990).

2. Knowledge Craft Reference Manual (Pittsburgh,
PA: Carnegie Group, 1988) .

3. S. Hoover and R. Perry, Simulation, A Problem

Solving Approach (Reading, MA: Addison
Wesley, 1989).

4. DECmodel for Windows: Modeler's Guide (May

nard, MA: Digital Equipment Corporation, 1994).

5.]. Peterson, Petri Net Theory and Modeling of

Systems (Englewood Cl iffs, N.J : Prentice-Hall,
1981).

6. G. Booch, Object Oriented Design (Redwood
C ity, CA: Benjamin-Cummings, 1991) .

7. ROCK Software Functional Specification, Ver

sion 2. 0 (Pittsburgh, PA: Carnegie Group, 1991).

8. Modeling and Simulation System User's Guide

(Pittsburgh, PA: Carnegie Group, 1991).

Vol. 6 No. 4 Fall 1994 D igital Technical journal

Dennis G. Giokas I john C. Rokicki

The Design of ManageWORKS:
A User Interface Framework

The Managelf!ORKS Workgroup Administrator for Windows software product is

Digital's integration platform for system and network management of heteroge

neous local area networks. The Manage WORKS product enables multiple, heteroge

neous network operating system and network interconnect device management

from a single PC running under the Microsoft Windows operating system. The

NfanageiVORKS software is a user interface framework; that is, the services it pro

vides are primarily targeted at the integration of the user interface elements of

management applications. It manifests the organizational, navigational, and Junc

tional elements of system and network management in a coherent whole. Viewers,

such as the hierarchical outline viewer and the topological relationships viewer

that are components of the Manage WORKS softwa·re, provide the organizational

and navigational elements of the system. Management applications developed by

Digital and by third parties through the Manage WORKS Software Developer's Kit

provide the functional elements to manage network entities. This paper discusses

the user intetface design that implements these three elements and the software sys

tem design that supports the user intetface framework.

The ManageWORKS Workgroup Admin istrator for
Windows software product is D igital 's strategic

tool for providing system and network manage

ment of heterogeneous local area networks (LANs) .
It serves as Digital 's p latform for the integration
of PC LAN management. From the perspective
of the end user, i . e . , the LAN system administrator
and network manager, the ManageWORKS p roduct
comprises a suite of modules that integrates
a diverse set of management activi ties into one
workspace. From the perspective of tlJe developer
of system and network management applications,
the ManageWORKS prod uct is an extensible and
flexible software framework for the rapid develop
ment of integrated management modules, a l l of
which presents a consistent user int erface.

The design of the management system was user
centric, i .e . , usabi l ity was the top priori ty. Thus,
we began the design work without any precon
ceived notions about the management software sys
tem design. The design that emerged and that is
documented in this paper was driven solely by the
user interface paradigm developed and tested with
our customers.

D igital Teclmicaljournal Vol. 6 No. 4 Fall 1994

This paper focuses on how the ManageWORKS
software presents and integrates its functiona l ity
to the end user. Specifical ly, the paper presents

details of the user interface paradigm and d iscusses
the design rationale and the design methods
employed . The paper also d iscusses the design of
ManageWORKS software in support of the user
interface framework.

Driving Forces behind the Design

The ManageWORKS software was first released

as a component of the PATHWORKS version 5.0

for DOS and Windows product. The foci for
that PATHWORKS release set the tone for the
ManageWORKS design. The PATH\'VORKS version 5.0

design objectives were to

l. Enhance the usabil ity of the PATHWORKS prod
uct. Since the PATHWORKS system was rooted in

a command l ine-based user interface, the goal
was to develop a graphical user interface for the
system that was based on the Microsoft Windows

operating system. Such a user interface would be
contemporary, easier to learn, and easier to use.

63

PC LAN and System Management Tools

2. Enhance the manageabi l i ty of the PATH\VORKS

product. The goal was to reduce the cost of own

ersh ip by improving the insta ll a t ion, configura

t ion, and administrat ion of the system.

The ManageWORKS design team used two voice

ot�the-customer techniques to provide more depth

and detail for the two h igh- leve l p roduct design

objectives. First, the team used Contextual I nquiry

to determine a customer profile and to develop

a c learer statement of the user's work. ' Then, the
team tested user interface prototypes with cus

tomers by means of formal usabil ity testing. From

15 to 20 customers and users pa rticipated i n each
of three rou nds of usabil i ty testi ng.

Early in the investi gat ion, Contextual l nqu iry

revealed that the profile of the PATHWORKS system

admin istrator had changed drast ical ly during the

five years since the PATH\X'ORKS product was first

released. A typical system administrator in the era

of PATHWORKS version 1 .0 had been a VAX/VMS sys

tem manager who inherited the responsibil i ty of

instal l ing a nd managing a PC fi le and print -sharing

product. The interface into the system was a VT-class

term inal running command l ine-based utilit ies.

Tod ay, a system administrator is usu a l ly a PC user

who is qu ite fam i l iar with graphical user interfaces.

Such an administrator is more l ikely to be trainee! in

the instal lation, configurat ion, and management of

PCs and PC networking software than his/her pre

clecessors. This change in the profile encour aged

us to shift the PATHWORKS focus from using host

basecl command l i ne uti l i ties to manage the system
to using cl ient-based graphical ut i l i ties.

We also profi led the customer network configu

ration . During the same five years, i t changed from

a very s imp le and homogeneous environment with

just a few PATI-fW'ORKS servers to a med ium-to-large

heterogeneous PC LA N . At presen t , configurations

comprise network operating systems that consist

of Novel l NetWare, Microsoft LAN M anager, and
Apple AppleShare file and print serv ices, as wel l

as other services that are emerging in the PC LAN

environment. The network operating systems are

deployed on their native platforms and by Digita l

on the Open VMS and DEC OSF/ 1 platforms. Each sys

tem has its own tools to manage the c l ients and

the servers. Each has a d ifferent user i nterfac e that
resll lts i n a long learning curve and thus high tra i n
ing costs or low productivity for system administra

tors. Customers reported that they desired too ls

with a cons istent user interface to manage this
diversi ty.

64

The team employed software usabi l ity testing

throughout the development l ife cycle. Two usabil

ity tests were performed w i th early design proto

types; the final test was p erformed with our first

pass at a detai led concept design. We performed

the usabi l i ty testing with customers to test user

i nterface and fu nctional element design co ncepts

that we developed as a resu lt of the Contextual

I nqu iry. The user thus served as a design partici

pant. W i th each i teration of the formal testing, we

tested specific functional concepts in three key

areas: (1) mechan isms to navigate among the man

aged enti ties, (2) mechanisms to organize these

enti ties, and (3) the fllnctional capabi l i ty i nherent

in the management directives supported. (Note

that, in this paper, the servers, s ervices, and

resources m anaged by means of the ManageWORKS

software are collectively referred to as managed

en tities.) The m ajor lessons that we learned from

th is testing effort and then appl ied to the user inter

face and software designs are as fol lows:

1 . The ManageWORKS software had to p rovide

mechanisms to navigate among a diverse set of

managed entit ies o n the LAN or in some user

defined management domain . Users want to be

able to v iew and thus " d iscover" the entit ies that

are to be m a n aged . The system had to present

the managed entities in graphical d isplay formats

that were fam i l iar ami enticing to users. Users

welcome the abi l i ty to support differen t styles

of presentation . Final ly, users need easy mecha

nisms to navigate through the hierarchy of

an entity.

2. Navigation mechanisms, as j ust d escribed , work

well for novice users but become ted ious and

constra i ning for more experi enced users, as we

could attest to after our experience with the pro
totypes. The solu tion that we presented to users

al lowed them to create custom views of their
managed entities, i .e . , to organize their manage
ment domains. This concept was wel l received

by users during usabi l i ty testing.

3. The M anageWORKS prod uct had to provide

mechanisms that consistently performed the

functions that were com mon among a d iverse

set of management applications. The product

design presents users with an object-oriented

view of the m anaged environment. The bui lding

block of this design is the object, an abstraction

of a m anageable entity such as a server or a net

work router. Each object is a member of a single

Vol. (, No. 4 fall 1994 Digital Tecbuical journal

The Design ofJIIJcmageWONKS: A User Interface Framework

object class that describes the set of object

i nstan ces with i n it. The M a nageWOHKS appl i

cation renders objects to the user as icons i n a

v iewer. Fo r example, for a LAN that contains

three NerWare servers, the object class cal led

NerWare Servers wou l d contain three objects,

each of which represents one of the three i mli

vidual NetWare servers o n the LAN. When users

focus on an object, the tool reveals w h ich

act ions are val id i n the object's cu rrent context .

T h i s approach d i ffers from the tradi t i o n a l com

mand l i ne approach in which the user first

selects the u t i ! ity (acti on) and then specifies

the objects upon wh ich to act. Interesti ngly,

whereas novice users fou n d t h is object -focused

concept easy to grasp, t hose who considered

themselves strong users of the tradit ional com

mand l ine management u t i l i t ies experienced d i f

ficu l t y i n grasping the n e w concept .

4. T h e typical customer h a s a d iverse a nd large

(200 to 1 ,000) n u m be r of enti ties to manage. To

add ress this need , the prototype testing pre

sented users wi t h the abi l i ty w manage m o re

than one ent ity at the same t ime and the abi l it y

t o ma nage m a n y ent it ies a s o n e . Users l i ked

being able to view and m od i fy the properties

of mult iple entit ies at the same t i me as wel l as

being able to modify the same property across

a set of l i ke entities .

'5 . In addition to prov i d i ng a consistent user i nter

face, the ManageWORKS product should i n tegrate

the m anagement tools into one workspace . User

feedback Jed to the design of the user i nterface

framework as the del ivery veh icle for a d iverse

set of man agement appl ications.

The Key Software Design Principles

At this p o i n t i n the development cycle , the design

focus shifted from develop i ng and testing user

i nterface and fu nctional i ty concepts to design i ng

t he M a nageWORKS software itself. With what we

considered to be a good u nderstan d i ng of the user's

needs, we proceeded to design a software archi tec

ture to support those req u i rements.

Prior architectures that were fam i l iar to t he

design tea m served as starting points for the desig n .

The fol lowing two examples represent sources of

design concepts that we employed and ada pted to

s u i t our objectives. Each represents a n opposing

end of the spectru m with respect to design objec

t ives and i mplementation.

Digital Tecbuical journal �'Ill. 6 No. · Fall I'J94

The ManageWORKS team adopted the concept of

plug- in modu les, a software design that is supported

by the W indows Dynamic L i n k L i brary (DLL) archi

tectu re. " The design is also i n com mo n use by many

Windows appl ications i ncl u d i ng t l1e Windows

Control Panel , t he u t i l ity that manages the local

cleskto p 's configurat i o n and user preferences. 1

The next cha l le nge was to decide how much

constrai n t to i mpose o n the design of the

M a nageWORKS' pl ug- i n modules and how consis

tent t h e modu les m ust he. Digit a l 's extensible enter

prise ma nagement d i rector, the DECmcc product,

incorporated some excel lent concepts. ' I n particu

l ar, our design was influenced by the way in which

DECmcc l ayered the management responsibi l ity

i n to presentation modu les. fu nctional modu les,

and access modu les. Early i n the design process, we

decided to separate the nav igati o n and presenta

t ion of managed ent i t ies from the access a n d func

t ional management of the e n ti ties.

Another DECmcc concept, wh ich is used, for

example, in the access module layer, was the pre

sentation of a consistent view to the l ayers above. '

This concept, however, was not suitabl.e for the

ManageWORKS design because i t wou ld have pl aced

constrai nts on the user i n terface design , i n particu

lar, o n the presentation of t he attri bu tes of man

aged enti t ies. The design team was not w i l l ing to

comprom ise o n this aspect of the design.

Thus, we decided on a ManageWORKS design that

can best be described as a user i nterface frame

work. The i n i t i a l release, w h ich was a component

of PATHWORKS version '5.0 for DOS and W i ndows,

offered few serv ices other than to tie together the

user i nterface elements required for system and

network managemen t . The user interface serv ices

needed were dictated by the five user interface

requ i rements previously described.

The Manage WORKS design incorporates two types

of plug- i n modules: navigation mod ules, referred to

in the M a nageWO R KS product as Object Navigat ion

Mod u les (ONMs), and appl ication modules, referred

to as Object M anagemen t Modules (OMMs). The

M a nage\VORKS framework contro l s the control

flow and messaging between the modules.

ONMs al l ow for a ny number of navigation models

to be supported and used singly or s imultaneously

by the user. Al though, by desig n, ONMs possess no

k nowledge of t he managed entities or entity rela

tionships they d isplay, they do possess the a b i l i ty

to d isplay e n t i t ies with the relat ionships i n herent

in them . ONI'<ls a l so provide the mechanisms for

6'5

PC LAN and System Management Tools

browsing and navigating through the management

hierarchy. I n addition to navigation capabi l ities,

ONMs provide the user interface for organ izing enti

ties into a user-defined m anagement domain.

The OMMs are responsible for m anaging the enti

t ies. The OMM design has three key components.

l . OMMs provide the methods usecl to m a nage the

entit ies. These methods include the fu nctions of

discover, create, view, modify, and delete. The

OMMs also have the option of presenting to the

user add itional methods. That is, since each OMM

knows bow to manage the entities for which it is

responsible, i t knows which actions can be

appl ied to an ent i ty based on the entity's current

state and the user's context.

2. orv!Ms provide access to the managed entit ies.

An OMM can use any interprocess com munica
tion mechanism to access or to manage an entity

Examples include the task- to- task, remote pro

cedure cal l , and object request broker mecha

n isms. Since a PC LAN environment affords n o

common way for a management d irector t o com

municate with al l the types of devices present ,

the design team decided to leave the choice of

access mechanism up to the OMM.

3. OMMs provide the user interfaces required for

managing the entit ies. This design component

a l lows developers to presen t an interface that

best suits the needs of the user and best maps

to the entity being managed. I t also al lows for

flex ib i l ity, evol ut ion, and i n novat ion in the user

interface of OM.Ms. The ManageWORKS design

team did not want to i mpose a user i nterface

style or present a user i nterface that was com

promised by the d iversity of appl ications that we

envisioned running within the context of the

framework, e .g . , by being the least common

denominator. Even though one of the key prod

uct design goals was a consistent user interface,

we felt that it was i mportant to a l low the OMMs
to control the user interfaces. F irst, we thought

the design benefits outweighed the risk of any
i nconsistency. Second, we encouraged, but d id

not enforce, consistency by means of a user

i nterface style guide and com mon l ibraries that

i mplemented those guidel i nes.".r'

The plug-i n modules a lso have a residual benefit.
Because these modules can easily be added to or

removed from the environment, they provide

an easy way to extend and to customi ze the

ManageWORKS product. D igital and third parties

66

can develop new ONMs and OMMs and simply enro l l

them into the system . Users have the additional

benefit of being able to customize the p roduct to

support only the ONMs and OMMs that are usefu l in

their environment.

The User Interface ofONMs and OMMs

G iven the key software design elements presented

in the previous section, the focus of the paper now

returns to the user i nterface. This section describes

what was implemented to support the customer

requirements and the design framework.

The user i nterface framework man ifests the orga

nizational, navigational, and functional elements of

system and network management i n a coherent

whole. For example, the first three menus on the

ManageWORKS menu bar-Viewer, Edit Viewer, and

Actions-are all the tools the user needs to manage

entit ies. A discussion of the Viewer and Edi t Viewer

menus fol lows.

By means of the ManageWORKS Viewer menu,

ONMs present d isplay e lements, cal led viewers, to
the user. Each instance of a window that an ONM

creates is considered a viewer. A Man ageWORKS

viewer is one of the organizational elements for the

user and is the root-level object for navigation. Each

viewer is a viewport into a set of managed entit ies

that the user may be browsing and n avigating

through. A viewer is analogous to a word proces

sor's document, i . e . , a v iewer is a ManageWORKS

" document." Just as you can create new documents

and open , close, or edit existing documents when

you use a word processing appl ication, you can per

form the same functions on viewers when using the

ManageWORKS software.

ManageWORKS ONMs are responsible for the nav

igational and organizational d isplay properties. The

current ManageWORKS release comes with two
ONMs. One ON;YI supports a h ierarchical d isplay of

managed entit ies. This d isplay is rendered i n a s in

gle viewer window p,.raphical ly as a tree or textu a l ly
as an outl ine. The other available ONM supports the
relational d isplay of managed entities, rendered as

a map. The map ONM can also support a hierarchy;

each map is rendered in a new viewer instance.

Figure 1 shows ManageWORKS with two hierarchi

cal viewer styles and a map viewer. The hierarchical

views are the Out l ine view (shown i n the Browser
viewer) and the Outl ine Tree view (shown in the I P

Hierarchical View viewer). In aclc! i t ion t o the map
viewer (shown in the II' D iscovery viewer), note the

navigation w indow for the map v iewer (shown in

Vol. (i Nu. 4 Fal/ 1994 Digital Technical journal

Tbe Design of Manage WORKS: A User Interface Framework

16 124 1 44 1 3

�
16 1 2 4 1 44 1611 -

16 124 144 0

�
1 6 124 1 44 250

I CI · - · · -

�
lG 124 . 1 44 .167

c::>
'

c:>
C>

I(I(
II>

til
I('

LARRY AUG
'!li! M OSAIC
-!li! MWORKS

--·
A

1l(j CD RIVE
1liO CLIENTS
� DOWNLOAD
II!!J EDRIVE

Figure 1 ManageWORKS Viewers

the IP Discovery (Navigator) viewer). This view

shows a sca led map; the entire contents of the map
viewer appears in a rectangu lar outl ine, which rep

resents the user's current viewport into the data.
The user can use the PC point ing device to drag and
reposition the viewport.

Because the ONM maintains context when the
user "edits," i .e . , mod ifies, the contents of a viewer,

the user can customize or organize the managed
entities as desired . By means of the Edit Viewer,
ONMs al low user customization within a v iewer
with the support of user-definable hierarchies. For
example, each instance of a viewer can represent
a different management domain for the user. The

benefit is that the user can find objects and then
arrange them into hierarchies that are most useful .

As stated earlier, OMMs control the user inter

faces for displaying and modifying managed entity
properties. The ManageWORKS framework pro
vides for consistency in how the OMMs invoke the

Digital Techt�icaljournal Vol. 6 Nu. 4 Fall 1994

user interfaces and in bow the user interfaces inter

relate to the ONMs.
The consistency starts with the ManageWORKS

Actions menu. The basic management directives on
managed entities originate from this menu. The
major chal lenge in designing this menu was to avoid

using too many menu items, menu items that would

change constantly (i .e . , by addition or deletion),

menu items that bad three or four levels of h ierar
chy, and menu items that were not context sensitive
to what the user was doing. The objective was to
find a small set of words that conveyed the manage
ment functions the user would most often perform.
We felt that these words should always be present

in the Actions menu, but to el iminate confusion for

the user, they should be rendered inactive when

not val id . On the other hand, we real ized that this

small set of menu choices could never fu l ly support

the actions on managed entities; therefore, the soft
ware had to provide an extensibil ity mechanism.

67

PC LAl'l and System Management Tools

We began the design process by developi ng a n

enti ty/action matrix. O n e axis contained a l ist o f

the enti ties that w e envisioned being managed

from the ManageWORKS software. The other axis

contai ned a l ist of the actions that cou ld be per

formed on t he entit ies. We marked the intersec

tions of the axes. I n for m i ng the l ist of actions, we

chose words t hat were used in exist ing products

that managed the same ent it ies , words that we

thought should be considered in a good user inter

face, and final ly, synonyms to those words a l ready

l isted . This approach gave us a clear picture of the

common actions and also p rovided a thesaurus of

words from which to choose . The common actions
o n managed entit ies that emerged from this exer

cise were

I . Make a new entity of some type.

2 . D isplay a l l the managed entit ies.

3. View and modify the entity's properties.

4. Elimi nate the entity.

The ManageWORKS software supports these

common actions through the fol lowing Action

menu choices:

1. Create. Choose Create to make a new enti ty.

2. Expand. Choose Expand to view a l l the entities

that the lVIanageWORKS software is managing.

3. Properties. Choose Properties to d isplay a d ia log

box that manifests a l l the entity's properties. The

user can then v iew the properties and make

mod ifications, as appropriate.

4. Delete. Choose Delete to eliminate the entity.

The design of the Properties d ia log box is one
of the key user i nterface sty le elements of the
ManageWORKS product: however, ManageWORKS

does not enforce or p rovide for this element.

Rather, the consistency is a function of a user int e r

face style guide for OMMs and some com mon

l ibrary routines that support this user interface

style . o C• Figure 2 shows the dialog boxes of two

of the three OMMs that come with the current

ManageWOHKS prod uct: the Simple Network

Management Protocol (SNMP) Manager OMM and

the LAN Manager (LM) server management OMM.

(The third OMM, for Net Ware servers, is not shown.)
Note the Selected Objects field in the SNM P <.Jia log

box. The ManageWORKS software al lows the user to

68

select mul t iple objects of the same class from

a viewer ami to i nvoke an OMM method . The l ist of

selected objects is contained with in this drop

down l ist box. The user can easily v iew the

at tributes of different objects from the same dialog

box. The d ia log box disp lays various sets of man

aged entity properties. The user can select the

desired set of properties from the View or Modify

drop-down I ist boxes.

Figure 2 dem onstrates that two dia log boxes can

be active at the same t ime. This feature supports the

ManageWORKS design requirement t hat the user be

able to manage more than one entity at a time. The

ManageWORKS product supports, in effect, threads

of execution to al low mu l t iple OMivls to be active

simu ltaneous ly. Support for the design principle

of m anaging many ent i t ies as eas i ly as one is not

a function of the ManageWORKS software but of

the OMMs, since OM.Ms control the methods used to

manage entities.

The Software System Design
of ManageWORKS

The focus of the paper now shifts to the

M a nageWOHKS internals that support the design

principles and user i n terface just described.

The Application Framework

As an app lication , the ManageWORKS product is

merely a software framework for i ntegrating i ts top

level user in terface with the user interfaces of the

OMMs and ONMs. The ManageWORKS application

consists of two main components: (1) the user inter

face shel l and (2) the d ispatcher. Figure 3 depicts

the relationship between these ManageWORKS com

ponents and the OMMs and ONMs.

The user interface shel l is a standard Microsoft

Windows application that supports the top- level
Windows user interface componen ts-the main

appl ication window and i ts menu bar, tool ribbo n ,

a n d status bar. T h e user interface shel l translates a l l
user i n teraction by means o f t h e menus, tool rib

bon, and mouse actions i nto OMM ami ONM appli

cation programming in terfaces (AP!s) to perform

work for the end user. The she l l i s also responsible

for i n i t ia l iz ing and terminating the appl ication,

includ i ng the d ispatcher.

The d ispatcher is responsible for maintammg

a l i n k between the user in terface shell and a l l
t h e OMMs, a s wel l a s for providing service routi nes.

The d ispatcher loads and i n i tia l izes a l l OMMs

ViJI. 6 No. 4 Fall 1')5J4 Digital Tecbuicaljourual

TIJe Design of Manage WORKS: A u,·er lntetjace Framework

111! j ManageWO RKS Workgroup Adnlinls1rator -1
ons '!'l'indow .tiel

Selected Objecls: [1 6.121.1 11.251 l!J I
Properties: IGeneral lnforma•ion l!l l
Typ e: llltl SNt.AP Aouler.IP l!J I
System Cont8ct I s�contca.ct not specilied
System Description; I OECNIS 600 software version V2.3-4

Group·
Allow modifice.tion by IP Auto-discovery co :t:es r]'io

Pullin�
Poll I nterval: (sees) 60

Time out (sees) 1 0

Monitor this node via polling:
Protocol used to monitor this host

SNt.AP Community Nome•

10 SNt.AP ,� ICt.AP

Set: ,--------·--------

Get:

OK

Cancel

Apply

Help

t.AIB ...

Redirector
2ttil

SeiV<!r

·W59Zicl
107'i2fiJtJ

Connections

Mode:
Foiled:

Buffers
Big:
Request:

� � - ---- ---����---- �- ---------�

Figure 2 !'vlanageWORKS 0;�1111 Properties Dialog Boxes

OBJECT
NAVIGATION
MODULE

, - - - - - - - - - - - - - - - - - �- - - - - - - - - - - - - - - - - - 1
1 USER I NTERFACE SHELL 1
I I I I I I I I I DISPATCHER I I I I - - - - - - - - - - - -1 - - - - - - - - - - - i- - - - - J I
I

OBJECT OBJECT OBJECT
MANAG EM ENT MANAG E M E NT MANAG E M E NT
MODULE MODULE MODULE

t t t
I MANAGED I MANAGED I MANAGED

ENTITY ENTITY ENTITY

DATABASE

Figure 3 ManageWORKS Application

ArciJitectu·re

Digital Tecbnical journal Vol. 6 No. 4 htll 1')94

1-

present based on an in i tial ization fi le that the

end user configures at instal lation time (or, i f sub

sequent modules are added , by means of the

Management Module Setup program). To enable

this routing to occur, the dispatcher maintains a J ist

of a l l OMMs loaded and the object classes that they

support.
One service that the d ispatcher provides for

OMMs and ONMs i s the abil i t y to modify the menu

bar. OMMs and ONMs may add a nd set menu i tems

but only through rhe APJs. The M a nageWORKS soft

ware ul t im ately controls what gets displayed in the

mem1s based on what objects are selected in a

viewer, which prevents the modu les from d irectly
manipu lating the menu bar.

The Application Programming Interfaces

Once we had defined the concepts of the
ManageWORKS user i nterface ancl object classes, we

designed a common set of AP!s that a l l OMM and ONM

developers would employ. The AP!s that emerged

focused primarily on the object-both its class

and i ts instance. Because the cu rrent set of object

oriented languages and tools does not map wel l to

PC LA.t'J and System Management Tools

the services supplied by the Windows system, these

AP!s are in a more conventional C/Pascal program
ming language style rather than in a C++ style.

The Al'ls that an OMM mLISt support fall into three
categories based upon their scope of operation:

(1) module based , (2) class based , and (3) object
based. Al l APls have parameters that contain infor

mation pertinent to the API ca l l , including t he

object ident ifier (Ol D), which identifies the object

on which to perform t he operation.
Modu le-based APls perform init ial ization, term i

nation, and i nformation reponing for the entire
OMM. The init iali zation includes determin ing how

many object classes an OMM supports. This fu nc

t ion is important because an OMM can support
more than one class, e .g . , a hierarchy of classes. By
checking for software dependencies on the operat

ing system or support l ibraries, the OMM can also
make sure that the compu ter environment is capa

ble of supporting the OMM. For example, D igital 's
implementation of the OMM that manages Net Ware

servers requires that the NetWare cl ient be i nstalled
and configured on the PC. Module termination
occurs before the ManageWORKS software termi

nates, which allows OMMs to clean up any
resources they may h ave used . The information

function provides information such as the modu le's
name and copyright i nformation.

Class-based APis support the actions that apply to

all objects within a class. These functions include
init ial ization, termination, configu ration, and

reporting information about what actions and
properties can be accessed by the end user in the

ManageWORKS user interface . A class-based config
uration API presents a configuration window for
each class to the user; the user can then change the

behavior of the object class. For example, the user
can indicate whether or not files on a disk with h id
den or system attributes or hidden LAN Manager file
services shou ld be displayed.

Object-based APis provide the abil i ty to m anipu
late individual objects within the ManageWORKS
software. With these APis, OMMs can accompl ish all
the base actions and those operations provided for

i n the u ser i nterface. These APis include fu nctions
to create, delete, insert, remove, copy, get and set

properties, d isplay a properties d ialog box, main

tain containership relationships (e .g . , technology

based hierarchies), and maintain c lasses that can be
created and i nserted into an object. Approximately
30 APis (a small manageable set) m ust be i mple

mented to be ManageWORKS compliant.

70

Each class- or object-based API requires an OlD
or list of OJDs on which to perform the opera
t ion. When called , each class API acts on a single
object class. The cal ler m anages al l memory needed
for the successful completion of an API , i . e . , no
API returns a pointer to data. APis that can return
a variable amount of i nformation u se a two-step

cal l ing convention. The first call determ ines the
buffer size requ ired to hold all the data; the second
call retrieves that data. Th is two-cal l approach

requires OMMs to efficiently gather informa
tion using OMM-specific information caches to

store information retrieved from the m anaged
entity.

ONMs contain a l l the module-, class -, and object
based APis that exist in a standard O M M but also
contain some viewer-specific APls. These APls
include functions to display viewers, select d is

played objects, expand objects, update objects, and
retrieve displayed objects. New ONMs can be devel

oped using these APTs.

The Object Identifier

To represent objects within the ManageWORKS soft
ware, we chose the approach of assigning an OlD to
each object in the system. This number embodies

the i nformation of the class to which the object
belongs as well as the uniqueness of the individual
instance of an object within the class.

The assignment of an OlD to an object is the

responsibil ity of the OMM. The ManageWORKS soft
ware dynamically assigns to an object class an OlD

t hat represents the class, and the OMM is responsi

ble for creating the unique i nstance values within
the context of that class. This approach allows
OMMs the flexibi l ity of using any strategy to assign
these val ues, e .g. , sequentia l assignment or map

ping to a particular technology, such as an external
database record.

Each OlD is a 32-bit number; the h igh 12 bits con
tain information that identifies the class to which
the object belongs. This bit arrangement places a
l imit , 2 1 2 - 1 , i . e . , 4095 (a value of 0 is invalid), on
the number of classes that can be active with

ManageWORKS at any one time. The low 20 bits pro
vide the u niqueness for each object i nstance within

the class, providing for up to 220- 1 , i . e . , more than

1 mi l l ion, individual instances within a s ingle class.

The advantages to using an OlD l ie in al lowing
objects to store information in any format they
wish and usi ng access functions to get at that i nfor
mation in a consistent manner.

Vol. 6 No 4 Fall 1994 Digital Tecbuical journal

The Design of Manage WORKS: A User Inteiface Framework

Storing Jnfonnation about Objects
Although the OMMs are responsible for assigning
Ol Ds to objects within a class and for storing infor

mation about each object that can be managed, we
clid not want every OMM u nder development to
have to create i ts own mechanism to accompl ish
these tasks. We decided to create an object database
that would store information about objects and gen
erate new O IDs for the OM Ms.

J nitial designs of this object database were to
support multiple users and thus al low the sharing
of information between mul tiple ManageWORKS

users and other appl ications. Because the schedu le
for the first release of the ManageWORKS software
did not give us ample time to employ a com mer
cial ly ava ilable database, we decided to create our
own database to support the management of
object classes a nd object instances. This database
supports only a single user and consists of indexed
files for (l) object information , (2) class infor
mation, ancl (3) containersh ip information. The
existence of these files is h idden under a database
API, which supports a l l the management aspects
of objects, from creating and deleting classes
anc.l objects to reading and modifying attribu tes of
those objects.

To aUow future changes in the u nderlying tech
nology of the database, we placed the database
code into a DLL. For the second release, we created

a new database DLI., with the same APis, that works
with Borland's d Base rv database implementation.
By simply replacing the database DLL, all OMMs can

now take advantage of having information shared
between ManageWORKS users across the network.
This design al lows for comanagement of the LAN by
mul tiple network administrators who have the
same information avai lable. The OMMs do not have
to make any source code changes to work with this
new database DLL, but additional A Pis are present to
al low for the use of advanced database features.

Before an OMM can create objects in the data
base, the object class itself must be created i n
the database. Because i t dynamically assigns OIDs,
the object database must store u nique information
abou t the class along with the OlD. Each OMM must
register an object class, where each class has a name
that can be presented to the user in the user inter
face, and a class tag. The class tag is a 64-byte char
acter string that must be u n ique among al l OMMs.
The database dynamically assigns an OlD to a newly

created class and maintains that mapping to the
class tag. We decided that using a u nique 64-byte

Digital Technical]ounwf Vol. 6 No. 4 Fall 1994

character string would resu lt in Jess confl ict among
OMM developers than assigning hard-coded OlD val
ues to each customer that wanted to develop an
OMM. By not hard-coding the values, we ensured
that each newly created object class would receive
the next OlD value. Thus, different end users who

are using different sets of OMMs may have different
OlD values assigned to each of the object classes.

OMMs can use this object database to create
object classes or objects within those classes, ancl
to store any amount of i nformation with each

object. Most objects store enough information
to get to another data source, thereby prevent

i ng information in the database from becoming
inconsistent with the managed entity. For example,

a NetWare Server OMM saves only the server
name in the database because with that name the
OMM can make NetWare API cal ls to retrieve other
information.

When the object database creates an object, it

assigns the object an OlD within the space of that
object class. Thus, OMMs can rely on the database for
creating unique O!Ds for each object i n the system.

Another feature of the object database is the
concept of transient and permanent objects. The
object database DLL writes transient objects not

into the database files but rather to global system
memory in the Windows operating system. Having

the objects in memory creates a large performance
gain and avoids the problems associated with d isk
thrashing. To indicate the type of object that is
created, the object database reserves bit 19 of
the OlD to use as a flag. If the bit is set by the OMM

or ONM, the object is transient. When an object is
created in the database, the OlD for the class is
passed to the database DLL with or without bit 19

set, thus determining whether the object is tran
sient or permanent .

In our i nitial development work, we quickly d is
covered that creating a l l the OlD entries in a
database file diminished performance. This prob
lem was most evident in the development of the
DOS file system OMM. This OMM enumerates direc
tories, which causes a disk seek operation and
a disk read operation for the enumeration . Next a
write of the object to the database file on the same
disk causes another d isk seek/write operation. This
resu lted in tremendous disk thrashing. We envi
sioned that many OMMs would enumerate and cre
ate a l ist of conta ined objects each time an object is

expanded, so we wanted this operation to be fast
and efficient.

7 1

PC IAN and System Management Tools

Introducing New OMMs and ONMs into
tbe ManageWORKS Software

I n tradi t ional software development, the addit ion

of new fu nction a l i ty i n to an appl ication general ly

requi res source code modification and recom

pilat ion. Clearly, this approach wou ld not al low

J\l!anageWORKS developers to meet the goal of

provid i ng an extensible appl ication framework.

Developers needed a way to write software that

could become part of the ManageWORKS applica

tion w i thou t requ i ring changes to the applicat ion.

Since the M anageWORKS software runs in the

Microsoft Windows operating system enviro nment,
software developers were able to take advantage of

many features of the Windows system. We used

DLLs to provide a n extensible framework for the
ManageWORKS product.

By creating a DLL that conforms to the set of

APis needed to manage an object or to i mplement

a v iewer, we can add new DLL'i at any t ime to add
.functio nal i ty to the ManageWORKS software . There

fore, a l l OMMs and ONMs must be i mplemented as

DLLs. The registration process needed to be simple

and dynamic for these DLLs. Using a Windows appli

cation i n i ti alization (I N!) file, the d ispatcher read s

the Jist of en tries in the file and attempts to load and

i nitia l ize al l OMMs a nd ONl\,Is defined . End users can

add new OMMs by running the ManageWORKS
Management Mod ule Setup program, which simpl i

fies the instal lation of any ON!Ms provided by either

Digital or a third-party vendor.

Whe n a n OMM is introduced, the ManageWORKS

software needs to assign an OlD to each object

c lass that the OMM hand les. This is accompl ished

by asking the disp at cher for an OlD for the c lass

based upon a supp l ied class tag. The dispatcher

then uses the object database to have the OID

assigned . The d ispatcher's use of the object data

base ensures that the OlD for the c l ass is unique

to that class. OMMs can ask the object database
directly, but this is merely a side effect of the
d ispatcher's use of the object database and is not
recommended .

Interactions between Manage WORKS
Components

Most ManageWORKS events occur when the user

interacts wi th the user i nterface, al though OMMs

and ONMs can generate events that cause com mu

n ication to occur between the components of

the system. The usual flow of control through

the ManageWORKS software begins with a v iewer,

72

the set of selected objects in a v iewer, and the val id

m anaged ent i ty actions i n the Act ion menu. The

application uses the d ispatcher to ca l l a particular

API to the correct OMM for the class of object being

operated upon. In this section, we wa l k through

three typical user in teraction scenarios. For each

scenario, we describe key elemen ts of control flow

between the user interface shel l , the dispatcher,

the ONM i nvolved, and the OMM involved. These

scenarios illustrate how the ManageWORKS elements

fi t and work together to achieve our primary objec

tive, i . e . , to design a user i nterface framework with

consistent mechanisms to display, organize, and
navigate through m anagement ent it ies for the pur

pose of managing one or more of those enti ties.

Scenario I This scenario outl ines the process of

displaying the properties dialog box of the selected

object(s) in a viewer.

1 . The user has selected one or more objects of the

same class in a viewer by cl icking with the mouse.

2. The user then chooses the Properties menu i tem

from the Actions menu. As a reminder, this action

invokes the properties dialog box, which by style

guide convention , supports the viewing and

modification of a managed entity's properties.

3 The ManageWORKS software queries the selected
viewer for the l ist of selected objects and obtains

the OIDs of the objects from the viewer.

4. The ManageWORKS d ispatcher decodes the

object class portion of the oro.

5. The ManageWORKS software tel ls the OMM of

that object c lass to d isplay the properties d ialog

box for the l ist of objects (OIDs) suppl ied .

6 . The OMM d ispl ays a properties d ia log box that
contains all the suppl ied objects The OMM has
complete control of the user i n terface for t his

window and complete control over the access to

the managed entity mechanism to get and set the

properties from the managed entities.

Scenario 2 This scenario out l ines the process of

expand ing a selected set of objects in a hierarchical

v iewer. Expanding a n object resu lts i n the d isplay

of the object's descendants within the hierarchy

defined by the OMM. The user m ay render this d is

play i n a h ierarchical fashion with o ne of the hierar

chical view sty les or as a descendant portion of
a topological v iew.

Vol. 6 No. 4 ht/1 1994 Digital Tee/mica/ journal

The Design of Manage WORKS: A User Interface Framework

1 . The user has selected one or more objects i n
a viewer by cl icking with the mouse. The objects
may be of the same class or of different classes.

2. The user then chooses the Expand menu item
from the Actions menu.

3. The ManageWORKS software queries the selected
viewer for the I ist of selected objects and obtains
the oms of the objects from the viewer.

4. The ManageWORKS software tel ls the selected
viewer to expand the l ist of objects supplied (the
selected objects from the last cal l).

5 For each selected object to be expanded, the
viewer queries the object by means of the dis
patcher for the l ist of contained objects within
that object . The dispatcher cal ls the OMM that
supports the object to get the J ist of contained
objects. The viewer repeats this process for a l l
OIDs to be expanded .

6. For a hierarchical view, the viewer pl aces the l ist
of objects into the viewer in a hierarchical fash
ion. For a topological map view, the viewer
either creates a new window or replaces the cur
rent window, depending on the choice the user
has indicated through the customization dialog
box. The window shows the descendant set of
objects with their topological relationships.

7. For each of the contained objects, the viewer
queries the object's OMM by means of the dis
patcher for its name and bitmap, and to deter
mine whether it can potential ly be expanded by
the user. The viewer repeats this process for
each contained object to be displayed and then
renders each item.

Scenario 3 This scenario outl ines the process of
dragging and dropping an object onto another
object in a viewer. The OMM of the target object
controls the semantics of this operation.

I . The viewer controls drag-and-drop operations.

2. The viewer determines the O!Ds of the object(s)
that the user is dragging.

3. As the user moves the mouse, the viewer
receives mouse move messages from the

Windows system and determines if the mouse is
over a viewer. The window messages are sent
directly to the viewer window.

D igital Tecbuical]our11al Vu/. 6 No. 4 Fall 1994

4. If it is over a v iewer, the mouse tells the target
v iewer what objects the user is dragging over it .
The source ONM sends a ManageWORKS-defined
Windows message to the target viewer window
with the l ist of O!Ds being dragged.

5. The target viewer determines what object the
mouse is over and if that object is selected. The
set of objects targeted to receive the dropped
object comprises either the individual object, or

if selected, a l l the selected objects in the viewer.

6. The target viewer queries the ONIM of each target
object about what class of object can be dropped
on it. If a l l the target objects can accept the

dragged objects, the cursor changes shape to
reflect a potent ia l ly successful drop. Otherwise,
the cursor changes to reflect that the drop
wou ld not succeed at this mouse location .

7. When the user drops the objects, the same verifi
cation occurs as during the drag operation. If the

drop is not going to be successfu l , the v iewer

that initiated the drag operation returns the
mouse cursor to the original location.

8. If the drop operation passes the verification
step, each object that the user is dragging is

copied by the OMM to each target object. This
is done iteratively for each dragged object, and
each copy has the potential for fai lure. For exam

ple, a DOS fi le can be dragged to a DOS d isk class
object, but when the copy is attempted, the disk
may not have enough free space to successfu lly
copy the fi le . \Vhen each dragged object is
copied , the OMM of the target object is told that it

should now contain the new object. This causes
the hierarchy to be properly updated. A drag
and-drop operation that is in tended to move an
object i s implemented as a copy fol lowed by

a removal of the original.

Conclusions
We fee l that we have been successful at bu ilding a
unique user i nterface framework that integrates a
diverse set of applications; the design essential ly
meets a l l but one of the objectives we establ ished .
Because by design we l imited the scope of serv ices

provided by the framework, we could not meet a l l
of our end-user objectives. Specifical ly, the respon
sibil ity of al lowing the user to manage many enti

t ies as though they were one fel l on the OMMs and
not on the framework itsel f. A lthough we would
have l iked the framework to provide this service,

73

PC IAN and System Management Tools

such a design was not feasible , given that the OMM
contro l led both the access to the managed entity
and the user interface to view and modify entity

properties.
The reader shou ld observe that the first two

major releases of the ManageWORKS software pro
vide few core services. The core services include
the user interface shell , the viewers, and the object
database that ship with the ManageWORKS product
and the ManageWORKS Software Developer's Kit.
These components serve as a unifying framework

for the functional modu les, which provide the user
with tools to manage entities and are thus the "heart
and soul " of the environment. Futu re development
of core framework services is under consideration.
Among the areas u nder active consideration are
Windows Object Linking and Embedding (OLE) sup
port and scripting support for inter- and intra-OMM
control. Such services wou ld make ONMs and

Ol'vlMs more consistent, useful , and powerful for the
end user. At the same time, these services would
free the individual developer from writing this
code and thus provide the developer the freedom
to focus on the value-adclecl functionality.

Acknowledgments
Many people contribu ted a great deal to the design
and implementation of the ManageWORKS product.
Although the contributors are too numerous to men
tion individual ly, we would l ike to acknowledge
the fu nctional groups within the PATHWORKS

74

organization to which they belong, namely,
Busin ess Management, Marketing, H uman Factors
Engineering, Systems Quality Engineering, Doctl

mentation, Release Engineering, Field Test Adm in
istration, and, of course, Software Development
Engineering.

References

1 . K. Holtzblat and S. Jones, "Contextual Inquiry:
A Participatory Tech nique for System Design" in
ParticipatOJ]' Design: Principles and Practice,

A . Namioka and D. Schuler, eds. (Hi l lsdale, N.J :

Lawrence Erlbaum Associates, Inc . , 199 3).

2. Microsoft Windows Guide to Programming

(Redmond, WA: Microsoft Press, 1990).

3. Windows 3.1 Software Developer's Kit, Control
Panel Applets in Online Help (Redmond, \X-1\.:
Microsoft Press, 1992).

4. C. Strutt and D. Shurtleff, "Architecture for an
Integrated, Extensible Enterprise Management
Director" in Integrated Network JI!Janagement,

vol . I , B. Meandzja and J. Westcott, eels. (Amster

dam: North-Hol land, Elsevier, 1989): 61-72.

5. McmageWORKS Programming Guide (Maynard,
MA: Digital Equipment Corporation, Order No.

AA-QADFB-TE, 1994)

6. ManageWORKS Programmer's Reference (May

nard, MA: D igital Equ ipment Corporation, Order
No. A A-QADGB-TE, 1994).

Vol. 6 No. 4 Fall 1994 Digital Technical journal

james E.johnson I

The Structure of the OpenVMS
Management Station

The Open VMS Management Station software provides a robust client-server

application between a PC running the iv/icrosoft Windows operating system and

several Open VMS cluster systems. The initial ve-rsion of the OpenVi\115 Management

Station software concen trated on allowing customers to handle the system man

agement functionality associated with user account management. To achieve these

attribu tes, the Open V/VIS Management Station software uses the data-sharing

aspects of Open Vi'YIS cluster systems, a communications design that is secure and

that scales well with additional target systems, and a management display that is

geared for the simultaneous management of multiple similar systems.

Overview
The Open VMS Management Station version 1 .0 soft

ware provides a robust, scalable, and secure client

server application between a personal computer

(PC) runn ing the Microsoft Windows operating

system and several OpenVMS systems. This man

agement tool was developed to solve some very

specific problems concerning the m anagement of

m u l tiple systems. At the same time, the project

engineers strove for a release cycle that co uld bring

ti mely relief to customers in insta l lments.

Before the advent of this new software, all

Open VMS base system management tools have either

executed against one system, such as AUTHORIZE,

or against a set of systems in sequence, such as

SYSMAN. Furthermore, the ex isting tools that do

provide some primitive support for the manage

ment of m u ltiple systems either do not take advan

tage of or do not take i nto account the in heren t

structure of a VMScluster system.

In contrast, the OpenVMS Management Station

product was designed from the outset for efficient

execution in a d istributed , m ultiple system configu

ration . The OpenVMS Management Station tool

supports parallel execution of system manage

ment requests against several target OpenVMS

systems or VMScluster systems. Furthermore, the

software incorporates several features that m ake

such multiple target requests natural and easy fo r

the system manager.

Digital Technical]ournaf Vof. 6 No. 4 Fall f994

Data from customer surveys i nd icated the need

fo r a quick response to the problems of m anaging

Open VMS systems. For this reason, the project team

chose a phased delivery approach, in which a series

of frequent releases would be shipped , with sup

port for a sma l l number of system management

tasks provided in an individual release.

The in itial version of the Open VMS Management

Station software concentrated on providing the

system m anagement functionality associated with

user accou nt management. Th is goal was achieved

by using a project infrastructure that supported

frequent product releases. This paper describes

the OpenVMS Management Station software, con

centrating on the cl ient-server structure. It also

presents the issues and trade-offs that needed to be

faced for successful delivery.

Managing OpenVMS User Accounts
Managing user accou nts on an Open VMS operating

system is a relatively complicated task . 1 The man

ner in which the user is represented to the system

manager is the cause of much complexity. The

attribu tes that define a user are not located in one

place, nor is much emphasis placed on ensuring

consistency between the various attributes.

For example, Table 1 gives the attributes of an

Open VMS user stored in various files, including the

user authori zation file (SYSUAF. DAT) , the rightsl ist

file (RIGHTSLIST.DAT) , and the DECnet network

75

PC LAN and System Management Tools

Table 1 Breakdown of Data Stores and Ma nagement Util ities for OpenVMS Users

Data Store Attributes Management Util ity

SYSUAF. DAT Username, AUTHORIZE
Authorization data (e.g . ,
passwords), process quotas,
login device, and directory

RIG HTSLIST. DAT

NET$PROXY.DAT

Rights identifiers

Remote<->local user
DECnet proxy mappings

AUTHORIZE

AUTHORIZE

VMS$MAIL_PROFILE. DAT

QUOTA.SYS (per disk)

Login d i rectory

TNT$UADB. DAT

User's mail profile MAIL

User's disk quota D ISKQUOTA

CREATE/D IRECTORY

<new with OpenVMS
Management Station
software>

User's home d i rectory

User's location, phone number,
and organization i nformation

proxy file (NET$PROA.'Y. DAT). Prior to the OpenVMS

Management Station product, these files were man

aged by a col lection of low-level ut i l i ties, such as
AUTHOIUZE. Although these util i ties provide the

abi l ity to manipulate the individual user attributes,
they offer l it t le support for ensuring t hat t he overal.l

collection of user attributes is consistent. For
instance, none of these u ti l i ties wou ld detect that
a user's account had been created with the user's
home directory located on a disk to which the user

had no access.
Al l of these factors create addit ional complexity

for an OpenVlVIS system manager. This complexity is

compounded when a number of loosely related
Open VMS systems must be managed at various sites.

The user account management features of the
Open VMS Management Station product are designed
to al leviate or remove these additional complexi

ties for the Open VMS system manager.

OpenVMS System Configurations
rll1e Open VMS operating system can be used in many
ways. The features of the VMScluster method a llow
systems to expand by increment a l l y adding storage
or processing capacity. In addition, the OpenVMS
operating system is frequently used in networked

configurations. Its inherent richness leads to a large

and diverse range in the possible Open VMS configu

rations. The ski l l and etfort required to manage the
larger configurations is considerable.

For instance, Figure 1 shows a possible customer
configuration, in which a number of VMScl uster
systems extend across a primary and a backup site.
Each cluster has a somewhat different purpose, as

given in Table 2 . Here OpenVMS workstations are

76

deployed to users who need dedicated processing

power or graphics support, and personal compu ters
are deployed i n other departments for data access
and storage. FinaUy, the table lists some groups of

users who need access to m ul tiple systems, some
times with changed attributes. The system m a nager
for th is type of configu ration would repeated ly per

form many tasks across several targets, such as sys

tems or users, with smal l variations from target to
target. The OpenVMS Management Station prod uct
was designed to operate wel l in configurations

such as this.

A distributed system is clearly necessary to sup
port effective and efficient systems management for

configurations such as the one shown in Figure 1 .
A d istributee! system shou ld support para l le l execu
tion of requests, leverage the clllsterwide attributes
of some system management operations, and pro
vide for wicle area support . These characteristics

are expanded in the remainder of this section.

Supporting Parallel Execution

Support of parallel execution has two different

impl ications. First, the execution time shou ld rise
slowly, or preferabl y remain constant, as systems
are added. This i mpl ies that the execution against
any given target system should be overlapped by

the execution against the other target systems.
Second, for parallel execution to be usable in a wider
range of cases, it shou ld be easy and straightforward
to make a request that wi l l have simi lar, but not iden
tica l , behavior on the target systems. For instance,
consider adding a user for a new member of the
developmen t staff in the configuration shown in
F igure 1 . The new user woul d be privileged o n the

Vol. 6 No. 4 Fall 1994 Digital Technical Journal

DISK DISK DISK

CLUSTER A

The Structure of the Open VMS Management Station

DISK DISK

CLUSTER B

DISK

ETH E R N ET

DISK DISK

CLUSTER C

Figure 1 Distributed Open VMS System Configuration

development VMScluster system, but u nprivileged
on the production cluster. It shou ld be straightfor
ward to express this as a single request, rather than

as two disparate ones.

Leveraging VMScluster Attributes

OpenVMS system management tasks operate

against some resources and attributes that are

shared cl usterwide, such as modifications to the

user au thorization file, and some that are not
shared, such as the system parameter settings.

Jn the first case, the scope of the resource

extends throughout the VMScluster system. Here, it
is desirable (ancl when the operation is not idempo
tent, it is necessary) for the operation to execute

once within the VMScluster system . In the latter
case, the operation must execute against every sys
tem within the cluster that the system m anager

wants to affect. Also, the set of resources that fal ls
into the first case or the second is not fixed. I n the

OpenV1viS operating system releases, the ongoing
trend is to share resources that were node-specific

Table 2 Usage and User Community for Sample Configuration

Name

A

B

c

Usage

Main prod uction cluster

Development cluster

Backup production cl uster and
mai n accounting cluster

Workstations

Digital Teclmicaljourual Vol. 6 No. 4 Fall 19':)4

User Commun ity

Operations g roup
Production g roup
Development g roup (unprivi leged)

Operations group
Development g roup
(fu l l development privi leges)

Operations g roup
Development group (unprivi leged)
Prod uction g roup
Accounting group

Workstation owner
Some of operations group

77

PC LAN and System Management Tools

throughout a VMScluster system. The OpenVMS
Management Station software must hand le
resources that have different scopes on different
systems that it is m anaging at the same time.

Wide Area Support

Management of a group of Open VMS systems is not
necessarily l i mited to one site or to one local area
network (LAN). Frequently there are remote backup

systems, or the development site is remote from the
production s ite. Almost certainly, the system m an

ager needs to be able to perform some management

tasks remotely (from home). Therefore, any solu
tion m ust be able to operate outside of the LAN

environment . It should also be able to function rea
sonably in bandwidth- l i mited networks, regardless
of whether or not the slower speed l i nes are to
a few remote systems, or between the system man

ager and all the managed systems.

OpenVMS Management
Station Structure

The resul ti ng structure for the OpenViviS Man
agement Station software is shown in Figure 2 . The

components contained within the dashed box are

present in the final version 1 .0 product. The other

components were specified i n the design, but were
unnecessary for the initial release.

The cl ient software on the PC uses the
ManageWORKS management framework from

Digital 's PATHWORKS product. This extensible

framework provides hierarchical navigation and

presentation support, as wel l as a local configura
tion database. 2 The framework d ispatches to
Object Management Modules (OMMs) to manage
i nd ividua l objects. OpenVMS Management Station
has three OMMs that are used to organize the system

manager's view of the m anaged systems. These are

Management Domains, VJV!Scluster Systems, and
OpenVMS Nodes. In add it ion , two OMMs manage

user accoun ts: OpenVMS Accounts and OpenVMS

User. The first OMM is used to retrieve the user
accounts and to create subordinate OpenVMS User
objects in the ManageWORKS framework h ierarchy.

The second contains the client portion of the
OpenVMS user account management support.

Underlying the last two OMMs is the client commu
nications layer. This provides authenticated com

munications to a server.

The server software on the OpenVMS systems
consists of a message-dispatching mechanism and
a collection of server OMMs that enact the various

m anagement requests. The d ispatcher is also

I NETV I EW I
� -

PC CLIENT
SYSTEM I

\
I
I
I MANAGEWORKS FRAMEWORK

I I PROXY I API I USER

AGENT � OMM
I

I LOCAL
I COMMUN ICATION LAYER

CLIENT I
I

I

l

I
- - - - r- - -

I
I S E RV E R I N FRASTRUCTURE

v
I
I UASERVER
I OMM

I

FORWA R D I NG COMMUN ICATION LAYER

I

�:;; LOCAL H J CONFIGURATION
- DATA

S E RVER I N FRASTRUCTURE

UASERVER
OMM

FORWA R D I N G COM M U N I CATION LAYER

L - 1

Figure 2 Open VMS Management Station Structure

78 Vol. 6 No. 4 Fall 1994 Digital Tecbnicaljournal

responsible for forwarding the m anagement
request to a l l target VMScluster systems and i nde

pendent systems, and for gathering the responses

and returni ng them to the c l ient. The version 1 .0
server contains two OMMs: UAServer and Spook .

The former implements the server support for both
the OpenVMS Accounts and OpenVMS User OMMs.
The Spook OMM implements the server component

of the authentication protocol.
Other c l ients were not bui l t for version 1 .0 but

were planned into the design. Specifically, these

items are (l) a local client to provide a local applica

t ion program mi ng interface (API) to the functions
in the server, and (2) a proxy agent to provide
a mapping between Simple Network Management

Protocol (SN\11') requests and server functions.

Design Alternatives

Before this structure was accepted, the designers

considered a nu mber of alternatives. The two areas
with many variables to consider were the place
ment of the com munications layer and the use of
a management protocol.

Communications Layer Placement The first

major structural question concerned the place
ment of the commun ications layer in the overal l
appl ication.

At one extreme, tl1e client could have been a dis
play engine, with al l the application knowledge in
the servers. This design is simi.lar to the approach
used for the X Window System and is sufficient for
the degenerate case of a s ingle managed system.

Without appl ication knowledge in the client, how

ever, there was no opportunity for reduction of

data, or for the simpl ification of i ts d isplay, when

attempting to perform m anagement requests to
several target systems.

At the other extreme, the appl ication knowl.edge
could have been whol l y contained within the
client . The server systems wou ld have provided
simple file or disk services, such as Distribu ted
Computing Environment (DCE) distributed fi le
server (DFS) or Sun's Network F i le Service (NFS).

Since appl ication knowledge would be in the
cl ient, these services would provide m anagement
requests to either a single managed system or to

m u ltiple systems. However, they scale poorly. For
instance, in the case of user account management,
seven active file service connections wou l d be

required for each m anaged system' Fu rthermore,
these services exhibit very poor responsiveness if

Digital Technical Journal Vol. 6 No. 4 Fal/ 1994

The Structure of the OpenVMS Management Station

the system m anager is remotely located across
slower speed lines from the managed systems.

Final ly, they require that the client u nderstand the

scope of a m anagement resource for all possible tar
get Open VMS systems that i t may ever manage.

These various difficult ies led the project team to

place the data gathering, reduction, and display
logic in the client. The client communicates to one

of the managed systems, which then forwards the

requests to all affected independent systems or
VMScluster systems. Similarly, repl ies are passed

through the forwarding system and sent back to the
c l ient. The chosen system is one that the system
manager has determined is a reasonable choice as

a forwarding hub.
Note that the forwarding system sends a request

to one system in a VMSc luster. That system m ust
determine if the request concerns actions that

occur throughout t he VMScluster or if the request
needs to be forwarded further within the

VMScluster. In the second case, that node then
acts as an intermediate forwarding system.

This structure a llows the cl ient to scale rea

sonably with i ncreasing numbers of managed sys

tems. The nu mber of active comm u nication l inks
is constant, although the amount of data that is
transferred on the replies increases with the num

ber of targeted managed systems. The amount of
local state i nformation increases similarly. Although
i t is not a general routing system, its responsiveness

is affected less by either a system manager remote

from all t he managed systems, or by the manage
ment of a few systems at a backup site. Final ly, i t
al lows the managed VMScluster system t o deter

m ine wh ich management requests do or do not

need to be propagated to each individual node.

Use of Standard Protocols The second m ajor
structural question concerned the use of de facto or
de jure standard enterprise management protocols,
such as SNMP or Common Management Information
Protocol (CMIP). -14 Both protocols are sufficient
to name the various management objects and to
encode their attribu tes. Neither can direct a request

to m u ltiple managed systems. Also, neither can han
d le the complexities of determining if management
operations are inherent ly clusterwide or not. The

project team could have worked around the short
comings by using additional logic within the man
agement objects. This alternative wou ld have

reduced the management software's use of either
protocol to l ittle more than a message encoding

79

PC L'\N and System Management Tools

scheme. However, i t was not clear that the result

wou ld have been useful and manageable to clients
of other m anagement systems, such as Net View.

On a pu rely pragmatic level, an SNMP engine was
not present on the Open V MS operating system . The

CMIP-basecl extensible agent that was available

exceeded the management software's l imits for
resource consumption and responsiveness. For

i nstance, with responsiveness, a simple operation
using AUTHORIZE, such as "show account attribu tes,"

typical ly takes a second to l ist the first user account
and is then l imited by display bandwidth. For suc

cessful adoption by system m anagers, the project
team felt that any operation needed to be close to

that level of responsiveness. Early tests using the

CMIP-based common agent showed response times
for equivalent operations varied from 10 to 30 sec

onds before the first user was displayed. Remaining

user accounts were also displayed more slowly, but
not as noticeably.

In the final analysis, the project engineers could
have either ported an SNMP engine or corrected
the resource and responsiveness issues with the

CMIP-based common agent. However, either choice
would have required d iverting considerable project

resources for questionable payback. As a resu lt , the
product developers chose to use a simple, private
request-response protocol, encod i ng the man
agement object attributes as type-length-value

sequences (TLVs).

Client Component

With the OpenVMS Management Station, the cl ient
is the component that directly interacts with the
system manager. As such , it is primarily responsible

for structuring the display of management infor

m ation and for gathering input to update such m an
agement information . This specifically i ncludes
capabi l i t ies for grouping the various OpenVMS
systems according to the needs of the system man
ager, for participati ng i n the authentication pro
tocol, and for displaying and updating user accou nt
information .

Grouping OpenVJ.l15 Systems for
Management Operations

The system m anager is able to group i ndividual sys

tems and VMScluster systems into loose associa
tions cal led domains. These domains themselves

may be grouped together to produce a h ierarchy.
The system manager uses hierarchies to ind icate
the targets for a request.

80

Note that these hierarchies do not i mply any
form of close coupl ing. Their only purpose is to aid

the system manager i n organization . Several d iffer
ent hierarchies m ay be used . For a given set of sys
tems, a system ma nager m ay have one hierarchy
that reflects physical location and another that

reflects organization bou ndaries.
Figure 3 shows a typical hierarchy. In the figure,

the system m a n ager has grouped the VMScluster
systems, PSWAPM and PCAPT, i nto a domain cal led
!Vly Management Domain . The display also shows

the results of a " l ist users" request at the domain
level of the hierarchy. A " l ist users" request can a lso
be executed against a single system. For instance, to

obtain the l ist of users on the PCAPT VMScluster sys
tem, the system manager need only expand the
''Open V MS Accounts" i tem directly below it .

Participation in the
Authentication Protocol

It was an essential requ irement from the start for
the Open VMS Management Station software to be at
least as secure as the tradi tional OpenVMS system

management tools. Furthermore, due to the rela
tively insecure nature of PCs, the product could not
safely store sensitive data on the cl ient system. For
usabi l i ty, however, the product had to l imit the
amount and frequency of authentication data

the system m anager needed to present.
As a resu lt , two OMMs, the VMScl uster ami the

OpenVMS Node, store the OpenVNIS username that

the system manager wishes to use when access
ing those systems. For a given session within the

lVlanageWORKS software, the first communication
attempt to the managed system resu lts in a request
for a password for that username. Once the pass

word is entered , the client and the server perform

a challenge-response protocol. The protocol estab
l i shes that both the client and the server know the
same password without exchanging it i n p lain text
across the network. Only after this au thentication
exchange has successfully completed , does the
server process any management requests.

The hashed password is stored in memory at the
client a nd used for two further purposes. First, if
the server connection fai ls, the c l ient attempts to
silently reconnect at the next request (if a request is

outstanding when the fai lure occurs, that request

reports a failure). This reconnection at tempt also
undergoes the same au thentication exchange. If the
hashed password is sti l l valid, however, the recon
nection is made withou t apparent i nterruption or

vh/. 6 No. 4 Fall l'J(J4 Digital Technical journal

The Structure of the Open VMS Management Station

Ia ManageWORKS aa

-@ My management domain
-,:.» Open VMS Accounts

® DANA on SYSMGT

,:.'1/4 DAVIDSON on SYSMGT

A living legend [at least in his mind)

Stu Davidson

[DANA)

[DAVIDSON]

[DCESSERVER)

(USER)

(DEFAULT)

[DEVARAJANJ

[DECNET)

[DNSSSERVER)

[DPLSSERVERJ

[DOSSSERVER)

[DOS SSE RVER)

® DCESSERVER on PCAPT

® DEFAULT on PCAPT

DCE Services

® DEFAULT on SYSMGT

tin� DEVARAJAN on SYSMGT

,:i:(� DFSSFS_RESD on SYSMGT

,&;1ft DNSSSERVER on SYSMGT

® DPLSSERVER on SYSMGT

,:n'Vft DQSSSERVER on PCAPT

,lfJt DOSSSERVER on SYSMGT

OpenVMS provided a ccount template

Open VMS provided account template

R. Devarajan

DFS server access

DNSSSERVER

DECplan Server

DOSSSERVER default a ccount

DQSSSERVER default a ccount

� DUTKO on PCAPT

� DUTKO on SYSMGT

Nestor Dutko [CLIENT meister) [DUTKO)
Nestor Dutko (CLIENT meister) [DUTKO)

,:n"¥¥ DZIEDZIC on SYSMGT

tin� DZIEDZIC_N on SYSMGT
·� SYSMGT

Tony Dziedzic

Tony Dziedzic

[DZIEDZIC)

[DZIEDZIC_N]

-� PCAPT

• ,:.!} OpenVMS Accounts

Figure 3 Management Domain View

requests for inpu t from the system manager.
Second, the hashed password is used as a key to

encrypt particu larly sensitive data, such as new

passwords for user accounts, prior to their trans
mission to the server.

The resu lting level of security is quite high. It cer

tainly exceeds the common practice of remotely

logging in to Open VMS systems to manage them.

Display and Update of User
Account Information

The OpenVMS Management Station version 1 .0

cl ient software primari ly supports user accoun t
m anagement. This support is largel y contained in

the Open V MS User OMM. This module presents the
OpenVMS user account attribu tes in a consistent,
unified view.

The main view from the OpenVMS User OMM is
ca l led the zoom d isplay. This series of related win
dows d isplays and a l lows modification to the u ser

accoun t attribu tes. The displ ays are organized so

that related attributes appear in the same window.

Digital Technical jou rnal Vol. 6 No. 4 Fa/1 1991

For instance, a l l the mail profile information is in
one window.

The first window to be displayed is the character
istics d isplay, which is shown in Figure 4. This win
dow contains general information about the user

that was found duri ng usability testing to be needed
frequently by the system manager. Occasional ly,
information was needed in places that did not
match its internal structure . For instance, the "new

mail count" was fou nd to have two windows: the
user flags d isplay, wh ich l1ad the logi n d isplay
attributes, and the mail profile display.

The OpenVMS User OMM and the zoom display
organize the attribu tes into logical groupings,
si mpl ify the d isplay and modification of those attri
bu tes, and provide fairly basic attribute consistency
enforcement. The project team did encounter one

case in which no standard text display proved suffi
ciently usable. This was in the area of access time
restrictions. All attempts to list the access times

as text proved too confusing du ring usability test

ing. As a result , the project developers produced

81

PC LAl'l/ and System Management Tools

.!!se.name: jJJOHNSON on PSWAPhl liJ OK I
!;ancel I

APPIJ I
I A!UIIll to AnJ
I l!elp I

A!llibute(s): Jr:haracteristics liJ

0)!rler: j Jim Johnson
Location:

·rcontact Information

r-----------------1 Phone: II!;
i�---------�����----------------�--�:---���
r
s tate--

1_ @ f.nabled 0 Oisa_b_led [Account Expiration
Expife_ On: ro lo I io

. · IX: No el!Jiiration

I j200 . j4ii0 I
Advanced._ .

Accounting §.roup: lARGUSJ P!iority. f4 �

Di� I $USERS: I J Direclorv; [jJJOHNSON I I
fHome I Login disk

l __ o_nt_. _�_uo_t�a_: j_Jo_o_o_o_o ______ ���S_P_� __ u_� __
d_lb_m_c_k_sl_:_9_� __ l_I_Jl_%_1�----��

Fl�r;;;ure 4 User Characteristics Display

a specialized screen control that d isplayed the time
range directly, as shown i n the Time Restrictions
section of Figure 5. Later, system managers who
participated in the usability testing found this to be

very usable.
The display and presentation work for the

Open VMS User OMM was necessary for usabi l it y.
However, this does not directly address the need
to support requests against mult iple s imultaneous
targets. For the OpenVMS User OMtvl , these targets

may be either multiple VMScJuster systems or inde·
pendent systems, multiple users, or a combination
of either configuration with m u ltiple users.

At its simplest, this support consisted of simply
triggering a request to have mul tiple targets. This is
done through the Apply to Al l button on any of the
zoom windows. By pressing this button, the system
manager directs the updates to be sent to a l l user
accounts on all target systems I is ted in the
user name field. This action is sufficient if the sys
tem manager is performing a straightforward task,
such as " set t hese users' accounts to disabled." It is

not sufficient in a number of cases.
For example, one i n teresting case involve:; user

account resource quotas. One reason a system

82

m anager cbanges these settings is to accommodate
a new version of an application that needs increased

values to fu nction correctly. Prior to the develop

ment of t he OpenViVIS Management Station tool, the
system manager had to locate all the users of this
appl ication, examine each account, and increase

the resource quotas if they were below the appli·
cation's needs. Conversely, with the Open VMS

Management Station product, the system manager
selects the users of the application in the domain
display (Figure 3), and requests the zoom d isplay

for the entire set. The system m anager then
proceeds to the user quota display and selects the
quotas to change . The selection takes the form of
a cond itional request-in this case an At Least
condition-and the value to set. The system man
ager then presses the Apply to All button, and
the changes are carried out for all selected u sers.
Figure 6 shows the user quota display.

Communications Component

The communications component is responsible for
managing com munications between the client and
servers. It provides support for transport-indepen
dent, request-response com munications, automated

Vol. 6 No. 4 Fall 1994 Digital Technical journal

The Structure of the Open VMS JV/anagement Station

ll.serna-: IJJOHNSON on PS\IIAPM l!J

Altribute(s): I Ti'!'e Restrictions liJ Cancel

I AllJ)Iy to Alii

I 11� I
PriiRart. Days

Monday Tuesday Wednesday Thursday Friday

S-econdary Days

Saturday Sunday

r R stricr - e rona-----------·-·----.. ·---·- .. ----·--- --

I Processing Mode - . Primary Day Access:

�! �� !!"i'';f"''"'!�l �) .!..ocal
0 Jl.atch

0 fletwork
Djalup

0 Remote

� -=..;.=� �-+ :
S.a.condary Day Accen:

I I I I I I
3AM $AM 9AM Noon 3PM 6PIVI 9PM

I I I . I

Figure 5 User Time Restrictions Display

Albilute{s):

Quota Calegoor.

Virtual Memory

jJJOHNSON on PS\IIAPM L!J I

jQuotas

I Awly to Alii
I l!elp I

A£T Linlit: lEqual to liJ (
l.uffered 10: 1 ���ual t() liJ J
Bt.tta lEqual to l!J J 1 12_irect 10: I Equ�l to liJ I i' EM.Q. Lillit: �Equal to liJ J

I
Open file Lilllil: J Equal to l!J I
lob Logicals: 1 Equal to t!J I
TQE Limit: Jr-E-qu_a_l t_o--..;:l!J::::; j

Figure 6 Use1· Quota Display

325 · 11
1 00 : 11

95536 11
1 00 11

2ooo 11

200 11
4096 · 11

1 2a 11

Digital Teclmicaljourual Vol. 6 No. 4 Fal/ 1')94 83

PC LAN and System Management Tools

reconnection on failure, and support routines for
formatting and decoding attribu tes in messages.

Because of the request-response nature of the
com mun ications, the project team's first approach
was to use remote procedure cal l s for communica

tions, using DCE's remote procedure cal l (RPC)
mechanism . 5 This matches the message traffic for

the degenerate case of a single managed system.

Management of mul tiple systems can easily be mod
eled by adding a continuation routine for any given

management service. This routine returns the next
response, or a "no more" indication .

The RPC mechanism a lso hand les much of the
basic data type encoding and clecocl ing. A form of

version support a l lows the services to evolve over
t ime and sti l l interoperate with previous versions.

The project team's eventual decision not to use

DCE's RPC was not due to techn ical concerns. The
technology was, and is, a good match for the needs

of the OpenVMS Management Station software.
Instead, the decision was prompted by concerns
for system cost and project risk. At the time, both
the Open VMS Management Station product and the
OpenVMS DCE port were u nder development . The

DCE on Open VMS product has since been del ivered,
and many of the system cost concerns, such as

the l icense fees for the RPC run time a nd the need
for non-OpenVMS name and security server sys

tems, have been corrected.
In the end, the OpenVMS Management Station

software contained a communications l ayer that
hid many of the details of the underlying implemen

tation, offering a simpJe request-response para

digm. The only d ifference with an RPC-style model
is that the data encodi ng and decoding operat ions

were moved into support routines called directly

by the sender or receiver, rather than by the com
mun ications layer itsel f. In future versions, the goal
for this l ayer is to support add itional transports,
such as simple Transmission Control Protocol/
Internet Protocol (TCP/l P) messages or DCE's RPC.
An i nvestigation into providing additional trans
ports is currently u n der war

The remainder of this section describes the com

munications layer in more deta i l , includ ing the
mechanisms provided to the cl ient OMMs, how

reconnection on fai lure operates, and the message
encoding and decoding support routines.

Client Request-response Mechanisms

The OMMs in the c l ient system cal l the communica
tions layer directly. To make a request, an OMM first

84

updates the collection of systems that are to receive
any fu ture management requests. Assuming this
was successful, the OMM then begins the request
processing by retrieving the version number for the
current forwarding server. Based on that, the OMM

then formats and issues the request. Once the

request has been issued , the OMM perioclically
checks to see if either the response has arrived or
the system manager has cance led the request. Upon

arrival of the response, it is retrieved and the mes

sage data decoded.
To perform this messaging sequence, the OMM

uses a pair of interfaces. The first is used to estab
l ish and maintain the collection of systems that are
to receive any management requests. The second
i nterface, which is compatible with X/Open 's XTI
standard, is used to issue the request, determine if
the response is available, and to retrieve it when
it is 6 A third interface that supports the encodi ng

and decodi ng of message data is described i n a fol
lowing section.

Reconnection on Failure

The OpenVMS Management Station product
attempts to recover from communications fai l ures

with l i t t le d isruption to the system manager
through the use of an au tomated reconnection
mechanism . This mechanism pl aces constraints on
the behavior of the request and response messages.
Each request must be able to be issued after a recon
nection. Therefore, each request is marked as either

an initial request, which does not depend on server
state from previous requests, or as a continuation
request, which is used to retrieve t he second or
later responses from a m u ltiple target request and

does depend on existing server state.

If an existing com mun ications link fai ls, that l ink

is marked as u nconnected. If a response were
outstan ding, an error would be returned instead of
a response message. \Vhen the communications

l ayer is next called to send a request across the
u nconnected l in k, an automated reconnection is
attempted. This i nvolves establishing a network
connection to a target system in the request. Once
the connection has been established, the au thenti

cation protocol is execu ted, using the previously
supplied au thentication data. If au thentication

succeeds, the request is sent. If i t is a continu at ion
request, and the target server has no existing state
for that request, an error response is returned .

At most, the resu lting behavior for the system

manager is to return an error on a management

Vol. G No. 4 Fall 1994 Digital Tecbnicaljournal

request, i nd icating that communication was lost
d uring that request's execution . If n o request was
in progress, then there is no apparent disruption of
service.

Message Encoding and Decoding

Messages from the OpenVMS Management Station

tool are d ivided into three sections. The first sec
tion contains a message header that describes the
length of the message, the protocol version number

in use, and the name of the target OMM. The second
section contains the col lection of target systems for

the request. The third section contains the data

for the OMM. This last section forms the request and

is the only section of the message that is visible to
the OMMs.

The OMM data for a request is typical l y con
structed as a command, fol lowed by some number

of attributes and com mand qualifiers. For instance,
a request to l ist all known users on a system, return

i ng their usernames and last login t i me , could be
described as this:

C O M M A N D
M O D I F I E R
A T T R I B U T E S

L I S T U S E R S
U S E R N A M E = " * "
U S E R N A M E ,
L A S T L O G I N T I M E

The OMM data for a response is typically a status
code, the l ist of attributes from the request, and the
attri butes' associated values. There may be many

responses for a single request. Using the LIST _USERS

example from above, the responses would each

look l ike a sequence of:

S T A T U S S U C C E S S
A T T R I B U T E S U S E R N A M E (< v a l u e >)

L A S T L O G I N T I M E (< v a l u e >)

There are many possible attributes for an Open VMS
user. To m ake later extensions easier and to limit

the number of at tributes that must be retrieved
or updated by a request, the OMM data fields are
self-describing. They consist of a sequence of mes
sage i tems that are stored as attribute code/item
length/item value. The base data type of each
attribute is known and fixed.

Message encod ing is supported by a set of rou
tines. The first accepts an attribute code and its

associated data i tem. I t appends the appropriate
message item at the end of the currem message.
This is used to encode both requests and responses.

The second routine takes a message buffer and an
attribute code, returning the attribute's value and

Digital Teclmicaljournal Vol. 6 No. 4 Fall 1994

The Structure of the Open VMS Management Station

a status code indicating if the attribute was present
in the message buffer. The client uses th is routine

to locate data i n a response. The third routine takes
a message buffer, a table l isting the attribute codes

that are of i nterest to the cal ler, and an action rou
tine that is called for each message item that has an

attribute code found in the table. The server OMMs

use this rout ine to process incoming requests.

Handling of Complex Data Types

I n general, the i nterpretation of data between the
client and server systems did not pose a s ignificant
concern. There was no floating-point data, and the

integer and string data types were sufficiently simi
lar not to require special treatment. However, the
OpenVMS Management Station software did need
a few data types to process that were not simple
atomic values. These required special processing to

hand le. This processing typically consisted of for

matting the data type into some i ntermediate form

that both client and server systems could deal with

equal ly wel l .
For instance, one such data typ e is the time

stamp. In the OpenVMS operating system, times
are stored as 64-bit quadword values that are

100 -nanosecond offsets from m idnight, November
18, 1858. This is not a natural format for a Microsoft

Windows client. Date and time display formats vary

greatly depending on local ization options, so the
data needed to be formatted on the local c l ient. The
developers used an approach that decomposed the

native Open VMS time into a set of components, sim
i lar to the output from the $!\TlJMTIM system or the

UNIX tm structure . This decomposed time struc
ture was the format used to transmit t imestamp
information between the client and server.

Server Component

With the OpenYMS Management Station product,
the server component is responsible for enacting
management requests that target its local system.

The server also must forward requests to a l l other
VMScluster systems or independent systems that any
incoming request may target. The server is a multi
threaded, privileged application running on the

managed OpenVMS systems. I t consists of an infra

structure layer that receives incoming requests and
dispatches them, the server OMMs that enact the
management requests for the local system, and a for

warding layer that routes management requests to
other target systems and returns their responses.

85

PC LAN and System Management Tools

Server Infrastructure

The server infrastructu re, shown in Figure 7, is

responsible for dispatching i ncomi ng requests to

the server OMMs and the forwardi ng layer. It has a

set of t h reads, one for each i n bound connection, a

pair of work qu eues that b u ffe r individual requests

and resp o nses, and a l i mited set of wo rker threads

that either call the appropriate Oi\'IM or forward the

request.

The inbound connection t h reads are responsible

for ensuring t hat the request i d e ntifies a known

OMM and meets its message requ i rements. The

connect ion t h reads m u st a l so e nsure that the OM M
version n u m be r is within a n acceptable range and

t hat the l i n k is sufficiently authenticated . The

inbound threads are then respo nsible for repli

cating the request and placing requests that have

o n ly one target system in the request work queue.

Once a response appears in the response wo rk

queue, these t h reads return the response to the

c l ient system .

A fixed n u mber o f worker t h reads are res ponsi

ble for tak ing messages from the request work

queue and either forwarding them or cal l ing the

appropriate local OMM . Each resu l t is pl aced i n the

response queue as a response m essage. A fixed

n u m be r of five worker t h reads was chosen to
ensur e that messages wi t h many targets cou ld not

exhaust the server's resources. Responsiveness and

reso urce usage were acce ptable throughout the

OUTGOING I FORWARD

development and testing phases of the project, and

the n u m ber of wo rker t h reads was kept at five.

In addit ion to the basic t h read struc ture , the

i n fras tructu re is responsible fo r participating in the

authent ica t i o n exchange for inbound connections.

T h i s is acco m p l i shed t h rough the use of a special

i zed server OMM, cal led Spook . The Spook OMM

uses the basic s erver i n frastructure to ensure that

a u t h e ntication requests are forwarded to the appro

p riate target system . This mechanism reduced the

amount of special ized logic needed for the authen

ticat ion p rotocol : for t h is reason, the server O M M s

m ust declare i f they require an authenticated l i n k

before accept i ng a n incoming request.

Server OMM Structure

The s e rver o:vi:VJs a re at the heart of the server.

These Oi'vl.'vls are loaded dynamica l ly when the

server i n it ial izes.

Figure H shows the structure of the liAServer 0;\1i'vl
in Openv:vJS Management Station version 1 .0. 'fhe

server OMM consists of the main application m od

u l e, t he preprocessing rou t ine, and the postprocess

i ng routine. The i nterfaces are synchronous, passing

OMi'vl (lata sections from t he request and response

message bu ffers. I n addit ion, the m a i n appl ication

module executes in t he security context, ca l led a

persona, of the authenticated cal ler. Th i s a l lows nor

mal access chec k i ng and auditi ng i n the OpenVMS

operating system to work transparently.

REO
�

=�T
- _I _ _ __ R_EQ_U_ES_T __ IS TARGET LOOK UP OMM NAME

[I NCOMING
I REQUEST ""'11[- - - - - -

I
I
I
I

WAIT FOR
RESPONSE

LOCAL? ATIACH AUTHENTICATION 1
YES/ '\ REQUEST WORK QUEUE / CONTEXT TO REQUEST I

I

r---,/ "' 11 1 1 1 1 1 1 1 I ���
L
���

T
iA����

E
iJi�M

GET NEXT 1 l STALL WAIT FOR

I

SERVER
OMM REQUEST THREAD NEXT

/I l l l l l l l l l � MATCH RES>ONSE TO

R

�::::O,NG _ _ _ _
T

_.. _______ .., / RESPONSE WORK QUEUE REQUEST
I RESPONSE

INCOMING SEND RESPONSE - - r - - -.-
RESPONSE I I

I I

[FIVE WORKER THREADS ONE THREAD PER CONNECTION [
L _ j

Figure 7 Seruer Infrastructure and il1essage Flou•

R J H>i. (j No. 4 Fall /')';)4 Digital Tecbuical journal

FORWARD
TO TARGET

YES

NO RESOURCE
MANAGERS

LL <t ::::l

Figure S

The preprocessing and postprocessing routines

are used ro ease interoperation of multiple ver

sions. They are cal led if the i ncoming request has

a different , but supported, OMM version number

than the one fo r the local OMM. The resulting OMM

data section is at the local OM M 's version. These

routines hide any version differences in the OMM's

data items and free the main appl ication from the

need to hand le out-of-version data items. If the pre

processing routine is cal led, the server i nfrastruc

ture always calls the postprocessing routine, even if

an error occu rred that prevented the main OM M

application from being cal led (for instance, by a

l ink failur e during forwarding). This al lows the two

routines to work in tandem , with shared state.

The actual management operations take place in

the main appl ication portion of the server OMM. It

is structured with an appl ication layer that provides

the interface to the management object, such as the

user account. This uses u nderlying resource man

agers that encapsul ate the primitive data stores,

such as the au thorization file. The application layer

Digital Technical journal Vol. 6 Nu. 4 Fall 1994

The Structure of the Open VMS Management Station

APPLICATION

::2: w u w z (/) ID f- >- <t f- 0 (/) X z I >- 0 w S2 <t (/) ::::l rr: f-rr: w a.. z FROM ...J <{ u:: ::2: TARGET

UAServer OMM

knows what resources are affected by a given man

agement request. Each resource m anager knows

how to perform requested modifications to the

specific resource that it manages.

For instance, the UAServer application layer

knows that the creation of a new user i nvolves

several resource managers, including the authoriza

tion file and file system resource m anagers. How

ever, it does not specifical ly know how to pe rform

low-level operations such as creating a home direc

tory or modifying a d isk quota entry. I n comparison,

the file system resource m a nager knows how to do

these low-level operations, but it does not recognize

the higher level requests, such as user creation.

The appl ication layer for all OMMs offers an inter

face and a buffer. The request message passes the

OMM data section to the interface, and the bu ffer

holds the OMM data section for the response mes

sage. Similarly, a l l resource managers accept an

OMM data section for input and output parameters,

ignoring any OMM data items for attributes outside

their specific resource. Because of the loose

87

PC LAN and System Management Tools

coupling between the resource m anagers and the

application layer, the resource managers can be eas

ily reused by server OMMs developed later.

Summary

The Open VMS Management Station tool has demon

strated a robust client-server solution to the manage

ment of user accounts for the OpenVMS operating

system. It provides increases in functionality and

data consistency over system management tools pre

viously avail able on the Open VMS operating system.

In addition, the Open VMS Management Station soft

ware is focused on the m anagement of several

loosely associated VMScluster systems and indepen

dent systems. It has addressed the issues concern

ing performance, usability, and functionality that

arose from the need to issue management requests

to execute on several target systems.

Acknowledgments
I wish to thank the Argus project team of Gary

Al l ison, Lee Barton, George Claborn, Nestor Dutko,

Tony Dziedzic, Bill Fisher, Sue George, Keith

Griffin, Dana Joly, Kevin McDonough, and Connie

Pawelczak for giving me a chance to work on such

an interesting and exciting project. I also wish to

thank Rich Marcello and Jack Fallon for providing

88

support and encouragement to the team through

out the project, and for their fur ther encou rage

ment in writing about this experience.

References

1 . Open VMS AXP Guide to System Security

(Maynard, MA: Digital Equipment Corporation,

May 1993): 5 -1 to 5-37

2. D. Giokas and]. Rokicki, "The Design of

ManageWORKS: A User Interface Framework,"

Digital Technical journal, val . 6, no. 4 (Fall

1994, this issue): 63 -74.

3.]. Case, M . Fedor, M. Schoffsta l l , and J Davin ,

Network Working Group, Internet Engineering

Task Force RFC 1 157 (May 1990).

4. DECnet Digital Network Architecture, Common

Management Information Protocol (CMIP), Ver

sion 1 .0.0 (Maynard , MA: D igital Equipment Cor

poration, Order No. EK-DNA01-FS-001 , July 1991) .

5 .]. Shirley, Guide to Writing DCE Applications

(Sebastopol, CA: O'Reilly & Associates, Inc . , 1992)

6. X/Open CAE Specification, X/Open Tramport

Interface (XTI), ISBN 1-872630 -29- 4 (Reading,

U. K. X/Open Company Ltd . , January 1992).

Vol. 6 11-iJ. 4 Fat/ 1994 Digital Teclmicaljournal

john R. Lawson, Jr. I

Automatic, Network-directed
Operating System Software
Upgrades: A Platform
independent Approach

The initial system load (ISL) capability of Digital's layered-product POLYCENTER
Software Distribution (formerly known as RS1J!J) version 3. 0 provides OpenVJ\1/S sys

tem managers with a network-directed tool for performing automatic operating

system software upgrades. The design of the POLYCENTER Software Distribution

product integrates a number of new and varied software architectures to perform

the ISL. A description of the POLYCENTER Software Distribution implementation of

the ISL for the Open VMS operating system details the steps of the ISL process. The soft

ware's modular ISL mechanism can be expanded for use on other Digital and non

Digital operating systems and hardware platforms.

The PO LYCENTER Software Distribu tion version 3.0
product provides automatic, centrally delivered ,
network-directed operating system software
upgrades through a process cal led the initial system

load . 1 The term initial system load (ISL) has existed
for a number of years in various forms and has come

to describe the act of loading the operating system
software onto brand-new (virgin) systems without

the need for locally attached tape drives or other
removable media devices. This term, more loosely
applied, may also be used to describe other opera
tions such as operating system upgrades.

The !SL technology provides many advantages
over the traditional means of performing upgrades.
Typical ly, upgrades are performed one system at

a time, at each console by the system manager, who

must maintain the correct set of installation media
for each client system's u nique set of peripherals
and answer each question as the upgrade p ro
cedure prompts. In a network managed by the
POLYCENTER Software D istribution product, operat
ing system upgrades are performed simu ltaneously.
Any number of !SL operations can be i nvoked by
using a single instal lation medium and often by issu

ing a single command . In addition, the ISL mecha
nism can be used for system d isk maintenance
operations, such as upgrade, replacement, replica

tion, backup, or compression.

Digital Tecbnicaljour11al Vol. 6 No. 4 Fall 1994

The POLYCENTER Software D istribution product
can be extended for use with non-Digital operating
systems and hardware platforms a l l control led

from its one user interface. In m ost cases, no back
ups need be performed on the cl ients' system disks.
A halted cl ient system, of course, must be launched

into the first step manually.
This paper describes the POLYCENTER Software

Distribution version 3.0 product. It begins by dis

cussing the software environment and the software
technologies used by the ISL process. It then states
the project team's goals for the product. The paper

next relates the ISL scheme implemented by
the POLYCENTER Software Distribution version 3.0
product for the OpenVMS operating system. The
paper concludes with a d iscussion of the deta i ls of

expanding the ISL to other platforms. I t is assumed
that candidate operating systems are capable of at
least simple task-to-task communication through
the DECnet network (or some emulation), but other
commu nication mechanisms cou ld be devisee!
instead.

Software Environment

The POLYCENTER Software Distribution product
defines operating system software as everything on

the volume that is typically cal led the system disk.
This includes boot files, data files, configuration

89

PC LAN and System Management Tools

files, uti l ities, compilers, layered products, and cus

tom izations. It even includes user d irectories, if

they exist on that system disk.

The POLYCENTER Software Distribu tion product

al lows the i nd ividual operating system to deter

mine the defin i tion of upgrading the operating sys

tem software. For the OpenYMS operating system,

upgrading could mean the complete re placement

of the contents of the system disk volume, i nc l ud

ing the ut i l i ties, compilers, database, and custom

izations. For the OpenVMS AXP operati ng system,

it cou ld also mean the insta l lation, without touch

ing the rest of the volume, of only newly acquired

OpenYMS operating system files and images. For

other platforms, it could mean a ny one of several

other techniques. Each platform can define what is

needed to perform operating system upgrades or

install ations.

A network ma naged by the POLYCENTER Soft

ware Distribution product consists of one or more

centra l ly located server systems; each server is

responsible for performing certain operating

system maintenance functions on its assigned set

of cJ ient systems. The server system runs the

OpenViviS operating system . Cl ient systems ru n any

of a number of operating systems. The POI.YCENTER

Software Distribution version 3.0 software sup

ports backups, user authorizations, and layered

product instal lations for c l ients ru nn ing the VAX

VMS, OpenYNIS VAX, OpenVMS AXP, and ULTRIX

operating systems. The software i ncludes support

for ISL procedures to clients running the VAX VMS,

OpenVMS VAX , a nd OpenVMS AXP operating

systems. The software's lSL architecture, however,

supports expansion to other operating systems

and platforms.

Design of the POLYCENTER Software
Distribution Product
The design of the POLYCENTER Software Distri

bu tion version 3.0 product integrates a number of

new and varied software architectures. The soft

ware development required the cooperation and

synchronization of two layered-product and two

operating system development groups.

Software Technologies

No single software technology is capable of auto

matica l ly upgrad ing system disks. Several must be

used in combi nation. A brief description of a num

ber of such technologies that could be used to

implement the ISL process follows.

90

• Maintenance Operations Protocol (MOP) is a net

work protocol used to download system software

into the memory of adjacent network nodes.

• Remote triggering enables one client system to

cause another client system to reboot. The cl ient

system tnliSt have triggering enabled and have

a triggering password defi ned and known to the

server node.

• The load assist agent is a shareable image run

n i ng in the context of the maintenance opera

tions monitor (iVIOM) process on the server

syste m . This code permits a server to control

a nd customize (if necessary) the system soft

ware being downloaded to the client.

• The local area disk (LAD) protocol a l lows loca l ly

attached disks or container files on server sys

tems to be presented to the local area network

(LAN) for use as virtual disks on c l ient systems.

The InfoServer is the most common server of the

LAD protocol . OpenVMS systems running the

POLYCENTER Software Distribution product can

also act as LAD servers. A system can be a LAD

virtual disk.

• The processor-specific primary bootstrap is

a low-level program that is loaded into the mem

ory of a booting client. This program can be

loaded from a disk drive, a tape drive, the net

work in tercon nect (NI), or read-only memory

(ROM). A small but self-contained program, it is

capable of commu nicating with the machine's

console subsystem, most of the m achine's inter

nal resources, and the system d is k from which i t

loads a secondary bootstrap o r the ful l operating

system .

Note that some operat ing systems (OpenVMS

inclu ded) clai m that their bootstrap programs

are processor-independent. However, if the

operating system is u nder development, support

wi l l be added eventually to this bootstrap for

new CPU models and/or hardware variations.

Thus the processor- i ndependent bootstrap pro

gram from an earlier version of an operating sys

tem may not support a l l the processor types

supported by a later version of this same pro

gram. Therefore, processor independence is tied

to the set of processors supported by that par

ticular version of the operating system . For this

reason, the POLYCENTEH Software Distribution

product specifi ca l ly stores an im age of the boot

strap program in a private d irectory alongside

Vol. 6 No 4 Fall 1994 Digital Technical journal

Automatic, Network-directed Operating System Software Upgrades

the container file that houses a virtual system
disk (a bootable snapshot of the version of the
operating system).

• The system start-up command procedure is a
command script that is responsible for bringing

the recently booted operating system to its fu l l
configuration. I n a n ISL, this command proce
dure is tailored to configure only the resources
needed to perform the ISL. Sometimes, l imi ted

com mand- level access is a l lowed, but seldom is
ful l u ser access or timesharing permitted.

• In the OpenVMS operating system, the BACKUP/
I MAG E command can dupl icate a system disk

either directly from disk to disk, or indirectly
from a saveset file (which might be located on
tape or across the network) to disk.

• Standalone BACKUP is a self-contained, d iskless

operating system capable of executing BACKUP!

!J'vlAGE commands but not capable of network
operations.

• The SYS$ UPDATE:VMSKJTBLO.COM procedure i n
the Open VMS operating system i s used to create
a generic system disk, using the current system
disk software as a modeL

• The POLYCENTER Software Installation (PCSl)
ut i l i ty is capable of creating or upgrading a sys
tem disk from a configuration file and a descrip

t ion file (possibly located at a remote network
location) or the current system d isk.

Al l these software technologies are uti l ized in the

POLYCENTER Software Distribution ISL, except stand

alone BACKUP and SYS$UPDATE:VMSK!TBLD .COM,
because the former cannot be used remotely, and
the latter produces uninteresting system d isks.
Anyone expanding the ISL, however, can use what

ever techniques they choose, including those two.

Goals for the ISL Process

The development team had the fol lowing goals for
the POLYCENTER Software D istri bu tion i mplemen
tation of the ISL process.

• The process must be totally automatic; only
halted cl ient systems are permitted to require

human intervent ion.

• Multiple ISL processes must run concurrently.
No specific l imits should be placed o n the num
ber running i n parallel (except for practical per
formance reasons).

Digital Technica.ljourna.l Vol. 6 No. 4 Fall 1994

• The software l ibrary must store several operat
i ng system images. They can be images of differ

ent operating systems and/or d ifferent versions
of the same operating systems.

• Client systems must not be restricted to specific

peripheral hardware.

• The software m ust make no assumptions about
the hardware to which it is delivering software.
\Vhatever configurations are legal to a particu lar

operating system must also be supported by the

POLYCENTER Software D istribution product.

• The client software must make no assump

t ions about the server system directing the ISL.
Therefore, i t wou ld be inappropriate to store
operating system images in BACKUP saveset

files, which are unique to the OpenVMS operat

ing system .

• Client software, i ncluding temporary system

disks, must be taken from the cl ients themselves.

Prepackaged operat ing system software is dis
cou raged because it becomes obsolete as new
versions of the operating system are developed,

and because it is rarely capable of being cus

tomized by the user.

• The JSL process should be expandable to other

operating systems and hardware platforms with

out changes to the current product.

• The POLYCENTER Software Distribution product
should be able to use D igital-supplied distribu

tion media as operating system images, such as

the PCSI-based Open VMS AXP version 6.1 CO-ROM .

• The operating system i mage should occupy as
little disk space as possible.

• The ISL process should work over a l l valid
DECnet network configurations. This require
ment was only partia lly achieved : the LAO proto

col works over the LA.t"' only.

From these requirements, two achievements were
gained : the totally modular organization and the
compatibil ity with the OpenVMS AXP operating
system distribution CD-ROM. The former permits
support for other operating system and hardware

platforms to be added i ncremental ly. The latter
enables system managers to simply load the latest

copy of the d istribution med ia, invoke the PCSI ut i l
ity to record their configuration choices, and then
enter a single command to upgrade all their c l ient

systems at once.

91

PC LAN and System Management Tools

Description ofthe ISL Steps

Regardless of the operating system or hardware

platform, the ISL process requires the fol lowing

simple steps:

• Load a processor-specific primary bootstrap

into the memory of the client system .

• Boot a (usual ly read-only) version o f the operat

ing system from some form of temporary system

d isk.

• Determine the parameters of the ISL to be

performed .

• Move the operating system software to the

target system disk.

• I n itiate the cleanup, configu ratio n , tuning, and

reboot of the target system disk (which wou l d

then contain the new version of the operating

system software).

Figure 1 shows the steps of the ISL process in the

POLYCENTER Software Distribution Instal lation.

This section provides a description of each

step in the ISL process, contrast ing the OpenVMS

i mplementation with the POLYCENTER Software

D istribu tion implementation of the ISL for the

OpenVMS operating system. The d iscussion

i ncludes both the trad itional standalone insta l l a

t ion based on t he BACKUP com mand and the

OpenVi'<IS-defined ISL or upgrade based o n t he PCSI

LAD PROTOCOL

LAD
PROTOCOL

. - - - - - - - - - - - ,
1 PROCESSOR- I

,.. 1 SPECIF IC 1
- 1 BOOTSTRAP � - :

IMAGE I
- - - - - - - - - -·

1 _ _ ...,.
I N S I D E T H E BOOTSTRAP
IMAGE, A WORKSPACE
CONTAINS THE ISL
PARAMETERS

TARGET EJ
SYSTEM

92

DISK

Figure 1 JSL Process in the POLYCENTER

Software Distribution Installation

ut i l i ty. The PCSI-based upgrade very closely resem

bles the ISL process of the POL YCENTER Software

Distribution version 3.0 product.

The modu l ar l ayou t of the POLYCENTER Software

D istribution implementation and the extension of

the lSL to other operating systems are d iscussed in

the section Platform Independence.

Processor-specific Primary Bootstrap

The primary bootstrap is responsible for establish

i ng the connection n eeded between the client sys

tem and the temporary (or virtual) system disk,

wherever that might be m aintained.

OpenVMS Implementation If the distribution

m ed i u m is loca l, then the ROM bootstrap or a boot

strap file on the med ium is sufficient to boot the
operati ng system contained there . If the d istribu

tion med iu m is served to t he LAN by an lnfoServer
system, then the bootstrap image must be clown

loaded from an adjacent DEC:net node with service

enabled on its NI circuit common to that cl ient, using

MOP. In Open V MS AXP, this image is cal led APB.SYS;

in OpenVJ\115 VAX, it is ISL_SVAX.SYS or ISL_LVAX.SYS

(for sma l l or large VAX systems, respectively).
The system manager requests the image to be

downloaded (at the console of each c l ient system)

by entering special processor-dependent boot com

mands. The MOM process on the adjacent node

drives the MOP del ivery of the bootstrap image

to each cl ient. Before the connection between

the cl ient system and the temporary system disk

can be established, the system manager m ust navi
gate a series of menus to select the name of the

l nfoServer service u nder which that distribution

medium is presented .

POLYCENTER Software Distribution lmplenzen

tation The c l ient system boots from its Nl
adapter, generating a MOP load request. The server

keeps the cl ient's hardware NJ add ress in i ts

database so i t can detect and process this request.
Th is activates the load assist agent (LAA) under
the MOM process. The LAA retrieves the various

answers to the operating system configu ra

t ion questions from the POLYCENTER Software

D istribution l ibrary. It then passes those answers

plus the operating system version-specific pri

mary bootstrap (APB. EXE for OpenVMS AXP or

ESS$JSL_ VMSLOAD.EX E for Open VMS VA X) back to

the MOM process to be downloaded to the c l ient's

memory. Among these configuration answers are

Vof. (, No. 4 Fall 1994 Digital Technical journal

Automatic, Network-directed Operating System Sojtware Upgrades

the name ancl password of a LAD service, presented

by the server in a file containing the temporary sys

tem disk. This prim ary bootstrap establ i shes the

logical connection between the cl ient system and

this virtual system d isk.

Temporary System Disk

The temporary system disk is a tai lored copy of

the operating system to be insta l led. This system

disk is usu a l ly custom ized in such a way that its

only purpose is to perform the !SL.

Open VMS Implementation If it is mounted locally,

the temporary system disk is the distribution

medium. If the medium is presented to the cl ient by

an InfoServer service, then the temporary system

d isk is a virtual disk bound to that LAD service. In

e ither case, the temporary system disk is moun ted

as read-only.

The operating system booted from that medium

is either standalone BACKU P (for traditional instal la

t ions) or Open VMS (for PCSI-bascd ISL i nstal lations

or upgrades). Si nce standalone BACKUP can per

form only BACKUP operations, there is an extra,

t ime-consum ing step. The system manager m ust

enter an appropriate BACKCP/!MAGE command to

move a portion of the operating system software

(the so-cal led REQUIRED saveset file) to the target

system disk and then boot onto the target system

disk (containing this partial OpenVMS operating

system) to conti nue the insta l lation.

POLYCENT/:.1? Sojtware Distribution Implemen

tation The temporary system disk always con

tains the fu l l operating system to be instal led. I n

most cases, this temporary system disk i s actual ly a

ful ly fu nctional image of a model system disk taken

from another cl ient system by an earl ier F ETCH

OPERATING_SYSTEM com mancl . l The fetch process

(discussed later) has replaced this temporary sys

tem d isk's system start-up command procedure

with a script that runs the remaining steps of the ISL

process.

Previous versions of this product (also known as

RSM) inclu ded a prepackaged tempo rary system

d isk with a fixed contents that was built by hand.

Software developers rou tinely captured the latest

versions of Open VMS system disks inside boot con

tainer files as smal l as 14,000 blocks ' Although

an in teresting academic achievement, this proved

to be an impract ical approach. D igital releases

new processors from time to time, and each new

Digital Technical journal Vol. 6 No. 4 Fall 1994

processor requires a new minimum version of the

OpenYMS operating system. The system d isks cap

tured in the boot conta iner could not be easily

upgraded i n the field . An engineering change order

was required for the POLYCENTER Software Distri

bution product each t ime support was added to the

Open VMS system for a new processor.

These previous versions also stored the operat

ing system i m age in a BACKUP saveset fi le. This

method could be more space-efficient (page, swap,

and dump files consu me no space in a saveset file),

but it violates one of the design goals.

In version 3.0, the software developers eliminated

the concept of separate BACKUP saveset files and

boot containers. Since the operating system support

for the new processors exists in the software saved

in the operating system image, the cl ients can be

booted directly from that image. The POLYCENTER

Software Distribu tion version 3.0 product stores the

im age of the model system disk d irectly into a con

tainer fi le. This approach produced an interesting

side effect. If a particular processor is not supported

by the version of Open VMS saved in the operating

system i mage, it is not possible to boot that proces

sor into the ISL. As a resu lt, an older version of the

OpenYMS operating system cannot be instal led o n

hardware that requires a newer version.

Parameters of the JSL

When operating system software is being installed,

system configuration choices must be selected

from a number of variables. At a minimum, the

name of the target system d isk m ust be known.

Answers might also be needed for questions such

as: which subsets of the operating system files are

to be i nstal led' The JSL procedure must be capable

of obtaining these answers, either by prompting

a user at the console of the cl ient system or by some

automatic means.

OpenVMS Implementation At this point, the

OpenYMS operating system is runn ing, and a spe

cial system start -up command procedure has con

trol . The system m anager now answers a series of

prompts at the console. Only rare .ly does the

upgrade procedure ask a l l its questions at once

(and state that it is finished asking questions) before

com mencing any t ime-consu ming tasks. If it did,

the system manager could leave the console of one

machine to move to the console of t he next

machine and so on. In this way, multiple upgrades

cou ld be performed concurrently

93

PC LAN and System M anagement Tools

POLYCENTER Software Distribution Implemen

tation The parameters of the IS.L were down
loaded along with the primary bootstrap image .

The system start-up procedure of the ISL executes a

program that locates the Jist of parameters in mem
ory and returns them as logical names, which are
easier for command procedures to manipu late.

(Other operating systems wou ld use their own eas

i ly accessible data storage mechanisms.)

The system starr -up procedure starts the DECnet
n etworking software and establishes a network con

nection with the POLYCENTER Software Distribution

server system, perm itting access to larger amounts

of data than might fit i nto the bootstrap image . The
BACKUP saveset file used by previous versions of
the POLYCENTER Software Distribution product was

accessed through this DECnet connection.

Move the Operating System Software

Each operating system has specific requirements

for creating or dupl icating system d isks. This step
uses the client operating system 's standard proce
dure to dupl icate or upgrade the target system disk,

generalJy u sing the temporary system d isk as its

source (or model). However, another means, such
as network files or library files, may be used .

Open VMS Implementation From this point, there
is no difference between an upgrade and an insta l la

t ion using the traditional standalone OpenVMS
mechanisms.

The OpenVMS mechanism now performs a series

of complex fi le replacements in a pecul iar order,
which requ ires several reboots to complete. This
maximizes the existing free space on the target sys
tem d isk. After al l the reboots have completed , the

old operating system files will have been deleted,
and the new files will have been delivered.

The PCSl-based u pgrade does not need to perform
the several reboots, since the target system disk is
treated as a data d isk . Its operating system fi les are

simply replaced with new versions taken from the

temporary system d isk. This is one reason that

the PCSI-based OpenVMS upgrade is faster than the

tradi tional OpenVMS upgrade.

POLYCENTER Software Distribution Implemen

tation Since full OpenVMS (including DECnet) is
runn ing, a l l the resources of the OpenVIviS operat
ing system are availab.le for m anipulating the target
system disk, which is also treated as a data disk.
Alternatives such as VMSKITBLD . COM (which ere-

94

ates duplicate basic system disks), the BACKUP/
IMAGE command (which dupl icates system disks in
their entirety), and the PCSI ut i l ity (which upgrades
system d isks in place) could be u ti l ized at this point.

The BACKUP/IMAGE com mand moves the image of

the temporary system d isk to the target system disk.
The PCSI utility replaces the operating system files
on the target system d isk with the new operating
system files from the temporary system d isk . In the

BACKUP/IMAGE case, any system-specific customiza
tions or layered-product files that were saved into

the container file by the FETCH OPERATING_SYSTEM

process are now in place. In the l'CSI case, how
ever, a.ll system-specific customizations or layered
product files are left undisturbed.

Cleanup, Configuration, Tuning,
and Reboot

Any final changes needed before al lowing the client

to use its new system d isk are performed during the
cleanup, configuration, tuning, and reboot phase.
The client now boots from its newly upgraded

target system disk, and the temporary system disk

is no longer needed .

OpenVMS Implementation As a final step, the

AUTOGEN procedure tunes the operating sys

tem parameters to the hardware on which it is

intended to run. Any other configuration issues
(such as the network node name and address)
remain as exercises for the system manager to per
form at some later time. The system reboots one

last time. For traditional instaUations, this reboot
may have been the fifth or sixth. Some of these may

have been manual reboots, w hich requ ire the sys
tem manager to issue nonstandard , processor

specific console com mands.

POLYCENTER Software Distribution Implemen

tation When the BACKUP/IMAGE com mancl is
used, customizations specific for the ISL, which are
a l l stored under the [RSMO.] directory tree, must be
removed from the target system d isk, which , before

t his step, is a perfect image of the temporary system

disk. In addition, the DECnet software must be
reconfigured . The DECnet databases sti l l contain

the configurations saved in the temporary system

d isk; these must be updated to reflect the hardware
on this cl ient. As a final step, the cl ient reboots
onto the target system disk, and the temporary sys
tem disk is no longer requ ired. With the PCSI-based
ISL, no cleanup is requ ired .

!7rJl. 6 No. 4 Fa/1 1()94 Digital Teclmicaljournctl

Automatic, Network-directed Operating System Software Upgrades

Fetching and Installing Operating
System Software
The POLYCENTER Software Distribution product

kee ps images of model operating systems in i ts

private software library. The act of placing soft

ware into the l ibrary is called a fetch. The act of

delivering that software to a cl ient system is cal led

an i nsta l l . The operating system comm ands are

FETCH OPERATINC;_SYSTEM and I NSTALL or UPGRADE

OPERATING_SYSTEM . 1 A model system disk cannot

be instal led without first being fetched from a

cl ient system or suitable d istribu tion medium.

The Fetch Operation

The FETCH OPERATING SYSTEM command takes

a parameter that is the symbolic name of the operat

ing system to be fetched . The POLYCENTER Software

D istribution product uses and records this sym

bolic name because it is the key to a nam ing scheme

used to activate program modu les later.

Table 1 l ists several symbolic names and the

operating systems they m ight represent. I t is impor

tant to remember that there is no bui lt - in mapping

between these names and the operating systems to

which they are mapped. This l ist is a theoretical

sampl ing of what mappi ngs could be configured on

a particu lar server system.

\Xt'hen processing an INSTALL OPERATING_SYSTEM

AVMS com m and , the POLYCENTER Software Dis

tribution product uses the OpenVMS system

run-time l ibrary routine LIBSFIND_liVlAGE_SYMBOL

in order to dynam ica l l y activate the shareable image

SYSSSHARE: RSMSISL_INSTALL-AVMS.EXE. Th is i mage

is cal led the ISL Director. I t is used fo r both fetch

and i nstal l operations. The POLYCENTER Software

D istribu tion product calls the ISL Director rou t ine

RSM$ISL_FETCH and passes to i t a con text data stmc

ture (described in the section Platform Indepen

dence). This routine uses the software's remote

com m and execution agent (CEA) to issue Digital

command language (DCL) comma nds on the cl ient

system . Non-OpenVMS cl ients wou ld need to imple

ment their own com mu nications mechanism, so

that the server system could direct the client to per

form any required actions.

These DCL commands cause the cl ient to mount

the LAD virtual disk presented from the fetch too l kit

container f i le RSMSSDS_DATA:RSMSFETCH-AVMS. DSK.

The cl ient executes the command procedure

[RSMV3.0]RSM$ ISL_BOOT-AVMS.COM from the fetch

tool kit v irtual disk. This com mand procedure

• Determines the size of the cl ient 's system d isk

• Reports that system disk size to the ISL Director

Ta ble 1 Requ ired F i les for Sample Operating Systems

Symbo lic
Name

VMS

AVMS

U LTRIX

OSF1

VMS5

AVMS5

WINDOWS

Operating System

OpenVMS VAX
or VAX VMS

OpenVMS AXP

U LTRIX

OSF/1

OpenVMS VAX
with DECnet Phase V

OpenVMS AXP
with DEC net Phase V

MS-DOS ru nning
Microsoft Windows

Digital Techt�icaljournal Vol. 6 No. 4 Pall 19')4

Required ISL F i les

SYS$SHARE:RSM$1SL_I NSTALL-VMS.EXE
RSM$SDS_DATA:RSM$FETCH-VMS.DSK
SYS$SHARE: RSM$1SL_LAA-VMS.EXE

SYS$S HARE:RSM$1SL_I NSTALL-AVMS.EXE
RSM$SDS_DATA: RSM$FETCH-AVMS. DSK
SYS$SHARE:RSM$1SL_LAA-AVMS.EXE

SYS$SHARE:RSM$1SL_INSTALL-ULTRIX.EXE
RSM$SDS_DATA:RSM$FETCH-ULTRIX.DSK
SYS$SHARE:RSM$1SL_LAA- U LTRIX.EXE

SYS$SHAR E: RSM$1SL_INSTALL-OSF1 . EXE
RSM$SDS_DATA: RSM$FETCH-OSF1 .DSK
SYS$SHAR E: RSM$1 SL_LAA-OSF1 . EXE

SYS$SHARE:RSM$1SL_INSTALL-VMS5.EXE
RSM$SDS_DATA:RSM$FETCH-VMS5.DSK
SYS$SHARE: RSM$1SL_LAA-VMS5.EXE

SYS$SHARE: RSM$1SL_INSTALL-AVMS5.EXE
RSM$SDS_DATA:RSM$FETCH-AVMS5.DSK
SYS$SHARE:RSM$1SL_LAA-AVMS5.EXE

SYS$SHAR E:RSM$1SL_INSTALL-WIN DOWS.EXE
RSM$SDS_DATA:RSM$FETCH-WINDOWS. DSK
SYS$SHARE:RSM$1 SL_LAA-WIN DOWS.EXE

95

PC LAN and System Management Tools

The server creates an appropriately sized LAD
container file to receive the snapshot of the

cl ient's system disk and serves it to the cl ient.

• Mounts the new v irtual disk

• Issues a BACKUP/IiVLAGE command to copy the
system disk to the v irtual disk

• Provides the server with access to the processor

specific primary bootstrap image (APB. EXE)

The server saves the APB. EXE image in its l ibrary

alongside the newly created container fi le .

• Customizes the virtual d isk so it can be used as

the temporary system clisk during an ISL

The boot command procedure uses programs

and command procedures from the fetch toolkit
virtual disk to accomplish t his step. I n a FETCH
OPERATING_SYSTEM AVJVIS, this final step includes

creating a special system root [RSMO.SYSEXE] ,

placing a private system start-up command pro

cedure [RSMV3.0] RSM$ISL_STARTUP-AVMS.COM ,
instal l ing a program to retrieve the parameters

of the ISL [RSMV3.0] RSM$JSL_CLIENT-AVMS.EX E,

and insta l l ing a com mand procedure to remove

these customizations [RSMV3.0]RSM$1SL_CLEANUP

AVMS.C01Vl.

The two virtual disks are then d ismounted, and the
server closes the container file and makes it avail

able, write-protected, for ISL operations. These LAD
services can be accessed with binary passwords

known only to POLYCENTER Software Distribution

servers, so no casual access to the data contained

within is ever al lowed.

The Install Operation

The POLYCENTER Software Distribution product

retrieves the symbolic name of the operating
system (e .g. , AVMS) from the database. The software

product uses the symbol ic name to activate the

JSL Director image (SYS$SHARE: RSM$TSL_INSlALL
AVMS. EXE) and passes control to its universal rou
tine RSM$ISL_INSTALL. This rou tine enables the LAA

(SYS$SHAHE:RSM$ISL_LA A-AVMS. EXE) and prepares
a data file RSM$SDS_ WORK: ISL_c l ien t . DAT for use

by the LAA after the cl ient system requests i t to be
downloaded.

If a DECnet connection is possible between the

server system and the cl ient system, then the com

mand executio n agent issues appropriate shutdown
and reboot commands to launch the ISL. If not, the
POLYCENTER Software Distri bution process assumes

96

that the cl ient is halted and that the system manager

will launch the client into the ISL manual ly.
When the MOM process detects the cl ient's N I

address, i t activates the LAA and passes control to
the rou t ine at offset 0000 in the image. The parame

ters to this procedure call (which are described in
the section Platform I ndependence) include the

node name of the client system and the address of

a cal l back routine used to deliver the bytes of the
bootstrap image to the client. The ca l l back routine

• Reads the RSM$SDS_ WORK:ISL_client. DAT file

(described in the section Platform Independence)

• Retrieves the processor-specific bootstrap

i mage (APB.EXE) from the I ibrary

• Locates and writes the parameters of the ISL into

the bootstrap image's work space

• Releases these bytes to MOM for delivery to the
cl ient

Once this is down loaded, the server system
assumes a passive role, waiting for the cl ient to

annou nce its own completion.

The processor-specific bootstrap i mage has
control of the client system. It locates the LAD ser
vice name and password in the parameters of the

lSI. to establish the connection to the temporary vir
tual system disk (which is being presented by the

server system) and boots the Open VMS A.X.P operat

i ng system.
The system start-up com mand procedure

(RS!vl $1SL_STARTUP-AVMS.COM) then receives con
trol and

• Starts enough of the Open VMS operating system
to mou n t local d isks and start the DECnet net

working software

• Executes the program RSM S ISI._CI.IENT-AVMS.EX E
to retrieve the I S L parameters

With the parameters of the ISL stored in logical
names, the system start -up procedure then

• Configures the target system disk

• Initializes the target system d isk if necessary

• Starts the DECnet networking software

• Sol icits further instructions (if any) from the

server system

• Issues a BACKUP/I MAGE com mand to move the
operating system software from the temporary
system d isk to the target system disk

Vol. 6 No. 4 Fu/1 1994 D igital Teclmicaljournal

Automatic, Network-directed Operating System Software Upgrades

• Executes the RSM$1SL_CLEANUP-AYMS.COM com

mand procedure to remove the customiza tions

specific for the ISL

The target system d isk now appears to be identi

cal to the m odel system disk just before the fe tch

operation.

The UPGRADE OPERATING_S YS TEM and
FET CH CONFIGURATION Commands

The contents of the PCSI-installable distribution

medium for OpenVMS AXP bears a striking resem

blance to a POLYCENTER Software D istribution tem

porary system disk. This is no coincidence. The

Open VMS AXP development team modeled the distri

but ion medium after the POLYCENTER Software

Distribution boot container, so the product would be

plug-compatible. The obvious d ifference, however, is

that the system start-up procedure invokes the PCSI

util ity instead of the BACKUP/L\1AGE com mand .

The client system boots from the distribu t ion

m edium under the d irection of the POLYCENTER

Software Distribution product. Next the procedure

starts the DECnet network software using the

parameters of the ISL. Then the PCSI configuration

answers are taken from t he server system rat her

than being prompted manually at the console.

Everything else is the same.

Before any of this is possible, however, the sys

tem manager invokes the PCSI mil i ty to record the

answers to a l l the configuration questions using

the RSi\II$TRIAL_INSTALL.COM com m and procedure.

The PCS! configuration file is then i nserted in the

POLYCENTER Software Distribution library using

the FETCH CONF IGURATION command.

Note that when record i ng configuration files, the

PCSl util ity permits users to defer answers unti l

instal lation time. Unfortunately, because of the

product's stipulation that no human i ntervention

be required, such deferra ls cause the ISL to fai l .

Platform Independence
The following section details how the ISL process

can be expanded to other platforms and operating

systems. Ta ble 1 gives a sample l ist of symbolic

names and their correspond ing operating systems.

The POLYC ENTER Software Distri bution version 3.0

kit provides only the VMS (for the VAX VMS and the

Open VMS VAX operat ing systems) and the AVMS (fo r

the Open VMS AXP operating system) ISL ki ts.

To add ISL support fo r other operating systems

and/or hardware platforms, the fol lowing requ ire

ments m ust be met.

Digital Techuical]ournal Vol. (> .Vo. 4 F(ll/ 199 1

• The operati ng system must be bootable from a

read-only LAD v irtual d isk . (Am ong others, the

MS-DOS, ULTRIX, and DEC OSF/ 1 operating sys

tems are known to have this capabil i ty.)

• The hardware platform must be MOP down

loadable. (Most Digital processors have this

capabil i ty.)

• The operating system 's p rocessor-specific boot

strap image m ust have an LA A-writeable scratch

area for the parameters of the ISL.

• The parameters of the ISL must be retrievable

by the operati ng system's system start-up com

mand procedure.

• The operating system must have a mechanism

for moving the contents of the temporary sys

tem d isk to the target system disk, which wil l

never be identica l media . (Most operat ing sys

tems have this capabil i ty.)

• The 1St Director shareable i mage (SYS$SHARE:

RSM$ISL_I NSTALL-opera .EXE), containing entry

points RSM $ISL_FETCH and RSM$ISL_INSTALL,

must be active on the server system (running

Open VMS).

• The contents of the fetch toolkit container file

(RSM$SDS_DATA : RSM$FETCH-opem. DSK) need be

known only to the ISL Director. This file resides

on the server system (running OpenVMS) but is

read only by the cl ient system and only d ur i ng

a fetch operation.

• The load assist agent (SYS$SHARE: RSM$ 1SL_LAA

opera . EXE) must be capable of delivering the

operating system 's processor-sp ecific primary

bootstrap image (plus the parameters of the ISL)

to the cl ient system, which runs on the server

system (running OpenVMS).

Table 1 l ists the n ames of the files required to

support various operating systems. Note the nam

ing scheme for the files. Each set of three files,

which compose a single ISL kit, implements the

entire ISL fetch and install functional ity. The ISL

D irector routine RSM$ISL_FETCH works in conju nc

tion with the fetch toolkit. The ISL Director routine

RSM$1SL_INSTALL works in conjunction with the

load assist agent. Table 2 gives the naming conven

tion used for all resources shared between t hese

three files. The term opera identifies the symbolic

name of the operating system. The term server

identifies the DECnet node name of the server

97

PC LAN and System Management Tools

Table 2 Na ming Conventions Used by ISL Resou rces

Name Description

RSM$1SL_INSTALL-opera. EXE

RS M$1SL_LAA-opera. EXE

RS M$FETC H-opera. DSK

RSM$FETCH_server-opera

RSM$1SL_BOOT-opera. COM

RSM$SDS_ OS_LIBRARY:
[opsys.OPERSYS]SYSO.DS K

RSM$1SL_server-opsys

RSM$1SL_STARTUP-opera.COM

RSM$1SL_ CLEANU P-opera .COM

RSM$1SL_server

RSM$1SL_server _EVMS

Shareable image containing the ISL Director routines, w h ich runs on
the POLYC ENTER Software Distribution server (running OpenVMS).

Shareable image containing the load assist agent, which runs on
the POLYC ENTER Software Distribution server (running OpenVMS).

Container f i le containing the fetch toolkit, which resides on the
POLYCENTER Software Distribution server syste m (ru n n i ng OpenVMS)
but is read only by the cl ient system.

LAD service name for the fetch toolkit, which is served by the
POLYC ENTER Software Distribution server (running OpenVMS)
to the cl ient.

Command proce d u re responsi ble for actual l y performing the save
of the operating system software from the client's system d isk to
the virtual d isk, which runs on the cl ient system.

Container file for the fetched operating system, which resides on
the PO LYC ENTER Software Distribution server system (ru n n i ng
Open VMS).

(This d i rectory may also be used to store the bytes of the processor
specific bootstrap i mage so t h e load assist agent has easy access.)

LAD service name of the te mporary system disk conta i n i ng the
fetched operating system i mage, which is served from the
POLYC ENTER Software Distribution server syste m (running
OpenVMS) to the cl ient syste m.

Command procedure responsi ble for actually del ivering the operat
ing system software from the temporary system disk to the target
system d isk. It runs on the cl ient system but is booted from the
temporary system d isk.

Command procedure for removing custom i zations specific to the
i n itial system load from a tem porary system di sk. I t runs on the cl i ent
system but is booted from the temporary system d isk.

LAD service name of the VAX "boot container'' for operati ng systems
fetched prior to version 3.0, which is served from the POLYCENTER
Software Distribution server system (running OpenVMS) to the client
system (which in this case must be running OpenVMS VAX or VAX VMS).

LAD service name of the AXP "boot container" for operating systems
fetched prior to version 3.0, wh ich is served from the POLYCENTER
Software Distribution server system (ru n n i ng OpenVMS) to the c l ient
system (wh ich in this case must be running OpenVMS AXP).

system , and the term opsys identifies the user

defi ned pseudonym for the fetched operating sys

tem i mage.

The pertinent fields of the QENTRY data structu re

passed to RSM$ISL_FETCH are

T h e ISL Director

The ISL D irector is a shareable image activated by

LIB$FIND_IMAGE_SYJVIBOL; therefore i t need not

have transfer vectors, as long as the two requ i red

entry poi nts are declared UNIVERSAl. These two

routines are cal led in user mode. They are passed

a s ingle parameter, the address of a data structure

called the QENTRY.

98

c h a r p s e u d o n y m [6 4 J ;

c h a r c l i e n t _ n o d e [1 2 8 J ;

c h a r L i b r a r y _n o d e [1 2 8 J ;

c h a r o p e r a _ h o u s e [8 J ;

Vol. 6 No. 4 Fall 1994 Digital Tec!Jnical journal

Automa tic, Network-directed Operating System Software Upgrades

and the pertinent fields of the QENTRY data struc
ture passed to RSMSISL_INSTALL are

c h a r e t h e r n e t [1 9 J ;

c h a r c l i e n t _n o d e [1 2 8 J ;

c h a r L i b r a r y _ n o d e [1 2 8 J ;

c h a r o p e r a _ h o u s e [8 J ;

In both rout ines, the field cal led opera_house con
tains the symbolic name of the operating system
(e.g. , AVMS).

RSM$ISL_FETCI-I is responsible for copying a

bootable snapshot of the client's system disk into
the LAD container fi le SYSO. DSK. The LAD virtual
d isk should be organized into the nat ive format of
the operating system being fetched. The server sys
tem wil l never attempt to read these files. To the
server system, tbis container is simply a large series

of bytes, whose meaning (to the cl ient system) is
unimportant. This routine is responsible for obtain
ing the size of the container file to be created,
creating that container file, and then serving it ,
writeable, to the LAD. Once the fetch operation has
concluded, the container shou ld be served again in
read-only format.

RSMSISL_INSTALL is responsible for enabling the
LAA for the new cl ient system. Since the LAA ru ns
under the MOM process, which is a non-POLYCENTER

Software Distribution environ ment, this routine
should a lso col lect any and all i n.formation (such

as the DECnet node name and address of the server
system) needed by the LAA, and store that infor

mation in the file RSJ'-•1$SDS_ WORK:ISL_cl ient.DAT.
The conten.t of this file is shared only between
RSM $!SL_INSTALL and the LAA; therefore, the format

of the file is implementation-dependent.

The Fetch Toolkit

The fetch toolkit is a lso a LAD virtual disk organized

in a format that is native to the cl ient's operating
system. Again, the server system wi l l never read
this virtual volume. This virtual vol u me contains

the native operating system pieces necessary to
save a snapshot of the model system disk, make i t
bootable as the temporary system disk, and restore
it to its original state These are usually three sepa
rate com mand procedures. The command proce
dure that saves the system disk image must also

D igital Tee/mica/journal Vol. 6 No. 4 Fall 1994

store the bytes of the operating system 's primary
bootstrap i m age for fu ture access by the LAA.

T he Load Assist Agent

The LA A delivers the bytes of the processor-specific
primary bootstrap image to the cl ient system. The
MOM process activates this shareable image dynam
ically, but not using LIB$FIND_IMAGE_SYMBOL.

Therefore, the one requ ired entry point to this
image must occur at offset 0000 in the image. (The
name of the entry point is unimportant.) This is
best accompl ished using a single transfer vector.

This rou ti ne is caJJed in user mode with three
parameters, the addresses of three data structures:
the MOMIDB, the MOMARB, and the MOMODB.

The offset MOMIDB$A_PARAM_DSC contains any
text from the NCP load assist parameter field . This
field contains arbitrary text that RSM$JSL_!NSTALL

placed there. Normal ly, this field contains a handle
used to retrieve the file RSM$SDS_ WORK: ISL_

client.DAT. A good handle is the DECnet node name
of the cl ient system.

The offset MOMARB$A_SEND_DATA is the address
of a routine to deliver data to the cl ient. The LAA
need only col lec t and/or generate the data to be
del ivered to the c l ient; t h is cal lback routine del iv
ers i t to the client. Its two parameters are a string
descriptor identifying which and how many bytes
are to be del ivered, and the relative address in the
cl ient's memory to place these bytes. This ca l lback
routine may be ca.l led repetit ively.

The offset MOMODB$ L_TRANSFER_ADORESS must

be fil led with the relative transfer address of the pro

cessor-specific bootstrap image that was loaded into
the cl ient's memory by MOMARB$A_SEND_DATA. For

OpenVMS VAX, this offset is trad itionally zero,
because certain older VAX processors are not capa
ble of using any other value. That is one reason why
the transfer address for ISL_SVAX.SYS is always zero.

Summary
The ISL mechanism i nstal ls , maintains, and
upgrades operating system software. These simple
descriptions provide the framework for ex paneling
the ISL process i mplemented in the POLYCENTER

Software D istribution version 3.0 product to plat
forms other than Open VMS VAX and OpenVMS AXP
operating systems. This expansion can make work
easier for system managers of mult iple platforms

and may even start a de facto standard for perform
ing operating system upgrades.

99

PC LAN and System Management Tools

Acknowledgments

I wou ld l ike to t hank Richard Bishop and CharJ ie

Hammond in the OpenVMS AXP Development

Group for al lowing me to un ify the POLYCENTER
Software Distribution version 3.0 ISL and the PCST

based Open VMS AXP version 6.1 upgrade.

Note and References

I . POLYCENTER Software Distribution is the new

name for Digital 's Remote System Manager

1 00

product. The installed software continues to use

its traditional acronym RSM .

2. POLYCENTER Software Distribution Manage

ment Guide (Maynard , MA: D igital Equipment

Corporation, Order No. AA-JG05E-TE, May 1994).

3. POl.YCENTER Software Distribution Command

Reference (Maynard, MA Digital Equipment

Corporation, O rder No. AA-JG03E-TE, May 1994).

Vol. 6 No. 4 Fall 1994 Digital Tecbnical jourual

I Further Readings
The fol lowing technical papers were written by
Digital au thors:

R. Abugov and K. Zin ke, "Wafer Level Tracking
Enhances Particle Source Isolation i n a Manu
facturing Environment,'' Fifth A nnual IEEE!SEMI

Advanced Semiconductor klanujacturing

Conference and Workshop (November 1994).

.J. Card, A. McGowan, and C. Reed, "Neural Network
Approach to Automated Wirebond Defect Classifi
cation," ASJlt!E Proceedings of the Artificial Neural

Networks in Engineering (ANNIE '94) Conference

(November 1994).

S. Cheung, D. jensen , and G. Mooney, "Ul tra-High

Purity Gas D istribution Systems for Sub O.Sum ULSI

Manufacturing," Fifth Annual iEEE/SEMI Advanced

Semiconductor Manufacturing Conference and

Workshop (November 1994).

R. Col lica, B. Cante l l , and J Ramirez, "Statistical

Analysis of Particle/Defect Data Experiment Using
Poisson and Logistic Regression," IEEE Interna

tional Workshop on Deject and Fault Tolerance

in VLSI Systems (October 1994).

B. Doyle, K. Mistry, and C-L. Huang, ·'Analysis of
Gate Oxide Thickness Hot Carrier Effects in Surface

Channel P-MOSF ETs;· iEEE Transactions on

Electron Devices (January 1995).

). Edmondson, "Internal Organization of the Alpha
21 164," iEEE First International Symposium on

High-jJelt'ormcmce Computer Architecture (HPCA)

(January 1995).

L. El l iott, D. Paine, and). Rose, "The Microstructure
and Electromigration Behaviour of AJ-0. 35%Pd
Interconnects,'' Materials Research Society

SymjJosium Proceedings: Materials Reliability

in Microelectronics IV Symposium (April 1994).

C. Gordon and K. Roselle , "An Efficient and Accu
rate Method for Estimating Crossta lk in Multicon
ductor Coupled Transmission Lines," IEEE Third

Topical Meeting on the Electrical Performance

of Electronic Packaging (November 1994).

D. Heimann , " Using Complexity-Tracking in the
Software Development Process,'' Thirty-second

Annual Spring Reliability Symposium (April 1994)

Digital Techllical]ow-nal VrJI. 6 No. 4 Fal/ 1994

A. john, " Dynamic Vnodes: Design and Imple
mentation," USENIX 1995 Technical Conference

on UNIX and Advanced Computing Systems

(January 1995).

D. jones and V Murthy, "Advancing Re liabi l i ty

with State of the Art Software Tools," University

of Manchester School of Engineering Third

Reliability Software Seminar and Workshop

(December 1994) .

N. Khali l ,). Faricel l i , and D. Bell , "The Extraction

of Two-Dimensional MOS Transistor Doping via
Inverse Modeli ng,'' IEEE Electron Device Letters

(January 1995).

A. Labun, "Profile Simulation of Electron Cyclotron
Resonance Planarization of an Interlevel Dielectric,"

journal of Vacuum Science and Technology B

(JVST B) (November/December 1994).

K. M istry and B . Doyle, "How Do Hot Carriers
Degrade N-Channel MOSFETs? ," IEEE Circuits and

Devices (January 1995).

C. Ozveren , R. Simcoe , and G. Varghese, " Rel iable
and Efficient Hop-by-Hop Flow Control ," AC111 SIG

COJHM 94 (October 1994).

R . Razdan and M. Smith, "A High-Performance
Microarchitecture with Hardware-Programmable
Functional Units," Proceedings of the Twenty

seventh Annual International Symposium on

Microarchitecture (MIG"R0-27) (December 1994).

R. Rios and N. Arora, "Determi nation of Ultra-Thin
Gate Oxide Thickness for CMOS Structures Using
Quantum Effects," IEEE International Electmn

Devices Meeting/IEDM Technical Digest

(December 1994).

N. Sul livan, "Semiconductor Pattern Overlay,"
Proceedings of the International Society of

Photo-Optical Instrumentation Engineers (SPIE)

Microelectronic Processing: Integrated Circuit

Metrology and Process Control (Critical Review)

(September 1994).

B. Thomas, "Open VMS I/O Concepts: CSR Access;'
Digital Systems journal (November/December
1994).

1 0 1

I Recent Digital US. Patents

The following patents were recent�v issued to Digital Equipment Corporation. Titles and names supplied
to us by the US. Patent and Trademark Office are reproduced exactly as they appear on the original pub
lished patent.

5,208,692 D. McMahon

5,208,768 E. Simoudis

5,210,854 A. Beaverson and T. Hunt

5,210,865 S. Davis, W Goleman, and
D. Thiel

5,217, 198 V Samarov, W Paupl is, and
G. Doumani

5,218,678 B. Kelleher and S-S. Chow

5,220,661]. Wray, A. Mason, P Karger,
P Robinson, W-M . H u , and
C. Kahn

5,224,206 E. Simoudis

5,224,884 M. Singer, R . Noffke, and
D. Gi lmour

5,233,684 R. Ulichney

5,235,697 S. Steely and]. Zurawski

5,239,634 B. Buch and C. MacGregor

5,239,637 S. Davis, W Goleman, and
D. Thiel

5,241 ,564 J. Tang and J.L. Yang

5,242,761 Y Uchiyama

5,243,241 C-H. Wang

5, 247,464 R. Curtis

5,247,618 S. Davis, W Goleman , D. Thiel,
R . Bean, and]. Zahrobsky

5,251 , 147]. Finnerty

5,251 ,227 T. Bissett, W Bruckert,
]. Munzer, D. Kovalcin, and
M. Norcross

5,253,249]. F itzgerald and D. Shuda

5,253,353].C. Mogul

5,257,264 H . Yang and
K. K. Ramakrishnan

5,261 ,077 J .R . D uval, K .R . Peterson,
and T. E. Hunt

102

H igh Bandwidth Network Based on Wavelength Division
M u ltiplexing

Expert System Including Arrangement for Acquiring Redesign
Knowledge

System for Updating Program Stored i n EEPROM by Storing
New Version into New Location and Updating Second
Transfer Vector to Contain Start ing Address of New Version

Transferring Data between Storage Media While Main taining
Host Processor Access for 1/0 Operations

Uniform Spatial Action Shock Mount

System and Method for Atomic Access to an I npu t/Ou tpu t
Device with Direct Memory Access

System and Method for Reducing Timing Channels in D igital
Data Processing Systems

System and Method for Retrieving .Justifiably Relevant Cases
from a Case L ibrary

High Current, Low Voltage Drop Separable Connector

Method and Apparatus for Mapping a Digital Color Image from
a First Color Space to a Second Color Space

Set Prediction Cache Memory System Using Bits of the Main
Memory Address

Memoqr Control ler for Engineering/Dequeu ing Process

D igital Data Management System for Maintaining Consistency
of Data in a Shadow Set

Low Noise, High Performance Data Bus System and Method

Magnetic Recording Medi u m and Method of Manufacture
Thereof

Tota lly Magnetic F ine Tracking Min iature Galvanometer
Actuator

Node Location by Differential Time Measurements

Transferring Data in a D igital Data Processing System

Minimizing the Interconnection Cost of E lectronically Linked
Objects

Resets for a Fau lt Tolerant, Dual Zone Compu ter System

Bid irectional Transceiver for H igh Speed Data System

System and Method for Efficiently Supporting Access to 1/0
Devices through Large Direct-mapped Data Caches

Automatically Deactivated No-owner Frame Removal
Mechanism for Token Ring Networks

Configurable Data Path Arrangement for Resolving Data Type
Incompatibil ity (This case is related to PD89-0300.)

Vol. 6 No 4 Fall 1994 Digital Technical journal

'),26 1 ,OH'5

'5, 26'5,092

'5,26'5, 2'57

'),274,H l l

'5, 276, 7 1 2

'5, 276,809

5, 276,828

'5, 276, 851

'5, 276,874

5, 278,974

5,2H0.47H

'), 280, ')75

5, 280,'582

'5,280,627

'),28:1,857

'),287, 1:)8

5, 287,48')

5, 287, 5:)4

'),291 ,494

'5, 293,620

'5, 296,:)92

'5, 297. 269

LB. Lamport

S. R. Soloway, A .G. Lauck, and
G. Verghese

R .J. Simcoe aml R. E. Thomas

A. Borg and D.W Wal l

] .D. Pearson

.f. K . Grooms, R . L. Sites,
L.A. Chisvin , and OW Smelser

J Dion

C. Thacker and D. Conroy

R.G. Thomson

R. Ramanujan, PJ Lemmon ,
and .J.C. Stickney

H . Yang, PW C iarfella,
K.K Ramakrishnan

C. A. Young and N.F jacobson

H. Yang, K . K . Ramakrishnan.
and A. Lauck

j. E. Flaherty and A . Abrahams

E. Simoudis

S.C. Steely and D.J Sager

B .iVI. Kel leher

L. Umina and R. Anse lmo

T Reuther

T. Bissett, W Rruckert, and
.J. Melvin

W Barabash and
WS. Yerazunis

G.J. Gnlla ancl W.C. Metz

D. Donaldson , M. Howard ,
D. Orbi ts,). Parchem,
D. Robinson, and D. WiLliams

Digital Technical journal Vol. 6 No. 4 Fall 1994

Fau lt- tolerant System and Method for Implementing a
Distributed State Machine

Synchronization Mechanism for Link State Packet Routing

Fast Arbiter Having Easy Scal ing for Large Numbers of
Requesters, Large Numbers of Resource Types with Mu ltipl.e
Instances of Each Type and Selectable Queueing Discipl ines

Method for Quickly Acquiring and Using Very Long Traces
of M ixed System and User Memory References

Method and Apparatus for Clock Recovery in Digital
Com mu nication Systems

Method and Apparatus for Capturing Real-t ime Data Bus
Cycles in a Data Processing System

Methods of Maintaining Cache Coherence and Processor
Synchronization in a Mult iprocessor System Using Send ami
Receive Instructions

Automatic Writeback and Storage Limit in a High-performance
Frame Buffer and Cache Memory System

Method for Creating a Directory Tree in Main Memory Using
an Index Fi le in Secondary Memory

Method and Apparatus for the Dynamic Adjustment of Data
Transfer Timing to Equa l ize the Bandwidths of Two Buses in
a Computer System Having Different Bandwidths

No-owner Frame and Mul tiple Token Removal Mechanism for
Token Ring Networks

Arraratus for Cel l Format Control in a Spreadsheet

No-owner Frame and Multiple Token Removal for Token Ring
Networks

Remote Bootstrapping a Node over Communication Link by
Init ial ly Requesting Remote Storage Access Program Which
Emulates Local Disk to Load Other Programs

Expert System Including Arrangement for Acquiring Redesign
Knowledge

Next Line Prediction Apparatus for a Pipelined Computer
System

System and Method for Drawing Anrial iased Polygons

Digital Processing System Incl.uding Plural Memory Devices
and Data Transfer Circuit ry

Correcting Crossover Distortion Produced When Analog
Signal Thresholds Are Used to Remove Noise from Signal

Method of Hand l ing Errors in Software

Method and Apparatus for Schedu ling Tasks in Repeated
Iterations in a D igital Data Processing System Having Multiple
Processors

Method for Forming Trench Isolated Regions with Sidewa l l
Doping

Cache Coherency Protocol for Mult i Processor Computer
System

I

1 03

Recent Digital US. Patents

5,298,464 RW Doe, R .D. Gates,
D.P. Goddard, S.C. Hsu, and
R.L. Schlesinger

5,301 ,327 W McKeeman and S. Aki

5,303,382 B. Buch and C. MacGregor

5,303,391 R . .J. Simcoe and R.E. Thomas

5,313,387 WM. McKeeman ami S. Aki

5,313,464 F.H . Reiff

5,313,641 R.]. Simcoe and R . E. Thomas

5,315,480 V Samarov, G. Doumani, and
R. Larson

5,317,708

5,319,651

5,321 ,724

5,321 ,841

5,325,531

5,327,368

5,327,557

5,330,881

5,337,404

5,339.449

5,345,587

R. Edgar

R . Hel liwel l, R. Lary, B. Edem,
and J.Johnston

B. Long and M .]. Hynes

M.C. Ozur, S.M. Jenness,
).W Kel ly, J). Wal ker, and
).A. East

WM. McKeeman and S. Aki

R .A . Eustace and].S. Leonard

J.P. Emmond

A. Sidman and S. Fung

P. Beaudelaire, M. Gangnet,
J Herve, T. Puder, and
J.V Thong

P.A. Karger, A. H. Mason,
JC .R. Wray, P.T. Robinson ,
A.L. Priborsky, C . E. Kahn,
and T.E. Leonard

L .G. Fehskens, C. Stru tt ,
S. Wong, J. F. Callander,
P. H . Burgess, K.J Nelson,
M .]. Guerti n , D.L. Smith,
M W Sylor, KW Chapman,
R.C. Schuchard , S. I . Goldfarb,
R .R. N. Ross, LB. O'Brien,
P.). Trasatti , D.O. Rogers,
B .M. England,].L. Lemmon,
R.L . Rosenbau m , and
additional i nventors

5,345,588 R. Peterson, B . Schreiber,
and S. Greenwood

1 04

Method of Manufacturing Tape Automated Bonding
Semiconductor Package

Virtual Memory Management for Source-code Development
System

Arbi ter with Program mable Dynamic Request Prioritization

Fast Arbiter Having Easy Scal i ng for Large Numbers of
Requesters, Large Numbers of Resource Types with Multiple
Instances of Each Type and Selectable Queueing Disciplines

Re-execution of Edit -compile-run Cycles for Changed Li nes of
Source Code, with Storage of Associated Data in Buffers

Fau lt To lerant Memory Using Bus Bit AJ igned Reed-Solomon
Error Correction Code Symbols

Fast Arbiter Having E asy Scaling for Large Numbers of
Requesters, Large N u mbers of Resource Types with Mul tiple
I nstances of Each Type and Selectable Queueing Disciplines

Conformal Heat Sink for Electronic Module

Content Addressable Memory

Data Integrity Features for a Sort Accelerator

Interference Suppression System

Server Impersonation of Cl ient Processes in an Object-based
Compu ter Operating System

Incremental Compiler for Source Code Development System

Chunky Binary Mult iplier and Method of Operation

Single-keyed Indexed File for TP Queue Repository

Microl ithographic Method for Producing Thick Vertically
Wal led Photoresist Patterns

Process for Making Computer-aided Drawings

System and JVIethod for Reducing Storage Channels in Disk
Systems

Extensible Entity Management System Includ ing a Dispatch ing
Kernel and Modu les Which Independently I n terpret and
Execute Commands

Thread Private Memory Storage for M u ltithread Digital Data
Processing

Vol. G No. 4 Fall 1994 Digital Technical journal

Call for Authors
from Digital Press

Digital Press has become an imprint of Butterworth-Heinemann, a major inter

national publisher of professional books and a member of the Reed E lsevier

group. Digital Press remains the authorized publisher for Digital Equipment

Corporation: the two companies are working in partnership to identify and pub

lish new books under the Digital Press imprint and create opportunities for

authors to publish their work.

Digital Press remains committed to publishing high-quality books on a wide

variety of subjects. We would like to hear from you if you are writing or thinking

about writing a book.

Contact: Frank Satlow

Publisher

Digital Press

313 Washington Street

Newton, MA 02158

Tel : (617) 928-2649

Fax: (617) 928-2640

fps@world.std.com

ISSN 0898-90lX

Printed in U.S.A. EY-T l l 8E-Tj/95 04 1 4 1 4.5 Copyright © Digital Equipment Corporation. A l l Rights Reserved.

	Front cover
	Contents
	Editor's Introduction
	Biographies
	The Architecture and Design of HS-series Storageworks Array Controllers
	Policy Resolution in Workflow Management Systems
	The Design of DECmodel for Windows
	The Design of ManageWORKS: A User Interface Framework
	The Structure of the OpenVMS Management Station
	Automatic, Network-directed Operating System Software Upgrades: A Platform-independent Approach
	Further Readings
	Recent Digital U.S. Patents
	Call for Authors from Digital Press
	Back cover

