
• Availability in VAXcluster Systems
• Network Performance and Adapters

Digital Technical Journal
Digital Equipment Corporation

Volume 3 Number 3

Summer 1991

Cover Design
Our cover graphic represents the shadowing, or replication, of

data on multiple physical disks in a VAX cluster environment.

VMS host-based volume shadowing pmvides the high data avail

ability required for applications such as transaction

processing and is the subject of one of the papers in this issue.

The cover was designed by Sandra Calef of Calef Associates.

Editorial
Jane C. Blake, Editor
Kathleen M. Stetson, Associate Editor
Leon Descoteaux, Associate Editor

Circulation
Catherine M. Phillips, Administrator
Sherry L. Gonzalez

Production
Mildred R. Rosenzweig, Production Editor
Margaret Burdine, Typographer
Peter Woodbury, illustrator

Advisory Board
Samuel H. Fuller, Chairman
Richard W. Beane
Robert M. Glorioso
Richard]. Hollingsworth
John W. McCredie
Alan G. Nemeth
Mahendra R. Patel
E Grant Saviers
Victor A. V yssotsky
Gayn B. Winters

The Digital Technical journal is published quarterly by Digital
Equipment Corporation, 146 Main Street ML01-3/B68, Maynard,
Massachusetts 01754-2571. Subscriptions to the journal are
$40.00 for four issues and must be prepaid in U.S. funds.
University and college professors and Ph.D. students in the electri
cal engineering and computer science fields receive complimen
tary subscriptions upon request. Orders, inquiries, and address
changes should be sent to the Digital Technical journal at the
published-by address. Inquiries can also be sent electronically to
DTJ®CRL.DEC.COM. Single copies and back issues are available
for $16.00 each from Digital Press of Digital Equipment
Corporation, 12 Crosby Drive, Bedford, MA 01730-1493.

Digital employees may send subscription orders on the ENET to
RDVAX::JOURNAL or by interoffice mail to mailstop ML01-3/B68.
Orders should include badge number, site location code, and
address. All employees must advise of changes of address.

Comments on the content of any paper are welcomed and may
be sent to the editor at the published-by or network address.

Copyright© 1991 Digital Equipment Corporation. Copying
without fee is permitted provided that such copies are made for
use in educational institutions by faculty members and are not dis
tributed for commercial advantage. Abstracting with credit
of Digital Equipment Corporation's authorship is permitted.
All rights reserved.

The information in the journal is subject to change without notice
and should not be construed as a commitment by Digital
Equipment Corporation. Digital Equipment Corporation assumes
no responsibility for any errors that may appear in the journal.
ISSN 0898-901X

Documentation Number EY-H890E-DP

The following are tmdemarks of Digital Equipment Corporation:
Bl, CI, DEC, DECconcentmtor, DECdtm, DEC FDD!controller,
DECnet, DELNl, DSA, DSSI, Digital, the Digital logo, HSC, LAT,
Local Area VAXcluster, MSCI� RA, Rdb(VMS, TA, ULTRlX, UNIBUS,
VAX, VAX DBMS, VAX MACRO, VAX RMS, VAX 6000, VAX 9000,
VAXcluster, VMS, VMS Volume Shadowing.

Motorola and 68000 are registered trademarks of Motorola, Inc.

Book production was done by Digital's Database Publishing Group
in Northboro, MA.

I Contents

5 Foreword
Howard H . Hayakawa and George S. Hoff

7 Design of VMS Volume Shadowing
Phase II-Host-based Shadowing
Scott H. Davis

16 Application Design in a VAXcluster System
Wil l iam E. Snaman, Jr.

27 New Availability Features of Local Area
VAXcluster Systems
Lee Leahy

Availability in VAXcluster Systems

Network Performance and Adapters

36 Design of the DEC LANcontroller 400 Adapter
Richard E . Stockdale and Judy B . Weiss

48 The Architecture and Implementation
of a High-performance FDDI Adapter
Sat ish L . Rege

64 Performance Analysis of a High-speed
FDDI Adapter
Ramsesh S. Kalkunte

78 Performance Analysis of FDDI
Raj Jain

I Editor's Introduction

Jane C. Blake
Editor

This issue of the Digital Technical journal contains
a collection of papers on two general topics

VAXcluster systems, and network adapters and per

formance. The first set of three papers describes

new VMS VAXcluster developments and features;

the second set addresses the topics of LAN adapter

design and performance measurement techniques.
A common theme across these papers is the devel

opment of technologies for interconnecting sys

tems that offer high data availability without

sacrificing performance.
VMS Volume Shadowing, described by Scott Davis,

is a means of ensuring data availabi l ity and integrity

in VMS VAXcluster systems. By maintaining multiple
copies of data on separate devices, the volume

shadowing technique protects data from being
lost as the result of media deterioration or device

failures. Scott discusses the advantages of the
new design over controller-based shadowing and

explains how this ful ly distributed software makes
a broad range of topologies suitable for shadowing.

The growth capabilities and availability of VMS
VAXcluster systems are characteristics well suited

to applications with high-availability requirements.
Sanely Snaman first presents an overview of the

VAXcluster system architecture, including explana
tions of the layers, their purpose and function. He
then gives practical insights into how the system
implementation affects appl ication design and
reviews the choices available to application design

ers in the areas of client-server computing and data
sharing.

The availability of applications and cluster con

figurations is also enhanced by developments in a

new release of the VMS operating system. Lee Leahy

describes a VMS feature that enables fail-over
between multiple LAN adapters and compares this

approach to a single-adapter implementation. He

then discusses and gives examples of VMS features

2

for network delay detection and reduction, and fail

ure analysis in local area VAXcluster systems.
The focus then moves from VMS-Ievel concerns

to the design of network adapters and performance
measurement. The adapter described by Dick

Stockdale and Judy Weiss is the DEC LANcontroller

400, which connects systems based on Digital's

XMI bus to an Ethernet LAN. This particular design
improves on previous designs by transforming the

adapter from a dumb to an intell igent adapter

which can off- load the host. Consequently, the

adapter supports systems that u tilize the fu l l band
width of Ethernet. The authors provide a system

overview, performance metrics, and a critical exam

ination of firmware-based design.
Like the LANcontroller 400, the FDDicontroller 400

is an adapter that i nterfaces XMI-based systems to a

LAN. However, as Satish Rege relates, this adapter
was required to transmit data 30 times faster than

Ethernet adapters. Satish discusses the architec

ture and the choices designers made to address the
problem of interfacing a parallel high-bandwidth

CPU bus (XMI) to a serial fiber-optic network bus

(FDDJ). Their design choices included a three-stage

p ipeline approach to buffering that enables these

stages to proceed in an asynchronous fashion.
To ensure that the performance goals for the

FDDicontrol ler would be met, a simulation model

was created. In his paper, Ram Kal kunte details the
model ing methodology, reviews components, and

presents simulation results. Ram describes how in

addition to performance projections, the model

provided designers with buffer sufficiency analysis
and helped engineers analyze the functional cor

rectness of the adapter design.

The high level of performance achieved by the

FDDicontroller was driven by the high performance

of the FDDI LAN itself- 100 megabits per second .
Raj Jain's subject is performance measurement at
the level of the FDDI LAN. Raj describes the perfor
mance analysis of Digital's implementation of FDDI
and how various parameters affect system perfor
mance. As part of his presentation of the modeling
and simulation methods used, he shares guidelines
for setting the value of one of the key parameters,
target token rotation time, to optimize performance.

Raj has recently published a book on computer sys
tems performance analysis, which is reviewed in
the Further Readings section of this issue.

Biographies

Scott H . Davis Consultant software engineer Scott Davis is the VMS Cluster

Technical Director. He is involved in future VMS 1/0 subsystem, VAXcluster,

and storage strategies and led the VMS Volume Shadowing Phase II and VMS

mixed-interconnect VAXcluster 1/0 projects. Since joining Digital in 1979, Scott

worked on RT-11 development and led various real-time operating systems pro

jects. He holds a B.S. (1978, cum laude) in computer science and applied mathe

matics from the State University of New York at Albany. Scott is a coinventor

for four patents on the shadowing design.

Raj Jain Raj Jain is a senior consulting engineer involved in the performance

modeling and analysis of computer systems and networks, including VAXcluster,

DECnet, Ethernet, and FDDI products. He holds a Ph . D. (1978) from Harvard

University and has taught courses in performance analysis at M.l.T. A member

of the Authors' Guild and senior member of IEEE, Raj has written over 25 papers

and is l isted in Who's Who in the Computer Industry, 1989. He is the author

of The Art of Computer Systems Performance Analysis publ ished recently

by Wiley.

Ram Kalkunte As a member of the VAX VMS Systems and Servers Group,

senior engineer Ram Kalkunte worked on the development of the high

performance XMI-to-FDDI adapter. Since joining Digital in 1987, he has also

worked on various performance analysis and modeling projects. Ram received a

B .E . (1984) in instrumentation engineering from Mysore University in India and

an M.S. (1987) in electrical engineering from Worcester Polytechnic Institute. He

has a pending patent related to dynamically arbitrating conflicts in a multipart

memory controller.

Lee Leahy Lee Leahy is a principal software engineer in the VAXcluster group

in ALPHA/EVMS Development. He is currently the project leader of the Local Area

VAXcluster development effort and was responsible for the final design and

implementation of the multiple-adapter version of PEDRIVER. Lee joined Digital

in 1988 from ECAD. He is coauthor of the book VMS Advanced Device Driver

Techniques and has been writing VMS device drivers since 1980. Lee received a

B.S. degree in electrical engineering from Lehigh University in 1977.

I

3

Biographies

4

Satish L. Rege Satish Rege joined Digital in 1977 as a member of the Mass

Storage Group. He wrote the first proposal for the MSCP protocol and evaluated

disk controller design alternatives (e.g . , seek algorithms and d isk caching)

for the HSC50 by implementing architectural and performance simulation. He

was instrumental in architecting the low-end controllers used in RF-series disks.

His latest project was the high-performance FDDI adapter. Satish is a consulting

engineer and received his Ph . D. from Carnegie-Mellon University, Pittsburgh.

Wi lliam E. Snaman Principal software engineer Sanely Snaman joined Digital

in 1980. He is the technical supervisor for the VAXcluster executive services

area and a project leader for VAXcluster advanced development in the VMS

Development Group. His group is responsible for ongoing development of

the VMS lock manager, connection manager, and clusterwide services. Sandy

teaches computer science at Daniel Webster Col lege and developed and taught

VA.'<cluster courses in Educational Services. He holds a B.S. (1985, magna cum

laude) and an M.S.C.S. from the University of Lowel l .

Richard E. Sto ckdale As a member of the Midrange Systems Engineering

Group, Dick Stockdale was firmware project leader for the DEMNA project and

prior to that for the DEBNA and DEBNI Ethernet adapters. He is currently a soft

ware consu lting engineer working on LAN drivers in the V.\1S Development

Group. Dick joined Digital in 197H and performed diagnostic testing for 36-bit

systems. He graduated from Worcester Polytechnic Institute in 1973 with a B.S.

(magna cum laude) in computer science and a minor in electrical engineering.

He is a member of Tau Beta Pi.

judy B. Weiss Judy W<.:iss contributed to the design, implementation, debug,

and performance analysis of the DEM NA Ethernet adapter as a member of the

firmware team. She is a senior engineer working in the Data Center Systems

and Servers Group as a gate array designer. Concurrently with the DEMNA, she

worked on the firmware for the DEBNI adapter. Judy joined Digital in 1986 after

receiving her B.S. (magna cum laude) in computer engineering from Boston

University. She is a member of Tau Beta Pi and the Society for Women Engineers.

Foreword

Howard H . Hayakawa
Manager, V1!1S 110
and Cluster Development

Beginning as a visio n fo r a highly avai lable and

expandable computing enviro nment, Digital's
VAXcluster system is today recognized across the

industry as the premiere foundation fo r creating

high-availability appl ications. The large number of
VAXclustcr s i tes and the range of their use testifies

to the wide appeal of the capabi l ities of VA.Xcluster
systems. Over 1 1 ,000 VAXcluster sites based o n

Digital's Computer Interco nnect (CI) are being used

in such diverse applications as manufacturing oper

ations, banking, and telepho ne information systems.
S ites based on the Digital Storage System Inter

co nnect (DSSI) and Ethernet are even more numer
ous. A scan of software l icenses show s an amazing

acceptance of VAXcluster technology-more than
200,000 VAXcluster l icenses have been sold to elate.

Built fro m standard processors and a general

purpose operating system, a VA..'\cl uster system is a
loosely coupled, highly integrated co nfiguration of

VA.'\ VMS processors and storage systems that oper

ates as a single system. Significantly, VAXcluster sys

tems are so wel l integrated that users are often not
aware they are using a distributed system. In addi

tio n to the benefits of tight integration, these con
figurations provide Digi tal's customers with the
flex ibil ity to easily expand and w ith the features
needed for h igh-availabi l ity applications.

Started in 1 984, VA.,'\cluster systems were l imited
to specia l ized, pro prietary interconnects and stor
age servers, which restrined them to the confines
of a s ingle co mputer room. In 1989, the cluster

system was extended to support both industry

standard SCSI (small computer systems interface)
storage ami Digital's DSSI storage interco nnect.

Today, VAXclustcr systems support a wide range of

communicatio n interco nnects, including CI and

George S. Hoff
Group l1Janage1;
High-availability Systems

OSSI, and industry-standard lo cal area networks

such as Ethernet and FOOl. Storage systems now
supported cover the spectrum fro m standard,

economical SCSI peripherals to high-performance

RA-series drives for large configurations. This wdl

architected system has allowed fo r expansio n

across a n ever wider geography: fro m room to
bui lding to multiple buildings. Moreover, the entire

range of VAX processors-from VAXstation work

stations to VAX 9000 mainframes-are supported.
The tight integrat ion , flex ibi l i ty . and power of

toclay's VAXcluster systems is unparal leled .

The VAXcluster architecture which Digital in i t i
ated in the 1980s con tinues to encompass new

advances and innovative technologies that ensure

data availabi l ity and integrity. This issue of the
Digital Technical journal presents several new VMS

VAXc luster products and features, and complemen

tary developments in the areas of network adapters

and performance. One of the products described

is VMS Vo lume Shadowing Phase: II which permits

users to place redundant data on separate storage
devices where most appropriate w ithin the system,

thus dramatically increasing the availabi l ity po ten

tial of VAXcluster systems. A paper on multi-rail
local area VAXclusters shows how customers are
now able to add paral lel LAN connections to

increase network capacity and to survive fa i lure of
a network connection. With shadow ing and multi
ple communicatio n paths, recovery from site fail
ure need no longer incur the delays associated with

restoration from archives.

Just as the VAXcluster software was able to

exploi t the Ethernet to ex tend capabil it ies through

out a building, it is now able to ex ploit the high per

formance anc l extent of an FODI LAN.

5

Foreword

The new industry-standard FDDI LAl'J al lows the

VAXcluster software to <::xtend the system's range
by a factor of 1 ,000. Papers on both an Ethernet

adapter and an FDDI adapter describe the care taken

to ensure that adapter performance matches that
of the targct proc<::ssor, which is one of the keys

to achicving maximum performance in the overall

VAXclustcr syst<:m . Pcrformance of the FOOl LAN

itself is also one of the topics included here. FOOl's

performance and range permit for the first time
the abil ity to create integrated, h igh-availability

solutions that span multiple buildings. With com

bined FOOl and VMS VA.Xcluster technology, a bank's

VA.Xcluster system can extend from a computer
center in Manhattan to a standby center in New
Jersey. Should Manhattan lose power, a disaster

team can bring the bank's appl ication into opera

tion in New Jersey after only minutes. The clays of

waiting for archives or driving tapes and disks
across the river are over.

Digital's VA,'< VMS, clusters, FOOl, and networking

products continue to evolve; the process of inte

grating new technologies is ongoing. The papers

in this issue describe the latest steps we have taken

to extend the range and availability of VAXcluster
systems. Future issues of the journal wil l keep you

apprised of the latest stages in this evolutionary
process.

6

Scott H Davis I

Design of VMS Volume
Shadowing Phase If
Host-based Shadowing

VMS Volume Shadowing Phase li is a fully distributed, clusterwide data availability

product designed to replace the obsolete controller-based shadowing implementa

tion. Phase II is intended to service current and future gene·rations of storage archi

tectures. In these architectures, there is no intelligent, multiunit controller that

junctions as a centralized gateway to the multiple drives in the shadow set. The new

software makes many additional topologies suitable for shadowing, including DSSI

drives, DSA drives, and shadowing across VMS MSCP servers. This last configuration

allows shadow set members to be separated by any supported cluster interconnect,

including FDDI. All essential shadowing junctions are performed within the VMS

operating system. New MSCP controllers and drives can optionally implement a set

of shadowing performance assists, which Digital intends to support in a future

release of the shadowing product.

Overview

Volume shadowing is a technique that provides data

availability to computer systems by protecting

against data loss from media deterioration, commu

nication path failures, and controller or device fail

ures. The process of volume shadowing entails

maintaining multiple copies of the same data on
two or more physical volumes. Up to three physical

devices are bound together by the volume shadow
ing software and present a virtual device to the
system. This device is referred to as a shadow set or

a virtual u nit. The volume shadowing software

replicates data across the physical devices. All shad

owing mechanisms are hidden from the users of the

system, i .e ., applications access the virtual u nit as if
it were a standard, physical disk. Figure I shows a
V MS Volume Shadowing Phase II set for a D igital
Storage Systems I nterconnect (DSSI) configuration
of two VAX host computers.

Product Goals

The VMS host-based shadowing project was under

taken because the original controller shadowing
product is architecturally incompatible with many
prospective storage devices and their connectiv

ity requirements. Control ler shadowing requires

an intel l igent , common control ler to access al l

Digital Tecbttica/]ourtzal Vol. 3 Nn. 3 Summer 1991

physical devices in a shadow set. Devices such as
the RF-series integrated storage elements (JSEs)

with DSSI adapters and the RZ-series smal l com
puter systems interface (SCSI) disks present config

urations that conflict with this method of access.

To support the range of configurations required

by our customers, the new product had to be capa

ble of shadowing physical devices located any

where within a VAXcluster system and of doing so
in a controller-independent fashion. The VAXcluster
I/O system provides parallel access to storage

devices from all nodes in a cluster simultaneously.

In order to meet its performance goals, our shadow

ing product had to preserve this semantic also.

Figure 2 shows clusterwide shadow sets for a hier

archical storage controller (HSC) configuration
with mult iple computer interconnect (CI) buses.
When compared to Figure I, this figure shows
a larger cluster containing severa l clusterwide
shadow sets. Note that multiple nodes in the cluster
have direct, writable access to the d isks comprising
the shadow sets.

I n addition to providing highly available access to

shadow sets from anywhere in a cluster, the new
shadowing implementation had other require

ments. Phase II had to deliver performance com
parable to that of controller-based shadowing,

7

Availability in VAXcluster Systems

VIRTUAL UNIT DSA 1: VIRTUAL UNIT DSA2

_l _l
.� _l

_l
RF31 RF31 t R�O RF70

7DIA7: 7DIA8 S7$DIA2: S7SDIA5:

T T T
I I I

DI GITAL STORAGE SYSTEMS INTERCONNECT (DSSI) 'I
VAX 3400 VAX 3400

DSA1: DSA1:
DSA2: DSA2:

ETHERNET I
I I I I

WORKSTATION MI CROVAX I I WORKSTATION MICROVAX 2000

DSA1 : DSA1 DSA1 DSA1:
DSA2: DSA2 DSA2: DSA2

Figure 1 Phase II Shadow Set for a Dual-host DSSJ Configuration

maximize application I/0 availability, and ensure

data integrity for critical applications.

In designing the new product, we benefited from

customer feedback about the existing implemen

tation. This feedback had a positive impact on

the design of the host-based shadowing imple

mentation. Our goals to maximize application l/0

availability during transient states, to provide cus

tomizable, event-driven design and fail-over, to

enable all cluster nodes to manage the shadow sets,

and to enhance system disk capabilities were all

affected by customer feedback.

Technical Challenges

To provide volume shadowing in a VAXcluster envi

ronment running under the VMS operating system

required that we solve complex, distributed sys

tems problems.' This section describes the most

significant technical challenges we encountered

and the solutions we :�rrived at during the design

and development of the product .

Membership Consistency To ensure the level of

integrity required for high availability systems, the

shadowing cksign must guarantee that a shadow set

has the same m<.:mbership and states on all nodes in

the cluster. A simple way to guarantee this property

would have been a strict client-server implementa

tion, where one VAX computer serves the shadow

8

set to the remainder of the cluster. T his approach,

however, would have violated several design goals;

the intermediate hop required by data transfers

would decrease system performance, and any fail

ure of the serving CPU would require a lengthy

fail-over and rebuild operation, thus negatively

impacting system availability.

To solve the problem of membership consistency,

we used the VMS distributed lock manager through

a new executive thread-level interface.'-' We

designed a set of event-driven protocols that shad

owing uses to guarantee membership consistency.

These protocols allowed us to make the shadow

set virtual unit a local device on all nodes in the

cluster. Membership and state information about

the shadow set is stored on all physical members in

an on-disk data structure called the storage control

block (SCll). One way that shadowing uses this SCB

information is to automatically determine the most

up-to-date shadow ser member(s) when the set is

created. In addition to distributed synchronization

primitives, the VMS lock manager provides a capabil

ity for managing a distributed state variable called a

lock value block . Shadowing uses the lock value

block to define a disk that is guaranteed to be a cur

rent member of the shadow set. Whenever a mem

bership change is made, all nodes take part in a

protocol of lock operations; the value b.lock and the

on-disk SCB are the final arbiters of set constituency.

1-b/ . .3 No.3 Summer 1991 Digilal Technical journal

Design of VMS Volume Shadowing Phase 11-Host-based Shadowing

Sequential Commands A sequential I/0 com

mand, i .e . , a Mass Storage Control Protocol (MSCP)

concept, forces all commands in progress to com
plete before the sequential command begins execu

tion. While a sequential command is pending,

all new 110 requests are stal led until that sequen
t ia l command completes execution. Shadowing

requires the capabil ity to execute a clusterwide,

sequential command during certain operations.

This capabil ity, although a simple design goal for a

client-server implementation, is a complex one for
a distributed access model. We chose an event

driven, request/response protocol to create the

sequential command capabil ity.
Since sequential commands have a negative

impact on performance, we l imited the use of these

commands to performing membership changes,

mount/dismount operations, and bad block and

merge difference repairs. Steady state processing

never requires using sequential commands.

Full Copy A ful l copy is the means by which a
new member of the shadow set is made current

with the rest of the set. The challenge is to make

copy operations unintrusive; application 1/0s must

proceed with minimal impact so that the level of

service provided by the system is both acceptable

and predictable. VMS file I/O provides record-level
sharing through the appl ication transparent lock

ing provided by the VAX RMS software, Digital's
record management services. Shadowing operates

at the physical device level to handle a variety of

low-level errors. Because shadowing has no knowl
edge of the higher-layer record locking, a copy

operation must guarantee that the appl ication 1/0s
and the copy operation itself generate the correct

results and do so with minimal impact on applica

tion 1!0 performance.

Merge Operations Merge operations are triggered

when a CPU with write access to a shadow set fails.

(Note that with controller shadowing, merge oper

ations are copy operations that are triggered when

an HSC fails.) Devices may sti l l be val id members of

the shadow set but may no longer be identical, due
to outstanding writes in progress when the host

.-----1 HSC70 1------------,

VAX
9000-21 0

DSA 1 :
DSA2:
DSA3:
DSA4:
DSA5:
DSA6:

VAX 6000
DSA1 ·
DSA2:
DSA3:
DSA4:
DSA5:
DSA6:

VAX
6000-360

DSA1 .
DSA2:
DSA3:
DSA4:
DSA5:
DSA6:

Cl

Cl

Cl

Cl

Cl

,.-----l HSC70 1------,

STAR COUPLER
(PRIMARY)

VIRTUAL
UNIT
DSA 1 :

LR�� LRA81J

VI RTUAL
UNIT
DSA2: LR�oJ
LR�oJ
LR�oJ

VIRTUAL
UNIT
DSA6:

Figure 2 Clusterwide Shadow Sets for an HSC Configuration witb Multiple CI Buses

Digital Tecbtlical journal Vol. 3 No. 3 Summcn· 1991 9

Availability in VAXcluster Systems

CPU failed . The merge operation must detect and
correct these d ifferences, so that successive appl i

cation reads for the same data produce consistent

results. As for fu l l copy operations, the cha llenge

with merge processing is to generate consistent

results with minimal impact on appl ication 110

performance.

Booting and Crashing System disk shadowing

presents some special problems because the

shadow set must be accessible to CPUs in the cluster

when locking protocols and inter-cPU communica

tion are disabled. In addition, crashing must ensure
appropriate behavior for writing crash dumps

through the primitive bootstrap driver, including

how to propagate the dump to the shadow set. It

was not practical to modify the bootstrap drivers

because they are stored in read-only memory (ROM)

on various CPU platforms that shadowing would

support.

Error Processing One major function of volume

shadowing is to perform appropriate error process

ing for members of the shadow set, while maximiz

ing data availabil ity. To carry out this function, the

software must prevent deadlocks between nodes

and decide when to remove devices from the

shadow set. We adopted a simple recovery ethic: a

node that detects an error is responsible for fixing

that error. Membership changes are serial ized in the

cluster, and a node only makes a membership

change if the change is accompanied by improved

access to the shadow set. A node never makes a

change in membership without having access to

some source members of the set.

Architecture

Phase IJ shadowing provides a local virtual unit on
each node in the cluster with distributed control of

that unit. Although the virtual unit is not served to
the cluster, the underlying physical units that consti

tute a shadow set are served to the cluster using the
standard VMS mechanisms. This scheme has many

data availability advantages. The Phase II design

• Allows shadowing to use a l l the VMS controller

fail-over mechanisms for physical devices. As a

result, member fail-over approaches hardware
speeds. Controller shadowing does not provide

this capability.

• Allows each node in the cluster to perform error

recovery based on access to physical data

10

source members. The shadowing software treats

communication failures between any cluster

node and shadow set members as normal shad

owing events with customer-definable recovery

metrics.

Major Components

VMS Volume Shadowing Phase I[consists of two

major components: SHDRIVER and SHADOW _SERVER.

SHDRIVER is the shadowing virtual unit driver. As a

cl ient of disk class d rivers, SHDRIVER is responsible

for handl ing a l l 1/0 operations that are directed to

the v irtual unit. SHDRIVER issues physical I/O opera

tions to the disk class driver to satisfy the shadow set

virtual unit l/0 requests. SHDRIVER is also responsi

ble for performing all d istributed locking and for

driving error recovery.

SHADOW _SERVER is a VMS ancil lary control pro

cess (ACP) responsible for driving copy and merge

operations performed on the local node. Only one

optimal node is responsible for driving a copy or

merge operation on a given shadow set, but when a

failure occurs the operation wil l fai l over and

resume on another CPU. Several factors determine

this optimal node including the types of access

paths, and control lers for the members and user

settable, per-node copy quotas.

Primitives

This section describes the locking protocols and

error recovery processing functions that are used

by the shadowing software. These p rimitives pro

vide basic synchronization and recovery mecha

n isms for shadow sets in a VAXcluster system.

Locking Protocols The shadowing software uses

event -driven locking protocols to coordinate c lus

terwide activity. These request/response protocols

provide maximum application 110 performance.

A VMS executive interface to the distributed lock
manager al lows shadowing to make efficient use of
locking directly from SHDRIVER.

One example of this use of locking protocols in

VMS Volume Shadowing Phase II is the sequential

command protocol. As mentioned in the Technical

Chal lenges section, shadowing requires the sequen

tial command capabil i ty but minimizes the use of

this primitive. Phase II implements the capabil ity by

using several locks, as described in the fol lowing

series of events.

A node that needs to execute a sequential com
mand first sta l ls 110 loca l ly and flushes operations

Vol. 3 No. 3 Summer 1991 Digital Technical journal

Design of VMS Volume Shadowing Phase II-Host-based Shadowing

in progress. The node then performs lock opera

tions that ensure serial ization and sends sequential

stall requests to other nodes that have the shadow
set mounted. This init iating thread waits until a l l

other nodes in the cluster have flushed their I/Os

and responded to the node requesting the sequen

tial operation. Once al l nodes have responded or

left the cluster, the operations that compose the

sequential command execute. When this process is

complete, the locks are released, al lowing asyn

chronous threads on the other nodes to proceed

and automatically resume l/0 operations. The local

node resumes 1/0 as wel l .

Error Recovery Processing Error recovery pro

cessing is triggered by either asynchronous notifica

tion of a communication fai lure or a failing 110

operation directed towards a physical member of

the shadow set. Two major functions of error recov

ery are bu ilt into the virtual unit driver: active and

passive volume processing.

Active volume processing is triggered directly by

events that occur on a local node in the cluster.

This type of volume processing uses a simple, local

ized ethic for error recovery from communication

or controller fai lures. Shadow set membership

decisions are made locally, based on accessibility.

If no members of a shadow set are currently acces

sible from a node, then the membership does not

change. If some but not al l members of the set are

accessible, the local node, after attempting fail

over, removes some members to al low appl ication
110 to proceed . The system manager sets the time

period during which members may attempt fail

over. The actual removal operation is a sequential

command . The design al lows for maximum flexibil

ity and quick error recovery and implicitly avoids

dead lock scenarios.
Passive volume processing responds to events

that occur elsewhere in the cluster; messages from

nodes other than the local one trigger the process
ing by means of the shadowing d istributed locking

protocols. This volume processing function is

responsible for verifying the shadow set member

ship and state on the local node and for modifying
this membership to reflect any changes made to the
set by the cluster. To accomplish these operations,

the shadowing software first reads the lock value

block to find a disk guaranteed to stil l be in the

shadow set. Then the recovery process retrieves

the physical member's on-disk SCB data and uses

this information to perform the relevant data struc
ture updates on the local node.

Digital Technical journal Vol. 3 No. 3 Summer 1991

Application 1/0 requests to the virtual unit are

always stal led during volume processing. In the

case of active volume processing, the stalling is nec

essary because many T/Os would fai l until the error

was corrected . In passive volume processing, the
110 requests are stalled because the membership of

the set is in doubt, and correct processing of the

request cannot be performed until the s ituation is

corrected .

Steady State Processing

The shadowing virtual unit driver receives appl ica

tion read and write requests and must d irect the 110

appropriately. This section describes these steady

state operations.

Read Algorithms

The shadowing virtual unit driver receives applica

tion read requests and directs a physical I/O to an

appropriate member of the set. SHDRIVER attempts

to direct the r;o to the optimum device based on

locally available data. This decision is based on

(1) the access path, i .e . , local or served by the VMS

operating system, (2) the service queue lengths at

the candidate control ler, and (3) a round-robin algo

rithm among equal paths. Figure 3 shows a shadow

set read operation. An appl ication read to the

shadow set causes a single physical read to be sent

to an optimal member of the set. In Figure 3, there

is one local and one remote member, so the read is

sent to the local member.

Data repair operations caused by media defects

are triggered by a read operation failing with an

appropriate error, such as forced error or parity.

The shadowing driver attempts this repair using

CLUSTER I NTERCONNECT

CPU CPU

8 I

VI RTUAL UNIT
SHADOW SET

Figure 3 Shadow Set Read Operation

1 1

Availability in VAXcluster Systems

another member of the shadow set. This repair

operation is performed with the synchronization of
a sequential command. Sequential protl:ction is

required because a read operation is being con

verted into a write operation without explicit, R.t\15-

laycr synchronization.

Write Algorithms

The shadowing virtual unit driver receives applica

tion write requests and then issues, in paral lel,

write requests to the JJhysical members of the set.

The virtual unit write operation does not complete

until all physical writes complete. A shadow set

write operation is shown in Figure 4. Physical write

operations to member units can fail or be timed

out; either condition triggers the shadowing error

recovery logic and can cause a fail-over or the

removal of the erring device from the shadow set.

Transient State Processing

Shadowing performs a variety of operations in

order to maintain consistency among the members

of the set. These operations include full copy,

merge, and data repair and recovery. This section

describes these transient state operations.

Full Copy
Ful l copy operations arc performed under direct

system manager control. When a disk is added to

the shadow Sl:t, copy operations take place to make

the contents of this new set member identical to

that of the other members. Copy operations are

transparent to application processing. The new

member of the shadow set does not provide any data

availability protection until the copy completes.

There is no explicit gatekeeping during the copy
operation. Thus, application read and write opera

tions occur in paral lel with copy thread reads and

writes. As shown in Figure 5, correct resu l ts arc

accomplished by the fol lowing a lgorithm. During

the fu l l copy, the shadowing driver processes appli

cation write operations in two groups: first, those
directed to all source members and second , writes

to all full copy targets. The copy thread p erforms a

sequence of read source, compare target, and write

target operations on each logical block number

(l.BN) range until the compare operation succeeds.

If an LBN range has such frequent activity that the

compare fai ls many times, SHDRIVER performs a

synchronized update. A distributed fence provides

a clusterwide boundary between the copied and

the uncopied areas of the new member. This fence

is used to avoid performing the special full copy

ml:chanisms on application writes to that area of

the disk already processed by the copy thread .

This algorithm meets the goal of operational cor

rectness (both the application and the copy thread

achieve the proper results with regard to the con

tents of the shadow set members) and requires no

synchronization with the copy thread. Thus, the

algorithm achieves maximum application 110 avail
abil ity during the transient state. Crucial to achiev

ing this goal is the fact that, by design , the copy

thrl:ad does not perform I!O optimization tech

niques such as double buffering. The copy opera

tions receive equal service as application I!Os.

Merge Operations

The VMS Volume Shadowing Phase II merge algo

rithm meets the product goals of operational

I SHADOW SET

APPLICATION SHADOWING : -0
LAYER 1

I

I
- { ··EJ

I

I I I I
I
I I I I

I

VIRTUAL

-0 - i-·D +EJ UNIT
WRITE

I

:_o
I I F=4 1 -r··l__j 1 I I
l _ _ _ _ _j

Figure 4 Shadow Set Write Operation

1 2 Vol. 3 No. 3 Summe-r 1991 Digital Tech11ical jour��al

Design of VMS Volume Shadowing Phase !!-Host-based Shadowing

APPLICATION 1/0s

COPY 1/0s
(FOR AN LBN RANGE)

Note: No synchronization exists between the application and copy operations.
1/0s can occur in parallel on different nodes in the cluster. Regardless of how the
operations overlap, the correct data is copied to the target.

Figure 5 Full Copy Algorithm

correctness, while maintaining high application l/0

availability and minimal synchronization. A merge

operation is required when a CPU crashes with

the shadow set mounted for write operations. A

merge is needed to correct for the possibility of par

tially completed writes that may have been out

standing to the physical set members when the

failure occurred. The merge operation ensures that
all members contain identical data, and thus the

shadow set virtual unit behaves l ike a single, highly

available disk. It does not matter which data is more

recent, only that the members are the same. This

satisfies the purpose of shadowing, which is to pro

vide data availabi lity. But since the failure occurred

while a write operation was in progress, this con

sistent shadow set can contain either old or new

data. To make sure that the shadow set contains the

most recent data, a data integrity technique such as

journaling must be employed.

In Phase II shadowing, merge processing is dis

tinctly different from copy processing. The shadow

set provides fu l l availabil ity protection during the
merge. As a result, merge processing is intention

al ly designed to be a background activity and to

maximize application l/0 throughpu t while the

merge is progressing. The merge thread carefu lly
monitors 1/0 rates and inserts a delay between its
l/Os if it detects contention for shared system

resources, such as adapters and interconnects.

In addition to maximizing 110 availability, the
merge algorithm is designed to minimize synchro

nization with appl ication 1/0s and to identify and
correct data inconsistencies. Synchronization takes

place only when a rare difference is found. When

Digital Technical journal Vol. 3 No. 3 Summer 1991

an application read operation is issued to a shadow

set in the merge state, the set executes the read

with merge semantics. Thus, a read to a source and
a para l lel compare with the other members of the

set are performed. Usual ly the compare matches

and the operation is complete. If a mismatch is

detected, a sequential repair operation begins. The

merge thread scans the entire disk in the same

manner as the read, looking for d ifferences. A dis

tributed fence is used to avoid performing merge

mechanisms for application reads to that area of

the disk already processed by the merge thread .
Figure 6 illustrates the merge algorithm.

Note that controller shadowing p erforms an

operation called a merge copy. Although this HSC
merge copy operation is designed for the same pur

pose as the Phase I I operation, the approaches dif

fer greatly. An HSC merge copy is triggered when

an HSC, not a shadow set, fails and performs a copy

operation; the HSC merge copy does not detect

differences.

Performance Assists

A future version of the shadowing product is
intended to util ize controller performance assists

to improve copy and merge operations. These
assists wil l be used automatical ly, if supported by
the control lers involved in accessing the physical

members of a shadow set.

COPY_DATA is the ability of a host to control a

direct disk- to-disk transfer without the data enter

ing or leaving the host CPU I/O adapters and mem
ory. This capabil ity will be used by ful l copy
processing to decrease the system impact, the

1 3

Availability in VAXcluster Systems

APPLICATION 1/0s

MERGE 1/0s
(FOR AN LBN RANGE)

READ
SOURCE

READ
SOURCE

Note: Infrequent synchronization exists between the application and merge operations.
1/0s can occur in parallel on different nodes in the cluster. Regardless of how the operations
overlap, data integrity is preserved.

Figure 6 Merge Algorithm

bandwidth, and the time requ ired for a fu l l copy.
The members of the set and/or their control lers
must share a common interconnect in order to

use this capabil i ty. The COPY _DATA operation per
forms specific shadowing around the active, copy

LBN range to ensure correctness. This operation
i nvolves LBN range-based gatekeeping in the copy
target device controller.

Contro l ler write logging is a future capability in

controllers, such as HSCs, that wil l al low more effi
cient merge processing. Shadowing write opera

tion messages wi l l include information for the

controller to log 1/0s in its memory. These logs wil l
then be used by the remaining host Cl'Us during
merge processing to determine exactly which
blocks contain outstanding write operations from a
failed CPU. With such a performance assist, merge
operations wi l l take less time and wil l have less
impact on the system.

Data Repair and Recovery

As discussed in the Primitives section, data repair

operations are triggered by fai l ing reads and are

repaired as sequential commands. Digital Storage
Architecture (DSA) devices support two primitive
capabil i ties that are key to this repair mechanism.
When a DSA control ler detects a media error, the
block in question is sometimes repaired au tomati-

14

cal ly, thus requiring n o shadowing intervention.

When the controller cannot repair the data, a spare

block is revectored to this LBN , and the contents of
the block are marked with a forced error. This

causes subsequent read operations to fai l , since the
contents of the block are lost.

The forced error returned on a read operation is

the signal to the shadowing software to execute a

repair operation . SHDRIVER attempts to read usable
data from another source device. If such data is

available, the software writes the data to the revec
tored block and then returns the data to the applica

tion. If no usable data source is ava ilable, the

software performs write operations with a forced
error to a l l set members and signals the application
that th is error condition has occurred. Note that a
protected system buffer is used for this operation
because the appl ication reading the data may not
have write access.

A future shadowing product is intended to sup
port SCSI peripherals, which do not have the DSA

primitives outl ined above. There is no forced error
ind icator in the SCSI architecture, and the revector

operation is nonatomic. To perform shadowing
data repair on such devices, we wi l l use the READL/
WRITEL capabi l i ty optional l y supported by SCSI

devices. These 110 functions a l low blocks to be

read and written with error correction code (ECC)

Vol. 3 No. 3 Summer 1991 Digital Technical journal

Design of VMS Volume Shadowing Phase II-Host-based Shadowing

data. Shadowing emulates forced error by writing

data with an intentionally incorrect ECC. To circum

vent the lack of atomicity on the revector opera

tion, a device being repaired is temporarily marked

as a ful l copy target until the conclusion of the

repair operation. If the CPU fails in the middle of a

repair operation, the repair target is now a ful l copy
target, which preserves correctness in the pres

ence of these non atomic operations.

System Disk

System disk shadow sets presented some unique

design problems. The system disk must be accessed

through a single bootstrap driver and hence, a sin

gle controller type. This access takes place when

multihost synchronization is not possible. These

two access modes occur during system bootstrap

and during a crash dump write.

Shadowed Booting

The system disk must be accessed by the system ini

tialization code executing on the booting node
prior to any host-to-host communication. Since the

boot drivers on many processors reside in ROM , it

was impractical to make boot driver modifications
to support system d isk processing. To solve this

problem, the system disk operations performed
prior to the controller initialization routine of the

system device driver are read-only. It is s afe to read

data from a clusterwide, shared device without syn

chronization when there is l ittle or no risk of the
data being modified by another node in the cluster.

At controller initialization time, shadowing builds a
read-only shadow set that contains only the boot

member. Once locking is enabled, shadowing per

forms a variety of checks on the system disk

shadow set to determine whether or not the boot is

val id. If the boot is valid, shadowing turns the sin

gle-member, read-only set into a multimember,
writable set with preserved copy states. If this node

is joining an existing cluster, the system disk shadow
set uses the same set as the rest of the cluster.

Crash Dumps

The primitive boot driver uses the system disk to

write crash dumps when a system failure occurs.

This driver only knows how to access a single physi

cal disk in the shadow set. But since a failing

node automatically triggers a merge operation on

shadow sets mounted for write, we can use the

merge thread to process the dump file. The merge

Digital Technical journal Vol. 3 No. 3 Summer 1991

occurs either when the node leaves the cluster

(if there are other nodes present) or later, when the

set is reformed . As the source for merge difference

repairs, the merge process attempts to use the

member to which the dump file was written and

propagates the dump file to the remainder of the

set. The mechanism here for dump file propagation

is best-effort, not guaranteed; but since writing the

dump is always best-effort, this solution is consid
ered acceptable.

Conclusion

VMS Volume Shadowing Phase II is a state-of-the-art

implementation of distributed data availability. The

project team arrived at innovative solutions to

problems attributable to a set of complex, conflict

ing goals. Digital has applied for four patents on var

ious aspects of this technology.

Acknowledgments

I would like to acknowledge the efforts and con

tributions of the other members of the VMS shad
owing engineering team: Renee Culver, William

Goleman, and Wai Yim. In addition, I would also

l ike to acknowledge Sandy Snaman for Fork Thread

Locking, Ravindran Jagannathan for performance

analysis, and David Thiel for general consulting.

References

1 . N. Kronenberg, H . Levy, W Strecker, and

R . Merewood, "The VAXcluster Concept:
An Overview of a Distributed System," Digital
Technical journal (September 1987): 7-21.

2. W Snaman, Jr. and D. Thiel, "The VAX/VMS

Distributed Lock Manager," Digital Technical
journal (September 1987): 29-44.

3. W Snaman, Jr. , "Appl ication Design in a

VAXcluster System," Digital Technical journal,
vol 3. no. 3 (Summer 1991 , this issue): 16-26.

15

William E. Snaman, Jr. I

Application Design in a VAXcluster System

VAXcluster systems provide a flexible way to configure a computing system that can

survive the fuiture of any compo11ent. In addition, these systems can grow with an

organi.mtion and can be serviced without disruption to applications. These

features make VAXcluster systems an ideal base for developing high-availability

applications such as transaction processing systems, servers for network client

server applicatinns, and data sharing applications. Understanding the basic design

of VAX cluster :-,ystellls and the possible configuration options can help application

designers take advantage of tbe availability and growth characteristics of these

systems.

Many organizations depend on near constant
access to data and computing resources; interrup

tion of these services results in the interruption of

primary business hmctions. In addition, growing

organizations face the need to increase the amount
of computing power available to them over an

extended period of time. VAXcluster systems pro
vide solutions to these data availabi l i ty and growth

problems that modern organizations face. '

This paper begins with an overview of VAXcluster
systems and application design in such systems and
proceeds with a detailed discussion of VAXcluster
design and implementation. The paper then focuses
on how this information aftects the design of appl i

cations that take advantage of the availabil ity and

growth characteristics of a VAXcluster system.

Overview of VAXcluster Systems

VA."\cluster systems are loosely coupled mu lti
processor configurations that al low the system
designer to configure redundant hardware that can
survive most types of equipment fai lures. These
systems provide a way to add new processors and
storage resources as required by the organization.
This feature eliminates the need either to buy
nonessential equipment initially or to experience

painful upgrades and appl ication conversions as

the systems are outgrown.
The VMS operating system, which runs on each

processor node in a VAXcluster system, provides a

high level of transparent data sharing and indepen
dent failure characteristics. The processors interact

to form a cooperating d istributed operating
system. In this system, all disks and their stored files
are accessible from any processor as if those files

1 6

were connected to a single processor. Files can be
shared transparently at the record level by appl ica

tion software.
To provide the features of a VAXcluster system,

the VMS operating system was enhanced to facili
tate this data sharing and the dynamic adjustment

to changes in the underlying hardware configu
rat ion . These enhancements make it possible to

dynamical ly add multiple processors, storage con

trollers, d isks, and tapes to a VA.'{cluster system con
figuration. Thus, an organization can purchase a
sma l l system initially and expand as needed. The
addition of computing and storage resources to the
existing configuration requires no software modifi
cations or application conversions and can be
accompl ished without shutting clown the system.

The ability to use redundant devices virtually el imi
nates single points of fai lure.

Application Design in a VAXcluster
Environment

Application design in a VAXcluster environment
involves making some basic choices. These choices
concern the type of application to be designed and
the method used to synchronize the events that

occur during the execution of the application . The

designer must also consider appl ication communi

cation within a VAXcluster system. A discussion of

these issues follows.

General Choices for Application Design

This section briefly describes the general choices
ava i lable to appl ication designers in the areas of
client -server computing and data access.

Vol . .) No . .3 Summer 1991 Digital Teclmical journal

Client-server Computing The VAXcluster environ
ment provides a fine base for client-server comput
ing. Application designers can construct server
applications that run on each node and accept
requests from cl ients running on nodes in the

VAXcluster system or elsewhere in a wider network.
If the node running a server application fails, the

cl ients of that server can switch to another server
running on a surviving node. The new server can
access the same data on disk or tape that was being
accessed by the server that fai led. In addition, the
redundancy offered by the VMS Volume Shadowing
Phase II software eliminates data unavailabil i ty in
the event of a disk control ler or media fai lure . 2 The
system is thus very available from the perspective
of the client applications.

Access to Storage Devices Many application design
questions involve how to best access the data stored
on disk. One major advantage of the VAXcluster
system design is that disk storage devices can be

accessed from all nodes in an identical manner. The
application designer can choose whether the
access is simultaneous from multiple nodes or from
one node at a time. Consequently, applications can
be designed using either partitioned data access or
shared data access.

Using a partitioned data model, the application
designer can construct an appl ication that l imits

data access to a single node or subset of the nodes.
The appl ication runs as a server on a single node
and accepts requests from other nodes in the clus
ter and i n the network. And because the appli

cation runs on a single node, there is no need
to synchronize data access with other nodes. El imi
nating this source of communication latencies can

improve performance in many applications. AJso, if
synchronization is not required, the designer can
make the best use of local buffer caches and can
aggregate larger amounts of data for write opera
tions, thus minimizing I/O activity.

An application that uses partitioned data access
lends itself to many types of high-performance
database and transaction processing environments.
VAXcluster systems provide such an application
with the advantage of having a storage medium
that is available to all nodes even when they are
not actively accessing the data files. Thus, if the
server node fails, another server running on a sur
viving node can assume the work and be able to
access the same files. For this type of application
design, V�'Ccluster systems offer the performance

Digital Tech11ical jourt�al Vol. 3 No. 3 Summer 1991

Application Design in a VAXcluster System

advantages of a partitioned data model without the
problems associated with the failure of a single
server.

Using a shared data model, the application
designer can create an application that runs simul

taneously on multiple VAXcluster nodes, which nat
urally share data in a file. This type of application
can prevent the bottlenecks associated with a sin
gle server and take advantage of opportunities for
parallelism on multiple processors. The VAX RMS
software can transparently share files between mul
tiple nodes in a VAXcluster system. AJso, Digital 's
database products, such as Rdb/VMS and VAX DBMS
software, provide the same data-sharing capabili
ties. Servers running on multiple nodes of a
VAXcluster system can accept requests from clients
in the network and access the same files or

databases. Because there are multiple servers, the
application continues to function in the event that
a single server node fails.

Application Synchronization Methods

The application designer must also consider how to
synchronize events that take place on multiple
nodes of a VAXcluster system. Two main methods

can be used to accomplish this: the VMS lock man
ager and the DECdtm services that provide VMS
transaction processing support.

VMS Lock Manager The VMS lock manager pro
vides services that are flexible enough to be used
by cooperating processes for mutual exclusion,
synchronization, and event notification.' An appli

cation uses these services either directly or indi
rectly through components of the system such as
the VAX RMS software.

DECdtm Services The VMS operating system pro

vides a set of services to facilitate transaction
processing.' These DECdtm services enable the
application designer to implement atomic trans
actions either d irectly or indirectly. The services
use a two-phase commit protocol. A transaction
may span multiple nodes of a cluster or network.
The support provided al lows multiple resource
managers, such as the VAX DBMS, Rdb/VMS, and VAX

R.i\1S software products, to be combined in a single
transaction. The DECdtm transaction processing
services take advantage of the guarantees against
partitioning, the distributed lock manager, and the
data availability features, all provided by VAXcluster
systems.

1 7

Availability in VAXduster Systems

VAXcluster and Networkwide
Communication Services

Application communication between different pro

cessors in a VAXcluster system is general ly accom

plished using DECnet task-to-task communication

services or other networking software such as the

transmission control protocol (TCP) and the inter

net protocol (IP). Client-server applications or

peer-to-peer applications are easy to develop with

these services. The services al low processes to

locate or start remote servers and then to exchange

messages.

Since the individual nodes of a VA.,'(cluster system

exist as separate entities in a wider communication

network, applications communication inside a

VA.Xcluster system can rely on general network

interfaces. Thus, no special-purpose communica

tion services were developed. Appl ications are

simpler to design when they can communicate

within the cluster in the same manner in which
they communicate with nodes located outside the

VA.Xcluster system.

A DECnet feature known as cluster al ias provides

a collective name for the nodes in a VAXcluster

system. Application software can connect to a node

in the cluster using the cluster al ias name rather

than a specific node name. This feature frees the

appl ication from keeping track of individual nodes

in the VA.Xcluster system and results in design sim
plification and configuration flexibility.

VAXcluster Design and Implementation
Details

To understand how the design and implementation

of a VA.,'Xcluster system affects application design,

one must be familiar with the basic architecture of

such a system, as shown in Figure 1 . This section
describes the layers, which range from the commu

nication mechanisms to the users of the system.

Port Layer

The port layer consists of the lowest levels of the

architecture, including a choice of communication

ports and physical paths (buses). The VA.Xcluster

software requires at least one logical communica

tion pathway between each pair of processor nodes

in the VAXcluster system. Several of the ports u til ize

multiple physical communication paths, which

appear as a single logical path to the VAXcluster

software. This redundancy provides better commu

nication throughput and higher availabil ity. If mul
tiple logical paths exist between a pair of nodes, the

18

VAXcluster software generally selects one for active

use and relies on the remaining paths for backup in

the event of failure.

The port layer can contain any of the fol lowing

interconnects:

• Computer Interconnect (CI) bus

• Ethernet

• Fiber distributed data interface (FDDI)

• Digital Storage Systems Interconnect (DSSI) bus

Each bus is accessed by a port (also cal led an

adapter) that connects to the processor node. For

example the CI bus is accessed by way of a CI port.

The various buses provide a wide spectrum of

choices in terms of wire and adapter capacity, num

ber of nodes that can be attached , distance

between nodes, and cost.'

The Cl bus was designed for access to storage and

for reliable host-to-host communications. Each Cl

port connects to two redundant, high-speed physi

cal paths. The Cl port dynamically selects one of the

two paths for each transmitted message. Messages

are received on either path. Thus, two nodes can

communicate on one path at the same time that

two other nodes communicate on the other. If one

physical path fails, the port simply uses the remain

ing path. The existence of the two physical paths is

hidden from the software that uses the CI port ser
vices. From the standpoint of the cluster software,

each port represents a single logical path to a

remote node. Multiple CI ports can be used to pro

vide multiple logical paths between pairs of nodes.

An automatic load-sharing feature distributes the

load between pairs of ports.

The DSST bus was primarily designed for access to

disk and tape storage. However, the bus has proven

an excellent way to connect small numbers of pro
cessors using the VA.,'Xcluster protocols. Each DSSI

port connects to a single high-speed physical path.
As in the case of the cr bus, several DSSI ports may
be connected to a node to provide redundant

paths. (Note that the KFQSA DSSI port is for storage

access only and provides no general communica

tion service between nodes.)

Ethernet and FDDI are open local area networks,

generally shared by a wide variety of consumers.

Consequent ly, the VA.Xcluster software was designed

to use the Ethernet and FDDI ports and buses simul

taneously with the DECnet or TCP/TP protocols. This

is accomplished by allowing the Ethernet data

link software to control the hardware port. This

Vol. 3 No. 3 Summer 1991 Digital Technical journal

software provides a multiplexing function such
that the cluster protocols are simply another user of
a shared hardware resource.

Each Ethernet and FDDI port connects to a single

physical path. There may be more than one port on
each processor node. This means that there may be
many separate paths between any pair of nodes

Application Design in a VAXcluster System

when multiple ports are used. The port driver soft
ware combines the mult iple Ethernet and FDDI

paths into a single logical path between any pair of

nodes. The load is automatically d istributed among
the various possible physical paths by an algorithm

that chooses the best p ath in terms of adapter
capacity and path latency6

MESSAGE SERVICE

CONNECTION
MANAGER

TAPE
CLASS
DRIVER

DISK
CLASS
DRIVER

SYSTEMS COMMUN ICATION SERVICES

FDDI ETHERNET PORT Cl PORT DSSI PORT
SOFTWARE DRIVER DRIVER DRIVER DRIVER DRIVER

HARDWARE FDDI ETHERNET Cl DSSI
PORT PORT INTERFACE INTERFACE

LOCAL
DISKS

FDDI

Figure 1 VAX cluster Syste-m Architecture

Digital Tecbttical journ.al Vol. 3 No. 3 Summer 1991 1 9

Availability in VAXduster Systems

System Cornmunications Services Layer

The system communications services (SCS) layer of
the VAXcluster architecture is implemented in a

combination of hardware and software or software

only, depending upon the type of port. The scs
layer manages a logical path between each pair of

nodes in the VAXcluster system. This logical path
consists of a virtual circuit (VC) between each pair

of scs ports and a set of scs connections that are

multiplexed on that virtual circuit . The scs pro
vides basic connection management and communi
cation services in the form of datagrams, messages,

and block transfers over each logical path.
The datagram is a best -effort del ivery service

which offers no guarantees regard ing loss, duplica
tion, or ordering of datagrams packets. This service

requires no connection between the com mun icat

ing nodes. In general, the VAXcluster software
makes minimal use of the datagram service .

The message and block transfer services take
place over an scs connection. C-onsumers of SCS

services communicate with their counterparts on

remote nodes using these connections. Mul tiple
connections are multiplexed on the logical path

provided between each pair of nodes in the
VA.Xcluster system.

The message service is reliable and guarantees

that there wi l l be no loss, duplication, or permu ta
tion of message sequence on a given connection.
The connection will break rather than al low the

consumer of the service to perceive such errors.

The block transfer service provides a way to
transfer quant ities of data directly from the mem

ory of one node to that of another. For CI ports, the
port hardware accomplishes the block transfer,
thus freeing the host processor to perform other

tasks. Some OSSI ports use hardware to copy data
and others rely on software to perform this func
tion. Depending on the exact model of an Ethernet

or FOOl port, the port software, rather than the
hardware, moves the data.

System Applications

The next higher layer in the VAXcluster architecture
consists of multiple system appl ications (SYSAPs).

These appl ications provide, for example, access to

disks and tapes and cluster membership control.

The following sections describe some SYSAPs.

Connection Manager The connection manager
serves three major functions. F irst, the connection
manager knows which processor nodes are active

20

members of the VAXcluster system and which are

not. This is accomplished through a concept of
cluster "membership.'' Nodes are expl icitly added
to and removed from the active set of nodes by a
distributed software algorithm. In a VAXcluster

system, every processor node must have an open
scs connection to a l l other processor nodes. Once
a booting node establ ishes connections to all other

nodes currently in the VAXcluster system, this node

can request admission to the system. When one
node is no longer able to communicate with

another node, one of the two nodes must be
removed from the VAXcluster system.

In a VAXcluster system, all nodes have a consis
tent view of the cluster membership in the pres
ence of permanent and temporary communication

fai lures. This consistency is accomplished by using

a two-phase commit protocol to form the cluster,
add new nodes, and remove failed nodes.

The second function provided by the connection
manager is an extension of the scs message service.
This extension guarantees that the service wi l l (1)
deliver a message to a remote node or (2) remove

either the sending node or the receiving node from

the cluster. The strong notion of cluster member
ship provided by the connection manager makes

this guarantee possible. The service attempts to
deliver the queued messages to remote nodes. If a
connection breaks, the service attempts to reestab
l ish communication to the remote node and resend
the message. After a period of time specified by the

system manager, the service declares the connec
tion irrevocably broken and removes e ither the

sending or the receiving node from the VAXcluster
membership . Thus, the service hides all temporary

communication failures from its cl ient.
This message service al lows users to construct

efficient protocols that do not require acknowledg
ment of messages. The service proved to be a very
powerful tool in the design of the VMS lock man
ager. The del ivery guarantees inherent in the ser
vice minimize the number of messages required to
perform any given locking function, resulting in a
corresponding increase in performance. The abil

ity to hide failures by updating cluster membership
further s impl ified the lock manager des ign and

increased performance; this capability enabled the
removal of logic used to handle changes in
VAXcluster configurations and com munication
errors from all main lock manager code paths.

The th ird fu nction of the connection manager
is to prevent partitioning of the possible c luster

Vol. 3 Nu. 3 Summer I'J')J Digital Techn:ical]ournal

members. Partitioning of a system exists when sep
arate processing dements fu nction independently.
lf a system al lows data sharing, completely indepen
dent processing can result in uncoordinated access
to shared resources and lead to data corruption.

In a VAXcluster system, processors communicate

and coordinate access to resources by means of a
voting algorithm. The system manager assigns a

number of votes to each processor node based on
the importance of that node. The system manager
also informs each node of the total number of possi

ble votes. The algoritlm1 requ ires that more than
half of these votes be present in a VAXcluster system

for nodes to function. When the sum of aU votes
contributed by the members of a VAXcluster sys
tem fa lls below this quoru m, the VMS software
blocks 110 to mounted devices and prevents the

schedu l ing of processes. As nodes join the cluster,

votes are added. Activity resumes once a quorum is
reached.

In practice, the connection manager uses two
measurements of the number of votes: static and

dynamic. The static count of votes is the globally
agreed on number of votes contributed by cluster
members. This count is created ignoring the state of

connections between nodes. The value of the static

quorum changes only at the completion of two
phase commit operations, which accompl ish a

user-requested quorum adjustment in addition to

performing the other activities mentioned earlier

in this Connection Manager section.
Each node independently mainta ins the dynamic

count. This count represents the sum of all votes
contributed by VAXcluster members with which
the tallying node has a functional connection.
Changes in the dynamic quorum, and not the static
quorum, init iate the blockage of process and 110

activity.

To provide configurations with a small number of

nodes, e .g . , two nodes, the concept of a quorum
disk was invented. The system manager assigns a
disk to contribute votes to the cluster. A node must
be able to access a file on the disk in order to
include the votes assigned to that disk in the node's
own total. Consequently, a special algorithm is used
to access the fi le . This a lgorithm ensures that

two unrelated nodes cannot both count the quo
rum disk votes. Doing so could resul t in partitioned
operation.

Mass Storage Control Protocol Server The Mass
Storage Control Protocol (MSCP) server a llows

Digital Teclmicaljournal Vol. 3 No. 3 Summer 1991

Application Design in a VAXcluster System

disks that are attached to one or more VAX proces
sors to be accessed by other processors in the

VAXcluster system. Thus, a VAXcluster processor
may emulate a multihost disk contro l ler by accept

ing and processing 110 requests from other nodes

and accessing the disk indicated by the request. The

server can process multiple commands simulta

neously and also performs fragmentation of com

mands if there is not enough system buffer space
to accommodate the entire amount of data at
one time.

Hierarchical Storage Controllers, Local Control
lers, and RF-series Integrated Storage Elements
Hierarchical storage controller (HSC) servers are

special ized devices that perform MSCP serving of
RA-series disk drives and TA-series tape drives in a

VAXcluster system. HSC servers connect directly to

the Cl bus. In addition to providing the host with
access to the storage media, HSC servers accom
plish performance optimizations such as seek

ordering and request fragmentation based on
real-time head position i nformation. The local disk

controllers attached to the RA- and TA-series stor

age devices perform the same function for a single

host processor. The RF-series integrated storage ele
ments (JSEs) attach to a DSSI bus. Each of these disk

storage devices performs its own command queu

ing and optimization without using a dedicated

control ler.

Disk Class Driver The disk class driver al lows

access to disks served by an MSCP server, an HSC
controller, a local Digital Storage Architecture (DSA)
control ler, or attached to a DSSI bus. This driver pro

vides a command queu ing function that a l lows a
disk controller to have multiple outstanding com

mands which can be used to provide seek, rotation,

and other performance optimizations. To handle

temporary communication interruptions, the driver
restarts commands as needed.

VAXcluster systems can be configured so that all
disks are accessed by way of redundant paths for
increased avai labil ity. The way in which this is
accomplished depends on the type of disk and the
disk control ler.

RF-series d isks contain integrated control lers

that connect to a single DSSI storage bus. This bus

can be accessed by up to two VAX processors. Each

VAX processor can then serve the disks to a l l other

nodes in the VA.'i:cluster system. Thus, two paths are
provided to each disk.

21

Availability in VAXcluster Systems

RA-series disks connect to up to two storage con

trol lers. These controllers can be either (1) local

adapters attached directly to a single processor

node or (2) HSC controllers located on the Cl bus.

Disks connected to local adapters can be served to

other nodes of the VA.Xcluster system. Disks located

on an HSC control ler can be directly accessed by

processors that are not on that bus. Thus, the use of

multiple controllers when combined with d isk

serving provides at least two paths to a disk from

every node in the VAXcluster system.

Since many paths exist to gain access to a disk,

the disk class driver chooses which path to use

when a d isk is initia l ly mounted by a node. If the

path to the disk becomes inoperative, the disk class

driver locates another path and begins to use it .

Server load and type of path, i .e. , local or remote,

are considered when selecting the new path. This

reconfiguration is totally transparent to the end

user of the disk 1/() service.

Tape Class Driver The tape class driver performs

functions in a VA.Xeluster system similar to those of

the disk class driver by providing access to tapes

located on HSC control lers, local controllers, and

DSSI buses.

VMS Components Layered on Top of
SYSA.Ps

The SYSAPs provide basic services that other VMS

components use to provide a wide range of

VAXcluster features.

Volume Shadowing The volume shadowing prod

uct al lows multiple disks to be uti l ized as a single,

highly available d isk. Volume shadowing provides

transparent access to the data in the event of disk
media or control ler fai lures, media degradation,
and communication fai lures.' The shadowing layer
works in conjunction with the disk class driver to

accomplish this task. With the advent of VMS
Volume Shadowing Phase II , disk shadowing is

extended to many new configurations.

Lock Manager The VMS lock manager is a system

service that provides a distributed synchronization

function used by many components of the WviS

operating system, including volume shadowing,

the file system, VA .. '\ RMS software, and the

batch/print system. Application programs can also

use the lock manager d irectly.

22

The lock manager provides a name space that

is truly clusterwide. Cooperating processes can

request locks on a specific resource name. The lock

manager either grants or denies these requests.

Processes can also queue requests. The lock man

ager services a llow processes to coordinate the

means of access to physical resources or simply pro

vide a communication pathway between pro

cesses. Processes can use the service for such tasks

as mutual exclusion, event notification, and server
failure detection. ' - The lock manager uses the com

munication service provided by the connection

manager to minimize the message count for a given

operation and to simpl ify the design by el iminating

the need to consider changes in cluster member

ship from al l main paths of operation.

Process Control Services The VMS process con

trol system services take advantage of VA.Xcluster

systems. Applications can use these services to

alter process states on remote nodes and to collect

information about those processes. In the future, i t

i s l ikely that other services wi l l be extended to

make optimal use of VAXcluster capabi l i t ies.

File System The VMS file system (XQP) al lows disk

devices to be accessed by multiple nodes in a

VAXcluster system. The file system uses the lock

manager to coordinate disk space al location, buffer

caches, modification of file headers, and changes to

the directory structure."

Record Management Services The VAX RMS soft
ware al lows the sharing of file data by processes

running on the same or multiple nodes. The soft

ware uses the lock manager to coordinate access to

files, to record data within files, and to global
buffers.

Batcb/Print System The batch/print system al lows
users to submit batch or print jobs on one node and
run them on another. This system provides a form
of load distribution, i . e . , generic batch queues can

feed executor queues on each node. Jobs running

on a failed node can be restarted automatical ly on

another node in the VA.Xcluster system.

An Applica tion Constructed Using
VAXcluster Mecha nisms

The VMS software build process is an example of

how these mechanisms can be used to benefit

application design. The VMS software bui ld is

Vol. 3 No. 3 Summer 1991 Digital Technical journal

broken down into various phases such as fetch

sources, compile, and l ink . The phases must exe

cute in a given order but are otherwise indepen

dent. Each phase can be restarted from the

beginning if there is an error. Each major compo

nent of the VMS operating system is processed sep

arately during each of the phases. Al l sources reside

on a shared disk to which al l nodes of the

V�'\cluster system have access; the output d isk

is shared by al l nodes also. A master data file

describes the phases and the components. For a

given phase, the actions required for each compo

nent are fed into a generic batch queue. This queue

feeds the jobs into work queues on multiple nodes,

resulting in the execution of many jobs in paral lel.

When all jobs of a phase have completed , the next

phase starts. If a node fails during the execution of a

job, that job is restarted automatical ly on another

node either from the beginning or from a check

point in the job. This use of shared d isks and batch

queues provides great parallelism and reliabil ity in

the VMS build process.

The Impact of VA.Xcluster Design and
Implementation on Applications

This section d iscusses how multiple communica

tion paths, membership changes, disk location and

availability, controller selection, d isk and tape path

changes, and disk failure impact appl ication design.

Multiple Communication Paths

VA.Xcluster software components are able to take

advantage of m u l t iple communication paths

between nodes. For greatest avai labil ity, there

should be at least two physical paths between each

pair of nodes in a VA.Xcluster system.''

Membership Changes

VA.Xcluster membership changes involve several dis

tinct phasl:s with sl ight variations depending upon

whether a node is being added or removed. Adding

a node to a VA.Xcluster system is the simplest case

because it involves reconfiguration . There is a fur

ther simplification in that nodes are only added one

at a time. A booting node petitions a member of an

existing cluster for membership. This member then

describes the booting node to a l l other member

nodes and vice versa. In this way, it is determined

that the booting node is in communication with all

membns of the cluster. The connection manager

then adds the new node to the cluster using a two-

Digital Technical journal Vol. 3 No. 3 Summer 1991

Application Design in a VAX cluster System

phase commit protocol to ensure a consistent

membership view from all nodes.

Removing a node is more complicated because

both failure detection and reconfiguration must

take place. In many cases, there may be multiple

simu ltaneous failures of nodes and communication

paths. The view of what nodes are members and

which paths are functional may be very d ifferent

from each node. Additionally, new failures may

occur while the cluster is being reconfigured .

The initial phase involves the detection of a node

failure. A node may cease processing, but other

cluster members may not be aware of this fact. The

communication components generally exchange

messages periodically to determi ne whether othl:r

nodes are functioning. The first ind ication of a fail

ure may be the lack of response to these messages.

However, a minimum period of time must elapse

before the connection is declared inoperative. This

set delay prevents breaking connections when the

network or remote system is unable to respond due

to a heavy load . Once the communication failure is

detected, the connection managn is notified by the

SCS communication layer. The connection manager

attempts to restore the connection for a time i nter

val defined by the system manager using a system

control parameter known as RECNX.I:-.ITERVAL Once

this interval has expired, the connection and hence

the remote node is declared inoperative. The con

nection manager then begins a reconfiguration.

Mult iple nodes may attempt the reconfiguration

at the same time. A d istributed election algorithm is

used to select a node to propose the new configura

tion. The elected node proposes to a l l other nodes

that it can communicate with a new cluster config

uration that consists of the "best" set of nodes that

have connections between each other. "Best" is

determined by the greatest number of possible

votes. If multiple configurations are possible with

the same number of votes, the configuration with

the most nodes is selected.

Any node that receives the proposal and can

describe a better cluster rejects the proposal. The

proposing node then withdraws the proposal and

the election process begins again. This cycle con

tinues until a l l nodes accept the proposal. The clus

ter membership is then altered using a two-phase

commit protocol, removing nodes as required.

Even when one considers the worst case of a

continual fai lure situation, convergence on a solu

tion is guaranteed because the connection manager

does not add new nodes during a reconfiguration

23

Availability in VAX.clustcr Systems

and connections that fai l are never used again.
Thus, conditions cannot oscil late between good

and bad during the reconfiguration because of
nodes rebooting or because fai led connections

are restored. Conditions can only get worse, i .e . ,
simpler, until failures cease to happen long enough
for the reconfiguration to complete.

However, this worst-case condition is atypical;

most reconfigurations are very simple. A node that
is removed, as a result of a planned shutdown or
because it fai ls, attempts to send a " last gasp" data

gram to a l l VAXcluster members. This datagram indi
cates that the node is abou t to cease functioning.

The delay present during the failure detection
phase is bypassed completely, and the connection

manager configures a new VAXcluster system in

considerably less than one second.
Normally, the impact on an application of a node

joining a VA.Xcluster system is minimal. For some
configurations, there is no blockage of locking. I n

other cases, the distributed directory portion o f the

lock database must be rebuilt . This process may

block locking for up to a small number of seconds,

depending on the number of nodes, number of
directory entries, and type of communication

buses in use.

Application delays can result when an improp
erly dismounted d isk is mounted by a booting

node. Failure to properly dismount the disk, e .g . ,
because of a node fa ilure, results in the tempo

rary loss of some preal located resources such as
disk blocks and header blocks. An application can

recover these resources when the disk is mounted,
but the 1/0 is blocked to the disk during the mount

ing operation. This I/O blocking has a potentially

detrimental impact on applications that are attempt

ing to a llocate space on the disk. The answer to this
problem is to mount disks so that the recovery of
the preallocated resources is defern:d. For all disks

except the system disk, d isk mounting is accom
pl ished with the MO N'l/NOR.EB ILD command .
Because a system disk is impl icitly mounting during
a system boot, the system parameter ACP _REBLDSYSD

must be set to the value 0 to defer rebui lds. The

appl ication can recover the resources at a more

opportune time by issuing a SET VOLUME/REBU ILD

com mand.
The impact on a VAXcluster system of removing a

node varies depending on what resources the appl i
cation needs. During the fa ilure detection phase,
messages to a failed node may be queued pending
discovery that there actually is a failure. If the appli-

24

cation needs a response based on one of these mes
sages, the application is blocked . Otherwise, the

fa ilure does not affect the appl ication. Once the
reconfiguration starts, locking is blocked. An appl i

cation using the lock manager may expniencc a
delay, but as long as there are sufficient votes pre

sent in the cluster ro constitute a quorum, the 1/0 is
not blocked during the reconfiguration. If the num

ber of votes drops below a quorum, 1/0 and process

activity are blocked to prevent partitioning and

possible data cormption.
Another aspect of node removal is the need to

ensure that a l l 1/0 requests initiated by the removed
node complete prior to the initiation of new 1/0

requests to the same disks. To enhance disk perfor

mance, many disk controllers can reduce head
movements by altering the order of simultaneously

outstanding commands. This command reordering
is not a problem during normal operation; applica
tions initiating 1/0 reqm:sts coordinate with each

other using the lock manager, for instance, so that
multiple writes, or multiple reads and writes, to

the same disk location are never outstanding at

the same time. However, when a node fails, a l l
locks held by processes running on that node are
released . Releasing these locks al lows the granting

of locks that are waiting and the initiation of new 1/0

requests. If new locks are granted, a disk controller
may move the new l/0 requests (issued u nder the
new locks) in front of old 1/0 requests. To prevent

this reordering, a special MSCP command is issued
by the connection manager to each disk before new

locks are granted. This command creates a barrier

for each d isk that ensures that a l l old commands
complete prior to the initiation of new com mands.

Physical Location and Availability of
Disks

The appl ication designer does not generally have to
be concerned with the physical location of a disk in
a VAXcluster system. Disks located on HSC storage
control lers are d irectly available to VAX processors
on the same CI bus. These disks can then be MSCP

served to any VAX processor that is not connected
to that bus. Similarly, disks accessed by way of a

loca l disk control ler on a VAX processor can be

MSCP-served to a l l other nodes. This flexibility
al lows an appl ication to access a disk regardless of
physical location. The only differences that the
application can detect are varying transfer rates
and latencies, which depend on the exact path to

the disk and the type of controllers involved.

Vol. 3 No. 3 Swnme1· 1991 Digital Technical journal

To provide the best application avai labil i ty, the

fol lowing guidelines shou ld be considered:

1. VMS Volume Shadowing Phase II shou ld be used

to shadow disks, thus al lowing operations to

continue transparently in the event that a single

disk fails.

2. Mult iple paths should exist to any given d isk.

A disk shou ld be dual-pathed between multiple

control lers. Dual pathing al lows the d isk to sur

vive control ler failures.

3. Members of the same shadow set shou ld be con

nected to di.ffcrent control lers or buses as deter

mined by the type of d isk.

4. Multiple servers should be used whenever serv

ing disks to a cluster in order to provide contin

ued disk access in the event of a server failure .

Selection of Controllers

Using static load balancing, the VMS software

attempts to select the optimal MSCP server for a

disk unit when that unit is initia l ly brought on line.

The load information provided by the MSCP server

is considered in this decision. The HSC controllers

do not participate in this algorithm. In addition, the

VMS software selects a local control ler in prefer

ence to a remote MSCP server, where possible. If a

remote server is in use and the disk becomes avail

able by way of a local control ler, the software

begins to access the d isk though the local con

troller. This feature is know as local fail-back.

An advanced development effort in the VMS oper

ating system is demonstrating the viabi l ity of

dynamic load balancing across MSCP servers. Load

balancing considers server loading dynamical ly and

moves disk paths between servers to balance the

load among the servers.

Disk ana Tape Path Changes

Path failures are in itially detected by the low-level

communication software, i .e . , the SCS or port l ay

ers. The communications software then notifies the

disk or tape class driver of the fai lure. The driver

then transparently blocks the i ni t iation of new I/0
requests to the device, prepares to restart outstand

ing l/0 operations, and begins a search for a new

path to the device. Static load balancing informa

tion is considered when at tempting to find a new

path. The path search is accomplished by sending

an MSCP GET C:'>iiT STATUS command to any known

disk control ler or lVISCP server capable of serving

Digital Technical journal vr>l. 3 No. 3 Summer 1991

Application Design in a VA.Xcluster System

the device. Some consideration is given to selecting

the optimal controller; for example, the driver inter

rogates local controllers before remote controllers.

Once a new path is discovered or the old path

reestabl ished, the VMS system checks the volume

label to ensure that the d isk or tape volume has not

been changed on the device. This vl:rification pre

vents data corruption in the event that someone

substitutes the storage medium without cl ismount

ing and remounting the device . After a successful

check, the software restarts incomplete I/O requests

and al lows stal led I/O requests to proceed . In the

case of tapes, the tape must be repositioned to the

correct location before restarting l/0 requests.

If the label check determines that the original

medium is no longer on the disk or tape unit, then

I/O requests continue to be sta l led and a mes

sage is sent to the operator requesting manual inter

vention to correct the problem. Attempts to

reestablish the correct operation of a d isk or tape

continue for an i nterval determined by the system

parameter MVTIMOUT (mount verification time

out). Once the time-out period expires, further

attempts to restore are abandoned and pending

requests are returned to the application with an

error status. Thus, the software handles temporary

disk path failures in such a transparent fashion that

the appl ication program , e .g . , the user application,

VAX R.J.\15 software, or the VMS file system, is

unaware that an interruption occurred.

Disk Failures

If a disk fails completely when VMS Volume Shadow

ing Phase II software is used , the software removes

the failed d isk from the shadow set and satisfies all

further I/O requests using a surviving disk. If a

block of data cannot be recovered from a d isk in a

shadow set, the software recovers the data from the

corresponding block on another disk, returns the

data to the user, and places the data on the bacl disk

so that subsequent reads wi l l obtain the good data 2

Summary

VAXcluster systems continue to provide a unique

base for bui lding highly available distributed sys

tems that span a wide range of configurations and

usages. In addition, VAXcluster computer systems

can grow with an organization. The availability,

flexibil ity, and growth potential of VAXcluster sys

tems result from the ability to acid or remove stor

age and processing components without affecting

normal operations.

25

Availability in VAXcluster Systems

References

1 . N. Kronenberg, H . Levy, and W Strecker,

"VAXclusters: A Closely-coupled Distributed

System," ACM Transactions on Computer
.�:ystems, vol . 4, no. 2 (May 1986): 130- 146.

2. S. Davis, " Design of VMS Volume Shadow

ing Phase 1!-Host -based Shadowing," Digital

Technical journal, vol . 3, no. 3 (Summer 1991 ,

this issue): 7 - 1'5.

3. W Snaman, Jr. and D. Thiel, "The VAX/VMS

Distributed Lock Manager," Digital Technical
journal, no. 5 (September 1987): 29-44.

4. W Laing,]. Johnson, and R. Landau, "Trans

action Management Support in the VMS Oper

ating System Kernel," Digital Technical journal,

vol. 3. no. 1 (Winter 1991) : 33-44.

26

5. Guidelines for VAXcluster System Configura
tions (Maynard : D igital Equipment Corporation,

Order No. EK-VAXCS-CG-004, 1990).

6. L. Leahy, "New Avai labil ity Features of Local Area

VA.-'\cluster Systems," Digital Technical journal,
vol. 3, no. 3 (Sum mer 1991 , this issue): 27-35.

7 T. K. Rengarajan, P Spiro, W Wright, " High

Availabi l ity Mechanisms of VAX DBMS Software;'

Digital Technical journal, no. 8 (February 1989):

88-98.

8. A. Goldstein, "The Design and Implementation

of a Distributed File System," Digital Technical

journal, no. 5 (September 1987): 45-55.

Vol. 3 No. 3 Summer 1991 Digital Technical journal

Lee Leahy I

New Availability Features of
Local Area VAXcluster Systems

VMS version 5. 4-3 increases the availability of local area VAX cluster (IA Vc) configu

rations by allowing the use of multiple local area network (IAN) adapters in the

VAXcluster system. Availability is increased by enabling Jail-over between IAN
adapters, reducing channel failure detection time, and providing better network

troubleshooting. Combined, these changes sigmficantly increase the availability of

IAN-based VAXcluster configurations by allowing the VAXcluster system to tolerate

and work around network failures.

This paper describes the availabil ity features added

to local area VAXcluster (LAVe) support in VMS ver

sion 5.4-3. These features support m ultiple local

area network (LAN) adapters, reduce the time

required to detect network path (channel) failures,

and provide additional support for network trou

bleshooting. (Table 1 presents definitions for terms

used throughout the paper.)

We begin the paper with an overview of the

added LAVe availability features of VMS version 5.4-3.

We then present the multiple-adapter support

features of the new release, with comparisons to

the previous single-adapter implementation. The

detection of network delays is discussed, along

with how the system selects alternate paths around

these delays after detection. Final ly, we discuss the

analysis of network failures and the physical

descriptions needed to achieve the proper level of

failure reporting.

Added Availability Features

VMS version 5.4-3 supports LAVe use of up to four

LAN adapters for each VAX system. Availability and

performance are increased by connecting each LAN
adapter to a different LAL'\1 segment. Maximum avail

ability is achieved by redundantly bridging these

LAN segments together to form a single extended

LAN . This configuration maximizes availabil ity and

reduces single points of failure by i ncreasing the

number of possible network paths between the d if

ferent systems within the VAXcluster system.

Availability has also been increased at the appl i

cations level by reducing the time required to

detect channel failures. The LAVe protocol (NISCA)

sends sequenced datagrams to the remote system.

Digit11l Technical journal Vol. 3 No. 3 Summer 1991

If not acknowledged within 2 seconds, a datagram

is retransmitted. Retransmission continues until the

connection between the two systems is declared

broken. However, applications can be stalled during

this error recovery process. Therefore, reducing the

time for detecting channel failures and retransmit

ting datagrams reduces the amount of appl ication

delay introduced by network problems.

VMS version 5.4-3 also increases availability by

reducing the delays introduced by network con

gestion. This latest release measures the network

delays on a channel basis. The channel with the low

est computed network delay value is used to com

m unicate with the remote system.

LAVe network failure analysis is a new feature in

VMS version 5.4-3. This feature provides an analy

sis of fai l ing channels by isolating the common

network components responsible for the channel

failures. LAVe network fai lure analysis increases

availability by reducing the downtime caused by fail

ing network components. To enable this feature, the

system or network manager must provide an accu

rate physical description of the network used for

LAVe communications.

Multiple-adapter Support

This section describes the availabil ity features added

with the multiple-adapter LAVe support in VMS ver

sion 5.4-3. Some l imitations of the single-adapter

implementation are presented for comparison.

Single Points of Failure

In single-adapter LAVe satell ites, the Ethernet adapter

remains as a single point of fai lure. This fail

ure "point" actually extends through the network

27

Availability in VAXcluster Systems

Table 1 LAVe Terminology

Channel A data structure in PEDRIVER that represents a network path (see network path below).
Each channel is associated with a single virtual circuit (VC).

Datagram A message that is requested to be sent by the cl ient of the LAN driver. A datagram does
not have guaranteed del ivery to the remote system. The datagram may never be sent,
or could be lost during transmission and never received.

LAN Adapter An Ethernet or fiber d istributed data i nterface (FDDI) adapter. Each type of LAN adapter
has a unique set of attributes, such as the receive ring size.

LAN Address The network address used to reference a specific LAN adapter connected to the Ethernet
or FDDI. This address is displayed as six hexadecimal bytes sepa rated by dashes, e.g. ,
08-00-28-12-34-56.

LAN Segment An Ethernet segment or FDDI ring. Each type of LAN has a unique set of attributes, e.g.,
maximum packet si ze. LAN segments can be con nected together with bridges to form a
single extended LAN. However, in such a LAN, the LAN segments can have d ifferent
characteristics (e.g., d ifferent packet sizes for an FDDI ring bridged to an Ethernet).

Network Path The pieces of the physical network traversed when a datagram is sent from one LAN address
to another LAN address. The network path is represented by a pair of LAN addresses, one
for the local system and one on the remote system. Each network path has a specific set of
attributes, which are a combination of the attri butes of the local LAN adapter, the remote
LAN adapter, and each of the LAN segments and LAN devices on the path between them.

PEDRIVER

Virtual Circuit

The VMS port driver that provides reliable cluster commun ication uti l iz ing the Ethernet.

A data structure in PEDRIVER that represents the data path between the local system and
the remote system. This data path provides guaranteed del ivery for the messages sent.
PEDRIVER's datagram service, along with an error recovery mechanism, ensu res that
a message is del ivered to the remote system or is retu rned to the cl ient with an error.
A virtual circuit (VC) has one channel for each network path to the remote system.

components common to all of the network paths
in use for cluster communication. The combination
of VMS version 5.4-3 with multiple LAN adapters

removes the LAN adapter as a single point of fai l
ure in the local system. Additional ly, the use of mul

tiple LAN adapters connected to an extended LAN

creates multiple network paths to remote systems.
This configuration resu lts in a higher tolerance

for network component failures and higher cluster

availabi l i ty.

Adapter Selection
The single-adapter implementation is configura
tion-dependent and does not a l low the system man
ager a choice of adapters. The mult iple-adapter
support in VMS version 5.4-3 configures the system
for maximum availabil ity by starting the LAVe proto

col on a l l L AN adapters in the system. Support is

also provided to start and stop the LAVe protocol on

the LAN adapters. This support a llows the system

manager to select which LAN adapters wi l l run the
LAVe protocol .

The means of locating the LAN devices in the
system has also changed . The system now main
tains a I ist of LAN devices. As each LAN device driver
is loaded into the system, an entry is appended to

28

this l ist . A new support routine steps through this
l ist ancl returns a pointer to the next LAN device
in the system. The single-adapter implementation

requires code changes in PEDRIVER to add a new

LAN device; the new implementation no longer
requires these changes.

Channel Control Handshake

The channel control handshake is a three-way mes

sage exchange. The exchange starts when a HELLO

message is received from a remote system and the
channel is in the closed state, or any t ime a CCSTART

message is received . Upon receiving a HELLO mes
sage on a closed channel, the system responds with
a CCSTART message.

Upon receiving a CCSTART message, the system
closes the channel if the PATH bit was set. In a l l
cases, i f the cluster password i s correct, the system
n:sponds with a VERF message. Upon receiving the

VERF message, the remote system verifies the clus
ter password. If the password is correct, the remote
system sends an acknowledgment (VACK) message

and marks the channel as usable by setting the PATH

bit. The local system, upon receiving the VACK mes
sage, also marks the channel as usable by setting the
PATH bit.

Vul . .3 Nu. 3 Summer 1991 DigitCil Technical jounral

New Availability Features of Local Area VA.Xcluster Systems

The channel control handshake now verifies the

network path used by this channel, instead of verify

ing the virtual circuit (YC) as in the single-adapter

implementation. Additional ly, the handshake is used

to negotiate some parameters between the local and

remote systems on a channel basis (instead of assum

ing that the parameters are common for al l channels

connected to the VC).
Packet size and pipe quota are two characteristics

that are now arbitrated between the two systems.

These parameters are negotiated on a channel-by

channel basis to al low d ifferent channels to fu l ly uti

lize the capabilities of the specific network path.

With the introduction of FDDI, larger packet

sizes are now supported. The channel handshake

between two nodes negotiates a packet size that is

supported by the entire network path. Any path

that uti l izes an Ethernet must use a packet size

of 1498 bytes or smaller. An FDDI-to-FDDI path on

the same extended ring must use a packet size of

4468 bytes or smaller. An increased packet size

reduces the number of messages required when

large blocks of data are sent. This increase in packet

size results in fewer messages, less handshaking,

and thus better network efficiency.

The PIPE_ QUOTA value is used to limit the number

of messages sent to the remote system before wait

ing for an acknowledgment. PIPE_ QUOTA was imple

mented to help prevent receiver overrun on the

remote system. Instead of using a fixed value, the

new implementation uses a value specified by the

LAN driver. This value factors in the LAN device's

receive ring size and is typically larger than the fixed

value of eight messages used previously. Increasing

the PIPE_QUOTA value al lows more data to be sent

between the nodes before an acknowledgment

message is required, thus increasing the protocol's

efficiency and reducing the network traffic .

These new features in VMS version 5.4-3 have

reduced the amount of handshaking required to

move data and the number of messages required to

move large amounts of data. The result is greater

applications availability through fewer network

based delays.

Use of Hello Messages

The single-adapter implementation uses a HELLO

message to maintain the vc and not the channels.

AJso, the handshake to verify connectivity is per

formed by the vc, which forces a l l channels to use

the same characteristics. In comparison, the mu ltiple

adapter implementation uses H ELLO messages to

trigger the channel handshake, test the network

Digita/ Teclmicaljournal Vol. 3 1\'o. 3 Summer 1991

path and maintain the channel in the open state,

and continuously verify the network topology.

To maintain the channel and test the network

path, each system multicasts a HELLO message

through each of its LAN adapters every 3 seconds.

Upon receipt of a HELLO message (if the channel

is not open), a channel handshake begins. If the

channel is open, the network delay is computed

and the channel packet size is verified. When an

open channel does not receive a HELLO message

within 8 seconds, it declares a l isten t ime-out and

the channel is closed .

Additional topology change detection is required

because FDDI-to-FDDI communications use large

packets. If two systems using FDDI adapters

exchange channel control messages, then both can

agree on a large packet size. However, if the net

work is configured in the dumbbell configuration,

then only the small packet size can be used. (The

dumbbell configuration consists of two FDDI rings

separated by an Ethernet segment.)

Detection of the dumbbell configmation is per

formed using the priority field in the frame control

byte of the FDDI message header. This field does not

exist in Ethernet messages and must be created

when forwarding an Ethernet message to an FDDI

ring. Ethernet-to-FDDI LAN bridges set this field's

value to zero. AJ l LAVe messages transmitted by the

FDDI adapters use a non-zero value for the priority

field. When a channel control message is received,

the value of this field is checked. If the value is non

zero, then large messages can be used because the

message did not traverse an Ethernet segment.

The priority field is also verified every t ime a

HELLO message is received and the channel is open.

A topology change is detected when a change in the

priority value is received . If the priority value goes

from zero to non-zero, the packet size is renegoti

ated and a larger packet size may be used. If the pri

ority value goes from non-zero to zero, the channel

packet size must be reduced. If this is the only chan
nel with a larger packet size, then the VC closes and

forces the two systems to reassign the message

sequence numbers.

Listen Time-out

VMS version 5.4-3 now consistently times out chan

nels in 8 to 9 seconds, whereas the single-adapter

implementation detects the failure in 8 to 15 seconds.

Reducing this time reduces the delays experienced

by applications when a LAVe node is removed from

the cluster. The resu lt is an increase in applications

availability.

29

Availability in VAXcluster Systems

The single-adapter implementation traverses the
VC l ist and scans each of the receive channels (RCH

structures embedded in the VC) to check for time

out. Because this scan is CPt:-intensive. the algo

rithm was designed to scan the vc l ist only once

evetl' 8 seconds. Reducing th is scan time required

the design of a new algorithm that reduces the CPU

util ization requ ired to locate the channels that have

timed out.
The VivtS version 5.4-3 implementation places

each open channel into a ring of time-out queues.
The time-out rou tine maintains a pointer i nto the

ring of queues cotTesponding to the 8-second time
out. Each second, the time-out rou tine executes,
removes any channds pointed to by the time-out

pointer, and calls the l isten time-out routine for

the channel. Next, the time-out pointer and the

8-second t ime-out pointer are updated to point to a

new set of queue headers in the ring. Active chan

nels and channels receiving HELLO messages are
inserted into the ring of queues pointed to by the

current time pointer. which prevents them from

timing our. This implementation reduces CPU uti
l ization during the time-out scan by looking at only

the channels that have timed out.

Changes to Virtual Circuit Maintenance

The single-adapter implementation closes the VC

and performs a channel control handshake every
time a new channel is establ ished . This implemen

tation also forces each channel to use the same

characteristics, specifically packet size, thereby
reducing the characteristics to the lowest common

denominator.
VMS version 5.4-3 does not close the VC each time

a new channel is establ ished . The channel hand

shake affects only the channel and is used to negoti
ate the channel characteristics, including packet
size. The VC remains open as long as a channel with
the corresponding packet size is open. This mainte
nance increases applications availability by allow
ing channels to fai l and reestablish transparently
without disrupting service at the vc and systems

communication services (SCS) layers.

One Channel with Matching Characteristics
Required The VC can be opened as soon as the
first channel to the remote system is opened . When
the vc opens, its packet size is set to the packet size
of the channel being used . The VC can remain open
as long as at least one channel with a compatible
packet size is open. The packet size is compatible if

30

the channel packet size is greater than or equal to
the packet size currently in use by the VC

Transfers restricted to an FOOl ring can use a
larger packet size than those that traverse an

Ethernet LAN segment. PEORfVER now supports

variable packet sizes up to the size supported for

the FOOl ring. Each time the vc switches channels,
the new channel characteristics are copied into the

vc. The resul t is that as soon as the vc switches to

using the FODI-to-FODI channel, it also switches to
using the larger packet size.

Receive Message Caching VMS version 5.4-3
i ntroduces a receive message cache to prevent any
performance degradation when messages are

received out of order. Because of transmission and

network delays, messages are typical ly received out

of order at approximately the time a channel switch
occurs. Also, most of the channel selections are

invoked after locating a channel with a lower
network delay value, thus increasing the probabil

ity that messages wi l l be received out of order.

Channel Failure Not Displayed The multiple

adapter implementation does not d isplay any mes

sages when a channel fails. This choice was made to

m aintain compatibil ity with the previous imple
mentation. We also wished to reduce the number of

console messages and still provide enough data to
isolate the problem. However, without some chan
nel fa ilure notification, all but one channel could
fa il without notice, thus negating al l the availabil ity

that was introduced by using multiple adapters.
The LAVe network fai lure analysis al lows the

system or network manager to select one of the fol

lowing levels of channel fa ilure notification: no
notification, if not enabled; channel fai lure notifica

tion, when barely enabled; or isolation of the fa i l ing
network component, when fu lly enabled . When
this feature is fu lly enabled , a fail ing network com

ponent typical ly generates only a single console
message instead of d isplaying tens or hundreds of
channel failure messages.

Channel Selection
VMS version 5.4-3 bases i ts selection of a single

transmit channel for a remote system first, on the
packet size and second, on the network delay
value. The channel selection algorithm searches for
an open channel with a compatible packet size so
that the vc does not have to be broken . If more than
one channel has a compatible packet size, the

Vol. 3 No. 3 Summer 1991 Digital Technical journal

New Availability Features of Local Area VAXcluster Systems

network delays are compared and the channel with

the lowest network delay value is chosen. The

selected channel is used until it fails, encounters an

error, or a channel with a lower network delay

value is found.

Channel selection is performed i ndependently

for each remote system. This implementation means

that a two-node cluster increases its availability

through the use of more LAN adapters, but does not

achieve a performance benefit by increasing the

number of LAI'\1 adapters above two. Larger clusters,

however, can take advantage of the additional

LAN adapters and thus achieve better cluster perfor

mance. Multiple LAN adapters can also increase the

bandwidth available for use by the LAVe protocol.

However, the actual performance is very configura

tion- and application-dependent.

Channel selection is l imited to the transmit chan

nel, but a l l channels are used to receive data. The

receive cache helps prevent retransmission by

the remote system by placing messages received

out of order into the receive cache unti l the previ

ous messages are received. This receive algorithm is

compatible with any transmit channel selection

algorithm, e .g . , in PEDRIVER or in any component

implementing NISCA.

Multiple-adapter Availability Summary

The multiple-adapter LAVe support added to VMS

version 5.4-3 increases the availabil ity of appl ica

tions and of the overa l l cluster. Avai labil ity is

increased by removing the LAN adapter as a single

point of fai lure. Cluster availability is enhanced

through continuous testing of the network paths

and correction for network topology changes.

This implementation also i ncreases network

uti l ization and cluster performance by taking full

advantage of a channel's characteristics. Larger

receive ring sizes reduce the protocol handshaking

overhead. Moreover, larger packet sizes reduce

the number of messages that must be sent for large

transfers.

The next section d iscusses how the PEDRIVER
detects network delays and selects alternate paths.

Network Delay Detection

VMS version 5.4-3 increases appl ication availabil ity

by detecting significant network delays and select

ing alternate paths. As the network gets busy, it
becomes more d ifficu lt for a LAVe node to send

cluster messages. These delays in network commu

nications cause delays in cluster traffic and trans-

Digital Technical journal Vol. 3 No. 3 Summer 1991

late into delays in the appl ications. Thus, through

delay detection and the use of alternate paths, VMS

version 5.4-3 reduces the delays for appl ications

and increases overal l cluster performance.

Assumptions and Delay Calculations

PEDRIVER computes network delays through a

series of assumptions. The primary assumptions are

that the transmit and receive delays for a path are

equal, and that there are smal l internal delays asso

ciated with the LAN device. Although these assump

tions are occasionally inval id , PEDRIVER uses them

because there are no round-trip messages available

in the NISCA protocol to compute the delay.

As the first step in the delay calculation for each

channel between nodes, each node time-stamps the

HELLO message just prior to transmission. When the

HELLO message is received, the time stamp is sub

tracted from the local system time. This resulting

value equals the sum of the transmit queue delay,

the network delay, the receive queue delay, and the

d ifference in the two system times. Applying the

assumptions reduces this value to the sum of the

network delay and the difference in the two system

times.

The second step of the delay calculation is to

compare the delay times between d ifferent chan

nels to the same remote system. This comparison is

a subtraction of the values computed above for

each channel. The computation removes the com

mon factor (the difference in the two system times)

and results in the comparison of the two network

delays. When multiple channels exist, PEDIUVER

attempts to use the channel with the lowest

network delay value.

Problems and Benefits Associated with
the Assumptions

The assumptions i n the network delay calculation

do not always hold true . The arbitration delay to

transmit a message on the Ethernet, between a pair

of systems, is not always equal in both d irections.

Over the long term, this assumption would be val id

if the systems are sending the same number of mes

sages in each direction; however, this is not typi

cal ly the case. When this assumption does not hold

true, i .e . , if the transmit delay is longer than the

receive delay, then addit ional delay is introduced

when transmitting messages using this channel.

The assumption that internal delays are small

depends upon the network traffic and the transmit

traffic generated for an adapter by the other LAN

3 1

Availability in VAXcluster Systems

cl ients. If another LAN client is a heavy user of a par

ticular LAN adapter, then transmissions from this

adapter experience additional queue delays while

waiting for the adapter. If the network is busy, mes

sages in the transmit queue have an additional wait.

F inal ly, the network delay computed is the delay
from the remote system to the local system. Since

the delay is not always symmetric, it does not

always represent the delay in the other direction,

i .e. , transmitting messages to the remote system.

Yet, because the NISCA protocol does not have any

round-trip messages, this is the best possible delay

value.

Even with these problems in the assumptions,

the network delay calculations increase the avail

abi l ity of the cluster by detecting large network

delays. With this data, PEDRIVER is usually able to

select alternate paths around the network delays

when multiple channels exist, providing better

cluster performance and availability

Figure 1 represents an example of network delay

detection. If LAN segment A is very busy, then

PEDRIVER can detect an additional network delay for

channels A l -B l , A l -82, and A2- 8 1 . PEDRIVER can

then select an al ternate path, that is, transmit pack

ets only on channel A2-82. Use of channels A l -8 1 ,

Al -82, and A2-81 can resume when the network

traffic level on LAN segment A is reduced to about

the level of LAN segment 8, or if channel A2-82 fails.

LAVe Network Failure Analysis

V:\1S version "i.1 -3 uses multiple LAN adapters to

increase availability by working around network

delays and fai lures. Channels fail as network fail

ures occur, reducing the avai labil ity provided by

these extra channels. However, the VC remains

open, allowing cluster communication as long as a

single channel remains open.

To maintain compatibil ity with previous VMS ver

sions, only VC failures are displayed on the local

console. Displaying messages about channel fai l

u res would only indicate a problem without help

ing to locate the cause of the failure . Also, as the

cluster configuration gets larger, or the number of

LAN adapters increases, channel failure messages

increase (depending on what component failed)

beyond the point where they are helpful. Yet to

maintain cluster availabil ity, the system or network

manager needs to be told of the channel failures

that are reducing the availabil ity.

The LAVe network failure analysis, introduced

with VMS version 5.4-3, is used to analyze the net

work failures and display the OPCOM messages that

cal l out the fail ing network component. This sup

port requires a description of the physical network

used for LAVe communications. Depending upon

the description supplied, the system or network

manager can select the level of failure reporting.

This level may range from channel fai lure reporting

to call ing out the actual component that failed.

Display of Channel Failures

There is a significant difference between displaying

the channel failures and performing LAVe failure

analysis. This diJf<:rence is shown in F igure 2, which

represents a mult iple-adapter LAVe conJiguration.

ETHERNET LAN SEGMENT A
•
•

I ETHERNET I BRIDGE

• •

KEY:

I TERMINATOR

- TRANSCEIVER

I I
I ETHERNET I I ETHERNET I
I ADAPTER 1 I 1 ADAPTER 1 I
I _ _ _ _ _ _ I I _ _ _ _ _ _ I

VAX A VAX B
.- - - - - - -, .- - - - - - -.
I ETHERNET I I ETHERNET I
I ADAPTER 2 I I ADAPTER 2 I

1 l
ETHERNET LAN SEGMENT B

Figure 1 Network Delay Detection

•
•

•
•

32 Vol. 3 No. 3 Summer !991 Digital Technical journal

New Availability Features of Local Area VAX cluster Systems

ETHERNET LAN SEGMENT A
• •
• I I •

I DELNI A I I DELNI B I
l I l I

I ETHERNET I I ETHERNET I I ETHERNET I I ETHERNET I
I ADAPTER 1 I I ADAPTER 1 I I ADAPTER 1 I I ADAPTER 1 I
I _ _ _ _ _ _ I I _ _ _ _ _ _ I I _ _ _ _ _ _ I I _ _ _ _ _ _ I

I ETHERNET I VAX A VAX B VAX C VAX D
BRIDGE ,- - - - - - -. - - - - - -. .- - - - - - -. ,... - - - - - -.

I ETHERNET I I ETHERNET I I ETHERNET I I ETHERNET I
I ADAPTER 2 I I ADAPTER 2 I I ADAPTER 2 I I ADAPTER 2 I

I I I I
I DELNI C I � DELNI D I

• l l •
• •

ETHERNET LAN SEGMENT B

KEY:

I TERMINATOR

- TRANSCEIVER

Figure 2 Multiple-adapter Channel Failure

Looking from system VAX A, the fol lowing chan

nels exist: A l -A2, A2-Al, A l -B l , Al -B2, A2-Bl ,

A2-B2, A l -C l , A l -C2, A2-C l , A2-C2, A l - D l ,
A 1 -D2, A2- D l , and A2-D2. let us assume that

DELNI B fails, causing the following channel failures:

Al-Cl , A2-Cl , A l - D l , and A2- D l . A display of

channel failures would show that some interesting

event had just occurred but would leave it up to the
system or network manager to isolate the actual

failure. Also, since other channels are still open to

VAX C and VAX D (Al -C2, A2-C2, A l -D2, and

A2-D2), these nodes still remain in the cluster.

However, the number of channels to these nodes

has been halved, reducing cluster availability.

LAVe network failure analysis uses the physical

network description to analyze channel failures.

The working channel A l -C2 indicates that VAX A,
A I , DELNI A, LAN segment A, Ethernet-to-Ethernet
LAN bridge, LAN segment B, DELNI D, C2, and VAX C

function. The working channel A2-D2 indicates
that A2, DELNI C, 02, and VAX D also function. The
remaining components are DELNI B, C l , and 0 1 . By

reviewing the failing channels for common failures,
we see that two channels use component C l , two

channels use component D l , and all fou r channels

use component DELNI B. Therefore, DELNI B has the

highest probability of causing the failure and is the

only network component displayed on the console.

Digital Tech11icaljournal Vol. 3 No. 3 Summer 1991

In this small cluster configuration, LAVe network

failure analysis has reduced the messages displayed,

i .e . , from four channel failure messages to one

component failure message. This simpler display

provides timely notification and better isolation of

network component failures, a llowing the system
or network manager to repair the network earlier

and restore the ful l availability of the cluster.

Physical Network Description

LAVe network failure analysis requires a description

of the physical network. This description l ists the
components used by the LAVe and the network

paths that correspond to the LAVe channels.

The network component description consists

of several pieces of data, including a component

type and text description provided by the system or
network manager. Some component types will

require additional data. There are several types of

network components: NODE, ADAPTER, COMPO
NENT, and CLOUD. Each NODE component requires
a unique node name associated with it that matches

the SCSNODE SYSGEN parameter. The ADAPTER com

ponent has at least one and sometimes two LAN

addresses associated with it. One LAN address is the

hardware address and the other, when specified, is

the DECnet LAN address. COMPONENTs are used to

describe all pieces of the network, both working

33

Availability in VAXcluster Systems

and nonworking. CLOUDs describe portions of the

network that are working only if all paths are work

ing. Any path failure impl ies that the CLOUD com

ponent may not be working.

Component descriptions can range from actual

devices and cables to internal CPL bus adapters.

When the component is defined, an ID value is

returned for use in the network path description.

The choice of the components dcscrihcd is left to

the system or network manager and a l lows the

manager to select the desired level of network anal

ysis. Each network component has a reference

count and a working count . The reference count is

incremented when a network path is defined that

utilizes the network component. The working

count is incremented each time a LAVe channel is

opened, and decremented each time an open LAVe

channel is closed.

The network path description consists of a

d irected l ist of component identifier (ID) values.

For proper analysis, this l ist must start with the I D

value for the local node. Each successive I D value i n

the l ist must b e associated with the next network

component through which a message would travel

when using this path . The final component ID va lue

is that of the remote node.

Each network path description must contain two

node ID values and two adapter ID val ues. '{(> be use

ful for analysis, the path description must contain

the node ID value for the node running the analysis.

Without this node JD value, the path cannot be

matched with any of the LAVe channels on that node.

Channel Mapping and Processing

The network path descriptions are matched with

the LAVe channels by using the LAN addresses. If

possible, only the LAN hardware address is used

for the mapping function. This mapping provides
the best analysis because it remains constant with

respect to any LAN adapter. In clusters running
m ixed VMS versions, the LAN hardware address is

not available for systems running a version prior to
VMS version 5.4-3. In prior versions, the DECnet LAN

address is used for the mapping function.

Each time a LAVe channel is opened, the network

path database is searched to locate a matching net

work path description. If found, this description is

connected to the channel and a scan of a l l the com

ponents i n the path is performed. For each compo

nent in the path, the working count is incremented.

If the component switches from not working to

working, then a WORKING message is d isplayed .

34

When a LAVe channel fai ls , the correspond i ng

network path is placed on a fai lure l ist. The net

work path is then scanned and the working count

for each component is decremented .

Failure Analysis

Related channel failures are col lected by delaying

10 seconds fol lowing the channel failure. Each

channel failure extends the time delay to the fu l l 10

seconds. Once the 10-second delay has elapsed fol

lowing the last channel failure, the fu l l l ist of fail ing

network paths is processed.

Computing the failure probabi l ities begins by

reviewing each of the components in the network

path. If a component cannot be proven to work,

then it is placed on the suspect l ist and the compo

nent's suspect count is incremented . A component

is working if the working count is non-zero; a

CLOUD component is working if the working count

equals the reference count. This step ends with a

l ist of suspect components, each with a suspect

count that represents the number of times this

component could have caused the fai lure .

Suspects are selected by comparing the suspect

counts for each of the components in a network

path. Each network path is reviewed indepen

dently and a primary suspect is selected . The

primary suspect is the first component with the

highest suspect count in the network path. Sec

ondary suspects are the other components in the

network path with the same suspect count value .

The primary and secondary suspects are d isplayed

after all the network paths have been reviewed. The

other components in the suspect l ist are removed

from the l ist, and are not displayed because the fail

ure analysis judged them to be u nrelated to any of

the channel fai lures.

There are several l imitations to the failure analy
sis. The analysis requires an accurate descript ion of

the physical network. The failure analysis is also

looking for a common network component fai l
ure. Therefore, a n incorrect analysis results from

either an inaccurate network description , multiple

related fai lures, or too much detail.
The key to a valid network fai lure analysis is the

correct description of the physical network. Jn

Figure 2, if the network path A l -B 1 incorrectly

l isted DELNI B, then the failure ana lysis would find

that DELNI B is working and remove it from the sus

pect l ist . The final analysis woulcl l i st both C l and
Dl as the failing components. Val idation of the

network description can be performed by network

\1J/ . . i No. 3 Summer 1991 Digital Tee/mica/ journal

New Availability Features of Local Area VAXcluster Systems

fault insertion and by reviewing the network
failure analysis. If the description is accurate, then
the failure analysis should display the expected
messages. If an i naccurate network description
exists, unexpected messages may be displayed.
In such cases, the network description should be
reviewed.

Multiple related fa ilures may also cause an incor
rect fai lure analysis. Referring again to Figure 2,
assume a correct network descript ion. Instead of a
DELNI B failure, assume that both Cl and D l have
failed. The fa ilure analysis reviews the network

description and locates the single component
DELNI B because it is common to all of the failures.
In this case, the failure analysis does correctly

locate the area of the network (something con
nected to DELNI B) . However, further review is
required to identify that DELNI B itself has not failed,
but rather both Cl and D 1.

The choice of the network description, the num
ber of components defined, and the path descrip
tions, is left to the system or network manager.
This choice al lows the manager to select the level

of failure reporting needed to troubleshoot the net
work. However, when the physical network descrip
t ion includes too much detail (e .g. , transceiver
cables), i t becomes difficult for the failure analysis
to reduce the components to a single failure.
Instead, a primary suspect and several secondary

suspects are usually displayed. Too much detail also
requires more CPU cycles and memory for analysis,
and in general is a bad trade-off.

In Figure 2, if the Ethernet adapter C l fails, and
the transceiver cables are l isted in the network
description, then the failure ana lysis d isplays two
messages. The primary suspect is l isted as the
transceiver cable because it is the first component

that matches the failure in the path from A to C. The
Ethernet adapter Cl is l isted as a secondary sus
pect, because its suspect count matches the sus
pect count of the primary suspect. In this example,
there are no network paths described that use
Ethernet adapter Cl without using the transceiver
cable connected between Cl and DELNI B. With the
network description provided, there is no way to
distinguish between these two components.
Therefore , both are displayed when either is a pri
mary or secondary suspect.

Benefits

The LAVe network failure analysis, combined with
an accurate description of the physical network,

Digital Tecb11ical journal Vol. 3 No. 3 Summer 1991

enables the system or network manager to maintain
the increased avai labil ity gained with the use of
multiple LAN adapters. Timely analysis and report
ing of network component failures significantly
reduces troubleshooting times and increases the
overall cluster availabil i ty.

Summary

VMS version 5.4-3 increases the availabil ity of Local
Area VAXcluster configurations by providing the fol

lowing features:

• Faster detection of channel failures

• Support for the use of mult iple adapters

• Support for the use of additional network paths

• Detection of network congestion

• Analysis of network failures

The goals of these features are to

• Provide higher cluster availability

• Work around network congestion and network
component failures while keeping the cluster
running

• Detect problems earl ier and report them more
accurately, with network data that helps isolate
the fai l ing network components

In addition to meeting these goals, the features in

VMS version 5.4-3 increase the cluster communica
tion bandwidth.

Acknowledgments

I want to thank Kathy Perko and Steve Mayhew for
their help with the design of the multiple-adapter
version of PEDRNER. Kathy reviewed the code
during the implementation and provided va luable
input for both the code and this paper. Thanks to
Scott H. Davis, Sandy Snaman, and Dave Thiel for
their contribu tions to the new PEDRIVER design.
Thanks also to the LAi\1 Group (Linda Duffell, Dave
Gagne, Rod Gamache, Bil l Salkewicz, and Dick
Stockdale) for the VAX communication interface to
the LAN drivers, which simplified the design of the
new PEDIUYER. I also wish to acknowledge the LAN

Group for their help during the debug phase of this
implementation.

35

Richard E. Stockdale
Judy B. Weiss

Design of the
DEC LANconwoUer 400
Adapter

The DEC LANcontroller 400, Digital's Xlvfl-to-Ethernet adapter (DEMNA), connects

systems based on the Digital X. Iff bus to an Ethernet/IEEE 802.3 local area network

(LAN). These systems use the X141 bus either as the system bus (VAX 6000 systems) or

as an I/0 bus (VAX 9000 systems). The new systems, which can utilize the full band

width of the Ethernet, are characterized by increased host processor speeds. The

DEMNA adapter was designed to support these l/0 requirements. In addition, con

sole and monitor facilities were built into the adapter firmware for debugging, ver

ification, and user visibility Tbe adapter's performance for small packets exceeds

system capabilities, and Ethernet bandwidtb is the limiting factor for large packets.

The high-performance DEC LANcontroller 400,

Digital's XMI-to-Ethernet adapter (DEMNA), con

nects a system based on the Digital XM! bus to an

Ethernet/IEEE 802.3 local area network (LAN). This

adapter is intended for Digital systems that use the

XMI bus either as the system bus (\'1\X 6000 systems)

or as an r;o bus (VAX 9000 systems). It is an intel l i

gent adapter that implements the physical layer and

part of the data link layer of network protocol. The

term intel l igent refers to the packet processing per

formed by the adapter as part of the data l ink layer.

The OEMNA adapter was needed to support the

I/0 requirements of the VAX 6000 and VAX 9000 sys

tems, which can uti l ize the fu l l bandwidth of the

Ethernet. The adapter also provides the ability to

configure these systems without a Ill bus. For these
systems, the DE:'vl'\!A adapter is the only Ethernet

connection available.

The DEM'\!A adapter is control led by a port driver
that resides in host memory The interface between
the port driver :md the DEMNA firmware (the port)

is a ring-based design which is optimized for low

system owrhead and high performance.

The DEMNA adapter has the following major

features:

• Supports Ethernet/lEEE 802.3 protocols

• Supports up to 64 users (each one a separate

protocol such as local area transport [LAT) soft

ware, DECnet network software, or clusters)

36

• Supports two modes of addressing: VA.'< virtual

addressing and 40-bit physical addressing

• Al lows buffer chaining on transmit

• Performs packet filtering and validation on

receive

• Supports Digital's maintenance operations pro

tocol (MOP) functions

Provides support for diagnostic routines and

field service functions implemented through the
system console or d iagnostic software

• Has console and monitor facilities that aJ iow a

console user to monitor DEMNA operation and
network u til ization

This paper begins with a logic overview of the
DEMNA device. The sections that fol low discuss the
factors that influenced design and implementation,
describe the major performance metrics and user
visibi l ity operations, and review the design results

and future needs.

Logic Overview

The DEMNA adapter is a single-board XMI adapter
based on complementary metal-oxide semiconduc
tor/transistor transistor logic (CMOS/TTL) technol

ogy. As shown in Figure 1, the hardware consists of

four separate subsystems:

101. 3 No. 3 Summer 1991 Digital Technical journal

Design of the DEC LAN controller 400 Adapter

� -

EPROM
MICROPROCESSOR SUBSYSTEM

1 28 KB >-
SRAM f-

�
256 KB oc

� I
MAC

I EEPROM <{ I DIAGNOSTIC I a. ADDRESS
64 KB REGISTER ROM

+ j_ + + 1 j_
; j_ ; ; ; _j_

COAL BUS

+ +
'f

MEMORY
'f

TRANSCEIVERS/
SUBSYSTEM

SRAM 1:
oc

LATCHES 256 KB <{ a.

• •
_i +

DEMNA MEMORY BUS

+ +
XMI • ETHERNET t
INTERFACE l GATE INTERFACE I

� - - - -
ARRAY

LANCE I l XCI BUS 1 I

G I I XMI
CORNER I

+ I
- - - - - - - i - - - - - - - - - - - - - - - - - - 1

ETHERNET
L

XMI BUS

KEY

CV AX CMOS VAX
EEPROM ELECTRICALLY ERASABLE PROGRAMMABLE

READ-ONLY MEMORY

MEDIA ACCESS CONTROL
SERIAL INTERFACE ADAPTER
STATIC RAM

EPROM ERASABLE PROGRAMMABLE READ-ONLY MEMORY

MAC
SIA
SRAM sse
XCI

SYSTEM SUPPORT CHIP
XMI CHIP INTERCONNECT LANCE LOCAL AREA NETWORK CONTROLLER FOR ETHERNET

Figure 1 DEMNA Block Diagram

• Microprocessor ule . The firmware is stored in EEPROM, but is copied

to RAM for execution. The boot ROM contains the
• Direct memory access (DMA) and shared memory

• XMI interface

• Ethernet

The microprocessor subsystem contains the CMOS
VAX (CVAX) processor, system support chip (SSC),

boot read-only memory (ROM), Ethernet address
programmable read-only memory (PROM), electri

cal ly erasable programmable read-only memory

(EEPROM), and random-access memory (RAM). The

microprocessor subsystem provides an internal ,

high-speed COAL bus so that the CVAX processor
can fetch its instructions and execute them without

being delayed by the other control lers on the mod-

Digitul Technical journal Vol. 3 No. 3 Summer 1991

initial ization code and diagnostics. This subsystem

also provides a console interface through the sse
for diagnostics, module debugging, and network
monitoring.

The DMA and shared memory subsystem pro
vides the means of communication between the

CVAX processor and the other subsystems. The
devices arbitrating for this shared memory are the

CVAX processor, the gate array, and the Local Area

Network Controller for Ethernet (LANCE) chip.

The XMI interface subsystem contains the XMI

network adapter (XNA) gate array and the XMI

corner. The XNA gate array is the data-move engine

for the DEMNA adapter and contains a l l the XMI

required registers.

37

Network Performance and Adapters

The Ethernet subsystem contains the LANCE

chip, the serial interface adapter (SIA) chip, and var

ious bus interface logic modules. The Ethernet sub

system receives packets from the Ethernet and

stores them in the shared memory. When transmit

ting a packet on the Ethernet, the LANCE chip gets

the packets from shared memory and transmits

them on the Ethernet.

Design

The design of the DEMNA adapter was influenced by

many factors, including previous adapter design

experiences, available hardware such as Ethernet

chips, and system requirements. The DEMNA team

was assigned the fol lowing tasks:

• Produce a working Ethernet adapter that could

be used by operating systems such as VMS,

ULTRIX, ELN, and custom operating systems on

hardware configurations that use the Xt\1 1 bus as

a system bus or an 1/0 bus

• Del iver high performance, measured by the

amount of Ethernet bandwidth supported at var

ious packet sizes, with minimized host overhead

• Supply debugging features for design verifica

tion and field m aintenance of the adapter

First, we reviewed previous adapters to deter

mine what improvements could be made. We

learned that a complex host interface complicated

host software and adapter firmware and greatly

affected pcrtixmance. One of these adapters, the

D igital Bl Ethernet Network Adapter (DEBNA),

implemented a generic port interface that used

interlocked queues containing a queue entry with a

buffer name that indexed into a buffer descriptor

table (i .e . , an additional level of indirection). In

addition to the firmware complexity, the hardware
was not well suited to a complex port interface.

Another area in which improvements could be
made over previous Ethernet adapters was the

amount of processing performed by the host proces
sor during receive packet filtering, address transla

tion, and buffer copies. Overal l system performance

improves if this processing can be reduced by per

forming part or all of these functions in the adapter.

This difference transforms the adapter from a dumb
adapter (much of the data l ink processing performed

by the host) to an intell igent adapter (much of the

processing performed by the adapter).

The results of our analysis of older E thernet

adapters led us to choose a design that employs

38

a simple host interface, off- loads the host when

ever possible, uses rings instead of queues, and sup

pl ies the address of the buffer d irectly with the

ring entry rather than indirectly through another

data structure.

The design of the adapter was now consistent

with the needs of the new VAX 6000 and VAX 9000

systems. These systems, characterized by increased

host processor speeds, needed increased 1/0 per

formance. The task of the OEMNA team was to fi l l
that need for Ethernet 1/0.

Type of Adapter

The DEMNA product is a store-and-forward adapter,

i . e . , it copies data to and from host memory by way

of temporary storage on the adapter. This data

transmission differs from that of a cut- through

adapter in which data flows d irectly between host

memory and the transmission medium. However,

the DEMNA adapter is actually able to gain some of

the benefits of cut-through on the receive side.

Host Interface

We designed a simple host interface, using rings

instead of queues. Interrupts to the host were kept

to a minimum, from one interrupt per packet at

l ight loads to a fraction of that number under heavy

loads. As seen in Figure 2, the port and the port

driver (host) share the fol lowing data structures,

which reside in host memory:

• Port data block. This structure gives the port the

location of the rings and page tables in host mem

ory and is a repository for error information.

• Command and receive rings. These rings contain

information describing outstanding command

and transmit requests and buffer information for
receive buffers.

• Transmit, receive, and command buffers. These
buffers contain packet data and command data.

These data structures constitute the primary
means of communication and data transfer between

the port and the port driver. Control status registers

(CSRs) are provided for port poll demand registers,

Xt\11 context, and port initialization.

Two rings are used in the host interface: the com

mand ring and the receive ring. Each ring consists

of 1024 bytes of physically contiguous memory, and

each ring contains entries that describe a buffer or a
set of buffer segments (when chaining transmit

buffers). The number of entries i n the receive ring

vbl. 3 No . .) Summer 1991 Digital Tecbllical journal

USER 1

..--- PORT
(LAT, FOR DRIVER
EXAMPLE) r-

USER 2 PACKETS

(DECNET)
G

Design of the DEC IAN controller 400 Adapter

--

-

XMI 0
START/STO
USERS

READ/WRIT
DEFAULTS

p -

E -

TATUS/
OMMAND I N

I-- s
c FO

-

I I
s -COMMAND

TRANSMITS

ETHERNET

DEMNA
PORT

IRECEiVE"l_ I I � RE�EI�ES

�
RECEIVE

USER 3 RING

� BUFFER I..- DATA (MOP) �- DATA

v
BUFFERS

HOST DEMNA

Figure 2 DEMNA Port Interface

is fixed , since each entry points to a single contigu

ous buffer. The size of each transmit ring entry is

variable and is fixed at ini tialization time.

The port and port driver process the entries in

each ring in sequential order, starting with the first

entry. A ring entry can be processed only by its

owner. When the last entry in the ring is reached,

processing starts again with the first entq'.

Host interrupts are minimized by using a ring

release function, which counts the number of ring

entries processed for completion by the port and

the port driver. The port driver counts the number

of completed entries and writes this count to a

completion CSR when it has finished processing all

the completed transmit and receive ring entries.

The port maintains the same count and issues

another interrupt whenever it sees that i ts count

and the count last written by the port driver are dif

ferent. This function ensures that the port driver is

interrupted only when it stops processing the rings
because there is nothing else to process. The port
driver can process mult iple completed transmits
and receives after each interrupt as wel l . Thus, no
spurious interrupts are issued and the number of
interrupts is reduced by processing multiple com

pletions at once.

Adapter Design

The firmware is written in VAX MACRO code. An

alternative was to use MACRO for the transmit and
receive paths and a higher-level language for initial-

Digital 1'echllicaljournal Vol. 3 No. 3 Summer 1991

ization, shutdown, and error handling. However,

this approach was not chosen because it compl i

cates the interface and would have resulted in

firmware size difficulties.

CVAX RAM (used by the CVAX processor exclu

sively) consists of 256 ki lobytes and contains the

firmware and data structures (the firmware is

copied to RAM during self test). Smailer RAIVIs would

have been sl ightly less expensive but would have

complicated the firmware update procedure and

l im ited the abil ity of the firmware to use the large

data structures needed for receive packet filtering.

Shared RAI\11 (shared by the CVAX processor and

the LAl'.JCE chip) consists of another 256 ki lobytes.

This RAI\1 contains the transmit and receive buffers

as well as the LANCE transmit and receive rings.

There is a vast amount of buffering space here, so

the DEMNA device can tolerate a considerable

amount of inattention from the host before being

forced to discard incoming receive packets.
Erasable programmable read-only memory

(EPROM) consists of 128K bytes for diagnostics and
firmware boot code, including a backup copy of
sufficient operational firmware to allow an update
of EEPROM for initial load or subsequent update.

EEPROM consists of 64K bytes for operational

firmware, diagnostic patches, and error history data.

The gate array (data mover) handles the data

move and quadword read/write operations. The

data-move operations transfer buffers between the
host and shared RAI\1 . The quadworcl read/write

39

Network Performance and Adapters

operations are used for control functions, such as
reading ring entries, reading address translation

information, and writing ring status on completion.

Once the firmware initiates a data-move operation,

other work is performed by the firmware while the

data move progresses.

Interrupts are very costly; therefore, we chose to

l imit the number of interrupts f,ielded by the CVAX

processor. A LANCE interrupt costs CVAX interrupt

overhead, plus a LANCE CSR access. plus some nor

mal interrupt overhead to save and restore regis

ters. A data-move interrupt is less costly, but the

firmware can be coded so that the data-move oper

ation is usual ly complete, thus el iminating the need

for the interrupt. Po.l ling is performed for a.l l LANCE

and data-move-related functions, but interrupts are

used for local console 1/0 and error events.

Driver Design

The DEMNA team needed to design a driver that

would be compatible with existing drivers but that

would use a l l the features provided by the adapter.

For VMS systems, this meant using the set of com

mon routines that provide much of the data link

functionality of the driver, but avoiding packet fil

tering. Another goal was to l imit the copying of data

by passing requests d irectly to the adapter.

For ULTRIX systems, the driver runs at a lower

level with respect to packet filtering so it cannot

take advantage of this feature. However, buffer

chaining is used on the transmit side. As a transmit

request traverses the various software layers, it

accumulates buffer segments which the driver has

to concatenate into a transmit frame. To avoid

buffer copies in al l but the extreme and infrequent

cases, the driver then passes up to 11 buffer seg

ments to the adapter.
To al low customer-written drivers for special

applications, we documented the interface to make
it readily available to customers.

Debug Tools

The adapter has a very simple mission in l ife: to

transmit and receive packets. 1b verify operation,

some debug tools are needed . The goal for the

DEMNA team was to provide extensive debug tools

both in the operational firmware and in standalone

user tools. This design would al low debugging and

verification in the development lab and in other,

less-controlled environments. These debug tools

are discussecl further in the Visibil ity section.

40

Implementation

This section describes the implementation of the

DEMNA auapter through its major functional blocks:

• Scheduler

• Port processing

• Command processing

• Transmit task

• Receive task

• Console task

• Monitor task

Scheduler

The schedu ler is a round-robin routine that simply

checks for work, does it, checks for work, does it,

etc. There are no context switches, but some con
text is maintained in registers and shared by a l l rou

tines. The scheduler, when idle, consists of about

18 VAX MACRO instructions. Transmit and receive

tasks are given higher priority by duplicating their

scheduler entry. When not idle, one pass of the

scheduler processes four packets.

Port Processing

Port processing controls adapter initial ization and
shutdown, LANCE initial ization and restart, fatal

adapter error hand ling, gate array error hand ling,

and miscellaneous host interface functions. This

task also handles firmware updates of EEPROM.

Command Processing

The command ring usual ly contains transmit

buffers, which can contain commands for special
functions. These commands are included in the
command ring to al low the port driver to synchro

nize control requests with transmit requests, e .g . ,
user startup and stopping.

Command processing routines are cal led by the
transmit task after the command buffer has been
read from host memory. The commands consist of

user startup (consisting of user context such as pro

tocol type, packet format, physical address to use,

and multicast addresses to enable), user stopping,

read counters, and a set of maintenance commands.

Transmit 'fltSk

The transmit task copies a packet from the host
memory to adapter buffer memory and tel ls the

Vol. J No. 3 Summer 1991 Digital Technical journal

LANCE to transmit it onto the Ethernet (store and

forward). After the LANCE has completed the

request, the firmware writes transmit status to the

command ring entry, signifying completion of the

transmit.

To minimize service time, the code in the trans
mit path was careful ly scrutinized. The number of
checks and branches was minimized for the opti

mized path. The optimized path through the trans
mit code is the 30-bit virtual addressing path, which

is the most used. However, the 40-bit physical

addressing path still results in better throughput
because this path does not require any address

translations, which are timely. The instruction sizes

were shortened when possible, using word instruc
tions instead of longword instructions, to reduce

the amount of instruction prefetch by the CVAX pro

cessor. Routines were placed on quadword bound
aries to maximize cache efficiency. When waiting

for data moves to complete (gett ing the transmit

buffer from host memory) or obtaining address

translation information from the host, the firmware

was designed to perform other functions to increase

the probability that the operation would be per

formed when the firmware needed it.

Receive Task

The receive task has the simple job of handing

received packets to the port driver. This task is com

pl icated by the need to off- load the host of part
of receive processing (including packet filtering,

packet val idation, maintenance of counters, and

processing MOP messages) and to make dupl icates

of packets when more than one user has requested

a copy. It is further complicated by the need to

provide buffering, which the port driver uses to

prevent the driver from supplying large numbers
of buffers. For enhanced p erformance, the firm

ware deals with re<.:eive packets in small groups

(192 bytes) to al low the benefit of cut-through on
larger packets.

Packet filtering is done for the destination
address and for user type, either protocol type for
Ethernet, destination service access point (DSAP)

field for 802, and protocol identifier (PID) value for
802 subnetwork access protocol (SNAP) packets.

Additional filtering is done for users who request
all traffic or all multicast traffic. Filtering is done by

maintaining a 64-bit user mask, which accumulates
the l ist of users who want a copy of the packet
according to the characteristics of the packet and

what each user has requested.

Digital Technical journal Vol. 3 No. 3 Summer 1991

Design of the DEC LANcontroller 400 Adapter

Packet validation consists of length checks for
Ethernet frames (if the user is using a length field

after the protocol type) and for 802 frames. This
saves the driver a l itt le work. Additional ly, users can

request only packets smaller than a selected size;

the adapter d iscards packets that exceed this size.

The cut-through feature adds complexity and

reduces throughput on small packets, but provides

many benefits for larger packets. W11en a packet

larger than 192 bytes is received, the packet filtering

and validation of all but the length is done for the

first segment. This segment is then copied into the

host buffer, and subsequent segments are copied

appropriately. The last segment completes the

packet validation and cyclic redundancy check
(CRC). The difficulty occurs when the packet

val idation fails or an error is detected, because the

packet is discarded and the context for the now

free receive buffer has to be restored. The firmware

elects to save as l ittle context as possible for each

packet and to regenerate buffer context after the

error, i .e . , fetching the ring descriptor anew and
redoing the address translation.

Console Task

The console task accepts and parses console com
mands ancl d isplays the requested data. There are

two means of accessing the console: local and

remote. The local console is a<.:cessed by a terminal

connected directly to the DEMNA adapter. The

remote console is accessed through MOP console

carrier commands directed at the adapter from
another system. A remote console may also be used

to access a DEMNA device on the local system (com

ing in through transmit instead of receive). The

firmware does not d istinguish between transmit or

receive operations from remote consoles. The con
sole block accepts the commands and decodes
them, and the monitor block determines the status.

The monitor block passes this status back to the
console block where it is formatted and displayed
on the screen.

Due to code size limitations in the EEPROM, com
pressed versions of the console screens are stored
in the EEPROM. At initial ization time the screens arc
uncompressed and stored in the RA.J\1. (The screen

compression saved 5 kilobytes in the EEPROM.) To

easily setup and maintain the screens, especial ly
since they often changed during the project, the

screens were set up in separate text files. The fields
in the screen were coded with d ifferent data types,

such as date or longworcl . The screen was then put

41

Network Performance and Adapters

through a PASCAL program to convert it to a VAX

MACRO data structure and compress it.
The local console and the remote console can be

run simultaneously. They have separate input and
output buffers, the same decode and formatting
code, and different input and output methods.

The remote console uses the MOP console car
rier, coming in on transmit or recl:ivc. The com
mand/poll and response/acknowledge commands
are sent by the MOP program, i .e . , either the
network control program (NCP) or a user program
that implements the MOP console carrier. The con
sole code extracts the input characters from the

commaml/poll packet and returns a response/
acknowledge packet with any available data from

the remote console output buffer. When a com
mand has been entirely received, it is decoded and
executed and the response placed in the remote
console output buffer, which is sent back to the
user in response/acknowledge packets.

The local console is a terminal directly con
nected to the DEMNA device and interfaced through
the sse universal asynchronous receiver transmit
ter (UART) . This terminal connection receives and
transmits one character at a time. Characters are

collected into the local console input buffer and
complete commands are parsed and executed .
Response data is placed in the local console output
buffer. The local console uses interrupts to signal
when a character has been typed or when the { jART
is ready to transmit another character. These are the

only interrupts uscd on the module, except for
error interrupts. Since console interrupts are rela

tively infrequent, t hey are less costly than pol l ing.

Monitor Task

The monitor faci lity operates mainly during receive
or transmit. It also runs as a low priority entry
in the scheduler to deal with debugging and veri
fication activities (when debugging firmware is
enabled).

Performance

As stated previously, the primary goal of the DEMNA
adapter was high-speed perform ance, i .e . , this
adapter wou l.d not create a bottleneck when placed

in a system. The major performance metrics we
identified were throughput, service time, latency,
and reliability.

• Throughput is the number of packets or bytes of
packet data that can be transmitted or received
per unit of time.

42

• Service time is the time a packet spends in each
stage along its path from source through host
software and driver, through adapter, over wire,

through adapter, and through driver and host
software to the destination.

• Latency is another measure of service time. It is a
measure of delays encountered by queue depths
of more than one at various points.

• Reliability is measured as the probability of packet
loss under a receive load . I t is also measured as
adapter buffering and host buffer al location
effectiveness. For some protocols, recovery from
packet loss takes a significant amount of time,
and the loss of a packet may be quite noticeable

to a user. Hence, recovery is related to a user's
perception of reliable operation.

The performance goal of the DEMNA team was to
minimize the service time through the adapter to

maximize throughput. This is most critical for smal l
packet sizes. If the service time is greater than the
time it takes to transmit or receive a packet, then
queue depths increase, increasing latency for sub
sequent packets. Small packets are critical because,
obvious.ly, they take less time to transmit or receive.

The speed of the Ethernet wire and the XMI bus
must also be considered. The Ethernet operates at
10 megabits per second. The available bandwidth
into memory and the capacity of the XMI are much
greater; thus, the Ethernet is the l imiting factor. To
maintain maximum throughput, the DEMNA device
must write and read packets to and from host mem

ory at a speed equal to or greater than the Ethernet
wire. If this speed is obtained, then the service time
of the DEMNA adapter must be tess than the time it
takes to transmit or receive one 64-byte (small)
packet to or from the Ethernet wire to maintain
maximum throughput at all packet sizes.

Hardware
The primary hardware factors influencing adapter
performance are CVAX performance, DMA engine
throughput, and bus contention.

The gate array DMA engine can sustain between

1 1 .5 and 13.5 megabytes per second on a VAX 6000
system. When transferring packet data (and atten
dant host ring processing), the firmware can sus
tain about 5.8 megabytes per second. This is the
approximate rate at which the firmware wou ld
deliver a burst of large packets that had been stalled
due to a lack of receive buffers.

Vol. :) No . .3 Summe-r 1991 Digital Te-cbnical journal

The CVAX chip used is the 60-microsecond vari

ant (the same one used in the VAX 6000 Model 310
processor). As seen in Figure 1 , the processor runs

on its own internal COAL bus which has RA.t\1 con

taining firmware and private data structures. Thus

the processor does not contend for the same bus as
the gate array and the LANCE chip. However, the
CVAX processor does touch shared memory and

gate array registers; therefore the possibility of con

tention is significant. Logic analyzer measurements

indicate that about 14 percent of CVAX cycles are

consumed while waiting for access to the shared

memory bus for minimum size packets. For large

packets the consumption is 33 percent, but the

cycles needed are considerably less than the remain

der. The effect on the gate array accounts for

part of the difference between the speeds of 1 1 .5 to
13.5 megabytes per second and of the 5.8 megabytes

per second mentioned above.

Firmware

Throughput is l imited by the Ethernet bandwidth

for packet sizes greater than 88 bytes. The average
packet size on Ethernet is approximately 150 to

450 bytes per packet for a mix of DECnet, LAT, and

cluster traffic. Table 1 represents the throughput
that the host software can see, given sufficient host

computes. These numbers show what might be

expected . Virtual addressing costs some perfor

mance, and receive filtering accounts for most of
the difference between transmit and receive .

It is interesting to look at the number of instruc

tions executed by the CVAX processor for each
receive and transmit packet as the measure of how

Table 1 DEMNA Throughput

Packet

Design of the DEC LAN controller 400 Adapter

much work must be done for each packet. These
instruction counts are for minimum size packets in

virtual address mode and increase sl ightly with
increasing packet sizes.

For a transmit, the number of instructions

required was about 134, consisting of 5 instructions
for work done in the scheduler to determine initial

transmit context, 77 instructions for the data trans
fer from host memory, 18 instructions to get the

LANCE chip to begin transmitting, and 34 instruc

tions to process packet completion and to update
status in the transmit ring entry in host memory.

For a receive, the number of instructions required
was about 160, consisting of 5 instructions for work

clone in the scheduler to determine initial receive

context, 40 instructions to deal with the LAL'\JCE

operations, 20 instructions for packet filtering,

65 instructions for the data transfer to host memory

(including some time spent finding a user and

val idating the packet length), and 30 instructions
for the prefetch of the next receive ring entry.

Some throughput was traded off in the interest of

reducing adapter-added latency. By processing

receive packets in groups of 192 bytes, the latency

contribution for any packet size is much smaller

than it would be if all the packet processing occurs

after the packet has been fu l ly received. Thus the

time between the end of a packet on the wire

and the host interrupt is fairly constant from 64- to
1518-byte packets, 50 to 70 microseconds.

Reliability

Reliability, or probability of loss, is measured by how
large a burst of traffic the adapter can withstand at

M icroseconds
Length Ethernet LANCE Transmit Transmit Receive Receive
(bytes) Maximum Maximum

64 1 4880 1 4662

72 1 3586 1 3404

80 1 2500 1 2345

88 1 1 574 1 1 441

96 1 0775 1 0660

1 1 2 9469 9380

1 28 8445 8374

256 4528 4508

51 2 2349 2344

1 024 1 1 97 1 1 95

1 51 8 81 2 81 2

Digital Technical journal Vol. 3 No. 3 Summer 1991

Virtual Physical Virtual Physical

1 31 81 1 4633 1 2468 1 291 8

1 2592 1 3361 1 2254 1 2830

1 2247 1 2340 1 1 81 3 1 2227

1 1 432 1 1 438 1 1 441 1 1 441

1 0656 1 0658 1 0660 1 0660

9380 9380 9380 9380

8374 8374 8374 8374

4508 4508 4508 4508

2342 2344 2344 2344

1 1 95 1 1 95 1 1 95 1 1 95

81 2 81 2 81 2 81 2

43

Network Performance and Adapters

the maximum receive rate and deliver these pack
ets to the host without losing any. Adapter reliabil
ity was measured at various packet sizes. A burst of

5 seconds without packet loss was considered to be
of " infinite" duration.

Table 2 shows that the DEMNA adapter can sur
vive a significant burst of activity without packet
loss. Such activity is un l ikely, but possible, depend
ing on the appl ication being run and on the net
work configuration.

This testing does not measure how host software
performs bu ffer allocation for a user appl ication or
for the adapter as a whole. For the latter, the DEMNA

adapter accounts for any lack of buffering by the
host by not d iscarding a packet if a buffer is not
immediately ava ilable. Instead, it waits up to three
seconds for the host to supply a buffer.

Visibility

A system user looking at the operation of the net
work sees three areas of complexity: the system
software, the network controller, and the network.
When everything is working well , there is l ittle

need to look at any of these areas except perhaps to
predict future operation (by extrapolating network
util ization or system usage) or to confirm that the
system is indeed running well . When the system is
not running well, visibility into these areas is cru

cial to understanding what is wrong and how to
correct it. The console and monitor facil ities were
built into adapter firmware from the outset; we
knew that the visibility was crucial to adapter
debugging and verification and would later be help

ful to users.

System Operation

The console displays XMI utilization as apportioned
among the XMI devices. This data comes from sam
pling done by the firmware of the "last XMI node
active on the bus." From this, the user can estimate
total XMI u ti l ization.

Table 2 DEMNA Receive Burst To lerance

Packet Burst Burst
Length Virtual Virtual

The console also displays buffer occupancy on
the adapter for transmit and receive, user configura
tion as to protocol type and characteristics, buffer
availabil ity counters, and host interrupt counters.
This data indicates how the system is running, i .e . ,

whether sufficient buffers are allocated to the
device and to each user of the device. These coun
ters also ind icate how much attention the driver is
paying to the adapter. For example, if the system is
not tuned properly, the adapter may be generating
less than normal interrupts (because queuing delays

are affecting the system operation). These queu ing
delays can be seen i n the firmware counters, which
monitor the depth of adapter queues and the abi l ity
of the adapter to give receives to the host, i .e . ,
buffering on the adapter has been used to compen
sate for queuing delays in the host.

Adapter Operation

When the adapter is not malfunctioning, visibil ity

into adapter uti l ization is important. The console
d isplays program counter (PC) sampl ing results for
the firmware, showing how busy the adapter is and

where time is being spent. When looking at the I/O

subsystem as a whole, it is important to know how
much the adapter is contributing to queuing delays,
buffer occupancy, and added latency. This adapter
operation can be seen by looking at how busy the
adapter is and how many buffers it has outstanding.

For adapter failure or problems on the XMI, the
console displays error information which has been
saved in EEPROM . This error data consists of fatal
error context, data transfer or XMI error context,
and results of self-test.

Network Operation

The DEMNA device normally sees all packets on the
wire (exc luding packets less than 64 bytes in length
[runt packets] and col lision fragments). When look
ing at the adapter operation through the console
facil ity, the user sees current network uti l ization

Burst Burst
Physical Physical

(bytes) (packets) (microseconds) (packets) (microseconds)

64 3250 221 661 3843 2621 06

72 51 1 6 381 677 1 1 591 864741

80 991 7 803321 Infinite Infinite

88 Infin ite Infinite Infin ite Infinite

44 Vol. 3 No. 3 Summer 1991 Digital Tecbt1ical jourual

and network error information. For transmit errors,
the console d isplays the number of errors and date

and time of the last occurrence. For receive errors,

the console displays the number of errors, date and
time, source address, and protocol type. Addition

ally, receive errors that are not counted (because

they do not pass receive filtering) are displayed. For

example, error information is d isplayed for a node

generating packets with CRC errors regardless of the

destination of these packets.
The console also provides the command SHOW

NETWORK to d isplay network uti l ization in node

addresses and protocol types. For this command,
the receive firmware calls a monitor facil ity routine
for each packet seen on the wire. This routine main

tains statistics for each source and destination node
address, consisting of the number of packets and

the number of bytes. At three-second intervals, the

console cal ls a monitor rou tine which adds statis

tics over the prior interval to cumulative data for

each node, col lects top nodes and protocol data,

Design of the DEC LAN controller 400 Adapter

and clears the interval data to prepare for the next
three seconds of monitoring. Figure 3 represents a
sample network monitoring display.

Debug Tools

The monitor task provided other debugging func

tions during adapter debugging and internal field

test. These functions are not visibk features in the

finished product. However, they are extensions to

the functionality and i l lustrate the benefits of visi

bil ity into the adapter. A user program, XNA.MON,

was written to access the fol lowing functions.

• Traffic generation. I t is difficult to generate
heavy loads on an adapter, particularly because
of logistics. Other systems are needed with

enough processing power to generate the load .
Using the XNA.!\10N program, only one system

was needed . XNA.!\10N was run on it to direct

other adapters to generate traffic to another

node with a particular packet size at a specified

rate. Since traffic generation could be done

- 1 9 . 1 1 7 - N e t w o r k - 2 1 - A P R - 1 9 9 1 1 1 : 2 9 : 3 8 -

1

2

3

4

5

6

1

2

3

4

5

6
7

KEY:

usecs
Nl
%NI
NISca
MopRC
LAST
Pks/sec
Byt/Pk

3 0 0 0 0 0 2 u s e c s - 2 1 . 6 % N I - - 0 0 : 0 0 : 3 3

U s e r P k s / S e c B y t / P k % N I - C u r P a c k e t s

6 0 - 0 7 N ! S c a 5 7 1 2 1 4 1 0 . 7 % 1 5 0 1 9
6 0 - 0 3 D E C n e t 1 7 7 6 4 5 9 . 4 % 6 3 5 8
6 0 - 0 4 L a t 1 6 7 6 4 1 . 1 % 5 7 6 5
6 0 - 0 2 M o p R C 1 8 8 7 0 . 1 % 6 5 9
8 0 - 4 1 L A S T 7 8 2 0 . 0 % 2 0 6
F E - 0 0 2 2 7 1 0 . 0 % 5 4

N o d e s P k s / S e c B y t / P k % N I - C u r P a c k e t s

1 9 . 1 8 7 1 7 7 6 3 1 9 . 2 % 5 1 7 7
6 3 . 6 3 1 2 5 1 2 4 4 5 . 3 % 6 4 0 2
1 9 . 5 2 1 7 0 3 5 6 5 . 1 % 3 3 2 1
1 9 . 2 0 9 5 5 6 1 5 2 . 8 % 2 2 7 2
1 9 . 1 6 7 6 0 5 5 8 2 . 8 % 2 0 1 2
1 9 . 1 1 7 1 1 2 3 0 0 2 . 8 % 3 2 2 7
6 3 . 6 1 9 1 1 9 2 5 2 2 . 6 % 2 0 7 6

MICROSECONDS
NETWORK INTERCONNECT (TRANSMISSION MEDIUM)
PERCENTAGE OF AVAILABLE BANDWIDTH UTILIZED
NETWORK INTERCONNECT SYSTEM COMMUNICATIONS ARCHITECTURE
MAINTENANCE OPERATIONS PROTOCOL 'REMOTE CONSOLE
LOCAL AREA STORAGE TRANSPORT
PACKETS PER SECOND
BYTES PER PACKET

Figure 3 Network Monitoring Display

Digital Technical journal Vol. 3 No. 3 Summer 1991

1 9 . 7 % N I -
B y t e s (k) % N I - T o t

3 0 4 1 8 . 1 %
4 0 2 1 1 0 . 0 %

3 7 9 1 . 2 %
5 6 0 . 1 %

1 7 0 . 0 %
2 0 0 . 0 %

B y t e s (k) % N I - T o t

3 5 3 0 8 . 8 %

1 5 5 1 4 . 0 %
1 4 1 0 3 . 5 %

1 4 5 5 3 . 6 %

9 8 2 2 . 4 %
8 7 3 2 . 2 %
5 1 4 1 . 3 %

4 5

Network Performance and Adapters

regard less of system state (except for power
on), there was always a good supply of traffic

generators.

• Packet tracing. This function al lowed a node to

scan the receive stream for packets with selected
source and destination addresses and protocol

types. Either the packet header or the entire

packet was saved for matching packets. This
function was used extensively during initial
debugging for validating transmit funct ionality.

Later it was used for val idation of MOP and
related hmctionality by creating trace files on a

known good node. We then ran funct ional

scripts through a test generator, which used the

traffic generator on one node to send a test

packet to the node under test. The command

and the response were traced by the trace node

and the test program collected the trace data and
compared it against known. good data. Packet

tracing was also used to verify packet filtering by

devising a test program that could start up par

ticu lar user configurations and loop back any

packets received .

• Adapter test. The ability to exercise a module
under stress was critical to adapter hardware ver

ification. The functionality in question was the

Ethernet subsystem and the XMI interface

through the gate array. The monitor faci l ity pro

vided this test functional ity by doing MOP loop

back operations to another node while doing

various data transfer operations to host memory.

Data compares were done on completed trans

actions to validate data i ntegrity. The XNAMON
program provided the interface for this function

and the remote display of its results.

• Remote debugger. The access to DEMNA inter
nals al lowed remote adapter memory dumps
and remote inspection of data structures while
the adapter was running.

Conclusion

The DEMNA adapter meets the requirements of

the VAX 6000 ancl VAX 9000 systems. In fact, the per

formance for small packets exceeds the capability

of these systems. For larger packets, Ethernet

bandwidth is the l imiting factor. Our experience
il lustrates some advantages and disadvantages of
choosing a firmware-based design over an interface
implemented entirely in hardware.

46

Advantages of a Firmware-based Design

The advantages of designing an adapter in firmware

are as fol lows:

• The firmware can usually off-load host computes

by doing more pre-processing.

• The firmware can be changed easily (bug fi-"Xes or
changes in functional ity), thus reducing long

term maintenance and support costs. Also,

changes can be made in the field by a firmware
upgrade rather than requiring module rework at
a manufacturing site.

• By designing in the firmware, designers can
avoid software driver complexity and the neces

sity of hardware redesign.

• The firmware can provide powerful debugging
mechanisms and tools.

• The firmware is very flexible. Changes to sup

port hardware problems or additional off- load of
host computes can be considered late in the

design cycle. This may also allow new port archi

tecture and addressing changes for creating new

products.

• Firmware designs al low extensive functionality
for lower product and development cost than a

total hardware design.

• Firmware designs al low the hardware to be

released earlier in the development cycle.

Disadvantages of a Firmware-based
Design
The disadvantages of designing an adapter in firm

ware are:

• The adapter is generally more expensive, consid
ering the cost of a microprocessor subsystem

with enough computes for the job.

• The adapter is slower in terms of latency. Some
appl ications may be more sensitive than others,
given the same throughput, but may have
sl ightly larger service times per packet. The

effect can be viewed in terms of buffer occu
pancy: an adapter with lower latency may u ti

lize, on average, few buffers.

The approach is not feasible for transmiSSIOn
media much faster than Ethernet, because the per
formance requirements of the microprocessor

Vol . .3 No. 3 Summer 1991 Digital Teclmicaljountal

become extreme or the hardware assists for the
microprocessor become too complex and cost ly.

Future Directions
Several characteristics d istinguish future antici

pated system design from current systems (such as
the VAX 6000 and VAX 9000 systems).

• Increased host processor power

• Simpl ified bus design

• Increased r;o bandwidth requirements

Increased host processor speed moves the 1/0

bottleneck from the host to the I!O subsystem. To

supply the I/O needs, the 1/0 subsystem must

provide faster media, e .g . , fiber distributed data

interface (FDDI) in the near term, or multiple con

nections to slower media (such as Ethernet). The

r;o adapters will be expected to provide signifi
cantly greater throughput with a smaller adapter

contribution to latency. The effective performance

of the system will be more sensitive to latency. For

example, an application using a single threaded
commancl/rt:sponse protocol is extremely depen

dent on the amount of service time through the 1/0

subsystem at each encl . As the processing speed

increases, application overhead is reduced and

throughput becomes dominated by the service
time of the adapter and the transmission time.

Faster processors place a greater burden on the

system bus and I!O interface, which necessitates a

simpler bus protocol. This might consist of elimi

nating costly functionality such as byte masking

and interlocks. However, a simpler interface to the

I/0 adapter wil l require considerable change to the

port protocol to ensure its efficiency.
The characteristics needed in future adapters are

as follows:

• Greater throughput. This means more connec
tions to a slower medium, such as a single
adapter supporting multiple Ethernet connec
tions. Or i t means a faster medium. Additional ly,
configurations using Ethernets as point-to-point
l inks will be more common, thus implying a
heavier load on each Ethernet.

• Simpler host interface. This is necessitated by
the simpler bus protocol. Bus overhead should

be minimized, which includes the elimination of

such functional ity as page table access for virtual
address translation. Also, the bus transfer size
used by the adapter should be compatible with

Digital Techuical jour11al Vol. .3 No. 3 Summer 1991

Design of the DEC LAN controller 400 Adapter

the basic data size of the system to avoid cache
thrashing and unnecessary read-modify-write

transactions.

• Reduced latency. The adapter should minimize

its contribution to transmit and receive latency.

This may mean reducing some of the functions

clone by an intell igent adapter on receive, in order

to speed delivery to the host after packet recep

tion is complete. These functions include packet

filtering, handl ing of maintenance operations
packets, length validation, and maintaining coun

ters data. Improving packet filtering by host soft

ware would eliminate the reason for placing this

function on the adapter in the first place.
Filtering in host software is considerably more

d ifficult than in the adapter. The difficulty

comes from the need to deal with extreme user

configurations. The DEMNA is bounded by l imit

ing the users and node addresses. The extreme
cases must stil l be done by host software.

Acknowledgments

The authors would l ike to acknowledge the fol low

ing members of the DEMNA design team: Barbara

Aichinger, Keith Bilafer, Mark Cacciapout i , Don

Dossa, Linda Duffell , Bernie Hall, Jeff Huber, Helen
McGreal , Jonathan Mooty, Dave O'Keefe , David

Oliver, Brian Parr, Art S inger, Andy Stewart, Fred

Templin, Vick-y Triolo, Eel Tul loch, and Don Vi l lani.

General References

DEC LANcontroller 400 Programmer's Guide

(Maynard: Digital Equipment Corporation, Order
No. EK-DEMNA-PG-001 , 1990).

DEC LANcontroller 400 Console User's Guide
(Maynard: Digital Equipment Corporation, Order
No. EK-DEMNA-UG-001 , 1990).

D. Mirchanclani and P Biswas, " Et hernet Perfor

mance of Remote DECwindows App l ications,"
Digital Technical journal, vol . 2, no. 3 (Summer
1990): 84-94.

D. Boggs et a! . , " Measured Capacity of an Ethernet:

Myths and Real ity," Proceedings of SIGCOMM '88
(ACM SIGCOMM, 1988): 222-234.

The Ethernet: A Local Area Network, Data Link

Layer and Physical Layer Specifications, Version 2.0

(Digital Equipment Corporation, Intel Corporation,
and Xerox Corporation, Order No. AA-K759B-TK,

1982).

47

Satish L. Rege I

The Architecture and
Implementation of a
Highperformance FDDI Adapter

Witb tbe advent of fiber distributed data interface (FDDI) tecbnology, Digital saw

the need to define an architecture for a bigh-pe!formance adapter that could trans

mit data 30 times faster than previously built Ethernet adapters. We specified a first

generation FDDI data link layer adapter archit('cture tbat is capable of meeting the

ma.ximum fDDI packet-can:Jiing capacity. The JJt:C FJJD!controller 400 is an imple

mentation of tbis architecture. Tbis adapter acts as an inteJface between Xll11-based

CPUs, such as the l.;t!X 6000 and VAX 9000 series of computers, and an FDD! local

area network.

Fiber distributed data interface (FDDI) is the second

generation local area network (LAN) technology.

FDDI is defined by the American National Standards
Institute (ANSI) FDDI standard and wil l coexist with
Ethernet, the first generation LAN technology.

The architecture and implementation presented

in this paper an: for the DEC FDDicontrol ler 400,
Digital 's high-performance, XJ\11 1-to-FDDI adapter

known as DEMFA. This adapter provides an interface

between an FOOl LAN and Digital 's XMI-bascd CPUs,
presently the VAX 6000 and v�x 9000 series of com
puters u DEMFA implements al l functions at the

physical layer and most functions at the data l ink

layer."

We begin the paper by differentiating between
an architecture and an implementation. Then we

present our project goal and analyze the problems
encountered in meeting this goal . Next we give a
historical perspective of Digital 's LA.t'\J adapters. We
fol low this d iscussion by describing in detail the
architecture and implementation of OEM FA. Final ly,
we close the paper by presenting some results of
performance measurement at the adapter hardware

level.

Adapter Architecture and
Implementation

Before we discuss the DE.\ib\ architecture and i ts
implementation, it is necessary to understand
what is meant by an adaptl'r architecture and an

48

implementation of that architecture. An adapter

architecture specifies a set of functions and the
method of executing these functions. An imple
mentation that incorporates a l l of these functions
and conforms to the method of executing these

functions becomes a member of the adapter archi

tecture family. Thus, for a given architecture, many
implementations are possible.

To grasp the concept presented in the previous

paragraph, consider the VAX CPU architecture. This
architecture defines the instruction set, which is

composed of a set of arithmetic, logical , and other
functions, and a format for the instruction set that a
processor shou ld implement to be classified as a
VAX compu ter. Examples of VAX implementations

are the VAX 11/780 and the VAX 9000 compmers,

which both conform to the VAX CPU architecture.

Our Goal and the Problem Definition
Our goal was to define an architecture for an FDDI

adapter that meets the ultimate performance goal
of transmitting approximately 450,000 packets per

second (packets/s). This goal is considered ul timate
because 450,000 packets/s is the maximum packet

carrying capacity of FDDI. Note that this transmis

sion rate is approximately 30 times greater than that
of Ethernet, which can transmit approximately
15,000 packets/s.

Before ddining the problem, the basic properties
of XMI and FDDI must be understood. XMI is a

Vol. 3 No. 3 Summer 1991 Digital Tecbnicaljou,-,wl

The Architecture and Implementation of a High-performance Adapter

64-bit -wide paral lel bus that can sustain a 100-
megabyte-per-second (M B/s) bandwidth for multi
ple interfaces.' Each interface attached to the XMI
bus is referred to as a commander when it requests

data or a responder when it del ivers data. XMI is an
interconnect that can have transactions from sev
eral commanders and responders in progress simul
taneously.

FDDI is a packet-oriented serial bus that operates
using the token ring protocol and has a bandwidth
of 100 megabits per second (Mb/s) -'' FODI is capable

of transmitting packets as small as 28 bytes, which

take 2.24 microseconds to transmit. Therefore,
FDOI can carry approximately 450,000 minimum

size packets/s. The largest packet that FOOl can
carry is 4508 bytes. The ANSI/IEEE 8025 standard

defines the FOOl operation; Digital has developed

its own implementation of the FDDI base technol
ogy as a superset of the ANSI standard. ·'

Our problem was to architect an adapter that
could interface XMI, i .e . , a parallel high-bandwidth

CPU bus for VA,'\ computers, to a serial fiber-optic
networking bus. To avoid being the bottleneck in a

system, such an adapter must be able to transmit or

receive 450,000 packets/s.
ANSI defines the protocol for interfacing an

adapter to an FODI LAN." But we had to define the
protocol between the adapter and the VMS and
ULTRJX operating systems used by most VAX com

puters. Thus, solving the problem required us to

architect a data I ink layer adapter that would satisfy
both protocols and meet the FODI maximum packet
transfer capabil ity.

Historical Perspective

The computer industry has built many LAN
adapters since the inception of Ethernet ten years

ago. The first LAN adapter built by Digital was the

UNIBUS-to-NI adapter (UNA). (NI is Digital's alias for
Ethernet.) The D igital Ethernet-to-XMI network
adapter, known as DEMNA, is Digital's most recent
Ethernet adapter 7

Let us choose the maximum throughput rate

expressed in packets per second as a performance

metric for LAN adapters. The historical perspective

shows that the first adapter to meet the Ethernet
packet -carrying capacity is the OE:\1NA. Therefore ,

it took approximately eight years and six genera

tions for an Ethernet adapter to achieve this

throughput rate. Consequently, many designers

thought that our goal of meeting the ultimate FDOI

packet -carrying capacity was impossible.

But the DEMFA archi tecture, a first generation

FODI data l ink layer adapter architecture, can meet

the maximum FODI packet-carrying capacity. In
this sense, the DEMFA architecture is u l timate.

Traditional Adapter Architectures

In this section, we analyze the trad itional adapter

architecture and show that by using this architec

ture we could not meet our performance goal.

Figu re 1 is a block d iagram of a traditional adapter,
e.g. , DEMNA. In such a design, a CPU in the adapter

operates on every transmitted and received packet.

Thus, using this traditional architecture to build an

ultimate FDDI adapter would require a CPU capable
of hand I ing 450,000 packets/s. To predict the per

formance of such a CPU, we extrapolated from the
performance data of the CPU used in DE.\1 :'-IA .' This

traditional adapter can handle approximately
15,000 packets/s using a CPU rated at 3 VAX units of

performance (VUPs).

If we assume a linear model to extrapolate the

performance of a CPU from DEMNA to OE:'\·11-"A, an

ADAPTER ADAPTER 1---- MICROPROCESSOR

� HOST BUS � I NTERFACE
HOST DMA
ENGINE

MICROPROCESSOR

BUFFER
MEMORY

MEMORY

LAN DMA 1-ENGINE

Figure 1 Block Diagram of a Traditional Adapter

Digital Technical journal Vol. 3 No. 3 Sttmme1· f991

LAN LAN
INTERFACE

49

Network Performance and Adapters

ultimate FDDI adapter would require at kast a
90-VUP CPU . Such a CPU was neither available nor

cost-effective tor timely shipment of our adapter.

Besides, i t would be extravagant to usc a 90-VUP
CPU in an adapter whose host CP may have a per

formance as low as 3 to 4 VUPs. Therefore, we

looked for a different solution.

DEMFA Architecture

The DEMFA architecture is characterized by the fol
lowing specifications for functionality and the
means to achieve this functionality:

• As mentioned earlier, the DEMFA architecture

implements a l l functions at the physical layer

and a major subset of the functions at the data

l ink layer.

• The architecture requires that this functionality
be implemented in pipel ined stages, which are

used to receive and transmit packets over the
FDDI ring without CPU interference.

• The DEMFA architecture specifies a ring interface

for communicating between the pipel ined
stages. Rings operate as queues that al low buffer

ing between pipel inecl stages, enabling these
stages to proceed in an asynchronous fashion.

• The architecture requires a packet-filtering

capabi l ity in the pipel ined stage nearest to the
r:oor ring; this capability helps to minimize

adapter and host resource util ization .

• The architecture specifies the DEMFA port,

which minimizes the information transfer

required to interact with the host operating

system. This interaction takes place during both
initial ization and the normal operation of receiv
ing and transmitting packets.

In the fol lowing sections, we daborate on d ifferent
features of the DEMFA architecture.

Pipelined Architecture witb No CPU
Interference

Once we determined that the traditional architec

ture of a CPU processing the packets could not meet

our performance goal, we began to investigate

alternative architectures. The requirement was to
either process one receive packet or queue one

transmit packet in a time period less than or equal
to the time it takes to transmit on an FDDI ring.

50

Thus, the device we architected must process

2R-byte packets in less than 2 .24 microseconds. A

lit tle thought will show that if we are able to meet

the requirements tor processing smal l packets at
the FDDI bandwidth, then the requirements for

larger packets can be easily met.

Our final choice was a three-stage pipel ine

approach which broke clown the complexity of

implementation while meeting our performance

goal . As shown in F igure 2, the three stages of the

p ipeline in the adapter are the FDDI corner and
parser (FCI') stage, the ring entry mover (REM)

stage, and the host protocol decoder (HPD) stage.

Figure 2 also shows two other functions required
of the adapter: the buffering of packets, which

requ ires a memory cal led the p acket buffer mem

ory (PI3M) and a memory interface called the packet
memory interface (PM!); and the local inte l l igence,
also called the adapter manager (A.\1).

DEMFA Functions

This section presents brief descriptions of the

DEMFA functions and the pipelined stages in which

these functions are performed. This, according

to our definition, is the DEMFA architecture. A later

section, One Implementation of the DE!'vii'J\ Archi

tecture, describes an implementation in detail.
The FCP stage converts serial photons on the

FDDI ring into packets and then writes the packets

into PBM lon�:,>words, 32 bits at a time. The parser

implements the logical l ink control (LLC) filtering
functionality. This stage is also responsible for cap

turing the token on the FDDI ring, transmitting

packets, and implementing the physical layer, e .g . ,
media access control (MAC), functionality required

by the FDDI standard.

The REM stage is responsible for distributing
packets received over the FDDI ring to the host
computer and to the AM. This stage also collects the
packets from the host and the AM to queue for FDDI

transmission.
The HPD stage interfaces with the XMI bus to

move received packets from PBM to the host mem

ory and to move transmit packets from the host

memory to the PBM.
The PBM stores the packets received over the

FDDI ring and the packets to be transmitted over

the FDDI ring. It also stores the control structures
required for accessing these packets. The PM! arbi

trates the requests made by the three pipel ined
stages and the A.\1 to access the PBM.

Vol. 3 Nv. .3 Summer 1991 Digital Techttical]ournal

The Architecture and Implementation of a High-performance Adapter

PACKET
BUFFER
MEMORY

I MEMORY

I SUBSYSTEM

PMI BUS
PACKET
MEMORY
INTERFACE

I I I I
RMC BUS

RING ENTRY
MOVER STAGE

FOOl CORNER
AND
PARSER STAGE

FOOl
RING

L _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ PACKE2.._P�ELIN':._J

HPD BUS ADAPTER
MANAGER

I
I I I I

MICROPROCESSOR
SUBSYSTEM

� :
I L..:::_j I
[_ _ _ _ _ _ _ _ j

Figure 2 DEMFA Block Diagram

The AM implements the functional it ies of self

test and initialization in the adapter and also a sub

set of the SMT function required by the ANSI FOOl
specification.' The adapter manager performs no

function in either the receipt or transmission of

individual packets to the host.
We use ring interfaces to communicate within

the adapter and between the adapter and the host.

These interfaces are described in detail immedi

ately fol lowing the next section.

Performance Constraints on the Pipelined
Stages

Consider the three pipel ined stages and their ring
interfaces. At any t ime, the three independent
stages are processing different packets. Thus, if the

HPO stage is processing received packet 0, the REM

stage may be working on received packet 4 and the
FCP on received packet 7. Note that packets 1, 2 , and

3 wait on a ring between the REM stage and the HPO
stage. Similarly packets 5 and 6 wait on a ring
between the FCP stage and the REM stage. The PBM

Digital Technical journal Vol. 3 No. 3 Summer 1991

must have enough bandwidth to service the three

stages. It also must service them with low latency

so that the first-in, first-out (FIFO) buffers in the

FCP stage do not overflow.

By d ividing the processing of a packet over the
three stages and the ring interfaces used to queue

packets between these stages, we reduced the

complexity of the total adapter functional ity. Any

implementation of this architecture specification
would consist of three loosely coupled designs that
use ring interfaces to communicate with one
another.

Each stage must process a packet in less time

than it takes to transmit the packet on the FOOl
ring. As we mentioned previously, this transmission
time is 2 .24 microseconds for the smallest packet. A

larger packet may take longer to process than a

small packet, but such a packet also takes longer to

transmit on the FOOl ring.

Thus, to meet our performance goal, we archi
tected a three-stage pipeline implementation, with

each stage meeting a packet-processing time

5 1

Network Performance and Adapters

dependent upon the packet size. In addition, our

architecture specified a PBM with sufficient

memory bandwidth to service the asynchronous

requests from the three stages with minimal

latency.

Ring Interface-The Core of the DEMFA
Architecture

The ring interface forms the core of the DEMFA
architecture. An interface is necessary to exchange

data between the adapter and the host computer

and also between the different stages and func

tional units of the adapter. Such an interface usual ly

consists of a data structure and a protocol for com

munication. We evaluated various data structures,

including a l inked l ist or queue data structure, and

found that a ring data structure is efficient to

manipulate and would be easy to implement in

state machines, if desirable.

Implementation of Ring Structures Ring struc
ture implementation requires a set of consecutive

memory addresses, as shown in Figure 3. The ring

begin pointer and the ring end pointer define the

beginning and end of a ring. Two entities, the trans
mitter and the receiver, interface with a ring to

exchange data. The transmitter interface delivers
data to the receiver interface using the ring struc

ture. This data resides in memory that is managed
by one of the two interfaces. If the transmitter inter

face manages the memory, the ring is called a trans
mit ring. If the receiver interface manages the

memory, the ring is called a receive ring.

RING OWNERSHIP ONE ENTRY
BEGIN I BIT IN THE RING
POINTER _ ,.....,4--------� � BUFFER ADDRESS ,. II BUFFER I

AND OTHER FI ELDS

TRANSMITTER
INTERFACE RING

RECEIVER
INTERFACE

52

RING
END
POINTER ___.._ _______ __,

Figure 3 Ring and Ring Interfaces

Rings are divided into entries that consist of sev
eral bytes each; the number of bytes in an entry is

an integral mult iple of longwords. A ring, in turn,
must contain an integral number of entries. The

entry size and the number of entries in a ring deter

mine the ring size. We chose an entry size that is a

power of two in bytes and the number of ring

entries to be d ivisible by two, as wel l . These
choices helped to simpl ify the hardware implemen
tation used to peruse these rings.

Each entry consists of

• An ownership bit, which indicates whether the

transmitter interface or the receiver interface

owns the entry

• Ruffer pointers, which point to transmitted or

received data

• A buffer descriptor, which contains the length of

the buffers, and status and error fields

The definitions of these fields in an entry and the
rules for using the information in these fields con

stitute the ring protocol .

Only the interface that owns an entry has the

right to use a l l the information in that entry. This
right includes using the buffer pointers to operate

on data in the buffers. Both interfaces have the right

to read the ownership bit, but only the interface

with ownership may write this bit.

The two interfaces can exchange entries by tog
gl ing the ownership bit. After toggl ing this bit, the

transmitter and receiver interfaces need to prod

each other to indicate that the ownership bit has
be<:n toggled. This is accomplished using two hard

wired Boolean values, by mems of an interrupt, or

by writing a single-bit r<:gister. Hardwired Boolean
values are used when both the transmitter and the

r<:ceiver are on the adapter. Either the interrupt
scheme or the method of writing a single-bit regis
ter is used when the transmitter and receiver con
verse over an external bus, e .g . , an XMI bus.

The word "signal" is used henceforth to repre
sent the prodding of one interface by the other.

A transmitter interface uses "transmit done" to sig
nal the receiver interface that data has been trans
mitted. A receiver interface uses " receive done"
to signal the transmitter interface that the data has

been received. Note that we have defined the
DD1b\ port protocol in such a way that the number
of interrupts used to signal the host across XMI is
minimized to reduce the host performance degra

dation caused by interrupts.

Vi!/. 3 No. 3 Summer 1991 Digital Technicalj(mrnal

The Architecture and Implementation of a High-performance Adapter

The unit of data exchanged between the transmit

ter inte::rface and the receiver interface is a packet. A
packet may he written in a single buffer if the packet
is small or over multiple buffers if the packet is large.
In this paper, we use the term buffer to refer generi

cal ly to buffers in the adapter or in the host. The
buffers in the adapter are always 512 bytes in size

and , whe::n referred to specifical ly, are ca l led pages.

The buffers in the host may be of d ifferent sizes.

An exchange of data requires single or multiple
buffers, depending upon the packet and buffer
sizes. One field of two bits in the buffer descriptor is

used to designate the beginning and end of packet.
These bits are cal led the start of a packet (SOP) and

the end of a packet (EOP). Thus, for a one-buffer

packet both the SOP and the EOP are asserted . For a

multiple-buffer packet, the first buffer has the SOP

asserted, the midd le buffers have both the SOP and
the EOP deasserted, and the last buffer has the EOP
asserted . The buffer descriptor also contains fields

that we do not describe in this paper.

Data Exchange on a Transmit Ring Data exchange

between a transmitter interface and a receiver
interface is accomplished in a similar manner on

both transmit and receive rings. Therefore, we d is
cuss the exchange in detai l for a transmit ring; for a
receive ring, we note only the dissimilarities.

The events that occur during the data exchange

on a transmit ring are shown in Figure 4. The pro
cess is as fol lows. The transmitter interface man

ages the memory used to exchange data and has
two pointers to the ring entries, i .e . , the fil l pointer

and the transmitter free pointer. The transmit ter
interface uses the fi l l pointer to deliver data to the
receiver interface. The transmitter interface uses
the transmitter free pointer to recover and manage

the buffers freed by the receiver interface. The
receiver interface uses only one pointer, i .e . , the
receive pointer, which points to the next entry that
the receiver interface interrogates to receive data.

To understand how data is transmitted , assume
that the pointers move from top to bottom, as
shown in Figure 4. Initial ly, all the pointers desig
nate the location indicated by the begin pointer.

A transmitter that has data to transmit to a
receiver uses the entry indicated by the fi l l pointer.
First, the transmitter verifies that i t owns the entry

by checking the ownership bit. Second, the trans

mitter writes the buffer address and the remain ing
fields in the entry. In the case of a single buffer

Digital Techt�:ica/]our11al Vol. 3 No. 3 Summer 1991

packet, the transmitter interface writes a single
entry and then toggles the ownership bit and sig

nals the receiver interface.
For multiple buffers, the transmitter interface

increments the fil l pointer and repeats the two

steps described in the previous paragraph to write

al l the buffer addresses and the length and status
information. Then the transmitter interface toggles

the ownership bits of a l l later entries of the mu lti
ple buffers before toggling the ownership bit of the
first entry. This protocol preserves the atomicity of
the packet transfer between the transmitter and

RING BEGIN
POINTER .._

OWNERSHIP BIT
£
0 ENTRY
0 ENTRY

TRANSMITTER -
FREE POINTER

TRANSMITTER
INTERFACE

0
0
0
0
0

:

- r
ADDRESSES
OF FREE

/
BUFFERS

RECEIVER
INTERFACE

1 � RECEIVE
1

FILL 1
\

POINTER

ADDRESSES
OF FILLED
BUFFERS

POINTER
-

RING END
POINTER

-

RING BEGIN
POINTER -

ADDRESSES
OF FILLED l
BUFFERS \

TRANSMITTER
INTERFACE

FILL jjj
POINTER I ADDRESSES
OF FREE
BUFFERS

RING END
POINTER

-

KEY:

0
0
0
0

TRANSMIT RING

1 ENTRY
1 ENTRY
1 :

-
f-

1

1

1

0
0
0
0
1 r-
1

1

RECEIVE RING

0 THE TRANSMITTER OWNS THE ENTRY
1 THE RECEIVER OWNS THE ENTRY

RECEIVE
POINTER

RECEIVER
INTERFACE

RECEIVER
FREE
POINTER

Note thai the pointers move in a downward direction.

Figure 4 Data Exchange on Transmit and
Receive Rings

53

Network Performance and Adapters

receiver interface�. Then the transmitter interface

signals the receiver interface that a packet i� avail

able on the transmit ring. This signal alerts the

receiver interface, which then examines the entry

pointed to by the receive pointer. The receiver inter

face operates on the entry data if it owns the entry.

The receiver interface returns the entries to the
transmitter interface by toggl ing the ownership

bits and then signals receipt of data to indicate the

return of the entries (and hence the free buffers).

Note that there is no need to return these free

buffers in a packet, atomic fashion. The transmitter

interface use� the transmitter free pointer to exam

ine the ownership bits in the entry and to reclaim

the buffers.
The interfaces operate asynchronously, since each

one can transmit or receive data at its own speed. If
the transmitter interface can transmit faster than the

receiver interface is able to receive, the transmit ring

fil ls up. Under such circumstances, the receiver

interface owns al l the entries in a transmit ring, the

fil l pointer equals the transmitter free pointer, and

data transmission stops. Conversely, if the receiver

interface is faster than the transmitter interface, the

transmit ring will be nearly empty. In this case, the
transmitter free pointer and the receive pointer are

almost always equal.

Note the fol lowing invariants that apply to the
pointers when data is exchanged on a transmit ring:

the fil l pointer cannot pass the transmitter free

pointer; the transmitter free pointer cannot pass

the receive pointer; and the receive pointer cannot

pass the fil l pointer.

Data Exchange on a Receive Ring As also shown

in Figure 4, the operation of data exchange on a
receive ring is similar to that operation on the trans

mit ring, with the following differences. The

receiver interface manages the memory used for

exchanging data. Consequently, the receiver inter
face has two pointers, the receiver free pointer and

the receive pointer, and the transmitter interface

has only one pointer, the fill pointer.

Table 1 shows the various DEMFA rings and the

transmitters and receivers that interface with each

ring.

Table 1 DEMFA Rings and Their Transm itter and Receiver I nterfaces

Rings Transmitter

Rings in Packet Buffer Memory

RMC Receive Ring FDDI Corner
and Parser Stage

RMC Transmit Ring Ring Entry
Mover Stage

HPD Receive Ring Host Protocol
Decoder Stage

HPD Transmit Ring Ring Entry
Mover Stage

AM Receive Ring Adapter
Manager

AM Transmit Ring Ring Entry
Mover Stage

Rings in Host Memory

Host Receive Ring Host Protocol
Decoder Stage

Host Transmit Ring Host

Command Ring Host
(Transmit Ring)

Unso l icited Ring1 Adapter
(Receive Ring)

54

Receiver

Ring Entry
Mover Stage

FDDI Corner
and Parser Stage

Ring Entry
Mover Stage

Host Protocol
Decoder Stage

Ring Entry
Mover Stage

Adapter
Manager

Host

Host Protocol
Decoder Stage

Adapter
Manager

Host
Manager

Remarks

Contains data that origi nated on the FDDI ring.

Contains data that origi nated at the host or
the AM, desti ned for the FDDI ring.

Contains data that originated at the host,
destined for the FDDI ring.

Contains data that originated at the FDDI ring,
desti ned for the host.

Contains data that originated at the AM,
desti ned for the FDDI ring or the host.

Contains data that originated at the FDDI ring,
destined for the AM.

Contains data that originated at the FDDI ri ng
or the AM, destined for the host.

Contains data that origi nated at the host,
destined for the FDDI ring.

Contains commands that origi nated at the
host for the AM; note that the AM replies in
the same ring.

Contains unsol icited messages from the AM
to the host.

Vol. 3 Nu. 3 Summer 1991 Digit(l/ Technical journal

The Architecture and Implementation of a High-performance Adapter

Subsystem Level Functionality
The basic functions that an FOOl LAN adapter i s
required to perform are receiving and transmitting

packets over the FODI ring. The adapter must be

able to establish and maintain connection to the
FOOl network. The connection management (CMT)

protocol, a subset of the station management (SMT)

protocol, specifies the rules for this connection."
The implementation of the complex CMT algo

rithm in an adapter requires an intel l igent compo
nent, such as a microprocessor, that can receive,

interpret, and transmit packets. Note that the num

ber of CMT packets that flow over the FOOl ring con

stitutes only a small fraction of the normal traffic .
Therefore, a low-performance CPU i s adequate to

implement connection management. The CPU in
the OEMFA device is cal led the adapter manager.

The packets in the receive stream that originated

on the l·DDI ring and are addressed to this host or
adapter (together called the node) can take one of
the fol lowing paths:

• Packets not addressed to this node are for

warded over the FODI ring.

• Packets addressed to this node are del ivered to
the host computer.

• Packets addressed to this node are del ivered to
the A.i\1.

The delivery of packets to the host computer
implies that the adapter has a pointer to a free mem
ory buffer in which to deposit the received packet.

The OEMFA port, described in the next section,

specifies the ru les for extracting free buffer point

ers from the host memory.

For each packet that the host needs to transmit,

the adapter must know the buffer address or

addresses and the extent of each buffer. The OEMFA

port defines the method to exchange this buffer

information. In addition, the host and the adapter
microprocessor must be able to exchange informa
tion. The OEMFA port defines the protocol for this

communication also.

DEMFA Port

The OEMFA port specifies the data structure and

protocol used for communication between the
adapter and the host computer. Rather than invent a
new protocol, we modified the OEMNA port specifi

cation.' The data structure used to pass informa
tion between the host and the adapter is a ring

Digital Technical journal Vol. 3 No. 3 Summer 1991

structure. Such structures are more efficient to tra

verse than queue structures.

The OEMFA port defines the four separate host

rings listed in Table 1 :

• The host receive ring, which contains pointers

to free buffers into which a packet received over

the network can be deposited

• The host transmit ring, which contains point

ers to filled buffers from which packets are
removed and transmitted over the FODI ring by

the adapter

• The host command ring, which sends com

mands to the A.i\1

• The unsolicited ring, which the AJ"\-1 uses to initi

ate communication with the host CPU

By using fou r host rings, we were able to differen

tiate between the fast and frequent data movement

to and from the FODI ring and the comparatively
slow and infrequent data movement required for.

communication with the A.i"\-1.

One Implementation of the DEMFA
Architecture

Previous sections specified the OEMFA architecture.

The remainder of this paper describes an implemen

tation of the OEMFA architecture. In the fol lowing

sections, we present details of the implementation

for the packet buffer memory and the packet mem

ory interface; the three p ipel ined stages, FCP, REM

and HPO; and the adapter manager.

Packet Buffer Memory and Packet
Memory Interface

The packet buffer memory stores the data received
over the FODI ring before del ivering this data to the

host. The PBM also stores data from the host before
transmitting over the FODI ring.

PBM consists of two memories: the packet buffer
data memory and the packet buffer ring memory.
Virtual ly, the packet buffer data memory d ivides
into seven areas-one used by the AM and three
each for data reception and data transmission to
and from the three external interfaces. These three

interfaces are the FCP stage, the HPO stage, and the

A.i\1 . The areas are accessed and managed by the six
rings resid ing in the packet buffer ring memory and

l isted in Table 1 . Note that the division is consid

ered virtual because the physical memory locations

of the areas change over time.

5 5

Network Performance and Adapters

The three pipelined stages and the memory

refresh circuitry use the packet memory inter

face (PM!) to access PBM. The PM! arbitrates and

prioritizes the requests for memory access from

these four requesters. Physical ly, the PM! has three

interfaces: the FCJ> stage, the REM stage, and the
1-IPO stage. Virtual ly, the PMI has four interfaces; the
1-IPO interface multiplexes traffic from both the

host and the adapter manager. The PMI also has the
functionality to refresh the dynamic memory and

to implement a synchronizer between the SO
nanosecond FOOl clock and the 64-nanosecond

XMI clock.

Al l interfaces request access to the memory by

invoking a request/grant protocol. Some accesses

are longword (4 -byte) transactions that require

one to two memory cycles; others are hexaword

(32-byte) transactions and require a burst of mem

ory cycles.

The interfaces have the fol lowing priorities: (1)
refresh memory circuitry, (2) the REM stage, (3) the

FCP stage, and (4) the HPO stage. The refresh mem
ory circuitry has the highest priority because data

loss in the dynamic memory is disastrous. Also the

refresh circuitry makes a request once every 5 to 10
microseconds, thus ensuring that the lower priority

requesters always have access to the memory. The
REM has the second highest priority because it

always requests one longword, which requires one

memory cycle. Once the REM receives data, by

design it waits at least two cycles before making the

next request. Thus, the REM does not monopolize
the memory, and the FCP can always get its requests

serviced. The FCP stage requires guaranteed mem

ory bandwidth with small latency to avoid an over
flow or underflow condition in its FIFOs. Final ly,

KEY:

FOX
CDC_R
CDC_T
ELM
MAC
RMC

FIBER·OPTIC TRANSCEIVER
CLOCK AND DATA CONVERSION RECEIVER
CLOCK AND DATA CONVERSION TRANSMITIER
ELASTICITY BUFFER AND LINK MANAGEMENT
MEDIA ACCESS CONTROL
RING MEMORY CONTROLLER

the HPO interface has the lowest priority because
no data loss occurs if memory access is denied for a

theoretically infinite amount of time. Our adapter
design has mechanisms that guarantee memory
access to the HPO.

FDDI Corner and Parser Stage

The FCP stage, i l lustrated in Figure 5, provides the

interface between the FODI ring and the packet

buffer memory. This stage can receive or trans

mit the smal lest packet in 2 .24 microseconds, as

required by our performance constraints.
The receive stream in this stage converts the

incoming stream of photons from the FDDI ring into

a serial bit stream using the fiber-optic transceiver

(FOX) chip. The clock and data conversion chip

then recovers the clock and converts the incoming

code from 5 to 4 bits. The MAC chip converts this

electronic serial bit stream to a byte stream. The

MAC chip implements a superset of the ANSI MAC

standard." Digital has a specific implementation of

the MAC chip . ' The ring memory controller (RMC)

interfaces with the byte-wide stream from the MAC,

converts the bytes into 32-bit words, and writes

these words to the PBM, using the RMC receive ring

and the ring protocol.
The transmit stream accesses a packet from

the PBM, waits for the token on the FOOl ring, and
transmits the packet as a stream of photons. This

stage can generate and append 16 bytes of cyclic
redundancy code (CRC) to every packet before

transmitting.
The parser component of this stage interfaces

with the RMC bus to generate a forwarding vector
that has a variety of information including the data

l ink user identity and the destination of the packet,

FIBER I N

ELM

FIBER OUT

Figure 5 FDDI Corner and Parser Stage

56 Vol. 3 No. 3 Summer 1991 Digital Technical journal

The Architecture and Implementation of a High-performance Adapter

i .e . , the host or the AM . The parser extracts packet

headers from the RL\1C bus and operates on the FOOl

and the LLC parts of the packet headers. The parser

then processes this information in real time, using a
content-addressable memory (CAM) that stores the
profiles of data link and other users. As a resu lt, the
parser generates a forwarding vector that contains

the destination address of either the host user or
the AM user. The forwarding vector destination

field is given a "d iscard" value, if the packet header
does not match any user profile. Note that the for

warding vector is a part of the buffer descriptor
field in the RMC receive ring.

Ring Entry Mover Stage

The ring entry mover stage performs four major
functions: (1) moving filled packets from receive
rings to transmit rings, (2) returning free packets

from transmit rings to receive rings, (3) managing
buffers, and (4) collecting statistics. Figure 6 shows
the various rings, the ring entry mover, and the

movement of fil led and free packets.
The REM moves fil led packets from receive rings

to transmit rings by copying pointers rather than
copying data. (Copying pointers is a much faster
operation than data copy.) Note in Figure 6 that for

a given interface, no fil led packet moves from its

receive ring to its transmit ring. For example, no
filled packet moves from the RMC receive ring to

the RMC transmit ring. Also, in this design there is
no need for a path from the HPO receive ring to the

Al\1 transmit ring.

A second function performed by the REM stage is
to return free packets from th<.: transmit rings to the

proper receive rings. Transmit rings point to free
packets after the receiver interface has consumed

RING ENTRY MOVER

HPD
INTERFACE

KEY:

TO

FROM

RMC RECEIVE
RING

HPD RECEIVE
RING

AM RECEIVE
R I NG

RMC
TRANSMIT
RING

NO

YES

YES

H P D HOST PROTOCOL DECODER
RMC RING MEMORY CONTROLLER
AM ADAPTER MANAGER

HPD
TRANSMIT
RING

YES

NO

YES

AM
TRANSMIT
RING

YES

NO (BY DESIGN)

NO

RMC
INTERFACE

Figure 6 Movement of Filled Packets ey the Ring Entry Mover

Digital Technical Journal Vol. 3 No. 3 Summ&r 1991 57

Network Performance and Adapters

the information in the packet. The REM, which is a

transmitter interface on al l transmit rings in the

PBM, owns these buffers after the appropriate

receiver interface toggles the ownership bit. The

REM returns the buffers to the original receive ring
by using information in the color field , a subset of

the buffer descriptor field . The color field contains

color information that designates the receive ring

to which the buffers belong. This color information
is written into the buffer descriptors of the free

buffers during initial ization. Note that during ini

tial ization, the adapter free buffers in the PllM are

al located to the three receive rings with which the

REM interfaces.
The REM also performs buffer resource manage

ment. Note that a reserved pool of buffers exists for

traffic arriving over the FDDI ring. This FDDI traffic

has two destinations, namely the host CPU and the

adapter manager. To ensure that one destination
does not monopolize the pool of buffers, the pool

is divided into two parts: host allocation and A.VI
allocation. The Rl�M del ivers no more than the allo

cated number of buffers to one destination.

The fourth major function that the REM performs

is to collect statistics. The REM col lects statistics in
discard counters tor packets that cannot be del iv
ered clue to lack of resources. The REM interrupts

the AIVI when these counters are half fu l l . The AM
reads, processes, and stores these counters for

,.....- RECEIVE PIPELINE

I
FETCH AND DATA

- DECODE HOST - MOVER w RECEIVE u STAGE <(ENTRY STAGE lL a: I w f--z -
(f) "t :::J a:l
� FETCH AND DATA

DECODE HOST X - r--- MOVER
TRANSMIT
ENTRY STAGE

STAGE

statistical purposes. The A.i\1 read operation resets
these counters. There are a number of other coun

ters in REM.

Host Protocol Decoder Stage

The host protocol decoder interfaces with the X..\11
bus, fetches and interprets entries from the host

receive and transmit rings, and moves data between

the host and the PBiVI . This stage also acts as a gateway

for the AM to get to the host memory or to the PBM.

Figure 7 is a block diagram of the HPD stage. The

receive and transmit pipelines store and retrieve
receive and transmit data from the host memory.

The two pipelines work in parallel. We now explain
the operation of the receive pipel ine in detail . The

transmit pipel ine operates in a similar manner;

thus, we highlight only the d ifferences.

HPD Receive Pipeline The receive pipel ine has

three stages: (1) the fetch and decode host receive
entry stage, (2) the data mover stage, and (3) the

receive buffer descriptor write stage . Most pipe

l ines work in a lockstep fashion; that is, each
stage takes the same amount of time to process

input. In our design, the processing time varies for

each stage in the pipeline. For example the data
mover stage will take a much longer time to trans

fer 4500-byte packets than to transfer 100-byte
packets. The fetch and decode host receive entry

-

I
RECEIVE

� BUFFER r-------- w
DESCRI PTORS u <(
WRITE STAGE lL a:

+ w f--
�
(f) I :::J a:l

TRANSMIT �
BUFFER Q_

r-------- r--------DESCRI PTORS
WRITE STAGE

I

LI AM I

TRANSMIT P I PELINE

INTERFACE I
•

TO AM

KEY:

PMI PACKET MEMORY INTERFACE
AM ADAPTER MANAGER

58

Figure 7 Host Protocol Decoder Stage

T

Vbl. 3 No. 3 Summer 1991 Digital Technical journal

Tbe Architecture and Implementation of a H(!!,b-perjonnance Adapter

stage, on the other hand, may take the same amount
of time to decode entries for packets of either size.
Const:quently, stages use interlocks to signal the

completion of work.

The fetch and decode host receive entry stage

has knowledge of the format and size of the ring and
sequentially fetches host receive ring entries. If the

adapter does not own an entry, this stage waits for a

signal from the host before fetching the entry again.

If the adapter does own the entry, this stage

decodes the entry to determint: the address of the

free buffer in the host memory and the number of

bytes in the buffer. The stage then passes this buffer

information to the data mover stage and the address

of the host entry to the receive buffer descriptor
write stage. In addit ion, this stage prefetches the

next entry to keep the p ipel ine ful l , in case data is

actively received over the FDDI ring.
In parallel, the PM! interface stage part of the HPD

chip fetches the next entry from the HPD transmit

ring. Decoding this entry determines the address of
the buffer in the PBM and the amount of data in the

buffer. The packet buffer bus interface passes the
buffer address and length information to the data
mover stage and the address of the HPD transmit ring

entry to the receive buffer descriptor write stage.

Now, the data mover stage has pointers to the

host free buffer and its extent and to the PBM filled

buffer and its extent. The stage proceeds to move
the data from the PBM to the host memory over the

XMI bus. Depending on the X.M'I memory design,

this transfer involves octaword or hexaword bursts.
The process of moving data continues until the

depletion of packet data in the PBM.

The data mover stage signals the receive buffer

descriptor stage when the packet moving is com

plete. The receive buffer descriptor stage writes in
the status fields of the host receive ring entry and

the HPD transmit ring entry. This stage also gives

ownership of the fil led buffer to the host and of the
free buffer to the REM. The REM can then return the
free buffer to the ring of origin.

HPD Transmit Pipeline The HPD transmit and
receive pipelines are symmetrical. The H PD receive
pipeline delivers data from the HPD transmit ring to
the host receive ring. The HPD transmit pipeline
del ivers data from the host transmit ring to the HPD

receive ring.
There is one exception to the symmetry. The

transmit pipdine does not fetch an entry from the

HPD receive ring in PBM to determine if there are

Digital Technical journal vb/. 3 No. 3 Summer /991

enough free buffers available. A hardware interface

between the PMI and the HPD, i .e . , a Boolean signal,

indicates whether there are enough buffers to

accommodate the largest possible size transmit

packet. This exception is an artifact of our imple

mentation; we wanted to reduce the accesses to the
PBM, since its bandwidth is a scarce resource.

Adapter Manager

The local inte l l igence, also known as the adapter
manager, implements various necessary adapter

functions including self-test and the initial ization.

The AM also implements part of the CMT code that

manages the FDDI connection. "' In addition, the

AM interfaces with the host to start and stop data
l i nk users by dynamical ly manipu lating the parser

data base.

Tracing a Packet through the Adapter

The major steps for data transfer incorporate the

subfunctions previously discussed . This section
traces the path of a packet P through the adapter,

first on the receive stream and then on the transmit

stream. We assume that adapter initial ization is
complete and that all data structures in the packet

memory and parser data base are properly set. In

this example, we further assume that packet P i s

smal l enough to fit into a single buffer. Large pack

ets require multiple buffers.

Receive Stream

A packet destined for the host passes through the
three major pipel ined stages in the adapter. A brief

description of the intrastage operation and details

of the interstage functioning follow. The four parts

of Figure 8 i l lustrate the receive process.

FDDI Corner and Parser Stage Figure 8(a) shows

packet P on the FDDI ring; the packet is actual ly a

stream of photons. This stage converts the stream
of photons into a packet. At this point, a free buffer
is available for packet P in both the RMC receive ring
and the host receive ring. The FCP stage owns the
free buffer in the RMC receive ring.

The stage determines if packet P is addressed to
this node, forwards the packet on the FDDI ring,

and copies the packet for this adapter if it is

addressed to this node. This stage also generates a
CRC for the packet. The FCP stage then deposits the

copied packet into the free buffer in the R.i\1C
receive ring entry shown in Figure 8(b).

59

Network Performance and Adapters

D FREE D FREE c5 BUFFER c5 BUFFER

I
I I HOST 0 RING FOOl

CORNER FDDI RING I XMI
PROTOCOL ENTRY
DECODER MOVER AND

Ea HOST I STAGE HPD STAGE PARSER
RMC STAGE

RECEIVE TRANSMIT RECEIVE PACKET P
R I N G R I NG R I NG ON THE R I N G

(a) Receive Stream - Packet on the FDDI Ring

D FREE
c5 BUFFER

I
I HOST

•
I XM� . 6�g6���L

HOST I STAGE

RECEIVE
RING

0
HPD
TRANSMIT
RING

RING
ENTRY
MOVER
STAGE

Or FILLED BUFFER
WITH PACKET P

FDDI
CO R N E R FDDI R I N G
A N D !..---
PARSER

RMC STAGE
RECEIVE .__ ___ .J
RING

(b) Receive Stream - Packet at the RMC Receive Ring

D FREE
c5 BUFFER

I
I HOST

1�XMI
PROTOCOL
DECODER

HOST
RECE
RING

IVE
II STAGE

Or FILLED BUFFER
WITH PACKET P

RING 0
ENTRY
MOVER
STAGE RMC

FDDI
COR N E R
A N D
PARSER
STAGE HPD

TRANSMIT
RING

RECEIVE '-------'

RING

FDDI R I N G

(c) Receive Stream - Packet at the HPD Transmit Ring

c5F7/I FILLED BUFFER ILL:JWITH PACKET P

I
I HOST

I XMI
PROTOCOL

,. ,. DECODER
HOST I STAGE
REC EIVE
RING

FREE PACKET TO
cSD BE RETU RNED TO THE

RMC RECEIVE R I NG

0 .-
F
-

D
_

D
_

I
_....,

RING
CORNER FOOl RING ENTRY
AND MOVER
PARSER

HPD STAGE RMC STAGE
TRANSMIT '-------'

RING
RECEIVE '-------'

RING

(d) Receive Stream - Packet in the Host Memory on the Host Receive Ring

Figure 8 Receive Stream -The Receipt of a Packet from the FDDI Ring to the Host Memory

After depositing the complete packet, this stage

writes the buffer descriptor and toggles the owner

ship bit. The ring entry mover now owns packet P
The FCP stage is free to receive the next packet,
which is stored in the next buffer in the RMC

receive ring.

ber of pages in packet P This stage also has an
account of the number of pages outstanding on the
HPD transmit ring. The REM del ivers packet P to the
HPD transmit ring provided the host resource allo

cation is not exceeded.
The REM delivers the packet by copying page

pointers from the R.t\fC receive ring to the HPD

transmit ring, as shown in Figure 8(c). Note that
the HPD transmit ring is large enough to write al l

Ring Entry Mover Stage The REM extracts the
packet buffer descriptor and determines the num-

60 Vol. j No. 3 Summer 1991 Digital Technical journal

The Architecture and Implementation of a High-performance Adapter

pointers from the RM.C receive ring and the AM
receive ring. The REM then transfers ownership of
the HPD transmit ring entry to the HPD stage and

the RMC receive ring entries to the FCP stage.

HPD Stage The HPD receive pipeline operates on

a packet i t owns in the HPD transmit ring. As shown

in Figure 8(d), after fetching the address of the free

host buffer, this pipeline moves packet P from the

PBM to the host memory and toggles the ownership
bit of the host entry. Simultaneously, the HPD

returns ownership of the free buffers in the HPD

transmit ring to the ring entry mover stage. The

REM returns these buffers to the RMC receive ring as
free buffers.

Transmit Stream

To transmit data from the host transmit ring to the

FDDI ring, the packet must pass through the same
three stages as for the receive stream, but in the

reverse direction.

HPD Stage For the receive stream, the HPD receive

p ipeline prefetches the free buffer from the host
receive ring. In contrast, the HPD transmit pipeline

must wait for the host to fi l l the transmit buffer and
transfer ownership to the host transmit ring. The

HPD stage then moves the data from the host mem

ory to the PBM if the hardwired signal between the
REM and the HPD indicates that a sufficient number

of pages is available. Finally, the HPD transfers own
ership of the host transmit ring entry to the host

and the HPD receive ring entry to the REM.

Ring Entry Mover Stage The REM moves the packet

from the HPD receive ring to the RI\1C transmit ring.
Again, the REM copies pointers from ring to ring

and toggles the ownership bit on the RI\1C transmit

ring.

FDDI Corner and Parser Stage Although the
packet is available in PBM for transmission, the FCP

stage must receive a token before transmitting over

the FDDI ring. Once the transmission is complete,
the buffer on the RI\1C transmit ring is now free.
The FCP stage returns ownership of the buffer to
the REM, which then returns the free buffer back

to the HPD receive ring or the AM receive ring,
depending upon the origin. Again, the free buffers
are returned by copying buffer pointers.

The receive and transmit streams for the adapter

manager are similar to those for the host; therefore,
we do not describe these processes.

Digital Technical journal Vol. 3 No. 3 Summer 1991

Hardware and Firmware
Implementation

The h ardware implementation of DEMFA consisted

of four large gate arrays, custom very large-scale

integration (VLSI) chips, dynamic and static random

access memories (RAMs), and jel ly bean logic.

Figure 9 is a photograph of the DEMFA board .

The four gate arrays specified and designed by

the group are the parser, the adapter manager inter

face (AMI), the host protocol decoder, and the

packet memory controller (PMC) , which incorpo

rated the function of the packet memory interface
and the ring memory controller. We now describe

aspects of the gate array development. Note that we
used the Compacted Array technology developed

using LSI logic for our implementation. The gate

arrays have 224-pin surface mount packaging.
Table 2 shows various gate arrays, the total gate

count for each gate array, and the percentage of

control gates and data path gates. Control gates are
defined as gates required for implementing state

machines used for control. Data path gates are gates

required for registers and multiplexors, for exam

ple. Note that the complexity of gate arrays is pro

portional to the percentage of control gates. The
gate arrays in Table 2 were fairly complex because

they consisted of approximately 50 percent control
gates.

Module Implementation

We used the 1 1-by-9-inch XMI module for imple

menting the adapter. Early in the project we defined
the pin functions for various gate arrays. Once these

were defined we could design our module. SPICE

modeling helped in arriving at a correct module

design with the first fabrication. The design was
thorough and completed early in the project.

Firmware Implementation

The DEMFA firmware has three major functions:
self-test, FDDI management (using Common Node

Software), and adapter functional firmware. The
DEMFA team implemented the adapter functional
firmware while other groups designed the two
remaining components. The DEMFA functional firm

ware can in itiali ze the adapter and then interact

with the host to start and stop data l ink layer users,
as well as perform other functions. The firmware is

implemented in the C language for the Motorola

68020 system. The total image size is approximately

160 kilobytes.

6 1

Network Performance and Adapters

Figure 9 The DEMFA Board

Table 2 Gate Counts for OEM FA Gate Arrays

Data Control
Gates Gates
(Percent (Percent

Gate Array Total Gates of total) of total)

Parser 20296 39 61

PMC 61 537 40 60

H P D 81 265 34 66

AMI 1 5002 49 51

Performance

The graph presented in Figure 10 shows the adapter

performance for the receive and transmit streams at
the adapter hardware level for this implementation.
The data represents throughput measured in

megabits per second as a function of packet size
measured in bytes. Figure 10 i l lustrates that the

receive and transmit streams meet the 100-Mb/s
throughput when the packet size is approximately

69 bytes. The bottlenecks in this implementation of

62

the DEMFA architecture are (1) the PMI and (2) the

combination of the Xl\11 interface, bus, and memory.

We implemented these interfaces in a conservative
manner to reduce our risks and to produce the
product in a timely fashion.

1 40

0 1 20 z
5 8 1 00
o.. w i§ \!? 80
� (/)
0 t:: 60 a: Cil I <{ r- f3 40

6 20
0 ��----�-T--�--�--�--�--�_,

KEY:

20 50 200 500 2000 5000
1 0 1 00 1 000 1 0000

PACKET SIZE (BYTES)

RECEIVE THROUGHPUT
TRANSMIT THROUGHPUT

Figure 10 Adapter Performance

Vol. 3 No. 3 Summer 1991 Digital Technical Journal

The Architecture and Implementation of a High-performance Adapter

For more detai led performance data, see the
paper entit led "Performance Analysis of a High
speed FDDI Adapter" in this issue of the Digital

Technical journal. "

Conclusion

The goal of the OEMFA project was to specify an

architecture for an adapter that would be at least
30 times faster than any previously built adapter.
The architecture also had to be easy to implement.

This paper describes the architecture and an imple

mentation of DEMFA. Performance measurements
of the adapter show that this first implementation

successfully meets close to the maximum FODI

throughput capacity; thus, the DEMFA performance

can be considered u ltimate. Already, a number of

adapters have been designed based on ideas bor

rowed from the OEMFA architecture and implemen

tation. In a few years, architectures similar to this

one may become the norm for data l ink and even
transport layer adapters, rather than the exception.

Acknowledgments

I wish to acknowledge and thank my manager,

Howard Hayakawa, who out of nowhere presented

me with the challenge of defining an architecture

and an implementation for an FOOl adapter that
wou ld have a performance 30 times that of any

existing adapter. I must have taken leave of my
senses to take on such a chal lenge. But the end

resu lts were worth the effort.
I would also l ike to thank Gerard Koeckhoven,

who agreed to be the engineering manager for this

adapter project. He took on the consequent chal

lenge and the risk and supported me all along the

way. In addition, I want to recognize Mark Kempf
for the many hours he spent helping us during

the conceptualization period and for chisel ing our

design. The TAN architects were of great assis

tance in making sure that our adapter met the FOOl

standard.
I also wish to acknowledge the fol lowing mem

bers of the DEMFA project team for their contribu
tions: Santosh Hasani and Ken Wong, who designed
the parser gate array; Dave Val ley and Dominic
Gasbarro, who designed the AMI gate array; Andy

Russo and John Bridge, who designed the HPD gate

array; Ron Edgar, along with the other PMC design
ers, Walter Kelt, joan K.lebes, Lea Walton, and Ken

Wong; Ed Wu and Bob Hommel , who designed and
implemented the module; the team that imple

mented the functional firmware, Eel Sul l ivan, David

Digital Technical journal Vol. 3 No. 3 Summer 1991

Dagg, Da-Hai D ing, and Martin Griesmer; and Ram
Kalkunte, for designing and bui lding a simulation
model to accurately predict the performance wel l

before the adapter was ready. Also, I would l ike to

thank VMS and ULTRIX group members Dave Gagne,
Bi l l Salkewicz, Dick Stockdale, and Fred Templ in.

References

1 . B . Al l ison, "An Overview of the VA)(6200

Family of Systems," Digital Technical journal,

no. 7 (August 1988): 10- 18.

2. D. Fite, Jr. , T. Fossum, and D. Manley, "Design

Strategy for the VAY.. 9000 System," Digital
Technical journal, vol . 2, no. 4 (Fall 1990):

13-24.

3. H. Yang, B . Spinney, and S. Towning, " FDDI

Data Link Development," Digital Technical
journal, vol . 3, no. 2 (Spring 1991): 31-41 .

4 . A. Tanenbaum, Computer Networks (Engle

wood Cliffs, NJ : Prentice Hal l , Inc . , 1981) .

5. B . Al l ison, "The Architectural Definition
Process of the VAY.. 6200 Family," Digital

Technical journal, no. 7 (August 1988): 19-27.

6. Token Ring Access Method and Physical

Layer Specifications, Ai\JSI!IEEE Standard
802.5 -1989 (New York: The Institute of Elec

trical and Electronics Engineers, Inc . , 1989).

7. R. Stockdale and J. Weiss, " Design of the
DEC LANcontrol ler 400 Adapter," Digital

Technicaljournal, vol. 3, no. 3 (Summer 1991 ,

this issue): 36-47.

8. FDDI Station Management (SMT), Preliminary
Draft, Proposed American National Standard,
ANSI X3T9/90-X3T9.5/84 -49, REV. 6.2 (May
1990).

9. Token Ring Media Access Control (;HAC),
(International Standards Organization, refer
ence no. ISO 9314-2, 1989).

10. P. C iarfel la, D. Benson, and D. Sawyer, "An
Overview of the Common Node Software,"
Digital Technical journal, vol . 3, no. 2 (Spring

1991): 42-52.

1 1 . R. Kalkunte, " Performance Analysis of a

High-speed FODI Adapter," Digital Technical

journal, vol .3, no.3 (Summer 1991 , this issue):

64-77.

63

Ramsesh S. Kalkunte I

Performance Analysis of a
High-speed FDDI Adapter

The DEC FDD!controller 400 host-to-FDDJ network adapter implements real- time

processing functionality in hardware, unlike conventional microprocessor-based

designs. To develop this high-performance product with the available technological

resources and at minimal cost, we optimized the adapter design by creating a simu

lation model. This model, apart from predicting performance, enabled engineers

to analyze the functional correctness and the performance impact ofpotential

designs. As a result, our implementation delivers close to ultimate performance for

an FDDJ adapter and surpasses the initial project expectations .

As h igh-performance systems become available and

the use of distributed computing prol iferates, the
need for high-performance networks increases.
Faster interconnects are required to achieve such

performance goals. Consequently, network adapters
must be able to function at higher speeds. In adopt

ing fiber distributed data interface (FDDI) local
area network (LAN) technology as a fol low-on to
Ethernet, Digital recognized the need to build an
industry-leading network adapter to service i ts high
performance platforms. As a result, we designed
and developed the DEC FDDicontrol ler 400 prod

uct. To track the adapter pertormance through the
design and development stages, we created a simu
lation model; our objective was to ensure that the
device met our performance goals. This paper begins
with a description of the DEC FDDicontroller 400,
fo llowed by a brief historical perspective and state

ment of the performance objectives of the adapter
project. We then d iscuss in detail the model ing
methodology and the results achieved. In addition,
we present val idation of these resu lts in the form of
measurements taken on prototype hardware.

The DEC FDDicontroller 400
The DEC FDDicontroller 400, also known as the
DEMf<A, is a high-speed FDDI network adapter.
Attached to a host machine running under either
the VMS or the ULTRIX operating system, the DEMFA

enables the host to communicate with other net
work entities through the FDDI ring. The DEMFA
adapter imp.lements D igi ta l 's proprietary Xl\1I bus
protocol and can be used with any system that

64

has an XMI backplane . ' LaboratOl1' measured perfor
mance data presented later in the paper shows that

the adapter hardware can sustain a practically i nfi

nite stream of frames at the fu l l FDDI data band
width of 100 megabits per second (Mb/s) for frame
sizes 69 bytes or larger on the receive stream and
51 bytes or larger on the transmit stream. Even the
smal lest, i .e . , 20-byte dataless, FDDI frames can be
received at 36 Mb/s and transmitted at 47 Mb/s.

The DHvii·A is an FDDI Class-B single attachment
station (SAS) that interfaces to the FDDI token ring
network through the DECconcentrator 500. A port
driver resident in the host controls the DEMFA
port. The port, the port driver, and the adapter
hardware implement the American National Stan
dards Institute (ANSI) data l ink and physical layer
functionality for FDDI LANs. This foundation sup
ports user protocols such as the Open Systems

Interconnection (OS!), DECnet, the transmission
contro l protocol with the internet protocol
(TCP/IP), and local area transport (LAl).' Figure 1
shows a typical network configuration using the
DEC FDDicontro l ler 400 adapter with other D igital
FDD[products.

The XMI bus is capable of transferring data at
rates up to 800 Mb/s and can serve as either a CPU
to-memory interconnect, e.g . , in the VAX 6000 plat
form, or an 1!0 bus, e.g. , in the VAX 9000 platform:'·'
Also, Digital plans to include the XMI bus in future

systems.
FDDI is a timed-token, fiber-optic ring that provides

a network data bandwidth of 100 Mb/s.' In addition
to this high data rate, the advantages of Jow signal

Vol. 3 No. 3 Summer 1991 Digital Tecb11ical]ournal

Performance A nalysis of a High-speed FDDI Adapter

VAX 6000 SYSTEM VAX 9000 SYSTEM DECSTATION 5000

DEC
FDDICONTROLLER 400
NETWORK ADAPTER

DEC
FDDICONTROLLER 400
NETWORK ADAPTER

DEC
FDDICONTROLLER 700
NETWORK ADAPTER

Figure 1 Typical Network Configuration

attenuation, low noise susceptibil ity, high security,
and low cost (as the technology matures) will make

FOOl a popular interconnect of the 1990s 6

Historical Perspective and Performance
Objectives of the DEMFA

With the advent of high-performance systems and
distributed computing strategies, the need for h igh
performance networking options has increased .
Traditionally, l/0 adapters have been built to serve

the current performance needs. As a consequence,
such adapters offer l ittle or no network perfor

mance scalability to accommodate future increases
in demand. Scalabil ity is important to ensure that
the adapter does not become a bottleneck when
such demands exist. Nonscalable adapters become
obsolete, and the resulting frequent hardware
upgrades increase system cost.

The first Ethernet adapters, which complied
with the IEEE 802.3 standard, were built in the early
1980s. Only recently do adapters exist that can pro
cess frames at the maximum Ethernet throughput
rate of 10 Mb/s.' As mentioned earl ier, FOOl has the
capability of supporting speeds an order of magni
tude higher than Ethernet. Since the header in an
FOOl frame is three times smaller than that for
Ethernet, FOOl frame arrival rates can be as much
as 30 times the Ethernet arrival rate. Considering
the various constraints, Digital set out with the
goal to build an FOOl adapter that could process
frames 150 bytes and larger at 100 Mb/s, i .e . , the

Digital Tecb11icaljournal Vol. 3 No. 3 Summer 1991

adapter would be able to process approximately
80,000 frames per second (frames/s). Also, twenty
microseconds was deemed an acceptable adapter

latency for the smallest FOOl frames. Considering
the relatively small number of frames a host system
can process today, these adapter criteria repre

sented an ambitious goal-one which would make
a product with high-performance scalability as
faster CPUs became available.

Performance Modeling Considerations

During the development of a high-performance prod
uct, changes in architectural functionality, technol
ogy constraints, and cost considerations can result in
design modifications. It is desirable to track the per
formance of the product through its development to
understand the impact of such modifications.

The OEMFA consists of many hardware entities that
perform the desired adapter functions." Although
such hardware adapters have the obvious advantage
of superior performance over conventional, i .e . ,
microprocessor-based adapter cards, this advantage
does not come without the risks associated with
hardwired logic. Such risks have a negative impact
on project budget and schedule and necessitate a
risk management strategy to ensure that product
goals are successfully met. Performance modeling of
the adapter and extending the use of such modeling
to evaluate various designs formed part of this strat
egy. The fol lowing subsections describe the goals

and tasks of the OEM FA performance modeling.

65

Network Performance and Adapters

Goals

The set of performance model ing goals for the

DEMFA evolved throughout the development

process. Three major goals were performance

projection, bu ffer sufficiency ana lysis, and design

testing through simulation.

Performance Projection In the early phases of
the design, the primary goal of the modd was to

project the adapter performance . This prediction
gave us confidence that the design could meet our

performance expectations.

Buffer Sufficiency Analysis Buffer capacity plays
an important part in the performance of a design.

Whereas too much of this resource is wastefu l , too

l ittle has a negative effect on performance. I t was

critical to determine the extent of buffering neces

sary to attain the desired target performance at the

least cost. The performance model considered the

dependencies on this resource. The amount of
buffering was varied and the effects of such varia

tion, manifested in the simulation results, were ana

lyzed. Using these results as input to a cost/benefits

equation helped the designers make intell igent

decisions concerning buffer capacity.

Design Testing through Simulation As develop

ment progressed , important design issues arose

that could not be solved by simple analysis. The per

formance model served as a platform that could be

enhanced to solve these more complex problems
by simulation. Designs were analyzed to determine

their impact on adapter performance . Because the

simulation methodology afforded greater testabil

ity, we were able to make the designs more robust

and to answer design questions in a significantly
shorter time than other methods. Consequently,
modifications to the hardware were made at an
early design stage and at negligible cost.

Tasks
To accomplish performance model ing, we faced

the fol lowing basic tasks: choosing the metrics,

defining the workload, and deciding on a modeling

methodology. Relevant metrics to measure the per
formance of a product are crucial . We chose met

rics that are simple to understand and provide

insight into the behavior of the product. Also, areas
in which workload development is required must
be identified and inv<:stigatccl in detail. An incorrect

workload invalidates all performance data. And the

66

methodology used to model the system must be
wel l thought-out beforehand, so that the model is

accurate ami also flexible enough to be easily

changed .

Definition of Metrics The main performance met
rics used were throughput and frame latency.

Throughput is the rate at which frames are pro

cessed and is measured in megabits per second or

frames per second . The units can be converted eas

i ly from one to the other, if the average frame size is

specified. In this paper, throughput is expressed in

megabits per second.
Frame latency is the elapsed time measured in

microseconds between the time at which a frame is

queued for service at a facility and the time at
which the service is completed. The fol lowing

descriptions illustrate the approach used to mea
sure receive and transmit latency. The host receives

frames from and transmits frames to the FOOl ring.
Receive frame latency is the time elapsed between

(1) the arrival of the last bit of the frame into the
adapter from the FOOl ring and (2) the time the

frame becomes available to the host for processing.
Transmit frame latency is the elapsed time between

(1) the time the adapter starts processing a frame
from the host and (2) the exit time of the first bit

of the frame from the adapter destined for the
FOOl ring.

The adapter can process transmit and receive

frames simultaneously. We defined performance

metrics to analyze a variety of traffic scenarios to

gain insight into the adapter behavior. For the con

text of this paper, we consider the OEMFA process

ing pure frame streams only, i . e . , the expressions

"receive throughput" and "receive latency" refer to

a pure receive stream of frames containing no trans
mit frames. Similarly, " transmit throughput" and
" transmi t latency" refer to a pure transmit stream
of frames.

Workload Definition Using a relevant traffic
workload is very important in any simu lation
model. Since most systems are workload-sensitive,

defining an incorrect workload may result in irrele
vant data. We identified two areas in which we
needed to define workloads. We then characterized

the traffic patterns and built a workload model for

performance simulation based on these patterns.

• Frame receive and transmit workloads. The

receive and transmit workloads are stimu l i for
the performance simulation. These workloads

Vol. 3 No. 3 Summer 1991 Digital Technical journal

mimic traffic due to frame arrival on the FDDI

ring (i .e . , the receive workload) or frame trans

mission from the host (i .e . , the transmit work
load). The receive workload model generates

frames which the DEMFA model receives,

whereas the transmit workload acts as a source of
frames to be transmitted by the DEMFA model on
the FDDI ring. These workloads must be charac

teristic of actual FDDI traffic. Since FDDI LANs did
not exist when the DEMFA was in the develop
ment stage, we used our experiences with

Ethernet to derive these workloads, as we explain

in greater detail in the FDDI Token Ring section.

• XMI traffic workload . Apart from the DEMFA

traffic, there may be other traffic on the XMI

bus due to CPU-to-memory transactions or from

other 110 adapters attached to the system. The
load on the XMI bus impacts the performance

of the DEMFA. Consequently, we designed a

workload model to mimic the traffic pattern on
the bus. We based our model on the traffic pat
terns observed for real XMI bus traffic. The per

formance of DEMFA may degrade as this traffic

increases because the DEMFA traffic and the non

DEMFA traffic consume common resources. The
other traffic is referred to as the XMI interference

workload . The XMI Workload Generator section
describes the model for this workload .

Modeling Methodology The simulation model has

a hierarchical design to a l low the construction of
smaller, more manageable blocks, i .e . , submodels.
The structure also allows changes to be made easily.

The SIMULA language implements the simulation

modelY The simulation-class and queuing constructs

in this language are tailored to help simulation
and modeling. '0 ' ' The object-oriented structures
present other advantages to model development. A

debug procedure coded into the model prints status

information about all the queues in the model. This
information helped us trace the path of frames
through the system.

One important first step in designing a simulation
model is to determine the detail at which to model.
Two factors that influence the level of detail are the

• Existing knowledge of the design. Usually, infor
mation gathered from the behavioral and ana
lytical models of a design helps to make a

performance model abstraction. Designs with

behavior that cannot be analyzed by these lower
level models have to be modeled in greater

detail.

Digital Tecbmcaljournal Vol. 3 No. 3 Summer 1991

Performance Analysis of a High-speed FDDI Adapter

• Expectation of performance model accuracy.
Typical ly, a performance model predicts results

accurate to within ± 10.0 percent of the perfor
mance that would be achieved with the actual

hardware.

During the design phase, behavioral and struc

tural models of hardware were in development.

This hardware was partitioned across important
functional boundaries. Hardware within these bound
aries would be modeled and tested thoroughly by

the respective development engineers. Hence, to

include details of these pieces of hardware in our

model would have resulted in redundant effort.

Since the interfaces and the gross functionality of
the hardware within these boundaries are relevant

to performance, we did include these components

in our model. Existing hardware components, such

as the FDDI chip set, were grouped together before
being modeled for functionality. Each submodel

was designed and tested separately to ensure con

formity to the functionality and performance of

other behavioral and structural models. This strat

egy resulted in the base-level p erformance model

that we used to generate prel iminary performance

data for the DEMFA.

As development progressed , we encountered
design changes of various complexities. Simple

design changes resulted in very small changes in

the performance model. But larger and more com

plex design changes required that we investigate
behavior both specific to the piece of hardware of

which the design is a part and general ized to the
adapter system environment in which the piece

operates. Models that represent the changes were

included and interfaced as submodels. These sub

models served the dual purposes of testing the new
design and of improving the accuracy of the perfor

mance model.

Design of the Simulation Model

The performance simulation model consisted of
the fol lowing major components:

• FDDI ring

• FDDI chip set and parser

• Packet memory controller

• Host interface

• XMI system

• Host system

67

Network Performance and Adapters

The base-level model evolved over time, as we

gained insight into the behavior of the individual

components and defined workloads. The model

evolved further to support the need to analyze new

designs through simulation. This section briefly

describes the components of the final model, as
l isted above.

FDDI Token Ring

The FDDI token ring was modeled to act as a source

of received frames and as a sink of transmit frames.

Gross functionality for the remainder of the FDDI

nodes and network components was desirable.

Consequently, we designed a black-box model for

the F D DI ring that provides two-way interaction

with the FDDI chip set and parser model. This FDDI

model al locates time on the FDDI ring for transmit

and receive transactions. The model also controls a

receive workload generator when frames are

received by the adapter.

The receive workload generator is an analytical

model used to create different patterns of receive traf

fic to the DEMFA. The parameters input to this work
load model are the average fran1e size, the frame-size

distribution, the frame type, the load, and the num
ber of back-to-back frame arrivals (i .e. , the burst rate

or "burstiness" of the frame arrivals). We varied these

parameters to generate desired workloads.

The average frame size and frame-size distribu

tion parameters generate different size frames.

Actual frame sizes can be specified as normally

or exponentially distributed about the mean or as

constant. The workload model can generate station

management (SMT), U .C SNAP/SAP, or UC non

SNAP/SAP frame types and can create a load between
0 and 100 Mb/s. If workloads are less than the peak

FDDI bandwidth, i .e . , 100 Mb/s, the frame arrival pat
tern can be specified as an exponential, constant, or
normal d istribution. The model can generate a wide
range of synthetic traffic patterns, but to obtain
credible performance results, we characterized the
traffic as seen in rea listic networks.

Several studies had been conducted on large

Ethernet LANs within Digital; a case study by

D. Chiu and R. Sudama is one example ." We ana

lyzed the results from these studies to understand
the frame-size d istribution in such networks. From

the analysis we concluded that

• Frame sizes on the networks are related to user

protocols. Frames in a test sample were dis
tributed about a few discrete frame sizes (i .e . ,

68

modes of the distribution) rather than over a
wide range of frame sizes.

• The probability function of the frame sizes near

each mode can be approximated as a normal dis

tribution centered about the mode.

A composition analysis of the measurements pro
vided different modal mean sizes, standard devia

tions, and the probabil ities of frames belonging
to the different modes. We used these values to

statistically create Ethernet network traffic. For our

performance measurements, it was necessary for us

to change this traffic pattern appropriately to

reflect the d ifferences that exist between FDDI LANs

and Ethernet LANs. The FDDI frame header is
smal ler than the Ethernet header, and the largest

FDDI frame is approximately three times the size of

the largest Ethernet frame. We factored these

changes into the Ethernet model to produce an

FDDI workload model. The FDDI workload has

either four or five modes.

The four-mode distribution contained a major

ity of frames grouped around 60, 576, 1518, and

4496 bytes. The standard deviations of the frames
around these mean values were 22, 5, 2, and 2 bytes,
respectively. The frame volumes at these modal

values represented contributions of 29 percent,

67 percent, 3 percent, and 1 percent, respectively,
to the total load .

The five-mode frame sizes were grouped around
33, 80, 576, 1518, and 4496 bytes. The standard

deviations of the frames around these means were

1, 20, 5, 2, and 2, respectively. The frame volumes at

these modes contributed 26 percent, 15 percent,

55 percent, 3 percent, and 1 percent, respectively,

to the total load.
In the above FDDI workload model, the mode of

1';18 bytes is determined by the Ethernet network's
maximum frame-size capacity and , simi larly, the
mode of 4496 bytes is determined by the FDDI

network's maximum frame-size capacity. These
two modal frame sizes represent traffic generated
by large data transfer operations, e .g . , file transfers.
Contributions due to these two modes vary from

network to network. We considered different
contributions and found their effect on adapter
throughput to be negligible. Therefore, only one
case for each workload is presented in this paper.

FDDI Chip Set and Parser
The FDDI chip set, also referred to as the FDDI

corner, is the base-level technology that was part

Vol. 3 No. 3 Summer 1991 Digital Technical journal

of Digital's strategy to bui ld high-performance ,
low-cost data l inks for FDDI LANs. This chip set per

forms serial-to-parallel data conversion, acts as an

interface to the packet memory in the data l ink

layer, and can support a data rate of 100 Mb/s . 1' The
entire chip set, except for the ring memory con

troller (RMC), was modeled as a black box with a
specified per-frame latency. The RMC and the asso
ciated first in, first out (FIFO) buffers for the receive
and transmit stream staging were modeled in

greater detail . The detail was necessary to capture

any overflow or underflow conditions that might

occur in the FIFO buffers. We also modeled the
interaction between the transmit and receive

streams. The RMC model, which served as the front

end of the chip set model, was also capable of gen

erating control and data transactions to perform

read/write memory operations.

The parser hardware off-loads some host frame
processing to the adapter. The parser reads i nfor

mation about a receive frame from the RMC bus and

creates a forwarding vector, which is appended to

the frame. This forwarding vector is used by d iffer

ent entities in the adapter and the host to efficiently
process a frame. The parser latency to generate this

vector varies with the frame type and size. The
parser moue! helped to analyze the impact of this

latency on performance . This model mimics the

hardware to produce a forwarding vector for a

given frame with a pertinent latency.

Packet Memory Controller

The packet memory controller (PMC) is the heart of

the adapter system. The ring entry mover stage, the
packet buffer memory, and the packet memory

interface constitute the functionality in the PMC."

The PMC controls the arbitration and servicing of

requests to and from memory to effect the efficient

transfer of information. The PMC also controls the

movement of pointers corresponding to every
frame. These pointers and the associated protocol
generate work for the RMC, the host interface, or
the adapter manager.

The high throughput capability of FDDI rings can
result in traffic patterns that cause a strain on the
packet memory. The PMC model allowed us to study

such scenarios. It is also important to analyze the

working and performance of the ring entry mover,
which moves frames between different interfaces

by manipulating the control information of a stored
frame. The control information and frame data

reside in the packet memory.

Digital Tecbttical jout·ttal Vol. 3 No. 3 Summer 1991

Performance Analysis of a High-speed FDDI Adapter

Host Interface
The host interface, also cal led the host protocol
decoder, moves data between the adapter and the

host system through an XMI bus and also interfaces

with the PMC. We modeled the interface to include
details of the dual d irect memory access (DMA)

design (one channel for the receive stream and one

for the transmit stream), the staging buffers associ
ated with each DMA channel, the XMI interface, and

the PMC interface. The host interface also has the

capability of schedul ing write operations while

waiting for the del ivery of read information.

Priority schemes to complete such transactions,

i .e . , handshake mechanisms, are important from a

p erformance perspective and, hence, were

included in the model.

XM! System

The XMI system interacts with the host system and
was modeled to include details of the XMI bus and

memory. This model consists of an XMI bus sub

model that interfaces to the XMI end of the host

interface model of the adapter. The submodel also

interacts with a memory model and an XMI work

load generator model. The bus submodel imple

ments the XMI protocol.

Memory Model The memory model was designed
to generate responses to transactions that request

memory. Latency for these requests is the memory

access time, which includes a queue wait time.

There are basically two types of systems that sup

port the DEMFA, as shown in Figure 2. The type is

determined by whether the XMI is used as the CPU

bus, denoted in this paper as the XMI (CPU) bus con

figuration, or as the 110 bus, denoted as the XMI (I/O)

bus configuration. The only difference between the

two systems is memory access time. This time is

greater if XMI is used as the I/O bus; there is an added

latency on the read transactions performed to fetch
memory from locations that are not local to the XM'I
bus. The memory space that is local to the CPU bus is
accessed through another 110 adapter mechanism.
Such 110 adapters, CPU buses, and main memory
bandwidth all play a role in determining the access
times in such systems. The model presented in this

paper depicts the VAX 9000 1!0 architecture and cur

rent implementation. Performance may vary with

other implementations.

XMI Workload Generator We designed the Xt\11

workload generator to represent the load on the

69

Network Performance and Adapters

CPU DEMFA MEMORY

XMI BUS

DEMFA ATIACHED TO AN XMI (CPU) BUS

CPU MEMORY

SYSTEM BUS

DEMFA ATIACHED TO AN XMI (110) BUS

Figure 2 System Types That Support the DEMFA

XMI bus, excluding traffic from the DEMFA. This

load tends to have a deteriorating effect on DEMFA

performance and thus, is referred to as the XMI

interference workload. I t was important not only
to model the amount of load but also to capture
the arrival pattern of this traffic. The workload

model generated traffic based on three inputs: the

total XMI bandwidth used by other XMI nodes, the
average length of each XMI transaction, and the

burst rate of the frame arrivals. Transaction lengths

on XMI vary from one to five XMI cycles (i .e . ,

64-nanosecond cycles). The maximum number of

nodes that can exist on an XMI bus is 14. Thus, the

burst rate can vary from 1 to 13.

Typically, traffic on an XMI bus consists of many

back-to-hack transactions of various sizes. We
decided to use the worst case values for both the
burst rate and the transaction length in the XMI

interference workload presented in this paper. The
worst case burst rate is 13, and the worst case trans
action length is 5 XMI cycles.

Host System

The host system consists of the CPU, disks, layered

software, the operating system, the device driver,

and a host workload generator. The host system

was modeled in accordance with assumptions pre
sented in the section Results from Performance
Simulation. The CPU, disks, host software, and the

operating system were modeled in such a way that

70

they do not become bott lenecks during frame

reception or transmission. A model of the device

driver hand les frame transmission and reception.

The driver interacts with a host workload genera

tor, which creates different traffic patterns for trans

mission. This workload generator has the same

capabil i ties as the receive workload generator dis

cussed in an earlier section.

Results from Performance Simulation

The data presented in this section was generated

using the simulation model of the adapter. This
data represents the hardware performance of the

DEMFA; system performance with the DEMFA as a

component is not within the scope of this paper.

We input parameters to the simulation model that
defined traffic patterns and ran simulations for a
sufficient length of time to ensure that we captured
steady-state behavior. The models maintain statis

tics of relevant events and quantities and print out
this information at the end of a simulation. As d is
cussed previously, the hardware performance of

the DEMFA varies depending upon whether the
system is implemented to use the XMI bus as a CPU

bus or as an 110 bus. This section presents simula

tion results for both uses, where appropriate.

Assumptions
For our simulation purposes, we made several
assumptions. These assumptions make the results

Vol. 3 No. 3 Summer 1991 Digital TechnicalJom·nal

more general and bring out the hardware perfor
mance characteristics of the DEMFA, indicating the

upper bounds of performance that the adapter can
achieve.

CPU and Software Capabilities The device driver
and the host software do not become bottlenecks

during frame reception and transmission. We

assumed that the host CPU had enough computing
abil ity to process frames without posing as a perfor

mance bottleneck.

Memory Bandwidth Frames sent from or received

by the host result in XMI bus transactions that are

written to or read from the host memory.

Throughpu t varies with the memory implementa
tion and interleaving. We assumed that the memory
implementation and i nterleaving were selected
such that no overloading of the memory occurs,

thus eliminating wasted bus cycles.

Buffer Alignment and Segmentation We assumed
that data for transmission and buffers for reception

were hexaword (i .e . , 32-byte) aligned and that
frames were unsegmented.

Simulation Traffic No error frames or error trans

actions were simulated, since we assumed these to

be negligible. No adapter manager traffic was simu

lated during the performance measurements, since

these represent a very negligible fraction of the

frames received during steady-state ring operation.

Throughput Measurements

Measurements were made to determine the through

put that the adapter can sustain for received and
transmitted frames. I t is important to understand

how throughput is related to the load, the bursti
ness of frame arrivals, the percent XMI interference,

and the frame size. This section presents the results
of the throughput measurements as functions of
these parameters.

Received Throughput as a Function of the Load
The graph shown in Figure 3 is the resul t of several

experiments conducted by varying the load for

33-byte received frames. The frame arrival rates
depend on the load and the arrival rate distribution.
As mentioned earlier, the model is capable of simu

lating traffic with different arrival patterns. Figure 3
shows that, with an exponential arrival pattern, the
throughput increases at a rate proportional to the

Digital Technical journal Vol. 3 No. 3 Summer 1991

Performance Analysis of a High-speed FDDI Adapter

1 00

0 80 f- z
::J o o._ U I w 60 � c:Q ::J (/J
o t:: a: c:J 40 I <{ f- � w 5 20

0 20 40 60 80 1 00 1 20

KEY:
LOAD (MEGABITS/SECOND)

EXPONENTIAL
CONSTANT

Figure 3 Receive Throughput as a Function
of the Load for a 33-byte Frame

load up to a certain point, and then gradually

decreases until the load is 100 Mb/s. The decrease in

throughput is caused by the Joss of resources due to

excessive loading.

We simulated traffic with a constant arrival pat

tern and conducted the same experiments. These
results are also shown in Figure 3. Observe that the
point of maximum throughput and the rate at

which the throughput decreases after reaching the

maximum vary with the arrival pattern of traffic.
After performing experiments on other frame sizes,

we concluded that there is no fixed relationship
between the maximum achievable throughput and

the throughput at FDDI saturation (i.e . , 100-Mb/s

load). Also, there is graceful degradation in through
put after the peak.

Receive Throughput for Four- and Five-mode

Workloads We measured adapter receive through

put for four- and five-mode workloads with a load of

100 Mb/s. The XMI interference workload was var
ied, and the results are presented in Figure 4. The
adapter can receive the workload at 100 Mb/s, if the
XMI interference workload remains moderate.
Figure 4 also shows that there is very l itt le differ
ence in performance between the four- and five
mode workloads. Large frames constitute a major

part of both workloads, and larger frames can be eas

ily supported by DEMFA at full FDDI data bandwidth.

Receive Throughput as a Function of Frame Size

Figure 5 shows the throughput as a function of the
frame size and the XMI interference workload, with

DEMFA attached to an XMI (CPU) bus. Smal ler frames

71

Network Performance and Adapters

1 20

20

0

KEY:

20 40 60
XMI INTERFERENCE (PERCENT)

D------0 FOUR-MODE WORKLOAD
+- • • • -+ FIVE-MODE WORKLOAD

Figure 4 Receive Throughput as a Function

of XMI!nterference for an

XMI (CPU) Bus Configuration

80

have a lower throughput rate than larger ones

because of high controi/data overhead. Since con
trol transactions consume bandwidth, the band

width available for data movement is reduced .

Consequently, the overal l throughput rate is lower.

Another reason for lower adapter throughput is the

XMI u til ization by traffic from other nodes on the

XMI bus. This XMI interference results in less avail

able XMI bandwidth for the adapter and hence, less

throughput.

1 40

1 20

- - · -

20

0 ��--�---r--�--�--r-�--�---+
20 50 200 500 2000 5000

1 0 1 00 1 000 1 0000
FRAME SIZE (BYTES)

KEY:
XMI INTERFERENCE WORKLOAD

60 PERCENT

72

40 PERCENT
20 PERCENT

0 PERCENT

Figure 5 Receive Throughput as a Function

of the Frame Size for an
XMI (CPU) Bus Configuration

The adapter throughput for an XM.I (110) bus

configuration d iffers only sl ightly from that for an

XMI (CPU) bus configuration. Any differences that

exist are for frames smal ler than 64 bytes, since
the adapter experiences a per-frame latency cost

because the memory is not local to the XMI bus.

Transmit Throughput for Four- and Five-mode
Workloads Figure 6 i l lustrates the transmit
throughput for a four-mode workload as a function

of the XMI interference. We performed simulations

to obtain throughput data for the DEMFA when

attached to an XMI (CPU) bus or to an XMI (1/0) bus.
Throughput for the XMI (CPU) bus configuration is

100 Mb/s and is insensitive to low, XMI interf<:rcnce
loads. Whereas, Xl\11 (110) bus configuration mea

surements are negatively affected by al l levels of

XMI interference traffic . The higher read latency

that is inherent to an XMI (i/O) bus configuration

degrades further with increasing interference traf

fic. In addition the degradation appears to be l in ear.
The throughputs observed for the five-mode work

loads are very simi lar to the data shown in Figure 6.

Transmit Throughput as a Function of the Frame
Size Figure 7 shows the throughput as a function

of the frame size when the DEMFA is attached to an

XMI (CPU) bus. Throughput is also presented for

various XMI interference workloads. As in the case
of receive throughput, transmit throughput

degrades as the frame size decreases and the XMI

interference load increases. This degradation is

1 20

20

0

KEY:

. ..

20 40 60
X M I INTERFERENCE (PERCENT)

D------0 XMI (CPU) BUS
+- · · · ·+ XMI (I/O) BUS

80

Figure 6 Transmit Throughput as a Function
of X.MI Interference for a
Four-mode Workload

Vol. 3 No. 3 Summer 1991 Digital Technical journal

140

1 20

20

0 ��--�--��----�-r--�--�-+
20 50 200 500 2000 5000

1 0 1 00 1 000 1 0000
FRAME SIZE (BYTES)

KEY:
XMI INTERFERENCE WORKLOAD

60 PERCENT
40 PERCENT
20 PERCENT

0 PERCENT

FiguTe 7 Transmit Throughput as a Function

of the Frame Size for an

Xll1I (CPU) Bus Configuration

again attributed to high control/data overhead and

lower Xt'\11 bandwidth availabil ity.

Figure 8 shows adapter transmit throughput as a

function of the frame size for an Xt\11 1 (110) bus con

figuration. The transmit throughput is less when

the OEM FA is used with an XMI (1/0) bus rather than
with an XMI (CPU) bus, due to the larger amount of

1 40

.. - - - - - - -

20

o r-�--��-+--�--�--r-�--��-+
50 200 500 2000 5000

1 0 1 0 0 1 000 1 0000
FRAME SIZE (BYTES)

KEY:
XMI INTERFERENCE WORKLOAD

60 PERCENT
40 P E RCENT
20 P E RCENT

0 P E RCENT

Figure 8 Transmit Throughput as a Function
of the Frame Size for the

XMJ (flO) Bus Configuration

Digital Technical journal Vol. 3 No. 3 Summer 1991

Performance Analysis of a High-speed FDDJ Adapter

read access time resulting from the XMI (110) bus
configuration. The transmit operation consists

mainly of read transactions and hence, this latency

is crucial to transmit performance.

Latency Measurements

Latency, as it relates to the DEMFA, is explained in

the Definition of Metrics section. We measured the

latency for receive and transmit frames. Frame
latency consists of two components: the active
component, which contributes to the time when

the frame or a portion thereof is being processed at

a service center (also cal led the service time); and
the passive component, which is the time when the

frame or a portion thereof waits for access to the
service center. All latency data presented in this

section represents averages across a large number

of samples. When measuring the latency of a frame,

we applied the maximum load that can be sus
tained continuously for that frame size and type.

Receive Latency as a Function of the Frame Size
Figure 9 represents the receive latency data as a

function of the frame size for an XMI (CPU) bus con
figuration. Latency is also presented for various XMI

interference levels. We present performance data

for only one XMI configuration because there is l it

tle variation between the resu lts for the XMI (CPU)

bus and XMI (I/O) bus configurations. Both frame

1 000
(jj 500 0 z 0 200
(..) w 1 00
8 50 a:
(..)
� 20
i:i 1 0
dJ 5
� ...J 2

20 50 200 500 2000 5000
1 0 1 00 1 000 1 0000

FRAME SIZE (BYTES)
KEY:
XMI INTERFERENCE WORKLOAD

60 PERCENT
40 PERCENT
20 PERCENT

0 PERCENT

Figure 9 Receive Latency as a Function
of the Frame Size for an

XMI (CPU) Bus Configuration

73

Network Performance and Adapters

size and latency are plotted using Logarithmic scales.
The data il lustrates that XMI latency increases lin
early with increased X.i\11 interference.

Transmit Latency as a Function of the Frame Size
Figure 10 presents transmit latency results for an
Xt\11 (CPU) bus configuration and Figure 11 presents
the resu lts for an XMI (1!0) bus configuration. The
latency was measured as a function of the frame
size for various XMI interference workloads.
Transmit latency is more sensitive to the system

type and to the Xt\11 interference workload because
most Xt\11 transactions that constitute t ransmit traf

fic are read operations. There is a distinctly higher
latency cost associated with these transactions in
the X:\11 (1/0) bus configuration as compared to the
Xt\11 (CPU) bus configuration. As in the case of
receive latency, the transmit latency degrades with
X.MI interference.

Performance Measurements with the
Prototype DEMFA

The intent of performing measurements with the
prototype DEMFA was twofold. First, we wanted to
confirm the performance predictions arrived at
through simul ation. And second, we wanted to
measure some features that we did not implement
in the model, either because they were not quantifi

able or because they were too complex to model .

1 000

(j) 500
0
z
0 200
u w 1 00
(f) � 50
u � 20
iJ 1 0

i5 5
f-
j 2

10

KEY:

20 50 200 500 2000 5000
1 00 1 000 10000
FRAME SIZE (BYTES)

XMI INTERFERENCE WORKLOAD
60 PERCENT

74

40 PERCENT
20 PERCENT

0 PERCENT

Figure 10 Transmit Latency as a Function
of the Frame Size for an
XMI (CPU) Bus Configuration

1 000

(j) 500
0
z

200 0
u w 1 00 (f)
0 50 a:
u
� 20
>- 1 0 u
z 5 w f-
j 2

10
20 50 200 500 2000 5000

1 00 1 000 10000

FRAME SIZE (BYTES)

KEY:

XMI INTERFER ENCE WORKLOAD
60 PERCENT
40 PERCENT
20 PERCENT
0 PERCENT

Figure 11 Transmit Latency as a Function
of the Frame Size for an
XMI (1/0) Bus Configuration

Again, we present only hardware performance
measurements; system performance with the
DEMFA is beyond the scope of this paper.

Measurement Setups

The experimental configuration required to per
form the measurements on the prototype DEMFA
is shown in Figure 12. This configuration con
sists of a VAX 6000 processor connected to a
DECconcentrator 500. The VA.'\: 6000 system has an
XMI backplane. The DEMFA occupies one of the

STANDALONE
OPERATING SYSTEM
AND DEVICE DRIVER

VAX 6000 SYSTEM

DEC
FDDICONTROLLER 400
(DEMFA)

LOG IC ANALYZER

FDDI TESTER

FDDI RING NETWORK

Figure 12 Laboratory Setup for DEMFA
Performance Measurements

Vol. 3 No. 3 Summer 1991 Digital Technical jounml

slots in the XMI backplane and is part of the Xlv11
(CPU) bus configuration in this system. An FDDI

tester is also attached to the DECconcentrator 500
and acts as a source of frames. The FDDI tester is

a useful tool for testing the DEMFA product; the
tester is capable of transmitting traffic at 100 Mb/s

and can generate frames of various sizes and types

with different destination addresses. A standalone

software driver and operating system runs on the

VAX 6000 system and is used for DEMFA hardware

performance tests. A logic analyzer is used to mea
sure elapsed time and count events.

Throughput Measurements

The device driver measures receive and transmit
throughput and is designed to perform minimal

processing for each frame.

Receive Throughput Measurements We measured
the receive throughput by sending a continuous

stream of frames at 100 Mb/s from the FDDI tester to

the DEMFA. We varied the frame size for the tests
and ran each test for a length of time sufficient to

verify data convergence.

We compared the prototype measurements with
the modeled results for receive throughpu t as a

function of the frame size for an Xl\11 (CPU) bus con

figuration. This validation of the receive throughput

resu lts is shown in Figure 13. The hardware mea

surements demonstrate that the adapter can receive

frame sizes above 69 bytes at 100 Mb/s. Throughput

degrades for smaller frame sizes. These measure
ments closely validate the modeled results. The

1 40
1 20

iS" 1- 6 1 00

I
II II

::> u !i: � 80
(.9 -::> CJJ
a t:: 60 a: CD I <(40 1- <.9 UJ 6 20

0 ��--��-+--�--�--,_--�--�--+ 20 1 0

KEY:

50 200 500 2000 5000 1 00 1 000 1 0000
FRAME SIZE (BYTES)

[} · · · · {] MEASURED
MODELED

Figure 13 Validation of Receive

Throughput Results

Digital Technical journal Vol. 3 No. 3 Summer 1991

Performance A nalysis of a High-speed FDDI Adapter

throughput for the performance model demon
strates that the DEMFA can continuously receive

frames greater than 65 bytes at 100 Mb/s. There is a

sl ight difference between the measured and mod
eled results at the lower frame sizes because resid

ual X!MI interference traffic exists in the measured
system. This experimental error is unavoidable, but

the difference is a small percentage of the total

throughput and is therefore acceptable.

Transmit Throughput Measurements To measure

the transmit throughput, we forwarded frames

from the driver to the FDDI ring at the maximum
possible rate. The throughput was calculated from

the number of frames that could be sent in a unit of

time. The adapter can transmit frames larger than

51 bytes at 100 Mb/s. Transmit throughputs mea

sured in the laboratory validate the modeled results
as closely as the receive throughput val idation

results shown in Figure 13. The modeled through

put results were lower than the measured results

because we used a conservative approach to mod

eling the memory latency.

Multisegmented and Misaligned Frames Seg

mentation and a l ignment of transmit frame buffers
in host memory is variable. Typical ly, frames consist

of two segments, the first containing the frame

header information and the second containing the

data. Since the DEMFA must access control and data

separately, segmentation makes this process less

efficient, from a hardware perspective, than if the

data and control information exist in the same
buffer. Also, buffers may be al igned to start on
different byte boundaries. Since the DEMFA trans

actions begin on hexaword (i .e . , 32-byte) bound

aries, hexaword alignment of frame data in the host

buffers is the most efficient arrangement from the

adapter's perspective. We measured throughput

with unsegmented and two-segmented frames, and

with frames aligned on longword, quadword, and
hexaword byte boundaries. Segmentation and align
ment variations cause negl igible throughput degra
dation for frames 64 bytes or larger.

Latency Measurements

We used the logic ana lyzer to measure the frame

latency. The logic analyzer responds to signals that

indicate the starting and ending times for process

ing a frame. The difference between these two times
is the frame latency. The events were chosen such

that the measurements conformed to the definition

75

Network Performance and Adapters

of latency as described in the Definition of Metrics

section.

Note that the traffic pattern used to measure

latency in this section differs from the workload

iilustrated in the section Performance Results from

Simulation. Here, a single frame was received or
transmitted, and we measured latency due to that

frame only. Whereas previously, we used the simu
lation model to measure latency as an average

across a large number of frames representing a load

equal to the maximum sustainable adapter through

put. The workloads differ because of the practical
difficulty to perform latency measurements on a

large number of frames.

Receive Latency The receive frame latency predic

tions from the performance model and adapter ser
vice time measurements taken from the prototype

hardware are shown in Figure 14. These latency mea

surements validate the model predictions in a way

similar to that for the throughput measurements.

Transmit Latency We also compared transmit

latency measurements to predictions from the per
formance model and found these measurements

to approximate the modeled resu lts. But actual

latency measurements were sl ightly lower than the
modded results, again due to a conservative mod

eled latency.

Conclusions

The performance model was intended to track the
performance of the prototype hardware to an accu
racy of ::+::: 10.0 percent. The comparisons between

1 000

(j) 500
0
z

200 0 0 w (/) 1 00
0 50 a: 0
� 20
>- 1 0 0 z 5 w t-4: 2 -'

1 0

KEY:
D- . . . - -{]

20 50

MEASURED
MODELED

200 500 2000 5000
1 00 1 000 1 0000

FRAME SIZE (BYTES)

Figure 14 Validation of Receive Frame
Latency Results

76

modeled and measured results demonstrate that
the model actually surpasses our goal. The mea

sured performance for the XMI (I/O) bus configura
tion using a VAX 9000 system validated the modeled

results as closely as did the corresponding results

for the XMI (CPU) bus configuration. Disparity, if

any, between the modeled and the measured results
basically stem from unavoidable measurement

errors for receive frames and pessimistic memory

latency assumptions for transmit frames.

Throughput due to the four- and five-mode work

loads is nearly the same. The average frame size for
these distributions is 496 bytes and 487 bytes,

respectively. Thus, throughput is a function of the

frame size and independent of the number of

modes that exist in the workload. Also, this data
leads to the conclusion that the DEMFA may never
pose as a performance bottleneck in a real network

environment.

For the simulation, we chose an XJ\11 work
load with an extremely high burst rate. Actual

XMI systems may resu lt in better throughput

than that presented in this paper. The resources

required to create XMI workload variations are not
easily accessible, so we did not perform measure
ments on the prototype adapter under different

workload conditions. But since other measurements

validated the model predictions so closely, measur
ing performance with varied XMI workloads proved

unnecessary.

Val idation of the resu lts that we predicted
through simulation increased our confidence in

various design mechanisms that were verified

using the performance model as a test platform.

When designing new 1/0 architecture or memory
implementations, our performance model allows

changes to be made easily in order to determine the

impact of such changes on performance. The mod
el ing strategy proved very effective and helpecl to
del iver a high-quality product with better perfor
mance than what was intended initial ly.

Acknowledgments

I wish to acknowledge all members of the DEMFA

development group for their help in modeling the
adapter. Their openness to examine new designs to
enhance performance resulted in this high-speed

adapter. I am also grateful to the group for assisting

with the performance measurements. Final ly, I
wish to extend special thanks to Howard Hayakawa,

Gerard Koeckhoven, Satish Rege, Andy Russo, and
Dick Stockdale.

vb/ . .3 No . .3 Summer 1991 Digital Tecbuical jottr11al

References

1 . R . Gi l lett, "Interfacing a VA..'(Microprocessor
to a H igh-speed Multiprocessing Bus," Digital

Technical journal, no. 7 (August 1988):

28-46.

2 . W Hawe, R. Graham, and P Hayden, "Fi ber

Distributed Data Interfac<.: Overview," Digital
Technical journal, vol 3, no. 2 (Spring 1991) :

10- 18.

3. B. Al lison, "An Overview of the VA..'(6200

Family of Systems," Digital Technical journal,
no. 7 (August N8R): 19-27.

4 . D. Fite, Jr. , T. Fossum, and D. Manley, " Design
Strategy for the VA..'< 9000 System," Digital

Technical journal, vol. 2, no. 4 (Fall 1990):
13-24.

5 . F Ross, "FDDI-A Tutorial ," IEEE Communi

cations Magazine, vol . 24, no. 5 (May 1986):

10- 17

6. S. Joshi , " High-Performance Networks: A

Focus on the Fiber D istributed Data Interface
(FDDI) Standard," IEEE MICRO Qune 1986):

8- 14.

Digital Teclmical journal Vr>l. 3 No. 3 Swmner 1991

Performance Analysis of a High-speed FDDI Adapter

7 R. Stockdale and). Weiss, " Design of the
DEC LANcontrol ler 400 Adapter," Digital

Technicaljournal, vol . 3, no. 3 (Summer 1991 ,

this issue): 36-47

8. S. Rege, "The Architecture and Implementa

tion of a H igh-performance FDDI Adapter,"

Digital Technical juurnal, vol 3, no. 3
(Summer 1991 , this issue): 48-63.

9. Programmer's Reference Manual for 5/M ULA

for VAX under VJ\I!S Operating System (North

Berwick, Scotland: EASE Ltd . , 1991) .

10. G . Birtwistle, 0. Dahl, B . Myhrhaug, and
K. Nygaard, 5/MULA BEGIN (Kent, England :

Chartwell-Bratt Ltd . , 1980).

1 1 . L. Kleinrock, Queueing Systems, vols. I and 2

(New York: John Wiley and Sons, 1976).

12. D. Chiu and R. Sudama, "A Case Study of

DECnet Appl ications and Protocol Perfor

mance," Proceedings of the ACM SIGMETRIC5

Conference (May 1988).

13. H. Yang, B. Spinney, ancl S. Towning, " FDDI

Data Link Development," Digital Technical

journal, vol . 3 no. 2 (Spring 1991) : 31 -41 .

77

Rajjain I

Performance Analysis of FDDI

Tbe performance of an FDDI LAN depends upon configuration and workload

parameters sucb as tbe extent of tbe ring, the number of stations on tbe ring, tbe

number of stations tbat are waiting to transmit, and tbe frame size. In addition,

one key parameter that network managers can control to improve performance is

tbe target token rotation time (TTRT). Analytical modeling and simulation meth

ods were used to investigate the effect of the TTRT on various performance metrics

for different ring configurations. This analysis demonstrated that setting the TTRT
at 8 milliseconds provides good performance over a wide range of configurations

and workloads.

Fiber distributed data interface (FDDI) is a 100-mega

bit -per-second (Mb/s) local area network (LAN)

defined by the American National Standards

Institute (ANSI). ' -' This standard allows as many as

500 stations to communicate by means of fiber

optic cables using a timed-token access protocol.
Normal data traffic and time-constrained traffic,
such as voice, video, and real-time applications, are

supported. Al l major computer and communica

tions vendors and integrated circuit manufacturers

offer products that comply with this standard.

Unl ike the token access protocol defined by the

IEEE 802.5 standard, the timed-token access proto
col used by FDDI al lows synchronous and asyn

chronous traffic simultaneously.-' The maximum

access delay, i .e . , the time between successive trans
mission opportunities for a station, is bounded

for both types of traffic . Although this delay is short

for synchronous traffic, that for asynchronous traf
fic varies with the network configuration and load
and can be as long as 165 seconds. Long maximum
access delays are u ndesirable and can be avoided
by properly setting the network parameters and
configurations.

This paper begins with a description of the
timed-token access method used by FDDI stations

and then proceeds to discuss how various parame

ters affect the performance of these systems. The

target token rotation time (TTRT) is one of the key

This paper is a modified version of "Performance Analysis of
FDDI Token Ring Networks: E ffect of Parameters and Guide! ines
for Setting TTRT;· by Raj Jain, published i n the Proceedings of the
SIG'COMM '90, September 1990. Copyright 1990, Association for
Computing Machinery, Inc.

78

parameters. We investigated the effect of the TTRT

on FDDI LAN performance and developed guide

l ines for setting the value of this parameter. The
results of our investigation constitute a significant

portion of this paper.

Timed-token Access Method

The token access method for network communica

tion, as defined by the IEEE 802.5 standard, operates

in the fol lowing manner. A token circulates around
the ring network. A station that wants to transmit
information waits for the arrival of the token.

Upon receiving the token, the station can transmit

for a fL"Xed time interval cal led the token holding

t ime (THT) . The station releases the token either
immediately after completing transmission or after

the arrival of all the transmitted frames. The time

interval between two successive receptions of

the token by a station is called the token rotation

time (TRT). Using this scheme, a station on an
n-station ring may have to wait as long as n times
the THT interval to receive a token. This maximum
access delay may be unacceptable for some appl ica
tions if the value of either n or THT is large. For
example, voice traffic and real-time appl ications
may require that this delay be l imited to 10 to 20

mil l iseconds (ms). Consequently, using the token
access method severely restricts the number of

stations on a ring.
The timed-token access method, invented by

Grow, solves this problem by ensuring that al l sta
tions on a ring agree to a target token rotation time
(TTRT) and l imit their transmissions to meet this

target:' There are two modes of transmission:

Vol. 3 No. 3 Summer 1991 Digital Technical journal

synchronous and asynchronous. Time-constrained
applications such as voice and real-time traffic use

the synchronous mode. Traffic that does not have

time constraints uses the asynchronous mode. A
station can transmit synchronous traffic whenever
it receives a token; however, the total transmission

time for each opportunity is short. This time is allo

cated at the ring initial ization. A station can trans
mit asynchronous traffic only if the TRT is less than

the TTRT.
The basic algorithm for asynchronous traffic is as

fol lows. Al l stations on a ring agree on a target

token rotation time. Each station measures the time
elapsed since last receiving the token, i .e . , the TRT.
On token arrival, a station that wants to transmit

computes a token holding time using the fol lowing
formula:

THT = TTRT - TRT

If the value of THT is positive, the station can trans
mit for this time interva l . After completing trans

mission, the station releases the token. If a station

does not use its entire THT, other stations on the
ring can use the remaining time through successive

applications of the algorithm.

Performance Analysis of FDDI

Note that even though the stations attempt to

keep the TRT below the target, they do not always

achieve this goal. The TRT can exceed the target by

as much as the sum of all synchronous-transmission

time allocations; however, these allocations are l im

ited so that their sum is less than the TTRT. As a

result, the TRT is always less than twice the TTRT.

Performance Parameters

The performance of any system depends upon both

system parameters and workload parameters as
shown in Figure 1 . There are two kinds of system
parameters: fixed and user-settable. Fixed parame

ters cannot be controlled by the network manager
and vary from one ring to another. Cable length and

the number of stations on a ring are examples of

fixed parameters. It is important to study network

performance with respect to these parameters; if

performance is sensitive to them, each set of fixed

parameters may require a different guideline. Sys

tem parameters that can be set by the network man
ager or the individual station manager include

various timer values. Most of these timers influence
the rel iability of the ring and the time it takes to

detect a malfunction. The key settable parameters

PERFORMANCE
PARAMETERS

I I I
SYSTEM WORKLOAD

I I I I I
SETIABLE FIXED LOAD PER

STATION

I
TARGET TOKEN
ROTATION
TIME (TIRT)

I
l _ _ _ _ j _ _ _ _ _
I SYNCHRONOUS :
I TIME I : ALLOCATION I
- - - - - - - - - - 1

I I
CABLE NUMBER OF
LENGTH STATIONS

� - - - - - - - - - l _ _ _ _ j _ _ _ _ _
I I I INTERBURST 1 1 BURST-SIZE I

1 TIME I I I : DISTRI BUTION I : DISTRIBUTION I
- - - - - - - - - - 1 - - - - - - - - - - 1

Note that the oarameters shown in the dashed boxes were not considered in this studv.

Figure 1 Performance Parameters

Digital Techtlical journal Vol. 3 No. 3 Summer 1991

I
FRAME-SIZE
DISTRIBUTION

I
NUMBER
OF ACTIVE
STATIONS

l _ _ _ _ j _ _ _ _ _
I INTER FRAME
I TIME I DISTRIBUTION I - - - - - - - - - -

79

Network Performance and Adapters

that affect system performance are the TTRT and
the synchronous time allocations.

In this paper, the performance was studied under
asynchronous traffic conditions only. The presence

of synchronous traffic will further restrict the choice

ofTTRT, as discussed later in the section Guidelines

for Setting the Target Token Rotation Time.
The workload also has a significant impact on

performance. A guideline or recommendation may
he suitable for one workload but not for another.

The key workload parameters are the number of

active stat ions and the load per station. Ry active

we mean stations on a ring that are either transmit
ting or waiting to transmit. A ring may contain a

large number of stations, but generally only a few
are active at any given time. Active stations include

the currently transmitting station, if any, and sta

tions that have frames to transmit and are waiting

for the access right, i .e . , for a usable token to arrive.
The load per station varies with the number of sta

tions, the interval between bursts, the number of

frames per burst , and the frame size .

Perfonnance Metrics

The quality of service a system provides is mea
sured by its productivity and responsiveness.'

For an FDDI LAN, productivity is measured by its
throughput, and responsiveness is measured by the

response time and maximum access delay.

The productivity metric of concern to the net

work manager is the total throughput measured in

megabits per second. Over any reasonable time

interval and for most loads, the throughput is equal

to the load. h>r example, if the load on a ring is
40 Mb/s, then the throughput is also 40 Mb/s. But

this docs not hole! if the load is high. For example,

if there are three stations on a ring, each with a
100-Mb/s load, the total arrival rate is 300 Mb/s
and the throughput is considerably less-close to
100 Mb/s. Thus, the key productivity metric is not
the throughput under low load but the maximum
obtainable throughput under high load. This latter
quantity is also known as the usable bandwidth of

the network. And the ratio of the usable bandwidth

to the nominal bandwidth (e.g . , 100 Mb/s for an FOOl
LAN) is called the efficiency of the network. For

instance, if we consider a set of configuration and

workload parameters with a usable FDDI bandwidth
of at most 90 Mb/s, the efficiency is 90 percent.

The response time is the time interval between

the arrival of a frame and the completion of its
transmission, including queuing delay, i .e . , from

80

the first bit in to the last bit out. This metric is mean
ingful only if a ring is not saturated, because at
loads near or above capacity the response time

approaches infinity. With such loads, the maximum
access delay for a station, i .e . , the time interval

between wanting to transmit and receiving a token,

has more significance.

Another metric that is of interest for a shared

resource such as FDDT is the fairness with which the

resource is al located. Fairness is particularly impor
tant under a heavy load . Given such a load, the asyn

chronous bandwidth is a llocated equally to a l l

active stat�ons. However, the FOOl protocols are fair
only if the priority levels are not implemented . In
the case of multiple priority implementation, i1t is

possible for two stations with the same priority and

the same load to have different throughput depend
ing upon their location.6 Low-priority stations
that are close to high-priority stations may get

better service than those farther downstream. \Ve

assumed a single priority implementation to keep

the analysis simple. Since such implementations
have no fairness problem, this metric wi l l be dis

cussed no further in this paper.

We used two methods to analyze performance:

analytical modeling and simulation. We first pre
sent the analytical model used to compute the effi

ciency and maximum access delay of a network
under a heavy load . Then we discuss the simulation

model workload used to analyze the response time
at loads below the usable bandwidth.

A Simple Analytical Model

The maximum access delay and efficiency are
meaningful only under heavy load. Therefore, we

assume that there are n active stations, each gener

ating enough frames to saturate the FOOl network.

Basic Equations

For an FDDI network with a ring latency D (i.e . , the
time it takes a bit to travel around the ring) and a
TTRT value of T, the efficiency and maximum access
delay are computed using the following formulas:

. . . n (T - D)
Efftoency = n T + D

(1)

Maximum access delay = (n - 1) T + 2D (2)

Equations (1) and (2) constitute the analytica l
model. Their derivation is simple and is presented

in the next section. Those readers who are not
interested in the details can proceed to the section
Application of the Model.

Vol. 3 No. :) Summer 1991 Digital Technical journal

Derivation
First consider a ring with three act ive stations, as
shown in Figure 2 . (Later, we will consider the

general case of n active stations.) The figure shows
the space-time diagram of various events on the
ring. The space is shown horizontal ly, and the time
t is shown vertical ly. The token reception is
denoted by a thick horizontal l ine segment. The
interval of time during which transmission of
frames takes place is indicated by a thick vertical
l ine segment.

0

0

T

1
2T + 0

3T + 0

KEY:

S1

I I
S3

-I 1

.l.. � I

I 4 T. · · · · ·
· · ·� 3

l ��
I 8 ., , · 1· · · ·

I 7
·.·.-.-1

I · · ·

1
: I I 1 1

1 1 2 .1-.-. ·.·.·.·. ·.-.-.-.:·. ·- -

:,, l' t
-·.·.-.·.-. I 17 I

: 19 · ·i"
· ·. �1 8

T
. . ·

:
SPACE

S 1 , S2, S3 STATIONS
- TOKEN

I TRANSMISSION OF FRAMES

T TARGET TOKEN ROTATION TIME
0 RING LATENCY

TOKEN PATH

Note that the numbers in this figure refer to event numbers
discussed in the text.

Figure 2 Space-time Diagram of Events
with Three Active Stations on
an FDDI Network

Digital Tecbt1ical]our11al Vol. 3 No. 3 Summer 1991

Performance Ana(ysis of FDDI

Assume that al l stations are id le until t = D, when
the three active stations suddenly get a large (infi
nite) burst of frames to transmit. The sequence of
events shown in Figure 2 is as follows:

1 . t = 0. Station S 1 receives the token and resets
its own token rotation timer to zero. Since the
station has no frames to transmit, the token
proceeds to the next station 52.

2 . t = t,. Station 52 receives the token and
resets its token rotation timer to zero. t, is
equal to the signal propagation delay from Sl

to 52.

3. t = t,,�. Station 53 receives the token and
resets its token rotation timer to zero. t,; is
equal to the signal propagation delay from S l
to 53.

4.

5

6.

7

8.

t = D . Station 51 receives the token. Since S l

now has a n infinite supply of frames t o trans

mit, it captures the token and determines that
the TRT is D. Thus, the time interval during
which S l can hold the token, the difference
between TTRT and TRT, is T - D.

t = T. The THT at station S l expires. 5 1
releases the token.

t = T + t". Station 52 receives the token. 52
last received the token at t = t, , ; thus, the
value of TRT is T. S2 cannot use the token at
this time and releases it.

t = T + t, ,. Station 53 receives the token. 53
last received the token at t = t1 ;; thus, its TRT

is also T. 53 cannot use the token at this time

and releases it.

t = T + D. Station S l receives the token. S l
last received the token at t = D ; its TRT i s also
T. (Note that the TRT is measured from the
instant the token arrives at a station's receiver,
i .e . , event 4 for station S l , and not from the
time it leaves a station's transmitter, i .e. , event
5.) Sl cannot use the token and releases it.

9. t = T + D + t,. Station 52 receives the token.
Since TRT is only D, it sets the THT to the

remaining time, i .e . , T - D. 52 transmits for
that interval and releases the token at t = T +

D + t,2 + (T - D).

10. t = 2T + t,,. The THT at station 52 expires. 52
releases the token.

8 1

Network Performance and Adapters

1 1 . t = 2 T + t 1 1 • Station S3 receives the token.

Since TRT is T, S3 releases the token.

12. t = 2T + D. Station S 1 receives the token.

Since TRT is T, S 1 releases the token.

13. t = 2T + D + t,. Station S2 receives the

token. Since TRr is T, S2 releases the token.

14. t = 2T + D + t, , . Station 53 receives the

token. Since TRT is only D, it transmits for the

time interval T - I) and releases the token at

t = 2T + D + 1 1 1 + (T - D).

15. t = 3T + t, ., . The THT at station S3 expires. 53

releases the token.

16. t = 3 T + D. Station S 1 receives the token, and

the sequence of events begins to repeat. The

token passes through stations S 1 , S2, and S3,

a l l of which find it unusable.

19. t = 3 T + 2D. The cycle continues with S 1 cap

turing the token as in event 4.

The above discussion i l lustrates that the system
goes through a cycle of events and that the cycle

time is 3T + D. During every cycle, each of the

three stations transmits for a time interval equal to
T - D; the total transmission time is 3 (T - D).

The number of bits transmitted during this time is

3 (T - D) X 10", and the throughput equals 3 (T - D)
X 10" I (3T + D) bits per second. The efficiency, i .e . ,

the ratio of the throughput to the FDDI bandwidth

of 100 ;\1bls, is 3 (T - D) I (3T + D).
During the cycle, each station waits for a time

interval of 2T + 2D after releasing the token for
another opportunity to transmit. This interval is the
maximum access delay. ror lower loads, the access
delay is shorter.

Thus, for a ring with three active stations,

. . 3 (T - D)
EffiCiency = 3 T + D

Maximum access <.!day = (3 - 1) T + 2D

= 2 T + 2D

To general ize the above analysis for n active

stations, substitute 11 for 3. Equations (1) and (2)
are the results; the derivation is complete.

82

Application of the Model

Equations (1) and (2) can be used to compute the

maximum access delay and the efficiency for any
FDOI ring configuration. For example, consider a
ring with 16 stations and a tota l fiber length of

20 kilometers (km). sing a two-fiber cable, this

corresponds to a cable length of 10 km.) Light waves

travel along the fiber at a speed of 5.085 micro

seconds per kilometer (uslkln). The station delay

between receiving and transmitting a bit is approxi

mately I ,u s per station. The ring latency can be com

puted as fol lows:

Ring latency D = (20 kln) X (5.085 ,u slkm)

+ (16 stations) X (l ,u slstation)

= 0.12 mill iseconds (ms)

Assuming a TTRT of 5 ms and a l l 16 stations active,

. . 16 (5 - 0.12)
EffiCiency = 16 X 5 + 0.12

= 97. 5 percent

Maximum access delay = (16 - 1) X 5 + 2 X 0.12

= 7 5 . 24 ms

Thus, on this ring, the maximum possible

throughput is 975 Mbls. If the load is greater than

this for any substantial length of time, the queues

wi l l build up, the response time will increase,

and the stations may start to lose frames due to
insufficient buffers. The maximum access delay is

75.24 ms; thus, asynchronous stations may have to

wait as long as 75.24 ms to receive a usable token.

The key advantage of this model is its simplicity,

which allows us to see immediately the effect of
various parameters on network performance. With

only one active station, which is usual ly the case,
equation (1) becomes

Eff
. .

T - D
te1ency (n = 1) = T + D

As the number of active stations increases, the
efficiency increases. With a very large number of

stations,

D
Maximum efficiency (n = x) = 1 -

T

This efficiency formula is easy to remember

and permits "back-of-the-envelope" calcu lations of

FDDI LAN performance. This special case of n = x
has already been studied.7

Vol. 3 No. 3 Summer 1991 Digital Technical journal

Similarly, we can use equation (2) to calculate the
maximum access delay with one active station as
fol lows:

Maximum access delay (n = 1) = 2D

That is, a single active station may have to wait as
long as twice the ring latency between successive
transmissions because every a lternate token that it
receives would be unusable. For n = co, the maxi
mum access delay approaches infinity.

Simulation Workload

One way to measure the responsiveness of a sys
tem is to use simulation to analyze the response
time. This metric depends upon the frame arrival
pattern of the workload and is d iscussed further
in the Response Time section. The workload we
used in our simulations was based on an actual mea
surement of traffic at a customer site. The chief
application at this site was the warehouse and
inventory control (WIC). Hence, we named the
workload \VIC.

Previous network measurements show that when
a station wants to transmit, it generally transmits
not one frame, but a burst of frames. The WIC work
load has this trait as wel l . Therefore, we used
a bursty Poisson arrival pattern in our simu la
tion model with an interburst time of 1 ms and

five frames per burst.
We l imited the frames to two sizes: 65 percent of

the frames were small (100 bytes), and 35 percent
were large (512 bytes). This workload constitutes a
total load per station of 1 .22 Mb/s. Forty stations,
each executing this load , would ut i l ize 50 percent
of the FDDI bandwidth. Higher load levels can be
obtained either by reducing the interburst time or
increasing the number of stations on the ring.

Guidelinesfor Setting the Target
Token Rotation Time

This section presents the rules specified by the
ANSI FDDI media access control standard for setting
the value of the TTRT. We also discuss efficiency,
maximum access delay, and response time con
siderations, as wel l as reasons to l imit the value
of TTRT.

ANSI FDDI Standard

According to the ANSI FDDI standard, the fol lowing
ru les must be observed when setting the TTRT:

Digital Technical journal Vol. 3 No. 3 Summer 1991

Performance Analysis of FDDI

1 . Since the TRT can be as long as twice the TTRT, a
synchronous station may have to wait a time
interval of up to 2T before receiving the token.
Therefore, synchronous stations should request
a TTRT va lue of one-half the required service
interval. For example, a voice station that wants

to receive a token every 20 ms or less should
request a TTRT of 10 ms.

2. The TTRT must al low transmission of at least one
maximum-size frame in addition to the syn
chronous time al location, if any. That is,

TTRT > ring latency + token time
+ maximum frame time
+ synchronous time a l location

The maximum-size frame on FDDI is 4500 bytes
plus preamble and takes approximately 0.361 ms

to transmit. The maximum ring latency is 1.773
ms. The token time (11 bytes including 8 bytes of
preamble) is 0.00088 ms. This rule, therefore,
requires that the TTRT be set at a value greater

than or equal to 2.13 ms plus the synchronous
time allocation. Violating this rule, for example,
by overallocating the synchronous bandwidth,
results in unfairness and starvation, i .e . , some
stations are unable to transmit.

3. A station must request a TTRT greater than or
equal to the station parameter T_min. The

default maximum value of T_min is 4 ms. Gen
eral ly, most stations do not request a TTRT less
than 4 ms.

4. A station must request a TTRT less than or equal
to the station parameter T_max. The default
minimum value of T_max is 165 ms. Assuming
that there is at least one station with T_max
equal to 165 ms, the TTRT on a ring cannot
exceed this value. On practice, many stations

will use a value of 222 X 40 ns = 167.77216 ms,
which can be conveniently derived from the
symbol clock using a 22-bit counter.)

Efficiency and Maximum Access Delay
Considerations

In addition to the rules specified by the standard,
the TTRT val ues should be chosen to al low high

performance operation of a ring. This section dis
cusses these performance considerations.

Figure 3 is a plot of efficiency as a function of the
TTRT. Three configurations called "Typical;' "Big,"
and "Largest" are shown.

83

Network Performance and Adapters

i=' z w u a: w
eo_
>-u z w
0
LL LL w

1 00

75

50

25

0

-------�--- TYPICAL

TTRT (MILLISECONDS)

BIG
LARGEST

Figure 3 Efficiency as a Function of the TTRT

The Typical configuration consists of 20 single

attachment stations (SASs) on a 4-km fiber ring. The

numbers used are based on an intuitive feel ing of

what a typical ring would look like ancl not based

on any survey of actual instal lations. Twenty offices

located on a 50 m by 50 m floor require a 2-km

cable or a 4-km fiber.

The Big configuration consists of 100 SASs on a

200-km fiber. This configuration represents a rea

sonably large ring with acceptable rel iability.

Configuring a single ring with considerably more

than this number of stations increases the proba

bi l i ty of bit errors."

The Largest configuration consists of 500 dual

attachment stations (DASs) and a ring that has

wrapped. A DAS can have one or two media access

control lers (MACs). In this configuration, each DAS

has two MACs. Thus, the LAN consists of 1000 MACs

in a single logical ring. This is the largest number of

MACs al lowed on an FDDI LAN . Exceeding this num

ber wou ld require recomputation of all defa u lt

parameters specified in the standard .

Figure 3 shows that for a ll three configurations,
the efficiency increases as the ·rTRT increases. The
efficiency is very low at TTRT values close to the
ring latency but increases as the TTRT increases.

Thus, to ensure a mi.nimal efficiency, the minimum

al lowed TTRT on FDDI is 4 ms. This d irect relation

ship between the efficiency and the TTRT may lead

some to conclude that the largest possible TTRT be

chosen. However, notice also that the efficiency

gained by increasing the TTRT, i .e . , the slope of the

efficiency curve, decreases as the TTRT increases.

The " knee'' of the curve depends upon the ring

84

configuration . For larger configurations, the knee

occurs at larger TTRT values. Even for the Largest

configuration, the knee occurs in the range of 6 to

10 ms. For the Typical configuration. the TTRT has

l i ttle effect on efficiency as long as the TTRT is in

the a l lowed range of 4 to 165 ms.

Figure 4 shows the maximum access delay as a

funct ion of the TTRT for the three configurations.

To show the complete range of possibilities, we

used a semilogarithmic scale on the graph. The ver

tical scale is logarithmic. while the horizontal scale

is I in ear. The figure shows that increasing the TTRT

brings about a corresponding i ncrease in the m axi

mum access delay for al l three configurations.

1 00,000

>-� - 1 0,000
Q (J)
� � w O u u � � 1 ,000
2 ::J
� �
;;;; 1 00
2

1 Q L---�----�----�----�
o

Figure 4

5 1 0 1 5 20
TTRT (MI LLISECONDS)

il1aximum Access Delay as a

Function ojthe TTRT

1;1hle l presents the performance metrics for the

maximum access delay and the efficiency as func

tions of the TTRT. As evidenced in the table, on the
Largest ring, a TTRT of 165 ms causes a maximum

access delay as long as 165 seconds. This means that
in a worst-case situation, a station may have to wait
several minutes to receive a usable token. For many

applications, this delay is unacceptable; therefore, a

reduced number of stations or a smaller TTRT may

be preferable.

Response Time

Figure 5 shows the average response time as a func

tion of the TTRT for a relatively large configuration,

i . e . , 100 stations and 10 km of fiber. The WIC work

load was simulated at three load levels: 28, 58, and

90 percent . Two of the three curves are horizontal

Vnf. 3 Nn. 3 Summer 1991 Digital Technicaljotn-nal

Performance Analysis ofFDDI

Table 1 Maximum Access Delay and Efficiency as Functions of the TTRT

TTRT Maximum Access Delay
(ms) (seconds)

Typical Big La rgest
20 SAS 100 SAS 500 DAS
4 km 200 km 200 km

4 0.08 0.40 4.00

8 0.1 5 0.79 8.00

1 2 0.23 1 .1 9 1 1 .99

1 6 0.30 1 .59 1 5.99

20 0.38 1 .98 1 9.98

1 65 3.1 4 1 6.34 1 64.84

straight lines indicating that TTRT has no effect on

the response times at these loads. The TTRT only

affects the response time at a heavy load. In fact, it is

only near the usable bandwidth that the TTRT has

any effect on the response time.
To summarize the resu lts presented so far, if the

FDDI load is below saturation, the TTRT has l ittle

effect. At saturation, a larger value of TTRT gives a

larger usabk bandwidth and therefore increased
efficiency. But a longer TTRT also results in longer

maximum access delays. The selection of the TTRT
requires a trade-off between these two require

ments. To facil itate making this trade-off, the two

performance metrics for the three configurations

are listed in Table 1 . TTRT values in the allowable
range of 4 to 165 ms are shown. The data shows that

a very smal l value of TTRT, such as 4 ms, is undesir
able, because the resu lting efficiency on the Largest

1 .6
(j) 0 z
0 � 1 2 �
:J ...J 90% LOAD
�
UJ 0.8
::;;
�
UJ
(/)
6 0.4
a.. (/) UJ
((-------------------- 58% LOAD

0
-------------------- 28% LOAD

5 1 0 1 5
TTRT (MILLISECONDS)

20

Figure 5 Response Time as a Function ojTTRT

Digital 1echnical joumal Vol. 3 No. 3 Summer 1991

Efficiency
(percent)

Typical Big La rgest
20 SAS 100 SAS 500 DAS
4 km 200 km 200 km

98.94 71 .87 49.55

99.47 85.92 74.77

99.65 90.61 83.1 8

99.74 92.95 87.38

99.79 94.36 89.91

99.97 99.32 98.78

ring is poor (50 percent). A very large value of

TTRT, such as 165 ms, is also undesirable, because it
results in long maximum access delays. The 8-ms

value is the most desirable, since it yields 75 per

cent or more efficiency on a l l configurations and
results in a maximum access delay of less than one

second on Big rings. Eight mil l iseconds is, there

fore, the recommended default TTRT.

Problems with a Large TTRT

There are three additional reasons for preferring an

8-ms TTRT over a large TTRT such as 165 ms. First, a

large TTRT allows a station to receive a large num
ber of frames back-to-back. To operate in such an

environment, all adapters must be designed with
large receive buffers. Although memory is not con

sidered an expensive part of a computer, its cost

is significant for low-cost components such as
adapters. The board space for the additional mem

ory required by choosing a larger TTRT is consider

able as are the bus holding times required for such
large back-to-back transfers.

Second, a very large TTRT results in an exhaustive

service discipline (i.e., all frames are transmitted in
one token capture), which has several known draw
backs. For example, exhaustive service is unfair.
Frames coming to higher load stations have a
greater chance of finding the token during the same
transmission opportun ity, whereas frames arriving

at low load stations may have to wait. Thus, the

response time is inversely dependent upon the

load, i .e . , higher-load stations yield lower response
times and vice versa 9

Third, with exhaustive service, the response

time of a station is dependent upon station location

85

Network Performance and Adapters

with respect to that of h igh-load stations. The sta
tion immediately downstream from a high-load sta

tion may obtain better throughput than the one

immediately upstream.

Parameters Other Than the TTRT
That Affect Performance

Many parameters other than the TTRT affect the
performance of a network. This section discusses

four configuration and workload parameters: the

extent of the ring, the total number of stations, the

number of active stations, and the frame size.

Extent of the Ring

The total length of the fiber is cal led the extent of

the ring. The maximum al lowed extent on an FOOl

LAN is 200 km. Figures 6 and 7 are graphs i l lustrat
ing the efficiency and maximum access delay as

functions of the extent. A star-shaped ring with all
stations at a fixed radius from the wiring closet is

assumed. The total cable length, shown along the

horizontal axis, is twice the radius times the num

ber of stations. As is evident from the figures, rings
with a larger extent have a slightly lower efficiency

and a longer maximum access delay than those with

smal ler extents.

1 00

� 75
w
(_)
a:
w
e:.
>- 50
(_)
z
w
(3
u::
tt 25

0

�=======� 20 MAGs
1 00 MAGs

1 000 MAGs

TIRT = 8 MILLISECONDS

50 1 00 1 50 200

EXTENT OF THE RING
(TOTAL FIBER LENGTH IN KILOMETERS)

Figure 6 Efficiency as a Function

of tbe Extent of the Ring

Note that in Figure 7, the increase in maximum

access delay for each configuration is not apparent
due to the semilogarithmic scale.

86

1 00,000
TIRT = 8 MILLISECONDS

>-
� � 1 0 ,000 l--------- 1 000 MAGs O Ul U) o
� 6
(_) (..)
:i � 1 000 /--------- 1 00 MAGs
:::; :J
� �
x 1--------- 20 MACs
<{ 1 00
:::;

1 0 o�--
5
�

0--�1 0�0-�1
�
50�-2

�
0�0

EXTENT OF THE RING
(TOTAL FIBER LENGTH I N KILOMETERS)

Figure 7 Maximum Access Delay as a Function

of the Extent of the Ring

Total Number of Stations

The total number of stations on a ring includes
active and inactive stations. In general, increasing

the number of stations adds to the ring latency

because of the additional fiber length and addi
tional station delays. Thus, the number of stations

affects the efficiency and maximum access delay in
a way similar to that of the extent; a ring that con

tains a larger number of stations than another has a

lower efficiency and a longer maximum access

delay. In addition, a large number of stations on
a ring increases the bit-error rate. Consequently,

large rings are not desirable.

Number of Active Stations

As the number of active stations, i .e . , MACs,

increases, the total load on the ring increases.
Figures 8 and 9 show the ring performance as a
function of the number of active MACs on the ring.
We considered a maximum-size ring with a TTRT
value of 8 ms for the analysis. The figures show that

increasing the number of active MACs has a sl ight
positive effect on the efficiency, but considerably

increases the maximum access delay. Therefore,

it is preferable to keep a minimal number of active
stations on each ring by segregating smal l groups
on separate rings.

Frame Size

Frame size does not appear in the simple models of
efficiency and maximum access delays, because

Vol. 3 No. 3 Summer 1991 Digital Technical journal

80

f=' 60 z w
(.) a: w
e;_
>- 40 (.) z UJ
u
u:: u. 20 w

0

Figure S

250 500 750 1 000

NUMBER OF ACTIVE MAGs

Efficiency as a Function of the

Number of Active MACs

frame size has l ittle impact on FDDl performance.

In our analysis, we assumed that transmission
stops at the instant the THT expires; however, the
standard allows stations to complete the trans

mission of the last frame.
The extra time used by a station after THT expiry

is cal led asynchronous overflow. Assuming al l

frames are of fixed size, let F denote the frame

transmission time. D uring every transmission

opportunity, an active station can transmit as many

as k frames:

1 00,000

>-:5 1 0,000 w �
O (J)
� � w O
8 &l 1 ,000
< �
:;2 j
� �
x < ::2

1 00

k = �T;1

TTRT = 8 MILLISECONDS

R ING LATENCY = 1 .773
MILLISECONDS

NUMBER OF ACTIVE MAGs

Figw·e 9 Maximum Access Delay as a Function

of the Number of Active MACs

Digital Technical jow-nal Vol. 3 No. 3 Summer 1991

Performance Analysis of FDDI

Here, I l is used to denote rounding up to the
next integer value. The transmission time is equal

to k times F, which is slightly more than T minus D.

With asynchronous overflow, the modified effi
ciency and maximum access delay formulas

become

nkF
Efficiency = n (kF + D) + D

Maximum access delay = (n - 1) (kF + D) + 2D

Notice that substituting kF = T - D in the above

equations results in Equations (1) and (2).

Figures 10 and 1 1 show the efficiency and the

maximum access delay as functions of the frame

size. Frame size has only a sl ight effect on these
metrics. Larger frame sizes do have the fol lowing

effects:

• The probabil ity of error is greater in a larger

frame.

• Since the size of protocol headers and trailers

is fixed, larger frames require less protocol
overhead.

• The time to process a frame increases only

sl ightly with the size of the frame. A larger frame

size results in fewer frames and, hence, in less

processing at the host.

Overall, we recommend using as l arge a frame size

as the reliability considerations allow.

1 00 TYPICAL

BIG
f=' 75 z LARGEST w
(.) a: w
e;_ TIRT = 8 MILLISECONDS >- 50
(.) z w
u
u:: u. 25 w

0 1 000 2000 3000 4000

FRAME SIZE (OCTETS)

Figure 10 Efficiency as a Function

of the Frame Size

87

Network Performance and Adapters

>-4:

1 00,000

u:J 1 0,000
o w UJ O UJ Z
w o 0 0 � � 1 ,000
::::; :J � ='
� � X
� 1 00

TTRT = 8 MILLISECONDS

----------------- LARGEST

----------------- BIG

--------------- TYPICAL

1 0 o�--�10�0�0--�2�0L00��30L0�0--�4�00�0
FRAME SIZE (OCTETS)

Figure 11 Ma.Yimum Access Delay as a Punction

of the hame Size

Summary

Although many parameters affect the performance

of an fDDI ring network, the target tokt:n rotation

time (TTRT) is the key parameter that network

managns can control to optimize this perfor
manct:. We analyzed the effect of other paranwters

such as the extent of the ring (the length of the

cable), the total number of stations, the number of

active stations, and frame size. From our data we
concluded the following:

• Rings with a large extent and those with a large

number of stations are undesirable because they

yield a longer maximum access delay ami have

only a sl ight positive effect on the ctficiency of
the ring.

• It is preferable to minimize the number of active

stations on a ring to avoid increasing the maxi

mum access delay.

• A large frame size is desirable, taking into consid
eration the acceptable probability of error.

The value of TTRT does not significantly affect
the response time unless the load is near saturation.
Under very heavy load , response time is not a

suitable metric. Instead, maximum access delay,

i .e . , the time between wanting to transmit and

being able to do so, is more meaningfu I.

A larger value of TTHT improves the efficiency,
but it also increases the maximum access delay. A
good trade-off is provided by setting TTRT at 8 ms.
Since this value provides good performance for all

ranges of configurations, we recommend that the

default value of TTRT be set at 8 ms.

88

References

1 . F. Ross, "An Overview of FDDI: The Fiber
Distributed Data Interface," IEEE journal on

Selected Areas in Communications, vol. 7, no. 7

(September 1989): 1043-51 .

2. Fiber Distributed Data Interface (FDDI)

Token Ring Media Access Control (1HAC), ANSI

X3.139-1987 (New York: American National

Standards Institute, 1987) .

3. Token Ring Access Method and Physical Layer

Specifications, ANS!/IEI�E Standard 802.5 -1985,
ISO/DIS 8802/5 (New York: The Institute of E lec

trical and Electronics Engineers, Inc . , 1985).

4 . R. Grow, "A Timed-token Protocol tor Local Area
Networks," Proceedings of tbe IEEE Electro '82

Conference on Token Access Protocols, Paper

17/3, Boston, MA (May 1982).

5. R. Jain, The Art of Computer Systems Perfor

mance A nalysis, ISBN 0-471-50336-3 (New York:

john Wiley & Sons, 1991) .

6 . D. Dykeman ancl W Bux, "Analysis and Tuning of
the FDDI Media Access Control Protocol," IEEE

journal on Selected Areas in Communications,

vol . 6, no. 6 Ouly 1988) : 997- 1010.

7.]. Ulm, "A Timed-token Ring Local Area Network

and Its Performance Characteristics," Proceed

ings of the Seventh IEEE Conference on Local

Computer Networks (February 1982): 50-56.

8. R. Jain, "Error Characteristics of Fiber Distrib

uted Data Interface (FDDI)," IEEE Transactions

on Communications, vol . 38, no. 8 (August

1990): 1244- 1252.

9. W Bux and H . Truong, " Mean-delay Approxi

mation for Cyclic-service Queueing Systems,"
Performance Evaluation, vol. 3 (Amsterdam:
North-Holland, 1983): 187- 196.

Vol. j No. 3 Summer 1991 Digital TecbtJical Joun�al

I Further Readings

The Digital Technical]ournal

publishes papers that explore

the technological foundations

of Digital's major products. Each

Journal focuses on at least one

product area and presents a

compilation of papers written

by the engineers who developed

the product. The content for

the Journal is selected by the

journal Advisory Board.

Digital engineers who would

like to contribute a paper

to the Journal should contact

the editor at RDVAX::BLAKE.

Topics covered in previous issues of the Digital

Technical journal are as fol lows:

Fiber Distributed Data Interface
Vol. 3, No. 2, Spring 1991

Transaction Processing, Databases, and
Fault-tolerant S ystems
Vol. 3, No. 1, Winter 1991

VAX 9000 Series
Vol. 2, No. 4, Fall 1990

DECwind ows Program
Vol. 2, No. 3, Summer 1990

VAX 6000 Model 400 S ystem
Vol. 2, No. 2, Spring 1990

Compound Document Architecture
Vol. 2, No. 1, Winter 1990

Distributed S ystems
Vol. 1, No. 9, june 1989

St orage TecluJ. olog y
Vol. 1, No. 8, February 1989

CVAX-based S ystems
Vol. 1, No. 7, A ugust 1988

Soft ware Productivit y Tools
Vol. 1, No. 6, February 1988

VAXcluster S ystems
Vol. 1, No. 5, September 1987

VAX 8800 Family
Vol. 1, No. 4, February 1987

Net working Products
Vol. 1, No. 3, September 1986

Digital Technical journal Vol. 3 No . .3 Summer 1991

MicroVAX ll S ystem
Vol. 1, No. 2, March 1986

VAX 8600 Processor
Vol. 1, No. 1, August 1985

Subscriptions to the Digital Technical journal are

available on a yearly, prepaid basis. The subscrip

tion rate is $ 40.00 per year (four issues). Requests

should be sent to Cathy Phill ips, Digital Equipment

Corporation, ML01-3/B68, 146 Main Street, Maynard,
MA 01754, U.S.A. Subscriptions must be paid in U.S.

dollars, and checks should be made payable to

Digital Equipment Corporation.

Single copies and past issues of the Digital Technical

journal can be ordered from Digital Press at a cost

of $ 16.00 per copy.

Technical Papers b y Digital Authors

R. Abbott, "Scheduling l/0 Requests with Dead

lines: A Performance Evaluation," lEU:' Real-time

Systems Symposium (December 1990).

S. Batra, " Magnetic Superexchange in)1G &

CA2 :)1G," Thirtyjifth Conference on Magnetism

and Magnetic Materials (October 1990).

A. Conn,]. Parodi, and M. Taylor, 'The Place for

Biometrics in a User Authentication Taxonomy,"

Thirteenth National Computer Security

Conference (October 1990).

S. Das, "Suppression of Barkhausen Noise in an

MR Head," Thirtyjifth Conference on Magnetism

and Magnetic Materials (October 1990).

P Fang, "Yield Model ing in a Custom IC

Manufacturing Line," Advanced Semiconductor

Manufacturing Conference (September 1990).

E. Freedman and Z. Cvetanovic, "Perfect

Benchmarks Decomposition and Performance

on VAX Multiprocessors," IEEE Supercomputing '90
(November 1990).

L. Jaynes, "The Effect of Symbols on Warning
Compliance," Thirtyjourth Human Factors

Society (October 1990).

M. Joshi, " Making Wafers in the JIT Style,"

Advanced Semiconductor Manufacturing

Conference (September 1990).

K. Mistry and B. Doyle, "Electron Traps, Interface
States and Enhanced AC Hot-carrier Degradation,"

iEEE Device Research Oune 1990).

89

Further Readings

Digital Press

Digital Press is the book publishing group of Digital

Equipment Corporation. The Press is an interna

tional publisher of computer books and journals on

new technologies and products for users, system

and network managers, programmers, and other

professionals. Proposals and ideas for books in

these and related areas are welcomed.

The fol lowing book descriptions represent a sam

ple of the books available from Digital Press.

VAX/VMS INTERNALS AND DATA
STRUCTURES: Version 5.2
Ruth E . Goldenberg and Lawrence). Kenah,

with the assistance of Denise E. Dumas, 1991 ,

hardbound, 1427 pages, Order No. EY-C 171E-DP-EEB

($ 124.95)

This is a totally revised edition of the most authori

tative and complete description of the VAX/VMS

operating system in the industry The book features

new chapters on symmetric mult iprocessing, the

reorganized executive, VAX interrupts and excep

tions, and the 110 subsystem, including device

drivers and interrupt service rou tines. The addi

tion of symmetric multiprocessing to the VA<'</VMS

operating system prompted major revisions to

chapters concerning hardware and software inter

rupts, memory management, and synchronization.

The authors have also taken every opportunity to

clarify d ifficu lt concepts, to col lect related mate

rial into single chapters, and to standardize and

simpl ify the numerous figures contained in this
reference.

VMS FILE SYSTEM INTERNALS
Kirby McCoy, 1990, softbound, 460 pages,

Order No. EY-F575E-DP-EEB ($49.95)

VMS FILE SY'ITEM IAJJR \:4LS, based on VMS

Version 5.2, is a book for system programmers,
software specialists, system managers, appl ica
t ions designers, and other VAX/VMS users who
need to understand the interfaces to and the data
structures, algorithms, and basic synchronization

mechanisms of the VMS file system. This system is

the part of the VAX/VMS operating system respon

sible for storing and managing files and informa

tion in memory and on secondary storage. The
book is also intended as a case study of the VMS

implementation of a file system for graduate

and advanced undergraduate courses in operating
systems.

90

VAX ARCHITECTURE REFERENCE MANUAL,
Second Edition
Richard A. Brunner, Editor, 1991 , softbound,

560 pages, Order No. EY-F576E-DP-EEB ($44.95)

This book describes the data types, instructions,

calling standards, addressing modes, registers,

exception and interrupt handling, memory man

agement, and process structure common to al l VAX

computers-from the Micro VAX I I to the VAX 9000.

New sections describe the VAX shared-memory

model supported in VAX multiprocessor computers

and the recently added vector processing exten

sions implemented by the VAX 9000 and VAX 6000
model 400 systems. The book introduces the

design goals and terminology of the VAX instruction

set, including those for memory management,

exception and interrupt handl ing, process control,

and vector processing. The description of each

instruction gives format, operations, condition

codes, instruction-specific exceptions, opcodes,

and mnemonics.

A COMPREHENSIVE GUIDE TO Rdb/VMS
Lilian Hobbs and Kenneth Engl and, 1991,

softbound, 352 pages, Order No. EY-H873E-DP-EEB

($34.95)

The Rdb/VMS relational database system was devel

oped by Digital Equipment Corporation for VA.,'{

computers using the VMS operating system. This

system is one of a number of information manage

ment products that work together to faci l i tate the

sharing of information. The Rdb/VMS system is
used, for example, in high-performance transaction

processing systems. This book is based on Rdb/VMS

Version 4.0, which Digital made available to cus

tomers at the end of 1990, and thus includes the lat

est functional ity.

MIT PROJECT ATHENA: A Model for
Distributed Campus Computing
George A. Champine, 1991 , hardbound, 282 pages,

Order No. EY-H875E-DP-EEB ($28.95)

MIT Project Athena has emerged as one of the

most important models for next-generation dis

tributed computing in an academic environment.

MIT pioneered this new approach, based on the

cl ient -server model, to support a network of work

stations. The project began in 1983 as a five-year

project, with D igital Equipment Corporation and

IBM as its two major industrial sponsors. Now a

production system of networked workstations,

Vol. 3 No. 3 Summer 1991 Digital Technical journal

Project Athena is replacing time-sharing (which MIT

also pioneered) as the preferred model of com
puting at MIT. The size and uniqueness of Project
Athena has led to widespread interest in its design,
implementation, and performance.

UNDERSTANDING CLOS: The Common Lisp
Object System

Jo A. Lawless and Molly M. Mil ler, 1991, softbound,
192 pages, Order No. EY-F591E-OP-EEB ($26.95)

The Common Lisp Object System (CLOS) is an
extension to Common Lisp that brings object
oriented programming (OOP) to this popular ver
sion of the Lisp language. Written for computer
professionals and students, UNDERSTANDING CLOS

quickly introduces necessary object-oriented pro
gramming concepts and provides complete syntac
tic descriptions of a l l CLOS functions adopted by
the ANSI X3J13 standards committee. Also included
is an 800-l ine sample application, as well as a bibli
ography, a glossary, and an index.

COMMON IJSP: The Language, Second Edition
Guy L. Steele, Jr. , 1990, softbound, 1029 pages,
Order No. EY-C 187E-DP-EEB ($38.95)

The first edition of COMMON USP: The Language,
which sold over 60,000 copies, became the de

facto standard for the Common Lisp program
ming language. This second edition is approxi
mately twice the size of the first edition. The book
reflects, as closely as possible, the decisions and
recommendations made by ANSI committee X3)13,
bridging the gap between the first edition and the
forthcoming ANSI standard . It describes many of
the changes made to the Common Lisp program
ming language, relative to the structure of the first
edition, and discusses those areas that are l ikely to
be revised further.

To receive a copy of our latest catalog or further
information on these or other publications from
Digital Press, please write or cal l :

Digital Press
Department EEB
12 Crosby Drive
Bedford, MA 01730

(617) 276 -1536

Or, you can order by calling DECdirect at 800-DIGITAL
(800-344-4825).

When ordering be sure to refer to Catalog Code EEB.

Digital Tecb11ical]ournal Vol. 3 No. 3 Summer 1991

Book Review

The Art of Computer Systems Performance
A nalysis: Techniques for Experimental Design,
Measurement, Simulation, and Modeling,
R. Jain, John Wiley & Sons, Inc . , New York, 1991 .

720 pages (ISBN 0-471-50336-3).

I

This is an edited version of a forthcoming review by
Robert Y. Al-Jaar in the Perfonnance Evaluation
Review of the ACM SIGMETRICS.

The author achieves the major objectives presented
in his preface. Raj Jain provides computer profes

sionals simple and straightforward performance
analysis tedmiques in a comprehensive textbook.

He gives basic modeling, simulation, measurement,
experimental design, and statistical analysis back
ground, and emphasizes and integrates the model

ing and measurement aspects. The author discusses
common mistakes and games in performance anal
ysis studies, and il lustrates the presented tech

niques using examples and case studies from the
field of computer systems.

The book consists of 36 chapters organized in the
following six parts: "An Overview of Performance
Evaluation," " Measurement Techniques and Tools,"
" Probability Theory and Statistics," " Experimental
Design and Analysis;' "Simulation," and "Queueing
Models" ; nearly the same level of attention is given

to each part. Each chapter has a set of careful ly
designed exercises; solutions to selected exercises
are presented at the end of the book. Each part con
cludes with a comprehensive l ist of references,

appropriately selected from the extensive l ist that
fol lows the exercise solutions. The book also
includes an appendix that contains statistical tables
and formulas.

Part I emphasizes the importance of performance
analysis for designers, administrators, and users of

computer systems. The author introduces the field
of computer systems performance analysis and
presents examples of problems that one should be
able to solve after reading the book. He discusses
22 common mistakes that occur in performance
evaluation studies and presents in a "box" format
a summary checklist to help avoid these mistakes.
This format is an effective presentation technique

used judiciously throughout the book to highlight
important techniques and summarize major results.
The author advocates a 10-step approach to per
formance analysis and discusses the selection of
performance evaluation techniques and metrics.

9 1

Further Readings

I enjoyed reading this coverage of issues critical

to the success of any performance engineering

project but often ignored . The d iscussions remind

experts of the importance of these matters and

encourage newcomers to develop the correct att i

tude toward performance.

Part I I begins with explanations of workload

types. The author emphasizes several major consid

erations for workload selection. He then discusses

monitors, including program execution monitors

and accounting logs. Of particular interest is the

discussion of the design of software monitors.

Capacity planning and benchmarking sections

include enlightening material on common mistakes

of inexperienced analysts and the games and tricks

played by experienced analysts. By discussing such

practical topics as load drivers and remote-terminal

emulators (RTEs), the book provides comprehen

sive information on performance analysis, a wel

come departure from the format of many other

books which consider such a d iscussion "unintel

lectual." The art of data presentation techniques

fol lows. The quality and format of the presenta

tions in the book clearly indicate that the author

does practice what he preaches.

Part Il concludes with a d iscussion of ratio

games. The author uses case studies and examples

to explain how to choose an appropriate base

system and ratio metric. He also outl ines strategies

for defending onesel f from ratio games played by

others.

Part III introduces the basic concepts of proba

bil ity and statistics, using examples and case studies
from the computer field to convince the reader

that these concepts have practical importance .
The author explains how to summarize measured

data and use sample data to compare systems;

provides an easy-to-read introduction to simple lin
ear regression models; and d iscusses other regres
sion models.

The overall t reatment of experimental design
and analysis is so comprehensive and thorough that

Part IV is practically a short book on experimen
tal design techniques. The author explains the basic

concepts, terminology, and design techniques, and

discusses in detail a variety of experimental

designs.

Part v contains a good introduction to simulation
as a tool for computer performance analysis. The

author provides a checklist of common simula

tion mistakes and describes the Monte Carlo, trace

driven, and discrete-event simulation methods.

92

Adding a discussion of process-oriented, as

opposed to event-oriented, s imulation methods

would provide the reader with a more complete

perspective of current simulation methods.

This part next describes the analysis of simu

lation results. Included are model verification and

validation techniques, accompanied by algorithms

to aid the reader in the implementation. The book

a lso contains in-depth coverage of random number

generators. Part v concludes with a brief discussion

of current areas of research in simulation. Pointers
to references for process- and object-oriented simu

btion methods would be a welcomed addition.

Part VI introduces the basic concepts and nota

t ion of queueing modt:ls, key tools for evaluating

the performance of computer systems. lnduclcd is

a clear, step-by-step analysis of single queues; a
discussion of stochastic processes; an explanation

of queueing networks and related operational anal

ysis techniques; and a demonstration of the convo

lution algorithm . The author also introduces the
reader to the practical technique of hierarchical

decomposition of large queueing networks. Part VI
concludes with a d iscussion on the l imitations

of queueing theory. To choose the appropriate

modeling approach, analysts must be aware of

these l imitations.

This is a truly landmark book which achieves the

author's stated objectives. A strong point of the
book is its equal treatment of modeling, simulation,

measurement, and experimenta l design in the con

text of computer syst<::ms. r believe that most of the

chapters can be used as 45 -minute lectures, as the

author claims. Senior students in engineering and

computer science will generally have the mathe

matical sophistication required to understand the

material covered in this book. The Art of Computer

Systems Performance Analysis is indeed an ency

c lopedia on the performance analysis of computer
systems, and should be on the bookshelf of every

computer professiona l .

Robert Y Al-)aar, Ph.D. , Principal Systems Engineer

Porting and Performance Engineering Group

Digital Equipment Corporation

Marlborough, Massachusetts 01752-9122

Ju ly 24, 1991

Note: The book reviewed was written by an

author who contributed a p aper to this issue of

the journal. The editor included this review as

one that might be of i nterest to our readers. The

review txpresses the opinions of the reviewer.

Vol. 3 .\'u. j Summer I'J'Jl Digital Technical journal

ISSN 0898-90 1 X

Printed i n U.S . A . EY-H890E-DP/91 09 02 20.0 DBP/NRO Copyright © Digital Equipment Corporation. All Rights Reserved.

	Front cover
	Contents
	Editor's Introduction
	Biographies
	Foreword
	Design of VMS Volume Shadowing Phase II - Host-based Shadowing
	Application Design in a VAXcluster System
	New Availability Features of Local Area VAXcluster Systems
	Design of the DEC LANcontroller 400 Adapter
	The Architecture and Implementation of a High-performance FDDI Adapter
	Performance Analvsis of a High-speed FDDI Adapter
	Performance Analysis of FDDI
	Further Readings
	Back cover

