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Editor's Introduction 

Richard W. Beane 
Editor 

The Digital Technical journal bridges a gap 
in the information published about Digital's 
products by providing an �:xplanation of 
their technologica'l foundations. In th<.: past, 
such explanations appeared in papers writ
ten by Digital's engineers for various periodi
cals. Unfortunately, anyone wanting concise 
technical details had to search through the 
gamut of this literature. 

This journal was created to pr<.:sent that 
information in one publication. The papers 
ar<.: written by the engineers who developed 
th<.: products, in terms of th<.: technologies 
that went into their designs. Our audience is 
composed of engineers within Digital. as 
well  as c ngine�:ring e d u c ators and 
customers. 

This issue, our inaugural one, features the 
VAX 8600 processor. Its design. with a pipe
lined architecture and emitter-coupled 
logic, offers many innovations besides 
increased speed. New packaging. cooling, 
and reliability techniques, and new auto
mated simulation tools were used to develop 
this product. Some papers explain the final 
results of the development process; others 
discuss the process itself. All give the reader 
a sense of the unique ways in which Digital 
develops its products. 

The first paper, by Tryggve Fossum. Jim 
McElroy, and Bill English, is an overview of 
the 8600's salient features. The distribution 
of processing into the various "boxes." the 
specific performance improvements. and the 
reI iabi 1 i ty and data integrity features are 
amply discussed. This paper establishes a 
framework to assist the reader in fitting the 
more detailed papers into an overall <:ontext. 

The pipeline paper, by Mario Troiani. 
Steve Ching, Nii Quaynor, John Bloem, and 
Fernando Colon Osorio, explains the 
VAX 8600 pipeline in terms of a general 
model. This starting point is important in 
understanding the unique contribution of 
the pipeline's key dement, the instruction 
prefetch unit. The paper explains how this 
unit fetches instructions, achieves control, 
and maintains data integr-ity. 

The 8600 fea-tures fast, efficient floating 
point operations. The paper by Tryggve Fos
sum, Bill Grundmann, and (;inny 13laha dis
cusses the instruction flow in the tloating 
point accelerator and the role of emitter-cou
pled logic in its design. The authors describe 
how al gorithms are processed and how 
microcode controls those operations. 

The next three topics arc closely related 
becau·se decisions in packaging, signaling, 
and cooling must be made with their inter
acting effects in mind. The paper on packag
ing. by Jim McElroy, discusses the evolution 
of the process that identified the best wav to 
package the modules and components. J�hn 
Hackcnbng's paper on signal integrity 
describes the software tools that enabled the 
design team to distribute power while con
trolling noise and avoiding cool ing 
problems. The solutions to those problems. 
including the use of thermal design rules and 
special measuring techniques. arc discussed 
by Brian Kalita and Bill English. 

The final paper, by Bill Bruckert and Ron 
josephson. explains why reliability consists 
of the avoidance, tolerance. and minimiza
tion of faults, and the improvement of MTfR. 
The authors discuss the techniques used to 
reduce failures. to identify those that do 
occur, and to make repairs easier. 

These papers represent a cross section of 
the activities in a large design project. and 
they relate the results of design decisions as 
well as the process for making them. 
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Foreword 

Robert M. Glorioso 

Vice President 
High l'e1jormance .\),stems 
and Clusters 

How appropriate it is that this first issue of the 
Digital Technical jo urnal, a medium for com
municating new technical ideas and results 
within Digital, should be dedicated to the 
VAX 8600 system. The 8600 represents the con
fluence of many new concepts and much good 
engineering in the areas of implementation 
architecture, interconnect, packaging, cooling, 
design methodology and tools, C PU and systems 
design verification, and complexity management. 

The VAX 86 00, o r  VENUS, p r o gram 
approached the problem of producing a high
performance VAX system in two ways . First, we 
reduced the cycle time by physical means. Sec
ond, by incorporating new design techniques, 
we reduced the average number of cycles 
required to implement instructions over a wide 
range of typical uses. The performance range of 
the 8600 makes it appropriate for customers 
with requirements close to those provided by 
mainframes . Therefore, we had to address main
frame reliability, maintainability, and lifetime 
cost-of-ownership issues from the beginning of 
the project. For this reason several new con
cepts had to be integrated into the design. 

The key concept of the new physical technol
ogy incorporated in the 8600 is the use of ECL 
gate arrays called macrocell arrays, developed 
jointly hy Digital in Marlboro and Motorola in 
Phoenix. In order to deal with the speed of 
ECL, we had to pay special attention to board, 
connector and backplane impedance and delay, 
as well as manufacturing problems. lncorporat· 
i n g  E C L  yielded a cycle time of 8 0  
nanoseconds. Compared to 2 00 nanoseconds 
on the VAX-11/780 system, that represents a 
performance ga�n of 2. 5, which is the minimum 
gain without architectural improvements. 

The architectural challenge in this imple
mentation was to increase the VAX 8600 per
formance by 1. ') to 2 .  5 times that of the I I j780 
by executing more of the functions of each 
instruction during every cycle. Meeting this 
challenge required that the operations of 
instruction decoding and execution take place 
in parallel to a greater degree than in any previ
ous VAX implementation. Thus the concept of 
pipdining became a necessity in the VAX 8600 
implementation. Moreover. the higher speeds 
required different approaches to cache 



management, memory busing and management. 
and ljO. In particular, the concept of a 
"writeback" cache was introduced to reduce 
the number of times that individual accesses to 
slower main memory arc needed. Furthermore, 
the memory and 1/0 buses were separated to 
allow higher memory bandwidth, which 
decreases the amount of needed memory. and 
to avoid 1/0 interference problems. 

The resulting design, which has from I 00-
200 thousand gates (depending on how gates 
arc counted), introduced new levels of com
plexity in both design and management that 
stretched us all into new domains of knowledge 
and maturity. For example, we discovered quite 
early in the program that our classic design 
approach of quickly designing on paper, build
ing prototypes. and debugging them would 
NOT work. The design turnaround times for the 
chips alone would have gotten us to market 
much too late to he competitive. Thus we 
began the process of simulating. debugging and 
verifying the 8600 by using other computers 
instead of moving wires. That process required 
us to develop new tools for timing analyses. 

such as AUTODI.Y. and new methods for build
ing data bases. Moreover, new techniques had 
to be devised for finding and fixing problems 
by using tools and libraries instead of real 
design bugs. And, of course, computer 
resources had to be identified, ordered, and 
installed. 

Initially we had planned to use four KL-1 0 
systems and a VAX-11/780 system as the com
puter resources needed for the whole program. 

We soon found that more machines were 
needed quickly if we were to succeed with sim
ulation. In the course of the next two years we 
installed about one new system per month, end
ing with not only twelve KL-1 Os but also twelve 
llj780s. Simulation was a tremendous chal
lenge to the whole organization and required 
close cooperation from our partners in other 
groups, especially manufacturing and CSSE. 
The former helped us to get equipment and 
loaned us space. and the latter moved their O\vn 
work around and loaned us systems and peopk 
to complete the simulation and verification. 
Moreover, networking at a much higher level 
was then needed and communications between 

the I I j780s and the KL-1 0 systems had to be 
improved. Our Site Resources and Engineering 
Group had to accommodate these changes. and 
their capabilities grew continually within the 
available constraints of time and space. 

Finally, a word about the management of the 
VA,'( 8600 program. First. 1 be I ieve we learned 
a great deal about the management methodolo

gies required to produce a product as complex 
as the VAX 8600 system. Our fundamental phi
losophy was open communications at all levels 
of the project. We fostered the attitude that 
finding problems. discussing them, and asking 
for help wer(' signs of intelligence and matur
ity, not ones of weakness or failure. To succeed, 
we knew this was the "right thing to do." We 

a'lso developed a review process that 
encouraged project members and other groups 
to see our progress . This process included regu
lar. open reviews for all project levels, weekly 
program reviews for all groups involved in the 
project (manufacturing, CSSE, VMS, semicon
ductors. purchasing, etc .), and monthly 
reviews for people throughout the company 
who were less directly involved. 

During the course of the program these 

reviews allowed the development of close pro
fessional and personal relationships that clearly 
helped us to meet the VAX 8600 program per
formance, function, cost, quality, volume and 
schedule goals. 

The following papers represent a cross sec
tion of the problems addressed. solutions 
found, and successes achieved in the course of 
developing the 8600. Many topics could have 
been included, but this group should provide 
the reader with some insight into the product 
design and management processes associated 
with this program. 

At this time I would like to acknowledge for
mally all the people not only within the i"ligh 
Performance Systems and Clusters Group. hut 
especially those outside this group who con
tributed so creatively and generously to this 
program. Naming each of them would surely 
consume the remaining pages of this journal 
since there were over 40 different facilities, 
and at least that many groups. involved in the 
VENUS program. The success of the VAX 8600 
system is their success' 
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Tryggve Fos ... ·um I James B. McElroy 
William English 

An Overview of the 
VAX 8600 System 

The VAX 8600 system handles 5 million Wbetstones per second, which is 
over Jour times Jaster than the l'AX-11/780 system. The 8600 uses pipe
lined instructions, a bigger cache memory, and a dedicated memOIJI bus to 
acbieve its speed. Inside, small processors-called boxes-petform tasks 
simultaneously. The I Box pre fetches inst1·uctions while tbe E Box executes 
others; the F Box petformsfast.f1oating point operations, as do all VAX 
systems. Macrocell array technology, with fast gate speeds, and microcode 
control are used throughout. These aspects, plus a new cooling system and 
interconnect innovations, make tbe VAX 8600 system ve1y reliable. 

The main design objective of the VAX 8600 
project was to gain a significant improvement 
in VAX computing performance with a minimal 

cost increase. Furthermore, the 8600 had tO 
retain all the characteristics common to the 
32-bit VAX Family. These characteristics 
included the following requirements: the new 
machine must run the VMS operating system, 
must interconnect to the present 1/0 bus struc
tures. and must have the network links associ
ated with the VAX computing environment. 
Improved performance is achieved through 
innovations in computer design and the intro
duction of large scale processing concepts 
into the VAX architecture. Innovations include 
the use of E C L  macrocell arrays ( M CAs) 
throughout the CPU and new electrical and 
mechanical packaging. Among the large scale 
processing concepts employed are a dedicated 
memory bus and pipelincd operation in both 
instruction processing and memory references. 

Designing a large scale computer is a process 
driven by Digital's performance goals for the 
machine. On some projects, little time remains 
to evaluate the relative costs of equivalent 
alternatives. All VAX systems. however, must 
meet pricejperforrnance design criteria, the 
most important of which is the customer's 
overall cost of ownership. Therefore, to me<:t 
those criteria, we used many techniques to 

8 

enhance the system's rdiahility, availability 
and maintainability. 

Tbe VAX 8600 System 

The VA .. '( 8600 processor (Figure I )  consists of 
six relatively independent subprocessors: 
E Box, F Box, I Box, M Box, console, and 1/0 
adapter. The E Box <:xecutes the VAX instruc
tion set and generally directs the entire system. 
The I Box prcfetches instructions and operands 
and decodes them for later execution by the 
E Box. This gives the machine a pipelined struc
ture: several instructions can be present in the 
I Box and the E Box at the same time. The pipe
line enables some frequently executed instruc
tions tO be completed in the E Box in a single 
machine cycle of 80 nanoseconds. 

The M Dox contains a 16-kilobyte data cache 
to increase the speed of memory acc<:ss. It also 
contains a buffer that holds recently used trans
lations of virtual memory addresses to physical 
ones. Using a translation buffer eliminates the 
need to look up these addresses for every mem
ory access . The M Box interfaces the memory to 
all other parts of the system, and also interfaces 
the E, F, and I Doxes to the adapter bus for 
input and output. A "memory reference" by 
one of the other boxes happens in a "cache 
cycle," the objective of the design being to deal 
solely with the high-speed cache as often as 

Dif!.ilal Ted.JIIical Journal 
No. I ilugust I 'JH'J 
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Figure 1 Tbe VA X 8600 Operations Flow 

possible .  The M Box actual ly  references storage 
only when needed data is not found in the 
cache or when room needs to be made in i t  for 
new data . As elsewhcrc i n  the machine,  the 
M Box has a variety of re l iab i l i ty and maintain
abi l ity features, including error correction on 
the data in the cache. 

The F Box is a floating point processor . or 
accelerator (FPA) . When present in  a system ,  
the F Box intercepts float ing point instructions 
as they are presented by the I Box . Spec ial  hard
ware for fast unpacki ng. a l igni ng, add ing. mu l 
t ip lying and dividing produces extra-high per
formance for sc ientific,  computationa l nu mber 
cru nching. 

The 16 general purpose registers ( GPRs )-the 
I and F Uoxes each have one set and the E Uox . 
two-arc basic to the accurate and fast manipu
lat ion of data . Therefore, a l together, four cop
ies of the G PRs are kept to guarantee fast ,  flexi 
ble access and instruction retry. 

'fhe console is a mi croprocessor-based front 
end interface to the operator. the boot device , 
and the remote diagnostics . This unit  is used to 
init ia l ize the system on power-up,  to test i t ,  and 
to assist in isolating fau lts .  The console also 
automat ica l ly hand les various functions that are 
usua l lv  performed manual ly  by an operator. 

DiJ:ital Tt•d.nricttl jounurl 
No. I !lug us/ I 'JH'i 

The 1/0 system is based on Digita l 's standard 
synchronous backplane in terconnect ( SD I ) , 
which is interfaced to the rest of the system via 
t h e  M Box t h ro u g h  an a d a p t e r  on t h e  
adapter bus .  The various device contro l lers and 
adapters to other interconnects arc located on 
the SBI . 

Al though a l l  boxes contain mi crocode ,  the 
main mi crocode is in the E Box . This ai iows the 
boxes to perform complex fu nctions with a 
sma l l  amount of hardware , providing design 
flexib i l i ty and a good cost/performance ratio.  
All  mi crocode storage is writable ,  which fac i l i 
tates changes and addit ions whenever neces
sary . I n i t i a l l y ,  the RAMs are l oaded from 
microcode fi les stored on a removable d isk in  
the console subsystem.  M icrocoded diagnostic 
programs are also loaded in the control store 
when i t  is  necessary to i d e n t i fy fa i l ing  
components . 

A number of buses interconnect the various 
boxes . All data movement between the proces
sor and both the memory array and the 1/0 sub
system occurs through the memory data bus 
connect ing the M Box and the I Box . The I Box 
receives the instruction stream and the memory 
operands over this bus ; the memory operands 
are then passed to the E Box and the F Box over 
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------- A n  Overview of the VA X 8600 System 

the operand bus.  Resul ts from ei ther of those 
boxes arc sent via the write bus to the I nox, 
which in  turn passes them to the M nox over 
the memory data bus.  The write bus is also used 
to keep the four sets of GPRs identical to one 
another. Iloth the I Box and the E Box supply 
addresses (almost always virtual) to the M Box. 
All buses and registers handle 3 2 -bit words . 

The component technology used in the 8600 
is the macrocell array, which provides a typical 
gate speed of one nanosecond and has h igh
density LSI ECL technology in a 68-pin package 
that is one inch square .  MCA technology is an 
extension of the gate array concept .  Instead of 
gates , however, each ceU in the array contains a 
number of unconnected transistors and resis
tors . By creating interconnecting patterns, one 
can transform those components into small 
scalejmedium-scaie integration (SSI/MSI)  logic 
functions or "macros . "  These macros take the 
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form of standard logic elements such as dual 
0-type tl ipflops , dual fu l l  adders, quad latches , 
and the l ike . Most of them are series-gated ECL 
structures for opt imized performance . 

E Box, Heart of the .�:vstem 

The E Dox , the focal point of the entire system ,  
execu tes t h e  VAX instruct ion se t ,  handles 
exceptions and interrupts, and controls the rest 
of the system. It is h ighly microcoded: most of 
its clements are directly control led in  each 
cycle  by b i ts i n  the m i croword . I n tens ive 
m i crocoding  makes poss ible  the use of a 
datapath with a s imple structure ;  the power of 
the datapath comes from the speed and ease 
with which i t  can be manipu lated by the 
m icrocode.  

As shown in Figure 2 ,  the E Box conta ins a 
dua�-portcd scratchpad memory ( Register Files 
A and D) comprising 256  3 2-bit  registers . I n  the 
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Figure 2 Block Diagra m of the E Box 
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scratchpad are basic machine registers, copies 
of t he G PR s ,  a b o u t  1 SO c o n s t a n t s  a n d  
microcode temporaries , and some archi tectur· 
a l ly defined registers used by memory manage· 
ment and the operating system. 

Arithmetic and logical operations are done by 
a 32 -bit  arithmetic and logic uni t  (All!) ,  which 
has all the usual fu nctions for performing add, 
subtract ,  OR, exclusive OR, and s imi lar opera· 
tions. There are also some special  ALU func
tions for speeding division, decimal arithmetic, 
and comparisons . The most significant perform
ance factor related to the ALU, however, is the 
abi l i ty of the microcode to take any two values 
from the scratchpad, operate on them in the 
A L U , a n d  s t o r e  t h e  re s u l t  b a c k  i n  t h e  
scratchpad-atl  in a s ingle cyc le .  With this capa
bi l i ty ,  some whole instructions can be com
pleted in just one cycle .  And longer, repetitive 
instructions, such as those handl i ng character 
strings, can be execu ted in short loops. 

Paral le l ing the ALU is a barrel-shift network 
that accepts a 64 -bit va lue ,  joins i t  end to end, 
and selects any des ired 32 consecut ive bits 
from the ring format. The value can be supplied 
by two scratchpad registers or one register con· 
catenated with memory data . Control over the 
shifter can be exercised directly by a field in 
the microword , or through a shift control  regis· 
ter. The register a l lows a new sh ift count 
related to some previously specified one.  The 
shifter is used for u npacking and packing float· 
ing point  data , trans lating different decimal 
data formats, ari thmetic shifts and rotations,  
and various other bi t  manipulations. As i n  the 
case of the ALU , the shifter's power is enhanced 
by the abi l i ty of the microcode to take any two 
words in the scratchpad, shift them, and store 
the resul t  back in the scratchpad, a l l  within the 
same cycle.  

I Box Handles the Details 

The V�"\ architecture has a rich instruction set 
with a large number of opcodes and specifiers 
for fetching operands and storing results .  While 
this variety is  quite usefu l to the programmer 
and compiler writer, the task of decoding these 
opcodes and specifiers constitutes much of the 
total work i n  processing VAX i nstructi ons . 
Therefore , the 8600 has a separate subsystem 
ded icated to prefctching instructions , decodi ng 
them, fetching source operands, and storing 
resu lts . That subsystem also receives cond ition 
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codes from the E Box and makes al l  branch tar
get fetches and decisions . Much of the t ime,  
this work is  overlapped with the actual i nstruc
t ion execut ion in the E and F Boxes , thus  
a c h i e v i ng a h igh degree of  s i m u l taneous  
processing. 

The I Box cons ists of two major parts : an 
instruction unit and an operand unit  (Figure 3) . 
The instruction uni t  contai ns an 8-byte FIFO 
i nstruction buffer, which receives instruction· 
stream data from memory, 4 bytes at a time. The 
u n i t  eval uates these bytes to determine the 
address i ng mode and to  make i ns t ru ct ion  
optimization decis ions . Evaluation i s  done with 
the help of a decode RAM, which contains 
information specific to the i ndividual opcodes 
and specifiers .  

The instruction uni t  also supplies informa
tion about where to find the operands for an 
instruct ion. Using this information,  the operand 
uni t  can generate the addresses for the oper
ands and start the memory reads to fetch them.  
For this purpose,  the uni t  has i ts own copy of  
the GPRs, s ince they are needed to calcu late the 
addresses. Often the GPRs contain the oper
ands , in which case either they are read directly 
or the numbers of the G PRs contain ing them are 
passed to the execution un i ts (E  and F Boxes) . 
At other t imes, the operands are contained in  
the i nstruction stream itse lf, in  which case they 
are extracted from the i nstruct  ion  buffe r .  
Whenever possible ,  the instruction unit  tries to 
process two specifiers in a s ingle cycle by han
dl ing the second specifier as a GPR nu mbec 

This optimization saves valuable cycles in fre 
quently used instructions . 

When the E Box is ready, the I Box supplies 
the operands to i t  along with a d ispatch address 
identifying the start of the microcode appropri
ate to the execution of the i nstruction.  When 
execution is complete, the operand unit  wi l l  
provide the address for storing the resu lt in  
memory. 

Therefore , the overal l sequence of steps in  
perform ing an instru ction is  fetch instruction,  
decode i nstru ct ion , generate address , fetch 
operand , execute ,  and store resu lt .  Any one of 
these steps for a given instruction may occur 
simu ltaneouslly with any other step for some 
other instruction.  Of course,  this is l imited by 
the obvious restriction that no two operat ions 
can use the same resou rce (memory, register 

11 fi le ,  etc . )  si•mu ltaneously .  Thus ,  for exam ple, 
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while the I Box is decoding instruction 4 ,  it 
may also be ca lculating addresses for instruc
tion 3 and fetching the operands for instruc
tion 2 .  If the operands are in the GPRs , then the 
current cache cycle  may be used for fetching 
more of the instruction stream (say parts of 
instructions 6 and 7 ,  with 5 already in the 
buffer) . Moreover, any of these steps may be 
happening whi le the E l3ox is execut ing instruc
tion 1 .  This overlapped process i ng,  cal led 
"pipe l in ing ,"  greatly i mproves performance 
and is  deta i led later in the Pi pel ined Instruc
tion Processing section.  

Of cou rse , there are bound to be hazards 
whenever work is  done in para l le l . The pipe
l ine cannot always operate at fu l l  speed due tO 

confl icts produced by the various subsystems 
needing the same resources . S ince severa l 
stages may be active s imul taneously, the con
trol of each Stage is int imately t ied to the past 
and present operations in the other stages, as 
wel l  as to those in the E Box and the M Box .  
Each stage attempts to process the avai lable 
input data as qu ickly as poss ible .  Whenever 
input  is unavai lable or a resul t  cannot be stored 
immediately, a stage is  said to be "sta l led ."  One 
objective of the I Box, and of a pipe l ined struc
ture in genera l ,  is to minimize the t ime any 
stage spends in  a stalled state as i t  can perform 
no usefu l work during that t ime.  The execution 
unit wi l l  sometimes store a resu l t  in a register 
that is needed by the operand un i t  for the next 
instruction . A problem of this sort is  resolved 
by using scoreboards and contl ict detectors . In  
many cases , contl icts are avoided by passing the 
data as (; PR tags, rather than pass ing the actual 
data . Fortu nate ly,  the VAX architecture nor
mally precludes writing into the i nstru ction 
stream,  so the instruction buffer can prcfetch 
freely across most instructions. 

When appropriate , the I l3ox suppl ies a l l  
operands sign-extended and a l l  tloating point 
operands in memory format,  independently of 
the source of the data . Therefore , the E Box and 
the F Box do not need to perform any special 
data manipu lations before the data is  used . In 
keepi ng with the principle of a high-speed , yet 
econom ical im plementation,  the VAX 8600 sys
tem uses the instruction buffer to fetch data for 
string and other mu lt iple-operand instructions, 
thus using hardware that wou ld otherwise sit 
idle. This procedure expedi tes large amounts of 
data through the processor without wast ing 
cache cyc l e s .  Th is fe a t u re i s  espec i a l l y  
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important in commercial appl icat ions where 
data manipulation is more important than arith
metic speed.  

Since the 8600 is  designed to ru n with the 
VMS operating syste m,  the processor must be 
prepared to deal with memory exceptions dur
ing instruction execution . This procedure is 
complicated by mult iple instructions being in 
the pipel ine at the same t ime .  For sorting thi ngs 
out , the operand uni t  has mul tiple program reg
isters that contain the starting addresses of a l l  
instructions in progress . A register log keeps 
track of GPR changes that must be u ndone 
should an instruction have to be repeated . 

M Box and Memory 

The memory system includes the storage array 
boards and the M Box . This box conta ins not 
only a l l  of the control ,  transfer,  and error logic 
for the storage array, but a lso a data cache for 
fast  access tO memory data (Figure 4 ) .  Each 
array board contains 4 megabytes of MOS stor
age , and the memory backplane can hold eight 
boards for a maxi mum of 3 2  megabytes. The 
basic storage un i t  is  a b lock of fou r  39-bit 
words , each with 4 data bytes and a 7-bit error
correction code . Special  logic is included for 
wri ting bytes, significantly decreasing the stor
age access requirements . The M Box interfaces 
to and handles communication among the three 
major parts of the syste m:  the main me mory, the 
p rocess o r ,  and t h e  l j O  sys tem ( v ia  t h e  
adapter bus ) .  

The cache i s  a high-speed memory with loca
tions that act as tem porary substitu tes for a 
selection of the most frequently used storage 
locations . The cache is two-way assoc iat ive , 
meaning that for each address , the data can be 
stored in ei ther of two locations. The total 
cache size is 1 6 Kl3 in two 8KB parts ; its loca
t ions are a l located in b locks of four words 
( 1 6  bytes ) , addressed on a four-word boundary . 
I n  addition to the two data parts, there is a 
cache tag store contain ing the address bits for 
the blocks of data in the cache data store. For 
each block, the tag store also contains a va l id  
bit  and four written bi ts  for the four  words i n  
t h e  block. A..'>SOciated with the data t o  ensure its 
integrity is an error code that enables the cor
rection of single-bit errors and the detection of 
double errors . 

The cache uses a writeback scheme for writ
ing in  memory. This means that a word is not 
written in storage when it is modified , hut only 
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when its cac he location is needed for other 
data . In  the interi m ,  data is p laced only in the 
cache ,  so a s ingle cache location may be used 
many t imes without requ iring access to the 
memory array (whose correspondi ng location 
becomes inval id ) .  The contents of the cache are 
fi nal ly written in  the array only when that 
cache location is needed to represent a differ
ent storage location . The replacement policy is 
" least recently used . "  That is ,  of the two b locks 
avai lable to store a given piece of data , the one 
less recently accessed receives the new data. 
When a memory word containing a corrected 
error is placed in the cache, the written bit is 
turned on to force eventual rewrite of the stor
age location,  thus reducing the probabi lity of a 
double error. 

1 4  

Addresses actual ly  suppl ied to the cache or 
the memory array are always physical ,  and the 
direct memory access (DMA) references made 
by t h e  1/0 sys t e m  a l ways u s e  p h ys i c a l  
addresses . There are three sources of memory 
references within the processor, each having i ts 
own port into memory: the instruction buffer, 
the operand uni t ,  and the execu tion unit .  Nor
mally these references are virtu a l ,  meaning that 
the addresses have to be translated from virtual  
to phys ical before they can be used to access 
the cache.  When a virtual reference is made, 
the M IJox m icrocode uses the high-order part 
of the address to index into the translation 
buffer (TI3 ) , i tself a cache containing the most 
recently used trans lations. The entry from this 
buffer is then prefixed to the remaining bits of 
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the virtual address to form the desired physical 
address. The TB is one-way associative and has a 
capacity of '5 1 2  paging entries. Besides transla
t ion information,  it contains access-protection 
data, which a ids in creat ing a secure operating 
environment. Refil l ing entries in the buffer is 
done from page tables in memory. 

Although the TB is located in the M Box, i t  is 
maintained by microcode running in the E Box . 
This provides an economical  solution to the 
compl icated task of keeping track of streams of 
references from the three ports . Each port can 
have two references in progress, si nce acces
S·ing the data cache and the tag store are over
lapped w i t h  access i ng t h e  TB .  The data , 
addresses, and control information for these 
operat ions are carefu l ly queued, with hand
shakes to aflow the subsystems to proceed as far 
as possible (but not any further) while wa·it ing 
for references to finish.  Any memory exceptions 
encountered while prefetching instructions or 
operands are held off unti l  the data is actually 
needed by the execution uni t .  That unit then 
deals with the problem,  using memory refer
ences that bypass the normal queue, thus leav
i ng i t  intact for restarting later. 

The resu l t  is a virtual memory system that is 
fast enough to al low a reference to complete 
during every cycle.  With three subsystems mak
i n g  i n d e p e n d e n t  r e fe re n c e s , t h e  h i g h  
bandwidth of the bus, which al lows that speed ,  
can b e  wel l  u t i l i zed . 

F Box Performs Floating Poin t 

For scientific and technical applications, the 
8600 has a floating point accelerator (FPA) , the 
F Box , that operates in paral lel with the E Box. 
The FPA receives operands over the oper
and bus from the I Box and del ivers results over 
the write bus for storage in GPRs and memory 
(Figure 5) . It performs floating point calcula
t ions in  al l  four VAX floating point formats , F, 
0 ,  G and H (F  numbers have 32 bits,  0 and G 
have 64 , H has l 28) , and it also does integer 
mult iplications. Usually the work i nvolved in  
these calculations is  spl i t  between the F Box 
and the E Box . The former does the arithmetic 
operations while the latter accesses memory for 
rea d i ng and wri t i ng operands , deals  w i t h  
except ions, handles counters, and takes care of 
other chores . 

The E Box has a fa i r ly  genera l -purpose 
datapath ,  capabl e  of dea ling with the myriad 
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tasks involved in  executing the VAX instruction 
set . On the other hand , the F Box consists of 
special ized hardware (almost exclusively gate 
arrays) for doing only those steps needed 
in floating point operations. Hence , these oper
ations are executed in far fewer cycles. Further
more , the F Box cycles twice as fast as the other 
su bsystems; i ts datapath is 32 bits ,  and mul 
t iprecision operations are pipel ined. The F Box 
also has its own copy of the GPRs, al lowing the 
I Box to send both operands at the same t ime,  
one over the operand bus and one as an address 
for the GPR RA.t\1 . 

Much of the original chal lenge i n  F Box 
design lay in making i t  compact so as to mini 
mize interconnect delays. Of i ts two modules, 
one contains the logic for floating point addi
tion, subtraction and division, while the other 
does floating point and integer mult iplications . 
Both modules are m icroprogrammed , with each 
having i ts own m icrosequencer and contro l  
store . Moreover, the  microcode i s  d istributed 
among the various chips .  This d istribution 
enables a command to fol low the data for sev
era l cycles and be repeated ly decoded as 
the floating point operation is executed . That 
al lows normal operations to finish in a mini 
mum number of cycles, whi le  unusual condi
t ions  are detected and dea l t  wi th  by the 
m icrocode. 

The mult iplier module uses column reduc
t i on and Booth encod i ng,  together  w i t h  a 
3- input adder, to produce a 4 0-bit partial  prod
uct every half-cycle .  The adder combines the 
operations of unpacking and al igning in a s ingle 
shift ,  making i t  possible to produce an F format 
sum in only two cycles . Thus, ADDF2 takes just 
two cycles (as opposed to four in  the 1 1 /780) , 
MULF2 takes four  cycles, and each add-mu ltiply 
step in  a POLYF polynomial evaluation takes 
only six cyc les . 

The VAX 8600 system continues a tradit ion of 
providing h igh-speed, accurate floating point 
performance . All operations are accurate to one 
half of the least sign ificant bit . Any floating 
point exceptions cause the instruction to back 
up to i ts beginning. Then control is given to an 
exception handler, which scales the operands 
before resuming computat ion .  By having al l  
four formats ava i lable ,  intermediate calcula
tions can be done in  a format with greater range 
and precision,  thus avoiding exceptions and 
returning a more accurate resul t  in composite 
operations . 
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Besides the basic operations of add, subtract, 
multiply and divide, the 8600 provides special 
instructions for argument reduction and poly
nomial evaluation . These instructions carry 
extra precision and also facilitate the high
speed software implementation of transcenden
tal and ot her sophisticated m;uhematical 
functions. 

,\)stem Microcode 

In addition to controlling the E Box datapath, 
the E Box microcode supervises the operation 
of the whole processor. Microcode initializes 
the system and tells the instruction buffer when 
to prefetch instructions or string data .  Further
more, it starts and stops operand processing in 
the operand unit, maintains the address transla
tions in the TB, and orders the F Box to perform 
arithmetic operations. The microcode executes 
the full VAX instruction set, including recent 
additions such as G and H tloating point, and 
interlocked queue instructions for multiproces
sing. Since it is backward compatible, the 
microcode also executes the PDP- I 1 instruc
tion set. 

Considerable effort was expended on opti
mizing the microcode and the E Box datapath to 
execute the VAX instruction set . The result is a 
relatively narrow microword of 84 bits (includ
ing two for parity), which nonetheless allows 
most high-frequency instructions to complete 
in a single E Box cycle . H aving immediate 
access to all 2 56 scratchpad locations makes it 
possible to store decimal strings and other data 
structures internally, saving crucial instruction 
cycles . Low-frequency operations are imple
mented principally in microcode rather than in 
hardware to save board space and reduce cost. 

The E Box microcode is written in a straight
forward language that is easy to write, under
stand and debug. Of the 8K control store loca
tions, 7K are used for the system microcode. 
The remaining 1 K are available to the customer 
for implementing special func t i ons, and 
"hooks" are provided for fast and easy access to 
user microcode. 

All subsystems have microcode; however. 
com pared to the E Box, they all contain more:.: 

specialized hardware and microcode to per
form fewer, but more specialized tasks. Even 
so, microcode still provides an economical, 
tlexible alternative to hardware as a means to 
implemc:.:nt control. Wherever practical, nor
mal, high-frequency operations are done in 
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hardware, whereas unusual operations are han
dled in microcode. 

Much of the error reporting and recovery is 

also implemented in m icrocode. If an error 
related to the currently executing instruction 
occurs, the microcode is trapped. It then col
lects the error information, fixes the error con
dition, backs up the affected instruction for 
later restart, and enters the machine-check 
software. 

Console 

The console, connected to all four of the boxes 
by a serial diagnostic bus, is actually an exten
sive subsystem based on a PDP- 1 1 computer. 
The console moni tors environmental and 
power-supply conditions, serves as the VMS 
operating system terminal, supplies a time-of
year clock, and provides an assortment of diag

nostic functions. Associated with the console 
are a local LA 1 00 terminal for use by the opera
tor , an RL02 removable disk for bootstrapping 
and diagnostic activities, and a remote diagnos
tic link. Bootstrapping is done automatically by 
the console, which serially passes microcode 
and init ial iz ing information to t he various 
boxes over the diagnostic bus. The console and 
the E Box communicate via the console bus 
(C bus) to set up the 1/0 system and to imple
ment console functions such a s  examine, 
deposit, start , and halt. 

lnpu tjOu. tput ,\)stem 

The 1 /0 system provides input/output over a 
synchronous backplane interconnect (SB I )  
interfaced to the M Box via the adapter bus. 

This system offers complete compatibility with 
the myriad peripheral equipment currently 
available for t he VAX- 1 1 /780 Family of 
machines. Moreover, the 8600 can have two 
S13 1s, and its separate memory bus relieves them 
of any involvement in processor-memory trans
fers . Therefore. a significant increase in both 
the computational capacity and t he 1 /0 
throughput of an existing VAX systl·m can be 
gained simply by replacing only its processor 
with an 8600 and leaving the entire peripheral 
system in place. A single SBI  can handle 
I :� . 3  megabytes of data per second, all for 
inputjoutput ; two SBis have a combined capac
ity of 1 7. 1  megabytes. Some ljO device adapt
ers connect directly to the SBI ; others must con
nect through a { N IB US or MASSB S. The 
theoretical maximum capacity of the adapter 
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bus is 3 3 . 3  megabytes using two ultra high
speed adapters with transfers in I 6-byte blocks. 

The latest I/0 equipment is designed to be 
used with the computer interconnect (CI), 
which has a bandwidth of 70 megabits per sec
ond, and the Ethernet, which has a bandwidth 
of I 0 megabits per second. The 8600 is the first 
VAX system to include the CI interface signals 
in its own backplane, providing as standard 
equipment the hardware necessary for its inclu
sion in a VAXcluster. The VAXcluster is a 
loosely coupled, multiprocessing environment 
of I 6  nodes. Any node in the cluster can be 
either any member of the VAX Family, includ
ing another 8600, or an HSC-5 0  mass-storage 
controller . The HSC- 5 0  controller provides 
intelligent, high-speed and shareable access to 
both disks and tapes for all the CPUs in the 
cluster ; the maximum sustained data rate is 3 . 4  
megabytes per second. Each HSC-50 controller 
handles six data channels, and each channel can 
access four datapaths for either disks or tapes. 

The Ethernet can handle 1,0 24 stations with 
a maximum separation of 2, 500 meters in a 
branching, unrooted tree. It is used in local 
area networks for communications between 
computers (such as DECnet service) ,  unit
record equipment, workstations and the like . 

Performance Improvements 

The improved ability of the 8600 to execute a 

specific instruction, as compared with the 
11/780, can be determined by comparing the 
following factors : the shortening of the cycle 
time, the decrease in the number of cycles 
required, and the decrease in memory access 
time. Since the 8600 overlaps instructions, sim
ply comparing the speed of individual instruc
tions does not give a true indication of the abil
ity of the new VAX processor to perform an 
actual task. Because of the  operational 
sequences chosen, even benchmarks often fail 
to give a complete picture of the improvement. 
This is true because the 8600 improves the 
speed of handling interrupt and exception 
functions even more than the speed of instruc
tion operations. And, of course, other quantities 
such as memory size and disk capacity also 
affect the comparative performance. 

In designing the VAX 8600 system, the basic 
performance objective was to increase the aver
age instruction execution speed by a factor of 
four. This objective was not only met but 
exceeded. The most  significant features 
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contributing to this performance improvement 
are the following: 

• The pipelined machine organization reduces 
by 1-i O percent the average number of 
machine cycles required per instruction. The 
I Box prefetches instructions and operands 
while the E Box is processing the current 
instruction. The address and data functions 
used to reference memory are also pipelined. 

• The VAX 8600 cycle time is 40 percent of 
that of the I I /780 (80 versus 200 nano
seconds ) and 60 percent of that of the 
I 1j785 (80 versus I 3 5 nanoseconds ) .  

• Faster and larger RAl\<ls in the E Box allow the 
microcode to accomplish more processing in 
a single cycle. 

• The cache uses a writeback strategy that 
eliminates unnecessary writes to memory. 

• The two-way associative cache is twice the 
size of the cache in the VAX-1 Ij780 CPU 
( 16KB versus 8KB). 

• A dedicated memory bus with separate 
address and data lines eliminates contentions 
between memory references and I/0 traffic, 
and between address and data transfers . 

• Faster semiconductor technology decreases 
the gate delays for the 8600, as compared 
with the 1 I j780. Gate delays are I and 

3 nanoseconds, respectively. 

Pipelined Instructio n Processing 

The solid boxes on the diagonal in Figure 6 

show the successive actions the processor takes 
to perform most instructions ; that is, those that 
involve a single operation carried out on one 
pair of operands, represented in the instruction 
by the opcode and two operand specifiers. In 
small, low-speed computers, there is no pipe
lining.  The processing, from fetching the 
instruction to storing the result, is performed 
for one instruction at a time. For example, the 
fetch of the next instruction does not occur 
until the result of the current instruction has 
been stored. The hardware devoted to each spe
cific activity is used only during that corre
sponding step and then remains idle until 
needed for the next instruction. 

Larger computers, like the VAX- I 1j780 sys
tem, shorten their execution times by prefetch
ing instructions: whenever a cache cycle is 
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Figure 6 The VA X 8600 Instruction Pipeline 

avai labl e ,  the i nstru ction box continues to 
prefetch more of t he instru ct ion byte stream 
from memory whi'le activit ies for the previous 
i nstructions are proceeding.  Thu s ,  the next 
opcode is ready for decoding as soon as a result  
is store d .  T h i s  s i m p l e  level  o f  p i pe l i n i n g  
decreases t h e  total t i m e  required for gett ing the 
instructions. 

1 .  The I Dox fet c h es ADDL 2  fro m  t h e  
i nstruction stream in memory. 

The 8600 carries the pipe l i ning technique 
much fu rther by pipel in ing the entire sequence 
of instru ction activities shown i n  Figure 6 .  As 
ind icated by the dashed boxes above and below 
the sol id  ones, the processor circu its for each 
type of activity are normally busy processing 
successive i nstruct ions . Of course , movement 
through the pipel ine cannot always be at top 
speed.  Various stages must sit idle whenever a 
cache miss requi res wai ting for data from main 
memory ,  or when a multipl i cation or division 
ties up t he E Dox for a whole string of cycles. 
Even the com mon instructions that take one 
cyc le to execute sti l l  requ i re a total of six 
cycles to complete (4BO nanoseconds ) ;  a string 
of such instructions, however, can store a result  
i n  a register l o cation d u ring every cyc l e  
( 80 nanoseconds) .  

As an exa m p l e ,  consider the i nstruction 
ADDL2 (RO) , R l , which uses two source oper
ands and stores the resu lt in  the location of the 
second .  This involves the steps in the I ,  E and 
M Boxes outl ined in the fol lowing steps . 
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2. The I Dox uses the opcode from ADDL2 

to address the decode RAM. 

3 .  The I Dox gets the virtual address of the 
first operand from register RO and sends 
i t  to the M Box . 

4 .  The M Box translates the virtual add ress 
i nto a p hysical address, retrieves the data 
from the cache , and sends it  to t he I Dox. 
(If the cache does not have the data , the 
procedure must wait at t his stage for the 
M Dox to get the data from storage . )  

5 .  The E Box receives operands from the 
cache and R 1 ,  and adds the m .  

6 .  The E Dox stores t h e  result  in  R I .  ( I f  the 
resu lt  were to be stored in memory, the 
I Dox wou ld supply the address . )  

Reduced Mem01:y A ccess Time 

Those factors that contribute most to reduc ing 
the memory access time in the 8600 are the 
dedicated memory bus, pipel ined references, 
and greater cache hit rate . 

The dedicated memory bus has decreased the 
access time to the memory array by more than 
two thirds-the extra time taken for a cache m iss 
is typical ly  5 00 nanoseconds, as opposed to 
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-------- A n  Ot,erview of the VA X 8600 .\),stem 

1 600 for the 1 1 /780 . This happens for the fol 
lowing reasons: 

• The bus i tself is faster than the SBI (80 versus 
200 nanoseconds) .  

• There is no interference between memory 
and 1/0 traffic .  

• Addresses and data are transferred s imultane
ously rather than in  sequence . 

All memory operations-addressing,  data read,  
and data wri te-are pipel ined in the 86 0 0 .  
Latency i s  s t i l l  at least two cycles, one each for 
address generat ion and cache lookup,  but a 
cache reference can be completed during every 
cycle .  

Finally ,  the cache hi t  rate of the 8600 has 
been im proved simply by making its cache 
twice the size of the one used in  the 1 1 /780 .  
Some t ime has also been saved by using the 
wri teback strategy as compared with the write
through strategy of the 1 1 /7 8 0 .  In write
through , both the cache and the memory array 
are updated on every memory write . 

Techn ology Contributions to 
Impro ved PeJformance 

The processor cycle t ime has been reduced 
mainly by (a) using a faster sem iconductor 
technology; (b) decreas ing the wire length on 
both modules and backplanes; (c) using faster 
RAMs for the registers , cache, control storage, 
and memory array. 

The sem i c o n d u c to r  t e c h n o logy i n  t h e  
VAX 8600 processor is  emitter-coupled logic 
(ECL) . This logic is nonsaturating; it is, there
fore , much faster than the VAX- I 1/780 trans is
tor-transistor logic (TT L ) , in which  state 
changes requ ire either fu l l  charge or fu l l  dis
charge . The logic design takes advantage of the 
very fast ECI. state changes because the effects 
of signal retlections were greatly reduced by 
m i n i m iz ing in terconnect delays , and wiring 
impedances were carefu l ly control led.  ECL-lTL 
conversion is needed to interface ro the SI31 ,  the 
conso le,  and the memory array (which uses 
2 56K TI'L-compat ible MOS RAMs ) .  The conver
sion is handled by dual-ported RAMs that serve 
as converting buffers ; data goes in in one form 
and comes out in the other. 

Instead of the tl iptlops employed in other 
VAX systems, the VAX 8600 system mainly uses 
latch es in i ts registers and  control log ic .  

20 

Performance is im proved because latches arc 
level sens i t ive,  whereas tl ipflops can change 
their states only when clocked . In other words , 
no matter how qu ickly the inpLitS to a tl iptlop 
are set up ,  a new output configuration cannot 
be sent along to the next logic stage unti l  the 
next clock. With a latch, however, the outputs 
can change when the inputs change , a l lowing a 
faster setup at the next stage . Despi te the 
requ irements for holding gating levels for some 
minimum time, this characteristic of latches is 
respo n s i b l e  fo r a red u c t i o n  of  about  I 0 
nanoseconds in the cycle t ime.  Usually ,  more 
latches than tl iptlops are needed to implement 
a given logic fu nction; latches, however, cost 
less than fliptlops, so the cost per logic tunc
tion using ei ther type of circui t  is  al most equal . 
Hence , the only real cost when using latches is  
the greater difficu lty in  performing t iming anal
yses . G iven the significantly increased perform
ance , this cost is well worth i t .  

Macrocell Arrays 

nti l  now, the sem iconductor industry has used 
three approaches to meet the demand for LSI 
digital circu its: standard , off-the-shelf circu i t  
fam i l ies; custom circuits ;  and gate arrays . Stan
dard circu i ts are economical but insufficient 
for the complex, special ized fu ncti ons required 
by the 860 0 .  Custom circu i ts ,  on the other 
hand, are quite expensive and take one to two 
years to design and produce . Fortunately, gate 
arrays have a shorter production t ime,  s ince the 
basic array can be fabricated up to the point of 
metal izat ion;  unfortunate ly, the interconnect
ing metal! makes the chip larger and increases 
the propagation delays . To circu mvent these 
prob lems, Digita l and Motorola created the so
called "macroce l l  array" approach to custom 
LSI .  This approach decreases the cost and t ime 
to develop custom circui ts and avoids many of 
the defici encies of conventional gate arrays . 
Among the various technologies evaluated, the 
macroce ll array best met the requirements of 
the 8600 .  

As explained at the begi nning of  th i s  art ic le ,  
the macrocel l  array is  actually an extension of 
the gate array concept .  Each ce ll in  the array 
contains a nu mber of unconnected trans istors 
and resistors that can be connected to form spe
c ific logic fu nctions or "macros . "  The cel l  
l ibrary contains 8 5  macros : <; 4  for major ce lls ,  
1 4  for i nterface , or input ,  cells ;  and 1 7  for 
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output cel ls .  A single array can contain 1 06 
ce lls :  4 8  major, 3 2  interface , and 26 output.  If 
fu l l  adders and latches are used i·n al l  cells,  a 
s ingle MCA may contain 1 ,  1 9 2 equ ivalent gates; 
if tl iptlops and latches are used in a l l  cells ,  it 
may contain 904 . Typical power diss ipation is 
5 .0 watts , 4 .4 mi l l iwatts per equivalent gate . 
Contributing to the high performance of the 
system as a whole is the extremely low propaga
t ion delay in major and interface cel ls :  1 . 2- 1 . 8 
nanoseconds maximum,  compared to 3 . 5-6.0 
nanoseconds for 1 OK ECL. The high density of 
I 00 gate equ ivalents per square inch,  com 
pared to 2 0 - 3 0  for MSI , is also important . 
Higher dens i ty red uces interconn ect de lays, 
thus further enhancing performance, and low
ers packaging costs as we l l .  

Reliability and Data Integrity 

Although we have not been able to el iminate 
hardware errors ent irely, the VAX 8600 system 
goes a long way toward e l iminating their effects 
on the user. Features are built  into the 8600 at 
every level to guarantee the integrity of the data 
in the system and to promote its re liabi l i ty. 
avai labi l ity, and maintainabi lity.  These features 
range from m inor characteristics within indi
vidual circui ts to major provisions that embrace 
the entire system.  Some of the more significant 
features are l isted below .  

• Inherent re liabil ity i s  achieved through hav
ing a low component count ,  logic design for 
the worst-case si tuation, and high-rel iabil ity 
parts . 

• Dynam ic error report ing,  by means of an 
error logger, aids in  ident i fying the sources 
of interm ittent fa i lures.  The error log is used 
for both hardware and software malfunct ions 
and is kept in a disk fi le .  

• I nstruction retry is used whenever i t  is 
appropriate to the error type . For instance , 
four copies arc kept of the genera l  pu rpose 
registers. Therefore, on a GPR parity error, 
the instruction can be retried using a copy 
from the corresponding GPR in another box. 

• Add itional related software features include 
(a) automated patching and updating proce
d u re s ;  ( b ) powerfa i l - r e s ta rt su p p o r t ;  
( c )  user-mode d iagnost ics; (d)  extensive 
protection facil it ies; and (e) dynamic mem
ory configuration to exclude bad pages . 
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• Single-bit  error correction and double-bit 
error detect ion are used for the cache and 
the memory array, with automatic rewriting 
of the corrected word . 

• There is parity checking at RAMs and buses, 
and parity cont inuity is carried through al l  
major datapaths. Parity is kept not only for 
data, but also for physical addresses and the 
microcode . (Bad data in a control R.AJ\1 or the 
control store is corrected by the conso le 
from its bootstrap fi les . )  

• Ad dress par i ty  and  a bad-data Hag  are 
" folded" into the error correcting code;  
thus,  the storage words the mse lves conta in 
information about error sources. 

• There are separate se lects tO each memory 
array board , so the control logic for storage 
selection is a l l in one place, and faul ts can be 
isolated to an individual board . 

• The memory battery backup has a capaci ty of 
ten m inutes . The bac kup t ime can be set 
shorter to save on battery recharge t ime,  thus 
al lowing the a lternat ive of riding out mu lt i 
ple short power fai lures by taking the chance 
of going down during a long one . 

• Cont inuous self-test ing is performed by the 
FPA when it is not in use . 

• The system can be reconfigured without the 
F PA if f l o a t i n g - p o i n t  fa i l u r e s  a r e  
experienced . 

• There arc fast ,  accurate diagnostics with first
fai lure fau l t  isolation to the board . (Subse
quent depot-level servicing can isolate to 
within ten chips, on the average . )  

• Signals can be monitored from the console 
via the diagnostic bus . 

• An e n v i ron m e n t a l  m o n i t o r i n g  m o d u l e  
(EMM) gauges the physical operating envi
ronment of the system .  The EMM measures 
tem peratu res and vol tages and reports out-of
tolerance condit ions to the console , which 
can shut down the system before permanent 
da mage occurs . 

These features make it highly l i kely that 
errors wil l  be detected and corrected, thus l im
it ing their i mpact . I f  a transient error occurs ,  
the instruction execut ion wi l l  pause and the 
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------- An Overview of the VAX 8600 System 

machine state wi l l  be saved in memory for 
processi ng by an error-analysis program that 
provides information to Field Service for quick 
on-site or remote repair .  

The hardware contains the various status tlags 
used by the operat ing system to determi ne 
whether the i nstruction stream can be restarted 
fol lowing an error or some of the process con
text has been lost. Since most VAX instructions 
store resu l ts only upon completion, errors, in 
most cases, cause only intermediate results to 
be lost; the process can, therefore , be restarted 
at  the specific instruction in which the error 
occurred . Somet imes an ent ire process wi l l  
have to  be  stopped, although this wi l l  not affect 
the operations of other processes. In the worst 
case , some errors-infrequent, but overwhelm
i ng-may require restarting the entire system . 
This strategy of graduated error catching and 
recovering,  coupled with a technologica l ly  
sound, worst-case design , creates a system with 
very high rel iabi l ity and avai labil i ty .  

The console  is  essentiaUy a separate mainte
nance processor that runs the system for d iag
nosing and isolating fau lts .  By means of the 
serial diagnostic bus, the console can scan al l  
signals needed for chip faul t-isolation.  (These 
signals are made avai lable through multiplexers 
conta ined in the signal-termi nator chjps.) Also, 
the console keeps snapshot fi les of the long-run 
state of the machine .  It has two programs to 
help system managers to avoid future difficul
ties.  One program monitors the error log to 
warn of impending problems even if the system 
is recovering from current situations . The other 
program displays a graphic image of the system 
to highl ight any faulty components; this i s  espe
cially usefu l  in a fau lt -tolerant system , which 
will not crash to signal a component fai lure .  

En vironmental Monitoring Module 

Devices for sensing various environmental con
di t ions are located throughout the cabinet .  The 
electronics and indicators associated with t hese 
devices are on the environmental monitoring 
module (EMM ) ,  mounted in the power-supply 
rack. In  most cases, out-of-tolerance condi t ions 
are reported to the console for appropriate 
action. 

A principal environmental concern is over
heating in the logic, since the junction temper
ature in the MCAs directly affects their fai lure 
rate,  which doub les with  every rise of 2 0  
degrees Celsius.  To guard agains t  overheating, 
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precision thermistors moni tor the ambient tem
perature of the incoming air  and the tempera
ture gradient across the card cage . By compar
i ng the temperature of the inlet  air with that of 
the air above the cage , the EMM can determine 
the temperature rise incurred by cool ing the 
system logic .  Shoul d  the in let  air temperature 
below the cage reach a preset va lue,  the EMM 
wi l l  issue a warn ing to the console.  I f  the inlet  
temperature reaches a danger-zone value or the 
gradient across the logic exceeds a prescribed 
amount ,  the EMM wil l  issue another warning 
and, one minute later, wi l l  shut down system 
power unless the problem has been a l leviated . 

Another i mportant function of the EMM is 
measuring t he output voltages of the power 
supply. Power-supply voltages must be the cor
rect values to ensure reliable system operation . 
If any of these is out  of i ts operating range, the 
EMM will report the violation to the console .  
Voltages are measured cont inuously so that any 
out-of-tolerance condi t ions wi l l  be known and 
can then be reported to Field Service . 

O t h e r  e n v i r o n m e n ta l  fea t u res  i n c l u de 
devices for detecting an overheated regu lator, a 
fai led blower, and i nadequate air  tlow. Regula
tor overheating, whether due to faulty opera
t ion or excessive ambient temperature, causes 
the closing of a thermal switch that shuts down 
the main power control .  Unless accompanied 
by a temperature problem , other, less drastic 
fai l u res are reported so that the system manager 
can resolve them. 

Besides its monitoring fu nctions, the EMM 
controls power sequencing, both on and off. 
The computer has an electronic keying system 
that detects a board plugged into the wrong 
slot, and the EMM wi l l  not al low logic voltages 
to go on un less a l l  modu l es are instal led 
correctly. 

Packaging Innovations 

We had to make significant changes in the cur
rent levels of package design, from the semi
conductor devices to the cabinets, to capital ize 
fu l ly  on the new circu it  technology. Therefore , 
we incorporated new techniques i n  in tercon
nect, packaging and cool ing in order to com
plement the semiconductor technology and to 
meet new environmental and safety regu lations . 
These efforts were undertaken by Digital 's own 
technology development team with, i n  many 
cases, the cooperation of other internal groups 
and external vendors. 
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Our efforts to meet t he stringent density and 
electrical requirements at the device leve l led 
tO the deve lopment of LSI packages t hat serve 
not only our needs, but also those of others i n  
t h e  i ndustry. I3 y  employing extensive computer 
mode ling of t he system ' s  thermal characteris
t ics,  we designed an i ntegral heat sink t hat 
mounts directly on each MCA chip.  At many 
critical locations, ICs are i nstal led in high-re l ia
bil ity sockets that faci l itate field repa ir.  This 
decreases the system ' s  downtime,  a fact which 
helps to minimize the l ife-cycle cost of the sys
t e m  w i t h o u t  j e o p a r d i z i n g  i t s i n h e r e n t  
rel iabi l i ty.  

Up to six layers of wiring are required to 
interconnect the devices mou nted on a printed 
circuit  board . This wiring is maintained at a 
control led ( transmission l ine) impedance to 
guarantee signal integrity. To ensure uniform 
cool ing of the components, we used wind-tun
nel techniques to develop device p lacement 
a lgori thms,  and computer analyses of each 
module design to provide thermal profi les of 
t h e  i n tegrated c i rc u i ts .  By i m p l e m e n t i n g  
unique power connectors , rat her t han using 
many edge-connector p i ns in para l l e l ,  we 
gained sufficient signal pins for t he density of 
components on t he modules.  I n  addition , the 
m u ltivoltage bus bar that distribu tes power on 
the board a lso acts as a stiffener to maintain 
flatness . 

Both the modules and the backplanes they 
plug i nto are supported and located by a preci
sion , one-piece card cage that also acts as a 
plenum for the cooling air tlow. The back
planes contain 1 6  layers of printed wiri ng in a 
lami nated structure . To i mprove backplane 
rel iabil ity and ease of repair,  al l  connectors are 
the solderless press-pin type ; they u t i l ize com
pl iant pins to ensure long-term electrical con
tact to the circuit  board . Power d istribution is 
handled by large, copper bus bars for t he pre
dominant voltages and by the cast backplane 
fra me for gro u n d  retu r n .  Aga i n ,  sol derl ess 
press-pin technology is used to assemble power 
and ground connectors to the distribu tion sys
tem . Power-supply regu lators are located above 
the logic assembly to faci l itate power d istribu
tion and to al low a straight , single-path air tlow. 
Along with acoustic treatment, this provides a 
simple,  rel iable coo l ing system that satisfies the 
latest regu lations, including the noise l i m i t  rec
om mended for a computer-room. 
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Special care was taken to design the system's 
cabl ing to ensure that,  i n  most cases, cables are 
not disturbed when any logic or power mod
u les are removed . Furthermore ,  all e xternal 
cables i nterface to an external bulkhead, both 
to fac i l i tate rapid instal lation and to meet e lec
tromagnetic  rad i a t i on regu lations.  Cabinets 
were redesigned to improve s i te assembly and 
to help contain e lectromagnetic emissions. At 
the same time, backward compatibil ity with 
other VAX systems has been accompl ished, so 
that previously purchased expansion cabinets 
can sti l l  be attached to the processor. Overa l l ,  
a n  8600 with over 1 6  megabytes o f  memory i s  
actual ly smaller than a comparabl e  1 1 /780 , 
although the new machine does operate with 
one ki lowatt more power. 
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The VAX 8600 I Box, 
A Pipelined Implementation 
of the VAX Architecture 

The VAX 8600 CPU has four times the performance of the V AX-11 j780 
CPU by using high-speed ECL technology and an internal organization 
with a jour-stage pipeline. In this pipeline, up to jour simultaneous 
instructions can be in several stages of execution at any time. At its heart 
is the instruction and operand fetch unit, the I Box. Under favorable 
conditions, the I Box can deliver one instntction every 80 nanoseconds 
to the instmction execution unit, the E Box, yielding a peak execution 
rate of 12.5 MIPS. Special attention is given to the intenzal organization 
of this I Box as it differs from those in previous VAX implementations. 

The VAX 8600 computer system i s  the first 
pipe l ined implementation of the VAX architec
ture.

' 
Like i ts nonpipel ined predecessors, the 

VAX 8 6 0 0  CPU i m p lem ents  the fu l l  VAX 
instruction set and runs under the VMS and 
ULTRIX operat ing systems.  In add it ion .  the 
VAX 8600 CPU provides higher performance 
and  re l i a b i l i ty t h a n  i t s  predecessor ,  t h e  
VAX- 1 1 /780 CPU . 

In this context, the performance improve
ment factor needs to he clearly defined to avoid 
the confusion that usua l ly arises when discuss
ing performance. First. let us define a given 
program's improvement factor as the t i me i t  
t akes  to e x e c u t e  t h a t  p r ogram o n  t h e  
VAX- I I /780 CPU divided by the t ime t o  exe
cute on the VAX 8600 CPU. The VAX 8600 
CPU's "true" measure of performance improve
ment is then the average of such improvement 
factors over all programs.  Since the universe of 
all prog�:ams is too large , one has to sel ect a 
proper subset of favorite benchmarks for the 
comparison . This subset of benchmarks can be 
label led as the constant unit  of work (CUW ) .  
and i ts selection is often the reason for contl ict
ing reports in articles on computer pe rform
ance . The execution t ime of this C rw in our 
model is  the product of three quantit ies:  the 
nu mber of instructions, the average number of 
cycles per instruction,  and the cycle t ime of the 
machine under eva luation . 
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The performance goa l of  the VAX: 8600 pro
ject team was to reduce the average nu mber of 
cyc les  per  i n s t r u c t i o n  from 1 0  ( i n t h e  
VAX- 1 1 /780 CPU) t o  6 ,  a n d  also t o  reduce the 
cyc l e  t i m e  of t h e  m a c h i n e fr o m  2 0 0  
nanoseconds ( in  the VAX- 1 1 /780 CPU) to 80 
nanoseconds. In  order to achieve the goal of 
red ucing the cycle time of the machine,  custom 
ECL gate arrays and standard 1 OK ECL logic 
were u t i l ized throughout the design .  This tech
nology im proved the performance by 2 Y1 

t imes. The remaining performance gain of l Y2 

t i mes was achieved by reducing the average 
number of cycles per instruction through the 
use of a four-stage pipel ine .  This pipe l ine is 
capable of overlapping the fetching of instruc
tion stream data with the decod ing of instruc
tions, the prefetching of operands from mem
ory, and the execution of instru ctions. In  the 
VA.'\:- 1 1 /780 CPC, on the other hand, the stages 
for the operand address ca lculation,  operand 
fetch, and operand write are al l  merged into the 
execu tion stage . In the VAX 8600 CPU, up  to 
four s imultaneous instructions can be in several 
stages of execution at any one t ime .  

The remainder of  th is  paper i s  organi zed as 
fol l ows . First , a l im ited description of the VAX 
instruction set is presented. Then , an overa ll 
descri ption of the VAX 8600 CPU in ternal 
organ izat ion is prov ided to fa m i l iarize the 
reader with the general environment of the 
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topic . Here definit ions are given of the con
cepts, mechan isms, and build ing blocks t hat 
wil l  be referenced in the examples of the pipe
l ine mode l .  Further on, an abstract model of 
pipe l i nes is introduced and a description of the 
VAX 8600 CPU i n  terms of such a model is 
presented . Finally, the deta ils of the internal 
organization of the instruction unit ( I  Box) and 
its assoc iated control structure are presented, 
including an exam ple of a section of code flow
ing through the pipel ine .  

The VAX Instruction Set 
The VAX architectu re 1 has a rat her rkh and 
powerfu l instruction set . Each i nstruction,  in 
genera l ,  cons ists of one byte of opcode, option
ally fo l lowed by one to six operand specifiers . 
These specifiers can represent the access ing 
scheme for an operand , the displacement in a 
branch instruction, or the target address in a 
ca ll  type of instru ction . The data type and usage 
of each specifier is derived from the opcod e .  
There are also two-byte opcodes for m u ltipreci
s ion floating point  operat ions , instruction set 
extension,  and user-defined o pe rations.  The 
instruction set is standardized so that each VAX 
implementation is able to execute the same 
software i mage as we l l  as the same o perating 
system environ ment . This compatibi l i ty is t he 
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0 at a ! 
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M Box I Box 

MD bus 
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basic goal for a l l  VAX implementations, includ
ing the 8600 . 

The VAX 8600 Environment 
Functional ly,  the C PU (Figure I )  consists of 
four separate m icrocoded un its for memory and 
1/0 (M Box ) ,  for instruction fetches and prepa
rations ( I  Box) , and for instruct ion execution 
(E Box and F Box) . The F Box is a coprocessor 
for high-speed floating point execution.  These 
subsystems and their interconnecting buses are 
now described . 

M Box - The Center of ,\),stem 
Co m m u n icatio n 

The primary pu rpose of the M Box is to l i nk the 
main memory, the cache,  the CPU ports , and 
the I/0 subsyste m .  In this capacity, t he M Box 
is the commu n ication center at the system 
level . 

The M Box conta i ns a physical  cache for 
instructions and data and a virtual address trans
lation buffer (TB) . It :l'lso has excl usive access 
to t he m e m ory array . These resources are 
accessed by three fixed-priority CPU ports and 
an I/0 port , as shown in Figure 2. The M Box , as 
the system communication center, must con
tend with several concu rrent activit ies requ ir
ing c o m m u n i cation services . To cope with 

Console 

C bus 
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OP bus 

F Box 

W bus 

Figure I VAX 8600 CPU Organization 
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these nu merous requ i rements,  the M Box is  
heav i l y  m i crocoded a n d  occas i o n a l l y  cal ls  
upon E Box m icrocode to assist w i t h  some 
memory management fu nctions. The M Box has 
the capabi l ity of queu i ng a nu mber of memory 
requests from both the i nstruction fetch and 
execution u n i ts .  Both the I Box and E Box can 
request M Box service through their  own mem
ory ports and buses . 

A more deta i led descript ion of the M Box can 
be found in reference 2 .  

I Box - The Heart of the Pipeline 

The primary purpose of the I Box is to cont i n u 
ously feed m icrocode dispatch addresses and 
operands to the E Box and F Box so that they 
may execute the VAX i nstruction set .  To do 
that, the I Box must prefetch the i nstruction 
stream from the M Box and then i nterpret i t :  
parse t h e  speci fiers ,  fetch t h e  operands and 
b u i l d  the d i spatch address ( Efork ) fo r t h e  
E Box . Three of t h e  four pipe l i ne stages, i nc lud
ing a m icrocoded operand address ca lcu lation 
engine,  are used to implement these fu nctions 
at high speed . Extensive control logic is needed 
to synchron ize the tlow of data and control 
through t he pipe l i n e .  Furthermore , the I Box 
contains the logic to maintain the many pro
gram c o u n t e rs repres e n t i n g  t h e  d i ffe r e n t  
i nstruct i ons e xecu t i ng concurre n t l y  i n  the 
pipe l i n e .  

26 

The v i r t u a l  o w n e rs h i p  o f  t h e  p i pe l i ne ,  
i n c l u d i ng the crit i ca l  E Box dispatch i nterface , 
the control of most of the C PU-to-M Box i nter
face ,  and the mainte nance of the program coun
ters, makes t he I Box the heart of the pipel ine 
and the object of much of the complexity of the 
VAX 8600 CPU.  

E Box and F Box - The Essence of the 
VAX A rchitecture 

I n  genera l ,  the E Box and F Box consume the 
d ispatch addresses and operands set u p  by the 
I Box and perform only the operations as speci
fied in the opcode of a macroinstruction . In t h is 
way, these boxes are isolated from memory 
access and freed from specifier eva luation and 
operand fetch i ng.  They can thus be optim ized 
for hi gh-speed execution . The E Box a lso per
forms the secondary function of managing the 
boundary cond i t ions for both the hardware 
(mach-ine checks, such as s i ngle- and double-bit  
memory errors and parity errors) and the VAX 
arc h i tecture ( i n terrupts and exceptions ) . I n  
part icular ,  most memory management bound
ary condit ions are handkd by the E Box . TB 
misses, page fau l ts and access violations,  page 
crossi ngs and unal igned E Box memory refer
ences are detected by the M Box but  are a U  
serviced by the E B o x .  I n  t h is respect, t h e  exe
c u t i o n  u n i ts arc the essence of t h e  VAX 
arc hi tectu rc .  
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System Buses 

There are a nu mber of i nternal buses that are 
key to t he organization of the VAX 8600 CPU 

and to understand ing i t .  These i nc lude the 
fol lowing: 

1 .  IVA bus-1 Box virtual address bus, which 
carries virtual addresses from the I Box 
to the M Box during i nstruction fetch ,  
o p e r a n d  fe t c h ,  a n d  I B o x - w r i t e  
operations 

2.  M D  bus-Memory data bus, w h i c h  carries 
data for both reads and wri tes to the 
M Dox subsystem 

3 .  OP bus-Opera n d  bus,  w h i c h  carries 
operands from t he I Box to the E Box and 
F Box 

4 .  W bus-Write bus, which carries resu lts 
from the execution units to memory (via 
t he I Box) or to t he general purpose reg
isters ( GPRs) 

5 .  EVA bus-E Box v i rt u a l  address bus,  
which carries virtual addresses from the 
E Dox to the M Box during E Dox operand 
references and certai n  memory manage
ment routines 

6 .  A bus-IjO bus, which interfaces t he C PU 
to the I/0 subsystems 

So far we have briefly i ntroduced the funda
mental bu i ld i ng b locks of the VAX 8600 CPU. 
We will  now analyze i t  from the more abstract 
leve l of i ts m icroarchitecture , t hat is, i ts pipe
l i ne structur e .  To t h is end,  a model of pipel ines 
is first deve loped.  

The Pipeline Model 

Pipe l i ned computers are not new. From the 
early days of the I BM Stretch� and the I DM 
360/9 1 .; to the scalar units of the CDCs and 
CRAY' machines, pipeli ning has been a proven,  
i f  expensive, method for performance en hance
ment . Such enhancement is ach ieved by replac
ing t he sequential execu t ion of each i nstruc
tion step in a s ingle functional unit ,  with the 
concurrent execution of some or all steps in 
multiple fu nctional units .  

I n  m os t  V o n  N e u m a n n  processors , t he 
instruction fetch and decode functions are per
formed sequential ly in t he only "stage , "  the 
execution unit ,  which is also the entire CPU. A 
typical example is the PDP- 1 1 system ,  in which 
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the concurrency is m icroprogrammed . ( See 
Figure 3 a . )  

Most exist ing VAX i m p l e mentations have 

added a stage for i nstruction prefetch,  t hus 

red u c i ng the i nstruction fet c h  l atency; the 
prime example is the V AX- 1 1 /780 CPU . (See 
Figure 3 b . )  

The VAX 8600 C P U  is the first implementa
t ion of t he VAX arc h i tecture that separates 
instruction preparation (for e xample,  effective 
address calculat ions and operand fetches) from 
i nstruction execution i tself. (See Figure 3 c . )  

The significance of t he VAX 8600 design l i es 
i n  the successful resolution of the implementa
tion difficu lties t hat stem from the combined 
complexities of t he VAX arc hi tecture and the 

Figures 3a PDP- I /  Instruction Execution 
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pipe l i ne approach :  the more complex an archi 
tectu re ( that  is ,  the  greater the control and data 
dependencies) , the more diffi c u l t  it is to pipe
line i t .  

W h i l e  t h e  basis and fu ndamentals for such 
designs can be found i n  references 7 and 8, and 
a more recent pipe l i n e  model is discussed in 
refe rence 9. we p rese n t  h e re a s i m p l i fi e d  
model for the pu rpose a n d  scope of this paper. 
The n ,  using such a mode l ,  we descr ibe the 
VAX 8600 pipe l i n e .  

An Ideal Pipeline Model 

In t h is sect ion we defi n e  a s imple model of a 
pipe l i n e .  Examples from the section on the 
S i m p l i fi e d  VAX R 6 0 0  P i p e l i n e M o d e l ,  
described later i n  this  paper ,  are used to i ilus
trate the abstract concepts presen ted i n  t h is 
sect ion . 

Let us defi ne a pipe l i ne stage , depicted i n  
figure 4 a ,  a s  a n  entity with fou r  fu ndamental 
attributes : fu nction,  hardware residency, prece
dence . and the n u mber of stage e l ements.  

The Ju nctio n of a stage is usua l ly an i nput 
b u ffe r ,  an o u t p u t  b u ffe r ,  and a m a p p i ng 
between the two. for example,  the fu nction of 
the operand access u n i t  ( OAU) stage is to com
pute an operand effect ive address , fetch i t  from 
the M Box, and then load i t  i nto the output 
buffer ,  the I Box memory data ( I MD) register .  

The hardware residency of a stage is where it  
resides i n  the hardware . For example,  the OAU 
stage res ides in the I Box hardware . 

The precedence of a stage is i ts posit ion i n  
t h e  sequence o f  stages. This precedence i s  fi xed 

and means t hat the i nstruct ion decode stage , for 
example,  is a successor of the prefetcher stage . 
Note that the precedence relation is a l ogical 

concept and not a p hysical  one . For example,  

a l though the memory write fu nction of the exe
cution stage is part of the last stage of the pipe
l i n e ,  i t  shares resou rces with the OAU stage . 

F inal ly ,  a stage fu nction is impleme nted by 
one or more elements. Under optimal condi 
t ions.  an element processes an i tem i n  one 
physical cycle .  H owever, more than one physi 
cal  cycle may be needed when the fu nction that 
the dement implements is  a complex one,  or  
when t h e  e l em e n t  has t o  wa i t  for c e r t a i n  
resou rces . 

Let us now define a few concepts that  are key 
to the understanding of the pipe l i ne m ode l .  

The logical ()Jc/e o f  a stage i s  t h e  n u mbe r  of 
physical  cyc les needed to process an i te m .  
Coder opt imal  cond i tions,  t h is n u m ber is  usu
a l ly the same as the n u mber of e leme nts i n  the 
stage . The reason for this distinction between 
l ogical and physical cycles w i l l  become appar

ent with  the fol l owing examples.  

I .  In t he first  exa m p l e ,  t h e  OAU stage 
processes a s imple specifier ,  such as reg
ister defe rred mode ( Rn ) .  In this case,  
one l ogica l  cycl e  equals two p hysical  
cyc l e s :  o n e  to compute the operand 
address and another to fetch the operand 
i tsel f. 

2. As a second exampl e ,  consider aga i n  the 
OAU stage 's process ing of a complex 
spec i fier ,  such as longword displ ace
ment defe rred i ndexed,  @LD ( Rn ) [Rx] , 
with a cache m iss i n  the i n d i rect refer
ence . In such a case ,  one l ogical cycl e  
w i l l  e q u a l  N physical cyc les,  where N i s  

d i rectly dependent on the state o f  vari 

ous system resou rces. 
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A pipeline is a sequence of stages connected 
by " t ransport" mechanisms,  wh ich move an 
i tem from the outpu t  buffer of one stage to the 
input buffer of the next.  Except for the first and 
last stages, such a structure can be parti t ioned 
into a curre n t  stage , a l l  its precedent stages , and 
all i ts subsequent stages . One can a lso define 
the predecessor stage as  the immed iately pre
ced i ng stage , and the su ccessor as the one 
immediately fol lowing. 

What has been d e s c r i b e d  so far i s  t h e  
datapath o f  a pipel i n e .  

Con trol of the Ideal Pipeline 

The datapath of the pipe l i n e  model just d is
cussed is  a somewhat s i m p l e  concept that  
be l i es the com p l e x i ty of the m ec h a n isms 
needed to  control i t .  I n  the  ideal case shown in 
Figure 4 a ,  the relatively simple synchron ization 
is based on " l ocal contro l "  and is i mplemented 
by the sta l l  cond i t ions defined below. 

Local control is defined as the control  of a 
flow of i tems through the pipe l ine by flags that 
are transported together with the i tems. These 
are the va l i d  flags of the i nput and output bu ff
ers. The two basic operations of load i ng and 
dra i n ing can give such flags the val ues of e i ther 
"empty" or " fu l l . "  These two va lues arc ca l l ed 
also " i nva l i d "  and " val id" respectively.  

Load ing occu rs at  the completion of a logical 
cycle ,  when a stage writes an item into i ts out
p ut buffer and sets the buffer's  val id flag to fu l l .  

Dra i n i ng occurs a t  the begi n n i ng of a logical 
cycle ,  when a stage reads an item from i ts i nput 
buffer and sets the buffer's  va l id flag to empty. 

Depending on the operation and on the val 
ues o f  these flags, one o f  two sta l l  conditions 
can occur.  

1 .  An input  sta l l  takes place when the val i d  
flag of t h e  i nput buffer is empty and the 
stage wants to dra i n  it.  Then the stage 
must avoid l oading the output buffer ,  
si nce i t  wou l d  be loaded with i nval i d  
data . 

2. An ou tput stal l  takes p lace when the 
va l id flag of t he output buffer is fu l l  and 
the stage wants to load i t .  The stage must 
then stop to avoid data overru n .  

Even i n  the case o f  a n  ideal  pipe l i n e ,  an 
important performance issue is that  of e lastic i ty 
of the pipe l ine . Elasticity is the a b i l i ty of t he 
pipel ine to del iver results at fu l l  bandwidth i n  
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spite  of i ts i rreg u l a r i ty .  I rregu larity resu lts 
when different stages i n  the pipe l i n e  have logi
cal cycles of d i fferent du rat ion;  hence the t ime 
to process an i tem i n  each stage is variabl e .  

Rigidity. t he rec iprocal o f  elasticity,  mea
su res the dependence of a stage on the stal led 
state of another stage . I n  other words, the rigid
i ty is related to the speed w i th which the stall 
flags " r i p p l e "  through the stages,  in e ither 
d i rect i o n .  Rigidity is cou nterproductive i n  that 
i t  st ifles concurrency. For t hat reason ,  extra 
b u ffering is someti mes used; this a l lows a stage 
to execute even if some ou tput buffers are 
a l ready fu l l ,  thus reducing output stal ls .  This 
also means that t he i n put buffers to the succes
sor stage w i l l  be able to be " preloaded," thus 
reducing i nput stal ls  as wel l .  

H owever, s i mple FI FO extra buffering may 
i ntroduce the negative effect of i ncreasi ng the 
pipe l i ne laten(y ( that is ,  the number of physi 
cal  cyc les needed by an i tem to t ravel through 
the entire pipel ine ) .  This e ffect can be m i n i 
m i z e d  by t h e  u s e  of " bypass " c i rc u i try, as 
described in refe rence 9, at the cost of a signH·i
cant amount of control  complexity.  To m i n i 
m i ze s u c h  complexity ,  o n e  c a n  reduce t h e  
number o f  i nput  a n d  output buffers i n  a stage to 
just  one output buffer.  I n  this  case the s i ngle
stage buffer fu nctions both as the output buffer 
of that stage and as the input buffer of the suc
cessor stage . The VAX 8600 design is very close 
to t h is model . 

A Model with Pipeline Dependencies 

A l l  pipel ine models have e mbedded, via the 
precede nce attribu t e ,  the "trivial" depe ndency 
of a stage ; that is ,  i ts dependence on the output 
buffer of i ts predecessor stage . H owever, a 
more rea l ist ic pipel ine model (see Figu re 4 b) 
must i nclude nontrivial dependencies as we U ,  
that is ,  dependencies of a stage o n  other than 
the output buffer of i ts predecessor stage . Such 
dependencies can be class ifi ed accord i ng to 
their type (data or control) and d irection (for
ward or backward) .  

A stage has a data dependency i f  i t  needs data 
val u es produced by a stage other than the pred
ecessor stage . For exampl e,  the OAU stage must 
wait unt i l the E Box has u pdated a GPR before i t  
can use that G P R  i n  t h e  address calcu lation,  as 
shown i n  Figu re 4 c .  

A stage has a control dependency if  i t  needs 
control produced by a stage other than the 
predecessor stage . For  example,  the OAU stage , 
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Figure 4c Simplified VAX 8600 Pipeline Model 

which also processes branches, m ust wait unti l  
the E Box has generated the condition codes for 
the instruction preceding the branc h .  Once the 
condi tion codes are set, the OAU can resolve 
the branch, as shown in Figu re 4 c .  

Each o f  these dependencies can operate in a 
forward or back-ward direction . I n  a backward 
dependency, a p iece of a data or control i tem 
affects a precedent stage . E ither example for 
the control or data dependency i l lustrates the 
point.  In a forward dependency, a p iece of a 
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data or control item affects a subsequent stage . 
An example is the I Box-write address depen
dency, which is described in the next section . 

In addition to the above, there are resource 
dependencies, which occur when a stage needs 
to use a resource shared among many stages . 
The memory i n  the M Box, for exam ple,  is a 
resou rce s hared by t hree of the VAX 8600 
stages. 

All of these dependencies make the imple
mentation of a pipel i ne more difficult  than in 
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the ideal case . However, they sometimes a l fow 
a more efficient global control of the pipe l ine. 
This is the control of the flow of i tems through 
certain stages by key flags that are broadcast by 

another stage . Note that this mechanism oper
ates in conjunction with the local control . 

I n  the next section the concepts just intro
duced will  be used to represent the VAX 8600 
CPU in terms of the s imple abstract pipe line 
model just described. 

The Simplified VAX 8600 Pipeline 
Model 

A simpl ified model of the datapath port ion of 
the VAX 8600 pipel ine is shown in Figu re 4c .  
I n  th is  model the F Box is  not shown, as i ts 
locus of control is very s imi lar to that of the 
E Box . This four-stage design has two fu nda
mental resource dependencies, which embody 
much of the logic to contro l  the pipe line :  the 
M Box ,  which is used by the i ns truct ion 
prefetch (prefetcher) stage and sometimes by 
the OAU and execution stages; and the GPRs . 
which are used normally by the OAU and exe
cution stages. 

Before discussing the simplified model ,  let us 
fol low an instruction as it goes through the 
pipel ine .  

At  the beginning of instruction processing, 
assu me that a l l  the I Box buffers arc invalid .  In 
this case the E Box dispatches the instruction 
prefetchcr  at t h e  new ins tru c t ion stream 
address . The prefetcher stage starts prefetching 
and load ing instructions into the i nstruction 
bu ffer (!buffer) . This is actual ly a simpl ifica
tion; the detai led mechanism is  described in 
the Instruction Pre fetch sect ion.  The i nstruc
tion decode stage , ca l l ed the decode stage, 
drains the Ibuffer and from the opcode gener
a t e s  a d i s p a t c h  a d dress ( n ot  shown i n  
Figure 4 c) for the E Box microcode . The oper
and address calculation uni t  (ACU) element in 
the OAU stage parses the operand specifiers and 
computes their effective addresses, in the pro
cess reading and possibly modifying the GPRs 
(e.g . , autoincrement mode , (Rn )+) . The oper
and fetch (O pfetch) e lement fetches these 
operands at that effective address and passes 
them to the E Box . The E Box then executes the 
instruction i t  was dispatched to ;  in  doing so, if 
the destination is  a register, i t  dra ins the oper
ands and writes the result  into the GPRs . If the 
desti nation is memory (and only in  that case) , 
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the memory write (Mem-write) el ement is 
used. It takes the resu l t  data from the E Box and 
writes it to memory via the operand port (see 
Figure 2 )  at the address forwarded by the ACU 
e l eme n t .  Such  a mechan ism is ca l led an 
I Box- write. 

Let us now look at each stage of the pipe l ine 
of Figure 4c i n  more deta i l .  

The prefetcher stage i s  composed of the 
instruction address calculation ( Iaddr) e lement 
and the instruction fetch ( Ifetch) element. The 
Iaddr element compu tes the next value of the 
virtual instruction buffer address (VI BA) regis
ter and issues an Ibuffer request .  The Ifetch 
element fetches a longword from the address 
pointed to by the VIBA register and loads it into 
the !buffer. The prefetcher stage resides in the 
I Box. Its logica l cycle lasts two physical cycles 
in the case of a cache hi t ,  or N physical cycles 
otherwise , where N depends on the memory 
access delay. 

The decode stage i s  composed of only one 
e lement and i ts logical cycle always lasts one 
physical cyc le .  I t  decodes opcodes and specifi
ers from the Ibuffer and loads control data into 
the Ifork buffer (the !fork wi l l  be defined in the 
I nstruction Decode section) and instruction 
stream data into the data mul t iplexer (Dmux) 
buffer .  The I fork and Dmux buffers together 
form the output buffer of the decode stage. The 
decode stage resides entirely in the I Box . 

The OAU stage is composed of the ACU and 
Opfetch elements .  The ACU element computes 
an operand effective address, loads it into the 
virtual address (VA) register, and issues an 
operand request . The Opfetch element fetches 
the operand from the M Box and loads it into 
the I Box memory data ( IMD)  register. The OAU 
stage also fonvards the VA to the Mem-write 
e lement .  Note that this stage can contain two 
instructions at any given t ime .  The OAU stage 
resides in the I Box, and i ts logical cycle lasts a 
minimum of two physical cyc les. 

The execution stage is com posed of the E Box 
and the Mem-write e lements . The E Box ele
ment executes instructions and stores resul ts 
into either the GPRs or the write l atch for mem
ory writes . In  the latter case it init iates an I Box
write command . The Mem-write element actu
ally performs the write operation :J.t the address 
fonvardcd by the VA register in the OAU stage . 
The execution stage resides in the E Box, F Box, 
and part ial ly in  the I Box for memory writes . I ts 
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logical cycle l asts a mmtmum of one physical 
cycle;  for example,  in the case of register dest i 
nation i nstructions,  such a s  MOVL ( Rx )  , Ry .  I t  
w i l l  last at least three phys ical cyc les i n  the 
case of memory destination i nstructions , such 
as MOVL Rx , ( Ry ) , or even l onger in the case of 
complex i nstructions.  

I n  the s impl ified model each stage has only 
one output buffer,  which fu nctions also as the 
input buffer of the successor stage . Thus a dra i n  
operation is i m p lemented a s  an i n terstage dra i n  
signa l .  Note that i n  this  case the elast icity of t h e  
pipel ine is reduced to a m i n i m u m .  I n  the worst 
case,  if  the pipe l i ne is fu l l  and the last stage 
sta l ls ,  then a l l  the stages in the pipel ine w i l l  
sta l l .  

Moreover,  s i nce a sta l l  condit ion must be 
detected before loadi ng the output buffer,  the 
output sta l l  condit ion is more stringent i n  cer
tain cases, as defi ned below ,  than the one i ntro
duced earl ier.  The output sta l l  is  here defined 
as a condit ion in which the va l i d  tlag of the 
output buffer is fu l l  and the stage wants to •oad 
i t ,  AND the successor stage is not d ra i n i ng i t .  
This means t hat the stage w i U  sta l l  less fre
quently.  H owever,  note that the input sta l l  con
d i t ion remains the same as defined earl ier .  

I n  such a model there arc some i nteresting 
examples of nontrivial dependencies.  

• The prefetcher stage has two backward con

tro l depende n c i e s ,  t he decode and OAU 
stages, that affect the I buffer requests to the 
M Box. The issuance of such requests by the 
prefetcher stage requ i res the knowledge of 
the va l i d ity of the decode stage's output 
buffer and also whether or not  the OAU stage 
is dra i n ing i t .  These two dependencies arc 
fu ndamental because they take the place of 
the prefetcher stage 's trivial dependency on 
i ts predecessor stage , which docs not exist .  

• The OAU stage has a back-ward data depen
dency, the execu tion stage . that affects i ts 
abi l i ty to resolve branches . The OAU stage 
must wai t  for the con d i t ion codes from the 
E Dox, after completion of t he i nstruction 
preceding a branch,  i n  order to resolve it  and 
start prefetch ing at the target address. 

• The e xe c u t i o n  stage has a forward data 
d e p e n d e ncy,  the OAU s tage , when they 

together execute an I Box-write comman d .  
I n  t h i s  case t h e  OAU stage forwards t h e  desti
nation address to the Mcm-write element (as 
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far a s  hardware is conce rne d ,  the address 
stays in the VA register) . When the ACU takes 
m a n y  cyc l es t o  c o m p u t e  t h e  e ffe c t i ve 
address, the E Box may have to wait for the 
d isposi ng of the data . 

The VAX 8600 I Box 

The three pipel i ne stages residing i n  the I Oox 
are p hys i c a l l y  c om posed of t h e  fo l l ow i n g  
structures: 

• An i nstruction prefetch stage ( prefetcher in 
Figure 4 c ) , which prefetc hes the i nstruction 
stream for the Ibuffer .  (This stage is a lso 
u s e d  t o  fe t c h  s t r i n g d a t a  i n  s t r i n g  
i nstructi ons . )  

• Decod i ng l og i c ,  which produ ces d i spatch 
addresses , based on opcode and i ts specifi 
ers, for t h e  operand address calcu lation u n i t  
m icromachine a n d  t h e  E Box. (This is the 
decode stage as defined in the p i pe l ine 
mode l . )  

• A m i c r o m a c h i n e ,  c a l l e d  t h e  A C C  
m icromach i n e .  which i m plements the fu nc
tiona l i ty of the OAU stage and part of the 
M e m - w r i te c l e m e n t .  ( T h i s  fu n c t i o n a l i ty 
i ncludes operand address ca lculations,  oper
and fetches and resu l ts writes . )  

N ot ice t hat part of the Mem-write c lement 
resi des in the I flox . This part mainta i ns the 
me mory write address for resu lts operands and 
shares respons i b i l i ty with the E Box element to 
perform the actual resu lts write . 

Furthermore .  the I Uox mai n ta i ns the fol low
ing items: 

• Progra m c o u n ters for t ra c k i n g  d i ffere n t  
i n stru c t i o n s  b e i ng executed at  d i ffe re n t  
stages i n  t h e  pipdine 

• A l ocal copy of the G PRs for operand effec
t i ve a d d ress c a l c u l a t i o n s  a n d  o p e ra n d  
sourc ing 

• A register scoreboard for reso lving register 
access contl i cts 

• A register l og ( R l og) for register state restora

t ion during exceptions and i n terrupts 

• A branch decision mechanism 

• Con trol m e c h a n i s m s  to synchro n i ze t h e  
pipel ine 
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The importance of the VAX 8600 I Box l ies in 
the many functions it has to perform and the 
extensive controls required to correctly syn
chronize all four stage s  of the p ipeline. 
Figure '5 depicts the datapath of the I Box. The 
following sections describe the functions of 
many of its features. 

Instruction Prefetch 

The prefetcher has an eight-byte Ibuffer and 
associated addressing and control logic. I t  
attempts to initiate a prefetch whenever an 
"empty" byte is detected inside the Ibutkr . 

The V I BA register contains the next address in 

GPR 

Micro
sequencer 

and 
Slall 

Conlrol 

W bus 

PC 

Displacement · lmmedtate 
Conlexl 

IMD 

VA 

MD bus 

D1splacemen1 
Conlexl Address 

the instruction stream tO be fetched from. 
Prcfetch request addresses share the I VA bus 
with the ACU via the Ibuffer port and operand 
port respectively. (See Figure 2 . )  Since an oper
and fetch is a result of executing an already 
decoded instruction, it has a higher priority in 
using the IVA bus. Prcfetches, on the other 
hand, can be postponed and thus have lower 

priority. 
The memory subsystem queue can accept a 

second prefetch even if a previous prefetch is 
still in progress. This mechanism results in bet
ter utilizat ion of the available memory 
bandwidth. Data received through the MD bus 

OP bus 

ESA 

ISA 

CPC 

Figure - VA X 8600 I Box Datapath 
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is loaded into the appropriate location inside 
the !buffer .  The VI BA register is updated to 
form the next address whenever a prefetch 
request is accepted by the M Box. 

During a cold start, after an exception,  or for 
certain branches (such as the CASE instruc
tion) , the prefetch sequence must start from a 
new instruction address . In this i nstance the 
E Box places rhe new address on the W bus and 
dispatches the ACU m icromachine to an I Box 
startup sequence.  I nstead of loading t he address 
to the VIBA register and starting the prefetching 
process, the ACU micromachine init iates two 
consecutive requests before handing the con
tro l of the prefetching process over to the 
prcfetcher stage . 

For some instructions requ i ring stream data 
(e .g . ,  character string instructions) or a stream 
of operands ( e . g . , t he popping of t he G P Rs 
from the stack in the RET instruction ) to be 
read consecutive ly from memory in their exe
cution, the !buffer becomes a high-speed data 
buffer supplying operands to the E Box through 
the OP bus. 

Instruction Decode 

I nstru ction decod ing in the VAX 8600 CPU is 
s imi lar to that in the VAX- 1 1 /780 CPU, in the 
sense that the operand specifiers are decoded 
se q u e n t i a l l y .  W h e n  t he I b u ffe r c o n t a i n s  
prcfetched instructions, byte zero conta.ins the 
opcode of the current i nstruction, and byte one 
the first byte of the specifier currently being 
decoded . An instruction is decoded by look ing 
u p  information from a decod ing RAM ( D RAM ) , 
which is organized as an array of 5 1 2  b locks , 
eac h of which has eight entries. Each entry is 
addressed by its block and entry index . The 
opcode byte plus an extended opcode,  if there 
is one, wi l l  address the block. The execu t·ion 
point counter ( E PC) , which is a pointer indi
cat ing the posit ion of the current specifier in 
the instruction, wiH select the particular entry .  
The output of t he DRAM consists o f  information 
s pe c i fy i n g  t h e  data context  ( byte , word , 
longword, etc. ) ,  data type (address, in teger and 
different floating point formats) , and accessing 
mode (such as read , write or modify) for each 
spec ifier. It also provides the Efork dispatch 
add ress to the E Box. 

After each spec ifier decode, the !buffer shifts 
out the consumed specifier and shifts the next 
specifi e r  i n to the decod i ng pos i t ion . The 
decode stage also increments the EPC so that 
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the new decode points to the next DRAM entry. 
The output of the DRAJvt plus data extracted 
from the specifier field in the !buffer, such as 
GPR information and l i tera l  value,  is buffered 
for the OAU stage . 

Using the specifier byte during decod ing, a 
d ispatch generation mechanism creates a d is
patch add ress , c a l led I fork , for t h e ACU 
micromachine.  This process wi l l  continue unti l  
the last specifier of the i nstru ction is decoded 
and consumed . (A bit in the DRAM output wi l l  
ind icate such an occurrence . )  When this  hap
pens, the lbuffer shifts out byte zero and the 
last specifier,  thus al lowing a new instruction 
to be shifted i n .  

To clarify t h e  concepts above , note that an 
Efork dispatch is generated from the opcode.  
The dispatch is t hen given to the E Box to point 
to the E Box m icrotlow that implements that 
instruction's a lgorithm.  A simi lar mechanism is 
used to process speci fiers . An lfork dispatch is 
generated from each specifier and is given to 
the ACU m i cromachine to point to the AClJ 
microflow that i m p l ements that specifier 's  
algorithm. 

The A CU Micro machine 

W i t h  reference to the s i m p l i fied p i p e l i n e  
model ( Figure 4 c ) , t he ACU , Opfetch , and 
M e m - w r i t e  e l e m e n ts a re d e s c r i b e d  h e re 
together .  I n  this way, their fu nctional i ty and 
synchron i zat ion mechan isms can be better 
understood . The ! fork saved in t he decode stage 
provides the entry to the proper microsequence 
routine in the ACU m icromachine.  Us ing the 
buffered D RA.t\1 and specifier data , t he ACU 
micromachine performs the necessary compu
tations to calcu late the effective virtual address, 
and to init iate operand reads from memory or 
from the G PRs , if necessary . A copy of the 
GPRs,  which is also called a GPR fi le ,  is main
tained in the I Box so t hat register access can be 
done loca l ly ,  which is faster. This a lso al lows 
s imultaneous register accesses (reads) by the 
I Box, E Box, and F Box. 

For an operand t hat comes from a register 
sou rce , data read from the G P R  fi l e ,  after 
passing t hrough t he AClJ adder,  wiH be 'loaded 
into the I Box data ( I D) register. I m mediate 
data , which comes from the Dmux buffer i n  
t h e  decode stage , takes a sim i lar route through 
t he u n pack logic to t he same 10 register .  
The operand data is t hen ready for the E Box 
via the OP bus .  The unpack logic is used to 
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convert fixed point short l itera ls to a float ing 
point format . 

For an operand fetch from memory, the ACU 

micromachine loads the operand effective vir

tual address from the adder into the VA register 

and issues an operand fetch request through the 
IVA bus. The I M D  register holds any operand 
data returned from the M Box before forwarding 
it to the E Box through the OP bus. I f  the 
addressing mode is indirect (e .g . ,  autoincre
ment deferred) ,  the returned data in the I MD 
register w i l l  be the final  virtual  address of the 
operand. Then, the ACU m icromachine loads 
the IVA bus with the ! MD register data and 
issues another operand fetch request . The E Box 
memory data (EMD) register serves a s imi lar 
fu nction ,  but holds memory data returned as a 
result  of E Box requests. Placing the EMD regis
ter physically in the I Box e l i m inates the need 
for the E Box to interface with the MD bus 
directly .  

The ACU microsequences for many s imple 
and frequently used specifiers take one cycle,  
so that one spec ifier  can pote n t i a l l y  be 
processed in each cyc l e .  Some examples of  
such specifiers are (a)  the register mode, Rn ; 
(b) the register deferred mode,  ( Rn ) ; and 
(c) byte , word , and longword displacement 
modes , B" D ( Rn) , W" D ( Rn) and L" D ( Rn )  
respectively. The successfuE process ing o f  a n  
operand specifier in the OAU stage also loads 
the earlier buffered Efork into a register accessi 
ble by the E Box . 

The logical cycle of the OAU stage may take 
many physical cycles.  This may happen if the 
algori thm that implements the address ing mode 
is a complex one , or if the operand fetch is 
from memory and it resul ts in a cache miss .  In  
th is  case the execu tion stage may have already 
started execu ting the Efork m i crosequence, 
thus attempting to read and use the source 
operand , which is not yet avai lable .  To resolve 
this,  the OAU stage provides addi t ional operand 
data-val id flags . 

The ACU m icromachine also issues the actual 
operand write request for most instructions . In  
this case the  micromachine saves the  calculated 
dest ination address and waits unt i l  operand 
resu l ts are ready from the E Box . When the 
results are ready, the E Oox wi l l  write them,  via 
the W bus, into a register called the write latch, 
internal to the I Box . The E Box also re leases 
the ACU micromachine to issue the appropriate 
operand memory write request .  
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Multiple Program Coun ters 

The VAX 8600 CPU maintains a nu mber of pro
gram counters for each of the instructions 
under execution in the pipel ine.  This is neces
sary so that i nstruction restart is possible after 
an exception service sequence . The program 
cou nters consist of the fol lowing items: 

• Program counter ( PC) , which points to the 
opcode, operand specifier, and immediate 
data or addresses as they are decoded . 

• Cu rrent  program counter ( C PC) , which 
points to  the instruction to  be executed next 
in the OALJ stage . Norma l ly ,  th is is the 
i nstruction currently being decoded .  

• I Box start ing address ( I SA) , which points to 
the instruction being executed in the OAU 
stage . 

• E Box starting address (ESA) , which points to 
the current i nstruction being executed in the 
E Box and F Box . 

The prefetcher maintains its own instruction 
stream address pointer, the VII3A register, for 
requests to fi l l  the Ibuffer. 

The updating of the CPC, I SA ,  and ESA hap
pens when an i nstruction enters the decode , 
OAU,  and execution stages respectively. I n  gen
era [ ,  the CPC wi l l  be loaded with the address of 
the beginning of the i nstruction to be decoded . 
The ISA wi l l  be loaded with the CPC when the 
OAU has started process i ng that i nstruction.  
S imi larly, the ESA wil l  be loaded with the ! SA 
when the E Box begins to execute that same 
instruction . 

Instruction Backup and Un winding 

I n  the VAX arch i tecture , an exception may 
occur during the execution of an instruction. 
An example of an exception is a page fau l t  on a 
memory read . For most i nstruct ions the V�'( 
architecture requ ires tha t  the program state be 
restored to what it was prior to the execution of 
the instruction so that ,  after the exception ser
vice sequence , the same i nstruction can be 
restarted . For some types of instructions, such 
as the string instructions, total program state 
restoration is impossible .  In  those cases, how
ever, enough of the state is  saved and restored 
so that the i nstruction can continue i ts execu
t ion from where i t  was interrupted. 

In  the VAX 8600 CPU , the parts of the pro
gram state that must be restored consist of those 
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GPRs that have been modified d ur i ng address 
ca l c u la t i o n ,  a n d  t h e  i n s t ru c t i o n  s t a rt i n g 
address . Some address i n g m o d e s ,  s u c h  as 
autoincremem and autodecrement,  w i l l  modify 
the G PRs ; such modifications are kept i n  the 
R l o g .  D u r i n g  i ns t ru c t i o n  u n w i n d i ng ( a lso 
c a U e d  i· n s t r u c t i o n  b a c k u p ) , t h e  A C U  
micromac h i ne w i l l  restore the affected G PRs 
from the Rlog. S i nce a number of instructions 
can reside i n  d i fferent stages of the pipe l i n e  

s imu ltaneously, the Rlog has e nough entries to 
al low register restoration for m u l t iple i nstruc
tions. The PC for the i nstruction i n  question 
w i l l  also be restored from e ither the CPC, ISA or 
ESA, depend i ng on the state of the pipel i ne 
stages.  This restoration mechanism is a lso used 
to hand le i nterru pts . 

Branch Instructio n Processing 

For most branch i nstructions,  the I llox also 
calculates their  target addresses and performs 
t h e  b r a n c h  d e c i s i o n s .  These i n s t r u c t i o n s  
include cond itional ( e . g . ,  llEQI. and flN EQ) and 
u ncondi tional ( e . g . ,  BRD) branches , as we l l  as 
computed branches ( e . g . , ACDI. and SODGTR) .  
Such decisions are made by loo k i n g  a t  the 
appropriate condit ion code hits that  result  from 
an execution prior to the branc h .  The branch 
prediction scheme used here is biased towards 
branch ta'ken,  which is based on measured fre
quency of branching data . Figures 6a and 6b 
show a n  e x a m p l e  o f  t h e  m i c r o i n s t r u c t i o n  
sequence for a branch i nstruct ion . 

Cycle 

I Box 

Flush Pipe 
Abort 

CCSYNC 

Condition Code 

E Box 

1 

TSTL 

2 

BEOL 

VA4-TA 

I 

Access 
TSTL 

/ 

D u r i n g  a c on d i t i o n a l  b r a n c h ,  t h e  ACU 
mi cromachine holds the branch target address 
in the VA register and w i l l  attempt to i n i t iate an 
i nstruction fetch from that address before i t  can 
make the branch decis ion.  A cond it ion code 
synchronizat ion s i gn a l  ( CCSY N C )  from t h e  
E B o x  sign ifies t hat the condit ion code w i l l  be 
ready i n  the next physical cycle .  I n  cycle 3 ,  

w h e n  a C C S Y N C  i s  r e c e i v e d , t h e  A C U  
m icromachine w i l l  issue t h e  first request o f  the 
branch target i nstruction strea m .  I n  the next 
cyc l e ,  when the ACU rece i ves the condition 
codes, it  will  usc them to decide whether or 
not the branch is to be ta'ke n .  If the branch is 
not to be take n ,  the decision w i l l  not be 'known 
early enough to i n h i b i t  the i nstruct ion fetch 
issued i n  cycle 3, due to signal delay. In that 
case a correction must be performed in cycle 4 .  

A branch-taken decision ( Figure 6 a )  means 
that the i nstruction prefetch request was cor
rect. and add i tional requests can be issued.  The 
I llox then tl ushes the prefetcher and decode 
stages, which sti l l  hold the old i nstruction data , 
and a l l ows the new i nstruction stream to be 
loaded and decoded.  

A branch-not-taken decision ( Figure 6 b ) , on 
the other hand ,  causes an abort of the prefetch 
request i n it iated earlier in cycle 3 from the tar
get address , t hereby a l l owing the prefetcher 
and decode stages to resume the processi ng of 
the current i nstruction strea m .  'fhere i s  no pen
alty for branch-not-taken here if  the current 
i nstruction stream is already in the Ihuffcr ;  the 
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Figure 6a Branch Instruction Taken Sequence 
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(Instruction 
Noped) 

Flush Pipe 

II' ' Abort 

.... 
CCSYNC 

Condition Code )�" "�" 

Access Execute 
E Box TSTL TSTL 

Figure 6b Branch Not Taken Sequence 

cost of starting a new instruction stream is thus 
kept at  a min imum.  This scheme gives a s imple,  
yet effective , mechanism to handle branches . 

The E Box is responsible for handl ing the 
rema·ining types of branches and other instruc
tions that can alter the instruction tlow. This 
includes CASE instructions , subroutine cal ls ,  
and returns . The mechanism used is the  same as 
that described for cold starts in the I nstruction 
Prefetch section . 

Data DependenLJ' Resolution 

The usc of pipel ining i n  the I Box requires 
additional mechanisms to resolve data depen
dency among instructions .  Data dependency 
can happen in many situations; two key exam
ples are the fol lowing: 

• Regi ster confl icts , which happen when a 
source operand uses a register that is also the 
destination register of the previous instruc
tion . For example,  in 

MOVL RO , R l  

MOVL ( R l ) , R2 

the sourcing of R I by the ACU in the second 
instruction must be inhibi ted unt i l  the first 
instruction is completed in the E llox . 
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• Memory confl icts i f  an out-of-order memory 
access is a llowed. For example,  in  

MOVL RO, ( R l )  

MOVt ( R 2 ) , R3 

if R l  equals R 2 ,  then the operand read for 
the second instruction must be postponed 
u n t i l  the write in the first instruct ion is 
issued.  This a lso mandates that addit ional 
col l ision-detection logic exists . 

The  VAX 8 6 0 0  I llox u s e s  a re g i s t e r  
scoreboard and a single operand port t o  resolve 
both types of confl icts . The scoreboard pro
vides a s imple reservation-table mechanism to 
accompl ish t h is resolut ion.  The ACU wil l  enter 
the G PR number to the scoreboard for every 
r e g i s t e r  d e s t i n a t i o n s p e c i f i e r  t h e  A C U  
processes. For every subsequent ACU sourcing 
from a GPR, the scoreboard is  checked to detect 
any confl ict .  I f  such a cont1ict exists, the sourc
ing operation is  temporarily inhibited via a 
scoreboard sta l l .  A write to the GPR by the 
E llox w i l l  re mo ve t h a t  G P R  from t h e  
scoreboard , t hu s  a l lowing t h e  p revious ly  
stal led sourcing operation to  resume. I n  the 
VAX 8600 CPU, the scoreboard can be looked 
u p on as a two-en try assoc ia t ive  mem ory 
structure .  
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Figure 7 shows an example of the functions 
of the scoreboard for the instruction sequence 
discussed in the first example above. The func
tions performed in each cycle are described 
below . 

Cycle 1 The ACU is processing the M OVL 
RO, R l  instruction.  The scoreboard at 
this t ime is assumed to be empty. 
The ACU reads RO and l oads the I D  
register .  The cycl e  is c o m p l eted 
without problems. 

Cycle 2 The scoreboard is loaded with R l  as 
a result  of the previous cycle .  Since 
cycl e  2 req u i res using R l  as the 
address source , the I Box control dis
covers t hat  t here is a scoreboard 
" h i t "  on R l  a n d  t h e  A C U  
micromachine stal ls .  I t  wil l subse
quently attempt to execute the same 
m i croi nstru ction during the next 
cycle .  

Cycle 3 The E Box can now execute the first 
MOVL instruction , but the result  wil l  
not  be avai lable unti l  the beginning 
of cycle 4 .  As i n  cycle 2 ,  the ACU 
micromachine stil l  sta l ls in cycle 3 .  

I 
Cycle 1 I. 2 

MOVL RO,R1 I MOVL (R1 ) ,R2 

I Box Read RO VA-+- R 1  
ID-RO ' Read Virtual 

Scoreboard R 1  Scoreboard R 2  
(Cycle 

Stalled) 

Scoreboard Scoreboard 

- - R 1  

- - - -

Scoreboard Hit �� 

Result Ready 

E Box 

Cycle 4 The execution of the first MOVL 
instruction in the previous cycle by 
the E Box causes R 1 to be drained 
from the scoreboard. The ACU can 
now continue and finishes the sec
ond MOVL i nstruction. 

Cycle S The scoreboard is l oaded with R2 . A.'i 
i n  the earl ier sta l led cycles, the ACU 
m icromachine w i l l  not be able to 
complete the next MOVL if the next 
instruction uses R2 in operand evalu
a t i o n .  In  t h a t  c a s e  t h e  A C U  
micromachine w i l l  sta l l  unti l  a write 
to R2 is completed . 

Memory confl i cts w i l l  not happen i n  t he 
VAX 8600 CPU because the ACU micromachine 
controls both the operand read and write for 
most i nstructions via the operand port .  The 
micromachine is sequenced in such a way that 
out-of-order memory access from the I Box is 
impossible .  

Certain instructions whose operand addresses 
may not be known at the time of decoding (e .g . ,  
bit field instructions) w i l f  be handled by the 
E Box. Operand fetching is done d irectly by the 
E Box via the E Box port (see Figure 2 ) .  In those 
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Figure 7 Scoreboard Example 

3 8  Digital Technical journal 
No. I A ugust 1 985 



instruct ions the I Box suspends i tself after t he 
completion of the address calcu lation for a l l  
specifiers .  Any new operand fetch requests 
from the operand port wi l l  be inhibited by an 
I Box suspension . This prevents a potential 
me mory confl ict  from occu rring when the 
I Box attempts to read operands for the next 
i nstruction whi le t he current operand resu lt  
has yet to be written by the E Box .  

Instruction Optimizatio ns 

The I Box generates a nu mber of opti m izations 
that i mprove the performance of the CPU . For 
instructions using a GPR as the resu lts destina
t ion , the decode stage wil l  a lso consume the 
GPR spec ifier du ring the decod ing of the spec i
fier i mmediately preceding i t  and present a s in
gle d ispatch address to the execution stage . I n  
addition t o  t h e  source operand, t h e  I B o x  a lso 
suppl ies the destination GPR address to the 
E Box .  The E Box will use that address to access 
its local GPR fi l e .  This opt i m ization removes 
one d ispatch from the flow to the E Box .  

Another form o f  opt i m i zat ion e l i m i nates 
scoreboard stalls when t he source operand is in 
the same GPR to be u pdated i n  the future by the 
previous instruction . In this case the ACU wil l  
ignore the scoreboard stal l i ng situation and w i l l  
signal t h i s  fact by presenting a modified dis
patch address to t he E Box. The E Box will sub
sequently access the correct u pdated GPR value 
from its own local copy . 

Pipeline Stage ,'i'ynchro n ization 

As described earl i e r  i n  the section on the 
VAX 8600 pipeline,  interstage communication 
in the VAX 8600 CPU is done through a number 
of drain signals, as we l l  as a few global flags. 
Each stage of the pipe l i ne sets t he valid flag of 
its output buffer to fu l l  when data is ready. The 
dra in signal i nd icates to the stage that the 
buffer is going to be consumed by the successor 
stage . This wil l  make t he valid flag "empty . "  
The global flags are general ly broadcast t o  most 
other stages . This interlock mechanism pro
vides the basis for the synchronization among 
the pipeline stages . 

Since each stage of the pipel ine may take a 
varying nu mber of physical cycles to complete , 
there are , at t imes, empty or fu l l  cond i tions i n  
any o f  the pipeline stages . An empty condition 
occurs in a pipel ine stage when i t  wants to 
drain its input buffer while it  is empty. This 
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c o n d i t i o n  w i l l  cause a n  i n p u t  sta l l  or a 
m i c romac h i n e i d l i ng for lack of d ispatch 
addresses. A fu l l  condi t ion occurs in a p i pel ine 
stage when it wants to load i ts output buffer 
while that buffer is fu l l .  This cond ition wil l  
cause a n  output sta l l .  Other reasons, such as 

resource contention, wi l l  also cause idl ing or 
stal l ing .  

Each stage uses a different scheme t o  handle 
such conditions. In both the prefetcher and 
decode stages, i nternal flags are ma intained to 
i n d i c a t e  e m p t y  or fu l l  c o n d i t i o n s .  T h e  
prefetcher stage keeps track o f  t h e  nu mber o f  
val i d  bytes in t h e  !buffer and init iates a new 
prefetc h ,  if necessary. Data removed from the 
Ibuffer by t he decode stage w i l l  decrease the 
number of val i d  bytes, whereas new prefetched 
data wil l  increase the number. When the !buf
fer is fu l l ,  t he prefetcher stage wi l l  have an 
output stal l  ( i . e . ,  no new prefetch requests wi l l  
be  issued) . The decode stage loads the output 
buffer va l i d  flag after each decode . It w i l l  
assume a n  output stall  i f  t he buffer i s  not being 
drained by the ACU element.  That e lement,  in  
turn,  can drain such a buffer during i ts execu
t ion and clear the val i d  flag, t hereby al lowing 
decodi ng to be resumed . 

The ACU m i cromach i ne contains the most 
com plicated sta l l ing and i d l i ng mechanisms in 
the entire CPU. Most resource contention and 
dependency conflicts, as wel l  as fu l l  and empty 
cond i tions, can occur in that m icromachine.  

There are three types of sta l l i ng and idli ng in 
the ACU m icromachine.  

New Products 

1 .  Resou rce c o n t e n t i o n  a n d  busy,  a nd 
de pende ncy confl i c t  s ta l l s .  Resource 
contention exam ples are (a) t he simu lta
neous u pdate of a GPR by the OAU and 
execu tion stages , and (b) the use of 
certain buses by two resources at the 
same t ime.  This is best exemplified by 
the register-dependency confl ict detec
tion in t he scoreboard . Another form of 
t h is kind of stal l  can resu l t  from memory 
requests not bei ng accepted due to the 
M Box being busy (that is ,  while i t  is 
servicing previous requests) .  A fu l l  con
dition,  which prevents any further pro
gress of execution, is another example . 
In genera l ,  for t h is type of sta l l ,  the 
m icromachine wil l  suspend the execu 
t i o n  of t h e  c u rrent i nstruct ion and 
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resume it when the sta l l  condit ion has 
been removed.  

2. I d l i ng and nops . Empty conditions hap
pen in the ACU ,  for example,  when the 
i nstruction decoder cannot provide a d is
patch address due to i nsufficient va l id 
bytes in the !buffer .  Another nop condi
tion is m icrotraps, which can be caused 
by unal igned data references or by the 
tlushing of the pipe l i ne .  I n  both cases 
t h e m i cro m a c h i n e  w i l l  e x e c u te t he 
i nstruction,  i n  the sense t hat a new mi cro 
program counter w i l l  be loaded, but  
none of the pert inent machine state wHI 
be mod i fi e d .  In the next cyc l e  t h e  
micromachine w i l l  normal ly  execute a 
n e w  i n s t r u c t i o n  g e n e r a t e d  t h rou g h  

m icrotraps or the ava i labi l i ty of t h e  next 
d ispatch address. 

:) .  Specia l  stal ls .  In certa i n  cases i n  which 
the purpose of the execut ion is only to 
s u p p l y  d ispatches to t h e  E Box ,  t h e  
m i cromac h i ne w i l l  sta l l  to prevent a n  
u ndesired modification o f  t h e  state . Part 
of the state , such as Efork load ing,  is st i l l  
al lmved.  This k ind o f  sta l l  occurs mosr 

laddr 

I fetch 

Decode 

ACU 

Opfetch 

E Box 

C M P L  R7.R3 
BEOL A 

2 

A: I N C L  ( R 6 )  
MOVL R 1 . R 2  c::JJ] 

3 4 5 6 

often for s ingle-byte i nstruct ions without 
any specifiers .  I n  th is case a su pertluous 
d i s p a t c h  a d d r e s s  to t h e  AC U 
m i cromac h i ne is generated from t h e  
spec i fier fi e ld  in the !buffer, but that 
address m u s t  not be execu ted l est i t  
mod i fy the state u n i ntentional ly .  How
ever. t he d ispatch to the E Box must st i l l  
be loaded and the appropriate program 
counter updated . 

An ExamjJle 

An example is given i n  this  section i n  order to 
get a more global view of the whole process of 
executing a piece of code i n  the VAJ( 8600 

pipel i n e .  The program segment,  shown i n  the 
E Box in figure 8,  employs two key mechan isms 
of the design : a branch and an I Box-wri te . The 
purpose of this example is to s how the fol low
ing aspects: 

• The tlow of many i nstructions through the 
pipel ine ,  including their uses of the stages , 
elements and resou rces 

• l'he state of the pipe l i ne in any given phys i 
c a l  cyc l e ,  i n  order to understand the i nterac
t ion among the various i nstructions active i n  
the pipe l i ne 

Cycle 

7 8 9 1 0  1 1  1 2  1 3  1 4  1 5  1 6  

Memory �--------------------------------r-�----� 
Write '-----------------------------------..... ...11.-----' 

2 3 4 5 6 7 8 9 1 0  1 1  1 2  

Figure 8 A n  T:xample of' tbe VA X 8o 00 Pipeline 
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Figure 8 shows how simple instruct ions , such 
as the first three in the example, flow through 
the pipel ine in a straightforward way , using 
only one physical cycle per element .  Al l pipe
l i ne e lements are then kept busy constantly, 
t h u s  a c h i e v i n g  the VAX 8 6 0 0  CPU peak 
throughput of 1 2 . 5  MIPS, corresponding to the 
pipe l ine executing one macroinstruction per 
physical cycl e .  Notice that in this case the 
results are written to the GPRs , so that the 
Mem-write element is not uti l ized . Also, simple 
memory reads do not stal l  the pipel ine but are 
performed in only one cycle  in the Opfetch 
c lement .  Moreover ,  the AClJ m icromachine 
im mediately starts processing the next specifier 
after having issued a memory read requ est; 
related memory problems , if any exist , wi l l  be 
handled by the E Box . 

The branch instruction that fol lows i n  the 
example is  one in which the branch is  taken . lt 
is therefore processed according to the mecha
n i sm described in  the Branch I n struct ion 
Process ing section and i n  Figure 6a. At the 
beginning of cycle  8, the CMPL instruction in 
the E Box sends a CCSYNC to the ACU clement, 
which in  turn issues an l buffer request ( IDF in 
Figure 8 )  from the branch target address (TA in  
Figure 8 ) .  This request wil l  resul t  in  the fetch
ing of the I NCL instruction by the I fetch ele
ment in cycle 9 .  Also in  cycle 9 ,  the condit ion 
codes (CC in Figu re 8 )  computed by the CMPL 
instruction arrive at the ACU e lement,  where 
they determ ine that the branch is to be taken .  
The ACU element then issues a "flush" com
mand to the prefetcher and decode stages to 
make room for the new instruction stream .  
Notice that instruction execution wi l l  resu me 
in the E Oox only four physical cycles after the 
branc h. This  is a relatively sma l l  penalty for a 
branch , given that the pipe l i ne latency is nor
mal ly six phys ical cycles.  

The I NCL instruction that was prefctched by 
the branch mechanism arrives in cyc le I 1 at the 
ACU e lement , where the operand effect ive 
address is loaded in  the VA register. In the same 
cycle a memory-read request is issued and the 
operand address is kept in  th� VA register unti l  
the E Oox is ready to do the write . The operand 
is fetched in cycle I 2 and passed to the E Oox in 
cycle 1 3 . Then the E Box performs the incre
ment fu nction,  sends the resul t  to the Mcm
write element ( into the write latch) and issues 
an I £lox-write command ( IBWRITE in Figure 8)  
to  the ACU micromachine.  This in turn issues 
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the memory-write request to  the M Oox via  the 
operand port (see Figure 2 ) .  The E Box waits 
two extra cycles after having issued the I Box
write command in order to handle potential 
memory problems, such as a page fau l t ,  before 
the ESA register is overwri tten by ·retiring the 
i nstruction. Execution of the remaining instruc
tion stream resumes normal ly in  cycle  1 6 . 

Summary 

I n  this paper, a simpl ified model of pipel ine 
i m p l e m e n t a t i ons was i n t roduce d .  I n  t h i s  
mode l ,  a pipeline was described as a sequence 
of stages connected by a transport mechanism,  
which moves an  item from the output buffer of 
a stage to i ts successor ( i .e . ,  a partial ordering) . 

I n  connect ion with this model ,  the issues cru 
cial to designing a pipel ine were discussed ,  
specifica l ly i n  reference to the imp lementation 
of the VAX 8600 CPU and i ts instruction and 
operand fetch uni t ,  the I Box . The most impor
tant of such issues are as fol lows : 

I . The hand-off of items from one stage to 
the next-the issue of local versus global 
control 

2 .  Uuffering, which re lates to the nu mber 
of i tems within a stage 

3 .  The contention for resources and associ 
ated sta l l  cond it ions 

4 .  The dependency of one stag<:' on the 
activity of another stage (e .g . ,  forward 
and backward dependencies) 

The significance of this implementation , and 
of the design presented here, l ies in the suc
cessfu l  reso lu t ion  of the com plex  design 
problems that occur in  the pipel ined imple
mentation of modern archi tectures, such as the 
VAX architecture . Specifica l ly, the usc of a reg
ister scoreboard to prevent the usc of sta le reg
ister data, a faci l ity to recover in the presence 
of exceptions, and synchronization mechanisms 
to deal with VAX-architecture specifics ,  such as 
una l igned references ,  can be cons idered a 
major accom plishment . The capabi l i t ies of this 
design-a fourfold speed improvement over the 
VAX- l l j780 CPU, and under favorable condi
t ions, the abil ity of the I Box to del iver one 
instruction every 80 nanoseconds to the E Oox , 
w h i c h  m e a n s  a p e a k  e x e c u t i o n  ra te  of  
1 2 . 5  MIPS-certa inly make the VAX 8600 sys
tem a major engineering achievement . 

4 1  
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The F Box, 
Floating Point 

Tryggve Fossum 11 
William R. Grundmann 1 

Virginia C. Blaha 

in the VAX 8600 System 
The VAX 8600 system contains a processor-the F Box-that peifonnsfast, 
accurate floating point calculations. The F Box logic design and algo
rithms are more efficient than those in the VAX-llj780 system, a fact 
that greatly improves the peifonnance of the 8600. The F Box has adder 
and multiplier modules that use macroce/1 array technology to peifonn 
the arithmetic calculations and polynomial evaluations. Logic control is 
achieved with microcode, which decreases the hardware required. Some 
interesting tradeoffs were made, especial�y to merge the microcode into 
the macroce/l arrays. The resulting F Box design is a very reliable hard
ware and software package. 

One o f  our key design obj ectives for the 
VAX 8600 processor was to continue t he domi· 
nant position of the VAX Fam i ly in the scient ific 
computing marke t .  That obj ect ive req u i red 
the deve lopment of a floating point subsystem 
that met user demands for increased perform· 
ance and rel iab i l i ty .  This paper describes how 
we a c h i e v e d  t h a t  o b j e c t i v e i n  t h e  
VAX 8600 floating point accelerator ( FPA) and 
the considerations that went into i ts design . We 
bel ieve that the particu lar floating point a lgo
rithms chosen fit nicely with t he component 
technology to yield a high-performance FPA 
with a relatively l ow cost.  

The F Box Operations Flow 
Figure 1 shows the flow of operations in the 
VAX 8600 CPU. The F llox receives sou rce 
operands over t he operand bus (OP bus) from 
the I llox and del ivers results over the write bus 
(W bus ) . These results are stored in memory or 
in general pu rpose registers ( G PRs) in the 
E llox and I Box , and in the F llox i tse l f. The 
C PU a l l ows two sou rce o p e r a n d s  to be 
processed in a si ngle cycle by passing GPR 
identifiers between boxes. Each box has i ts own 
copy of the contents of a l l  G PRs .  Therefore , the 
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I llox needs to pass only t he nu mber of a source 
operand GPR rather than the whole operand 
itse l f. This passing technique speeds up the 
tlow of floating point i nstructions through the 
pipel ine .  The I Box passes the opcode of the 
instruction to the F llox a long with the oper
ands. There , the opcode is transformed by the 
F llox D ispatch RAM ( FDRAM) i nto decoded 
information that is used by the F Box control 
logi c .  

The M Box has a 1 6Kn cache tbat contai ns 
both i nstructions and data . This box performs 
the translation of virtual addresses into physical 
addresses, and i t  connects to the inputjoutput 
( 1/0) bus and the memory arrays . The E Box 
execu tes non-floating po int i nstructions and 
controls the overal l  operation of the system.  
The E llox assists the F llox in executing instruc
tions and handles any overflow and u nderflow 
problems. 

For more i nformation on VAX architecture, 
sec reference 1 .  

VAX Floating Point Formats and 
Instructions 

The VAX arch i tecture su pports four floati ng 
point formats : F, D ,  G ,  and H .  F and D are 
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the formats from the origi nal PDP- I I float i ng 

poi nt processor ( 1 9 7 1 ) . These formats arc 3 2 -

and 64 -bits wide respective ly ,  and both have 8 
bits of exponent.  The G and H formats were 
added later to the VAX- I I  arch i tecture . These 
formats are 64 and 1 2 8 bits wide respectively,  
the G having 1 I b i ts of exponent and the H 
having 1 5 . To achieve fast ,  efficient process ing. 
fracti ons are always normal ized , and the lead
ing b i t-the h i dden b it-is not stored.  

F format i nstructions execute the fastest of a l l  
the float ing point  i nstructions o n  a n y  VAX sys
tem and are used in most programs that requ i re 
adequate precision ( 2 4  bits)  and range ( 2 1 27 to 
2- 1 2H) .  The D and G formats extend that pn:ei
sion and range . The D format provides '; 6  bits 
of precis ion,  :1 more bits than the G. Usu a l l y ,  
however, t h e  extra range i n  t h e  G format ( 2 1 02 ·1 
to 2- 1 02"' ) is more usefu l  i n  perform ing calcula
t i ons.  The D format is used i n  programs in 
which compa t i b i l ity with earl ier VAX systems 
and PDP- I I systems is i mportant . 

I n  the 8 6 0 0 ,  the D and G formats have 
approxi mately the same execut ion t i m e ,  but 
H format i nstru ctions execute more slowly t han 
the others. These H format i nstruct ions are 
i mp lemented i n  the FPA but  are i ntended for 
use as a backup format for in termediate calcula
t ions i n  the D and G formats.

2 
That  use ensures 
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that the fi nal  calculation result  has suffic ient 
precision and avo ids overflow or u n derflow 
problems.  

The VAX archi tecture uses e i ther 2- or 3-
operand i nstructions for the bas ic operations of 
add , s u btract,  m u l t i p l y ,  and d i v i d e .  In the 
8600 , the 2-operand i nstru ctions execute faster 
and are used by the compi ler whenever practi
ca l .  That is cert a i n l y  the case when the second 
operand is from a G PR,  for then the I Dox can 
opt i m ize the passi ng of operands by passing the 
G PR nu mber. 

In addition to the s i mpler i nstruct ions men
t ioned above , the 8600 i mplements the com 
plex E MO D  and POLY i nstructions for argu ment 
red uctions and series eval uations.

2 
EMOD m u l 

t ipl ies two operands that have extended preci 
sion and separates the resu l t  i nto i nteger and 
fraction components. POLY takes an argu ment,  
a degree , and a coefficient  table and performs a 
ser ies  eva l u a t i o n  to y i e l d  a resu l t .  ( Bo t h  
i nstru ctions are execu ted w i t h  extra bi ts of pre
cision . )  Complex mathematical fu ncti ons can 
be compl eted i n  a few steps by using these 
i nstructions. For i nstru ctions i nvolving integer 
m u l t i p l ications.  the F Box performs the actual 
computat ion while the E Box hand les the rest of 
the i nstruct ions .  Those overlapping operat ions 
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decrease the e xecut ion t i me for t he Ml LL.  
EMUL. and I N D EX fu nctions.  

For programs i n  F and D formats , the execu 
tion speed of the 8600 is about fou r  t i mes that 
o f  t h e  I 1 / 7 8 0 . For p ro g r a m s  i n  ( ;  a n d  
H formats,  t h e  execut ion speed i s  about twelve 
t i mes faster, s ince t hose formats are not acce ler
ated in the I 1 /780 . Tab le l contains the e xecu 
tion ti mes for some typical i nstructions .  

Table 1 Execution Times 

Execution Time 
I n struction Operands (na noseconds) 

A D D F2 M e m .  R 1 60 

M U LF2 Mem. R 320 

DIVF2 M e m ,  R 1 300 

POLYF argument, ( 1 300 + 
degree, table 6*degree*80) 

A DDG2 Mem, R 400 

M U LG2 M e m , R 800 

I N DEX 1 000 

E M U L L  640 

Macroce/1 Array Technology in the 
F Box 

T h e  c o m p o n e n t  t e c h n o l o g y  u s e d  i n  t h e  
VAX 8600 syste m i s  the macrocc l l  array ( MCA) , 
w h i c h  prov i de s  a b o u t  o n e  t ho u s a n d  gate 
equ ivalent s  with a typical  gate speed of one 
n a n oseco n d . MCA u t i l i z e s  e m i t t e r-cou p l e d  
logic ( EC L )  technology i n  a 6 8 - p i n  package 
that is one inch square w i t h  a max imum power 
d issipation of 5 0  watts. MCA techno logy is an 
extension of the gate array concept; but i nstead 
of gates. each cell i n  the array conta ins i n i t i a l ly 
a nu mber of u nconnected transistors and res is
tors . 13y creat ing i nterconnect ing patterns with 
these components.  a designer can tra nsform 
them i nt o  sma l l -scale and med i u m -scale inte
gration (SSljMSI ) l ogic fu nctions,  or "macros . "  
'fhese macros take the form of standard logic 
e leme nts such as dual  D-type fl ipt1ops .  dual  fu l l  
adders a n d  q u a d  l atches . All  are series-gated 
ECL structu res used i n  the 8600 to achieve 
opt im izecl performance.  

The F Box has two modu les .  each conta i ning 
l'viCAs. The F llox adder module has 24 MCAs 
and t he F Box m u l t i p l ier  modu le has 2 1 ;  in a l l ,  
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t h e  F B o x  contains 1 7  diffe rent types o f  MCA5 .  
The adder and m u lt i pl ier modu les are 8- layer 
(6 signal l ayers ) printed circ u i t  boards .  Six sig
nal l ayers were needed because the amount of 
etched i nt erconnect on t hese boards , u p  to 

9000 inches, could not be routed on our trad i 
t ional 4 - layer boards .  The i nterconnect is main
tained at a contro l led ( transmission l ine)  impe

dance to guara ntee signal i ntegrity .  We fou nd 
t hat the lowest fai l ure rates arc obtai ned when 
the i n tegra t e d  c i rc u i t  components  on t h e  
boards are cooled i n  a u n i form manner.  To 
a c h i eve t hat coo l ing ,  we u s<:'d w i n d  t u n n e l  
techniques to develop al gorithms that  showed 

the opt i m u m  pla cement of t hose components .  
Moreover, for each mod u le design , we ran com
puter programs to ana lyze the t hermal profi les 
of the i ntegrated c i rc u i ts .  These techn iques 
a l lowed us to determ ine the best component 
placements to ensure the h ighest re l iabi l ity.  

An i nt egra l part of the modu le design is a 
m u l tivoltagc bus bar that d istribu tes power and 
a lso acts as a st iffener to maintain board Hat
ness. On i ts edge , each modu le has 2 8 2  pins 
that can connect it  to a 1 6- Iayer backplane.  

The connect ions from the F Dox to the rest of 

the CP had to be m i n i m ized i n  order to red uce 
the loading and propagation delays on the sig
nal l ines.  Therefore , only the adder modu le and 
the G PRs have i nterfaces to the W bus and 
OP bus. The adder mod u l e  handles exponent 
calculat ion,  norma l ization,  rounding, and pack
i ng of resul ts .  S ince only t he adder module  con
nects to the C PU ,  the m u l t ip l ier  module  must 

receive a l l  of i ts operands from the adder. To 
i ncrease the speed , we c hose a lgorithms to min
i m ize the s igna l crossi ngs between modules and 
between MCAs within  a mod u l e ;  for example,  
addit ion calculat ions arc clone entirely within 
the adder mod u l e  while m u l t i p l i cation calcu la
t ions stay within  the mu l ti pl ier  modu le .  The 
phys i c a l  part i t i o n i n g w i t h i n  e a c h  mod u l e  
req u ired u s  t o  s l ice t he various fu nctions into 
"pieces" that  fi t into one MCA. To m i n i m ize 
the nu mber of operational shifts i nvolved,  t he 
MCA� on the adder mod u l e  were part i t ioned by 
fu nctions,  or horizont a l l y .  The MCAS on the 
m u l t i p l ier module  were sl i ced by data , or vert i 
c;d l y .  Figure 2 i U ustrates t h e  physical  part i t ion
i ng of the macroccl l  arrays i n  the F Box .  as well  
as t h e  M CAs on the adder a n d  m u l t i p l i e r  
modules .  
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Figure 2 F Box Physical Partitioning 

E a c h  m o d u l e  is c o n t ro l l e d  by i t s  o w n  
m icrocod e ,  which is stored i n  2 5 6  X 4 RAM 
components  w i t h  access t i mes of 7 n a n o 
seconds . T h e  RA M  outputs are w ired together i n  
pa i rs t o  g i ve 5 1 2  m e mory locat i o n s .  Each 
m icroword i n  the adder module has  4 8  bits ,  
w h i l e  each m icroword i n  the m u l ti p l ier  has  4 0 .  

MCA component connections o n  the adder and 
m u l t ip l ier  modu les . 

The exponent processor calcu lates the expo
nent d i fference of the source operands to deter
m i ne which is the larger; the absolute value of 
that d ifference is used to a l i gn the fraction of 
the s m a l l e r  o p e ra n d . The a l i g n m e n t  a n d  
u npacking o f  each nu mber are comb i ned into 
one shift by i nc l u d i ng the unpacking constant 
in the exponent calcu l a t i on . The a l ignment 
cou n t  is passed on to the fraction adder ( FAD) 
MCAs . The larger of the two exponents is kept 
by the exponent processor to comp lete the 
exponent ca lculation . 

The 8600 has an SO-nanosecond cycle t i m e ,  
a n d  each cycle has fou r  subphases : TO,  T l , T2 , 
and T3 . The F Box cyde t ime is half as long,  
4 0  nanoseconds, and each cycle has just two 
subphases:  T0 2 and T l 3 .  The storage e lements 
i n  the F Box are l evel-sensitive latches with  t he 
c lock pu lses set as wide as poss ible without 
overlap .  That technique yie l ds a lot of fl exibi l 

i ty i n  the placement  of the latches without  
slowing the data flow . Thus we got a s i mple and 
re l iable c l ock system by having consecutive 
latches c l ocked with  a lternat i ng clocks . Each 
MCA needs only two p i ns for clock signals ;  
thus,  more of the ava i lable p i ns can be used for 
data signals .  

A rithmetic Algorithm Processing 
A ddition and Subtraction Operatio ns 

During an addition operat ion,  groups of 3 2  b i ts 
come to the F llox from e i ther the OP bus, the 

\Y/ bus, or a G PR and go i nto the fraction oper
and select logic (SOP) . Each group also goes to 
the exponent processor (GXP, FXP) and the 
sign processor ( G X P) . Figure 3 depicts the 
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I n  turn, the fraction bits are steered through 
the SOPs to the a l ignment c ircu i ts in the frac
t ion a l ignment (AL N )  MCAs . H ere the hidden 
bit is restored,  the exponent bits arc cleared , 
the larger fraction is unpacked,  and the smal ler 
is part i a l l y  unpacked and a l igned . There are 
four of these ALNs, each conta i n i ng e ight b i ts of 
the data path ,  s l iced such that every fourt h  b i t  
is fou nd i n  t h e  same ALN . The a l ignment opera
t ion is done in two phases : a byte shift by the 
ALN s ,  fol lowed by a bit  shift i n  the FADs .  The 
data is then bit -shifted to comp lete the u npack 
and a l ign operations and added or subtracted by 
t he fraction adder l ogic i n  the e ight FAD MCAs, 
with four adjacent bits to a sHce.  

I f  an addi t ion is being performed , the F Box 
sends a data-ready signal to the E Box to request 
access to the \Xf bus for the next cyc l e .  This 

Digital Technical journal 
No. I A ugust I 985 



- - - - - - - -- - - - - - - - - - - - - - � 

W bus...!..---..-i, 
OP bus-+-------1 

'y - - -1 
I 
I 
II 
I 
I 

W bus 

I 
I 
I F Box 

I Adder r Module 

I 
1 I 

I 
II 
I 
I 
I 
I 

- - - - - - - ---< 
I 

W bus 

I F Box 
�/ Multiplier r Module 

' - - - -- - - - - - - � - - - - - -.1 
Figure 3 F Box MCA Co mponents 

signal is also sent if a su btraction is being per
formed in which the exponent difference and 
the high-order bits ind icate that the result  wi l l  
be ready within one CPU cycle . On the other 
hand, if the subtraction is performed on two 
numbers that are nearly equal , a large number 
of leading zerqes will resu lt .  Those zeroes must 
be normal ized and the  exponent must  be 
adjusted before the data-ready s ignal can be 
sent .  That process takes an extra CPU cycle .  

The fraction adders have a bit shifter for both 
al ignment and normalizat ion.  In  most cases, the 
nu mber of leading zeroes is less than eight,  so 
the b i t  shift and the rounding-constant add can 
be done in one pass . S imu ltaneously, the expo
nent processing logic receives the number of 
leading zeroes and adjusts the exponent for the 
fi nal resul t .  Then the hidden bit i s  masked and 
the result  goes back to the four  SOPs . There the 
result  is packed into the F format and driven 
onto the W bus.  The SOPs are s liced such that 
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each contains every fourth bit  of the result  to 
a l low shift ing to wi th in  the nearest n i bble 
(4-bit piece) . The adder module can execute a 
typical ADDF (an add in F format) i n  four F Box 
cycles, or two CPU cycles . 

The hardware is arranged so that the "aver
age " fl o a t i n g  po i n t  i ns t r u c t i o n  executes  
quickly .  The m i crocode steps t hrough the 
sequence mechanically while enabling branch
ing to be performed whenever exceptional con
d itions are encountered . This branching wi 11 
happen only when something atypical has 
occurred ; for example,  when the nu mber of 
leading zeroes is greater than eight after the 
add . In that case, the resu lt is passed through 
the SOPs, and back through the ALNs to be byte
shifted . Then the FADs compl ete the bit shift 
and the rou nding .  This process requ i res an 
additional CPU cycle to complete . 

The major difference between add operat ions 
in the F format and those in the D or G formats 
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is  the handl ing of 3 2  additional  bits of data i n  
t he l a t t e r  two . R a t h e r  t h a n  m a k i ng a l l  t h e  
datapaths 64 b i ts w i d e .  w e  opted t o  double
cycle the F Box relat ive to the rest of the C PU .  
Thus the first group o f  :) 2  bits o f  a number in 0 
or G format is handled during one cycle and the 
second group is handled duri ng a second cyc l e .  
As the fi rst step o f  t h e  path , t he exponent 
processor calcu lates the exponent d i ffere nce , 
an 8-bit  operation in F format and an I \ -bit  one 
i n  G format . Then the high-order fraction bits 
are u npacked,  a l igned and stored in a regi ster i n  
t h e  ALNs a n d  in another register i n  t h e  FADs. As 
the low-order fraction bits a rrive dur i ng the 
next CPC cyc l e .  t hey are u npacked and al igned 
th rough that same path and merged with the 

appropriate b i ts i n  the FAD registers . 
The low-order fraction bits are then added 

together and that resul t  is passed to the SOPs to 
be held in a n  i nternal register. In turn, the high
order fraction b i ts are added, and the low-res u l t  
bits a r e  passed back through the A L N  t o  the FAD 
inputs-the assu mption being that the n u mber 
of lead i ng zeroes is less than eight (no byte
shift is required ) .  Once the h igh add is com
pl eted , a leadi ng-zero detector determ i nes if 
that assu mption is correct ,  which i n  most cases 

it i s .  
I m mediately after the h i g h  add , the low nor

m a l i ze-and-round is done.  If it turns out t hat 
the n u mber of lead i ng zeroes is greater than 
e i g h t ,  t h i s  re s u l t  w i l l  b e  d i s c a rd e d .  T h e  
m icrocode w i l l  g u i d e  the o l d  sum through t h e  
byte s h i fter to the i n put for t he fraction adder, 
yielding a norma l i zation of u p  to 3 2  bits. I f  the 
m icrocode has not branched,  the high norma l 
ize-and -rou nd i s  clone.  A t  t h e  end o f  th is cyc l e ,  
the h i dden h i t  is masked and the resu lt  i s  
passed to t h e  SOPs , w h i c h  t h e n  pack t h e  high
result  b i ts and drive them onto the W bus.  One 
CPU cyc le later ,  the 10\v-resul t  b i ts are driven 
onto the W bus.  

The total  t ime spent i n  the F Box to perform 
operat ions on 0 and G formats is ten cycles ,  or 
a total of five C PU cycles .  

Multiplicatio n  Operations 

T o  perform m u l t i p l ications,  the operands arc 
sent from the SOP MCA.:; to the F Dox m u l t i p l i e r  
mod u l e .  There the t1oating point formats arc 
u npacked as fo l lows : the leading bit is placed 
in the most sign ificant posit ion;  the fract ion 
b i ts fol l ow the lead i ng b i t ,  in order of signifi 
cance; and fi nal ly  t h e  cl eared e xponent and the 
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sign bits .  Figu re 4 i l l ustrates the conversion of a 
n u m ber in F format .  

The conversi ons of the 0 and G formats are 
s i m i lar ,  a l though t hey have 64 bits i nstead of 
3 2 .  F i gure 5 i l l u strates the packed D a n d  
G formats, where t h e  G format has three extra 
exponent bits . The H format has I sign b i t ,  1 5  
exponent bits ,  and 1 1 2  fraction bits .  

Four m u l t i p l i e r  select ( M PR )  MCAs arc used 
to store the source operands. The MPRs feed the 

Packed F Format: 

Bit Position 

31 24 23 1 6  1 4  

EXP - Exponent Bits 

6 0 

A , B , C  - Fraction Bits ( I n  Order Of Sign ificance) 
S - Sign Bit 

Unpacked F Format: 

Bit Position 

3 1  24 23 1 6  1 5  7 0 

- H idden Bi t  

Figure 4 F Format Corwersion 

Packed !Format: 

Bit Posi tion 

31 1 6  1 4  X 0 

Is--s c--clsl EXP 

63 47 32 ��E ----- E j o ----- ol 
X = 6 For 0 Format 
X = 3 For G Format 

A , B , C , O , E  - Fraction Bits (In Order Of S ign i ficance) 

Figu re 5 D and G Fo rmal Con version 
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mult ipl i cand i n  3 2 -bit p ieces and the m u l t i 
pl ier  i n  8 - b i t  p ieces to t h e  mult iply  logic . 

On the m u lt ipl ier module  there arc 1 0  MCAs 
( 9 -MPY, 1 -MPZ )  that perform the actual m u l t i 
ply operation,  each o n e  generating a 4 -bi t  s l ice 
of the product.  Each MCA has col u m n  red uc
tion l ogic that consists of a 4 -b i t ,  5 -stage adder 
that adds the partia l  prod ucts ,  carries previous 
partial products ,  sums, and carries from the 
previous stage to create a new partial  su m .  Al l 
five stages are performed during every cyc l e .  
Each s l ice receives a byte o f  t h e  mu lt ipl ier and 
1 2  b i ts of the m u l ti p l icand . A tra i l ing zero and 
two lead ing zeroes are concatenated to the m u l 
t i p l ier.  Then i t  is d ivided i nto five groups of 
three bits each, ca l led "triplets , "  to determ ine 
the Booth encodi ng.  Final ly ,  each tr iplet  is m u l 
t i p l ied b y  the m u l t i p l icand accordi ng t o  the 
Booth a lgorithm.  Figure 6 shows t he e ight b i t  
combinations a n d  t he corresponding products. 

As each byte i s  mult ipl ied,  a 4 0-bit  partia l  
product is held i n  an accumu lator latc h .  As the 
processing sequences, the product of the next 
8-bit mu lt ipl i cation is added to t he Last part ial  
product i n  the accumu lator latch,  thus produc

ing a new part ial  product .  This cycl ing contin
ues unt i l  t he mu lt ipl i cand has been mult ipl ied 
by all the m u l t i p l ier bytes . The normal execu
tion t ime is reduced by one cycle because t he 
last byte of m u ltipl ier has the cl eared exponent 
bits in  i t .  

I n  F format,  t h e  first 8-bit  X 3 2 -bit part ial  
product is formed , then shifted 8 b i ts to the 
r ight  and l oaded i nto the accumu lator. The next 
8 mult ipl ier bits are mult ipl ied by the m u l t i p l i 
cand,  then added to the a c c u m u lator a n d  
shifted right b y  8 b i t s ,  a n d  final ly stored . A third 
such product is formed, added to t he partial  
p ro d u c t ,  a n d  t h e  resu l t is  stored in the 
extended accum u lator latches, ready to go to 
the adder modu l e .  

The D a n d  G formats are processed i n  a s i m i 
lar manner except that s ixteen 8-bi t  X 3 2 -bit  
mult ipl ies are required to accomp l ish that tas k .  
After a l l  of t h e  m u l t i p l ier bytes have been m u l 
t ipl i ed b y  the least-sign ificant 3 2  bits o f  the 
m u l t i p l icand, they then have to be m u lt ipl ied 
by the most-sign ifi cant 32 bits .  Prior to the start 
of that m u lt i p l i cation,  the partial  product i s  
shifted left b y  2 4  bits to a l ign i t  for subsequent 
addition to the next partia l  product . 

The Wa llace Tree i n  Figure 7 i l lustrates the 0 
and G format processi ng .  
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Figure 6 Booth Encoding 
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Since only 40 bi ts can be stored in the iv!PY 
s l ices, the overflow is sent to four extended 
accumulator chips in the resu l t  accumu lator 
(MAX ) .  During every cycle,  the MAX receives 
the least significant byte from the accumu lator 
in the MPY s l ices if  a right-8-bit shift is being 
performed . Or, if a left- 24 -bit shift is being per
formed , the MAX receives the most-significant 
24  bits of the accumulator and gives MPY the 
24  least significant bi ts from previous accumu
lations . After a left shift ,  the MA,'( sends the 
most significant byte to the accu mu lator for the 
succeeding right-8-bit shifts.  After a l l  the mul t i 
p l ications have been comp leted,  the 64-bi t  
resu l t  i s  stored in  the MAX , ready to go to the 
adder module to be normal ized, rounded , and 
packed.  

Division Operations 

The fraction adder (FAD) performs a non-restor
ing division algori thm,  one bit per F Box cycle .  
A control input  in the FAD causes the adder 
module to do an add or a subtract ,  depending 
on the carry out of the previous fraction adder 
operation . The bit shifter wi l l  keep shifting the 
dividend to the left by one bit every cycle . For 
the F format ,  this shift produces a quotient bit  
every F Box cyc le,  while the double precision 

formats, D and G, get a quotient bit every other 
F Box cycle .  

To save hardware on the adder module ,  the 
quotient bi ts are sent to the mu lt ipl ier modu le ,  
where a counter (a spl i t  between the MPR 
MCAs) and several sh ifters ( in the MAX MCAs) 
arc used to manipu late the quotient bi ts into 
the correct form . That is, the most significant 
bi t  is p laced in bit  pos ition 3 1 ,  the next most 
significant bit in  position 30 . . .  down tO the 
least significant b i t .  Then , the bits are sent back 
to the adder module for normal ization,  round
ing, and packing. 

Exponent and Sign Processing 

For a l l  operat ions,  the exponent processors 
( FXP and GXP) calculate the result  exponents 
based on the input operands and normal ization 
cou nts. Each processor has an 1 1 -bit datapath 
for exponent operations and a 2 -bit  counter for 
accu mulating carries and borrows out of the 
leading b i t .  Counters are used at the end of the 
instruction to detect overflow and underflow 
problems. A non-zero counter nu mber indicates 
that a problem has occurred . In that case , the 
F Box sends a signal to the E Box when the 

5 0  

calcu lation resu lt  is transmi tted over the W bus. 
In turn , the storing of that resu lt  is prevented, 
and a section of the E Box mi crocode is  
"trapped" to a rout ine that reads several F Box 
status registers in the FBR MCA. The microcode 
then identifies the problem and in it iates the 
except,ion processing .  

The sign processor in the GXP is  a 1 -bit 
datapath ,  modeled in a fashion s imi lar to the 
exponent datapath; in fact they share the same 
control and microcode signals.  Instead of an 
adder, however, this processor uses a mult i 
plexer and an exclusive OR (XOR) gate to per
form sign operati ons . 

Polynomial Evaluatio ns 

Polyn o m i a l s  are eval uated u s i ng Horner 's  
Method, through a series of mu lt ipll ications and 
additions . I n  the VAX 8600 system ,  the I Box 
prefetches coefficient s  from the M Box, and the 
E Box keeps track of intermediate resu lts ,  dec
rements the degree,  and deals with exceptions 
and address trans lations . The F Box performs 
the arithmetic steps described in the Addition 
and Mult ipl ication sections above. Al l of these 
operations are done in paral lel . 

Microcode Control in the F Box 

Like every other subsystem in the 8600 ,  the 
F Box is  control led by microcode . Microcode 
offers a structured yet tl cxiblc and economic 
way of implementing the control fu nctions .  For 
complex instructions-such as polynom ial eval 
uati ons-microcode is  essential for sequencing 
through the various steps . Even for the basic 
operations l ike add and mu lt iply,  m icrocode is 
helpfu l  in dealing with unusual condit ions . The 
achievement of a compact hardware design 
depended on the use of hardware units l ike 
adders and shifters for m u l tip le  purposes, and 
m i crocode prov ides  s u ffi c i e n t  control  to 
ach ieve that des ign. Moreover ,  microcode con
trol a l lowed us the tlexibi l i ty to implement 
fau l t  detection and faul t  isolation procedures 
so that manufacturing and fie ld service could 
effect repairs using m icrocoded d iagnostic 
programs.  

We had to make several design restrictions in 
order to cycle the control store during each 
F Box cycle .  For example,  each module needed 
its own microsequencer and control store. And 
e x c e p t  for i n i t i a l  d i s pa t c h i n g ,  t h e  two 
microcodes run independently.  
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We latched the m icroword i nternals  to the 

MCAs that used them in order to save propaga
tion t i me and to e l i m i nate the need for addi
t ional MSI components. The m icronelds were 
highly encoded due to the l i m i ted nu mber of 
MCA pins ava i lable.  That high l eve l of e ncod ing 
a l l owed us to make the whole contro l  store re l 
atively narrow-4 8 b its for the adder module  
and 4 0  bi ts  for the m u l t i p l ier  modu l e .  That 
makes i t  easier  for the F Box to access the con
trol store d ur i ng each cycle .  I nside the gate 
array, the F Box can decode the m icrocode i nto 
a large nu mber of control fu nctions , some of 
which are appl i cable over several cycles.  The 
control signals are pipel ined along with the 
data and the F Box gradual l y  decodes those s ig
nals at each stage (see Figu re 8 ) . The resu l ts of 
these data operations are somet i mes fed back 
into later decode stages . This m icrocode style 
was needed , in particu lar, to accommodate the 
pipe l i ned structure of the datapat h ,  where sev
era l  operat ions take p lace s i m u l taneously. 

The resul t  of those design restrictions was a 
scheme i n  which the m i crocontrol b its foUow 
the data for several  cyc l e s ,  b e i ng fu rther  
decoded at each stage . For  the majority of cases , 
the m icrocode is l it t le  more than a decod i ng of 

the opcode,  a l lowing the hardware to do a l ign

ments,  add i t ions,  normal izations,  and rou nd
i ngs. The m icrosequencer takes over only if  the 
i nstruction does not fit the standard path and 
creates the needed resu l t  by using the avai lable 
hardware functions. 

Funct1on 

Data 

Tl 

Microcode 

Tl 

We had to define the operat ions at each cyc le 
early i n  t he design stage in order to get t h is 
t ight fit between the m icrocode and the hard
ware . That was possible  due to the relatively 
sma l l  nu mber of operations i nvolved in fl oat ing 
point  process ing.  

The short cycle t ime of the F Box compl icates 
the control of m i crocoded branching.  Each con
trol store location contains a NEXT ADDRESS 
fie l d .  To change control tlow, the m icrocode 
se lects up to three branch condit ions at  a t i m e .  
The OR o f  these cond i tions a n d  t h e  l ow three 
address bi ts select the next m icroword to be 
execu ted.  The sel ectors are contro l led by a 
branch enable (BEN) fie l d  i n  the m icroword . 
The BEN fie ld of a m icroi nstruction does not 
affect the next m icro- PC but does affect the one 
fol lowing i t .  (This i s  ca l led "de layed branch
ing. " )  The delayed-branching a lgorit h m  com
p l i c a t e s t h e  m i c r o p r o g r a m m i n g ,  s i n c e  
b r a n c h e s - i n - p r o g r e s s  a l ways h a v e  t o  b e  
accou n ted for .  Figure 9 shows t h e  d iffe ren t  
i n p u t s a n d  h ow t h e y  a ffe c t  t h e  n e x t  
m icroaddress. 

The m i crosequencer contains no s ta l l  signals.  
I nstead , the m icrocode branches on con d i tions 
that w i l l  force it to change flow . Aga i n ,  that 

m icrocode d e s i gn s i m p l i fies  the hardware 

design , s i nce sta l l  con d i tions can be e ncoded 
i nto normal control signals.  

The I Box sends the opcode of the i nstruction 
to the m u l t i p l ier modu l e .  There the opcode is 
used to address the d ispatch RAl\1 conta i n i ng 

FunCtiOn 

Latch 

Latch Latch 

Tl 

Figu re 8 Microcode Co ntrol in the F Box 
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The F Box. Floating Point in the VAX 8600 .�:ystem 

New Instruction Fork 

E Box Trap 

Jump 

Call/Return Address 

Parity Error Address 

D1agnostic Address 

Next M1cro-PC 

Micro-PC 

Control 
Store 

(51 2  Bits x 48 Bits) 

Branch Enable (BEN) 

M1croword 

Fig ure lJ The F Box Microsequencer 

the start ing microcode address for the instruc
t ion.  The same starting address is used for both 
microsequencers . The dispatch RAM also con
tains format bits that are used to control certain 
hardware operat ions . An instru ction register 
decode ( I RD) signal from the E 13ox triggers the 
start of a new instruction . A " flush" signal from 
the ( 13ox is used to reset the microsequencer in 
case of a change in  the instruction stream ,  nor
mally due to a branch or an exception . Without  
this signal ,  due to  the pipe l i ning of  i nstruc
tions, the F 13ox might have started on a floating 
point instruction fol lowing the branch. Such an 
act ion would  have put  the F Box out  of 
sequence with the I Box and E Box. 

The E Box has the abil ity to trap the F Box to 
various microcode rou tines.  That abi l ity is use
ful when the program wants to use the F Box to 

execute subrout ine  fu nct io ns i n  complex  
instructions, or when the  program wants to 
write customer-origi nated mi crocode in the 
E Box . 

Error Checking and Reporting Using 
Microcode 

High re l iabil ity was a major goal for the whole 
VAX 8600 system . We used very reliabk parts , 
conservative design ru les, and a small nu mber 
of com ponents to design an inherently reliable 
machine. Furthermore, we implemented exten
sive checking for errors throughout the CPU. 
Our primary recovery strategy was to retry the 

52 

macroinstruct ion.  If an error is  detected, the 
CPI wi l l  make every effort to preserve i ts state 
so that the macroinstruction can be restarted 
after the error has been logged . 

The F 13ox has sufficient idle t ime to run diag
nost ic tests on itself while non-floating point 
instructions are executing in the E Box. This 
idle time exists because the F Box is involved in  
the execu t ion of  on ly  a subset of  the  total 
instruction set. In these tests, the opcode is 
used to address the FDRAM,  and a d ispatch 
address for microcode is generated for a test of 
appropriate length .  Operands arc gathered from 
the OP bus to create a variety of test patterns . 
The microcode test runs through ,the basic 
float ing point operations and checks the resu l t .  
If  an  error occurs ,  it wi l l  be  logged by the F Box 
and reported to the E Box the next t ime that 
a tloat ing point instruction is encountered .  In 
this way. a l though the CPU is not disru pted , the 
F Box cannot be used until the error has been 
evaluated by the VMS operating system .  

The error analysis software processes the 
error report . Since the CPU does not require the 
F Box in  order to ru n ,  it can be temporarily 
disabled by the operating system if the error 
freq uency is sufficiently h igh . In that way, com

puting can continue unt i l  the F Box can be 
repaired . 

Like the other subsystems in the 8600,  the 
F Box is connected to the mai ntenance proces
sor, the console ,  over the serial diagnostic bus 
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(SDD ) . The console and SDD are used to i ni t ia l 

ize  the control store and other R.A.t\1s. The SDD is  

also used to al ert the C PU to signals req u i red to 

d iagnose fa i l u res encou n tered in manufactu r

i ng test or at customers'  s ites . Parity errors i n  

the control store are corrected on- l i ne by the 

operator us ing the console .  
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James B. McElroy I 

Packaging the 
VAX 8600 Processor 

Important packaging decisions were made early on the VAX 8600 pro
ject. First, the numbers of gates and parts were estimated to size the CPU. 
Then, a packaging evaluation method was developed to weigh the effects 
of various design factors. Packaging the components to control tempera
ture gradients was an important task. Several techniques for mounting 
devices were tried and the pin grid array was chosen. The module design 
is an equilibrium between component density and the number of signal 
layers. The tools developed for packaging decisions and the cooperation 
engendered among engineering disciplines will help future design 
projects. 

The role of packagi ng i n  the product develop
m e n t  p rocess has changed s i g n i fi c a n t l y  i n  
recent years . Today, the e lectronics packag i ng 
engineer must get i nvolved earl ier than ever 
before . He m ust  make a v i ta l  contri b u t i o n  
toward creating t h e  actual design process , i n  
addition t o  perform ing the traditional role of 
hardware design and eva l uation . 

Acc o m p l i s h i ng t h i s e x p a n d e d  fu n c t i o n  
requ i res the creation o f  effective and tlexible  
tools for testing and eva l uation , i n  addition to 
rigorous adherence tO the best  tradi t ions of  
good engineering practice i n  the management 
of a large and complex project .  The i m portance 
of such tools was compe l l i ngly demonstrated 
d u r i ng the deve l op m e n t  of t h e  VAX 8 6 0 0  
processor. The tools deve loped a n d  t h e  lessons 
learned from designing the packagi ng for this  
mac h i ne can ass ist  fut u re computer design 
efforts by making product deve lopment more 
pred ictabl e .  As a resu l t ,  new systems can be 
developed in l ess t ime,  with less cost and risk.  

At the beg i n n i ng of a deve lopment project , 
l i tt l e  reliable information is avai lable about the 
physical  characteristics of t he product.  Gener
a l ly,  packaging engineers are forced to rely on 
extrapo l a t i on s  fro m  previous p rod u c ts and 
early estimates by system designers . But th is  in i 
t ia l  i nformation i s  the basis for packaging and 
i nterconnect decisions that m ust carry through 
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t h e  development cycle a n d  often through the 
l i fe of the product as welL On the other hand, 
from t ime to time, i t  may be prudent to make 
" m i dcourse" correct ions based o n  cu rre n t  
deve l op m e n ts a n d  m a t u r i ng t e c h n o l og i e s .  
Hence i t  is  necessary t o  implement a design 
process that constantly i nspects t he "state of 
the desig n "  and provides early warn i n g  of 
potential problems .  

Ascertaining the Task 
Among the i n it ia l  questions to be answered for 
any design project are , ( a )  what is t he s ize of 
the task? ( b) what wil l  the product be made of? 
(c)  what requirements m ust it satisfy? I n  addi
t ion to the many safety and EMI  regu lations that 
t he 8600 had to meet, we decided i t  was neces
sary to package t he system in accordance with 
the new European standards for noise em issions 
in data processing equipment.  These standards 
are cons i derab ly more stringent than those by 
which any previous D i g i ta l  compu ters were 
b u i l t .  

Another early decision was to i m p lement the 
CPU with LSI macroce l l  arrays (MCAs) sup
ported by smal l -scale and med i u m -scale i nte
gration (SSijMSI) e m itter-cou pled l ogic (ECL) 
and RAMs.  An i nternal  Digital maintainab i l i ty 
study i ndicated that costs for spares cou l d  be 
reduced substantial ly by provid i ng for on-site 
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replacement of MCA and RAl"l chips .  Therefore , 
it was agreed that those components would be 
mounted in sockets. 

To determine the size and organization of the 
CPU, we worked ini tia l ly with the logic design
ers to estimate the counts of gates, parts and 
modu les and to determine the makeup of mem
ory and the l/0 ports. Table 1 compares the 
numbers of gates and parts in  the VA.X:- 1 1 /785 
CPU with the early esti mates for the VAX 8600 
CP . The last column gives the same data for 
the final product; some esti mates were fairly 
close, others were not.  Much of the i ncrease in 
gate cou nt comes from the increased use of 
pipclining to im prove performance and from 
add it ional diagnostic features. This trend wil l  
continue in future design projects . 

Table 1 Gate and Part Counts 
VAX-1 1/785 VAX 8600 

Gates 
RAM bits 
SSI/MSI 
MCAs 

68K 

1 .06M 

2600 

Modules 26 

Early 
Estimate 

88.5'K 

1 .05M 

260 

1 41 

1 0  

Final 
Design 

1 04K 

1 .04M 

1 1 00 

1 45 

1 7  

To esti mate the nu mber of MCAs , besides tht: 
gate count estimate, we wou ld have to have 
known t h e  design effi c iency fa ctor- i t  is  
improbable tha t  each array wil l  use 1 OO'X, of the 
avai lable cel ls  due to routing inefficiencies and 
power/thermal l im its .  Ini t ia l  component esti 
mates are rough a t  best ,  s o  a conservative safety 
factor was included to prevent difficu lty when 
the actual counts became known . 

Evaluating the Choices 

Once i t  was determi ned what was bei ng bu i l t ,  
we faced a mul titude of  individual implement;l
t ion decisi ons re lated to choices of sockets , 
heat sinks, connectors ,  cab les, and so forth .  To 
faci l i tate the decision process , we developed a 
procedure for comparing the effects of the vari
ous al ternatives in each i nstance and thus to 
help us select from among them . The first step 
in u t i l iz ing this procedure is  to determ i ne 
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which system factors are significantly affected 
by the decision and the relative importance or 
"weight" of each (such that the weights sum to 
uni ty ) . Then for each factor some method is 
devised for quantifying the effect of each al ter
native to arrive at a rating on a scale from I 
( low) to 1 0  (h igh) . Finally, in order to be able 
to compare the total "scores" of the alternative 
solutions, the rat ings were converted to "nor
mal ized" values by m u l tiplying each by the 
corresponding weight .  

The al ternatives and their impact on  the  vari
ous factors can be l isted in  a matrix;  an exam
ple of this is shown in Table 2 .  Here the choice 
is between two overa l l  packaging/interconnect 
structures, one using individual heat s inks to 
cool the MCAs , the other employing a heat-pin 
planar approach (both are discussed later) . Dif
ferent parameters play a role in different deci
sions . Often these parameters are difficu lt to 
quantify early in ·the project . It is important. 
however, tO understand the relative differences 
between the competing concepts so that a rat
ing can be attached to each factor.  

Thermal Design 

Thermal design in the VAX 8600 processor was 
especia l ly crit ical because individual MCA'> can 
dissipate up tO five watts. lloth project risk and 
market ing considerations required using air  
convection for heat remova l .  We investigated 
two approaches to the problem.  One employed 
an individual heat s ink ,  or exchanger, on each 
MCA. wherein heat was conducted through the 
device carrier to an omnidirectional heat s ink 
mou nted by a thin layer of epoxy. The other 
was a large , finned heat sink covering the entire 
back of the module .  Conductive pins protrud
ing through the board conducted heat from the 
MCAs to the exchanger .  In  e ither case al l  other 
components were to be cooled in the tradi
tional way , by forced air convection . Figure I 
depicts the " heat- p in"  arrangement .  Using 
heat-d iss ipating dummy devices, we conducted 
temperature and a irtlow experiments to deter
mine the thermal densities and device place
ments that wou ld be used for the product . To 
predict temperatures, we used a therma l analy
sis tool developed by Digital's Thermal Engi
neering Group to model the actual modu les as 
they would be in real operation.  

There were two poss ibi l it ies for using the 
ganged heat exchanger.  One involved a single 
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-------- Packaging the VA X 8600 Processor 

Table 2 Packaging and Interconnect Evaluation 

System Factor 

Rel iabi l ity 

System Performance 

Risk 

Development Cost 
(Engi neering and 
Manufacturing) 

Spares Cost 

Design Process 

Acoustics 

Product Cost 

Signal I ntegrity 

Total Value 

68 1 /0 C h t p  Carrier 
(leadless Type B) 

Heat 
Smk Heat Ptn 

(Integral To Seckel) 

Weight of Factor 

.20 

. 1 5  

.20 

.1 0 

. 11 0  

.05 

.05 

. 1 0  

. 05 

Pressure Lid 

Figure 1 Heat Pin Detail 

exchanger on each modu l e ,  with the module 
pl ugged i nto a backplane i n  the usual fas hion . A 
novel p lanar approach was a lso considered i n  
which a l l  the CPU modules would b e  mounted 
on two sides of a large air heat exchanger. As 
s hown i n  Figure 2 ,  each plane contains several 
modu l e s  i n terconnected by f l e x  c i rcu i t ry ,  
which a lso connects from one side of the pl ane 
to the other. This approach provided access to 
a l l  of the components withou t  disturbing i nter
connect or coo l i ng .  

Based on the we ight i ng of the various param
eters i n  Table  2 plus other program considera-
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Individual Heat 
Sink Packaging 

Rating 

6 

5 

7 

6 

5 

5 

5 

5 

5 

Value 

1 .20 

.75 

1 .40 

.60 

.50 

.25 

. 25 

.50 

.25 

5.70 

68 1/0 Chtp Carner 
I n  Heat Ptn Socket 

Heat-Pin Planar 
Packaging 

Rating Value 

7 1 .4 0  

5 .75 

4 .80 

3 .30 

4 .40 

3 . 1 5  

7 .35 

6 .60 

4 .20 

4.95 

1 8-tnch x 24-tnch Planar P . C  Board 

Figure 2 Heat Pin Planar Packaging 

t ions,  we proceeded with  the i nd ividual heat 
s i nks and the stan dard m o d u l e - to-backplane 
configuration . 

Regardless of t he configuration selected , the 
coo l i ng system had to del iver suffic ient coo l i ng 
a ir  w h i l e  conform ing to the Eu ropean no ise 
red uction standards .  To meet t hese needs, we 
devised a s ingle-motor, fou r-wheel b l ower sys
tem to c i rc u late the necessary a ir  vol u m e  at  
appropriate press u re .  An acoust ic  d a m p i n g  
tre a t m e n t  app l i e d  to t h e  e n c l os u re doors 
redu ced the no ise e m issions to an acceptable 
level . This packaging design not only met the 
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acoust ic noise regu lat ions , but also yielded a 
much qu ie ter  machine than any previous 
Digital computer of this  s ize .  

Device Packaging 

To meet the objective of on-site replacement of 
LSI and ECL RAM devices , we decided to pro
vide sockets for them .  Unfortunately, the re l ia
bi l i ty of sockets for MCAs was not wel l  estab
l i shed ,  so i t  was necessary to provi de an 
a lternative scheme to hard-mount them . A 68 
IjO leadlcss chip carrier ( LCC) met  al l  of  the 
requ irements . 1 · l Even soldered-on c l ips could 
be used i f  necessary in place of the sockets. 

Since SSI/MSI and RAM devices were widely 
ava i lable only in  DIP format,  we decided to usc 
that package type . Thus OJ P sockets , several of 
which were already qualified in Digita l ,  were 
used for RAM replacement.  

This mi xture of component types forced us to 
choose a through-hole solder assembly tech
nique because Digital has no mixed soldering 
process ( for su rface-soldered and through-hole 
components on the same board) . Therefore . 
both the socket ( Figure 3 .  on the left) and the 
solder c l ips ( Figure 4 )  for the MCA were 
designed in the through-hole configurat ion.  To 
reduce the inductance , the socket has a para l lel  
path for the device ground through the cover. 

D u r i n g  the course of t h e  project , two 
problems arose relative to mounting the MCAs . 

The first was that the solder c l ip  had to be 

instal l ed by hand .  At about  the same t ime,  
Motorola indicated that they wou ld deve lop a 
pin grid array (PGA) package for the MCA. l3y 
working c lose ly with the vendor, we obtained a 
package ( Figure 3 ,  on the right) that matched 
the electrical performance and footprint of the 
LCC socket , a l lowing the substitution of the 
PGA for the solder el i  p as our backup. The next 
issue that arose was that sockets for the MCAs 
wou ld not be avai lable at sufficient  qual ity 
leve ls within an acceptab le t ime frame.  At that 
point we switched to the PGA as the primary 
packaging technique.  

I t  was origina l ly  intended that the MCAs 
wou ld themselves incorporate diagnostic hard
ware , but th is feature was discovered to impair 
the yield. The solution to that problem-provid
ing supplementary hardware for d iagnost ics
created another: getting maximum hardware 
into minimum space . The module part i tioning 
was already solidly establ ished by the t ime we 
learned of the need for supplementary hard
ware . Fortunately, a S IP  design, mounted with 
4 0 -mi l  center l ine chip carriers, enabled us to 
instal l  the diagnost ic hardware in the l im ited 
space avai lable .  

Module Packaging 

The init ial  module choice was one simi lar to 
t h e  p r i n t e d  w i r i n g b o a r d  u s ed i n  t h e  
VAX- 1 1 /750 system.  I t  was the right size for our 
part it i oning and dens i ty needs. However ,  to 

Fig ure 3 l.CC with Socket and PGA Package 
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------- Packaging the VAX 8600 Processor 
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Fig ure 4 L CC with Solder Clips 

Figure 5 LSI Module 

provide the maxi mum number of edge finger 
p i ns for s ignals ,  s u p p l e m e n tary power and 
ground connectors were developed . I n  this way 
we cou l d  get s ignal pins sufficient for the l ogic 
that wou l d  be put on the board (some of the 
2 8 2  pins are used for ground,  but none for 
power) . Figure 5 depicts the modu le ,  which is 
of control led impedance constru ction and has 
eight l ayers , fou r  of which are for signals.  To 
ensure i nterconnect capacity, several tria l  lay
outs were done on early designs.  

As the system design progressed,  the n umber 
of gates needed to perform the requ i red func
tions grew sign ificantly, as demonstrated by 
Table 1 .  Eventua l l y  a l l  spare s lots were used 
and more were needed . But in some areas addi
tional mod u l e  crossings were unacceptabl e  for 
reasons of system performance . So we decided 
to violate the rules for component density on 
the modu les and added the extra gates to the 
modu les a l ready i n  p lace . Signi ficant margins 
existed in power and coo l ing, but the i n tercon
nect was not adequate . We therefore had to add 
two signal layers to some of the moduks.  That 
posed a problem because,  with traditional edge 
connectors, the extra signal layers had to be 
provided without any c hange in edge t h ickness . 
1\vo solutions to this problem were proposed .  
One i nvolved a graduated layup i n  w h i c h  the 
module i tself wou l d  carry two more l ayers (a 
total of ten)  w h i l e  mainta i n i ng the eight-layer 
thickness at the connector. The other was a n  
eight-layer construction w i t h  s i x ,  i nstead of 
four ,  layers for signal paths . When prototypes 
of each al ternative were tested ,  the u n i form 
eight- layer arrangement proved to be the satis
factory design,  as i t  was easkr to produce and 
less expensive. 

Backplane 
For the backplane we used a printed wmng 
board with  the same routi ng grid and con
tro l led i mpedance as the module boards . But 
the backplane has sixteen layers of which e ight 
are for signal traces . To preven t  problems due 
to Z-axis expansion during soldering, we used 
only compliant press-pin connectors. This also 
meant no dri l l ing wou ld be needed to add or 
delete nets because the press pins have wire
wrap tai ls for wire adds. Figure 6 shows a back
plane assemb l y  mou n ted i ns i d e  the system 
enclosure. Also visib le  is the power d istribution 

s t r u c t u re , w h i c h  can p rovi d e  u p  to 4 0 0 
am peres of -5 . 2  volt  cu rrent to the processor. 

Digitt�l Tecbuict�l ]oun1lll 
No. I August 1 985 



New Products 

Figure 6 Backplane Assem b�p 

Lessons for the Future 

The experience of deve loping a physical design 
for the VAX 8600 processor demonstrated both 
the value of tool s  avai lable to the package 
designer (e .g . , the weighted com parison pro
cess and the thermal ana lysis software ) and the 
need to im prove those tools . 

In part icu lar,  the events of the device-level 
packaging phase indicate the need for a design 
database approach offering numerous bui l t - in 
test points or decision thresholds. This process 
a l lows earlier identification of problems, ena
bl ing engi neers to switch from one strategy to 
a n o t her  w i t h o u t  d i s r u p t i n g  t h e  p r o j e c t  
schedule .  

S i m i l a r ly ,  t h e  use of  rou t i ng-pred ic t ion 
software de rived from proven interconnect 
a lgorithms·

� 
reduces the incidence of routing 

inefficiencies. And it provides adequate safety 
margins in estimating gate and part counts at  
the beginning of a project . 
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Two other product development objectives 
were revealed as a resu l t  of VAX 8600 design 
efforts .  The first is the need to ensure that con
nector technology is  not dependent on modu le 
thickness. Then extra layers can be added with
out greatly affecting related hardware . Second, 
larger safe ty margins must be provided to 
reduce module rout ing difficul ties . 

Overa l l ,  the greatest need is for tools  that 
provide accurate moni toring of design evolu
tion as a whole ,  and also in  the i ndividual 
regions of deve lopment.  This is especial ly true 

given the great increases in complexity from 
one project to the  next . Many people are 
involved in bui lding a sophisticated computer 
system l ike the 8600 , and everyone must know 
what the others are doing. 

As the industry conti nues to evolve and 
mature ,  i t  becomes esse nt ia l  that package 
designers commun icate active ly with system 
and logic designers, as well as manufacturing, 
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------- Packaging the VAX 8600 Processor 

marketing, and customer su pport personnel . 
The development of tools and systems that pro
vide expanded insight into the progress of a 
whole project wi l l  ass ist packaging engineers in 
becom ing creators of design processes as we l l  
as  developers of hardware . 
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John H. Hackenberg I 

Signal Integrity in 
the VAX 8600 System 

Maintaining signal integrity in ECL is necessary for fast execution 
speeds. On the VAX 8600 project, software tools were developed to elimi
nate signal problems before hardware was constructed. The number of 
signa/ layers was detennined by modeling the components and routing 
channels. The worst-case noise margins were set on the basis of noise 
immunity. Power distribution can affect the margins, so special care was 
taken to limit transients. Temperature changes, which also cause signal 
level shifts, had to be limited. Wavefontls and their reflections were 
modeled to identify the transient response. Another model identified 
crosstalk problems in parallel runs. 

To achieve the performance goa ls set for the 
VAX 8600 CPU, emitter-coupled logic (ECL) 
was chosen for implementing the design . This 
consists principally of custom macroce l l  arrays 
(MCAs) , and standard series 1 O K  logic and 
RAMs . The chal lenges and problems that ut i liza
tion of this technology presented were investi 
gated by studying an earl ier  ECL design at 
Digita l .  This invest igat ion resulted in the al lo
cation of signal noise margins and the recogni 
t ion of the need for new software tools for noise 
summation, and reflection and crossta lk analy
sis. As the design of the machine progressed and 
problems were encountered,  we improved the 
new software to analyze whole networks and to 

allow as much flexibil ity as possible without 
risking the time to market. 

Printed Wiring Board 
Characteristics 

The first tasks were to select the characteristics 
of the printed wiring board (module) to be 
used and to determ ine the nu mber of compo
nents that cou ld be interconnected on i t .  The 
characteristics chosen were the fol lowing: 

l .  The board wi l l  be the same height and 
width as that in the VAX - I I j750  and 
VAX - I l j780 systems . 

Di�illll Techuit:lll ]our�wl 
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2. Doard thickness will be l imited by the 
card edge connecto r chosen for the 
system . 

3 .  The rou ting grid wil l  be 5 0  mils to guar
antee a maximum of 5 percent back\vard 
crosstal k .  

4 .  Interconnect impedance w i l l  be main
ta ined at 55 ±5 ohms.  

I tems 3 and 4 also apply to the printed wiring 
backplane that carries the signa ls between the 
modu les .  The minimum desirable im pedance is  
50 ohms to match the minimum output drive 
capabi l ity of the MCA.s (the MCA 2 5-ohm driv
ers are strictly for double-ended buses, where 
the l ines in each direction arc 50 ohms ) .  The 
higher the impedance , the thicker the dielec
tric must be for a given signal conductor cross
sect ional area.  And the th icker the dielectric .  
the fewer layers that can be incorporated into a 
hoard of the maximum thickness ( 1 80 mils) . 
Thus S5 ±5 ohms fits the requi n:ments neatly, 
and within this constraint the backplane actu
al ly reached the l imit  in nu mber of layers . 

The number of com ponents is obviously l im
ited by the avai lable space-the area of the 
board . But i t  also depends on the number of 
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interconnecti ons that can be made among those 
components . In investigat ing this issu e ,  special 
consideration was given to signal IR drops due 
to i n terconnect length. as the voltage drop 
along a conductor directly subtracts from the 
noise margin at the input to the receiving gate .  
To solve this problem,  d ifferent l i ne widths 
were used in  the d ifferent s ignal layers of each 
board . Signals could then be ass igned to partic
ular layers depending on the length of the sig
nal path .  Thus , longer l ines could be ass igned 
to wider s ignal traces to equalize the IR drops . 

With this information and the early compo
nent estimates from the logic desi gners, we 
determined the number of components on each 
board and how many signal layers wou ld be 
needed to interconnect them. Then, from speci
ficat ions of the amount of power consu med by 
each component,  the total power drawn by 
each board and by the entire CPU were est i 
mated. In turn, these estimates al lowed us tO 
determine the thickness of the copper in each 
module and in the backplane . At th is point mak
ing Iayups of the hardware could begin . The 
resu lt  was that different modu les in the CP 
vary from two to s ix s ignal layers , and the CPU 
backplane has e ight signal layers . 

Although this early analys is  was usefu l ,  in the 
actual layout of the modules we ran into board 
rout ing problems . To solve them, a program 
was written based on Schmidt's article on est i 
mation of circu i t  pack parameters using Rent 's 
Rule

1
• As input the program requ ires the num

ber of components of each type on a board, the 
nu mber of s igna l  pins on each component type, 
the size of the board , and the nu mber of rou ting 
channels between adjacent com ponent pins .  
From this information,  the program determ ines 
the number of signal layers requ ired to rome 
the board . 

We also created new programs to obtain bet
ter correlation between calcu lated primed wir
ing impedances and measured impedance va l
ues ( i n o t h e r  words , to  o b t a i n  b e t t e r  
prediction) .  These so-ca l led "field" programs 
employ electromagnetic theory to s imu late the 
inductance , capacitance , and resistance of con
ductors of arbitrary s ize and shape in two and 
three dimensions. From these s imulated charac
teristics, the programs compute the dcctrical 
parameters for microstrip and stripl ine configu
rati ons , and the crosst:l lk  between conductors. 
The three -dimensional program also computes 
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the crossover capaci tance o f  s ignal condu ctors 
that are on adjacent layers and routed orthogo
nally to each other. This last computation is 
i mportant because the crossover capaci tance 
increases the propagation delay of signal traces 
a n d  l ow e rs t h e i r  i m pedance . Add i t i o n a l  
enhancements are being planned for these pro
grams to better analyze s ignal reference planes 
from an alternating current (ac) viewpoint .  

Noise Margins 

To design a reliable system, i t  is necessary to 
understand the d irect current (de) noise mar
gin for the ECL gates being used . Different logic 
fam i l ies have different characteristics in  the 
way tracking rates of input and output levels 
depend on variat ions in temperature and supply 
vol tage . These variables were used to determine 
the worst-case de noise margins, depicted in 
Figure 1 .  However ,  if a system were to be 
designed around worst-case de noise margins, 
t h e n  a l l  the no ise  contr i b u t ions  s u m med 
together cou ld not exceed those margins. This 
wou ld be far more restricti ve than necessary for 
system integrity and would be devastating for 
system performance . That i s ,  the gates wou ld 
have to be so far apart that the interconnect 
delay between them , on which system cycle 
t ime depends, wou ld be unacceptabk .  

Gate Gate 
Nom1nal H1gh Level _o_ut:__pu_t _______ ln_put 
Guaran� 'Q�;g�; ----- H1gh-Level No1se Marg•n 

- - - - -�owest Input Guaranteed 

��n��a����ne V:.��h To Be Aecogn•zcd As H•gh 

Input W1ll Be 
Recognized 

Guarant��v ����: ____ _ 
H;gt'lest Input Guaranteed 
To Be Aecogn•zed As Low 

Low-Level Norse Margin 

Nom•nal Low Level ----------

Worst-Case DC Noise Marg•n Is The Smaller 
Of The H•gh- And Low-Level Noise Marg•ns 

Fi[!,u.re I DC Noise Margins 

On the other hand , by understanding the de 
noise margin for a given gate ,  one can also 
obtain i ts ac noise margi n .  In  particular, for 
each gate one can derive an input-signal ac 
noise immunity curve (Figure 2 ) ,  which shows 
what ampli tude of input noise is required to 
switch the gate output at any noise pulse width . 
Based on this relationship.  if the sum of a l l  
input noise contribu tors for each gate in the 
system is less than the noise required to switch 

Digital Technical journal 
No. I A ugust 1 98 5  



Figure 2 A C  Noise Imm unity 

the output,  then the i ntegrity of the system can 
be guaranteed . This cr i ter ion i s  m u c h  l ess 
restrict ive than de n o i se margi n s ;  in other 
words, any poi n t  below the curve of Figu re 2 is 
acceptabl e .  'fherefore ,  ac no ise i m m u n ity was 
used to set the worst-case noise margins for the 
ECL logic in the 860 0 .  

Based on a l l  known noise contributors, we 
determi ned the ac noise margin for the system . 
To set up the design ru les ,  we then ass igned an 
amplitu de to each noise contributor; that is ,  the 
noise was a l located among the various sources, 
as shown in Table l .  This a l location a l l owed us 
to define a rou t i ng grid on the pri nted wiring 
boards and backplane,  and to select connectors 
and transm ission l i n e  cables .  

Table 1 Noise Budget 

Noise Contributor 

Load reflections 

Crosstalk 

I nterconnect mismatch i m pedance 

Simultaneous switching of outputs 

-2.0 Vac noise on signal l ine 

Signal I R  drop 

Vee I R  drop 

Gate feed-through 

Output voltage adj ustment to therma'l 
variations 
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Allocation 
in 

Mil l ivolts 

1 00 

1 00 

1 00 

1 50 

25 

25 

1 4  

50 
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Final ly ,  we wrote a program to sum a l l  noise 
contribut ions (worst case hut w it hout tak i ng 
s ignal t i m ing i nto considerati o n )  for each ECL 
network in the system . Those networks identi
fied as potential  problems were analyzed by 
hand using t i m i n g  i nformation to determ i ne the 
i m pact on the system . Real problems were 
resolved by reducing one or more of the noise 
contributions (such as crossta l k  from adjacent 
s ignal traces)  or by spacing l oads farther apart 
on the transm ission l i n e  to reduce the ampli 
tude of load retlections.  

Controlling Noise Sources 

The largest a l location i n  the noise budget is the 
one that l ittle can be done ahom : the s i m u l tane
ous switc h i ng of outputs ,  w h i c h ge nerates 
l S O  m i l l ivolts of noise . Other sources could be 
just as noisy, but the a l locations for them 
reflect  the fact t hat action can be taken to 
reduce them . Besides the use of different width 
traces to equal ize s ignal IR drops , the major 
efforts lay i n  power d istribution , load retlec
t ions and crossta l k .  

Power Distribution 

Power d istribution is an espe c i a l ly i m portam 
factor in design ing an LSI system with ECL.  Sup
ply regu lation is i mplemented through remote 
sense poi nts located near the .logic c i rcu its.  But 
the number of such po.ints is necessarily l i m 
ited , a n d  an excess ive supply drop between a 
sense point and any ECL gate wou ld adverse ly 
affect the noise marg i n .  Of course, there must 
also be s u ffic ient  decou p l i ng of the supply 
voltages .  

To obtain a reasonable de noise margin on 
the ECL gates , a goal was set that all factors 
contributing to variation in the supply voltage 
at any point in the d istribu tion cou ld cause no 
more than ±3 percent variation in the nom ina l  
V u:  voltage . Table  2 l ists these factors a n d  the 
a l lowable variation i n  eac h .  

ECL gates w i red together arc particu larly sen
s i tive to vC< . voltage d i fferences because t he 
reference for both output and i nput  thresholds 
i s  itse l f  referenced to Vee Fu rthermore , any ac 

noise on a Yu : line not common to both gates 
may reduce the noise i m mu n i ty .  To m i n i m ize 
Vee d i fferences and equ a l ize ac effects,  fu l l  
ground reference p lanes were used i n  both t he 
modu les and the backplane.  These planes keep 
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tht: i nd uctance in the Vu path between c h i ps 
as low as possible . 

To reduce the total power requ i red by the 
system , we emp loyed a sma l ler supply vol tage , 
-2 . 0V, for the termi nators. This a l lowed us to 
use a term inat ing resistance that m atched the 
l i ne i mpedance better. But  i t  a lso created t he 
possibi l i ty of large changes i n  termi nator cur
re nt  over a n  e n t i re mod u l e ,  a s i tuat ion t ha t  
wou ld produce large transient  vo l tages .  Any 
noise in the termi nator vol tage is coupled i n  
part onto the s igna l wires . To redu ce t hese tran
sients, decoupl ing capaci tors for both high and 
low frequencies were d istributed throughou t  
t h e  m od u l e s .  The spe c i fi c a t i o n  i s  e n o u g h  
decoupl ing to l i m it transients to 5 0  m i l l ivolts 
on Vu and Vrr· Table 2 a lso shows the aUowa
ble variations in the factors affecting the term i 
nator supply.  

Table 2 Power Supply Varia,tion 

Variation in 
Factor VEE -5.2V Vn -2.0V 

Reg ulator tolerances 
Linejload regulation, 
rippl'e , long-term change 
i n  de reg ulator output 

Noise transients due to 
load cu rrent changes 

Distribution IR d rops 

1 . 0% 

1 .0% 

1 . 0% 

Thermal Considerations 

2.0% 

2.5% 

1 .0% 

The signal output and input levels of c ircui ts 
shift with changes in temperature.  To hold the 
de noise contri bution from this factor \Vi t h i n  its 
a l l ocation req u i red l i m i t i ng to I ooc the a i r  
t e m p e r a t u re d i ffe r e n c e  b e t w e e n  a n y  t w o  
ckvices connected together t hrough a n y  net
work.  The thermal  engineers attempted to guar
antee ad herence to this  criterion by hold i ng the 
temperature rise across every i nd ividual  mod
u le to I ooc. Since the heat generated by the 
d i fferent modu les varies considerab ly,  t h is goal 
turned out to be u nattainab le .  But a thermal 
ana lysis of every network, including t hose that 
e xtended over m u l t i p l e  modules via the bac k
p lane.  showed t hat the fu ndamental req u i re

ment relat ive to any nvo devices in any network 

was met . 
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load Reflection A nalysis . . 

To analyze load retlections,  we created a s i m u 
l ator t h a t  models a tra nsm ission l ine i n  the t i me 
doma i n .  This program is specifical l y  for ECL 
circui try, and i t  gives resu lts s i m i lar to those of 
SPICE

2 
but takes much less CPU t i m e .  To model 

a waveform at  any point on a l i n e ,  the s i m u lator 
d iv ides the tota l delay into many i ncrements 
and calc u l ates a set of values for the waveform 
corresponding to t hose i ncrements.  The calcu
lations take into cons ideration the ( a )  i mpe
dance and propaga t i o n  d e l ay of the l i n e ,  
( b )  i nput a n d  output i mpedances for each gate, 
(c) package capacita nces, and ( d )  e l ectrical 
para meters of signal connectors . Besides the set 
of va l u es represent i ng the generated waveform 

propaga t i ng along the l i ne ,  the program a lso 
c a l c u l a t e s  a s e c o n d  s e t  re pre s e n t i  ng t h e 
ret1ected waveform . I n  a manner analogous to 
the resul t  of a waveform and i ts retlection on 
the l i ne ,  the correspond i ng values in the sets 
are summed.  With this technique t'or waveform 
a n a l ys i s ,  w e  c a n  d e t e r m i n e  t h e  t ra n s i e n t  
response for each output and i np u t  o n  arbitrary 
networks . Using t he appropriate d i ffe re n t i a l  
equations to represen t  source and l oad models 
gives resu lts that a re comparab le to those given 
by SPICE . 

O n c e  a good c o rre l a t i o n  was o b t a i n e d  
between bench measurements a n d  s imu lat ions,  
we added a lgorithms tO calcu late the m i n i m u m  
a n d  maximum propagation de lays a long each 
ECL network in the syste m .  When t he gate 
delays , i nterconnect delays,  and appropriate 
l ogic con d i t i ons were estab l ished,  we cou l d  
analyze the t i m i ng of the VAX 8600 C PU using 
w o r s t - case p a ra m e t e rs .  T h e s e  p a r a m e ters  
i nc l u ded both m i n i m u m  and maximum val ues 
for gate de lays, output rise and fa l l  t i mes , i nter
connect delays. and i m pedances of the i nter 
connect for each logic  path i n  the CPC.  The 
program that calcu lates int ercon nect de lay can 
a l so ana lyze networks c o n ta i n i ng m u l t i p le 
sou rces ( i . e . ,  wirc-ORs and buses ) .  

Crosstalk and Interco nnect 

As boards become denser and switching speeds 
faster, crossta l k  becomes an increasingly i mpor
tant sou rce of noise . The program for calculat
ing crossta l k .  which can be used for 'TTL and 
ECI. ,  fi nds al l  para l lel  pi eces of signal etch on a 
board . I t  then calcu lates t he crossta l k  contri bu
t ion to each victim segment from al l  para l l e l  
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aggressor signal runs , within reasonable l im its
it ignores those too far away . The calculations 
are based on the length and separation of para l
lel runs using crosstal k  cou pl ing coeffici ents 
rather than transmission l i ne simulation.  The 
voltages for each ru n are added and reported as 
the total crosstalk voltage cou pled into the vic
tim network . I f  this total exceeds a specified 
threshold,  the report includes a breakdown of 
the crosstalk for each run .  

Pr inted wir ing that  handles  the s igna ls  
between integrated circu i ts on boards and back
planes must be control led impedance to obta in 
the best system performance . To meet the goals 
of the VAX 8600 syste m,  at each interconnec
tion we permitted no more than I 00 m i l l ivolts 
of reflection due to mismatches in impedance 
as a signal moves from one interconnect to 
another. 

Summary 

The initial performance goa l  for the design of 
the 8600 was a program execution speed at 
least four ti mes that of the 1 1 /780.  One of the 
factors that made possible the real ization of this 
goal was an investigation of the interconnect 
environment for the ECL logic used in the 
860 0 .  In doing so we gai ned a s ignifi cant 
understanding of and control over the fol low
ing parameters affecting the integrity of the 
logic signals in the system : 

I .  Propagation delay per unit length of l ine 

2 .  Vol tage drops from the source to each 
load 

�� . Crossta lk between paral lel  s ignal l ines 

4 .  Reflections due to loads on a transmis
sion l ine 

5. Reflections due to mismatched impe
dance characteristics of the l ine 

() . Reflections due to connector im pedance 

7 .  Reflections due to m ismatch between 
i n t e rc o n n e c t  i m p e d a n c e  a n d  t h e 
termi nator 
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This understanding and control al lowed us  to  
perform accurate simulations of  the intercon
nect d e lays t hro ugh a l l  paths in the CPU,  
result ing in  the el imination of a large number 
of potential problems.  Accurate t iming s imu la
t ions of the interconnect al lowed t he resolution 
of logic delay problems before com mitting the 
design to hardware , s ign ificantly reducing 
design turnaround t imes. 

Many people inside Digital worked di l igently 
to generate programs and build test hardware to 
analyze the interconnect. Because of this,  we 
were able to reach our goal of bu i ld ing a system 
with the cal iber of the 8600.  
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Cooling the 

E. Brian Kalita I William English _ 

VAX 8600 Processor 

Pmper cooling is essential for reliability yet is constrained by acoustic 
requirements. Both are achieved here using a single centrifugal blower 
to move air thmugh the cabinet, with modules spaced for suitable air 

flow. Thermal models were created to analyze temperature gradients on 
modules and across networks, thus guaranteeing the integrity of sigm1l 
levels. Component temperatures received special attention since an MCA 
can dissipate five watts and thus needs a heat sink. The best heat-sink 
design was developed by measut·ing die temperatures using testing 
devices, each containing a free diode. 

The VAX 8600 processor dissi pates six ki lo
watts of energy, nearly al l  of i t  from one 
double-width cabinet.  Since the fu nctional i ty 
of the logic is temperature sensitive, cool ing 
was a major concern in bui lding a re l iable sys
tem. Nevertheless , the 8600 runs (and was fu lly 
qual ified) on a solid floor using computer
room air for cool ing. Of course the system can 
a lso be coo led by condi t i oned a i r  drawn 
through a raised floor. Much of our cooling 
design effort was aimed at satisfying acoustic 
goals whi le at the same time meeting cool ing 
req u i re m e n t s .  The 8 6 0 0  i s  the  q u i e test 
mach ine of i ts size that Digital has ever bui l t .  

Overal l  cooling of the 8600 is  accompl ished 
by the movement of air from bottom to top . Air 
at normal computer room temperature enters 
the cabinet through a perforated base panel and 
passes through an a i r - fi l ter  asse m b l y  that  
doubles as the UL drip screen . Shou ld there 
ever be a fire inside the cabinet, the screen wi l l  
extingu ish the tlames of  any burning material 
that may drip from the equipment. From the 
screen the air passes through the card cage con
ta in ing the l ogic and then through the power 
supplies.  At the top of the cabinet is a double
dual centrifugal blower ( i . e . ,  a single device 
with a pair of wheels on each side) . The blower 
pu l ls the air up through the cabinet and forces 
it out through a pair  of acoustic muffl ers 
mounted inside the rear cabinet doors . Mount-
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ing the muftlers as an integral part of the rear 
doors allows easy access to the logic and power 
backplanes. The mufflers have an expanding 
internal cross section to regain as much static 
pressure as possible from the high-velocity air 
exiting the blowers . The muftler entrance and 
the exhaust louver pattern , respectively, are 
tu ned to reduce in le t  pressu re losses and 
exhaust reci rculation. The entire path is closed 
and independent of the outer walls of the cabi 
net .  Opening the cabinet doors docs not impair 
the effect iveness of the cool ing system .  

The card cage i s  made up o f  four  sections, as 
shown in Figure I .  From left to right, as viewed 
from the front ,  there are the memoq', CPU, 
adapter bus, and 1/0 adapters and control lers 
that connect to the peripheral equipment .  The 
memory and ljO sections have standard Digita l  
0 .  '5 - inch s lot spacing. Spacing in  the adapter 
section and some CPU slots is 0 .6  inch.  The 
remaining CPU slots have 1 .0 - i nch spacing to 
provide the necessary component clearance 
and volume of cool ing air tlow for those mod
u les containing macrocell arrays (MCAs ) . The 
greater clearance is req uired because each MCA 
must have an individual beat sink, and the high
powered MCAs require a greater volume of air 
for coo l ing.  

Any VAX 8600 processor may have a nu mber 
of em pty module slots that can otherwise be 
used for various options, such as the t1oating 
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Figure I 

point accelerator, add itional memory, a second 
connection to the adapter bus, and various 1/0 
options. To prevent the cool ing air from taking 
the path of least resistance through the gaps, 
p l as t ic  pseudo-boards arc i nsta l l ed in a l l  
unused slots . E l iminating the gaps keeps the air  
now close to the boards where it belongs-cool
ing the components-and also serves to make 
the air tlow characteristics of all machines the 
same. 

Module Thermal Design 

The thermal design is predicated on two crite
ria re Ia ted to temperature . The first is  that sig
nal levels in  the emitter-coup led logic (ECL) 
components are shifted by changes in tempera
ture .  L i mi t i ng t h e  temperature d i ffe rence 
between any two components within a network 
to l O oC prevents the logic levels from shift ing 
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out of range at one component relat ive to 
another.  The second is that component fai lures 
are proportional to temperature . Holding down 
the component j u nction ( d i e )  tempera.tu re 
yie lds h igher rel iabi l i ty-a longer MTBF.  

Early in the project we decided on two gen
eral goals to guide us in designing the 8600's 
cool ing system to satisfy those criteria .  One was 
to maintain a nom inal a ir  temperature r ise 
across any given module at abou t 1 o o c .  This 
would guarantee a maximum 1 ace ambient dif
ference between any two components on the 
modu le.  The other was to guarantee that at least 
90 percent of all die temperatures would be 
less than 1 00°C,  even at the maximum ambient 
temperatu re of 3 2oC .  Of course there were 
bound to be differences from one module to 
another; one module actually dissipates 1 80 
watts , and the one next to it d issipates 1 4 6 .  
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In those si tuations where the I o o c  rise was 
exceeded, we analyzed the individual networks 
tO determi ne the temperature gradients within 
them. On one board there was actual ly a I 5 oC 
rise, but no individual network exceeded I 0°C;  
the goal for junction temperatures was met as 
we l l .  By taking great care in the placement of 
components, we were able to configure the 
i nd ividual networks in such a way that even 
though we violated the general rule  on temper
ature rise in some cases , we nonetheless always 
stayed within the critical l imi t  on the tempera
ture difference between two devices wired 
together. 

To help the logic designers ,  we set up des ign 
rules aimed at sat isfying the thermal require
ments. To start ,  one ru le was based on dividing 
a board into sections about two inches wide 
(approx i mately a s ingle column of compo
nents) and three inches high. The rule  required 
that the components contained within each 
such section shou ld not exceed a given maxi
mum power. The va lues for maximum power 
and section size were based on pre l iminary 
tests using a mockup board with protOtype 
MCAs. With rising air t1 ow, each component 
heats the one above it; we could not therefore 
al low the placement of a column of hot compo
nents, even if  the rest of the board were cool ,  
without evaluating each ind ividual case .  For 
example,  to make rout ing possible ,  a designer 
may have needed to violate the section-power 
ru le and put three five-watt devices right on top 
of each other. Cases such as this wou ld be eval 
uated by considering the network and die tem
perature information . 

At the next level of refinement, we used a 
thermal analysis tool designed by the Thermal 
Engineering Group at Digital in Maynard, Mas
sachusetts . This tool u t i l izes different functions 
of thermal resistance versus air vdoc ity to cal
culate junction temperatu res for different kinds 
of component packages. Based principally on 
vendor data, these functions were developed 
for plastic packages, ceramic  packages , and 
packages with special thermal character istics . 
Within each package type , separate cu rves were 
derived for different sizes, correlated to the 
number of pins.  To perform the analysis,  we 
divided the board into as many as one hundred 
sections . The " model board" was then popu
lated for a particu lar configuration by our spec
ifying the components and ass igning them to 
the sections . The analyzer first calcu lates the 
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temperature rise of the air  from environmental 
information, power data , and component place
ment.  From this calcu lated temperature rise , 
the appropriate thermal fu nctions by compo
nent type and size,  and air velocity information , 
t h e  p r o g r a m  p re d i c t s  t h e  j u n c t i o n  
temperatures. 

Although the analysis was extremely val ua
ble, it was also very cumbersome to usc. AU the 
information on component type , size, power 
and posi tion had to be entered by hand .  A per
son required nearly a week to enter the data for 
one board . Once the value of the ana lys is had 
been demonstrated , we modified the program 
to take the component data from fi les supplied 
by the CAD tools that were already in place 
(drawi ng program and wirel ister) . Further
more, a set of algori thms and software was also 
deve loped that performed the section assign
ment au tomatica l ly from layout data provided 
by the component placement opt i mizat ion 
software . Eventual ly the handwork was reduced 
to five minutes,  the time it  took to select the 
number of sections and specify the input fi les . 

We also deve loped a network analyzer. Using 
this tool in conj unction with the module ther
mal analyzer al lowed the inspection of the 
junction temperatures throughout an individual 
network on a hoard to determine whether the 
I ooc ru le was violated between any two com
ponents within that network . We used the mod
ule  analyzer and the network analyzer on every 
hoard in the VAX 8600 processor. 

Once the l ogic design started to stabil ize ,  we 
expanded the network analyzer to investigate 
individual networks that ran through mu lt iple 
modules across the backplane . With the huge 
number of logic interconnections, this task was 
im mense and com plicated , but we did manage 
to complete i t .  Thus in the long ru n, thermal 
modeling was done at  the device and board 
levels ,  and on the total machine.  

Component Thermal Design 

Most of the t ime and effort in component ther
mal design was devoted to the MCA. This was 
because each MCA package can dissipate up to 
five watts. We tried many approaches re lative to 
heat s inks and packages, with and without sock
ets , before sett l ing on the fi nal designs. We 
eventual ly arrived at a sol id socket des ign for an 
MCA in a leadless chip carrier, but the sockets 
themselves were finally dropped ( i n  favor of a 
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pin grid array package ) because of i nsufficient 
av:l i lab i l i ty .  

The major part of 1the testi ng was done to 
determ ine what heat s i n k  to use based on the 
req u i rements of die  temperature and a l l owable 
component-to-component temperature d i ffer
entials .  The die temperature is equal to the 
product of the power and the thermal resis
tance for a pac kage p l us the ambient te mpera
ture. The vendor specification for the thermal 
resistance of the MCA is l 00 ±2°C per watt . The 
LSI c ircu i t  is near the su rface of the s i l i co n .  The 
major t hermal pat h for the package ex

'
tcnds 

(a) from the circu i t ;  ( b )  throu gh the s H icon ; 
( c )  through the d i e  bond , which is a gold
si l icon eutectic solder; ( d )  t hrough the a l u 
m i na chip carrier;  ( e )  through the epoxy that 
b o n d s  t h e  c a r r i e r  t o  t h e  h e a t  s i n k ;  a n d  
( f ) t hrough the heat s i n k  into the a i r .  Other 
paths to the air i nclude heat convection from 
the su rface of t he cera m i c  and cond uct ion 
t hrough the leads i nto the board . 

\X'ithin t hese constraints,  we had to select the 
heat s ink and the epoxy to attach it .  Uut in 
order to make these decisions,  some way of 
actua l l y  measuring the die temperature was 
neede d .  The most promising technique seemed 
to be the trad it ional one of u s i ng a free d iode as 
an internal thermometer. With constant cur
re n t ,  a d i o d e  h a s  a n e g a t i v e  v o l t a g e /  
temperature cu rve that  is  l i near over sma l l  
ranges. S ince t he ranges of concern were sma l l ,  
i f  there was a free d i ode o n  the device , we 
cou ld cal ibrate it in a bath and then use its 
leads to monitor the die  temperature .  

Unfortu nately, an E C L  device u nder power 
does not have any free d i odes. so the vendor 
prod uced a special  die just for thermal testi ng.  
This d i e  was somewhat d i fferent physica l ly 
from the MCA d i e ,  and it contained o n l y  1Tl 
c i rc u i t ry for making thermal measurements . 
D igita l and the other companies using MCAs 
worked together to ca l ibrate the die  and use i t  
to measure temperatu res . A t  first w e  had con
si derable problems with i nstru mentati o n ,  learn
i ng what to do and how to do it,  and gett ing 
good d ies from which re l i able measurements 
cou ld be ga ined.  We b u i l t  our own test equip
ment and developed procedu res t hat a l l owed 
us to " look inside" the MCA packages. The suc
cess of t h is effort enabled us to select heat s inks 
that  m a i n t a i n  the MCA tempera t u res at the 
desi red l eve ls .  
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We decided to con t i n u e  o u r  test ing on a 
device that better approxi mated the MCA i n  
both s i ze a n d  struct u re . For t h is p u rpose , 
Digital 's LSI faci  I i ty in H udso n ,  Massachusetts 
provided two types of t hermal test e lements .  
The first i ncorporated t h e  TrL die  o f  a gate 
array used i n  t h e  VAX- 1 1 /7 5 0  system . This 
device al lowed us access to a free d iode and 
was close to the right size for the MCA. It  was 
mou nted i n  the ceram i c  carrier of the MCA and 
al lowed us to get a close thermal approxi ma
tion to an 8600 MCA package . Later the H u dson 
plant created an actual MCA on which they 
placed a " free " non-ECI. diode just for thermal 
testi ng.  The d iode is not used in the logic of the 
device,  and in normal product ion,  i t  is not 
bonded to the I/0 pads of the chip carrier.  
Whenever packages are req u i red for thermal 
testing,  the d iode leads are bonded in place of 
two of t he MCA output connections . This pro
cess renders the package useless for any other 
fu nction,  but perfect for thermal testing,  s ince 
it is the actual structure of i nterest-an MCA 
d i e-and d issipa tes the actual  power of the 
devices used in the 860 0 .  With t h is " real " MCA 
package , we verified our  thermal design by 
bu i ld i ng a module w i th these parts in p lace of 
the actual MCAs . This " t hermal m od u le" can he 
placed in a machine and powered as if i t  were 
actual ly functiona l .  The MCA packages contain
i ng the special  d ie  can be mon i tored , a l lowing 
us to watch what rea l l y  happens ins ide the 
machi n e .  

The experiments with the test devices also 
enabled us to i nvestigate die bonding,  or wet
t ing.  We wanted to know how much of the 
piece of s i l i con was actual ly soldered to the 
ceram ic .  The resul t  of these stud ies enabled us 
to estab l is h  the specification for a test proce

d u re that i nspects the temperature of the die  
after i t  has been powered for a specified num
ber  of seconds . I f  the die  bond is poor, the heat 
w i l l  have to travel through a small  void rather 
than through the higher cond uctivity solder; 
the die temperature w i l l  therefore be higher 
than a specified acceptable leve l .  

Switch t o  the Pin Grict A rray Package 

Fai rl y  late i n  the project, a n  acceptable p i n  grid 
array ( PGA) package became ava i lable,  and we 
deci ded t hat i ts advantages warranted using i t .  
This meant that a l l  t h e  thermal i nvestigations 
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had to be repeated to veri fy t hat  the PGA con
figuration met the goals .  

Removing the sockets shortens the packages,  
so t here is more space for a ir  flow between 
those boards that already have the larger, one

inch spacing.  I t  was feared t hat the new pack
age configu rat ions m ight actual ly run too much 
cool er .  We a l ready had a fa ir ly sol i d  logic 
design that worked i n  the t hermal confi gu ration 
then existing; a sign ifi cant  te mpe rature shift i n  
e i t he r  d i rection was undesirable .  R u n n i n g  hot
ter reduces re l i a b i l ity;  ru n n i n g  s ignificantly 
coo ler, al t hough i t  i mproves re l iabi l i ty ,  m ight 
affect the s ignal levels to such an extent t hat 
the system wou ld not work at a l l .  

We stud ied t h e  temperatures with t h e  t her
mal mod u le in every slot . Then we experi
mented extensively with a part icu lar slot that 
was warmer than the others ( t he a ir  tlow is not 
exactly the same t hrough all  s lots) . The resu l t  
of t h e  i nvest igation is a package i n  which t he 
MCA runs s l ightly cooler t han before, but st i l l  
well  within  t h e  s igna l leve l requ i rements.  The 
heat sink is a s ingle ,  four-finned u n i t ,  one inch 
in diameter.  I t  is bonded to the top of the PGA 
package with an epoxy, and the whole assembly 
process is fu l ly  a u tomated . 

Summary 
To cool a mac h i ne as large and as dense as the 
VAX 8600 processor req u i res the continuous 
movement of a very large volume of air .  To do i t  
with a ir  at room tempe rature a n d  g o  about i t  
q u i e t l y  i s  a s i g n i ficant  feat i n d e e d .  I t  was 
accompl ished by exercising meticulous care i n  
t h e  phys ical configuration o f  t he system a n d  by 
the creation of i maginat ive and t horough tools 

for t hermal analys is .  
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William F. Bruckert I Ronald E. Josephson 

Designing Reliability 
into the VAX 8600 System 

The failure rate of a system is directly related to the number of compo
nents used in its design. Therefore, the designers of a large CPU must put 
emphasis on fault avoidance, fault tolerance, and fault minimization to 
ensure that the overall system failure rate is acceptable. The VAX 8600 
system contains many features to assure its reliability. Conventional 
approaches, like parity checking, and nonconventional ones, like array 
address checking through ECC codes, were used to overcome the higher 
failure rate generated by having more components. This pape1· covers 
the most important steps taken to provide that reliability. 

The cost of a fai lure i s  proportjonal to the size 
of a system, since more compute power is  lost 
and more people arc idled as size increases. 
Since the fa i lure rate is d irectly related to the 
nu mber of components i n  the syste m ,  a much 
greater emphasis must be placed on fau lt-toler
ant designs in l arger systems in order to keep 
the costs of fai lures at an acceptable leve l . 1 The 
VAX 8600 system is the largest, most powerful 
computer produced by Digital Equ ipment Cor
poration.  We made customer satisfaction the 
most important engineering goa l ,  thereby plac
ing a high priority on the mac hine's rel iabi l i ty.  
In  this paper, rel iabi l ity is  d iscussed from the 
customer's point of view, which covers a wider 
context than the usual defin ition of inherent 
reliab i l ity .  

Computer re l iabi l ity enhancement can be 
subdivided into four areas : fau l t avoidance , 
fa u l t  t o l e rance , fau l t  m i n i m iz a t i o n ,  a n d  
improved mean t ime t o  repair ( MTfR) . Fau l t  
avoidance i s  real ized by reducing the system 
fa i lure rate through improved qual ity of the 
components, interconnects, design , and manu
facturing. Fault  to lerance is the negation of the 
effects of fau l ts through correct ion codes,  
re dundant  hardware , reconfigura t i o n ,  and 
rctry

l 
Fau l t  minimization is  the red uction of 

Digital Technical ]ounud 
No. I A ugust 1 985 

the effects of a fault  by tagging corrupted data 
that has damaged the machine state or other 
data. Furthermore , fau l t  min imization can be 
achieved by having the hardware give accurate 
and deta i led fau l t  information.  The MTTR is 
improved through remote diagnosis ,  the reduc
tion of the t ime to diagnose a faul t ,  and the 
increase of diagnostic accuracy. The applica
tion of eac h of these four areas to the VAX 8600 
design is discussed in  detai l  in  the fol lowing 
paragraphs . 

Before these deta ils are presented, however, a 
short explanation of the major pans of the 8600 
architecture is warranted . The components in 
the VAX 8600 CPU are conta i ned in fo u r  
"boxes" that control operations and perform 
various functions .  The E Box executes and 
retires instructions . The I Box prefetches and 
decodes instructions and prefetches operands . 
The M Box performs page translation , cache 
functions ,  1 /0 transfers ,  and memory array 
access . And the F Box performs floating point 
operations. 

Fault Avoidance 

Our first goal i n  designing a re l iable system was 
to reduce the nu mber of fai lures that occur in 
t h e  m a c h i n e . T h i s  i n v o l v e d  g e t t i n g  
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components, interconnects, and power systems 
with the lowest fai lure rates . Reducing the fai l 
ure rates also involved constantly monitoring 
the fai lures that were experienced and deter
mini ng their causes . 

A major infl uence on the IC  re l iabi l ity was 
exercised by speci fying how the chips were to 
be s tressed a n d  teste d .  The 0 1  Ps and the 
macrocel l  arrays ( MCAs) were requ i red to be 
bu rned in  before testing; thereafter, al l chips 
were to be fu nctiona l ly  tested .  However,  i n  
debugging the early machines we discovered 
bad DIPs .  We had expected to find only a hand
fu l of bad chips since they were a l l  burned in .  
To identify the cause of these fai l u res, a l l  defec
tive chips were analyzed . The problem was 
identified as static that was "zapping" our mod
u les. Subsequently, the design was changed so 
that a l l  machines come with static grounding 
straps . 

We also examined the designs of previous 
CP s to determine which problem areas were 
typica l .  The backplane is an example .  Wire
wrapped backplanes are difficul t  to bu i ld  and 
test .  They have several fa i lure modes-such as 
cold flow of the insulat ion,  a nicked wire ,  and 
scraps of wire .  They can also be damaged dur
i n g  serv i c i ng of the  m a c h i n e .  A l l t h e s e  
problems often resu l t  in  intermi ttent fau lts that 
s lowly but surely become more so l id .  I mprov
ing the qual ity control on the wire-wrapping 
process to obtain the desired re l iabi l i ty was a 
very difficu l t  task, since the process is com 
prised of a large number of repetitive but not 
identica l  operat ions . Moreover, a very smal l  
error rate st il l produces quite a large overal l  
fa i lu re rate . Therefore , early i n  the project, we 
decided to replace the wire-wrapped backp lane 
with a mu l t i layer printed circu it card . which 
has a much lower fa i lure rate .  

I n  the power subsystem, fau l t  avoidance was 
pursued by im proving the alternating cu rrent 
(ac) input -power tolerance , the des ign testing, 
the manufacturing processes, and the environ
menta l mon itoring. In particu lar. manufactur
ing was a key area where the re l iabi l i ty of the 
power suppl ies was im proved .  A new power
supply tester was developed to im prove our 
test ing capabi l it ies. I t  conta ins logic that can 
fu l ly test the characteristics of a power supply 
and store the test data . The data includes l ine 
and load regulation and noise measu rements. 

A modular power supply (MPS)  was designed 
to run from a single clock so that a l l  regulators 
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wou ld he i n  synchron izat ion. This synchroniza
tion a l l owed us to predict and control the out
put noise of the switching regu lators . A new 
high-current connector that a l lows the regu la
tors to be pluggabl e  was also developed.  

The power subsystem also contains the envi 
ronmenta l  moni tor ing modu le  ( E MM ) . The 
EMM was designed to monitor the status of the 
power supply and the envi ronment inside the 
system.  The EMM can measure the vo l tage out
put of every regu lator, the inlet and outlet air 
temperatures, the air -flow veloci ty, and the 
ground-wire current in  the pri mary power cord . 
The system protects itself by having the EMM 
monitor these conditions, log any deviations, 
and shut down the system if adverse condit ions 
warrant i t .  

Accord ing to E .) .  McCl u skey, " I mproper 
design of the hardware or software can resul t  in 
a system which does not function at  a l l .  Such 
m istakes are , of course, quickly discovered and 
corrected . Other, less obvious design defects 
usual ly remain in any system even after it has 
been in service for a long t ime . "

5 
The resul ts of 

design problems are logic circuits that ei ther 
fa i l  prematurel y  or sense signals fa lsely.  The 
number of these types of errors is indirectly a 
measure of the quality of the tools used in the 
system's design. 

At the beginning of a design project ,  ru les are 
establ ished to make sure that the goa ls for sig
nal integrity and component fa i lure rates can be 
achieved . I t  is usually impossible to deve lop 
ru les that are both easy to check and at  the same 
time don' t  overly constra in  the design engineer. 
Often this resu lts in complex ru les .  I f  they are 
inadvertently broken ,  the usual outcome is a 
decrease in the machine's re l iabi l i ty.  The bro
ken ru les res u l t  in components that operate 
with excessive temperatures or signals that do 
not have adequate noise margins. A chip that 
runs too hot w i l l  fa i l  sooner than anticipated ; a 
signal that doesn ' t  have adequate noise margin 
wi l l  somcti mes be sensed incorrect ly. Worse 
sti ll  is the fact that the component is b lamed 
rather than the true cause , a violated ru le .  

As an cxample consider the operat ing tem
perature of an IC. There is a tradeoff between 
the maximum and minimum operating temper
:uures and the amount of noise margin avai la
ble. I f  the temperature of an IC exceeds i ts 
maximum specified temperature. the amount of 
noise normal ly present from known sources, 
s u c h  as a d j a c e n t - r u n  cross ta l k ,  may  be  
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sufficient to produce a false s igna l . Therefore , 
i t  is important that a l l  ICs stay with in their 
spec ified operat ing temperatures .  To ensure 
that ,  we developed a tool for use on the 8600 
to check for chips that were gett ing too hot .  If a 
chip was detected as being too hot , i ts layout 
was mod ified to correct the problem without 
changing the total power of the modu le .  

A new t im ing ana lysis  tool was also deve l ·  
oped for the project.  This  rool enabled the 
designers tO  do a much more thorough job of  
t im ing ana lysis on th is  machine than had been 
done on previous projects . Using it involved 
ru nning many separate programs t hat bu i l t  a 
t im ing model of the machine from the schemat· 
ics and the layouts of the modu les , backplane , 
and MCAs. The resu lts of the model were then 
used hy a program that performed ti m ing analy· 
sis of the design based upon a set of interbox 
t iming specifications . 

After the layouts of the modu les were com
pleted , every s ingle run was ana lyzed to ensure 
that signal integrity had been achieved . The 
program computed the amount of noise gener· 
ated from adjacent runs, retlections , and the 
l ike .  Based on these resu lts ,  we made a number 
of rerout ings to increase the integrity of certain  
s ignals .  

Fault Tolerance 

All the efforts discussed in the previous section 
improved the machine's re l iabi l i ty .  However, 
the logic could s t i l l  fa i l ;  therefore , i t  was 
important tO have mechanisms tO recover from 
a logic fau l t  whenever possible .  Fau l t  isolat ion 
and fau l t  tolerance are highly correlated, not 
separate issu es . Data integri ty and retry opera· 
t ions depend on good fau l t  detection .  So does 
the abi l i ty to reconfigure the system when a 
fault  occurs, a situation that requires accurate 
fault  isolation as wel l .'i I t  is i mportant to know 
what type of fa ult was made and what processes 
may or may not have been affected by i t .  To 
accomplish fau l t  isolat ion,  we had tO deve lop 
an effect ive fa u l t  detect ion and report i ng 
scheme. 

The design philosophy for the fau lt system 
had several major concepts .  The first was that 
faults occurri ng synchronously with the pro· 
gram cou nter (PC) should be reported synchro· 
nously to i t .  Synchronous fau l ts have a d irect 
relat ionship to the current value of the program 
counter. For example, cons ider a write to an 
1/0 register. Only one cycle is required for the 
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M Box to accept a l l  the information to perform 
the wri te operation.  In the meant ime,  the E Box 
cou ld cont inue processing instructions. The 
problem here is that if the I/0 wri te has a faul t ,  
the cu rrent PC of the machine wou ld have no 
fixed relationship to that fau l t ,  thus making 
recovery more difficul t .  To solve this problem, 
the m icrocode wiU stal l  the E Box on an I/0 
write unti l  the confirmation of that write is 
received .  

A s imi lar problem exists with a translation 
buffer (TB) miss on a prefetch for the instruc
t ion buffer. If a branch is ahead of the TB miss 
in the instruction buffer and the branch is 
taken , the TB m iss will not be a problem and 
should not be reported . I n  th is case the design 
requires a delay ·in sending the TB m iss s ignal to 
the E Box (which performs the memory man· 
agement operations) unt i l  it attempts to exe· 
cute the instruction whose prefetching caused 
the TB miss .  In genera l ,  synchronous fau l ts arc 
reported via E Box m icrotraps. 

Fau l ts that are asynchronous to the program 
counter are reported asynchronously. Asynchro
nous fau lts are ones for which the value of the 
program counter has no defin i te relationship 
and which are usual ly reported through inter
rupts . Two examples of an asynchronous fau l t  
arc a fau l t  occurring on a d i sk  write to memory 
and a par i ty  error o n  a cache wr i teback 
operation . 

At the t ime a fault  is detected, it may not be 
known whether the fau l t  should be reported 
synchronously or asynchronously. I n  that case, 
both faul t-logging mechan.isms are invoked : a 
m icrotrap for synchronous fau lts and an inter· 
rupt for asynchronous ones . Consider the case 
of a parity error on an instruction prefetch. If 
the E 13ox executes a branch prior to using the 
bad data, the synchronizat ion wi l l  never be 
reached and the fau lt wil l  be logged through an 
interrupt .  In th is case the microtrap condi tion 
wi l l  be cleared by the execution of the branch. 
If, however,  the E Box attempts to execute the 
prefetchcd instruction with the parity error, an 
E Box microtrap wi l l  occur and the trap routi ne 
wi l l  dear the i nterrupt .  

The second major concept used throughout 
the des ign was that hardware fau ilts are consid· 
ered to he process faults  only if a process 
attempts to use or store corrupted data. For 
example, if corru pted data is detected during a 
writeback to memory from the cache, a fault  
wi l l  be logged .  However, the process wil l  not 
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experience a fau l t  u nt i l it attempts to 6ther 
consume the corrupted data or store it on a 
disk.  This logic imposes the requ irement that 
corrupted data be marked for later detection, 
which is  done with ECC code in memory .  This 
subject is discussed in the Unique Reliabi l i ty 
Features section. 

Fault Minimization 

When recovery is not possible ,  the next best 
thing is to control the amount of damage done 
by a faul t .  This tactic requ ires fault information 
that is accurate, relevant , and sufficient .  When
ever a faul t  occurs, an error stack frame wil l  be 
constructed by the E Box and placed in mem
ory. The stack frame format i s  the same for a l l  
errors . We d id  not prejudge what wou ld be use
fu l in  determi n i ng which i n format i on was 
re levant. 

In the case of damaged data, fau h  report ing 
alone is not sufficient ,  since i t  is not possible to 
determine which process wil i  access that data . 
Therefore , when data damage occurs, the logic 
marks i t  as "bad,"  and any fu ture user of that 
data wi l l  be notified of that fact . 

Mean Time to Repair 

There are two kinds of machine fai lures: those 
having sol id  fau l t  symptoms, and those having 
intermittent fau l t  symptoms.  Of the two, solid 
fau lts arc easier to diagnose. To isolate solid 
fau lts , the console can examine the state of the 
signals that go from one module to another. 
Diagnostics are ru n to find the first fa i l ed test. 
which is then run in  a s ingle-step manner to 
look for the first incorrect s ignal . With the 
excep t i on of  m u l t i p l e -source s igna l s ,  t he 
source of the first incorrect s ignal value is the 
fai l ing modu le (s ince all of i ts inputs have been 
checked by this process) . In this way faul ts can 
he isolated to the field replaceable un i t .  

I ntermittent fau l ts are much more difficu lt to 
diagnose, and they comprise between 80 per
cent and 90 percent of the fau lts .  Diagnostics 
rarely provoke intermittent fau lts . But  even 
when they do, the fau l t  reporting can often he 
confusing. This confusion occu rs because a 
logic fault  wi l l  usually take place in a circu it 
after i t  has been tested and while another cir
cui t  is  being tested.

" 
The nu mber of fau l t  

checkers in  a machine affect i ts abil i ty t o  know 
that a fau l t  has occurred and to ident i fy the 
fai l ing unit .  The probabi l ity of a fault  occurring 
in the logic that any g.iven checker has checked 
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i s  not affected by whether the resu lt  is used or 
not .  I f  an interm ittent faul t  occurs on a path 
that is not bei ng used , then no real faul t  has 
occurred . Therefore, the machine's overal l  re l i 
abi l ity i s  increased by ensuring that fau l t  check
ing is performed only on networks that are actu
al ly being used. 

A detai led l ist  of the checkers included in  the 
VAX 8600 system is l isted at the end of the 
paper. 

If a fai lure occurs that requires immediate 
powe r s h u tdown , t h e n  remote  d i agnos is  
through the consol e  cannot be  used . This 
occurs when the regulators detect an overheat
ing condit ion or the power for the EMM is out  
of to lerance . In these cases a magnetic ind icator 
code that conta ins d1e fai l ing regulator nu mber 
wil l  be displayed on the EMM modu le.  This 
code enables a field service technician to know 
which regu lator to replace . 

Unique Reliability Features in the 
VAX 8600 CPU 

I n  addition to the rel iabi l i ty features a lready 
d iscussed, the VAX 8600 design includes some 
n o t  p rev i o u s l y  fo u n d  o n  o t h e r  D i g i t a l  
machines. These features are discussed under 
the four  major areas used in  the first part of this 
paper .  

Fault A voidance 

The F Box executes self-diagnostics when It IS 
not performing fl oat ing point  i nstruct ions . 
These tests use " l ive" operands to enhance the 
detection of data-dependent faul ts .  Ooth the 
E Box and the F Box are connected to a common 
source of instructions and operands . When the 
F Box detects that i t  cannot perform an opera
t i on ,  it w d l  execute a d iagnost ic self-test .  
Exactly which self-test is  performed depends 
upon the instruction.  The number of machine 
cycles in  the diagnostic routine is  chosen to be 
equal to or less than the nu mber of machine 
cycles used by the E Box . This ensures that the 
F Oox wi l l  a lways be ready for the next floating 
point operation that wi l l  be passed to i t .  If a 
faul t  is detected , the F Box wi l l  be tu rned off, 
and the E Box wil l  perform the i nstruction that 
would have been done by the F Box , only at a 
much s lower speed . 

Fault Tolerance 

The 8600 supports instruction retry where pos
sible .  If a fau l t  occurs that causes a m icrotrap 
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during an instruct ion, a set of instruction retry 
nags wi l l  be passed along through the various 
fa u l t  recovery s tages . The flags i n d i cate 
whether or not the CPU has performed an oper
ation that wou ld make restarting the instruction 
im poss i b l e .  An i nstruct ion retry wou ld be 
inhibited if an abort bi t  is "on" for (a) an I/0 
read, (h) a memory write , (c) a state modify ,  or 
(d) the E Box . Otherwise , the instruction can 
be restarted . 

The data cache can recover from single-bit 
errors . A cache data entry consists of 32  b its of 
data,  4 hits of byte parity, and 7 bits of ECC . 
The write of the check bits is pipel ined and 
occurs in the cyc le fol lowi ng the wri te of the 
data . The parity bi ts are used for fau l t  detection 
and the ECC b its  for error correct ion.  The 
M Box always passes data to the E Box or I Box 
before any checking is done . If the data con
tains a parity error, then either the E Box or the 
I Box, as well as the M Box , wi l l  detect it .  The 
M Box wi l l  then block the acceptance of any 
more requests and will execute a data correc
tion sequence . The ECC code and the data are 
then sent to the array bus, and normal array-to
M Box data correction is appl ied . The "cor
rected word" is then written back into the 
cache.  At some point the E Box will discover 
that i t  has been shipped bad data . The system 
wi ll then retry the instruction if  poss ible .  The 
retry wil l  be successfu l if the original fault  was 
correctable .  

An important goal of the power subsystem is  
to  increase i ts  tolerance of bad ac input power. 

Data 
Data Bits 0:31 To Be 

Written l 
I Address 

Parity Parity 
Generator 

Data I Address Bits 4:31 
Address 

The power input is a true three-phase input 
with very low neutral  curre nt . In  previous 
designs the power-storage capacitors had been 
attached to the regulator outputs . The detec
tion of power fai lures was performed by moni
toring the ac l ine .  ln  contrast,  the VAX 8600 
power system first converts power to 300 Vdc 
and then sends that power to regu lators in order 
to produce the fi nal output vo ltages. Power 
storage i s  done at the 300 Vdc leve l .  This 
h igher voltage a l lows more energy to be stored, 
si nce the storage is provided by capaci tors . 
Power-fa i lure detection is performed by moni
toring the voltage level on the 300 Vdc power 
supply. When its voltage reaches the level at 
which there is  just enough energy remaining to 
perform a power-fa i l  sequence, then  an ac 
power fa i lure wil l  be declared . This method 
a l lows continued operation regardless of the ac 
i n p u t  waveform , as long as the machine  
receives sufficient energy, a fact that i s  espe
ciaHy helpfu l  during brownout cond itions.  

Fault Minimization 

The 8600 makes good use of the unassigned 
ECC codes (a 7-bit  ECC can correct up to 57 
b i ts of  data) . They are used to detect array 
address ing problems and to tlag any corrupted 
dat a .  When a mem ory wri te  occurs ( s ee 
Figure 1 ) ,  the parity of the address and an indi 
cation of the qual i ty of data are sent to the ECC 
generator. The qual i ty of data is good if no 
faul ts were detected during i ts transm ission to 
the M Box and bad if the machine suspects that 

Array 

0 Data Bits 32:38 
Data 
Store 

1 
. 

Array . ECC 
Generator Address . 

31 
32 f--- Syndrome I 33 

QJity 
Of Data 

Figure I Array Address Checking in the VAX 8600 .�:vstem 
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a fau lt is present .  The address parity and qual i ty 
information are inserted into the ECC generatOr 
by means of bits 3 2  and 3 3  of the data . Neither 
of these bits  is stored in the array. When the 
data is read back, the computed address parity 
is sent a long with a good-data signal to the ECC 
generator. If the computed syndrome is zero, 
the transaction is  considered to be good . I f  the 
ECC generator decodes a s ingle-bit error point
ing to the address b i t .  then an address parity 
error wi l l  be declared . When that occurs ,  the 
word that was just received did not come from 
the address that it shou ld have . Thus, the ECC 
generator can check the address l ines from the 
M Box to the MOS array chips and detect the 
control fau l ts that caused the M Box to access 
the wrong data word . If  the chip thinks the 
qual i ty bit needs correction, then the data word 
was faul ty when it was received . The requester 
of this data wi l l  then be noti fkd that the data is 
bad . If  a normal s ingle-bit error occurs on a data 
word that was stored with a code indicating bad 
qual i ty .  then the M Box w i l l  flag an ECC 
double-bit error. 

Most of the internal buses in  the VAX 8600 
CPU as we l l  as in the shifter and the arithmetic 
logic uni ts (ALU) are parity checked. The AL s 
are checked by tripl ication and parity checking 
the resu l ts .  The I Box, F Box, and E Box each 
conta in  a set  of general purpose registers 
(G PRs ) .  When writes to the GPRs occur, a l l  
GPRs arc written to s imultaneously, thus keep
ing them cons istent .  If a GPR par i ty error is 
detected in one box, a recovery wi l l  be in i t i 
a ted that  c o p i e s correct  d a t a  from t h e  
equ ivalent GPR in  another box to the fa i led 
GPR. Thus the machine can recover from GPR 
parity errors . 

Mean Time to Repair 

The n u m b er of m i cros e q u e n cers i n  t h e  
VAX 8600 system a lso adds to its re l iabi l i ty .  
Ordinary combinatorial control logic i s  d iffi 
cult  to check without dupl icat ion .  Using a m ic
rosequenccr is  one method of bui' lding contro l  
logic that i s  eas i ly checked.  For example,  a l l  
the microcontrol stores are parity checked . The 
M Box a lso checks the par ity of the address, 
s tack u nderflow a n d  overflow,  and s tack 
address pari ty. Microparity errors arc recover
able in the E Box, F Box, and I Box. These fau l ts 
are not recoverable in  the M Box s ince i ts state 
is modified in an unrecoverable manner before 
the parity computation is com plete . 
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Summary 

The task of making large machi nes re l iable 
requires a cont inuous effort during al l  phases 
of the project, from conceptual design to manu
facturing. I n  the future ,  machines will continue 
to get larger .  Unless some major technology 
breakthrough that s ign ificant ly changes the 
re l iabi l ity of components occurs-as occurred 
when transistors replaced tubes-the faul t-han
d l i ng capabi l i ty des igned into large systems 
must be i mproved . This improvement is needed 
to overcome the inherently higher fai lure rate 
that comes wi th  having more components .  
Based on th is  conclusion,  we created many 
design processes, manufacturing processes,  and 
faul t  handl ing features that increased the rel ia
b i f ,ity of the VAX 8600 syste m .  Carefu l  monitor
ing and s imulat.ion were requ ired to ensure that 
true gains in re l iabi l i ty were actual ly achieved . 

Fault Checkers in the VAX 8600 
System 

In the E Box 

ALU Output Parity Check 

Shifter Parity Check 

Microcode Parity Check per Board 

Other RANI Store Check with Separate Error 
Flags 

AMUX Parity Check 

BMUX Parity Check 

GPR Copy Write Recovery 

I nstruction Retry 

Diagnostic Fault  Insert ion 

In the M Box 

Memory Address Parity Check 

ECC on Cache and MOS Memory Data 

Writeback on SBE 

M icroword Parity Check 

M icroaddress Parity Check 

Microstack Parity Check 

Microstack Undertlow jOvertlow Detect 

A Bus Parity Check 

Array Bus Parity Check 

Corrupted Data Tag 

CPR Parity Check 
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In the F Box 

FUM Microword Parity Check 

FBA Microword Parity Check 

FDRAM Parity Check 

GPRs Parity Check 

Self-test (when not execu t ing i nstruct ions) 

In the I Box 

Microword Parity Check 

!buffer Parity Check 

DRAM Parity Check 

GPR Parity Check 

OP Uus Parity Check 

W Dus Parity Check 

!MD Parity Check 
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