
0 VAX 8600 Processor

Digital Technical Journal
ofDigital Equipment Corporation

Cover Design

Aspects of the VAX 8600 design are featured in Ibis issue.

The component tecbnology in the 8600 is the macroce/1 array.

with l!C/. semiconductors. Uur cover shows a module with its

1•arious electronic components, notaiJ�)' the macroce/1 arrays

and their multilevel heat sinks.

The cover was designed by Deborab Falck and William Capers
of tbe Graphic Design Department.

Editorial Staff

Ediwr- Rid1ard \V. Beane

Production Staff

Production Ediwr - :'-1. Tnri Auticri

J>csi!(nt:r- Charlotte A. Bell

An Din:nor- (;illian S. Cowdny

Tq)escttin!(Programmer- jamt:s K. Scarsdalt:

Advisory Uoard

�amuel II. Fuller. Chairman

Rohc·n .\1. (; lorioso

John W. �kCrt:dic

John F. 1\lucd

Maht:ndra R. Patel

(;rant f. Sa,·ins

William 1>. Strt·c· kcr

\-!aurin· \'. Wilkes

The f)igitaf recfmicaf journal is puhlishl'd hv
Digital Equipmt:nt Corporation. 77 Reed Road.
Hudson. Massachusl'tts 0 17•i9.

Comml'nts nn tht· t·ontt·nt of any paper art· wei
com(.'{!. I 'sl' tht: Rl'adt·r Rt:sponsc card or writl' w

the editor at :'vlail �wp HI.02-5/K I I at the puh-
1 ishcd-by adclrt:ss.
Comments can also he sent on the ENET to
RDVAX::BEANE or on the ARPANET to
IIEANE'X,RDVAX.DEC�i)DE<:WRI..

Copyright <D I fJH'i Digital Equipmt:nt Corporation.
Copying without fee is pnmittnl provided that
such copies arc macll' for usc in educational institu
tions by faculty members and arc not distrihutnl
for commt:rcial advantage. Abstracting without
credit of Digital Equipment Corporation's author
ship is permitted. Requests for other copies lor a
fee may ht· made to the Digital Press of Digital
Equipmt•nt Corporation. All rights reserved.

The information in this journal is subject w chall!(l'
without noticc and should not bc construed as a

commitmt·nt by Digital Equipment Cc>rporation.
Digital Equipment Corporation assumes no respon
sibility for anv nrors that may appear in this
documcm.

ISU!'; 0-952576-8.�-'i

Documentation Number EY-5--I5';E-DP

The following :tre trademarks <>f Digital Equipml·nt
Corporation: DEC. tht: DIGITAL logo. HSC-'>0. Kl-10.
KL-10. PDP-II. lii.TRIX-11, UI.TRIX-32. VAX.
VAXclustt:r. VMS. VA.,'\-11/7HO. VAX - I If7H'; ,
VAX 8600.

CDC is a registered trac.kmark of Control Data
Corp .. :'vlinnt:apolis. :-.IN.

CRAY is a rt:gistered trademark of CRAY Research.
Inc.. Minneapolis. MN.

IBM is a registered trademark of International
llusint:ss Machines. Armonk. NY.

Motorola is a rcgisu:n:d trademark of \-lotor
ola. Inc .. Schaumburg. IL.

The manuscript lor this book was created using
generic coding and. via a translation program. was
automatically typeset on DIGITAL's DECset lntt:
grated Publishing System. nook production was
done by Educational Services Development and
Publishing in Bedford. MA.

Contents

6 Foreword
Hoben :\1. (; lorioS<J

H An Overview of the VAX 8600 SJ'Stetn
Tryggn· Fossum . .James 11. \ll'Eiro\·. and \X'illi:1111 English

�cw Products

24 The VAX 8600 I Box, A Pipelined llnplementation

of the VAX Architecture
:\brio Troiani. S. Stephen Ching. :-Jii N <)uaynor. John F. llloem.
and Fernando C. Colon Osorio

4 5 The F Box, Floating Point in the VAX 8600 Systen1
Tn·ggn· Fossum. \\'illi:lfll 1�. Crundmann. and \'irginia <:. Blaha

·),! Packaging the VAX 8600 Processor
Jallll'S II. McEiro\·

() 1 Signal Integri�)' in the VAX 8600 Syste111
John II llackcnherg

(J() Cooling the VAX 8600 Processor
E. !Irian Kalita and \\'illiam l'nglish

7 1 Designing Reliability into the VAX 8600 System
William F. 1\ruckert and Ronald F. Josephson

2

Editor's Introduction

Richard W. Beane
Editor

The Digital Technical journal bridges a gap
in the information published about Digital's
products by providing an �:xplanation of
their technologica'l foundations. In th<.: past,
such explanations appeared in papers writ
ten by Digital's engineers for various periodi
cals. Unfortunately, anyone wanting concise
technical details had to search through the
gamut of this literature.

This journal was created to pr<.:sent that
information in one publication. The papers
ar<.: written by the engineers who developed
th<.: products, in terms of th<.: technologies
that went into their designs. Our audience is
composed of engineers within Digital. as
well as c ngine�:ring e d u c ators and
customers.

This issue, our inaugural one, features the
VAX 8600 processor. Its design. with a pipe
lined architecture and emitter-coupled
logic, offers many innovations besides
increased speed. New packaging. cooling,
and reliability techniques, and new auto
mated simulation tools were used to develop
this product. Some papers explain the final
results of the development process; others
discuss the process itself. All give the reader
a sense of the unique ways in which Digital
develops its products.

The first paper, by Tryggve Fossum. Jim
McElroy, and Bill English, is an overview of
the 8600's salient features. The distribution
of processing into the various "boxes." the
specific performance improvements. and the
reI iabi 1 i ty and data integrity features are
amply discussed. This paper establishes a
framework to assist the reader in fitting the
more detailed papers into an overall <:ontext.

The pipeline paper, by Mario Troiani.
Steve Ching, Nii Quaynor, John Bloem, and
Fernando Colon Osorio, explains the
VAX 8600 pipeline in terms of a general
model. This starting point is important in
understanding the unique contribution of
the pipeline's key dement, the instruction
prefetch unit. The paper explains how this
unit fetches instructions, achieves control,
and maintains data integr-ity.

The 8600 fea-tures fast, efficient floating
point operations. The paper by Tryggve Fos
sum, Bill Grundmann, and (;inny 13laha dis
cusses the instruction flow in the tloating
point accelerator and the role of emitter-cou
pled logic in its design. The authors describe
how al gorithms are processed and how
microcode controls those operations.

The next three topics arc closely related
becau·se decisions in packaging, signaling,
and cooling must be made with their inter
acting effects in mind. The paper on packag
ing. by Jim McElroy, discusses the evolution
of the process that identified the best wav to
package the modules and components. J�hn
Hackcnbng's paper on signal integrity
describes the software tools that enabled the
design team to distribute power while con
trolling noise and avoiding cool ing
problems. The solutions to those problems.
including the use of thermal design rules and
special measuring techniques. arc discussed
by Brian Kalita and Bill English.

The final paper, by Bill Bruckert and Ron
josephson. explains why reliability consists
of the avoidance, tolerance. and minimiza
tion of faults, and the improvement of MTfR.
The authors discuss the techniques used to
reduce failures. to identify those that do
occur, and to make repairs easier.

These papers represent a cross section of
the activities in a large design project. and
they relate the results of design decisions as
well as the process for making them.

Biographies

Virginia C. Blaha Ginny Blaha is a senior engineer, currently work

ing on the datapath design for the execution unit in a new high-per

formance CPU. On the VAX 8600 project, Ginny designed the multi·

plier module and several gate arrays as a member of the team that

developed the tloating point acceleratOr. She joined Digital in 1981

after receiving a bachelors degree in electrical engineering from

Princeton University.

John E. Bloem Educated at Northeastern University (13.S.E.E., 1969

and M.S.C.S . , 1973). John Bloem joined Digital in 1969. He first

designed custom module systems, then the interfaces for PDP-1 1 and
PDP-8 systems. As a senior engineer, he helped to develop the PDP-11
Commercial Instruction Set. John was the project leader for E Box
development on the VAX 8600 project, and he also helped tO design
and test the 1 Box. He is presently an engineering manager planning a
new high-end computer system.

William F. Bruckert In 1969. Bill 13ruckert joined Digita'l after
receiving a fi.S.E.E. degree from the University of Massachusetts. Later,
he received a M.S.E.E.jC.E. degree from the same university in 1981.
Starting as a world-wide product support engineer. I3ill later worked on
a number of PDP-I 0 system designs as a senior engineer. As a consulting
engineer, he developed the cache, memory, and direct memory access
designs for the VAX 8600 processor. He is currently investigating cache
designs for future memory systems.

S. Stephen Ching Steve Ching is a consulting engineer now develop
ing the design for a new high-end CPU. On the VAX 8600 team, he
worked on prototype debugging, code optimization, and simulation
development. After joining Digital in 1977, he worked on developing
test generation tools in the LSI area and on a simulation system used in
VAX system development. Steve earned a B.S.E.E. degree (1972) with
honors from California State University and a Ph.D. (1976) in electrical
engineering from the University of Missouri.

-�

Hiograpbies

4

Fernando C. Colon Osorio Fernando Colon Osorio graduated from
the l 'niversity of Puerto Rico (ll.S.E.E .. 1970) and the l'niversit\' of
Massachusetts (M.S., Ph.D .. 197(l) . .Joining Digital in 11)7(), he wo�kl'd
on several high-end PDP- l I systems and managed tht· Local Area Net
work Group in Corporate Research. ()n the \'AX H<lOO rroject. Fer
nando managed the RT-Ien·l simulation and prototvpe design verifica
tion. lie is presently the manager of S\'Stcm research and advanced
development in Digital's High Performance Systems (;roup. lie \Vas
Associate Editor of the IT:EE Transactions 1111 <.'oJJJjJIIfcrs and is the
coauthor of Fngineering ln/1:'1/ip,enl .\)•stems.

William English Bill English has been writing technical articles and
documentation for over 25 years at Digital and other computer firms in
New England. lie is currently helping enginl'ns from the lligh Pl'rform
ancc Systems and Clusters Group to write and publish :trticlcs on the
VAX H600 project. Bill received the A.B. degree in physics from llan·arcl
Univnsity in 195:� and the lVI.S. degree in mathematics from the Univer
sity of Massachusetts in l 959. He is a member of Phi Kappa Phi and
Sigma Xi National Honor Societies.

Tryggve Fossum Tryggve Fossum received a B.S. degree from the
University of Oslo in 1968. Later. he earned his Ph.D. from the Univer
sity of Illinois in 1972. Tryggvc joined Oigital in that year and worked
on the design of high-end computers. notably the VAX-IIj7HO system.
As a project leader on the VAX 8600 team. he guided the design of
the tloaring poim accelerator. He was also responsible for microcode
development. memory management, and other aspects of the system's
operation. lie is currently a project leader working on the design of a
high-performance system.

William R. Grundmann As a principal engineer. Bill (;rundmann is

prl'sently leading a team designing the execution box for a new CPU.

He was the logic designer on the team that designed the floating point

accelerator for the VAX 8600 processor. He designed the adder module

in the FPA as well as several MCAs in the d:Hapath. Bill's other projects

at Uigital include work on the memory systems in the VAX- I I j750 and
PDP- I I j44 systems. He joined Digital in 1977 after receiving a

B.S.E.E.jC.S. degree from the University of Connecticut. where he was a

member of Eta Kappa Nu.

john H. Hackenberg In 1968, john Hackenberg came to Digital as a
technician on the Kl-1 0 project. leaving after two years to sen'e in the

armed forces. He returned in 1971 and worked on the designs for

various high-end systems, including the K L-1 0. John earned a 13.S.E.T.

degree from the University of Lowell in 1979. As a consulting engineer

on the VAX 8600 project, he worked in the area of signal integrity. He is

now developing a high-performance gate array in the High Performance
Research and Engineering Group.

Ronald E. Josephson Ron Josephson is currently the engineering

supervisor for power systems. As a project leader on the VAX H600

project, he guided the development of the power systems for the

processor design. In eight years at Digital. he has also worked on the

design of power supplies, in particular the one in the lA-34 terminal

and the H-7170 module for Digital's Modular Power Supply. Before

joining Digital, Ron worked on the Aegis. Hawk, SP-49. and Patriot

programs at Raytheon Corporation. He also teaches electronics at Quin·

sigamond Community College.

E. Brian Kalita Urian Kalita now works for Encore Computer Corpo·

ration in Marlboro. Massachusetts. On the VAX 8600 project. he was an
engineering supervisor responsible for completing the mechanical
design of the processor. Brian also performed thermal engineering tasks
on several high-performance system programs. Before joining Digital.
he was an applications engineer at Torin Corporation and a manufactur
ing engineer at the Torrington Company. Brian has earned B.S.M.E.
(197 -�) and M.S. (1980) in management degrees from Rensselaer Poly·
technic Institute.

James B. McElroy Jim McElroy is the manager of aclvancecl develop
ment for Digital's High Performance Systems Technology Group. On
the VAX 8600 project. he was the manager responsible for power and
packaging design. Previously, he managed the Large Systems Power and
Packaging organization. Before joining Digital in 1976, Jim \vorkcd at
RCA for nine years doing packaging and interconnect design for military
computer systems. lie earned a B.S.M.E. degree from Northeastern {.ni
versity in 1968 and a M.S.M.E. degree from the same university in 197 2.

Nii N. Quaynor Earning his U.E. degree from Dartmouth College in
197.) and his Ph.D. from S.U.N.Y. at Stony Brook in 1977. both in
computer science, Nii Quaynor joined Digital in 1978. He first worked
in corporate research on multimicro systems. In 1982. Nii joinnl the
VA.,'(8600 project as a consulting software engineer and created models
for large-scale CAD applications using a register transfer language.
Later, he worked on the verification of the VAX 8(l00 design. He is nmv
designing models for VAXcluster systems.

Mario Troiani Mar,io Troiani is a principal engineer working on
advanced development for a high-performance processor. On the
VAX 8600 project, he helped define the microarchitectural model.
generated prototype debug models, and worked on the design valida
tion strategy. On other projects. Mario designed the first T- 1 1-basecl
computer and helped to build a single-chip workstation. Joining Digital
in 1977, he designed the test systems for the Module Repair Centers. He
received a Dotrore in lngegneria Elettronica (197';. Summa Cum
Laude) from the Universita di Trieste and a M.S.E.C.E. degree (1977)
from the Cnivcrsity of Massachusetts.

Foreword

Robert M. Glorioso

Vice President
High l'e1jormance .\),stems
and Clusters

How appropriate it is that this first issue of the
Digital Technical jo urnal, a medium for com
municating new technical ideas and results
within Digital, should be dedicated to the
VAX 8600 system. The 8600 represents the con
fluence of many new concepts and much good
engineering in the areas of implementation
architecture, interconnect, packaging, cooling,
design methodology and tools, C PU and systems
design verification, and complexity management.

The VAX 86 00, o r VENUS, p r o gram
approached the problem of producing a high
performance VAX system in two ways . First, we
reduced the cycle time by physical means. Sec
ond, by incorporating new design techniques,
we reduced the average number of cycles
required to implement instructions over a wide
range of typical uses. The performance range of
the 8600 makes it appropriate for customers
with requirements close to those provided by
mainframes . Therefore, we had to address main
frame reliability, maintainability, and lifetime
cost-of-ownership issues from the beginning of
the project. For this reason several new con
cepts had to be integrated into the design.

The key concept of the new physical technol
ogy incorporated in the 8600 is the use of ECL
gate arrays called macrocell arrays, developed
jointly hy Digital in Marlboro and Motorola in
Phoenix. In order to deal with the speed of
ECL, we had to pay special attention to board,
connector and backplane impedance and delay,
as well as manufacturing problems. lncorporat·
i n g E C L yielded a cycle time of 8 0
nanoseconds. Compared to 2 00 nanoseconds
on the VAX-11/780 system, that represents a
performance ga�n of 2. 5, which is the minimum
gain without architectural improvements.

The architectural challenge in this imple
mentation was to increase the VAX 8600 per
formance by 1. ') to 2 . 5 times that of the I I j780
by executing more of the functions of each
instruction during every cycle. Meeting this
challenge required that the operations of
instruction decoding and execution take place
in parallel to a greater degree than in any previ
ous VAX implementation. Thus the concept of
pipdining became a necessity in the VAX 8600
implementation. Moreover. the higher speeds
required different approaches to cache

management, memory busing and management.
and ljO. In particular, the concept of a
"writeback" cache was introduced to reduce
the number of times that individual accesses to
slower main memory arc needed. Furthermore,
the memory and 1/0 buses were separated to
allow higher memory bandwidth, which
decreases the amount of needed memory. and
to avoid 1/0 interference problems.

The resulting design, which has from I 00-
200 thousand gates (depending on how gates
arc counted), introduced new levels of com
plexity in both design and management that
stretched us all into new domains of knowledge
and maturity. For example, we discovered quite
early in the program that our classic design
approach of quickly designing on paper, build
ing prototypes. and debugging them would
NOT work. The design turnaround times for the
chips alone would have gotten us to market
much too late to he competitive. Thus we
began the process of simulating. debugging and
verifying the 8600 by using other computers
instead of moving wires. That process required
us to develop new tools for timing analyses.

such as AUTODI.Y. and new methods for build
ing data bases. Moreover, new techniques had
to be devised for finding and fixing problems
by using tools and libraries instead of real
design bugs. And, of course, computer
resources had to be identified, ordered, and
installed.

Initially we had planned to use four KL-1 0
systems and a VAX-11/780 system as the com
puter resources needed for the whole program.

We soon found that more machines were
needed quickly if we were to succeed with sim
ulation. In the course of the next two years we
installed about one new system per month, end
ing with not only twelve KL-1 Os but also twelve
llj780s. Simulation was a tremendous chal
lenge to the whole organization and required
close cooperation from our partners in other
groups, especially manufacturing and CSSE.
The former helped us to get equipment and
loaned us space. and the latter moved their O\vn
work around and loaned us systems and peopk
to complete the simulation and verification.
Moreover, networking at a much higher level
was then needed and communications between

the I I j780s and the KL-1 0 systems had to be
improved. Our Site Resources and Engineering
Group had to accommodate these changes. and
their capabilities grew continually within the
available constraints of time and space.

Finally, a word about the management of the
VA,'(8600 program. First. 1 be I ieve we learned
a great deal about the management methodolo

gies required to produce a product as complex
as the VAX 8600 system. Our fundamental phi
losophy was open communications at all levels
of the project. We fostered the attitude that
finding problems. discussing them, and asking
for help wer(' signs of intelligence and matur
ity, not ones of weakness or failure. To succeed,
we knew this was the "right thing to do." We

a'lso developed a review process that
encouraged project members and other groups
to see our progress . This process included regu
lar. open reviews for all project levels, weekly
program reviews for all groups involved in the
project (manufacturing, CSSE, VMS, semicon
ductors. purchasing, etc .), and monthly
reviews for people throughout the company
who were less directly involved.

During the course of the program these

reviews allowed the development of close pro
fessional and personal relationships that clearly
helped us to meet the VAX 8600 program per
formance, function, cost, quality, volume and
schedule goals.

The following papers represent a cross sec
tion of the problems addressed. solutions
found, and successes achieved in the course of
developing the 8600. Many topics could have
been included, but this group should provide
the reader with some insight into the product
design and management processes associated
with this program.

At this time I would like to acknowledge for
mally all the people not only within the i"ligh
Performance Systems and Clusters Group. hut
especially those outside this group who con
tributed so creatively and generously to this
program. Naming each of them would surely
consume the remaining pages of this journal
since there were over 40 different facilities,
and at least that many groups. involved in the
VENUS program. The success of the VAX 8600
system is their success'

7

Tryggve Fos ... ·um I James B. McElroy
William English

An Overview of the
VAX 8600 System

The VAX 8600 system handles 5 million Wbetstones per second, which is
over Jour times Jaster than the l'AX-11/780 system. The 8600 uses pipe
lined instructions, a bigger cache memory, and a dedicated memOIJI bus to
acbieve its speed. Inside, small processors-called boxes-petform tasks
simultaneously. The I Box pre fetches inst1·uctions while tbe E Box executes
others; the F Box petformsfast.f1oating point operations, as do all VAX
systems. Macrocell array technology, with fast gate speeds, and microcode
control are used throughout. These aspects, plus a new cooling system and
interconnect innovations, make tbe VAX 8600 system ve1y reliable.

The main design objective of the VAX 8600
project was to gain a significant improvement
in VAX computing performance with a minimal

cost increase. Furthermore, the 8600 had tO
retain all the characteristics common to the
32-bit VAX Family. These characteristics
included the following requirements: the new
machine must run the VMS operating system,
must interconnect to the present 1/0 bus struc
tures. and must have the network links associ
ated with the VAX computing environment.
Improved performance is achieved through
innovations in computer design and the intro
duction of large scale processing concepts
into the VAX architecture. Innovations include
the use of E C L macrocell arrays (M CAs)
throughout the CPU and new electrical and
mechanical packaging. Among the large scale
processing concepts employed are a dedicated
memory bus and pipelincd operation in both
instruction processing and memory references.

Designing a large scale computer is a process
driven by Digital's performance goals for the
machine. On some projects, little time remains
to evaluate the relative costs of equivalent
alternatives. All VAX systems. however, must
meet pricejperforrnance design criteria, the
most important of which is the customer's
overall cost of ownership. Therefore, to me<:t
those criteria, we used many techniques to

8

enhance the system's rdiahility, availability
and maintainability.

Tbe VAX 8600 System

The VA .. '(8600 processor (Figure I) consists of
six relatively independent subprocessors:
E Box, F Box, I Box, M Box, console, and 1/0
adapter. The E Box <:xecutes the VAX instruc
tion set and generally directs the entire system.
The I Box prcfetches instructions and operands
and decodes them for later execution by the
E Box. This gives the machine a pipelined struc
ture: several instructions can be present in the
I Box and the E Box at the same time. The pipe
line enables some frequently executed instruc
tions tO be completed in the E Box in a single
machine cycle of 80 nanoseconds.

The M Dox contains a 16-kilobyte data cache
to increase the speed of memory acc<:ss. It also
contains a buffer that holds recently used trans
lations of virtual memory addresses to physical
ones. Using a translation buffer eliminates the
need to look up these addresses for every mem
ory access . The M Box interfaces the memory to
all other parts of the system, and also interfaces
the E, F, and I Doxes to the adapter bus for
input and output. A "memory reference" by
one of the other boxes happens in a "cache
cycle," the objective of the design being to deal
solely with the high-speed cache as often as

Dif!.ilal Ted.JIIical Journal
No. I ilugust I 'JH'J

.-----------"C..:.on....:s..:.ol..:.e-=B..:.us'-------1 Console

Diagnostic Bus

E Box VIrtual Address Bus

1 Box Virtual Address Bus

Operand Bus

Wnte Bus

Mam
Memory

Optional
SBI

Adapter

1{0 Subsyslems

Figure 1 Tbe VA X 8600 Operations Flow

possible . The M Box actual ly references storage
only when needed data is not found in the
cache or when room needs to be made in i t for
new data . As elsewhcrc i n the machine, the
M Box has a variety of re l iab i l i ty and maintain
abi l ity features, including error correction on
the data in the cache.

The F Box is a floating point processor . or
accelerator (FPA) . When present in a system ,
the F Box intercepts float ing point instructions
as they are presented by the I Box . Spec ial hard
ware for fast unpacki ng. a l igni ng, add ing. mu l
t ip lying and dividing produces extra-high per
formance for sc ientific, computationa l nu mber
cru nching.

The 16 general purpose registers (GPRs)-the
I and F Uoxes each have one set and the E Uox .
two-arc basic to the accurate and fast manipu
lat ion of data . Therefore, a l together, four cop
ies of the G PRs are kept to guarantee fast , flexi
ble access and instruction retry.

'fhe console is a mi croprocessor-based front
end interface to the operator. the boot device ,
and the remote diagnostics . This unit is used to
init ia l ize the system on power-up, to test i t , and
to assist in isolating fau lts . The console also
automat ica l ly hand les various functions that are
usua l lv performed manual ly by an operator.

DiJ:ital Tt•d.nricttl jounurl
No. I !lug us/ I 'JH'i

The 1/0 system is based on Digita l 's standard
synchronous backplane in terconnect (SD I) ,
which is interfaced to the rest of the system via
t h e M Box t h ro u g h an a d a p t e r on t h e
adapter bus . The various device contro l lers and
adapters to other interconnects arc located on
the SBI .

Al though a l l boxes contain mi crocode , the
main mi crocode is in the E Box . This ai iows the
boxes to perform complex fu nctions with a
sma l l amount of hardware , providing design
flexib i l i ty and a good cost/performance ratio.
All mi crocode storage is writable , which fac i l i
tates changes and addit ions whenever neces
sary . I n i t i a l l y , the RAMs are l oaded from
microcode fi les stored on a removable d isk in
the console subsystem. M icrocoded diagnostic
programs are also loaded in the control store
when i t is necessary to i d e n t i fy fa i l ing
components .

A number of buses interconnect the various
boxes . All data movement between the proces
sor and both the memory array and the 1/0 sub
system occurs through the memory data bus
connect ing the M Box and the I Box . The I Box
receives the instruction stream and the memory
operands over this bus ; the memory operands
are then passed to the E Box and the F Box over

9

New Products

------- A n Overview of the VA X 8600 System

the operand bus. Resul ts from ei ther of those
boxes arc sent via the write bus to the I nox,
which in turn passes them to the M nox over
the memory data bus. The write bus is also used
to keep the four sets of GPRs identical to one
another. Iloth the I Box and the E Box supply
addresses (almost always virtual) to the M Box.
All buses and registers handle 3 2 -bit words .

The component technology used in the 8600
is the macrocell array, which provides a typical
gate speed of one nanosecond and has h igh
density LSI ECL technology in a 68-pin package
that is one inch square . MCA technology is an
extension of the gate array concept . Instead of
gates , however, each ceU in the array contains a
number of unconnected transistors and resis
tors . By creating interconnecting patterns, one
can transform those components into small
scalejmedium-scaie integration (SSI/MSI) logic
functions or "macros . " These macros take the

E Box
Virtual

Address
Bus

Virtual
Address

Multiplier·
Quotient

Register
File

Reg ister
File

A

Write
Bus

B

.
Flag

Register

Operand
Bus

form of standard logic elements such as dual
0-type tl ipflops , dual fu l l adders, quad latches ,
and the l ike . Most of them are series-gated ECL
structures for opt imized performance .

E Box, Heart of the .�:vstem

The E Dox , the focal point of the entire system ,
execu tes t h e VAX instruct ion se t , handles
exceptions and interrupts, and controls the rest
of the system. It is h ighly microcoded: most of
its clements are directly control led in each
cycle by b i ts i n the m i croword . I n tens ive
m i crocoding makes poss ible the use of a
datapath with a s imple structure ; the power of
the datapath comes from the speed and ease
with which i t can be manipu lated by the
m icrocode.

As shown in Figure 2 , the E Box conta ins a
dua�-portcd scratchpad memory (Register Files
A and D) comprising 256 3 2-bit registers . I n the

Write
Bus

Figure 2 Block Diagra m of the E Box

1 0 Digital Tech1zica/ journal
No. I August 1 985

scratchpad are basic machine registers, copies
of t he G PR s , a b o u t 1 SO c o n s t a n t s a n d
microcode temporaries , and some archi tectur·
a l ly defined registers used by memory manage·
ment and the operating system.

Arithmetic and logical operations are done by
a 32 -bit arithmetic and logic uni t (All!) , which
has all the usual fu nctions for performing add,
subtract , OR, exclusive OR, and s imi lar opera·
tions. There are also some special ALU func
tions for speeding division, decimal arithmetic,
and comparisons . The most significant perform
ance factor related to the ALU, however, is the
abi l i ty of the microcode to take any two values
from the scratchpad, operate on them in the
A L U , a n d s t o r e t h e re s u l t b a c k i n t h e
scratchpad-atl in a s ingle cyc le . With this capa
bi l i ty , some whole instructions can be com
pleted in just one cycle . And longer, repetitive
instructions, such as those handl i ng character
strings, can be execu ted in short loops.

Paral le l ing the ALU is a barrel-shift network
that accepts a 64 -bit va lue , joins i t end to end,
and selects any des ired 32 consecut ive bits
from the ring format. The value can be supplied
by two scratchpad registers or one register con·
catenated with memory data . Control over the
shifter can be exercised directly by a field in
the microword , or through a shift control regis·
ter. The register a l lows a new sh ift count
related to some previously specified one. The
shifter is used for u npacking and packing float·
ing point data , trans lating different decimal
data formats, ari thmetic shifts and rotations,
and various other bi t manipulations. As i n the
case of the ALU , the shifter's power is enhanced
by the abi l i ty of the microcode to take any two
words in the scratchpad, shift them, and store
the resul t back in the scratchpad, a l l within the
same cycle.

I Box Handles the Details

The V�"\ architecture has a rich instruction set
with a large number of opcodes and specifiers
for fetching operands and storing results . While
this variety is quite usefu l to the programmer
and compiler writer, the task of decoding these
opcodes and specifiers constitutes much of the
total work i n processing VAX i nstructi ons .
Therefore , the 8600 has a separate subsystem
ded icated to prefctching instructions , decodi ng
them, fetching source operands, and storing
resu lts . That subsystem also receives cond ition

Di?.ilal Technical journal
No. I A ugust / 'JR 5

codes from the E Box and makes al l branch tar
get fetches and decisions . Much of the t ime,
this work is overlapped with the actual i nstruc
t ion execut ion in the E and F Boxes , thus
a c h i e v i ng a h igh degree of s i m u l taneous
processing.

The I Box cons ists of two major parts : an
instruction unit and an operand unit (Figure 3) .
The instruction uni t contai ns an 8-byte FIFO
i nstruction buffer, which receives instruction·
stream data from memory, 4 bytes at a time. The
u n i t eval uates these bytes to determine the
address i ng mode and to make i ns t ru ct ion
optimization decis ions . Evaluation i s done with
the help of a decode RAM, which contains
information specific to the i ndividual opcodes
and specifiers .

The instruction uni t also supplies informa
tion about where to find the operands for an
instruct ion. Using this information, the operand
uni t can generate the addresses for the oper
ands and start the memory reads to fetch them.
For this purpose, the uni t has i ts own copy of
the GPRs, s ince they are needed to calcu late the
addresses. Often the GPRs contain the oper
ands , in which case either they are read directly
or the numbers of the G PRs contain ing them are
passed to the execution un i ts (E and F Boxes) .
At other t imes, the operands are contained in
the i nstruction stream itse lf, in which case they
are extracted from the i nstruct ion buffe r .
Whenever possible , the instruction unit tries to
process two specifiers in a s ingle cycle by han
dl ing the second specifier as a GPR nu mbec

This optimization saves valuable cycles in fre
quently used instructions .

When the E Box is ready, the I Box supplies
the operands to i t along with a d ispatch address
identifying the start of the microcode appropri
ate to the execution of the i nstruction. When
execution is complete, the operand unit wi l l
provide the address for storing the resu lt in
memory.

Therefore , the overal l sequence of steps in
perform ing an instru ction is fetch instruction,
decode i nstru ct ion , generate address , fetch
operand , execute , and store resu lt . Any one of
these steps for a given instruction may occur
simu ltaneouslly with any other step for some
other instruction. Of course, this is l imited by
the obvious restriction that no two operat ions
can use the same resou rce (memory, register

11 fi le , etc .) si•mu ltaneously . Thus , for exam ple,

1 1

New Products

A n Overuiew of tbe VA X 8600 .\)'.stem

Memory
Data Bus

1 2

Write
Bus

Branch
Drsplacement

Figure 3

I Box
V1rtua1

Address
Bus

Memory
Data Bus

Operand
Bus

R/ock Diagram of tbe I Box

Operand
Bus

Digital Techllical jounwl
No. I A ugust I <J8'i

while the I Box is decoding instruction 4 , it
may also be ca lculating addresses for instruc
tion 3 and fetching the operands for instruc
tion 2 . If the operands are in the GPRs , then the
current cache cycle may be used for fetching
more of the instruction stream (say parts of
instructions 6 and 7 , with 5 already in the
buffer) . Moreover, any of these steps may be
happening whi le the E l3ox is execut ing instruc
tion 1 . This overlapped process i ng, cal led
"pipe l in ing ," greatly i mproves performance
and is deta i led later in the Pi pel ined Instruc
tion Processing section.

Of cou rse , there are bound to be hazards
whenever work is done in para l le l . The pipe
l ine cannot always operate at fu l l speed due tO

confl icts produced by the various subsystems
needing the same resources . S ince severa l
stages may be active s imul taneously, the con
trol of each Stage is int imately t ied to the past
and present operations in the other stages, as
wel l as to those in the E Box and the M Box .
Each stage attempts to process the avai lable
input data as qu ickly as poss ible . Whenever
input is unavai lable or a resul t cannot be stored
immediately, a stage is said to be "sta l led ." One
objective of the I Box, and of a pipe l ined struc
ture in genera l , is to minimize the t ime any
stage spends in a stalled state as i t can perform
no usefu l work during that t ime. The execution
unit wi l l sometimes store a resu l t in a register
that is needed by the operand un i t for the next
instruction . A problem of this sort is resolved
by using scoreboards and contl ict detectors . In
many cases , contl icts are avoided by passing the
data as (; PR tags, rather than pass ing the actual
data . Fortu nate ly, the VAX architecture nor
mally precludes writing into the i nstru ction
stream, so the instruction buffer can prcfetch
freely across most instructions.

When appropriate , the I l3ox suppl ies a l l
operands sign-extended and a l l tloating point
operands in memory format, independently of
the source of the data . Therefore , the E Box and
the F Box do not need to perform any special
data manipu lations before the data is used . In
keepi ng with the principle of a high-speed , yet
econom ical im plementation, the VAX 8600 sys
tem uses the instruction buffer to fetch data for
string and other mu lt iple-operand instructions,
thus using hardware that wou ld otherwise sit
idle. This procedure expedi tes large amounts of
data through the processor without wast ing
cache cyc l e s . Th is fe a t u re i s espec i a l l y

Digital Technical Journal
No. I August I 'J85

important in commercial appl icat ions where
data manipulation is more important than arith
metic speed.

Since the 8600 is designed to ru n with the
VMS operating syste m, the processor must be
prepared to deal with memory exceptions dur
ing instruction execution . This procedure is
complicated by mult iple instructions being in
the pipel ine at the same t ime . For sorting thi ngs
out , the operand uni t has mul tiple program reg
isters that contain the starting addresses of a l l
instructions in progress . A register log keeps
track of GPR changes that must be u ndone
should an instruction have to be repeated .

M Box and Memory

The memory system includes the storage array
boards and the M Box . This box conta ins not
only a l l of the control , transfer, and error logic
for the storage array, but a lso a data cache for
fast access tO memory data (Figure 4) . Each
array board contains 4 megabytes of MOS stor
age , and the memory backplane can hold eight
boards for a maxi mum of 3 2 megabytes. The
basic storage un i t is a b lock of fou r 39-bit
words , each with 4 data bytes and a 7-bit error
correction code . Special logic is included for
wri ting bytes, significantly decreasing the stor
age access requirements . The M Box interfaces
to and handles communication among the three
major parts of the syste m: the main me mory, the
p rocess o r , and t h e l j O sys tem (v ia t h e
adapter bus) .

The cache i s a high-speed memory with loca
tions that act as tem porary substitu tes for a
selection of the most frequently used storage
locations . The cache is two-way assoc iat ive ,
meaning that for each address , the data can be
stored in ei ther of two locations. The total
cache size is 1 6 Kl3 in two 8KB parts ; its loca
t ions are a l located in b locks of four words
(1 6 bytes) , addressed on a four-word boundary .
I n addition to the two data parts, there is a
cache tag store contain ing the address bits for
the blocks of data in the cache data store. For
each block, the tag store also contains a va l id
bit and four written bi ts for the four words i n
t h e block. A..'>SOciated with the data t o ensure its
integrity is an error code that enables the cor
rection of single-bit errors and the detection of
double errors .

The cache uses a writeback scheme for writ
ing in memory. This means that a word is not
written in storage when it is modified , hut only

1 3

New Products

------- A n Overview of the VAX 8600 -�:Vstem

E Box
Virtual Address

Bus

I Box
Virtual Address -

Bus

Translation
Buffer

Tag

I Translation '

Buffer
Page Table

DMA Address _
(Adapter Bus)

Cache
Tag

Access Violation

Physical
Address

Array Address

1/0 Address
(Adapter Bus)

Cache Hit

Mux

Cache
Data

�:t���s -�
'----�1

o,. r.
From �-�_,L.__, _______________ ---il�l 1----,---.. Me mory Data Bus
Array

Data To Array
(Writeback or 1/0)

1/0 Output
(Adapter Bus)

Figure 4 Block Diagram of the M Box

when its cac he location is needed for other
data . In the interi m , data is p laced only in the
cache , so a s ingle cache location may be used
many t imes without requ iring access to the
memory array (whose correspondi ng location
becomes inval id) . The contents of the cache are
fi nal ly written in the array only when that
cache location is needed to represent a differ
ent storage location . The replacement policy is
" least recently used . " That is , of the two b locks
avai lable to store a given piece of data , the one
less recently accessed receives the new data.
When a memory word containing a corrected
error is placed in the cache, the written bit is
turned on to force eventual rewrite of the stor
age location, thus reducing the probabi lity of a
double error.

1 4

Addresses actual ly suppl ied to the cache or
the memory array are always physical , and the
direct memory access (DMA) references made
by t h e 1/0 sys t e m a l ways u s e p h ys i c a l
addresses . There are three sources of memory
references within the processor, each having i ts
own port into memory: the instruction buffer,
the operand uni t , and the execu tion unit . Nor
mally these references are virtu a l , meaning that
the addresses have to be translated from virtual
to phys ical before they can be used to access
the cache. When a virtual reference is made,
the M IJox m icrocode uses the high-order part
of the address to index into the translation
buffer (TI3) , i tself a cache containing the most
recently used trans lations. The entry from this
buffer is then prefixed to the remaining bits of

Dil!,ital Techn ical]ounral
No. I A ugust I 98 5

the virtual address to form the desired physical
address. The TB is one-way associative and has a
capacity of '5 1 2 paging entries. Besides transla
t ion information, it contains access-protection
data, which a ids in creat ing a secure operating
environment. Refil l ing entries in the buffer is
done from page tables in memory.

Although the TB is located in the M Box, i t is
maintained by microcode running in the E Box .
This provides an economical solution to the
compl icated task of keeping track of streams of
references from the three ports . Each port can
have two references in progress, si nce acces
S·ing the data cache and the tag store are over
lapped w i t h access i ng t h e TB . The data ,
addresses, and control information for these
operat ions are carefu l ly queued, with hand
shakes to aflow the subsystems to proceed as far
as possible (but not any further) while wa·it ing
for references to finish. Any memory exceptions
encountered while prefetching instructions or
operands are held off unti l the data is actually
needed by the execution uni t . That unit then
deals with the problem, using memory refer
ences that bypass the normal queue, thus leav
i ng i t intact for restarting later.

The resu l t is a virtual memory system that is
fast enough to al low a reference to complete
during every cycle. With three subsystems mak
i n g i n d e p e n d e n t r e fe re n c e s , t h e h i g h
bandwidth of the bus, which al lows that speed ,
can b e wel l u t i l i zed .

F Box Performs Floating Poin t

For scientific and technical applications, the
8600 has a floating point accelerator (FPA) , the
F Box , that operates in paral lel with the E Box.
The FPA receives operands over the oper
and bus from the I Box and del ivers results over
the write bus for storage in GPRs and memory
(Figure 5) . It performs floating point calcula
t ions in al l four VAX floating point formats , F,
0 , G and H (F numbers have 32 bits, 0 and G
have 64 , H has l 28) , and it also does integer
mult iplications. Usually the work i nvolved in
these calculations is spl i t between the F Box
and the E Box . The former does the arithmetic
operations while the latter accesses memory for
rea d i ng and wri t i ng operands , deals w i t h
except ions, handles counters, and takes care of
other chores .

The E Box has a fa i r ly genera l -purpose
datapath , capabl e of dea ling with the myriad

Digital Technical journal
No. I August 1 98 5

tasks involved in executing the VAX instruction
set . On the other hand , the F Box consists of
special ized hardware (almost exclusively gate
arrays) for doing only those steps needed
in floating point operations. Hence , these oper
ations are executed in far fewer cycles. Further
more , the F Box cycles twice as fast as the other
su bsystems; i ts datapath is 32 bits , and mul
t iprecision operations are pipel ined. The F Box
also has its own copy of the GPRs, al lowing the
I Box to send both operands at the same t ime,
one over the operand bus and one as an address
for the GPR RA.t\1 .

Much of the original chal lenge i n F Box
design lay in making i t compact so as to mini
mize interconnect delays. Of i ts two modules,
one contains the logic for floating point addi
tion, subtraction and division, while the other
does floating point and integer mult iplications .
Both modules are m icroprogrammed , with each
having i ts own m icrosequencer and contro l
store . Moreover, the microcode i s d istributed
among the various chips . This d istribution
enables a command to fol low the data for sev
era l cycles and be repeated ly decoded as
the floating point operation is executed . That
al lows normal operations to finish in a mini
mum number of cycles, whi le unusual condi
t ions are detected and dea l t wi th by the
m icrocode.

The mult iplier module uses column reduc
t i on and Booth encod i ng, together w i t h a
3- input adder, to produce a 4 0-bit partial prod
uct every half-cycle . The adder combines the
operations of unpacking and al igning in a s ingle
shift , making i t possible to produce an F format
sum in only two cycles . Thus, ADDF2 takes just
two cycles (as opposed to four in the 1 1 /780) ,
MULF2 takes four cycles, and each add-mu ltiply
step in a POLYF polynomial evaluation takes
only six cyc les .

The VAX 8600 system continues a tradit ion of
providing h igh-speed, accurate floating point
performance . All operations are accurate to one
half of the least sign ificant bit . Any floating
point exceptions cause the instruction to back
up to i ts beginning. Then control is given to an
exception handler, which scales the operands
before resuming computat ion . By having al l
four formats ava i lable , intermediate calcula
tions can be done in a format with greater range
and precision, thus avoiding exceptions and
returning a more accurate resul t in composite
operations .

1 5

New Products

------- A n Overview of the VAX 8600 System

Accumulator

Write ___ .L_ ______ ____.
Bus

Figure 5

1 6

t
Write Bus

Block Diagram ol the F /Jox

Digital Tet.:hnical jounwl
No. I A II!(IISI / 'Jf/ 5

Besides the basic operations of add, subtract,
multiply and divide, the 8600 provides special
instructions for argument reduction and poly
nomial evaluation . These instructions carry
extra precision and also facilitate the high
speed software implementation of transcenden
tal and ot her sophisticated m;uhematical
functions.

,\)stem Microcode

In addition to controlling the E Box datapath,
the E Box microcode supervises the operation
of the whole processor. Microcode initializes
the system and tells the instruction buffer when
to prefetch instructions or string data . Further
more, it starts and stops operand processing in
the operand unit, maintains the address transla
tions in the TB, and orders the F Box to perform
arithmetic operations. The microcode executes
the full VAX instruction set, including recent
additions such as G and H tloating point, and
interlocked queue instructions for multiproces
sing. Since it is backward compatible, the
microcode also executes the PDP- I 1 instruc
tion set.

Considerable effort was expended on opti
mizing the microcode and the E Box datapath to
execute the VAX instruction set . The result is a
relatively narrow microword of 84 bits (includ
ing two for parity), which nonetheless allows
most high-frequency instructions to complete
in a single E Box cycle . H aving immediate
access to all 2 56 scratchpad locations makes it
possible to store decimal strings and other data
structures internally, saving crucial instruction
cycles . Low-frequency operations are imple
mented principally in microcode rather than in
hardware to save board space and reduce cost.

The E Box microcode is written in a straight
forward language that is easy to write, under
stand and debug. Of the 8K control store loca
tions, 7K are used for the system microcode.
The remaining 1 K are available to the customer
for implementing special func t i ons, and
"hooks" are provided for fast and easy access to
user microcode.

All subsystems have microcode; however.
com pared to the E Box, they all contain more:.:

specialized hardware and microcode to per
form fewer, but more specialized tasks. Even
so, microcode still provides an economical,
tlexible alternative to hardware as a means to
implemc:.:nt control. Wherever practical, nor
mal, high-frequency operations are done in

Digital Techt�ical jourllal
Nn. I A ugust 1 98 '5

hardware, whereas unusual operations are han
dled in microcode.

Much of the error reporting and recovery is

also implemented in m icrocode. If an error
related to the currently executing instruction
occurs, the microcode is trapped. It then col
lects the error information, fixes the error con
dition, backs up the affected instruction for
later restart, and enters the machine-check
software.

Console

The console, connected to all four of the boxes
by a serial diagnostic bus, is actually an exten
sive subsystem based on a PDP- 1 1 computer.
The console moni tors environmental and
power-supply conditions, serves as the VMS
operating system terminal, supplies a time-of
year clock, and provides an assortment of diag

nostic functions. Associated with the console
are a local LA 1 00 terminal for use by the opera
tor , an RL02 removable disk for bootstrapping
and diagnostic activities, and a remote diagnos
tic link. Bootstrapping is done automatically by
the console, which serially passes microcode
and init ial iz ing information to t he various
boxes over the diagnostic bus. The console and
the E Box communicate via the console bus
(C bus) to set up the 1/0 system and to imple
ment console functions such a s examine,
deposit, start , and halt.

lnpu tjOu. tput ,\)stem

The 1 /0 system provides input/output over a
synchronous backplane interconnect (SB I)
interfaced to the M Box via the adapter bus.

This system offers complete compatibility with
the myriad peripheral equipment currently
available for t he VAX- 1 1 /780 Family of
machines. Moreover, the 8600 can have two
S13 1s, and its separate memory bus relieves them
of any involvement in processor-memory trans
fers . Therefore. a significant increase in both
the computational capacity and t he 1 /0
throughput of an existing VAX systl·m can be
gained simply by replacing only its processor
with an 8600 and leaving the entire peripheral
system in place. A single SBI can handle
I :� . 3 megabytes of data per second, all for
inputjoutput ; two SBis have a combined capac
ity of 1 7. 1 megabytes. Some ljO device adapt
ers connect directly to the SBI ; others must con
nect through a { N IB US or MASSB S. The
theoretical maximum capacity of the adapter

1 7

New Products

------- A n Overview of the VAX 8600 -��ystem

bus is 3 3 . 3 megabytes using two ultra high
speed adapters with transfers in I 6-byte blocks.

The latest I/0 equipment is designed to be
used with the computer interconnect (CI),
which has a bandwidth of 70 megabits per sec
ond, and the Ethernet, which has a bandwidth
of I 0 megabits per second. The 8600 is the first
VAX system to include the CI interface signals
in its own backplane, providing as standard
equipment the hardware necessary for its inclu
sion in a VAXcluster. The VAXcluster is a
loosely coupled, multiprocessing environment
of I 6 nodes. Any node in the cluster can be
either any member of the VAX Family, includ
ing another 8600, or an HSC-5 0 mass-storage
controller . The HSC- 5 0 controller provides
intelligent, high-speed and shareable access to
both disks and tapes for all the CPUs in the
cluster ; the maximum sustained data rate is 3 . 4
megabytes per second. Each HSC-50 controller
handles six data channels, and each channel can
access four datapaths for either disks or tapes.

The Ethernet can handle 1,0 24 stations with
a maximum separation of 2, 500 meters in a
branching, unrooted tree. It is used in local
area networks for communications between
computers (such as DECnet service) , unit
record equipment, workstations and the like .

Performance Improvements

The improved ability of the 8600 to execute a

specific instruction, as compared with the
11/780, can be determined by comparing the
following factors : the shortening of the cycle
time, the decrease in the number of cycles
required, and the decrease in memory access
time. Since the 8600 overlaps instructions, sim
ply comparing the speed of individual instruc
tions does not give a true indication of the abil
ity of the new VAX processor to perform an
actual task. Because of the operational
sequences chosen, even benchmarks often fail
to give a complete picture of the improvement.
This is true because the 8600 improves the
speed of handling interrupt and exception
functions even more than the speed of instruc
tion operations. And, of course, other quantities
such as memory size and disk capacity also
affect the comparative performance.

In designing the VAX 8600 system, the basic
performance objective was to increase the aver
age instruction execution speed by a factor of
four. This objective was not only met but
exceeded. The most significant features

18

contributing to this performance improvement
are the following:

• The pipelined machine organization reduces
by 1-i O percent the average number of
machine cycles required per instruction. The
I Box prefetches instructions and operands
while the E Box is processing the current
instruction. The address and data functions
used to reference memory are also pipelined.

• The VAX 8600 cycle time is 40 percent of
that of the I I /780 (80 versus 200 nano
seconds) and 60 percent of that of the
I 1j785 (80 versus I 3 5 nanoseconds) .

• Faster and larger RAl\<ls in the E Box allow the
microcode to accomplish more processing in
a single cycle.

• The cache uses a writeback strategy that
eliminates unnecessary writes to memory.

• The two-way associative cache is twice the
size of the cache in the VAX-1 Ij780 CPU
(16KB versus 8KB).

• A dedicated memory bus with separate
address and data lines eliminates contentions
between memory references and I/0 traffic,
and between address and data transfers .

• Faster semiconductor technology decreases
the gate delays for the 8600, as compared
with the 1 I j780. Gate delays are I and

3 nanoseconds, respectively.

Pipelined Instructio n Processing

The solid boxes on the diagonal in Figure 6

show the successive actions the processor takes
to perform most instructions ; that is, those that
involve a single operation carried out on one
pair of operands, represented in the instruction
by the opcode and two operand specifiers. In
small, low-speed computers, there is no pipe
lining. The processing, from fetching the
instruction to storing the result, is performed
for one instruction at a time. For example, the
fetch of the next instruction does not occur
until the result of the current instruction has
been stored. The hardware devoted to each spe
cific activity is used only during that corre
sponding step and then remains idle until
needed for the next instruction.

Larger computers, like the VAX- I 1j780 sys
tem, shorten their execution times by prefetch
ing instructions: whenever a cache cycle is

Digital Tec·hnU:al journal
No. I A ugust I 'J8 'i

-----.r - - - - - , - -
lnstruction 1

Fetch 1 N-1_ .. ____ N+ __ .,.N_+_1-il- _ _ _ N:!:2j _
I Instruction I 1 Decode I
I I 1 N-2 1 N-1 N N+1 1 N'+2 1 � - - - - - 1.� -----i�O�p�er�a""'nd�; - - - - - I - -

1 Address 1

N-2 1 N-1 Generatio� N+1 l N+2 1 - - _l - - - - -�--"'""'-11------i,- - - - - _l -I I I
1 Operand 1
I Fetch 1

Cycle
-...... �

Operation

I N-1 N N+1 1 I - � - - - - -- •�,----+-
1-ns

-
t
-
ru
-

c
-

ti
_
o
_
n

.;, - - - - -� -
1 Execute 1
I N-1 N N+1 : - -1-- - - --"----+-----i, - - - - - L - -
' I I 1 Result 1

1 Store 1
1 N-1 N N+1 1

_ ...J _ _ _ _ _ _ _ _ _ _ .,L _ _

Figure 6 The VA X 8600 Instruction Pipeline

avai labl e , the i nstru ction box continues to
prefetch more of t he instru ct ion byte stream
from memory whi'le activit ies for the previous
i nstructions are proceeding. Thu s , the next
opcode is ready for decoding as soon as a result
is store d . T h i s s i m p l e level o f p i pe l i n i n g
decreases t h e total t i m e required for gett ing the
instructions.

1 . The I Dox fet c h es ADDL 2 fro m t h e
i nstruction stream in memory.

The 8600 carries the pipe l i ning technique
much fu rther by pipel in ing the entire sequence
of instru ction activities shown i n Figure 6 . As
ind icated by the dashed boxes above and below
the sol id ones, the processor circu its for each
type of activity are normally busy processing
successive i nstruct ions . Of course , movement
through the pipel ine cannot always be at top
speed. Various stages must sit idle whenever a
cache miss requi res wai ting for data from main
memory , or when a multipl i cation or division
ties up t he E Dox for a whole string of cycles.
Even the com mon instructions that take one
cyc le to execute sti l l requ i re a total of six
cycles to complete (4BO nanoseconds) ; a string
of such instructions, however, can store a result
i n a register l o cation d u ring every cyc l e
(80 nanoseconds) .

As an exa m p l e , consider the i nstruction
ADDL2 (RO) , R l , which uses two source oper
ands and stores the resu lt in the location of the
second . This involves the steps in the I , E and
M Boxes outl ined in the fol lowing steps .

Di�ital Techni<:al]our�tal
No. I A ugust I ')85

2. The I Dox uses the opcode from ADDL2

to address the decode RAM.

3 . The I Dox gets the virtual address of the
first operand from register RO and sends
i t to the M Box .

4 . The M Box translates the virtual add ress
i nto a p hysical address, retrieves the data
from the cache , and sends it to t he I Dox.
(If the cache does not have the data , the
procedure must wait at t his stage for the
M Dox to get the data from storage .)

5 . The E Box receives operands from the
cache and R 1 , and adds the m .

6 . The E Dox stores t h e result in R I . (I f the
resu lt were to be stored in memory, the
I Dox wou ld supply the address .)

Reduced Mem01:y A ccess Time

Those factors that contribute most to reduc ing
the memory access time in the 8600 are the
dedicated memory bus, pipel ined references,
and greater cache hit rate .

The dedicated memory bus has decreased the
access time to the memory array by more than
two thirds-the extra time taken for a cache m iss
is typical ly 5 00 nanoseconds, as opposed to

1 9

New Products

-------- A n Ot,erview of the VA X 8600 .\),stem

1 600 for the 1 1 /780 . This happens for the fol
lowing reasons:

• The bus i tself is faster than the SBI (80 versus
200 nanoseconds) .

• There is no interference between memory
and 1/0 traffic .

• Addresses and data are transferred s imultane
ously rather than in sequence .

All memory operations-addressing, data read,
and data wri te-are pipel ined in the 86 0 0 .
Latency i s s t i l l at least two cycles, one each for
address generat ion and cache lookup, but a
cache reference can be completed during every
cycle .

Finally , the cache hi t rate of the 8600 has
been im proved simply by making its cache
twice the size of the one used in the 1 1 /780 .
Some t ime has also been saved by using the
wri teback strategy as compared with the write
through strategy of the 1 1 /7 8 0 . In write
through , both the cache and the memory array
are updated on every memory write .

Techn ology Contributions to
Impro ved PeJformance

The processor cycle t ime has been reduced
mainly by (a) using a faster sem iconductor
technology; (b) decreas ing the wire length on
both modules and backplanes; (c) using faster
RAMs for the registers , cache, control storage,
and memory array.

The sem i c o n d u c to r t e c h n o logy i n t h e
VAX 8600 processor is emitter-coupled logic
(ECL) . This logic is nonsaturating; it is, there
fore , much faster than the VAX- I 1/780 trans is
tor-transistor logic (TT L) , in which state
changes requ ire either fu l l charge or fu l l dis
charge . The logic design takes advantage of the
very fast ECI. state changes because the effects
of signal retlections were greatly reduced by
m i n i m iz ing in terconnect delays , and wiring
impedances were carefu l ly control led. ECL-lTL
conversion is needed to interface ro the SI31 , the
conso le, and the memory array (which uses
2 56K TI'L-compat ible MOS RAMs) . The conver
sion is handled by dual-ported RAMs that serve
as converting buffers ; data goes in in one form
and comes out in the other.

Instead of the tl iptlops employed in other
VAX systems, the VAX 8600 system mainly uses
latch es in i ts registers and control log ic .

20

Performance is im proved because latches arc
level sens i t ive, whereas tl ipflops can change
their states only when clocked . In other words ,
no matter how qu ickly the inpLitS to a tl iptlop
are set up , a new output configuration cannot
be sent along to the next logic stage unti l the
next clock. With a latch, however, the outputs
can change when the inputs change , a l lowing a
faster setup at the next stage . Despi te the
requ irements for holding gating levels for some
minimum time, this characteristic of latches is
respo n s i b l e fo r a red u c t i o n of about I 0
nanoseconds in the cycle t ime. Usually , more
latches than tl iptlops are needed to implement
a given logic fu nction; latches, however, cost
less than fliptlops, so the cost per logic tunc
tion using ei ther type of circui t is al most equal .
Hence , the only real cost when using latches is
the greater difficu lty in performing t iming anal
yses . G iven the significantly increased perform
ance , this cost is well worth i t .

Macrocell Arrays

nti l now, the sem iconductor industry has used
three approaches to meet the demand for LSI
digital circu its: standard , off-the-shelf circu i t
fam i l ies; custom circuits ; and gate arrays . Stan
dard circu i ts are economical but insufficient
for the complex, special ized fu ncti ons required
by the 860 0 . Custom circu i ts , on the other
hand, are quite expensive and take one to two
years to design and produce . Fortunately, gate
arrays have a shorter production t ime, s ince the
basic array can be fabricated up to the point of
metal izat ion; unfortunate ly, the interconnect
ing metal! makes the chip larger and increases
the propagation delays . To circu mvent these
prob lems, Digita l and Motorola created the so
called "macroce l l array" approach to custom
LSI . This approach decreases the cost and t ime
to develop custom circui ts and avoids many of
the defici encies of conventional gate arrays .
Among the various technologies evaluated, the
macroce ll array best met the requirements of
the 8600 .

As explained at the begi nning of th i s art ic le ,
the macrocel l array is actually an extension of
the gate array concept . Each ce ll in the array
contains a nu mber of unconnected trans istors
and resistors that can be connected to form spe
c ific logic fu nctions or "macros . " The cel l
l ibrary contains 8 5 macros : <; 4 for major ce lls ,
1 4 for i nterface , or input , cells ; and 1 7 for

Di�ilal Technical jow·nal
No. I August J 'J8 5

output cel ls . A single array can contain 1 06
ce lls : 4 8 major, 3 2 interface , and 26 output. If
fu l l adders and latches are used i·n al l cells, a
s ingle MCA may contain 1 , 1 9 2 equ ivalent gates;
if tl iptlops and latches are used in a l l cells , it
may contain 904 . Typical power diss ipation is
5 .0 watts , 4 .4 mi l l iwatts per equivalent gate .
Contributing to the high performance of the
system as a whole is the extremely low propaga
t ion delay in major and interface cel ls : 1 . 2- 1 . 8
nanoseconds maximum, compared to 3 . 5-6.0
nanoseconds for 1 OK ECL. The high density of
I 00 gate equ ivalents per square inch, com
pared to 2 0 - 3 0 for MSI , is also important .
Higher dens i ty red uces interconn ect de lays,
thus further enhancing performance, and low
ers packaging costs as we l l .

Reliability and Data Integrity

Although we have not been able to el iminate
hardware errors ent irely, the VAX 8600 system
goes a long way toward e l iminating their effects
on the user. Features are built into the 8600 at
every level to guarantee the integrity of the data
in the system and to promote its re liabi l i ty.
avai labi l ity, and maintainabi lity. These features
range from m inor characteristics within indi
vidual circui ts to major provisions that embrace
the entire system. Some of the more significant
features are l isted below .

• Inherent re liabil ity i s achieved through hav
ing a low component count , logic design for
the worst-case si tuation, and high-rel iabil ity
parts .

• Dynam ic error report ing, by means of an
error logger, aids in ident i fying the sources
of interm ittent fa i lures. The error log is used
for both hardware and software malfunct ions
and is kept in a disk fi le .

• I nstruction retry is used whenever i t is
appropriate to the error type . For instance ,
four copies arc kept of the genera l pu rpose
registers. Therefore, on a GPR parity error,
the instruction can be retried using a copy
from the corresponding GPR in another box.

• Add itional related software features include
(a) automated patching and updating proce
d u re s ; (b) powerfa i l - r e s ta rt su p p o r t ;
(c) user-mode d iagnost ics; (d) extensive
protection facil it ies; and (e) dynamic mem
ory configuration to exclude bad pages .

Digital Teebnical journal
No. I llugusl 1 '}85

• Single-bit error correction and double-bit
error detect ion are used for the cache and
the memory array, with automatic rewriting
of the corrected word .

• There is parity checking at RAMs and buses,
and parity cont inuity is carried through al l
major datapaths. Parity is kept not only for
data, but also for physical addresses and the
microcode . (Bad data in a control R.AJ\1 or the
control store is corrected by the conso le
from its bootstrap fi les .)

• Ad dress par i ty and a bad-data Hag are
" folded" into the error correcting code;
thus, the storage words the mse lves conta in
information about error sources.

• There are separate se lects tO each memory
array board , so the control logic for storage
selection is a l l in one place, and faul ts can be
isolated to an individual board .

• The memory battery backup has a capaci ty of
ten m inutes . The bac kup t ime can be set
shorter to save on battery recharge t ime, thus
al lowing the a lternat ive of riding out mu lt i
ple short power fai lures by taking the chance
of going down during a long one .

• Cont inuous self-test ing is performed by the
FPA when it is not in use .

• The system can be reconfigured without the
F PA if f l o a t i n g - p o i n t fa i l u r e s a r e
experienced .

• There arc fast , accurate diagnostics with first
fai lure fau l t isolation to the board . (Subse
quent depot-level servicing can isolate to
within ten chips, on the average .)

• Signals can be monitored from the console
via the diagnostic bus .

• An e n v i ron m e n t a l m o n i t o r i n g m o d u l e
(EMM) gauges the physical operating envi
ronment of the system . The EMM measures
tem peratu res and vol tages and reports out-of
tolerance condit ions to the console , which
can shut down the system before permanent
da mage occurs .

These features make it highly l i kely that
errors wil l be detected and corrected, thus l im
it ing their i mpact . I f a transient error occurs ,
the instruction execut ion wi l l pause and the

2 1

New Products

------- An Overview of the VAX 8600 System

machine state wi l l be saved in memory for
processi ng by an error-analysis program that
provides information to Field Service for quick
on-site or remote repair .

The hardware contains the various status tlags
used by the operat ing system to determi ne
whether the i nstruction stream can be restarted
fol lowing an error or some of the process con
text has been lost. Since most VAX instructions
store resu l ts only upon completion, errors, in
most cases, cause only intermediate results to
be lost; the process can, therefore , be restarted
at the specific instruction in which the error
occurred . Somet imes an ent ire process wi l l
have to be stopped, although this wi l l not affect
the operations of other processes. In the worst
case , some errors-infrequent, but overwhelm
i ng-may require restarting the entire system .
This strategy of graduated error catching and
recovering, coupled with a technologica l ly
sound, worst-case design , creates a system with
very high rel iabi l ity and avai labil i ty .

The console is essentiaUy a separate mainte
nance processor that runs the system for d iag
nosing and isolating fau lts . By means of the
serial diagnostic bus, the console can scan al l
signals needed for chip faul t-isolation. (These
signals are made avai lable through multiplexers
conta ined in the signal-termi nator chjps.) Also,
the console keeps snapshot fi les of the long-run
state of the machine . It has two programs to
help system managers to avoid future difficul
ties. One program monitors the error log to
warn of impending problems even if the system
is recovering from current situations . The other
program displays a graphic image of the system
to highl ight any faulty components; this i s espe
cially usefu l in a fau lt -tolerant system , which
will not crash to signal a component fai lure .

En vironmental Monitoring Module

Devices for sensing various environmental con
di t ions are located throughout the cabinet . The
electronics and indicators associated with t hese
devices are on the environmental monitoring
module (EMM) , mounted in the power-supply
rack. In most cases, out-of-tolerance condi t ions
are reported to the console for appropriate
action.

A principal environmental concern is over
heating in the logic, since the junction temper
ature in the MCAs directly affects their fai lure
rate, which doub les with every rise of 2 0
degrees Celsius. To guard agains t overheating,

2 2

precision thermistors moni tor the ambient tem
perature of the incoming air and the tempera
ture gradient across the card cage . By compar
i ng the temperature of the inlet air with that of
the air above the cage , the EMM can determine
the temperature rise incurred by cool ing the
system logic . Shoul d the in let air temperature
below the cage reach a preset va lue, the EMM
wi l l issue a warn ing to the console. I f the inlet
temperature reaches a danger-zone value or the
gradient across the logic exceeds a prescribed
amount , the EMM wil l issue another warning
and, one minute later, wi l l shut down system
power unless the problem has been a l leviated .

Another i mportant function of the EMM is
measuring t he output voltages of the power
supply. Power-supply voltages must be the cor
rect values to ensure reliable system operation .
If any of these is out of i ts operating range, the
EMM will report the violation to the console .
Voltages are measured cont inuously so that any
out-of-tolerance condi t ions wi l l be known and
can then be reported to Field Service .

O t h e r e n v i r o n m e n ta l fea t u res i n c l u de
devices for detecting an overheated regu lator, a
fai led blower, and i nadequate air tlow. Regula
tor overheating, whether due to faulty opera
t ion or excessive ambient temperature, causes
the closing of a thermal switch that shuts down
the main power control . Unless accompanied
by a temperature problem , other, less drastic
fai l u res are reported so that the system manager
can resolve them.

Besides its monitoring fu nctions, the EMM
controls power sequencing, both on and off.
The computer has an electronic keying system
that detects a board plugged into the wrong
slot, and the EMM wi l l not al low logic voltages
to go on un less a l l modu l es are instal led
correctly.

Packaging Innovations

We had to make significant changes in the cur
rent levels of package design, from the semi
conductor devices to the cabinets, to capital ize
fu l ly on the new circu it technology. Therefore ,
we incorporated new techniques i n in tercon
nect, packaging and cool ing in order to com
plement the semiconductor technology and to
meet new environmental and safety regu lations .
These efforts were undertaken by Digital 's own
technology development team with, i n many
cases, the cooperation of other internal groups
and external vendors.

Digital Technical journal
No. I A ug us/ I ')85

Our efforts to meet t he stringent density and
electrical requirements at the device leve l led
tO the deve lopment of LSI packages t hat serve
not only our needs, but also those of others i n
t h e i ndustry. I3 y employing extensive computer
mode ling of t he system ' s thermal characteris
t ics, we designed an i ntegral heat sink t hat
mounts directly on each MCA chip. At many
critical locations, ICs are i nstal led in high-re l ia
bil ity sockets that faci l itate field repa ir. This
decreases the system ' s downtime, a fact which
helps to minimize the l ife-cycle cost of the sys
t e m w i t h o u t j e o p a r d i z i n g i t s i n h e r e n t
rel iabi l i ty.

Up to six layers of wiring are required to
interconnect the devices mou nted on a printed
circuit board . This wiring is maintained at a
control led (transmission l ine) impedance to
guarantee signal integrity. To ensure uniform
cool ing of the components, we used wind-tun
nel techniques to develop device p lacement
a lgori thms, and computer analyses of each
module design to provide thermal profi les of
t h e i n tegrated c i rc u i ts . By i m p l e m e n t i n g
unique power connectors , rat her t han using
many edge-connector p i ns in para l l e l , we
gained sufficient signal pins for t he density of
components on t he modules. I n addition , the
m u ltivoltage bus bar that distribu tes power on
the board a lso acts as a stiffener to maintain
flatness .

Both the modules and the backplanes they
plug i nto are supported and located by a preci
sion , one-piece card cage that also acts as a
plenum for the cooling air tlow. The back
planes contain 1 6 layers of printed wiri ng in a
lami nated structure . To i mprove backplane
rel iabil ity and ease of repair, al l connectors are
the solderless press-pin type ; they u t i l ize com
pl iant pins to ensure long-term electrical con
tact to the circuit board . Power d istribution is
handled by large, copper bus bars for t he pre
dominant voltages and by the cast backplane
fra me for gro u n d retu r n . Aga i n , sol derl ess
press-pin technology is used to assemble power
and ground connectors to the distribu tion sys
tem . Power-supply regu lators are located above
the logic assembly to faci l itate power d istribu
tion and to al low a straight , single-path air tlow.
Along with acoustic treatment, this provides a
simple, rel iable coo l ing system that satisfies the
latest regu lations, including the noise l i m i t rec
om mended for a computer-room.

Digital Technical Journal
No. I August 1 985

Special care was taken to design the system's
cabl ing to ensure that, i n most cases, cables are
not disturbed when any logic or power mod
u les are removed . Furthermore , all e xternal
cables i nterface to an external bulkhead, both
to fac i l i tate rapid instal lation and to meet e lec
tromagnetic rad i a t i on regu lations. Cabinets
were redesigned to improve s i te assembly and
to help contain e lectromagnetic emissions. At
the same time, backward compatibil ity with
other VAX systems has been accompl ished, so
that previously purchased expansion cabinets
can sti l l be attached to the processor. Overa l l ,
a n 8600 with over 1 6 megabytes o f memory i s
actual ly smaller than a comparabl e 1 1 /780 ,
although the new machine does operate with
one ki lowatt more power.

2 3

New Products

Mario Troiani
S. Stephen Ching I

Nii N. Quaynor
John E. Bloem

Fernando C. Colon Osorio

The VAX 8600 I Box,
A Pipelined Implementation
of the VAX Architecture

The VAX 8600 CPU has four times the performance of the V AX-11 j780
CPU by using high-speed ECL technology and an internal organization
with a jour-stage pipeline. In this pipeline, up to jour simultaneous
instructions can be in several stages of execution at any time. At its heart
is the instruction and operand fetch unit, the I Box. Under favorable
conditions, the I Box can deliver one instntction every 80 nanoseconds
to the instmction execution unit, the E Box, yielding a peak execution
rate of 12.5 MIPS. Special attention is given to the intenzal organization
of this I Box as it differs from those in previous VAX implementations.

The VAX 8600 computer system i s the first
pipe l ined implementation of the VAX architec
ture.

'
Like i ts nonpipel ined predecessors, the

VAX 8 6 0 0 CPU i m p lem ents the fu l l VAX
instruction set and runs under the VMS and
ULTRIX operat ing systems. In add it ion . the
VAX 8600 CPU provides higher performance
and re l i a b i l i ty t h a n i t s predecessor , t h e
VAX- 1 1 /780 CPU .

In this context, the performance improve
ment factor needs to he clearly defined to avoid
the confusion that usua l ly arises when discuss
ing performance. First. let us define a given
program's improvement factor as the t i me i t
t akes to e x e c u t e t h a t p r ogram o n t h e
VAX- I I /780 CPU divided by the t ime t o exe
cute on the VAX 8600 CPU. The VAX 8600
CPU's "true" measure of performance improve
ment is then the average of such improvement
factors over all programs. Since the universe of
all prog�:ams is too large , one has to sel ect a
proper subset of favorite benchmarks for the
comparison . This subset of benchmarks can be
label led as the constant unit of work (CUW) .
and i ts selection is often the reason for contl ict
ing reports in articles on computer pe rform
ance . The execution t ime of this C rw in our
model is the product of three quantit ies: the
nu mber of instructions, the average number of
cycles per instruction, and the cycle t ime of the
machine under eva luation .

24

The performance goa l of the VAX: 8600 pro
ject team was to reduce the average nu mber of
cyc les per i n s t r u c t i o n from 1 0 (i n t h e
VAX- 1 1 /780 CPU) t o 6 , a n d also t o reduce the
cyc l e t i m e of t h e m a c h i n e fr o m 2 0 0
nanoseconds (in the VAX- 1 1 /780 CPU) to 80
nanoseconds. In order to achieve the goal of
red ucing the cycle time of the machine, custom
ECL gate arrays and standard 1 OK ECL logic
were u t i l ized throughout the design . This tech
nology im proved the performance by 2 Y1

t imes. The remaining performance gain of l Y2

t i mes was achieved by reducing the average
number of cycles per instruction through the
use of a four-stage pipel ine . This pipe l ine is
capable of overlapping the fetching of instruc
tion stream data with the decod ing of instruc
tions, the prefetching of operands from mem
ory, and the execution of instru ctions. In the
VA.'\:- 1 1 /780 CPC, on the other hand, the stages
for the operand address ca lculation, operand
fetch, and operand write are al l merged into the
execu tion stage . In the VAX 8600 CPU, up to
four s imultaneous instructions can be in several
stages of execution at any one t ime .

The remainder of th is paper i s organi zed as
fol l ows . First , a l im ited description of the VAX
instruction set is presented. Then , an overa ll
descri ption of the VAX 8600 CPU in ternal
organ izat ion is prov ided to fa m i l iarize the
reader with the general environment of the

Di�ita/ Tecb11ical jounwl
No. I A IIJ!,IISI I 'HI'i

topic . Here definit ions are given of the con
cepts, mechan isms, and build ing blocks t hat
wil l be referenced in the examples of the pipe
l ine mode l . Further on, an abstract model of
pipe l i nes is introduced and a description of the
VAX 8600 CPU i n terms of such a model is
presented . Finally, the deta ils of the internal
organization of the instruction unit (I Box) and
its assoc iated control structure are presented,
including an exam ple of a section of code flow
ing through the pipel ine .

The VAX Instruction Set
The VAX architectu re 1 has a rat her rkh and
powerfu l instruction set . Each i nstruction, in
genera l , cons ists of one byte of opcode, option
ally fo l lowed by one to six operand specifiers .
These specifiers can represent the access ing
scheme for an operand , the displacement in a
branch instruction, or the target address in a
ca ll type of instru ction . The data type and usage
of each specifier is derived from the opcod e .
There are also two-byte opcodes for m u ltipreci
s ion floating point operat ions , instruction set
extension, and user-defined o pe rations. The
instruction set is standardized so that each VAX
implementation is able to execute the same
software i mage as we l l as the same o perating
system environ ment . This compatibi l i ty is t he

I
I

' Mam
Memory

...
Address EVA

0 at a !
IVA

I
M Box I Box

MD bus

A bus

1-
1/0

basic goal for a l l VAX implementations, includ
ing the 8600 .

The VAX 8600 Environment
Functional ly, the C PU (Figure I) consists of
four separate m icrocoded un its for memory and
1/0 (M Box) , for instruction fetches and prepa
rations (I Box) , and for instruct ion execution
(E Box and F Box) . The F Box is a coprocessor
for high-speed floating point execution. These
subsystems and their interconnecting buses are
now described .

M Box - The Center of ,\),stem
Co m m u n icatio n

The primary pu rpose of the M Box is to l i nk the
main memory, the cache, the CPU ports , and
the I/0 subsyste m . In this capacity, t he M Box
is the commu n ication center at the system
level .

The M Box conta i ns a physical cache for
instructions and data and a virtual address trans
lation buffer (TB) . It :l'lso has excl usive access
to t he m e m ory array . These resources are
accessed by three fixed-priority CPU ports and
an I/0 port , as shown in Figure 2. The M Box , as
the system communication center, must con
tend with several concu rrent activit ies requ ir
ing c o m m u n i cation services . To cope with

Console

C bus

E Box

OP bus

F Box

W bus

Figure I VAX 8600 CPU Organization

Di�ital Techtlica/ jounwl 2 ') No. I A ugust 1 985

New Products

The VAX 8600 I Box, A Pipelined Implementation of the VAX A rchitecture

CPU

r - - - - - - - - - - - - - - - - - -,
Low I Priority I buffer v

Port I

I
I

B
I buffer A I

Medium
Priority D Operand I I I Port v

A I IMD
Htgh

D I Priority

E Box lv I
Port t M

a
I EMD

� I
I

L - - - - - - - - - - - - - - - - - J

IVA bus _) v
I

EVA bus

)
MD •bus

M Box

ll

I

A
"

A
"

<
SBI

�f
A bus \ SBI

Adapter ..

Array Data � vi Memory
Array Address "

Array

-,/1

Figure 2 Port Organization

these nu merous requ i rements, the M Box is
heav i l y m i crocoded a n d occas i o n a l l y cal ls
upon E Box m icrocode to assist w i t h some
memory management fu nctions. The M Box has
the capabi l ity of queu i ng a nu mber of memory
requests from both the i nstruction fetch and
execution u n i ts . Both the I Box and E Box can
request M Box service through their own mem
ory ports and buses .

A more deta i led descript ion of the M Box can
be found in reference 2 .

I Box - The Heart of the Pipeline

The primary purpose of the I Box is to cont i n u
ously feed m icrocode dispatch addresses and
operands to the E Box and F Box so that they
may execute the VAX i nstruction set . To do
that, the I Box must prefetch the i nstruction
stream from the M Box and then i nterpret i t :
parse t h e speci fiers , fetch t h e operands and
b u i l d the d i spatch address (Efork) fo r t h e
E Box . Three of t h e four pipe l i ne stages, i nc lud
ing a m icrocoded operand address ca lcu lation
engine, are used to implement these fu nctions
at high speed . Extensive control logic is needed
to synchron ize the tlow of data and control
through t he pipe l i n e . Furthermore , the I Box
contains the logic to maintain the many pro
gram c o u n t e rs repres e n t i n g t h e d i ffe r e n t
i nstruct i ons e xecu t i ng concurre n t l y i n the
pipe l i n e .

26

The v i r t u a l o w n e rs h i p o f t h e p i pe l i ne ,
i n c l u d i ng the crit i ca l E Box dispatch i nterface ,
the control of most of the C PU-to-M Box i nter
face , and the mainte nance of the program coun
ters, makes t he I Box the heart of the pipel ine
and the object of much of the complexity of the
VAX 8600 CPU.

E Box and F Box - The Essence of the
VAX A rchitecture

I n genera l , the E Box and F Box consume the
d ispatch addresses and operands set u p by the
I Box and perform only the operations as speci
fied in the opcode of a macroinstruction . In t h is
way, these boxes are isolated from memory
access and freed from specifier eva luation and
operand fetch i ng. They can thus be optim ized
for hi gh-speed execution . The E Box a lso per
forms the secondary function of managing the
boundary cond i t ions for both the hardware
(mach-ine checks, such as s i ngle- and double-bit
memory errors and parity errors) and the VAX
arc h i tecture (i n terrupts and exceptions) . I n
part icular , most memory management bound
ary condit ions are handkd by the E Box . TB
misses, page fau l ts and access violations, page
crossi ngs and unal igned E Box memory refer
ences are detected by the M Box but are a U
serviced by the E B o x . I n t h is respect, t h e exe
c u t i o n u n i ts arc the essence of t h e VAX
arc hi tectu rc .

DiJ!.ital Technical jounral
No. I A ugust 1 985

System Buses

There are a nu mber of i nternal buses that are
key to t he organization of the VAX 8600 CPU

and to understand ing i t . These i nc lude the
fol lowing:

1 . IVA bus-1 Box virtual address bus, which
carries virtual addresses from the I Box
to the M Box during i nstruction fetch ,
o p e r a n d fe t c h , a n d I B o x - w r i t e
operations

2. M D bus-Memory data bus, w h i c h carries
data for both reads and wri tes to the
M Dox subsystem

3 . OP bus-Opera n d bus, w h i c h carries
operands from t he I Box to the E Box and
F Box

4 . W bus-Write bus, which carries resu lts
from the execution units to memory (via
t he I Box) or to t he general purpose reg
isters (GPRs)

5 . EVA bus-E Box v i rt u a l address bus,
which carries virtual addresses from the
E Dox to the M Box during E Dox operand
references and certai n memory manage
ment routines

6 . A bus-IjO bus, which interfaces t he C PU
to the I/0 subsystems

So far we have briefly i ntroduced the funda
mental bu i ld i ng b locks of the VAX 8600 CPU.
We will now analyze i t from the more abstract
leve l of i ts m icroarchitecture , t hat is, i ts pipe
l i ne structur e . To t h is end, a model of pipel ines
is first deve loped.

The Pipeline Model

Pipe l i ned computers are not new. From the
early days of the I BM Stretch� and the I DM
360/9 1 .; to the scalar units of the CDCs and
CRAY' machines, pipeli ning has been a proven,
i f expensive, method for performance en hance
ment . Such enhancement is ach ieved by replac
ing t he sequential execu t ion of each i nstruc
tion step in a s ingle functional unit , with the
concurrent execution of some or all steps in
multiple fu nctional units .

I n m os t V o n N e u m a n n processors , t he
instruction fetch and decode functions are per
formed sequential ly in t he only "stage , " the
execution unit , which is also the entire CPU. A
typical example is the PDP- 1 1 system , in which

DigilaJ TecbtliC£11 journal
No. I A ugust 1 ')85

the concurrency is m icroprogrammed . (See
Figure 3 a .)

Most exist ing VAX i m p l e mentations have

added a stage for i nstruction prefetch, t hus

red u c i ng the i nstruction fet c h l atency; the
prime example is the V AX- 1 1 /780 CPU . (See
Figure 3 b .)

The VAX 8600 C P U is the first implementa
t ion of t he VAX arc h i tecture that separates
instruction preparation (for e xample, effective
address calculat ions and operand fetches) from
i nstruction execution i tself. (See Figure 3 c .)

The significance of t he VAX 8600 design l i es
i n the successful resolution of the implementa
tion difficu lties t hat stem from the combined
complexities of t he VAX arc hi tecture and the

Figures 3a PDP- I / Instruction Execution

I Instruction
Address

lnstruct•on
Fetch

l lnstructton
Decode

Operano
Address

Figure 3 b The VAX- I I j780 Instruction

Pipeline

'
l

lnstrucloon '
Address

lnstruch.on
Fetch

InstructiOn
Decode

Operana
Address

ore���d

I
I l lnstruct•on

, E)(ecution

Result
Store

Figure 3 c The VAX 8600 Instruction

Pipeline

I

2 7

New Products

The VA X 8600 I Box, A Pipelined Implementation of the VAX A rchitecture

pipe l i ne approach : the more complex an archi
tectu re (that is , the greater the control and data
dependencies) , the more diffi c u l t it is to pipe
line i t .

W h i l e t h e basis and fu ndamentals for such
designs can be found i n references 7 and 8, and
a more recent pipe l i n e model is discussed in
refe rence 9. we p rese n t h e re a s i m p l i fi e d
model for the pu rpose a n d scope of this paper.
The n , using such a mode l , we descr ibe the
VAX 8600 pipe l i n e .

An Ideal Pipeline Model

In t h is sect ion we defi n e a s imple model of a
pipe l i n e . Examples from the section on the
S i m p l i fi e d VAX R 6 0 0 P i p e l i n e M o d e l ,
described later i n this paper , are used to i ilus
trate the abstract concepts presen ted i n t h is
sect ion .

Let us defi ne a pipe l i ne stage , depicted i n
figure 4 a , a s a n entity with fou r fu ndamental
attributes : fu nction, hardware residency, prece
dence . and the n u mber of stage e l ements.

The Ju nctio n of a stage is usua l ly an i nput
b u ffe r , an o u t p u t b u ffe r , and a m a p p i ng
between the two. for example, the fu nction of
the operand access u n i t (OAU) stage is to com
pute an operand effect ive address , fetch i t from
the M Box, and then load i t i nto the output
buffer , the I Box memory data (I MD) register .

The hardware residency of a stage is where it
resides i n the hardware . For example, the OAU
stage res ides in the I Box hardware .

The precedence of a stage is i ts posit ion i n
t h e sequence o f stages. This precedence i s fi xed

and means t hat the i nstruct ion decode stage , for
example, is a successor of the prefetcher stage .
Note that the precedence relation is a l ogical

concept and not a p hysical one . For example,

a l though the memory write fu nction of the exe
cution stage is part of the last stage of the pipe
l i n e , i t shares resou rces with the OAU stage .

F inal ly , a stage fu nction is impleme nted by
one or more elements. Under optimal condi
t ions. an element processes an i tem i n one
physical cycle . H owever, more than one physi
cal cycle may be needed when the fu nction that
the dement implements is a complex one, or
when t h e e l em e n t has t o wa i t for c e r t a i n
resou rces .

Let us now define a few concepts that are key
to the understanding of the pipe l i ne m ode l .

The logical ()Jc/e o f a stage i s t h e n u mbe r of
physical cyc les needed to process an i te m .
Coder opt imal cond i tions, t h is n u m ber is usu
a l ly the same as the n u mber of e leme nts i n the
stage . The reason for this distinction between
l ogical and physical cycles w i l l become appar

ent with the fol l owing examples.

I . In t he first exa m p l e , t h e OAU stage
processes a s imple specifier , such as reg
ister defe rred mode (Rn) . In this case,
one l ogica l cycl e equals two p hysical
cyc l e s : o n e to compute the operand
address and another to fetch the operand
i tsel f.

2. As a second exampl e , consider aga i n the
OAU stage 's process ing of a complex
spec i fier , such as longword displ ace
ment defe rred i ndexed, @LD (Rn) [Rx] ,
with a cache m iss i n the i n d i rect refer
ence . In such a case , one l ogical cycl e
w i l l e q u a l N physical cyc les, where N i s

d i rectly dependent on the state o f vari

ous system resou rces.

I 1;

�e- �e- �e- I
____.. f-- r� '

Stage

28

(the "raw matenals · ·
t o the stage)

y
Output
Buffers

(the "finished product"
of the stage)

Figure 4a A n Ideal Pipeline Model

y
Stage

FunctiOn
Transport

Digital Techuical jounml
.Vo. I A ugust I 'J85

A pipeline is a sequence of stages connected
by " t ransport" mechanisms, wh ich move an
i tem from the outpu t buffer of one stage to the
input buffer of the next. Except for the first and
last stages, such a structure can be parti t ioned
into a curre n t stage , a l l its precedent stages , and
all i ts subsequent stages . One can a lso define
the predecessor stage as the immed iately pre
ced i ng stage , and the su ccessor as the one
immediately fol lowing.

What has been d e s c r i b e d so far i s t h e
datapath o f a pipel i n e .

Con trol of the Ideal Pipeline

The datapath of the pipe l i n e model just d is
cussed is a somewhat s i m p l e concept that
be l i es the com p l e x i ty of the m ec h a n isms
needed to control i t . I n the ideal case shown in
Figure 4 a , the relatively simple synchron ization
is based on " l ocal contro l " and is i mplemented
by the sta l l cond i t ions defined below.

Local control is defined as the control of a
flow of i tems through the pipe l ine by flags that
are transported together with the i tems. These
are the va l i d flags of the i nput and output bu ff
ers. The two basic operations of load i ng and
dra i n ing can give such flags the val ues of e i ther
"empty" or " fu l l . " These two va lues arc ca l l ed
also " i nva l i d " and " val id" respectively.

Load ing occu rs at the completion of a logical
cycle , when a stage writes an item into i ts out
p ut buffer and sets the buffer's val id flag to fu l l .

Dra i n i ng occurs a t the begi n n i ng of a logical
cycle , when a stage reads an item from i ts i nput
buffer and sets the buffer's va l id flag to empty.

Depending on the operation and on the val
ues o f these flags, one o f two sta l l conditions
can occur.

1 . An input sta l l takes place when the val i d
flag of t h e i nput buffer is empty and the
stage wants to dra i n it. Then the stage
must avoid l oading the output buffer ,
si nce i t wou l d be loaded with i nval i d
data .

2. An ou tput stal l takes p lace when the
va l id flag of t he output buffer is fu l l and
the stage wants to load i t . The stage must
then stop to avoid data overru n .

Even i n the case o f a n ideal pipe l i n e , an
important performance issue is that of e lastic i ty
of the pipe l ine . Elasticity is the a b i l i ty of t he
pipel ine to del iver results at fu l l bandwidth i n

Digillll Technical journal
No. I A ugust I <JR 'l

spite of i ts i rreg u l a r i ty . I rregu larity resu lts
when different stages i n the pipe l i n e have logi
cal cycles of d i fferent du rat ion; hence the t ime
to process an i tem i n each stage is variabl e .

Rigidity. t he rec iprocal o f elasticity, mea
su res the dependence of a stage on the stal led
state of another stage . I n other words, the rigid
i ty is related to the speed w i th which the stall
flags " r i p p l e " through the stages, in e ither
d i rect i o n . Rigidity is cou nterproductive i n that
i t st ifles concurrency. For t hat reason , extra
b u ffering is someti mes used; this a l lows a stage
to execute even if some ou tput buffers are
a l ready fu l l , thus reducing output stal ls . This
also means that t he i n put buffers to the succes
sor stage w i l l be able to be " preloaded," thus
reducing i nput stal ls as wel l .

H owever, s i mple FI FO extra buffering may
i ntroduce the negative effect of i ncreasi ng the
pipe l i ne laten(y (that is , the number of physi
cal cyc les needed by an i tem to t ravel through
the entire pipel ine) . This e ffect can be m i n i
m i z e d by t h e u s e of " bypass " c i rc u i try, as
described in refe rence 9, at the cost of a signH·i
cant amount of control complexity. To m i n i
m i ze s u c h complexity , o n e c a n reduce t h e
number o f i nput a n d output buffers i n a stage to
just one output buffer. I n this case the s i ngle
stage buffer fu nctions both as the output buffer
of that stage and as the input buffer of the suc
cessor stage . The VAX 8600 design is very close
to t h is model .

A Model with Pipeline Dependencies

A l l pipel ine models have e mbedded, via the
precede nce attribu t e , the "trivial" depe ndency
of a stage ; that is , i ts dependence on the output
buffer of i ts predecessor stage . H owever, a
more rea l ist ic pipel ine model (see Figu re 4 b)
must i nclude nontrivial dependencies as we U ,
that is , dependencies of a stage o n other than
the output buffer of i ts predecessor stage . Such
dependencies can be class ifi ed accord i ng to
their type (data or control) and d irection (for
ward or backward) .

A stage has a data dependency i f i t needs data
val u es produced by a stage other than the pred
ecessor stage . For exampl e, the OAU stage must
wait unt i l the E Box has u pdated a GPR before i t
can use that G P R i n t h e address calcu lation, as
shown i n Figu re 4 c .

A stage has a control dependency if i t needs
control produced by a stage other than the
predecessor stage . For example, the OAU stage ,

29

New Products

The VAX 8600 I Box, A Pipelined Implemen tation of the VAX A rchitecture

Bus

Resource
Dependency

Control
Dependency

(Branch Condition Codes)

Figure 4b Pipeline Dependencies

- Prefetcher
Stage

I

OAU
Stage

GPR

.. .. Execution
Stage

I
-

W bus W bus

v v J v
I � - � I _,. I I � I

� ' .� v� � � � � I /�\ �
0 v--, � v� <(�- � laddr � t-- lfetch Decode - ACU � rwA

Opfetch E Box t-- Memory
Wr i te 1'--/ r-..,_,-� £ i'---1 '-:-1 '-r-1'

bus
i'r-1 1'':-./ bus � - � -"' I 1l

I 0 ll . ;! c E g 0

�
'6

I I 8 h I I I
IVA bus MD bus IVA bus

MD bus MD bus MO b EVA bus IVA bus us

r M Box J

Figure 4c Simplified VAX 8600 Pipeline Model

which also processes branches, m ust wait unti l
the E Box has generated the condition codes for
the instruction preceding the branc h . Once the
condi tion codes are set, the OAU can resolve
the branch, as shown in Figu re 4 c .

Each o f these dependencies can operate in a
forward or back-ward direction . I n a backward
dependency, a p iece of a data or control i tem
affects a precedent stage . E ither example for
the control or data dependency i l lustrates the
point. In a forward dependency, a p iece of a

30

data or control item affects a subsequent stage .
An example is the I Box-write address depen
dency, which is described in the next section .

In addition to the above, there are resource
dependencies, which occur when a stage needs
to use a resource shared among many stages .
The memory i n the M Box, for exam ple, is a
resou rce s hared by t hree of the VAX 8600
stages.

All of these dependencies make the imple
mentation of a pipel i ne more difficult than in

Digital Technical jounwl
No. I A ugust 1985

the ideal case . However, they sometimes a l fow
a more efficient global control of the pipe l ine.
This is the control of the flow of i tems through
certain stages by key flags that are broadcast by

another stage . Note that this mechanism oper
ates in conjunction with the local control .

I n the next section the concepts just intro
duced will be used to represent the VAX 8600
CPU in terms of the s imple abstract pipe line
model just described.

The Simplified VAX 8600 Pipeline
Model

A simpl ified model of the datapath port ion of
the VAX 8600 pipel ine is shown in Figu re 4c .
I n th is model the F Box is not shown, as i ts
locus of control is very s imi lar to that of the
E Box . This four-stage design has two fu nda
mental resource dependencies, which embody
much of the logic to contro l the pipe line : the
M Box , which is used by the i ns truct ion
prefetch (prefetcher) stage and sometimes by
the OAU and execution stages; and the GPRs .
which are used normally by the OAU and exe
cution stages.

Before discussing the simplified model , let us
fol low an instruction as it goes through the
pipel ine .

At the beginning of instruction processing,
assu me that a l l the I Box buffers arc invalid . In
this case the E Box dispatches the instruction
prefetchcr at t h e new ins tru c t ion stream
address . The prefetcher stage starts prefetching
and load ing instructions into the i nstruction
bu ffer (!buffer) . This is actual ly a simpl ifica
tion; the detai led mechanism is described in
the Instruction Pre fetch sect ion. The i nstruc
tion decode stage , ca l l ed the decode stage,
drains the Ibuffer and from the opcode gener
a t e s a d i s p a t c h a d dress (n ot shown i n
Figure 4 c) for the E Box microcode . The oper
and address calculation uni t (ACU) element in
the OAU stage parses the operand specifiers and
computes their effective addresses, in the pro
cess reading and possibly modifying the GPRs
(e.g . , autoincrement mode , (Rn)+) . The oper
and fetch (O pfetch) e lement fetches these
operands at that effective address and passes
them to the E Box . The E Box then executes the
instruction i t was dispatched to ; in doing so, if
the destination is a register, i t dra ins the oper
ands and writes the result into the GPRs . If the
desti nation is memory (and only in that case) ,

Digital Technical journal
No. I A ugust I 'J8'>

the memory write (Mem-write) el ement is
used. It takes the resu l t data from the E Box and
writes it to memory via the operand port (see
Figure 2) at the address forwarded by the ACU
e l eme n t . Such a mechan ism is ca l led an
I Box- write.

Let us now look at each stage of the pipe l ine
of Figure 4c i n more deta i l .

The prefetcher stage i s composed of the
instruction address calculation (Iaddr) e lement
and the instruction fetch (Ifetch) element. The
Iaddr element compu tes the next value of the
virtual instruction buffer address (VI BA) regis
ter and issues an Ibuffer request . The Ifetch
element fetches a longword from the address
pointed to by the VIBA register and loads it into
the !buffer. The prefetcher stage resides in the
I Box. Its logica l cycle lasts two physical cycles
in the case of a cache hi t , or N physical cycles
otherwise , where N depends on the memory
access delay.

The decode stage i s composed of only one
e lement and i ts logical cycle always lasts one
physical cyc le . I t decodes opcodes and specifi
ers from the Ibuffer and loads control data into
the Ifork buffer (the !fork wi l l be defined in the
I nstruction Decode section) and instruction
stream data into the data mul t iplexer (Dmux)
buffer . The I fork and Dmux buffers together
form the output buffer of the decode stage. The
decode stage resides entirely in the I Box .

The OAU stage is composed of the ACU and
Opfetch elements . The ACU element computes
an operand effective address, loads it into the
virtual address (VA) register, and issues an
operand request . The Opfetch element fetches
the operand from the M Box and loads it into
the I Box memory data (IMD) register. The OAU
stage also fonvards the VA to the Mem-write
e lement . Note that this stage can contain two
instructions at any given t ime . The OAU stage
resides in the I Box, and i ts logical cycle lasts a
minimum of two physical cyc les.

The execution stage is com posed of the E Box
and the Mem-write e lements . The E Box ele
ment executes instructions and stores resul ts
into either the GPRs or the write l atch for mem
ory writes . In the latter case it init iates an I Box
write command . The Mem-write element actu
ally performs the write operation :J.t the address
fonvardcd by the VA register in the OAU stage .
The execution stage resides in the E Box, F Box,
and part ial ly in the I Box for memory writes . I ts

3 1

New Products

The VA X 8600 l Box, A Pipelined Implementation of the VA X A rchitecture

logical cycle l asts a mmtmum of one physical
cycle; for example, in the case of register dest i
nation i nstructions, such a s MOVL (Rx) , Ry . I t
w i l l last at least three phys ical cyc les i n the
case of memory destination i nstructions , such
as MOVL Rx , (Ry) , or even l onger in the case of
complex i nstructions.

I n the s impl ified model each stage has only
one output buffer, which fu nctions also as the
input buffer of the successor stage . Thus a dra i n
operation is i m p lemented a s an i n terstage dra i n
signa l . Note that i n this case the elast icity of t h e
pipel ine is reduced to a m i n i m u m . I n the worst
case, if the pipe l i ne is fu l l and the last stage
sta l ls , then a l l the stages in the pipel ine w i l l
sta l l .

Moreover, s i nce a sta l l condit ion must be
detected before loadi ng the output buffer, the
output sta l l condit ion is more stringent i n cer
tain cases, as defi ned below , than the one i ntro
duced earl ier. The output sta l l is here defined
as a condit ion in which the va l i d tlag of the
output buffer is fu l l and the stage wants to •oad
i t , AND the successor stage is not d ra i n i ng i t .
This means t hat the stage w i U sta l l less fre
quently. H owever, note that the input sta l l con
d i t ion remains the same as defined earl ier .

I n such a model there arc some i nteresting
examples of nontrivial dependencies.

• The prefetcher stage has two backward con

tro l depende n c i e s , t he decode and OAU
stages, that affect the I buffer requests to the
M Box. The issuance of such requests by the
prefetcher stage requ i res the knowledge of
the va l i d ity of the decode stage's output
buffer and also whether or not the OAU stage
is dra i n ing i t . These two dependencies arc
fu ndamental because they take the place of
the prefetcher stage 's trivial dependency on
i ts predecessor stage , which docs not exist .

• The OAU stage has a back-ward data depen
dency, the execu tion stage . that affects i ts
abi l i ty to resolve branches . The OAU stage
must wai t for the con d i t ion codes from the
E Dox, after completion of t he i nstruction
preceding a branch, i n order to resolve it and
start prefetch ing at the target address.

• The e xe c u t i o n stage has a forward data
d e p e n d e ncy, the OAU s tage , when they

together execute an I Box-write comman d .
I n t h i s case t h e OAU stage forwards t h e desti
nation address to the Mcm-write element (as

3 2

far a s hardware is conce rne d , the address
stays in the VA register) . When the ACU takes
m a n y cyc l es t o c o m p u t e t h e e ffe c t i ve
address, the E Box may have to wait for the
d isposi ng of the data .

The VAX 8600 I Box

The three pipel i ne stages residing i n the I Oox
are p hys i c a l l y c om posed of t h e fo l l ow i n g
structures:

• An i nstruction prefetch stage (prefetcher in
Figure 4 c) , which prefetc hes the i nstruction
stream for the Ibuffer . (This stage is a lso
u s e d t o fe t c h s t r i n g d a t a i n s t r i n g
i nstructi ons .)

• Decod i ng l og i c , which produ ces d i spatch
addresses , based on opcode and i ts specifi
ers, for t h e operand address calcu lation u n i t
m icromachine a n d t h e E Box. (This is the
decode stage as defined in the p i pe l ine
mode l .)

• A m i c r o m a c h i n e , c a l l e d t h e A C C
m icromach i n e . which i m plements the fu nc
tiona l i ty of the OAU stage and part of the
M e m - w r i te c l e m e n t . (T h i s fu n c t i o n a l i ty
i ncludes operand address ca lculations, oper
and fetches and resu l ts writes .)

N ot ice t hat part of the Mem-write c lement
resi des in the I flox . This part mainta i ns the
me mory write address for resu lts operands and
shares respons i b i l i ty with the E Box element to
perform the actual resu lts write .

Furthermore . the I Uox mai n ta i ns the fol low
ing items:

• Progra m c o u n ters for t ra c k i n g d i ffere n t
i n stru c t i o n s b e i ng executed at d i ffe re n t
stages i n t h e pipdine

• A l ocal copy of the G PRs for operand effec
t i ve a d d ress c a l c u l a t i o n s a n d o p e ra n d
sourc ing

• A register scoreboard for reso lving register
access contl i cts

• A register l og (R l og) for register state restora

t ion during exceptions and i n terrupts

• A branch decision mechanism

• Con trol m e c h a n i s m s to synchro n i ze t h e
pipel ine

Digital Technical journal
No. I A ugust 1 ')8 5

The importance of the VAX 8600 I Box l ies in
the many functions it has to perform and the
extensive controls required to correctly syn
chronize all four stage s of the p ipeline.
Figure '5 depicts the datapath of the I Box. The
following sections describe the functions of
many of its features.

Instruction Prefetch

The prefetcher has an eight-byte Ibuffer and
associated addressing and control logic. I t
attempts to initiate a prefetch whenever an
"empty" byte is detected inside the Ibutkr .

The V I BA register contains the next address in

GPR

Micro
sequencer

and
Slall

Conlrol

W bus

PC

Displacement · lmmedtate
Conlexl

IMD

VA

MD bus

D1splacemen1
Conlexl Address

the instruction stream tO be fetched from.
Prcfetch request addresses share the I VA bus
with the ACU via the Ibuffer port and operand
port respectively. (See Figure 2 .) Since an oper
and fetch is a result of executing an already
decoded instruction, it has a higher priority in
using the IVA bus. Prcfetches, on the other
hand, can be postponed and thus have lower

priority.
The memory subsystem queue can accept a

second prefetch even if a previous prefetch is
still in progress. This mechanism results in bet
ter utilizat ion of the available memory
bandwidth. Data received through the MD bus

OP bus

ESA

ISA

CPC

Figure - VA X 8600 I Box Datapath

IJigital Technicai.Jounwl 3 3 No. I August / ')8 5

New Products

The VAX 8600 I Box, A Pipelined Implementation of the VAX A rchitecture

is loaded into the appropriate location inside
the !buffer . The VI BA register is updated to
form the next address whenever a prefetch
request is accepted by the M Box.

During a cold start, after an exception, or for
certain branches (such as the CASE instruc
tion) , the prefetch sequence must start from a
new instruction address . In this i nstance the
E Box places rhe new address on the W bus and
dispatches the ACU m icromachine to an I Box
startup sequence. I nstead of loading t he address
to the VIBA register and starting the prefetching
process, the ACU micromachine init iates two
consecutive requests before handing the con
tro l of the prefetching process over to the
prcfetcher stage .

For some instructions requ i ring stream data
(e .g . , character string instructions) or a stream
of operands (e . g . , t he popping of t he G P Rs
from the stack in the RET instruction) to be
read consecutive ly from memory in their exe
cution, the !buffer becomes a high-speed data
buffer supplying operands to the E Box through
the OP bus.

Instruction Decode

I nstru ction decod ing in the VAX 8600 CPU is
s imi lar to that in the VAX- 1 1 /780 CPU, in the
sense that the operand specifiers are decoded
se q u e n t i a l l y . W h e n t he I b u ffe r c o n t a i n s
prcfetched instructions, byte zero conta.ins the
opcode of the current i nstruction, and byte one
the first byte of the specifier currently being
decoded . An instruction is decoded by look ing
u p information from a decod ing RAM (D RAM) ,
which is organized as an array of 5 1 2 b locks ,
eac h of which has eight entries. Each entry is
addressed by its block and entry index . The
opcode byte plus an extended opcode, if there
is one, wi l l address the block. The execu t·ion
point counter (E PC) , which is a pointer indi
cat ing the posit ion of the current specifier in
the instruction, wiH select the particular entry .
The output of t he DRAM consists o f information
s pe c i fy i n g t h e data context (byte , word ,
longword, etc.) , data type (address, in teger and
different floating point formats) , and accessing
mode (such as read , write or modify) for each
spec ifier. It also provides the Efork dispatch
add ress to the E Box.

After each spec ifier decode, the !buffer shifts
out the consumed specifier and shifts the next
specifi e r i n to the decod i ng pos i t ion . The
decode stage also increments the EPC so that

3 4

the new decode points to the next DRAM entry.
The output of the DRAJvt plus data extracted
from the specifier field in the !buffer, such as
GPR information and l i tera l value, is buffered
for the OAU stage .

Using the specifier byte during decod ing, a
d ispatch generation mechanism creates a d is
patch add ress , c a l led I fork , for t h e ACU
micromachine. This process wi l l continue unti l
the last specifier of the i nstru ction is decoded
and consumed . (A bit in the DRAM output wi l l
ind icate such an occurrence .) When this hap
pens, the lbuffer shifts out byte zero and the
last specifier, thus al lowing a new instruction
to be shifted i n .

To clarify t h e concepts above , note that an
Efork dispatch is generated from the opcode.
The dispatch is t hen given to the E Box to point
to the E Box m icrotlow that implements that
instruction's a lgorithm. A simi lar mechanism is
used to process speci fiers . An lfork dispatch is
generated from each specifier and is given to
the ACU m i cromachine to point to the AClJ
microflow that i m p l ements that specifier 's
algorithm.

The A CU Micro machine

W i t h reference to the s i m p l i fied p i p e l i n e
model (Figure 4 c) , t he ACU , Opfetch , and
M e m - w r i t e e l e m e n ts a re d e s c r i b e d h e re
together . I n this way, their fu nctional i ty and
synchron i zat ion mechan isms can be better
understood . The ! fork saved in t he decode stage
provides the entry to the proper microsequence
routine in the ACU m icromachine. Us ing the
buffered D RA.t\1 and specifier data , t he ACU
micromachine performs the necessary compu
tations to calcu late the effective virtual address,
and to init iate operand reads from memory or
from the G PRs , if necessary . A copy of the
GPRs, which is also called a GPR fi le , is main
tained in the I Box so t hat register access can be
done loca l ly , which is faster. This a lso al lows
s imultaneous register accesses (reads) by the
I Box, E Box, and F Box.

For an operand t hat comes from a register
sou rce , data read from the G P R fi l e , after
passing t hrough t he AClJ adder, wiH be 'loaded
into the I Box data (I D) register. I m mediate
data , which comes from the Dmux buffer i n
t h e decode stage , takes a sim i lar route through
t he u n pack logic to t he same 10 register .
The operand data is t hen ready for the E Box
via the OP bus . The unpack logic is used to

Digiltll Technical journal
No. I A ugust 1 985

convert fixed point short l itera ls to a float ing
point format .

For an operand fetch from memory, the ACU

micromachine loads the operand effective vir

tual address from the adder into the VA register

and issues an operand fetch request through the
IVA bus. The I M D register holds any operand
data returned from the M Box before forwarding
it to the E Box through the OP bus. I f the
addressing mode is indirect (e .g . , autoincre
ment deferred) , the returned data in the I MD
register w i l l be the final virtual address of the
operand. Then, the ACU m icromachine loads
the IVA bus with the ! MD register data and
issues another operand fetch request . The E Box
memory data (EMD) register serves a s imi lar
fu nction , but holds memory data returned as a
result of E Box requests. Placing the EMD regis
ter physically in the I Box e l i m inates the need
for the E Box to interface with the MD bus
directly .

The ACU microsequences for many s imple
and frequently used specifiers take one cycle,
so that one spec ifier can pote n t i a l l y be
processed in each cyc l e . Some examples of
such specifiers are (a) the register mode, Rn ;
(b) the register deferred mode, (Rn) ; and
(c) byte , word , and longword displacement
modes , B" D (Rn) , W" D (Rn) and L" D (Rn)
respectively. The successfuE process ing o f a n
operand specifier in the OAU stage also loads
the earlier buffered Efork into a register accessi
ble by the E Box .

The logical cycle of the OAU stage may take
many physical cycles. This may happen if the
algori thm that implements the address ing mode
is a complex one , or if the operand fetch is
from memory and it resul ts in a cache miss . In
th is case the execu tion stage may have already
started execu ting the Efork m i crosequence,
thus attempting to read and use the source
operand , which is not yet avai lable . To resolve
this, the OAU stage provides addi t ional operand
data-val id flags .

The ACU m icromachine also issues the actual
operand write request for most instructions . In
this case the micromachine saves the calculated
dest ination address and waits unt i l operand
resu l ts are ready from the E Box . When the
results are ready, the E Oox wi l l write them, via
the W bus, into a register called the write latch,
internal to the I Box . The E Box also re leases
the ACU micromachine to issue the appropriate
operand memory write request .

Digital Technical jounwl
No. I August I 98 5

New Products

Multiple Program Coun ters

The VAX 8600 CPU maintains a nu mber of pro
gram counters for each of the instructions
under execution in the pipel ine. This is neces
sary so that i nstruction restart is possible after
an exception service sequence . The program
cou nters consist of the fol lowing items:

• Program counter (PC) , which points to the
opcode, operand specifier, and immediate
data or addresses as they are decoded .

• Cu rrent program counter (C PC) , which
points to the instruction to be executed next
in the OALJ stage . Norma l ly , th is is the
i nstruction currently being decoded .

• I Box start ing address (I SA) , which points to
the instruction being executed in the OAU
stage .

• E Box starting address (ESA) , which points to
the current i nstruction being executed in the
E Box and F Box .

The prefetcher maintains its own instruction
stream address pointer, the VII3A register, for
requests to fi l l the Ibuffer.

The updating of the CPC, I SA , and ESA hap
pens when an i nstruction enters the decode ,
OAU, and execution stages respectively. I n gen
era [, the CPC wi l l be loaded with the address of
the beginning of the i nstruction to be decoded .
The ISA wi l l be loaded with the CPC when the
OAU has started process i ng that i nstruction.
S imi larly, the ESA wil l be loaded with the ! SA
when the E Box begins to execute that same
instruction .

Instruction Backup and Un winding

I n the VAX arch i tecture , an exception may
occur during the execution of an instruction.
An example of an exception is a page fau l t on a
memory read . For most i nstruct ions the V�'(
architecture requ ires tha t the program state be
restored to what it was prior to the execution of
the instruction so that , after the exception ser
vice sequence , the same i nstruction can be
restarted . For some types of instructions, such
as the string instructions, total program state
restoration is impossible . In those cases, how
ever, enough of the state is saved and restored
so that the i nstruction can continue i ts execu
t ion from where i t was interrupted.

In the VAX 8600 CPU , the parts of the pro
gram state that must be restored consist of those

3 5

Tbe VA X 8600 I Box. A Pipelined Implementation of tbe VAX A rchitecture

GPRs that have been modified d ur i ng address
ca l c u la t i o n , a n d t h e i n s t ru c t i o n s t a rt i n g
address . Some address i n g m o d e s , s u c h as
autoincremem and autodecrement, w i l l modify
the G PRs ; such modifications are kept i n the
R l o g . D u r i n g i ns t ru c t i o n u n w i n d i ng (a lso
c a U e d i· n s t r u c t i o n b a c k u p) , t h e A C U
micromac h i ne w i l l restore the affected G PRs
from the Rlog. S i nce a number of instructions
can reside i n d i fferent stages of the pipe l i n e

s imu ltaneously, the Rlog has e nough entries to
al low register restoration for m u l t iple i nstruc
tions. The PC for the i nstruction i n question
w i l l also be restored from e ither the CPC, ISA or
ESA, depend i ng on the state of the pipel i ne
stages. This restoration mechanism is a lso used
to hand le i nterru pts .

Branch Instructio n Processing

For most branch i nstructions, the I llox also
calculates their target addresses and performs
t h e b r a n c h d e c i s i o n s . These i n s t r u c t i o n s
include cond itional (e . g . , llEQI. and flN EQ) and
u ncondi tional (e . g . , BRD) branches , as we l l as
computed branches (e . g . , ACDI. and SODGTR) .
Such decisions are made by loo k i n g a t the
appropriate condit ion code hits that result from
an execution prior to the branc h . The branch
prediction scheme used here is biased towards
branch ta'ken, which is based on measured fre
quency of branching data . Figures 6a and 6b
show a n e x a m p l e o f t h e m i c r o i n s t r u c t i o n
sequence for a branch i nstruct ion .

Cycle

I Box

Flush Pipe
Abort

CCSYNC

Condition Code

E Box

1

TSTL

2

BEOL

VA4-TA

I

Access
TSTL

/

D u r i n g a c on d i t i o n a l b r a n c h , t h e ACU
mi cromachine holds the branch target address
in the VA register and w i l l attempt to i n i t iate an
i nstruction fetch from that address before i t can
make the branch decis ion. A cond it ion code
synchronizat ion s i gn a l (CCSY N C) from t h e
E B o x sign ifies t hat the condit ion code w i l l be
ready i n the next physical cycle . I n cycle 3 ,

w h e n a C C S Y N C i s r e c e i v e d , t h e A C U
m icromachine w i l l issue t h e first request o f the
branch target i nstruction strea m . I n the next
cyc l e , when the ACU rece i ves the condition
codes, it will usc them to decide whether or
not the branch is to be ta'ke n . If the branch is
not to be take n , the decision w i l l not be 'known
early enough to i n h i b i t the i nstruct ion fetch
issued i n cycle 3, due to signal delay. In that
case a correction must be performed in cycle 4 .

A branch-taken decision (Figure 6 a) means
that the i nstruction prefetch request was cor
rect. and add i tional requests can be issued. The
I llox then tl ushes the prefetcher and decode
stages, which sti l l hold the old i nstruction data ,
and a l l ows the new i nstruction stream to be
loaded and decoded.

A branch-not-taken decision (Figure 6 b) , on
the other hand , causes an abort of the prefetch
request i n it iated earlier in cycle 3 from the tar
get address , t hereby a l l owing the prefetcher
and decode stages to resume the processi ng of
the current i nstruction strea m . 'fhere i s no pen
alty for branch-not-taken here if the current
i nstruction stream is already in the Ihuffcr ; the

3 4

Fetch Fetch

from VA from VA
VA VA VA4-VA -+ 4

V I BA4-VA < 4

�� '

Execute
TSTL

Figure 6a Branch Instruction Taken Sequence

36 Digital Tecbuical journal
No. I A ugust 1 98 5

1 2 3 4
I

Cycle

TSTL BEQL I Fetch Fetch
from VA from VA

I Box

VA-T A VA.-VA VA..-VA+4
VIBA..-VA+4

(Instruction
Noped)

Flush Pipe

II' ' Abort

....
CCSYNC

Condition Code)�" "�"

Access Execute
E Box TSTL TSTL

Figure 6b Branch Not Taken Sequence

cost of starting a new instruction stream is thus
kept at a min imum. This scheme gives a s imple,
yet effective , mechanism to handle branches .

The E Box is responsible for handl ing the
rema·ining types of branches and other instruc
tions that can alter the instruction tlow. This
includes CASE instructions , subroutine cal ls ,
and returns . The mechanism used is the same as
that described for cold starts in the I nstruction
Prefetch section .

Data DependenLJ' Resolution

The usc of pipel ining i n the I Box requires
additional mechanisms to resolve data depen
dency among instructions . Data dependency
can happen in many situations; two key exam
ples are the fol lowing:

• Regi ster confl icts , which happen when a
source operand uses a register that is also the
destination register of the previous instruc
tion . For example, in

MOVL RO , R l

MOVL (R l) , R2

the sourcing of R I by the ACU in the second
instruction must be inhibi ted unt i l the first
instruction is completed in the E llox .

Digital Technicttl journal
No. I A ugust 1 <)85

• Memory confl icts i f an out-of-order memory
access is a llowed. For example, in

MOVL RO, (R l)

MOVt (R 2) , R3

if R l equals R 2 , then the operand read for
the second instruction must be postponed
u n t i l the write in the first instruct ion is
issued. This a lso mandates that addit ional
col l ision-detection logic exists .

The VAX 8 6 0 0 I llox u s e s a re g i s t e r
scoreboard and a single operand port t o resolve
both types of confl icts . The scoreboard pro
vides a s imple reservation-table mechanism to
accompl ish t h is resolut ion. The ACU wil l enter
the G PR number to the scoreboard for every
r e g i s t e r d e s t i n a t i o n s p e c i f i e r t h e A C U
processes. For every subsequent ACU sourcing
from a GPR, the scoreboard is checked to detect
any confl ict . I f such a cont1ict exists, the sourc
ing operation is temporarily inhibited via a
scoreboard sta l l . A write to the GPR by the
E llox w i l l re mo ve t h a t G P R from t h e
scoreboard , t hu s a l lowing t h e p revious ly
stal led sourcing operation to resume. I n the
VAX 8600 CPU, the scoreboard can be looked
u p on as a two-en try assoc ia t ive mem ory
structure .

37

New Products

------- The VAX 8600 I Box, A Pipelined Implementation of the VAX A rchitecture

Figure 7 shows an example of the functions
of the scoreboard for the instruction sequence
discussed in the first example above. The func
tions performed in each cycle are described
below .

Cycle 1 The ACU is processing the M OVL
RO, R l instruction. The scoreboard at
this t ime is assumed to be empty.
The ACU reads RO and l oads the I D
register . The cycl e is c o m p l eted
without problems.

Cycle 2 The scoreboard is loaded with R l as
a result of the previous cycle . Since
cycl e 2 req u i res using R l as the
address source , the I Box control dis
covers t hat t here is a scoreboard
" h i t " on R l a n d t h e A C U
micromachine stal ls . I t wil l subse
quently attempt to execute the same
m i croi nstru ction during the next
cycle .

Cycle 3 The E Box can now execute the first
MOVL instruction , but the result wil l
not be avai lable unti l the beginning
of cycle 4 . As i n cycle 2 , the ACU
micromachine stil l sta l ls in cycle 3 .

I
Cycle 1 I. 2

MOVL RO,R1 I MOVL (R1) ,R2

I Box Read RO VA-+- R 1
ID-RO ' Read Virtual

Scoreboard R 1 Scoreboard R 2
(Cycle

Stalled)

Scoreboard Scoreboard

- - R 1

- - - -

Scoreboard Hit ��

Result Ready

E Box

Cycle 4 The execution of the first MOVL
instruction in the previous cycle by
the E Box causes R 1 to be drained
from the scoreboard. The ACU can
now continue and finishes the sec
ond MOVL i nstruction.

Cycle S The scoreboard is l oaded with R2 . A.'i
i n the earl ier sta l led cycles, the ACU
m icromachine w i l l not be able to
complete the next MOVL if the next
instruction uses R2 in operand evalu
a t i o n . In t h a t c a s e t h e A C U
micromachine w i l l sta l l unti l a write
to R2 is completed .

Memory confl i cts w i l l not happen i n t he
VAX 8600 CPU because the ACU micromachine
controls both the operand read and write for
most i nstructions via the operand port . The
micromachine is sequenced in such a way that
out-of-order memory access from the I Box is
impossible .

Certain instructions whose operand addresses
may not be known at the time of decoding (e .g . ,
bit field instructions) w i l f be handled by the
E Box. Operand fetching is done d irectly by the
E Box via the E Box port (see Figure 2) . In those

3 4 5

VA-+- R1 VA -+- R 1
Read Virtual Read Vir.tual

Scoreboard R2 Scoreboard R2
(Cycle

Stalled)

Scoreboard Scoreboard Scoreboard

A 1 - - R2

- - - - - -

' ��
� '

Execute Wait for Wait for
MOVL RO,R1 New Instruction New Instruction

Figure 7 Scoreboard Example

3 8 Digital Technical journal
No. I A ugust 1 985

instruct ions the I Box suspends i tself after t he
completion of the address calcu lation for a l l
specifiers . Any new operand fetch requests
from the operand port wi l l be inhibited by an
I Box suspension . This prevents a potential
me mory confl ict from occu rring when the
I Box attempts to read operands for the next
i nstruction whi le t he current operand resu lt
has yet to be written by the E Box .

Instruction Optimizatio ns

The I Box generates a nu mber of opti m izations
that i mprove the performance of the CPU . For
instructions using a GPR as the resu lts destina
t ion , the decode stage wil l a lso consume the
GPR spec ifier du ring the decod ing of the spec i
fier i mmediately preceding i t and present a s in
gle d ispatch address to the execution stage . I n
addition t o t h e source operand, t h e I B o x a lso
suppl ies the destination GPR address to the
E Box . The E Box will use that address to access
its local GPR fi l e . This opt i m ization removes
one d ispatch from the flow to the E Box .

Another form o f opt i m i zat ion e l i m i nates
scoreboard stalls when t he source operand is in
the same GPR to be u pdated i n the future by the
previous instruction . In this case the ACU wil l
ignore the scoreboard stal l i ng situation and w i l l
signal t h i s fact by presenting a modified dis
patch address to t he E Box. The E Box will sub
sequently access the correct u pdated GPR value
from its own local copy .

Pipeline Stage ,'i'ynchro n ization

As described earl i e r i n the section on the
VAX 8600 pipeline, interstage communication
in the VAX 8600 CPU is done through a number
of drain signals, as we l l as a few global flags.
Each stage of the pipe l i ne sets t he valid flag of
its output buffer to fu l l when data is ready. The
dra in signal i nd icates to the stage that the
buffer is going to be consumed by the successor
stage . This wil l make t he valid flag "empty . "
The global flags are general ly broadcast t o most
other stages . This interlock mechanism pro
vides the basis for the synchronization among
the pipeline stages .

Since each stage of the pipel ine may take a
varying nu mber of physical cycles to complete ,
there are , at t imes, empty or fu l l cond i tions i n
any o f the pipeline stages . An empty condition
occurs in a pipel ine stage when i t wants to
drain its input buffer while it is empty. This

Digitttl Technical journal
No. I A r�gr�sl 1 <)85

c o n d i t i o n w i l l cause a n i n p u t sta l l or a
m i c romac h i n e i d l i ng for lack of d ispatch
addresses. A fu l l condi t ion occurs in a p i pel ine
stage when it wants to load i ts output buffer
while that buffer is fu l l . This cond ition wil l
cause a n output sta l l . Other reasons, such as

resource contention, wi l l also cause idl ing or
stal l ing .

Each stage uses a different scheme t o handle
such conditions. In both the prefetcher and
decode stages, i nternal flags are ma intained to
i n d i c a t e e m p t y or fu l l c o n d i t i o n s . T h e
prefetcher stage keeps track o f t h e nu mber o f
val i d bytes in t h e !buffer and init iates a new
prefetc h , if necessary. Data removed from the
Ibuffer by t he decode stage w i l l decrease the
number of val i d bytes, whereas new prefetched
data wil l increase the number. When the !buf
fer is fu l l , t he prefetcher stage wi l l have an
output stal l (i . e . , no new prefetch requests wi l l
be issued) . The decode stage loads the output
buffer va l i d flag after each decode . It w i l l
assume a n output stall i f t he buffer i s not being
drained by the ACU element. That e lement, in
turn, can drain such a buffer during i ts execu
t ion and clear the val i d flag, t hereby al lowing
decodi ng to be resumed .

The ACU m i cromach i ne contains the most
com plicated sta l l ing and i d l i ng mechanisms in
the entire CPU. Most resource contention and
dependency conflicts, as wel l as fu l l and empty
cond i tions, can occur in that m icromachine.

There are three types of sta l l i ng and idli ng in
the ACU m icromachine.

New Products

1 . Resou rce c o n t e n t i o n a n d busy, a nd
de pende ncy confl i c t s ta l l s . Resource
contention exam ples are (a) t he simu lta
neous u pdate of a GPR by the OAU and
execu tion stages , and (b) the use of
certain buses by two resources at the
same t ime. This is best exemplified by
the register-dependency confl ict detec
tion in t he scoreboard . Another form of
t h is kind of stal l can resu l t from memory
requests not bei ng accepted due to the
M Box being busy (that is , while i t is
servicing previous requests) . A fu l l con
dition, which prevents any further pro
gress of execution, is another example .
In genera l , for t h is type of sta l l , the
m icromachine wil l suspend the execu
t i o n of t h e c u rrent i nstruct ion and

3 9

The VA X 8600 I Box, A PifJelined Irnplementalion of tbe VAX A rchitecture

resume it when the sta l l condit ion has
been removed.

2. I d l i ng and nops . Empty conditions hap
pen in the ACU , for example, when the
i nstruction decoder cannot provide a d is
patch address due to i nsufficient va l id
bytes in the !buffer . Another nop condi
tion is m icrotraps, which can be caused
by unal igned data references or by the
tlushing of the pipe l i ne . I n both cases
t h e m i cro m a c h i n e w i l l e x e c u te t he
i nstruction, i n the sense t hat a new mi cro
program counter w i l l be loaded, but
none of the pert inent machine state wHI
be mod i fi e d . In the next cyc l e t h e
micromachine w i l l normal ly execute a
n e w i n s t r u c t i o n g e n e r a t e d t h rou g h

m icrotraps or the ava i labi l i ty of t h e next
d ispatch address.

:) . Specia l stal ls . In certa i n cases i n which
the purpose of the execut ion is only to
s u p p l y d ispatches to t h e E Box , t h e
m i cromac h i ne w i l l sta l l to prevent a n
u ndesired modification o f t h e state . Part
of the state , such as Efork load ing, is st i l l
al lmved. This k ind o f sta l l occurs mosr

laddr

I fetch

Decode

ACU

Opfetch

E Box

C M P L R7.R3
BEOL A

2

A: I N C L (R 6)
MOVL R 1 . R 2 c::JJ]

3 4 5 6

often for s ingle-byte i nstruct ions without
any specifiers . I n th is case a su pertluous
d i s p a t c h a d d r e s s to t h e AC U
m i cromac h i ne is generated from t h e
spec i fier fi e ld in the !buffer, but that
address m u s t not be execu ted l est i t
mod i fy the state u n i ntentional ly . How
ever. t he d ispatch to the E Box must st i l l
be loaded and the appropriate program
counter updated .

An ExamjJle

An example is given i n this section i n order to
get a more global view of the whole process of
executing a piece of code i n the VAJ(8600

pipel i n e . The program segment, shown i n the
E Box in figure 8, employs two key mechan isms
of the design : a branch and an I Box-wri te . The
purpose of this example is to s how the fol low
ing aspects:

• The tlow of many i nstructions through the
pipel ine , including their uses of the stages ,
elements and resou rces

• l'he state of the pipe l i ne in any given phys i
c a l cyc l e , i n order to understand the i nterac
t ion among the various i nstructions active i n
the pipe l i ne

Cycle

7 8 9 1 0 1 1 1 2 1 3 1 4 1 5 1 6

Memory �--------------------------------r-�----�
Write '-----------------------------------..... ...11.-----'

2 3 4 5 6 7 8 9 1 0 1 1 1 2

Figure 8 A n T:xample of' tbe VA X 8o 00 Pipeline

4 0

1 3 1 4 1 5 1 6

Digital Tech11ica/ jounwl
No. I A u uus/ I <J8 'i

Figure 8 shows how simple instruct ions , such
as the first three in the example, flow through
the pipel ine in a straightforward way , using
only one physical cycle per element . Al l pipe
l i ne e lements are then kept busy constantly,
t h u s a c h i e v i n g the VAX 8 6 0 0 CPU peak
throughput of 1 2 . 5 MIPS, corresponding to the
pipe l ine executing one macroinstruction per
physical cycl e . Notice that in this case the
results are written to the GPRs , so that the
Mem-write element is not uti l ized . Also, simple
memory reads do not stal l the pipel ine but are
performed in only one cycle in the Opfetch
c lement . Moreover , the AClJ m icromachine
im mediately starts processing the next specifier
after having issued a memory read requ est;
related memory problems , if any exist , wi l l be
handled by the E Box .

The branch instruction that fol lows i n the
example is one in which the branch is taken . lt
is therefore processed according to the mecha
n i sm described in the Branch I n struct ion
Process ing section and i n Figure 6a. At the
beginning of cycle 8, the CMPL instruction in
the E Box sends a CCSYNC to the ACU clement,
which in turn issues an l buffer request (IDF in
Figure 8) from the branch target address (TA in
Figure 8) . This request wil l resul t in the fetch
ing of the I NCL instruction by the I fetch ele
ment in cycle 9 . Also in cycle 9 , the condit ion
codes (CC in Figu re 8) computed by the CMPL
instruction arrive at the ACU e lement, where
they determ ine that the branch is to be taken .
The ACU element then issues a "flush" com
mand to the prefetcher and decode stages to
make room for the new instruction stream .
Notice that instruction execution wi l l resu me
in the E Oox only four physical cycles after the
branc h. This is a relatively sma l l penalty for a
branch , given that the pipe l i ne latency is nor
mal ly six phys ical cycles.

The I NCL instruction that was prefctched by
the branch mechanism arrives in cyc le I 1 at the
ACU e lement , where the operand effect ive
address is loaded in the VA register. In the same
cycle a memory-read request is issued and the
operand address is kept in th� VA register unti l
the E Oox is ready to do the write . The operand
is fetched in cycle I 2 and passed to the E Oox in
cycle 1 3 . Then the E Box performs the incre
ment fu nction, sends the resul t to the Mcm
write element (into the write latch) and issues
an I £lox-write command (IBWRITE in Figure 8)
to the ACU micromachine. This in turn issues

Digital Tecbn it:al journal
,vo: I A ugust / 'JH 5

the memory-write request to the M Oox via the
operand port (see Figure 2) . The E Box waits
two extra cycles after having issued the I Box
write command in order to handle potential
memory problems, such as a page fau l t , before
the ESA register is overwri tten by ·retiring the
i nstruction. Execution of the remaining instruc
tion stream resumes normal ly in cycle 1 6 .

Summary

I n this paper, a simpl ified model of pipel ine
i m p l e m e n t a t i ons was i n t roduce d . I n t h i s
mode l , a pipeline was described as a sequence
of stages connected by a transport mechanism,
which moves an item from the output buffer of
a stage to i ts successor (i .e . , a partial ordering) .

I n connect ion with this model , the issues cru
cial to designing a pipel ine were discussed ,
specifica l ly i n reference to the imp lementation
of the VAX 8600 CPU and i ts instruction and
operand fetch uni t , the I Box . The most impor
tant of such issues are as fol lows :

I . The hand-off of items from one stage to
the next-the issue of local versus global
control

2 . Uuffering, which re lates to the nu mber
of i tems within a stage

3 . The contention for resources and associ
ated sta l l cond it ions

4 . The dependency of one stag<:' on the
activity of another stage (e .g . , forward
and backward dependencies)

The significance of this implementation , and
of the design presented here, l ies in the suc
cessfu l reso lu t ion of the com plex design
problems that occur in the pipel ined imple
mentation of modern archi tectures, such as the
VAX architecture . Specifica l ly, the usc of a reg
ister scoreboard to prevent the usc of sta le reg
ister data, a faci l ity to recover in the presence
of exceptions, and synchronization mechanisms
to deal with VAX-architecture specifics , such as
una l igned references , can be cons idered a
major accom plishment . The capabi l i t ies of this
design-a fourfold speed improvement over the
VAX- l l j780 CPU, and under favorable condi
t ions, the abil ity of the I Box to del iver one
instruction every 80 nanoseconds to the E Oox ,
w h i c h m e a n s a p e a k e x e c u t i o n ra te of
1 2 . 5 MIPS-certa inly make the VAX 8600 sys
tem a major engineering achievement .

4 1

New Products

------- The VAX 8600 I Box, A Pipelined Implementation of the VAX A rchitecture

Acknowledgments

A project of this magnitude requires d i l igent
efforts from a large number of people, from the
architects and designers to the techn icians , and
from different support personnel in CAD to
manufacturing. The authors are part icu larly
gratefu l to the following people: Bob Glorioso,
Jud Leonard, John Derosa, Rich Glackemeyer,
Elaine Hanson, Frank McKeen , Tryggve Fossum,
Di l l Bruckert , and Jim L'lcy.

References

4 2

l . VAX A rchitecture Handbook (Maynard :
Digita l Equ ipment Corporation, 1 9 8 1) .

2 . W . F . Bruckert et al . , "The Virtual Mem
ory and Cache Unit of the VAX 8600
CPU," Digital Equ ipment Corporation
Internal Technical Report , Marlborough ,
Massachusetts (1 985) .

3 . E. J . Block, "The Engineering Design of
the STRETCH Computer ," Proceedings

of the EJCC (1 9 59) : 4 8- 5 9 .

4 . D . W. Anderson et a l , "Papers on the IBM
Systcmj360 Model 9 1 : Machine Philoso
phy and I nstruction Handling," The IBM

Journal of Research and Development

Qanua�· 1 967) : 8-24 .

5 . R . G . Hintz and D . P . Tate , "Control Data
STAR- 1 00 Processor Design , " Proceed

ings of the IEEE COMPCON, n o .
7 2CH0659-3C (1 97 2) : 1 -4 .

6 . Cray Research Inc . , "CRAY- 1 Computer
System, No . 2 2 4 0 0 0 4 , " Cray Research
Inc . , Bloom ington , Mi nnesota (1 9 76) .

7 . P. M . Kogge , The Architecture of Pipe

lined Computers, (New York: McGraw
H i l l , 1 98 1) .

8. D. P . Siewiorek et a ! , Computer Struc

tures: Principles and Examples, (New
York: McGraw-H i l l , 1 98 1) .

9 . B. W. La mpson et a ! , "An Instruction
Fetch Unit for a High Performance Per
sonal Compute r , " XEROX Palo Alto
Researc h Center, Pa lo Alto , Cal ifornia
(1 98 1) .

Digital Technical journal
No. I A ug ust 1 985

The F Box,
Floating Point

Tryggve Fossum 11
William R. Grundmann 1

Virginia C. Blaha

in the VAX 8600 System
The VAX 8600 system contains a processor-the F Box-that peifonnsfast,
accurate floating point calculations. The F Box logic design and algo
rithms are more efficient than those in the VAX-llj780 system, a fact
that greatly improves the peifonnance of the 8600. The F Box has adder
and multiplier modules that use macroce/1 array technology to peifonn
the arithmetic calculations and polynomial evaluations. Logic control is
achieved with microcode, which decreases the hardware required. Some
interesting tradeoffs were made, especial�y to merge the microcode into
the macroce/l arrays. The resulting F Box design is a very reliable hard
ware and software package.

One o f our key design obj ectives for the
VAX 8600 processor was to continue t he domi·
nant position of the VAX Fam i ly in the scient ific
computing marke t . That obj ect ive req u i red
the deve lopment of a floating point subsystem
that met user demands for increased perform·
ance and rel iab i l i ty . This paper describes how
we a c h i e v e d t h a t o b j e c t i v e i n t h e
VAX 8600 floating point accelerator (FPA) and
the considerations that went into i ts design . We
bel ieve that the particu lar floating point a lgo
rithms chosen fit nicely with t he component
technology to yield a high-performance FPA
with a relatively l ow cost.

The F Box Operations Flow
Figure 1 shows the flow of operations in the
VAX 8600 CPU. The F llox receives sou rce
operands over t he operand bus (OP bus) from
the I llox and del ivers results over the write bus
(W bus) . These results are stored in memory or
in general pu rpose registers (G PRs) in the
E llox and I Box , and in the F llox i tse l f. The
C PU a l l ows two sou rce o p e r a n d s to be
processed in a si ngle cycle by passing GPR
identifiers between boxes. Each box has i ts own
copy of the contents of a l l G PRs . Therefore , the

Digital Technical journal
No. I August 1 985

I llox needs to pass only t he nu mber of a source
operand GPR rather than the whole operand
itse l f. This passing technique speeds up the
tlow of floating point i nstructions through the
pipel ine . The I Box passes the opcode of the
instruction to the F llox a long with the oper
ands. There , the opcode is transformed by the
F llox D ispatch RAM (FDRAM) i nto decoded
information that is used by the F Box control
logi c .

The M Box has a 1 6Kn cache tbat contai ns
both i nstructions and data . This box performs
the translation of virtual addresses into physical
addresses, and i t connects to the inputjoutput
(1/0) bus and the memory arrays . The E Box
execu tes non-floating po int i nstructions and
controls the overal l operation of the system.
The E llox assists the F llox in executing instruc
tions and handles any overflow and u nderflow
problems.

For more i nformation on VAX architecture,
sec reference 1 .

VAX Floating Point Formats and
Instructions

The VAX arch i tecture su pports four floati ng
point formats : F, D , G , and H . F and D are

4 3

The F Box. Floating Point in the VA X 8000 \J'Sfem

,--
-------=C.:::on.:::s.:::ol.:::e-=B.:::us:__ ____ � Console

DiagnostiC Bus

E Box Vutual Address Sus

1 Box V1rtual Address Bus

Operand BuS

Wnte Bus

1{0 Subsystems

Figure I VA X 8600 Operations Flow

the formats from the origi nal PDP- I I float i ng

poi nt processor (1 9 7 1) . These formats arc 3 2 -

and 64 -bits wide respective ly , and both have 8
bits of exponent. The G and H formats were
added later to the VAX- I I arch i tecture . These
formats are 64 and 1 2 8 bits wide respectively,
the G having 1 I b i ts of exponent and the H
having 1 5 . To achieve fast , efficient process ing.
fracti ons are always normal ized , and the lead
ing b i t-the h i dden b it-is not stored.

F format i nstructions execute the fastest of a l l
the float ing point i nstructions o n a n y VAX sys
tem and are used in most programs that requ i re
adequate precision (2 4 bits) and range (2 1 27 to
2- 1 2H) . The D and G formats extend that pn:ei
sion and range . The D format provides '; 6 bits
of precis ion, :1 more bits than the G. Usu a l l y ,
however, t h e extra range i n t h e G format (2 1 02 ·1
to 2- 1 02"') is more usefu l i n perform ing calcula
t i ons. The D format is used i n programs in
which compa t i b i l ity with earl ier VAX systems
and PDP- I I systems is i mportant .

I n the 8 6 0 0 , the D and G formats have
approxi mately the same execut ion t i m e , but
H format i nstru ctions execute more slowly t han
the others. These H format i nstruct ions are
i mp lemented i n the FPA but are i ntended for
use as a backup format for in termediate calcula
t ions i n the D and G formats.

2
That use ensures

4 4

that the fi nal calculation result has suffic ient
precision and avo ids overflow or u n derflow
problems.

The VAX archi tecture uses e i ther 2- or 3-
operand i nstructions for the bas ic operations of
add , s u btract, m u l t i p l y , and d i v i d e . In the
8600 , the 2-operand i nstru ctions execute faster
and are used by the compi ler whenever practi
ca l . That is cert a i n l y the case when the second
operand is from a G PR, for then the I Dox can
opt i m ize the passi ng of operands by passing the
G PR nu mber.

In addition to the s i mpler i nstruct ions men
t ioned above , the 8600 i mplements the com
plex E MO D and POLY i nstructions for argu ment
red uctions and series eval uations.

2
EMOD m u l

t ipl ies two operands that have extended preci
sion and separates the resu l t i nto i nteger and
fraction components. POLY takes an argu ment,
a degree , and a coefficient table and performs a
ser ies eva l u a t i o n to y i e l d a resu l t . (Bo t h
i nstru ctions are execu ted w i t h extra bi ts of pre
cision .) Complex mathematical fu ncti ons can
be compl eted i n a few steps by using these
i nstructions. For i nstru ctions i nvolving integer
m u l t i p l ications. the F Box performs the actual
computat ion while the E Box hand les the rest of
the i nstruct ions . Those overlapping operat ions

Digital TechniL·al journal
No. I A ugust I 'J8 5

decrease the e xecut ion t i me for t he Ml LL.
EMUL. and I N D EX fu nctions.

For programs i n F and D formats , the execu
tion speed of the 8600 is about fou r t i mes that
o f t h e I 1 / 7 8 0 . For p ro g r a m s i n (; a n d
H formats, t h e execut ion speed i s about twelve
t i mes faster, s ince t hose formats are not acce ler
ated in the I 1 /780 . Tab le l contains the e xecu
tion ti mes for some typical i nstructions .

Table 1 Execution Times

Execution Time
I n struction Operands (na noseconds)

A D D F2 M e m . R 1 60

M U LF2 Mem. R 320

DIVF2 M e m , R 1 300

POLYF argument, (1 300 +
degree, table 6*degree*80)

A DDG2 Mem, R 400

M U LG2 M e m , R 800

I N DEX 1 000

E M U L L 640

Macroce/1 Array Technology in the
F Box

T h e c o m p o n e n t t e c h n o l o g y u s e d i n t h e
VAX 8600 syste m i s the macrocc l l array (MCA) ,
w h i c h prov i de s a b o u t o n e t ho u s a n d gate
equ ivalent s with a typical gate speed of one
n a n oseco n d . MCA u t i l i z e s e m i t t e r-cou p l e d
logic (EC L) technology i n a 6 8 - p i n package
that is one inch square w i t h a max imum power
d issipation of 5 0 watts. MCA techno logy is an
extension of the gate array concept; but i nstead
of gates. each cell i n the array conta ins i n i t i a l ly
a nu mber of u nconnected transistors and res is
tors . 13y creat ing i nterconnect ing patterns with
these components. a designer can tra nsform
them i nt o sma l l -scale and med i u m -scale inte
gration (SSljMSI) l ogic fu nctions, or "macros . "
'fhese macros take the form of standard logic
e leme nts such as dual D-type fl ipt1ops . dual fu l l
adders a n d q u a d l atches . All are series-gated
ECL structu res used i n the 8600 to achieve
opt im izecl performance.

The F Box has two modu les . each conta i ning
l'viCAs. The F llox adder module has 24 MCAs
and t he F Box m u l t i p l ier modu le has 2 1 ; in a l l ,

Di�ital Technical journal
No. I ;tug us/ I fJ8 5

t h e F B o x contains 1 7 diffe rent types o f MCA5 .
The adder and m u lt i pl ier modu les are 8- layer
(6 signal l ayers) printed circ u i t boards . Six sig
nal l ayers were needed because the amount of
etched i nt erconnect on t hese boards , u p to

9000 inches, could not be routed on our trad i
t ional 4 - layer boards . The i nterconnect is main
tained at a contro l led (transmission l ine) impe

dance to guara ntee signal i ntegrity . We fou nd
t hat the lowest fai l ure rates arc obtai ned when
the i n tegra t e d c i rc u i t components on t h e
boards are cooled i n a u n i form manner. To
a c h i eve t hat coo l ing , we u s<:'d w i n d t u n n e l
techniques to develop al gorithms that showed

the opt i m u m pla cement of t hose components .
Moreover, for each mod u le design , we ran com
puter programs to ana lyze the t hermal profi les
of the i ntegrated c i rc u i ts . These techn iques
a l lowed us to determ ine the best component
placements to ensure the h ighest re l iabi l ity.

An i nt egra l part of the modu le design is a
m u l tivoltagc bus bar that d istribu tes power and
a lso acts as a st iffener to maintain board Hat
ness. On i ts edge , each modu le has 2 8 2 pins
that can connect it to a 1 6- Iayer backplane.

The connect ions from the F Dox to the rest of

the CP had to be m i n i m ized i n order to red uce
the loading and propagation delays on the sig
nal l ines. Therefore , only the adder modu le and
the G PRs have i nterfaces to the W bus and
OP bus. The adder mod u l e handles exponent
calculat ion, norma l ization, rounding, and pack
i ng of resul ts . S ince only t he adder module con
nects to the C PU , the m u l t ip l ier module must

receive a l l of i ts operands from the adder. To
i ncrease the speed , we c hose a lgorithms to min
i m ize the s igna l crossi ngs between modules and
between MCAs within a mod u l e ; for example,
addit ion calculat ions arc clone entirely within
the adder mod u l e while m u l t i p l i cation calcu la
t ions stay within the mu l ti pl ier modu le . The
phys i c a l part i t i o n i n g w i t h i n e a c h mod u l e
req u ired u s t o s l ice t he various fu nctions into
"pieces" that fi t into one MCA. To m i n i m ize
the nu mber of operational shifts i nvolved, t he
MCA� on the adder mod u l e were part i t ioned by
fu nctions, or horizont a l l y . The MCAS on the
m u l t i p l ier module were sl i ced by data , or vert i
c;d l y . Figure 2 i U ustrates t h e physical part i t ion
i ng of the macroccl l arrays i n the F Box . as well
as t h e M CAs on the adder a n d m u l t i p l i e r
modules .

4 5

New Products

The F Box. Floating Point in the VA X 8600 5)lstem

r- - - - - - - - - - - - - - - - - - -, F Box Adder
GPR I Module

I Sign & I Control OP bus Exponent ACB. ACC. Normalizer
w bus I :;�cisG�� FB

�R�
SQ ACL

: �-'--------�-----------.

GPR : �.------___,lf----------,1 l I
OP bus � ��:;��� F������ F�����n

w bus ; ' 4 x SOP I 4 x ALN 8 x FAD 1

-� - 1 - - - - - -- - - � - - - - - - -·�- - -
1 F Box Multiplier

I 1 Module

I ������ M
s����r r---- �u�����<;; r------ Acc����

��tor U I I MCL. MSQ 4 X MPR !----------; I X MPZ 4 X MAX I I
I I I I
L - J

Figure 2 F Box Physical Partitioning

E a c h m o d u l e is c o n t ro l l e d by i t s o w n
m icrocod e , which is stored i n 2 5 6 X 4 RAM
components w i t h access t i mes of 7 n a n o
seconds . T h e RA M outputs are w ired together i n
pa i rs t o g i ve 5 1 2 m e mory locat i o n s . Each
m icroword i n the adder module has 4 8 bits ,
w h i l e each m icroword i n the m u l ti p l ier has 4 0 .

MCA component connections o n the adder and
m u l t ip l ier modu les .

The exponent processor calcu lates the expo
nent d i fference of the source operands to deter
m i ne which is the larger; the absolute value of
that d ifference is used to a l i gn the fraction of
the s m a l l e r o p e ra n d . The a l i g n m e n t a n d
u npacking o f each nu mber are comb i ned into
one shift by i nc l u d i ng the unpacking constant
in the exponent calcu l a t i on . The a l ignment
cou n t is passed on to the fraction adder (FAD)
MCAs . The larger of the two exponents is kept
by the exponent processor to comp lete the
exponent ca lculation .

The 8600 has an SO-nanosecond cycle t i m e ,
a n d each cycle has fou r subphases : TO, T l , T2 ,
and T3 . The F Box cyde t ime is half as long,
4 0 nanoseconds, and each cycle has just two
subphases: T0 2 and T l 3 . The storage e lements
i n the F Box are l evel-sensitive latches with t he
c lock pu lses set as wide as poss ible without
overlap . That technique yie l ds a lot of fl exibi l

i ty i n the placement of the latches without
slowing the data flow . Thus we got a s i mple and
re l iable c l ock system by having consecutive
latches c l ocked with a lternat i ng clocks . Each
MCA needs only two p i ns for clock signals ;
thus, more of the ava i lable p i ns can be used for
data signals .

A rithmetic Algorithm Processing
A ddition and Subtraction Operatio ns

During an addition operat ion, groups of 3 2 b i ts
come to the F llox from e i ther the OP bus, the

\Y/ bus, or a G PR and go i nto the fraction oper
and select logic (SOP) . Each group also goes to
the exponent processor (GXP, FXP) and the
sign processor (G X P) . Figure 3 depicts the

46

I n turn, the fraction bits are steered through
the SOPs to the a l ignment c ircu i ts in the frac
t ion a l ignment (AL N) MCAs . H ere the hidden
bit is restored, the exponent bits arc cleared ,
the larger fraction is unpacked, and the smal ler
is part i a l l y unpacked and a l igned . There are
four of these ALNs, each conta i n i ng e ight b i ts of
the data path , s l iced such that every fourt h b i t
is fou nd i n t h e same ALN . The a l ignment opera
t ion is done in two phases : a byte shift by the
ALN s , fol lowed by a bit shift i n the FADs . The
data is then bit -shifted to comp lete the u npack
and a l ign operations and added or subtracted by
t he fraction adder l ogic i n the e ight FAD MCAs,
with four adjacent bits to a sHce.

I f an addi t ion is being performed , the F Box
sends a data-ready signal to the E Box to request
access to the \Xf bus for the next cyc l e . This

Digital Technical journal
No. I A ugust I 985

- - - - - - - -- - - - - - - - - - - - - - �

W bus...!..---..-i,
OP bus-+-------1

'y - - -1
I
I
II
I
I

W bus

I
I
I F Box

I Adder r Module

I
1 I

I
II
I
I
I
I

- - - - - - - ---<
I

W bus

I F Box
�/ Multiplier r Module

' - - - -- - - - - - - � - - - - - -.1
Figure 3 F Box MCA Co mponents

signal is also sent if a su btraction is being per
formed in which the exponent difference and
the high-order bits ind icate that the result wi l l
be ready within one CPU cycle . On the other
hand, if the subtraction is performed on two
numbers that are nearly equal , a large number
of leading zerqes will resu lt . Those zeroes must
be normal ized and the exponent must be
adjusted before the data-ready s ignal can be
sent . That process takes an extra CPU cycle .

The fraction adders have a bit shifter for both
al ignment and normalizat ion. In most cases, the
nu mber of leading zeroes is less than eight, so
the b i t shift and the rounding-constant add can
be done in one pass . S imu ltaneously, the expo
nent processing logic receives the number of
leading zeroes and adjusts the exponent for the
fi nal resul t . Then the hidden bit i s masked and
the result goes back to the four SOPs . There the
result is packed into the F format and driven
onto the W bus. The SOPs are s liced such that

Digillll Technical journal
No. I A ugust I <J8 5

each contains every fourth bit of the result to
a l low shift ing to wi th in the nearest n i bble
(4-bit piece) . The adder module can execute a
typical ADDF (an add in F format) i n four F Box
cycles, or two CPU cycles .

The hardware is arranged so that the "aver
age " fl o a t i n g po i n t i ns t r u c t i o n executes
quickly . The m i crocode steps t hrough the
sequence mechanically while enabling branch
ing to be performed whenever exceptional con
d itions are encountered . This branching wi 11
happen only when something atypical has
occurred ; for example, when the nu mber of
leading zeroes is greater than eight after the
add . In that case, the resu lt is passed through
the SOPs, and back through the ALNs to be byte
shifted . Then the FADs compl ete the bit shift
and the rou nding . This process requ i res an
additional CPU cycle to complete .

The major difference between add operat ions
in the F format and those in the D or G formats

4 7

New Products

The F Bo.Y, Floating Point in the VA X 8600 System

is the handl ing of 3 2 additional bits of data i n
t he l a t t e r two . R a t h e r t h a n m a k i ng a l l t h e
datapaths 64 b i ts w i d e . w e opted t o double
cycle the F Box relat ive to the rest of the C PU .
Thus the first group o f :) 2 bits o f a number in 0
or G format is handled during one cycle and the
second group is handled duri ng a second cyc l e .
As the fi rst step o f t h e path , t he exponent
processor calcu lates the exponent d i ffere nce ,
an 8-bit operation in F format and an I \ -bit one
i n G format . Then the high-order fraction bits
are u npacked, a l igned and stored in a regi ster i n
t h e ALNs a n d in another register i n t h e FADs. As
the low-order fraction bits a rrive dur i ng the
next CPC cyc l e . t hey are u npacked and al igned
th rough that same path and merged with the

appropriate b i ts i n the FAD registers .
The low-order fraction bits are then added

together and that resul t is passed to the SOPs to
be held in a n i nternal register. In turn, the high
order fraction b i ts are added, and the low-res u l t
bits a r e passed back through the A L N t o the FAD
inputs-the assu mption being that the n u mber
of lead i ng zeroes is less than eight (no byte
shift is required) . Once the h igh add is com
pl eted , a leadi ng-zero detector determ i nes if
that assu mption is correct , which i n most cases

it i s .
I m mediately after the h i g h add , the low nor

m a l i ze-and-round is done. If it turns out t hat
the n u mber of lead i ng zeroes is greater than
e i g h t , t h i s re s u l t w i l l b e d i s c a rd e d . T h e
m icrocode w i l l g u i d e the o l d sum through t h e
byte s h i fter to the i n put for t he fraction adder,
yielding a norma l i zation of u p to 3 2 bits. I f the
m icrocode has not branched, the high norma l
ize-and -rou nd i s clone. A t t h e end o f th is cyc l e ,
the h i dden h i t is masked and the resu lt i s
passed to t h e SOPs , w h i c h t h e n pack t h e high
result b i ts and drive them onto the W bus. One
CPU cyc le later , the 10\v-resul t b i ts are driven
onto the W bus.

The total t ime spent i n the F Box to perform
operat ions on 0 and G formats is ten cycles , or
a total of five C PU cycles .

Multiplicatio n Operations

T o perform m u l t i p l ications, the operands arc
sent from the SOP MCA.:; to the F Dox m u l t i p l i e r
mod u l e . There the t1oating point formats arc
u npacked as fo l lows : the leading bit is placed
in the most sign ificant posit ion; the fract ion
b i ts fol l ow the lead i ng b i t , in order of signifi
cance; and fi nal ly t h e cl eared e xponent and the

48

sign bits . Figu re 4 i l l ustrates the conversion of a
n u m ber in F format .

The conversi ons of the 0 and G formats are
s i m i lar , a l though t hey have 64 bits i nstead of
3 2 . F i gure 5 i l l u strates the packed D a n d
G formats, where t h e G format has three extra
exponent bits . The H format has I sign b i t , 1 5
exponent bits , and 1 1 2 fraction bits .

Four m u l t i p l i e r select (M PR) MCAs arc used
to store the source operands. The MPRs feed the

Packed F Format:

Bit Position

31 24 23 1 6 1 4

EXP - Exponent Bits

6 0

A , B , C - Fraction Bits (I n Order Of Sign ificance)
S - Sign Bit

Unpacked F Format:

Bit Position

3 1 24 23 1 6 1 5 7 0

- H idden Bi t

Figure 4 F Format Corwersion

Packed !Format:

Bit Posi tion

31 1 6 1 4 X 0

Is--s c--clsl EXP

63 47 32 ��E ----- E j o ----- ol
X = 6 For 0 Format
X = 3 For G Format

A , B , C , O , E - Fraction Bits (In Order Of S ign i ficance)

Figu re 5 D and G Fo rmal Con version

Dif!,ilal Technical jourtutl
No. I ;tugust 1 9R5

mult ipl i cand i n 3 2 -bit p ieces and the m u l t i
pl ier i n 8 - b i t p ieces to t h e mult iply logic .

On the m u lt ipl ier module there arc 1 0 MCAs
(9 -MPY, 1 -MPZ) that perform the actual m u l t i
ply operation, each o n e generating a 4 -bi t s l ice
of the product. Each MCA has col u m n red uc
tion l ogic that consists of a 4 -b i t , 5 -stage adder
that adds the partia l prod ucts , carries previous
partial products , sums, and carries from the
previous stage to create a new partial su m . Al l
five stages are performed during every cyc l e .
Each s l ice receives a byte o f t h e mu lt ipl ier and
1 2 b i ts of the m u l ti p l icand . A tra i l ing zero and
two lead ing zeroes are concatenated to the m u l
t i p l ier. Then i t is d ivided i nto five groups of
three bits each, ca l led "triplets , " to determ ine
the Booth encodi ng. Final ly , each tr iplet is m u l
t i p l ied b y the m u l t i p l icand accordi ng t o the
Booth a lgorithm. Figure 6 shows t he e ight b i t
combinations a n d t he corresponding products.

As each byte i s mult ipl ied, a 4 0-bit partia l
product is held i n an accumu lator latc h . As the
processing sequences, the product of the next
8-bit mu lt ipl i cation is added to t he Last part ial
product i n the accumu lator latch, thus produc

ing a new part ial product . This cycl ing contin
ues unt i l t he mu lt ipl i cand has been mult ipl ied
by all the m u l t i p l ier bytes . The normal execu
tion t ime is reduced by one cycle because t he
last byte of m u ltipl ier has the cl eared exponent
bits in i t .

I n F format, t h e first 8-bit X 3 2 -bit part ial
product is formed , then shifted 8 b i ts to the
r ight and l oaded i nto the accumu lator. The next
8 mult ipl ier bits are mult ipl ied by the m u l t i p l i
cand, then added to the a c c u m u lator a n d
shifted right b y 8 b i t s , a n d final ly stored . A third
such product is formed, added to t he partial
p ro d u c t , a n d t h e resu l t is stored in the
extended accum u lator latches, ready to go to
the adder modu l e .

The D a n d G formats are processed i n a s i m i
lar manner except that s ixteen 8-bi t X 3 2 -bit
mult ipl ies are required to accomp l ish that tas k .
After a l l of t h e m u l t i p l ier bytes have been m u l
t ipl i ed b y the least-sign ificant 3 2 bits o f the
m u l t i p l icand, they then have to be m u lt ipl ied
by the most-sign ifi cant 32 bits . Prior to the start
of that m u lt i p l i cation, the partial product i s
shifted left b y 2 4 bits to a l ign i t for subsequent
addition to the next partia l product .

The Wa llace Tree i n Figure 7 i l lustrates the 0
and G format processi ng .

Digital Technical journal
No. I A ugust 1 985

Booth Encoding

Carry-In I Product

From Previous
Booth Pair Encoding

0

0

0

0

1

1

1

1

Multiplicand

Multiplier

0 0 0 x Multiplicand

0 1 + 1 x M ultipl icand

1 0 + 1 x Multipl icand

1 1 + 2 x Multipl icand

0 0 - 2 x Multipl icand

0 1 - 1 x Multipl icand
I

1 0 - 1 x Multiplicand
1 1 0 x M ultipl icand

Figure 6 Booth Encoding

63 31
A 8

63 31
c I D

Wallace Tree

Bit Accumulation

Right 8 Bits-11
Right 8 Bits- B '> C

Left 24 Bits - A ,,, D

0

0

Right 8 Bit s -[1 A * C :1

u
Product

Figure 7 Wallace Tree

New Products

I

I

4 9

The F Box, Floating Point in the VAX 8600 .))stem

Since only 40 bi ts can be stored in the iv!PY
s l ices, the overflow is sent to four extended
accumulator chips in the resu l t accumu lator
(MAX) . During every cycle, the MAX receives
the least significant byte from the accumu lator
in the MPY s l ices if a right-8-bit shift is being
performed . Or, if a left- 24 -bit shift is being per
formed , the MAX receives the most-significant
24 bits of the accumulator and gives MPY the
24 least significant bi ts from previous accumu
lations . After a left shift , the MA,'(sends the
most significant byte to the accu mu lator for the
succeeding right-8-bit shifts. After a l l the mul t i
p l ications have been comp leted, the 64-bi t
resu l t i s stored in the MAX , ready to go to the
adder module to be normal ized, rounded , and
packed.

Division Operations

The fraction adder (FAD) performs a non-restor
ing division algori thm, one bit per F Box cycle .
A control input in the FAD causes the adder
module to do an add or a subtract , depending
on the carry out of the previous fraction adder
operation . The bit shifter wi l l keep shifting the
dividend to the left by one bit every cycle . For
the F format , this shift produces a quotient bit
every F Box cyc le, while the double precision

formats, D and G, get a quotient bit every other
F Box cycle .

To save hardware on the adder module , the
quotient bi ts are sent to the mu lt ipl ier modu le ,
where a counter (a spl i t between the MPR
MCAs) and several sh ifters (in the MAX MCAs)
arc used to manipu late the quotient bi ts into
the correct form . That is, the most significant
bi t is p laced in bit pos ition 3 1 , the next most
significant bit in position 30 . . . down tO the
least significant b i t . Then , the bits are sent back
to the adder module for normal ization, round
ing, and packing.

Exponent and Sign Processing

For a l l operat ions, the exponent processors
(FXP and GXP) calculate the result exponents
based on the input operands and normal ization
cou nts. Each processor has an 1 1 -bit datapath
for exponent operations and a 2 -bit counter for
accu mulating carries and borrows out of the
leading b i t . Counters are used at the end of the
instruction to detect overflow and underflow
problems. A non-zero counter nu mber indicates
that a problem has occurred . In that case , the
F Box sends a signal to the E Box when the

5 0

calcu lation resu lt is transmi tted over the W bus.
In turn , the storing of that resu lt is prevented,
and a section of the E Box mi crocode is
"trapped" to a rout ine that reads several F Box
status registers in the FBR MCA. The microcode
then identifies the problem and in it iates the
except,ion processing .

The sign processor in the GXP is a 1 -bit
datapath , modeled in a fashion s imi lar to the
exponent datapath; in fact they share the same
control and microcode signals. Instead of an
adder, however, this processor uses a mult i
plexer and an exclusive OR (XOR) gate to per
form sign operati ons .

Polynomial Evaluatio ns

Polyn o m i a l s are eval uated u s i ng Horner 's
Method, through a series of mu lt ipll ications and
additions . I n the VAX 8600 system , the I Box
prefetches coefficient s from the M Box, and the
E Box keeps track of intermediate resu lts , dec
rements the degree, and deals with exceptions
and address trans lations . The F Box performs
the arithmetic steps described in the Addition
and Mult ipl ication sections above. Al l of these
operations are done in paral lel .

Microcode Control in the F Box

Like every other subsystem in the 8600 , the
F Box is control led by microcode . Microcode
offers a structured yet tl cxiblc and economic
way of implementing the control fu nctions . For
complex instructions-such as polynom ial eval
uati ons-microcode is essential for sequencing
through the various steps . Even for the basic
operations l ike add and mu lt iply, m icrocode is
helpfu l in dealing with unusual condit ions . The
achievement of a compact hardware design
depended on the use of hardware units l ike
adders and shifters for m u l tip le purposes, and
m i crocode prov ides s u ffi c i e n t control to
ach ieve that des ign. Moreover , microcode con
trol a l lowed us the tlexibi l i ty to implement
fau l t detection and faul t isolation procedures
so that manufacturing and fie ld service could
effect repairs using m icrocoded d iagnostic
programs.

We had to make several design restrictions in
order to cycle the control store during each
F Box cycle . For example, each module needed
its own microsequencer and control store. And
e x c e p t for i n i t i a l d i s pa t c h i n g , t h e two
microcodes run independently.

Digital Technictll journal
No. I August I 'J8'i

We latched the m icroword i nternals to the

MCAs that used them in order to save propaga
tion t i me and to e l i m i nate the need for addi
t ional MSI components. The m icronelds were
highly encoded due to the l i m i ted nu mber of
MCA pins ava i lable. That high l eve l of e ncod ing
a l l owed us to make the whole contro l store re l
atively narrow-4 8 b its for the adder module
and 4 0 bi ts for the m u l t i p l ier modu l e . That
makes i t easier for the F Box to access the con
trol store d ur i ng each cycle . I nside the gate
array, the F Box can decode the m icrocode i nto
a large nu mber of control fu nctions , some of
which are appl i cable over several cycles. The
control signals are pipel ined along with the
data and the F Box gradual l y decodes those s ig
nals at each stage (see Figu re 8) . The resu l ts of
these data operations are somet i mes fed back
into later decode stages . This m icrocode style
was needed , in particu lar, to accommodate the
pipe l i ned structure of the datapat h , where sev
era l operat ions take p lace s i m u l taneously.

The resul t of those design restrictions was a
scheme i n which the m i crocontrol b its foUow
the data for several cyc l e s , b e i ng fu rther
decoded at each stage . For the majority of cases ,
the m icrocode is l it t le more than a decod i ng of

the opcode, a l lowing the hardware to do a l ign

ments, add i t ions, normal izations, and rou nd
i ngs. The m icrosequencer takes over only if the
i nstruction does not fit the standard path and
creates the needed resu l t by using the avai lable
hardware functions.

Funct1on

Data

Tl

Microcode

Tl

We had to define the operat ions at each cyc le
early i n t he design stage in order to get t h is
t ight fit between the m icrocode and the hard
ware . That was possible due to the relatively
sma l l nu mber of operations i nvolved in fl oat ing
point process ing.

The short cycle t ime of the F Box compl icates
the control of m i crocoded branching. Each con
trol store location contains a NEXT ADDRESS
fie l d . To change control tlow, the m icrocode
se lects up to three branch condit ions at a t i m e .
The OR o f these cond i tions a n d t h e l ow three
address bi ts select the next m icroword to be
execu ted. The sel ectors are contro l led by a
branch enable (BEN) fie l d i n the m icroword .
The BEN fie ld of a m icroi nstruction does not
affect the next m icro- PC but does affect the one
fol lowing i t . (This i s ca l led "de layed branch
ing. ") The delayed-branching a lgorit h m com
p l i c a t e s t h e m i c r o p r o g r a m m i n g , s i n c e
b r a n c h e s - i n - p r o g r e s s a l ways h a v e t o b e
accou n ted for . Figure 9 shows t h e d iffe ren t
i n p u t s a n d h ow t h e y a ffe c t t h e n e x t
m icroaddress.

The m i crosequencer contains no s ta l l signals.
I nstead , the m icrocode branches on con d i tions
that w i l l force it to change flow . Aga i n , that

m icrocode d e s i gn s i m p l i fies the hardware

design , s i nce sta l l con d i tions can be e ncoded
i nto normal control signals.

The I Box sends the opcode of the i nstruction
to the m u l t i p l ier modu l e . There the opcode is
used to address the d ispatch RAl\1 conta i n i ng

FunCtiOn

Latch

Latch Latch

Tl

Figu re 8 Microcode Co ntrol in the F Box

Digital Tech11ical journal 5 1
No. I August 1 98 5

New Products

The F Box. Floating Point in the VAX 8600 .�:ystem

New Instruction Fork

E Box Trap

Jump

Call/Return Address

Parity Error Address

D1agnostic Address

Next M1cro-PC

Micro-PC

Control
Store

(51 2 Bits x 48 Bits)

Branch Enable (BEN)

M1croword

Fig ure lJ The F Box Microsequencer

the start ing microcode address for the instruc
t ion. The same starting address is used for both
microsequencers . The dispatch RAM also con
tains format bits that are used to control certain
hardware operat ions . An instru ction register
decode (I RD) signal from the E 13ox triggers the
start of a new instruction . A " flush" signal from
the (13ox is used to reset the microsequencer in
case of a change in the instruction stream , nor
mally due to a branch or an exception . Without
this signal , due to the pipe l i ning of i nstruc
tions, the F 13ox might have started on a floating
point instruction fol lowing the branch. Such an
act ion would have put the F Box out of
sequence with the I Box and E Box.

The E Box has the abil ity to trap the F Box to
various microcode rou tines. That abi l ity is use
ful when the program wants to use the F Box to

execute subrout ine fu nct io ns i n complex
instructions, or when the program wants to
write customer-origi nated mi crocode in the
E Box .

Error Checking and Reporting Using
Microcode

High re l iabil ity was a major goal for the whole
VAX 8600 system . We used very reliabk parts ,
conservative design ru les, and a small nu mber
of com ponents to design an inherently reliable
machine. Furthermore, we implemented exten
sive checking for errors throughout the CPU.
Our primary recovery strategy was to retry the

52

macroinstruct ion. If an error is detected, the
CPI wi l l make every effort to preserve i ts state
so that the macroinstruction can be restarted
after the error has been logged .

The F 13ox has sufficient idle t ime to run diag
nost ic tests on itself while non-floating point
instructions are executing in the E Box. This
idle time exists because the F Box is involved in
the execu t ion of on ly a subset of the total
instruction set. In these tests, the opcode is
used to address the FDRAM, and a d ispatch
address for microcode is generated for a test of
appropriate length . Operands arc gathered from
the OP bus to create a variety of test patterns .
The microcode test runs through ,the basic
float ing point operations and checks the resu l t .
If an error occurs , it wi l l be logged by the F Box
and reported to the E Box the next t ime that
a tloat ing point instruction is encountered . In
this way. a l though the CPU is not disru pted , the
F Box cannot be used until the error has been
evaluated by the VMS operating system .

The error analysis software processes the
error report . Since the CPU does not require the
F Box in order to ru n , it can be temporarily
disabled by the operating system if the error
freq uency is sufficiently h igh . In that way, com

puting can continue unt i l the F Box can be
repaired .

Like the other subsystems in the 8600, the
F Box is connected to the mai ntenance proces
sor, the console , over the serial diagnostic bus

Digital Tecl.nrical journal
No. I A ug ust 1 ')85

(SDD) . The console and SDD are used to i ni t ia l

ize the control store and other R.A.t\1s. The SDD is

also used to al ert the C PU to signals req u i red to

d iagnose fa i l u res encou n tered in manufactu r

i ng test or at customers' s ites . Parity errors i n

the control store are corrected on- l i ne by the

operator us ing the console .

Acknowledgements
Many people worked on the development of the
VAX R600 F Dox. Major contributions were
made by Ray Douc her, Jud Leonard , Dan Stir
l i ng, M i l t Shively, Steve Root , Linda Pinto, and

Larry Herma n .

References
I . H . M . Levy and R. H . Eckhouse, Com

puter Program ming and A rchitectw·e:

The VA X- I I (Dedford : D i g i t a l Press ,
1 9 80) .

2 . VA X Hardwat·e Ha ndbook (Maynard :
D i gital Equ i pment Corporation , Order
No. ED-2 1 7 1 0- 2 0 , 1 9 8 2) .

Digital Technical jmu-nal
No. I A ugust I ')85

New Products

5 3

James B. McElroy I

Packaging the
VAX 8600 Processor

Important packaging decisions were made early on the VAX 8600 pro
ject. First, the numbers of gates and parts were estimated to size the CPU.
Then, a packaging evaluation method was developed to weigh the effects
of various design factors. Packaging the components to control tempera
ture gradients was an important task. Several techniques for mounting
devices were tried and the pin grid array was chosen. The module design
is an equilibrium between component density and the number of signal
layers. The tools developed for packaging decisions and the cooperation
engendered among engineering disciplines will help future design
projects.

The role of packagi ng i n the product develop
m e n t p rocess has changed s i g n i fi c a n t l y i n
recent years . Today, the e lectronics packag i ng
engineer must get i nvolved earl ier than ever
before . He m ust make a v i ta l contri b u t i o n
toward creating t h e actual design process , i n
addition t o perform ing the traditional role of
hardware design and eva l uation .

Acc o m p l i s h i ng t h i s e x p a n d e d fu n c t i o n
requ i res the creation o f effective and tlexible
tools for testing and eva l uation , i n addition to
rigorous adherence tO the best tradi t ions of
good engineering practice i n the management
of a large and complex project . The i m portance
of such tools was compe l l i ngly demonstrated
d u r i ng the deve l op m e n t of t h e VAX 8 6 0 0
processor. The tools deve loped a n d t h e lessons
learned from designing the packagi ng for this
mac h i ne can ass ist fut u re computer design
efforts by making product deve lopment more
pred ictabl e . As a resu l t , new systems can be
developed in l ess t ime, with less cost and risk.

At the beg i n n i ng of a deve lopment project ,
l i tt l e reliable information is avai lable about the
physical characteristics of t he product. Gener
a l ly, packaging engineers are forced to rely on
extrapo l a t i on s fro m previous p rod u c ts and
early estimates by system designers . But th is in i
t ia l i nformation i s the basis for packaging and
i nterconnect decisions that m ust carry through

5 4

t h e development cycle a n d often through the
l i fe of the product as welL On the other hand,
from t ime to time, i t may be prudent to make
" m i dcourse" correct ions based o n cu rre n t
deve l op m e n ts a n d m a t u r i ng t e c h n o l og i e s .
Hence i t is necessary t o implement a design
process that constantly i nspects t he "state of
the desig n " and provides early warn i n g of
potential problems .

Ascertaining the Task
Among the i n it ia l questions to be answered for
any design project are , (a) what is t he s ize of
the task? (b) what wil l the product be made of?
(c) what requirements m ust it satisfy? I n addi
t ion to the many safety and EMI regu lations that
t he 8600 had to meet, we decided i t was neces
sary to package t he system in accordance with
the new European standards for noise em issions
in data processing equipment. These standards
are cons i derab ly more stringent than those by
which any previous D i g i ta l compu ters were
b u i l t .

Another early decision was to i m p lement the
CPU with LSI macroce l l arrays (MCAs) sup
ported by smal l -scale and med i u m -scale i nte
gration (SSijMSI) e m itter-cou pled l ogic (ECL)
and RAMs. An i nternal Digital maintainab i l i ty
study i ndicated that costs for spares cou l d be
reduced substantial ly by provid i ng for on-site

Digital Technical Journal
No. I A ugust 1 98 5

replacement of MCA and RAl"l chips . Therefore ,
it was agreed that those components would be
mounted in sockets.

To determine the size and organization of the
CPU, we worked ini tia l ly with the logic design
ers to estimate the counts of gates, parts and
modu les and to determine the makeup of mem
ory and the l/0 ports. Table 1 compares the
numbers of gates and parts in the VA.X:- 1 1 /785
CPU with the early esti mates for the VAX 8600
CP . The last column gives the same data for
the final product; some esti mates were fairly
close, others were not. Much of the i ncrease in
gate cou nt comes from the increased use of
pipclining to im prove performance and from
add it ional diagnostic features. This trend wil l
continue in future design projects .

Table 1 Gate and Part Counts
VAX-1 1/785 VAX 8600

Gates
RAM bits
SSI/MSI
MCAs

68K

1 .06M

2600

Modules 26

Early
Estimate

88.5'K

1 .05M

260

1 41

1 0

Final
Design

1 04K

1 .04M

1 1 00

1 45

1 7

To esti mate the nu mber of MCAs , besides tht:
gate count estimate, we wou ld have to have
known t h e design effi c iency fa ctor- i t is
improbable tha t each array wil l use 1 OO'X, of the
avai lable cel ls due to routing inefficiencies and
power/thermal l im its . Ini t ia l component esti
mates are rough a t best , s o a conservative safety
factor was included to prevent difficu lty when
the actual counts became known .

Evaluating the Choices

Once i t was determi ned what was bei ng bu i l t ,
we faced a mul titude of individual implement;l
t ion decisi ons re lated to choices of sockets ,
heat sinks, connectors , cab les, and so forth . To
faci l i tate the decision process , we developed a
procedure for comparing the effects of the vari
ous al ternatives in each i nstance and thus to
help us select from among them . The first step
in u t i l iz ing this procedure is to determ i ne

Digital Techuica/ Jourual
No. I A ugusl I 'JR'5

which system factors are significantly affected
by the decision and the relative importance or
"weight" of each (such that the weights sum to
uni ty) . Then for each factor some method is
devised for quantifying the effect of each al ter
native to arrive at a rating on a scale from I
(low) to 1 0 (h igh) . Finally, in order to be able
to compare the total "scores" of the alternative
solutions, the rat ings were converted to "nor
mal ized" values by m u l tiplying each by the
corresponding weight .

The al ternatives and their impact on the vari
ous factors can be l isted in a matrix; an exam
ple of this is shown in Table 2 . Here the choice
is between two overa l l packaging/interconnect
structures, one using individual heat s inks to
cool the MCAs , the other employing a heat-pin
planar approach (both are discussed later) . Dif
ferent parameters play a role in different deci
sions . Often these parameters are difficu lt to
quantify early in ·the project . It is important.
however, tO understand the relative differences
between the competing concepts so that a rat
ing can be attached to each factor.

Thermal Design

Thermal design in the VAX 8600 processor was
especia l ly crit ical because individual MCA'> can
dissipate up tO five watts. lloth project risk and
market ing considerations required using air
convection for heat remova l . We investigated
two approaches to the problem. One employed
an individual heat s ink , or exchanger, on each
MCA. wherein heat was conducted through the
device carrier to an omnidirectional heat s ink
mou nted by a thin layer of epoxy. The other
was a large , finned heat sink covering the entire
back of the module . Conductive pins protrud
ing through the board conducted heat from the
MCAs to the exchanger . In e ither case al l other
components were to be cooled in the tradi
tional way , by forced air convection . Figure I
depicts the " heat- p in" arrangement . Using
heat-d iss ipating dummy devices, we conducted
temperature and a irtlow experiments to deter
mine the thermal densities and device place
ments that wou ld be used for the product . To
predict temperatures, we used a therma l analy
sis tool developed by Digital's Thermal Engi
neering Group to model the actual modu les as
they would be in real operation.

There were two poss ibi l it ies for using the
ganged heat exchanger. One involved a single

5 5

New Products

-------- Packaging the VA X 8600 Processor

Table 2 Packaging and Interconnect Evaluation

System Factor

Rel iabi l ity

System Performance

Risk

Development Cost
(Engi neering and
Manufacturing)

Spares Cost

Design Process

Acoustics

Product Cost

Signal I ntegrity

Total Value

68 1 /0 C h t p Carrier
(leadless Type B)

Heat
Smk Heat Ptn

(Integral To Seckel)

Weight of Factor

.20

. 1 5

.20

.1 0

. 11 0

.05

.05

. 1 0

. 05

Pressure Lid

Figure 1 Heat Pin Detail

exchanger on each modu l e , with the module
pl ugged i nto a backplane i n the usual fas hion . A
novel p lanar approach was a lso considered i n
which a l l the CPU modules would b e mounted
on two sides of a large air heat exchanger. As
s hown i n Figure 2 , each plane contains several
modu l e s i n terconnected by f l e x c i rcu i t ry ,
which a lso connects from one side of the pl ane
to the other. This approach provided access to
a l l of the components withou t disturbing i nter
connect or coo l i ng .

Based on the we ight i ng of the various param
eters i n Table 2 plus other program considera-

56

Individual Heat
Sink Packaging

Rating

6

5

7

6

5

5

5

5

5

Value

1 .20

.75

1 .40

.60

.50

.25

. 25

.50

.25

5.70

68 1/0 Chtp Carner
I n Heat Ptn Socket

Heat-Pin Planar
Packaging

Rating Value

7 1 .4 0

5 .75

4 .80

3 .30

4 .40

3 . 1 5

7 .35

6 .60

4 .20

4.95

1 8-tnch x 24-tnch Planar P . C Board

Figure 2 Heat Pin Planar Packaging

t ions, we proceeded with the i nd ividual heat
s i nks and the stan dard m o d u l e - to-backplane
configuration .

Regardless of t he configuration selected , the
coo l i ng system had to del iver suffic ient coo l i ng
a ir w h i l e conform ing to the Eu ropean no ise
red uction standards . To meet t hese needs, we
devised a s ingle-motor, fou r-wheel b l ower sys
tem to c i rc u late the necessary a ir vol u m e at
appropriate press u re . An acoust ic d a m p i n g
tre a t m e n t app l i e d to t h e e n c l os u re doors
redu ced the no ise e m issions to an acceptable
level . This packaging design not only met the

Digital Techuica/ jounwl
No. I A ugust 1 985

acoust ic noise regu lat ions , but also yielded a
much qu ie ter machine than any previous
Digital computer of this s ize .

Device Packaging

To meet the objective of on-site replacement of
LSI and ECL RAM devices , we decided to pro
vide sockets for them . Unfortunately, the re l ia
bi l i ty of sockets for MCAs was not wel l estab
l i shed , so i t was necessary to provi de an
a lternative scheme to hard-mount them . A 68
IjO leadlcss chip carrier (LCC) met al l of the
requ irements . 1 · l Even soldered-on c l ips could
be used i f necessary in place of the sockets.

Since SSI/MSI and RAM devices were widely
ava i lable only in DIP format, we decided to usc
that package type . Thus OJ P sockets , several of
which were already qualified in Digita l , were
used for RAM replacement.

This mi xture of component types forced us to
choose a through-hole solder assembly tech
nique because Digital has no mixed soldering
process (for su rface-soldered and through-hole
components on the same board) . Therefore .
both the socket (Figure 3 . on the left) and the
solder c l ips (Figure 4) for the MCA were
designed in the through-hole configurat ion. To
reduce the inductance , the socket has a para l lel
path for the device ground through the cover.

D u r i n g the course of t h e project , two
problems arose relative to mounting the MCAs .

The first was that the solder c l ip had to be

instal l ed by hand . At about the same t ime,
Motorola indicated that they wou ld deve lop a
pin grid array (PGA) package for the MCA. l3y
working c lose ly with the vendor, we obtained a
package (Figure 3 , on the right) that matched
the electrical performance and footprint of the
LCC socket , a l lowing the substitution of the
PGA for the solder el i p as our backup. The next
issue that arose was that sockets for the MCAs
wou ld not be avai lable at sufficient qual ity
leve ls within an acceptab le t ime frame. At that
point we switched to the PGA as the primary
packaging technique.

I t was origina l ly intended that the MCAs
wou ld themselves incorporate diagnostic hard
ware , but th is feature was discovered to impair
the yield. The solution to that problem-provid
ing supplementary hardware for d iagnost ics
created another: getting maximum hardware
into minimum space . The module part i tioning
was already solidly establ ished by the t ime we
learned of the need for supplementary hard
ware . Fortunately, a S IP design, mounted with
4 0 -mi l center l ine chip carriers, enabled us to
instal l the diagnost ic hardware in the l im ited
space avai lable .

Module Packaging

The init ial module choice was one simi lar to
t h e p r i n t e d w i r i n g b o a r d u s ed i n t h e
VAX- 1 1 /750 system. I t was the right size for our
part it i oning and dens i ty needs. However , to

Fig ure 3 l.CC with Socket and PGA Package

Digital Technical journal 57
No. I A ug ust 1 ')85

New Products

------- Packaging the VAX 8600 Processor

58

Fig ure 4 L CC with Solder Clips

Figure 5 LSI Module

provide the maxi mum number of edge finger
p i ns for s ignals , s u p p l e m e n tary power and
ground connectors were developed . I n this way
we cou l d get s ignal pins sufficient for the l ogic
that wou l d be put on the board (some of the
2 8 2 pins are used for ground, but none for
power) . Figure 5 depicts the modu le , which is
of control led impedance constru ction and has
eight l ayers , fou r of which are for signals. To
ensure i nterconnect capacity, several tria l lay
outs were done on early designs.

As the system design progressed, the n umber
of gates needed to perform the requ i red func
tions grew sign ificantly, as demonstrated by
Table 1 . Eventua l l y a l l spare s lots were used
and more were needed . But in some areas addi
tional mod u l e crossings were unacceptabl e for
reasons of system performance . So we decided
to violate the rules for component density on
the modu les and added the extra gates to the
modu les a l ready i n p lace . Signi ficant margins
existed in power and coo l ing, but the i n tercon
nect was not adequate . We therefore had to add
two signal layers to some of the moduks. That
posed a problem because, with traditional edge
connectors, the extra signal layers had to be
provided without any c hange in edge t h ickness .
1\vo solutions to this problem were proposed .
One i nvolved a graduated layup i n w h i c h the
module i tself wou l d carry two more l ayers (a
total of ten) w h i l e mainta i n i ng the eight-layer
thickness at the connector. The other was a n
eight-layer construction w i t h s i x , i nstead of
four , layers for signal paths . When prototypes
of each al ternative were tested , the u n i form
eight- layer arrangement proved to be the satis
factory design, as i t was easkr to produce and
less expensive.

Backplane
For the backplane we used a printed wmng
board with the same routi ng grid and con
tro l led i mpedance as the module boards . But
the backplane has sixteen layers of which e ight
are for signal traces . To preven t problems due
to Z-axis expansion during soldering, we used
only compliant press-pin connectors. This also
meant no dri l l ing wou ld be needed to add or
delete nets because the press pins have wire
wrap tai ls for wire adds. Figure 6 shows a back
plane assemb l y mou n ted i ns i d e the system
enclosure. Also visib le is the power d istribution

s t r u c t u re , w h i c h can p rovi d e u p to 4 0 0
am peres of -5 . 2 volt cu rrent to the processor.

Digitt�l Tecbuict�l]oun1lll
No. I August 1 985

New Products

Figure 6 Backplane Assem b�p

Lessons for the Future

The experience of deve loping a physical design
for the VAX 8600 processor demonstrated both
the value of tool s avai lable to the package
designer (e .g . , the weighted com parison pro
cess and the thermal ana lysis software) and the
need to im prove those tools .

In part icu lar, the events of the device-level
packaging phase indicate the need for a design
database approach offering numerous bui l t - in
test points or decision thresholds. This process
a l lows earlier identification of problems, ena
bl ing engi neers to switch from one strategy to
a n o t her w i t h o u t d i s r u p t i n g t h e p r o j e c t
schedule .

S i m i l a r ly , t h e use of rou t i ng-pred ic t ion
software de rived from proven interconnect
a lgorithms·

�
reduces the incidence of routing

inefficiencies. And it provides adequate safety
margins in estimating gate and part counts at
the beginning of a project .

Digital Tecbtzicul }OUI"'Illll
No. I August I 'JR5

Two other product development objectives
were revealed as a resu l t of VAX 8600 design
efforts . The first is the need to ensure that con
nector technology is not dependent on modu le
thickness. Then extra layers can be added with
out greatly affecting related hardware . Second,
larger safe ty margins must be provided to
reduce module rout ing difficul ties .

Overa l l , the greatest need is for tools that
provide accurate moni toring of design evolu
tion as a whole , and also in the i ndividual
regions of deve lopment. This is especial ly true

given the great increases in complexity from
one project to the next . Many people are
involved in bui lding a sophisticated computer
system l ike the 8600 , and everyone must know
what the others are doing.

As the industry conti nues to evolve and
mature , i t becomes esse nt ia l that package
designers commun icate active ly with system
and logic designers, as well as manufacturing,

'5 9

------- Packaging the VAX 8600 Processor

marketing, and customer su pport personnel .
The development of tools and systems that pro
vide expanded insight into the progress of a
whole project wi l l ass ist packaging engineers in
becom ing creators of design processes as we l l
as developers of hardware .

Acknowledgement

This paper presents the work of a Large number
of technology people within Digital . In many
areas there were cooperative efforts among sev
eral Digital groups and our vendors. Without
their hard work, these accompl ishments would
not have been possible .

References

60

i . D. I . Arney and J . W. Ualde, "New Chip
Carrier Concepts wil l Impact LSI -based
Designs," EDN, vol . 2 3 , no. 1 7 (Septem
ber 2 0 , 1 978) : 1 1 9- 1 26 .

2 . 13. Weaver and R. Moore , "E lectrical a net
Mechanical Considerat ions in the Design
of a Leadless Type A Chip Carrier for
H igh Performance Appl ications , " Pro

ceedings, IEPS, 1 st Annual Conference
(1 9 8 1) : 1 6-24 .

3 . D . Sch midt . "Circuit Pack Parameter
Est imat ion l . s in g Rent's Ru l e , " IEEE

Tra n s a c t i o n s o n C o mp u t e r A i t:led

Desig n , vol . CAD- I , no. 4 (October
1 9 8 2) : 1 86- 1 9 2 .

Digital Tecbnical journal
No. I A ugust I ')8 5

John H. Hackenberg I

Signal Integrity in
the VAX 8600 System

Maintaining signal integrity in ECL is necessary for fast execution
speeds. On the VAX 8600 project, software tools were developed to elimi
nate signal problems before hardware was constructed. The number of
signa/ layers was detennined by modeling the components and routing
channels. The worst-case noise margins were set on the basis of noise
immunity. Power distribution can affect the margins, so special care was
taken to limit transients. Temperature changes, which also cause signal
level shifts, had to be limited. Wavefontls and their reflections were
modeled to identify the transient response. Another model identified
crosstalk problems in parallel runs.

To achieve the performance goa ls set for the
VAX 8600 CPU, emitter-coupled logic (ECL)
was chosen for implementing the design . This
consists principally of custom macroce l l arrays
(MCAs) , and standard series 1 O K logic and
RAMs . The chal lenges and problems that ut i liza
tion of this technology presented were investi
gated by studying an earl ier ECL design at
Digita l . This invest igat ion resulted in the al lo
cation of signal noise margins and the recogni
t ion of the need for new software tools for noise
summation, and reflection and crossta lk analy
sis. As the design of the machine progressed and
problems were encountered, we improved the
new software to analyze whole networks and to

allow as much flexibil ity as possible without
risking the time to market.

Printed Wiring Board
Characteristics

The first tasks were to select the characteristics
of the printed wiring board (module) to be
used and to determ ine the nu mber of compo
nents that cou ld be interconnected on i t . The
characteristics chosen were the fol lowing:

l . The board wi l l be the same height and
width as that in the VAX - I I j750 and
VAX - I l j780 systems .

Di�illll Techuit:lll]our�wl
No. I A ugust 1 985

2. Doard thickness will be l imited by the
card edge connecto r chosen for the
system .

3 . The rou ting grid wil l be 5 0 mils to guar
antee a maximum of 5 percent back\vard
crosstal k .

4 . Interconnect impedance w i l l be main
ta ined at 55 ±5 ohms.

I tems 3 and 4 also apply to the printed wiring
backplane that carries the signa ls between the
modu les . The minimum desirable im pedance is
50 ohms to match the minimum output drive
capabi l ity of the MCA.s (the MCA 2 5-ohm driv
ers are strictly for double-ended buses, where
the l ines in each direction arc 50 ohms) . The
higher the impedance , the thicker the dielec
tric must be for a given signal conductor cross
sect ional area. And the th icker the dielectric .
the fewer layers that can be incorporated into a
hoard of the maximum thickness (1 80 mils) .
Thus S5 ±5 ohms fits the requi n:ments neatly,
and within this constraint the backplane actu
al ly reached the l imit in nu mber of layers .

The number of com ponents is obviously l im
ited by the avai lable space-the area of the
board . But i t also depends on the number of

6 1

------- Signal Integrity in the VAX 8600 .S),stem

interconnecti ons that can be made among those
components . In investigat ing this issu e , special
consideration was given to signal IR drops due
to i n terconnect length. as the voltage drop
along a conductor directly subtracts from the
noise margin at the input to the receiving gate .
To solve this problem, d ifferent l i ne widths
were used in the d ifferent s ignal layers of each
board . Signals could then be ass igned to partic
ular layers depending on the length of the sig
nal path . Thus , longer l ines could be ass igned
to wider s ignal traces to equalize the IR drops .

With this information and the early compo
nent estimates from the logic desi gners, we
determined the number of components on each
board and how many signal layers wou ld be
needed to interconnect them. Then, from speci
ficat ions of the amount of power consu med by
each component, the total power drawn by
each board and by the entire CPU were est i
mated. In turn, these estimates al lowed us tO
determine the thickness of the copper in each
module and in the backplane . At th is point mak
ing Iayups of the hardware could begin . The
resu lt was that different modu les in the CP
vary from two to s ix s ignal layers , and the CPU
backplane has e ight signal layers .

Although this early analys is was usefu l , in the
actual layout of the modules we ran into board
rout ing problems . To solve them, a program
was written based on Schmidt's article on est i
mation of circu i t pack parameters using Rent 's
Rule

1
• As input the program requ ires the num

ber of components of each type on a board, the
nu mber of s igna l pins on each component type,
the size of the board , and the nu mber of rou ting
channels between adjacent com ponent pins .
From this information, the program determ ines
the number of signal layers requ ired to rome
the board .

We also created new programs to obtain bet
ter correlation between calcu lated primed wir
ing impedances and measured impedance va l
ues (i n o t h e r words , to o b t a i n b e t t e r
prediction) . These so-ca l led "field" programs
employ electromagnetic theory to s imu late the
inductance , capacitance , and resistance of con
ductors of arbitrary s ize and shape in two and
three dimensions. From these s imulated charac
teristics, the programs compute the dcctrical
parameters for microstrip and stripl ine configu
rati ons , and the crosst:l lk between conductors.
The three -dimensional program also computes

6 2

the crossover capaci tance o f s ignal condu ctors
that are on adjacent layers and routed orthogo
nally to each other. This last computation is
i mportant because the crossover capaci tance
increases the propagation delay of signal traces
a n d l ow e rs t h e i r i m pedance . Add i t i o n a l
enhancements are being planned for these pro
grams to better analyze s ignal reference planes
from an alternating current (ac) viewpoint .

Noise Margins

To design a reliable system, i t is necessary to
understand the d irect current (de) noise mar
gin for the ECL gates being used . Different logic
fam i l ies have different characteristics in the
way tracking rates of input and output levels
depend on variat ions in temperature and supply
vol tage . These variables were used to determine
the worst-case de noise margins, depicted in
Figure 1 . However , if a system were to be
designed around worst-case de noise margins,
t h e n a l l the no ise contr i b u t ions s u m med
together cou ld not exceed those margins. This
wou ld be far more restricti ve than necessary for
system integrity and would be devastating for
system performance . That i s , the gates wou ld
have to be so far apart that the interconnect
delay between them , on which system cycle
t ime depends, wou ld be unacceptabk .

Gate Gate
Nom1nal H1gh Level _o_ut:__pu_t _______ ln_put
Guaran� 'Q�;g�; ----- H1gh-Level No1se Marg•n

- - - - -�owest Input Guaranteed

��n��a����ne V:.��h To Be Aecogn•zcd As H•gh

Input W1ll Be
Recognized

Guarant��v ����: ____ _
H;gt'lest Input Guaranteed
To Be Aecogn•zed As Low

Low-Level Norse Margin

Nom•nal Low Level ----------

Worst-Case DC Noise Marg•n Is The Smaller
Of The H•gh- And Low-Level Noise Marg•ns

Fi[!,u.re I DC Noise Margins

On the other hand , by understanding the de
noise margin for a given gate , one can also
obtain i ts ac noise margi n . In particular, for
each gate one can derive an input-signal ac
noise immunity curve (Figure 2) , which shows
what ampli tude of input noise is required to
switch the gate output at any noise pulse width .
Based on this relationship. if the sum of a l l
input noise contribu tors for each gate in the
system is less than the noise required to switch

Digital Technical journal
No. I A ugust 1 98 5

Figure 2 A C Noise Imm unity

the output, then the i ntegrity of the system can
be guaranteed . This cr i ter ion i s m u c h l ess
restrict ive than de n o i se margi n s ; in other
words, any poi n t below the curve of Figu re 2 is
acceptabl e . 'fherefore , ac no ise i m m u n ity was
used to set the worst-case noise margins for the
ECL logic in the 860 0 .

Based on a l l known noise contributors, we
determi ned the ac noise margin for the system .
To set up the design ru les , we then ass igned an
amplitu de to each noise contributor; that is , the
noise was a l located among the various sources,
as shown in Table l . This a l location a l l owed us
to define a rou t i ng grid on the pri nted wiring
boards and backplane, and to select connectors
and transm ission l i n e cables .

Table 1 Noise Budget

Noise Contributor

Load reflections

Crosstalk

I nterconnect mismatch i m pedance

Simultaneous switching of outputs

-2.0 Vac noise on signal l ine

Signal I R drop

Vee I R drop

Gate feed-through

Output voltage adj ustment to therma'l
variations

Digital Tec:huical Jourllal
No. I August I ')8S

Allocation
in

Mil l ivolts

1 00

1 00

1 00

1 50

25

25

1 4

50

6

Final ly , we wrote a program to sum a l l noise
contribut ions (worst case hut w it hout tak i ng
s ignal t i m ing i nto considerati o n) for each ECL
network in the system . Those networks identi
fied as potential problems were analyzed by
hand using t i m i n g i nformation to determ i ne the
i m pact on the system . Real problems were
resolved by reducing one or more of the noise
contributions (such as crossta l k from adjacent
s ignal traces) or by spacing l oads farther apart
on the transm ission l i n e to reduce the ampli
tude of load retlections.

Controlling Noise Sources

The largest a l location i n the noise budget is the
one that l ittle can be done ahom : the s i m u l tane
ous switc h i ng of outputs , w h i c h ge nerates
l S O m i l l ivolts of noise . Other sources could be
just as noisy, but the a l locations for them
reflect the fact t hat action can be taken to
reduce them . Besides the use of different width
traces to equal ize s ignal IR drops , the major
efforts lay i n power d istribution , load retlec
t ions and crossta l k .

Power Distribution

Power d istribution is an espe c i a l ly i m portam
factor in design ing an LSI system with ECL. Sup
ply regu lation is i mplemented through remote
sense poi nts located near the .logic c i rcu its. But
the number of such po.ints is necessarily l i m
ited , a n d an excess ive supply drop between a
sense point and any ECL gate wou ld adverse ly
affect the noise marg i n . Of course, there must
also be s u ffic ient decou p l i ng of the supply
voltages .

To obtain a reasonable de noise margin on
the ECL gates , a goal was set that all factors
contributing to variation in the supply voltage
at any point in the d istribu tion cou ld cause no
more than ±3 percent variation in the nom ina l
V u: voltage . Table 2 l ists these factors a n d the
a l lowable variation i n eac h .

ECL gates w i red together arc particu larly sen
s i tive to vC< . voltage d i fferences because t he
reference for both output and i nput thresholds
i s itse l f referenced to Vee Fu rthermore , any ac

noise on a Yu : line not common to both gates
may reduce the noise i m mu n i ty . To m i n i m ize
Vee d i fferences and equ a l ize ac effects, fu l l
ground reference p lanes were used i n both t he
modu les and the backplane. These planes keep

6 3

New Products

________ Signa/ Integrity in the VAX 8600 .�:vstt>m

tht: i nd uctance in the Vu path between c h i ps
as low as possible .

To reduce the total power requ i red by the
system , we emp loyed a sma l ler supply vol tage ,
-2 . 0V, for the termi nators. This a l lowed us to
use a term inat ing resistance that m atched the
l i ne i mpedance better. But i t a lso created t he
possibi l i ty of large changes i n termi nator cur
re nt over a n e n t i re mod u l e , a s i tuat ion t ha t
wou ld produce large transient vo l tages . Any
noise in the termi nator vol tage is coupled i n
part onto the s igna l wires . To redu ce t hese tran
sients, decoupl ing capaci tors for both high and
low frequencies were d istributed throughou t
t h e m od u l e s . The spe c i fi c a t i o n i s e n o u g h
decoupl ing to l i m it transients to 5 0 m i l l ivolts
on Vu and Vrr· Table 2 a lso shows the aUowa
ble variations in the factors affecting the term i
nator supply.

Table 2 Power Supply Varia,tion

Variation in
Factor VEE -5.2V Vn -2.0V

Reg ulator tolerances
Linejload regulation,
rippl'e , long-term change
i n de reg ulator output

Noise transients due to
load cu rrent changes

Distribution IR d rops

1 . 0%

1 .0%

1 . 0%

Thermal Considerations

2.0%

2.5%

1 .0%

The signal output and input levels of c ircui ts
shift with changes in temperature. To hold the
de noise contri bution from this factor \Vi t h i n its
a l l ocation req u i red l i m i t i ng to I ooc the a i r
t e m p e r a t u re d i ffe r e n c e b e t w e e n a n y t w o
ckvices connected together t hrough a n y net
work. The thermal engineers attempted to guar
antee ad herence to this criterion by hold i ng the
temperature rise across every i nd ividual mod
u le to I ooc. Since the heat generated by the
d i fferent modu les varies considerab ly, t h is goal
turned out to be u nattainab le . But a thermal
ana lysis of every network, including t hose that
e xtended over m u l t i p l e modules via the bac k
p lane. showed t hat the fu ndamental req u i re

ment relat ive to any nvo devices in any network

was met .

64

load Reflection A nalysis . .

To analyze load retlections, we created a s i m u
l ator t h a t models a tra nsm ission l ine i n the t i me
doma i n . This program is specifical l y for ECL
circui try, and i t gives resu lts s i m i lar to those of
SPICE

2
but takes much less CPU t i m e . To model

a waveform at any point on a l i n e , the s i m u lator
d iv ides the tota l delay into many i ncrements
and calc u l ates a set of values for the waveform
corresponding to t hose i ncrements. The calcu
lations take into cons ideration the (a) i mpe
dance and propaga t i o n d e l ay of the l i n e ,
(b) i nput a n d output i mpedances for each gate,
(c) package capacita nces, and (d) e l ectrical
para meters of signal connectors . Besides the set
of va l u es represent i ng the generated waveform

propaga t i ng along the l i ne , the program a lso
c a l c u l a t e s a s e c o n d s e t re pre s e n t i ng t h e
ret1ected waveform . I n a manner analogous to
the resul t of a waveform and i ts retlection on
the l i ne , the correspond i ng values in the sets
are summed. With this technique t'or waveform
a n a l ys i s , w e c a n d e t e r m i n e t h e t ra n s i e n t
response for each output and i np u t o n arbitrary
networks . Using t he appropriate d i ffe re n t i a l
equations to represen t source and l oad models
gives resu lts that a re comparab le to those given
by SPICE .

O n c e a good c o rre l a t i o n was o b t a i n e d
between bench measurements a n d s imu lat ions,
we added a lgorithms tO calcu late the m i n i m u m
a n d maximum propagation de lays a long each
ECL network in the syste m . When t he gate
delays , i nterconnect delays, and appropriate
l ogic con d i t i ons were estab l ished, we cou l d
analyze the t i m i ng of the VAX 8600 C PU using
w o r s t - case p a ra m e t e rs . T h e s e p a r a m e ters
i nc l u ded both m i n i m u m and maximum val ues
for gate de lays, output rise and fa l l t i mes , i nter
connect delays. and i m pedances of the i nter
connect for each logic path i n the CPC. The
program that calcu lates int ercon nect de lay can
a l so ana lyze networks c o n ta i n i ng m u l t i p le
sou rces (i . e . , wirc-ORs and buses) .

Crosstalk and Interco nnect

As boards become denser and switching speeds
faster, crossta l k becomes an increasingly i mpor
tant sou rce of noise . The program for calculat
ing crossta l k . which can be used for 'TTL and
ECI. , fi nds al l para l lel pi eces of signal etch on a
board . I t then calcu lates t he crossta l k contri bu
t ion to each victim segment from al l para l l e l

J)igital Technical Jozwnal
No. I A ugust I 'JH 5

aggressor signal runs , within reasonable l im its
it ignores those too far away . The calculations
are based on the length and separation of para l
lel runs using crosstal k cou pl ing coeffici ents
rather than transmission l i ne simulation. The
voltages for each ru n are added and reported as
the total crosstalk voltage cou pled into the vic
tim network . I f this total exceeds a specified
threshold, the report includes a breakdown of
the crosstalk for each run .

Pr inted wir ing that handles the s igna ls
between integrated circu i ts on boards and back
planes must be control led impedance to obta in
the best system performance . To meet the goals
of the VAX 8600 syste m, at each interconnec
tion we permitted no more than I 00 m i l l ivolts
of reflection due to mismatches in impedance
as a signal moves from one interconnect to
another.

Summary

The initial performance goa l for the design of
the 8600 was a program execution speed at
least four ti mes that of the 1 1 /780. One of the
factors that made possible the real ization of this
goal was an investigation of the interconnect
environment for the ECL logic used in the
860 0 . In doing so we gai ned a s ignifi cant
understanding of and control over the fol low
ing parameters affecting the integrity of the
logic signals in the system :

I . Propagation delay per unit length of l ine

2 . Vol tage drops from the source to each
load

�� . Crossta lk between paral lel s ignal l ines

4 . Reflections due to loads on a transmis
sion l ine

5. Reflections due to mismatched impe
dance characteristics of the l ine

() . Reflections due to connector im pedance

7 . Reflections due to m ismatch between
i n t e rc o n n e c t i m p e d a n c e a n d t h e
termi nator

Di?.ital Tecbnical jom·nal
N". I A 11g11s1 I 'JH 5

This understanding and control al lowed us to
perform accurate simulations of the intercon
nect d e lays t hro ugh a l l paths in the CPU,
result ing in the el imination of a large number
of potential problems. Accurate t iming s imu la
t ions of the interconnect al lowed t he resolution
of logic delay problems before com mitting the
design to hardware , s ign ificantly reducing
design turnaround t imes.

Many people inside Digital worked di l igently
to generate programs and build test hardware to
analyze the interconnect. Because of this, we
were able to reach our goal of bu i ld ing a system
with the cal iber of the 8600.

References and Notes

I . D . Schmidt , "Ci rcu i t Pack Parameter
Est imation Using Rent 's Rule , " IEEE

Tra n sactio ns on Co mp u t er A ided

Design, vo l . CAD- 1 , no . 4 (October
1 9 82) : 1 86- 1 9 2 .

2 . SPICE is a general purpose ci rcui t s imu
lation program for nonli near de, non
l inear transient and l inear ac analyses . It
was developed by Lawrence Nagel and
Ellis Cohen of the Department of Electri
cal Engineering and Computer Sciences,
University of California, Berkeley.

65

New Products

Cooling the

E. Brian Kalita I William English _

VAX 8600 Processor

Pmper cooling is essential for reliability yet is constrained by acoustic
requirements. Both are achieved here using a single centrifugal blower
to move air thmugh the cabinet, with modules spaced for suitable air

flow. Thermal models were created to analyze temperature gradients on
modules and across networks, thus guaranteeing the integrity of sigm1l
levels. Component temperatures received special attention since an MCA
can dissipate five watts and thus needs a heat sink. The best heat-sink
design was developed by measut·ing die temperatures using testing
devices, each containing a free diode.

The VAX 8600 processor dissi pates six ki lo
watts of energy, nearly al l of i t from one
double-width cabinet. Since the fu nctional i ty
of the logic is temperature sensitive, cool ing
was a major concern in bui lding a re l iable sys
tem. Nevertheless , the 8600 runs (and was fu lly
qual ified) on a solid floor using computer
room air for cool ing. Of course the system can
a lso be coo led by condi t i oned a i r drawn
through a raised floor. Much of our cooling
design effort was aimed at satisfying acoustic
goals whi le at the same time meeting cool ing
req u i re m e n t s . The 8 6 0 0 i s the q u i e test
mach ine of i ts size that Digital has ever bui l t .

Overal l cooling of the 8600 is accompl ished
by the movement of air from bottom to top . Air
at normal computer room temperature enters
the cabinet through a perforated base panel and
passes through an a i r - fi l ter asse m b l y that
doubles as the UL drip screen . Shou ld there
ever be a fire inside the cabinet, the screen wi l l
extingu ish the tlames of any burning material
that may drip from the equipment. From the
screen the air passes through the card cage con
ta in ing the l ogic and then through the power
supplies. At the top of the cabinet is a double
dual centrifugal blower (i . e . , a single device
with a pair of wheels on each side) . The blower
pu l ls the air up through the cabinet and forces
it out through a pair of acoustic muffl ers
mounted inside the rear cabinet doors . Mount-

66

ing the muftlers as an integral part of the rear
doors allows easy access to the logic and power
backplanes. The mufflers have an expanding
internal cross section to regain as much static
pressure as possible from the high-velocity air
exiting the blowers . The muftler entrance and
the exhaust louver pattern , respectively, are
tu ned to reduce in le t pressu re losses and
exhaust reci rculation. The entire path is closed
and independent of the outer walls of the cabi
net . Opening the cabinet doors docs not impair
the effect iveness of the cool ing system .

The card cage i s made up o f four sections, as
shown in Figure I . From left to right, as viewed
from the front , there are the memoq', CPU,
adapter bus, and 1/0 adapters and control lers
that connect to the peripheral equipment . The
memory and ljO sections have standard Digita l
0 . '5 - inch s lot spacing. Spacing in the adapter
section and some CPU slots is 0 .6 inch. The
remaining CPU slots have 1 .0 - i nch spacing to
provide the necessary component clearance
and volume of cool ing air tlow for those mod
u les containing macrocell arrays (MCAs) . The
greater clearance is req uired because each MCA
must have an individual beat sink, and the high
powered MCAs require a greater volume of air
for coo l ing.

Any VAX 8600 processor may have a nu mber
of em pty module slots that can otherwise be
used for various options, such as the t1oating

Digital Tecb11ical jour>Jal
No. I A ugust 1 985

-·. -.. :� .
. !11m ,. ' -· . .

Figure I

point accelerator, add itional memory, a second
connection to the adapter bus, and various 1/0
options. To prevent the cool ing air from taking
the path of least resistance through the gaps,
p l as t ic pseudo-boards arc i nsta l l ed in a l l
unused slots . E l iminating the gaps keeps the air
now close to the boards where it belongs-cool
ing the components-and also serves to make
the air tlow characteristics of all machines the
same.

Module Thermal Design

The thermal design is predicated on two crite
ria re Ia ted to temperature . The first is that sig
nal levels in the emitter-coup led logic (ECL)
components are shifted by changes in tempera
ture . L i mi t i ng t h e temperature d i ffe rence
between any two components within a network
to l O oC prevents the logic levels from shift ing

Digital Tecbnical journal
No. I August I Y8 5

Card Cage

out of range at one component relat ive to
another. The second is that component fai lures
are proportional to temperature . Holding down
the component j u nction (d i e) tempera.tu re
yie lds h igher rel iabi l i ty-a longer MTBF.

Early in the project we decided on two gen
eral goals to guide us in designing the 8600's
cool ing system to satisfy those criteria . One was
to maintain a nom inal a ir temperature r ise
across any given module at abou t 1 o o c . This
would guarantee a maximum 1 ace ambient dif
ference between any two components on the
modu le. The other was to guarantee that at least
90 percent of all die temperatures would be
less than 1 00°C, even at the maximum ambient
temperatu re of 3 2oC . Of course there were
bound to be differences from one module to
another; one module actually dissipates 1 80
watts , and the one next to it d issipates 1 4 6 .

67

New Products

Cooling the VA X 8600 Processor

In those si tuations where the I o o c rise was
exceeded, we analyzed the individual networks
tO determi ne the temperature gradients within
them. On one board there was actual ly a I 5 oC
rise, but no individual network exceeded I 0°C;
the goal for junction temperatures was met as
we l l . By taking great care in the placement of
components, we were able to configure the
i nd ividual networks in such a way that even
though we violated the general rule on temper
ature rise in some cases , we nonetheless always
stayed within the critical l imi t on the tempera
ture difference between two devices wired
together.

To help the logic designers , we set up des ign
rules aimed at sat isfying the thermal require
ments. To start , one ru le was based on dividing
a board into sections about two inches wide
(approx i mately a s ingle column of compo
nents) and three inches high. The rule required
that the components contained within each
such section shou ld not exceed a given maxi
mum power. The va lues for maximum power
and section size were based on pre l iminary
tests using a mockup board with protOtype
MCAs. With rising air t1 ow, each component
heats the one above it; we could not therefore
al low the placement of a column of hot compo
nents, even if the rest of the board were cool ,
without evaluating each ind ividual case . For
example, to make rout ing possible , a designer
may have needed to violate the section-power
ru le and put three five-watt devices right on top
of each other. Cases such as this wou ld be eval
uated by considering the network and die tem
perature information .

At the next level of refinement, we used a
thermal analysis tool designed by the Thermal
Engineering Group at Digital in Maynard, Mas
sachusetts . This tool u t i l izes different functions
of thermal resistance versus air vdoc ity to cal
culate junction temperatu res for different kinds
of component packages. Based principally on
vendor data, these functions were developed
for plastic packages, ceramic packages , and
packages with special thermal character istics .
Within each package type , separate cu rves were
derived for different sizes, correlated to the
number of pins. To perform the analysis, we
divided the board into as many as one hundred
sections . The " model board" was then popu
lated for a particu lar configuration by our spec
ifying the components and ass igning them to
the sections . The analyzer first calcu lates the

68

temperature rise of the air from environmental
information, power data , and component place
ment. From this calcu lated temperature rise ,
the appropriate thermal fu nctions by compo
nent type and size, and air velocity information ,
t h e p r o g r a m p re d i c t s t h e j u n c t i o n
temperatures.

Although the analysis was extremely val ua
ble, it was also very cumbersome to usc. AU the
information on component type , size, power
and posi tion had to be entered by hand . A per
son required nearly a week to enter the data for
one board . Once the value of the ana lys is had
been demonstrated , we modified the program
to take the component data from fi les supplied
by the CAD tools that were already in place
(drawi ng program and wirel ister) . Further
more, a set of algori thms and software was also
deve loped that performed the section assign
ment au tomatica l ly from layout data provided
by the component placement opt i mizat ion
software . Eventual ly the handwork was reduced
to five minutes, the time it took to select the
number of sections and specify the input fi les .

We also deve loped a network analyzer. Using
this tool in conj unction with the module ther
mal analyzer al lowed the inspection of the
junction temperatures throughout an individual
network on a hoard to determine whether the
I ooc ru le was violated between any two com
ponents within that network . We used the mod
ule analyzer and the network analyzer on every
hoard in the VAX 8600 processor.

Once the l ogic design started to stabil ize , we
expanded the network analyzer to investigate
individual networks that ran through mu lt iple
modules across the backplane . With the huge
number of logic interconnections, this task was
im mense and com plicated , but we did manage
to complete i t . Thus in the long ru n, thermal
modeling was done at the device and board
levels , and on the total machine.

Component Thermal Design

Most of the t ime and effort in component ther
mal design was devoted to the MCA. This was
because each MCA package can dissipate up to
five watts. We tried many approaches re lative to
heat s inks and packages, with and without sock
ets , before sett l ing on the fi nal designs. We
eventual ly arrived at a sol id socket des ign for an
MCA in a leadless chip carrier, but the sockets
themselves were finally dropped (i n favor of a

Digital Teci.Jnical journal
No. I A ugust 1 98 5

pin grid array package) because of i nsufficient
av:l i lab i l i ty .

The major part of 1the testi ng was done to
determ ine what heat s i n k to use based on the
req u i rements of die temperature and a l l owable
component-to-component temperature d i ffer
entials . The die temperature is equal to the
product of the power and the thermal resis
tance for a pac kage p l us the ambient te mpera
ture. The vendor specification for the thermal
resistance of the MCA is l 00 ±2°C per watt . The
LSI c ircu i t is near the su rface of the s i l i co n . The
major t hermal pat h for the package ex

'
tcnds

(a) from the circu i t ; (b) throu gh the s H icon ;
(c) through the d i e bond , which is a gold
si l icon eutectic solder; (d) t hrough the a l u
m i na chip carrier; (e) through the epoxy that
b o n d s t h e c a r r i e r t o t h e h e a t s i n k ; a n d
(f) t hrough the heat s i n k into the a i r . Other
paths to the air i nclude heat convection from
the su rface of t he cera m i c and cond uct ion
t hrough the leads i nto the board .

\X'ithin t hese constraints, we had to select the
heat s ink and the epoxy to attach it . Uut in
order to make these decisions, some way of
actua l l y measuring the die temperature was
neede d . The most promising technique seemed
to be the trad it ional one of u s i ng a free d iode as
an internal thermometer. With constant cur
re n t , a d i o d e h a s a n e g a t i v e v o l t a g e /
temperature cu rve that is l i near over sma l l
ranges. S ince t he ranges of concern were sma l l ,
i f there was a free d i ode o n the device , we
cou ld cal ibrate it in a bath and then use its
leads to monitor the die temperature .

Unfortu nately, an E C L device u nder power
does not have any free d i odes. so the vendor
prod uced a special die just for thermal testi ng.
This d i e was somewhat d i fferent physica l ly
from the MCA d i e , and it contained o n l y 1Tl
c i rc u i t ry for making thermal measurements .
D igita l and the other companies using MCAs
worked together to ca l ibrate the die and use i t
to measure temperatu res . A t first w e had con
si derable problems with i nstru mentati o n , learn
i ng what to do and how to do it, and gett ing
good d ies from which re l i able measurements
cou ld be ga ined. We b u i l t our own test equip
ment and developed procedu res t hat a l l owed
us to " look inside" the MCA packages. The suc
cess of t h is effort enabled us to select heat s inks
that m a i n t a i n the MCA tempera t u res at the
desi red l eve ls .

Dif!.ilal Tecb1lica/ jounwl
No. I A ugusl I ')85

We decided to con t i n u e o u r test ing on a
device that better approxi mated the MCA i n
both s i ze a n d struct u re . For t h is p u rpose ,
Digital 's LSI faci I i ty in H udso n , Massachusetts
provided two types of t hermal test e lements .
The first i ncorporated t h e TrL die o f a gate
array used i n t h e VAX- 1 1 /7 5 0 system . This
device al lowed us access to a free d iode and
was close to the right size for the MCA. It was
mou nted i n the ceram i c carrier of the MCA and
al lowed us to get a close thermal approxi ma
tion to an 8600 MCA package . Later the H u dson
plant created an actual MCA on which they
placed a " free " non-ECI. diode just for thermal
testi ng. The d iode is not used in the logic of the
device, and in normal product ion, i t is not
bonded to the I/0 pads of the chip carrier.
Whenever packages are req u i red for thermal
testing, the d iode leads are bonded in place of
two of t he MCA output connections . This pro
cess renders the package useless for any other
fu nction, but perfect for thermal testing, s ince
it is the actual structure of i nterest-an MCA
d i e-and d issipa tes the actual power of the
devices used in the 860 0 . With t h is " real " MCA
package , we verified our thermal design by
bu i ld i ng a module w i th these parts in p lace of
the actual MCAs . This " t hermal m od u le" can he
placed in a machine and powered as if i t were
actual ly functiona l . The MCA packages contain
i ng the special d ie can be mon i tored , a l lowing
us to watch what rea l l y happens ins ide the
machi n e .

The experiments with the test devices also
enabled us to i nvestigate die bonding, or wet
t ing. We wanted to know how much of the
piece of s i l i con was actual ly soldered to the
ceram ic . The resul t of these stud ies enabled us
to estab l is h the specification for a test proce

d u re that i nspects the temperature of the die
after i t has been powered for a specified num
ber of seconds . I f the die bond is poor, the heat
w i l l have to travel through a small void rather
than through the higher cond uctivity solder;
the die temperature w i l l therefore be higher
than a specified acceptable leve l .

Switch t o the Pin Grict A rray Package

Fai rl y late i n the project, a n acceptable p i n grid
array (PGA) package became ava i lable, and we
deci ded t hat i ts advantages warranted using i t .
This meant that a l l t h e thermal i nvestigations

69

New Products

Cooling the VAX 8600 Processor

had to be repeated to veri fy t hat the PGA con
figuration met the goals .

Removing the sockets shortens the packages,
so t here is more space for a ir flow between
those boards that already have the larger, one

inch spacing. I t was feared t hat the new pack
age configu rat ions m ight actual ly run too much
cool er . We a l ready had a fa ir ly sol i d logic
design that worked i n the t hermal confi gu ration
then existing; a sign ifi cant te mpe rature shift i n
e i t he r d i rection was undesirable . R u n n i n g hot
ter reduces re l i a b i l ity; ru n n i n g s ignificantly
coo ler, al t hough i t i mproves re l iabi l i ty , m ight
affect the s ignal levels to such an extent t hat
the system wou ld not work at a l l .

We stud ied t h e temperatures with t h e t her
mal mod u le in every slot . Then we experi
mented extensively with a part icu lar slot that
was warmer than the others (t he a ir tlow is not
exactly the same t hrough all s lots) . The resu l t
of t h e i nvest igation is a package i n which t he
MCA runs s l ightly cooler t han before, but st i l l
well within t h e s igna l leve l requ i rements. The
heat sink is a s ingle , four-finned u n i t , one inch
in diameter. I t is bonded to the top of the PGA
package with an epoxy, and the whole assembly
process is fu l ly a u tomated .

Summary
To cool a mac h i ne as large and as dense as the
VAX 8600 processor req u i res the continuous
movement of a very large volume of air . To do i t
with a ir at room tempe rature a n d g o about i t
q u i e t l y i s a s i g n i ficant feat i n d e e d . I t was
accompl ished by exercising meticulous care i n
t h e phys ical configuration o f t he system a n d by
the creation of i maginat ive and t horough tools

for t hermal analys is .

7 0 Di�ital Techt1ical joun1al
No. I A ug ust I 'JH 5

William F. Bruckert I Ronald E. Josephson

Designing Reliability
into the VAX 8600 System

The failure rate of a system is directly related to the number of compo
nents used in its design. Therefore, the designers of a large CPU must put
emphasis on fault avoidance, fault tolerance, and fault minimization to
ensure that the overall system failure rate is acceptable. The VAX 8600
system contains many features to assure its reliability. Conventional
approaches, like parity checking, and nonconventional ones, like array
address checking through ECC codes, were used to overcome the higher
failure rate generated by having more components. This pape1· covers
the most important steps taken to provide that reliability.

The cost of a fai lure i s proportjonal to the size
of a system, since more compute power is lost
and more people arc idled as size increases.
Since the fa i lure rate is d irectly related to the
nu mber of components i n the syste m , a much
greater emphasis must be placed on fau lt-toler
ant designs in l arger systems in order to keep
the costs of fai lures at an acceptable leve l . 1 The
VAX 8600 system is the largest, most powerful
computer produced by Digital Equ ipment Cor
poration. We made customer satisfaction the
most important engineering goa l , thereby plac
ing a high priority on the mac hine's rel iabi l i ty.
In this paper, rel iabi l ity is d iscussed from the
customer's point of view, which covers a wider
context than the usual defin ition of inherent
reliab i l ity .

Computer re l iabi l ity enhancement can be
subdivided into four areas : fau l t avoidance ,
fa u l t t o l e rance , fau l t m i n i m iz a t i o n , a n d
improved mean t ime t o repair (MTfR) . Fau l t
avoidance i s real ized by reducing the system
fa i lure rate through improved qual ity of the
components, interconnects, design , and manu
facturing. Fault to lerance is the negation of the
effects of fau l ts through correct ion codes,
re dundant hardware , reconfigura t i o n , and
rctry

l
Fau l t minimization is the red uction of

Digital Technical]ounud
No. I A ugust 1 985

the effects of a fault by tagging corrupted data
that has damaged the machine state or other
data. Furthermore , fau l t min imization can be
achieved by having the hardware give accurate
and deta i led fau l t information. The MTTR is
improved through remote diagnosis , the reduc
tion of the t ime to diagnose a faul t , and the
increase of diagnostic accuracy. The applica
tion of eac h of these four areas to the VAX 8600
design is discussed in detai l in the fol lowing
paragraphs .

Before these deta ils are presented, however, a
short explanation of the major pans of the 8600
architecture is warranted . The components in
the VAX 8600 CPU are conta i ned in fo u r
"boxes" that control operations and perform
various functions . The E Box executes and
retires instructions . The I Box prefetches and
decodes instructions and prefetches operands .
The M Box performs page translation , cache
functions , 1 /0 transfers , and memory array
access . And the F Box performs floating point
operations.

Fault Avoidance

Our first goal i n designing a re l iable system was
to reduce the nu mber of fai lures that occur in
t h e m a c h i n e . T h i s i n v o l v e d g e t t i n g

7 l

-------- Designing Reliability into the VAX 8600 .\),stem

components, interconnects, and power systems
with the lowest fai lure rates . Reducing the fai l
ure rates also involved constantly monitoring
the fai lures that were experienced and deter
mini ng their causes .

A major infl uence on the IC re l iabi l ity was
exercised by speci fying how the chips were to
be s tressed a n d teste d . The 0 1 Ps and the
macrocel l arrays (MCAs) were requ i red to be
bu rned in before testing; thereafter, al l chips
were to be fu nctiona l ly tested . However, i n
debugging the early machines we discovered
bad DIPs . We had expected to find only a hand
fu l of bad chips since they were a l l burned in .
To identify the cause of these fai l u res, a l l defec
tive chips were analyzed . The problem was
identified as static that was "zapping" our mod
u les. Subsequently, the design was changed so
that a l l machines come with static grounding
straps .

We also examined the designs of previous
CP s to determine which problem areas were
typica l . The backplane is an example . Wire
wrapped backplanes are difficul t to bu i ld and
test . They have several fa i lure modes-such as
cold flow of the insulat ion, a nicked wire , and
scraps of wire . They can also be damaged dur
i n g serv i c i ng of the m a c h i n e . A l l t h e s e
problems often resu l t in intermi ttent fau lts that
s lowly but surely become more so l id . I mprov
ing the qual ity control on the wire-wrapping
process to obtain the desired re l iabi l i ty was a
very difficu l t task, since the process is com
prised of a large number of repetitive but not
identica l operat ions . Moreover, a very smal l
error rate st il l produces quite a large overal l
fa i lu re rate . Therefore , early i n the project, we
decided to replace the wire-wrapped backp lane
with a mu l t i layer printed circu it card . which
has a much lower fa i lure rate .

I n the power subsystem, fau l t avoidance was
pursued by im proving the alternating cu rrent
(ac) input -power tolerance , the des ign testing,
the manufacturing processes, and the environ
menta l mon itoring. In particu lar. manufactur
ing was a key area where the re l iabi l i ty of the
power suppl ies was im proved . A new power
supply tester was developed to im prove our
test ing capabi l it ies. I t conta ins logic that can
fu l ly test the characteristics of a power supply
and store the test data . The data includes l ine
and load regulation and noise measu rements.

A modular power supply (MPS) was designed
to run from a single clock so that a l l regulators

7 2

wou ld he i n synchron izat ion. This synchroniza
tion a l l owed us to predict and control the out
put noise of the switching regu lators . A new
high-current connector that a l lows the regu la
tors to be pluggabl e was also developed.

The power subsystem also contains the envi
ronmenta l moni tor ing modu le (E MM) . The
EMM was designed to monitor the status of the
power supply and the envi ronment inside the
system. The EMM can measure the vo l tage out
put of every regu lator, the inlet and outlet air
temperatures, the air -flow veloci ty, and the
ground-wire current in the pri mary power cord .
The system protects itself by having the EMM
monitor these conditions, log any deviations,
and shut down the system if adverse condit ions
warrant i t .

Accord ing to E .) . McCl u skey, " I mproper
design of the hardware or software can resul t in
a system which does not function at a l l . Such
m istakes are , of course, quickly discovered and
corrected . Other, less obvious design defects
usual ly remain in any system even after it has
been in service for a long t ime . "

5
The resul ts of

design problems are logic circuits that ei ther
fa i l prematurel y or sense signals fa lsely. The
number of these types of errors is indirectly a
measure of the quality of the tools used in the
system's design.

At the beginning of a design project , ru les are
establ ished to make sure that the goa ls for sig
nal integrity and component fa i lure rates can be
achieved . I t is usually impossible to deve lop
ru les that are both easy to check and at the same
time don' t overly constra in the design engineer.
Often this resu lts in complex ru les . I f they are
inadvertently broken , the usual outcome is a
decrease in the machine's re l iabi l i ty. The bro
ken ru les res u l t in components that operate
with excessive temperatures or signals that do
not have adequate noise margins. A chip that
runs too hot w i l l fa i l sooner than anticipated ; a
signal that doesn ' t have adequate noise margin
wi l l somcti mes be sensed incorrect ly. Worse
sti ll is the fact that the component is b lamed
rather than the true cause , a violated ru le .

As an cxample consider the operat ing tem
perature of an IC. There is a tradeoff between
the maximum and minimum operating temper
:uures and the amount of noise margin avai la
ble. I f the temperature of an IC exceeds i ts
maximum specified temperature. the amount of
noise normal ly present from known sources,
s u c h as a d j a c e n t - r u n cross ta l k , may be

Di!!,ila/ Tecbuical journal
No. I A ug ust 1 985

sufficient to produce a false s igna l . Therefore ,
i t is important that a l l ICs stay with in their
spec ified operat ing temperatures . To ensure
that , we developed a tool for use on the 8600
to check for chips that were gett ing too hot . If a
chip was detected as being too hot , i ts layout
was mod ified to correct the problem without
changing the total power of the modu le .

A new t im ing ana lysis tool was also deve l ·
oped for the project. This rool enabled the
designers tO do a much more thorough job of
t im ing ana lysis on th is machine than had been
done on previous projects . Using it involved
ru nning many separate programs t hat bu i l t a
t im ing model of the machine from the schemat·
ics and the layouts of the modu les , backplane ,
and MCAs. The resu lts of the model were then
used hy a program that performed ti m ing analy·
sis of the design based upon a set of interbox
t iming specifications .

After the layouts of the modu les were com
pleted , every s ingle run was ana lyzed to ensure
that signal integrity had been achieved . The
program computed the amount of noise gener·
ated from adjacent runs, retlections , and the
l ike . Based on these resu lts , we made a number
of rerout ings to increase the integrity of certain
s ignals .

Fault Tolerance

All the efforts discussed in the previous section
improved the machine's re l iabi l i ty . However,
the logic could s t i l l fa i l ; therefore , i t was
important tO have mechanisms tO recover from
a logic fau l t whenever possible . Fau l t isolat ion
and fau l t tolerance are highly correlated, not
separate issu es . Data integri ty and retry opera·
t ions depend on good fau l t detection . So does
the abi l i ty to reconfigure the system when a
fault occurs, a situation that requires accurate
fault isolation as wel l .'i I t is i mportant to know
what type of fa ult was made and what processes
may or may not have been affected by i t . To
accomplish fau l t isolat ion, we had tO deve lop
an effect ive fa u l t detect ion and report i ng
scheme.

The design philosophy for the fau lt system
had several major concepts . The first was that
faults occurri ng synchronously with the pro·
gram cou nter (PC) should be reported synchro·
nously to i t . Synchronous fau l ts have a d irect
relat ionship to the current value of the program
counter. For example, cons ider a write to an
1/0 register. Only one cycle is required for the

Digital Technical jounwl
No. I A ugust I ')85

M Box to accept a l l the information to perform
the wri te operation. In the meant ime, the E Box
cou ld cont inue processing instructions. The
problem here is that if the I/0 wri te has a faul t ,
the cu rrent PC of the machine wou ld have no
fixed relationship to that fau l t , thus making
recovery more difficul t . To solve this problem,
the m icrocode wiU stal l the E Box on an I/0
write unti l the confirmation of that write is
received .

A s imi lar problem exists with a translation
buffer (TB) miss on a prefetch for the instruc
t ion buffer. If a branch is ahead of the TB miss
in the instruction buffer and the branch is
taken , the TB m iss will not be a problem and
should not be reported . I n th is case the design
requires a delay ·in sending the TB m iss s ignal to
the E Box (which performs the memory man·
agement operations) unt i l it attempts to exe·
cute the instruction whose prefetching caused
the TB miss . In genera l , synchronous fau l ts arc
reported via E Box m icrotraps.

Fau l ts that are asynchronous to the program
counter are reported asynchronously. Asynchro
nous fau lts are ones for which the value of the
program counter has no defin i te relationship
and which are usual ly reported through inter
rupts . Two examples of an asynchronous fau l t
arc a fau l t occurring on a d i sk write to memory
and a par i ty error o n a cache wr i teback
operation .

At the t ime a fault is detected, it may not be
known whether the fau l t should be reported
synchronously or asynchronously. I n that case,
both faul t-logging mechan.isms are invoked : a
m icrotrap for synchronous fau lts and an inter·
rupt for asynchronous ones . Consider the case
of a parity error on an instruction prefetch. If
the E 13ox executes a branch prior to using the
bad data, the synchronizat ion wi l l never be
reached and the fau lt wil l be logged through an
interrupt . In th is case the microtrap condi tion
wi l l be cleared by the execution of the branch.
If, however, the E Box attempts to execute the
prefetchcd instruction with the parity error, an
E Box microtrap wi l l occur and the trap routi ne
wi l l dear the i nterrupt .

The second major concept used throughout
the des ign was that hardware fau ilts are consid·
ered to he process faults only if a process
attempts to use or store corrupted data. For
example, if corru pted data is detected during a
writeback to memory from the cache, a fault
wi l l be logged . However, the process wil l not

73

experience a fau l t u nt i l it attempts to 6ther
consume the corrupted data or store it on a
disk. This logic imposes the requ irement that
corrupted data be marked for later detection,
which is done with ECC code in memory . This
subject is discussed in the Unique Reliabi l i ty
Features section.

Fault Minimization

When recovery is not possible , the next best
thing is to control the amount of damage done
by a faul t . This tactic requ ires fault information
that is accurate, relevant , and sufficient . When
ever a faul t occurs, an error stack frame wil l be
constructed by the E Box and placed in mem
ory. The stack frame format i s the same for a l l
errors . We d id not prejudge what wou ld be use
fu l in determi n i ng which i n format i on was
re levant.

In the case of damaged data, fau h report ing
alone is not sufficient , since i t is not possible to
determine which process wil i access that data .
Therefore , when data damage occurs, the logic
marks i t as "bad," and any fu ture user of that
data wi l l be notified of that fact .

Mean Time to Repair

There are two kinds of machine fai lures: those
having sol id fau l t symptoms, and those having
intermittent fau l t symptoms. Of the two, solid
fau lts arc easier to diagnose. To isolate solid
fau lts , the console can examine the state of the
signals that go from one module to another.
Diagnostics are ru n to find the first fa i l ed test.
which is then run in a s ingle-step manner to
look for the first incorrect s ignal . With the
excep t i on of m u l t i p l e -source s igna l s , t he
source of the first incorrect s ignal value is the
fai l ing modu le (s ince all of i ts inputs have been
checked by this process) . In this way faul ts can
he isolated to the field replaceable un i t .

I ntermittent fau l ts are much more difficu lt to
diagnose, and they comprise between 80 per
cent and 90 percent of the fau lts . Diagnostics
rarely provoke intermittent fau lts . But even
when they do, the fau l t reporting can often he
confusing. This confusion occu rs because a
logic fault wi l l usually take place in a circu it
after i t has been tested and while another cir
cui t is being tested.

"
The nu mber of fau l t

checkers in a machine affect i ts abil i ty t o know
that a fau l t has occurred and to ident i fy the
fai l ing unit . The probabi l ity of a fault occurring
in the logic that any g.iven checker has checked

74

i s not affected by whether the resu lt is used or
not . I f an interm ittent faul t occurs on a path
that is not bei ng used , then no real faul t has
occurred . Therefore, the machine's overal l re l i
abi l ity i s increased by ensuring that fau l t check
ing is performed only on networks that are actu
al ly being used.

A detai led l ist of the checkers included in the
VAX 8600 system is l isted at the end of the
paper.

If a fai lure occurs that requires immediate
powe r s h u tdown , t h e n remote d i agnos is
through the consol e cannot be used . This
occurs when the regulators detect an overheat
ing condit ion or the power for the EMM is out
of to lerance . In these cases a magnetic ind icator
code that conta ins d1e fai l ing regulator nu mber
wil l be displayed on the EMM modu le. This
code enables a field service technician to know
which regu lator to replace .

Unique Reliability Features in the
VAX 8600 CPU

I n addition to the rel iabi l i ty features a lready
d iscussed, the VAX 8600 design includes some
n o t p rev i o u s l y fo u n d o n o t h e r D i g i t a l
machines. These features are discussed under
the four major areas used in the first part of this
paper .

Fault A voidance

The F Box executes self-diagnostics when It IS
not performing fl oat ing point i nstruct ions .
These tests use " l ive" operands to enhance the
detection of data-dependent faul ts . Ooth the
E Box and the F Box are connected to a common
source of instructions and operands . When the
F Box detects that i t cannot perform an opera
t i on , it w d l execute a d iagnost ic self-test .
Exactly which self-test is performed depends
upon the instruction. The number of machine
cycles in the diagnostic routine is chosen to be
equal to or less than the nu mber of machine
cycles used by the E Box . This ensures that the
F Oox wi l l a lways be ready for the next floating
point operation that wi l l be passed to i t . If a
faul t is detected , the F Box wi l l be tu rned off,
and the E Box wil l perform the i nstruction that
would have been done by the F Box , only at a
much s lower speed .

Fault Tolerance

The 8600 supports instruction retry where pos
sible . If a fau l t occurs that causes a m icrotrap

Digital Technical]our11al
No. I Aug us! I ')8 5

during an instruct ion, a set of instruction retry
nags wi l l be passed along through the various
fa u l t recovery s tages . The flags i n d i cate
whether or not the CPU has performed an oper
ation that wou ld make restarting the instruction
im poss i b l e . An i nstruct ion retry wou ld be
inhibited if an abort bi t is "on" for (a) an I/0
read, (h) a memory write , (c) a state modify , or
(d) the E Box . Otherwise , the instruction can
be restarted .

The data cache can recover from single-bit
errors . A cache data entry consists of 32 b its of
data, 4 hits of byte parity, and 7 bits of ECC .
The write of the check bits is pipel ined and
occurs in the cyc le fol lowi ng the wri te of the
data . The parity bi ts are used for fau l t detection
and the ECC b its for error correct ion. The
M Box always passes data to the E Box or I Box
before any checking is done . If the data con
tains a parity error, then either the E Box or the
I Box, as well as the M Box , wi l l detect it . The
M Box wi l l then block the acceptance of any
more requests and will execute a data correc
tion sequence . The ECC code and the data are
then sent to the array bus, and normal array-to
M Box data correction is appl ied . The "cor
rected word" is then written back into the
cache. At some point the E Box will discover
that i t has been shipped bad data . The system
wi ll then retry the instruction if poss ible . The
retry wil l be successfu l if the original fault was
correctable .

An important goal of the power subsystem is
to increase i ts tolerance of bad ac input power.

Data
Data Bits 0:31 To Be

Written l
I Address

Parity Parity
Generator

Data I Address Bits 4:31
Address

The power input is a true three-phase input
with very low neutral curre nt . In previous
designs the power-storage capacitors had been
attached to the regulator outputs . The detec
tion of power fai lures was performed by moni
toring the ac l ine . ln contrast, the VAX 8600
power system first converts power to 300 Vdc
and then sends that power to regu lators in order
to produce the fi nal output vo ltages. Power
storage i s done at the 300 Vdc leve l . This
h igher voltage a l lows more energy to be stored,
si nce the storage is provided by capaci tors .
Power-fa i lure detection is performed by moni
toring the voltage level on the 300 Vdc power
supply. When its voltage reaches the level at
which there is just enough energy remaining to
perform a power-fa i l sequence, then an ac
power fa i lure wil l be declared . This method
a l lows continued operation regardless of the ac
i n p u t waveform , as long as the machine
receives sufficient energy, a fact that i s espe
ciaHy helpfu l during brownout cond itions.

Fault Minimization

The 8600 makes good use of the unassigned
ECC codes (a 7-bit ECC can correct up to 57
b i ts of data) . They are used to detect array
address ing problems and to tlag any corrupted
dat a . When a mem ory wri te occurs (s ee
Figure 1) , the parity of the address and an indi
cation of the qual i ty of data are sent to the ECC
generator. The qual i ty of data is good if no
faul ts were detected during i ts transm ission to
the M Box and bad if the machine suspects that

Array

0 Data Bits 32:38
Data
Store

1
.

Array . ECC
Generator Address .

31
32 f--- Syndrome I 33

QJity
Of Data

Figure I Array Address Checking in the VAX 8600 .�:vstem

Digital Technical journal 7 5
No. I A ugust 1 ')85

New Products

a fau lt is present . The address parity and qual i ty
information are inserted into the ECC generatOr
by means of bits 3 2 and 3 3 of the data . Neither
of these bits is stored in the array. When the
data is read back, the computed address parity
is sent a long with a good-data signal to the ECC
generator. If the computed syndrome is zero,
the transaction is considered to be good . I f the
ECC generator decodes a s ingle-bit error point
ing to the address b i t . then an address parity
error wi l l be declared . When that occurs , the
word that was just received did not come from
the address that it shou ld have . Thus, the ECC
generator can check the address l ines from the
M Box to the MOS array chips and detect the
control fau l ts that caused the M Box to access
the wrong data word . If the chip thinks the
qual i ty bit needs correction, then the data word
was faul ty when it was received . The requester
of this data wi l l then be noti fkd that the data is
bad . If a normal s ingle-bit error occurs on a data
word that was stored with a code indicating bad
qual i ty . then the M Box w i l l flag an ECC
double-bit error.

Most of the internal buses in the VAX 8600
CPU as we l l as in the shifter and the arithmetic
logic uni ts (ALU) are parity checked. The AL s
are checked by tripl ication and parity checking
the resu l ts . The I Box, F Box, and E Box each
conta in a set of general purpose registers
(G PRs) . When writes to the GPRs occur, a l l
GPRs arc written to s imultaneously, thus keep
ing them cons istent . If a GPR par i ty error is
detected in one box, a recovery wi l l be in i t i
a ted that c o p i e s correct d a t a from t h e
equ ivalent GPR in another box to the fa i led
GPR. Thus the machine can recover from GPR
parity errors .

Mean Time to Repair

The n u m b er of m i cros e q u e n cers i n t h e
VAX 8600 system a lso adds to its re l iabi l i ty .
Ordinary combinatorial control logic i s d iffi
cult to check without dupl icat ion . Using a m ic
rosequenccr is one method of bui' lding contro l
logic that i s eas i ly checked. For example, a l l
the microcontrol stores are parity checked . The
M Box a lso checks the par ity of the address,
s tack u nderflow a n d overflow, and s tack
address pari ty. Microparity errors arc recover
able in the E Box, F Box, and I Box. These fau l ts
are not recoverable in the M Box s ince i ts state
is modified in an unrecoverable manner before
the parity computation is com plete .

76

Summary

The task of making large machi nes re l iable
requires a cont inuous effort during al l phases
of the project, from conceptual design to manu
facturing. I n the future , machines will continue
to get larger . Unless some major technology
breakthrough that s ign ificant ly changes the
re l iabi l ity of components occurs-as occurred
when transistors replaced tubes-the faul t-han
d l i ng capabi l i ty des igned into large systems
must be i mproved . This improvement is needed
to overcome the inherently higher fai lure rate
that comes wi th having more components .
Based on th is conclusion, we created many
design processes, manufacturing processes, and
faul t handl ing features that increased the rel ia
b i f ,ity of the VAX 8600 syste m . Carefu l monitor
ing and s imulat.ion were requ ired to ensure that
true gains in re l iabi l i ty were actual ly achieved .

Fault Checkers in the VAX 8600
System

In the E Box

ALU Output Parity Check

Shifter Parity Check

Microcode Parity Check per Board

Other RANI Store Check with Separate Error
Flags

AMUX Parity Check

BMUX Parity Check

GPR Copy Write Recovery

I nstruction Retry

Diagnostic Fault Insert ion

In the M Box

Memory Address Parity Check

ECC on Cache and MOS Memory Data

Writeback on SBE

M icroword Parity Check

M icroaddress Parity Check

Microstack Parity Check

Microstack Undertlow jOvertlow Detect

A Bus Parity Check

Array Bus Parity Check

Corrupted Data Tag

CPR Parity Check

Digital Technical journal
No. I A ugust I 'JH5

In the F Box

FUM Microword Parity Check

FBA Microword Parity Check

FDRAM Parity Check

GPRs Parity Check

Self-test (when not execu t ing i nstruct ions)

In the I Box

Microword Parity Check

!buffer Parity Check

DRAM Parity Check

GPR Parity Check

OP Uus Parity Check

W Dus Parity Check

!MD Parity Check

References

1 . D . P. Siewiorck and R . S. Swarz, The The-

0 1J' and Practice of Reliable .\vstern

Design (Dedford : Digital Press. 1 982) .

2 . L. S . Rosentha l , " Planning and Imple
menting System Rel iab i l i ty ," IEEE Total

Sys I e m s Relia bil ity Sy mp o s i u m

(December 1 2- 1 4 , 1 983) : 1 1 2- 1 1 8 .

:�. E . J . McCluskey, " Rel iable Comput ing
Syste ms , " Techn ical Note N o . 1 8 2 ,
Center for Reliable Computing. Stanford
University (October 1 9 80) .

4 . V . A. Cord i , " 4 3 8 1 's Error Detection
Faul t - Isolation Speeds Repairs , " Com

puter .\)1slems Equipment Design (Nov
ember 1 984) : 23-29 .

'; . G . H . Maest r i , "The Retryable Proces
sor ," IF.EE Pall joint Computer Confer

ence (1 97 2) : 273-277 .

Di?,ital Technical journal
1\'o. I A 11g11st I 'J8'i

New Products

77

}. � , ,

	Front cover
	Contents
	Editor's Introduction
	Biographies
	Foreword
	An Overview of the VAX 8600 system
	The VAX 8600 I Box, A Pipelined Implementation of the VAX Architecture
	The F Box, Floating Point in the VAX 8600 System
	Packaging the VAX 8600 Processor
	Signal Integrity in the VAX 8600 System
	Cooling the VAX 8600 Processor
	Designing Reliability into the VAX 8600 System
	Back cover

