
DEC Ada

Run-Time Reference Manual for
OpenVMS Systems
Order Number: AA–PWGZB–TK

February 1995

This manual describes implementation details of DEC Ada in the context of
the underlying operating system. It contains information on input-output,
representation of types and objects, exception handling, mixed-language
programming, tasking, and increasing program efficiency. It also lists the
DEC Ada predefined packages and explains where and how to find the
package specifications.

Revision/Update Information: This revised manual supersedes
the DEC Ada Run-Time Reference
Manual for OpenVMS Systems
(Order No.: AA–PWGZA–TE).

Operating System and Version: VMS VAX Version 5.4 or higher
OpenVMS Alpha Version 6.1 or higher

Software Version: DEC Ada Version 3.2

Digital Equipment Corporation
Maynard, Massachusetts



February 1995
Revised, May 1989
Revised, January 1993
Revised, February 1995

Digital Equipment Corporation makes no representations that the use of its products in the
manner described in this publication will not infringe on existing or future patent rights, nor do
the descriptions contained in this publication imply the granting of licenses to make, use, or sell
equipment or software in accordance with the description.

Possession, use, or copying of the software described in this publication is authorized only
pursuant to a valid written license from Digital or an authorized sublicensor.

© Digital Equipment Corporation 1985, 1989, 1993, 1995. All Rights Reserved.

The following are trademarks of Digital Equipment Corporation: CDD, CDD/Plus,
CDD/Repository, DEC, DEC Ada, DECnet, DECset, DECthreads, Digital, OpenVMS, VAX,
VAX Ada, VMS, VMS RMS, and the DIGITAL logo.

The following is a third-party trademark:

Motif is a registered trademark of the Open Software Foundation, Inc.

ZK5575

This document is available on CD–ROM.

This document was prepared using VAX DOCUMENT Version 2.1.



Contents

Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xv

New and Changed Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xxi

1 Object Representation and Storage

1.1 Type and Object Representations . . . . . . . . . . . . . . . . . . . . . . . . . 1–2
1.1.1 Enumeration Types and Objects . . . . . . . . . . . . . . . . . . . . . . 1–2
1.1.2 Integer Types and Objects . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–4
1.1.3 Floating-Point Types and Objects . . . . . . . . . . . . . . . . . . . . . . 1–5
1.1.3.1 Pragma FLOAT_REPRESENTATION . . . . . . . . . . . . . . . 1–10
1.1.3.2 Pragma LONG_FLOAT . . . . . . . . . . . . . . . . . . . . . . . . . . 1–12
1.1.4 Fixed-Point Types and Objects . . . . . . . . . . . . . . . . . . . . . . . . 1–13
1.1.5 Array Types and Objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–15
1.1.6 Record Types and Objects . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–16
1.1.7 Access Types and Objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–20
1.1.8 Address Types and Objects . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–21
1.1.9 Task Types and Objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–21
1.2 Data Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–22
1.2.1 Pragma PACK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–23
1.2.2 Pragma COMPONENT_ALIGNMENT . . . . . . . . . . . . . . . . . . 1–27
1.2.3 Length Representation Clauses . . . . . . . . . . . . . . . . . . . . . . . 1–30
1.2.4 Enumeration Representation Clauses . . . . . . . . . . . . . . . . . . 1–32
1.2.5 Record Representation Clauses . . . . . . . . . . . . . . . . . . . . . . . 1–33
1.2.6 Alignment Clauses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–36
1.2.7 Address Clauses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–38
1.3 Determining the Sizes of Types and Objects . . . . . . . . . . . . . . . . 1–40
1.4 Storage Allocation and Deallocation . . . . . . . . . . . . . . . . . . . . . . . 1–44
1.4.1 Storage Allocation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–45
1.4.2 Storage Deallocation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–46

iii



2 Input-Output Facilities

2.1 Files and File Access . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–2
2.1.1 Ada Sequential Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–3
2.1.2 Ada Direct Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–3
2.1.3 Ada Relative Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–4
2.1.4 Ada Indexed Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–4
2.1.5 Ada Text Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–5
2.2 Naming External Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–5
2.2.1 File Specification Syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–6
2.2.2 Logical Names . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–8
2.3 Specifying External File Attributes . . . . . . . . . . . . . . . . . . . . . . . 2–10
2.3.1 The OpenVMS File Definition Language (FDL): Primary and

Secondary Attributes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–11
2.3.2 Creation-Time and Run-Time Attributes . . . . . . . . . . . . . . . . 2–32
2.3.3 Default External File Attributes . . . . . . . . . . . . . . . . . . . . . . 2–33
2.4 File Sharing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–34
2.5 Record Locking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–37
2.6 Binary Input-Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–38
2.6.1 Sequential File Input-Output . . . . . . . . . . . . . . . . . . . . . . . . . 2–42
2.6.2 Direct File Input-Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–45
2.6.3 Relative File Input-Output . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–49
2.6.4 Indexed File Input-Output . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–53
2.7 Text Input-Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–63
2.7.1 Using the Package TEXT_IO for Terminal Input-Output . . . . 2–66
2.7.1.1 Line-Oriented Method . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–69
2.7.1.2 Data-Oriented Method . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–71
2.7.1.3 Mixed Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–73
2.7.1.4 Flexible Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–73
2.7.2 Line Terminators, Page Terminators, and File

Terminators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–76
2.7.3 Text Input-Output Buffering . . . . . . . . . . . . . . . . . . . . . . . . . 2–79
2.7.4 TEXT_IO Carriage Control . . . . . . . . . . . . . . . . . . . . . . . . . . 2–80
2.7.5 Predefined Instantiations of TEXT_IO Packages . . . . . . . . . . 2–83
2.8 Input-Output and Exception Handling . . . . . . . . . . . . . . . . . . . . . 2–84
2.9 Input-Output and Tasking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–85

iv



3 Exception Handling

3.1 Relationship Between Ada Exception Handling and OpenVMS
Condition Handling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–1

3.1.1 Naming and Encoding Ada Exceptions . . . . . . . . . . . . . . . . . 3–5
3.1.2 Copying Exception Signal Arguments . . . . . . . . . . . . . . . . . . 3–6
3.1.3 The Matching of Ada Exceptions and System-Defined

Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–7
3.2 Making the Best Use of Ada Exception Handling . . . . . . . . . . . . 3–9
3.3 Suppressing Checks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–10
3.4 Mixed-Language Exception Handling . . . . . . . . . . . . . . . . . . . . . . 3–11
3.4.1 Importing Exceptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–11
3.4.2 Exporting Exceptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–14
3.4.3 The Exception Choice NON_ADA_ERROR . . . . . . . . . . . . . . . 3–15
3.4.4 Signaling OpenVMS Conditions . . . . . . . . . . . . . . . . . . . . . . . 3–16
3.4.5 Effects of Handling OpenVMS Conditions from an Ada

Program . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–21
3.4.6 Fault Handlers (VAX Systems Only) . . . . . . . . . . . . . . . . . . . 3–27
3.5 Exceptions and Tasking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–27

4 Mixed-Language Programming

4.1 Calling External Routines from Ada Subprograms . . . . . . . . . . . 4–2
4.2 Calling Ada Subprograms from External Routines . . . . . . . . . . . 4–7
4.3 Controlling the Passing Mechanisms for Imported and Exported

Subprogram Parameters and Function Results . . . . . . . . . . . . . . 4–9
4.3.1 Using the MECHANISM and RESULT_MECHANISM

Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–10
4.3.2 Working with Imported Routine Parameters or Function

Results for Which There Are No Defaults . . . . . . . . . . . . . . . 4–14
4.3.3 DEC Ada Equivalents for OpenVMS Data Types . . . . . . . . . . 4–17
4.4 Ada Conventions for Passing Parameters and Returning

Function Results in Mixed-Language Programs . . . . . . . . . . . . . . 4–22
4.4.1 Ada Semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–23
4.4.2 DEC Ada Linkage Conventions . . . . . . . . . . . . . . . . . . . . . . . 4–24
4.5 Sharing Data with Non-Ada Routines . . . . . . . . . . . . . . . . . . . . . 4–25
4.5.1 Data Layout and Alignment in Mixed-Language

Programs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–25
4.5.2 Importing and Exporting Objects . . . . . . . . . . . . . . . . . . . . . . 4–27
4.5.3 Sharing Common Storage Areas for Objects . . . . . . . . . . . . . 4–27
4.6 Mixing C and Ada Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–30
4.7 Mixing Fortran and Ada Code . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–37

v



5 Calling System or Other Callable Routines

5.1 Using the DEC Ada OpenVMS System-Routine Packages . . . . . . 5–3
5.1.1 Parameter Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5–3
5.1.2 Parameter-Passing Mechanisms . . . . . . . . . . . . . . . . . . . . . . 5–7
5.1.3 Naming Conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5–7
5.1.4 Record Type Declarations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5–8
5.1.5 Default and Optional Parameters . . . . . . . . . . . . . . . . . . . . . 5–11
5.1.6 Calling Asynchronous System Services . . . . . . . . . . . . . . . . . 5–17
5.1.7 Calling Mathematical Routines . . . . . . . . . . . . . . . . . . . . . . . 5–17
5.2 Writing Your Own Routine Interfaces . . . . . . . . . . . . . . . . . . . . . 5–19
5.2.1 Parameter Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5–21
5.2.2 Determining the Kind of Call . . . . . . . . . . . . . . . . . . . . . . . . . 5–22
5.2.3 Determining the Access Method . . . . . . . . . . . . . . . . . . . . . . . 5–23
5.2.4 Passing Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5–24
5.2.5 Passing Routines or Subprograms as Parameters . . . . . . . . . 5–24
5.2.6 Default and Optional Parameters . . . . . . . . . . . . . . . . . . . . . 5–24
5.3 Obtaining Symbol Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . 5–25
5.4 Testing Return Condition Values . . . . . . . . . . . . . . . . . . . . . . . . . 5–26
5.5 OpenVMS Routine Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5–28

6 Using CDD/Repository from DEC Ada

6.1 Using the DEC Ada-from-CDD Translator Utility . . . . . . . . . . . . 6–2
6.2 Equivalent DEC Ada and CDDL Data Types . . . . . . . . . . . . . . . . 6–3
6.3 Example of Using the Ada-from-CDD Translator . . . . . . . . . . . . . 6–5

7 Tasking

7.1 Introduction to Using Ada Tasks on the OpenVMS Operating
System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7–1

7.2 Task Storage Allocation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7–8
7.2.1 Storage Created for a Task Object—The Task Control

Block . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7–8
7.2.2 Storage Created for a Task Activation—The Task Stack . . . . 7–11
7.2.2.1 Controlling the Stack Sizes of Task Objects . . . . . . . . . . . 7–14
7.2.2.2 Controlling the Size of a Main Task Stack (VAX Systems

Only) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7–16
7.2.3 Stack Overflow and Non-Ada Code . . . . . . . . . . . . . . . . . . . . 7–17
7.3 Task Switching and Scheduling . . . . . . . . . . . . . . . . . . . . . . . . . . 7–18
7.3.1 Controlling Task Priorities . . . . . . . . . . . . . . . . . . . . . . . . . . . 7–19
7.3.2 Using Time Slicing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7–20
7.4 Special Tasking Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . 7–21

vi



7.4.1 Passive Tasks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7–21
7.4.1.1 Passive Tasks and Rendezvous . . . . . . . . . . . . . . . . . . . . 7–24
7.4.1.2 Pragma PASSIVE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7–25
7.4.2 Deadlock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7–26
7.4.3 Busy Waiting and Non-Ada Code . . . . . . . . . . . . . . . . . . . . . . 7–30
7.4.4 Tentative Rendezvous . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7–31
7.4.5 Using Delay Statements . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7–31
7.4.6 Using Abort Statements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7–32
7.4.7 Interrupting Your Program with Ctrl/Y . . . . . . . . . . . . . . . . . 7–32
7.4.8 Using Shared Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7–34
7.4.9 Reentrancy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7–38
7.4.9.1 Coding Reentrant Ada Subprograms . . . . . . . . . . . . . . . . 7–41
7.4.9.2 Ensuring that Nonreentrant Routines are Called by One

Task at a Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7–41
7.4.9.3 Serializing Calls to Nonreentrant Code . . . . . . . . . . . . . . 7–42
7.5 Calling OpenVMS System Service Routines from Tasks . . . . . . . 7–44
7.5.1 Effects of System Service Calls on Tasks . . . . . . . . . . . . . . . . 7–44
7.5.2 System Services Requiring Special Care . . . . . . . . . . . . . . . . 7–45
7.6 Calling DECthreads Routines from Tasks (Alpha Systems

Only) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7–49
7.7 Handling Asynchronous System Traps (ASTs) . . . . . . . . . . . . . . . 7–50
7.7.1 The Pragma AST_ENTRY and the AST_ENTRY

Attribute . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7–51
7.7.2 Constraints on Handling ASTs . . . . . . . . . . . . . . . . . . . . . . . . 7–53
7.7.3 Calling Ada Subprograms from Non-Ada AST Service

Routines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7–53
7.7.4 Examples of Handling ASTs from Ada Programs . . . . . . . . . . 7–55
7.8 Measuring and Tuning Tasking Performance . . . . . . . . . . . . . . . . 7–59

8 Improving Run-Time Performance

8.1 Compiler Optimizations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8–1
8.2 Using the Pragma INLINE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8–2
8.2.1 Explicit Use . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8–3
8.2.2 Implicit Use . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8–6
8.2.3 Pragma INLINE Examples . . . . . . . . . . . . . . . . . . . . . . . . . . 8–6
8.2.3.1 Inline Expansion of Subprogram Specifications and

Bodies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8–7
8.2.3.2 Inline Expansion of Generic Subprograms . . . . . . . . . . . . 8–9
8.3 Making Use of Generics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8–11
8.3.1 Using the Pragma INLINE_GENERIC . . . . . . . . . . . . . . . . . 8–12
8.3.2 Using the Pragma SHARE_GENERIC . . . . . . . . . . . . . . . . . . 8–14
8.3.3 Library-Level Generic Instantiations . . . . . . . . . . . . . . . . . . . 8–17

vii



8.4 Techniques for Reducing CPU Time and Elapsed Time . . . . . . . . 8–18
8.4.1 Decreasing the CPU Time of a DEC Ada Program . . . . . . . . . 8–19
8.4.1.1 Eliminating Run-Time Checks . . . . . . . . . . . . . . . . . . . . . 8–20
8.4.1.2 Reducing Function and Procedure Call Costs . . . . . . . . . . 8–22
8.4.1.3 Using Scalar Variables and Avoiding Expensive

Operations on Composite Types . . . . . . . . . . . . . . . . . . . . 8–24
8.4.2 Decreasing the Elapsed Time of a DEC Ada Program . . . . . . 8–27
8.4.2.1 Controlling Paging Behavior . . . . . . . . . . . . . . . . . . . . . . 8–27
8.4.2.2 Improving Input-Output Behavior . . . . . . . . . . . . . . . . . . 8–27
8.4.2.3 Overlapping Unrelated Input-Output and Instruction

Execution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8–28

9 Additional Programming Considerations

9.1 Working with Address Values . . . . . . . . . . . . . . . . . . . . . . . . . . . 9–1
9.2 Unchecked Conversion of Access Types . . . . . . . . . . . . . . . . . . . . 9–2
9.3 Using Low-Level System Features . . . . . . . . . . . . . . . . . . . . . . . . 9–6
9.3.1 The VAX Device and Processor Register and Interlocked

Operations (VAX Systems Only) . . . . . . . . . . . . . . . . . . . . . . 9–6
9.3.2 Unsigned Types in the Package SYSTEM . . . . . . . . . . . . . . . 9–10
9.4 Working with Varying Strings . . . . . . . . . . . . . . . . . . . . . . . . . . . 9–13
9.5 Assigning Array Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9–14
9.6 Sharing Memory Between CPUs . . . . . . . . . . . . . . . . . . . . . . . . . 9–17

A DEC Ada Predefined Instantiations

B Implementation Details Related to Mixed-Language
Programs on OpenVMS Systems

B.1 Constrainedness Bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B–1
B.2 Area Control Block . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B–4
B.3 Descriptors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B–4
B.3.1 UBS Descriptor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B–7
B.3.2 UBSB Descriptor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B–8
B.3.3 UBA Descriptor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B–8
B.3.4 S Descriptor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B–8
B.3.5 SB Descriptor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B–9
B.3.6 A Descriptor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B–9
B.3.7 NCA Descriptor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B–10
B.3.8 Passing Parameters by Descriptor to Exported

Subprograms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B–10

viii



C DEC Ada Packages

Index

Examples

1–1 Using the Pragma COMPONENT_ALIGNMENT . . . . . . . . . 1–29
1–2 Interaction Between the Pragmas PACK and

COMPONENT_ALIGNMENT . . . . . . . . . . . . . . . . . . . . . . . . 1–31
1–3 Using an Address Clause and LIB$GET_VM . . . . . . . . . . . . . 1–39
1–4 Using UNCHECKED_DEALLOCATION to Control Access

Type Storage Deallocation . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–47
2–1 Creating and Opening a Relative File for Read Sharing . . . . 2–35
2–2 Using a Mixed-Type File . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–40
2–3 Using the Package SEQUENTIAL_IO . . . . . . . . . . . . . . . . . . 2–45
2–4 Using the Package DIRECT_MIXED_IO . . . . . . . . . . . . . . . . 2–47
2–5 Using the Package RELATIVE_IO . . . . . . . . . . . . . . . . . . . . . 2–52
2–6 Using the Package INDEXED_IO . . . . . . . . . . . . . . . . . . . . . 2–56
2–7 Using the Package INDEXED_MIXED_IO . . . . . . . . . . . . . . . 2–60
2–8 Using the Package TEXT_IO . . . . . . . . . . . . . . . . . . . . . . . . . 2–66
2–9 Example of Line-Oriented TEXT_IO . . . . . . . . . . . . . . . . . . . 2–70
2–10 Example of Data-Oriented TEXT_IO . . . . . . . . . . . . . . . . . . . 2–71
2–11 Example of Flexible TEXT_IO . . . . . . . . . . . . . . . . . . . . . . . . 2–74
3–1 Use of Pragma SUPPRESS_ALL . . . . . . . . . . . . . . . . . . . . . . 3–12
3–2 Handling SYS$GETJPIW Status Values as Ada

Exceptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–17
3–3 Handling SYS$GETJPIW Status Values as OpenVMS

Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–19
4–1 Using an Address Clause to Make Indirect Calls . . . . . . . . . . 4–5
4–2 Sharing a Common Data Area with a C Program . . . . . . . . . 4–32
4–3 Passing Arrays to C, Where the Array Values Are Not

Changed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–35
4–4 Passing an Array to C, Where the Array Value Is

Changed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–36
4–5 Passing Floating-Point Values to C . . . . . . . . . . . . . . . . . . . . 4–37
4–6 Sharing a Fortran Common Block . . . . . . . . . . . . . . . . . . . . . 4–39
4–7 Returning Complex Numbers from Fortran Programs on

Alpha Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–42

ix



5–1 Calling SYS$TRNLNM Using the Package STARLET . . . . . . 5–29
5–2 Calling SYS$GETQUI Using the Package STARLET . . . . . . . 5–30
5–3 Calling SYS$CRMPSC Using the Package STARLET . . . . . . 5–33
5–4 Calling LIB$FILE_SCAN and LIB$FILE_SCAN_END Using

the Package LIB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5–36
5–5 Calling SMG Routines Using the Package SMG . . . . . . . . . . 5–39
5–6 Calling SYS$TRNLNM Using an Import Pragma . . . . . . . . . 5–42
5–7 Using SYSTEM.IMPORT_VALUE to Obtain a Global Symbol

Value . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5–45
7–1 Interactive Array Sort Using Tasks . . . . . . . . . . . . . . . . . . . . 7–3
7–2 Leaving a Master to Release a Task Control Block . . . . . . . . 7–11
7–3 Controlling the Size of a Task’s Stack . . . . . . . . . . . . . . . . . . 7–15
7–4 An Exception-Induced Deadlock . . . . . . . . . . . . . . . . . . . . . . . 7–27
7–5 A Self-Calling Deadlock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7–27
7–6 A Circular-Calling Deadlock . . . . . . . . . . . . . . . . . . . . . . . . . . 7–28
7–7 A Dynamic-Circular-Calling Deadlock . . . . . . . . . . . . . . . . . . 7–29
7–8 A Nonreentrant Subprogram . . . . . . . . . . . . . . . . . . . . . . . . . 7–40
7–9 A Reentrant Subprogram . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7–41
7–10 Using a Serializing Task to Prevent Reentry . . . . . . . . . . . . . 7–42
7–11 Deadlock Caused by a Call to SYS$SETAST . . . . . . . . . . . . . 7–46
7–12 Unpredictability of SYS$EXIT . . . . . . . . . . . . . . . . . . . . . . . . 7–47
7–13 Simple Use of the Pragma AST_ENTRY and the

AST_ENTRY Attribute . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7–55
7–14 Using an AST Entry to Intercept a Ctrl/C . . . . . . . . . . . . . . . 7–57
9–1 A Portable Technique for Reading and Writing Private

Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9–4
9–2 One Use of the Interlocked Queue Operations . . . . . . . . . . . . 9–8
9–3 Sharing Memory Between Two or More Programs Running

on One or More CPUs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9–17
B–1 Calling an Ada Subprogram and Passing Constrainedness

Bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B–2

x



Figures

1 Documentation Reading Path for Related Documents . . . . . . xvi
2 Documentation Reading Path for DEC Ada

Documentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xvii
2–1 Using a Mixed-Type File . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–41
2–2 Using a Uniform-Type File . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–42
2–3 An Ada Text File, Showing Line, Page, and File

Terminators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–77
3–1 Execution of a Fortran Program with

FOR$UNDERFLOW_HANDLER . . . . . . . . . . . . . . . . . . . . . . 3–24
3–2 The Effect of an Ada Procedure Containing an Others

Handler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–25
3–3 FOR$UNDERFLOW_HANDLER Established for a Fortran

Subroutine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–26
B–1 Area Control Block Used in Returning Some Function

Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B–5

Tables

1 Conventions Used in This Manual . . . . . . . . . . . . . . . . . . . . . xix
1–1 Range of Values and Storage Sizes for DEC Ada Predefined

Integer Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–5
1–2 Representations and Storage Sizes for DEC Ada Predefined

Package STANDARD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–6
1–3 Representations and Storage Sizes for DEC Ada Predefined

Package SYSTEM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–7
1–4 Representations Chosen for Specified Digits . . . . . . . . . . . . . 1–8
1–5 Model Numbers Defined for Each Floating-Point Type . . . . . 1–9
1–6 Safe Numbers Defined for Each Floating-Point Type . . . . . . . 1–10
1–7 Comparison of DEC Ada Features for Controlling Type

Representations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–22
1–8 Packable Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–24
1–9 Effects of Packing the Components of Arrays and Records . . 1–24
1–10 Comparison of SIZE and MACHINE_SIZE Attribute

Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–41
1–11 Results of Size Attributes for Various Types and Objects . . . . 1–43
2–1 Predefined (Default) Logical Names . . . . . . . . . . . . . . . . . . . . 2–8

xi



2–2 Equivalence Strings for Default Logical Names for
Process-Permanent Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–10

2–3 FDL Primary and Secondary Attribute Descriptions . . . . . . . 2–11
2–4 Commonly Used FDL Attributes . . . . . . . . . . . . . . . . . . . . . . 2–19
2–5 SEQUENTIAL_IO: Default File Attributes . . . . . . . . . . . . . . 2–43
2–6 SEQUENTIAL_MIXED_IO: Default File Attributes . . . . . . . 2–44
2–7 DIRECT_IO: Default File Attributes . . . . . . . . . . . . . . . . . . . 2–46
2–8 DIRECT_MIXED_IO: Default File Attributes . . . . . . . . . . . . 2–47
2–9 RELATIVE_IO: Default File Attributes . . . . . . . . . . . . . . . . . 2–50
2–10 RELATIVE_MIXED_IO: Default File Attributes . . . . . . . . . . 2–51
2–11 INDEXED_IO: Default File Attributes . . . . . . . . . . . . . . . . . . 2–54
2–12 INDEXED_MIXED_IO: Default File Attributes . . . . . . . . . . . 2–55
2–13 TEXT_IO: Default File Attributes . . . . . . . . . . . . . . . . . . . . . 2–64
2–14 DEC Ada Carriage-Control Options . . . . . . . . . . . . . . . . . . . . 2–81
2–15 FORTRAN Carriage-Control Characters . . . . . . . . . . . . . . . . 2–83
3–1 Relationship Between Ada Exception Handling and the

OpenVMS Condition-Handling Facility . . . . . . . . . . . . . . . . . 3–3
3–2 Ada Predefined Exceptions . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–5
3–3 System-Defined Conditions that Match Ada Exceptions . . . . . 3–8
3–4 Run-Time Checks and Their Corresponding Predefined

Exceptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–10
4–1 Parameter-Passing Mechanisms and Allowed Data Types . . . 4–12
4–2 Function Return Mechanisms and Allowed Data Types . . . . . 4–13
4–3 Cases in Which Mechanisms Must Be Specified for Imported

Subprogram Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–16
4–4 Cases in Which Mechanisms Must Be Specified for Imported

Function Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–17
4–5 DEC Ada Equivalents for OpenVMS Data Types and Their

Valid Passing Mechanisms in DEC Ada . . . . . . . . . . . . . . . . . 4–17
4–6 Program Section Properties . . . . . . . . . . . . . . . . . . . . . . . . . . 4–30
5–1 OpenVMS Data Structures . . . . . . . . . . . . . . . . . . . . . . . . . . 5–4
5–2 DEC Ada Equivalents for OpenVMS Access Methods . . . . . . 5–23
6–1 Equivalent CDD and DEC Ada Data Types for OpenVMS

Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6–4
7–1 Definition of Terms in Task Control Block Size Equation . . . . 7–10
8–1 Comparison of the Effects of the Pragmas

INLINE_GENERIC and SHARE_GENERIC . . . . . . . . . . . . . 8–12

xii



9–1 VAX Instructions Provided in the Predefined Package
SYSTEM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9–6

A–1 Predefined Instantiations of Commonly Used Generic
Packages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A–1

B–1 Descriptor Classes Allowed for Passing Ada Parameters . . . . B–6
C–1 DEC Ada Predefined Packages . . . . . . . . . . . . . . . . . . . . . . . . C–1

xiii



Preface

Ada is a general-purpose programming language suitable for writing large-
scale and real-time systems programs. For example, Ada is strongly typed,
provides for exact or approximate numerical calculations, supports concurrency,
and allows separate compilation of program units. The language is specified
in ANSI/MIL-STD-1815A-1983 and ISO/8652-1987, Reference Manual for the
Ada Programming Language, which has been reproduced with supplementary
Digital insertions as the DEC Ada Language Reference Manual.

This manual describes implementation details of DEC Ada in the context of
the underlying operating system. It contains information on input-output,
representation of types and objects, mixed-language programming, calling
system services, exception handling, tasking, and increasing program efficiency.
It also lists and gives the specifications for some of the DEC Ada predefined
packages.

All references to VMS systems refer to OpenVMS Alpha and OpenVMS VAX
systems unless otherwise specified.

Intended Audience
This manual is intended primarily for systems and applications programmers,
or any other programmers whose work requires the use of operating system
features outside of the language, advanced Ada features, or more than one
programming language. The reader should have a working knowledge of the
Ada language and some familiarity with the operating system.

Documentation Reading Path
Figures 1 and 2 show the relationship of the Ada documentation set to other
documentation that may be helpful.

xv



Figure 1 Documentation Reading Path for Related Documents

Ada Language

ZK−5349A−2−GE

For introductory or
tutorial Ada language

information

Other Layered Products

System
Documentation

For more information
on the OpenVMS System

For more information
on various layered

products

Individual
Layered
Product

Documentation

Commercial
Ada

Textbooks

OpenVMS Environment

OpenVMS

xvi



Figure 2 Documentation Reading Path for DEC Ada Documentation

Developing and
compiling

Designing and imple−
menting applications

Installing

DEC Ada

* Operating System−Specific Manual

ZK−5349A−1−GE

DEC Ada

*

Developing
Ada

Programs

*

DEC Ada

DEC Ada

Language
Reference

Manual

*

DEC Ada

Implementation and
run−time details Run−Time

Reference
Manual

Installation
Guide

xvii



Document Structure
This manual contains the following chapters and appendixes:

• Chapter 1 explains how DEC Ada objects and types are represented and
sized. It also gives information on sharing object storage among Ada and
non-Ada routines.

• Chapter 2 discusses DEC Ada input-output, giving details about file
sharing, record locking, and the DEC Ada input-output packages. This
chapter also summarizes information about the OpenVMS File Definition
Language and the specification of file names.

• Chapter 3 describes the implementation of DEC Ada exception handling
and discusses the importing and exporting of OpenVMS conditions and Ada
exceptions.

• Chapter 4 describes the DEC Ada parameter-passing mechanisms and
import-export pragmas and discusses how to write mixed-language
programs that involve DEC Ada.

• Chapter 5 explains how to call system and other callable routines
(OpenVMS system services, Run-Time Library routines, and so on).

• Chapter 6 describes how to access CDD/Repository FROM DEC Ada.

• Chapter 7 discusses tasking issues, including issues related to calling
non-Ada routines (such as OpenVMS system services) from tasks.

• Chapter 8 gives information on how to make DEC Ada programs more
efficient.

• Chapter 9 discusses additional details of DEC Ada that you need to
consider when writing DEC Ada programs.

• Appendix A lists all of the DEC Ada predefined generic instantiations.

• Appendix B provides implementation details related to mixed-language
programming.

• Appendix C lists all of the DEC Ada packages.

xviii



Conventions
Table 1 shows the conventions used in this manual.

Table 1 Conventions Used in This Manual

Convention Description

VMS systems Refers to OpenVMS Alpha and OpenVMS VAX systems
unless otherwise specified.

$ A dollar sign ($) represents the OpenVMS DCL system
prompt.

Return In interactive examples, a label enclosed in a box indicates
that you press a key on the terminal, for example, Return .

Ctrl/x The key combination Ctrl/x indicates that you must press
the key labeled Ctrl while you simultaneously press another
key, for example, Ctrl/Y or Ctrl/Z.

boldface monospace
text

In interactive examples, boldface monospace text represents
user input.

file-spec, . . . A horizontal ellipsis following a parameter, option, or value
in syntax descriptions indicates that additional parameters,
options, or values can be entered.

n A lowercase italic n indicates the generic use of a number.

. . . A horizontal ellipsis in an Ada example or figure indicates
that not all of the statements are shown.

.

.

.

A vertical ellipsis in an interactive figure or example
indicates that not all of the commands and responses are
shown.

( ) In format descriptions, if you choose more than one option,
parentheses indicate that you must enclose the choices in
parentheses.

[expression] Square brackets indicate that the enclosed item is optional.
(Square brackets are not, however, optional in the syntax of
a directory name in a file specification or in the syntax of a
substring specification in an assignment statement.)

{, mechanism_name } Braces in Ada syntax indicate that the enclosed item can be
repeated zero or more times. Braces in debugger command
syntax enclose lists from which you must choose one item.

boldface text Boldface text indicates Ada reserved words.

(continued on next page)

xix



Table 1 (Cont.) Conventions Used in This Manual

Convention Description

italic text Italic text emphasizes important information, indicates
variables, and indicates complete titles of manuals. Italic
text also represents information that can vary in system
messages (for example, Internal error number.)

type_name Italicized words in syntax descriptions indicate descriptive
prefixes that are intended to give additional semantic
information rather than to define a separate syntactic
catgegory.

UPPERCASE TEXT Uppercase indicates the name of a command, routine,
parameter, procedure, utility, file, file protection code, or the
abbreviation for a system privilege.

xx



New and Changed Features

This release improves the functionality of DEC Ada.

The following lists changes for the DEC Ada Version 3.2 user:

• Changes have been made to the packages SYSTEM.

• Support included for passive tasks and pragma PASSIVE, which can
significantly improve the performance of rendezvous in programs.
Requirements for passive tasks are detailed Chapter 7.

• Support included for the Professional Development Option on both the
OpenVMS Alpha and OpenVMS VAX platforms.

• Support for 64-bit integers and floating point numbers has been added to
the OpenVMS Alpha platform.

• The implementation of AI–00866, which permits an 8-bit character set
based on ISO standard 8859/1 (commonly known as Latin–1) has been
added.

In addition to the information in this manual, see the release notes and the
DEC Ada Language Reference Manual for more information about these
changes.

xxi



1
Object Representation and Storage

An Ada object is an entity that can have values of a particular type. For each
Ada object, the DEC Ada compiler determines how much storage is required,
where and when that storage will be allocated and deallocated, and how the
different values of the object are represented. The compiler makes these
determinations based on the type of the object, the subtype of the object, and
the use of the object.

In simple cases, the representation and storage of objects is determined at
compile time. In more complex cases (such as the case of an array object whose
bounds are not computed until run time), the compiler generates code that
computes the amount of storage required at run time. In general, the compiler
chooses storage sizes and representations that make the best compromise
between CPU time, the amount of memory required for the generated code,
and the amount of memory required for the objects.

Pragmas and representation clauses allow you to control how objects are
represented and stored. You most often need this control when you are
working with the following objects:

• Objects whose addresses are explicitly obtained with the ADDRESS
attribute

• Objects whose addresses are explicitly specified with an address
representation clause

• Objects that are passed to imported routines or used in exported
subprograms

• Objects that are imported or exported

To increase efficiency, the DEC Ada compiler may use alternative
representations for some objects. However, the compiler does not choose
an alternative representation for objects that are visible outside the Ada
program. It does not choose an alternative representation for any of the objects
in the previous list.

Object Representation and Storage 1–1



This chapter discusses the following topics:

• The representation and storage chosen by the DEC Ada compiler for
objects of a variety of DEC Ada types (Section 1.1)

• How to tailor the representation of the objects in your program to suit your
particular application (Section 1.2)

• Methods for determining how much storage has been allocated for
particular types and objects

• Storage allocation and deallocation (Section 1.4)

You should be familiar with the material in Chapters 3 and 13 of the DEC Ada
Language Reference Manual before using the material in this chapter.

1.1 Type and Object Representations
The following sections describe the representations and storage sizes that
the DEC Ada compiler chooses for objects of the various Ada type classes,
including scalar (enumeration, integer, floating-point, and fixed-point), array,
record, access, address, and task types.

1.1.1 Enumeration Types and Objects
Each enumeration literal in an enumeration type has a corresponding internal
code. Unless otherwise specified in an enumeration representation clause, the
internal codes for an enumeration type are represented by the integers from
0 to N � 1, where N is the number of enumeration literals in the type. For
example, the internal codes for the enumeration literals of the Ada predefined
types STANDARD.BOOLEAN and STANDARD.CHARACTER are as follows:

Enumeration Type Internal Codes

STANDARD.BOOLEAN 0 (FALSE)
1 (TRUE)

STANDARD.CHARACTER 0 .. 2551

1The internal code for each character is its conventional ASCII value. The NUL character has the
internal code 0, ’A’ has the internal code 65, ’a’ has the internal code 97, and so on. See the
specification of the package STANDARD in Annex C of the DEC Ada Language Reference Manual.

Section 1.2.4 explains how to use an enumeration representation clause to
specify other values (including negative values) for internal codes.

DEC Ada implements AI-00866, which permits an 8-bit character set based on
ISO standard 8859/1 (commonly known as Latin-1).

1–2 Object Representation and Storage



Changes to the definition of the enumeration type CHARACTER, which are
permitted by AI-00866, cause some previously correct DEC Ada programs to be
in error. For example:

• Programs that assume that the representation of CHARACTER’LAST is
127 or that type CHARACTER has 128 values need to be changed. The
representation of CHARACTER’LAST is 255, and type CHARACTER has
256 values.

• Programs that assume that the DEL character is CHARACTER’LAST need
to be changed.

• Programs that assume that the representations of all upper- or lower- case
characters are contiguous are incorrect and should be changed.

• Programs that include a case statement with an expression of the type
CHARACTER (or a type derived from the type CHARACTER) may require
modified choices or additional case statement alternatives.

• Programs that include a record variant part with a discriminant of type
CHARACTER (or a type derived from the type CHARACTER) may require
modified choices or additional variants.

• Programs that include a record representation clause that assume that the
type CHARACTER is 7 bits long are incorrect.

• Programs that count all the elements of the type CHARACTER using
an 8-bit integer type, such as SHORT_SHORT_INTEGER, may be
incorrect. The value of SHORT_SHORT_INTEGER’LAST is 127, and
the representation of CHARACTER’LAST is 255.

The following are restrictions on the use of 8-bit characters:

• The debugger does not support extended characters in identifiers.

• Some devices (some printers, for example) do not display all graphic
characters in the Latin-1 character set.

• Latin-1 differs slightly from the DEC 8-bit multinational character set.
You should set your terminal or window to ISO Latin-1 mode to correctly
display Latin-1 characters.

The amount of storage that the DEC Ada allocates for an object of an
enumeration type depends on the range of the internal codes and on any length
representation clauses that provide a size for the type or first named subtype.
(A first named subtype is a subtype declared by a type declaration. See
Chapter 13 of the DEC Ada Language Reference Manual for more information.)

Object Representation and Storage 1–3



When you specify a length representation clause for a first named subtype, the
clause can not be applied to the representation of objects of the base type. For
example, this effect may occur with loop parameters.

For simple enumeration objects and enumeration components of unpacked
arrays and records, the DEC Ada compiler chooses 1 byte (8 bits), 2 bytes (16
bits), 4 bytes (32 bits), or 8 bytes (64 bits on Alpha systems)—whichever is
smallest—to represent an object of an enumeration type. The size chosen is
large enough to represent all of the values of the type, and it is greater than or
equal to any applicable length representation clause.

For most enumeration types, the representation is unsigned. The
representation is signed only when the first internal code is negative. For
example:

type ANSWER is (YES, NO, UNDECIDED);

An object of the type ANSWER will be stored in an unsigned byte because a
byte is all that is needed to represent the default internal codes
(0, 1, and 2) corresponding to YES, NO, and UNDECIDED. To guarantee
a particular representation, use an enumeration representation clause (see
Section 1.2.4).

1.1.2 Integer Types and Objects
DEC Ada provides four predefined integer types:

SHORT_SHORT_INTEGER
SHORT_INTEGER
INTEGER
LONG_INTEGER

These types are declared in the predefined package STANDARD (see Annex C
of the DEC Ada Language Reference Manual).

Values for objects of all four integer types are represented as signed, two’s
complement (binary) numbers.

You can achieve an unsigned representation for integer objects by declaring an
integer type with a length representation clause (see Section 1.2.3). However,
because of the way the Ada language defines integer operations, operations on
these unsigned objects will involve signed intermediate values.

Table 1–1 lists the range of integer values and storage sizes for each of these
predefined integer types.

1–4 Object Representation and Storage



Table 1–1 Range of Values and Storage Sizes for DEC Ada Predefined Integer
Types

Ada Type Range of Values
Storage Size
(Bits)

SHORT_SHORT_INTEGER –27 .. 27 – 1
–128 .. 127

8

SHORT_INTEGER –215 .. 215 – 1 16

INTEGER –231 .. 231 – 1 32

LONG_INTEGER –231 .. 231 – 1 321

1In Alpha, the value of LONG_INTEGER is 64 bits. User-defined integer types can now be 64 bits,
provided that their range is large enough.

See Chapter 9 for more information on working with unsigned types.

1.1.3 Floating-Point Types and Objects
Floating-point types provide approximations to the real numbers, with
relative bounds on the errors. For each floating-point type—predefined
and nonpredefined—the DEC Ada compiler chooses a hardware floating-point
representation, depending on:

• The required range and accuracy of the DEC Ada pragma FLOAT_
REPRESENTATION

• The value of the DEC Ada pragma FLOAT_REPRESENTATION

On VAX systems, the following floating-point representations are possible:

F_floating
D_floating
G_floating
H_floating

On Alpha systems, the following representations are possible:

F_floating
D_floating
G_floating
IEEE single float
IEEE double float

The compiler uses chosen representation and size for all objects of the type,
regardless of the objects’ subtypes and regardless of whether or not the objects
are themselves part of packed array or record objects.

Object Representation and Storage 1–5



For detailed information about the layout of VAX and Alpha floating-point
representations, see the following manuals:

• VAX Architecture Handbook

• VAX Architecture Reference Manual

• Alpha Architecture Handbook

• Alpha Architecture Reference Manual

• ANSI/IEEE Standard 754-1985, IEEE Standard for Binary Floating-Point
Arithmetic

DEC Ada provides a number of predefined floating-point types. Section 1.1.3.1
lists the representation and storage size for each type.

Table 1–2 Representations and Storage Sizes for DEC Ada Predefined
Package STANDARD

Ada Type Representation
Storage Size
(Bits)

FLOAT F_floating1

IEEE single float2
32

LONG_FLOAT D_floating or G_floating3

IEEE double float2
64

LONG_LONG_FLOAT4 H_floating 128

LONG_LONG_FLOAT5 G_floating 64

1When the value of the pragma FLOAT_REPRESENTATION is VAX_FLOAT (see Section 1.1.3.1);
the default on all OpenVMS systems.
2When the value of the pragma FLOAT_REPRESENTATION is IEEE_FLOAT (see Section 1.1.3.1);
available on Alpha systems only.
3The representation of the type LONG_FLOAT depends on the values of the pragmas FLOAT_
REPRESENTATION and LONG_FLOAT. You can also use the ACS CREATE LIBRARY, CREATE
SUBLIBRARY, and SET PRAGMA commands to control the representation. See Sections 1.1.3.1
and 1.1.3.2 and Chapter 3 of the DEC Ada Language Reference Manual for more information about
the pragmas. See the Developing Ada Programs on OpenVMS Systems for more information about
the ACS commands.
4On VAX systems.
5On Alpha systems.

1–6 Object Representation and Storage



Table 1–3 Representations and Storage Sizes for DEC Ada Predefined
Package SYSTEM

Ada Type Representation
Storage Size
(Bits)

F_FLOAT F_floating 32

D_FLOAT D_floating 64

G_FLOAT G_floating 64

H_FLOAT1 H_floating 128

IEEE_SINGLE_FLOAT2 IEEE single float 32

IEEE_DOUBLE_FLOAT2 IEEE double float 64

1On VAX systems only.
2On Alpha systems only.

DEC Ada lets you define your own floating-point types. The choice of
representation for nonpredefined floating-point types that are not explicitly
derived depends on the precision (digits) and the range specified. The
DEC Ada compiler chooses the first of the types STANDARD.FLOAT,
STANDARD.LONG_FLOAT, and STANDARD.LONG_LONG_FLOAT (on
VAX systems only) that has adequate precision and range and uses it as the
parent type from which the new type is derived.

Depending on the default or explicit values of the pragmas FLOAT_
REPRESENTATION and LONG_FLOAT, the representations given in
Table 1–4 are used if the specified range can also be accommodated.
See Section 1.1.3.1 for more information about the pragma FLOAT_
REPRESENTATION. See Section 1.1.3.2 for more information about the
pragma LONG_FLOAT.

Object Representation and Storage 1–7



Table 1–4 Representations Chosen for Specified Digits

Value of the Pragma
FLOAT_REPRESENTATION

Value of the
Pragma
LONG_FLOAT

Digits
Specified Representations

VAX_FLOAT G_FLOAT 1 .. 6 F_floating

7 .. 15 G_floating

16 .. 33 H_floating1

VAX_FLOAT D_FLOAT 1 .. 6 F_floating

7 .. 9 D_floating

10 .. 33 H_floating1

IEEE_FLOAT2 Not applicable 1 .. 6 IEEE single
float2

7 .. 15 IEEE double
float2

1On VAX systems only.
2On Alpha systems only.

For example, in the following declaration the pragma LONG_FLOAT ensures
that the D_floating representation of the type LONG_FLOAT is in effect when
the declaration is compiled. On VAX systems, the compiler chooses the type
STANDARD.LONG_LONG_FLOAT as the parent type for the type SIZE.
Although a D_floating representation satisfies the precision, it does not satisfy
the range.

pragma FLOAT_REPRESENTATION(VAX_FLOAT);
pragma LONG_FLOAT(D_FLOAT);
package FLOAT_TYPES is

type SIZE is digits 9 range -0.1E-50 .. 0.1E+50;
. . .

end FLOAT_TYPES;

In all cases, the model number limits specified by the Ada language determine
the choice of representation for a floating-point type. See Chapter 3 of the
DEC Ada Language Reference Manual. Once the representation is chosen, the
full accuracy of the underlying floating-point type is used in any calculations
involving numbers of that type. For example, the following type declaration
causes the full 16 decimal digits of accuracy provided by the D_floating
representation to be used in calculations involving objects of the type:

1–8 Object Representation and Storage



pragma FLOAT_REPRESENTATION(VAX_FLOAT);
pragma LONG_FLOAT(D_FLOAT);
package FLOAT_TYPES is
type VOLUME is digits 9 range -100.0 .. 100.0;
. . .
end FLOAT_TYPES;

Table 1–5 lists the model numbers for each underlying floating-point type
(and, thereby, for each DEC Ada predefined floating-point type). The ranges in
the table are approximate. The exact ranges are listed in Appendix F of the
DEC Ada Language Reference Manual. You can also find the exact ranges by
evaluating language-defined attributes T’SMALL and T’LARGE, where T is
the floating-point type.

Table 1–5 Model Numbers Defined for Each Floating-Point Type

DEC Ada Representations and
Types

Digits
( D )

Mantissa
Bits
( B )

Exponent
Range
(–4*B..+4*B)

Approximate
Magnitude

F_floating
F_FLOAT
FLOAT

6 21 –84..84 2.5E–26..1.9E+25

D_floating
D_FLOAT
LONG_FLOAT

9 31 –124..124 2.3E–38..2.1E+37

G_floating
G_FLOAT
LONG_FLOAT

15 51 –204..204 1.9E–62..2.5E+61

H_floating1

H_FLOAT
LONG_LONG_FLOAT

33 111 –444..444 1.1E–134..4.5E+133

IEEE single float2

IEEE_SINGLE_FLOAT
FLOAT

6 21 –84..84 2.6E–26..1.9E+25

IEEE double float2

IEEE_DOUBLE_FLOAT
LONG_FLOAT

15 51 –204..204 1.9E–62..2.6E+61

1On VAX systems only.
2On Alpha systems only.

For both predefined and nonpredefined types, the Ada language rules about
safe numbers also apply (see Chapter 3 of the DEC Ada Language Reference
Manual). Table 1–6 lists the safe numbers for each underlying floating-point
type (and, thereby, for each DEC Ada floating-point type).

Object Representation and Storage 1–9



The ranges in the table are approximate. The exact ranges are listed in
Appendix F of the DEC Ada Language Reference Manual. You can also find the
exact ranges by evaluating the language-defined attributes T’SAFE_SMALL
and T’SAFE_LARGE, where T is the floating-point type.

Table 1–6 Safe Numbers Defined for Each Floating-Point Type

DEC Ada Representations and
Types

Digits
( D )

Mantissa
Bits
( B )

Exponent
Range
(–E..+E)

Approximate
Magnitude

F_floating
F_FLOAT
FLOAT

6 21 –127..127 2.9E–39..1.7E+38

D_floating
D_FLOAT
LONG_FLOAT

9 31 –127..127 2.9E–39..1.7E+38

G_floating
G_FLOAT
LONG_FLOAT

15 51 –1023..1023 5.5E–309..8.9E+307

H_floating1

H_FLOAT
LONG_LONG_FLOAT

33 111 –16383..16383 8.4E–4933..5.9E+4931

IEEE single float2

IEEE_SINGLE_FLOAT
FLOAT

6 21 –126..127 1.2E–38..4.3E+37

IEEE double float2

IEEE_DOUBLE_FLOAT
LONG_FLOAT

15 51 –1022..1023 2.2E–308..2.3E+307

1On VAX OpenVMS systems only.
2On Alpha OpenVMS systems only.

1.1.3.1 Pragma FLOAT_REPRESENTATION
The DEC Ada predefined pragma FLOAT_REPRESENTATION acts as a
program library switch that controls the representation of the DEC Ada
predefined floating-point types STANDARD.FLOAT, STANDARD.LONG_
FLOAT, and STANDARD.LONG_LONG_FLOAT. It also controls the
representation of types declared with a floating-point definition. You can
specify values for this pragma as follows:

• On VAX systems, the only value you can specify is VAX_FLOAT. This
value causes floating-point types to be represented by the underlying VAX
hardware types: F_floating, D_floating, G_floating, or H_floating.

1–10 Object Representation and Storage



• On Alpha systems, you can specify either VAX_FLOAT (the default) or
IEEE_FLOAT. When you specify VAX_FLOAT, floating-point types are
represented by any of the VAX hardware types except H_floating. When
you specify IEEE_FLOAT, floating-point types are represented by the IEEE
floating-point types: IEEE single float and IEEE double float.

On all OpenVMS systems, when the value of the pragma FLOAT_REPRESENTATION
is VAX_FLOAT, the default representation of the type LONG_FLOAT is G_
floating. You can control the representation of the type LONG_FLOAT (or
types derived from the type LONG_FLOAT) by using the pragma LONG_
FLOAT (see Section 1.1.3.2).

Use of the pragma FLOAT_REPRESENTATION implies a recompilation of
the predefined environment—the package STANDARD—for a given program
library. SEE Developing Ada Programs on OpenVMS Systems for a discussion
of the implications of recompiling the package STANDARD.

For example, the compilation of the following unit causes all subsequent
compilations in the same library to use the IEEE floating-point representations
to represent floating-point types (the value IEEE_FLOAT valid only on Alpha
systems):

pragma FLOAT_REPRESENTATION(IEEE_FLOAT);
package USE_IEEE_FLOAT is

--
-- Declare some floating-point types
--

end USE_IEEE_FLOAT;

To return to VAX floating-point representations, you can use one of the
following methods:

• Compile another unit (in the same library) that contains the pragma
FLOAT_REPRESENTATION(VAX_FLOAT).

• Use the ACS SET PRAGMA command.

• Recreate your library by first deleting it with either the ACS DELETE
LIBRARY or DELETE SUBLIBRARY command, and then creating it with
the ACS CREATE LIBRARY or SUBLIBRARY command.

See Developing Ada Programs on OpenVMS Systems for information on the
ACS commands.

Object Representation and Storage 1–11



1.1.3.2 Pragma LONG_FLOAT
The DEC Ada predefined pragma LONG_FLOAT acts as a program library
switch that controls whether to use the G_floating or D_floating representation
to represent the type LONG_FLOAT. (By default, the G_floating representation
is used.)

Note

The pragma LONG_FLOAT has an effect only when the value of the
pragma FLOAT_REPRESENTATION is VAX_FLOAT (the only possible
value on VAX systems and the default value on Alpha OpenVMS
systems). See Section 1.1.3.1 for more information.

Use of this pragma implies a recompilation of the predefined environment—
the package STANDARD—for a given program library. See the DEC Ada
Language Reference Manual for the specific rules governing the use of this
pragma. See Developing Ada Programs on OpenVMS Systems for a discussion
of the implications of recompiling the package STANDARD.

For example, the compilation of the following unit causes all subsequent
compilations in the same library to use the set of representations that include
D_floating, as appropriate (see Section 1.1.3):

pragma LONG_FLOAT(D_FLOAT);
package USE_D_FLOAT is

-- D_floating representation will be used.
--
type MY_D_FLOAT is digits 9 range -100.0 .. 100.0;

-- H_floating representation will be used (on VAX systems only).
--
type MY_H_FLOAT is digits 11 range -100.0 .. 100.0;

-- D_floating representation will be used.
--
D_OBJECT: LONG_FLOAT;
. . .

end USE_D_FLOAT;

To return to G_floating representations, you can use one of the following
methods:

• Compile another unit (in the same library) that contains the pragma
LONG_FLOAT(G_FLOAT).

• Use the ACS SET PRAGMA command.

1–12 Object Representation and Storage



• Recreate your library by:

1. Deleting it with either the ACS DELETE LIBRARY or DELETE
SUBLIBRARY command

2. Creating it with the ACS CREATE LIBRARY or SUBLIBRARY
command

See Developing Ada Programs on OpenVMS Systems for information on the
ACS commands.

1.1.4 Fixed-Point Types and Objects
Fixed-point types provide approximations to the real numbers with absolute
bounds on errors determined by the value T’SMALL, where T is the fixed-point
type. T’SMALL is defined to be less than or equal to the delta specified in the
type declaration.

DEC Ada supports values of T’SMALL in the range 2.0�62 .. 2.031. In the
absence of a length representation clause for T’SMALL, the compiler chooses
the largest power of 2 that is less than or equal to the delta value. For
example, in the following declaration MY_FIXED’SMALL is 0.03125 (2�5):

type MY_FIXED is delta 0.05 range 0.0 .. 1.0;

In the presence of a length clause, the compiler uses the value specified in the
clause. For example, in the following declaration MY_FIXED’SMALL is 0.05:

type MY_FIXED is delta 0.05 range 0.0 .. 1.0;
for MY_FIXED’SMALL use 0.05;

The underlying model numbers chosen for the type are evenly spaced multiples
of the value of T’SMALL. The set of model numbers is also limited by the
range specified in the type declaration.

Values for objects of a fixed-point type are represented in DEC Ada as signed or
unsigned, two’s complement (binary) numbers that are multipliers of the value
of T’SMALL. You can use length representation clauses to achieve unsigned
representations. See Section 1.2.3 for more information.

In DEC Ada, the storage size for an object of any fixed-point type is determined
by its delta and range, and—if the object is not packed—the storage size is
rounded up to an 8-, 16-, or 32-bit boundary. You can change the size with a
representation clause (see Section 1.2 of this manual and Chapter 13 of the
DEC Ada Language Reference Manual for more information). Storage size for
the fixed-point type may be affected when you specify the value of T’SMALL
in a length representation clause.

Object Representation and Storage 1–13



Unless the language specifies otherwise, operations on fixed-point types are
handled as follows:

• On VAX systems, results that are powers of two are truncated towards 0.0.
Results that are not powers of two are rounded.

• On Alpha systems, all results are rounded.

Both model numbers and model intervals are used to define the permissible
legal values for the results of operations on real (in this case, fixed-point)
types. Any value that falls in the defined model interval for an operation is
a legal result value for that operation. When you are working with fixed-
point numbers, you may obtain results that in some cases are not what you
expect. (See Chapter 4 of the DEC Ada Language Reference Manual for more
information on model intervals and operations involving real types.)

For example, consider the following declaration:

type FP_TYPE is delta 0.1 range 0.0 .. 1.0;

Because there is no representation clause for the type FP_TYPE, FP_
TYPE’SMALL is 0.0625 (2�4); 0.0625 is the largest power of 2 that is not
greater than the delta (0.1). Suppose that your program uses an object of type
FP_TYPE as follows:

A: FP_TYPE := 0.1;
. . .
A := 3*A;

Because FP_TYPE’SMALL is 0.0625, and the model numbers used to
represent objects of the type FP_TYPE are multiples of 0.0625, the model
numbers for A are 0.0625, 0.125, 0.1875, 0.25, and so on up to 1.0. In this
case, the model interval for A is 0.0625 .. 0.125. The model interval for 3*A is
3*0.0625 .. 3*0.125, or 0.1875 .. 0.375.

Because 0.125 is too large, it is not a possible value for A. However, the
lower bound (0.0625) is a possible (and legal) value for A. For efficiency and
to guarantee that the value of 3*A is also legal, the compiler could choose
0.0625 for A. Then 3*A would result in 0.1875, which may be rounded up
when printed out with an input-output procedure (rounding occurs when the
FORE or AFT parameters constrain the number of decimal digits that the
input-output procedure can print).

If FP_TYPE’SMALL were 0.03125 (either because of a different delta or
because of a representation clause), the model interval for A would be
0.09375 .. 0.125. Again, 0.125 is too large, but this time if the lower bound
(0.09375) is chosen for the value of A, 3*A results in 0.28125. This value is
closer to the expected value, and it is rounded up to 0.3 when printed out.

1–14 Object Representation and Storage



When working with fixed-point types and the results are not what you expect,
consider tuning the distance between the underlying model numbers by using
a length representation clause. See Chapter 13 of the DEC Ada Language
Reference Manual for more information.

1.1.5 Array Types and Objects
In DEC Ada, an object of an array type is stored as a vector of equally spaced
storage cells, one cell for each component. Any space between the components
is assumed to belong to the array object, and the space may or may not be
read or written by operations on the object. The storage size for an object of an
array type is determined by the following equation:

number of components � (component size+ distance between components)

Multidimensional arrays are stored in row-major order. The default alignment
of DEC Ada array components is as follows:

• On VAX systems, array components are byte-aligned by default.

• On Alpha OpenVMS systems, array components are naturally aligned by
default. Natural alignment means that 1-byte components are aligned
on byte boundaries, 2-byte components are aligned on 2-byte boundaries,
4-byte components are aligned on 4-byte boundaries, and so on.

You can use the pragma COMPONENT_ALIGNMENT to change the default
alignment for any array type (see Section 1.2.2).

To force bit alignment and/or to minimize gaps, use the pragma PACK with the
array type declaration (see Section 1.2.1).

Consider the following declarations:

type COLORS is (RED, ORANGE, YELLOW, GREEN, BLUE, VIOLET);
type SPECTRUM is array(1 .. 10) of COLORS;
WHITE_LIGHT: SPECTRUM;

Because values of the type COLORS are stored in a byte
(see Section 1.1.1), and SPECTRUM has 10 components of the type COLORS,
10 bytes are allocated for the object WHITE_LIGHT.

In the next example, the object CHAR_ARRAY is stored in 30 bytes (thirty
8-bit components):

subtype INT is INTEGER range 1 .. 10;
type TWO_DIM_ARRAY is

array (INT range <>, INT range <>) of CHARACTER;
CHAR_ARRAY: TWO_DIM_ARRAY(1 .. 5,5 .. 10);

Object Representation and Storage 1–15



1.1.6 Record Types and Objects
In DEC Ada, the representation chosen for objects of a record type depends on
a complex interaction among any applicable representation clauses or pragmas
and the types and subtypes of the record components. DEC Ada does not place
any implementation-defined components within the object.

For example, if the offset from the start of the object to a particular component
depends on a value of a discriminant of the object, that offset is recalculated
rather than stored in a hidden component in the record. This implementation
lets you explicitly specify all of the components of a record object and expect
the result to be suitable for mixed-language programming.

Record objects are laid out so that all components affected by record
representation clauses are first placed at the specified storage places. The
remaining components are then laid out in the order in which they appear
in the record declaration, discriminants first. Variants are overlaid and
any alignment requirements of the components are met. See Chapter 13
of the DEC Ada Language Reference Manual and Sections Section 1.2.6
and Section 1.2.2 of this manual for more information on record component
alignments.

In the absence of a record representation clause, record components and
subcomponents are aligned by default as follows:

• On VAX systems, byte alignment is the default.

• On Alpha systems, natural alignment is the default. Natural alignment
means that 1-byte components are aligned on byte boundaries, 2-byte
components are aligned on 2-byte boundaries, 4-byte components are
aligned on 4-byte boundaries, and so on.

You can use the pragma COMPONENT_ALIGNMENT to change the default
alignment (see Section 1.2.2).

In the following example, the components are laid out in the order I, J, A,
and B:

type SIMPLE_ARRAY is array (INTEGER range <>) of BOOLEAN;
type SIMPLE_LAYOUT (I,J: INTEGER) is

record
A: INTEGER;
B: SIMPLE_ARRAY(I .. J);

end record;

1–16 Object Representation and Storage



Consider another example:

type SHOW_LAYOUT (DISCRIMINANT: BOOLEAN) is
record

A: INTEGER;
case DISCRIMINANT is

when TRUE => B: CHARACTER;
when FALSE => C: INTEGER;

end case;
end record;

Here the components are laid out so that DISCRIMINANT appears first, then
A. Because they are not affected by representation clauses, the variants are
laid out starting on the first byte boundary after A.

The type SHOW_LAYOUT from the preceding example can be declared with a
representation clause that specifically places one of the variants elsewhere. In
this case, that variant is laid out first. In the preceding example, if SHOW_
LAYOUT is declared in the following representation clause, the compiler lays
out B first, then DISCRIMINANT, then A, then C:

for SHOW_LAYOUT use
record

B at 0*8 range 0 .. 7;
end record;

In records with discriminants, the offset from the start of the record object to a
particular component may depend on the values of the discriminants and may
differ from one object to another. Similarly, the sizes of record objects of the
same type may vary because of different discriminant values.

A component whose size or position cannot be determined until run time is
called a dynamic component. Within any record type, dynamic components
cause succeeding components unaffected by representation clauses to be
allocated at run-time-computed offsets from the start of the record.

The dynamic calculation of component offsets and sizes can be done when the
type is elaborated, or it can be done later when any of the following occur:

• The subtypes of all of the components are forced

• The type is forced

• The component is selected (This happens when the actual value of a
discriminant is needed to make the calculation.)

In the following example, A and B are both dynamically allocated: A because
it is a dynamic component (an array with variable bounds), and B because its
offset depends on the size of A:

Object Representation and Storage 1–17



type COMPONENT_ARRAY is array (INTEGER range <>) of INTEGER;
type ANOTHER_ORDER (I,J: INTEGER) is

record
A: COMPONENT_ARRAY(I .. J);
B: INTEGER;

end record;

The laying out of a record type lets the compiler determine the size of the
type, where the size of the type is also the size of the largest possible object
of that type. The size is related not to the sum of the sizes of the record’s
components but to where the compiler laid out the last component, including
any allowances that were made for alignments.

The size of a record type is computed as:

• The position of the last component that physically appears in the layout
plus

• The size of the last component (rounded up to an appropriate boundary if
necessary). (Rounding depends on whether or not the record type itself is
packable; see Section 1.2.1.)

Consider the following example:

type BIT_ARRAY is
array (INTEGER range <>, INTEGER range <>) of BOOLEAN;

pragma PACK (BIT_ARRAY);
subtype N is INTEGER range 1 .. 25;
type OFFICE_SECTION_LAYOUT (LENGTH : N := 1;

WIDTH : N := 1) is
record

OCCUPIED : BIT_ARRAY(1 .. LENGTH, 1 .. WIDTH);
end record;

FLOOR1 : OFFICE_SECTION_LAYOUT;

The component OCCUPIED is an array of 1-bit components whose bounds
depend on the values of LENGTH and WIDTH. When an unconstrained
object (such as FLOOR1) is declared, it must be allocated enough storage to
accommodate a value in which LENGTH and WIDTH could have any value
in the range 1 .. 25. For example, FLOOR1 can be assigned the following
aggregate:

FLOOR1 := (20, 25, (1 .. 20 => (1 .. 25 => FALSE)));

Because the storage size allocated for an object like FLOOR1 must be adequate
for any value that can be assigned to that object, the storage size must be the
maximum storage size for the object. (The maximum storage size for an object
is equal to the size of the type of the object.)

1–18 Object Representation and Storage



For example, you can calculate the maximum storage size of FLOOR1 as
follows. The maximum values for LENGTH and WIDTH are each 25, and
the largest possible OCCUPIED component is a 25-by-25 array (625 1-bit
components). Because LENGTH and WIDTH are each of an integer subtype,
one longword (32 bits) is allocated for each, and 625 bits are allocated for the
component OCCUPIED. The type is not packable. It does not have a compile-
time constant size of 32 or fewer bits. The estimated storage is rounded up
to a byte boundary. Therefore, a total of 88 bytes ((32 + 32 + 625 + rounding
bits)/8) is allocated for FLOOR1.

The exact calculation of the size of a record may be nontrivial. For example,
the size of the following record type can be calculated only by determining each
possible record object and then choosing the largest result (which occurs when
the value of the discriminant D is 5 or 6):

subtype INT is INTEGER range 1 .. 10;
type TWO_DIM_ARRAY is

array (INT range <>, INT range <>) of CHARACTER;
type REC (D: INT :=1) is

record
A: TWO_DIM_ARRAY(1 .. D,D .. 10);

end record;
REC_OBJECT: REC;

In addition, the compiler uses simplifyinf assumptions to calculate the size
of the type REC (REC’SIZE is also the maximum storage size for the object
REC_OBJECT). These assumptions can cause the size allocated (or the values
returned by the SIZE and MACHINE_SIZE attributes to differ from what you
might otherwise expect.

For example, if you manually calculate the number of bits required for
component A and add that to the number of bits required for discriminant
D, you arrive at one answer. Alternatively, if you ask the compiler for REC_
OBJECT’SIZE or REC_OBJECT’MACHINE_SIZE, you receive a different
answer. In fact, the compiler bases its answer on a value of 10 for the upper
bound of the first dimension and a value of 1 for the lower bound of the second
dimension. Therefore, the assumed maximum number of elements is 100, and
the assumed storage size–(100 * 8) + 32–is 832 bits.

See Chapter 13 of the DEC Ada Language Reference Manual for more
information on the size attributes.

Object Representation and Storage 1–19



1.1.7 Access Types and Objects
DEC Ada uses a virtual address to represent the value of an access type.
The storage size for this value is 4 bytes (32 bits). The objects designated by
values of an access type are sized and represented according to their specified
types. If the designated type is an unconstrained array, the virtual address
points to an array descriptor that is chosen by the same rules used for choosing
descriptors during parameter passing (see Chapter 4).

Note

Since these addresses do not necessarily point directly to objects of the
target, the accessed, or the designated type, it is unsafe (as well as
nonportable) to use the predefined generic procedure UNCHECKED_
CONVERSION to convert between addresses and access types.
Unchecked conversion does not work between machine addresses
and access types that point to unconstrained arrays. See Section 9.2
for more information.

Each nonderived access type is associated with a collection, which is storage
used for the objects designated by the type when allocators of that type are
evaluated. If you specify a nonzero value in a length representation clause
for the access type, that value determines the number of bytes (rounded up to
an appropriate boundary) to be allocated for the collection associated with the
type.

The collection is not extended if it is exhausted. If you specify a zero or
negative value, no storage is allocated for the collection, and the collection is
not extended. If you do not specify a length representation clause, the effective
size of the collection is all of the available memory. No initial allocation is
made, and the collection is extended as needed.

The collection associated with an access type is released when the scope of the
access type is exited. DEC Ada does not provide automatic garbage collection.
See Section 1.4.2 for more information on storage deallocation. See Chapter 13
of the DEC Ada Language Reference Manual for more information on length
representation clauses and collections.

In the following example, a 512-byte collection is initially allocated for the
access type NUM_PTR. One allocator is evaluated for FIRST_NUM, and 64
allocators are evaluated in the loop. Each evaluation causes 8 bytes of storage
to be allocated as follows:

• The designated object in each case is of the type NUM_RECORD and
requires 4 bytes (32 bits) for the integer component NUM.

1–20 Object Representation and Storage



• Each access type component (NEXT_NUM) requires 4 bytes (32 bits).

When I reaches 63, a total of 64 allocators has been evaluated, and the
collection limit has been reached. When I reaches 64, the collection limit is
exceeded and not extended, and the exception STORAGE_ERROR is raised.

-- Procedure to construct a linked-list of integers.
--
procedure COLLECTION is

type NUM_RECORD;
type NUM_PTR is access NUM_RECORD;
for NUM_PTR’STORAGE_SIZE use 512;
type NUM_RECORD is

record
NUM: INTEGER;
NEXT_NUM: NUM_PTR;

end record;

FIRST_NUM,ASSIGN_NUM: NUM_PTR;

begin

FIRST_NUM := new NUM_RECORD’(0,null);
ASSIGN_NUM := FIRST_NUM;
for I in 1 .. 64 loop

ASSIGN_NUM.NEXT_NUM := new NUM_RECORD’(I,null);
ASSIGN_NUM := ASSIGN_NUM.NEXT_NUM;

end loop;

end COLLECTION;

1.1.8 Address Types and Objects
DEC Ada uses a virtual address to represent the value of an object of the type
SYSTEM.ADDRESS. The storage size for an object of an address type is 4
bytes (32 bits).

1.1.9 Task Types and Objects
When you declare an object of a task type, the value of the object is used by the
DEC Ada run-time library to determine the address of the task control block
created for the task.

The storage size for an object of a task type is as follows:

• On VAX systems, it is 4 bytes (32 bits).

• On Alpha systems, it is 8 bytes (64 bits).

See Chapter 7 for more information on task storage allocation.

Object Representation and Storage 1–21



1.2 Data Optimization
DEC Ada provides the following to let you tailor the representation of
nonpredefined types:

Representation clauses
Address clauses
The language-defined representation pragma PACK
The DEC Ada representation pragma COMPONENT_ALIGNMENT

Type representation clauses and pragmas also let you control the
representation of any new or derived types that you declare.

The following sections discuss the individual DEC Ada features available for
controlling type representations. When choosing a particular feature, consider
the following parameters:

• The level of control that you want or need (where level of control means
the ability to specify particular layouts or alignments for specific types).

• Interactions between representation clauses and representation pragmas.
Types inherit representation clauses or representation pragmas from
parent types, but an explicit pragma can override the effect of an inherited
pragma.

• Performance.

• Portability.

Table 1–7 is a general comparison of the DEC Ada features with respect to
these parameters. Sections Section 1.2.1 to Section 1.2.7 discuss individual
features in more detail.

Table 1–7 Comparison of DEC Ada Features for Controlling Type Representations

Feature Level of Control Other Considerations

Pragma PACK
see Section 1.2.1

Moderate; minimizes
space but may
not align types
the way you want
them aligned. For
example, may cause
byte alignment on
Alpha systems.

Overridden by representation
clauses. Overrides the pragma
COMPONENT_ALIGNMENT.

Changes in alignments may
affect performance.

Exact effects may or may not
be portable.

(continued on next page)

1–22 Object Representation and Storage



Table 1–7 (Cont.) Comparison of DEC Ada Features for Controlling Type Representations

Feature Level of Control Other Considerations

Pragma COMPONENT_ALIGNMENT
see Section 1.2.2

Moderate; changes
overall alignments
of record or array
components.

Overridden by representation
clauses and the pragma PACK.

In programs that are to
run on multiple systems, is
useful for ensuring that a
layout is chosen for optimal
performance on each system.

Useful for maintaining
portability in situations where
record or array types need
to have a particular layout
and alignment (for example,
in mixed-language programs
or in programs where data
is written to or read from
files and must have the same
layout on all systems).

Representation Clause
see Sections 1.2.3 to Section 1.2.6

High; allows you to
control specific layout
and alignment of
data.

Overrides the pragmas
PACK and COMPONENT_
ALIGNMENT.

May or may not affect
performance.

May not be portable.

1.2.1 Pragma PACK
The predefined pragma PACK lets you minimize gaps between the components
of composite types (record and array types). When you apply the pragma PACK
to a DEC Ada record or array type declaration, it has an effect on the record or
array components that are packable. It may also have an effect on component
alignment.

In DEC Ada, a component is packable if its type allows it to be aligned on
an arbitrary bit boundary. For example, if you use the pragma PACK to pack
an array of BOOLEAN components, any gaps between the components are
minimized because enumeration type components are packable. However, the
pragma PACK may have no effect on an array of record components.

Table 1–8 lists the type categories provided in DEC Ada and shows whether or
not components of each type are packable.

Object Representation and Storage 1–23



Table 1–8 Packable Types

Type Category

Considered
Packable
as a Type

Affected by the Pragma PACK if a
Component of a Record or Array

Integer Yes Yes

Enumeration1 Yes Yes

Fixed-point Yes Yes

Floating-point No Yes

Address No Yes

Access No Yes

Task No Yes

Record Depends2 Only if packable

Array Depends3 Only if packable

1Even in the presence of the pragma PACK, composite-type components of the type CHARACTER
(or derived from the type CHARACTER) are not packed into 7 bits. The predefined enumeration
type CHARACTER (in the package STANDARD) is implemented as though the following
declaration occurred in the package STANDARD: for CHARACTER’SIZE use 8.
2Only if the record type has a compile-time constant size that is less than or equal to 32 bits, and
if all of its components are packable.
3Only if the array type is itself a packed array of packable arrays, or if it is an array of 1-bit
components. Components of the predefined array type STRING are not packable because the type
STRING does not have 1-bit or packable array components.

Table 1–9 shows the effect of the pragma PACK on arrays and records with
packable components.

Table 1–9 Effects of Packing the Components of Arrays and Records

With Length
Representation Clause
on Component Type

Without Length
Representation Clause
on Component Type

With the
Pragma PACK

Space between array and
record components is
minimized. Component size
is determined by the length
clause.

Space between array and record
components is minimized.
Component size is the default
allocation for the component type.

(continued on next page)

1–24 Object Representation and Storage



Table 1–9 (Cont.) Effects of Packing the Components of Arrays and Records

With Length
Representation Clause
on Component Type

Without Length
Representation Clause
on Component Type

Saves only as much space as
the length clause allows.

Saves the maximum amount of
storage space.

Without the
Pragma PACK

Space between array and
record components is not
minimized. Component size
is determined by the length
clause.

Space between array and record
components is not minimized.
Component size is the default
allocation for the component type.

Saves only as much space
as the length clause and the
default alignment allow (see
Sections 1.1.5 and 1.1.6).

Saves no storage space.

In the following example, the pragma PACK is used to minimize gaps in an
array of fixed-point numbers:

type SMALL_FIXED_POINT is
delta 2.0**(-4) range 0.0 .. 0.5;

type SMALL_FIXED_POINT_ARRAY is
array (INTEGER range <>) of SMALL_FIXED_POINT;

pragma PACK (SMALL_FIXED_POINT_ARRAY);

If SMALL_FIXED_POINT_ARRAY is not packed, the space-saving benefit of
the small range of the SMALL_FIXED_POINT components is lost. In this case,
the compiler aligns all components on byte boundaries, causing 8-bit instead of
the expected 3-bit component representations and increasing the array size.

The next example shows the difference in space saving when length
representation clauses are involved. (See Section 1.2.3 for more information on
length clauses):

type SMALL_INTEGER is new INTEGER range 0 .. 7;
for SMALL_INTEGER’SIZE use 4;

type UNPACKED_SMALL_INTEGER_ARRAY is array (1 .. 10) of SMALL_INTEGER;

type PACKED_SMALL_INTEGER_ARRAY is array (1 .. 10) of SMALL_INTEGER;
pragma PACK (PACKED_SMALL_INTEGER_ARRAY);

Object Representation and Storage 1–25



In this example, the range of the type SMALL_INTEGER causes it to require
only 3 bits. However, the length clause specifies a size of 4 bits. For the array
UNPACKED_SMALL_INTEGER_ARRAY, the length clause is honored for the
SMALL_INTEGER components.

Because the array is declared without the pragma PACK, all of the components
are aligned on byte boundaries, and each component has an effective size of
8 bits instead of 4. The size of the array is 80 bits. For the array PACKED_
SMALL_INTEGER_ARRAY, each component has a size of 4 bits, and any extra
space between the components is eliminated. The size of the array is 40 bits.

When using the pragma PACK, you must be careful to pack at the appropriate
level. The pragma packs the components with respect to each other. It does
not pack the subcomponents of the components closer together. In the following
example, the size of the record UNPACKED_COMPONENTS is significantly
larger than the size of the record PACKED_COMPONENTS, even though both
are declared with the pragma PACK:

type UNSIGNED_INTEGER is new INTEGER range 0 .. 7;
for UNSIGNED_INTEGER’SIZE use 3;

type PACKED_ARRAY is array (1 .. 10) of BOOLEAN;
pragma PACK (PACKED_ARRAY);

type UNPACKED_ARRAY is array (1 .. 10) of BOOLEAN;

type UNPACKED_COMPONENTS is
record

A,B: UNSIGNED_INTEGER;
C: UNPACKED_ARRAY;

end record;
pragma PACK (UNPACKED_COMPONENTS);

type PACKED_COMPONENTS is
record

D,E: UNSIGNED_INTEGER;
F: PACKED_ARRAY;

end record;
pragma PACK (PACKED_COMPONENTS);

BIG_RECORD: UNPACKED_COMPONENTS; -- Size is 88 bits.
COMPACT_RECORD: PACKED_COMPONENTS; -- Size is 16 bits.

The pragma PACK never forces a component that begins a record variant off
of a byte boundary. Such components are allocated on the next byte boundary.
To force a component that begins a record variant to a boundary other than a
byte boundary, you must use a record representation clause. See Sections 1.1.6
and 1.2.5 of this manual and Chapter 13 of the DEC Ada Language Reference
Manual.

1–26 Object Representation and Storage



1.2.2 Pragma COMPONENT_ALIGNMENT
DEC Ada provides the pragma COMPONENT_ALIGNMENT, which lets you
control the default alignment of array and record components (see Sections
1.1.5 and 1.1.6).

You can use the /WARNINGS=COMPILATION_NOTES qualifier with any of
the DEC Ada compilation commands to determine:

• Alignments the compiler has chosen for the array components in your
program

• Alignments the compiler has chosen for the record components in your
program

You may want to change or ensure the alignment of certain record and array
components for various reasons. For example:

• You are working with data that is defined in a specific format (something
other than Ada format, Alpha format, and so on) and you need to match it.

• You are concerned about performance. For example, access speed is faster
on Alpha systems if your data is naturally aligned. However, if you are
working on program with large amounts of data, paging may begin to
interfere with performance. In that case, you may want to compress the
data and byte align it.

• You are writing mixed-language programs that involve Fortran common
blocks.

You can specify a pragma COMPONENT_ALIGNMENT for a specific array or
record type or for a declarative part. The alignment choices are as follows:

• COMPONENT_SIZE—produces natural alignment.

• COMPONENT_SIZE_4—produces natural alignment for components with
a size of 4 or fewer bytes. Anything larger is aligned on a 4-byte boundary.

• DEFAULT—produces the default alignment for the system you are working
on (see Sections 1.1.5 and 1.1.6).

• STORAGE_UNIT—produces byte alignment.

For example, the following declaration uses the pragma COMPONENT_
ALIGNMENT to specify natural alignment for the components of the record
type FLOAT_REC:

Object Representation and Storage 1–27



type FLOAT_REC is record
SINGLE: FLOAT;
DOUBLE: LONG_FLOAT;

end record;
pragma COMPONENT_ALIGNMENT(COMPONENT_SIZE, FLOAT_REC);

In Example 1–1, the pragma COMPONENT_ALIGNMENT applies to all of the
record or array declarations in the declarative part (unless they are already
specified in another representation pragma or representation clause).

1–28 Object Representation and Storage



Example 1–1 Using the Pragma COMPONENT_ALIGNMENT

package ALIGNMENT_EXAMPLE is

-- No pragma applies.
--
type ARR_NO_PRAGMA is array(1 .. 10) of INTEGER;

-- Pragma 1; specifies byte alignment.
--
pragma COMPONENT_ALIGNMENT(STORAGE_UNIT);

-- Pragma 2 applies.
--
type REC_COMP_SIZE is

record
C1 : CHARACTER; -- at byte 0
C2 : SHORT_INTEGER; -- at byte 2
C3 : LONG_FLOAT; -- at byte 8

end record;
--
-- Pragma 2; specifies natural alignment.
--
pragma COMPONENT_ALIGNMENT(COMPONENT_SIZE, REC_COMP_SIZE);

-- Pragma 1 applies.
type REC_STOR_UNIT is

record
C1 : CHARACTER; -- at byte 0
C2 : SHORT_INTEGER; -- at byte 1
C3 : LONG_FLOAT; -- at byte 3

end record;

-- Pragma 3 (in private part) applies.
--
type REC_COMP_SIZE_4 is

record
C1 : CHARACTER; -- at byte 0
C2 : SHORT_INTEGER; -- at byte 2
C3 : LONG_FLOAT; -- at byte 4

end record;

-- Pragma 1 applies.
--
type ARR_STOR_UNIT is array(1 .. 10) of INTEGER;

-- Pragma 1 applies.
--
type REC_STOR_UNIT_ALSO is

record
C1 : CHARACTER; -- at byte 0
C2 : ARR_STOR_UNIT; -- at byte 1

end record;

(continued on next page)
Object Representation and Storage 1–29



Example 1–1 (Cont.) Using the Pragma COMPONENT_ALIGNMENT

private

-- Pragma 3.
--
-- Specifies that components with a size of 4 or fewer bytes
-- are naturally aligned; components that are larger than 4 bytes
-- are placed on the next 4-byte boundary.
--
pragma COMPONENT_ALIGNMENT(COMPONENT_SIZE_4, REC_COMP_SIZE_4);

end ALIGNMENT_EXAMPLE;

When the pragma PACK and the pragma COMPONENT_ALIGNMENT are
directly applied to the same type, the pragma PACK takes precedence over the
pragma COMPONENT_ALIGNMENT.

Derived types inherit any representation pragmas or clauses that apply to
their parent types, but an explicit pragma applied to the derived type takes
precedence over an inherited pragma. An explicit pragma COMPONENT_
ALIGNMENT takes precedence over an inherited pragma PACK and vice
versa. Example 1–2 shows how the pragmas PACK and COMPONENT_
ALIGNMENT interact.

For more information about the pragma PACK, see Section 1.2.1 and Chapter
13 of the DEC Ada Language Reference Manual. For more information about
the pragma COMPONENT_ALIGNMENT, see Chapter 13 of the DEC Ada
Language Reference Manual. For more examples of situations where the
pragma COMPONENT_ALIGNMENT is used, see Sections Section 4.6 and
Section 4.7.

1.2.3 Length Representation Clauses
Length representation clauses let you explicitly control the amount of storage
allocated for objects of a particular type.

The following example shows how length representation clauses are useful for
declaring unsigned integer and unsigned fixed-point objects:

type UNSIGNED_INTEGER is new INTEGER range 0 .. 2**16-1;
for UNSIGNED_INTEGER’SIZE use 16;

type UNSIGNED_FIXED_POINT is
delta 2.0**(-8) range 0.0 .. 255.0*2.0**(-8);

for UNSIGNED_FIXED_POINT’SIZE use 8;

1–30 Object Representation and Storage



Example 1–2 Interaction Between the Pragmas PACK and COMPONENT_
ALIGNMENT

package INTERACTION_EXAMPLE is

-- Pragma COMPONENT_ALIGNMENT 1.
--
pragma COMPONENT_ALIGNMENT(COMPONENT_SIZE);

-- Pragma COMPONENT_ALIGNMENT 1 applies, causing COMPONENT_SIZE
-- (natural) alignment.
--
type REC_COMP_SIZE is

record
C1 : CHARACTER; -- at byte 0
C2 : SHORT_INTEGER; -- at byte 2
C3 : LONG_FLOAT; -- at byte 8

end record;

-- Pragma PACK applies.
--
type REC_PACKED is

record
C1 : CHARACTER; -- at byte 0
C2 : SHORT_INTEGER; -- at byte 1
C3 : LONG_FLOAT; -- at byte 3

end record;
pragma PACK(REC_PACKED);

-- Pragma PACK applies.
--
type REC_PACKED_2 is new REC_PACKED;

-- Pragma COMPONENT_ALIGNMENT 2 applies, causing COMPONENT_SIZE_4
-- alignment.
--
type REC_COMP_SIZE_4 is new REC_PACKED;

-- C1 is at byte 0
-- C2 is at byte 2
-- C3 is at byte 4

--
-- Pragma COMPONENT_ALIGNMENT 2.
--
pragma COMPONENT_ALIGNMENT(COMPONENT_SIZE_4, REC_COMP_SIZE_4);

end INTERACTION_EXAMPLE;

Object Representation and Storage 1–31



The first declaration causes objects of the type UNSIGNED_INTEGER to be
stored as unsigned 2-byte quantities, rather than as signed 4-byte quantities.
The second declaration causes objects of the type UNSIGNED_FIXED_POINT
to be stored as unsigned bytes, rather than as signed 2-byte quantities.
Because of Ada language rules, arithmetic operations involving these objects
are signed.

A length representation clause is also useful for controlling the size of
components in packed arrays. For example:

type SMALL_INTEGER is new INTEGER range 0 .. 7;
for SMALL_INTEGER’SIZE use 4;

type SMALL_INTEGER_ARRAY is array (1 .. 16) of SMALL_INTEGER;
pragma PACK (SMALL_INTEGER_ARRAY);

In this example, the range of SMALL_INTEGER and the use of the pragma
PACK would cause the size of each component of SMALL_INTEGER_ARRAY
to be 3 bits. However, the length representation clause overrides the pragma
PACK and causes the size of each component in the packed array to be 4 bits.

Chapter 13 of the DEC Ada Language Reference Manual gives complete
information on the use of length representation clauses. See Table 1–9 for
information on the interaction between length representation clauses and the
pragma PACK.

1.2.4 Enumeration Representation Clauses
Enumeration representation clauses let you specify the internal codes that
represent the literals of an enumeration type. When you use an enumeration
representation clause, the storage size of each enumeration type is the amount
of storage required to represent the full range of codes specified. For example:

type ANSWER is (YES, NO, UNDECIDED);
for ANSWER use (YES => 0, NO => 8, UNDECIDED => 65535);
MY_UNSIGNED_ANSWER: ANSWER;

The storage allocated for MY_UNSIGNED_ANSWER is 2 bytes (16 bits). Even
though only three integer codes must be represented, 2 bytes (16 bits) are
needed to store values in the range 0 .. 65535.

If any of the internal codes specified by the representation clause are negative,
the representation for the type is signed. Otherwise, it is unsigned. If you
redeclare the type ANSWER as follows, the internal codes will be signed:

type ANSWER is (NO, YES, UNDECIDED);
for ANSWER use (NO => -8, YES=> 0, UNDECIDED => 65535);
MY_SIGNED_ANSWER: ANSWER;

1–32 Object Representation and Storage



The signed representation requires an additional sign bit. To meet both
the range of values (0 .. 65535) and the signed representation, the storage
allocated for MY_SIGNED_ANSWER is 4 bytes (32 bits).

1.2.5 Record Representation Clauses
Record representation clauses let you force a record type to have a particular
representation. They are useful any time you need to lay out an area of
memory in a particular way. For example:

• You can use a record with a record representation clause to lay out a series
of objects in a particular order.

• You can use record representation clauses to lay out record types that
declare objects that may be passed to other-language routines, operating-
system routines, or run-time library routines.

In particular, it is good programming practice to specify the layout of any
record that is read from or written to an external file.

The following example defines a 16-bit mask, which contains four 4-bit fields:

-- Record defining a 4-bit field.
--
type FIELD_TYPE is

record
BIT1 : BOOLEAN;
BIT2 : BOOLEAN;
BIT3 : BOOLEAN;
BIT4 : BOOLEAN;

end record;

for FIELD_TYPE’SIZE use 4;
for FIELD_TYPE use

record
BIT1 at 0 range 0 .. 0;
BIT2 at 0 range 1 .. 1;
BIT3 at 0 range 2 .. 2;
BIT4 at 0 range 3 .. 3;

end record;

-- Record defining a 16-bit mask; the record
-- representation clause lays out the 4-bit fields
-- so that they are contiguous half-bytes.
--
type BIT_MASK_TYPE is

record
FIELD1 : FIELD_TYPE;
FIELD2 : FIELD_TYPE;
FIELD3 : FIELD_TYPE;
FIELD4 : FIELD_TYPE;

end record;

Object Representation and Storage 1–33



for BIT_MASK_TYPE use
record

FIELD1 at 0 range 0 .. 3;
FIELD2 at 0 range 4 .. 7;
FIELD3 at 1 range 0 .. 3;
FIELD4 at 1 range 4 .. 7;

end record;

for BIT_MASK_TYPE’SIZE use 16;

When declaring record types with variants, you can use record representation
clauses to conserve space. For example:

package ALIGN_VAR is

type SMALL_INT is new INTEGER range 0 .. 7;
for SMALL_INT’SIZE use 3;

type VARIANT_RECORD (VAR: BOOLEAN) is
record

A: SMALL_INT;
case VAR is

when TRUE => X: CHARACTER;
Y: SMALL_INT;

when FALSE => Z: SMALL_INT;
end case;

end record;

for VARIANT_RECORD use
record

A at 0 range 0 .. 2;
VAR at 0 range 3 .. 3;
X at 0 range 4 .. 11;
Y at 0 range 12 .. 14;
Z at 0 range 4 .. 6;

end record;

end ALIGN_VAR;

The representation clause on the type VARIANT_RECORD causes the
discriminant, VAR, to be aligned on a bit boundary. When an object is declared
and a case choice is made, the appropriate component is stored starting on
bit 4 of the word of the storage allocated for the record object. Without the
representation clause, the variants would be aligned on byte boundaries.

If you declare a record type with fixed-size components that follow (or are
interspersed with) varying-size components, you generate slower, less efficient
code than if you declare a record type where all of the fixed-size components
precede the varying-size components. For example:

1–34 Object Representation and Storage



package SLOW_LAYOUT is

type VARYING_ARRAY is array (INTEGER range <>) of BOOLEAN;

type SLOW_RECORD (I,J: INTEGER) is
record

A: INTEGER;
B: VARYING_ARRAY(I .. J);
C: INTEGER;
D: VARYING_ARRAY(I .. I);

end record;

SLOW_OBJECT: SLOW_RECORD(1,10);

end SLOW_LAYOUT;

The compiler can set up the layout for the type SLOW_RECORD only to the
point of SLOW_RECORD.B. The rest of the layout and the allocation of storage
for SLOW_OBJECT must be done at run time. Furthermore, each time you
access SLOW_OBJECT.C, the size of SLOW_OBJECT.B must be calculated,
decreasing the efficiency of any code that uses SLOW_OBJECT.

If the logical layout of a record type such as SLOW_RECORD is important,
you can improve the efficiency of your code by declaring the type with a
representation clause that forces the fixed-size components to known locations.
For example:

package NOT_SO_SLOW_LAYOUT is

type VARYING_ARRAY is array (INTEGER range <>) of BOOLEAN;
pragma PACK (VARYING_ARRAY);

type FASTER_RECORD(I,J: INTEGER) is
record

A: INTEGER;
B: VARYING_ARRAY(I .. J);
C: INTEGER;
D: VARYING_ARRAY(I .. I);

end record;

for FASTER_RECORD use
record

I at 0 range 0 .. 31;
J at 4 range 0 .. 31;
A at 8 range 0 .. 31;
C at 12 range 0 .. 31;

end record;

FASTER_OBJECT: FASTER_RECORD(1,10);

end NOT_SO_SLOW_LAYOUT;

Object Representation and Storage 1–35



FASTER_OBJECT is laid out so that the components fall in the following
order: I, J, A, C, B, and D. The type representation clause forces the allocation
of the components FASTER_OBJECT.B and FASTER_OBJECT.D to the end of
the record.

When you use a record representation clause to request a small storage space
for a component of a nonfixed-point discrete type, the record component value
may be biased. (Its value can be altered predictably.)

When biasing occurs, the value stored is the unsigned quantity formed by
subtracting COMPONENT_SUBTYPE’FIRST from the original value.

Because subtraction or addition is required to assign or fetch from the
component storage location, the generated code uses slightly more machine
time than the unbiased form.

In the following example, the values of R.C are biased so that they can be
stored in the 2 bits required by the record representation clause. Without the
record representation clause, they are each stored in 32 bits:

subtype S is INTEGER range 100 .. 103;
type R is

record
C : S;

end record;
for R use

record
C at 0 range 0 .. 1;

end record;
. . .
O : R;
. . .
O.C := 100;
. . .

1.2.6 Alignment Clauses
When you use a record representation clause to define the layout of a
particular record type, you have the option of specifying an alignment clause to
determine the alignment of all record objects (including record objects that are
components) of that type. The DEC Ada Language Reference Manual gives the
syntax and rules for using alignment clauses.

In DEC Ada, records can be aligned on any byte address that is a power of
2, up to 512 (or 29). In the following fragment, the value of ALIGN_AT can
be any integer in the series 1, 2, 4, 8, . . . , 512. A value of 1 indicates byte
alignment, a value of 2 indicates 2-byte alignment, and a value of 512 indicates
512-byte alignment.

1–36 Object Representation and Storage



type SMALLNUM is new INTEGER range 0 .. 7;
for SMALLNUM’SIZE use 3;

ALIGN_AT: constant := 2;

type ALIGNED_RECORD is
record

A1: BOOLEAN;
A2: SMALLNUM;

end record;

for ALIGNED_RECORD use
record at mod ALIGN_AT;

A1 at 0 range 0 .. 0;
A2 at 0 range 1 .. 3;

end record;

type SHOW_ALIGNMENT is
record

S1,S2,S3: ALIGNED_RECORD;
end record;

In this example, the components of the record SHOW_ALIGNMENT are
aligned on 2-byte (word) boundaries, and the record SHOW_ALIGNMENT
itself is aligned so that its component alignment can be observed. If the value
of ALIGN_AT is 16, then the components of the record SHOW_ALIGNMENT
are aligned on 16-byte boundaries.

If you declare an array of components of the type ALIGNED_RECORD and
apply the pragma PACK to the array, the pragma would have no effect because
the alignment clause interacts with the pragma. This is legal because the
components of ALIGNED_RECORD are packable, and the record can have a
compile-time size of less than 32 bits.

Alignment clauses can be useful in a mixed-language environment where
you may want to force objects to particular boundaries. However, the VAX
hardware generally requires little alignment:

• Only a few instructions and OpenVMS Run-Time Library routines need
alignments (for example, queue and interlocked instructions).

• DEC Ada currently generates few interlocked instructions.

The Alpha hardware runs more efficiently with naturally aligned data.

The DEC Ada pragma COMPONENT_ALIGNMENT is also useful in a
mixed-language environment. See Section 1.2.2 for more information.

Object Representation and Storage 1–37



1.2.7 Address Clauses
In DEC Ada, you can use address clauses to store objects (constants and
variables) or imported subprograms at specific memory locations. You can use
address clauses to precisely map and overlay memory areas during program
execution. Chapter 13 of the DEC Ada Language Reference Manual gives the
syntax and rules for using address clauses. In particular, note the following:

• A program should not use address clauses to overlay two or more Ada
objects.

• When you declare an object with an address clause, the usual implicit or
explicit initialization associated with the type of the object is performed.
See Section 3.2.1 of the DEC Ada Language Reference Manual for the rules
about intializing objects. Access values are initialized to null, and record
components can also receive initial values.

For example, consider the following declarations:

type HEADER_TYPE is record
HEADER_FIELD: BYTE_ARRAY(1 .. LENGTH_OF_FIELD);
FILLER : BYTE_ARRAY(1 .. LENGTH_OF_FILLER)

:= (others => SLASH);
end record;

X: HEADER_TYPE;
for X use at SOME_ADDRESS;

Because the component FILLER is initialized by declaring the type HEADER_
TYPE, you might expect X.FILLER to be initialized to the same value. Instead,
because the DEC Ada compiler is following the Ada language rule about
initializing X when it is declared with the address clause, both X.HEADER_
FIELD and X.FILLER are initialized with a null value chosen by the compiler.
The type initialization is overwritten by the object initialization.

To control the initialization of X and still have the effect of an address clause,
you can rewrite the previous code as follows:

type AHT is access HEADER_TYPE;
for AHT’STORAGE_SIZE use 0;

function TO_AHT is new UNCHECKED_CONVERSION(ADDRESS, AHT);

X: HEADER_TYPE renames TO_AHT(SOME_ADDRESS).all;

When you declare an object without an address clause, the compiler chooses
an appropriate location for storing the object. However, when you specify an
address clause, the compiler does not check that the address you have specified
is appropriate. When you use address clauses, you need to be sure that you
choose values that are meaningful in the OpenVMS environment.

1–38 Object Representation and Storage



One way to obtain a meaningful value is to use the OpenVMS Run-Time
Library (RTL) routine LIB$GET_VM to obtain a storage location. Example 1–3
is a complete procedure showing the use of an address clause to overlay an
Ada record object onto storage allocated by LIB$GET_VM. The OpenVMS RTL
Library (LIB$) Manual describes LIB$GET_VM in more detail.

Example 1–3 Using an Address Clause and LIB$GET_VM

with CONDITION_HANDLING; use CONDITION_HANDLING;
with SYSTEM; use SYSTEM;
with INTEGER_TEXT_IO; use INTEGER_TEXT_IO;
with TEXT_IO; use TEXT_IO;
with LIB;
procedure USE_ADDRESS_CLAUSE is

-- Declare a record for which storage will be allocated
-- by the OpenVMS Run-Time Library routine LIB$GET_VM; and
-- freed by LIB$FREE_VM.
--
subtype STRING_14 is STRING(1 .. 14);
type OBJ_REC is

record
A: CHARACTER;
B: INTEGER;
C: STRING_14;

end record;

-- Declare the values needed to be passed to LIB$GET_VM and
-- LIB$FREE_VM.
--
NUM_BYTES: constant INTEGER := OBJ_REC’MACHINE_SIZE/8;
BASE_ADDR: ADDRESS;
STATUS: COND_VALUE_TYPE;

begin

-- Allocate the storage for a record of type OBJ_REC.
--
LIB.GET_VM (STATUS, NUM_BYTES, BASE_ADDR);
if not CONDITION_HANDLING.SUCCESS(STATUS)

then
PUT_LINE("Failed to allocate memory");

else
PUT("Address of allocated storage is ");
PUT(TO_INTEGER(BASE_ADDR));
NEW_LINE;

end if;

(continued on next page)

Object Representation and Storage 1–39



Example 1–3 (Cont.) Using an Address Clause and LIB$GET_VM

-- Declare an object of type OBJ_REC, and place it at the
-- storage location obtained with LIB$GET_VM using an
-- address clause.
--
declare

OBJECT: OBJ_REC;
for OBJECT use at BASE_ADDR;
O: STRING_14 := "Time for fun..";

-- Do some useful work with the record object, and
-- then free the storage by calling LIB$FREE_VM.
--
begin

OBJECT := (A => ’A’, B => 5, C => "Summer is a...");
PUT_LINE(OBJECT.C);
OBJECT.C := O;
PUT_LINE(OBJECT.C);

end;
LIB.FREE_VM (STATUS, NUM_BYTES, BASE_ADDR);

end USE_ADDRESS_CLAUSE;

1.3 Determining the Sizes of Types and Objects
DEC Ada provides a number of methods for determining how much storage is
allocated for particular types and objects:

• You can use the predefined attributes T’SIZE and T’MACHINE_SIZE to
determine the number of bits used and allocated for a given type or object.

• You can use the /WARNINGS=COMPILATION_NOTES qualifier on
any of the compilation commands (DCL ADA and ACS COMPILE and
RECOMPILE) to determine how record types and other structures are laid
out.

• You can use the debugger (after compiling and linking your program) to
examine the sizes of your variables.

The first of these methods is discussed in this section, and the other two are
described in Developing Ada Programs on OpenVMS Systems.

As indicated by its name, the predefined SIZE attribute returns information
on the size of a type or an object (see Chapter 13 of the DEC Ada Language
Reference Manual). When using this attribute, note the following differences in
the values it returns:

1–40 Object Representation and Storage



• T’SIZE (where T represents a type) returns the minimum number of bits
needed to represent an object of the type.

• O’SIZE (where O represents an object) returns the actual number of bits
used for the object’s current value.

The minimum number of bits and the actual number of bits can often
be different. For example, given the following declarations, the value of
BOOL’SIZE is 1, and the value of B’SIZE is 8:

type BOOL is new BOOLEAN;
B: BOOL;

One bit is the minimum amount of storage required for an object of the type
BOOL. Eight bits is the actual amount of storage used by the object B.

The DEC Ada attribute T’MACHINE_SIZE provides similar information for
a type or subtype that O’SIZE provides for an object. Table 1–10 summarizes
the differences between T’SIZE, O’SIZE, and T’MACHINE_SIZE.

Table 1–10 Comparison of SIZE and MACHINE_SIZE Attribute Results

Type or Subtype T’SIZE O’SIZE T’MACHINE_SIZE

Discrete or fixed-
point without length
clause

Minimum number
of bits needed to
represent an object
of the type or
subtype T.

Actual number of
bits used by O. If
O is not a record
or array component
or is unpacked, the
result is the same as
the T’MACHINE_
SIZE result for O’s
subtype. If O is a
packed component, the
result is the number
of bits needed so that
components can be
packed as tightly as
possible.

Total number of
bits allocated for an
object of the subtype.
Result is the actual
number of bits used,
rounded up to an 8-,
16-, 32-, or 64-bit
boundary (64-bit
boundaries apply
to discrete types on
AXP systems only).
Representation is
signed.

(continued on next page)

Object Representation and Storage 1–41



Table 1–10 (Cont.) Comparison of SIZE and MACHINE_SIZE Attribute Results

Type or Subtype T’SIZE O’SIZE T’MACHINE_SIZE

Discrete or fixed-
point with length
clause

Actual number of bits
needed to represent an
object of the type or
subtype T.

Actual number of bits
used by O; length
clause determines
upper bound (except if
O is a component of a
record specified with a
component clause).

Total number of
bits allocated for an
object of the type or
subtype T. Result is
the actual number of
bits used, rounded up
to an 8-, 16-, 32-, or
64-bit boundary (64-
bit boundaries apply
to discrete types on
AXP systems only).
Representation can
be unsigned.

All other types, with
or without length
clauses

Minimum number
of bits needed to
represent an object
of the type or
subtype T.

Actual number of bits
used by O.

Total number of
bits allocated for an
object of the type or
subtype T. Result is
the actual number of
bits used, rounded up
to a byte boundary.

The T’MACHINE_SIZE of a base type can be equal to or greater than the
T’SIZE of the same base type. Consider the following declarations:

type INT8 is range 0 .. 255;
for INT8’SIZE use 8;
I: INT8;

An examination of INT8 and I produces the following results:

INT8’SIZE 8

INT8’MACHINE_SIZE 8

I’SIZE 8

INT8’BASE’SIZE 16

INT8’BASE’MACHINE_SIZE 16

The number of bits needed to represent the specified range values
symmetrically about 0 is 16, so that INT8’BASE’SIZE is 16. This value
is greater than the values of INT8’MACHINE_SIZE, INT8’SIZE, and I’SIZE.
The values of INT8’MACHINE_SIZE and I’SIZE are equal.

1–42 Object Representation and Storage



Table 1–11 gives a set of results for a variety of interesting cases.

Table 1–11 Results of Size Attributes for Various Types and Objects

Declaration and Attributes Number of Bits

type BOOL17 is new BOOLEAN;
for BOOL17’SIZE use 17;
B: BOOL17;

Type BOOL17’SIZE
Object B’SIZE
Type BOOL17’MACHINE_SIZE
Type BOOL17’BASE’SIZE
Type BOOL17’BASE’MACHINE_SIZE

17
17
32
17
32

type ET is range 0 .. 255;
for ET’SIZE use 8;
E: ET;

Type ET’SIZE
Object E’SIZE
Type ET’MACHINE_SIZE
Type ET’BASE’SIZE
Type ET’BASE’MACHINE_SIZE

8
8
8

16
16

(continued on next page)

Object Representation and Storage 1–43



Table 1–11 (Cont.) Results of Size Attributes for Various Types and Objects

type NET is new ET range 0 .. 7;
NE: NET;

Type NET’SIZE
Object NE’SIZE
Type NET’MACHINE_SIZE
Type NET’BASE’SIZE
Type NET’BASE’MACHINE_SIZE

8
8
8

16
16

type NT is new INTEGER range 0 .. 255;
for NT’SIZE use 8;
N:NT;

Type NT’SIZE
Object N’SIZE
Type NT’MACHINE_SIZE
Type NT’BASE’SIZE
Type NT’BASE’MACHINE_SIZE

8
8
8

32
32

type BIT_ARRAY is array (1 .. 10) of
BOOLEAN;
pragma PACK (BIT_ARRAY);
BA: BIT_ARRAY;

Type BIT_ARRAY’SIZE
Object BA’SIZE
Type BIT_ARRAY’MACHINE_SIZE
Type BIT_ARRAY’BASE’SIZE
Type BIT_ARRAY’BASE’MACHINE_SIZE

10
10
16
10
16

1.4 Storage Allocation and Deallocation
To make efficient use of storage from your DEC Ada programs, you need to
know how and where objects are stored. You also need to know how and when
objects, particularly objects designated by access types, are deallocated. The
following sections give information on both of these topics.

1–44 Object Representation and Storage



1.4.1 Storage Allocation
The DEC Ada compiler stores objects in registers, on a stack, in static memory,
or in dynamic memory (on the heap) depending upon the objects’ sizes, when
their sizes are known, their types, how long their lifetimes are, and how they
are used.

If you take the address of an object (O’ADDRESS), an implicit pragma
VOLATILE is assumed for the object within the scope of the subprogram or
task where the address is taken. Within that scope, the object is guaranteed
to be allocated at a unique memory location, regardless of where the object is
declared.

If the object is also declared within that scope, the object is allocated in
memory for the duration of the object’s lifetime. The object receives a unique
memory address and keeps it from the time the object is elaborated until the
time when its containing scope is left. See Chapter 9 for more information
on working with address values. See Chapter 9 of the DEC Ada Language
Reference Manual and Chapter 7 of this manual for more information on the
pragma VOLATILE.

The compiler always stores objects created by allocators in dynamic memory.
In accordance with Ada language rules, the dynamic memory allocated for
each access type is structured as a collection. A collection is a memory area
that comes into existence when the access type is elaborated and goes out of
existence when the scope containing the access type is left.

Each time an allocator is evaluated, storage for the resulting object is allocated
from the collection belonging to the corresponding access type. There is some
CPU overhead involved, both when the collection is allocated and when the
collection is deallocated. See Section 1.4.2 for more information on storage
deallocation.

By default, no storage is initially allocated for a collection. Storage is allocated
as needed, until all virtual memory is depleted. You can change the default
behavior with a length clause. See Chapter 13 of the DEC Ada Language
Reference Manual for more information. See Section 1.1.7 for more information
on the representation and allocation of objects of access types.

You may be able to improve the efficiency of your program by carefully sizing
the collections allocated for access types. When you use a length representation
clause (T’STORAGE_SIZE) to specify the sizes of access type collections,
choose values that will be integrally related after they have been rounded up.
(T’STORAGE_SIZE specifies the number of bytes to be used for a collection.
In DEC Ada, this number is rounded up to an appropriate boundary). For
example, the values 512*4, 512*8, and 512*12 are better than the values

Object Representation and Storage 1–45



512*2, 512*7, and 512*13. There is no common denominator for 2, 7, and 13,
but there is a common denominator for 4, 8, and 12.

This practice results in reduced fragmentation of memory. Also, when you free
several collections (implicitly) at scope exit, the freed storage is likely in blocks
large enough to be useful for other collections.

1.4.2 Storage Deallocation
DEC Ada does not provide garbage collection. However, there are at least two
ways in which you can deallocate objects of access types:

• Make use of the fact that the collection associated with an access type is
automatically deallocated when the end statement of the scope containing
the access type is encountered.

• Instantiate the language-defined generic procedure UNCHECKED_
DEALLOCATION and call the instantiation to explicitly deallocate
the storage for an object designated by a value of an access type. See
Chapter 13 of the DEC Ada Language Reference Manual for the syntax of
UNCHECKED_DEALLOCATION.

When you call an instantiation of UNCHECKED_DEALLOCATION,
storage is deallocated for the object within the collection allocated for the
access type. You conserve the use of the collection, rather than deallocating
the collection for general use by your program.

The collections for access types declared in library packages are not deallocated
until the entire program has completed executing. The only way you can
conserve the use of such storage is to use an instantiation of the procedure
UNCHECKED_DEALLOCATION.

Example 1–4 shows a main program that depends on an access type declared
in a library package. The program uses an instantiation of the procedure
UNCHECKED_DEALLOCATION to deallocate the storage for the access type.

1–46 Object Representation and Storage



Example 1–4 Using UNCHECKED_DEALLOCATION to Control Access Type
Storage Deallocation

-- Package containing declarations of access type and
-- corresponding deallocation procedure. Collection size is
-- set using a length clause, to simulate a limited-storage
-- application.
--
with UNCHECKED_DEALLOCATION;
package ACCESS_TYPES is

type LIST_ELEMENT_CLASS is (HEAD,ELEMENT);
type LIST_ELEMENT(CLASS: LIST_ELEMENT_CLASS);
type LIST_ELEMENT_PTR is access LIST_ELEMENT;
for LIST_ELEMENT_PTR’STORAGE_SIZE use 8*512;
type LIST_ELEMENT (CLASS: LIST_ELEMENT_CLASS) is

record
NEXT: LIST_ELEMENT_PTR;
case CLASS is

when ELEMENT => ELEMENT_VALUE: INTEGER;
when HEAD => HEAD_VALUE: INTEGER := 0;

end case;
end record;

procedure FREE_ELEMENT is
new UNCHECKED_DEALLOCATION(LIST_ELEMENT,

LIST_ELEMENT_PTR);

end ACCESS_TYPES;

------------------------------------------------------------------

-- Main program that demonstrates how a collection can be used up
-- quickly: the main program creates a 65-element linked list
-- (including the header); the block inside the program creates an
-- array of tasks, which, in turn, create linked lists of various
-- lengths. If the access types used by the tasks were declared
-- only in the block, the storage would be deallocated at the end
-- of the block. Because the types are declared in a library
-- package used by both the main program and the block, the
-- collection for the access type is maintained until the main
-- program finishes and exits. Unchecked deallocation must be
-- used instead to conserve use of collection storage.
--
with INTEGER_TEXT_IO; use INTEGER_TEXT_IO;
with ACCESS_TYPES; use ACCESS_TYPES;
procedure CONTROL_STORAGE is

(continued on next page)

Object Representation and Storage 1–47



Example 1–4 (Cont.) Using UNCHECKED_DEALLOCATION to Control
Access Type Storage Deallocation

-- Procedure to create and initialize a unidirectional linked
-- list of integers; the parameter to the procedure determines
-- the list length.
--
procedure MAKE_LIST (Y : in INTEGER) is

HEAD_ELEMENT: LIST_ELEMENT_PTR := new LIST_ELEMENT(HEAD);
THIS_ELEMENT, NEXT_ELEMENT: LIST_ELEMENT_PTR;
N : INTEGER := Y;

begin

-- Create and initialize values of list, starting at the
-- first element.
--
THIS_ELEMENT := HEAD_ELEMENT;
for I in 1 .. N loop

THIS_ELEMENT.NEXT := new LIST_ELEMENT’(CLASS => ELEMENT,
NEXT => null,
ELEMENT_VALUE => I);

THIS_ELEMENT := THIS_ELEMENT.NEXT;
end loop;

-- Do something with the linked list...and then deallocate
-- the storage.
--
loop

THIS_ELEMENT := HEAD_ELEMENT.NEXT;
exit when THIS_ELEMENT = null;
HEAD_ELEMENT.NEXT := THIS_ELEMENT.NEXT;
FREE_ELEMENT(THIS_ELEMENT);

end loop;

end MAKE_LIST;

begin

-- Create (and deallocate) the list for the main program.
--
MAKE_LIST(64);

(continued on next page)

1–48 Object Representation and Storage



Example 1–4 (Cont.) Using UNCHECKED_DEALLOCATION to Control
Access Type Storage Deallocation

-- Concurrently, create (and deallocate) the series of
-- lists used by an array of tasks.
--
INNER_BLOCK:

declare
task type USE_SPACE is

entry NUM_ELEMENTS (X : in INTEGER);
end USE_SPACE;

type TASK_ARRAY is array (1 .. 10) of USE_SPACE;
SPACE_ARRAY: TASK_ARRAY;

task body USE_SPACE is
begin

accept NUM_ELEMENTS (X : in INTEGER) do
MAKE_LIST(X);

end;
end USE_SPACE;

begin
for I in SPACE_ARRAY’RANGE loop

SPACE_ARRAY(I).NUM_ELEMENTS(I);
end loop;

end INNER_BLOCK;

end CONTROL_STORAGE;

Object Representation and Storage 1–49



2
Input-Output Facilities

Although DEC Ada lets you invoke OpenVMS input-output system services
and Record Management Services (RMS) directly (see Chapters Chapter 4 and
Chapter 5), for most applications it is not necessary to do so. The DEC Ada
predefined input-output packages provide a rich and comprehensive set of
file operations, and each input-output package is tailored for operations on a
specific kind of file.

DEC Ada predefines the following packages:

SEQUENTIAL_IO
DIRECT_IO
RELATIVE_IO
INDEXED_IO
SEQUENTIAL_MIXED_IO
DIRECT_MIXED_IO
RELATIVE_MIXED_IO
INDEXED_MIXED_IO
TEXT_IO

The packages SEQUENTIAL_IO, DIRECT_IO, and TEXT_IO are predefined
by the Ada language. The other packages are predefined by the DEC Ada
implementation. All of the package specifications, as well as explanations of
the operations provided by each package, are presented in Chapter 14 of the
DEC Ada Language Reference Manual.

The DEC Ada predefined packages and their operations are implemented
using RMS file organizations and facilities. This chapter describes the
implementation and explores some of its implications.

The information in this chapter is based on the information about input–output
in the DEC Ada Language Reference Manual. You should also be familiar with
the following:

• RMS file organizations and access methods

• How to work with OpenVMS file specifications and directories

Input-Output Facilities 2–1



• The OpenVMS File Definition Language (FDL)

If you need introductory information on OpenVMS file specifications and
directories or FDL, see the Guide to OpenVMS File Applications. For
more information about RMS and RMS services, see the OpenVMS Record
Management Services Reference Manual. For more information on FDL, see
the OpenVMS Record Management Utilities Reference Manual.

2.1 Files and File Access
To input and output data to and from an Ada program, you must first associate
the file objects in your program with external files. All of the DEC Ada input-
output packages supply CREATE and OPEN procedures that let you make this
association:

• Each CREATE procedure creates a new external file and then associates a
file object with it.

• Each OPEN procedure associates a file object with an existing external file.

In the following example, EXTERNAL_FILE.TXT is created only once, but it is
associated with both file objects ONE_FILE and ANOTHER_FILE at different
points in the procedure:

with TEXT_IO; use TEXT_IO;
procedure MAKE_FILES is

ONE_FILE: FILE_TYPE;
ANOTHER_FILE: FILE_TYPE;

begin
-- Create external_file.text and associate it with
-- the file object ONE_FILE.
--
CREATE (FILE => ONE_FILE,

NAME => "external_file.text");
. . .
-- Close external_file.text and disassociate it with
-- the file object ONE_FILE.
--
CLOSE (ONE_FILE);
. . .
-- Reopen external_file.text and associate it with
-- a different file object.
--
OPEN (FILE => ANOTHER_FILE,

MODE => OUT_FILE,
NAME => "external_file.text");

. . .
end MAKE_FILES;

2–2 Input-Output Facilities



When you create or open a DEC Ada file object, the external file with which it
is associated is an RMS file that has a particular kind of organization and that
allows a particular kind of access. Each element in the file is associated with
an RMS record that has a particular kind of format. A default organization,
access, and record format is determined by the input-output package that you
use to create the file. Depending on the package, you can change these defaults
with a CREATE or OPEN FORM parameter.

Section 2.3 discusses the FORM parameter and system-dependent external file
attributes in more detail. Sections Section 2.6.1 to Section 2.7 provide tables of
default attributes for each DEC Ada input-output package.

The following sections summarize how file objects, called Ada files in this
chapter, and external files (RMS files) are related. See the DEC Ada Language
Reference Manual for detailed definitions of Ada files. See the Guide to
OpenVMS File Applications for detailed definitions of RMS file organizations
and record formats.

2.1.1 Ada Sequential Files
An Ada sequential file is a set of file elements occupying consecutive positions
in linear order. Values are transferred in the order in which they are read
or written to the file, and when you open a file, the transfer starts from the
beginning of the file.

The packages SEQUENTIAL_IO and SEQUENTIAL_MIXED_IO provide
sequential access to Ada sequential files. See Section 2.6.1 for more
information about sequential files.

You can associate an Ada sequential file with an RMS file of any organization.
The records in the RMS file can have fixed-length, variable-length, variable-
length with fixed-length control (VFC), or stream format.

2.1.2 Ada Direct Files
An Ada direct file is a set of file elements occupying consecutive positions in
linear order. You can transfer values to or from an element of the file at any
selected position. The position of an element is specified by its index, which is
an integer in the subtype POSITIVE_COUNT. The first element, if any, has an
index of 1. The index of the last element, if any, is called the current size. The
current size is zero if there are no elements.

An open Ada direct file has a current index, which is set to 1 when you create,
open, or reset the file. The current index determines which element is involved
in the next read or write operation.

The packages DIRECT_IO and DIRECT_MIXED_IO provide direct access to
Ada direct files. See Section 2.6.2 for more information about direct files.

Input-Output Facilities 2–3



You can associate an Ada direct file only with an RMS file with sequential
organization. The records in the RMS file must have fixed-length format.

2.1.3 Ada Relative Files
An Ada relative file is a set of fixed-length cells occupying consecutive positions
in linear order. Cells in a relative file are numbered from 1 to 231

� 1 (the
numbers are values of the subtype POSITIVE_COUNT). The number of a
cell is called its index. The cells in a relative file can either be empty or can
contain fixed- or variable-length elements.

An open Ada relative file has a current index, which is set to 1 when the file is
created or opened. The current index determines which element is involved in
the next read or write operation. The concept of size does not apply to relative
files. End-of-file is true if, starting at the current index, all cells are empty.

The packages RELATIVE_IO and RELATIVE_MIXED_IO provide relative
access to Ada relative files. See Section 2.6.3 for more information about
relative files.

You can associate an Ada relative file only with an RMS file with relative
organization. The records in the RMS file can have fixed-length, variable-
length, or variable-length with fixed-length control (VFC) format.

2.1.4 Ada Indexed Files
An Ada indexed file is a set of file elements that are ordered by predefined
keys. Each element has at least one primary key (numbered 0), and may have
as many as 254 alternate keys (numbered 1 to 254). You define keys in the
form string (in the FORM parameter) when the file is created. The elements of
an indexed file can be accessed by any key.

An open Ada indexed file has a next element, which is the first element
determined by the primary key when the file is first opened. The next element
is redefined after each successful read operation, or it may be reset to the first
sequential element according to the specified key. The concept of size does not
apply to Ada indexed files: end-of-file is true if, starting at next element in the
file, no elements exist.

The packages INDEXED_IO and INDEXED_MIXED_IO provide indexed access
to Ada indexed files. See Section 2.6.4 for more information about indexed
files.

You can associate an Ada indexed file only with an RMS file with indexed
organization. The records in the RMS file can have fixed-length or variable-
length format.

2–4 Input-Output Facilities



2.1.5 Ada Text Files
An Ada text file is a sequence of pages where a page is a sequence of lines,
and a line is a sequence of characters. Characters, lines, and pages are all
numbered starting from 1 and range to INTEGER’LAST. (The numbers are
values of the subtype POSITIVE_COUNT.) The number of a character is called
its column number. The line terminator that marks the end of a line has a
column number that is 1 more than the number of characters in the line.

The current column number in a text file is the column number of the next
character or line terminator to be read or written. Similarly, the current line
number is the number of the current line, and the current page number is the
number of the current page.

The package TEXT_IO provides sequential access to Ada text files. See
Section 2.7 for more information about text files.

You can associate an Ada text file only with an RMS file with sequential
organization. The records in the RMS file can have fixed-length, variable-
length, or variable-length with fixed-length control (VFC) format.

2.2 Naming External Files
In DEC Ada, you identify external files using OpenVMS file specifications. All
of the DEC Ada input-output packages have CREATE and OPEN procedures,
which have a NAME parameter that lets you associate the name of an external
file with a particular file object. The NAME parameter can have one of the
following values:

• A string that denotes an OpenVMS file specification or a logical name.
If the value of NAME is a file specification, the Ada file object given by
the FILE parameter in the particular CREATE or OPEN procedure is
associated with an external file named by that specification.

• A null string (the default). If the value of NAME is a null string, then
the external file is a temporary file that is deleted when the file is closed.
Temporary files have no file name. However, they are created using the
file specification SYS$SCRATCH:. To redirect temporary files to another
device, redefine the logical name SYS$SCRATCH to name a different
device. Because temporary files are not entered in a directory, they cannot
inherit the file ownership of any directory.

The CREATE and OPEN procedures also have a FORM parameter that
lets you identify an external file (see Section 2.3). In DEC Ada, the FORM
parameter takes as its value an OpenVMS FDL string or a reference to a
file of FDL statements. By specifying a value for the FDL FILE DEFAULT_
NAME attribute in a CREATE or OPEN FORM parameter, you can give file

Input-Output Facilities 2–5



specification information that is used by default if any of that information
is omitted from the string given for the NAME parameter. In the following
example, the external file has the specification SOME_FILE.DAT:

CREATE(FILE => F,
MODE => OUT_FILE,
NAME => "SOME_FILE",
FORM => "FILE; DEFAULT_NAME ’.DAT’");

The value of the NAME parameter governs, even if you give a value using the
FORM parameter and FDL attributes. For example, if you omit a value for the
NAME parameter and try to specify a complete file name with the FDL FILE
DEFAULT_NAME attribute, the default name is ignored, and the external file
is still a temporary file that is deleted when the file is closed.

You cannot use the FDL FILE NAME attribute to name an external file. A
value specified with that attribute is ignored.

The following sections summarize how to write and use logical names in place
of file specifications. For a full description of file specifications and logical
names, see the OpenVMS User’s Manual and the Guide to OpenVMS File
Applications.

2.2.1 File Specification Syntax
A file specification identifies an external file or a device on the OpenVMS
operating system. The syntax is as follows:

node::device:[directory]filename.type;version

Note

You can access files that reside on non-OpenVMS systems by enclosing
the name of the file (in its required format) in a quoted string. See the
OpenVMS User’s Manual for more information.

node
The name of a network node. This element applies only to systems that are
part of a network (systems that support DECnet).

device
The name of the physical device on which the file is stored or is to be written.
The device name is the only part of a file specification that is used for record-
oriented devices (such as printers and card readers).

2–6 Input-Output Facilities



directory
The name of the directory (and any subdirectories) under which the file
is cataloged on the specified device. You must delimit the directory name
with square brackets ( [ ] ), as shown in the syntax description, or with angle
brackets ( <> ). You must use a period to separate a series of directories or
subdirectories within the square or angle brackets. Directory names apply only
to files stored on disk devices (as opposed to files stored on tape).

filename
The name of the file. The maximum length is 39 characters. The allowed
characters are upper- or lowercase letters, digits, underscore ( _ ), hyphen ( - ),
or dollar sign ( $ ). A file name specification is appropriate only for files stored
on mass storage devices (such as disks and tape).

type
The type of the file. The maximum length is 39 characters. The allowed
characters are upper- or lowercase letters, digits, underscore ( _ ), hyphen ( - ),
or dollar sign ( $ ). The type must begin with a letter or digit. By convention,
the type is an abbreviation that describes the kind of data in the file. You
must use a period to separate the file name and type. A type specification is
appropriate only for files stored on mass storage devices.

version
A decimal number that specifies which version of the file is desired. The
version number is incremented by one each time a new version of a file is
created. The maximum version number is 32767. You can refer to version
numbers in a relative manner by specifying 0 as the latest (highest numbered)
version of the file, –1 as the next most recent version, –2 as the version before
that, and so on. You can use either a semicolon, as shown in the syntax
description, or a period to separate type and version. A version number is
appropriate only for files stored on mass storage devices (such as disks and
tape).

The maximum size of a file specification, including all delimiters, is 255
characters.

You do not need to explicitly state all of the elements of a file specification. If
you omit an element, a default value is applied. For more information, see the
OpenVMS User’s Manual.

You can use DEC Ada form strings (that is, the value of the FORM parameter
in an input-output package CREATE or OPEN procedure) to further define or
change default file specifications. See Section 2.3.3.

Input-Output Facilities 2–7



2.2.2 Logical Names
A logical name is a name that represents a file, directory, or physical device.
Every logical name is paired with an equivalence string (or list of equivalence
strings). An equivalence string is a character string denoting a full file
specification, a device name, or another logical name. Logical names are
a convenient shorthand for file names to which you refer frequently. See
the OpenVMS User’s Manual and Guide to OpenVMS File Applications for
complete explanations of logical names and examples of their use. See also the
descriptions of the DCL ASSIGN and DEFINE commands in the OpenVMS
DCL Dictionary.

Logical names are maintained by the system in four logical name tables: your
process table, the job table for your process, your group table, and the system
table. These tables are described in the OpenVMS User’s Manual.

By default, OpenVMS creates a set of logical names for you when you log
in. Table 2–1 lists the predefined names that are most relevant to DEC Ada
input-output.

Table 2–1 Predefined (Default) Logical Names

Logical Name
Table in Which the
Name is Stored What the Name Represents

SYS$COMMAND Process Original (first-level) SYS$INPUT
stream.

SYS$DISK Process Default device established at
login or changed by the DCL SET
DEFAULT command.

SYS$ERROR Process Default device or file to which
the system writes error messages
generated by warnings, errors, and
severe errors.

SYS$INPUT Process Default input stream for the
process.

SYS$LOGIN Job Device and directory established at
login time as the home directory for
the process.

(continued on next page)

2–8 Input-Output Facilities



Table 2–1 (Cont.) Predefined (Default) Logical Names

Logical Name
Table in Which the
Name is Stored What the Name Represents

SYS$NET Process The source process that invokes a
target process in DECnet task-to-task
communication. When opened by the
target process, SYS$NET represents
the logical link over which that process
can exchange data with its partner.
SYS$NET is defined only during task-
to-task communication. (Task-to-task
communication refers to tasks that
are OpenVMS images running in the
context of a process, not Ada tasks.)

SYS$OUTPUT Process Default output stream for the process.

SYS$SCRATCH Job Default device and directory to which
temporary files are written.

TT Process Default device name for terminals.

ADA$INPUT Determined by user Default device or file from which Ada
TEXT_IO input is read; SYS$INPUT if
not defined by the user.

ADA$OUTPUT Determined by user Default device or file to which
Ada TEXT_IO output is written;
SYS$OUTPUT if not defined by the
user.

The names SYS$COMMAND, SYS$ERROR, SYS$INPUT, and SYS$OUTPUT
represent process-permanent files (files that are open for the life of your
process). They have different equivalence strings associated with them
depending on whether they are used interactively, in a batch job, or in a
command procedure. You can also redefine them. The OpenVMS User’s
Manual explains and demonstrates the use of these names. Table 2–2 shows
the source of the equivalence strings associated with them.

Input-Output Facilities 2–9



Table 2–2 Equivalence Strings for Default Logical Names for Process-
Permanent Files

Logical Name Interactive Mode1 Batch Mode1 Command Procedure1

SYS$COMMAND Terminal Disk Terminal

SYS$INPUT Terminal Disk Disk

SYS$ERROR Terminal Log file Terminal

SYS$OUTPUT Terminal Log file Terminal

1Note the following definition of terms: terminal is the device name of your terminal; disk is the
batch input or command file; and log file is the batch job log file.

2.3 Specifying External File Attributes
The CREATE and OPEN procedures in the DEC Ada input-output packages all
have a FORM parameter that lets you specify the system-dependent attributes
of an external file. Most of the time you do not need to use the FORM
parameter when you create or open a file because each input-output package
assumes certain attributes for the external file by default (see Section 2.3.3).
In fact, you never need to specify a value for FORM when you open an existing
file. You do need to specify it under the following conditions when you create a
file:

• With a relative or direct file where the item by which the input-output
package is instantiated is unconstrained, you must specify the maximum
size of the file elements (records) in bytes.

• With a relative mixed-type or direct mixed-type file, you must specify the
maximum size of the file elements (records) in bytes.

• With an indexed file, you must specify information about the primary and
any alternate keys.

The value of the FORM parameter must be an OpenVMS FDL string or a
reference to a file of FDL statements.

FDL is a special-purpose language that is written as an ordered sequence of
file attribute keywords (sometimes called FDL statements) and their associated
values. These keywords and values determine the characteristics of external
files. By using an FDL string (or a reference to a file of FDL statements) as the
value of the FORM parameter in a CREATE or OPEN input-output operation,
you can give your file any of the RMS attributes available in FDL, and you
thereby supersede the default file attributes of your input-output package (see
Section 2.3.3).

2–10 Input-Output Facilities



If you are not familiar with FDL, see the Guide to OpenVMS File Applications.
It introduces FDL and shows how to design files using the Edit/FDL Utility.
See the OpenVMS Record Management Utilities Reference Manual for complete
information about FDL, including specific definitions of the FDL statements.
The following sections summarize the FDL concepts and statements that you
need to know to specify file attributes in DEC Ada FORM parameters.

2.3.1 The OpenVMS File Definition Language (FDL): Primary and
Secondary Attributes

FDL statements—whether in an FDL file or in a DEC Ada form string—
specify predefined RMS file attributes. Primary attributes take a single value
or represent a group of related, or secondary, attributes, which also take
values. Most of the primary attributes that have secondary attributes do not
themselves take a value. Table 2–3 lists the available primary and secondary
attributes.

Table 2–3 FDL Primary and Secondary Attribute Descriptions

Primary Attribute Function Secondary Attributes

TITLE Primary attribute gives a title to
the FDL file.

None

IDENT Primary attribute gives the date
and time of creation of the FDL
file, and specifies the name of the
creating utility (either Edit/FDL
or Analyze/RMS_File).

None

SYSTEM Primary attribute takes no
value.

Secondary attributes give system
identification information.

DEVICE, SOURCE, TARGET

(continued on next page)

Input-Output Facilities 2–11



Table 2–3 (Cont.) FDL Primary and Secondary Attribute Descriptions

Primary Attribute Function Secondary Attributes

FILE Primary attribute takes no
value.

Secondary attributes determine
file characteristics: its default
name, owner, organization,
protection, and revision; what
happens when it is opened or
closed; whether or not data
checking is done when the file
is read or written; what kind of
processing is allowed; how much
space is allocated for the file,
and whether or not the space is
contiguous; and so on.

Secondary attributes also allow
specification of magnetic tape
file operations. Some FILE
secondary attributes have
corresponding AREA secondary
attributes.

ALLOCATION,
BEST_TRY_CONTIGUOUS,
BUCKET_SIZE, CLUSTER_SIZE,
CONTEXT, CONTIGUOUS,
CREATE_IF, DEFAULT_NAME,
DEFERRED_WRITE,
DELETE_ON_CLOSE,
DIRECTORY_ENTRY,
EXTENSION, FILE_MONITORING,
GLOBAL_BUFFER_COUNT,
MAXIMIZE_VERSION,
MAX_RECORD_NUMBER,
MT_BLOCK_SIZE,
MT_CLOSE_REWIND,
MT_CURRENT_POSITION,
MT_NOT_EOF,
MT_OPEN_REWIND,
MT_PROTECTION,
NAME, NON_FILE_STRUCTURED,
ORGANIZATION,
OUTPUT_FILE_PARSE, OWNER,
PRINT_ON_CLOSE,
PROTECTION, READ_CHECK,
REVISION, SEQUENTIAL_ONLY,
SUBMIT_ON_CLOSE,
SUPERSEDE, TEMPORARY,
TRUNCATE_ON_CLOSE,
USER_FILE_OPEN,
WINDOW_SIZE, WRITECHECK

DATE Primary attribute takes no
value.

Secondary attributes specify
dates and times for backup,
creation, expiration, and revision
of the file. In general, the only
secondary attribute that can
be routinely and safely set is
EXPIRATION; the others should
be set by the system, and are
not useful in an Ada FORM
parameter.

BACKUP, CREATION,
EXPIRATION, REVISION

(continued on next page)

2–12 Input-Output Facilities



Table 2–3 (Cont.) FDL Primary and Secondary Attribute Descriptions

Primary Attribute Function Secondary Attributes

RECORD Primary attribute takes no
value.

Secondary attributes specify
the characteristics of records
in the file: their size; the kind
of carriage control; and their
format.

BLOCK_SPAN,
CARRIAGE_CONTROL,
CONTROL_FIELD,
FORMAT, SIZE

ACCESS Primary attribute takes no
value.

Secondary attributes specify
the file-processing operations
allowed on the file.

BLOCK_IO, DELETE, GET, PUT,
RECORD_IO, TRUNCATE, UPDATE

NETWORK Primary attribute takes no
value.

Secondary attributes set run-
time network access parameters.

BLOCK_COUNT
LINK_CACHE_ENABLE
LINK_TIMEOUT
NETWORK_DATA_CHECKING

SHARING Primary attribute takes no
value.

Secondary attributes specify
whether or not multiple readers
or writers can concurrently
access the file.

DELETE, GET, MULTISTREAM,
PROHIBIT, PUT, UPDATE,
USER_INTERLOCK

(continued on next page)

Input-Output Facilities 2–13



Table 2–3 (Cont.) FDL Primary and Secondary Attribute Descriptions

Primary Attribute Function Secondary Attributes

CONNECT Primary attribute takes no
value.

Secondary attributes specify
run-time attributes that are
application dependent and
related to record access and
performance.

ASYNCHRONOUS, BLOCK_IO,
BUCKET_IO, CONTEXT,
END_OF_FILE, FAST_DELETE,
FILL_BUCKETS,
KEY_GREATER_EQUAL,
KEY_GREATER_THAN,
KEY_LIMIT,
KEY_OF_REFERENCE,
LOCATE_MODE, LOCK_ON_READ,
LOCK_ON_WRITE,
MANUAL_UNLOCKING,
MULTIBLOCK_COUNT,
MULTIBUFFER_COUNT, NOLOCK,
NONEXISTENT_RECORD,
READ_AHEAD,
READ_REGARDLESS,
TIMEOUT_ENABLE,
TIMEOUT_PERIOD,
TRUNCATE_ON_PUT,
TT_CANCEL_CONTROL_O,
TT_PROMPT,
TT_PURGE_TYPE_AHEAD,
TT_READ_NOECHO,
TT_READ_NOFILTER,
TT_UPCASE_INPUT,
UPDATE_IF,
WAIT_FOR_RECORD,
WRITE_BEHIND

(continued on next page)

2–14 Input-Output Facilities



Table 2–3 (Cont.) FDL Primary and Secondary Attribute Descriptions

Primary Attribute Function Secondary Attributes

AREA Primary attribute takes an
integer value in the range 0 to
254, which identifies the area in
an indexed file. (Multiple areas
must have a separate AREA
section defined for each.)

Secondary attributes specify
characteristics of the area: how
much space is allocated; whether
or not the space is contiguous;
positioning of the area; the
volume on which the area will
reside, and so on.

Most AREA secondary attributes
have corresponding FILE
secondary attributes.

ALLOCATION,
BEST_TRY_CONTIGUOUS,
BUCKET_SIZE, CONTIGUOUS,
EXACT_POSITIONING,
EXTENSION, POSITION,
VOLUME

KEY Primary attribute takes an
integer value in the range 0 to
254, which gives the number
of a key in an indexed file; the
primary key number must be 0.

Secondary attributes specify the
characteristics of keys in the
indexed file.

CHANGES, COLLATING_SEQUENCE,

DATA_AREA,DATA_FILL,
DATA_KEY_COMPRESSION,
DATA_RECORD_COMPRESSION,
DUPLICATES, INDEX_AREA,
INDEX_COMPRESSION,
INDEX_FILL, LENGTH,
LEVEL1_INDEX_AREA, NAME,
NULL_KEY, NULL_VALUE,
POSITION, PROLOG,
SEGn_LENGTH,
SEGn_POSITION, TYPE

ANALYSIS_OF_
AREA

Result of using Analyze/RMS_
File Utility; appears only in FDL
files that describe indexed files.
Neither primary nor secondary
attributes are useful in an Ada
FORM parameter.

RECLAIMED_SPACE

(continued on next page)

Input-Output Facilities 2–15



Table 2–3 (Cont.) FDL Primary and Secondary Attribute Descriptions

Primary Attribute Function Secondary Attributes

ANALYSIS_OF_
KEY

Result of using Analyze/RMS_
File Utility; appears only in FDL
files that describe indexed files.
Neither primary nor secondary
attributes are useful in an Ada
FORM parameter.

DATA_FILL,
DATA_KEY_COMPRESSION,
DATA_RECORD_COMPRESSION,
DATA_RECORD_COUNT,
DATA_SPACE_OCCUPIED,
DEPTH,
DUPLICATES_PER_SIDR,
INDEX_COMPRESSION,
INDEX_FILL,
INDEX_SPACE_OCCUPIED,
LEVEL1_RECORD_COUNT,
MEAN_DATA_LENGTH,
MEAN_INDEX_LENGTH

When using FDL to specify the attributes of an Ada external file, observe the
following FDL rules. Any FDL errors occurring in a FORM parameter raises
the Ada predefined exception USE_ERROR.

• The primary attributes must appear in the order shown in Table 2–3.

• Each attribute string (primary or secondary) constitutes an FDL statement,
and must be terminated with a semicolon. In the following example,
RECORD, FORMAT FIXED, and SIZE 120 are three separate FDL
statements:

-- Create SOME_FILE.DAT with fixed record format and
-- a record size of 120 bytes.
--
CREATE(FILE => MY_FILE,

MODE => OUT_FILE,
NAME => "SOME_FILE.DAT",
FORM => "RECORD; FORMAT FIXED; SIZE 120;");

The exclamation point is the comment character in FDL, and anything
following it is ignored. For example:

-- Create SOME_FILE.DAT with 80-byte records.
--
CREATE(FILE => MY_FILE,

MODE => OUT_FILE,
NAME => "SOME_FILE.DAT",
FORM => "RECORD; SIZE 80; !80-byte records");

2–16 Input-Output Facilities



• Each FDL statement can represent only one primary or secondary attribute
and its associated value. Each statement can have no more than 132
characters (including blanks). To format your program without adding
extra blanks to the form string, use the Ada catenation operator ( & ) to
break up the form string into individual statement strings. So, you could
rewrite the preceding example as follows:

CREATE(FILE => MY_FILE,
MODE => OUT_FILE,
NAME => "SOME_FILE.DAT ",
FORM => "RECORD; " &

"FORMAT FIXED; " &
"SIZE 120;" );

• If you are working with an indexed file that has two or more AREA
primary attributes, they must follow one another in numerical order.

• If you are working with an indexed file that has two or more KEY primary
attributes, they must follow one another in numerical order. In addition,
any SEGn secondary attributes must follow one another in numerical
order, and the SEGn numbers must be dense. If you use SEG3 to label a
key segment, then segments SEG0, SEG1, and SEG2 must also exist.

• Keywords can be truncated to their shortest unique abbreviations, and
strings must be enclosed either in a pair of apostrophes ( ’ ’ ) or a pair
of double quotation marks ( " " ). Ada based integers or integers with
underscores are not legal FDL syntax.

In addition to allowing you to specify file attributes directly in a form string,
DEC Ada also lets you give a reference to an FDL file using a OpenVMS
file specification. The specification must be preceded by an at sign ( @ ). For
example:

-- Create SOME_FILE.DAT with specifications declared in
-- the FDL file FILE_ATTRIBUTES.FDL.
--
CREATE(FILE => MY_FILE,

MODE => OUT_FILE,
NAME => "SOME_FILE.DAT",
FORM => "@FILE_ATTRIBUTES.FDL");

An advantage of being able to give a reference to an FDL file is that you can
use the Edit/FDL Utility to construct the FDL file. The utility is designed
to help you choose file attributes that help optimize the efficiency of your
program. In particular, the utility is helpful in tuning indexed files. For
example, it can plot graphs to help you determine appropriate bucket sizes for
specific indexed files. See the Guide to OpenVMS File Applications for more
information on the Edit/FDL Utility and file design.

Input-Output Facilities 2–17



Table 2–4 describes the primary and secondary FDL attributes that you are
most likely to use in a DEC Ada program and gives their default values.
For convenience, primary attributes are shown in boldface type. Secondary
attributes are shown in regular type and indented. The intent of the table is
to provide a quick reference and to summarize information presented in the
OpenVMS Record Management Utilities Reference Manual. See that manual
for details.

As shown in Table 2–4, the value assigned to an attribute can take one of the
following forms:

Switch A logical value, set to TRUE, YES, FALSE, or NO. TRUE (or YES)
sets the attribute. FALSE (or NO) clears it. (You can also use the
abbreviations T, Y, F, and N for TRUE, YES, FALSE, and NO.)

Keyword An actual word that you must type (in either upper- or lowercase)
after the attribute name. You can truncate a keyword to its shortest
unique abbreviation.

Integer A 32-bit decimal integer (based integers or underscores are not
allowed).

(continued on next page)

2–18 Input-Output Facilities



Table 2–4 (Cont.) Commonly Used FDL Attributes
String A character string (enclosed in either a pair of apostrophes or a pair of

double quotation marks) that you must type after the attribute name.
The null string is a valid string value. To use double quotation marks
in the same statement, you must write the form string following Ada
conventions. For example:

CREATE(FILE => F,
MODE => OUT_FILE,
FORM => "FILE;" &

"DEFAULT_NAME ""SOME_FILE.DAT"";"&
-- A pair of quotation marks
-- inside a string represents one
-- quotation mark.

"RECORD;" &
"FORMAT FIXED;" &
"SIZE 100;" );

Alternatively, you can use apostrophes to make your code easier to
read:

CREATE(FILE => F,
MODE => OUT_FILE,
FORM => "FILE;" &

"DEFAULT_NAME ’SOME_FILE.DAT’;" &
"RECORD;" &

"FORMAT FIXED;" &
"SIZE 100;" );

Table 2–4 Commonly Used FDL Attributes

FDL Attributes Kind of Value and Default Function

TITLE String of up to 132
characters, including the
TITLE keyword.

No default value.

Names the FDL file.

IDENT String of up to 132
characters, including the
IDENT keyword.

Default value is the date,
time of creation, name of
creating utility if created
with Edit/FDL or Analyze
/RMS_File; otherwise, no
default value.

Record identifying file information.

(continued on next page)

Input-Output Facilities 2–19



Table 2–4 (Cont.) Commonly Used FDL Attributes

FDL Attributes Kind of Value and Default Function

SYSTEM

DEVICE String.

Default value is a null
string.

Comment (names the disk model on
which the file will reside).

FILE

ALLOCATION Integer in the range 0 to
4294967295.

Default value is 0.

Sets the number of blocks that are
initially allocated for the file. If
0, the system does not preallocate
space for the file.

BEST_TRY_
CONTIGUOUS

Switch.

Default value is NO.

Controls whether the file will be
allocated contiguously if there
is enough space for it. If set to
YES, and there is enough space for
the file, the file will be allocated
contiguously; if there is not enough
space, the file will not be allocated
contiguously. If set to NO, this
attribute is ignored.

BUCKET_SIZE Integer in the range 0 to 63.

Default value is 0.

Sets the number of blocks per
bucket. If 0, RMS computes the
bucket size to be the smallest
bucket size capable of holding the
largest record.

CONTIGUOUS Switch.

Default value is NO.

Controls whether the file must be
allocated contiguously. When set to
YES and there is not enough space
for the file’s initial allocation, an
error message results. When set to
NO or no allocation is specified, the
attribute is ignored.

(continued on next page)

2–20 Input-Output Facilities



Table 2–4 (Cont.) Commonly Used FDL Attributes

FDL Attributes Kind of Value and Default Function

DEFAULT_NAME String.

Default value is a null
string.

Uses its string value to define
portions of the file specification of
the file to be created. If you supply
only a partial file specification
in the NAME parameter to an
Ada OPEN or CREATE operation,
the DEFAULT_NAME value is
used for the missing part of the
file specification. If you have not
specified a value for DEFAULT_
NAME, the RMS defaults are used
for the missing part.

EXTENSION Integer in the range 0 to
65535.

Default value is 0.

Sets the number of blocks for the
default extension value for the
file. Each time the file is extended,
the specified number of blocks is
added. If 0, the extension size is
determined by the system each
time the file must be extended.

FILE_MONITORING Switch.

Default value is NO.

Turns on RMS statistics gathering
for subsequent use in doing
performance analysis.

MAX_RECORD_
NUMBER

Integer in the range 0 to
2147483647.

Default value is 0.

Specifies the maximum number
of records that can be placed in
a relative file. If 0, then you can
place as many records as you want
in the file, up to 2,147,483,647 (or
231

� 1).

ORGANIZATION Keyword.

Default value is
SEQUENTIAL.

Defines the kind of file organi-
zation. Value must be one of
the keywords SEQUENTIAL,
RELATIVE, or INDEXED.

PRINT_ON_CLOSE Switch.

Default value is NO.

Controls whether the data file is
to be spooled to the process default
print queue (SYS$PRINT) when
the file is closed. When set to YES,
the data file is spooled; when set to
NO, the attribute is ignored. (This
attribute applies to sequential files
only.)

(continued on next page)

Input-Output Facilities 2–21



Table 2–4 (Cont.) Commonly Used FDL Attributes

FDL Attributes Kind of Value and Default Function

PROTECTION String.

Default value is the system
or process default.

Defines the levels of file protection
for the file. Its value can take
one of two forms (SYSTEM=code,
OWNER=code, GROUP=code,
WORLD=code) or (SYSTEM:code,
OWNER:code, GROUP:code,
WORLD:code) where the code is
a protection specification for READ,
WRITE, EXECUTE, and DELETE
in the form RWED. To deny a
specific access right, you omit it
from the code. To give no access
rights to a user classification, you
omit the classification from the list.

For example, the following
string gives all access rights to
SYSTEM and OWNER, gives
only READ access to GROUP,
and gives no access rights to
WORLD: (SYSTEM=RWED,
OWNER=RWED, GROUP=R).

SEQUENTIAL_ONLY Switch.

Default value is NO.

Indicates that the file can only be
processed sequentially, allowing
certain processing optimizations.
Any attempt to perform random
access results in an error.

SUBMIT_ON_CLOSE Switch.

Default value is NO.

Determines whether the data file
is submitted to the process batch
queue (SYS$BATCH) when the
file is closed. When set to YES,
the data file is submitted to the
process default batch queue; this
setting makes sense only if the file
is a command file with sequential
organization. When set to NO, this
attribute is ignored.

(continued on next page)

2–22 Input-Output Facilities



Table 2–4 (Cont.) Commonly Used FDL Attributes

FDL Attributes Kind of Value and Default Function

DATE

EXPIRATION String in the form dd-
mmm-yyyy hh:mm:ss.cc.

Default value is a null
string.

Sets the date and time after which
a disk file can be considered for
deletion. For magnetic tape files,
this attribute sets the date and
time after which you can overwrite
the file. This is the only DATE
secondary attribute that you can
routinely and safely set.

RECORD

CARRIAGE_
CONTROL

Keyword.

Default value is CARRIAGE_
RETURN.

Specifies the kind of carriage
control for the records in the
file. Value must be one of the
keywords CARRIAGE_RETURN,
FORTRAN, NONE, or PRINT. See
Section 2.7.4 of this manual and
the OpenVMS Record Management
Utilities Reference Manual for more
information.

FORMAT Keyword.

Default value is VARIABLE.

Sets the record format for the
data file. Value must be one of
the keywords FIXED, STREAM,
STREAM_CR, STREAM_LF,
UNDEFINED, VARIABLE,
VFC. See the OpenVMS Record
Management Utilities Reference
Manual for more information.

SIZE Integer.

No default value.

Sets the maximum record size in
bytes. With fixed-length records,
this value is the length of every
record in the file. With variable-
length records, this value is the
length of the longest record that
can be placed in the file.

If the file has sequential or indexed
organization, you can specify 0
and the system does not impose
a maximum record length. The
records in an indexed file, however,
cannot cross bucket boundaries.

(continued on next page)

Input-Output Facilities 2–23



Table 2–4 (Cont.) Commonly Used FDL Attributes

FDL Attributes Kind of Value and Default Function

If the file has relative organization,
the SIZE attribute is used with the
BUCKET_SIZE attribute to set the
size of the fixed-length cells.

If the records have variable-length
with fixed control (VFC) format,
the fixed-control portion of the
record is not included in the SIZE
calculation; only the data portion is
set by this attribute. The fixed area
is the size, in bytes, of the fixed-
control portion of VFC records.
Regular variable-length records
have a fixed-control size of 0. See
the OpenVMS Record Management
Utilities Reference Manual for the
maximum sizes allowed for the
various record organizations and
formats.

ACCESS

DELETE Switch.

The default value is FALSE.

Permits RMS delete operations.

GET Switch.

Default value is GET when
a file is being opened and no
other ACCESS secondary
attribute has been specified
and SHARING DELETE or
SHARING UPDATE have
been specified.

Permits RMS get or find operations.

PUT Switch.

PUT when creating a file.

Permits RMS put or extend
operations.

TRUNCATE Switch.

Default value is FALSE.

Permits RMS truncate
operations.

UPDATE Switch.

Default value is FALSE.

Permits RMS update or extend
operations.

(continued on next page)

2–24 Input-Output Facilities



Table 2–4 (Cont.) Commonly Used FDL Attributes

FDL Attributes Kind of Value and Default Function

SHARING

DELETE Switch.

No default value.

Lets other users delete records from
the file.

GET Switch.

TRUE if ACCESS GET has
also been specified.

Lets other users read the file.

PROHIBIT Switch.

YES if ACCESS DELETE,
ACCESS PUT, ACCESS
TRUNCATE, or ACCESS
UPDATE has been
specified; otherwise, no
default value.

Prohibits any kind of file sharing
by other users. When set to YES,
this attribute takes precedence
over all other ACCESS secondary
attributes. A value of YES in
a DEC Ada form string takes
precedence over any other default
values that may be implied
by values of other SHARING
secondary attributes. When an
OPEN or CREATE form string
specifies any SHARING secondary
attribute without specifying
SHARING PROHIBIT, then no
default is chosen (equivalent to a
value of NO).

PUT Switch.

No default value.

Lets other users write records to
the file.

UPDATE Switch.

No default value.

Lets other users update records
that currently exist in the file.

CONNECT

MULTIBUFFER_
COUNT

Integer in the range 0 to
127.

No default value.

Specifies the number of buffers to
be allocated when the file is opened.
If the value is not set or 0, RMS
chooses a default value (see the
OpenVMS Record Management
Utilities Reference Manual). This
attribute is ignored for DECnet
operations.

(continued on next page)

Input-Output Facilities 2–25



Table 2–4 (Cont.) Commonly Used FDL Attributes

FDL Attributes Kind of Value and Default Function

READ_AHEAD Switch.

No default value.

Indicates read-ahead operations;
to be used with multiple buffers.
When one buffer is filled, the
next record is read into the next
buffer while the input-output
operation takes place for the first
buffer. Because the system does
not have to wait for input-output
completion, input and computing
can overlap. This attribute is
ignored for DECnet operations. See
the OpenVMS Record Management
Utilities Reference Manual for more
information.

TIMEOUT_ENABLE Switch.

No default value.

Specifies the maximum time, in
seconds, that are allowed for a
record input wait (see TIMEOUT_
PERIOD). The input wait can be
caused by a locked record if the
WAIT_FOR_RECORD attribute
has also been specified, or it can be
caused by the input of a character
from the terminal. If the timeout
period expires, RMS returns an
error status. This attribute is
ignored for DECnet operations.

TIMEOUT_PERIOD Integer in the range 0 to
255.

No default value.

Specifies the maximum number
of seconds that an RMS get
operation can take; if the operation
is specified from the terminal
and you specify 0, the current
contents of the type-ahead buffer
are returned. You must use the
TIMEOUT_ENABLE attribute with
TIMEOUT_PERIOD. This attribute
is ignored for DECnet operations.

(continued on next page)

2–26 Input-Output Facilities



Table 2–4 (Cont.) Commonly Used FDL Attributes

FDL Attributes Kind of Value and Default Function

TRUNCATE_ON_PUT Switch.

No default value.

Specifies that an RMS put or write
operation can occur at any point
in a file, truncating the file at that
point. A write operation causes
the end-of-file mark to immediately
follow the last byte written. You
can use this attribute only with
RMS sequential files.

UPDATE_IF Switch.

No default value.

Indicates that if a put operation
is specified for a record that
exists in the file, the operation
is converted to an update. This
attribute is necessary to overwrite
(as opposed to update) an existing
record in RMS relative and indexed
sequential files. Indexed files
using this attribute must not allow
duplicates on the primary key.

WAIT_FOR_RECORD Switch.

No default value.

Specifies that RMS should wait
for a currently locked record until
it becomes available. You can use
this attribute with the TIMEOUT_
ENABLE and TIMEOUT_PERIOD
attributes to limit waiting periods
to a specified time.

WRITE_BEHIND Switch.

No default value.

Indicates that write-behind
operations are to occur when
multiple buffers are used. When
one buffer is filled, the next record
is written into the next buffer while
the input-output operation takes
place for the first buffer. Because
the system does not have to wait for
input-output completion, computing
and output can overlap. See the
OpenVMS Record Management
Utilities Reference Manual for more
information.

AREA This attribute and its secondary attributes apply only to
files with indexed organization. See the OpenVMS Record

Management Utilities Reference Manual for details.

(continued on next page)

Input-Output Facilities 2–27



Table 2–4 (Cont.) Commonly Used FDL Attributes

FDL Attributes Kind of Value and Default Function

KEY Integer in range 0 to 254.

No default value.

Denotes the key number for a file
with indexed organization. The
value for the primary key must
be 0; the value for alternate keys
can be any integer in the range
1 to 254. This attribute and its
secondary attributes apply only to
files with indexed organization.

CHANGES Switch.

Default value is NO.

Determines whether or not key
values can be changed with an
RMS update operation. A value of
YES for primary keys is an error; a
value of YES for alternate keys is
allowed.

DATA_KEY_
COMPRESSION

Switch.

Default value is YES.

Controls whether leading and
trailing repeating characters in the
primary key are compressed. For
compression to occur, you should
define your indexed file as a Prolog
3 file with the FDL attributes
KEY PROLOG; KEY PROLOG 3
is the default. You should set this
attribute for indexed files involved
in DECnet operations.

DATA_RECORD_
COMPRESSION

Switch.

Default value is YES.

Controls whether repeating
characters are compressed in data
records. For compression to occur,
your indexed file must be defined
as a Prolog 3 file with the FDL
attributes KEY PROLOG; KEY
PROLOG 3 is the default. You
should set this attribute for indexed
files involved in DECnet operations.

(continued on next page)

2–28 Input-Output Facilities



Table 2–4 (Cont.) Commonly Used FDL Attributes

FDL Attributes Kind of Value and Default Function

DUPLICATES Switch.

Default value is NO for
the primary key; YES for
alternate keys.

Controls whether duplicate keys
are allowed in files with indexed
organization. When set to YES,
this attribute specifies that there
can be more than one record with
the same specific key value. When
set to NO, duplicate keys are not
allowed, and any attempt to write
a record where the key would be a
duplicate results in an error.

INDEX_COMPRESSION Switch.

Default value is YES.

Controls whether leading repeating
characters in the index are
compressed. For compression
to occur, you should define your
indexed file as a Prolog 3 file with
the FDL attributes KEY PROLOG;
KEY PROLOG 3 is the default. You
should set this attribute for indexed
files involved in DECnet operations.

LENGTH Integer.

No default value.

Sets the length of the key, in
bytes. This value, along with the
POSITION and TYPE attributes, is
used when the key is unsegmented.
Because there is no default, this
value must be specified.

NAME String of from 1 to 32
characters.

Default value is a null
string.

Assigns a name to a key. This value
is optional. The specified string is
padded with ASCII null characters
to a length of 32 bytes.

(continued on next page)

Input-Output Facilities 2–29



Table 2–4 (Cont.) Commonly Used FDL Attributes

FDL Attributes Kind of Value and Default Function

NULL_VALUE Character or unsigned deci-
mal integer representing an
ASCII value.

Default value is the ASCII
null character ( 0 ).

Defines the null value that
instructs the system not to create
an alternate index entry for the
record that has the null value in
every byte of the key field. If the
alternate key is of the type STRING
or DSTRING, you can specify the
null value by either specifying the
character itself or by specifying
an unsigned decimal number
denoting the character’s ASCII
value. To specify the character,
enclose it in apostrophes; to specify
the decimal ASCII value, type it
without enclosing apostrophes.

POSITION Integer.

No default value.

Defines the byte position of the
beginning of the key field within
the record. The first position is
0; primary keys work best if they
start at byte 0. You can use this
attribute along with the KEY
LENGTH and TYPE attributes,
when the key is unsegmented.

PROLOG Integer in the range 1 to 3.

Default value is the system
or process default.

Defines the internal structure of a
file with indexed organization. See
the OpenVMS Record Management
Utilities Reference Manual for
details.

SEGn_LENGTH Integer in the range 0 to 7.

No default value.

Defines the length of the key
segment, in bytes. This attribute is
used with the SEGn_POSITION
attribute when the key is
segmented. The ‘‘n’’ is the number
of the segment and may be
numbered from 0 to 7; the first
segment must be numbered 0.
Segmented keys must be of the
type STRING or DSTRING, and
segments may not overlap for
Prolog 3 files.

(continued on next page)

2–30 Input-Output Facilities



Table 2–4 (Cont.) Commonly Used FDL Attributes

FDL Attributes Kind of Value and Default Function

SEGn_POSITION Integer.

No default value.

Defines the key segment’s starting
position within the record. The
first position is 0. Segmented keys
must be of the type STRING or
DSTRING, and segments may not
overlap for Prolog 3 files.

TYPE Keyword.

Default value is STRING.

Defines the type of the key. May
have any of the following values:
BIN2, BIN4, BIN8, COLLATED,
DCOLLATED, DBIN2, DBIN4,
DBIN8, DECIMAL, DDECIMAL,
DINT2, DINT4, DINT8, DSTRING,
INT2, INT4, INT8, STRING. See
the OpenVMS Record Management
Utilities Reference Manual for more
information.

Certain FDL attributes can significantly improve application performance.
If the files used by the application are designed and tuned properly, the
application runs more efficiently, often because a minimum number of input-
output operations occur. File design and tuning are important for large files,
especially indexed files. The characteristics you specify when you create a file
often have a significant effect on application performance at run time.

The following FDL attributes from Table 2–4 can affect application
performance:

FILE ALLOCATION
FILE BEST_TRY_CONTIGUOUS
FILE BUCKET_SIZE
FILE CONTIGUOUS
FILE EXTENSION
CONNECT READ_AHEAD
CONNECT WRITE_BEHIND
ACCESS and SHARING attributes
certain KEY attributes

The following attributes not listed in Table 2–4 can also affect performance:

FILE DEFERRED_WRITE
CONNECT FAST_DELETE
CONNECT GLOBAL_BUFFER_COUNT
CONNECT MULTIBLOCK_COUNT

Input-Output Facilities 2–31



CONNECT MULTIBUFFER_COUNT
FILE SEQUENTIAL_ONLY
FILE WINDOW_SIZE

See the Guide to OpenVMS File Applications for more information.

2.3.2 Creation-Time and Run-Time Attributes
Of the many attributes that you can associate with an external file, some exist
as long as the external file exists. These are called creation-time attributes.
FILE ORGANIZATION and RECORD SIZE are examples of creation-time
attributes.

The rest of the attributes exist only as long as the external file is associated
with a particular file object. These are called run-time attributes. Any of
the attributes secondary to the primary CONNECT, ACCESS, or SHARING
attributes, as well as the FILE secondary PRINT_ON_CLOSE attribute, are
run-time attributes. Run-time attributes can change dynamically at run time,
and must be respecified each time the file is opened.

The Guide to OpenVMS File Applications identifies all creation-time and
run-time attributes and discusses them in more detail.

You can change a file’s creation-time characteristics only by creating or
recreating the file. Inside an Ada program, you can give creation-time
attributes to an external file with a call to a CREATE procedure. The file
inherits these attributes in subsequent calls to OPEN procedures. Outside an
Ada program, you can change the creation-time characteristics of an external
file by using the Edit/FDL and Convert or Convert/Reclaim Utilities to create a
new external file and populate it with elements of the old file.

Any creation-time file attributes specified in an OPEN procedure are considered
to be only assertions. They do not affect the external file’s characteristics. DEC
Ada protects you from making wrong assertions of creation-time attributes in
a call to an OPEN procedure. If you specify a form string value for the
FORM parameter in an OPEN procedure call, the OPEN procedure checks the
following creation-time attributes of the external file against any assertions of
the attributes in the form string:

• The FILE secondary attribute ORGANIZATION

• The RECORD secondary attribute CARRIAGE_CONTROL

• The RECORD secondary attribute FORMAT

2–32 Input-Output Facilities



• The RECORD secondary attribute SIZE

• Every KEY section (in an indexed file)

If there is a mismatch, then the exception USE_ERROR is raised. For example,
if a form string asserts that the organization of the external file is indexed,
but the external file being opened is sequential, the exception USE_ERROR
is raised. If no creation-time-attribute assertions are made, then no check is
performed.

2.3.3 Default External File Attributes
When you open a file (using either a CREATE or an OPEN procedure), the
input-output package you are using provides a set of default external file
attributes. One purpose of the default attributes is to allow your program
to pass a null form string (the default) to an OPEN procedure and still open
the external file. You do not need a form string (a FORM parameter value)
when you use an OPEN procedure to open a file. However, in some situations
you must specify certain external file attributes when you call a CREATE
procedure (see Section 2.3).

Sections Section 2.6.1 to Section 2.7 provide tables of default attributes for
each DEC Ada input-output package. Default external files have the following
attributes:

• Creation-time attributes specified in the FORM parameter of an OPEN
procedure have no effect except to cause a consistency check against the
creation-time attributes that exist for the file (see Section 2.3.2).

• Many FDL default attributes are applied automatically, but they are
not shown in the default attribute tables. See the OpenVMS Record
Management Utilities Reference Manual for the FDL defaults. The DEC
Ada input-output packages impose certain restrictions on the attributes of
the external files that they open:

– If the file is being created, these restrictions are checked against
any external file characteristics given in the FORM parameter of the
CREATE procedure.

– If the file is being opened, the restrictions are checked after any
assertions in the FORM parameter of the OPEN procedure have been
checked against the existing attributes of the file.

If the restrictions are violated at either point, the exception USE_ERROR
is raised.

Input-Output Facilities 2–33



2.4 File Sharing
File sharing in DEC Ada enables concurrent access to the same external
file. File sharing permits multiple file objects to be associated with the same
external file. File sharing can take place in the same OpenVMS process or
across multiple processes. You can share external files for reading, writing, or
modifying.

Because DEC Ada files are layered on RMS file organizations, the rules that
apply to read and write sharing of RMS files also apply to Ada files. The Guide
to OpenVMS File Applications gives complete information on file sharing in the
OpenVMS environment. For descriptions of the organizations chosen for Ada
files, see Section 2.1.

The FDL ACCESS and SHARING primary attributes have secondary
attributes that control the scope of access and sharing of an external file.
The ACCESS secondary attributes determine the kinds of operations (read,
write, update, and so on) that your program can perform on the external file.
The SHARING secondary attributes determine the kinds of operations other
concurrently active programs can perform on the file.

When you open a file, DEC Ada uses the MODE parameter to select
appropriate default ACCESS and SHARING secondary attributes (see
Section 2.3.3 and Tables Table 2–5 through Table 2–13). If the FORM
parameter in an OPEN or CREATE procedure specifies values for the ACCESS
or SHARING attributes, those values supersede any previously specified or
default values.

To determine whether or not you need to specify ACCESS or SHARING
attributes, follow these steps:

1. Check the table of default attributes for the package you are working with.
For example if you are working with relative files, look at Table 2–9.

2. If the table does not show a default for a particular attribute, check
Table 2–4 or the OpenVMS Record Management Utilities Reference
Manual.

3. If the combined set of default values does not reflect the action you want,
use the form string to set the attribute values.

When choosing attribute values:

• The ACCESS and SHARING attributes interact to some degree. For
example, YES values for ACCESS DELETE, PUT, TRUNCATE, or
UPDATE cause a value of YES for SHARING PROHIBIT.

2–34 Input-Output Facilities



• In any attempt to open an external file that has already been opened, the
value of the ACCESS attribute must match the value of the SHARING
attribute given to the file when it was first opened (or created). Also, the
value of the SHARING attribute must match the value of the ACCESS
attribute given to the file when it was first opened (or created). Otherwise,
the attempt to open the external file raises the exception USE_ERROR.

• If you specify any SHARING attribute and do not specify PROHIBIT, then
PROHIBIT has no default value (which is equivalent to a default of NO).

• The SHARING attributes are ignored for record-oriented devices and
magnetic tape files that are mounted foreign. For ANSI magnetic tape
files, a concurrent OPEN operation raises the exception USE_ERROR,
even though a SHARING attribute may be specified in the initial OPEN
operation. The number of shared files is restricted by the system-wide
shared-file database.

• Although write sharing is allowed for all files, you can improve the
performance of your program if you avoid write sharing. See the Guide to
OpenVMS File Applications for more information.

In Example 2–1, read sharing is desired for the relative file REL_FILE.

Example 2–1 Creating and Opening a Relative File for Read Sharing

with RELATIVE_IO;
package REL_PKG is new RELATIVE_IO(STRING);

---------------------------------------------------

with REL_PKG; use REL_PKG;
procedure CREATE_RELATIVE is

REL_FILE: FILE_TYPE;
. . .

begin
CREATE(FILE => REL_FILE,

MODE => INOUT_FILE, 1
NAME => "REL_FILE.DAT",
FORM => "RECORD;" &

"SIZE 30;" &
"SHARING;" & 2

"GET YES;");
. . .
end CREATE_RELATIVE;

---------------------------------------------------

(continued on next page)

Input-Output Facilities 2–35



Example 2–1 (Cont.) Creating and Opening a Relative File for Read Sharing

with REL_PKG; use REL_PKG;
with CREATE_RELATIVE;
procedure SHARE_RELATIVE is

IO_FILE: FILE_TYPE;
. . .

begin
CREATE_RELATIVE; 3
. . .
OPEN(FILE => IO_FILE,

MODE => IN_FILE,
NAME => "REL_FILE.DAT", 4
FORM => "RECORD;" &

"SIZE 30;" &
"SHARING;" & 5

"PUT YES;");
. . .
CLOSE(IO_FILE);

end SHARE_RELATIVE;

Key to Example 2–1:

1 The CREATE statement creates a relative, in-out file. DEC Ada gives it
the following attributes by default (see Table 2–9):

ACCESS; DELETE YES;
ACCESS; GET YES;
ACCESS; PUT YES;
ACCESS; UPDATE YES;
SHARING; GET NO;

Because YES values are in effect for ACCESS DELETE, PUT, and
UPDATE, the value of SHARING PROHIBIT is also YES (see Table 2–4).

2 The CREATE statement specifies a value of YES for SHARING GET. By
default, SHARING GET is disallowed and all other sharing is prohibited.
SHARING GET indicates that the external file REL_FILE.DAT can be
shared with other users who wish to read the file.

3 The procedure SHARE_RELATIVE calls the procedure CREATE_
RELATIVE. Because CREATE_RELATIVE does not close REL_FILE.DAT,
the file is still open and needs to be shared when SHARE_RELATIVE tries
to access it.

4 The OPEN statement opens REL_FILE.DAT as an in file as only reading is
required.

2–36 Input-Output Facilities



5 The OPEN statement specifies a value of YES for SHARING PUT,
which lets SHARE_RELATIVE open the external file REL_FILE.DAT.
If SHARING PUT is not specified, the file cannot be opened, and the
exeception USE_ERROR is raised.

2.5 Record Locking
The RMS record locking facility lets more than one program concurrently add,
delete, or update an RMS record in a controlled manner. Record locking is
available to external files in the same OpenVMS process and across different
processes. The Guide to OpenVMS File Applications explains RMS record
locking in detail.

In DEC Ada, record locking is available for all files. When you open a file for
which the attributes SHARING GET, SHARING PUT, or SHARING UPDATE
have been specified in the FORM parameter, RMS locks each record as it is
accessed. The same external file may then be reopened and associated with
another Ada file according to the kind of sharing specified.

When a record of a relative or indexed external file is locked as the result
of an operation on a particular Ada file, any other operation on another Ada
file that attempts to access the same record fails, and the exception LOCK_
ERROR is raised. When an attempt is made to access a record of any other
kind of external file, the exception USE_ERROR is raised. For all files, any
subsequent file operation (for example, read, write, modify, delete, end-of-file,
and so on) could potentially unlock a previously locked record. See the DEC
Ada Language Reference Manual for descriptions of the effects of the various
file operations on locking and unlocking the elements of Ada files.

The following example shows a technique for handling LOCK_ERROR. In
this example, attempts to access the record are continued each time a Y (Yes)
answer is given to an interactive prompt.

Input-Output Facilities 2–37



-- REL_FILE has been created and opened for read sharing;
-- it is associated with the external file "REL_FILE.DAT".
--
REL_PKG.READ (FILE => REL_FILE,

ITEM => READ_VALUE,
FROM => REL_PKG.COUNT(I));

--
-- Additional processing of the record at location COUNT(I)
-- could take place here.
--
. . .
--
-- IO_FILE has been opened to read the same external file
-- "REL_FILE.DAT". Because both this and the previous READ
-- statement access the same record, potential lock errors
-- could occur.
--
-- Thus, a loop conditionalized on the BOOLEAN variable
-- HAVE_RECORD checks for lock error and issues an interactive
-- prompt if a lock error has occurred. By answering the prompt,
-- the application user can control whether the application
-- waits until the lock is cleared or execution is terminated.
--
while not HAVE_RECORD loop

begin
REL_PKG.READ(FILE => IO_FILE,

ITEM => READ_VALUE,
FROM => REL_PKG.COUNT(I));

HAVE_RECORD := TRUE;
exception

when LOCK_ERROR =>
TEXT_IO.PUT("Record locked - try again? (Y or N)");
TEXT_IO.GET(RESPONSE);
if RESPONSE = "N" then

raise; -- Re-raise LOCK_ERROR.
end if;

end;
end loop;
. . .

2.6 Binary Input-Output
DEC Ada provides two kinds of binary input-output packages:

• The first kind—SEQUENTIAL_IO, DIRECT_IO, RELATIVE_IO, and
INDEXED_IO—lets you work with binary files containing elements that
are all of the same type (a file of elements of an integer type, a file of
elements of a record type, a file of elements of an array type, and so on).
These packages are all generic. You must instantiate them with the type of
the elements in the file before you can use their operations.

2–38 Input-Output Facilities



• The second kind—SEQUENTIAL_MIXED_IO, DIRECT_MIXED_IO,
RELATIVE_MIXED_IO, and INDEXED_MIXED_IO—lets you work with
binary files of mixed types. For example, you can have a mixed-type
file that contains elements of three different integer types or a file that
contains elements that are a mixture of integer types, array types, string
types, and so on.

The mixed-type packages are nongeneric, but they involve buffer operations
that are generic. For example, you must instantiate the generic GET_
ITEM and PUT_ITEM operations to move values in and out of a buffer.
You then read or write the buffer to transfer a record to or from your file.
Example 2–2 and Figure 2–1 show the use of a mixed-type file (using the
package DIRECT_MIXED_IO). The circled numbers in Figure 2–1 match
statements in the program EXPENSE_ACCOUNT (Example 2–2) to elements
in the file EXPENSES. Figure 2–2 shows the use of a file with elements of the
same type (using the package DIRECT_IO).

Sections Section 2.1.1 to Section 2.1.5 describe the structure of DEC Ada files
and give their relationship to RMS files. Chapter 14 of the DEC Ada Language
Reference Manual describes the packages and their operations in more detail.
The following sections give more information (including default file attributes)
and present examples that show the features of each kind of package. If
you are interested in information about designing files and tuning them for
optimum performance, see the Guide to OpenVMS File Applications.

Input-Output Facilities 2–39



Example 2–2 Using a Mixed-Type File

with DIRECT_MIXED_IO; use DIRECT_MIXED_IO;
procedure EXPENSE_ACCOUNT is

type AMOUNT is delta 0.01 range 0.00..5000.00;
subtype DATE_TYPE is STRING(1..8);
COUNT: NATURAL := 0;

procedure PUT_DATE is new PUT_ITEM(DATE_TYPE);
procedure PUT_COUNT is new PUT_ITEM(NATURAL);
procedure PUT_COST is new PUT_ITEM(AMOUNT);

procedure GET_DATE is new GET_ITEM(DATE_TYPE);
procedure GET_COUNT is new GET_ITEM(NATURAL);
procedure GET_COST is new GET_ITEM(AMOUNT);

EXPENSES: FILE_TYPE;
begin

CREATE(FILE => EXPENSES,
MODE => INOUT_FILE,
NAME => "EXPENSES.DAT",
FORM => "RECORD;" &

"FORMAT FIXED;" &
"SIZE 32;");

PUT_DATE(EXPENSES, "01-08-91"); 1
WRITE(EXPENSES,1); 2
PUT_COST(EXPENSES, 0.80); 3
COUNT := COUNT + 1;
PUT_COST(EXPENSES, 27.95); 4
COUNT := COUNT + 1;
PUT_COST(EXPENSES, 35.00); 5
COUNT := COUNT + 1;
WRITE(EXPENSES, 3); 6
PUT_COUNT(EXPENSES, COUNT); 7
WRITE(EXPENSES, 2); 8
RESET(EXPENSES);
READ(EXPENSES,2); 9
GET_COUNT(EXPENSES, COUNT); 1 0
CLOSE(EXPENSES);

end EXPENSE_ACCOUNT;

2–40 Input-Output Facilities



Figure 2–1 Using a Mixed-Type File

File EXPENSES:

Buffer (32−byte):

Empty.

File EXPENSES

0.80

0.80  27.95

Buffer (32−byte):

Buffer (32−byte): Empty.

Buffer (32−byte):

File EXPENSES

File EXPENSES

File EXPENSES

Buffer (32−byte):

File EXPENSES

File EXPENSES

Buffer (32−byte):

File EXPENSES

File EXPENSES

Buffer (32−byte):

element    1

element    1

element    1

element    1

element    1

element    1

element    1

element    1

0.80 27.95 35.00

0.80 27.95 35.00

0.80 27.95 35.00

0.80 27.95 35.00

0.80 27.95 35.00

3

2 3

3

3

3

2

2

2

3

3

1

2

3

4

5

6

7

8

9

10

Buffer (32−byte):

Buffer is empty.

COUNT=3.

3

ZK−4043−2−GE

Buffer (32−byte):

01−08−91

01−08−91

01−08−91

01−08−91

01−08−91

01−08−91

01−08−91

01−08−91

01−08−91

Empty.

Empty.

Input-Output Facilities 2–41



Figure 2–2 Using a Uniform-Type File

with
procedure
    package
    use

begin

end

DIRECT_IO;

   TEN_IO;

TEN_FILE: FILE_TYPE;
POWER: NATURAL;

is newTEN_IO DIRECT_IO (NATURAL);

READ (TEN_FILE, TEN, 3);
RESET (TEN_FILE);

POWERS_OF_TEN;

(index)
element

end_of_file100001000100101

1 2 3 4 5

ZK−4042−GE

         POWERS_OF_TEN is

by READ statement:
Element read

at end of loop:
State of TEN_FILE

TEN = 100

TEN: NATURAL := 10;

0 .. 5    for

    end loop;

in loopPOWER
WRITE (TEN_FILE, TEN ** POWER);

CREATE (TEN_FILE,INOUT_FILE,"ten_file.data");

2.6.1 Sequential File Input-Output
For creating and working with sequential files of uniform-type elements, DEC
Ada provides the generic package SEQUENTIAL_IO. For creating and working
with sequential files of mixed-type elements, DEC Ada provides the nongeneric
package SEQUENTIAL_MIXED_IO.

When you create a file with the package SEQUENTIAL_IO, DEC Ada gives
it the default attributes listed in Table 2–5. When you create a file with
the package SEQUENTIAL_MIXED_IO, DEC Ada gives it the default
attributes listed in Table 2–6. You can use the operations in the packages
SEQUENTIAL_IO and SEQUENTIAL_MIXED_IO to open and read files of
any RMS organization.

2–42 Input-Output Facilities



Table 2–5 SEQUENTIAL_IO: Default File Attributes

File Attribute Default Value

FILE

ORGANIZATION SEQUENTIAL

SEQUENTIAL_ONLY YES

RECORD

CARRIAGE_CONTROL CARRIAGE_RETURN

FORMAT FIXED if ELEMENT_TYPE is constrained;
VARIABLE if unconstrained

SIZE (ELEMENT_TYPE’MACHINE_SIZE + 7)/8 if
ELEMENT_TYPE is constrained; 0 (unlimited)
if not (However, there are physical limitations
to SIZE; see the OpenVMS Record Management
Services Reference Manual)

ACCESS

GET YES

PUT YES if MODE is OUT_FILE;
NO if MODE is IN_FILE

TRUNCATE YES if MODE is OUT_FILE;
NO if MODE is IN_FILE

SHARING

GET YES if MODE is IN_FILE;
NO if MODE is OUT_FILE

CONNECT

READ_AHEAD YES

TRUNCATE_ON_PUT YES if MODE is OUT_FILE;
NO if MODE is IN_FILE

WRITE_BEHIND YES if MODE is OUT_FILE

Input-Output Facilities 2–43



Table 2–6 SEQUENTIAL_MIXED_IO: Default File Attributes

File Attribute Default Value

FILE

ORGANIZATION SEQUENTIAL

SEQUENTIAL_ONLY YES

RECORD

CARRIAGE_CONTROL CARRIAGE_RETURN

FORMAT VARIABLE

SIZE 0 (record size is unlimited; however, SIZE has
physical limitations; see the OpenVMS Record
Management Services Reference Manual)

ACCESS

GET YES

PUT YES if MODE is OUT_FILE;
NO if MODE is IN_FILE

TRUNCATE YES if MODE is OUT_FILE;
NO if MODE is IN_FILE

SHARING

GET YES if MODE is IN_FILE;
NO if MODE is OUT_FILE

CONNECT

READ_AHEAD YES

TRUNCATE_ON_PUT YES if MODE is OUT_FILE;
NO if MODE is IN_FILE

WRITE_BEHIND YES if MODE is OUT_FILE

Example 2–3 shows how to instantiate the package SEQUENTIAL_IO. It also
shows how to open, close, read, and write from an Ada sequential file.

The item input-output operations provided by the package SEQUENTIAL_
MIXED_IO are basically the same as those provided for the other mixed-type
packages. See Figure 2–1 and Examples Example 2–4 and Example 2–7 for
examples of using the item input-output operations.

2–44 Input-Output Facilities



Example 2–3 Using the Package SEQUENTIAL_IO

with SEQUENTIAL_IO;
procedure SHOW_SEQ is

type STRING_TYPE is new STRING(1 .. 10);
package INOUT_STRING is new SEQUENTIAL_IO(STRING_TYPE);
use INOUT_STRING;

STRING_FILE : FILE_TYPE;
STRING_VAR : STRING_TYPE;

begin

-- Write a string to the file STRINGDAT.DAT.
--
CREATE(FILE => STRING_FILE,

MODE => OUT_FILE,
NAME => "STRINGDAT.DAT");

WRITE (STRING_FILE, "tenletters");
CLOSE (STRING_FILE);

-- Read a string from the same file.
--
OPEN (FILE => STRING_FILE,

MODE => IN_FILE,
NAME => "STRINGDAT.DAT");

READ(STRING_FILE,STRING_VAR);
CLOSE(STRING_FILE);

end SHOW_SEQ;

2.6.2 Direct File Input-Output
For creating and working with direct files of uniform-type elements, DEC Ada
provides the generic package DIRECT_IO. For creating and working with
direct files of mixed-type elements, DEC Ada provides the nongeneric package
DIRECT_MIXED_IO.

When you create a file with the package DIRECT_IO, DEC Ada gives it the
default file attributes listed in Table 2–7. When you create a file with the
package DIRECT_MIXED_IO, DEC Ada gives it the default file attributes
listed in Table 2–8. You can use these packages only with files having the FDL
attributes ORGANIZATION SEQUENTIAL and RECORD FORMAT FIXED.
If you try to use DIRECT_IO or DIRECT_MIXED_IO with a file that has
different ORGANIZATION and RECORD FORMAT attributes, the exception
USE_ERROR is raised.

Input-Output Facilities 2–45



When creating files with the package DIRECT_IO, you must specify a
maximum record size with the FORM parameter if you instantiate the package
with an unconstrained element type. When creating files with the package
DIRECT_MIXED_IO, you must specify a maximum record size with the FORM
parameter. The maximum record size determines the maximum size of an
element in the file. In the case of DIRECT_MIXED_IO, the maximum record
size also determines the size of the file buffer for performing item input-output.
If you write a value to a direct file element that is smaller than the size
specified, the corresponding external file record is padded with zeros.

Table 2–7 DIRECT_IO: Default File Attributes

File Attribute Default Value

FILE

ORGANIZATION SEQUENTIAL

RECORD

CARRIAGE_CONTROL CARRIAGE_RETURN

FORMAT FIXED

SIZE (ELEMENT_TYPE’MACHINE_SIZE + 7)/8 if
ELEMENT_TYPE is constrained; otherwise, a value
must be specified (no default if ELEMENT_TYPE is
unconstrained)

ACCESS

GET YES

PUT YES if MODE is OUT_FILE;
NO if MODE is IN_FILE

SHARING

GET YES if MODE is IN_FILE;
NO if MODE is OUT_FILE

CONNECT

UPDATE_IF YES

2–46 Input-Output Facilities



Table 2–8 DIRECT_MIXED_IO: Default File Attributes

File Attribute Default Value

FILE

ORGANIZATION SEQUENTIAL

RECORD

CARRIAGE_CONTROL CARRIAGE_RETURN

FORMAT FIXED

SIZE None; this attribute must be specified in the FORM
parameter

ACCESS

GET YES

PUT YES if MODE is OUT_FILE;
NO if MODE is IN_FILE

SHARING

GET YES if MODE is IN_FILE;
NO if MODE is OUT_FILE

CONNECT

UPDATE_IF YES

Example 2–4 shows the reading and writing of items into a direct file using the
package DIRECT_MIXED_IO. For an example of using the package DIRECT_
IO, see Figure 2–2.

Read and write operations to direct files do not have to be to consecutive
elements. However, if you read from an empty element, the value returned is
unpredictable.

Example 2–4 Using the Package DIRECT_MIXED_IO

with DIRECT_MIXED_IO; use DIRECT_MIXED_IO;
procedure SHOW_DIRECT_MIXED is

OLD_STRING : STRING(1 .. 5) := "FOUR ";
NEW_STRING : STRING(1 .. 5) := "FIVE ";
OLD_INT : INTEGER := 1;
NEW_INT : INTEGER := 4;

MY_FILE : FILE_TYPE;

(continued on next page)

Input-Output Facilities 2–47



Example 2–4 (Cont.) Using the Package DIRECT_MIXED_IO
-- Instantiate the GET and PUT procedures.
--
procedure GET_INT is new GET_ITEM(INTEGER);
procedure GET_STR is new GET_ITEM(STRING);
procedure PUT_INT is new PUT_ITEM(INTEGER);
procedure PUT_STR is new PUT_ITEM(STRING);

begin

-- Create the file; sequential organization is the default,
-- but is specified for completeness; a record size
-- must be specified (there is no default).
--
CREATE(FILE => MY_FILE,

MODE => INOUT_FILE,
NAME => "MY_FILE.DAT",
FORM => "FILE;" &

"ORGANIZATION SEQUENTIAL;" &
"RECORD;" &

"SIZE 120;" );

-- Alternately put a string in the buffer and write it
-- to the file as a single-element record.
--
PUT_STR(MY_FILE,OLD_STRING);
WRITE(FILE => MY_FILE,

TO => 1); -- String will be written to element 1.

PUT_STR(MY_FILE,OLD_STRING);
WRITE(FILE => MY_FILE); -- String will be written to element 2.

PUT_STR(MY_FILE,OLD_STRING);
WRITE(FILE => MY_FILE,

TO => 5); -- String will be written to element 5.

SET_INDEX(MY_FILE, 7); -- Reposition file pointer to element 7.
PUT_INT(MY_FILE,OLD_INT);
WRITE(FILE => MY_FILE); -- Integer will be written to element 7.

-- Reset for reading.
--
RESET(MY_FILE);

(continued on next page)

2–48 Input-Output Facilities



Example 2–4 (Cont.) Using the Package DIRECT_MIXED_IO

-- Read values from the file.
--
READ(MY_FILE); -- Put the record from element 1

-- into the buffer.
GET_STR(MY_FILE,NEW_STRING);
READ(FILE => MY_FILE, -- Put the record from element 7

FROM => 7); -- into the buffer.
. . .

end SHOW_DIRECT_MIXED;

2.6.3 Relative File Input-Output
For creating and working with relative files of uniform-type elements, DEC
Ada provides the generic package RELATIVE_IO. For creating and working
with relative files of mixed-type elements, DEC Ada provides the nongeneric
package RELATIVE_MIXED_IO.

When you create a file with the package RELATIVE_IO, DEC Ada gives it
the default file attributes listed in Table 2–9. When you create a file with the
package RELATIVE_MIXED_IO, DEC Ada gives it the default file attributes
listed in Table 2–10. You can use these packages only with files having the
attribute ORGANIZATION RELATIVE. If you try to use RELATIVE_IO and
RELATIVE_MIXED_IO with a file with any other ORGANIZATION attribute,
the exception USE_ERROR is raised.

When creating files with the package RELATIVE_IO, you must specify a
maximum record size with the FORM parameter if you instantiate the package
with an unconstrained element type. When creating files with the package
RELATIVE_MIXED_IO, you must specify a maximum record size with the
FORM parameter. The maximum record size determines the maximum size of
an element in the file. In the case of RELATIVE_MIXED_IO, the maximum
record size also determines the size of the file buffer for performing item
input-output.

Input-Output Facilities 2–49



Table 2–9 RELATIVE_IO: Default File Attributes

File Attribute Default Value

FILE

ORGANIZATION RELATIVE

RECORD

CARRIAGE_CONTROL CARRIAGE_RETURN

FORMAT FIXED if ELEMENT_TYPE is constrained;
VARIABLE if not

SIZE (ELEMENT_TYPE’MACHINE_SIZE + 7)/8 if
ELEMENT_TYPE is constrained; if not, a value
must be specified (there is no default if ELEMENT_
TYPE is unconstrained)

ACCESS

DELETE YES if MODE is OUT_FILE or INOUT_FILE;
NO if MODE is IN_FILE

GET YES

PUT YES if MODE is OUT_FILE or INOUT_FILE;
NO if MODE is IN_FILE

UPDATE YES if MODE is OUT_FILE or INOUT_FILE;
NO if MODE is IN_FILE

SHARING

GET YES if MODE is IN_FILE;
NO if MODE is OUT_FILE or INOUT_FILE

2–50 Input-Output Facilities



Table 2–10 RELATIVE_MIXED_IO: Default File Attributes

File Attribute Default Value

FILE

ORGANIZATION RELATIVE

RECORD

CARRIAGE_CONTROL CARRIAGE_RETURN

FORMAT VARIABLE

SIZE None; a value must be specified in the FORM
parameter

ACCESS

DELETE YES if MODE is OUT_FILE or INOUT_FILE;
NO if mode is IN_FILE

GET YES

PUT YES if MODE is OUT_FILE or INOUT_FILE;
NO if MODE is IN_FILE

UPDATE YES if MODE is OUT_FILE or INOUT_FILE;
NO if MODE is IN_FILE

SHARING

GET YES if MODE is IN_FILE;
NO if MODE is OUT_FILE or INOUT_FILE

Example 2–5 shows the reading and writing of records to cells in a relative file
using the package RELATIVE_IO. Read and write operations to relative files
do not have to be to consecutively numbered. However, if you try to read at a
position for which there is no element, the exception EXISTENCE_ERROR is
raised.

The item input-output operations provided by the package RELATIVE_
MIXED_IO are basically the same as those provided for the other mixed-type
packages. See Figure 2–1 and Examples Example 2–4 and Example 2–7 for
examples of using the item input-output operations.

Input-Output Facilities 2–51



Example 2–5 Using the Package RELATIVE_IO

with RELATIVE_IO;
procedure SHOW_RELATIVE_IO is

type SMALL_RECORD is
record

NUM: INTEGER := 0;
LET: CHARACTER := ’A’;

end record;

-- Instantiate and make visible a RELATIVE_IO package
-- that operates on elements of type SMALL_RECORD.
--
package REC_IO is new RELATIVE_IO(SMALL_RECORD);
use REC_IO;

-- Declare the objects to be used.
--
RELATIVE_FILE : FILE_TYPE;
POS : POSITIVE_COUNT;
REC : SMALL_RECORD;
RECX : SMALL_RECORD := (NUM => 1, LET => ’X’);
RECY : SMALL_RECORD := (NUM => 2, LET => ’Y’);
I : INTEGER;

begin

-- Create the file.
--
CREATE(RELATIVE_FILE,OUT_FILE,"RELATIVE_FILE.DAT");

-- Write records, incrementing the NUM value, to file
-- cells in positions 1 through 10.
--
for I in 1 .. 10 loop

WRITE(RELATIVE_FILE,REC);
REC.NUM := REC.NUM + 1;

end loop;

-- Prepare the file for reading.
--
RESET(RELATIVE_FILE,IN_FILE);

-- Read contents of records in cells at positions 2 and 3.
--
POS := INDEX(RELATIVE_FILE);
READ(RELATIVE_FILE,RECX,2);
POS := INDEX(RELATIVE_FILE);
READ(RELATIVE_FILE,RECY);

(continued on next page)

2–52 Input-Output Facilities



Example 2–5 (Cont.) Using the Package RELATIVE_IO

-- Prepare the file for writing.
--
RESET(RELATIVE_FILE,OUT_FILE);

-- Write to records in cells at positions 12 and 16.
--
WRITE(RELATIVE_FILE,REC,12);
REC.NUM := REC.NUM + 1;
WRITE(RELATIVE_FILE,REC,16);
. . .

end SHOW_RELATIVE_IO;

2.6.4 Indexed File Input-Output
For creating and working with indexed files of uniform-type elements, DEC
Ada provides the generic package INDEXED_IO. For creating and working
with indexed files of mixed-type elements, DEC Ada provides the nongeneric
package INDEXED_MIXED_IO.

When you create a file with the package INDEXED_IO, DEC Ada gives it the
default file attributes listed in Table 2–11. When you create a file with the
package INDEXED_MIXED_IO, DEC Ada gives it the default file attributes
listed in Table 2–12. You can use these packages only with files having the
attribute ORGANIZATION INDEXED. If you try to use INDEXED_IO or
INDEXED_MIXED_IO with a file that has a different ORGANIZATION
attribute, the exception USE_ERROR is raised.

When creating indexed files, you must use the FORM parameter to specify any
information about the keys (no default key values are provided by the CREATE
procedures). There is no default bucket size. If you do not specify a bucket
size with the FORM parameter, RMS calculates the bucket size based on the
maximum record size. (The default is 0).

Input-Output Facilities 2–53



Table 2–11 INDEXED_IO: Default File Attributes

File Attribute Default Value

FILE

ORGANIZATION INDEXED

RECORD

CARRIAGE_CONTROL CARRIAGE_RETURN

FORMAT FIXED if ELEMENT_TYPE is constrained;
VARIABLE if not

SIZE (ELEMENT_TYPE’MACHINE_SIZE + 7)/8 if
ELEMENT_TYPE is constrained; 0 if not (there
is no maximum record size; however, SIZE is also
limited by the bucket size; see the OpenVMS Record
Management Services Reference Manual)

ACCESS

DELETE YES if MODE is OUT_FILE or INOUT_FILE;
NO if MODE is IN_FILE

GET YES

PUT YES if MODE is OUT_FILE or INOUT_FILE;
NO if MODE is IN_FILE

UPDATE YES if MODE is OUT_FILE or INOUT_FILE;
NO if MODE is IN_FILE

SHARING

GET YES if MODE is IN_FILE;
NO if MODE is OUT_FILE or INOUT_FILE

2–54 Input-Output Facilities



Table 2–12 INDEXED_MIXED_IO: Default File Attributes

File Attribute Default Value

FILE

ORGANIZATION INDEXED

RECORD

CARRIAGE_CONTROL CARRIAGE_RETURN

FORMAT VARIABLE

SIZE 0 (the record size is unlimited; however, the record
size is limited by the bucket size; see the OpenVMS
Record Management Services Reference Manual)

ACCESS

DELETE YES if MODE is OUT_FILE or INOUT_FILE;
NO if MODE is IN_FILE

GET YES

PUT YES if MODE is OUT_FILE or INOUT_FILE;
NO if MODE is IN_FILE

UPDATE YES if MODE is OUT_FILE or INOUT_FILE;
NO if MODE is IN_FILE

SHARING

GET YES if MODE is IN_FILE;
NO if MODE is OUT_FILE or INOUT_FILE

You can access indexed files with both sequential and keyed access methods.
Sequential access retrieves consecutive components, which are sorted according
to the specified key field. Keyed access retrieves components randomly,
according to the value of a particular key field. Once you select a key (using
the RESET or READ_BY_KEY procedures), a sequential read (using the READ
procedure) retrieves components with ascending or descending key field values.

Example 2–6 shows the use of the package INDEXED_IO to create an
indexed file that has a string-type primary key that sorts the file in ascending
order and a string-type alternate key that sorts the file in descending order.
In particular, the example shows how to do comparative key searching in an
indexed file.

In DEC Ada, the way to do comparative key searching is to use the indexed
input-output package READ_BY_KEY procedures (see Chapter 14 of the
DEC Ada Language Reference Manual for their specifications). The kind
of comparison (equal or next, equal, or next) is determined by the value of
the READ_BY_KEY RELATION parameter. The parameter is of the type

Input-Output Facilities 2–55



RELATION_TYPE, and its default value for both packages INDEXED_IO and
INDEXED_MIXED_IO is EQUAL. The value of a READ_BY_KEY RELATION
parameter overrides any search option setting you may have made in a
CREATE or OPEN FORM parameter. The FDL CONNECT EQUAL_NEXT
and CONNECT_NEXT attributes never have an effect when you are using a
READ_BY_KEY procedure.

Example 2–6 Using the Package INDEXED_IO

-- Create an INDEXED_IO package for indexed files containing
-- string data.
--
with INDEXED_IO;
package STRING_INDEXED_IO is new INDEXED_IO (STRING);

with TEXT_IO; use TEXT_IO;
with STRING_INDEXED_IO; use STRING_INDEXED_IO;
procedure SHOW_INDEX is

IFILE : STRING_INDEXED_IO.FILE_TYPE;
STR : STRING (1 .. 10) := " ";
KEY_STR : STRING (1 .. 1);

-- Instantiate generic READ_BY_KEY procedure for ascending
-- string matching (as opposed to numeric key matching).
--
procedure READ_BY_STRING_KEY is new READ_BY_KEY (STRING, 0);

begin

PUT_LINE ("-- Test of INDEXED_IO.");
PUT_LINE ("-- Creating file");

-- The CREATE procedure must give key information. KEY 0 has
-- ascending sort order; KEY 1 has descending -- the sort
-- order is determined by the value of the KEY TYPE
-- attributes in the form string: STRING or DSTRING. (Do
-- not confuse this STRING with the Ada type STRING.)
--

(continued on next page)

2–56 Input-Output Facilities



Example 2–6 (Cont.) Using the Package INDEXED_IO

-- Because this is an indexed file of the Ada type STRING, and
-- the Ada type STRING is an unconstrained type, you must
-- also specify the maximum record size. A size of 0 bytes
-- is used so that the system will not impose a maximum
-- record length.
--
CREATE (FILE => IFILE,

MODE => INOUT_FILE,
NAME => "INDEXED_STRING.TXT",
FORM => "FILE;" &

"ORGANIZATION INDEXED;" &
"RECORD;" &

"SIZE 0;" &
"KEY 0;" &

-- Key value STRING causes
-- ascending sort.
"TYPE STRING;" &
"POSITION 0;" &
"LENGTH 1;" &
"DUPLICATES YES;" &

"KEY 1;" &
-- Key value DSTRING causes
-- descending sort.
"TYPE DSTRING;" &
"POSITION 0;" &
"LENGTH 1;" &
"DUPLICATES YES;" );

-- Populate file.
--
PUT_LINE ("-- Populating file");
WRITE (IFILE, "Mary ");
WRITE (IFILE, "Larry ");
WRITE (IFILE, "Charlie ");
WRITE (IFILE, "Kirk ");
WRITE (IFILE, "Spencer ");
WRITE (IFILE, "Susan ");

(continued on next page)

Input-Output Facilities 2–57



Example 2–6 (Cont.) Using the Package INDEXED_IO

-- Read file sequentially using ascending index.
--
PUT_LINE ("-- Read file sequentially: ascending sort");
RESET (FILE => IFILE ,

MODE => INOUT_FILE,
KEY_NUMBER => 0);

while not END_OF_FILE(IFILE)
loop

READ (IFILE, STR);
PUT_LINE (STR);

end loop;

-- Read file sequentially using descending index.
--
PUT_LINE ("-- Read file sequentially: descending sort");
RESET (FILE => IFILE,

MODE => INOUT_FILE,
KEY_NUMBER => 1);

while not END_OF_FILE(IFILE)
loop

READ (IFILE, STR);
PUT_LINE (STR);

end loop;

--
-- Change the search to EQUAL_NEXT using the instantiation
-- of READ_BY_KEY (READ_BY_STRING_KEY), and read the whole
-- file by ascending key.
--
PUT_LINE ("-- READ_BY_KEY: ascending index");
RESET (FILE => IFILE);
KEY_STR := "M";

-- Read the first item that is equal to or that follows a string
-- whose first character is "M". Use READ_BY_STRING_KEY to
-- set the character match, key number (0 in this example
-- translates to an ascending key), and relation.
--
READ_BY_STRING_KEY (FILE => IFILE,

ITEM => STR,
KEY => KEY_STR,
KEY_NUMBER => 0,
RELATION => EQUAL_NEXT);

PUT_LINE (STR);

(continued on next page)

2–58 Input-Output Facilities



Example 2–6 (Cont.) Using the Package INDEXED_IO

-- Read the rest of the strings that meet the
-- requirements specified in the READ_BY_STRING_KEY statement
-- using READ (a loop of READ_BY_KEY will endlessly
-- return the first match).
--
while not END_OF_FILE(IFILE)

loop
READ (IFILE, STR);
PUT_LINE (STR);

end loop;

-- Read by descending key only those records that begin
-- with "S". Use READ_BY_STRING_KEY to set the character
-- match, key number (1 in this example translates to a
-- descending key), and relation.
--
PUT_LINE ("-- READ_BY_KEY: descending index");
RESET (FILE => IFILE);
KEY_STR := "S";
READ_BY_STRING_KEY (FILE => IFILE,

ITEM => STR,
KEY => KEY_STR,
KEY_NUMBER => 1,
RELATION => EQUAL);

PUT_LINE (STR);

(continued on next page)

Input-Output Facilities 2–59



Example 2–6 (Cont.) Using the Package INDEXED_IO
while not END_OF_FILE(IFILE)

loop
READ (IFILE, STR);
PUT_LINE (STR);

end loop;

-- Finish.
--
PUT_LINE ("-- Closing file");
CLOSE (FILE => IFILE );

end SHOW_INDEX;

Example 2–7 shows the use of the package INDEXED_MIXED_IO, shows how
to create a mixed-type indexed file, and then shows how to read and write from
the file using the primary key.

Example 2–7 Using the Package INDEXED_MIXED_IO

with INDEXED_MIXED_IO; use INDEXED_MIXED_IO;
procedure SHOW_INDEXED_MIXED is

type INTEGER_ARRAY_TYPE is array(INTEGER range <>) of INTEGER;
type COLORS is (RED,BLUE,YELLOW);

-- Declare objects to be used to fill the file with values.
--
INDEXED_FILE : FILE_TYPE;
INTEGER_ARRAY : INTEGER_ARRAY_TYPE(1 .. 3);
INT1, INT2, INT3,
INT4, INT5, INT6, INT7 : INTEGER;
CHAR1, CHAR2,
CHAR3, CHAR4 : CHARACTER;
COL1, COL2 : COLORS;
ARRAY_INDEX : INTEGER;

-- Instantiate the generic READ_BY_KEY procedures.
--
procedure READ_0 is new READ_BY_KEY(INTEGER,0);
procedure READ_1 is new READ_BY_KEY(CHARACTER,1);

(continued on next page)

2–60 Input-Output Facilities



Example 2–7 (Cont.) Using the Package INDEXED_MIXED_IO
-- Instantiate the generic GET_ITEM and PUT_ITEM procedures.
--
procedure GET_INT is new GET_ITEM(INTEGER);
procedure GET_FLOAT is new GET_ITEM(FLOAT);
procedure GET_CHAR is new GET_ITEM(CHARACTER);
procedure GET_ENUM is new GET_ITEM(COLORS);

procedure PUT_INT is new PUT_ITEM(INTEGER);
procedure PUT_FLOAT is new PUT_ITEM(FLOAT);
procedure PUT_CHAR is new PUT_ITEM(CHARACTER);
procedure PUT_ENUM is new PUT_ITEM(COLORS);

procedure GET_ARRAY_INT is new
GET_ARRAY(INTEGER,INTEGER,INTEGER_ARRAY_TYPE);

begin

-- Create the file.
--

CREATE(FILE => INDEXED_FILE,
MODE => OUT_FILE,
NAME => "F.DAT",
FORM => "FILE;" &

"ORGANIZATION INDEXED;" &
"KEY 0;" &

"INDEX_FILL 4;" &
"TYPE INT4;" &
"DUPLICATES YES;" &
"POSITION 0;" &
"LENGTH 4;" &

"KEY 1;" &
"INDEX_FILL 1;" &
"TYPE STRING;" &
"DUPLICATES YES;" &
"POSITION 4;" &
"LENGTH 1;" );

-- Fill the element buffer with a character, an integer,
-- and an enumeration value.
--

INT1 := 1;
CHAR1 := ’A’;
COL1 := YELLOW;
PUT_INT(INDEXED_FILE,INT1);
PUT_CHAR(INDEXED_FILE,CHAR1);
PUT_ENUM(INDEXED_FILE,COL1);

(continued on next page)

Input-Output Facilities 2–61



Example 2–7 (Cont.) Using the Package INDEXED_MIXED_IO
-- Write the element to the file.
--

WRITE(INDEXED_FILE);

-- Prepare to read the record from the file.
--

RESET(INDEXED_FILE,INOUT_FILE);

-- Read the record from the file sorting on
-- the primary key (integer).
--

READ_0(INDEXED_FILE,INT1,0);
GET_INT(INDEXED_FILE,INT2);
GET_CHAR(INDEXED_FILE,CHAR2);
GET_ENUM(INDEXED_FILE,COL2);

-- Prepare to add more elements to the file.
--

RESET(INDEXED_FILE);
SET_POSITION(INDEXED_FILE,1);

-- Fill the buffer with an integer, a character,
-- and three more integers, and write the buffer to
-- the file.
--

INT3 := 3;
CHAR3 := ’B’;
INT4 := 4;
INT5 := 5;
INT6 := 6;

PUT_INT(INDEXED_FILE,INT3);
PUT_CHAR(INDEXED_FILE,CHAR3);
PUT_INT(INDEXED_FILE,INT4);
PUT_INT(INDEXED_FILE,INT5);
PUT_INT(INDEXED_FILE,INT6);

WRITE(INDEXED_FILE);

(continued on next page)

2–62 Input-Output Facilities



Example 2–7 (Cont.) Using the Package INDEXED_MIXED_IO

-- Read the record from the file sorting on
-- key 1 (string).
--

READ_1(INDEXED_FILE,CHAR3,1);

-- Get the items from the buffer; in particular, read
-- three integers directly into the integer array.
--

GET_INT(INDEXED_FILE,INT7);
GET_CHAR(INDEXED_FILE,CHAR4);
GET_ARRAY_INT(INDEXED_FILE,INTEGER_ARRAY,ARRAY_INDEX);

-- Do some more work and then close the file.
--

. . .
CLOSE(INDEXED_FILE);

end SHOW_INDEXED_MIXED;

2.7 Text Input-Output
DEC Ada provides the package TEXT_IO for creating and working with text
files. TEXT_IO is not generic, but it does include generic packages for the
input and output of integers, floating-point numbers, fixed-point numbers, and
enumeration values. When you create a file with this package, DEC Ada gives
it the defaults listed in Table 2–13.

You can use this package only with files that have the attribute
ORGANIZATION SEQUENTIAL. For example, you can use TEXT_IO
operations to open and read files created with the packages SEQUENTIAL_IO,
SEQUENTIAL_MIXED_IO, DIRECT_IO, or DIRECT_MIXED_IO, as well
as TEXT_IO. If you try to use this package with files that have a different
ORGANIZATION attribute, the exception USE_ERROR IS raised.

Input-Output Facilities 2–63



Table 2–13 TEXT_IO: Default File Attributes

File Attribute Default Value

FILE

ORGANIZATION SEQUENTIAL

SEQUENTIAL_ONLY YES

RECORD

CARRIAGE_CONTROL PRINT if device is a terminal; CARRIAGE_
RETURN otherwise

FORMAT VFC if device is a terminal; VARIABLE
otherwise

SIZE 0 (record size is unlimited; however, the record size
has physical limitations; see the OpenVMS Record
Management Services Reference Manual)

ACCESS

GET YES

PUT YES if MODE is OUT_FILE;
NO if MODE is IN_FILE

TRUNCATE YES if MODE is OUT_FILE;
NO if MODE is IN_FILE

SHARING

GET YES if MODE is IN_FILE;
NO if MODE is OUT_FILE

CONNECT

READ_AHEAD YES

WRITE_BEHIND YES if MODE is OUT_FILE

As shown in Table 2–13, DEC Ada text files are implemented as RMS
sequential files. Each line in a text file corresponds to a single RMS record.
DEC Ada text files are not stream files.

Although DEC Ada creates text files with variable-length records by default,
you can use the FORM parameter (see Section 2.3) to create text files with
fixed-length records. When a text file with fixed-length records is being
written, the line length (if nonzero) must be less than or equal to the record
size. The exception USE_ERROR is raised if you try to change the line length
to a value greater than the record size. This exception is also raised when a
line being written is longer than the record size. When you write a program
that creates text files with fixed-length records, set the line length to the record
size. If the line being written does not fill the entire (fixed-length) record,

2–64 Input-Output Facilities



spaces are used to pad the rest of the record (and the spaces are then regarded
as characters in the file).

You can also use the FORM parameter to create text files with lines of
indefinite length, including lengths greater than the maximum RMS record
size. DEC Ada recognizes files with the following characteristics as files of
indefinite line length:

• The print form of carriage control

• A 2-byte header size (applies to all records in the external file)

• Variable-length with fixed-length control field (VFC) record format

• A maximum record size of zero

To create a DEC Ada text file with lines of indefinite length, use a
FORM parameter in the TEXT_IO.CREATE procedure and specify these
characteristics (either explicitly or by relying on defaults). For example:

CREATE (FILE => INDEFINITE_LINE_LENGTH_FILE,
FORM => "RECORD;" &

"CARRIAGE_CONTROL PRINT;" &
"CONTROL_FIELD 2;" &
"FORMAT VFC;" &
"SIZE 0;");

If you specify a nonzero record size, your text file has lines of the length
specified. (The record size must be within the normal range of values for the
length of an RMS record.)

Because the "CARRIAGE_CONTROL PRINT" statement gives a default control
field size of 2 bytes and a VFC format, you could also use the following form
string to create a text file with lines of indefinite length:

CREATE (FILE => INDEFINITE_LINE_LENGTH_FILE,
FORM => "RECORD;" &

"CARRIAGE_CONTROL PRINT;" &
"SIZE 0;");

Lines are written to files with indefinite line length as one or more RMS
records. The characters in each record’s 2-byte header keep track of which
records comprise the beginning, middle, and end of a line.

In some cases you may wish to open a text file that has the characteristics
of an indefinite-line-length file (for example a file created by some other
OpenVMS-related software). If you do not want the file to be treated as

Input-Output Facilities 2–65



one with indefinite line length, then open the file with the TEXT_IO.OPEN
procedure and specify a nonzero record length in the form string. For example:

TEXT_IO.OPEN(
FILE => FIXED_LINE_LENGTH_FILE,
MODE => IN_FILE,
NAME => "FIXED_FILE.DAT",
FORM => "RECORD;"

"SIZE 1;");

Regardless of its value, the only effect of the nonzero record length in this case
is to prevent the file from being treated as one with indefinite line length.

2.7.1 Using the Package TEXT_IO for Terminal Input-Output
When using the package TEXT_IO to read from or write to a terminal, keep
the following points in mind:

• DEC Ada TEXT_IO operations are implemented with RMS input-output
operations, and RMS operations always involve complete records.

• Buffering is used in both terminal input and output (see Section 2.7.3).

• Terminal input is not processed until a line (an RMS record) is terminated
by a carriage return (or other line terminator).

• Ctrl/Z is interpreted sometimes as a file terminator and sometimes as a
line terminator followed by a page terminator followed by a file terminator.
(The importance and interpretation of the various terminators is discussed
in Section 2.7.2.) The difference in interpretation can cause a difference in
effect.

Example 2–8 shows the use of TEXT_IO operations to write text from a
terminal to a file. Sections Section 2.7.1.1 to Section 2.7.1.4 discuss a number
of coding methods for accomplishing interactive terminal input-output.

Example 2–8 Using the Package TEXT_IO

with TEXT_IO; use TEXT_IO;
procedure COPY is

MY_COPY : FILE_TYPE;
INPUT_80 : STRING (1 .. 80);
CURRENT_PAGE : POSITIVE_COUNT;
LAST : NATURAL;

begin

(continued on next page)

2–66 Input-Output Facilities



Example 2–8 (Cont.) Using the Package TEXT_IO

CREATE(MY_COPY, OUT_FILE, "MYCOPY.TXT");
PUT_LINE("Start typing your book.");
PUT_LINE("Type Ctrl/Z to finish.");

loop
-- Remember current page, then get at most
-- 80 characters, then write out the line
-- to the text file.
--
CURRENT_PAGE := PAGE (CURRENT_INPUT);
GET_LINE (INPUT_80, LAST);
PUT (MY_COPY, INPUT_80(1 .. LAST));

-- If a new page is started, then terminate
-- the page in the file. Do not write an explicit
-- end-of-page if the page change is a result of
-- an end-of-file (Ctrl/Z). Otherwise, start
-- a new line.

if CURRENT_PAGE < PAGE (CURRENT_INPUT) then
if not END_OF_FILE then

NEW_PAGE (MY_COPY);
end if;

else
NEW_LINE (MY_COPY);

end if;
end loop;

exception
when END_ERROR =>

NEW_LINE (3);
PUT ("Your text is in file MYCOPY.TXT");
CLOSE (MY_COPY);

end COPY;

When working with text input-output in general and with terminal input-
output in particular, keep in mind that each DEC Ada TEXT_IO operation
behaves exactly as it is described in the DEC Ada Language Reference Manual.

Input-Output Facilities 2–67



For example:

with TEXT_IO; use TEXT_IO;
procedure SHOW_GETS is

INOUT_LINE: STRING(1 .. 10) := "tenletters";
LAST_CHAR: NATURAL;

begin
PUT_LINE("Do a GET_LINE");
GET_LINE(INOUT_LINE,LAST_CHAR);
PUT_LINE(INOUT_LINE);
PUT_LINE("Do another GET_LINE");
GET_LINE(INOUT_LINE,LAST_CHAR);
PUT(INOUT_LINE);

end SHOW_GETS;

If you run this program and press Ctrl/Z as the only input to the GET_LINE
operation, the immediate result is that the OpenVMS exit prompt appears on
your screen, and then the string "tenletters" is printed. This result occurs
because GET_LINE is defined as a procedure that replaces the characters of its
string argument with input characters until it encounters a line terminator.

Because Ctrl/Z in this case represents a line terminator followed by a page
terminator followed by a file terminator (see Section 2.7.2), GET_LINE
immediately encounters a line terminator. Then, according to the language
definition of GET_LINE, SKIP_LINE is called, and the subsequent page
terminator is skipped. The initial string is output because it was not changed
by GET_LINE. Because the file terminator remains as input for the next
GET_LINE operation, the exception END_ERROR is raised when the next
GET_LINE operation is executed. If the first GET_LINE had been a GET, the
exception END_ERROR would have been raised immediately.

Similarly, if you use the GET_LINE procedure to read a value into a string
variable of N characters, and you enter exactly N characters followed by
a carriage return, the END_OF_LINE function returns the value FALSE.
However, another call to GET_LINE reads in a null string, indicating that
there was a line terminator in the input buffer (the carriage return), which
was entered after the N characters were entered. This effect occurs because
when you read in exactly as many characters as are on the line, the SKIP_
LINE procedure is not called after the characters are transferred. The effect
is in accordance with the description of the GET_LINE procedure in the DEC
Ada Language Reference Manual.

When you do a SKIP_LINE operation in DEC Ada (or any operation that, in
effect, does a SKIP_LINE, such as a GET_LINE. See Chapter 14 of the DEC
Ada Language Reference Manual), the skipping of the page terminator (if
any) is delayed. A subsequent operation may require that the skipped page
terminator be retrieved, and the result is a request for more input from the

2–68 Input-Output Facilities



file. This delaying process enables a GET_LINE operation from a terminal
device to be (partially) satisfied immediately after a carriage return and then
for execution of the program to continue.

2.7.1.1 Line-Oriented Method
Example 2–9 shows a line-oriented method of using TEXT_IO operations for
interactive terminal input-output. Arbitrary lines are obtained using the
procedure GET_LINE within a loop. The actual interpretation of data on each
line is deferred to other code, so this method is flexible and adaptable. The
method expects the user to enter one of the following:

• A line of data

• A null line (carriage return)

• An end-of-file indicator (Ctrl/Z)

If you want to let the user respond with multiple Ctrl/Zs, you need to declare
a file variable to serve as the input file rather than using the default standard
input file. You need to use a file variable because the only way to get past the
first Ctrl/Z is to reset the file, and you cannot pass the standard input file as a
parameter to the procedure RESET (RESET’s file parameter has a mode of in
out. The standard input file can be used only with a mode of in). Example 2–9
declares the variable TERMINAL for this purpose.

Example 2–9 can be extended to obtain whatever data is on each line by using
those TEXT_IO operations that read data from a string (in this case, the string
variable LINE).

After trying Example 2–9, a Ctrl/Z is interpreted sometimes as a file terminator
and sometimes as a line terminator followed by a page terminator followed by
a file terminator. An explanation for this follows:

• Ctrl/Z requires a prior line.

• If there is a prior line, the Ctrl/Z is interpreted as a file terminator.

• If there is no prior line, the Ctrl/Z inserts a null line, and is interpreted
as a line terminator followed by a page terminator followed by a file
terminator.

A call to GET_LINE that encounters a Ctrl/Z may or may not return a null line
before resulting in an END_ERROR.

Input-Output Facilities 2–69



Example 2–9 Example of Line-Oriented TEXT_IO

with TEXT_IO; use TEXT_IO;
procedure IO_EXAMPLE is

-- This example shows how to input a command line from a
-- terminal. It shows how to prompt using PUT followed by GET,
-- and shows how to recover from END_ERROR (Ctrl/Z).
--
TERMINAL : FILE_TYPE;
subtype LINE_TYPE is STRING(1 .. 132);
LEN : NATURAL;
LINE : LINE_TYPE;

begin

PUT_LINE("This example is programmed so that entering");
PUT_LINE("a Return or Ctrl/Z is ignored.");
PUT_LINE("All other entries are echoed.");
PUT_LINE("To quit, type Q or q.");

-- NOTE: To recover from Ctrl/Z (end-of-file) on a terminal, you
-- must do a RESET. To do a RESET, you must have a file variable.
-- Thus, you must open the file so that it "speaks" to the
-- terminal. You cannot use the standard input file (ADA$INPUT)
-- as the file because RESET takes an ’in out’ file as a
-- parameter, and the standard input file can be used only as an
-- ’in’ parameter.
--
-- This example uses the file variable TERMINAL. When TERMINAL is
-- opened, it is associated with the external file "USER_INPUT:",
-- which you have defined as a logical name that points to the
-- terminal. The file variable TERMINAL can be used as an actual
-- parameter to the RESET procedure.
--
OPEN(TERMINAL, IN_FILE, "USER_INPUT:");
loop

begin
-- Note that calls to PUT are buffered until a NEW_LINE or
-- a GET is entered from the same device. Thus, the
-- sequence ’PUT GET’ results in prompting.
--
PUT("Command> ");
GET_LINE(TERMINAL, LINE, LEN);

(continued on next page)

2–70 Input-Output Facilities



Example 2–9 (Cont.) Example of Line-Oriented TEXT_IO

if LEN = 0 then
PUT_LINE("Thank you for entering a null line.");

else
PUT_LINE("Thank you for entering the command " &

LINE(1 .. LEN));
if LINE(1 .. LEN) = "q" or LINE(1 .. LEN) = "Q" then

PUT_LINE("Exiting now...");
exit;

end if;
end if;

exception
when END_ERROR =>

RESET(TERMINAL);
PUT_LINE("Thank you for entering a Ctrl/Z.");

end;
end loop;

end IO_EXAMPLE;

2.7.1.2 Data-Oriented Method
Example 2–10 shows a data-oriented method of using TEXT_IO operations. A
sequence of data values is obtained using a series of calls to the GET procedure
within a loop. The interpretation of the data is important and embedded in the
code that does the input-output, but how the data is laid out across lines is not
important. The user is expected to enter one data value (not necessarily a line)
at a time. If the wrong kind of data is entered, the exception DATA_ERROR is
raised.

Example 2–10 Example of Data-Oriented TEXT_IO

with TEXT_IO; use TEXT_IO;
with FLOAT_TEXT_IO; use FLOAT_TEXT_IO;
with INTEGER_TEXT_IO; use INTEGER_TEXT_IO;
procedure ANOTHER_IO_EXAMPLE is

TERMINAL : FILE_TYPE;

FLT1_VALUE,
FLT2_VALUE,
FLT3_VALUE : FLOAT;

(continued on next page)

Input-Output Facilities 2–71



Example 2–10 (Cont.) Example of Data-Oriented TEXT_IO

INT1_VALUE,
INT2_VALUE,
INT3_VALUE : INTEGER;

begin

PUT_LINE("This example is programmed so that entering");
PUT_LINE("a Return or Ctrl/Z is ignored.");
PUT_LINE("All other entries are echoed.");
OPEN(TERMINAL, IN_FILE, "USER_INPUT:");

loop
begin

PUT("Enter 3 integers on arbitrary lines");
PUT("(to quit enter 0)");

GET(TERMINAL, INT1_VALUE);
exit when INT1_VALUE = 0;
GET(TERMINAL, INT2_VALUE);
GET(TERMINAL, INT3_VALUE);

PUT("Ok, we got: ");
PUT(INT1_VALUE);
PUT(INT2_VALUE);
PUT(INT3_VALUE);
NEW_LINE;

PUT("Enter 3 floats on arbitrary lines");
PUT("(to quit enter 0.0)");

GET(TERMINAL, FLT1_VALUE);
exit when FLT1_VALUE = 0.0;
GET(TERMINAL, FLT2_VALUE);
GET(TERMINAL, FLT3_VALUE);

PUT("Ok, we got: ");
PUT(FLT1_VALUE);
PUT(FLT2_VALUE);
PUT(FLT3_VALUE);
NEW_LINE;

(continued on next page)

2–72 Input-Output Facilities



Example 2–10 (Cont.) Example of Data-Oriented TEXT_IO

exception
when END_ERROR =>

RESET(TERMINAL);
PUT_LINE("Ok, let’s try again");

end;
end loop;

end ANOTHER_IO_EXAMPLE;

2.7.1.3 Mixed Method
The mixed method of using TEXT_IO operations sometimes obtains whole lines
using the GET_LINE procedure and sometimes obtains individual data values
using the GET procedure. This method is much trickier than the line-oriented
or data-oriented method because GET and GET_LINE treat line terminators
differently:

• GET skips leading line terminators before reading data.

• GET_LINE (usually) skips line terminators after reading data.

Therefore, if you follow a GET with a GET_LINE, the GET_LINE is likely to
return a null string found at the end of the current line.

To make GET and GET_LINE compatible, you need to follow the last GET on
every line with a SKIP_LINE. However, the SKIP_LINE ignores any data that
the user may have typed after the GET.

The incompatible nature of GET and GET_LINE makes this style complicated
and error-prone.

2.7.1.4 Flexible Method
In some cases, you may want to mix the kinds of data the user can enter. For
example, you may want to allow users to enter integers where real numbers
are normally expected; that is, to enter 3 when 3.0 is expected. You can
accomplish this by handling the exception DATA_ERROR as follows:

• Try to read a real number.

• If DATA_ERROR is raised, handle it by trying to read an integer.

Input-Output Facilities 2–73



Example 2–11 shows the use of this method. The example also shows how you
can display a default value that is used if the user enters no data (a carriage
return or Ctrl/Z).

Note

When you enter a Ctrl/Z after entering a line that ends with a carriage
return, the Ctrl/Z is considered to be the end-of-file. A sequence of two
Ctrl/Zs is equivalent to the sequence Return Ctrl/Z.

Example 2–11 Example of Flexible TEXT_IO

with TEXT_IO; use TEXT_IO;
with INTEGER_TEXT_IO; use INTEGER_TEXT_IO;
with LONG_FLOAT_TEXT_IO; use LONG_FLOAT_TEXT_IO;
procedure GET_NUM (INPUT: in out FILE_TYPE; X: in out LONG_FLOAT) is

NUM : INTEGER;
subtype LINE_TYPE is STRING(1 .. 132);
LINE : LINE_TYPE;
L, LAST: INTEGER;

begin

(continued on next page)

2–74 Input-Output Facilities



Example 2–11 (Cont.) Example of Flexible TEXT_IO

PUT(" [");
PUT(X,3,2,0);
PUT("]: ");
loop

begin
GET_LINE(INPUT, LINE, L);
exit when L = 0;
GET(LINE(1 .. L),X,LAST);
exit;

exception
when END_ERROR =>

RESET(INPUT);
exit;

when DATA_ERROR =>
begin

GET(LINE(1 .. L),NUM,LAST);
X := LONG_FLOAT(NUM);
exit;

exception
when DATA_ERROR =>

PUT(" Invalid data, try again: ");
end;

end;
end loop;

end GET_NUM;

--------------------------------------------------------

with GET_NUM;
with TEXT_IO; use TEXT_IO;
with INTEGER_TEXT_IO; use INTEGER_TEXT_IO;
with LONG_FLOAT_TEXT_IO; use LONG_FLOAT_TEXT_IO;
procedure THIRD_IO_EXAMPLE is

NUM : LONG_FLOAT := 1.0;
INPUT: TEXT_IO.FILE_TYPE;

(continued on next page)

Input-Output Facilities 2–75



Example 2–11 (Cont.) Example of Flexible TEXT_IO

begin

OPEN(INPUT,IN_FILE,"TT:");
loop

PUT("Enter a real or integer format number (0 to exit) ");
exit when NUM = 0.0;
GET_NUM(INPUT,NUM);
NEW_LINE;
PUT("Ok, we received: ");
PUT(NUM);
NEW_LINE;

end loop;

end THIRD_IO_EXAMPLE;

2.7.2 Line Terminators, Page Terminators, and File Terminators
The Ada language defines ‘‘logical’’ text files and text file operations in terms
of line terminators, page terminators, and file terminators (see Chapter 14
of the DEC Ada Language Reference Manual). This definition means that a
text file is logically structured so that the end of a line is marked by a line
terminator (LT), the end of a page is marked by a line terminator followed by a
page terminator (LT PT), and the end of a file is marked by a line terminator
followed by a page terminator followed by a file terminator (LT PT FT).
Figure 2–3 shows a three-page text file.

2–76 Input-Output Facilities



Figure 2–3 An Ada Text File, Showing Line, Page, and File Terminators

T H

I

SI

S

T H

E

1

2

3

4

5

6

7

8

9

8

F

T

PT

T

AR

I S

G

E

LT

P

H

A

E S E C O N D

G E I S B L A N K

PT

H I S I S T H E

LTH I R DT P A G E

 

LT

A N D T H E E N D O F

T H E F I L E LT PT

LT

FT

15141312111097654321
Line 

Number

Column
Number

,

.   

.   

.   

ZK−4041−GE

LT

LT

LT

PTLT

DEC Ada interprets these terminators as follows:

• A line terminator (LT) is designated by the end of an RMS record except
when the next record in the file logically represents a line terminator
followed by a page terminator (LT PT; see the next item). In an empty file,
a line terminator is designated by the end of the file. In a line of indefinite
line length, the line terminator occurs in the last record in the line, and
has the same properties as any other line terminator. See Section 2.7 for
more information about indefinite-line-length files.

• A line terminator followed by a page terminator (LT PT) is designated by
one of the following:

An entire record consisting of a single form-feed control character (for
text files with variable-length records)

An entire record with a form-feed control character as the first byte of
the record (for text files with fixed-length records)

Input-Output Facilities 2–77



An empty record with RMS PRN information that indicates a form-feed
control character (for variable-length with fixed-length control records
and files created with the CARRIAGE_CONTROL PRINT attributes)

The end of the file, whenever the last record of the file does not itself
represent a page terminator (that is, when the last record does not
represent a line terminator followed by a page terminator; LT PT)

• A file terminator (FT) is designated by the end of the file. An empty file
represents a line terminator followed by a page terminator followed by a
file terminator (LT PT FT). If the file is not empty and the last record of the
file does not represent a line terminator followed by a page terminator (LT
PT) (if, for example, the file consists of a single line ending in only a line
terminator), then the end of the file represents a page terminator followed
by a file terminator (PT FT). When the last record of the file represents a
line terminator followed by a page terminator (LT PT), the end of the file is
a file terminator (FT).

For example, an external file created by the following three operations contains
exactly one empty record:

CREATE (MY_FILE);
NEW_LINE(MY_FILE);
CLOSE (MY_FILE);

Because the NEW_LINE procedure uses the default spacing of 1 and because
no new pages are created, the NEW_LINE in this example produces one line
terminator (LT). In this case, a line terminator is represented by a single,
empty RMS record in the corresponding external file. (See the DEC Ada
Language Reference Manual for a complete description of the NEW_LINE
procedure.)

By replacing the NEW_LINE procedure with a NEW_PAGE procedure, you
would produce a file with one recorD consisting of a single form-feed control
character. (MY_FILE has variable-length records because it is created using
the default attributes provided by TEXT_IO.) By completely eliminating the
NEW_LINE operation, you would produce an empty file. All three cases
mentioned produce the same logical file consisting of a line terminator followed
by a page terminator followed by a file terminator (LT PT FT).

2–78 Input-Output Facilities



2.7.3 Text Input-Output Buffering
Line buffering is done for most text input-output operations (terminal or
nonterminal). Line buffering means that as characters are read or written to
a DEC Ada text file, they are stored in an internal line buffer until a complete
record can be transferred through RMS. Line buffering is done because DEC
Ada TEXT_IO operations are implemented with RMS input-output operations.
RMS operations always involve complete records, so the transfer of characters
between a physical input-output device and a DEC Ada text file is complete
only when a line terminator is detected (except in certain cases involving
indefinite-line-length files).

Line buffering has the following effects:

• Terminal input is not processed until the line is terminated by a carriage
return (or other line terminator).

• In situations when you provide more information in a line than the current
input operation needs, the remaining characters are kept in a buffer to be
processed by subsequent input operations. Each time an operation requires
more input from the external file, a new read operation from that file is
initiated.

• Text output is buffered until a NEW_LINE or a NEW_PAGE (or any other
operation that in effect performs a NEW_LINE or a NEW_PAGE, such as
PUT_LINE) is executed.

Partial buffering is done when you are performing terminal output, and
you have specified the attributes FDL CARRIAGE_CONTROL CARRIAGE_
RETURN or CARRIAGE_CONTROL PRINT in a CREATE or OPEN FORM
parameter (see Section 2.3). (PRINT is the default CARRIAGE_CONTROL
attribute provided by the package TEXT_IO for external files that are
terminals; see Table 2–13.)

Partial buffering means that PUT operations to the terminal output file are
buffered until one of the following actions occurs:

• Input is attempted for any other file that is associated with the same
terminal device. For example, your program executes a PUT, or a series of
PUT operations, followed by a GET.

• Execution of one or more PUT operations causes 1000 or more characters
to be written to the buffer.

Input-Output Facilities 2–79



When one of these actions occurs, the contents of the file buffer is output to
your terminal whether or not the record represented by the buffer is complete.
For example, the following program buffers the four characters produced by
the PUT operations. Then, when the GET is executed, the program prints the
letters ‘‘abcd’’ on the screen as a single line and waits for input.

with TEXT_IO; use TEXT_IO;
procedure PRINTCHAR is

C: CHARACTER;
begin

PUT(’a’);
PUT(’b’);
PUT(’c’);
PUT(’d’);
GET(C);
PUT(C);

end PRINTCHAR;

The contents of any text file buffers (partial or full) are also written to your
terminal (flushed) whenever your program image exits (such as when an
unhandled exception propagates out of a main program). In this situation, all
unclosed files are also closed by an exit handler.

2.7.4 TEXT_IO Carriage Control
The FDL CARRIAGE_CONTROL attribute specifies the carriage-control format
for a file. You can also use this attribute to control line buffering for files being
written to terminal devices.

As described in Section 2.3, you can specify the CARRIAGE_CONTROL
attribute with a FORM parameter as follows:

TEXT_IO.CREATE (FILE => file_object_name,
MODE => OUT_FILE,
NAME => external_file_name,
FORM => "RECORD; CARRIAGE_CONTROL value;");

TEXT_IO.OPEN (FILE => file_object_name,
MODE => OUT_FILE,
NAME => external_file_name,
FORM => "RECORD; CARRIAGE_CONTROL value;");

The CARRIAGE_CONTROL attribute is a creation-time attribute (see
Section 2.3.2), and you cannot use an OPEN procedure to change what
was specified when the file was created.

2–80 Input-Output Facilities



The possible CARRIAGE_CONTROL values are as follows:

CARRIAGE_RETURN The default if the device is not a terminal. Generally provides
the desired behavior for most terminal and nonterminal
applications.

PRINT The default if the device is a terminal and the file mode
is OUT_FILE. Results in the use of a variable-length with
fixed-length control (VFC) record format. The control portion
of each record contains carriage-control information that
indicates line and page boundaries.

NONE Useful in applications that need to move the cursor randomly
and update the screen. Output to files specified with this
option is buffered until an operation that requires a line
terminator is executed. Calls to PUT_LINE or NEW_LINE
can be used to control when the actual RMS line termination
operation occurs.

FORTRAN Useful for applications that want to use FORTRAN carriage-
control characters.

Table 2–14 summarizes the meaning of the FDL CARRIAGE_CONTROL
values when they are applied to DEC Ada text files (for both terminal and
nonterminal input-output).

Table 2–14 DEC Ada Carriage-Control Options

Option Kind of Input-Output Carriage Control

CARRIAGE_RETURN Terminal input
Nonterminal input

Each record corresponds to a single
line. A 1-byte record containing a
form feed designates a page.

Terminal output A VFC record format with a 2-byte
control portion is used regardless
of what is specified in the form
string. The control portion of the
record specifies the carriage-control
information (line feed, carriage
return, null, or page).

Nonterminal output The record attributes for the file
imply that each record is preceded by
a line feed and followed by a carriage
return when the file is displayed or
printed. A 1-byte record containing a
form feed designates a page.

(continued on next page)

Input-Output Facilities 2–81



Table 2–14 (Cont.) DEC Ada Carriage-Control Options

Option Kind of Input-Output Carriage Control

PRINT Terminal input Each record corresponds to a single
line. A 1-byte record containing a
form feed designates a page.

Nonterminal input Control information indicates that
a page is interpreted as a page
terminator. Otherwise, a record is
assumed to correspond to a line.

Terminal output
Nonterminal output

A VFC record format with a 2-byte
control portion is used regardless
of what is specified in the form
string. The control portion of the
record specifies the carriage-control
information (line feed, carriage
return, or page).

NONE Nonterminal input
Terminal input

Each record corresponds to a single
line. A 1-byte record containing a
form feed designates a page.

Terminal output
Nonterminal output

An RMS record is written whenever
an operation is executed that
requires a line terminator. However,
no carriage-control information is
written for lines, and the record
attributes for the file do not imply
that records are preceded by a line
feed or followed by a carriage return.
A 1-byte record containing a form
feed designates a page.

FORTRAN Terminal input
Nonterminal input

The first byte of each record
(containing carriage-control
information) is considered to be data.
Each record corresponds to a single
line. A 1-byte record containing a
form feed designates a page.

Terminal output
Nonterminal output

No carriage-control information is
supplied by DEC Ada. The first
byte PUT by the user in each line is
interpreted as a FORTRAN carriage-
control character (see Table 2–15).

2–82 Input-Output Facilities



Table 2–15 FORTRAN Carriage-Control Characters

Character Meaning

’ + ’ Overprinting: starts output at the beginning of the current line.

’ ’ Single spacing: starts output at the beginning of the next line.

’ 0 ’ Double spacing: skips a line before starting output.

’ 1 ’ Paging: starts output at the top of a new page.

’ $ ’ Prompting: starts output at the beginning of the next line and
suppresses the carriage return at the end of the line.

ASCII.NUL Prompting with overprinting: suppresses the line feed at the
beginning of the line and the carriage return at the end of the line.

2.7.5 Predefined Instantiations of TEXT_IO Packages
To make your use of the generic TEXT_IO operations more efficient, DEC Ada
provides the following predefined library packages that instantiate the integer
and floating-point operations for the predefined integer and floating-point
types:

Package Name Instantiation

INTEGER_TEXT_IO INTEGER_IO(INTEGER)

SHORT_INTEGER_TEXT_IO INTEGER_IO(SHORT_INTEGER)

SHORT_SHORT_INTEGER_TEXT_IO INTEGER_IO(SHORT_SHORT_INTEGER)

FLOAT_TEXT_IO FLOAT_IO(FLOAT)

LONG_FLOAT_TEXT_IO FLOAT_IO(LONG_FLOAT)

LONG_LONG_FLOAT_TEXT_IO1 FLOAT_IO(LONG_LONG_FLOAT)

1On VAX systems only.

Instead of writing out the instantiation for INTEGER_IO in each program
unit that does text input-output of integers, you can make the predefined
package INTEGER_TEXT_IO available to the applicable units (or to your
whole program). For example:

Input-Output Facilities 2–83



with INTEGER_TEXT_IO; use INTEGER_TEXT_IO;
procedure WRITEOUT_INTEGERS is

A,B: INTEGER;
begin

A := 10;
PUT(A);
B := A**2;
PUT(B);
. . .

end WRITEOUT_INTEGERS;

Each predefined package is produced by compiling the equivalent of the
following instantiation:

with TEXT_IO;
package INTEGER_TEXT_IO is new TEXT_IO.INTEGER_IO(INTEGER);

If you want to use other TEXT_IO operations, such as string operations or
INTEGER_TEXT_IO operations that involve files other than standard files
(files that you declare in your program), you must also make the package
TEXT_IO available to your program. For example:

with TEXT_IO; use TEXT_IO;
with INTEGER_TEXT_IO; use INTEGER_TEXT_IO;
procedure WRITE_STRINGS_AND_INTS is

X: INTEGER;
F: FILE_TYPE;

begin
PUT("The value of X is "); -- TEXT_IO.PUT
X := -24;
PUT(X); -- INTEGER_TEXT_IO.PUT
NEW_LINE; -- TEXT_IO.NEW_LINE
CREATE(F); -- TEXT_IO.CREATE
PUT(F,X); -- INTEGER_TEXT_IO.PUT
. . .

end WRITE_STRINGS_AND_INTS;

2.8 Input-Output and Exception Handling
The DEC Ada input-output packages raise errors that are defined in the
packages IO_EXCEPTIONS and AUX_IO_EXCEPTIONS. See the DEC Ada
Language Reference Manual for descriptions of these errors and the operations
that raise them. See Chapter 3 of this manual for information on exception
handling.

2–84 Input-Output Facilities



2.9 Input-Output and Tasking
DEC Ada input-output operations cause only the executing task to wait until
the operation is completed. Other tasks in the process can continue executing
while the task executing the input-output operation is waiting.

Also, each file operation is synchronized so that a series of operations to the
same file takes place sequentially, rather than concurrently. Operations on
the same file are indivisible. If one task is performing an operation on a file
and another task attempts to perform an operation on the same file, DEC
Ada causes the second task to wait until the earlier operation is finished.
Any number of tasks may be waiting for a file to be released by a task that is
performing an operation on that file. This synchronized access lets multiple
tasks perform concurrent input-output operations on the same file without
corrupting the file.

For example, if one task executes TEXT_IO.PUT(F,"Reach") and another task
concurrently executes TEXT_IO.PUT(F, "Out"), where F is a file object, the
external file associated with F receives either "ReachOut" or "OutReach".
DEC Ada does not produce "ReOuacth".

If you want to execute concurrent input-output operations from multiple
processes, you should use RMS record locking to provide synchronization
among the various files.

Input-Output Facilities 2–85



3
Exception Handling

DEC Ada exception handling as defined in Chapter 11 of the DEC Ada
Language Reference Manual, is implemented using the routines and related
OpenVMS system services that comprise the OpenVMS condition handling
facility. However, DEC Ada exception handling is implemented so that you
do not need to call condition-handling facility routines and services directly.
This chapter outlines how DEC Ada exception handling is related to OpenVMS
condition handling and explains how to do exception handling in an Ada
program that calls or is called from the external environment.

Ada exception handling and the rules for using the DEC Ada pragmas to
import and export exceptions are covered in Chapters 11 and 13 of the DEC
Ada Language Reference Manual. The condition-handling facility is described
in the OpenVMS Calling Standard. You should be familiar with the material
in these manuals before using the information in this chapter.

3.1 Relationship Between Ada Exception Handling and
OpenVMS Condition Handling

All DEC Ada exceptions are encoded as OpenVMS condition values as follows:

• Each predefined exception is encoded as a unique 32-bit condition value.

• Each user-defined exception is encoded either as a unique 32-bit condition
value or as the general DEC Ada condition value denoted by the name
ADA$_EXCEPTION plus a signal argument that is the address of the
exception name.

Section 3.1.1 lists the predefined exceptions and explains the encoding and
naming of exceptions in more detail.

Once defined, an exception can be raised. Raising generally causes the
OpenVMS Run-Time Library routine LIB$STOP to be called and the
exception’s condition value to be passed as one of the signal arguments.
A vector of signal arguments and a vector of mechanism arguments are built
and a search is then made for an exception handler. The same sequence of

Exception Handling 3–1



events also occurs if a signaled OpenVMS condition is propagated to an Ada
program from the external environment.

In DEC Ada, a general condition handler is automatically established for all
stack frames that have exception handlers, and a run-time table of active
exception parts is maintained for each frame. (Because blocks generally do
not have their own stack frames, this condition handler is established for the
subprogram, package body, or task body that contains one or more blocks with
exception handlers.) The general condition handler determines which specific
Ada exception handler in the frame eventually gains control (if any).

Each frame on the stack is searched for a handler. When a handler is found,
the stack is unwound to the handler, and execution continues from there.

If no handler is found, and the exception propagates as far as it can go—to
the level of a task or a main program—an OpenVMS or DEC Ada run-time
catch-all handler gains control. Catch-all handlers are located in the frames
enclosing the main program and library packages, each task body, and each
accept body. The catch-all handler produces a message and program execution
proceeds as follows:

• If an Ada exception or an OpenVMS condition with a severity of severe
reaches an Ada run-time library catch-all handler, the handler displays
the exception or condition message, and then the task, main program, or
rendezvous becomes completed. (However, when an exception or severe
condition leaves an accept body, the message is not displayed because
the exception or condition propagates to both of the tasks involved in the
rendezvous.)

• If an unhandled OpenVMS condition (not an Ada exception) with a severity
of success, information, warning, or error (any severity except severe)
reaches an Ada run-time library catch-all handler, the handler displays
the condition message and continues program execution. This behavior is
consistent with the behavior of OpenVMS catch-all handlers.

• The Ada run-time library catch-all handlers display a warning when an
unhandled exception may have to wait for dependent tasks to terminate.

Catch-all handler messages are sent to the output files denoted by the logical
names SYS$OUTPUT and SYS$ERROR. See Chapter 2 for more information
on how these names are interpreted. See the OpenVMS Calling Standard for
more information about OpenVMS default handlers. See Chapter 7 for more
information on exception handling and tasks.

3–2 Exception Handling



Table 3–1 summarizes the DEC Ada implementation of exception handling.

Table 3–1 Relationship Between Ada Exception Handling and the OpenVMS
Condition-Handling Facility

Ada Exception Handling Condition-Handling-Facility Implementation

Enter an Ada frame with an exception
part.1

Maintain information about currently
active exception parts with a pointer to
an internal DEC Ada run-time table.

On VAX systems, establish the general
DEC Ada condition handler for the
surrounding stack frame.2

Raise an exception. Signal a condition with a call to the
LIB$STOP routine, or signal a hardware-
generated condition.

Invoke an exception handler. Unwind (SYS$UNWIND) to the stack
frame of the Ada frame containing the
exception part, and to the PC at the start
of the appropriate exception handler.

Re-raise the same exception. Call the LIB$STOP routine with a copy
of the signal arguments that caused
invocation of the currently active
exception part. The SS$_RESIGNAL
feature of the condition-handling facility
is not used to re-raise an exception.

No handler for the exception. Signal a condition with a call to the
LIB$SIGNAL routine (which may result
in program continuation at the point after
the signal).

1The term Ada frame refers to a frame, as defined by the Ada language: a block statement or the
body of a subprogram, package, task unit, or generic unit.
2The term stack frame (synonymous with the term call frame) refers to a run-time OpenVMS
structure that stores information about a subprogram, package, task, or instantiated generic unit,
and includes information about any contained blocks.

(continued on next page)

Exception Handling 3–3



Table 3–1 (Cont.) Relationship Between Ada Exception Handling and the
OpenVMS Condition-Handling Facility

Ada Exception Handling Condition-Handling-Facility Implementation

Raise an Ada format exception.3 Call the LIB$STOP routine with the
condition value ADA$_EXCEPTION
and one signal argument. The signal
argument is the address of a counted
ASCII string (ASCIC string) that is the
text of the name of the exception.

Raise a OpenVMS format exception.3 Call the LIB$STOP routine with a unique
32-bit OpenVMS condition value.

3Exceptions with an Ada format are any user-defined exceptions declared without the import-
export pragmas, or any user-defined exceptions declared with the import-export pragmas that
specify a value of ADA for the pragma FORM parameter. Exceptions with OpenVMS format are
any predefined exceptions or any user-defined exceptions declared with import-export pragmas
that specify a value of OpenVMS for the pragma FORM parameter. See Sections Section 3.1.1,
Section 3.4.1,
and Section 3.4.2.

The raising of an exception in an Ada program involves calling the LIB$STOP
routine. (See Table 3–1.) This action implements the Ada language
requirement that the occurrence of an exception must terminate the current
Ada frame and transfer control to an exception handler. The effect is that
once an exception is raised in an Ada program, control cannot return to the
point at which the exception occurred: execution is noncontinuable. See
Sections Section 3.4.4 and Section 3.4.5 for a discussion of the consequences in
mixed-language programs.

In some cases, the exception’s signal argument vector may be copied before
control is transferred to a handler. For example, if the handler re-raises
the exception, the signal argument vector must be copied so that the same
signal arguments can be used to raise the exception again. A copy is also
needed when an exception is raised at the point of a task rendezvous (the
language requires that the exception be propagated to both the called and the
calling task). Section 3.1.2 describes how signal argument copying is done and
outlines some side effects.

3–4 Exception Handling



3.1.1 Naming and Encoding Ada Exceptions
DEC Ada provides predefined exceptions in the packages STANDARD, IO_
EXCEPTIONS, AUX_IO_EXCEPTIONS, and SYSTEM. Each predefined
exception is encoded with a OpenVMS format: a unique 32-bit OpenVMS
condition value with a symbolic name. The predefined DEC Ada exceptions
have symbolic names of the following form:

ADA$_exception_name

The exception PROGRAM_ERROR (from the package STANDARD) has the
symbolic name ADA$_PROGRAM_ERROR, the exception DATA_ERROR (from
the package IO_EXCEPTIONS) has the symbolic name ADA$_DATA_ERROR,
and so on.

The predefined exceptions are listed in Table 3–2. The situations in which they
are raised are described in the DEC Ada Language Reference Manual.

Table 3–2 Ada Predefined Exceptions

Package Exceptions

AUX_IO_EXCEPTIONS EXISTENCE_ERROR
KEY_ERROR
LOCK_ERROR

IO_EXCEPTIONS STATUS_ERROR
MODE_ERROR
NAME_ERROR
USE_ERROR
DEVICE_ERROR
END_ERROR
DATA_ERROR
LAYOUT_ERROR

STANDARD CONSTRAINT_ERROR
NUMERIC_ERROR
PROGRAM_ERROR
STORAGE_ERROR
TASKING_ERROR

SYSTEM NON_ADA_ERROR

Ada lets you declare your own exceptions so that you can anticipate and handle
more specific errors than those covered by the predefined exceptions. For
example:

INVALID_INPUT : exception;

This declaration lets you use the exception name INVALID_INPUT in a raise
statement and as an exception choice in an Ada frame.

Exception Handling 3–5



In general, user-defined exceptions are encoded with an Ada format. They
all have the same general 32-bit OpenVMS condition value with the symbolic
name ADA$_EXCEPTION, plus an additional signal argument that makes
each value unique. This signal argument is the address of the counted ASCII
string (ASCIC string) that represents the name of the exception. (The first
byte of the string contains the number of characters in the exception name.
The remaining bytes contain the characters of the exception name.) The string
address is assigned at link time and can change each time the program is
linked.

You can cause user-defined exceptions to be encoded with a OpenVMS format
by using the pragmas IMPORT_EXCEPTION and EXPORT_EXCEPTION. See
Section 3.4 for more information.

3.1.2 Copying Exception Signal Arguments
An exception’s signal argument vector is copied if the exception is re-raised by
its handler or if the exception is raised at the point of a task rendezvous. This
copying is done so that essentially the same signal arguments are used when
the exception is propagated.

When a signal argument vector is copied, it is marked as such by being chained
to one of two special DEC Ada-specific primary condition values:

• ADA$_EXCCOP, which indicates that the copy is complete

• ADA$_EXCCOPLOS, which indicates that the original signal has been
modified and some information may have been lost

The chaining causes ADA$_EXCCOP or ADA$_EXCCOPLOS to become the
primary condition in the signal argument vector. The condition that originally
caused the exception to be raised then becomes the second condition value
in the signal argument vector. The principal reason for chaining the DEC
Ada-specific primary condition values to the copied signal argument vector is
to prevent incorrect handling—such as continuation—of the original condition.
Once a condition has been copied, it has an Ada semantic effect, which does
not allow continuation.

Information may be lost from the signal argument vector during copying if
the DEC Ada run-time library suspects that the vector has an argument that
points to a stack area that must be unwound to reach an exception handler. In
general, the optional Formatted ASCII Output (FAO) arguments are the only
part of the signal argument vector that is likely to point to such a stack area.
When the DEC Ada run-time library suspects that the FAO arguments point to
a stack area, it zeroes the arguments.

3–6 Exception Handling



Information may be lost only for non-Ada conditions with FAO arguments.
Information is not lost in the following cases:

• For Ada exceptions

• For non-Ada conditions that have no FAO arguments

• For hardware conditions

• For RMS conditions

• For OpenVMS system service conditions

Whether or not information has been lost by copying, the handling of an
exception in Ada is not affected. The handling of the exception in non-Ada
code is affected only if messages that depend on zeroed FAO arguments are
involved. Such messages are printed with embedded FAO directives (for
example, !AS, !UL, and so on).

3.1.3 The Matching of Ada Exceptions and System-Defined Conditions
In DEC Ada, the matching of exceptions to exception choices depends on the
matching of the condition values assigned to the exception and the choice
names. In particular, two user-defined Ada-format exceptions—exceptions
encoded as ADA$_EXCEPTION plus an ASCIC string—match only if the
addresses of their ASCIC strings match. If the raised exception is an imported
OpenVMS condition (see Section 3.4.1), it matches an exception choice only if
the name in the exception choice matches the internal name of the imported
OpenVMS condition. Imported OpenVMS conditions may also match the
exception choice others and the exception choice SYSTEM.NON_ADA_ERROR
(see Section 3.4.3).

Some OpenVMS conditions are treated as being equivalent to certain Ada
predefined exceptions. See Table 3–3 for a listing. When one of these
conditions is signaled during the execution of an Ada program, the effect
is as if the predefined exception were raised, and the condition can be caught
by an Ada exception handler that exists to catch the predefined exception.
These conditions do not match the exception choice SYSTEM.NON_ADA_
ERROR. See Section 3.4.3.

Exception Handling 3–7



Table 3–3 System-Defined Conditions that Match Ada Exceptions

Condition Name Meaning Exception Name

CMA$E_STACKOVF1 DECthreads stack
overflow

STORAGE_ERROR

CMA$E_NOSTACKMEM1 DECthreads no stack
memory

STORAGE_ERROR

CMA$E_INSFMEM1 DECthreads insufficient
memory

STORAGE_ERROR

MTH$_UNDEXP1 Undefined exponentia-
tion

CONSTRAINT_ERROR

SS$_FLTDIV Floating/decimal divide
by zero trap

CONSTRAINT_ERROR

SS$_FLTDIV_F Floating divide by zero
fault

CONSTRAINT_ERROR

SS$_FLTOVF Floating overflow trap CONSTRAINT_ERROR

SS$_FLTOVF_F Floating overflow fault CONSTRAINT_ERROR

SS$_HPARITH1 High-performance
arithmetic trap

CONSTRAINT_ERROR

SS$_INTDIV Integer divide by zero
trap

CONSTRAINT_ERROR

SS$_INTOVF Integer overflow trap CONSTRAINT_ERROR

SS$_RANGEERR1 Range error CONSTRAINT_ERROR

SS$_STKOVF Stack overflow STORAGE_ERROR

1On Alpha systems only.

These conditions match CONSTRAINT_ERROR or STORAGE_ERROR but
are not converted to CONSTRAINT_ERROR or STORAGE_ERROR. If one
of them is signaled and propagates out of a main program, the result is an
informational message identifying the event as a CONSTRAINT_ERROR or
STORAGE_ERROR (that is, you could have caught it with a CONSTRAINT_
ERROR or STORAGE_ERROR handler), as well as the error message and
traceback associated with the actual condition.

3–8 Exception Handling



Note

On Alpha systems, the hardware access violations (SS$_ACCVIOs)
that result during stack checking are converted to the condition SS$_
STKOVF (which matches the Ada predefined exception STORAGE_
ERROR. See Section 3.1.3 and Table 3–3.

3.2 Making the Best Use of Ada Exception Handling
To make the best use of Ada exception handling, keep the following principles
in mind:

• Code handlers for specific exceptions. In particular, do not use a general
others handler when you could write an explicit handler for a specific
exception.

• Allow unexpected exceptions to propagate instead of being absorbed.

For example, if you use an others choice to handle the predefined input-output
exception END_ERROR, the handler IS also invoked for any unexpected
exception, such as ‘‘disk quota exceeded.’’ A better solution would be to provide
a specific handler for END_ERROR and let unexpected exceptions propagate,
thereby making them visible.

Similarly, the following construct absorbs all exceptions without letting them
propagate and without issuing a message:

when others => null;

Such a statement is unlikely to be able to handle all possible exceptions and
recover correctly.

To ensure that unexpected exceptions do propagate and become visible, end
your others exception choices with a raise statement. For example:

begin
-- Sequence of statements for a block.

. . .
exception

when SINGULAR | CONSTRAINT_ERROR =>
PUT (" MATRIX IS SINGULAR ");

when others =>
-- Perform some cleanup operations.

. . .
raise;

end;

Exception Handling 3–9



Here, if an exception other than SINGULAR or CONSTRAINT_ERROR is
raised, the when others handler gains control, and the exception is re-raised
in the containing frame.

3.3 Suppressing Checks
In accordance with the language definition, DEC Ada provides a set of run-
time checks that underlie the predefined exceptions. The DEC Ada Language
Reference Manual explains each check that the compiler performs and gives
the corresponding exceptions that can arise. Table 3–4 summarizes this
correspondence.

Table 3–4 Run-Time Checks and Their Corresponding Predefined Exceptions

Check Predefined Exception Raised

ACCESS_CHECK
DISCRIMINANT_CHECK
INDEX_CHECK
LENGTH_CHECK
RANGE_CHECK

CONSTRAINT_ERROR

DIVISION_CHECK
OVERFLOW_CHECK

CONSTRAINT_ERROR

ELABORATION_CHECK PROGRAM_ERROR

STORAGE_CHECK STORAGE_ERROR

To suppress checks, you can use the pragmas SUPPRESS and SUPPRESS_
ALL (see the DEC Ada Language Reference Manual), or you can use the
/NOCHECK qualifier on the ADA and ACS COMPILE and RECOMPILE
commands (see Developing Ada Programs on OpenVMS Systems).

Note

When you suppress checks, your program may become erroneous.
For example, if you suppress checks in a library unit or subunit that
contains a number of arrays, you suppress INDEX_CHECK, but array
processing continues whether or not you exceed the specified ranges.
The results of that unit or subunit are unpredictable. If you are using
the pragmas SUPPRESS or SUPPRESS_ALL or the /NOCHECK
qualifier to improve the run-time performance of your program,
consider using the techniques for eliminating checks discussed in
Chapter 8.

3–10 Exception Handling



The presence of the pragmas SUPPRESS or SUPPRESS_ALL or the use of the
/NOCHECK qualifier does not guarantee that exceptions are not raised. For
example, certain checks are not suppressed in DEC Ada. These checks are the
hardware checks DIVISION_CHECK and OVERFLOW_CHECK (for floating-
point types) where the hardware catches the error and passes control directly
to the operating system. STORAGE_CHECK is also not suppressed (except for
some stack checks on VAX systems). An exception may be propagated from a
called unit in which the corresponding check was suppressed. The predefined
exception corresponding to DIVISION_CHECK is propagated from subunit B
to MAIN_EXCEPTIONS in Example 3–1.

3.4 Mixed-Language Exception Handling
DEC Ada provides the pragmas IMPORT_EXCEPTION and EXPORT_
EXCEPTION for use in a mixed-language programming environment:

• The pragma IMPORT_EXCEPTION lets you import an exception declared
in a non-Ada program and handle it within your Ada program.

• The pragma EXPORT_EXCEPTION lets you export an Ada exception so
that it can be treated as a OpenVMS condition in a non-Ada program.

DEC Ada also provides specific facilities for signaling and handling OpenVMS
conditions in the OpenVMS environment: the function SYSTEM.IMPORT_
VALUE, the package CONDITION_HANDLING, and the package STARLET.

The following sections explain how to use these features.

For information on testing status values returned by OpenVMS system
routines, see Chapter 5.

3.4.1 Importing Exceptions
The pragma IMPORT_EXCEPTION associates an Ada exception name with
either a OpenVMS condition value or another Ada exception name—both
external to your program—and then lets you use that name in your Ada
program. For example:

SQRT_NEGATIVE: exception;
pragma IMPORT_EXCEPTION (SQRT_NEGATIVE, "MTH$_SQUROONEG");

The full syntax and usage rules for this pragma are given in Chapter 13 of the
DEC Ada Language Reference Manual.

Exception Handling 3–11



Example 3–1 Use of Pragma SUPPRESS_ALL

with TEXT_IO; use TEXT_IO;
with INTEGER_TEXT_IO; use INTEGER_TEXT_IO;
procedure MAIN is

procedure A is -- Checks are not
begin -- suppressed in A.

. . .
end;

procedure B is separate; -- Checks are
-- suppressed in B.

procedure C is separate; -- Checks are not
-- suppressed in C.

begin
B; -- Exception B

-- propagated to here.

exception
when NUMERIC_ERROR | CONSTRAINT_ERROR =>

PUT_LINE("Division by zero -- propagated up!");

end MAIN;

-----------------------------------------------------

separate (MAIN)
procedure B is

A: INTEGER := 1;
I: INTEGER := 0;

begin
A := A/I; -- Exception corresponding

-- to DIVISION_CHECK is
-- raised, even though

PUT(A); -- SUPPRESS_ALL is
-- specified.

end B;
pragma SUPPRESS_ALL; -- Pragma must follow the

-- unit to which
-- it applies.

------------------------------------------------------

separate (MAIN)
procedure C is
begin

. . .
end C;

3–12 Exception Handling



You can use the pragma IMPORT_EXCEPTION to associate an Ada exception
name with either a numeric condition value or a global symbol that denotes
a OpenVMS condition. The CODE parameter represents a numeric condition
value, and the external designator represents a global symbol. You can specify
the format of the exception with the FORM parameter (see Section 3.1.1 for
definitions of Ada and OpenVMS formats. The format for imported exceptions
is OpenVMS by default). You can raise an imported exception with a raise
statement and handle it with an Ada exception handler that names the
exception.

In the following example, the procedure QUADRATIC_FORMULA computes
and prints the real roots of a quadratic equation. The procedure imports the
OpenVMS condition MTH$_SQUROONEG; the pragma IMPORT_EXCEPTION
associates the exception name SQRT_NEGATIVE with the OpenVMS condition
MTH$_SQUROONEG. If the call to the SQRT function in the procedure
QUADRATIC_FORMULA attempts to compute the square root of a negative
number, the exception SQRT_NEGATIVE is raised. Control then transfers to
the exception handler, which completes execution of the procedure by printing
a message.

with FLOAT_TEXT_IO; use FLOAT_TEXT_IO;
with FLOAT_MATH_LIB; use FLOAT_MATH_LIB;

-- These packages are predefined by DEC Ada
-- for convenience.

with TEXT_IO; use TEXT_IO;
procedure QUADRATIC_FORMULA is

A, B, C, D : FLOAT;
SQRT_NEGATIVE : exception;
pragma IMPORT_EXCEPTION (

SQRT_NEGATIVE, -- Internal designator.
"MTH$_SQUROONEG"); -- External designator.

-- By default use
-- OpenVMS format.

begin

PUT_LINE("Get A, B, and C: ");
GET(A); GET (B); GET(C);
D := SQRT(B**2 - 4.0*A*C);-- Exception will be

-- raised here if
-- B**2 - 4.0*A*C
-- is negative.

PUT("Real Roots : X1 = ");
PUT((-B - D)/(2.0*A));
PUT(" X2 = ");
PUT((-B + D)/(2.0*A));

Exception Handling 3–13



exception
when SQRT_NEGATIVE =>

PUT_LINE("Imaginary Roots.");

end QUADRATIC_FORMULA;

The next example is a declaration that shows how you can import the
OpenVMS condition SS$_NOPRIV using its numeric code. No external symbol
is referenced in this case. (It is illegal if the code option is specified.) Because
it is the default, the VMS format is used. (The VMS format is the required
format for importing OpenVMS conditions.)

SS_NOPRIV: exception;
pragma IMPORT_EXCEPTION (

SS_NOPRIV, -- Internal designator.
CODE => 16#24#); -- Numeric condition value.

You can give a OpenVMS condition value to an Ada exception by first defining
a message symbol condition with the OpenVMS Message Utility (see the
OpenVMS Command Definition, Librarian, and Message Utilities Manual), and
then using IMPORT_EXCEPTION to associate the Ada exception name with
the message symbol. For example:

NEW_VMS : exception;
pragma IMPORT_EXCEPTION (

NEW_VMS, -- Internal designator.
"MSG$_ERRORS", -- External designator of a message symbol

-- defined with the OpenVMS Message Utility.
FORM => VMS); -- Explicitly specify VMS format.

Sections Section 3.4.4 and Section 3.4.5 provide additional discussion and
examples of importing and handling OpenVMS conditions in the OpenVMS
environment.

3.4.2 Exporting Exceptions
The pragma EXPORT_EXCEPTION associates an Ada exception with either
a OpenVMS condition value or another Ada exception name and then lets you
use that name in the external environment. For example:

ADA_ERROR : exception;
pragma EXPORT_EXCEPTION

(ADA_ERROR, -- Internal designator.
"MY_PACKAGE_ADA", -- External designator.
FORM => ADA); -- Ada format.

3–14 Exception Handling



VMS_ERROR : exception;
pragma EXPORT_EXCEPTION

(VMS_ERROR, -- Internal designator.
"MY_PACKAGE_ADA", -- External designator.
FORM => VMS, -- VMS format.
CODE => 16#8018004#); -- VMS condition value.

The full syntax and usage rules for this pragma are given in Chapter 13 of the
DEC Ada Language Reference Manual.

If you export a VMS format exception (see Section 3.1.1) to a non-Ada routine,
that routine can treat the exception as an ordinary OpenVMS condition. In
other words, the routine can process the exception using its own condition-
handling mechanisms.

If you export an Ada format exception (see Section 3.1.1), the external
designator becomes a global symbol, which is the address of the exception’s
ASCIC string name. Because an exception with the Ada format is unique
only in the address of its ASCIC string, any non-Ada routine to which such
an exception is exported must examine the exception’s signal arguments
to determine a match. Similarly, any non-Ada routine to which an Ada
format exception is propagated must determine if the primary condition is
ADA$_EXCEPTION, and, if so, must examine the exception’s first FAO signal
argument to determine if the argument matches the value of the external
designator.

3.4.3 The Exception Choice NON_ADA_ERROR
To let you treat non-Ada conditions as a special subclass of Ada exceptions,
DEC Ada provides the exception choice NON_ADA_ERROR in the package
SYSTEM. This exception choice is encoded as a predefined exception with
the unique condition value ADA$_NON_ADA_ERROR, and it matches the
following:

• Itself

• Any OpenVMS condition whose facility field is not ADA and which does not
match an Ada exception (see Section 3.1.3)

• Ada exceptions for which the pragma IMPORT_EXCEPTION or EXPORT_
EXCEPTION is given and for which the VMS format has been specified

Exception Handling 3–15



For example:

with SYSTEM;
procedure SHOW_NON_ADA_ERROR is

NEW_VMS: exception;
pragma IMPORT_EXCEPTION(NEW_VMS, "SS$_EXQUOTA", VMS);

begin
-- Some statements.
exception
when SYSTEM.NON_ADA_ERROR =>

-- Handler that will catch NEW_VMS
-- (plus other VMS conditions that qualify).
end SHOW_NON_ADA_ERROR;

3.4.4 Signaling OpenVMS Conditions
DEC Ada provides two ways to signal an OpenVMS condition from an Ada
program:

• Import the condition using the pragma IMPORT_EXCEPTION and use an
Ada raise statement to raise the imported exception.

• Signal the condition directly, using a form of the OpenVMS Run-Time
Library routine LIB$SIGNAL or LIB$STOP. The DEC Ada package
CONDITION_HANDLING provides the procedures SIGNAL and STOP for
this purpose.

When you import a condition and signal it with an Ada raise statement,
the condition behaves like an Ada exception, according to Ada semantics.
Consequently, you can handle it with an Ada exception handler. However,
regardless of the condition’s severity, the signal is noncontinuable.

For example, the Ada subprogram in Example 3–2 calls the system service
SYS$GETJPIW, which returns information about one or more OpenVMS
processes. When the condition SS$_NONEXPR occurs in Example 3–2, the
SYS$GETJPIW routine returns the appropriate warning status. However,
because the SS$_NONEXPR condition is imported and treated as an Ada
exception, its severity becomes severe. Because an Ada exception handler
exists for the exception NONEXPR, control passes to the handler.

3–16 Exception Handling



Example 3–2 Handling SYS$GETJPIW Status Values as Ada Exceptions

with SYSTEM; use SYSTEM;
with CONDITION_HANDLING; use CONDITION_HANDLING;
with STARLET; use STARLET;
with TEXT_IO; use TEXT_IO;
with INTEGER_TEXT_IO; use INTEGER_TEXT_IO;
procedure GETJPI_ADA is

-- Declare the variables needed to make the call and print
-- some results.
--
JPI_STATUS : COND_VALUE_TYPE;
PID_ADDRESS : UNSIGNED_LONGWORD := 2;
PIDADR : ADDRESS := PID_ADDRESS’ADDRESS;
IOSB_VALUE : IOSB_TYPE;
ACCOUNT : STRING(1..8);
DFPFC : INTEGER;
FREP0VA : INTEGER;
FREP1VA : INTEGER;
FREPTECNT : INTEGER;
GPGCNT : INTEGER;
. . .

JPI_ITEM_LIST : constant ITEM_LIST_TYPE :=
((8, JPI_ACCOUNT, ACCOUNT’ADDRESS, ADDRESS_ZERO),
(4, JPI_DFPFC, DFPFC’ADDRESS, ADDRESS_ZERO),
(4, JPI_FREP0VA, FREP0VA’ADDRESS, ADDRESS_ZERO),
(4, JPI_FREP1VA, FREP1VA’ADDRESS, ADDRESS_ZERO),
(4, JPI_FREPTECNT, FREPTECNT’ADDRESS, ADDRESS_ZERO),
(4, JPI_GPGCNT, GPGCNT’ADDRESS, ADDRESS_ZERO),
. . .
(0, 0, ADDRESS_ZERO, ADDRESS_ZERO));

-- Declare the possible errors as Ada exceptions.
--
. . .
NONEXPR: exception;
pragma IMPORT_EXCEPTION(NONEXPR,"SS$_NONEXPR");
NOPRIV : exception;
pragma IMPORT_EXCEPTION(NOPRIV, "SS$_NOPRIV");
. . .

(continued on next page)

Exception Handling 3–17



Example 3–2 (Cont.) Handling SYS$GETJPIW Status Values as Ada
Exceptions

-- Print out the values returned in the item list.
--
procedure PRINT_RESULTS is
begin

PUT_LINE("Account = " & ACCOUNT);

PUT("Default page fault cluster size =");
PUT(DFPFC);
NEW_LINE;

PUT_LINE("First free program region");
PUT("page address (P0) =");
PUT(FREP0VA);
NEW_LINE;
. . .

end PRINT_RESULTS;

begin

-- Call SYS$GETJPIW using the interface from the package STARLET.
--
GETJPIW(STATUS => JPI_STATUS, PIDADR => PIDADR,

ITMLST => JPI_ITEM_LIST, IOSB => IOSB_VALUE);

-- Check the result status; raise exceptions if the result is
-- not normal.
--
if JPI_STATUS = SS_NORMAL then

PRINT_RESULTS;
else

if JPI_STATUS = SS_NONEXPR then
raise NONEXPR;

end if;
. . .

end if;

-- Handle the exceptions.
--
exception

. . .
when NONEXPR =>

PUT_LINE("Nonexistent process");
when NOPRIV =>

PUT_LINE("Insufficient privileges");
. . .

end GETJPI_ADA;

(continued on next page)

3–18 Exception Handling



Example 3–2 (Cont.) Handling SYS$GETJPIW Status Values as Ada
Exceptions

When you signal a condition using the CONDITION_HANDLING.SIGNAL
procedure (or another Ada equivalent to the OpenVMS Run-Time Library
LIB$SIGNAL routine), the condition behaves like a OpenVMS condition,
according to condition-handling-facility rules. If the condition’s severity is
not severe (error, warning, or informational), then the signal is continuable.
Example 3–3 rewrites Example 3–2 to achieve this effect. In Example 3–3,
CONDITION_HANDLING.SIGNAL is used so that the warning status of the
NONEXPR condition is preserved and continuation occurs.

Example 3–3 Handling SYS$GETJPIW Status Values as OpenVMS
Conditions

with SYSTEM; use SYSTEM;
with CONDITION_HANDLING; use CONDITION_HANDLING;
with STARLET; use STARLET;
with TEXT_IO; use TEXT_IO;
with INTEGER_TEXT_IO; use INTEGER_TEXT_IO;
procedure GETJPI_OpenVMS is

-- Declare the variables needed to make the call and print
-- some results.
--
JPI_STATUS : COND_VALUE_TYPE;
PID_ADDRESS : UNSIGNED_LONGWORD := 2;
PIDADR : ADDRESS := PID_ADDRESS’ADDRESS;
IOSB_VALUE : IOSB_TYPE;
ACCOUNT : STRING(1..8);
DFPFC : INTEGER;
FREP0VA : INTEGER;
FREP1VA : INTEGER;
FREPTECNT : INTEGER;
GPGCNT : INTEGER;
. . .

(continued on next page)

Exception Handling 3–19



Example 3–3 (Cont.) Handling SYS$GETJPIW Status Values as OpenVMS
Conditions

JPI_ITEM_LIST : constant ITEM_LIST_TYPE :=
((8, JPI_ACCOUNT, ACCOUNT’ADDRESS, ADDRESS_ZERO),
(4, JPI_DFPFC, DFPFC’ADDRESS, ADDRESS_ZERO),
(4, JPI_FREP0VA, FREP0VA’ADDRESS, ADDRESS_ZERO),
(4, JPI_FREP1VA, FREP1VA’ADDRESS, ADDRESS_ZERO),
(4, JPI_FREPTECNT, FREPTECNT’ADDRESS, ADDRESS_ZERO),
(4, JPI_GPGCNT, GPGCNT’ADDRESS, ADDRESS_ZERO),
. . .
(0, 0, ADDRESS_ZERO, ADDRESS_ZERO));

-- Print out the values returned in the item list.
--
procedure PRINT_RESULTS is
begin

PUT_LINE("Account = " & ACCOUNT);

PUT("Default page fault cluster size =");
PUT(DFPFC);
NEW_LINE;

PUT_LINE("First free program region");
PUT("page address (P0) =");
PUT(FREP0VA);
NEW_LINE;
. . .

end PRINT_RESULTS;

begin

-- Call SYS$GETJPIW using the interface from the package STARLET.
--
GETJPIW(STATUS => JPI_STATUS, PIDADR => PIDADR,

ITMLST => JPI_ITEM_LIST, IOSB => IOSB_VALUE);

(continued on next page)

3–20 Exception Handling



Example 3–3 (Cont.) Handling SYS$GETJPIW Status Values as OpenVMS
Conditions

-- Check the result status; signal if the result is not normal.
--
if JPI_STATUS = SS_NORMAL then

PRINT_RESULTS;
else

--
-- SS_NONEXPR has a status of warning; after it is signaled,
-- execution can continue. In this case, change the PID value
-- and call GETJPIW again, so that information about the
-- current process is returned.
--
if JPI_STATUS = SS_NONEXPR then

SIGNAL(SS_NONEXPR);
PIDADR := ADDRESS_ZERO;
GETJPIW(STATUS => JPI_STATUS, PIDADR => PIDADR,

ITMLST => JPI_ITEM_LIST, IOSB => IOSB_VALUE);
PRINT_RESULTS;

end if;
. . .

end if;

end GETJPI_OpenVMS;

If, in Example 3–3, you were to use the CONDITION_HANDLING.STOP
procedure (or another Ada equivalent to the OpenVMS Run-Time Library
LIB$STOP routine), the effect would be identical to the effect of an Ada raise
statement. Continuation would not occur.

In any case, when working in a mixed-language environment with Ada
subprograms, do not depend on the severity of a particular status value. Any
Ada exception or OpenVMS condition that is raised becomes severe and is
beyond the control of the code that originally signaled it.

3.4.5 Effects of Handling OpenVMS Conditions from an Ada Program
If an Ada subprogram handles a OpenVMS condition that is signaled and/or
propagated from an external routine, the handler causes the signal to behave
according to Ada semantics. This rule affects the use of certain OpenVMS
Run-Time Library fault handlers in a program that calls Ada subprograms (see
Section 3.4.6), and it has the following consequences in any mixed-language
program:

Exception Handling 3–21



• An Ada subprogram that does not contain any exception handlers (which
name the raised exception) is transparent to the condition-handling facility
when a OpenVMS condition is signaled.

• An OpenVMS condition that is handled by an Ada handler is converted to
a noncontinuable exception.

When programming in more than one language, be careful about using general
or global condition handlers. In the Ada portions of your program, use the
following handling mechanisms carefully, because all of them catch OpenVMS
conditions:

• The exception choice others—catches any OpenVMS condition or Ada
exception that does not have an explicit handler

• The DEC Ada predefined exception SYSTEM.NON_ADA_ERROR (see
Section 3.4.3)

• Predefined Ada exceptions that match OpenVMS conditions (see
Section 3.1.3)

Note

The exception choice others does not catch the following OpenVMS
conditions:

SS$_DEBUG
SS$_UNWIND

These two OpenVMS conditions are used to implement the DEC Ada
run-time environment and are never caught by an Ada exception
handler. Even if you import one of these conditions and name it in an
Ada exception handler, the handler is never invoked to respond to the
condition.

For each subprogram that you write, anticipate the errors that can occur and
explicitly name each possible error in an exception handler. In addition, make
sure you understand the behavior of a subprogram (and the main program) if
you are adding it to an existing application.

For example, consider the following situation:

• A Fortran program P1_FOR calls an Ada subprogram P2_ADA.

• The Ada subprogram calls another Fortran program, P3_FOR.

3–22 Exception Handling



In this situation, P3_FOR could signal a condition, and P1_FOR could handle
the condition and continue the execution of P3_FOR. Because it did not handle
the condition, P2_ADA would be unaffected. From the Ada subprogram’s point
of view, the condition would never have happened.

Alternatively, consider the following situation. You have a working
Fortran program, called FORTRAN_MAIN, for which you have enabled
underflow conditions at compile time (see the Fortran documentation for
more information). A default Fortran (FOR$UNDERFLOW_HANDLER)
is established at the level of the main program to process any underflow
conditions that arise. In other words, when an operation in the program
underflows and the condition is not processed by another handler,
FOR$UNDERFLOW_HANDLER assumes control. This handler keeps a
count of the number of underflow conditions and continues execution from the
point of the signal.

FORTRAN_MAIN calls several routines, including a Fortran subroutine named
FOR_ROUT. Figure 3–1 shows the call frames for these routines. The circled
numbers indicate the order of execution. If an underflow condition is signaled
in FOR_ROUT, FOR$UNDERFLOW_HANDLER gains control, processes the
condition, and continues execution of FOR_ROUT.

Exception Handling 3–23



Figure 3–1 Execution of a Fortran Program with
FOR$UNDERFLOW_HANDLER

FOR$UNDERFLOW_HANDLER

SUBROUTINE FOR_ROUT

X = Y/Z
. . . 

next statement
END

ZK−3022−GE

3

5

6

2

4underflow
signaled

END
. . . 
CALL FOR_ROUT
. . . 
PROGRAM FORTRAN_MAIN 1

Suppose that when enhancing the program, you add a call to an Ada
subprogram called ADA_ROUT, which contains an exception handler with
the exception choice others. You set the program up so that FORTRAN_MAIN
calls ADA_ROUT, and ADA_ROUT calls FOR_ROUT. Figure 3–2 shows the
calling sequence for this series of routines. If FOR_ROUT signals underflow,
the handler in ADA_ROUT gains control and converts the condition to a
noncontinuable exception.

If the handler in ADA_ROUT does not re-raise the exception, execution
resumes in FORTRAN_MAIN at the statement after the call to ADA_ROUT.
FOR_ROUT does not continue executing, which was the original intent. If the
Ada handler re-raises the exception, the exception is propagated to FORTRAN_
MAIN and FOR$UNDERFLOW_HANDLER. When FOR$UNDERFLOW_
HANDLER attempts to continue from a noncontinuable exception, the result is
a fatal error and execution terminates.

3–24 Exception Handling



Figure 3–2 The Effect of an Ada Procedure Containing an Others Handler

FOR$UNDERFLOW_HANDLER

 

PROGRAM FORTRAN_MAIN
EXTERNAL ADA_ROUT
. . .
CALL ADA_ROUT

END
. . . 

end;
. . . 

. . . 
exception
FOR_ROUT;
. . . 
pragma IMPORT_PROCEDURE (FOR_ROUT);
. . . 
procedure ADA_ROUT is

1

2

3

7

8

END
next statement

. . . 
SUBROUTINE FOR_ROUT 4

5
6

ZK−3023−GE

X = Y/Z signaled
underflow

when others =>

There are two flaws in this example:

• The global error handler, which causes the underflow condition to
propagate through the Ada subprogram instead of remaining local to
FOR_ROUT

• The others choice in the Ada subprogram, which catches a OpenVMS
condition it never intended to catch

One solution for improving this example is to use OpenVMS Run-Time Library
calls to explicitly establish FOR$UNDERFLOW_HANDLER in the places
where you want to handle underflow. Figure 3–3 shows a repaired version
of the Fortran program, which instead establishes FOR$UNDERFLOW_
HANDLER for the subroutine FOR_ROUT. Then, when underflow is signaled

Exception Handling 3–25



in FOR_ROUT, the handler gains control, processes the condition, and
continues execution of FOR_ROUT. The signal is never propagated to the
Ada procedure ADA_ROUT.

Figure 3–3 FOR$UNDERFLOW_HANDLER Established for a Fortran
Subroutine

 

FOR$UNDERFLOW_HANDLER

2

end;
. . . 

. . . 
exception
FOR_ROUT;
. . . 
pragma IMPORT_PROCEDURE (FOR_ROUT);
. . . 
procedure ADA_ROUT is

3

7

ZK−3024−GE

6signaled
underflow

5

8

SUBROUTINE FOR_ROUT
. . . 
EXTERNAL FOR$UNDERFLOW_HANDLER
CALL LIB$ESTABLISH (FOR$UNDERFLOW_HANDLER)
. . . 
X = Y/Z
next statement
END

4

1PROGRAM FORTRAN_MAIN
EXTERNAL ADA_ROUT
. . .
CALL ADA_ROUT

END
. . . 

when others =>

3–26 Exception Handling



3.4.6 Fault Handlers (VAX Systems Only)
Fault handlers are usually established as catch-all stack handlers, or they
are called from condition handlers (such as the OpenVMS Run-Time Library
routine LIB$DECODE_FAULT). They need the signal information generated
at the time the fault occurred in order to execute properly. Because DEC Ada
exception handling involves unwinding the stack frame to the start of the
handler, signal information is lost when an exception is handled in Ada (the
saved signal arguments described in Section 3.1.2 are accessible only to the
Ada run-time library and not to the underlying condition-handling-facility
routines). You cannot do the following:

• Establish a fault handler in Ada.

• Call a OpenVMS Run-Time Library fault handler from an Ada exception
part (even if the handler is imported with the pragma IMPORT_
PROCEDURE or using the package STARLET).

• Catch a fault in an Ada program when that program has called a procedure
in another language and then continue from the point of the fault.

The only way to set up a fault handler in Ada is to use the OpenVMS vectored
exception mechanism. In other words, you must call the system service
SYS$SETEXV to assign the address of a fault handler to the primary or
secondary exception vector. Because the condition-handling facility looks for
a handler in the primary and secondary exception vectors before it looks for a
handler in an Ada frame, the vectored fault handler gains control before the
search for an Ada handler can begin. The fault handler then processes the
fault, and the fault is dismissed before it can ever be propagated to an Ada
handler.

See Chapter 5 of this manual for information on how to call system services
and see the OpenVMS Calling Standard for an explanation of exception
vectors.

3.5 Exceptions and Tasking
Exception handling in DEC Ada interacts with tasking in several ways.

First, the Ada language requires that an unhandled exception terminate the
task in which it is raised or to which it is propagated. When this situation
occurs in a DEC Ada program, the DEC Ada run-time library displays the
exception message to warn you that the task is terminating. You can also
use the debugger to diagnose this situation (see Developing Ada Programs on
OpenVMS Systems).

Exception Handling 3–27



Note

If you do not want your software to produce task termination messages,
you should include exception handlers in those task bodies to which you
expect unhandled exceptions to propagate. For example, if you expect
that the user-defined exception ALL_DONE causes task termination
messages in one of your tasks, you should include the following code (or
its equivalent) in the exception part of the affected task body:

when ALL_DONE => null;

The handler absorbs the exception and prevents it from propagating
further. The handler also lets a reader of your code infer that the
termination resulting from this exception is to be expected.

Second, as required by the Ada language, the propagation of an exception
from an Ada frame must await the termination of all tasks that depend on
that frame. If a dependent task never terminates, then the exception is never
propagated. You can avoid this situation as follows:

• By coding an exception handler to call an entry in the task that causes the
task to terminate

• By making sure that the task eventually reaches a select statement with
an open terminate alternative

• By using an abort statement (use of the abort statement is not
recommended except as a last resort; see Section 7.4.6 for a more complete
discussion)

To help you diagnose this situation, the task termination messages displayed
by the Ada run-time library appear when waiting begins for dependent tasks.
You can also use the debugger to diagnose situations in which an exception
may wait forever for a dependent task (see Developing Ada Programs on
OpenVMS Systems).

Third, DEC Ada requires that tasks declared in a library package or defined
by an access type declared in a library package be terminated before execution
is returned to the OpenVMS DCL command interpreter. This additional DEC
Ada requirement (which is formally supported by Ada language interpretation
AI-00399) means that such tasks are guaranteed to reach one of the language-
defined points at which task termination can occur. A consequence of this rule
is that propagation of an exception out of the frame of the main program does
not occur until all tasks declared in library packages terminate. After all such
tasks have terminated, the exception is propagated to a OpenVMS default
handler (see Section 3.1). In cases where such a task fails to terminate, you

3–28 Exception Handling



can use the debugger to diagnose the problem (see Developing Ada Programs
on OpenVMS Systems).

Fourth, the Ada language requires that exceptions propagating from an accept
statement propagate in the calling task as well as in the called task. To
implement this requirement, DEC Ada copies the signal arguments from the
called task to the calling task. This copy operation is identical to the copying
that occurs when an exception is going to be re-raised (see Section 3.1.2).
In particular, the copied exception has a different primary condition, either
ADA$_EXCCOP or ADA$_EXCCOPLOS, and some information in the signal
arguments may have been lost (zeroed).

Exception Handling 3–29



4
Mixed-Language Programming

To write mixed-language programs, you need to be able to pass parameters,
return function results, and share data in spite of differences in conventions
and features between languages. DEC Ada implements a number of features
designed to simplify other-language calls to and from Ada programs.

This chapter explains how to accomplish mixed-language programming with
DEC Ada. You should be familiar with the following information before using
the information in this chapter:

• Chapter 6 of the DEC Ada Language Reference Manual. This chapter gives
the Ada semantics rules for subprogram calls.

• Chapter 13 of the DEC Ada Language Reference Manual. This chapter
provides information on Ada features and pragmas for controlling data
representation, as well as the detailed syntax and usage rules for the DEC
Ada pragmas that support mixed-language programming.

• Chapter 1 of this manual. This chapter provides specific information on
data representation in DEC Ada.

You should also be familiar with the calling standard that defines the
multilanguage environment on your system. See the OpenVMS Calling
Standard for more information.

The calling of system routines and other callable utilities and tools is a specific
example of mixed-language programming. See Chapter 5 for more information
on that topic.

Mixed-Language Programming 4–1



Note

This manual uses the term subprogram to refer to Ada procedures
and functions. It uses the term external routine or routine to refer
to other-language code that calls or is called by Ada subprograms in
mixed-language programs.

4.1 Calling External Routines from Ada Subprograms
You call an external routine from an Ada program by first writing an Ada
specification for the routine. To indicate that the routine is not part of the Ada
program, you must give the predefined pragma INTERFACE with the Ada
specification. For example:

function C_ADD(X: INTEGER; Y: INTEGER) return INTEGER;
pragma INTERFACE(C, C_ADD);

The syntax and rules for using the pragma INTERFACE are described in detail
in Chapter 13 of the DEC Ada Language Reference Manual.

When you import a routine and specify ADA, C, FORTRAN, BLISS, or
DEFAULT as the language name in the pragma INTERFACE, the DEC Ada
compiler chooses an appropriate set of default passing mechanisms for any
parameters or function results involved. So, you can import a routine written
in one of these languages without having to know and explicitly specify the
passing mechanisms required by the other-language routine.

Note

In some cases, default mechanisms for passing parameters or for
returning function results are not chosen. See Section 4.3.2 for more
information.

If you specify a language name other than ADA, FORTRAN, C, BLISS,
or DEFAULT, DEC Ada chooses the conventions associated with the
language name DEFAULT. You can use the language name DEFAULT
to specify an interface to a language that follows the OpenVMS calling
standard.

If you want to know which mechanisms the compiler has chosen, use
the /WARNING=COMPILATION_NOTES qualifier with any of the Ada
compilation commands. For example:

4–2 Mixed-Language Programming



$ ADA/WARNINGS=COMPILATION_NOTES ADD

6 function C_ADD(X: INTEGER; Y: INTEGER) return INTEGER;
.........................................................1
%ADAC-I-PASS_MECH_IS, (1) Selected or specified passing mechanism is VALUE
..........................2
%ADAC-I-PASS_MECH_IS, (2) Selected or specified passing mechanism is VALUE
......................................3
%ADAC-I-PASS_MECH_IS, (3) Selected or specified passing mechanism is VALUE

For example, the following Ada program imports a routine written in C:

with TEXT_IO; use TEXT_IO;
with C_TYPES; use C_TYPES;
procedure ADD is

A: INT := 10;
B: INT := 539;
function C_ADD(X: INT; Y: INT) return INT;
pragma INTERFACE(C, C_ADD);
package INT_TEXT_IO is new INTEGER_IO(INT);
use INT_TEXT_IO;

begin
PUT("A + B is ");
PUT(C_ADD(A,B));
NEW_LINE;

end ADD;

---------------------------------------------

int c_add (int x, int y)
{
return x+y;
}

Once you have coded the Ada specification and the routine to be imported, you
compile them using the appropriate compilers. Then, you link and run them
using the appropriate commands. For example:

$ ADA ADD
$ CC C_ADD
$ ACS LINK ADD C_ADD
$ RUN ADD

See Developing Ada Programs on OpenVMS Systems for more information on
linking mixed-language programs.

In some cases, you may want to specify more information about the imported
routine. In those cases, you specify one of the following pragmas in addition to
the pragma INTERFACE:

Mixed-Language Programming 4–3



• The pragmas IMPORT_FUNCTION, IMPORT_PROCEDURE, and
IMPORT_VALUED_PROCEDURE allow you to partially or fully specify all
of the parameter-passing and function result mechanisms.

• The pragmas INTERFACE_NAME, IMPORT_FUNCTION, IMPORT_
PROCEDURE, and IMPORT_VALUED_PROCEDURE allow you to
explicitly designate the name of the external routine to be imported.

• The pragma IMPORT_VALUED_PROCEDURE allows you to establish
that your imported routine is a valued procedure: like a function, it
returns a result value; like a procedure, it can also cause side effects on its
parameters.

The syntax and rules for using the DEC Ada import pragmas are described in
detail in Chapter 13 of the DEC Ada Language Reference Manual.

For example, the following Ada program imports the C routine as in the
preceding example, but in this case the Ada program explicitly specifies the
VALUE mechanism for passing the parameters and the function result:

with TEXT_IO; use TEXT_IO;
with C_TYPES; use C_TYPES;
procedure ADD is

A: INT := 10;
B: INT := 539;
function C_ADD (X: INT; Y: INT) return INT;
pragma INTERFACE (C, C_ADD);
pragma IMPORT_FUNCTION (INTERNAL => C_ADD,

MECHANISM => (VALUE, VALUE),
RESULT_MECHANISM => VALUE);

package INT_TEXT_IO is new INTEGER_IO(INT);
use INT_TEXT_IO;

begin
PUT("A + B is ");
PUT(C_ADD(A,B));
NEW_LINE;

end ADD;

---------------------------------------------

int c_add (int x, int y)
{
return x+y;
}

See Section 4.3 for more information on controlling parameter-passing and
function result mechanisms.

4–4 Mixed-Language Programming



When importing external routines, note the following:

• The Ada language does not allow you to pass subprograms as parameters,
except to generic instantiations (see Chapter 12 of the DEC Ada Language
Reference Manual). You can, however, pass the address of a subprogram
by first exporting it and then taking its address with the ’ADDRESS
attribute. The exported subprogram must be a library unit or must
be declared in the outermost declarative part of a library package. If
you try to take the address of a subprogram that is not imported or
exported, the compiler issues a warning message and uses the value
SYSTEM.ADDRESS_ZERO as the result.

See Section 4.2 for more information about exporting subprograms. See
Section 9.1 for more information about taking the address of a subprogram.

• DEC Ada allows you to specify an imported Ada routine in an address
clause. See Example 4–1.

• The Ada language allows you to pass task entries as parameters only to
generic instantiations (see Chapter 12 of the DEC Ada Language Reference
Manual).

When passing parameters or returning results of certain types (for example,
array or record types), some more complex Ada conventions may apply. See
Appendix B for more information.

Example 4–1 Using an Address Clause to Make Indirect Calls

-- This example shows the use of address clauses with imported
-- subprograms.
--
-- The program declares a record type, and defines a PUT
-- procedure for printing the values of the record components.
--
-- The PUT procedure definition demonstrates the use of
-- an address clause. The address clause is used to
-- index into a table of subprograms.
--
package ADDRESS_PKG is

(continued on next page)

Mixed-Language Programming 4–5



Example 4–1 (Cont.) Using an Address Clause to Make Indirect Calls

-- Define the set of record types.
--
type KIND is (K1, K2, K3);
type NODE(K : KIND) is

record
case K is

when K1 => C1 : INTEGER;
when K2 => C2 : CHARACTER;
when K3 => C3 : BOOLEAN;

end case;
end record;

-- Declare the PUT procedure for printing out
-- NODE values.
--
procedure PUT(N : NODE);

end ADDRESS_PKG;

with SYSTEM;
with TEXT_IO; use TEXT_IO;
package body ADDRESS_PKG is

-- Declare a set of PUT procedures, one for each component
-- of the NODE record type. These are to be called by the
-- general PUT procedure.
--
-- Each separate procedure is exported, causing the compiler
-- to generate code that uses the standard calling
-- conventions, and thus making it possible to take the
-- address of each procedure.
--
procedure PUT_K1(N : NODE) is
begin

PUT_LINE(INTEGER’IMAGE(N.C1));
end PUT_K1;
pragma EXPORT_PROCEDURE(PUT_K1, EXTERNAL=>"");

procedure PUT_K2(N : NODE) is
begin

PUT_LINE(CHARACTER’IMAGE(N.C2));
end PUT_K2;
pragma EXPORT_PROCEDURE(PUT_K2, EXTERNAL=>"");

(continued on next page)

4–6 Mixed-Language Programming



Example 4–1 (Cont.) Using an Address Clause to Make Indirect Calls

procedure PUT_K3(N : NODE) is
begin

PUT_LINE(BOOLEAN’IMAGE(N.C3));
end PUT_K3;
pragma EXPORT_PROCEDURE(PUT_K3, EXTERNAL=>"");

-- Declare a table of the addresses for each of the
-- separate PUT procedures.
--
package TABLE is

ADDRESSES : constant array(KIND) of
SYSTEM.ADDRESS := (K1 => PUT_K1’ADDRESS,

K2 => PUT_K2’ADDRESS,
K3 => PUT_K3’ADDRESS);

end TABLE;

-- Implement the general PUT procedure. This procedure
-- declares a procedure PUT_K. An address clause associates
-- PUT_K with the appropriate procedure in the table of
-- procedure addresses, so that PUT_K can represent any of
-- the exported procedures.
--
procedure PUT(N : NODE) is

procedure PUT_K(N : NODE);
pragma INTERFACE(ADA, PUT_K);
pragma IMPORT_PROCEDURE(PUT_K, EXTERNAL => "");
for PUT_K use at TABLE.ADDRESSES(N.K);

begin
PUT_K(N);

end PUT;

end ADDRESS_PKG;

with ADDRESS_PKG; use ADDRESS_PKG;
procedure ADDRESS_CLAUSE_EXAMPLE is
begin

PUT((K1, 1));
PUT((K2, ’2’));
PUT((K3, FALSE));

end ADDRESS_CLAUSE_EXAMPLE;

4.2 Calling Ada Subprograms from External Routines
You call an Ada subprogram from an external routine by first writing
the specification and body for the Ada subprogram. To indicate that the
subprogram will be called from an external routine, you must also give

Mixed-Language Programming 4–7



one of the DEC Ada export pragmas: EXPORT_FUNCTION, EXPORT_
PROCEDURE, or EXPORT_VALUED_PROCEDURE.

The syntax and rules for using the DEC Ada export pragmas are described in
detail in Chapter 13 of the DEC Ada Language Reference Manual.

For example, the following Ada procedure is called by a C routine:

procedure SQUARE (NUM : in INTEGER; RESULT : out INTEGER) is
begin

RESULT := NUM * NUM;
end SQUARE;
pragma EXPORT_PROCEDURE (INTERNAL => SQUARE,

MECHANISM => (VALUE, REFERENCE));

----------------------------------------------------------

extern void square (
int num, int*result)

main()
{

int res;

/*
* Call Ada procedure.
*/
{
square (10,&res);
printf ("Result: %D\n",res);
};

}

Once you have coded the Ada subprogram and the calling routine, compile
them using the appropriate compilers. Then, link and run them using the
appropriate commands. For example:

$ ADA SQUARE
$ CC MAIN
$ ACS EXPORT SQUARE
$ LINK MAIN,SQUARE

See Developing Ada Programs on OpenVMS Systems for more information on
exporting and linking.

When calling an Ada subprogram from an external routine, you must ensure
that the parameters are passed with mechanisms that are acceptable to
the Ada subprogram. You can do this by specifying the appropriate passing
mechanisms with the pragma EXPORT_PROCEDURE, as shown in the
preceding example.

4–8 Mixed-Language Programming



When exporting a subprogram, you can use the compiler compilation notes
messages to determine which mechanisms the DEC Ada compiler chooses for
the parameters in an Ada subprogram. To obtain these messages, use the
compiler qualifier /WARNINGS=COMPILATION_NOTES when you compile
your Ada subprogram. For example:

$ ADA/WARNINGS=COMPILATION_NOTES SQUARE

1 procedure SQUARE (NUM : in INTEGER; RESULT : out INTEGER) is
..........................1
%I, (1) Selected/specified passing mechanism is VALUE
............................................2
%I, (2) Selected/specified passing mechanism is REFERENCE

See Section 4.3 for more information on controlling parameter-passing and
function result mechanisms.

Note

Some programming languages allow optional and/or default
parameters. Calls from external routines to exported DEC Ada
subprograms must supply all parameters that are declared as formal
parameters. In particular, you must supply an actual value, even
when you give a default expression for a formal parameter in the Ada
subprogram specification.

When passing parameters or returning function results of certain types (for
example, array or record types), some more complex Ada conventions may
apply. See Appendix B for more information.

4.3 Controlling the Passing Mechanisms for Imported and
Exported Subprogram Parameters and Function Results

When importing or exporting other-language routines or exporting Ada
subprograms, you may want to explicitly specify the passing mechanisms for
one or more parameters or function results. For example:

• You may want to ensure that a particular mechanism is always chosen.

• You may be passing parameters to an imported routine for which the
compiler does not choose a default mechanism (see Section 4.3.2).

• You may be importing a routine that is not written in C, Ada, Fortran, or
BLISS.

Mixed-Language Programming 4–9



• You may be exporting an Ada subprogram to another language that
traditionally uses different default mechanisms (for example, Fortran
generally passes parameters by reference by default).

Before you decide to specify explicitly the passing mechanisms for an
imported or exported subprogram, you can use the compiler compilation
notes to determine which default mechanisms the compiler chooses for
certain parameters or function results. You obtain these notes by using the
/WARNINGS=COMPILATION_NOTES qualifier on any of the compilation
commands. See Developing Ada Programs on OpenVMS Systems for more
information.

Note

The compiler chooses the same mechanisms for exported subprograms
as it does for imported routines for which the language ADA is specified
in the pragma INTERFACE.

For imported routines if you specify a language name other than ADA,
FORTRAN, C, BLISS, or DEFAULT in the pragma INTERFACE,
DEC Ada chooses the conventions associated with the language name
DEFAULT.

4.3.1 Using the MECHANISM and RESULT_MECHANISM Options
Once you have decided to explicitly specify your parameter-passing
mechanisms, you can use the MECHANISM option in the DEC Ada import or
export pragmas to specify one of three values for each parameter. Similarly,
you can use the RESULT_MECHANISM option to specify one of the same
three values for each function result. The three mechanisms you can specify
are as follows:

• VALUE—causes the value of the actual parameter or function result to be
passed or returned.

• REFERENCE—causes an address of the value of the actual parameter to
be passed; causes the address of the function result to be returned by the
extra parameter method (see Section 4.4.2).

• DESCRIPTOR (optionally including the descriptor class)—causes the
address of a string, array, or scalar descriptor to be passed or returned.
Function results are returned by the extra parameter method (see
Section 4.4.2). See Appendix B for more information about descriptors
and descriptor classes.

4–10 Mixed-Language Programming



Note

Passing the address of a value with the VALUE mechanism is not
the same as passing the value by the REFERENCE mechanism. In
some instances, the REFERENCE mechanism may involve passing the
address of a copy of the value.

In addition to the mechanism chosen for a particular parameter, the
Ada parameter-passing semantics and DEC Ada linkage conventions
also apply. The Ada semantics are determined by the parameter’s
type. See Section 4.4.1 for more information on Ada semantics; see
Section 4.4.2 for more information on the DEC Ada linkage conventions.

Table 4–1 gives the usage rules for the MECHANISM options. Table 4–2 gives
the usage rules for the RESULT_MECHANISM options. See Sections 4.6 and
4.7 for examples in which parameter and result mechanisms are specified.

Mixed-Language Programming 4–11



Table 4–1 Parameter-Passing Mechanisms and Allowed Data Types

MECHANISM Option Allowed Ada Types Other Usage Rules

VALUE All except unconstrained
arrays and records

On VAX systems, the type or
subtype must have a compile-
time size of 32 bits or less.

On Alpha systems, the type or
subtype must have a compile-
time size of 64 bits or less.

When you apply this mechanism
to the first parameter
of a valued procedure (a
procedure specified with the
pragma IMPORT_VALUED_
PROCEDURE or EXPORT_
VALUED_PROCEDURE), the
type or subtype is treated as a
function result. See Table 4–2
for more information.

Parameters must be of mode
in or they must be the
first parameter of a valued
procedure. First parameters of
valued procedures must be of
mode out.

REFERENCE All For exported subprograms
or imported subprograms
where the language is ADA,
array parameters must
be constrained and byte-
aligned. See Appendix B
for information on passing
types with discriminants with
defaults.

DESCRIPTOR All except task or record
types; not allowed for
scalar types in exported
subprograms

See Appendix B.

4–12 Mixed-Language Programming



Table 4–2 Function Return Mechanisms and Allowed Data Types

RESULT_MECHANISM
Option Allowed Ada Types Other Usage Rules1

VALUE All except unconstrained
arrays

Type or subtype must have a
compile-time size of 64 bits or
less.

For exported functions or
imported functions where the
language is ADA, array results
must be constrained.

REFERENCE All except unconstrained
record or array types

The result is returned by the
extra parameter method (see
Section 4.4.2).

DESCRIPTOR All except task or record
types

The result is returned by the
extra parameter method (see
Section 4.4.2).

For unconstrained array and
record results, an area control
block is used in addition to a
descriptor. See Appendix B.

1For unconstrained strings, arrays, and records, use an area control block. See Appendix B.

If the allocation of an enumeration or integer type is less than the maximum allowed size, the
returned result is zero- or sign-extended (as appropriate) to a clean representation.

The calling routine must use the extra parameter method (see Section 4.4.2) for an array type
result if the storage size is not known at compile time, or if the size is known to be greater than 64
bits. The calling routine must also use the extra parameter method for a record type result if the
storage size is greater than 64 bits.

You can use the REFERENCE mechanism even in cases where a descriptor
or additional information may be passed. When you use the REFERENCE
mechanism in such cases, you must find a way to pass the additional
information to the external routine. For example, in DEC Ada you would
normally pass an unconstrained array parameter by descriptor, where the
descriptor contains the information about the array bounds. If you import
a routine written in Fortran (where all arrays are passed by reference) and
pass an unconstrained array parameter, you must pass the array bounds as
additional parameters.

Mixed-Language Programming 4–13



Consider the following Fortran function:

FUNCTION INNERPROD (A, B, N)

C This routine multiplies two one-dimensional arrays,
C element-by-element, then sums the products. Declare A
C and B as arrays of real numbers.
C

REAL A(N), B(N)
SUM = 0.0
DO 100 I = 1, N

SUM = SUM + A(I) * B(I)
100 CONTINUE

INNERPROD = SUM
RETURN
END

A and B are adjustable arrays whose bounds are passed as a subprogram
argument. To call this routine from Ada, you would declare two unconstrained
array parameters to correspond to A and B. By passing the integer parameter
N to correspond to the array length parameter, N, in the Fortran function, you
could then pass the Ada arrays by reference without losing information. The
declarations and function call in DEC Ada would be as follows:

procedure CALL_INNERPROD is

type ARRAY1 is array (INTEGER range <>) of FLOAT;
function INNERPROD (A, B : ARRAY1; N : INTEGER) return FLOAT;
pragma INTERFACE (FORTRAN, INNERPROD);
pragma IMPORT_FUNCTION (INNERPROD, MECHANISM => REFERENCE);

Q, T : ARRAY1(1 .. 100);
P : FLOAT;

begin
. . .
P := INNERPROD (Q, T, Q’LENGTH);
. . .

end CALL_INNERPROD;

Because Q and T are of the same length, either Q’LENGTH or T’LENGTH
can be passed to INNERPROD as the actual parameter for N.

4.3.2 Working with Imported Routine Parameters or Function Results
for Which There Are No Defaults

When you import a routine, the Ada compiler chooses default passing
mechanisms for parameters and function results based on the language
specified in the associated pragma INTERFACE. In some cases, no defaults are
chosen.

4–14 Mixed-Language Programming



Table 4–3 lists the languages and data types for which no defaults are chosen
for imported routine parameters. Table 4–4 lists the languages and data
types for which no defaults are chosen for imported function results. In
these languages and for parameters and function results of these types, you
must specify the passing mechanisms. See Sections 4.6 and 4.7 for C and
Fortran examples involving routine parameters for which mechanisms must be
specified.

Mixed-Language Programming 4–15



Note

The C language does not have the concept of in out or out parameters.
Thus, no default mechanism is chosen for an in out or out parameter,
regardless of its type, if the C language (or its equivalent) is specified
for an imported routine.

Table 4–3 Cases in Which Mechanisms Must Be Specified for Imported
Subprogram Parameters

Ada Type
Languages for Which There Are No Default
Mechanisms1

The types STANDARD.LONG_
FLOAT, SYSTEM.G_FLOAT, and
SYSTEM.D_FLOAT2

C

in out or out parameters C

Record C

Task C
FORTRAN

Private Depends on actual type

1Information that applies to the C language also applies to BLISS.
2On VAX systems only.

4–16 Mixed-Language Programming



Table 4–4 Cases in Which Mechanisms Must Be Specified for Imported
Function Results

Ada Type
Languages for Which There Are No Default
Result Mechanisms1

String C, Fortran

Array C
FORTRAN2

Record (constrained) FORTRAN2

Record (unconstrained) C
FORTRAN2

1Information that applies to the C language also applies to BLISS.
2FORTRAN does not allow the return of arrays or records.

4.3.3 DEC Ada Equivalents for OpenVMS Data Types
For comparison and reference, Table 4–5 lists the Ada type equivalents
and mechanisms supported for data types defined in the OpenVMS Calling
Standard.

Table 4–5 DEC Ada Equivalents for OpenVMS Data Types and Their Valid Passing
Mechanisms in DEC Ada

Data Type Symbolic Code DEC Ada Translation Passing Mechanism

Absolute date and
time

DSC$K_DTYPE_
ADT

STARLET.DATE_TIME_
TYPE

—

Byte integer (signed) DSC$K_DTYPE_B SHORT_SHORT_
INTEGER

Value1, Reference2,
Descriptor3

Bound label value DSC$K_DTYPE_BLV Not available —

Bound procedure
value

DSC$K_DTYPE_
BPV

Not available —

1The default for imported subprograms when the language specified in the pragma INTERFACE is C or
BLISS.
2The default for imported subprograms when the language specified in the pragma INTERFACE is ADA,
DEFAULT, or FORTRAN. Also the default or exported subprograms.
3Only when specified as a MECHANISM option of an import pragma.

(continued on next page)

Mixed-Language Programming 4–17



Table 4–5 (Cont.) DEC Ada Equivalents for OpenVMS Data Types and Their Valid
Passing Mechanisms in DEC Ada

Data Type Symbolic Code DEC Ada Translation Passing Mechanism

Byte unsigned DSC$K_DTYPE_BU Any enumerated type
whose values fit into
an unsigned byte;
SYSTEM.UNSIGNED_
BYTE

Value1, Reference2,
Descriptor3

COBOL intermediate
temporary

DSC$K_DTYPE_CIT Not available —

D_floating DSC$K_DTYPE_D SYSTEM.D_FLOAT;
LONG_FLOAT if
pragmas FLOAT_
REPRESENTATION
(VAX_FLOAT) and
LONG_FLOAT(D_FLOAT)
are in effect

Value1, Reference2,
Descriptor3

D_floating complex DSC$K_DTYPE_DC Not available4 See Tables
Table 4–1 and
Table 4–2

Descriptor DSC$K_DTYPE_
DSC

Not available4 See Tables
Table 4–1 and
Table 4–25

F_floating DSC$K_DTYPE_F SYSTEM.F_FLOAT;
FLOAT if pragma
FLOAT_REPRESENTATION
(VAX_FLOAT) is in effect

Value1, Reference2,
Descriptor3

F_floating complex DSC$K_DTYPE_FC Not available4 See Tables
Table 4–1 and
Table 4–2

1The default for imported subprograms when the language specified in the pragma INTERFACE is C or
BLISS.
2The default for imported subprograms when the language specified in the pragma INTERFACE is ADA,
DEFAULT, or FORTRAN. Also the default or exported subprograms.
3Only when specified as a MECHANISM option of an import pragma.
4Can be simulated in DEC Ada with a record type definition. Complex types cannot be returned directly on
Alpha systems. See Example 4–7 for information on how to pass and return complex numbers to and from a
Fortran program.
5The default for imported subprogram string parameters when the language specified in the pragma
INTERFACE is FORTRAN.

(continued on next page)

4–18 Mixed-Language Programming



Table 4–5 (Cont.) DEC Ada Equivalents for OpenVMS Data Types and Their Valid
Passing Mechanisms in DEC Ada

Data Type Symbolic Code DEC Ada Translation Passing Mechanism

G_floating DSC$K_DTYPE_G SYSTEM.G_FLOAT;
LONG_FLOAT if
pragmas FLOAT_
REPRESENTATION
(VAX_FLOAT) and
LONG_FLOAT(G_FLOAT)
are in effect

Value1, Reference2,
Descriptor3

G_floating complex DSC$K_DTYPE_GC Not available4 See Tables
Table 4–1 and
Table 4–2

H_floating6 DSC$K_DTYPE_H LONG_LONG_FLOAT;
SYSTEM.H_FLOAT

Reference2,
Descriptor3

H_floating complex6 DSC$K_DTYPE_HC Not available4 See Tables
Table 4–1 and
Table 4–2

IEEE S floating7 DSC$K_DTYPE_FS SYSTEM.IEEE_SINGLE_
FLOAT; FLOAT if
pragma FLOAT_
REPRESENTATION
(IEEE_FLOAT) is in effect

IEEE S floating
complex7

DSC$K_DTYPE_FSC Not available4

IEEE T floating7 DSC$K_DTYPE_FT SYSTEM.IEEE_
DOUBLE_FLOAT;
LONG_FLOAT if
pragma FLOAT_
REPRESENTATION
(IEEE_FLOAT) is in effect

1The default for imported subprograms when the language specified in the pragma INTERFACE is C or
BLISS.
2The default for imported subprograms when the language specified in the pragma INTERFACE is ADA,
DEFAULT, or FORTRAN. Also the default or exported subprograms.
3Only when specified as a MECHANISM option of an import pragma.
4Can be simulated in DEC Ada with a record type definition. Complex types cannot be returned directly on
Alpha systems. See Example 4–7 for information on how to pass and return complex numbers to and from a
Fortran program.
6On VAX systems only.
7On Alpha systems only.

(continued on next page)

Mixed-Language Programming 4–19



Table 4–5 (Cont.) DEC Ada Equivalents for OpenVMS Data Types and Their Valid
Passing Mechanisms in DEC Ada

Data Type Symbolic Code DEC Ada Translation Passing Mechanism

IEEE T floating
complex7

DSC$K_DTYPE_FTC Not available4

Longword integer
(signed)

DSC$K_DTYPE_L INTEGER Value1, Reference2,
Descriptor3

Longword (unsigned) DSC$K_DTYPE_LU SYSTEM.UNSIGNED_
LONGWORD

Value1, Reference2,
Descriptor3

Numeric string,
left separate sign

DSC$K_DTYPE_NL STRING See Tables
Table 4–1 and
Table 4–2

Numeric string,
left overpunched sign

DSC$K_DTYPE_
NLO

STRING See Tables
Table 4–1 and
Table 4–2

Numeric string,
right separate sign

DSC$K_DTYPE_NR STRING See Tables
Table 4–1 and
Table 4–2

Numeric string,
right overpunched
sign

DSC$K_DTYPE_
NRO

STRING See Tables
Table 4–1 and
Table 4–2

Numeric string,
unsigned

DSC$K_DTYPE_NU STRING See Tables
Table 4–1 and
Table 4–2

Numeric string,
zoned sign

DSC$K_DTYPE_NZ STRING See Tables
Table 4–1 and
Table 4–2

Octaword integer
(signed)

DSC$K_DTYPE_O Not available4 See Tables
Table 4–1 and
Table 4–2

1The default for imported subprograms when the language specified in the pragma INTERFACE is C or
BLISS.
2The default for imported subprograms when the language specified in the pragma INTERFACE is ADA,
DEFAULT, or FORTRAN. Also the default or exported subprograms.
3Only when specified as a MECHANISM option of an import pragma.
4Can be simulated in DEC Ada with a record type definition. Complex types cannot be returned directly on
Alpha systems. See Example 4–7 for information on how to pass and return complex numbers to and from a
Fortran program.
7On Alpha systems only.

(continued on next page)

4–20 Mixed-Language Programming



Table 4–5 (Cont.) DEC Ada Equivalents for OpenVMS Data Types and Their Valid
Passing Mechanisms in DEC Ada

Data Type Symbolic Code DEC Ada Translation Passing Mechanism

Octaword logical
(unsigned)

DSC$K_DTYPE_OU Not available4 See Tables
Table 4–1 and
Table 4–2

Packed decimal
string

DSC$K_DTYPE_P Not available4 See Tables
Table 4–1 and
Table 4–2

Quadword integer
(signed)

DSC$K_DTYPE_Q SYSTEM.UNSIGNED_
QUADWORD, but
arithmetic operations
are not available

Value1, Reference2,
Descriptor3

Quadword (unsigned) DSC$K_DTYPE_QU SYSTEM.UNSIGNED_
QUADWORD, but
arithmetic operations
are not available

Value1, Reference2

Character string DSC$K_DTYPE_T STRING See Tables
Table 4–1 and
Table 4–2

Aligned bit string DSC$K_DTYPE_V Packed BOOLEAN array See Tables
Table 4–1 and
Table 4–2

Varying character
string

DSC$K_DTYPE_VT Not available4 See Tables
Table 4–1 and
Table 4–2

Unaligned bit string DSC$K_DTYPE_VU Packed BOOLEAN array See Tables
Table 4–1 and
Table 4–2

Word integer (signed) DSC$K_DTYPE_W SHORT_INTEGER Value1, Reference2,
Descriptor3

1The default for imported subprograms when the language specified in the pragma INTERFACE is C or
BLISS.
2The default for imported subprograms when the language specified in the pragma INTERFACE is ADA,
DEFAULT, or FORTRAN. Also the default or exported subprograms.
3Only when specified as a MECHANISM option of an import pragma.
4Can be simulated in DEC Ada with a record type definition. Complex types cannot be returned directly on
Alpha systems. See Example 4–7 for information on how to pass and return complex numbers to and from a
Fortran program.

(continued on next page)

Mixed-Language Programming 4–21



Table 4–5 (Cont.) DEC Ada Equivalents for OpenVMS Data Types and Their Valid
Passing Mechanisms in DEC Ada

Data Type Symbolic Code DEC Ada Translation Passing Mechanism

Word (unsigned) DSC$K_DTYPE_WU Any enumerated type
whose values fit into
an unsigned word;
SYSTEM.UNSIGNED_
WORD

Value1, Reference2,
Descriptor3

Unspecified DSC$K_DTYPE_Z Parameter of any type Depends on Ada
type

Procedure entry
mask

DSC$K_DTYPE_
ZEM

Not available —

Sequence of
instructions

DSC$K_DTYPE_ZI Not available —

1The default for imported subprograms when the language specified in the pragma INTERFACE is C or
BLISS.
2The default for imported subprograms when the language specified in the pragma INTERFACE is ADA,
DEFAULT, or FORTRAN. Also the default or exported subprograms.
3Only when specified as a MECHANISM option of an import pragma.

4.4 Ada Conventions for Passing Parameters and Returning
Function Results in Mixed-Language Programs

When data is passed between routines that are not written in the same
programming language, the calling routine must pass the data in a form and
to a location recognized by the routine being called.

In DEC Ada, the manner in which parameters are passed and function results
returned is determined by three sets of conventions:

• The semantics of the Ada language

• The linkage conventions used by DEC Ada to implement subprogram calls

• Any hardware- or system-specific calling standard

The following sections discuss the first two of these conventions.

4–22 Mixed-Language Programming



4.4.1 Ada Semantics
The Ada language defines two kinds of semantics for parameter passing:
copy-in/copy-back semantics and reference semantics.

For parameters of mode in or in out, copy-in/copy-back semantics involves
copying the value of the actual parameter into its associated formal parameter
at the start of the call; for parameters of mode in out or out, copy-in/copy-back
semantics involves copying the value of the formal parameter back into the
actual parameter at the end of the call.

Reference semantics involves no copies: any modifications to a formal
parameter cause the same modifications to happen to the associated actual
parameter immediately, and vice versa.

Note

An Ada program is erroneous if it depends on which mechanism is
chosen for a particular parameter (see Chapter 6 of the DEC Ada
Language Reference Manual).

Reference semantics is not the same as passing by the REFERENCE
mechanism (see Section 4.3.1).

The Ada language requires copy-in/copy-back semantics for scalar and
access type parameters (see Chapter 6 of the DEC Ada Language Reference
Manual). DEC Ada follows these requirements. DEC Ada also uses copy-
in/copy-back semantics for address type parameters (parameters of the type
SYSTEM.ADDRESS).

The Ada language allows a choice of copy-in/copy-back semantics or reference
semantics for array, record, or task type parameters. The DEC Ada compiler
takes advantage of this flexibility, and uses either kind of semantics for
parameters of these types.

Note

When the DEC Ada compiler chooses copy-in/copy-back semantics for a
record or array parameter, an update of the formal parameter during
the execution of the subprogram does not result in an immediate
update of the actual parameter.

Mixed-Language Programming 4–23



DEC Ada implements the Ada semantics for subprogram calls as follows:

1. At the beginning of the subprogram call, if the formal parameter has mode
in or in out, a check is performed to ensure that the actual parameter
value satisfies the constraints of the formal parameter. If the actual
parameter fails this check, the exception CONSTRAINT_ERROR is raised.

2. If copy-in/copy-back semantics are used, a local variable is allocated to hold
the formal parameter.

3. If copy-in/copy-back semantics are used, and if the formal parameter has
mode in or in out, the value of the actual parameter is copied to the
formal parameter. In addition, access values and discriminants are copied
for mode out formal parameters.

4. The subprogram is executed.

5. If copy-in/copy-back semantics are used, and if the formal parameter has
mode in out or out, the value of the formal parameter is copied to the
actual parameter.

The exception CONSTRAINT_ERROR may occur at step 4 for record or array
parameters when either copy-in/copy-back or reference semantics is used for
those parameters. The exception CONSTRAINT_ERROR may also occur at
step 5 for any types except record or array types.

4.4.2 DEC Ada Linkage Conventions
Linkage conventions describe the implementation of subprogram calls.
DEC Ada makes subprogram calls as follows:

• Parameters are passed in an argument list or in registers, as appropriate
to the underlying hardware. However, the first parameters in procedures
specified with the pragmas IMPORT_VALUED_PROCEDURE or EXPORT_
VALUED_PROCEDURE are treated as function results.

• Function results are returned in registers or are passed as extra leading
parameters in the argument list. An extra leading parameter is used
when the function value is returned by the REFERENCE or DESCRIPTOR
mechanism. In this case, the calling routine passes the extra parameter—
an address—as the first argument in the argument list. The address can
point either to the storage for the value or to a descriptor. If the calling
program allocates a descriptor, the called function must allocate storage for
the function value and update the contents of the descriptor.

Note that in the case of unconstrained arrays and unconstrained records
with discriminants with defaults, the calling routine must pass an area
control block; see Appendix B.

4–24 Mixed-Language Programming



4.5 Sharing Data with Non-Ada Routines
When you write mixed-language programs, you must make sure that the data
that is passed between Ada subprograms and non-Ada routines is in the form
expected on both sides. For example, when you import a Fortran routine
involving common blocks, you must set up the analogous Ada data structures
so that the data is laid out and aligned in the way that Fortran expects it to be
laid out and aligned.

DEC Ada provides a number of features that let you control the way data
is formatted. In addition, it provides a set of pragmas designed for sharing
specific storage areas across languages. The following sections discuss these
features and pragmas.

For detailed pragma syntax and usage rules, see the DEC Ada Language
Reference Manual. For more information on DEC Ada data representation,
see Chapter 1 of this manual. See Chapter 9 of this manual for an example of
sharing memory between processors.

4.5.1 Data Layout and Alignment in Mixed-Language Programs
Data layout and alignment is important for all objects and types that are
shared in mixed-language programs, including objects and types involved in
subprogram calls, as well as objects that are specifically designated as shared
storage areas.

Mixed-Language Programming 4–25



The default alignment of data on OpenVMS systems is as follows:

• On VAX systems, data is primarily byte aligned.

• On Alpha systems, data is primarily naturally aligned. In other words,
1-byte components are aligned on byte boundaries, 2-byte components are
aligned on 2-byte boundaries, 4-byte components are aligned on 4-byte
boundaries, and so on.

DEC Ada uses the default alignment for all types. To ensure that a particular
alignment is always used for record and array types, use the DEC Ada pragma
COMPONENT_ALIGNMENT. See Section 13.1a of the DEC Ada Language
Reference Manual and Section 1.2.2 of this manual. To ensure that bit arrays
or records of bits have a packed representation, specify them with a pragma
PACK.

Similarly when passing strings to non-Ada routines, consider any differences
that may exist between Ada string definitions and other-language string
definitions. For example, C often expects string parameters to be null
terminated. The DEC Ada predefined package C_TYPES provides support
for handling null-terminated strings:

with C_TYPES; use C_TYPES;
with TEXT_IO; use TEXT_IO;
procedure PRINT_C_STRING is

function RETURN_STRING return CHAR_POINTER;
pragma INTERFACE(C, RETURN_STRING);
pragma IMPORT_FUNCTION(RETURN_STRING, RESULT_MECHANISM => VALUE);

begin
declare

-- Declare string constants because the length of the
-- returned string is not declared.
--
CHAR_PTR : constant CHAR_POINTER := RETURN_STRING;
NULL_TERM_STR : constant NULL_TERMINATED.STRING :=

NULL_TERMINATED.STRING’(NULL_TERMINATED.TO_STRING(CHAR_PTR));
STR : constant STANDARD.STRING :=

STANDARD.STRING’(NULL_TERMINATED.TO_STRING(NULL_TERM_STR));
begin

PUT_LINE(STR);
end;

end PRINT_C_STRING;
-------------------------------------------------------------

char *return_string ()
{

return("Hello!");
}

4–26 Mixed-Language Programming



For information on setting up Fortran common blocks, see Section 4.5.2. For
examples of mixed-language programs involving shared data between Ada and
C or between Ada and Fortran, see Sections Section 4.6 and Section 4.7.

4.5.2 Importing and Exporting Objects
DEC Ada provides the pragmas IMPORT_OBJECT and EXPORT_OBJECT to
allow individual objects to be shared among mixed-language programs. These
pragmas are equivalent to the GLOBAL and EXTERNAL attributes in Pascal,
the GLOBALDEF and GLOBALREF attributes in PL/I, and global and extern
declarations in C. You can also use the DEC Ada pragma INTERFACE_NAME
to import objects from other-language programs. For example:

package IMPORTOBJ is
C_INT: INTEGER;
pragma IMPORT_OBJECT (C_INT);

end IMPORTOBJ;

------------------------------------

with TEXT_IO; use TEXT_IO;
with INTEGER_TEXT_IO; use INTEGER_TEXT_IO;
with IMPORTOBJ; use IMPORTOBJ;
procedure IMPORTPROC is
begin

PUT("The value of C_INT in Ada is ");
PUT(C_INT);
NEW_LINE;

end IMPORTPROC;

------------------------------------

int globaldef c_int = 10;

This example declares an object in Ada and a variable in C and uses the Ada
pragma IMPORT_OBJECT to associate the name c_int with a global symbol.
The C declaration assigns the value 10 to the location referenced by the global
symbol, and the Ada main procedure prints it out.

The syntax and rules for using these pragmas are described in detail in
Chapter 13 of the DEC Ada Language Reference Manual.

4.5.3 Sharing Common Storage Areas for Objects
For sharing common storage areas with other languages, DEC Ada provides
the pragma COMMON_OBJECT. For example, you can use this pragma to
associate Ada storage with Fortran or BASIC common blocks, Pascal variables
declared with the COMMON or PSECT attribute, EXTERNAL variables in
PL/I, or variables declared with the extern declaration in C programs.

Mixed-Language Programming 4–27



The syntax and rules for using the DEC Ada pragma COMMON_OBJECT are
described in detail in Chapter 13 of the DEC Ada Language Reference Manual.

Unlike the programming languages that allow you to store several variables
in a particular common block, DEC Ada allows only one object to be allocated
in a particular storage area. For example, if you want to share one storage
area with several Fortran common variables, you must declare an Ada record
variable in which each component of the record corresponds to one Fortran
variable:

C Fortran declarations:

INTEGER DAY, MONTH, YEAR
CHARACTER*20 NAME
COMMON /BDATE/DAY, MONTH, YEAR / /NAME
END

-------------------------------------------------

-- Corresponding DEC Ada declarations:

type DATE is record
DAY, MONTH, YEAR : INTEGER;

end record;
subtype NAME is STRING(1 .. 20);

BDATE : DATE;
ACCTNAME : NAME;

pragma COMMON_OBJECT (BDATE);
pragma COMMON_OBJECT (ACCTNAME, "$BLANK");

This example shows storage allocation in two different common storage areas:

• A common area that contains three integer components. This area is
named BDATE in both the DEC Fortran and DEC Ada declarations.

• A common area that contains a 20-character array or string. In the Fortran
declaration, this area is coded as a blank common block. In the equivalent
Ada declaration, the area is coded as a string variable with the name
ACCTNAME.

The Ada declarations use the pragma COMMON_OBJECT to establish the
two common areas on the Ada side. The first pragma COMMON_OBJECT
establishes the record variable BDATE as a common area with the external
name (linker symbol) BDATE. The second pragma COMMON_OBJECT
establishes the string variable ACCTNAME as a common area with the
external name (linker symbol) "$BLANK". The name $BLANK must be
quoted because it contains a dollar sign ( $ ).

4–28 Mixed-Language Programming



The layout of common data in other languages may depend on the system you
are working on, compiler qualifiers, and so on. You must make sure that the
alignments in the Ada code and other-language code match. For example:

• If the other language or system uses byte alignment, then you should
specify a pragma COMPONENT_ALIGNMENT with the STORAGE_SIZE
alignment choice to guarantee byte alignment. If you are working on a
VAX system, the DEFAULT alignment choice also produces byte alignment.

• If the other language uses natural alignment, then you should specify
a pragma COMPONENT_ALIGNMENT with the COMPONENT_SIZE
alignment choice to guarantee natural alignment. If you are working on
a Alpha system, the DEFAULT alignment choice also produces natural
alignment.

If you need to match Fortran common data where a size of 4 or fewer bytes
is naturally aligned and a size greater than 4 bytes is aligned on the next
4-byte boundary, you must specify a pragma COMPONENT_ALIGNMENT
with the COMPONENT_SIZE_4 option for the Ada types.

See Section 1.2.2 and the DEC Ada Language Reference Manual for more
information about the pragma COMPONENT_ALIGNMENT. See Section 4.7
for more information about Fortran conventions and for an extended example
that involves a Fortran common block. See the Fortran documentation for
more information about Fortran common data alignment.

Also, common areas set up with the pragma COMMON_OBJECT correspond
to OpenVMS program sections. Program sections established with the pragma
COMMON_OBJECT have the following properties:

PIC, USR, OVR, REL, GBL, SHR, NOEXE, RD, WRT, NOVEC, ALIGN

On Alpha systems, program sections have the NOSHR property by default.
They also have the NOMOD property.

Table 4–6 defines these properties. See the OpenVMS Linker Utility Manual
for more information about program sections and their properties.

Mixed-Language Programming 4–29



Table 4–6 Program Section Properties

Class Meaning

ALIGN Alignment

PIC/NOPIC Position independent or position dependent

OVR/CON Overlaid or concatenated

REL/ABS Relocatable or absolute

GBL/LCL Global or local scope

SHR/NOSHR Shareable or nonshareable

EXE/NOEXE Executable or nonexecutable

WRT/NOWRT Writable or nonwritable

VEC/NOVEC Vectors or no vectors (protection)

NOMOD/MOD1 Not modified or modified (initialized)

RD Readability (reserved by Digital)

USR/LIB User or library (reserved by Digital)

1On Alpha systems only.

4.6 Mixing C and Ada Code
When mixing Ada and C code, consider the following information:

• On VAX systems, C expects data to be byte aligned.

On Alpha systems, C expects data to be naturally aligned. (These are the
same default alignments as for Ada.)

• C passes all parameters by value. Array or string parameters are passed
in a way that has the effect of passing them by reference. In C, you can
pass parameters of any size by value. In Ada, parameters passed by the
VALUE mechanism must have a compile-time size that is sufficiently small
(32 bits on VAX systems; 64 bits on Alpha systems). On Alpha systems and
in VAX C, parameters of the type LONG_FLOAT can also be passed by the
VALUE mechanism.

• C returns all function results by value. You cannot return array results
in C. C structs (equivalent to Ada records) that are returned by value
are returned using the extra parameter method (like the extra parameter
method used to return Ada function results with the REFERENCE
mechanism; see Section 4.4.2).

4–30 Mixed-Language Programming



• Returning a C pointer is not analogous to returning a value with the Ada
REFERENCE result mechanism (which is done by the extra parameter
method; see Section 4.4.2). When writing an Ada declaration for a routine
that returns a pointer, you should declare a function that returns a result
of an access type, and you should return the result by the VALUE result
mechanism (the default). If the access type refers to a composite type, the
type must be constrained.

• The C compiler generates uppercase names by default but lets you
change the case to lowercase or mixed case with compiler qualifiers. The
Ada compiler generates an uppercase external name for all imported or
exported subprograms or objects. Lowercase or mixed-case names are
incompatible with Ada names.

You can work around the mixed-case C option either by spelling the names
in the C program in uppercase, or by creating a jacket routine which has
an uppercase name and which calls the mixed-case routine.

See the DEC Ada Language Reference Manual for more information about
external designators.

• C often converts float type parameters to double float unless you provide
a function prototype. Use prototypes in C so that you can use the Ada
type FLOAT or the DEC Ada types F_FLOAT or IEEE_SINGLE_FLOAT.
If there is no prototype, you must use the Ada type LONG_FLOAT to
accommodate for the C conversion. Be sure to use the same floating
representation in both Ada and C (see Section 1.1.3 for more information
about Ada floating representations).

• C often expects strings to be null terminated.

• C uses 0 for false and ‘‘not zero’’ for true. Ada uses 0 for false and 1 for
true. If a C routine returns a boolean value, then the corresponding Ada
declaration should return an integer value.

• In C routines, status flags are logically ORed together and passed as
integers. In Ada, the analogous types are bit arrays or records of bits.
You must specify a pragma PACK for the record or array type to ensure a
contiguous layout of bits. Use an enumeration type to index the bits, and
to give them the same names as the corresponding C names.

• Some C routines take unions as parameters. In Ada, declare one
subprogram specification for each alternative of the union and make
use of overloading.

Mixed-Language Programming 4–31



• Many C Run-Time Library routines return data in static areas and are
nonreentrant. You can use the DEC Ada package SYNCHRONIZE_
NONREENTRANT_ACCESS with nonreentrant routines. See Section 7.4.9
for more information about handling nonreentrant routines.

Example 4–2 shows a situation where a global storage area is shared between
an Ada procedure and a C routine. The storage area is represented in both
Ada and C as a nested record structure. The C routine assigns values to the
record components. The Ada procedure checks to be sure that the expected
values were assigned.

Example 4–2 Sharing a Common Data Area with a C Program

with C_TYPES; use C_TYPES;
package GLOBAL_OBJ_PACKAGE is

-- Declarations for the shared global data. The pragma
-- COMPONENT_ALIGNMENT specifies natural alignment.

type MAP is array (INTEGER range 1 .. 10) of SHORT_INT;

type NESTED is
record

COMP : INT;
LIST : MAP;
CHARACT : CHAR;

end record;
pragma COMPONENT_ALIGNMENT (DEFAULT, NESTED);

type REC is
record

FIRST : NESTED;
SECOND : INT;

end record;
pragma COMPONENT_ALIGNMENT (DEFAULT, REC);

GLOBAL_OBJ : REC;
pragma IMPORT_OBJECT (GLOBAL_OBJ);

-- Declare the Ada interface to a C routine that will
-- store known values in GLOBAL_OBJ when called.
--
procedure RESET_GLOBAL;
pragma INTERFACE (C, RESET_GLOBAL);

end GLOBAL_OBJ_PACKAGE;

-----------------------------------------------------------------------

(continued on next page)

4–32 Mixed-Language Programming



Example 4–2 (Cont.) Sharing a Common Data Area with a C Program

with GLOBAL_OBJ_PACKAGE; use GLOBAL_OBJ_PACKAGE;
with TEXT_IO; use TEXT_IO;
with C_TYPES; use C_TYPES;
procedure SET_GLOBAL_OBJ is

FAILED_EXCEPTION : exception;

begin

GLOBAL_OBJ.SECOND := -1;

-- Test that the value was set correctly.
--
if GLOBAL_OBJ.SECOND /= -1 then

raise FAILED_EXCEPTION;
end if;

-- Call the C routine that will store values in the global
-- storage area.
--
RESET_GLOBAL;

-- Check that the global storage area contains the values stored
-- by RESET_GLOBAL.
--
if GLOBAL_OBJ.SECOND /= 1 then

raise FAILED_EXCEPTION;
end if;

if GLOBAL_OBJ.FIRST.COMP /= 10 then
raise FAILED_EXCEPTION;

end if;

for INDEX in GLOBAL_OBJ.FIRST.LIST’RANGE loop
declare

ELEMENT : SHORT_INT renames GLOBAL_OBJ.FIRST.LIST(INDEX);
begin

if INTEGER(ELEMENT) /= INDEX then
raise FAILED_EXCEPTION;

end if;
end;

end loop;

(continued on next page)

Mixed-Language Programming 4–33



Example 4–2 (Cont.) Sharing a Common Data Area with a C Program

if GLOBAL_OBJ.FIRST.CHARACT /= ’A’ then
raise FAILED_EXCEPTION;

end if;

end SET_GLOBAL_OBJ;
-----------------------------------------------------------------------

struct nested {
int comp;
short list[10];
char charact;

};

struct rec {
struct nested first;
int second;

} globaldef global_obj;

reset_global()
{

int i;

if (global_obj.second != 5)
global_obj.second = 1;

else
global_obj.second = 2;

global_obj.first.comp = 10;
global_obj.first.charact = ’A’;

for (i = 0; i < 10; i++)
global_obj.first.list[i] = i + 1;

}

Example 4–3 shows an Ada interface written to import a C routine that
involves two array parameters. The array parameters are used, but not
changed, during the execution of the routine.

The Ada interface is written expecting that the C routine does not change
the values of its parameters. The interface specification uses only a pragma
INTERFACE, indicating that the compiler should choose default mechanisms
for passing the arrays and returning the result.

4–34 Mixed-Language Programming



Example 4–3 Passing Arrays to C, Where the Array Values Are Not Changed

with C_TYPES; use C_TYPES;
with TEXT_IO; use TEXT_IO;
procedure CALL_INNER is

package INT_TEXT_IO is new INTEGER_IO(INT);
use INT_TEXT_IO;

type INT_ARR is array(INTEGER range <>) of INT;
A,B : INT_ARR(0 .. 9) := (1,2,3,4,5,6,7,8,9,10);
function C_INNER(A,B : INT_ARR;

M : INT) return INT;
pragma INTERFACE(C, C_INNER);

begin

for I in 0 .. 9 loop
PUT(WIDTH => 3, ITEM => A(I));

end loop;
NEW_LINE;
for I in 0 .. 9 loop

PUT(WIDTH => 3, ITEM => B(I));
end loop;
NEW_LINE;
PUT(C_INNER(A,B,10));
NEW_LINE;

end CALL_INNER;
-------------------------------------------------------------------------

int c_inner(int a[], int b[], int n)
{
int i, c = 0;
for (i=0; i<n; i++)

c = c + a[i] * b[i];
return c;
}

Example 4–4 shows an Ada interface written to import a C routine that has an
array parameter that is changed during the execution of the routine. In this
case, the array is an in out parameter in the Ada subprogram specification:
the parameter is marked as a parameter whose value will change.

The array parameter is explicitly passed by the REFERENCE mechanism to
guarantee that the C routine receives the address of the array (which is what
C expects). You must specify a mechanism for an in out parameter when the
language is C.

Mixed-Language Programming 4–35



Example 4–4 Passing an Array to C, Where the Array Value Is Changed

with C_TYPES; use C_TYPES;
with TEXT_IO; use TEXT_IO;
procedure CALL_NEG_ARRAY is

package INT_TEXT_IO is new INTEGER_IO(INT);
use INT_TEXT_IO;

type INT_ARR is array (INTEGER range <>) of INT;
A : INT_ARR(0 .. 9) := (1,2,3,4,5,6,7,8,9,10);

procedure C_NEG_ARRAY (A : in out INT_ARR; M : INT);
pragma INTERFACE (C, C_NEG_ARRAY);
pragma IMPORT_PROCEDURE (INTERNAL => C_NEG_ARRAY,

MECHANISM => (REFERENCE, VALUE));

begin
for I in 0 .. 9 loop

PUT(WIDTH => 4, ITEM => A(I));
end loop;
NEW_LINE;
C_NEG_ARRAY(A,10);
for I in 0 .. 9 loop

PUT(WIDTH => 4, ITEM => A(I));
end loop;
NEW_LINE;

end CALL_NEG_ARRAY;

------------------------------------------------------------------------

void c_neg_array ( int a[], int n)
{
int i;
for ( i = 0; i < n; i++)
a[i] = -a[i];

}

Example 4–5 shows an Ada interface for a C routine that passes and returns
floating-point values (values of the type FLOAT on the Ada side). To ensure
that the C compiler does not convert its type float to double float, a function
prototype is defined for the C routine.

4–36 Mixed-Language Programming



Example 4–5 Passing Floating-Point Values to C

with C_TYPES;
with TEXT_IO; use TEXT_IO;
with FLOAT_TEXT_IO; use FLOAT_TEXT_IO;
procedure CALL_FLOAT is

function C_FLOAT (X,Y : C_TYPES.FLOAT) return C_TYPES.FLOAT;
pragma INTERFACE (C, C_FLOAT);
pragma IMPORT_FUNCTION (INTERNAL => C_FLOAT,

EXTERNAL => FLOAT_EQ);

A,B,X : C_TYPES.FLOAT;

begin

A := 0.00000086;
B := 0.00000092;
X := C_FLOAT(A,B);
PUT(X);
NEW_LINE;

end CALL_FLOAT;

---------------------------------------------------------------

float float_eq(float x, float y)
{
return (x - y);
}

4.7 Mixing Fortran and Ada Code
When mixing Ada and Fortran, consider the following information:

• The layout of data in Fortran depends on the compiler and compiler
qualifiers you use. See the DEC Fortran documentation for specific
information.

You can use the DEC Ada pragma COMPONENT_ALIGNMENT to ensure
the correct data layout for records and arrays. For example:

– The COMPONENT_SIZE alignment choice ensures natural alignment
(the default for all Ada records and arrays).

– The STORAGE_SIZE alignment choice ensures byte alignment.

– The DEFAULT alignment choice ensures the default alignment on
whatever system you are working on (byte alignment on VAX systems,
natural alignment on Alpha systems).

Mixed-Language Programming 4–37



– The COMPONENT_SIZE_4 alignment choice ensures the alignment
produced by the Fortran /ALIGN=COMMONS=STANDARD qualifier.

See the DEC Ada Language Reference Manual or Chapter 1 of this manual
for information on the pragma COMPONENT_ALIGNMENT.

• Fortran passes most parameters by reference. String parameters are
passed by descriptor.

• Fortran returns most results by value. Strings are returned by descriptor.
You cannot return array or record results.

• On Alpha systems, Fortran complex data is returned by a mechanism that
is not available in DEC Ada. There is no analogous restriction on passing
complex data.

Example 4–6 shows an example that involves a Fortran common block. Note
the following points about the example:

• The record types NESTED and STRUCT in the Ada package COMMON_
PACKAGE match the record structures NESTED and STRUCT in the
Fortran subroutine. The pragma COMPONENT_ALIGNMENT uses the
STORAGE_UNIT alignment choice to cause byte alignment of the record
components (the example assumes that the Fortran data is byte aligned).

• Because the pragma COMMON_OBJECT is used, the Ada program can
initialize the variable OBJ, or it can leave initialization to the Fortran
routine. In this case, one of the fields of the common variable OBJ is
initialized by the Ada subprogram. When the Fortran routine is called,
it initializes the entire object. When the Fortran routine returns, the
Ada program verifies that the field it had initialized (OBJ.SECOND) has
changed.

4–38 Mixed-Language Programming



Example 4–6 Sharing a Fortran Common Block

package COMMON_PACKAGE is

-- Declarations for the shared common block. Use the pragma
-- COMPONENT_ALIGNMENT to set up byte alignment.

type MAP is array (INTEGER range 1 .. 10) of SHORT_INTEGER;

type NESTED is
record

COMP : INTEGER;
LIST : MAP;
CHAR : CHARACTER;

end record;
pragma COMPONENT_ALIGNMENT (DEFAULT, NESTED);

type STRUCT is
record

FIRST : NESTED;
SECOND : INTEGER;

end record;
pragma COMPONENT_ALIGNMENT (DEFAULT, STRUCT);

-- Declare the storage area for the common block.
--
OBJ : STRUCT;
pragma COMMON_OBJECT (INTERNAL => OBJ,

EXTERNAL => "COMM");

-- Declare the interface for the Fortran routine. The
-- routine will store known values in OBJ (COMM on the
-- Fortran side) when it is called.
--
-- Note that an identifier is specified for the external
-- designator.
--
procedure RESET_COMM;
pragma INTERFACE (FORTRAN, RESET_COMM);
pragma IMPORT_PROCEDURE (INTERNAL => RESET_COMM,

EXTERNAL => FOR_ROUTINE);
end COMMON_PACKAGE;

------------------------------------------------------------------------

with COMMON_PACKAGE; use COMMON_PACKAGE;
with TEXT_IO; use TEXT_IO;
procedure COMMON_OBJ_EXAMPLE is

FAILED_EXCEPTION : exception;

(continued on next page)

Mixed-Language Programming 4–39



Example 4–6 (Cont.) Sharing a Fortran Common Block
begin

OBJ.SECOND := 5;

-- Call the Fortran procedure that will store values in
-- the common area.
--
RESET_COMM;

-- Check that the common area contains the values stored
-- by RESET_COMM.
--
if OBJ.SECOND /= 1 then

raise FAILED_EXCEPTION;
end if;

if OBJ.FIRST.COMP /= 10 then
raise FAILED_EXCEPTION;

end if;

for INDEX in OBJ.FIRST.LIST’RANGE loop
declare

ELEMENT : SHORT_INTEGER renames OBJ.FIRST.LIST(INDEX);
begin

if INTEGER(ELEMENT) /= INDEX then
raise FAILED_EXCEPTION;

end if;
end;

end loop;

if OBJ.FIRST.CHAR /= ’A’ then
raise FAILED_EXCEPTION;

end if;
end COMMON_OBJ_EXAMPLE;

-------------------------------------------------------------------------

C
C This routine assigns values into the shared common area. It
C will be linked with the Ada code. The Ada code calls it
C and then checks the values in the common area.
C
C Note that you need to make sure that the Fortran
C and Ada data alignments match.

SUBROUTINE FOR_ROUTINE

(continued on next page)

4–40 Mixed-Language Programming



Example 4–6 (Cont.) Sharing a Fortran Common Block
STRUCTURE /NESTED/

INTEGER COMP
INTEGER*2 LIST (10)
CHARACTER CHAR

END STRUCTURE

STRUCTURE /STRUCT/
RECORD /NESTED/ FIRST
INTEGER SECOND

END STRUCTURE

RECORD /STRUCT/ OBJ

COMMON /COMM/ OBJ

INTEGER I

IF (OBJ.SECOND .EQ. 5) THEN
OBJ.SECOND = 1

ELSE
OBJ.SECOND = 2

END IF

OBJ.FIRST.COMP = 10

OBJ.FIRST.CHAR = ’A’

DO I = 1,10
OBJ.FIRST.LIST(I) = I

END DO

RETURN
END

Example 4–7 shows how to return complex numbers from a Fortran program
on an Alpha system, using a jacket routine written in Fortran.

Mixed-Language Programming 4–41



Example 4–7 Returning Complex Numbers from Fortran Programs on Alpha
Systems

with TEXT_IO; use TEXT_IO;
with FLOAT_TEXT_IO; use FLOAT_TEXT_IO;
procedure COMPLEX_EXAMPLE is

type COMPLEX is record
REAL_PART : FLOAT;
IMAGINARY_PART : FLOAT;

end record;

X : COMPLEX;

procedure GET_COMPLEX(X : out COMPLEX);
pragma INTERFACE(FORTRAN, GET_COMPLEX);
pragma IMPORT_PROCEDURE(GET_COMPLEX, MECHANISM => (REFERENCE));

begin

GET_COMPLEX(X);

PUT_LINE("The real part is: ");
PUT(X.REAL_PART);
NEW_LINE;
PUT_LINE("The imaginary part is: ");
PUT(X.IMAGINARY_PART);
NEW_LINE;

end COMPLEX_EXAMPLE;

-----------------------------------------------------

SUBROUTINE GET_COMPLEX(DATA)

COMPLEX*8 DATA

DATA = (1.0, 0.1)

RETURN
END

4–42 Mixed-Language Programming



5
Calling System or Other Callable Routines

DEC Ada provides a variety of features for calling OpenVMS system service,
RMS, Run-Time Library, utility, and other callable routines from an Ada
program:

• The package STARLET provides DEC Ada types, DEC Ada named
numbers representing OpenVMS symbol definitions and DEC Ada
operations for calling OpenVMS system service and RMS routines. The
specification of this package is in the DEC Ada library of predefined units
(ADA$PREDEFINED).

• The package TASKING_SERVICES provides interface routines for calling
OpenVMS system services that involve asynchronous system trap (AST)
parameters. The specification of this package is in the DEC Ada library of
predefined units (ADA$PREDEFINED).

• The package SYSTEM provides types and operations for manipulating
system-related variables and parameters, as well as for obtaining symbol
definitions that are not defined in the package STARLET. The specification
of this package is described in Chapter 13 of the DEC Ada Language
Reference Manual and is given in full in Appendix F of that manual. The
specification of this package is also in the DEC Ada library of predefined
units (ADA$PREDEFINED).

• The generic package MATH_LIB (and the predefined DEC Ada MATH_LIB
instantiations) provides routine interfaces for calling many of the
OpenVMS Run-Time Library mathematics routines. The specifications
for this package and these instantiations are in the DEC Ada library of
predefined units (ADA$PREDEFINED).

• The packages DTK, LIB, MTH, OTS, PPL, SMG, and STR provide DEC
Ada types, DEC Ada named numbers representing OpenVMS symbol
definitions, and DEC Ada operations for calling OpenVMS Run-Time
Library routines. The specifications of these packages are in the DEC Ada
library of predefined units (ADA$PREDEFINED).

Calling System or Other Callable Routines 5–1



• The packages CLI, NCS, LBR, and SOR provide DEC Ada types, DEC
Ada named numbers representing OpenVMS symbol definitions, and DEC
Ada operations for calling OpenVMS Command Language Interpreter,
National Character Set, Librarian, and Sort/Merge Utility routines. The
specifications of these packages are in the DEC Ada library of predefined
units (ADA$PREDEFINED).

• The package CONDITION_HANDLING provides a DEC Ada type for
OpenVMS condition values, a set of functions for interpreting condition
value components, and a set of interface routines for calling the OpenVMS
Run-Time Library routines LIB$MATCH_COND, LIB$STOP, and
LIB$SIGNAL. The specification of this package is in the DEC Ada library
of predefined units (ADA$PREDEFINED).

• The package SYSTEM_RUNTIME_TUNING allows you to tune aspects of
run-time behavior that are normally controlled by the DEC Ada run-time
library. The specification of this package is in the DEC Ada library of
predefined units (ADA$PREDEFINED).

• The package C_TYPES provides Ada equivalents for atomic C types,
as well as types and subprograms for handling null-terminated strings.
This package is designed to make C-related code easier to write
(including calls to C Run-Time Library routines, and so on). The
specification of this package is in the DEC Ada library of predefined units
(ADA$PREDEFINED).

• The DEC Ada import pragmas allow you to write your own interfaces to
callable routines. The DEC Ada export pragmas allow you to write Ada
subprograms that must be called by or passed as parameters to callable
routines (as in the case of call-back routines). These pragmas are discussed
in this chapter, in Chapter 4, and in Chapter 13 of the DEC Ada Language
Reference Manual.

To make copies of the specifications of any of the packages in the library of
predefined units (ADA$PREDEFINED), use the ACS EXTRACT SOURCE
command. For this command to succeed, either you must have defined
ADA$PREDEFINED as your current program library or you must have
defined a current Ada program library into which the predefined units have
been entered. See Developing Ada Programs on OpenVMS Systems for more
information. For example:

$ ACS EXTRACT SOURCE STARLET

5–2 Calling System or Other Callable Routines



The following sections explain how to call OpenVMS system services, Run-Time
Library, utility, and other callable routines, and give examples showing the
use of the DEC Ada features for accomplishing such calls. You should be
familiar with DEC Ada parameter passing and the OpenVMS calling standard,
as well as with the DEC Ada import and export pragmas. See Chapter 4 of
this manual and Chapter 13 of the DEC Ada Language Reference Manual for
information on these topics.

For specific information on the calling standard and OpenVMS routines, see
the appropriate OpenVMS documentation. For example:

• The OpenVMS Calling Standard presents the OpenVMS calling standard.

• The OpenVMS Programming Interfaces: Calling a System Routine gives
general information about VMS system routines and explains how to call
them.

• The OpenVMS System Services Reference Manual provides information on
the OpenVMS system service routines.

• The OpenVMS Record Management Services Reference Manual provides
information on the OpenVMS RMS routines.

• Individual run-time library manuals provide information on the OpenVMS
Run-Time Library routines.

• The OpenVMS Utility Routines Manual provides information on the
OpenVMS utility routines.

For specific information on callable interfaces for the various OpenVMS
layered products, see the documentation for each product.

5.1 Using the DEC Ada OpenVMS System-Routine Packages
The DEC Ada predefined system-routine packages let you call system routines
directly without having to specify your own interfaces. The following sections
discuss the characteristics and use of these packages.

5.1.1 Parameter Types
The OpenVMS environment provides a set of data structures (OpenVMS
usages) for denoting the OpenVMS data types used in OpenVMS system,
OpenVMS Run-Time Library, and utility routines. Table 5–1 lists these
data structures and gives their DEC Ada equivalents. For information on
the underlying type representations, see Chapter 4. For information on the
representation of the DEC Ada data types, see Chapter 1.

Calling System or Other Callable Routines 5–3



Note

Many of the equivalents are defined in the packages STARLET and
CONDITION_HANDLING. For convenience, the OpenVMS Run-
Time Library and utility packages define subtype equivalents for
the STARLET and CONDITION_HANDLING types used in those
packages.

Table 5–1 OpenVMS Data Structures

OpenVMS Data Structure DEC Ada Equivalent

access_bit_names STARLET.ACCESS_BIT_NAMES_TYPE

access_mode STARLET.ACCESS_MODE_TYPE

address SYSTEM.ADDRESS

address_range STARLET.ADDRESS_RANGE_TYPE

arg_list STARLET.ARG_LIST_TYPE

ast_procedure SYSTEM.AST_HANDLER

boolean STANDARD.BOOLEAN

byte_signed STANDARD.SHORT_SHORT_INTEGER

byte_unsigned SYSTEM.UNSIGNED_BYTE

channel STARLET.CHANNEL_TYPE

char_string STANDARD.STRING

complex_number User-defined record

cond_value CONDITION_HANDLING.COND_VALUE_TYPE

context STARLET.CONTEXT_TYPE

date_time STARLET.DATE_TIME_TYPE

device_name STARLET.DEVICE_NAME_TYPE

ef_cluster_name STARLET.EF_CLUSTER_NAME_TYPE

ef_number STARLET.EF_NUMBER_TYPE

exit_handler_block STARLET.EXIT_HANDLER_BLOCK_TYPE

fab STARLET.FAB_TYPE

file_protection STARLET.FILE_PROTECTION_TYPE

(continued on next page)

5–4 Calling System or Other Callable Routines



Table 5–1 (Cont.) OpenVMS Data Structures

OpenVMS Data Structure DEC Ada Equivalent

floating_point STANDARD.FLOAT
STANDARD.LONG_FLOAT
STANDARD.LONG_LONG_FLOAT1

SYSTEM.F_FLOAT
SYSTEM.D_FLOAT
SYSTEM.G_FLOAT
SYSTEM.H_FLOAT1

SYSTEM.IEEE_SINGLE_FLOAT2

SYSTEM.IEEE_DOUBLE_FLOAT2

function_code STARLET.FUNCTION_CODE_TYPE

identifier SYSTEM.UNSIGNED_LONGWORD

invo_context_blk User-defined record

invo_handle SYSTEM.UNSIGNED_LONGWORD

io_status_block STARLET.IOSB_TYPE

item_list_pair SYSTEM.UNSIGNED_LONGWORD

item_list_2 STARLET.ITEM_LIST_2_TYPE

item_list_3 STARLET.ITEM_LIST_3_TYPE

item_quota_list User-defined record

lock_id STARLET.LOCK_ID_TYPE

lock_status_block STARLET.LOCK_STATUS_BLOCK_TYPE

lock_value_block STARLET.LOCK_VALUE_BLOCK_TYPE

logical_name STARLET.LOGICAL_NAME_TYPE

longword_signed STANDARD.INTEGER

longword_unsigned SYSTEM.UNSIGNED_LONGWORD

mask_byte SYSTEM.UNSIGNED_BYTE

mask_longword SYSTEM.UNSIGNED_LONGWORD

mask_quadword SYSTEM.UNSIGNED_QUADWORD

mask_word SYSTEM.UNSIGNED_WORD

mechanism_args STARLET.CHFDEF2_TYPE

null_arg SYSTEM.UNSIGNED_LONGWORD

1On VAX systems only.
2On Alpha systems only.

(continued on next page)

Calling System or Other Callable Routines 5–5



Table 5–1 (Cont.) OpenVMS Data Structures

OpenVMS Data Structure DEC Ada Equivalent

octaword_signed array(1..4) of SYSTEM.UNSIGNED_LONGWORD

octaword_unsigned array(1..4) of SYSTEM.UNSIGNED_LONGWORD

page_protection STARLET.PAGE_PROTECTION_TYPE

procedure SYSTEM.ADDRESS

process_id STARLET.PROCESS_ID_TYPE

process_name STARLET.PROCESS_NAME_TYPE

quadword_signed SYSTEM.UNSIGNED_QUADWORD

quadword_unsigned SYSTEM.UNSIGNED_QUADWORD

rights_holder STARLET.RIGHTS_HOLDER_TYPE

rights_id STARLET.RIGHTS_ID_TYPE

rab STARLET.RAB_TYPE

section_id STARLET.SECTION_ID_TYPE

section_name STARLET.SECTION_NAME_TYPE

system_access_id STARLET.SYSTEM_ACCESS_ID_TYPE

time_name STARLET.TIME_NAME_TYPE

transaction_id array(1..4) of SYSTEM.UNSIGNED_LONGWORD

uic STARLET.UIC_TYPE

user_arg STARLET.USER_ARG_TYPE

varying_arg SYSTEM.UNSIGNED_LONGWORD

vector_byte_signed array(1..n) of STANDARD.SHORT_SHORT_INTEGER

vector_byte_unsigned array(1..n) of SYSTEM.UNSIGNED_BYTE

vector_longword_signed array(1..n) of STANDARD.INTEGER

vector_longword_unsigned array(1..n) of SYSTEM.UNSIGNED_LONGWORD

vector_quadword_signed array(1..n) of SYSTEM.UNSIGNED_QUADWORD

vector_quadword_unsigned array(1..n) of SYSTEM.UNSIGNED_QUADWORD

vector_word_signed array(1..n) of STANDARD.SHORT_INTEGER

vector_word_unsigned array(1..n) of SYSTEM.UNSIGNED_WORD

word_signed STANDARD.SHORT_INTEGER

word_unsigned SYSTEM.UNSIGNED_WORD

5–6 Calling System or Other Callable Routines



5.1.2 Parameter-Passing Mechanisms
The OpenVMS system service, RMS, Run-Time Library, and utility routines
conform to the OpenVMS calling standard. The DEC Ada system-routine
packages ensure that the parameters for each routine are passed as required
by the routine (by value, by reference, or by descriptor).

See the appropriate OpenVMS documentation for detailed information on the
passing mechanisms for parameters of system routines. Table 5–1 lists the
DEC Ada equivalents for the OpenVMS data structures. See Chapter 4 for
information on passing Ada parameters in mixed-language programs.

Note

Any parameter described in the OpenVMS documentation as a
routine passed by reference is declared in the DEC Ada packages
as a parameter of type ADDRESS that is passed by the VALUE
mechanism. To pass the address of an Ada subprogram, you must first
export the subprogram with one of the DEC Ada export pragmas (see
Chapter 4 of this manual and Chapter 13 of the DEC Ada Language
Reference Manual). You can then use the ADDRESS attribute to obtain
the address of the subprogram. An exported subprogram must be a
library unit or must be declared at the outermost level of a library
package.

5.1.3 Naming Conventions
The following conventions are used in the DEC Ada predefined system-routine
packages to form names for named numbers, routine names, and record
components:

• In the package STARLET, underscores ( _ ) are used instead of dollar signs
( $ ) because dollar signs are not legal in Ada identifiers. In the OpenVMS
Run-Time Library and utility-routine packages, all symbols have had their
package-specific prefix removed. For example, you access LIB$SPAWN as
LIB.SPAWN.

• Any double underscores are replaced by a single underscore. Leading and
trailing underscores are removed.

• If the resulting identifier is an Ada reserved word, the last character
is dropped. For example, the system service EXIT becomes EXI, the
DTK$TERMINATE routine becomes DTK.TERMINAT, and so on. Other
Ada reserved words that are frequently used as record component names
are ACCESS and TYPE, which become ACCES and TYP respectively.

Calling System or Other Callable Routines 5–7



See Section 5.1.4 for information on the naming conventions used for record
types and initialization constants.

5.1.4 Record Type Declarations
The predefined system-routine packages contain type declarations for
OpenVMS control blocks, masks, and so on. For example, the package
STARLET declares the following control blocks used by OpenVMS RMS
routines:

• The file access block (FAB)

• The record access block (RAB)

• The extended attribute block (XAB)

• The name block (NAM)

Many OpenVMS control blocks have a multilevel structure. For example,
the package STARLET represents control blocks by defining a record type for
each nested structure. The following record declaration shows a portion of the
record type defined in STARLET for the FOP (file-processing options) field of a
FAB (OpenVMS RMS file access block); see the OpenVMS Record Management
Services Reference Manual for a description of the individual options. The
name of the type begins with FAB_ to indicate that FAB_FOP_TYPE is a type
declared for a component of a record of type FAB_TYPE.

type FAB_FOP_TYPE is
record

FILLER_1 : BOOLEAN;
MXV : BOOLEAN;
. . .
DLT : BOOLEAN;
. . .
FILLER_3 : BOOLEAN;
ESC : BOOLEAN;
TEF : BOOLEAN;
OFP : BOOLEAN;
KFO : BOOLEAN;
FILLER_4 : BOOLEAN;

end record;

FAB_TYPE is declared in STARLET as a record type that contains a component
called FOP whose type is FAB_FOP_TYPE:

5–8 Calling System or Other Callable Routines



type FAB_TYPE is
record

BID: UNSIGNED_BYTE;
BLN: UNSIGNED_BYTE;
. . .
FOP: FAB_FOP_TYPE;
. . .

end record;

The following example shows how you can access the FOP component:

with STARLET;
procedure MODIFY_FOP (FAB1 : in out STARLET.FAB_TYPE;

FAB2 : in out STARLET.FAB_TYPE) is
begin

-- Set the file processing options of FAB1 to
-- those of FAB2.
--
FAB1.FOP := FAB2.FOP;
. . .

-- Set the DLT option to indicate that the file
-- associated with FAB2 will be deleted when closed.
--
FAB2.FOP.DLT := TRUE;

end MODIFY_FOP;

An initialization constant is also provided for each record type defined in the
predefined system-routine packages to facilitate the initialization of objects of
the type. The name of the constant is formed by appending _INIT to the type
name. For example, the following declaration is a portion of the STARLET
initialization constant for the type FAB_TYPE:

FAB_TYPE_INIT : constant FAB_TYPE :=
(BID => FAB_C_BID,
BLN => FAB_C_BLN,
. . .
FOP => (FILLER_1 => FALSE,

MXV => FALSE,
. . .
DLT => FALSE,

. . . ),
FILLER_3 => FALSE,
ESC => FALSE,
TEF => FALSE,
OFP => FALSE,
KFO => FALSE,
FILLER_4 => FALSE)

. . . );

Calling System or Other Callable Routines 5–9



A typical use might be as follows:

declare

-- Initialize FAB to contain standard FAB defaults.
--
FAB : STARLET.FAB_TYPE := STARLET.FAB_TYPE_INIT;
STATUS : CONDITION_HANDLING.COND_VALUE_TYPE;

begin
STARLET.OPEN (STATUS, FAB);
. . .

end;

Likewise, FAB_FOP_TYPE_INIT is defined in STARLET as a constant that
you can use to initialize an object or component of the type FAB_FOP_TYPE. A
portion of the definition in STARLET is as follows:

FAB_FOP_TYPE_INIT : constant FAB_FOP_TYPE :=
(FILLER_1 => FALSE,
MXV => FALSE,
. . .
DLT => FALSE,
. . .
FILLER_3 => FALSE,
ESC => FALSE,
TEF => FALSE,
OFP => FALSE,
KFO => FALSE,
FILLER_4 => FALSE);

The component names used in this example for the FAB_FOP_TYPE include
several that begin with FILLER_. These names in this example and in similar
record declarations in the OpenVMS Run-Time Library and utility packages
represent reserved fields that are currently unused, but that might be used in
the future. The number of reserved fields in any particular record declaration
is likely to change from one OpenVMS release to another. Further, the names
assigned to the reserved fields are also likely to change. For example, if a
component called FILLER_3 were used in a new OpenVMS release, the name
of the FILLER_4 component would change to FILLER_3, and FILLER_4 would
no longer exist. So, you should never explicitly refer to a component that
begins with the text FILLER_ in your program. To initialize such components,
use the initialization constants declared in the package you are using. For
example, to initialize a variable of type FAB_FOP_TYPE, you would write the
following:

FOP : FAB_FOP_TYPE := FAB_FOP_TYPE_INIT;

5–10 Calling System or Other Callable Routines



You can also use FAB_FOP_TYPE_INIT to initialize the FOP component of a
FAB. For example:

procedure MOD_FOP (FAB : in out STARLET.FAB_TYPE) is
begin

FAB.FOP := FAB_FOP_TYPE_INIT;
. . .

end MOD_FOP;

Example 5–3 shows the use of some of the OpenVMS RMS control blocks
declared in the package STARLET. The example is a program that maps a file
to the first available space using the OpenVMS system service SYS$CRMPSC
(Create and Map Section) and the OpenVMS RMS routine SYS$OPEN.

5.1.5 Default and Optional Parameters
As discussed in Chapter 4, the OpenVMS languages, and OpenVMS system
service, RMS, Run-Time Library, and utility routines conform to a set of
parameter-passing conventions called the OpenVMS calling standard. In
accordance with the standard, each time an Ada subprogram or non-Ada
routine is called, an argument list is passed. This list contains a count of the
number of arguments, as well as the individual arguments themselves.

Many OpenVMS system routines provide the notion of an optional parameter.
By placing a zero in the argument list, you can ‘‘omit’’ an optional parameter
that is normally passed by the reference or descriptor mechanism. For
example, consider a routine that takes a single optional integer parameter,
which is passed by reference. When this routine is called, the argument count
is 1, which indicates one argument. The single parameter is either the value
zero, which indicates that the parameter is omitted, or it is the address of a
memory location containing an integer value.

Note

Passing the value zero by reference (placing in the argument list
the address of a memory location that contains the value zero) is
different from placing the value zero in the argument list, and is often
interpreted differently by the called routine.

Ada provides the notion of a default parameter expression. This notion means
that you can omit the parameter (specifically only a parameter of mode in) in
a call, and a default parameter value is automatically supplied. The default
parameter expression is evaluated each time the subprogram is called.

Calling System or Other Callable Routines 5–11



The OpenVMS optional-parameter and the Ada default-parameter notions are
not equivalent. The OpenVMS system service, RMS, Run-Time Library, and
utility routines permit the equivalent of optional in out or out parameters,
but Ada allows only in parameters to have default expressions. Further, using
a zero to omit an argument can have a different interpretation from a zero
passed by reference or a null string passed by descriptor.

Also, OpenVMS system service routines generally require a fixed number
of arguments, and you must place a value of zero in the argument list to
indicate that an optional parameter has been omitted. OpenVMS RMS, Run-
Time Library, and utility routines generally allow optional parameters to be
indicated by shortened argument lists.

So, the following rules are true for the routines in all of the DEC Ada
predefined system-routine packages:

• Default or optional in parameters that are passed by value are declared
with a default, zero value. If you omit a parameter association for one such
optional formal parameter, the zero value is placed in the argument list.

• Default or optional in parameters that are passed by reference or
descriptor to OpenVMS system service routines are declared with a default
expression using the DEC Ada NULL_PARAMETER attribute. If you omit
a parameter association for one such optional formal parameter, the zero
value is placed in the argument list, regardless of the parameter-passing
mechanism normally used for the argument.

• Optional in out or out parameters are overloaded. Two Ada procedure
declarations are given for each optional parameter (and the pragma
IMPORT_VALUED_PROCEDURE is used to map both Ada subprograms
to the same OpenVMS system service). The first declaration specifies
the type to be used if an argument is to be passed to the routine. The
second specifies the parameter as an in parameter of the type ADDRESS
to be passed by value and gives it a default value of ADDRESS_ZERO. If
the original parameter is of the type ADDRESS, the type UNSIGNED_
LONGWORD is used for the overloading.

If the call uses named association, a default argument can be omitted
entirely. If it uses positional association, either ADDRESS_ZERO or
ADDRESS’NULL_PARAMETER must be specified.

For routines with multiple in out or out parameters, overloadings are
provided for all combinations, except where two parameters are closely
related. For example, a string descriptor is used to hold an output string,
and the related parameter is set to the string length.

5–12 Calling System or Other Callable Routines



Because they generally fall at the end of the argument list and can be omitted,
optional parameters to the OpenVMS RMS routines in the package STARLET,
as well as the OpenVMS Run-Time Library and utility routines, follow one
additional rule:

• The FIRST_OPTIONAL_PARAMETER option is used in the pragma
IMPORT_VALUED_PROCEDURE to identify the first parameter (of one
or of a series of optional parameters) that can be omitted. When a call to
the routine is made and one or more optional parameters are omitted from
the end of the parameter list, a truncated argument list is passed. See the
DEC Ada Language Reference Manual for more detailed information on the
rules for using this mechanism.

In summary, when calling a OpenVMS system service, RMS, Run-Time Library,
or utility routine with optional parameters, you should follow these steps:

1. Consult the appropriate OpenVMS system service, RMS, Run-Time Library,
or utility routine manual and determine which parameters you want to
specify in the call and which you want to omit.

2. Examine the appropriate DEC Ada package for the first routine interface
declaration (if it is overloaded) to determine the parameter types.

3. Make the call using named association, giving only the arguments you
want to pass.

For example, the SYS$ASSIGN system service routine in the package
STARLET has two optional parameters, ACMODE and MBXNAM. The
parameter mode for ACMODE is in and the passing mechanism is value.
A default value of zero is used to indicate that the value zero is to be
placed in the argument list if this parameter is not specified in a call. The
parameter mode for MBXNAM is also in, but the passing mechanism is
descriptor (MBXNAM is of subtype DEVICE_NAME_TYPE, which is a subtype
of STRING). So, a default expression of DEVICE_NAME_TYPE’NULL_
PARAMETER is used to indicate that the value zero is to be placed in the
argument list if this parameter is not specified on a call.

Calling System or Other Callable Routines 5–13



-- $ASSIGN
--
-- Assign I/O Channel
--
-- $ASSIGN devnam ,chan ,[acmode] ,[mbxnam]
--
-- devnam = address of device name or logical name
-- string descriptor
-- chan = address of word to receive channel number
-- assigned
-- acmode = access mode associated with channel
-- mbxnam = address of mailbox logical name string
-- descriptor, if mailbox associated with device
--
procedure ASSIGN (

STATUS : out COND_VALUE_TYPE; -- return value
DEVNAM : in DEVICE_NAME_TYPE;
CHAN : out CHANNEL_TYPE;
ACMODE : in ACCESS_MODE_TYPE :=

ACCESS_MODE_ZERO; -- 0 value
MBXNAM : in DEVICE_NAME_TYPE :=

DEVICE_NAME_TYPE’NULL_PARAMETER);
pragma INTERFACE (EXTERNAL, ASSIGN);
pragma IMPORT_VALUED_PROCEDURE (ASSIGN, "SYS$ASSIGN",

(COND_VALUE_TYPE, DEVICE_NAME_TYPE, CHANNEL_TYPE,
ACCESS_MODE_TYPE, DEVICE_NAME_TYPE),

(VALUE, DESCRIPTOR(S), REFERENCE,
VALUE, DESCRIPTOR(S)));

A call to STARLET.ASSIGN that omits the ACMODE parameter but not the
MBXNAM parameter looks like the following example. Assume that the actual
parameters STATUS_VAR, DEVNAM_VAR, CHAN_VAR, and MBXNAM_VAR
were previously declared as variables elsewhere in the program.

ASSIGN (STATUS => STATUS_VAR,
DEVNAM => DEVNAM_VAR,
CHAN => CHAN_VAR,
MBXNAM => MBXNAM_VAR);

Similarly, the SYS$DEQ system service routine in the package STARLET
has four optional parameters: three (LKID, ACMODE, and FLAGS) are in
parameters passed by value; one (VALBLK) is an in out parameter passed
by reference. So, default values can be provided for LKID, ACMODE, and
FLAGS, but an overloading declaration must be provided to allow the VALBLK
parameter to be omitted.

5–14 Calling System or Other Callable Routines



-- $DEQ
--
-- Dequeue Lock
--
-- $DEQ [lkid] ,[valblk] ,[acmode] ,[flags]
--
-- lkid = lock ID of the lock to be dequeued
--
-- valblk = address of the lock value block
--
-- acmode = access mode of the locks to be dequeued
--
-- flags = optional flags
--
-- LCK$M_DEQALL
--
procedure DEQ (

STATUS : out COND_VALUE_TYPE; -- return value
LKID : in LOCK_ID_TYPE := LOCK_ID_ZERO;
VALBLK : in out LOCK_VALUE_BLOCK_TYPE;
ACMODE : in ACCESS_MODE_TYPE := ACCESS_MODE_ZERO;
FLAGS : in LCK_TYPE := LCK_TYPE’NULL_PARAMETER);

procedure DEQ (
STATUS : out COND_VALUE_TYPE; -- return value
LKID : in LOCK_ID_TYPE := LOCK_ID_ZERO;
VALBLK : in ADDRESS := ADDRESS_ZERO;

-- To omit optional VALBLK argument
ACMODE : in ACCESS_MODE_TYPE := ACCESS_MODE_ZERO;
FLAGS : in LCK_TYPE := LCK_TYPE’NULL_PARAMETER);

pragma INTERFACE (EXTERNAL, DEQ);
pragma IMPORT_VALUED_PROCEDURE (DEQ, "SYS$DEQ",

(COND_VALUE_TYPE, LOCK_ID_TYPE, LOCK_VALUE_BLOCK_TYPE,
ACCESS_MODE_TYPE, LCK_TYPE),
(VALUE, VALUE, REFERENCE, VALUE, VALUE));

pragma IMPORT_VALUED_PROCEDURE (DEQ, "SYS$DEQ",
(COND_VALUE_TYPE, LOCK_ID_TYPE, ADDRESS,
ACCESS_MODE_TYPE, LCK_TYPE),
(VALUE, VALUE, VALUE, VALUE, VALUE));

A call to STARLET.DEQ that omits the LKID and ACMODE parameters looks
like the following. Again, assume that the actual parameters were previously
defined elsewhere in the program.

DEQ (STATUS => STATUS_VAR,
VALBLK => VALBLK_VAR,
FLAGS => FLAGS_VAR);

In this case, the first declaration would be used, and default (zero) values
would be supplied for the omitted LKID and ACMODE parameters.

Calling System or Other Callable Routines 5–15



Alternatively, the following call involves the second declaration, and zeros
would automatically be placed in the argument list for the VALBLK, ACMODE,
and FLAGS parameters:

DEQ (STATUS => STATUS_VAR,
LKID => LKID_VAR);

The OpenVMS RMS SYS$WRITE routine provides a good example of a
STARLET interface for an RMS routine involving optional parameters:

--
-- $WRITE
--
-- Write Block to File
--
-- $WRITE rab, [err], [suc]
--
-- rab = address of rab
--
-- err = address of user error completion routine
--
-- suc = address of user success completion routine
--
procedure WRITE (

STATUS : out COND_VALUE_TYPE; -- return value
RAB : in out RAB_TYPE;
ERR : in AST_HANDLER := NO_AST_HANDLER;
SUC : in AST_HANDLER := NO_AST_HANDLER);

pragma INTERFACE (EXTERNAL, WRITE);
pragma IMPORT_VALUED_PROCEDURE (WRITE, "SYS$WRITE",

(COND_VALUE_TYPE, RAB_TYPE, AST_HANDLER, AST_HANDLER),
(VALUE, REFERENCE, VALUE, VALUE), ERR);

Because the two optional parameters (ERR and SUC) are in parameters,
they have default values; also, the pragma IMPORT_VALUED_PROCEDURE
specifies ERR as the first optional parameter.

The following call involves all four parameters:

WRITE (STATUS => STATUS_VAR,
RAB => RAB_VAR,
ERR => ERR_VAR,
SUC => SUC_VAR);

The next call omits the two optional parameters and because the FIRST_
OPTIONAL_PARAMETER mechanism was specified in the routine interface,
the argument list is truncated so that the call involves only the two parameters
specified:

WRITE (STATUS => STATUS_VAR,
RAB => RAB_VAR);

5–16 Calling System or Other Callable Routines



If you were to omit ERR but not SUC, then a zero value is passed in the
argument list for ERR and the argument list is not truncated.

5.1.6 Calling Asynchronous System Services
Some system services can be executed either synchronously or asynchronously.
A synchronous service causes your program to wait while the service request
is being processed. An asynchronous service queues a request and returns
control to your program while the request is being processed. When the
request is satisfied, the system service uses an AST to interrupt program
execution and transfer control to a user-specified procedure. Examples of
asynchronous services are SYS$GETJPI and SYS$QIO; their synchronous
forms are SYS$GETJPIW and SYS$QIOW. The OpenVMS System Services
Reference Manual describes these system services in more detail.

You can call asynchronous system services from a DEC Ada program by using
tasks and the DEC Ada predefined pragma AST_ENTRY and AST_ENTRY
attribute. See the DEC Ada Language Reference Manual and Chapter 7 for
information on tasks and the pragma AST_ENTRY and AST_ENTRY attribute.
Chapter 7 also gives several examples of programs where ASTs are handled.

Chapter 7 describes the package TASKING_SERVICES, which provides
interface routines for calling services that involve AST parameters (SYS$QIO,
SYS$GETJPI, and so on) from tasks. The subprogam specifications in the
package TASKING_SERVICES have Ada bodies, and the NULL_PARAMETER
attribute could not be used for optional parameters (see Sections Section 5.1.5
and Section 5.2.6). As a result, multiple overloadings are used for each
combination of optional parameters in the same manner as is done for system
services that have optional in out or out parameters.

The package SYSTEM_RUNTIME_TUNING may also be useful with programs
that call asynchronous system services. For example, this package provides
operations that let you increase the size of the AST packet pool. See Chapter 7
for more information on the AST packet pool and its limitations. See the
specification of the package SYSTEM_RUNTIME_TUNING in the DEC Ada
predefined library for more information about the package.

5.1.7 Calling Mathematical Routines
DEC Ada provides two packages of operations for calling OpenVMS Run-Time
Library mathematical routines:

• The package MATH_LIB—provides interfaces for many of the OpenVMS
Run-Time Library mathematical routines and declares exceptions that
can be raised. The interfaces are streamlined for ease of use, rather than
exactly matching the OpenVMS Run-Time Library format.

Calling System or Other Callable Routines 5–17



• The package MTH—also provides interfaces for many of the OpenVMS
Run-Time Library mathematical routines and declares exceptions that can
be raised. The interfaces match the OpenVMS Run-Time Library format
(for example, giving separate interfaces for MTH$ACOS, MTH$DCOS, and
MTH$GCOS).

The streamlining of the operations in the package MATH_LIB is possible
because the package is a generic package that you can instantiate for real
types. For convenience, DEC Ada also provides instantiated versions of this
package for the types FLOAT, LONG_FLOAT, and LONG_LONG_FLOAT (the
type LONG_LONG_FLOAT is available on VAX systems only). See Appendix A
for more information on these predefined instantiations.

For example, you could use the predefined instantiation FLOAT_MATH_LIB as
follows:

with FLOAT_MATH_LIB;
procedure TRIG_FUNCTIONS is

X, Y : FLOAT := 3.0;

begin

-- Test sine-cosine identity.
--
Y := FLOAT_MATH_LIB.COS(X)**2 + FLOAT_MATH_LIB.SIN(X)**2;

-- Find hyperbolic sine two ways.
--
Y := FLOAT_MATH_LIB.SINH(X);
Y := (FLOAT_MATH_LIB.EXP(X) - FLOAT_MATH_LIB.EXP(-X))/2.0;

-- Find hyperbolic arc sine.
--
Y := FLOAT_MATH_LIB.LOG(X + (FLOAT_MATH_LIB.SQRT(X**2 + 1.0)));

end TRIG_FUNCTIONS;

If you had declared your own floating-point type, you could declare your own
package to instantiate MATH_LIB, and then write a similar procedure as
follows:

with MATH_LIB;
package MY_FLOATING is

type MY_FLOATING_TYPE is digits 6;
package MY_FLOATING_MATH_LIB is

new MATH_LIB(MY_FLOATING_TYPE);

end MY_FLOATING;

------------------------------------------------------------------

5–18 Calling System or Other Callable Routines



with MY_FLOATING; use MY_FLOATING;
procedure TRIG_FUNCTIONS is

X, Y : MY_FLOATING_TYPE := 3.0;

begin

-- Test sine-cosine identity.
--
Y := MY_FLOATING_MATH_LIB.COS(X)**2 +

MY_FLOATING_MATH_LIB.SIN(X)**2;

-- Find hyperbolic sine two ways.
--
Y := MY_FLOATING_MATH_LIB.SINH(X);
Y := (MY_FLOATING_MATH_LIB.EXP(X) -

MY_FLOATING_MATH_LIB.EXP(-X))/2.0;

-- Find hyperbolic arc sine.
--
Y := MY_FLOATING_MATH_LIB.LOG(X +

(MY_FLOATING_MATH_LIB.SQRT(X**2 + 1.0)));

end TRIG_FUNCTIONS;

5.2 Writing Your Own Routine Interfaces
When you need to write your own interface to a callable routine from DEC
Ada, you must collect the following information about the routine:

• The name of the routine

• The type of call required

• The data type of each parameter

• The type of access required for each parameter

• The mechanisms needed to pass the parameters

• Whether any of the parameters are themselves routines or the addresses of
routines

• Whether or not any parameters are optional

See the description of the routine in the appropriate OpenVMS or layered
product documentation for more information.

Then you must translate this information into Ada terms, write an equivalent
Ada subprogram specification, and use the pragma INTERFACE and one of the
DEC Ada import pragmas to import the routine so that you can call it as an
Ada subprogram.

Calling System or Other Callable Routines 5–19



For example, the OpenVMS system service SYS$TRNLNM (Translate Logical
Name) routine has the following format:

SYS$TRNLNM [attr],tabnam,lognam[,acmode][,itmlst]

The description of this system service indicates the following information:

• The routine returns a condition value and has parameters that may be
updated, making this a special type of procedure call in DEC Ada.

• The data types (OpenVMS usages) required are as follows:

attr mask_longword

tabnam logical_name

lognam logical_name

acmode access_mode

itmlst item_list_3

The usage for the condition value returned is cond_value.

• The types of access required are read only (for all parameters) and write
only (for the returned condition value).

• The mechanisms needed are as follows:

attr Reference

tabnam Descriptor

lognam Descriptor

acmode Reference

itmlst Reference

• None of the parameters are themselves routines or addresses of routines.

• The attr, acmode, and itmlst parameters are optional parameters.
SYS$TRNLNM is a OpenVMS system service, and system services require
a fixed number of arguments. So, the method for omitting each of these
parameters from the argument list is to place a zero in the argument list
for each omitted parameter, rather than truncating or otherwise altering
the list.

The equivalent DEC Ada interface is as follows, assuming that LNM_TYPE,
LOGICAL_NAME_TYPE, ACCESS_MODE_TYPE, and ITEM_LIST_3_TYPE
are defined in your program, and that you made use of the predefined packages
SYSTEM and CONDITION_HANDLING:

5–20 Calling System or Other Callable Routines



procedure TRNLNM (
STATUS: out CONDITION_HANDLING.COND_VALUE_TYPE;
ATTR : in LNM_TYPE :=

LNM_TYPE’NULL_PARAMETER;
TABNAM: in LOGICAL_NAME_TYPE;
LOGNAM: in LOGICAL_NAME_TYPE;
ACMODE: in ACCESS_MODE_TYPE :=

ACCESS_MODE_TYPE’NULL_PARAMETER;
ITMLST: in ITEM_LIST_3_TYPE := ITEM_LIST_3_TYPE’NULL_PARAMETER);

pragma INTERFACE (SYSSERV, TRNLNM);

pragma IMPORT_VALUED_PROCEDURE (
INTERNAL => TRNLNM,
EXTERNAL => "SYS$TRNLNM",
PARAMETER_TYPES =>

(CONDITION_HANDLING.COND_VALUE_TYPE,
LNM_TYPE,
LOGICAL_NAME_TYPE,
LOGICAL_NAME_TYPE,
ACCESS_MODE_TYPE,
ITEM_LIST_3_TYPE),

MECHANISM =>
(VALUE,
REFERENCE,
DESCRIPTOR(CLASS => S),
DESCRIPTOR(CLASS => S),
REFERENCE,
REFERENCE));

The following sections give detailed information on writing DEC Ada interfaces
for callable routine interfaces. For more information on the import pragmas
and parameter-passing mechanisms, see Chapter 4. For complete examples of
interfaces to system routines coded in Ada, see Section 5.5.

5.2.1 Parameter Types
If you are writing your own interface for a OpenVMS routine, see Table 5–1
for a list of the OpenVMS data structures and their DEC Ada equivalents.
If you are writing your own interface for another kind of callable routine,
see Chapter 4 for information on the DEC Ada equivalents for the OpenVMS
data types defined in the OpenVMS calling standard. For information on the
representation of the DEC Ada data types, see Chapter 1.

Calling System or Other Callable Routines 5–21



5.2.2 Determining the Kind of Call
The Ada language provides two kinds of subprograms:

• Procedures, which can have parameters that are updated within the body
of the subprogram

• Functions, which return results, but cannot update their parameters

System routines must be imported into an Ada program before they can be
called. DEC Ada provides the pragma INTERFACE and the import pragmas
IMPORT_PROCEDURE, IMPORT_FUNCTION, and INTERFACE_NAME to
let you import external routines as procedures and functions respectively. To
pass an Ada procedure or function as a parameter to a system routine, you
must first export the Ada subprogram (see Section 5.2.5). DEC Ada provides
the export pragmas EXPORT_PROCEDURE and EXPORT_FUNCTION to let
you export Ada subprograms as procedures and functions respectively.

Because many system and utility routines return results and update their
parameters, DEC Ada provides two pragmas designed specifically to import or
export subprograms from or to system routines:

• The pragma IMPORT_VALUED_PROCEDURE (in combination with the
pragma INTERFACE) lets you write a DEC Ada interface that imports a
routine so that it is interpreted as a procedure in the Ada environment and
as a function in the external environment. (For example, all of the routine
interfaces in the package STARLET involve the use of this pragma.)

• The pragma EXPORT_VALUED_PROCEDURE lets you write a DEC Ada
interface that exports an Ada procedure so that it is, again, interpreted
as a procedure in the Ada environment and as a function in the external
environment.

Both pragmas expect the first parameter of the routine or subprogram being
imported or exported to receive the result. So, the first parameter of the
imported or exported ‘‘procedure’’ must be an out parameter. The result is
returned in this parameter as any function value is returned (see Section 4.4).
You can specify the other parameters with the modes in, in out, or out,
according to the actions required by the imported or exported routine or
subprogram.

All import and export pragmas involve default parameter-passing mechanisms,
as explained in Chapter 4. When you import a system routine, you should
explicitly specify the appropriate mechanisms. When you export an
Ada subprogram, you must be sure that the calling routine supplies the
correct defaults expected by DEC Ada, or you must specify the appropriate
mechanisms in export pragma for the Ada subprogram.

5–22 Calling System or Other Callable Routines



The /WARNINGS=COMPILATION_NOTES qualifier for any of the compilation
commands (DCL ADA and ACS LOAD, COMPILE, and RECOMPILE) provides
diagnostic information about the mechanisms chosen by the compiler for
imported and exported subprograms. See Developing Ada Programs on
OpenVMS Systems for more information on that qualifier and those commands.

When you are working with the pragma EXPORT_VALUED_PROCEDURE,
the first parameter in a subprogram exported with this pragma is passed
by reference if the parameter type is an access type, or a type involving
discriminants. This passing mechanism allows parameters of all types to
be initialized by the calling routine, as is required by the Ada language for
components of an access type or for any discriminants, even in the case of an
out parameter like the first parameter in a subprogram exported with the
pragma EXPORT_VALUED_PROCEDURE.

See Chapter 4 of this manual and Chapter 13 of the DEC Ada Language
Reference Manual for more information on using the import and export
pragmas.

5.2.3 Determining the Access Method
The various kinds of access required by system and utility routine parameters
can be translated directly into Ada access modes. Table 5–2 lists the Ada
equivalents for the three most common OpenVMS access methods.

Table 5–2 DEC Ada Equivalents for OpenVMS Access Methods

OpenVMS Access
Method DEC Ada Access Mode

Read only in

Write only out

Modify in out

The other access methods—function call (before return), JMP after unwind,
call after stack unwind, and call without stack unwind—have no direct DEC
Ada equivalents.

When you are using the pragma IMPORT_VALUED_PROCEDURE or the
pragma EXPORT_VALUED_PROCEDURE to write a routine interface, the
first parameter is reserved for a returned result. That parameter must have
the mode out or a OpenVMS access method of modify. It usually corresponds
to a condition value or equivalent returned by the applicable routine or
subprogram.

Calling System or Other Callable Routines 5–23



5.2.4 Passing Parameters
Most callable routines (system or layered product) conform to the OpenVMS
calling standard. Parameters are passed either by value, by reference, or by
descriptor. You should explicitly specify the necessary passing mechanisms in
any interface routine you write. See Chapter 4 for more information.

5.2.5 Passing Routines or Subprograms as Parameters
Some system routines take as arguments the addresses of other routines or
subprograms (for example, SYS$PUTMSG). To pass an Ada subprogram as
a parameter to a system routine, the subprogram must be exported (see the
discussion of export pragmas in Chapter 4 and Section 5.2.2). To be exported,
a subprogram must be a library unit or must be declared in the outermost
declarative part of a library package. You can then pass the subprogram’s
address to the system routine with the Ada ADDRESS attribute.

If you try to pass the address of a subprogram that is not imported or exported,
the compiler issues a warning message.

Example 5–4 has an exported routine that is passed as a parameter to a
OpenVMS Run-Time Library routine.

5.2.6 Default and Optional Parameters
To specify a default or optional parameter, choose one of the following methods,
depending on the access mode of the parameter:

• For an in parameter, use the DEC Ada NULL_PARAMETER attribute,
which places a zero in the argument list, regardless of the passing
mechanism used for the argument. For addresses (parameters of type
SYSTEM.ADDRESS) that are passed by value and that require default
values, use the DEC Ada predefined constant SYSTEM.ADDRESS_ZERO
to place a zero value in the argument list. See the DEC Ada Language
Reference Manual for more information about NULL_PARAMETER and
ADDRESS_ZERO. See Section 5.1.5 for an explanation of how these
mechanisms are used in the DEC Ada predefined system-routine packages.

• For in out or out parameters, you can use overloading.

• If the routine you are calling allows a truncated argument list, you can
also use the FIRST_OPTIONAL_PARAMETER mechanism in whatever
import pragma you are using to import the routine. Section 5.1.5 explains
how overloading and FIRST_OPTIONAL_PARAMETER are used in the
DEC Ada predefined system-routine packages. The DEC Ada Language
Reference Manual gives detailed information on the FIRST_OPTIONAL_
PARAMETER mechanism. You can apply the FIRST_OPTIONAL_

5–24 Calling System or Other Callable Routines



PARAMETER mechanism only to a formal parameter of mode in, and
all parameters following that parameter must also be of mode in.

5.3 Obtaining Symbol Definitions
Many of the global symbol definitions (condition values, and so on) you need
in calls to system routines are available in the predefined system-routine
packages. However, if you need to obtain symbol definitions that are not
available from these packages, you can use the following function from the
package SYSTEM:

function IMPORT_VALUE (SYMBOL : STRING)
return UNSIGNED_LONGWORD;

This function returns the value of the specified (global) symbol. See
Chapter 13 of the DEC Ada Language Reference Manual for a complete
description of its syntax and behavior.

The following example shows the use of the IMPORT_VALUE function to
assign the value of the global symbol CMS$_CREATE to the constant CMS_
CREATED. A complete example appears in Section 5.5.

with SYSTEM;
with CONDITION_HANDLING;
. . .
procedure CREATE_LIB is

. . .
-- Initialize a constant with the value of the CMS global symbol
-- CMS$_CREATED, to allow a later check for success or failure.
--
CMS_CREATED: constant CONDITION_HANDLING.COND_VALUE_TYPE

:= SYSTEM.IMPORT_VALUE("CMS$_CREATED");
RET_VAL : CONDITION_HANDLING.COND_VALUE_TYPE;
. . .

begin

. . .
-- Use the imported condition value to check for success.
--
if RET_VAL /= CMS_CREATED then

-- Do something.
else

-- Do something else.
end if;

end CREATE_LIB;

Calling System or Other Callable Routines 5–25



5.4 Testing Return Condition Values
Many OpenVMS system service, RMS, Run-Time Library, and utility routines
return numeric status values that indicate whether or not they successfully
completed the requested operation. The first parameter of all of the routines in
the DEC Ada predefined system-routine packages is an out parameter, which
is set to a status value when the routine finishes execution. This parameter is
of the type COND_VALUE_TYPE, which is declared in the predefined package
CONDITION_HANDLING.

When a system status value is returned, you can test for success or failure by
using one of the condition value evaluation functions provided in the package
CONDITION_HANDLING. You can also compare the status value to one of
the severity codes declared in the predefined package you are using, or you
can compare it to one of the specific condition values that the service returns.
You can make the latter comparison by using one of the interface routines for
the OpenVMS Run-Time Library routine LIB$MATCH_COND, which are also
provided in the package CONDITION_HANDLING.

For example, the following fragment from Example 5–1 uses the CONDITION_
HANDLING function SUCCESS to test for successful logical name translation:

procedure ORION is
. . .
RET_STATUS: COND_VALUE_TYPE;
ITEM_LIST : ITEM_LIST_TYPE(1..2);
. . .
begin

TRNLNM(STATUS => RET_STATUS,
TABNAM => "LNM$SYSTEM",
LOGNAM => "CYGNUS",
ITMLST => ITEM_LIST);

if not CONDITION_HANDLING.SUCCESS(RET_STATUS) then
-- Raise an error.

else
-- Get the name and size and print them out.

end if;
. . .

end ORION;

Alternatively, you can compare the severity of the status value with one of the
following constants (defined in the package STARLET):

STS_K_WARNING
STS_K_SUCCESS
STS_K_ERROR
STS_K_INFO

5–26 Calling System or Other Callable Routines



STS_K_SEVERE

For example:

procedure ORION is
. . .
RET_STATUS: COND_VALUE_TYPE;
ITEM_LIST : ITEM_LIST_TYPE(1..2);
. . .
begin

TRNLNM(STATUS => RET_STATUS,
TABNAM => "LNM$SYSTEM",
LOGNAM => "CYGNUS",
ITMLST => ITEM_LIST);

if CONDITION_HANDLING.SEVERITY(RET_STATUS) /= STS_K_SUCCESS then
-- Raise an error.

else
-- Get the name and size and print them out.

end if;
. . .

end ORION;

Finally, you can use the function CONDITION_HANDLING.MATCH_COND to
test the return status for other condition values (also defined in the package
STARLET). For example:

with SYSTEM; use SYSTEM;
with STARLET; use STARLET;
with CONDITION_HANDLING; use CONDITION_HANDLING;
with TEXT_IO; use TEXT_IO;
. . .
procedure ORION is

. . .
RET_STATUS: COND_VALUE_TYPE;
MATCH_VALUE: INTEGER;
ITEM_LIST: ITEM_LIST_TYPE(1..2);
ERROR: exception;
. . .

begin

TRNLNM(STATUS => RET_STATUS,
TABNAM => "LNM$SYSTEM",
LOGNAM => "CYGNUS",
ITMLST => ITEM_LIST);

Calling System or Other Callable Routines 5–27



if not CONDITION_HANDLING.SUCCESS(RET_STATUS)
then

-- Locate the error; condition value codes are
-- given in module $SSDEF in the package STARLET.
--
MATCH_VALUE := CONDITION_HANDLING.MATCH_COND (

RET_STATUS,
SS_IVLOGTAB,
SS_NOLOGNAM);

-- Raise an error exception.
--
raise ERROR;

else
-- Print out the logical name and its size.

end if;

exception
when ERROR =>

PUT_LINE("Failed to translate logical name");
case MATCH_VALUE is

when 1 => PUT_LINE("TABNAM is not a " &
"logical name table");

when 2 => PUT_LINE("Logical name is not in " &
"the name table");

when others => null;
end case;

end ORION;

To look at the various condition value components, you can use the set
of functions provided by the DEC Ada predefined package CONDITION_
HANDLING.

5.5 OpenVMS Routine Examples
Examples Example 5–1, Example 5–2, Example 5–3, Example 5–4,
Example 5–5, Example 5–6, and Example 5–7 show the use of the package
STARLET and import and export pragmas to make calls to various OpenVMS
system service and Run-Time Library routines.

5–28 Calling System or Other Callable Routines



Example 5–1 Calling SYS$TRNLNM Using the Package STARLET

with SYSTEM;
with STARLET;
with CONDITION_HANDLING;
with TEXT_IO; use TEXT_IO;
with SHORT_INTEGER_TEXT_IO; use SHORT_INTEGER_TEXT_IO;
procedure ORION is

-- Declare short string subtype used in retrieving
-- translated logical name.
--
subtype SHORT_STRING is STRING(1..255);

-- Declare storage for logical name and name size.
-- Pragma VOLATILE specifies that every read
-- is to the variables in memory, rather than to
-- a local copy.
--
NAME_BUFFER: SHORT_STRING;
NAME_SIZE : SHORT_INTEGER;
pragma VOLATILE (NAME_BUFFER);
pragma VOLATILE (NAME_SIZE);

-- Initialized item list. Zeros in the last element
-- indicate the end of the list.
--
ITEM_LIST: STARLET.ITEM_LIST_TYPE(1..2) :=

(1 => (BUF_LEN => NAME_BUFFER’LENGTH,
ITEM_CODE => STARLET.LNM_STRING,
BUF_ADDRESS => NAME_BUFFER’ADDRESS,
RET_ADDRESS => NAME_SIZE’ADDRESS),

2 => (BUF_LEN => 0,
ITEM_CODE => 0,
BUF_ADDRESS => SYSTEM.ADDRESS_ZERO,
RET_ADDRESS => SYSTEM.ADDRESS_ZERO));

-- Variable for receiving returned condition value.
--
RET_STATUS: CONDITION_HANDLING.COND_VALUE_TYPE;

begin

-- Call the system service; default values are
-- supplied for ATTR and ACMODE.
--
STARLET.TRNLNM(STATUS => RET_STATUS,

TABNAM => "LNM$SYSTEM",
LOGNAM => "CYGNUS",
ITMLST => ITEM_LIST);

(continued on next page)

Calling System or Other Callable Routines 5–29



Example 5–1 (Cont.) Calling SYS$TRNLNM Using the Package STARLET

-- Logical test for successful or unsuccessful
-- completion.
--
if not CONDITION_HANDLING.SUCCESS(RET_STATUS)

then
PUT_LINE("Failed to translate logical name");

else
--
-- Output values
--
PUT("Logical name translates to """);
PUT(NAME_BUFFER(1 .. INTEGER(NAME_SIZE)));
PUT_LINE("""");
PUT("Logical name size is ");
PUT(NAME_SIZE);
NEW_LINE;

end if;

end ORION;

Example 5–2 Calling SYS$GETQUI Using the Package STARLET

-- This program prompts for a queue name (wildcards are acceptable)
-- and displays information on all print jobs in output queues with
-- a job size of 50 blocks or more. It also displays queue name,
-- job size, user name, and job name information for each job listed.
--

with SYSTEM, STARLET, CONDITION_HANDLING, TEXT_IO, INTEGER_TEXT_IO;
use SYSTEM, STARLET, CONDITION_HANDLING, TEXT_IO, INTEGER_TEXT_IO;
procedure GETQUI_EXAMPLE is

QUEUE_ITEM_LIST: ITEM_LIST_TYPE (1..4);
JOB_ITEM_LIST : ITEM_LIST_TYPE (1..6);
ITEM_LIST_END : ITEM_REC_TYPE := (0,0,ADDRESS_ZERO,ADDRESS_ZERO);
IOSB : IOSB_TYPE;

SEARCH_NAME,
QUEUE_NAME : STRING (1..31);
JOB_NAME : STRING (1..39);
USER_NAME : STRING (1..12);

SEARCH_NAME_LEN: NATURAL;
QUEUE_NAME_LEN : UNSIGNED_WORD;
JOB_NAME_LEN,
USER_NAME_LEN : UNSIGNED_WORD;

(continued on next page)

5–30 Calling System or Other Callable Routines



Example 5–2 (Cont.) Calling SYS$GETQUI Using the Package STARLET

SEARCH_FLAGS: QUI_SEARCH_FLAGS_TYPE := QUI_SEARCH_FLAGS_TYPE_INIT;
JOB_STATUS : QUI_JOB_STATUS_TYPE;
JOB_SIZE : INTEGER;

RET_STATUS_QUEUE, RET_STATUS_JOB : COND_VALUE_TYPE;

begin

-- Request queue name to search.
--
PUT ("Enter queue name to search: ");
GET_LINE (SEARCH_NAME, SEARCH_NAME_LEN);

-- Initialize item list for the display queue operation.
--
QUEUE_ITEM_LIST := (

1 => (ITEM_CODE => QUI_SEARCH_NAME,
BUF_LEN => UNSIGNED_WORD(SEARCH_NAME_LEN),
BUF_ADDRESS => SEARCH_NAME’ADDRESS,
RET_ADDRESS => ADDRESS_ZERO),

2 => (ITEM_CODE => QUI_SEARCH_FLAGS,
BUF_LEN => 4,
BUF_ADDRESS => SEARCH_FLAGS’ADDRESS,
RET_ADDRESS => ADDRESS_ZERO),

3 => (ITEM_CODE => QUI_QUEUE_NAME,
BUF_LEN => 31,
BUF_ADDRESS => QUEUE_NAME’ADDRESS,
RET_ADDRESS => QUEUE_NAME_LEN’ADDRESS),

4 => ITEM_LIST_END);

-- Initialize item list for the display job operation.
--
JOB_ITEM_LIST := (

1 => (ITEM_CODE => QUI_SEARCH_FLAGS,
BUF_LEN => 4,
BUF_ADDRESS => SEARCH_FLAGS’ADDRESS,
RET_ADDRESS => ADDRESS_ZERO),

2 => (ITEM_CODE => QUI_JOB_SIZE,
BUF_LEN => 4,
BUF_ADDRESS => JOB_SIZE’ADDRESS,
RET_ADDRESS => ADDRESS_ZERO),

(continued on next page)

Calling System or Other Callable Routines 5–31



Example 5–2 (Cont.) Calling SYS$GETQUI Using the Package STARLET
3 => (ITEM_CODE => QUI_JOB_NAME,

BUF_LEN => 39,
BUF_ADDRESS => JOB_NAME’ADDRESS,
RET_ADDRESS => JOB_NAME_LEN’ADDRESS),

4 => (ITEM_CODE => QUI_USERNAME,
BUF_LEN => 12,
BUF_ADDRESS => USER_NAME’ADDRESS,
RET_ADDRESS => USER_NAME_LEN’ADDRESS),

5 => (ITEM_CODE => QUI_JOB_STATUS,
BUF_LEN => 4,
BUF_ADDRESS => JOB_STATUS’ADDRESS,
RET_ADDRESS => ADDRESS_ZERO),

6 => ITEM_LIST_END);

-- Request search of all jobs present in output queues; also
-- force wildcard mode to maintain the internal search context
-- block after the first call when a nonwildcard queue name is
-- entered (this action preserves the queue context for the
-- subsequent display job operation).
--
SEARCH_FLAGS.SEARCH_WILDCARD := TRUE;
SEARCH_FLAGS.SEARCH_SYMBIONT := TRUE;
SEARCH_FLAGS.SEARCH_ALL_JOBS := TRUE;

-- Dissolve any internal search context block for the process.
--
GETQUIW (STATUS => RET_STATUS_QUEUE,
FUNC => QUI_CANCEL_OPERATION);

-- Locate next output queue; loop until an error status is
-- returned.
--
while SUCCESS (RET_STATUS_QUEUE) loop

GETQUIW (STATUS => RET_STATUS_QUEUE,
FUNC => QUI_DISPLAY_QUEUE,
ITMLST => QUEUE_ITEM_LIST,
IOSB => IOSB);

if SUCCESS (RET_STATUS_QUEUE) then
RET_STATUS_QUEUE := SEVERITY(IOSB.STATUS);

end if;
if SUCCESS (RET_STATUS_QUEUE) then

NEW_LINE;
PUT ("Queue name = ");
PUT_LINE (QUEUE_NAME (1..INTEGER(QUEUE_NAME_LEN)));
RET_STATUS_JOB := SS_NORMAL;

(continued on next page)

5–32 Calling System or Other Callable Routines



Example 5–2 (Cont.) Calling SYS$GETQUI Using the Package STARLET
-- Get information on next job in queue; loop
-- until error return.
--
while SUCCESS (RET_STATUS_JOB) loop

GETQUIW (STATUS => RET_STATUS_JOB,
FUNC => QUI_DISPLAY_JOB,
ITMLST => JOB_ITEM_LIST,
IOSB => IOSB);

if SUCCESS (RET_STATUS_JOB) then
RET_STATUS_JOB := SEVERITY(IOSB.STATUS);

end if;
if SUCCESS (RET_STATUS_JOB) and (JOB_SIZE > 50) then

PUT (" Job size = ");
PUT (JOB_SIZE, WIDTH => 5);
if JOB_STATUS.JOB_INACCESSIBLE then

PUT_LINE (" <no read access privilege>");
else

PUT (" Username = ");
PUT (USER_NAME (1..INTEGER(USER_NAME_LEN)));
SET_COL (46);
PUT (" Job name = ");
PUT_LINE (JOB_NAME (1..INTEGER(JOB_NAME_LEN)));

end if;
end if;

end loop;
end if;

end loop;

end GETQUI_EXAMPLE;

Example 5–3 Calling SYS$CRMPSC Using the Package STARLET

with SYSTEM; use SYSTEM;
with STARLET;
with CONDITION_HANDLING;
with TEXT_IO; use TEXT_IO;
procedure MAP_FILE is

NAME : constant STRING := "map_file.ada";
START_LOC, END_LOC : ADDRESS;

(continued on next page)

Calling System or Other Callable Routines 5–33



Example 5–3 (Cont.) Calling SYS$CRMPSC Using the Package STARLET

FAB : STARLET.FAB_TYPE := STARLET.FAB_TYPE_INIT;
XAB : STARLET.XAB_TYPE(STARLET.XAB_C_FHC)

:= STARLET.XABFHC_INIT;
pragma VOLATILE(FAB);
pragma VOLATILE(XAB);

STATUS : CONDITION_HANDLING.COND_VALUE_TYPE;
CHANNEL : STARLET.CHANNEL_TYPE;

RETADR,
INADR : STARLET.ADDRESS_RANGE_TYPE;

begin

START_LOC := ADDRESS_ZERO;
END_LOC := ADDRESS_ZERO;

-- First, open the file.
--
FAB.FNA := NAME’ADDRESS;
FAB.FNS := NAME’LENGTH;
FAB.FOP.UFO := TRUE;
FAB.XAB := XAB’ADDRESS;

STARLET.OPEN(STATUS, FAB);

-- Check for the file’s existence and, if it exists, that its
-- format is correct.
--
if CONDITION_HANDLING.SEVERITY(STATUS) /= STARLET.STS_K_SUCCESS
then

PUT_LINE("Cannot find file");
else

if (FAB.ORG /= STARLET.FAB_C_SEQ) or else
(not FAB.RAT.CR) or else
(FAB.RFM /= STARLET.FAB_C_VAR)

then
PUT_LINE("File is in the wrong format");

else
CHANNEL := STARLET.CHANNEL_TYPE(FAB.STV);

(continued on next page)

5–34 Calling System or Other Callable Routines



Example 5–3 (Cont.) Calling SYS$CRMPSC Using the Package STARLET
-- Now, map it to the first available space.
--
INADR(0) := ADDRESS_ZERO;
INADR(1) := ADDRESS_ZERO;

STARLET.CRMPSC(STATUS => STATUS,
INADR => INADR,
RETADR => RETADR,
FLAGS => STARLET.SEC_M_EXPREG,
CHAN => CHANNEL);

-- Check to see if mapping worked; if it did, calculate
-- the starting and ending points.
--
if not CONDITION_HANDLING.SUCCESS(STATUS)
then

PUT_LINE("CRMPSC failed");
else

START_LOC := RETADR(0);
if XAB.FFB /= 0
then

END_LOC := RETADR(0) + INTEGER(XAB.EBK-1)*512
+ INTEGER(XAB.FFB);

else
END_LOC := RETADR(0) + INTEGER(XAB.EBK)*512;

end if;
end if;

end if;
end if;

end MAP_FILE;

Calling System or Other Callable Routines 5–35



Example 5–4 Calling LIB$FILE_SCAN and LIB$FILE_SCAN_END Using the
Package LIB

-- This example uses the following LIB$ routines:
--
-- LIB$FILE_SCAN Scans a wildcarded file specification,
-- returning each file.
-- LIB$FILE_SCAN_END Terminates scan.
--
-- This example contains three compilation units:
--
-- LIB_EXAMPLE_SCAN_SUCCESS To be called on success of scan.
-- LIB_EXAMPLE_SCAN_FAILURE To be called on failure of scan.
-- LIB_EXAMPLE Main program.
--
-- The subprograms are separate compilation units because they
-- function as callable routines. Because the callback routines
-- are passed as parameters using the ADDRESS attribute, they must
-- be exported. Exported subprograms (routines) must be library
-- subprograms (separate compilation units) or must be declared in
-- a library package.

-------------------------------------------------------------------

-- LIB_EXAMPLE_SCAN_SUCCESS: This procedure is called by every
-- successful lookup of a file from LIB$FILE_SCAN. It is passed the
-- address of the FAB, from whose NAM block the file specification
-- is extracted (starting at the device).
--
with SYSTEM, STARLET, TEXT_IO;
use TEXT_IO;
procedure LIB_EXAMPLE_SCAN_SUCCESS (FAB : STARLET.FAB_TYPE) is

-- Declare the NAM block, and point it to the address in
-- the FAB.
--
NAM : STARLET.NAM_TYPE;
for NAM use at FAB.NAM;

-- Declare the length of the string, and determine its starting
-- position in memory (NAM.L_DEV).
--
LEN : constant INTEGER := INTEGER(NAM.B_DEV)+INTEGER(NAM.B_DIR)+

INTEGER(NAM.B_NAME)+INTEGER(NAM.B_TYPE)+INTEGER(NAM.B_VER);
STR : STRING (1..LEN);
for STR use at NAM.L_DEV;

(continued on next page)

5–36 Calling System or Other Callable Routines



Example 5–4 (Cont.) Calling LIB$FILE_SCAN and LIB$FILE_SCAN_END
Using the Package LIB

begin
PUT_LINE (STR);

end LIB_EXAMPLE_SCAN_SUCCESS;

pragma EXPORT_PROCEDURE (
INTERNAL => LIB_EXAMPLE_SCAN_SUCCESS);

-------------------------------------------------------------------

-- LIB_EXAMPLE_SCAN_FAILURE: This procedure is called for every
-- failure reported by LIB$FILE_SCAN.
--
with SYSTEM, STARLET, TEXT_IO;
use TEXT_IO;
procedure LIB_EXAMPLE_SCAN_FAILURE (FAB : STARLET.FAB_TYPE) is
begin

PUT_LINE ("Failure");
end LIB_EXAMPLE_SCAN_FAILURE;

pragma EXPORT_PROCEDURE (
INTERNAL => LIB_EXAMPLE_SCAN_FAILURE);

-------------------------------------------------------------------

-- LIB_EXAMPLE: The main program that directs the file scan.
--
with SYSTEM, STARLET, LIB, CONDITION_HANDLING, TEXT_IO;
with LIB_EXAMPLE_SCAN_SUCCESS, LIB_EXAMPLE_SCAN_FAILURE;
use TEXT_IO;

procedure LIB_EXAMPLE is

-- Declare FAB, NAM, buffers, and context.
--
MY_FAB : STARLET.FAB_TYPE;
MY_NAM : STARLET.NAM_TYPE;
ESS_BUFFER, RSS_BUFFER : STRING (1..STARLET.NAM_C_MAXRSS);
MY_CONTEXT : LIB.CONTEXT_TYPE;
STATUS : CONDITION_HANDLING.COND_VALUE_TYPE;

-- Declare the string to contain the wildcarded list of files
-- to be searched.
--
FILE_SPECIFICATION : constant STRING := "SYS$LIBRARY:*RTL*.*";

(continued on next page)

Calling System or Other Callable Routines 5–37



Example 5–4 (Cont.) Calling LIB$FILE_SCAN and LIB$FILE_SCAN_END
Using the Package LIB

-- Rename "=" to make the code read better.
--
function "=" (LEFT, RIGHT : SYSTEM.UNSIGNED_LONGWORD)

return BOOLEAN
renames SYSTEM."=";

-- Import the RMS$_NMF (no more files) value for testing after
-- the call to LIB$FILE_SCAN.
--
RMS_NMF : constant CONDITION_HANDLING.COND_VALUE_TYPE :=

SYSTEM.IMPORT_VALUE ("RMS$_NMF");

begin

MY_CONTEXT := 0;

-- Initialize and set up FAB.
--
MY_FAB := STARLET.FAB_TYPE_INIT;
MY_FAB.FNA := FILE_SPECIFICATION’ADDRESS;
MY_FAB.FNS := FILE_SPECIFICATION’LENGTH;
MY_FAB.NAM := MY_NAM’ADDRESS;

-- Initialize and set up NAM.
--
MY_NAM := STARLET.NAM_TYPE_INIT;
MY_NAM.RSA := RSS_BUFFER’ADDRESS;
MY_NAM.RSS := SYSTEM.UNSIGNED_BYTE(RSS_BUFFER’LENGTH);
MY_NAM.ESA := ESS_BUFFER’ADDRESS;
MY_NAM.ESS := SYSTEM.UNSIGNED_BYTE(ESS_BUFFER’LENGTH);

-- Output a title.
--
PUT_LINE ("Files that match " & FILE_SPECIFICATION & ":");
NEW_LINE;

-- Scan for the wildcarded files, and handle errors.
--
LIB.FILE_SCAN (

STATUS => STATUS,
FAB => MY_FAB,
USER_SUCCESS_PROCEDURE => LIB_EXAMPLE_SCAN_SUCCESS’ADDRESS,
USER_ERROR_PROCEDURE => LIB_EXAMPLE_SCAN_FAILURE’ADDRESS,
CONTEXT => MY_CONTEXT);

if (STATUS /= RMS_NMF) and then
(not CONDITION_HANDLING.SUCCESS (STATUS)) then
CONDITION_HANDLING.SIGNAL (STATUS);

end if;

(continued on next page)

5–38 Calling System or Other Callable Routines



Example 5–4 (Cont.) Calling LIB$FILE_SCAN and LIB$FILE_SCAN_END
Using the Package LIB

-- Scan done. End it correctly.
--
LIB.FILE_SCAN_END (

STATUS => STATUS,
FAB => MY_FAB,
CONTEXT => MY_CONTEXT);

if not CONDITION_HANDLING.SUCCESS (STATUS) then
CONDITION_HANDLING.SIGNAL (STATUS);

end if;

end LIB_EXAMPLE;

Example 5–5 Calling SMG Routines Using the Package SMG

-- This program demonstrates the use of the DEC Ada predefined
-- package SMG. The program uses the SMG.CREATE_MENU and
-- SMG.SELECT_FROM_MENU routines to create an application that
-- uses a vertical menu and allows the user to make multiple
-- selections. When the user exits from the menu, the
-- SMG.DELETE_PASTEBOARD routine clears the user’s terminal.
--
with SMG, SYSTEM, CONDITION_HANDLING;
procedure SMG_EXAMPLE is

subtype STRING_ARRAY_TYPE is STRING(1..9);
CHOSEN: STRING_ARRAY_TYPE;

-- To call the SMG.CREATE_MENU routine, you must instantiate
-- the generic package SMG.CREATE_MENU_PKG. This package
-- defines both the SMG.CREATE_MENU routine and the type
-- CHOICES_STRING_ARRAY_TYPE, which is an unconstrained array
-- of strings.
--
package MY_CREATE_MENU is new SMG.CREATE_MENU_PKG(

LEN => STRING_ARRAY_TYPE’LENGTH);

(continued on next page)

Calling System or Other Callable Routines 5–39



Example 5–5 (Cont.) Calling SMG Routines Using the Package SMG

MENU_CHOICES: MY_CREATE_MENU.CHOICES_STRING_ARRAY_TYPE(1..21) :=
("ONE ", "TWO ", "THREE ", "FOUR ",
"FIVE ", "SIX ", "SEVEN ", "EIGHT ",
"NINE ", "TEN ", "ELEVEN ", "TWELVE ",
"THIRTEEN ", "FOURTEEN ", "FIFTEEN ", "SIXTEEN ",
"SEVENTEEN", "EIGHTEEN ", "NINETEEN ", "TWENTY ",
"Exit ");

RET_STATUS: CONDITION_HANDLING.COND_VALUE_TYPE;
PASTEBOARD_ID: SYSTEM.UNSIGNED_LONGWORD;
DISPLAY1_ID, DISPLAY2_ID: SYSTEM.UNSIGNED_LONGWORD;
KEYBOARD_ID: SYSTEM.UNSIGNED_LONGWORD;
COUNTER: SYSTEM.UNSIGNED_WORD := 0;

begin

-- Create the pasteboard on which the virtual displays will
-- appear.
--
SMG.CREATE_PASTEBOARD(

STATUS => RET_STATUS,
PASTEBOARD_ID => PASTEBOARD_ID);

-- Create the virtual keyboard to allow input from the user.
--
SMG.CREATE_VIRTUAL_KEYBOARD(

STATUS => RET_STATUS,
KEYBOARD_ID => KEYBOARD_ID);

-- Create two virtual displays: one for the menu, and one to
-- show the menu choices.
--
SMG.CREATE_VIRTUAL_DISPLAY(

STATUS => RET_STATUS,
NUMBER_OF_ROWS => 10,
NUMBER_OF_COLUMNS => 20,
DISPLAY_ID => DISPLAY1_ID,
DISPLAY_ATTRIBUTES => SMG.M_BORDER,
VIDEO_ATTRIBUTES => SMG.M_BOLD);

SMG.CREATE_VIRTUAL_DISPLAY(
STATUS => RET_STATUS,
NUMBER_OF_ROWS => 6,
NUMBER_OF_COLUMNS => 20,
DISPLAY_ID => DISPLAY2_ID,
DISPLAY_ATTRIBUTES => SMG.M_BORDER);

(continued on next page)

5–40 Calling System or Other Callable Routines



Example 5–5 (Cont.) Calling SMG Routines Using the Package SMG

-- Paste the virtual displays to the pasteboard (so that they
-- can be seen on the user’s terminal).
--
SMG.PASTE_VIRTUAL_DISPLAY(

STATUS => RET_STATUS,
DISPLAY_ID => DISPLAY2_ID,
PASTEBOARD_ID => PASTEBOARD_ID,
PASTEBOARD_ROW => 17,
PASTEBOARD_COLUMN => 20);

SMG.PASTE_VIRTUAL_DISPLAY(
STATUS => RET_STATUS,
DISPLAY_ID => DISPLAY1_ID,
PASTEBOARD_ID => PASTEBOARD_ID,
PASTEBOARD_ROW => 4,
PASTEBOARD_COLUMN => 20);

-- Create the vertical menu, with its 21 choices ("ONE" through
-- "TWENTY" and "Exit").
--
MY_CREATE_MENU.CREATE_MENU(

STATUS => RET_STATUS,
DISPLAY_ID => DISPLAY1_ID,
CHOICES => MENU_CHOICES,
MENU_TYPE => SMG.K_VERTICAL,
RENDITION_SET => SMG.M_BOLD,
RENDITION_COMPLEMENT => SMG.M_BOLD);

-- Loop while the user chooses items from the menu using the up
-- and down arrows and the return key; after each choice, the
-- choice name is output on the screen, and then the default
-- choice reverts to the first item left on the menu.
--
-- The choice "Exit" must be chosen to exit from the menu. When
-- "Exit" is chosen, the pasteboard and its two displays are
-- deleted, and program execution is completed.
--
while INTEGER(COUNTER) <= 21 loop

SMG.SELECT_FROM_MENU (
STATUS => RET_STATUS,
KEYBOARD_ID => KEYBOARD_ID,
DISPLAY_ID => DISPLAY1_ID,
SELECTED_CHOICE_NUMBER => COUNTER,
FLAGS => SMG.M_REMOVE_ITEM,
SELECTED_CHOICE_STRING => CHOSEN);

(continued on next page)

Calling System or Other Callable Routines 5–41



Example 5–5 (Cont.) Calling SMG Routines Using the Package SMG

if CHOSEN = "Exit " then
SMG.DELETE_PASTEBOARD (

STATUS => RET_STATUS,
PASTEBOARD_ID => PASTEBOARD_ID);

exit;
end if;
SMG.PUT_LINE(

STATUS => RET_STATUS,
DISPLAY_ID => DISPLAY2_ID,
TEXT => CHOSEN);

end loop;

end SMG_EXAMPLE;

Example 5–6 Calling SYS$TRNLNM Using an Import Pragma

with SYSTEM;
with CONDITION_HANDLING;
with TEXT_IO; use TEXT_IO;
with SHORT_INTEGER_TEXT_IO; use SHORT_INTEGER_TEXT_IO;
procedure ORION is

-- Declare short string subtype used in retrieving
-- translated logical name.
--
subtype SHORT_STRING is STRING(1..255);

-- Declare storage for logical name and name size.
-- The pragma VOLATILE specifies that every read
-- of the variables must be to memory, rather
-- than to a local copy.
--
NAME_BUFFER: SHORT_STRING;
NAME_SIZE : SHORT_INTEGER;
pragma VOLATILE(NAME_BUFFER);
pragma VOLATILE(NAME_SIZE);

-- Declare subtypes for SYS$TRNLNM parameters.
--
subtype LOGICAL_NAME_TYPE is STRING;
subtype ACCESS_MODE_TYPE is SYSTEM.UNSIGNED_WORD;

(continued on next page)

5–42 Calling System or Other Callable Routines



Example 5–6 (Cont.) Calling SYS$TRNLNM Using an Import Pragma

-- Define the OpenVMS item list type.
--
type ITEM_REC_TYPE is

record
BUF_LEN : SYSTEM.UNSIGNED_WORD;
ITEM_CODE : SYSTEM.UNSIGNED_WORD;
BUF_ADDRESS: SYSTEM.ADDRESS;
RET_ADDRESS: SYSTEM.ADDRESS;

end record;

type ITEM_LIST_TYPE is
array (NATURAL range <>) of ITEM_REC_TYPE;

-- Declare constant representing an item code to
-- be specified in the item list.
--
LNM_STRING : constant := 2;

-- Initialized item list. Zeros in the last element
-- indicate the end of the list.
--
ITEM_LIST: ITEM_LIST_TYPE(1..2) :=

(1 => (BUF_LEN => NAME_BUFFER’LENGTH,
ITEM_CODE => LNM_STRING,
BUF_ADDRESS => NAME_BUFFER’ADDRESS,
RET_ADDRESS => NAME_SIZE’ADDRESS),

2 => (BUF_LEN => 0,
ITEM_CODE => 0,
BUF_ADDRESS => SYSTEM.ADDRESS_ZERO,
RET_ADDRESS => SYSTEM.ADDRESS_ZERO));

-- Variable for receiving returned condition value.
--
RET_STATUS: CONDITION_HANDLING.COND_VALUE_TYPE;

-- Specify the Ada procedure that corresponds to the
-- system service.
--
procedure TRNLNM (

STATUS: out CONDITION_HANDLING.COND_VALUE_TYPE;
ATTR : in SYSTEM.UNSIGNED_LONGWORD :=

SYSTEM.UNSIGNED_LONGWORD’NULL_PARAMETER;
TABNAM: in LOGICAL_NAME_TYPE;
LOGNAM: in LOGICAL_NAME_TYPE;
ACMODE: in ACCESS_MODE_TYPE :=

ACCESS_MODE_TYPE’NULL_PARAMETER;
ITMLST: in ITEM_LIST_TYPE :=

ITEM_LIST_TYPE’NULL_PARAMETER);

(continued on next page)

Calling System or Other Callable Routines 5–43



Example 5–6 (Cont.) Calling SYS$TRNLNM Using an Import Pragma

-- Use the pragmas INTERFACE and IMPORT_VALUED_PROCEDURE to
-- set up the interface to the actual system service.
-- Note the specification of parameter-passing mechanisms
-- by means of the pragma IMPORT_VALUED_PROCEDURE.
--
pragma INTERFACE (SYSSERV, TRNLNM);
pragma IMPORT_VALUED_PROCEDURE (

INTERNAL => TRNLNM,
EXTERNAL => "SYS$TRNLNM",
PARAMETER_TYPES =>

(CONDITION_HANDLING.COND_VALUE_TYPE,
SYSTEM.UNSIGNED_LONGWORD,
LOGICAL_NAME_TYPE,
LOGICAL_NAME_TYPE,
ACCESS_MODE_TYPE,
ITEM_LIST_TYPE),

MECHANISM =>
(VALUE,
REFERENCE,
DESCRIPTOR(S),
DESCRIPTOR(S),
REFERENCE,
REFERENCE));

begin

-- Call the system service; default values are
-- supplied for ATTR and ACMODE.
--
TRNLNM(STATUS => RET_STATUS,

TABNAM => "LNM$SYSTEM",
LOGNAM => "CYGNUS",
ITMLST => ITEM_LIST);

(continued on next page)

5–44 Calling System or Other Callable Routines



Example 5–6 (Cont.) Calling SYS$TRNLNM Using an Import Pragma

-- Logical test for successful or unsuccessful
-- completion.
--
if not CONDITION_HANDLING.SUCCESS(RET_STATUS)

then
PUT_LINE("Failed to translate logical name");

else
--
-- Output values.
--
PUT("Logical name translates to """);
PUT(NAME_BUFFER(1 .. INTEGER(NAME_SIZE)));
PUT_LINE("""");
PUT("Logical name size is ");
PUT(NAME_SIZE);
NEW_LINE;

end if;

end ORION;

Example 5–7 Using SYSTEM.IMPORT_VALUE to Obtain a Global Symbol
Value

with SYSTEM; use SYSTEM;
with CONDITION_HANDLING; use CONDITION_HANDLING;
with TEXT_IO; use TEXT_IO;
procedure CREATE_LIB is

-- Declare the types and objects needed to call
-- CMS$CREATE_LIBRARY from an Ada program.
--
type LIB_DB is array (1..50) of INTEGER;
subtype DIR_TYPE is STRING (1..14);
subtype ELEM_TYPE is STRING (1..13);

LDB: LIB_DB;
DIR: DIR_TYPE;
ELEM: ELEM_TYPE;
RET_VAL: COND_VALUE_TYPE; -- COND_VALUE_TYPE is in the package

-- CONDITION_HANDLING.

(continued on next page)

Calling System or Other Callable Routines 5–45



Example 5–7 (Cont.) Using SYSTEM.IMPORT_VALUE to Obtain a Global
Symbol Value

-- Assign a constant the value of the CMS global symbol
-- CMS$_CREATED, to allow a later check for success or failure.
--
CMS_CREATED: constant COND_VALUE_TYPE :=

IMPORT_VALUE("CMS$_CREATED");

-- Declare the interfaces for the callable CMS routines.
--
procedure CMS_CREATE_LIBRARY

(STATUS : out COND_VALUE_TYPE;
LDB : in out LIB_DB;
DIR : DIR_TYPE);

pragma INTERFACE (CMS, CMS_CREATE_LIBRARY);
pragma IMPORT_VALUED_PROCEDURE

(INTERNAL => CMS_CREATE_LIBRARY,
EXTERNAL => "CMS$CREATE_LIBRARY",
PARAMETER_TYPES =>

(UNSIGNED_LONGWORD,
LIB_DB,
DIR_TYPE),

MECHANISM =>
(VALUE,
REFERENCE,
DESCRIPTOR));

procedure CMS_CREATE_ELEMENT
(LDB : in out LIB_DB;
ELEM : ELEM_TYPE);

pragma INTERFACE (CMS, CMS_CREATE_ELEMENT);
pragma IMPORT_PROCEDURE

(INTERNAL => CMS_CREATE_ELEMENT,
EXTERNAL => "CMS$CREATE_ELEMENT",
PARAMETER_TYPES =>

(LIB_DB,
ELEM_TYPE),

MECHANISM =>
(REFERENCE,
DESCRIPTOR));

begin

-- Initialize the names of the CMS library and element
-- to be created.
--
DIR := "[LENNON.SONGS]";
ELEM := "LUCY.DIAMONDS";

(continued on next page)

5–46 Calling System or Other Callable Routines



Example 5–7 (Cont.) Using SYSTEM.IMPORT_VALUE to Obtain a Global
Symbol Value

-- Create the library
--
CMS_CREATE_LIBRARY(RET_VAL,LDB,DIR);

-- Use the imported condition value to check for success.
--
if RET_VAL /= CMS_CREATED then

PUT_LINE("Unsuccessful creation");
else

CMS_CREATE_ELEMENT(LDB,ELEM);
end if;

end CREATE_LIB;

Calling System or Other Callable Routines 5–47



6
Using CDD/Repository from DEC Ada

CDD/Repository lets you store data definitions so that they can be shared
among various OpenVMS languages and OpenVMS data management
products. As such, CDD/Repository provides the basis for a highly effective
data management system.

CDD/Repository is an optional OpenVMS software product available under
a separate license. Check with your system manager to determine if it is
installed on your system. You should also check to see which version is
installed:

• Version 3.n or lower is called the VAX Common Data Dictionary. It
provides a central dictionary, uses the Data Management Utility (DMU)
format for internally representing data definitions and provides the
DMU utility, Common Data Dictionary Language (CDDL) compiler, and
Dictionary Verify/Fix (CDDV) utility for working with the dictionary and
data definitions.

• Version 4.n is called VAX CDD/Plus. It provides an additional set
of features, including the ability to create distributed dictionary
configurations. It uses a Common Dictionary Operator (CDO) format for
internally representing data definitions, and provides the CDO utility
for working with dictionaries and data definitions. VAX CDD/Plus is
compatible and can be used with DMU dictionaries. VAX CDD/Plus also
provides a call interface.

• Version 5.n or higher is called CDD/Repository. It includes all the features
of VAX CDD/Plus Version 4.3 except for compatibility mode. Version 5.0
additionally provides the data integration capabilities required in software
development environments.

The CDD/Repository documentation explains how to use CDD. In particular,
Using CDD/Repository on VMS Systems provides tutorial information on
building and maintaining repositories with the CDO utility.

Using CDD/Repository from DEC Ada 6–1



DEC Ada provides a CDD translator utility to let you extract CDD data
definitions and translate them into Ada source files. By default, a complete
Ada package declaration is produced from a CDD data definition. At your
option, you can generate a source fragment that you can combine with other
fragments using the DCL COPY command or a text editor.

6.1 Using the DEC Ada-from-CDD Translator Utility
When you install DEC Ada, the files you need to use the DEC Ada-from-CDD
translator utility are also installed. After DEC Ada is installed, your system
will contain the following files:

SYS$LIBRARY:ADA$FROM_CDD.CLD
SYS$SYSTEM:ADA$FROM_CDD.EXE

In addition, the Ada predefined library (ADA$PREDEFINED) contains the
package CDD_TYPES, which you need to compile the Ada packages or source
fragments created by the translator.

Before using the CDD translator, you must define the ADA$FROM_CDD
command as follows:

$ SET COMMAND SYS$LIBRARY:ADA$FROM_CDD.CLD

Once this command is defined, you can call the translator utility as follows:

$ ADA$FROM_CDD [/[NO]OUTPUT[=filespec]] [/[NO]PACKAGE] pathname

filespec
Is a legal OpenVMS file specification.

pathname
Is a character string that represents the full or relative path name of the
CDD data definition to be extracted and translated to Ada. The path name
must conform to the rules for forming CDD/Repository path names (see Using
CDD/Repository on VMS Systems). The different dictionary formats use
different notation for the dictionary or repository origin:

• For DMU dictionary definitions, a full path name begins with the root
name CDD$TOP and specifies the names of all descendants down to the
record definition. Descendant names are separated from each other by
a period. For example, CDD$TOP.MAIL_ORDER.INFO is a DMU path
name for the definition INFO, which is stored in the CDD directory MAIL_
ORDER.

6–2 Using CDD/Repository from DEC Ada



• For CDO dictionary or repository definitions, a full path name begins with
the dictionary anchor, which specifies the OpenVMS directory where the
CDO dictionary hierarchy is stored. The anchor can optionally consist of
node, device, and directory components. Descendant names are separated
from each other by a period. For example, DISK:[JONES.CDD]MAIL_
ORDER.INFO is the CDD path name for the definition INFO, which is
stored in the CDD directory MAIL_ORDER.

• CDD/Repository Version 5 supports both the backslash and period as
separators. To use the backslash separator, define the logical name
CDD$SEPARATOR to be ‘‘/’’. Then, you can use the backslash to separate
descendant names and also refer to objects with periods in their names; for
example, DISK:[JONES.CDD]MAIL_ORDER/SOURCE.C.

/OUTPUT ( D )
/NOOUTPUT
Specifies the output file; the default is /OUTPUT. If a file specification is not
given, a file name is constructed from the CDD path name; SYS$DISK:[ ].ADA
is used as the default file specification.

/PACKAGE ( D )
/NOPACKAGE
Indicates whether or not the output is to be a complete Ada package
declaration; the default is /PACKAGE. When the /PACKAGE qualifier is
specified, a complete package is output in the following form:

with SYSTEM; use SYSTEM;
with CDD_TYPES; use CDD_TYPES;
package <converted-pathname> is

<translation of CDD record>

end;

When the /NOPACKAGE qualifier is specified, an Ada source fragment
containing the translation of the CDD record is output in the following form:

<translation of CDD record>

6.2 Equivalent DEC Ada and CDDL Data Types
The DEC Ada-from-CDD translator attempts to translate all CDD data types
into equivalent DEC Ada data types. Some CDD data types are not native to
DEC Ada. If a data definition contains an unsupported data type, the DEC
Ada-from-CDD translator translates it to a bit array or unsigned-byte array
(these are defined as subtypes UNSUPPORTED_TYPE1 and UNSUPPORTED_
TYPE2 in the package CDD_TYPES), and issues an informational message.

Using CDD/Repository from DEC Ada 6–3



Table 6–1 summarizes the mapping used by the translator between the CDD
data types and the equivalent DEC Ada data types. Alpha includeS the same
data types with some additions. For more information on the CDD data types,
see the CDD/Repository documentation.

The specifications of the packages CDD_TYPES and SYSTEM are given in
Appendix C. Alternatively, you can obtain the Ada source code for the package
CDD_TYPES with the ACS EXTRACT SOURCE command. See Developing
Ada Programs on OpenVMS Systems for more information on this command.

Table 6–1 Equivalent CDD and DEC Ada Data Types for OpenVMS Systems

CDDL Data Type Ada Data Type

UNSPECIFIED Unsupported type

SIGNED BYTE STANDARD.SHORT_SHORT_INTEGER

UNSIGNED BYTE SYSTEM.UNSIGNED_BYTE

SIGNED WORD STANDARD.SHORT_INTEGER

UNSIGNED WORD SYSTEM.UNSIGNED_WORD

SIGNED LONGWORD STANDARD.INTEGER

UNSIGNED LONGWORD SYSTEM.UNSIGNED_LONGWORD

SIGNED QUADWORD SYSTEM.UNSIGNED_QUADWORD

UNSIGNED QUADWORD SYSTEM.UNSIGNED_QUADWORD

SIGNED OCTAWORD CDD_TYPES.OCTAWORD_TYPE

UNSIGNED OCTAWORD CDD_TYPES.OCTAWORD_TYPE

F_FLOATING STANDARD.FLOAT

F_FLOATING COMPLEX Unsupported type

D_FLOATING SYSTEM.D_FLOAT

D_FLOATING COMPLEX Unsupported type

G_FLOATING SYSTEM.G_FLOAT

G_FLOATING COMPLEX Unsupported type

H_FLOATING1 STANDARD.LONG_LONG_FLOAT

H_FLOATING COMPLEX Unsupported type

UNSIGNED NUMERIC Unsupported type

1On VAX systems only.

(continued on next page)

6–4 Using CDD/Repository from DEC Ada



Table 6–1 (Cont.) Equivalent CDD and DEC Ada Data Types for OpenVMS
Systems

CDDL Data Type Ada Data Type

LEFT OVERPUNCHED
NUMERIC

Unsupported type

LEFT SEPARATE NUMERIC Unsupported type

RIGHT OVERPUNCHED
NUMERIC

Unsupported type

RIGHT SEPARATE
NUMERIC

Unsupported type

PACKED DECIMAL Unsupported type

ZONED NUMERIC Unsupported type

BIT One of the subtypes of UNSIGNED_LONGWORD
in package SYSTEM (UNSIGNED_1 through
UNSIGNED_31); unsupported if larger than 31 bits

DATE CDD_TYPES.DATE_TIME_TYPE

TEXT STANDARD.STRING

VARYING STRING Unsupported type

POINTER SYSTEM.ADDRESS

VIRTUAL FIELD Ignored

SEGMENTED STRING Unsupported type

6.3 Example of Using the Ada-from-CDD Translator
The following example shows the translation of a CDD record definition into an
Ada package.

A CDD record definition containing mail order information is extracted and
translated from the CDD using the DEC Ada-from-CDD translator. Once the
resulting package has been compiled, it can be used by an Ada program that
manipulates data based on the type information in the mail order package.

The CDD record definition is as follows:

Using CDD/Repository from DEC Ada 6–5



define field order_num
datatype is longword.

define field name
datatype is text
size is 20.

define field address
datatype is text
size is 20.

define field city
datatype is text
size is 19.

define field state
datatype is text
size is 2.

define field zip_code
datatype is text
size is 5.

define field item_num
datatype is longword.

define field shipping
datatype is f_floating.

define record info.
order_num.
name.
address.
city.
state.
zip_code.
item_num.
shipping.

end record.

To translate this definition to an Ada package, you first define the
ADA$FROM_CDD command and then execute the command so that it
extracts and translates the CDD record (assumed in this example to have
the anchor directory DISK$:[USER.REPOS]. The definitions are stored in a
repository directory called MAIL_ORDER). For example:

$ SET COMMAND SYS$LIBRARY:ADA$FROM_CDD.CLD
$ ADA$FROM_CDD/OUTPUT=INFO.ADA/PACKAGE DISK$:[USER.REPOS]MAIL_ORDER.INFO

You need to define the ADA$FROM_CDD command only once for any given
terminal session. For your own convenience, you may want to define it in your
LOGIN.COM file. See the OpenVMS User’s Manual for more information on
LOGIN.COM files.

6–6 Using CDD/Repository from DEC Ada



The Ada-from-CDD translator produces the following translation in the file
INFO.ADA:

with SYSTEM; use SYSTEM;
with CDD_TYPES; use CDD_TYPES;
package DISK_USER_REPOS_MAIL_ORDER_INFO is

-- CDD Path Name "DISK$:[USER.REPOS]MAIL_ORDER.INFO"

type INFO_TYPE is
record

ORDER_NUM : INTEGER; -- signed longword
NAME : STRING(1 .. 20); -- text
ADDRESS : STRING(1 .. 20); -- text
CITY : STRING(1 .. 19); -- text
STATE : STRING(1 .. 2); -- text
ZIP_CODE : STRING(1 .. 5); -- text
ITEM_NUM : INTEGER; -- signed longword
SHIPPING : FLOAT; -- F_floating

end record;

for INFO_TYPE use
record

ORDER_NUM at 0 range 0 .. 31;
NAME at 4 range 0 .. 159;
ADDRESS at 24 range 0 .. 159;
CITY at 44 range 0 .. 151;
STATE at 63 range 0 .. 15;
ZIP_CODE at 65 range 0 .. 39;
ITEM_NUM at 70 range 0 .. 31;
SHIPPING at 74 range 0 .. 31;

end record;

for INFO_TYPE’SIZE use 624;

end;

You can then use this package in an Ada program as you would use any other
Ada package. For example:

with DISK_USER_REPOS_MAIL_ORDER_INFO;
use DISK_USER_REPOS_MAIL_ORDER_INFO;
procedure USE_MAIL_DATABASE is
begin

-- Work with the mail database using the type MAIL_ORDER_TYPE.

end USE_MAIL_DATABASE;

Using CDD/Repository from DEC Ada 6–7



7
Tasking

Ada tasks are entities that execute in parallel. For example, you can use tasks:

• To take data concurrently from several sources

• To do terminal input-output and a series of calculations at the same time

• To call asynchronous OpenVMS system services

This chapter provides information on how to use DEC Ada tasks effectively,
giving, in particular, information on how to use tasks in the OpenVMS
environment.

If you are not familiar with Ada tasking, read Chapter 9 of the DEC Ada
Language Reference Manual before reading this chapter. For information
on the OpenVMS concepts presented in this chapter, see the OpenVMS
Programming Concepts Manual. For information on DECthreads routines, see
the Guide to DECthreads.

For information on the interaction of tasks with DEC Ada input-output
facilities and exception handling, see Chapters Chapter 2 and Chapter 3.

7.1 Introduction to Using Ada Tasks on the OpenVMS
Operating System

A task is an entity whose execution proceeds in parallel with the execution
of other tasks. The Ada language lets you declare both task types and task
objects.

An environment task is automatically created when you run a main DEC Ada
program. This task—the main task—first elaborates any library packages
associated with the program, and then calls the main program. See Chapter
10 of the DEC Ada Language Reference Manual. When execution of the
main program is completed and all tasks that depend on its library packages
terminate, the main task is deleted and control returns to the OpenVMS
operating system.

Tasking 7–1



Any task is said to depend on a number of masters. A master can be a block,
task, or subprogram. For example if you declare a task object in a block, the
block is the master of the created task, and the task depends on the block.
If the block is executed within the statement part of a subprogram, then the
subprogram is another master of the task and the task depends on it, too.

An immediate master is the master that immediately contains either:

• The declaration of a task object, or

• The definition of the access type whose designated type is a task type

Control cannot leave a master until all of its dependent tasks have terminated.
If some dependent task chooses not to terminate, none of its masters can exit,
and the program (or a portion of it) appears to ‘‘hang.’’

Each time you create a task (for example, by declaring a task object or
evaluating an allocator that points to a task object), DEC Ada automatically
creates a task control block to manage the task. When the task is activated,
DEC Ada creates a stack to be used by the statements that the task executes
and lets the task compete for the processor on which your process is executing.

Because all tasks in any Ada program (including the main task) currently
run in the context of a single process, control can switch from one task to
another quickly. This switch can occur at or during any of the several machine
instructions that make up an Ada program statement. The switch can occur
midway through the execution of an Ada source line.

Because of task switching, you often need to synchronize the execution of
tasks in your program to get the behavior you desire. Synchronization involves
making sure that the right things happen in the right order. The usual means
of synchronizing tasks is to use Ada’s rendezvous mechanism.

Example 7–1 reads in an array of integers and sorts them using a quick sort.
The sorting is done by one task while another task (running in parallel) lets
you see how the sort is progressing by executing input-output statements while
the sort is being done. The comments in the example point out various tasking
concepts (activation, synchronization, and so on). The DEC Ada Language
Reference Manual fully defines these concepts.

7–2 Tasking



VAX Systems Only

On VAX systems, you need to add the following statement to the
beginning of the procedure TASKSORT:

pragma TIME_SLICE(0.3);

This statement enables round-robin task scheduling and gives each
task an 0.3-second execution time slice. See Section 7.3 for more
information about the pragma TIME_SLICE and its effect on DEC Ada
tasks.

Example 7–1 Interactive Array Sort Using Tasks

-- This example shows that one task can execute while another
-- waits for input-output.
--
-- The main program has a background task that sorts an array while
-- another task interacts with the terminal user. The interactive
-- task, upon user command, will display the array at any time
-- during the sort.

------------------------------------------------------------------

-- Program to sort an array by means of a quick sort and examine
-- it as it is sorted.
--
with TEXT_IO; use TEXT_IO;
with INTEGER_TEXT_IO; use INTEGER_TEXT_IO;
with FLOAT_TEXT_IO; use FLOAT_TEXT_IO;
procedure TASKSORT is

type QUICKARRAY is array (INTEGER range <>) of INTEGER;

-- Array to be sorted and shared among tasks.
--
A : QUICKARRAY(1 .. 120);
ASIZE : INTEGER;

-- Force array references to be made to actual
-- array storage (rather than to a copy).
--
pragma VOLATILE(A);

SENTINEL : STRING(1 .. 120) := (1 .. 120 => ’ ’);

(continued on next page)

Tasking 7–3



Example 7–1 (Cont.) Interactive Array Sort Using Tasks
-- Task to synchronize access to the array being sorted.
--
task GRANTOR is

entry GRAB_ACCESS;
entry RELEASE_ACCESS;

end GRANTOR;

-- Lower priority background task to do sorting.
--
task QUICK is

entry QSORT (ARG_I, ARG_J: INTEGER);
pragma PRIORITY(3);

end QUICK;

-- Higher priority interactive task to display
-- sort results.
--
task USER is

pragma PRIORITY(7);
end USER;

task body GRANTOR is
begin

loop
select

accept GRAB_ACCESS;
accept RELEASE_ACCESS;

or
terminate;

end select;
end loop;

end GRANTOR;

task body QUICK is
I, J, MIDDLE_KEY : INTEGER;
KEY_INDEX : INTEGER;
KEY : INTEGER;

(continued on next page)

7–4 Tasking



Example 7–1 (Cont.) Interactive Array Sort Using Tasks

function FIND_MIDDLE (I,J: INTEGER) return INTEGER is
FIRST : INTEGER;
KEY : INTEGER;

begin
FIRST := A(I);
for KEY in (I + 1) .. J loop

if A(KEY) > FIRST then
return KEY;

elsif A(KEY) < FIRST then
return I;

end if;
end loop;
return 0;

end FIND_MIDDLE;

function DIVIDE_ARRAY (I,J : INTEGER;
MIDDLE_KEY : INTEGER)

return INTEGER is
LEFT, RIGHT, TEMP : INTEGER;

begin
--
-- Rendezvous to synchronize access to the
-- array for partitioning.
--
GRANTOR.GRAB_ACCESS;
LEFT := I;
RIGHT := J;
loop

TEMP := A(LEFT);
A(LEFT) := A(RIGHT);
A(RIGHT) := TEMP;
while A(LEFT) < MIDDLE_KEY

loop
LEFT := LEFT + 1;

end loop;
while A(RIGHT) >= MIDDLE_KEY

loop
RIGHT := RIGHT - 1;

end loop;
exit when LEFT > RIGHT;

end loop;

(continued on next page)

Tasking 7–5



Example 7–1 (Cont.) Interactive Array Sort Using Tasks
-- Rendezvous to synchronize end of
-- array access.
--
GRANTOR.RELEASE_ACCESS;
PUT_LINE("Partial sort complete.");
return LEFT;

end DIVIDE_ARRAY;

procedure QUICK_SORT (I,J: INTEGER) is
begin

KEY_INDEX := FIND_MIDDLE(I,J);
if KEY_INDEX /= 0 then

delay 8.0;
MIDDLE_KEY := A(KEY_INDEX);
KEY := DIVIDE_ARRAY(I,J,MIDDLE_KEY);
QUICK_SORT(I,KEY-1);
QUICK_SORT(KEY,J);

end if;
end QUICK_SORT;

begin
select

accept QSORT (ARG_I,ARG_J: INTEGER) do
I := ARG_I;
J := ARG_J;

end QSORT;
or

terminate;
end select;
PUT_LINE("The sorting task has started.");
QUICK_SORT(I,J);
PUT_LINE("The sorting task has completed.");

end QUICK;

procedure PRINT_ARRAY is
begin

--
-- Again, use GRANTOR task rendezvous to
-- synchronize array access for printing.
--
GRANTOR.GRAB_ACCESS;
for I in 1 .. ASIZE

loop
PUT(A(I),WIDTH=>3);

end loop;
NEW_LINE;
GRANTOR.RELEASE_ACCESS;

end PRINT_ARRAY;

(continued on next page)

7–6 Tasking



Example 7–1 (Cont.) Interactive Array Sort Using Tasks

task body USER is
I : INTEGER;
LAST : NATURAL;

begin
PUT_LINE("Type in the number of " &

"integers you want sorted,");
PUT_LINE("and then press Return.");
GET(ASIZE);
PUT_LINE("Now, type in a string of integers, " &

"separated by spaces, ");
PUT_LINE("that you want sorted. End the " &

"string with a Return.");
for I in 1 .. ASIZE

loop
GET(A(I));

end loop;
PUT("The initial array is ");
PRINT_ARRAY;

-- Start the sorting task.
--
QUICK.QSORT(1,ASIZE);

-- Allow the terminal user to see the array at any time.
--
loop

PUT_LINE("Press Return to see partially " &
"sorted array or e to exit.");

GET_LINE(SENTINEL, LAST);
if LAST >= 1 and then (SENTINEL(1) = ’E’ or else

SENTINEL(1) = ’e’) then
exit;

end if;
PRINT_ARRAY;

end loop;

(continued on next page)

Tasking 7–7



Example 7–1 (Cont.) Interactive Array Sort Using Tasks

exception
when END_ERROR =>

PUT_LINE("That’s all folks!");
when others =>

PUT_LINE("You’ve made a mistake; try again.");
SKIP_LINE;
TASKSORT; -- Re-call main program.

end USER;

begin -- Activate all tasks (GRANTOR, QUICK, USER);
-- all tasks depend on the environment task created
-- for the main program TASKSORT.

null;
end TASKSORT;

7.2 Task Storage Allocation
Each task created in your program requires storage. When your program
creates a task, a task control block is allocated. When the task is activated,
a stack is allocated. Because the OpenVMS operating system is a virtual
memory operating system, the number of tasks you can create is limited only
by the amount of virtual storage available to your process.

The following sections discuss task storage allocation and explain how you can
control it and how it can be important in a mixed-language environment.

7.2.1 Storage Created for a Task Object—The Task Control Block
When your program creates a task object, DEC Ada allocates a block of storage
(a task control block) to keep track of that task’s execution. For example, DEC
Ada allocates a task control block for each of the following task objects:

task type MY_TASK;
T : MY_TASK;

task type MY_TASK;
type MY_TASK_POINTER is access MY_TASK;
PT : MY_TASK_POINTER;
. . .
PT := new MY_TASK;

DEC Ada deallocates the task control block when control leaves the immediate
master (another task or a currently executing block or subprogram) on which
the task depends and not when the task terminates. See Section 7.1 of this
manual and Chapter 9 of the DEC Ada Language Reference Manual for a
definition of masters and dependence.

7–8 Tasking



The size of a task control block depends on the characteristics of the task’s
type. In other words, its size increases in proportion to the following:

• The number of single entries in the task type

• The total number of members of all of its entry families

• The number of single entries that have been specified to receive ASTs
(Asynchronous System Traps) (see Section 7.7)

In particular, if you specify an entry family with a large discrete range, a large
amount of storage is allocated when a task of the type is created. To maximize
execution speed, an entry-call queue is allocated for each member of an entry
family. For example, the following declaration causes a large amount of storage
to be allocated:

entry X (1..100_000);

You can estimate the number of pages to be allocated for a task control block
with the following equation and constant definition table. You need to round
up fractional results to a whole number:

• On VAX systems, the task-control-block size is calculated in terms of
512-byte pages, and you need to round up to the next page.

• On Alpha systems, the task-control-block size is calculated in terms of
bytes.

TCB SIZE =
FIXED AMOUNT + (E�C1) + (AST E�C2)

D

See Table 7–1 for a definition of terms.

Tasking 7–9



Table 7–1 Definition of Terms in Task Control Block Size Equation

Constant VAX Value Alpha Value

FIXED_AMOUNT 3000 bytes 2000 bytes

E The number of single entries plus the
number of members in all entry families

AST_E The number of single entries that have been specified to receive
ASTs (those entries declared with the pragma AST_ENTRY)

C1 12.2 13.0

C2 28 40

D 512 1

For most task types (those having fewer than a few hundred total entries), the
storage that the task control block consumes is relatively small. The main task
has no entries, so the main task control block has a constant size.

You can reduce the size of the task control block by reducing:

• The number of entries,

• The number of entry family members, and

• The number of entries

that have been declared with the pragma AST_ENTRY. You can also cause
the storage consumed by a task control block of a terminated task to be
released by arranging for control to leave its immediate master (as shown in
Example 7–2).

Storage for only one task control block is consumed at any one time, even
though 100,000 tasks are created. This is because the block is the immediate
master of tasks declared to be of type ACCESS_TO_TASK. If X were instead
declared to be of type OUTER_ACCESS, storage for 100,000 task control blocks
would need to be allocated (even though all blocks but one are terminated), and
the exception STORAGE_ERROR may be raised.

As your program creates and terminates many tasks, storage for terminated
tasks accumulates. To reduce the accumulated storage for terminated tasks,
you should arrange the program so that the immediate master on which the
task depends is as innermost as feasible.

7–10 Tasking



Example 7–2 Leaving a Master to Release a Task Control Block

procedure RELEASE is

task type SOME_TASK;

type OUTER_ACCESS is access SOME_TASK;

task body SOME_TASK is
begin

delay 0.5; -- Simulate doing some useful work.
end SOME_TASK;

begin

-- This loop creates 100,000 tasks. X is assigned
-- to refer to each new task in turn. Each task
-- terminates a short time after creation.
--
for I in 1 .. 100000 loop

declare
type ACCESS_TO_TASK is access SOME_TASK;
X : ACCESS_TO_TASK;

begin
X := new SOME_TASK;
delay 1.0; -- Wait long enough to be sure that

-- X is terminated.

end; -- Await termination of all tasks
-- referred to by type ACCESS_TO_TASK,
-- and free their storage.

end loop;

end RELEASE; -- Await termination of all tasks
-- referred to by type OUTER_ACCESS,
-- and free their storage.

This strategy saves space at the expense of more execution time. To minimize
execution time, follow this (opposing) strategy: arrange the program so that
task types and task declarations are as outermost as feasible to minimize the
number of tasks that are created and terminated.

7.2.2 Storage Created for a Task Activation—The Task Stack
Each time a task is activated, a task stack is allocated. The storage for the
task stack is deallocated as soon as the task is terminated.

The task stacks are allocated as follows:

• The stack for a main task is allocated in the P1 region of the process in
which the program is running, and it has no definite limit. As long as your

Tasking 7–11



process has not used up all of its virtual memory, the main task stack is
automatically expanded as needed.

• The storage for all other tasks, including a main task declared with the
pragma MAIN_STORAGE, is allocated in the P0 region. The stacks for
these tasks are fixed in size and are not expanded.

Note

On VAX systems, you can use the pragma MAIN_STORAGE to cause
the stack for the main task to be allocated in the P0 region. See
Section 7.2.2.2 for more information.

The task stack allocated for any DEC Ada task (including the main task) has
two areas:

• A working storage area. This area is used during normal task execution
for the storing of variables, call frames, and so on.

• A top guard area. This area is one or more pages at the top of the stack.
This area is inaccessible to your program, and is designed to help you
detect stack overflow.

On VAX systems, the task stack areas have the following characteristics:

• The default working-area size is 60 pages for tasks with fixed-size stacks.

• The top guard area is a set of 512-byte pages. The default size is 10 pages
for tasks with fixed-size stacks.

• The default stack allocation for tasks with fixed-size stacks allows an
additional 21 pages of stack for calls to non-Ada routines, which is
adequate for most routines, including OpenVMS system service and
Run-Time Library routines.

• Reading or writing the top guard area causes a hardware access violation
(SS$_ACCVIO), which usually terminates your program immediately.

• If no top guard area exists, then you can accidentally overwrite the stack of
another task in the following situations:

– When a task with a fixed-size stack executes non-Ada code for which
stack checking is not performed (see Section 7.2.3)

– When storage size checks are suppressed when you compile the
program (see Section 3.3)

7–12 Tasking



To prevent this overwriting, use a nonzero top guard area so an access
violation occurs when you run out of stack space (preventing you from
overwriting the stack of another task).

On Alpha systems, the task stack areas have the following characteristics:

• The default working-storage area is 32K bytes for tasks with fixed-size
stacks.

• The minimum (and default) size of the top guard area is one page.

• Reading or writing the top guard area causes a hardware access violation
(SS$_ACCVIO). In most cases, this violation is treated as the predefined
exception STORAGE_ERROR. See Chapter 3 for more information about
exception handling.

Note

AST routines execute on the stack of whatever task is currently active.
See Section 7.7 for more information on AST routines and tasks.

You may need to specify the sizes of a task’s stack areas for any of the following
reasons:

• A task is raising the exception STORAGE_ERROR, and you want to
increase its working area.

• A task does not need all of its default stack allocation, and you want to
reduce the working area so that the unused storage can be put to other use
by your program (for example, if your program creates many tasks).

• You suspect that some non-Ada routine might be overflowing the stack,
and you want to increase the top guard area in an attempt to detect the
overflow.

• On VAX systems, you have not called any non-Ada routines, and you are
not having any stack overflow. (You have not suppressed checks and no
task is raising STORAGE_ERROR.) You may want to decrease the top
guard area and put the storage to other use.

• On VAX systems, in the case of a main task, you want to emulate the
behavior of tasks on a VAX system running the VAXELN executive. See
the VAXELN Ada Programming Guide for more information on VAXELN
Ada.

Tasking 7–13



You can use a number of mechanisms for controlling the size of a task’s stack
areas:

• Use the STORAGE_SIZE length representation clause attribute to control
the size of the working storage area of any task stack except the main task
stack.

• Use the DEC Ada pragma TASK_STORAGE to control the size of the guard
area of any task stack except the main task stack.

• On VAX systems, use the pragma MAIN_STORAGE to control the storage
allocated for a main task stack (and to force a fixed-size, P0 space stack
allocation).

The following sections describe how to control task stack storage in more
detail.

7.2.2.1 Controlling the Stack Sizes of Task Objects
To control the working storage area of the stack of a task object, you can apply
the T’STORAGE_SIZE length representation clause to the type used to declare
that object. For example, the following length clause sets the working storage
size for the task type NEEDS_BIG_STACK to 300 pages:

for NEEDS_BIG_STACK’STORAGE_SIZE use 300*PAGE_SIZE;

Any task objects of this type have 300-page working storage areas.

If you specify a size of zero (bytes) with T’STORAGE_SIZE, a default stack
size is used. Also, regardless of the size you specify, some additional space is
allocated for task management purposes:

• On VAX systems, at least 21 pages are allocated.

• On Alpha systems, at least one page is allocated.

You can use the debugger to determine and tune the amount of storage you
need for a stack working area (see Developing Ada Programs on OpenVMS
Systems).

To control the top guard area of a task object, you can use the DEC Ada
pragma TASK_STORAGE to set the amount of guard storage allocated for the
task type used to declare that object. For example, the following statement
sets the top guard area of the task type NEEDS_BIG_STACK to two pages:

pragma TASK_STORAGE(NEEDS_BIG_STACK, 2*PAGE_SIZE);

On VAX systems, you can set the top guard area to zero. For example:

pragma TASK_STORAGE(NEEDS_NO_GUARD, 0)

7–14 Tasking



Any object of this type has a default working storage size (unless a
representation clause was also specified) and no guard area.

The DEC Ada Language Reference Manual states that ’STORAGE_SIZE and
the pragma TASK_STORAGE apply only to task types. To apply them to a
single task, you must convert the single task to a task type declaration and
then a task object declaration.

If you anticipate using representation clauses or the pragma TASK_STORAGE
later, you should use task types when you begin coding your tasking programs.
You may have to rewrite your program if you have single tasks that are
later declarations and that need to be converted to task types (a task type
declaration cannot be a later declaration).

See Chapter 3 of the DEC Ada Language Reference Manual for more
information on later declarations. See Chapter 13 of the DEC Ada Language
Reference Manual for a description of the syntax and rules for using
’STORAGE_SIZE and the pragma TASK_STORAGE.

Example 7–3 shows the control of stack areas using ’STORAGE_SIZE and the
pragma TASK_STORAGE.

Example 7–3 Controlling the Size of a Task’s Stack

procedure CONTROL is

task type NEEDS_BIG_STACK;

-- Set the stack working area of tasks of type NEEDS_BIG_STACK
-- so that these tasks can handle the deepest call of the
-- recursive procedure CALL_SELF. (The value 76 is sufficient
-- storage for one activation of the procedure CALL_SELF.)
--
for NEEDS_BIG_STACK’STORAGE_SIZE use 30000*76;

-- Decrease the top guard area of the stack to the minimum
-- because the task NEEDS_BIG_STACK does not call outside Ada.
-- On VAX systems, no guard pages are allocated; on Alpha
-- systems, one guard page is allocated.
--
pragma TASK_STORAGE(NEEDS_BIG_STACK, 0);

T : NEEDS_BIG_STACK;

(continued on next page)

Tasking 7–15



Example 7–3 (Cont.) Controlling the Size of a Task’s Stack

task body NEEDS_BIG_STACK is
procedure CALL_SELF (I : INTEGER) is
begin

if I < 30000 then
CALL_SELF(I + 1);

end if;
end CALL_SELF;

begin
CALL_SELF(1);

end NEEDS_BIG_STACK;

begin
null;

end CONTROL;

7.2.2.2 Controlling the Size of a Main Task Stack (VAX Systems Only)
Main task stacks usually have no definite limit and are automatically expanded
as needed in the OpenVMS environment. However, DEC Ada provides the
pragma MAIN_STORAGE, which causes the size of the main task stack to be
fixed. It also causes the stack to be allocated in the P0 region rather than in
the P1 region.

This pragma is intended primarily to allow control over the sizing of main task
stacks in a VAXELN environment (with VAXELN Ada). It is generally useful
in the OpenVMS environment when you need to simulate the behavior of a
VAXELN main task when you are working with DEC Ada and an OpenVMS
target. See the VAXELN Ada Programming Guide for more information on
VAXELN Ada.

The pragma MAIN_STORAGE has two parameters, WORKING_STORAGE
and TOP_GUARD, which let you specify (in bytes) either or both the working
storage and top guard areas of the main task. For example:

procedure MAIN_PROGRAM is
pragma MAIN_STORAGE (WORKING_STORAGE => 100*512,

TOP_GUARD => 0);
begin

. . .
end;

The working storage area of the main program in this example is limited to
100*512 bytes (100 pages), and the top guard area is set to zero.

7–16 Tasking



If you specify WORKING_STORAGE or TOP_GUARD alone, a default value
is chosen for the omitted parameter. A default stack size is also used if
you specify a value of 0 for WORKING_STORAGE. Regardless of the value
specified for WORKING_STORAGE, at least three pages of additional space
are allocated for task management purposes.

The debugger can help you to determine and tune the amount of storage you
need for a stack working area. See Developing Ada Programs on OpenVMS
Systems for more information.

See Chapter 13 of the DEC Ada Language Reference Manual for a description
of the syntax and rules for using the pragma MAIN_STORAGE.

7.2.3 Stack Overflow and Non-Ada Code
DEC Ada raises the exception STORAGE_ERROR when an attempt is made to
overflow either the main stack or an Ada task stack. The default stack storage
allocated for each non-Ada call should also be adequate protection against
stack overflow for most non-Ada routine calls (see Section 7.2.2).

When you call a non-Ada routine from an Ada program, the stack of the
main task or an individual task may overflow. Many non-Ada routines do not
check for this. The Ada program is not be able to detect overflow because the
exception STORAGE_ERROR has not been raised. Such an undetected stack
overflow may result in random changes to various locations beyond the storage
allocated for the stack. Because the correct operation of the Ada program may
depend on such locations, undetected stack overflow could make your program
erroneous.

To be safe, do not mix Ada and non-Ada programs without checking for
stack overflow. You can use the top guard areas of tasks in your program to
detect if a non-Ada routine causes the stack to overflow. See Section 7.2.2 for
information about the top guard area. If you make the size of the guard pages
in the top guard area large enough, then undetected overflows that are not
larger than the guard pages raise a hardware access violation SS$_ACCVIO
exception or a STORAGE_ERROR exception (see Section 3.1.1), which usually
terminates your image immediately.

The debugger can be helpful in detecting stack overflow. The debugger
performs an automatic stack check for you and can display the amount of
stack space in use in any task. The DEC Ada predefined package GET_TASK_
INFO also provides operations that you can use to obtain information about
the currently executing task. For further information, see Developing Ada
Programs on OpenVMS Systems.

Tasking 7–17



7.3 Task Switching and Scheduling
DEC Ada implements the Ada language requirement that when two tasks are
eligible for execution and they have different priorities, the lower priority task
does not execute while the higher task is waiting. The DEC Ada run-time
library keeps a task running until either the task is suspended or a higher
priority task becomes ready.

Note

This chapter uses the term ‘‘suspend’’ to mean that execution of the
task is temporarily stopped. The task is waiting for another event, such
as the acceptance of an entry call, to occur before execution resumes.
‘‘Suspend’’ does not refer to the OpenVMS system service $SUSPND.

Two scheduling strategies are available for DEC Ada tasks:

• First-in-first-out (FIFO), with preemption is the default strategy on VAX
systems. With this strategy, tasks of equal priority are processed in first-
in-first-out order. A task is run until it suspends. When it later resumes, it
is placed at the rear of the ready queue for its priority level.

• Round-robin, with preemption is the default strategy on Alpha systems.
With this strategy, tasks of equal priority take turns at the processor. A
task is run for a certain period of time, then placed at the rear of the ready
queue for its priority level.

In both cases, the term with preemption means that DEC Ada preempts a
running task if a higher priority task becomes ready. This behavior is required
by Ada rules (see Section 9.8 of the DEC Ada Language Reference Manual).
The preempted task is placed at the front of the ready queue for its priority
level. When the higher priority task suspends, the preempted task resumes
execution. The preemption of a lower priority task does not imply any cycling
of the ready queue for that priority.

The FIFO scheduling strategy increases program repeatability and helps
you debug your program. The execution of lower priority tasks is minimally
affected by any change in the exact instant at which the higher priority task
becomes ready (which can change from run to run).

However, FIFO scheduling is not necessarily fair to tasks of equal priority that
are eligible for execution but that are not yet running. These waiting tasks
can exhibit sluggish response times, especially if they are interacting with a
terminal. In fact, they never get to run if the running task does not become
suspended.

7–18 Tasking



Round-robin scheduling prevents nonsuspending tasks from capturing the
processor and simulates more realistically tasking on parallel processors. It
also tends to make tasks of equal priority execute in an arbitrary order and
stresses the tasking logic in your program.

There are at least two ways in which you can control task scheduling:

• You can use the pragma PRIORITY to give the more important tasks
higher priorities and increase their responsiveness.

• You can use the pragma TIME_SLICE (available on all OpenVMS
systems) or the procedure SYSTEM_RUNTIME_TUNING.SET_TIME_
SLICE (supported on VAX systems only) to enable or disable round-robin
scheduling.

The following sections discuss the pragma PRIORITY and time slicing in more
detail.

7.3.1 Controlling Task Priorities
To let you control task priorities, the Ada language provides the pragma
PRIORITY. For example, the following statements set the priority of the task
IMPORTANT_TASK to 14:

task IMPORTANT_TASK is
pragma PRIORITY(15);

end IMPORTANT_TASK;

The pragma PRIORITY can appear only in a task specification or in the
outermost declarative part of a main subprogram. See Chapter 9 of the DEC
Ada Language Reference Manual for a description of the syntax and rules for
using this pragma.

On VAX systems, the range of possible DEC Ada task priorities is from 0 to
15. In the absence of this pragma, DEC Ada tasks have a default midrange
priority of 7.

On Alpha systems, the range of possible task priorities is also from 0 to 15.
However, if you do not explicitly specify a priority for a given task, the priority
for that task is considered to be undefined. In DEC Ada, a task with an
undefined priority competes fairly with other tasks, usually behaving as if it
had a midrange priority (between 7 and 8).

A task whose activation occurs as part of the execution of another task
(including the main task) inherits the priority of the parent task.

On all OpenVMS systems, task priority has no effect on the priority of your
process. The process priority applies to the execution of every task in your
program.

Tasking 7–19



7.3.2 Using Time Slicing
The DEC Ada time-slicing features enable (or disable) round-robin scheduling
(see Section 7.3). Time slicing is useful during development to help you find
race conditions and deadlocks. It tends to make tasks of equal priority execute
in an arbitrary order and stresses the tasking logic in your program.

You can control time slicing on OpenVMS systems with the following features:

• The pragma TIME_SLICE (available on all OpenVMS systems)

• The procedure SYSTEM_RUNTIME_TUNING.SET_TIME_SLICE
(supported on VAX systems only)

You specify a time slice with the pragma TIME_SLICE as follows:

pragma TIME_SLICE(STATIC_EXPRESSION);

The static expression must be of the type SYSTEM.DURATION. The pragma
TIME_SLICE has an effect only if it appears in the outermost declarative
part of a main program. See Chapter 9 of the DEC Ada Language Reference
Manual for a complete description.

See the specification of the package SYSTEM_RUNTIME_TUNING in
Appendix C for information on using the SET_TIME_SLICE procedure.

Time-slicing is implemented as follows:

• On VAX systems, when you specify a positive, nonzero time slice with
either the pragma TIME_SLICE or the procedure SYSTEM_RUNTIME_
TUNING.SET_TIME_SLICE, you change the default FIFO scheduling
strategy to round-robin scheduling. Tasks of the same priority take turns
at the processor for the specified amount of time (in seconds).

When you specify a negative or zero value, you disable time slicing (change
the scheduling strategy back to FIFO). On VAX systems, both the pragma
TIME_SLICE and the procedure SYSTEM_RUNTIME_TUNING.SET_
TIME_SLICE let you control the execution time (the size of the time slice)
for any particular task.

• On Alpha systems, round-robin scheduling is the default. You can change
to FIFO scheduling by specifying a negative or zero value for the pragma
TIME_SLICE. You can enable (guarantee) round-robin scheduling by
specifying a positive value for the pragma TIME_SLICE. You cannot switch
back and forth between FIFO and round-robin scheduling in the same
program.

If you enable round-robin scheduling, you increase fairness while increasing
task switching overhead. (On VAX systems, the overhead increases for smaller

7–20 Tasking



time-slice values.) Debugging is also more difficult. On VAX systems, time-
slice values below 0.01 second do not result in faster time slicing because the
smallest time increment supported by the OpenVMS operating system is 0.01
second.

7.4 Special Tasking Considerations
Use of tasks in an Ada program requires some care. Like any other language
construct, tasking has its own characteristic set of programming pitfalls.
(Infinite looping, for example, is a characteristic pitfall of while loops.)

The following topics are discussed in this section:

• Passive tasks

• Deadlock

• Busy waiting

• Tentative rendezvous

• Delay statements

• Abort statements

• Interrupting program execution with Ctrl/Y

• Shared variables

• Reentrancy

7.4.1 Passive Tasks
A passive task is a task that follows one or more of a set of requirements. The
following requirements apply to the task specification:

• No entry families

• No AST entries

• Not allowed within a generic context

• No more than 62 entries

The following requirements apply to the declarative part of the task body:

• No stubs

• No access type declarations

• No generic instantiations

• No task object declarations

Tasking 7–21



• No package bodies

The following conditions apply to the body of a task:

• No accept or select statements in its initial section or inside the body of an
accept statement.

• Final statement must be an unconditional loop. Within the loop, the
following applies:

– Nested accept statements are not allowed.

– Each entry must have exactly one accept statement within the task
body.

– No exception handlers for the task body are allowed. However,
exception handlers within nested declarative parts are acceptable.

– The unconditional loop must take one of the following forms:

a. Unconditional loop containing simple accept statements with
optional bodies and no other statements. For example:

loop
accept e1(...) do -- optional body
...
end e1;

accept e2(...) do -- optional body
...
end e2;

end loop;

b. An unconditional loop containing a selective wait with optional
guards, accept bodies, and an optional terminate alternative. No
other statements are allowed. Also, no delay alternative is allowed.
The guard expression must not contain user-defined subprogram
calls.

The following is an example of an unconditional loop:

7–22 Tasking



loop
select

when <condition> => -- optional guard
accept e1(...) do -- optional accept body
...
end e1;

or
when <condition> => -- optional guard

accept e2(...) do -- optional accept body
...
end e2;

or
when <condition> => -- optional guard
terminate; -- optional terminate

-- alternative
end select;

end loop;

The guard expression can include calls to the functions in
packages SYSTEM and STANDARD, and it can include calls
to the predefined operators associated with types. User-defined
operator calls are not allowed.

The only requirement on the code executing within an accept body is that it
not contain any select statements.

Note

Since the accept body is executed in the context of the task making the
entry call, it is executed on the stack of the task making the entry call.
When making an entry call to a passive task, make sure that the stack
of the calling task is large enough to handle the passive task’s accept
body.

In addition, a passive task must adhere to one of the following formats:

•

task body I_AM_PASSIVE_1 is
<declarative part>

begin
<initial section>
loop

<one select statement>
end loop;

end;

Tasking 7–23



•

task body I_AM_PASSIVE_2 is
<declarative part>

begin
<initial section>
loop

<one or more accept statements>
end loop;

end;

7.4.1.1 Passive Tasks and Rendezvous
Taking advantage of DEC Ada support for passive tasks can significantly
improve the performance of rendezvous in your programs. A task rendezvous
(consisting of an entry call to a passive task) is accomplished with no context
switching overhead. Instead, the accept body is executed in the context of the
task making the entry call.

In an ordinary rendezvous, the caller must block and pass control of the
processor to the task it is calling. The called task must execute the rendezvous,
block, and return control to the caller task.

No blocking or passing of control occurs when making an entry call to a passive
task. Control of the processor does not pass to the passive task. Therefore,
rendezvous with passive tasks is significantly faster.

To take advantage of passive tasks, you need to compile the packages
containing both the task specification and body using the /OPTIMIZE qualifier.
The /OPTIMIZE qualifier indicates that all tasks that can be made passive and
that are not declared with the pragma PASSIVE(NO) be made passive. If you
specify the /OPTIMIZE qualifer, the compiler implements all tasks that meet
the above requirements as passive tasks, regardless of whether or not their
specifications contain a pragma PASSIVE. (See Section 7.4.1.2.

The /NOOPTIMIZE qualifier prevents the compiler from making any tasks
passive (even those containing a pragma PASSIVE).

Not all tasks can be passive tasks. The best candidates are those tasks that act
as servers or as protectors of shared resources. These tasks commonly consist
of a select statement within an infinite loop. A typical server task accepts an
entry call and then loops back to wait for the next entry call.

7–24 Tasking



7.4.1.2 Pragma PASSIVE
You can use the pragma PASSIVE in the following ways:

• To tell the compiler that you would like a particular task to be passive

• To explicitly prevent the compiler from making a task passive

When you specify a pragma PASSIVE and the task does not meet the
requirements for a passive task, the task is not made passive.

The form of pragma PASSIVE is as follows:

pragma PASSIVE [(passive_form)];
passive_form => SEMAPHORE | NO

You must specify the pragma PASSIVE within a task specification. The
specification can be for a task type or for a single task. The containing task
must conform to requirements listed in the preceding sections.

The following forms are equivalent and are considered assertions that the
containing task is passive and that optimization of context switch with this
task is permitted and desired:

pragma PASSIVE;
pragma PASSIVE(SEMAPHORE);

The following form is an assertion that rendezvous with the containing task
should not be optimized:

pragma PASSIVE(NO);

Specify either a pragma PASSIVE (SEMAPHORE) or a pragma PASSIVE with
no arguments in a task specification to cause the compiler to generate warning
messages if the specified task cannot be made passive.

Specifying a pragma PASSIVE is useful in determining why the compiler
cannot make a task passive. It is also useful if you are concerned that future
changes to a task may prevent it from being passive. The compiler issues
warning messages when changes to the task prevent it from being treated any
longer as passive.

A pragma PASSIVE (NO) explicitly directs the compiler not to treat a task as
passive, even if it meets all of the specified requirements.

Instead of specifying a pragma PASSIVE, you can use compilation notes
to determine whether or not the compiler is treating a task as passive. To
generate compilation notes, specify the /WARNINGS=COMPILATION_NOTES
qualifier. During compilation, the compiler issues compilation messages stating
which tasks are passive and which are not.

Tasking 7–25



7.4.2 Deadlock
Deadlock is a condition in which each task in a group of tasks is suspended
and no task in the group can resume its execution until some other task in the
group executes. Deadlock is also called ‘‘circular wait.’’

The possibility that Ada tasks may deadlock is a property of the Ada language.
You can eliminate deadlock with careful program design. The debugger also
provides special task debugging commands that can help you detect deadlocks
(see Developing Ada Programs on OpenVMS Systems).

The following are some of the more common forms of Ada deadlock:

• Exception-induced. Occurs when an exception prevents a task from
answering one of its entry calls. If the exception had not occurred, there
would be no deadlock.

This kind of deadlock occurs when an unhandled exception in an Ada task
must wait for the termination of local dependent tasks before propagating.
Exception-induced deadlock is more subtle than the other kinds of deadlock
because, were it not for the exception, the program would be deadlock free.
Example 7–4 shows an exception-induced deadlock.

• Self-calling. Occurs when a task calls one of its own entries. The call
cannot be completed until the call is answered, and the call cannot be
answered because the task itself becomes suspended at the call. Self-
calling deadlock becomes more subtle if the task calls a procedure that
calls the task. Example 7–5 shows self-calling deadlock.

7–26 Tasking



Example 7–4 An Exception-Induced Deadlock

procedure EXCEPTION_INDUCED is

task PARENT is
entry E;

end PARENT;

task body PARENT is
begin

declare
task CHILD;

UNANTICIPATED_EXCEPTION : exception;

task body CHILD is -- Exceptions wait for any
begin -- task declared within a

PARENT.E; -- unit declared within a task.
end;

begin
raise UNANTICIPATED_EXCEPTION; -- Exception occurs
accept E; -- here; CHILD’s call

-- never accepted.

end; -- Parent waits here
-- for termination
-- of CHILD.

end PARENT;

begin
null;

end EXCEPTION_INDUCED;

Example 7–5 A Self-Calling Deadlock

procedure SELF_CALL is

task type T is
entry E;

end T;

Y : T;

procedure P(X : T) is -- Calls entry E in task X.
begin

X.E;
end P;

(continued on next page)

Tasking 7–27



Example 7–5 (Cont.) A Self-Calling Deadlock

task body T is
begin

P(Y); -- Never returns.
accept E;

end T;

begin
null;

end SELF_CALL;

• Circular-calling. Occurs when a task calls another task that calls another
task, and so on, and the last task calls the first task. One way you can
eliminate circular-calling deadlock is by restricting your program so that
task calls form a strict hierarchy. Example 7–6 shows circular-calling
deadlock.

Example 7–6 A Circular-Calling Deadlock

procedure CIRCULAR_CALL is

task type T1 is
entry E;

end T1;

task type T2 is
entry E;

end T2;

Y : T1;
Z : T2;

procedure P is
begin

Z.E;
end P;

task body T1 is
begin

P;
end T1;

task body T2 is
begin

Y.E;
end T2;

(continued on next page)

7–28 Tasking



Example 7–6 (Cont.) A Circular-Calling Deadlock

begin
null;

end CIRCULAR_CALL;

• Dynamic-circular-calling. Occurs when a series of entry calls forms a circle
as in circular-calling or self-calling deadlocks. However, at least one of the
calls is a timed or conditional entry call in a loop that completes only if
the rendezvous occurs. With dynamic-circular-calling deadlock, at least
one task is executing, but no progress can be made. Example 7–7 shows a
dynamic-circular-calling deadlock.

Example 7–7 A Dynamic-Circular-Calling Deadlock

procedure DYNAMIC_CALL is

task type T is
entry E;

end T;

Y : T;

procedure P(X : T) is
DONE : BOOLEAN := FALSE;

begin
while not DONE loop

select
X.E;
DONE := TRUE;

or
delay 0.5; -- This alternative is always

-- chosen.
end select;

end loop;
end P;

task body T is
begin

P(Y); -- The call to P never returns.
accept E;

end T;

begin
null;

end DYNAMIC_CALL;

Tasking 7–29



7.4.3 Busy Waiting and Non-Ada Code
Sometimes called a ‘‘flag’’ or a ‘‘spin lock,’’ busy waiting is a programming
technique that repeatedly tests a variable to determine if some event has
occurred. When the event does occur, another instruction sequence is presumed
to execute and set the flag, ending the looping.

Busy waiting is sometimes desirable when an event occurs quickly, and it is
justifiable to use CPU time to wait for it. It is also desirable when no other
suitable synchronization methods (such as rendezvous) are available.

However, busy waiting has some undesirable characteristics:

• Assumptions about an event that were true when the code was written
may no longer be true when the code is executed. As a result, a large,
unanticipated amount of CPU time may be consumed at execution time.
For a process running under the OpenVMS operating system, this usually
means that the process is using processor resources that another process
could use to advantage.

• When tasks execute busy-waiting code, the effect can be unpredictable.
Consider the following situation:

– One task is executing a wait loop, while another task is expected to set
the flag.

– The task executing the busy-waiting code has the highest priority in
the program.

If time slicing is not in effect (see Section 7.3), deadlock develops because
the busy-waiting task does not suspend and no other task (including the
flag-setting task) can be scheduled. (This behavior is in accordance with
Ada rules.) The situation can be improved slightly if time slicing is in
effect. The deadlock can still develop if the flag is to be set by a task
of lower priority (even with time slicing, a low-priority task cannot be
scheduled while a higher priority task is ready).

Because of these potential problems, avoid busy waiting. DEC Ada does not
use busy waiting, so if your program uses only DEC Ada, you should not
encounter this kind of deadlock.

If you do discover that your tasking program is caught in a busy waiting loop
by some software over which you have no control, you can probably correct
the problem by setting all of your task priorities to the same value (or by
eliminating all specifications of the pragma PRIORITY) and by enabling time
slicing (see Section 7.3).

7–30 Tasking



7.4.4 Tentative Rendezvous
Ada provides a number of ‘‘tentative’’ rendezvous constructs: conditional
entry calls, select-with-else combinations, and even timed entry call and
select-with-delay combinations.

These constructs are most often coded in loops. They have the potential effect
of causing the task executing such loops to take over the processor if the
task has the same or a greater priority as all of the other tasks available for
execution.

If the executing task does take over the processor, it could end up executing
indefinitely if it depends on any of the tasks it is preventing from executing.
Therefore, tentative rendezvous constructs require special care.

7.4.5 Using Delay Statements
DEC Ada implements the delay statement as a call to the OpenVMS system
service SYS$SETIMR. Each delay statement places an entry in the system
timer queue, which, in turn, affects the OpenVMS operating system Timer
Queue Entry Limit (TQELM) quota. Each delay statement also makes use
of the SYS$SETIMR routine’s ASTADR parameter, which specifies an AST
routine. The use of delay statements can also affect (or possibly exceed) the
AST Queue Limit (ASTLM) quota.

In effect, the TQELM quota limits the number of concurrent Ada delay
statements. When a request is made that would cause the TQELM quota to be
exceeded, the call to SYS$SETIMR stalls until a timer entry packet becomes
available. The call stalls until an active delay expires, and the delay does
not start until the call is made. A low quota can affect any Ada statement
containing the reserved word delay. It can also affect the duration of a time
slice, if time slicing is enabled (see Section 7.3).

You can eliminate this delay anomaly by increasing the TQELM quota for
your process. The TQELM quota should exceed the number of simultaneous
statements involving delay that can be in progress at one time (an upper bound
is the peak number of tasks that can exist simultaneously in your program).
One additional timer entry is required if your program enables time slicing.
You may need to increase the TQELM quota further if your program executes
any other timer-related system services.

To increase the TQELM or ASTLM quota for your process, see your system
manager. The OpenVMS System Manager’s Manual gives details on how to
adjust these quotas.

Tasking 7–31



7.4.6 Using Abort Statements
Be careful when you use abort statements. An abort statement can terminate
a task when it should not be terminated and can lead to erroneous execution.

You should use abort statements only when you require unconditional
termination, and only when you are sure that it is safe to do so. For example,
if you abort a task with an asynchronous system service request in progress
(such as SYS$QIO), the task can become terminated and its stack storage
reallocated to some other use before the OpenVMS operating system has
written the result data. The result data could be written in some unexpected
part of your program’s data area.

DEC Ada implements the abort statement in a synchronous rather than an
asynchronous form. An asynchronous implementation of the abort statement
can cause completion of tasks at arbitrary points in their execution. The
synchronous form causes tasks to become completed only at specific points in
their execution. See Chapter 9 of the DEC Ada Language Reference Manual
for a list of these points.

When a task calls a non-Ada routine (and the routine does not result in a
call to an Ada subprogram), the non-Ada routine executes to completion even
though the calling task has been aborted. In this way, synchronous abort
avoids problems that may result because non-Ada routines typically are not
programmed to work correctly if they are partially executed.

Unfortunately, synchronous abort also means that a task in an infinite loop
cannot become completed unless it executes code that is a synchronization
point for the abort statement.

If you want to ensure that a task becomes completed due to an abort statement
in some section of code, you should insert a delay 0.0 statement there. The
Ada language requires that an abnormal task become completed at a delay
statement. Delay 0.0 is a low-overhead means of ensuring that completion can
occur.

7.4.7 Interrupting Your Program with Ctrl/Y
When you use Ctrl/Y to interrupt the execution of an Ada program that
contains tasks, you can expect some special side effects when you subsequently
try to execute DCL commands. The DCL commands that you are most likely to
enter after pressing Ctrl/Y are: DEBUG, CONTINUE, EXIT, STOP, or a query
such as DIRECTORY. For each of these commands (except CONTINUE), the
current execution point of the process is modified by the OpenVMS operating
system, and execution resumes at the new location as follows:

7–32 Tasking



• The CONTINUE command causes your program to begin execution at the
same point at which the Ctrl/Y interrupt occurred.

• The STOP command immediately terminates execution of your program, as
well as terminating any tasks that may be active.

• The DEBUG command causes the debugger to be activated and your
process to continue its execution under control of the debugger.

• The EXIT command causes your program to execute the SYS$EXIT system
service.

• Most other commands, like the DIRECTORY command, have the effect of
first entering the EXIT command and then entering the command itself.

If a low-priority task is running when you press Ctrl/Y, that task’s priority
affects the action taken. In particular, because a higher priority task may be
scheduled immediately, the desired effect may not occur for awhile or might
never occur. (The CONTINUE and STOP commands are not affected by the
task’s priority: the CONTINUE command because continuation makes the
interruption irrelevant and the STOP command because it does not resume
execution in VAX or Alpha user mode where task switches take place.) For
example:

• If you enter the DEBUG command, you may not enter the debugger
immediately.

• If you enter the EXIT command, the process may continue execution and
not exit.

• If you enter the DIRECTORY command, the result is equivalent to first
entering the EXIT command and then the DIRECTORY command, so your
process may continue executing.

There are two ways to control the results of using these commands. First, you
can force your program to quit by entering the STOP command. When you do
this, however, any established exit handlers do not have a chance to execute.

For example, DEC Ada provides an exit handler for the input-output packages.
If you enter the STOP command to interrupt input-output, the DEC Ada
handler does not have an opportunity to write the last partial record to
whatever external files may be open at the time, to close those files, or to
delete Ada temporary files.

A second solution is to use Ctrl/C in conjunction with the DEC Ada predefined
package CONTROL_C_INTERCEPTION, which lets you run the debugger, exit
the program, or enter a query command like the DIRECTORY command. The
operations this package provides mimic the operations you can perform after

Tasking 7–33



pressing Ctrl/Y. You invoke these operations by pressing Ctrl/C anytime after
the package has been elaborated. For example:

-- Enable Ctrl/C interception prior to main
-- program execution (but not necessarily before
-- all library packages have been elaborated).
--
with CONTROL_C_INTERCEPTION;
pragma ELABORATE(CONTROL_C_INTERCEPTION);
procedure MY_MAIN_PROGRAM is
begin
. . .
end MY_MAIN_PROGRAM;

The following example shows the response of this handler to Ctrl/C:

Nothing can go wrong
go wrong
go wrong
go wrong
go wrong
^C
Ada Ctrl/C Interceptor
Type: DEBUG, CONTINUE, EXIT, or a DCL command.
ADA_Ctrl/C> DEBUG
DBG>

See Appendix C for the package specification of CONTROL_C_INTERCEPTION.

7.4.8 Using Shared Variables
The code that an Ada compiler generates may store the value of a variable
in several, one, or no places in the memory of the machine (see Chapters
Chapter 1 and Chapter 8). Unless instructed otherwise, the compiler believes
that it can detect all attempts to read or write a variable and arranges to have
each of those attempts access the correct places.

In the absence of a pragma SHARED or VOLATILE, the compiler makes
assumptions based on the following rules:

• A variable that is read by a task is not written by another task until the
reading task reaches a synchronization point.

• A variable that is written by a task is not read or written by another
task until the writing task reaches a synchronization point. This rule
is described more precisely in Section 9.11 of the DEC Ada Language
Reference Manual.

7–34 Tasking



These rules avoid the need for specifying either pragma SHARED or pragma
VOLATILE for variables that are read or written by multiple tasks, provided
that the reads and writes are implicitly or explicitly synchronized by tasking
events such as a rendezvous.

If you want your program to read or write a variable in a way that does not
satisfy these rules, you must specify the pragma SHARED or VOLATILE for
that variable. Otherwise, your program is erroneous.

The Ada language defines the pragma SHARED. DEC Ada defines the pragma
VOLATILE. Chapter 9 of the DEC Ada Language Reference Manual gives the
Ada language assumptions about shared variables and gives the usage rules
and syntax for the pragmas SHARED and VOLATILE.

In particular, these pragmas require that the named variable be declared by an
object declaration. For the pragma SHARED, the variable must be of a scalar
or access type. For the pragma VOLATILE, the variable can be of any type.
For example:

pragma SHARED(INTEGER_OBJECT);
pragma VOLATILE(ANY_OBJECT);

The pragma SHARED tells the compiler that any write to that variable must
be made visible to reads by other tasks immediately, not just when the current
task reaches a synchronization point.

The pragma SHARED also tells the compiler that two successive reads or a
write followed by a read may return two different values, even though there
is no intervening synchronization point. The pragma SHARED also tells the
compiler that it may have to generate special code to guarantee that complete
values, not half the bit pattern of an old value and half the bit pattern of the
new value, are read.

In implementing the pragma SHARED, DEC Ada guarantees that every
read or update of a shared variable is a synchronization point. DEC Ada
accomplishes this by ensuring the following actions for updates:

• When a shared variable is updated, the value is written to the storage
allocated for the variable.

• Each write is performed as an indivisible operation (to exclude the
possibility of another task reading a partially updated value).

• On VAX systems, an interlocked instruction is executed.

On Alpha systems, a memory barrier instruction is executed.

Tasking 7–35



This instruction or sequence of instructions is executed so that all
processors that share memory with the current processor are informed
that the update has taken place (to keep other processors from continuing
to read an old value for the variable and for any volatile variables out of
their memory cache).

DEC Ada ensures the following actions for reads:

• Each read is from the storage allocated for the shared variable.

• Each read is performed as an indivisible operation. However, other
processors are not informed of the read. On Alpha systems, a memory
barrier is executed before each read.

DEC Ada ensures the indivisibility of reads and updates of variables specified
by the pragma SHARED as follows:

• On VAX systems, only those scalar or access variables whose storage
size does not exceed a longword (32 bits) are allowed. For example, you
cannot specify variables of the type D_FLOAT, G_FLOAT, or H_FLOAT in
a pragma SHARED.

On Alpha systems, all scalar or access variables are allowed.

• On VAX systems, by allocating longword-aligned longwords for all shared
variables whose storage size is larger than a byte.

On Alpha systems, by naturally aligning all shared variables.

• By using a restricted set of VAX or Alpha instructions to read and write
such variables.

The pragma VOLATILE tells the compiler that any write by the current
task to the specified variable must be made visible to reads by other tasks.
This must happen before the current task writes a variable for which the
pragma SHARED was specified, not just when the current task reaches a
synchronization point. The pragma VOLATILE does not guarantee that the
change is seen by another task before then. The compiler must make such
writes immediately visible to ASTs and system services that are invoked by the
task and read the variable.

The pragma VOLATILE also tells the compiler that two successive reads or a
write followed by a read may return two different values, even though there is
no intervening synchronization point.

Unlike the pragma SHARED, the pragma VOLATILE does not guarantee
indivisible access. To ensure indivisible access for a variable in your program,
you must ensure that sharing of the variable is synchronized by tasking events
or a write to a variable for which pragma SHARED has been specified.

7–36 Tasking



The following example explains the difference between shared and volatile
variables.

Suppose that you have an access variable named PTR, which you use to control
a loop that is executed by a task:

while PTR /= null loop
delay 1.0;

end loop;

If you did not declare PTR with the pragma VOLATILE or SHARED, another
task could write a nonnull value into PTR’s location, and the loop would repeat
forever.

The loop repeats forever if it is checking a value of PTR that was read before
the loop was entered or if it is checking a value of PTR that was stored in a
register or optimized away.

A pragma VOLATILE or SHARED ensures that the compiler stores the value
of PTR in an actual memory location, ensuring that any new value written to
that location is fetched when the value of PTR is checked.

If PTR is declared with the pragma VOLATILE, then the loop repeats only
until a synchronization point is reached by the task that wrote PTR. The
writing task may be running on a different processor, and the new value is not
guaranteed to be made visible to other processors until the synchronization
point. Also, the value read for PTR may not equal null, or the value read may
have half the bit pattern of null and half the bit pattern of the new value, in
which case, the value may not be a legal access value.

If PTR is declared with the pragma SHARED, then the loop does not repeat
indefinitely even though the task that wrote PTR did not reach another
synchronization point. Also, the update and read are guaranteed to be
indivisible.

You can use the pragmas VOLATILE and SHARED together to coordinate the
sharing of information among tasks. For example:

INFO : INFORMATION_RECORD;
pragma VOLATILE(INFO);

INFO_VALID : BOOLEAN := FALSE;
pragma SHARED(INFO_VALID);
. . .

INFO.SOME_FIELD := SOME_VALUE;
INFO_VALID := TRUE;

Tasking 7–37



In this example, the pragma VOLATILE ensures that when INFO.SOME_
FIELD is assigned the value SOME_VALUE, the value is stored in the storage
area allocated for INFO.SOME_FIELD and not into a temporary copy or a
register. The pragma SHARED makes the assignment to INFO_VALID a
synchronization point, guaranteeing that the values for INFO and INFO_
VALID are both visible to other tasks.

The pragma SHARED makes it possible for a task to poll the value of INFO_
VALID while waiting to access INFO from another task. However, because
polling is a kind of busy waiting that takes a fair amount of CPU time, it is
usually much better to use a synchronized event to determine completion. For
example, you can synchronize a task with event flag wait completion, AST
delivery, rendezvous with another task, and so on.

7.4.9 Reentrancy

Note

Within this section and subsections, the term reentrant denotes full
reentrancy, unless explicitly qualified.

In most languages on OpenVMS systems, the following four kinds of reentrancy
are possible:

• A routine is serially reentrant if it must execute to completion before it can
be called again. FORTRAN routines are usually serially reentrant.

• A routine is recursively reentrant if it:

1. Executes to the point of another call to itself

2. Makes the call to itself (a recursive call)

3. Continues to make recursive calls until a statement is executed or a
condition occurs that ends the recursion

The statements after the point of the recursive call execute, until finally
the original call completes. If no calls are permitted until the original call
has completed, the routine is said to be recursively reentrant. A recursively
reentrant routine is also serially reentrant.

• A routine is AST reentrant if, at a random point during the execution of a
routine, an AST can occur and the routine can be reentered (by the AST
call). The OpenVMS operating system does not normally allow more than
one AST service routine to be called at a time for any given access mode.

7–38 Tasking



If a routine is AST-reentrant, it can be designed to permit at most two calls
to be in progress at any one time. An AST-reentrant routine is also serially
reentrant.

• A routine is fully reentrant if it gives correct results when called by
multiple tasks whose execution can be suspended at arbitrary points (and
resumed in arbitrary orders) in the routine’s code. A routine that is fully
reentrant is also necessarily AST reentrant, recursively reentrant, and
serially reentrant.

Note

When calling non-Ada routines from DEC Ada tasks, the results are
unpredictable if the routines are not fully reentrant. The following
routines are reentrant:

• All OpenVMS system service and most OpenVMS Run-Time
Library routines are fully reentrant. In particular, most language-
independent Run-Time Library routines (LIB$, MTH$, OTS$, and
STR$ routines) are fully reentrant.

The following routines are nonreentrant:

• Any routine that modifies variables outside its immediate scope
or that modifies variables allocated in static storage is potentially
nonreentrant.

• Any language-dependent run-time library routines may be
nonreentrant. For example, the FORTRAN run-time library is
only AST (not fully) reentrant. Also, most C run-time library
routines are nonreentrant.

• X Windows and Motif routines are nonreentrant.

Reentrancy can be an issue for both Ada and non-Ada routines. For example,
the subprogram in Example 7–8 shows that if you allow a nonreentrant
Ada subprogram (or non-Ada routine) to be reentered, the results can be
unpredictable.

Tasking 7–39



Example 7–8 A Nonreentrant Subprogram

package CONTAINER is

-- Function to return 1 + I (its argument).
--
function NONREENTRANT(I : INTEGER) return INTEGER;

end CONTAINER;

--------------------------------------------------

package body CONTAINER is

GLOBAL_VARIABLE : INTEGER := 0;
function NONREENTRANT(I : INTEGER) return INTEGER is
begin

GLOBAL_VARIABLE := I; -- Statement S1.
return (GLOBAL_VARIABLE + 1); -- Statement S2.

end NONREENTRANT;

begin
null;

end CONTAINER;

In Example 7–8, the function NONREENTRANT returns 1 plus the value of its
argument, I. NONREENTRANT is a serially reentrant subprogram. However,
it cannot be called simultaneously by multiple tasks and still produce correct
results. For example, consider the following sequence of events:

1. The subprogram NONREENTRANT is called by task A, which passes a
value of 3 for I.

2. A is interrupted just before statement S2 because a higher priority task, B,
has become ready.

3. B calls NONREENTRANT and passes a value of 1000 for I (that is, B
reenters the subprogram while a previous call is in progress).

Although the execution of NONREENTRANT by A sets GLOBAL_VARIABLE
to 3, the intervening execution by B changes the global variable to 1000. When
task A finally resumes execution, NONREENTRANT returns a value of 1001,
instead of the correct answer, which is 4.

The following Ada coding techniques avoid the problem shown in Example 7–8:

• Write the routine or subprogram so that it is reentrant.

• Serialize the calls to the nonreentrant routine or subprogram (see
Example 7–10).

7–40 Tasking



• Ensure that only one task can call the nonreentrant routine or
subprogram.

The following sections discuss these techniques in more detail.

7.4.9.1 Coding Reentrant Ada Subprograms
To code a reentrant subprogram in DEC Ada, make sure it does not modify any
nonlocal or static variables and make sure that it does not call a nonreentrant
subprogram (or routine). Imported non-Ada routines, can be reentered if
imported several times in the same Ada program or if imported once and then
called from different tasks.

In Example 7–9, the function NONREENTRANT from Example 7–8 is
rewritten so that it is reentrant. Advantage is taken of the fact that each
time a subprogram is entered, its local variables are allocated on the stack.
If tasks A and B were to call the following subprogram, each activation of
function REENTRANT would create a separate copy of LOCAL_VARIABLE,
and interference would not be possible.

Example 7–9 A Reentrant Subprogram

function REENTRANT(I : INTEGER) return INTEGER is
LOCAL_VARIABLE : INTEGER := 0;

begin
LOCAL_VARIABLE := I; -- Statement S1.
return (LOCAL_VARIABLE + 1); -- Statement S2.

end REENTRANT;

7.4.9.2 Ensuring that Nonreentrant Routines are Called by One Task at a Time
You can ensure that nonreentrant routines are called by only one task at a
time by using one of the following methods:

• Structuring your program appropriately. For example, if a procedure is
defined in the declarative region of the same task that calls it, and the task
creates no dependent tasks, then the subprogram cannot be reentered.

• Using the lock and unlock procedures in the DEC Ada package
SYNCHRONIZE_NONREENTRANT_ACCESS.

If you use the first method, then your Ada code uses any potentially
nonportable features.

Tasking 7–41



The GLOBAL_LOCK and GLOBAL_UNLOCK procedures in the DEC Ada
package SYNCHRONIZE_NONREENTRANT_ACCESS establish a lock, which
you code explicitly, according to the locking protocol supported by the package.
These procedures are especially useful in the situation where you know that
some (but not all) calls to a routine are nonreentrant. For example:

with SYNCHRONIZE_NONREENTRANT_ACCESS;
use SYNCHRONIZE_NONREENTRANT_ACCESS;
. . .

GLOBAL_LOCK;
<call to something nonreentrant>
GLOBAL_UNLOCK;

The package specification explains how the procedures work in more detail.
See Appendix C for more information on obtaining the package specification.

Note

Failure to follow the locking protocol may cause your program to
produce unexpected results. For example, if two or more tasks in your
program call a particular routine concurrently, then the data structures
used by the routine may become corrupted. The result may be an
access violation or another error in your program.

7.4.9.3 Serializing Calls to Nonreentrant Code
You can use a task to prevent reentry by serializing the calls to the
nonreentrant code so that it cannot be reentered. This technique applies
especially to existing nonreentrant Ada subprograms, non-Ada routines, or
software over which you have no control. Example 7–10 shows one way to
perform serialization.

Example 7–10 Using a Serializing Task to Prevent Reentry

package FIX_IT is

-- This function should be called instead of
-- NONREENTRANT. It, too, returns 1 + I (its argument).
--
function ADD_ONE (I : INTEGER) return INTEGER;

end FIX_IT;

-------------------------------------------------------

(continued on next page)

7–42 Tasking



Example 7–10 (Cont.) Using a Serializing Task to Prevent Reentry

with CONTAINER;
use CONTAINER;
package body FIX_IT is

task SERIALIZER is
entry DO_CALL(I : INTEGER; J : out INTEGER);

end;

task body SERIALIZER is
-- This task calls NONREENTRANT and ensures that it
-- cannot be reentered.
--
begin

loop
select

accept DO_CALL(I : INTEGER; J : out INTEGER) do
J := NONREENTRANT(I);

end;
or

terminate;
end select;

end loop;
end;

function ADD_ONE (I : INTEGER) return INTEGER is
RESULT : INTEGER;

begin
SERIALIZER.DO_CALL(I, RESULT);
return RESULT;

end;

end FIX_IT;

In Example 7–10, the task SERIALIZER calls a nonreentrant subprogram in
the body of an accept statement. All calls to the nonreentrant code go through
the intermediate call to ADD_ONE, and the function NONREENTRANT
cannot be reentered.

You can also use a serializing task to allow nonreentrant routines or
subprograms to be called from multiple tasks. The serializing task prevents
reentry, but you must make sure that it makes all of the calls. This method is
recommended when you call any routine or subprogram whose reentrancy is
uncertain and you cannot guarantee that reentrant calls are not attempted.

Tasking 7–43



7.5 Calling OpenVMS System Service Routines from Tasks
DEC Ada provides the package STARLET (see Chapter 5) as well as import-
export pragmas (see Chapter 4) to let you call OpenVMS system services and
make OpenVMS RMS requests directly from an Ada program. DEC Ada also
provides a package of selected asynchronous system routines (TASKING_
SERVICES) to make such routine calls easier to make from tasks. The
following sections discuss the implications of calling system routines from
tasks.

If you are coding system services that involve ASTs, see also Section 7.7.

7.5.1 Effects of System Service Calls on Tasks
When you call OpenVMS system services from an Ada program, your process
is not totally ‘‘blocked.’’

Most system services that put your process in a wait state permit that wait
state to be interrupted by ASTs (see the OpenVMS Programming Concepts
Manual). To DEC Ada, a task that has entered an OpenVMS wait state
appears to be continuing to execute (because DEC Ada does not intercept
system services). DEC Ada does not know that the task is blocked.

The only tasks that can execute while the system service is executing are:

• Tasks that have higher priorities than the calling task

• If time slicing is in effect (see Section 7.3), tasks that have a priority equal
to the calling task.

The transfer of control to these other tasks can occur when an AST for one of
these tasks is delivered to the DEC Ada run-time library. For example when a
delay or time slice expires:

• An Ada input-output request completes, or

• An AST is delivered to a task entry specified with the pragma AST_
ENTRY.)

This default behavior is not necessarily bad because waiting for the system
service to complete is the default behavior of most nontasking OpenVMS
programs. Indeed, if the request is satisfied quickly, allowing any other task to
execute may be wasted effort.

You may, however, wish to increase concurrency and let tasks of lower priority
execute while a higher priority task is in a OpenVMS wait state. Provided
that the system service request takes a sufficiently long time, this strategy can
allow your program to do more useful work in the same elapsed time.

7–44 Tasking



DEC Ada provides you with two methods for increasing concurrency during a
OpenVMS system service wait interval:

• Have tasks that call time-consuming system services use asynchronous
system services or asynchronous OpenVMS RMS services. Then your
program can do other work until it has to handle the resulting OpenVMS
ASTs that signify completion of the request. Handling ASTs is a general
and powerful way to increase concurrency, but it also requires more
detailed programming. See Section 7.7.

• Use the OpenVMS system-routine operations provided in the DEC Ada
package TASKING_SERVICES. Like the system routines provided in the
package STARLET, the operations in this package provide an interface to a
variety of OpenVMS system service and RMS routines.

The operations in the package TASKING_SERVICES are designed to
suspend (in the Ada sense) the calling task if the request cannot be
immediately satisfied. Other ready tasks (including lower priority tasks) in
your program are free to execute or continue executing.

The operations in the package TASKING_SERVICES increase concurrency
by calling the asynchronous form of a system service routine (for example,
SYS$QIO instead of SYS$QIOW), and then suspending the task and using an
AST to signal when the service has completed and the execution of the task
can resume. The package hides details of AST handling.

While this package can help you increase concurrency in many cases, YOU
cannot use the operations in the package TASKING_SERVICES to specify an
AST routine address or an AST parameter. If your application depends on
being able to use such information, you may wish to do your own AST handling
as described in Section 7.7.

The specification of the package TASKING_SERVICES is presented in
Appendix C.

7.5.2 System Services Requiring Special Care
Certain system services are likely to interfere with Ada programs that use
tasks, ASTs, or the package TASKING_SERVICES (see Section 7.5.1). You
should either avoid or use extra care when using the following services:

SYS$SETAST STARLET.SETAST

SYS$HIBER STARLET.HIBER

SYS$EXIT STARLET.EXI

SYS$DCLEXH STARLET.DCLEXH

Tasking 7–45



Because they affect an OpenVMS process, these services have a global effect
on all tasks of the program. For example, SYS$SETAST prevents delivery of
ASTs. Because the DEC Ada tasking implementation relies heavily on the use
of ASTs (they are used to implement task scheduling, input-output, and so on),
disabling ASTs with SYS$SETAST can cause deadlocks. This effect can cause
these tasks to stall until ASTs are reenabled.

Example 7–11 Deadlock Caused by a Call to SYS$SETAST

procedure SETAST_DEADLOCK is

task T is
entry E;

end;

task body T is
begin

delay 10.0;
accept E;

end;

-- Procedure to set AST enablement to SETTING.
--
procedure SETAST(SETTING : BOOLEAN) is separate;

begin

SETAST(FALSE);
T.E; -- At this point, task T is delayed, waiting

-- for the timer AST that signifies the end of
-- the wait. The following entry call must suspend
-- because the task has not reached the accept statement.
-- But, because the call to SETAST has disabled ASTs,
-- the delay will never complete, and thus neither
-- will this entry call.

SETAST(TRUE);

end SETAST_DEADLOCK;

If you must use SYS$SETAST, do not take any of the following actions while
ASTs are disabled:

• Execute Ada input-output statements (for example, TEXT_IO.PUT_LINE).

• Execute a delay statement.

• Propagate an unhandled exception.

7–46 Tasking



• Do not create or wait for dependent tasks. Execute any of the tasking
operations described in Chapter 9 of the DEC Ada Language Reference
Manual (for example, make entry calls, execute accept or select statements,
and so on).

• Busy wait on a flag (a variable) that is to be set by another task.

• Call a subprogram that involves any of the preceding actions.

SYS$HIBER suspends execution of a OpenVMS process. The DEC Ada tasking
implementation uses SYS$HIBER to make your process hibernate when there
are no currently ready tasks. If your program also uses SYS$HIBER, make
sure that the SYS$WAKE it is waiting for is entered only when the process
is waiting for your SYS$HIBER request. The SYS$WAKE you enter may
be consumed by the tasking implementation call to SYS$HIBER, and your
hibernating process will not wake up.

SYS$EXIT causes an unconditional program exit. In particular, it does not
wait for dependent tasks to terminate normally. By using SYS$EXIT, you may
prevent your Ada program from executing code that it would otherwise execute
normally. Unless you are careful that all tasks are terminated or in a state
where termination is not needed, the results can be unpredictable as shown in
Example 7–12.

Example 7–12 Unpredictability of SYS$EXIT

with TEXT_IO; use TEXT_IO;
procedure PULL_THE_RUG_OUT is

pragma TIME_SLICE (1.0);

type CONDITION is new INTEGER;

STATUS : CONDITION;

task T;
task body T is
begin

for I in 1..10 loop
PUT_LINE("I’m T and I’m not done yet.");
delay 1.0;

end loop;
PUT_LINE("T is done now.");

end;

(continued on next page)

Tasking 7–47



Example 7–12 (Cont.) Unpredictability of SYS$EXIT

procedure DO_EXIT(STATUS : out CONDITION;
EXIT_STATUS : in CONDITION := 1);

pragma INTERFACE(OpenVMS, DO_EXIT);
pragma IMPORT_VALUED_PROCEDURE(DO_EXIT,

"SYS$EXIT",
MECHANISM => (VALUE, VALUE));

begin

delay 5.0;
PUT_LINE("Pulling the rug out from T NOW.");
DO_EXIT(STATUS);

end PULL_THE_RUG_OUT;

If you use SYS$DCLEXH to establish exit handlers, make sure you
understand that not all Ada operations can be executed reliably from OpenVMS
exit handlers. There are some restrictions on exit handlers written in Ada.
These restrictions are the same as those for AST handlers, and they stem from
the fact that exit handlers can be invoked asynchronously, such as when you
press Ctrl/Y at the terminal. (See Section 7.7.3 for the restrictions on using
AST handlers.)

Specifically, an OpenVMS exit handler written in Ada must not take any of the
following actions:

• Execute an Ada input-output statement.

• Execute a delay statement.

• Propagate an unhandled exception.

• Execute any tasking operation.

• Busy wait on a flag (a variable) that is to be set by another task.

• Call a subprogram that involves any of the preceding actions.

The Ada run-time library makes use of a special input-output exit handler
that flushes input-output buffers (those that are unlocked) at the time of exit,
so user exit handlers should not be needed for the purpose of flushing and
closing files. Another good reason for avoiding Ada exit handlers is that they
are nonportable.

7–48 Tasking



7.6 Calling DECthreads Routines from Tasks (Alpha Systems
Only)

Note

Although DECthreads is available on VAX systems, you cannot call
DECthreads routines from Ada programs on VAX systems. Attempts to
call DECthreads routines from VAX Ada programs do not work and are
not supported.

On Alpha systems, calls to DECthreads routines are used to implement Ada
tasking. You can use Ada tasks and foreign code that calls DECthreads
routines together.

Because of the interaction between Ada tasks and DECthreads routines, direct
calls to DECthreads routines are not supported in code running in the context
of an Ada task. For example, the following interactions can cause problems:

• By calling routines such as CMA_ALERT_DEFER_ALL or PTHREAD_
SETCANCEL (routines that affect alert delivery or the ability to cancel
threads), you could affect the behavior of the abort statement. In fact,
routines such as these could inadvertently turn synchronous abort into
asynchronous abort (see Section 7.4.6).

• CMA_(UN)LOCK_GLOBAL and PTHREAD_(UN)LOCK_GLOBAL use
the same mutex as the subprograms in the package SYNCHRONIZE_
NONREENTRANT_ACCESS.

• CMA_STACK_LIMIT_CHECK_NP may give incorrect results when called
from Ada.

• By calling CMA_THREAD_EXIT_ERROR, CMA_THREAD_EXIT_
NORMAL, and PTHREAD_EXIT, you may prevent the execution of
important cleanup operations, such as deleting collections, waiting for
tasks, and so on. Furthermore, you could corrupt the Ada run-time library
data structures.

• Routines that dynamically modify priority or scheduling policy such as
CMA_THREAD_SET_PRIORITY, PTHREAD_SETPRIO, CMA_THREAD_
SET_SCHED, and PTHREAD_SET_SCHEDULER invalidate the Ada
run-time library’s knowledge of task priority.

Tasking 7–49



• PTHREAD_CLEANUP_PUSH and PTHREAD_CLEANUP_POP can cause
problems for Ada exception handling. (These are actually not DECthreads
routines but C macros. So, you cannot call them directly from an Ada
program. However, your program could be calling some non-Ada code that
does call these macros.)

• By specifying Ada subprograms or routines that call Ada subprograms
as the value of the destructor parameter to the CMA_KEY_CREATE or
PTHREAD_KEYCREATE routines, you may cause problems during task
(or thread) termination.

For more information about DECthreads, see the Guide to DECthreads.

7.7 Handling Asynchronous System Traps (ASTs)
ASTs are a way for the OpenVMS operating system or OpenVMS RMS to
notify a process (which may be actively executing instructions) that some event
has occurred. Many OpenVMS system services let you specify that an AST be
delivered when the service completes or when some event related to the service
occurs. Such services often have two forms:

• A synchronous form that forces the process to wait until the service is
completed

• An asynchronous form that initiates the service, and immediately
returns, allowing the process to continue and the service to be completed
independently

For example, the synchronous OpenVMS system service SYS$QIOW makes the
process wait until the service completes, but the asynchronous form, SYS$QIO,
does not. Both forms let you specify an AST service routine.

By handling ASTs from your Ada program, you can increase concurrency
during the process wait states that result after your program executes certain
system service or OpenVMS RMS requests. Before you decide to handle ASTs
directly, you should investigate the package TASKING_SERVICES to see
if you can use any of its operations instead (the operations in the package
TASKING_SERVICES are more convenient to use). See Section 7.5.1.

7–50 Tasking



7.7.1 The Pragma AST_ENTRY and the AST_ENTRY Attribute
You handle ASTs in DEC Ada with the AST_ENTRY pragma and AST_ENTRY
attribute.

For a formal description of the AST_ENTRY pragma and attribute, see Chapter
9 of the DEC Ada Language Reference Manual. Informally, the AST_ENTRY
pragma and attribute provide a mechanism that transforms the delivery of an
AST into a special kind of entry call. As in an ordinary entry call, if the task
does not immediately accept the call, the AST entry call becomes enqueued on
the entry. For example:

with STARLET; use STARLET;
. . .
task HANDLER is

-- Entry RECEIVE_AST can receive AST entry calls as
-- well as normal entry calls.
--
entry RECEIVE_AST;
pragma AST_ENTRY(RECEIVE_AST);

end HANDLER;
. . .

-- The AST_ENTRY attribute supplies QIO’s ASTADR parameter
-- with the address of a special AST handler that will
-- schedule an entry call to RECEIVE_AST.
--
QIO( . . .

ASTADR => HANDLER.RECEIVE_AST’AST_ENTRY,
. . . );

. . .

An AST entry call acts as if it were made by a task that has a priority of 8.
In accordance with Ada rendezvous rules, the statement list of the accept
statement for this entry is executed with this priority or the priority of the
accepting task, whichever is higher.

The AST parameter passed to the system service (for example, the ASTPRM
argument of the SYS$QIO system service) and later delivered by the AST is, in
turn, passed to the accept statement (if a formal parameter is specified). For
example:

with STARLET; use STARLET;
. . .
task HANDLER is

Tasking 7–51



-- Entry RECEIVE_AST expects to receive an
-- AST parameter.
--
entry RECEIVE_AST(X : INTEGER);
pragma AST_ENTRY(RECEIVE_AST);

end HANDLER;

task body HANDLER is
. . .

begin
accept RECEIVE_AST(X:INTEGER) do
. . .
end RECEIVE_AST;

end HANDLER;
. . .

-- QIO’s ASTPRM parameter (with a value of 33) is
-- passed to the accept statement as parameter X
-- when the rendezvous occurs. (An AST entry can
-- receive only zero or one parameter.)
--
QIO( . . .

ASTADR => HANDLER.RECEIVE_AST’AST_ENTRY,
ASTPRM => 33);

. . .

To handle ASTs, you must first specify which entry in a task type can receive
AST entry calls. You do this by specifying the entry with the pragma AST_
ENTRY when you declare the task type. Only single entries (not entry
families) can receive AST entry calls and, therefore, only single entries can be
named in the pragma AST_ENTRY.

To specify an AST service routine, you must use the AST_ENTRY attribute.
The AST_ENTRY attribute takes a task name and entry as parameters and
returns an address of a special service routine created by the DEC Ada run-
time library. When the AST occurs, the special service routine is called. The
routine enqueues the AST parameter in a special way on the requested entry,
making the enqueuing look like an entry call, and then the routine returns
from the AST call.

Once the AST parameter is enqueued on the entry, the rendezvous can occur.
The rendezvous is subject to the Ada rendezvous rules (see Chapter 9 of the
DEC Ada Language Reference Manual) and may not occur immediately. The
rendezvous is performed after the special service routine has returned, so other
ASTs are not inhibited. (This behavior is required by the nature of ASTs and
the nature of Ada rendezvous.)

7–52 Tasking



If the entry call is made directly from the AST service routine, no other ASTs
can be delivered until the rendezvous is completed; unpredictable deadlocks
may result. Such deadlocks may still develop if a non-Ada program were to
call an Ada program from an AST service routine. See Section 7.7.3 for more
information.

7.7.2 Constraints on Handling ASTs
Any AST is ignored if it is delivered to a task that is completed or abnormal.
The AST is ignored if it occurs for some entry of a task that is not callable but
is not yet terminated (both T’TERMINATED and T’CALLABLE are FALSE).

If an AST occurs for an entry of a task that is terminated (T’TERMINATED
is TRUE), then the program is erroneous and execution is unpredictable. The
DEC Ada run-time library may not detect this situation. You must code your
application so that an AST cannot occur for an entry in a terminated task.

Each time an AST is delivered, the DEC Ada run-time library allocates a
block of storage (an AST packet) to hold the AST parameter, and the storage
is enqueued on the entry to which the AST applies. This block of storage is
released only after the rendezvous has completed. If your program generates
ASTs at a higher rate than it accepts AST entry calls, the total amount of
storage allocated can become high.

To reduce the amount of storage consumed, write any AST-handling programs
so that they accept an AST for every AST generated. You can do this easily by
having the same task that accepts the AST entry call also generate the next
AST. In this manner, you can limit the amount of storage consumed by pending
AST entry calls.

Another way to prevent this problem is to extend the size of the AST packet
pool available to your program, using the package SYSTEM_RUNTIME_
TUNING. See Appendix C for more information on this package and its
operations.

7.7.3 Calling Ada Subprograms from Non-Ada AST Service Routines
Be careful when using an AST service routine, or when calling an Ada
subprogram from an AST service routine. If the Ada subprogram performs
certain kinds of Ada operations, including input-output operations or task-
related operations, a deadlock can develop (DEC Ada itself uses ASTs to
perform these operations). If you call such an Ada subprogram from an AST
service routine, or use it as an AST service routine, your program can develop
a deadlock with the characteristics that one or more tasks are suspended
indefinitely and ASTs can no longer be delivered.

Tasking 7–53



For example, consider the following situation:

• You call Ada subprogram P from a non-Ada AST service routine. The AST
may be delivered at any time.

• When the AST is delivered, the main task or a task Q in your program
may have already allocated a resource that is needed by P. In addition, Q
could be currently suspended, awaiting the delivery of an AST.

• Because the resource is not available to P, the DEC Ada run-time library
has no choice but to suspend the execution of P and switch control to
another ready task.

• The invocation of P occurred when the ASTs were disabled, so they remain
disabled after P is suspended.

A deadlock has developed in this situation for the following reasons:

• P cannot proceed until the resource becomes available.

• The resource cannot be released by Q until ASTs are delivered.

• ASTs cannot be delivered until P and its caller return control back to the
OpenVMS environment.

All of this occurs because the OpenVMS operating system implicitly disables
all AST delivery while an AST-handling routine is active.

You should handle ASTs in DEC Ada as described in Section 7.7.1. If you must
write AST routines in Ada, then obey the following rules to avoid the kind
of deadlock described in this section. Your routine must not take any of the
following actions:

• Execute an Ada input-output statement (for example, TEXT_IO.PUT_
LINE).

Your routine must not use any of the input-output operations defined in
Chapter 14 of the DEC Ada Language Reference Manual or in the DEC
Ada package TASKING_SERVICES.

• Execute a delay statement.

• Propagate an unhandled exception.

• Execute any of the tasking operations described in Chapter 9 of the DEC
Ada Language Reference Manual (for example, make entry calls, execute
accept or select statements, and so on).

You must not create or wait for dependent tasks.

• Busy wait on a flag (a variable) that is to be set by another task.

7–54 Tasking



• Call a subprogram that involves any of the preceding actions.

7.7.4 Examples of Handling ASTs from Ada Programs
Examples Example 7–13 and Example 7–14 show the use of the pragma AST_
ENTRY and the AST_ENTRY attribute.

Example 7–13 Simple Use of the Pragma AST_ENTRY and the
AST_ENTRY Attribute

with TEXT_IO, SYSTEM, CONDITION_HANDLING, STARLET;
procedure TRY_ASTS is

STATUS : CONDITION_HANDLING.COND_VALUE_TYPE;

package INT_IO is new TEXT_IO.INTEGER_IO(INTEGER);

-- Task that will handle the ASTs activated by the main program.
--
task AST_HANDLER is

entry RECEIVE_AST(X : INTEGER);
pragma AST_ENTRY(RECEIVE_AST);

end AST_HANDLER;

task body AST_HANDLER is

FORE : constant TEXT_IO.FIELD := 3;

begin
loop

select
accept RECEIVE_AST(X : INTEGER) do

INT_IO.PUT(X, FORE);
end RECEIVE_AST;

or
terminate;

end select;
end loop;

end AST_HANDLER;

(continued on next page)

Tasking 7–55



Example 7–13 (Cont.) Simple Use of the Pragma AST_ENTRY and the
AST_ENTRY Attribute

begin

-- Queue 20 ASTs to be activated, and give each an index.
--
for I in 1..20 loop

STARLET.DCLAST(
STATUS,

-- Condition value returned.
AST_HANDLER.RECEIVE_AST’AST_ENTRY,

-- Entry to receive the AST.
STARLET.USER_ARG_TYPE (I));

-- The AST parameter.

-- If DCLAST fails to queue an AST, then raise the error.
--
if not CONDITION_HANDLING.SUCCESS(STATUS) then

CONDITION_HANDLING.STOP (STATUS);
end if;

end loop;

end TRY_ASTS;

7–56 Tasking



Example 7–14 Using an AST Entry to Intercept a Ctrl/C

-- Package specification for CONTROL_C_HANDLING.
--
package CONTROL_C_HANDLING is
end CONTROL_C_HANDLING;

-- Package body for CONTROL_C_HANDLING.
--
with SYSTEM, TEXT_IO, CONDITION_HANDLING,

STARLET, UNCHECKED_CONVERSION;
package body CONTROL_C_HANDLING is

-- Used to specify an outband character to QIOW.
--
type SHORT_FORM_TERMINATOR is

record
ZERO : SYSTEM.UNSIGNED_LONGWORD;
MASK : SYSTEM.UNSIGNED_LONGWORD;

end record;

CONTROL_C : constant SYSTEM.UNSIGNED_LONGWORD
:= SYSTEM.UNSIGNED_LONGWORD(2**CHARACTER’POS(ASCII.ETX));

TERMINATOR_MASK : constant SHORT_FORM_TERMINATOR
:= (ZERO => 0, MASK => CONTROL_C);

STATUS : CONDITION_HANDLING.COND_VALUE_TYPE;
STATUS1 : CONDITION_HANDLING.COND_VALUE_TYPE;
CHAN : STARLET.CHANNEL_TYPE;
TERM_DEV : constant STARLET.DEVICE_NAME_TYPE := "TT:";

-- This task services CONTROL_C outband ASTs.
--
task AST_SERVER is

entry CONTROL_C_HANDLER;
pragma AST_ENTRY(CONTROL_C_HANDLER);

end AST_SERVER;

(continued on next page)

Tasking 7–57



Example 7–14 (Cont.) Using an AST Entry to Intercept a Ctrl/C
task body AST_SERVER is
begin

loop
select

accept CONTROL_C_HANDLER do
TEXT_IO.PUT_LINE("Control_C was received.");

end CONTROL_C_HANDLER;
or

terminate;
end select;

end loop;
end AST_SERVER;

function FROM_AH_TO_UL is
new UNCHECKED_CONVERSION (SYSTEM.AST_HANDLER,

SYSTEM.UNSIGNED_LONGWORD);

begin

-- Assign a channel to the terminal.
--
STARLET.ASSIGN(STATUS, -- Condition value returned.

TERM_DEV, -- Terminal device to assign to.
CHAN); -- Channel number.

if not CONDITION_HANDLING.SUCCESS(STATUS) then
CONDITION_HANDLING.STOP(STATUS);

end if;

-- Enable outband ASTs for CONTROL_C; direct the ASTs
-- to AST_SERVER.
--
STARLET.QIOW(

STATUS => STATUS,
CHAN => CHAN,
FUNC => SYSTEM."OR"(STARLET.IO_SETMODE, STARLET.IO_M_OUTBAND),
P1 => FROM_AH_TO_UL(AST_SERVER.CONTROL_C_HANDLER’AST_ENTRY),
P2 => SYSTEM.TO_UNSIGNED_LONGWORD(TERMINATOR_MASK’ADDRESS));

(continued on next page)

7–58 Tasking



Example 7–14 (Cont.) Using an AST Entry to Intercept a Ctrl/C

if not CONDITION_HANDLING.SUCCESS(STATUS) then
STARLET.DASSGN(STATUS => STATUS1, CHAN => CHAN);
CONDITION_HANDLING.STOP(STATUS);

end if;

end CONTROL_C_HANDLING;

------------------------------------------------------------------

-- A program that uses the package CONTROL_C_HANDLING.
--
with CONTROL_C_HANDLING;
with TEXT_IO; use TEXT_IO;
procedure TRY_CONTROL_C is
begin

PUT_LINE("Press any number of Ctrl/Cs for " &
"the next 30 seconds.");

PUT_LINE("Ctrl/Cs are trapped and " &
"serviced by CONTROL_C_HANDLING.");

delay 30.0;
NEW_LINE;
PUT_LINE("Main program terminating . . . ");

end TRY_CONTROL_C;

7.8 Measuring and Tuning Tasking Performance
When you use tasks in your program, you must frequently trade off
responsiveness and throughput. Responsiveness is how fast a task responds
to an asynchronous event, such as a user typing at a keyboard. Throughput is
how much useful work, as measured by CPU time, a program accomplishes in
a given amount of elapsed time. Time spent switching tasks is overhead and
takes CPU cycles that could be used for useful work.

In general, if time slicing is in effect (see Section 7.3), you are increasing
responsiveness at the expense of more task-switching overhead. On VAX
systems, smaller values of the time-slice interval represent higher amounts of
this overhead.

Similarly, if you assign a higher priority to a task (see Section 7.3), you
are opting for responsiveness rather than throughput. Assigning a higher
priority to some task invariably means that the program performs more task
switches—every time the high priority task becomes eligible for execution, Ada
rules require that it displace a currently running lower priority task.

Tasking 7–59



In a large program that has many tasks, not all of the effects of changing the
program are immediately obvious. To help you measure the effects of a change,
DEC Ada provides the debugger commands SHOW TASK/STATISTICS and
SHOW TASK/FULL. DEC Ada also provides the package GET_TASK_INFO to
let you obtain task information. See Developing Ada Programs on OpenVMS
Systems for information on debugging Ada tasks and using the package GET_
TASK_INFO.

7–60 Tasking



8
Improving Run-Time Performance

To write DEC Ada programs that compile and execute efficiently, you should be
aware of certain compiler and language features that can affect code size, as
well as program compilation and execution times. This chapter discusses the
following topics:

• Compiler optimizations

• Inline expansion of subprograms

• Improving the performance of generics

• Techniques for reducing CPU time and elapsed time

Data alignment often affects the efficiency of the system you are working
on. The DEC Ada pragma COMPONENT_ALIGNMENT lets you change the
default alignment for components of array and record types. See Chapter 13 of
the DEC Ada Language Reference Manual and Section 1.2 of this manual for
more information about data representation and data optimization.

8.1 Compiler Optimizations
The DEC Ada compiler performs a number of standard optimizations to
improve the quality of the generated code. For example, the compiler performs
the following optimizations:

• Elimination of some common subexpressions

• Strength reduction in loops

• Code hoisting from structured statements, including the removal of
invariant computations from loops

• Inline code expansion for many predefined operations

• Rearranging of unary minus and not operations to eliminate unary
negation/complement operations

• Partial evaluation of logical expressions

Improving Run-Time Performance 8–1



• Global assignment of variables to registers

• Forward propagation of constant values

• Reordering of the evaluation of expressions to minimize the number of
temporary values required

• Peephole optimization of instruction sequences

• Instruction scheduling (on Alpha systems)

In addition, the compiler performs the following Ada-specific optimizations:

• Elimination of redundant constraint checks

• Evaluation of all static subexpressions, even when evaluation is not
required by the language

• Evaluation of other compile-time constant expressions that may not be
considered static expressions in the language (for example, expressions
involving catenation or attributes such as T’IMAGE)

• Elimination of dead code (for example, elimination of unreachable branches
with compile-time constant selectors in if and case statements)

• Elimination of redundant bounds checking of arrays in array subscripting
and slicing

• Elimination of redundant address evaluations

8.2 Using the Pragma INLINE
To let you expand subprograms inline and decrease the amount of time spent
in making subprogram calls, the Ada language provides the pragma INLINE.
In DEC Ada, the pragma INLINE can affect your program in one of two ways:

• Explicitly—you declare a subprogram to be expanded inline.

• Implicitly—the compiler automatically expands subprogram bodies inline
under certain conditions.

Section 8.2.1 gives the conditions for the explicit use of this pragma, and
Section 8.2.2 gives the conditions under which implicit inline expansion takes
place.

See Section 8.2.3 for examples showing the use of the pragma INLINE for a
variety of interesting cases.

8–2 Improving Run-Time Performance



The decisions made by the compiler for the pragma INLINE are shown in
compilation notes messages. In particular, they are shown at calls to the
affected subprograms. For example:
. . .

1 with INTEGER_TEXT_IO; use INTEGER_TEXT_IO;
2 procedure SHOW_INLINE is
3
4 type T is new INTEGER range 1..10;
5
6 function "+" (X,Y: INTEGER) return INTEGER renames STANDARD."+";
7 VAR1,VAR2: T := 3;
8
9 function "+" (X,Y: T) return INTEGER is

...........1
%I, (1) Pragma INLINE at line 13 applies to function +
%I, (1) Code generation suppressed for function +, which is always

expanded inline [LRM 6.3.2; RTR 8.2.1]

10 begin
11 return INTEGER(X*Y);
12 end;
13 pragma INLINE("+");
14
15 begin
16 PUT(VAR1+VAR2);

..............1
%I, (1) Call of procedure PUT in INTEGER_TEXT_IO at line 2 (from TEXT_IO

at line 148) expanded inline [LRM 6.3.2; RTR 8.2]
...................2
%I, (2) Call of function + at line 9 expanded inline [LRM 6.3.2; RTR 8.2]

17 end;

To obtain compilation notes messages, use the /WARNINGS=COMPILATION_
NOTES qualifier with the DCL ADA or ACS COMPILE or RECOMPILE
commands. See Developing Ada Programs on OpenVMS Systems for more
information on these commands and this qualifier.

Chapter 6 of the DEC Ada Language Reference Manual gives the syntax and
placement rules for this pragma.

8.2.1 Explicit Use
Inline expansion of a subprogram occurs each time the subprogram is called.
You can explicitly cause a subprogram to be expanded inline by specifying it
in a pragma INLINE. Then, the call to the subprogram is expanded inline
provided that the following are true:

• The subprogram is inlinable.

Improving Run-Time Performance 8–3



• The call is not contained in the result of expanding a call of that same
subprogram (indirect recursion).

• The subprogram body is available in either the current unit or in the
compilation library. (The library secondary unit must not be obsolete.)
The inline expansion of a subprogram body from a unit in the compilation
library creates a dependence on that unit.

A subprogram declaration or body is inlinable under the following conditions:

• The parameters are of any type except the following:

A task type

A composite type that has components of a task type

• Function results are of any type except the following:

A task type

A composite type that has components of a task type

An unconstrained array type

An unconstrained type with discriminants (with or without defaults)

• The body of the subprogram cannot contain any of the following:

A subprogram body, task or generic declaration or body stub (a
subprogram declaration for an imported subprogram is allowed)

A package body (a package specification is allowed)

A generic instantiation

An exception declaration

An access type declaration (a type derived from an access type is
allowed)

An array or record type declaration

Any dependent tasks (that is, any constant or variable declaration that
implies the creation of a task)

Any subprogram call that denotes the given subprogram (direct
recursion) or any containing subprogram, either directly or by means of
a renaming

When you use the pragma INLINE for an implicit operator declaration or for a
derived subprogram declaration, it has the following effect:

8–4 Improving Run-Time Performance



• If you use the pragma INLINE for an implicit operator declaration, the
pragma is accepted but has no effect. ‘‘Calls’’ of implicit operators are
implemented by inline code in nearly all cases.

• If you use the pragma INLINE for a derived subprogram declaration, the
pragma is accepted but has no effect. Calls of derived subprograms are
implemented as inline type conversions preceding and/or following a call
of the parent subprogram as appropriate to the formal parameters and,
in the case of a function, the result. The call of the parent subprogram is
expanded inline according to whether a pragma INLINE has been given
(explicitly or implicitly) for that parent subprogram and whether the parent
subprogram itself is inlinable.

You can use the pragma INLINE for a generic subprogram instantiation, a
generic subprogram declaration, or a subprogram body stub declaration as
follows:

• If you use the pragma INLINE for a generic subprogram instantiation, the
resulting subprogram must satisfy the preceding restrictions. You can use
the pragma INLINE for an instantiation of a predefined generic declaration
(such as for UNCHECKED_CONVERSION), but you do not achieve any
benefit because such instantiations always result in (implicit) inline code.

• If you use the pragma INLINE for a generic subprogram declaration, the
resulting effect is that an implicit pragma INLINE (see Section 8.2.2) then
applies to every generic subprogram instantiation of that declaration. That
implicit pragma is accepted provided the resulting subprogram satisfies the
preceding restrictions. (That is, some instantiations may be inlinable while
others may not be, depending on the characteristics of the generic actual
parameters.)

• If you use the pragma INLINE for a subprogram body stub declaration,
the subprogram signature must satisfy the preceding restrictions for the
parameters and result. Calls of such stubs are never expanded inline
within that same unit because the dependent subunit is not available.

If a pragma INLINE applies to a subprogram resulting from an instantiation
and if the instantiation and call are in the same unit, the compiler attempts
to expand the instantiation inline so as to expand the subprogram call inline.
If the inline expansion of the instantiation is successful, a dependence is
established on the generic body. (Do not confuse the inline expansion of
instantiations with the inline expansion of subprogram calls. See Section 8.3.1
for more information.)

Improving Run-Time Performance 8–5



A pragma INLINE contained within a generic declaration or template is not
checked as such. The check occurs, according to the preceding rules, for each
instantiation that results in a (nongeneric) subprogram.

Also, code is usually still generated for an inlinable subprogram to allow for
normal calls (possibly in previously compiled units) that cannot be or were not
expanded inline (see the following paragraph). However, if the subprogram
qualifies to be implicitly expanded inline (as described in Section 8.2.2), then
code is not generated.

8.2.2 Implicit Use
The DEC Ada compiler may assume an implicit pragma INLINE for a
subprogram body that has one or more of the following characteristics:

• Satisfies all of the requirements for an inlinable subprogram (see
Section 8.2.1).

• Is local to the current compilation (so that it cannot be called from
any other unit). A pragma INLINE may be assumed for subprograms
with nonlocal calls, depending on the value of the /OPTIMIZE=INLINE
compilation qualifier (see Developing Ada Programs on OpenVMS Systems).

• Contains no calls to any other inlinable subprogram.

• Has an estimated code size when expanded inline that is no greater (or
only slightly greater) than the call it replaces. (The estimation of size is
based on heuristics and is not exact. However, it is designed to give a close
approximation.)

When local implicit inline expansion is done, no code is generated for the
subprogram declaration and every call is expanded inline. See Developing Ada
Programs on OpenVMS Systems for more information on how inline expansion
affects unit dependences, obsolete units, and recompilation.

8.2.3 Pragma INLINE Examples
The following sections show some special cases that use the pragma INLINE
and give examples of using it with generics. In particular, the placement of
the pragma is important with nongeneric subprograms: if the pragma appears
after a subprogram specification it has a different effect than when it appears
after a subprogram body.

8–6 Improving Run-Time Performance



8.2.3.1 Inline Expansion of Subprogram Specifications and Bodies
When you apply the pragma INLINE to an inlinable subprogram specification,
inline expansion takes place for any call of the subprogram. For example:

package INLINE_SPEC is
PKG_VAR: INTEGER := 20;
function INLINED_F (X: INTEGER) return INTEGER;
pragma INLINE(INLINED_F);

end INLINE_SPEC;

-------------------------------------------------------------

package body INLINE_SPEC is
function INLINED_F (X: INTEGER) return INTEGER is
begin

return X*10;
end;

begin
PKG_VAR := INLINED_F(PKG_VAR); -- Expanded inline.

end INLINE_SPEC;

-------------------------------------------------------------

with INLINE_SPEC; use INLINE_SPEC;
with INTEGER_TEXT_IO; use INTEGER_TEXT_IO;
procedure USE_INLINE_SPEC is

VAR: INTEGER := 10;
begin

PUT(INLINED_F(VAR)); -- Expanded inline as long
-- as the package body for
-- the package INLINE_SPEC
-- is available.

PUT(INLINE_SPEC.PKG_VAR);
end USE_INLINE_SPEC;

INLINED_F is expanded inline both in the body of the package INLINE_SPEC
and in the procedure USE_INLINE_SPEC, which also calls INLINED_F.

Because a with clause makes the specification (not the body) of a subprogram
available to another compilation unit, the application of the pragma INLINE
to the body of a subprogram causes inline expansion to take place only where
the body is visible. If the package INLINE_SPEC were rewritten so that the
pragma INLINE applied to the body of INLINED_F, inline expansion would
occur only in the call to INLINED_F in the body of the package in which it was
declared:

Improving Run-Time Performance 8–7



package INLINE_BODY is
PKG_VAR: INTEGER := 20;
function INLINED_F (X: INTEGER) return INTEGER;

end INLINE_BODY;

---------------------------------------------------

package body INLINE_BODY is
function INLINED_F (X: INTEGER) return INTEGER is
begin

return X*10;
end;
pragma INLINE(INLINED_F);

begin
PKG_VAR := INLINED_F(PKG_VAR); -- Expanded inline.

end INLINE_BODY;

----------------------------------------------------

with INLINE_BODY; use INLINE_BODY;
with INTEGER_TEXT_IO; use INTEGER_TEXT_IO;
procedure USE_INLINE_BODY is

VAR: INTEGER := 10;
begin

PUT(INLINED_F(VAR)); -- Not expanded inline.
PUT(INLINE_BODY.PKG_VAR);

end USE_INLINE_BODY;

When you apply the pragma INLINE to a library subprogram body that does
not have a corresponding specification, the effect is the same as the effect you
get when you apply the pragma INLINE to a specification. For example:

function INLINED_F (X: INTEGER) return INTEGER is
begin

return X*10;
end INLINED_F;
pragma INLINE(INLINED_F);

--------------------------------------------------

with INLINED_F;
with INTEGER_TEXT_IO; use INTEGER_TEXT_IO;
procedure USE_INLINED_F is

VAR: INTEGER := 10;
begin

PUT(INLINED_F(VAR)); -- Expanded inline.
end USE_INLINED_F;

The procedure INLINED_F is expanded inline in the call from the procedure
USE_INLINED_F.

8–8 Improving Run-Time Performance



8.2.3.2 Inline Expansion of Generic Subprograms
When you apply the pragma INLINE to a generic subprogram, any subsequent
instantiations are potentially inlinable (assuming they meet the requirements
outlined in Section 8.2.1). For example:

generic
type T is limited private;

procedure GEN_PROCEDURE;
pragma INLINE(GEN_PROCEDURE);

--------------------------------------------------

procedure GEN_PROCEDURE is
O: T;

begin
null;

end GEN_PROCEDURE;

--------------------------------------------------

with GEN_PROCEDURE;
procedure USE_GEN_PROCEDURE is

task type TASK_TYPE is end;
type ARR is array (1 .. 10) of TASK_TYPE;

procedure INT_PROCEDURE is
new GEN_PROCEDURE(INTEGER); -- Inlinable.

procedure ARR_PROCEDURE is
new GEN_PROCEDURE(ARR); -- Not inlinable.

task body TASK_TYPE is
begin

null;
end;

begin
INT_PROCEDURE; -- Expanded inline.
ARR_PROCEDURE; -- Not expanded inline.

end USE_GEN_PROCEDURE;

Here, the procedure USE_GEN_PROCEDURE.INT_PROCEDURE is inlinable
and is expanded inline when it is called from USE_GEN_PROCEDURE. USE_
GEN_PROCEDURE.ARR_PROCEDURE is not inlinable because it instantiates
GEN_PROCEDURE with an array of tasks (anything involving dependent
tasks cannot be expanded inline; see Section 8.2.1).

To expand the call to USE_GEN_PROCEDURE.INT_PROCEDURE inline,
the procedure USE_GEN_PROCEDURE establishes a dependence on the
generic procedure body GEN_PROCEDURE. Because of the dependence, the
instantiations USE_GEN_PROCEDURE.INT_PROCEDURE and USE_GEN_
PROCEDURE.ARR_PROCEDURE are expanded inline. (Do not confuse the

Improving Run-Time Performance 8–9



inline expansion of instantiations with the inline expansion of subprogram
calls. For example, see Section 8.3.1.) The dependence means that if the
body for the generic procedure GEN_PROCEDURE is later compiled again or
replaced, the procedure USE_GEN_PROCEDURE becomes obsolete and needs
to be recompiled. See Developing Ada Programs on DEC OSF/1 Systems for
more information.

When you apply the pragma INLINE to subprograms that are declared
inside a generic package or subprogram, they are potentially inlinable in
an instantiation (again, assuming that they meet the requirements outlined in
Section 8.2.1). For example:

generic
type T is limited private;

package GEN_INLINE is
procedure DECLARE_VAR;
pragma INLINE(DECLARE_VAR);

end GEN_INLINE;

--------------------------------------------------

package body GEN_INLINE is
procedure DECLARE_VAR is

X: T;
begin

null;
end;

end GEN_INLINE;

--------------------------------------------------

with GEN_INLINE;
procedure USE_GEN_INLINE is

task type TASK_TYPE is end;
type ARR is array (1 .. 10) of TASK_TYPE;

package INLINE_INT is new GEN_INLINE(INTEGER); -- Inlinable.
package INLINE_ARR is new GEN_INLINE(ARR); -- Not inlinable.

task body TASK_TYPE is
begin

null;
end;

begin
INLINE_INT.DECLARE_VAR; -- Expanded inline.
INLINE_ARR.DECLARE_VAR; -- Not expanded inline.

end USE_GEN_INLINE;

8–10 Improving Run-Time Performance



Procedure DECLARE_VAR is inlinable in the instantiation INLINE_INT. It is
not inlinable in the instantiation INLINE_ARR (again, because INLINE_ARR
involves tasks). The call to INLINE_INT.DECLARE_VAR expands DECLARE_
VAR inline, and the call to INLINE_ARR.DECLARE_VAR does not.

To expand the call to INLINE_INT.DECLAR_VAR inline, the procedure
USE_GEN_INLINE establishes a dependence on the generic package body
GEN_INLINE. Because of the dependence, the instantiations INLINE_
INT.DECLARE_VAR and INLINE_ARR.DECLARE_VAR are expanded inline.

8.3 Making Use of Generics
DEC Ada offers a number of features that let you improve the compilation time
and performance of programs that use generics. For example:

• You can control how code is generated for generics by using the pragmas
INLINE_GENERIC and SHARE_GENERIC or by using a number of
equivalent /OPTIMIZE compilation qualifier options.

The pragma INLINE_GENERIC causes the compiler to expand the generic
body inline at the point of instantiation. The pragma SHARE_GENERIC
causes the compiler to generate code that can be shared by several
instances of the same generic. Table 8–1 compares the effects of these two
pragmas with the default behavior.

The decisions made by the compiler for these pragmas are shown
in compilation notes messages, which you can obtain with the
/WARNINGS=COMPILATION_NOTES qualifier at compile time. See
Developing Ada Programs on OpenVMS Systems for more information on
the /WARNINGS and /OPTIMIZE qualifiers and their options.

• You can use the predefined library-level instantiations provided for
commonly used generics; for example, LONG_FLOAT_TEXT_IO, LONG_
FLOAT_MATH_LIB, and so on.

Improving Run-Time Performance 8–11



Table 8–1 Comparison of the Effects of the Pragmas INLINE_GENERIC and SHARE_
GENERIC

Effect
Neither Pragma
Applies (Default)

Pragma SHARE_
GENERIC Applies

Pragma INLINE_
GENERIC Applies

Instances are compiled
separately from the
unit in which the
instantiation occurred.

Yes Yes No. Generic is
expanded inline
at the point of
instantiation.

The unit containing the
instantiation depends on
the unit containing the
generic body.

No No Yes

The code generated
for the instance can
potentially be shared by
subsequent instances.

No Usually No

The instance shares code
from previous instances
to which the pragma
SHARE_GENERIC
applied.

Yes, if suitable Yes, if suitable No

8.3.1 Using the Pragma INLINE_GENERIC
DEC Ada implements generics so that the bodies resulting from each instance
of a generic are compiled separately from the unit in which the generic
instantiation occurs. This implementation is similar to the way in which
a subunit is compiled separately from its parent unit. It means that a
compilation unit that contains an instantiation does not depend on the
instantiation’s corresponding generic body and does not need to be recompiled
when the generic body changes.

You can modify this behavior by specifying a pragma INLINE_GENERIC for
the generic declaration or for a particular instance of a generic declaration.
For example:

procedure USE_INTEGER is new USE_ITEM(INTEGER);
pragma INLINE_GENERIC(USE_INTEGER);

Chapter 12 of the DEC Ada Language Reference Manual gives the syntax and
rules for using the pragma INLINE_GENERIC.

8–12 Improving Run-Time Performance



The pragma INLINE_GENERIC causes the compiler to expand the generic
body in the unit containing the instantiation, provided that the corresponding
body has been compiled and is current. Like subprogram inline expansion,
generic inline expansion generally optimizes execution time.

Generic inline expansion also changes the dependences among instantiations
and generic bodies. For example, a unit containing an instantiation for which
the pragma INLINE_GENERIC is in effect may depend on the unit that
contains the generic body. The dependence means that if the unit containing
the generic body is compiled again or replaced, the unit containing the
instantiation becomes obsolete and must be recompiled. See Developing Ada
Programs on OpenVMS Systems for more information on dependences, obsolete
units, and recompilation.

For example:

generic
type ITEM is private;

procedure USE_ITEM (A, B: ITEM);

-------------------------------------------------------

procedure USE_ITEM (A, B: ITEM) is
begin

null;
end USE_ITEM;

-------------------------------------------------------

with USE_ITEM;
procedure USE_GENERIC_INLINE is

procedure USE_INTEGER is new USE_ITEM(INTEGER);
pragma INLINE_GENERIC(USE_INTEGER);

X,Y: INTEGER;

begin

USE_INTEGER(X,Y);

end USE_GENERIC_INLINE;

In this example, the procedure USE_GENERIC_INLINE depends on the body
for the generic procedure USE_ITEM because a pragma INLINE_GENERIC
is specified for USE_INTEGER (which is an instantiation of USE_ITEM),
and because the generic procedure body USE_ITEM is available (see the
restrictions at the end of this section).

Improving Run-Time Performance 8–13



You can maximize generic inline expansion either by specifying a
pragma INLINE_GENERIC for all instantiations, or by using the
/OPTIMIZE=INLINE:GENERICS or /OPTIMIZE=INLINE:MAXIMAL
qualifiers at compile time. See Developing Ada Programs on OpenVMS
Systems for more information on the /OPTIMIZE qualifier and its options.

Maximal generic inline expansion is often most effective in combination with
maximal subprogram inline expansion. However, maximal generic inline
expansion is usually most effective for applications that contain relatively few
generic instantiations. If your application uses generics extensively, you may
find that maximal generic inline expansion substantially increases program
size. In such cases, generic inline expansion may increase elapsed time at run
time because of increased paging.

8.3.2 Using the Pragma SHARE_GENERIC
When generic inline expansion is not in effect, you can use the pragma
SHARE_GENERIC to cause the same code that is generated for one instance
to be shared or used by another instance. If a pragma SHARE_GENERIC
applies to a generic declaration or to a specific instance, the compiler tries to
generate code that can be shared by subsequent instantiations of the same
generic.

Chapter 12 of the DEC Ada Language Reference Manual gives the syntax and
rules for using the pragma SHARE_GENERIC. For example:

generic
type INPUT_TYPE is private;

procedure USE_OFTEN (X: INPUT_TYPE);
pragma SHARE_GENERIC(USE_OFTEN);

------------------------------------------------------------------

procedure USE_OFTEN (X: INPUT_TYPE) is
begin

null;
end USE_OFTEN;

------------------------------------------------------------------

with USE_OFTEN;
package USE_SHARE_GENERIC is

procedure USE_INTEGER is new USE_OFTEN(INTEGER);
procedure USE_FLOAT is new USE_OFTEN(FLOAT);
procedure USE_STRING is new USE_OFTEN(BOOLEAN);

end USE_SHARE_GENERIC;

In this example, the compiler generates shareable code for each of the
instantiations declared in the package USE_SHARE_GENERIC.

8–14 Improving Run-Time Performance



The code generated for one instance cannot be shared by another instance
unless you specify a pragma SHARE_GENERIC for the instance or for the
generic from which the instance was generated. You can also control generic
code sharing with the /OPTIMIZE qualifier at compile time (see Developing
Ada Programs on OpenVMS Systems).

Generic code sharing provides the following important benefits:

• It saves compilation time when the generated machine code would
otherwise be large. When generic code sharing is in effect, the compiler
does not have to generate code for each instantiation.

• It makes a program significantly smaller when generic instantiations would
otherwise generate a large amount of machine code or a large number of
constants.

• It gives Ada programmers the engineering advantages of a strongly
typed language without consuming extra memory for multiple copies of
essentially identical algorithms.

In a strongly typed language, such as Ada, a program often uses generics
to define operations such as mathematical functions, sorting, symbol table
management, list management, and so on. The program instantiates these
generics to provide the same operations on a variety of types.

In an older language that does not support or encourage the use of large
numbers of types (for example, Fortran, C, BLISS, or assembly language),
such operations would have been written as one piece of code and then
‘‘shared’’ among the various types. Similarly, to write an input-output
subsystem where files of many different types needed to be supported, C or
assembly language programmers would use common code to which just the
address and the length of the data were passed. The same piece of code
could be used to manipulate the data, regardless of the fact that one piece
of data would be a file-of-STRING, another a file-of-COMPLEX_NUMBER,
and so on. In effect, the programmer was organizing the sharing of the
machine instructions to avoid having multiple copies of essentially identical
code.

Before generic code sharing was available, writing generics for operations
such as list management saved rewriting the same algorithms many times,
but did not save the amount of code that was generated. Generic code
sharing eliminates one of the possible advantages of a less strongly typed
language over Ada.

• It lets Ada programmers write subprograms with call-back routines, again,
without incurring the penalty of generating duplicate code.

Improving Run-Time Performance 8–15



Another feature of older languages is the ability to provide a call-back
routine as a variable or parameter, so that an algorithm can be tailored
by its caller. For example, a SORT routine might accept COMPARE
and EXCHANGE routines as parameters. The SORT routine executes
the general flow of the sorting algorithm but calls back to the specific
COMPARE and EXCHANGE routines to achieve a particular kind of sort.

In Ada, you pass subprograms as parameters by declaring them as formal
subprogram parameters in generic declarations. For example:

generic

type ITEM is private;

type VECTOR is array (NATURAL range <>) of ITEM;

with function "<"(LEFT, RIGHT : ITEM) return BOOLEAN;
with procedure EXCHANGE(LEFT, RIGHT : in out ITEM);

procedure GENERIC_SORT(LIST : VECTOR);

procedure GENERIC_SORT(LIST : VECTOR) is
begin

. . .
end;

Without shared generics, this approach causes extra memory to be
consumed for each instantiation. Duplicate code is generated, even
though the only difference between instantiations may be the call-back
routines. Generic code sharing reintroduces this ability into Ada without
any penalties.

You can maximize generic code sharing either by specifying the
/OPTIMIZE=SHARE:MAXIMAL qualifier at compile time or by specifying a
pragma SHARE_GENERIC for all generic declarations and/or instantiations
in your application. In some cases, maximal generic code sharing can result
in a dramatic decrease in the size of your program and can greatly improve
run-time performance (particularly elapsed time). However, the benefits of
maximal sharing depend on the characteristics of your application. Often you
can obtain the best results by specifying the pragma SHARE_GENERIC for
particular generic declarations and/or instantiations rather than compiling all
units with the /OPTIMIZE=SHARE:MAXIMAL qualifier.

Generic code sharing is intended to reduce the size of your program. Shared
code generally executes more slowly than nonshared code because sharing adds
some processing overhead and prevents optimizations that are based on the
actual parameters provided for a particular instantiation. However, generic
code sharing occurs only if the code that is generated for one instance is
similar to the code generated for another. The execution times for shared code

8–16 Improving Run-Time Performance



are often similar to those for nonshared code, particularly for larger generic
packages.

Although generic code sharing is intended to reduce the size of your program,
it can increase program size under some conditions. For example:

• Shared code for one instance is always larger than the corresponding
nonshared code. The size of your program increases if shareable code is
generated for one instance but is never shared by another.

• Sharing can also increase the size of your program if generics are
instantiated a relatively small number of times or if the actual parameters
for each instantiation of a particular generic are sufficiently different to
preclude sharing.

Sharing the code for two instantiations of a large generic reduces the size of
your program, but you may need to share the code for many instantiations of a
smaller generic to achieve a net reduction in program size.

8.3.3 Library-Level Generic Instantiations
If you have a program that makes multiple instantiations of the same generic,
you can save compile time and often make your program more efficient by first
creating a library package that instantiates the generic and then making that
package available to your program (by using with and use clauses).

For example, suppose that you have defined a package containing a floating-
point type and operations on that type. Also, suppose that you want to be
able to include the predefined DEC Ada mathematics functions (in the generic
package MATH_LIB) as operations, and you want to be able to use TEXT_IO
operations to perform input and output. The most efficient way of making
your type, its operations, and the instantiations of MATH_LIB and TEXT_
IO.FLOAT_IO available to your program is to make a library package as
follows:

with TEXT_IO; use TEXT_IO;
with MATH_LIB;
package MY_FLOAT_TYPE_OPS is

type MY_FLOAT is digits 13;
package MY_FLOAT_TEXT_IO is new FLOAT_IO(MY_FLOAT);
package MY_FLOAT_MATH_LIB is new MATH_LIB(MY_FLOAT);
. . .

end MY_FLOAT_TYPE_OPS;

When you make this package available to your program (or to parts of your
program), the instantiations of TEXT_IO.FLOAT_IO and MATH_LIB are done
only once (when the package is initially compiled and added to your program
library), not each time you use them.

Improving Run-Time Performance 8–17



DEC Ada supplies a set of predefined library packages that instantiate
commonly used generics, notably the generic TEXT_IO packages for integer
and floating-point input and output, and the generic package MATH_LIB for
floating-point mathematical operations. (See Chapter 2 and Appendix C for the
descriptions and specifications of these predefined packages.)

For example, if you needed to use the operations in MATH_LIB and TEXT_
IO.FLOAT_IO many times throughout your program on objects of the type
LONG_FLOAT, you could use the appropriate predefined packages, as follows,
to save compile time and object code size:

with LONG_FLOAT_TEXT_IO; use LONG_FLOAT_TEXT_IO;
with LONG_FLOAT_MATH_LIB; use LONG_FLOAT_MATH_LIB;
procedure MY_MAIN is

X: LONG_FLOAT;
begin
. . .

PUT(SIN(X));
. . .
end MY_MAIN;

The instantiations of TEXT_IO.FLOAT_IO and MATH_LIB for the type LONG_
FLOAT are done once but are available at all levels of MY_MAIN.

8.4 Techniques for Reducing CPU Time and Elapsed Time
You can use a variety of techniques to significantly reduce the CPU time and
elapsed time required to execute a DEC Ada program on a OpenVMS system.

To decrease the program’s CPU time on a particular processor, you can make
the following basic changes to the program:

• Decrease the number of instructions being executed

• Decrease the number of expensive instructions being executed

• Decrease the amount of data being read from and written to memory

To decrease the program’s elapsed time, you can also make the following basic
changes to the program:

• Decrease the CPU time

• Decrease the amount of time spent waiting for input-output and page
faults

• Overlap the CPU time with the time spent waiting for input-output

8–18 Improving Run-Time Performance



The following sections discuss these changes and some of the techniques for
making them.

Note

The DEC Performance and Coverage Analyzer (PCA) is an optional
layered product, which is also included among the DECset tools. It
measures the performance characteristics of user-mode programs
running on OpenVMS systems. While the following discussions may
offer some general assistance, the techniques they propose are best
used in conjunction with DEC PCA.

To use DEC PCA, you must have it installed on your system, and you
must compile and link your program with /DEBUG qualifiers in effect.
See the DEC PCA documentation for information on how to use DEC
PCA.

8.4.1 Decreasing the CPU Time of a DEC Ada Program
The first step in decreasing the CPU time of a DEC Ada program is to use
DEC PCA to identify the parts of the program that are using the most CPU
time.

In the parts of the program that do not use significant amounts of CPU time,
you do not gain much of a performance improvement by suppressing checks,
explicitly expanding subprograms inline, or otherwise writing anything other
than straightforward Ada code. You should also first compile your program
without the effects of the pragmas INLINE, SUPPRESS, or SUPPRESS_ALL.
You can use the /OPTIMIZE=(INLINE:NONE) and /CHECK compilation
qualifiers to cause the compiler to ignore any INLINE and SUPPRESS
pragmas that are already in your source files.

Once you have identified the part of the program that uses most of the CPU
time, you should next evaluate the algorithms that you have used in that
part. Wherever possible, you should replace the algorithms with significantly
more efficient algorithms or you should use more efficient data structures. For
example, if the algorithm in question is an expensive calculation, you may be
able to replace it with some form of table lookup. Furthermore, you may be
able to reorganize the program as a whole to decrease the number of times the
expensive algorithms are executed.

Improving Run-Time Performance 8–19



Once you have implemented the most efficient algorithms, the next step is
to decrease the number of instructions executed in places where significant
amounts of CPU time are being used. There are some techniques that you can
use to significantly decrease the number of instructions. These techniques are
discussed in the following sections.

Note

Because these techniques involve changing code (often converting small
pieces of code into larger and more complex forms), you should use
them only in the parts of the program that would really benefit. Again,
DEC PCA can help you correctly identify the parts of the program that
you should consider rewriting.

Before you rewrite your Ada code, examine the machine code produced
by the compiler to determine if any improvement is possible. You can
examine the machine code either by stepping through it using the
debugger or by examining a listing file that you have produced with the
/LIST/MACHINE_CODE qualifier at compile time.

8.4.1.1 Eliminating Run-Time Checks
Run-time checks are the easiest of all overhead checks to eliminate. You can
eliminate run-time checks completely with the pragma SUPPRESS_ALL.
However, eliminating checks in this way is not safe: an error condition that
would trigger a check may still occur (for example, a null access value is
deaccessed, an array is indexed outside of its bounds, and so on). Instead, you
should write your program so that the compiler can deduce reliably that a
check would never be triggered, and code would not be generated for the check.
For example:

• Use subranges so that range checks are removed from loops.

The compiler uses extensive knowledge of subtypes to eliminate checks
or move them out of loops. If the compiler has not deduced that a check
either does not need to be done or can be moved out of a loop, you can give
it extra clues by defining subtypes outside of the loop. The compiler then
performs the check outside of the loop, and uses the information it gains
inside of the loop to eliminate a check.

8–20 Improving Run-Time Performance



For example, the following code causes a check to be done inside a loop:

procedure ZERO( N, M : POSITIVE;
ARRAY_PARAMETER : in out ARRAY_TYPE) is

begin
for I in N .. M loop

ARRAY_PARAMETER(I) := 0; -- Check needed inside.
end loop;

end;

This is a more efficient version:

procedure ZERO( N, M : POSITIVE;
ARRAY_PARAMETER : in out ARRAY_TYPE) is

subtype S is
INTEGER range ARRAY_PARAMETER’FIRST..ARRAY_PARAMETER’LAST;

begin
for I in S range N .. M loop -- Check done here, outside the

ARRAY_PARAMETER(I) := 0; -- loop, so no check needed
-- inside.

end loop;
end;

• Use renaming to remove checks from loops.

Names involving the following constructs require checks to determine if the
exception CONSTRAINT_ERROR should be raised (see Chapter 4 of the
DEC Ada Language Reference Manual):

An access value used as a prefix (for example, A.all)

Indexing (for example, A(23)) or slicing (for example, A(1..10))

Selecting a component of a variant part of a record (for example, A.C)
Usually the compiler detects such names as being loop-invariant and moves
them out of the loop. If the machine code indicates that this optimization
has not happened, you can use a renaming outside of the loop to move the
checking code outside of the loop.

For example, the following block does not do an INDEX_CHECK each time
the loop is executed:

declare
COMPONENT : POSITIVE renames ARRAY_OF_POSITIVE(I - 4);

begin
loop

COMPONENT := {expression};
. . .

end loop;
end;

Improving Run-Time Performance 8–21



You can also use this technique to avoid repeated checks in code that has
no loops.

8.4.1.2 Reducing Function and Procedure Call Costs
You can reduce function and procedure call costs with the following techniques:

• Use the pragma INLINE to eliminate call and return overhead for calls of
trivial subprograms. For larger subprograms, this technique helps only if
the inline-expanded version of the subprogram can then be significantly
optimized. This effect often happens when one of the actual parameters is
a constant.

The compiler automatically expands some subprograms inline, but it
cannot do so if extra dependences are created. The pragma INLINE gives
the compiler permission to add these dependences. The pragma INLINE
also forces the compiler to expand calls inline when it would have otherwise
decided that the inline expansion was not worthwhile.

• Use the /OPTIMIZE=INLINE:SUBPROGRAMS or
/OPTIMIZE=INLINE:MAXIMAL compilation qualifier to direct the
compiler to eliminate call and return overhead for calls to trivial
subprograms in other units. See Developing Ada Programs on OpenVMS
Systems for more information on the /OPTIMIZE qualifier.

• Use the pragma ELABORATE to eliminate access-before-elaboration checks
on subprograms that have been expanded inline.

For small subprograms in other units, the cost of the run-time check to
see if the subprogram body has been elaborated may be significant. When
the compiler does not otherwise optimize away access-before-elaboration
checks, the pragma ELABORATE provides a way of forcing the elaboration
order, and the compiler uses this knowledge to eliminate the check.

For example:

-- First compilation unit.
--
package PKG is

function TRIVIAL return INTEGER;
pragma INLINE(TRIVIAL);

end PKG;

---------------------------------------------------------------

-- Second compilation unit.
--
package body PKG is

I : INTEGER := 0;

8–22 Improving Run-Time Performance



function TRIVIAL return INTEGER is
begin

I := I+1;
return I;

end;

end PKG;

---------------------------------------------------------------

-- Third compilation unit.
--
with PKG;
pragma ELABORATE(PKG);
procedure EXAMPLE is

J : INTEGER := PKG.TRIVIAL; -- Pragma ELABORATE guarantees
-- that TRIVIAL’s body must have
-- been elaborated, so no check
-- is needed.

begin
null;

end;

• Use records to pass multiple parameters quickly and to move the
evaluation of parameters to less frequently executed regions of the code.

For example, the procedure EXAMPLE in the following code incurs some
run-time overhead when it makes the call to PKG.PROC because of the
number of parameters and parameter evaluations:

-- First compilation unit.
--
package PKG is

procedure PROC(P1, P2 : INTEGER; P3, P4 : FLOAT; P5 : BOOLEAN);
end;

-- Second compilation unit.
--
with PKG;
procedure EXAMPLE is
begin

for I in 1 .. 10 loop
. . .
PKG.PROC(1, I, 0.0, FLOAT(I)*3.0, FALSE);
. . .

end loop;
end;

Improving Run-Time Performance 8–23



This example would run more efficiently if it were rewritten as follows:

-- First compilation unit.
--
package PKG is

type PROC_PARAMETERS is
record

P1, P2 : INTEGER;
P3, P4 : FLOAT;
P5 : BOOLEAN;

end record;
procedure PROC(P : PROC_PARAMETERS);

end;

-------------------------------------------------------------

-- Second compilation unit.
--
with PKG;
procedure EXAMPLE is

P : PKG.PROC_PARAMETERS;
begin

P.P1 := 1; -- Note that the cost of setting up
P.P3 := 0.0; -- these parameters has been moved out of
P.P5 := FALSE; -- the loop...

for I in 1 .. 10 loop
. . .
P.P2 := I;
P.P4 := FLOAT(I)*3.0;
PKG.PROC(P); -- And that it requires fewer
. . . -- instructions to pass just

-- one parameter.
end loop;

end;

8.4.1.3 Using Scalar Variables and Avoiding Expensive Operations on Composite
Types
In general, the current state of optimizing compilers is such that they are much
better at generating code for operations involving simple types than they are
at generating code for operations involving composite types. For this reason
and because of slight differences in the results if exceptions occur, the following
changes may make a significant difference in frequently executed code:

• Replace complex operations on composite types with a series of simpler
operations, especially if the result can be assigned directly into its final
place. For example, consider the following assignment:

A := B & (1 .. A’LENGTH - B’LENGTH => ’ ’);

8–24 Improving Run-Time Performance



You can replace this assignment with the following operations:

A(1 .. B’LENGTH) := B;
for I in INTEGER’(B’LENGTH + 1) .. A’LENGTH loop

A(I) := ’ ’;
end loop;

• Rather than using aggregates, especially those involving run-time
expressions, build values in place. For example, consider this single
operation:

A := (I*I, 2*J, K+0.3);

You can replace this operation with the following series of smaller
operations:

A.C1 := I*I;
A.C2 := 2*J;
A.C3 := K+0.3;

• Sometimes it pays to pull components out into a scalar constant so that
the compiler knows that various values are not modified by assignments to
other components.

For example, an examination of the machine code for the following Ada
code may show that V.C is being repeatedly fetched from memory:

A.C1 := A.C1*V.C;
A.C2 := A.C2+V.C;
A.C3 := A.C3/V.C;

If that is true, you should replace it with code like the following:

declare
X : constant FLOAT := V.C;

begin
A.C1 := A.C1*X;
A.C2 := A.C2+X;
A.C3 := A.C3/X;

end;

• Use access-to-composite types rather than returning large composite objects
as values. For example, you should replace the following code:

package AIRPLANE_INFO_PKG is

. . .
type AIRPLANE_INFO_TYPE is

record
WEIGHT : KILOGRAMS;
. . .

end record;

Improving Run-Time Performance 8–25



function GET_AIRPLANE_INFO(NAME : STRING)
return AIRPLANE_INFO_TYPE;

end;

Here is a possible replacement:

package AIRPLANE_INFO_PKG is

. . .
type AIRPLANE_INFO_TYPE is

record
WEIGHT : KILOGRAMS;
. . .

end record;

type ACCESS_AIRPLANE_INFO_TYPE is
access AIRPLANE_INFO_TYPE;

function GET_AIRPLANE_INFO(NAME : STRING)
return ACCESS_AIRPLANE_INFO_TYPE;

end;

• Use in or in out parameters to let the compiler assign values directly to
target variables rather than making assignments with function results.
For example:

package VECTOR_PKG is

type VECTOR is
record

I, J, K : FLOAT;
end record;

-- Provide all three forms of ADD, so that the caller
-- can choose the most efficient.
--
function "+"(LEFT, RIGHT : VECTOR) return VECTOR;

procedure ADD(LEFT : VECTOR; RIGHT : in out VECTOR);

procedure ADD(LEFT, RIGHT : VECTOR; RESULT : out VECTOR);

end;

---------------------------------------------------------------

with VECTOR_PKG; use VECTOR_PKG;
procedure EXAMPLE(A, B : VECTOR; R : out VECTOR) is
begin

R := A + B; -- Less efficient.
ADD(A, B, R); -- More efficient.

end;

8–26 Improving Run-Time Performance



8.4.2 Decreasing the Elapsed Time of a DEC Ada Program
Elapsed time is a consequence of time spent executing instructions, paging, and
doing input-output. You may be able to decrease the instruction execution time
as described in Section 8.4.1. Once you have done that, the only alternatives
are to obtain either a faster CPU or more CPUs. You should wait to explore
these last two alternatives until you have examined the program’s paging and
input-output behavior. The following sections discuss paging and input-output
effects in more detail.

When using different or more CPUs:

• If you obtain a faster CPU, your program’s run-time performance improves
just by running the program if the elapsed time was spent executing
instructions rather than waiting for input-output.

• If you have chosen to use more than one CPU to improve performance,
then you should consider breaking your single DEC Ada program into
multiple DEC Ada programs and then using either networking or shared
global sections to communicate the data between them.

Chapter 9 includes a section with an example program that shares memory
between one or more CPUs on a OpenVMS system.

8.4.2.1 Controlling Paging Behavior
Experience has shown that, in general, the OpenVMS Linker and image
activator do an excellent job of controlling the paging of a program’s
instructions. The most likely cause of excessive paging is having an insufficient
working set or processing the data in a jump-around manner.

A solution to the working-set problem is either to increase the working set
size, or to design your program so that it handles its data in working-set-sized
pieces. The latter solution is difficult to apply to existing code.

The worst examples of jumping around are caused when large multidimen-
sional arrays are accessed so that the first index changes the fastest. This
effect occurs in an opposite way in FORTRAN where it is desirable to change
the first index the fastest.

8.4.2.2 Improving Input-Output Behavior
Input-output is usually bounded by the device you are using. You can gain
improvements by taking one of the following actions:

• Reading or writing more data to the device in a single operation

• Packing the types involved, so that fewer bytes are needed for the values

• Using a faster device

Improving Run-Time Performance 8–27



You can also gain significant improvements by calling asynchronous input-
output routines (RMS and system service routines) and starting read requests
some time before the data being obtained is actually needed. See the OpenVMS
Record Management Services Reference Manual for more information on
RMS routines. See the VMS System Services Volume for more information
on OpenVMS system service routines.

8.4.2.3 Overlapping Unrelated Input-Output and Instruction Execution
An application can sometimes exploit Ada multitasking to overlap the time
spent waiting for an input-output operation with some computation. You can
achieve this effect by putting the input-output in a high-priority task and the
computation in a low-priority task.

The difference in priorities is required so that the input-output-bound task
accesses the CPU of the computing task, gets its next input-output started, and
then waits—returning control to the computing task. If the computing task
is given the higher (or even the same) priority, the input-output-bound task is
not able to start its input-output as soon as possible, and its elapsed time is
extended. For example:

-- A high-priority task to drive a graphics device at full speed.
--
task GRAPHICS_ENGINE is

pragma PRIORITY (8);
entry PUT_PICTURE(P : ACCESS_PICTURE);

end;

task body GRAPHICS_ENGINE is
P : ACCESS_PICTURE;

begin
loop

accept PUT_PICTURE(P : ACCESS_PICTURE) do
GRAPHICS_ENGINE.P := P;

end;

DRAW(P); -- Draw to a hidden plane of graphics
-- memory. The device takes a while to
-- do this, but returns immediately.

delay 0.1; -- Give the device a chance to draw
-- the picture.

FLIP_VISIBLE; -- Make the hidden plane visible and the
-- old plane invisible.

ERASE; -- Erase the hidden plane of graphics.
-- Again, the device takes a while, but
-- returns immediately.

end loop;
end;

8–28 Improving Run-Time Performance



-- A lower-priority task to decide what to draw.
--
task GENERATE_PICTURE is

pragma PRIORITY (7);
end;

task body GENERATE_PICTURE is
P: ACCESS_PICTURE;

begin
loop

-- {compute a new picture};
GRAPHICS_ENGINE.PUT_PICTURE(P);

end loop;
end;

Most of the computation in this example is done while the GRAPHICS_
ENGINE is executing its delay statement. If 0.1 second is sufficient time
to do all of the computation, the device is driven at full speed.

Improving Run-Time Performance 8–29



9
Additional Programming Considerations

This chapter documents DEC Ada programming considerations that may
not be immediately obvious but that may affect the run-time behavior or
performance of your DEC Ada programs. It also documents the use of some of
the low-level, system-specific features of DEC Ada.

9.1 Working with Address Values
To let you work with storage addresses, the Ada language provides the
predefined type ADDRESS (in the package SYSTEM) and the ADDRESS
attribute. To avoid difficult-to-isolate problems when working with values of
this type or values returned by this attribute in DEC Ada, make sure that you
do not use them to do any of the following:

• Reference an object whose lifetime has expired

• Reference an object in an inappropriate manner (for example, try to change
a declared constant or the value of an in parameter)

• Access storage beyond the end of the amount allocated for an object

• Access a variable by more than one path unless that variable has been
declared with the pragma VOLATILE

• Place a value into a variable that is inconsistent with the variable’s
declared type or subtype

If a subprogram body, task body, or library package elaboration code uses the
ADDRESS attribute of an out or in out formal parameter or of a variable
whose declaration does not include a pragma VOLATILE, the DEC Ada
compiler implicitly treats that parameter or variable as being locally volatile.
(Being locally volatile means being volatile for all of the immediate block
statement, body, or library package elaboration code; not for any surrounding
or enclosed subprogram bodies, tasks, or library package elaboration code.)

The effect of this rule is to suppress optimizations that assume the compiler
can detect all changes to the value of the parameter or variable.

Additional Programming Considerations 9–1



For example, the statements in the following procedure leave X with a value of
0 rather than 1. If X is not implicitly treated as locally volatile (because of the
use of X’ADDRESS), the optimizer may generate code using the most recent
assignment, or 1, when it assigns the value of X to Y. Because X has been
marked as locally volatile, the optimizer instead generates code that causes the
value at the address of X (in this case 0) to be retrieved when the assignment
to Y is made.

with SYSTEM; use SYSTEM;
with UNCHECKED_CONVERSION;
procedure SHOW_CONVERT is

type ACCESS_INTEGER is access INTEGER;

function CONVERT_ADDRESS_TO_ACCESS_INTEGER is
new UNCHECKED_CONVERSION (ADDRESS, ACCESS_INTEGER);

X, Y : INTEGER;
V1 : ADDRESS;
V2 : ACCESS_INTEGER;

begin
. . .

V1 := X’ADDRESS;
V2 := CONVERT_ADDRESS_TO_ACCESS_INTEGER(V1);
X := 1;
V2.all := 0; -- X is now 0,
Y := X; -- so Y is 0.

. . .

end SHOW_CONVERT;

9.2 Unchecked Conversion of Access Types
DEC Ada uses a virtual address to represent the value of an access type.
However, this address is not necessarily the address of the accessed object. In
particular:

• In the case of an access type whose subtype is an unconstrained array type,
the address may be that of a descriptor of the accessed value. Unchecked
conversion between an access type and an unconstrained array type does
not work.

• In some cases, the size of the accessed object is not the same as the size of
a similar object that would otherwise be allocated statically or on the stack.
For example, access to noncomposite types without size representation
clauses usually results in the accessed value occupying the correct amount
of storage. However, if a noncomposite type has a size representation
clause, then the size of the accessed value may be wrong.

9–2 Additional Programming Considerations



Therefore, unchecked conversion between access types and the type
SYSTEM.ADDRESS is guaranteed to work in DEC Ada only when the
access type’s subtype indication is either a record type (which may or may not
have a constraint imposed on it) or a constrained array subtype.

A common use of this kind of unchecked conversion is to translate private types
to or from arrays of integers for input-output purposes. The recommended
method for performing this primitive operation is as follows:

generic
type T is private;

package TRANSLATE_PRIVATE is
. . .
end TRANSLATE_PRIVATE;

with SYSTEM, UNCHECKED_CONVERSION;
package body TRANSLATE_PRIVATE is

type R is record
C : T;

end record;
type A is access R;
function TO_A is

new UNCHECKED_CONVERSION(SYSTEM.ADDRESS, A);
. . .
BUFFER : array (1 .. 100) of INTEGER;
CONVERTED_VALUE : T;

begin
. . .
CONVERTED_VALUE := TO_A(BUFFER’ADDRESS).all.C;
. . .

end TRANSLATE_PRIVATE;

There are two important consequences of using a private type (in this example,
T) as the subtype indication of a record component. First, any private type
can be taken and fitted into a supported case. Second, an unconstrained array
type cannot be used to instantiate the generic. (It is illegal.) This second case
causes the most trouble because the value of the access type is not represented
by the address of the accessed object.

You can avoid the approach of the preceding example and obtain a better
program structure. You can pass subprograms to the generic that are
specifically designed to convert the formal type to or from the type that is to be
input or output. The result is fully portable code that uses no implementation-
specific features, and the package exporting the type has full control over
the external representation of the type. Example 9–1 is an example of this
technique.

Additional Programming Considerations 9–3



Example 9–1 A Portable Technique for Reading and Writing Private Types

-- G_IO is a generic input-output package. It is
-- used for writing values of a variety of types
-- to a single file, and then reading them back.
--
generic

-- The type for which input-output is to be
-- provided.
--
type T is private;

-- The functions to convert values of type T to and
-- from their external representations as values of
-- the type STRING.
--
with function TO_T(S : STRING) return T is <>;
with function TO_STRING(ITEM : T)

return STRING is <>;

package G_IO is
procedure PUT(ITEM : in T);
procedure GET(ITEM : out T);

end G_IO;

package body G_IO is
procedure PUT(ITEM : in T) is
begin

. . .
end;

procedure GET(ITEM : out T) is
begin

. . .
end;

end G_IO;

(continued on next page)

9–4 Additional Programming Considerations



Example 9–1 (Cont.) A Portable Technique for Reading and Writing Private
Types

-- PRIV_EXPORTER declares the private type T, whose
-- internal representation is unknown to the outside
-- world. To make it possible to do input-output
-- operations on the type T, PRIV_EXPORTER provides
-- two subprograms, TO_T and TO_STRING, to convert
-- values of the type T to values of the type STRING.
-- The values of the type STRING can then be read
-- from and written to a file. The exact contents
-- of these strings is deliberately not defined.
--
package PRIV_EXPORTER is

type T is private;
function TO_T(S : STRING) return T;
function TO_STRING(ITEM : T) return STRING;
procedure INIT(X : in out T);

private
type T is new INTEGER;

end PRIV_EXPORTER;

package body PRIV_EXPORTER is
function TO_T(S : STRING) return T is
begin

return T’VALUE(S);
end TO_T;

function TO_STRING(ITEM : T) return STRING is
begin

return T’IMAGE(ITEM);
end TO_STRING;

procedure INIT(X : in out T) is
begin

X := 0;
end INIT;

end PRIV_EXPORTER;

(continued on next page)

Additional Programming Considerations 9–5



Example 9–1 (Cont.) A Portable Technique for Reading and Writing Private
Types

-- The procedure EG shows the input and output of
-- values of the type PRIV_EXPORTER.T.
--
with PRIV_EXPORTER, G_IO;
use PRIV_EXPORTER;
procedure EG is

X : PRIV_EXPORTER.T;
package T_IO is new G_IO(PRIV_EXPORTER.T);

begin
INIT(X);
T_IO.PUT(X);
T_IO.GET(X);

end EG;

9.3 Using Low-Level System Features
The predefined package SYSTEM provides a number of useful, low-level type
declarations and operations. The following sections give advice on using these
declarations and operations and, where appropriate, provide some examples of
possible applications.

9.3.1 The VAX Device and Processor Register and Interlocked
Operations (VAX Systems Only)

Applications accessing OpenVMS input-output space or using shared memory
have special restrictions on which VAX instructions can be used. You can
force the DEC Ada compiler to meet these restrictions by using the operations
defined in the package SYSTEM. See Table 9–1.

Table 9–1 VAX Instructions Provided in the Predefined Package SYSTEM

Operation Equivalent VAX Instruction

Function READ_REGISTER —

Function WRITE_REGISTER —

Function MFPR Move from Process Register (MFPR)

Procedure MTPR Move to Process Register (MPTR)

(continued on next page)

9–6 Additional Programming Considerations



Table 9–1 (Cont.) VAX Instructions Provided in the Predefined Package
SYSTEM

Operation Equivalent VAX Instruction

Procedure CLEAR_INTERLOCKED Branch on Bit Clear and Clear Interlocked
(BBCCI)

Procedure SET_INTERLOCKED Branch on Bit Set and Set Interlocked (BBSSI)

Procedure ADD_INTERLOCKED Add Aligned Word Interlocked (ADAWI)

Procedure INSQHI Insert Entry into Queue at Head (INSQHI)

Procedure REMQHI Remove Entry from Queue at Head (REMQHI)

Procedure INSQTI Insert Entry from Queue at Tail (INSQTI)

Procedure REMQTI Remove Entry from Queue at Tail (REMQTI)

The DEC Ada Language Reference Manual specifies and gives the syntax for
these operations. The VAX Architecture Reference Manual and VAX Hardware
Handbook give detailed information on the VAX instructions themselves.

Example 9–2 shows one method of implementing a queue using the interlocked
queue operations. The interlocked queue operations all require quadword
alignment of the queue elements. To satisfy this requirement, you can use
Ada alignment clauses. However, DEC Ada allows some restrictions on the
alignments that you can specify in alignment clauses. In particular, the
maximum alignment for stack-allocated record objects is a longword.

See the DEC Ada Language Reference Manual for more information on the
alignment clauses and the allowed restrictions. See Chapter 1 for additional
information on the use of alignment clauses and for information on how and
where storage for objects is allocated.

Additional Programming Considerations 9–7



Example 9–2 One Use of the Interlocked Queue Operations

package DEFINE_DYN_QUEUE is
type FORWARD_BACKWARD is

record
FORWARD,BACKWARD: INTEGER := 0;

end record;
for FORWARD_BACKWARD use record at mod 8;

FORWARD at 0 range 0..31;
BACKWARD at 4 range 0..31;

end record;
for FORWARD_BACKWARD’SIZE use 64;

type R is
record

FB: FORWARD_BACKWARD;
VALUE: INTEGER;

end record;
for R use

record
FB at 0 range 0..63;

end record;

type H_PTR is access FORWARD_BACKWARD;
type Q_PTR is access R;

end DEFINE_DYN_QUEUE;
------------------------------------------------------------------
with SYSTEM; use SYSTEM;
with DEFINE_DYN_QUEUE; use DEFINE_DYN_QUEUE;
with UNCHECKED_CONVERSION;
procedure DYNAMIC_QUEUE is

--
-- This procedure does nothing more than create an interlocked
-- queue, add entries to the head and tail, and then delete
-- the queue by removing the entries. The queue head and
-- elements are defined as access types (declared in the
-- package DEFINE_DYN_QUEUE). An alternative means of
-- implementing the queue would be to declare a static set of
-- record type elements (instead of access type elements) in
-- the package DEFINE_DYN_QUEUE, and then create or delete the
-- queue.
--

-- Example of a conversion function for converting from
-- addresses to access types (not used in this program).
--
function ADDR_TO_ACCESS_R is

new UNCHECKED_CONVERSION(ADDRESS,Q_PTR);

(continued on next page)

9–8 Additional Programming Considerations



Example 9–2 (Cont.) One Use of the Interlocked Queue Operations

-- Define variables for use with the interlocked queue
-- operations.
--
IN_STATUS: INSQ_STATUS;
REM_STATUS: REMQ_STATUS;
OUT_ADDRESS: ADDRESS;

-- Define queue head and element variables for use in
-- constructing the queue.
--
HEAD: H_PTR := new FORWARD_BACKWARD;
ELEMENT: Q_PTR;

begin

-- Given the head (HEAD), create some elements and insert them
-- at the head (INSQHI) and tail (INSQTI).
--
ELEMENT := new R;
ELEMENT.VALUE := 1;
INSQHI (ITEM => ELEMENT.all’ADDRESS,

HEADER => HEAD.all’ADDRESS,
STATUS => IN_STATUS);

ELEMENT := new R;
ELEMENT.VALUE := 2;
INSQHI (ITEM => ELEMENT.all’ADDRESS,

HEADER => HEAD.all’ADDRESS,
STATUS => IN_STATUS);

ELEMENT := new R;
ELEMENT.VALUE := 3;
INSQTI (ITEM => ELEMENT.all’ADDRESS,

HEADER => HEAD.all’ADDRESS,
STATUS => IN_STATUS);

ELEMENT := new R;
ELEMENT.VALUE := 4;
INSQTI (ITEM => ELEMENT.all’ADDRESS,

HEADER => HEAD.all’ADDRESS,
STATUS => IN_STATUS);

-- Now, remove all the elements from the queue.
--
REMQHI (HEADER => HEAD.all’ADDRESS,

ITEM => OUT_ADDRESS,
STATUS => REM_STATUS);

REMQHI (HEADER => HEAD.all’ADDRESS,
ITEM => OUT_ADDRESS,
STATUS => REM_STATUS);

(continued on next page)

Additional Programming Considerations 9–9



Example 9–2 (Cont.) One Use of the Interlocked Queue Operations

REMQTI (HEADER => HEAD.all’ADDRESS,
ITEM => OUT_ADDRESS,
STATUS => REM_STATUS);

REMQTI (HEADER => HEAD.all’ADDRESS,
ITEM => OUT_ADDRESS,
STATUS => REM_STATUS);

end DYNAMIC_QUEUE;

9.3.2 Unsigned Types in the Package SYSTEM
Unsigned types declared in the package SYSTEM have the following ranges:

UNSIGNED_BYTE 0..255
0..16#FF#

UNSIGNED_WORD 0..65535
0..16#FFFF#

UNSIGNED_LONGWORD –2,147,483,648..2,147,483,647
(–231..231

� 1)
–16#80000000#..16#7FFFFFFF#

The type UNSIGNED_LONGWORD is really a signed type. Its range is MIN_
INT..MAX_INT, not 0..2137483647 (0..16#FFFFFFFF#). The choice of range
and representation for the type SYSTEM.UNSIGNED_LONGWORD is based
on the following constraints:

• OpenVMS system routines often require that unsigned longwords be of an
integer type rather than, for example, an array of BOOLEAN components.

• The Ada language requires that integer types be symmetric about 0.

• The VAX hardware poses difficulties for operations on an integer type
larger than 32 bits.

For example, consider the expected declaration:

type UNSIGNED_LONGWORD is range 0..2**32-1;

According to the Ada language rules, this declaration is equivalent to the
following declarations:

type UNSIGNED_LONGWORD_type is new predefined_integer_type;
subtype UNSIGNED_LONGWORD is UNSIGNED_LONGWORD_type range 0..2**32-1;

9–10 Additional Programming Considerations



Because the Ada language requires that predefined integer types be symmetric
about 0, the predefined type chosen for UNSIGNED_LONGWORD must have
at least the following range:

type predefined_integer_type is range -(2**32)..2**32-1;

This symmetry is required because the language specifies that the predefined
operations on integer types can raise the exception NUMERIC_ERROR or
CONSTRAINT_ERROR only if the result is not a value of the predefined type.
(See Chapter 4 of the DEC Ada Language Reference Manual.) If you were to
declare variables A, B, C, and D to be of the type UNSIGNED_LONGWORD in
the preceding example, then an assignment statement like the following would
raise an exception because it involves intermediate negative calculations (B�

C), which are not values of the predefined type:

A := B - C + D;

If this definition of UNSIGNED_LONGWORD were represented with the
expected representation (0..16#FFFFFFFF#), then operations involving
negative intermediate results would have to account for at least the
value –232

� 1. The need for an extra sign bit would cause UNSIGNED_
LONGWORD operations to be carried out as quadword operations (a
32-bit longword is one bit too small to handle the value –232

� 1).

When the hardware does not support all arithmetic operations on quadwords,
this implementation is inefficient. So the DEC Ada implementation defines
UNSIGNED_LONGWORD as if it were an integer type with the range
–231..231

� 1 and the representation (16#80000000#..16#7FFFFFF#).

A similar analysis applies to SYSTEM.UNSIGNED_WORD although the
inefficiency of the implementation is not as high as for UNSIGNED_WORD
because longword instructions can be used for the operations on the type.
Therefore, the definition of UNSIGNED_WORD is the expected definition
(0..65535).

An alternative to the type SYSTEM.UNSIGNED_LONGWORD is the type
SYSTEM.BIT_ARRAY_32, which is a 32-bit array type with components of the
type STANDARD.BOOLEAN. The package SYSTEM also provides conversion
functions so that you can convert values of the type SYSTEM.UNSIGNED_
LONGWORD to the type SYSTEM.BIT_ARRAY_32 and vice versa.
For example, you can define your unsigned longword variables using
the type SYSTEM.BIT_ARRAY_32 and then convert them to the type
SYSTEM.UNSIGNED_LONGWORD using the function SYSTEM.TO_
UNSIGNED_LONGWORD. For example:

Additional Programming Considerations 9–11



with SYSTEM;
with TEXT_IO; use TEXT_IO;
procedure USE_UNSIGNED_LONGWORD is

package UL_TEXT_IO is new INTEGER_IO(SYSTEM.UNSIGNED_LONGWORD);
use UL_TEXT_IO;

BASE_16: NUMBER_BASE := 16;
OUTPUT: SYSTEM.UNSIGNED_LONGWORD := 0;
VAR1, VAR2, RESULT: SYSTEM.BIT_ARRAY_32;

begin

VAR1 := SYSTEM.BIT_ARRAY_32’(0 .. 2 => TRUE,
30 .. 31 => TRUE,
others => FALSE);

OUTPUT := SYSTEM.TO_UNSIGNED_LONGWORD(VAR1);
PUT(ITEM => OUTPUT,

BASE => BASE_16);
NEW_LINE;

VAR2 := SYSTEM.BIT_ARRAY_32’(0 => TRUE,
others => FALSE);

OUTPUT := SYSTEM.TO_UNSIGNED_LONGWORD(VAR2);
PUT(ITEM => OUTPUT,

BASE => BASE_16);
NEW_LINE;

RESULT := SYSTEM."xor"(VAR1,VAR2);
OUTPUT := SYSTEM.TO_UNSIGNED_LONGWORD(RESULT);
PUT(ITEM => OUTPUT,

BASE => BASE_16);

end USE_UNSIGNED_LONGWORD;

When you are working with SYSTEM.UNSIGNED_LONGWORD, the following
declaration raises the exception CONSTRAINT_ERROR:

X : SYSTEM.UNSIGNED_LONGWORD := 16#80000000#;

Recall that –1 is not a literal. It is an expression consisting of a unary adding
operator followed by a decimal literal. 16#80000000# is the decimal literal
representing 231, which is 1 greater than UNSIGNED_LONGWORD’LAST.
Therefore, CONSTRAINT_ERROR is raised.

If you need to work with ‘‘unsigned’’ numbers with this particular bit pattern
or a pattern similar to it, use negative numbers or the FIRST attribute.

9–12 Additional Programming Considerations



For example, the following declarations and assignments do not raise
CONSTRAINT_ERROR:

with SYSTEM;
procedure TRY_LONGWORD is

A: constant := -16#80000000#;
B: SYSTEM.UNSIGNED_LONGWORD := A;
C: INTEGER := A;

begin
. . .

end TRY_LONGWORD;

9.4 Working with Varying Strings
Because Ada does not have a predefined varying string type, you must use a
record or an access type to declare a varying string in Ada. When working
with varying strings, one of the most common ways to raise the exception
CONSTRAINT_ERROR occurs in the following case:

subtype STRING_SIZE is NATURAL range 0 .. NATURAL’LAST;
type V_STRING (SIZE : STRING_SIZE := 0) is

record
L : STRING_SIZE;
S : STRING(1 .. SIZE);

end record; -- The maximum size of records of this type
-- (NATURAL’LAST + 8) is a number that is greater
-- than the largest value that can be computed
-- in a 32-bit integer (NATURAL’LAST).

X: V_STRING; -- Unconstrained object.

In this case, X is an unconstrained object to which any value of the type V_
STRING can be assigned. For such objects, the Ada language standard permits
an implementation to allocate the maximum size required for any value of
the type at the time the object is elaborated. DEC Ada, in fact, does just this.
When X is elaborated, the compiler tries to allocate space for the largest object
of the type V_STRING. First, the compiler computes the maximum size for
an object of the type. This computation, like any integer computation in DEC
Ada, must not exceed the implementation-defined limit for type INTEGER
(231

� 1 Otherwise, CONSTRAINT_ERROR must be raised. (See Chapter 11
and Appendix F of the DEC Ada Language Reference Manual.)

For the type V_STRING, the component S requires up to 231
� 1 bytes.

The component L requires another 4 bytes, and the discriminant SIZE
requires another 4. So, the run-time computation of the maximum size of X
(231

� 1 + 4 + 4) raises CONSTRAINT_ERROR. Replacing NATURAL’LAST
with NATURAL’LAST � 8 in the definition of STRING_SIZE allows the

Additional Programming Considerations 9–13



maximum size to be computed. The compiler then attempts to allocate the
maximum size (231

� 1), and STORAGE_ERROR is raised.

One possible solution is to declare a subtype, STRING_SIZE, with a more
realistic range, so that neither CONSTRAINT_ERROR nor STORAGE_ERROR
is raised. For example:

subtype STRING_SIZE is NATURAL range 0..256;

Another possibility is to declare the type as follows:

subtype V_STRING_SIZE is NATURAL range 0 .. 256;
type V_STRING is

record
CURRENT_LAST: V_STRING_SIZE;
S: STRING(1 .. V_STRING_SIZE’LAST);

end record;

V: V_STRING;

This formulation is similar to a PL/I varying string. Assignments involve
setting the component that indicates the current end of the string, and then
using slice assignments to set the relevant portions of the text. For example,
the following procedure appends VS2 to VS1:

procedure APPEND (VS1: in out V_STRING; VS2: in V_STRING) is
begin

VS1.S(VS1.CURRENT_LAST+1 .. VS1.CURRENT_LAST+VS2.CURRENT_LAST) :=
VS2.S(1 .. VS2.CURRENT_LAST);

VS1.CURRENT_LAST := VS1.CURRENT_LAST + VS2.CURRENT_LAST;
end;

A third possible solution is to use an intermediate access type. For example:

type ACCESS_STRING is access STRING;
X: ACCESS_STRING;
. . .
X := new STRING’("This can be as long a string as you need!");

9.5 Assigning Array Values
When you assign array values, consider the specific rules about assignments
listed in Chapter 5 of the DEC Ada Language Reference Manual. In particular,
bounds sliding does not occur in the following cases:

• During assignment of a record having array components

• During execution of a return statement

9–14 Additional Programming Considerations



For example, consider the following procedure:

procedure SUBSTR is

S1: constant STRING(1 .. 10) := "1234567890";
S2: STRING(1 .. 5);
type REC is record

INT: INTEGER;
STR: STRING(1 .. 5);

end record;
R1: REC;

begin

S2 := S1(6 .. 10); -- Assignment is ok.
R1 := (555, S1(6 .. 10)); -- Assignment unconditionally raises

-- CONSTRAINT_ERROR if executed.
declare

subtype S_1_TO_5 is STRING(1 .. 5);
function F return S_1_TO_5 is
begin

return S1(6 .. 10); -- Assignment unconditionally raises
-- CONSTRAINT_ERROR if executed.

end F;
begin

null;
end;

end SUBSTR;

In this procedure, the assignment to S2 follows the rules for array assignments
because the variable on the left side is an array variable (see Section 5.2.1 of
the DEC Ada Language Reference Manual):

S2 := S1(6..10);

The expression S1(6..10) is implicitly converted to the subtype of the left side
(STRING(1..5)). Bounds sliding occurs.

Consider the same procedure, rewritten with explicit subtypes to better show
what is happening:

procedure SUBSTR is

subtype S_1_TO_5 is STRING(1 .. 5);
subtype S_6_TO_10 is STRING(6 .. 10);
S1_LAST_PART: constant S_6_TO_10 :=

(6 => ’6’, 7 => ’7’, 8 => ’8’, 9 => ’9’, 10 => ’0’);
S2: S_1_TO_5;

begin

S2 := S_1_TO_5(S1_LAST_PART); -- Array type conversion.

Additional Programming Considerations 9–15



end SUBSTR;

In the assignment to S2 in this example, the bounds of S2 are 1..5, but the
bounds of S1_LAST_PART are 6..10. The array type conversion converts the
bounds of S1_LAST_PART to the bounds of S2. According to Chapter 5 of the
DEC Ada Language Reference Manual, you could also write this assignment as
follows (in which case the compiler would do the same conversion implicitly):

S2 := S1_LAST_PART

In contrast, the array assignment rules in Section 5.2.1 of the DEC Ada
Language Reference Manual do not apply to the assignment to R1 because R1
is not an array variable:

R1 := (555, S1(6..10));

Here, the rules in Section 5.2 of the DEC Ada Language Reference Manual
apply. According to these rules, the value of the expression (S1(6..10)) must
be checked to see if it belongs to the subtype of the variable on the left side
(STRING(1..5)), but no mention is made of implicit subtype conversions. This
assignment raises the exception CONSTRAINT_ERROR because the bounds of
the slice (6..10) do not match the bounds of STR (1..5).

Likewise, the rules for the return statement do not specify that an implicit
subtype conversion should be done. So, the return statement also raises
CONSTRAINT_ERROR:

return S1(6..10);

You can get the desired effect (bounds sliding) by using explicit array type
conversions. The following example rewrites the procedure SUBSTR again,
using type conversions in the return statement and the assignment to R1:

procedure SUBSTR is

S1: STRING(1 .. 10);
subtype S5_SUBTYPE is STRING(1 .. 5);
type REC is record

INT: INTEGER;
STR: S5_SUBTYPE;

end record;
R1: REC;

9–16 Additional Programming Considerations



function F return S5_SUBTYPE is
begin

return S5_SUBTYPE(S1(6 .. 10)); -- Type conversion.
end;

begin

R1 := (555, S5_SUBTYPE(S1(6 .. 10))); -- Type conversion.

end SUBSTR;

9.6 Sharing Memory Between CPUs
Example 9–3 shows how to write a DEC Ada program that shares memory
between two or more DEC Ada programs running on one or more CPUs on a
OpenVMS system.

The program uses OpenVMS global sections to share memory between
processors. It does not use the lock manager for communicating between
processes. The approach used in this example is recommended if there are
fewer processes than CPUs. If there are more processes than CPUs, using the
OpenVMS lock manager may significantly improve performance.

Example 9–3 Sharing Memory Between Two or More Programs Running on
One or More CPUs

--
-- First, declare a package that has a record type
-- (SHARED_OBJECTS_TYPE) for the data that is to be shared.
-- This record type should not have any task or access
-- components.
--
-- You can modify this approach to use a SHARED_OBJECTS_TYPE
-- that could be specified in a pragma SHARED. You would use
-- the same technique to allocate the variable in shared memory.
--
with SYSTEM, STARLET;
package SHARED_MEMORY_DATA_TYPES is

type SHARED_OBJECTS_TYPE is
record

VALUE_AVAILABLE : BOOLEAN;
VALUE : INTEGER;

end record;

(continued on next page)

Additional Programming Considerations 9–17



Example 9–3 (Cont.) Sharing Memory Between Two or More Programs
Running on One or More CPUs

for SHARED_OBJECTS_TYPE use
record

VALUE_AVAILABLE at 0 range 0 .. 7;
VALUE at 4 range 0 .. 31;

end record;

end SHARED_MEMORY_DATA_TYPES;

-- Next, write a procedure that can call the VMS system service
-- SYS$CRMPSC to create memory that is shared between two processes.
-- In this example, a groupwide section is either created (if it
-- did not already exist) or is mapped. The caller is returned two
-- pieces of information:
--
-- o The address of the section (in this process’s address
-- space; it may be at a different address in a different
-- process)
--
-- o A boolean value indicating whether or not this was the
-- creating call to SYS$CRMPSC
--
with SYSTEM;
procedure CREATE_GLOBAL_SECTION(

NAME : STRING;
SIZE : NATURAL;
SECTION_ADDRESS : out SYSTEM.ADDRESS;
CREATED : out BOOLEAN);

with STARLET, CONDITION_HANDLING, LIB;
procedure CREATE_GLOBAL_SECTION(

NAME : STRING;
SIZE : NATURAL;
SECTION_ADDRESS : out SYSTEM.ADDRESS;
CREATED : out BOOLEAN) is

STATUS : CONDITION_HANDLING.COND_VALUE_TYPE;

INADR,
RETADR : STARLET.ADDRESS_RANGE_TYPE :=

(others => SYSTEM.ADDRESS_ZERO);

FAILED_TO_CREATE_SECTION : exception;

MATCH_COND_RESULT : SYSTEM.UNSIGNED_LONGWORD;

(continued on next page)

9–18 Additional Programming Considerations



Example 9–3 (Cont.) Sharing Memory Between Two or More Programs
Running on One or More CPUs

begin
STARLET.CRMPSC (

STATUS => STATUS,
INADR => INADR,
RETADR => RETADR,
FLAGS => SYSTEM.UNSIGNED_LONGWORD(STARLET.SEC_M_GBL +

STARLET.SEC_M_DZRO +
STARLET.SEC_M_EXPREG +
STARLET.SEC_M_WRT +
STARLET.SEC_M_PAGFIL),

GSDNAM => NAME,
PAGCNT => SYSTEM.UNSIGNED_LONGWORD(((SIZE+7)/8+511)/512),

-- W G O S
--DEWR DEWR DEWR DEWR

PROT => STARLET.FILE_PROTECTION_TYPE’(2#0000_0000_1011_0000#));

if not CONDITION_HANDLING.SUCCESS(STATUS) then
raise FAILED_TO_CREATE_SECTION;

end if;

LIB.MATCH_COND(MATCH_COND_RESULT, STATUS, STARLET.SS_CREATED);

SECTION_ADDRESS := RETADR(0);
CREATED := SYSTEM."="(MATCH_COND_RESULT, 1);

end CREATE_GLOBAL_SECTION;

-- Now, write a function that uses the procedure
-- CREATE_GLOBAL_SECTION to place the particular set of objects
-- to be shared into shared memory.
--
-- The call that creates the shared memory initializes the objects.
--
-- This function sets up a race condition: other callers may arrive
-- after the section has been created, but before it is initialized.
-- There are a number of ways to handle this situation. The approach
-- in this example is for the user to start running the programs that
-- use the shared variable only after the first program has created
-- and initialized it.
--
with SYSTEM;
function CREATE_MY_SHARED_OBJECTS return SYSTEM.ADDRESS;

with SHARED_MEMORY_DATA_TYPES, CREATE_GLOBAL_SECTION,
SYSTEM, TEXT_IO;

pragma ELABORATE(CREATE_GLOBAL_SECTION);

(continued on next page)

Additional Programming Considerations 9–19



Example 9–3 (Cont.) Sharing Memory Between Two or More Programs
Running on One or More CPUs

function CREATE_MY_SHARED_OBJECTS return SYSTEM.ADDRESS is
SECTION_ADDRESS : SYSTEM.ADDRESS;
CREATED : BOOLEAN;

begin

CREATE_GLOBAL_SECTION(
"SHARED_MEMORY",
SHARED_MEMORY_DATA_TYPES.SHARED_OBJECTS_TYPE’MACHINE_SIZE,
SECTION_ADDRESS,
CREATED);

if CREATED then

-- Cause the shared variable to be initialized; this should
-- happen only once.
--
declare

SHARED_OBJECTS :
SHARED_MEMORY_DATA_TYPES.SHARED_OBJECTS_TYPE;

for SHARED_OBJECTS use at SECTION_ADDRESS;
pragma VOLATILE(SHARED_OBJECTS);

begin
null;

end;

TEXT_IO.PUT_LINE("Section is created and initialized. " &
"Start other programs now.");

end if;
return SECTION_ADDRESS;

end CREATE_MY_SHARED_OBJECTS;

-- Now, use a piece of clever Ada code to make a widely visible
-- object appear in the area of shared memory.
--
with SYSTEM, UNCHECKED_CONVERSION;
with SHARED_MEMORY_DATA_TYPES, CREATE_MY_SHARED_OBJECTS;
pragma ELABORATE(CREATE_MY_SHARED_OBJECTS);
package SHARED_MEMORY is

type A is access SHARED_MEMORY_DATA_TYPES.SHARED_OBJECTS_TYPE;

(continued on next page)

9–20 Additional Programming Considerations



Example 9–3 (Cont.) Sharing Memory Between Two or More Programs
Running on One or More CPUs

function TO_A is new UNCHECKED_CONVERSION(SYSTEM.ADDRESS, A);

-- Here is the key to this code: by renaming a ’.all’ construct,
-- the code makes an object visible, but ensures that it will not
-- have initialization problems.
--
SHARED_OBJECTS : SHARED_MEMORY_DATA_TYPES.SHARED_OBJECTS_TYPE

renames TO_A(CREATE_MY_SHARED_OBJECTS).all;

-- Provide simple names for the components.
--
VALUE : INTEGER renames SHARED_OBJECTS.VALUE;
VALUE_AVAILABLE : BOOLEAN renames SHARED_OBJECTS.VALUE_AVAILABLE;

-- Provide an interlock. The use of the system service routine
-- SYS$ENQW (enqueue lock request and wait) causes all
-- memory modifications to be flushed through the multiCPU caches
-- and become visible to all participating processes.
--
-- The use of the TASKING_SERVICES version of this routine
-- (TASKING_SERVICES.TASK_ENQW) means that things do not stall
-- for very long, and other tasks within the program can continue
-- while one stalls waiting for the lock.
--
-- The locking shown here does not support multiple simultaneous
-- readers. Extending to that case is straightforward, and does
-- not affect the rest of this example.
--
procedure ACQUIRE;
procedure RELEASE;

FAILED_LOCK_REQUEST : exception;

end SHARED_MEMORY;

with CONDITION_HANDLING, SYSTEM, STARLET, TASKING_SERVICES;
use STARLET, TASKING_SERVICES;
package body SHARED_MEMORY is

STATUS : CONDITION_HANDLING.COND_VALUE_TYPE;
LOCK_STATUS_BLOCK : LOCK_STATUS_BLOCK_TYPE;

procedure ACQUIRE is
begin

TASK_ENQW (STATUS => STATUS,
LKMODE => LCK_K_EXMODE,
LKSB => LOCK_STATUS_BLOCK,
FLAGS => LCK_M_CONVERT);

(continued on next page)

Additional Programming Considerations 9–21



Example 9–3 (Cont.) Sharing Memory Between Two or More Programs
Running on One or More CPUs

if (not CONDITION_HANDLING.SUCCESS(STATUS)) or
(not CONDITION_HANDLING.SUCCESS(LOCK_STATUS_BLOCK.STATUS))

then
raise FAILED_LOCK_REQUEST;

end if;
end;

procedure RELEASE is
begin

TASK_ENQW (STATUS => STATUS,
LKMODE => LCK_K_NLMODE,
LKSB => LOCK_STATUS_BLOCK,
FLAGS => LCK_M_CONVERT);

if (not CONDITION_HANDLING.SUCCESS(STATUS)) or
(not CONDITION_HANDLING.SUCCESS(LOCK_STATUS_BLOCK.STATUS))

then
raise FAILED_LOCK_REQUEST;

end if;
end;

begin
TASK_ENQW (STATUS => STATUS,

LKMODE => STARLET.LCK_K_NLMODE,
LKSB => LOCK_STATUS_BLOCK,
RESNAM => "INTERLOCK");

if (not CONDITION_HANDLING.SUCCESS(STATUS)) or
(not CONDITION_HANDLING.SUCCESS(LOCK_STATUS_BLOCK.STATUS))

then
raise FAILED_LOCK_REQUEST;

end if;

end SHARED_MEMORY;

-- Here is a main program that is going to write values into the
-- shared memory. It waits until each previous value is read by
-- a reader before writing the next value.
--
with SHARED_MEMORY, TEXT_IO;
use SHARED_MEMORY, TEXT_IO;
procedure Z_SHARE_MEMORY_WRITER is
begin

for I in NATURAL loop
loop

ACQUIRE;

(continued on next page)

9–22 Additional Programming Considerations



Example 9–3 (Cont.) Sharing Memory Between Two or More Programs
Running on One or More CPUs

if not VALUE_AVAILABLE then
VALUE_AVAILABLE := TRUE;
VALUE := I;
PUT_LINE("Writing VALUE =" & INTEGER’IMAGE(VALUE));
RELEASE;
exit;

end if;
RELEASE;

end loop;
end loop;

end Z_SHARE_MEMORY_WRITER;

-- Here are two readers (each a main program in itself).
--
with SHARED_MEMORY, TEXT_IO;
use SHARED_MEMORY, TEXT_IO;
procedure Z_SHARE_MEMORY_READER1 is
begin

loop
ACQUIRE;
if VALUE_AVAILABLE then

VALUE_AVAILABLE := FALSE;
PUT_LINE("READER1 VALUE =" & INTEGER’IMAGE(VALUE));

end if;
RELEASE;

end loop;
end Z_SHARE_MEMORY_READER1;

with SHARED_MEMORY, TEXT_IO;
use SHARED_MEMORY, TEXT_IO;
procedure Z_SHARE_MEMORY_READER2 is
begin

loop
ACQUIRE;
if VALUE_AVAILABLE then

VALUE_AVAILABLE := FALSE;
PUT_LINE("READER2 VALUE =" & INTEGER’IMAGE(VALUE));

end if;
RELEASE;

end loop;
end Z_SHARE_MEMORY_READER2;

Additional Programming Considerations 9–23



A
DEC Ada Predefined Instantiations

For convenience, and for the purpose of saving compilation time and object
code space, DEC Ada predefines the instantiations of some commonly used
generic packages. See Table A–1.

Table A–1 Predefined Instantiations of Commonly Used Generic Packages

Unit Name Instantiation of For Type

INTEGER_TEXT_IO TEXT_IO.INTEGER_IO INTEGER

SHORT_INTEGER_TEXT_IO TEXT_IO.INTEGER_IO SHORT_INTEGER

SHORT_SHORT_INTEGER_TEXT_IO TEXT_IO.INTEGER_IO SHORT_SHORT_
INTEGER

FLOAT_TEXT_IO TEXT_IO.FLOAT_IO FLOAT

LONG_FLOAT_TEXT_IO TEXT_IO.FLOAT_IO LONG_FLOAT

LONG_LONG_FLOAT_TEXT_IO1 TEXT_IO.FLOAT_IO LONG_LONG_FLOAT

FLOAT_MATH_LIB MATH_LIB FLOAT

LONG_FLOAT_MATH_LIB MATH_LIB LONG_FLOAT

LONG_LONG_FLOAT_MATH_LIB1 MATH_LIB LONG_LONG_FLOAT

1On VAX systems only.

The representation used for the type LONG_FLOAT in these packages is
G_floating. To use LONG_FLOAT_TEXT_IO and LONG_FLOAT_MATH_LIB,
you must be sure that the G_floating representation for LONG_FLOAT is
in effect for any compilations involving these packages. Note the following
information:

• For the G_floating representation to be available, the value of the pragma
FLOAT_REPRESENTATION must be VAX_FLOAT. This value is the
default on Alpha systems. It is the only value on VAX systems.

DEC Ada Predefined Instantiations A–1



On Alpha systems you can use either the pragma FLOAT_
REPRESENTATION or the ACS SET PRAGMA command to set
this value.

• G_floating is the default whenever you create or reinitialize a
program library or sublibrary and the value of the pragma FLOAT_
REPRESENTATION is VAX_FLOAT.

• You can set the representation for LONG_FLOAT either with the DEC
Ada pragma LONG_FLOAT or with a number of program library manager
commands (ACS SET PRAGMA, ACS CREATE LIBRARY/LONG_FLOAT,
and ACS CREATE SUBLIBRARY/LONG_FLOAT).

• You can determine whether or not G_floating is in effect for a program
library or sublibrary by first making the library the current library (use
the ACS SET LIBRARY command) and then entering an ACS SHOW
PROGRAM or ACS DIRECTORY command.

If you change the representation of the type LONG_FLOAT to D_floating
for your current program library, you need to recompile the instantiations
LONG_FLOAT_TEXT_IO and LONG_FLOAT_MATH_LIB in the context of the
D_floating representation in order to use them. To do this, extract the source
of these packages into the current program library, and compile them using the
DCL ADA command (or ACS LOAD and COMPILE commands). For example:

$ ACS SET PRAGMA/LONG_FLOAT=D_FLOAT
$ ACS EXTRACT SOURCE LONG_FLOAT_TEXT_IO

.

.

.
$ ADA LONG_FLOAT_TEXT_IO

Any change in the setting of the representation for the type LONG_FLOAT
implies a recompilation of the predefined STANDARD environment.

See the DEC Ada Language Reference Manual for more information on the
pragma LONG_FLOAT. See Section 1.1.3.1 of this manual for more information
on the pragma FLOAT_REPRESENTATION. See Developing Ada Programs
on OpenVMS Systems for more information on ACS commands, compiling
Ada programs, and the implied recompilation of the predefined STANDARD
environment.

See Chapter 2 of this manual for information on using the predefined
instantiations for TEXT_IO.INTEGER_IO and TEXT_IO.FLOAT_IO. See
Chapter 5 of this manual for information on using the predefined instantiations
of MATH_LIB.

A–2 DEC Ada Predefined Instantiations



B
Implementation Details Related to

Mixed-Language Programs on OpenVMS
Systems

When writing mixed-language programs, you may need more detailed
information about how parameter-passing mechanisms are implemented. This
appendix contains information on constrainedness bits, the area control block,
and descriptors. See Chapter 4 for general information on mixed-language
programming.

B.1 Constrainedness Bits
For exported subprograms, if a parameter is of a record type that has
discriminants with defaults, the calling routine must pass additional
information in the argument list in certain cases. In other words, if the
formal parameter is unconstrained and has mode in out or out, the calling
routine must provide a constrainedness bit. The constrainedness bit indicates
whether the discriminants of the actual parameter can be changed.

Constrainedness bits are passed by value as an extra 32-bit quantity at the end
of the argument list. A subprogram can have up to 32 formal parameters that
require a constrainedness bit. The bits are allocated in ascending order, bit 0
being used for the first parameter that requires a constrainedness bit, bit 1 for
the second, and so on. For example, in the following fragment, the parameter
X is the first parameter that requires a constrainedness bit; parameter Z is the
second.

type T is (ONE, TWO, THREE);

type R(D: T:=ONE) is
record

case D is
when ONE => null;
when others => E: INTEGER := 10;

end case;
end record;

Implementation Details Related to Mixed-Language Programs on OpenVMS Systems B–1



procedure P(I: INTEGER;
X: in out R;
Y: FLOAT;
Z: out R);

If this procedure is exported and called, the calling routine will need to pass an
extra 32-bit integer or 32-element boolean array parameter that sets bits 0 and
1.

Example B–1 shows how to code a call to an Ada subprogram that requires
constrainedness bits. The code for importing the Ada subprogram is written in
Ada, but could be written in another language.

Example B–1 Calling an Ada Subprogram and Passing Constrainedness
Bits

package ADA_EXPORT is

type R1(D : BOOLEAN) is
record

null;
end record;

for R1 use
record

D at 0 range 0 .. 7;
end record;

for R1’SIZE use 8;

procedure EXPORT_COPY(FROM1, FROM2 : in R1;
TO1, TO2 : out R1);

pragma EXPORT_PROCEDURE(INTERNAL => EXPORT_COPY,
EXTERNAL =>"Copy",
MECHANISM =>(REFERENCE, REFERENCE,

REFERENCE, REFERENCE));

end ADA_EXPORT;

package body ADA_EXPORT is

procedure EXPORT_COPY(FROM1, FROM2 : in R1;
TO1, TO2 : out R1) is

begin
TO1 := FROM1; -- Assignment raises CONSTRAINT_ERROR unless
TO2 := FROM2; -- TO is unconstrained or TO.D = FROM.D.

end;

end ADA_EXPORT;
------------------------------------------------------------

(continued on next page)

B–2 Implementation Details Related to Mixed-Language Programs on OpenVMS Systems



Example B–1 (Cont.) Calling an Ada Subprogram and Passing
Constrainedness Bits

package SOME_IMPORT is
type R2 is

record
D : BOOLEAN;

end record;

for R2 use
record

D at 0 range 0..7;
end record;

for R2’SIZE use 8;

type BOOLEAN_VECTOR_32 is array(1 .. 32) of BOOLEAN;
pragma PACK(BOOLEAN_VECTOR_32);

procedure IMPORT_COPY(FROM1, FROM2 : in R2;
TO1, TO2 : in out R2; -- ’in out’ because

-- TO1.D/TO2.D are read.
IS_CONSTRAINED : BOOLEAN_VECTOR_32);

pragma INTERFACE(ADA, IMPORT_COPY);
pragma IMPORT_PROCEDURE(INTERNAL => Import_Copy,

EXTERNAL =>"Copy",
MECHANISM =>(REFERENCE, REFERENCE,

REFERENCE, REFERENCE,
IS_CONSTRAINED => VALUE));

end SOME_IMPORT;

with SOME_IMPORT; use SOME_IMPORT;
with ADA_EXPORT; use ADA_EXPORT;
procedure CALL_IMPORT is

type E is (FROM1, FROM2, TO1, TO2, CONSTRAINED1, CONSTRAINED2, DO_IT);

B : array(FROM1 .. CONSTRAINED2) of BOOLEAN;

ITEMS : array(FROM1 .. TO2) of R2;

(continued on next page)

Implementation Details Related to Mixed-Language Programs on OpenVMS Systems B–3



Example B–1 (Cont.) Calling an Ada Subprogram and Passing
Constrainedness Bits

begin

IMPORT_COPY(ITEMS(FROM1), ITEMS(FROM2),
ITEMS(TO1), ITEMS(TO2),
BOOLEAN_VECTOR_32’(B(CONSTRAINED1),

B(CONSTRAINED2),
others => FALSE));

end CALL_IMPORT;

B.2 Area Control Block
When exporting a DEC Ada function, note that if the function result is of
an unconstrained array type (including unconstrained string types), or if
the result is of a large unconstrained record type with discriminants, the
calling routine must pass the address of an area control block as the first
argument in the argument list. The area control block is described and shown
in Figure B–1.

In some cases, the area control block may be followed by a descriptor. In such
a case, the calling routine must initialize the area control block. However,
the calling routine does not need to initialize the descriptor (if a descriptor
is involved) or allocate storage for the result. The called function allocates
storage in the appropriate zone and fills in the descriptor that refers to the
result. The calling routine must release the storage for the result after the
storage is used to return the result. The caller is responsible for releasing the
storage for that result after the storage has been used.

B.3 Descriptors
Descriptors describe certain kinds of data uniformly. In DEC Ada, a descriptor
consists of a set of contiguous fields that, in general, contain the following
information:

• The length of the data item

• The data type represented by the descriptor

B–4 Implementation Details Related to Mixed-Language Programs on OpenVMS Systems



Figure B–1 Area Control Block Used in Returning Some Function Results

1. If LENGTH is zero, then no storage has been previously allocated, and POINTER is
    undefined.  The called function allocates storage sufficient for the value to be returned
    using the given ZONE.  LENGTH is then set to the size of the block of the storage
    allocated.

2. If LENGTH is nonzero, then storage has been previously allocated, and POINTER is set
    to the address of that block of storage.  The called function can either reuse the storage

Length (in bytes) of a block of
storage for the function return value.

Address of the block of storage.

LENGTH

POINTER

ZONE

31 0

is to be freed and/or allocated.
Zone in which the block of storage

    guarantees that the storage described by LENGTH and POINTER is sufficient for the
    return value.

Note that a single storage area control block can be used in multiple calls without explicit
freeing between calls.  Also note that by allowing the calling routine to allocate storage 
when it deems appropriate, the overhead of dynamic memory management is avoided.

ZK−3021−GE

4.

If ZONE is zero, then dynamic memory is used.3.

5. Otherwise ZONE is the address of a zone control block.

If ZONE is −1, then there is no zone associated with the storage, and the calling routine

(if it is sufficient), or it can deallocate the storage and allocate new storage (if ZONE
is −1).  (The called routine has the option of doing either if the previously allocated 
storage is sufficient.)

• An integer value (class code), which identifies the format and interpretation
of other fields in the descriptor

• The address of the first byte of the data element described

Implementation Details Related to Mixed-Language Programs on OpenVMS Systems B–5



The descriptors supported by DEC Ada are a subset of the descriptors defined
by the OpenVMS calling standard (see OpenVMS Calling Standard).

Note

If you choose to specify class names when you use the DESCRIPTOR
mechanism in an import or export pragma, you must observe the type
requirements described in Sections Section B.3.1 to Section B.3.7.

You can use any of the descriptor classes listed in Table B–1 for passing
parameters of different data types.

Note

This manual uses the following terms:

• A bit string is any one-dimensional array of a discrete type whose
components occupy successive single bits and are unsigned.

• A bit array is any array whose components are not byte aligned,
yet which is also not a bit string.

• A string is any one-dimensional array of a discrete type whose
components occupy successive, unsigned bytes.

Table B–1 Descriptor Classes Allowed for Passing Ada Parameters

Descriptor
Class Definition

UBS Unaligned bit string

UBSB Unaligned bit string with arbitrary bounds

UBA Unaligned bit array

S String; also imported scalar or access type parameter; not allowed for
exported scalar or access type parameter

(continued on next page)

B–6 Implementation Details Related to Mixed-Language Programs on OpenVMS Systems



Table B–1 (Cont.) Descriptor Classes Allowed for Passing Ada Parameters

Descriptor
Class Definition

SB String with arbitrary bounds

A Contiguous array

NCA1 Noncontiguous array

1Not allowed for parameters of imported routines that are identified by the language ADA in the
pragma INTERFACE or for parameters of exported subprograms.

When descriptors are used to pass parameters or return function results in an
Ada program, the DEC Ada compiler generates the descriptor and supplies the
necessary information. For certain array parameters, the DEC Ada compiler
automatically chooses one of the descriptors in Table B–1.

If you use the DESCRIPTOR mechanism name in an imported or exported
subprogram specification, but omit the class name, the DEC Ada compiler
chooses an appropriate class depending on the Ada parameter type.

The following sections discuss the descriptors supported by DEC Ada. See the
OpenVMS Calling Standard for complete information on these descriptors, as
well as for information on the larger set of OpenVMS descriptors.

B.3.1 UBS Descriptor
The UBS descriptor describes unaligned bit-string data.

When you specify the UBS descriptor class for an imported or exported
subprogram parameter or function result, the DEC Ada formal parameter or
result must have the following type characteristics:

• The base type must be a bit string.

• For imported routines that are identified by the language ADA and for
exported subprograms, the base type must be a bit string whose lower
bound is equal to 1.

• A run-time descriptor check may occur to ensure that the actual array
parameter has no more than 65,535 components. If this check fails, then
CONSTRAINT_ERROR is raised.

Implementation Details Related to Mixed-Language Programs on OpenVMS Systems B–7



B.3.2 UBSB Descriptor
The UBSB descriptor describes unaligned bit-string data, where the string is
viewed as a one-dimensional bit array with user-specified bounds.

When you specify the UBSB descriptor class for an imported or exported
subprogram parameter or function result, the DEC Ada formal parameter or
result must have the following type characteristics:

• The base type must be a bit string.

• A run-time descriptor check may occur to ensure that the actual parameter
or result has no more than 65,535 components. If this check fails, then
CONSTRAINT_ERROR is raised.

B.3.3 UBA Descriptor
The UBA descriptor describes an array of unaligned bit strings.

When you specify the UBA descriptor class for an imported or exported
subprogram parameter or function result, the DEC Ada formal parameter or
result must have the following type characteristics:

• The base type must be an array.

• For imported routines that are identified by the language ADA and for
exported subprograms, the parameter or function result must be a bit
string or a bit array.

• A run-time descriptor check may occur to ensure that the size of each
component of the actual parameter or result requires no more than 65,535
bits. If this check fails, then CONSTRAINT_ERROR is raised.

• You normally use this descriptor when the formal parameter or result array
components are unaligned (the formal parameter or result type has been
declared with pragma PACK). If the array components are byte aligned,
use descriptor class A.

B.3.4 S Descriptor
The S descriptor describes scalar data, access types, address types, and
fixed-length strings.

When you specify the S descriptor class for an imported or exported
subprogram parameter or function result, the DEC Ada formal parameter
or result must have the following type characteristics:

• For an imported subprogram parameter or function result, the base type
must be a scalar, access, or address type, or it must be a one-dimensional

B–8 Implementation Details Related to Mixed-Language Programs on OpenVMS Systems



array of 8-bit unsigned components (for example, a string type or an array
of packed 8-bit components).

• For an exported subprogram parameter or function result, the base
type must be a one-dimensional array of 8-bit unsigned components (for
example, a string type or an array of packed 8-bit components).

• For an imported routine that is identified by the language ADA or for an
exported subprogram, if the base type is an array, the lower bound must be
equal to 1.

• A run-time descriptor check may occur to ensure that the actual array
parameter or result has no more than 65,535 components. If this check
fails, then CONSTRAINT_ERROR is raised.

B.3.5 SB Descriptor
The SB descriptor describes a fixed-length string, where the string is a
one-dimensional array with user-specified bounds.

When you specify the SB descriptor class for an imported or exported
subprogram parameter or function result, the DEC Ada formal parameter
or result must have the following type characteristics:

• For a routine that is not identified by the language ADA in the pragma
INTERFACE, the base type must be a one-dimensional array of unsigned
8-bit components (a DEC Ada string type).

• For a routine that is identified by the language ADA or for an exported
subprogram, the base type must be a one-dimensional array of 8-bit
unsigned components.

• A run-time descriptor check may occur to ensure that the actual array
parameter has no more than 65,535 components. If this check fails, then
CONSTRAINT_ERROR is raised.

B.3.6 A Descriptor
The A descriptor describes contiguous arrays of atomic data types or contiguous
arrays of fixed-length strings.

When you specify the A descriptor class for an imported routine or exported
subprogram parameter or function result, the DEC Ada formal parameter or
result must have the following type characteristics:

• The base type can be any array type except a bit string or bit array type.

Implementation Details Related to Mixed-Language Programs on OpenVMS Systems B–9



• A run-time descriptor check may be performed to ensure that the actual
array parameter or result is byte aligned. If this check fails, then
CONSTRAINT_ERROR is raised. In all other cases, a run-time descriptor
check may be performed to ensure that the component size does not exceed
65,535 bytes. If this check fails, then CONSTRAINT_ERROR is raised.

For a one-dimensional array of unsigned 8-bit components that is not a string
type, the descriptor class A can be used instead of class SB because the class
A descriptor allows more than 65,535 components to be represented. Class A
can be used where it is not known at compile time that there are always fewer
than 65,535 components for all possible values of the type.

B.3.7 NCA Descriptor
The NCA descriptor describes an array where the storage of the array elements
may be allocated with a fixed, nonzero number of bytes separating logically
adjacent elements. The array may be noncontiguous. When you specify the
NCA descriptor class for an imported or exported subprogram parameter
or function result, the DEC Ada formal parameter or result must have the
following type characteristics:

• For imported routines that are not identified by the language ADA in the
pragma INTERFACE, the base type can be any array type except a bit
string or bit array type.

• For imported routines that are identified by the language ADA or for
exported subprograms, the NCA descriptor class is not allowed. In other
words, because DEC Ada never allocates an array of noncontiguous
components, this descriptor class is only provided for cases in which the
imported routine requires the NCA descriptor.

B.3.8 Passing Parameters by Descriptor to Exported Subprograms
When passing parameters by descriptor from an external routine to an
exported Ada subprogram, be sure that the calling routine uses the correct
descriptor class and fills in the descriptor fields in the manner expected by the
Ada subprogram.

To find the correct descriptor class, use the /WARNING=COMPILATION_
NOTES qualifier when you compile the exported Ada subprogram.

When you pass an array using the DSC$K_CLASS_A descriptor for an
unconstrained array formal parameter, be sure that the DSC$V_FL_COEFF
and DSC$V_FL_BOUNDS bits are set in the DSC$B_AFLAGS field.

B–10 Implementation Details Related to Mixed-Language Programs on OpenVMS Systems



When you export an Ada subprogram that would normally receive parameters
passed by descriptor class DSC$K_CLASS_SB, the Ada compiler ensures that
parameters passed by descriptor class DSC$K_CLASS_S are also accepted.
When a DSC$K_CLASS_S descriptor is received by the exported subprogram,
the descriptor bounds are defined as 1 .. N, where N is the length of the string.
The compiler also ensures that DSC$K_CLASS_UBS descriptors are accepted
in place of DSC$K_CLASS_UBSB descriptors, with implicit bounds assumed in
the same way. As a result, a slight performance penalty is imposed on exported
subprograms where such descriptors are involved.

For example, the following exported Ada function takes a string and a
character, and returns the index of the first string component that matches the
character:

function NFIND (STR: STRING;
C : CHARACTER) return INTEGER is

begin

for I in STR’RANGE loop
if STR(I) = C then

return I;
end if;

end loop;

-- If no match, return 0.
--
return 0;

end NFIND;
pragma EXPORT_FUNCTION(NFIND);

The following Fortran routine uses (imports) the Ada function NFIND:

CHARACTER*(12) X
CHARACTER*(1) B
X = ’1234 6789’
B = ’ ’
N = NFIND(X, %REF(B))
TYPE *, B, N
END

In Fortran, string parameters are usually passed by descriptor using the
DSC$K_CLASS_S descriptor. However, the Ada function expects the
string STR parameter to be passed by DSC$K_CLASS_SB descriptor, and
the character C to be passed by reference (the CHARACTER type is an
enumeration type, which is passed by reference by default in DEC Ada).
Because the Ada function is exported, it also accepts the string STR if the
string is passed by DSC$K_CLASS_S descriptor. The %REF mechanism
specifier in the Fortran routine guarantees that B isbe passed by reference.

Implementation Details Related to Mixed-Language Programs on OpenVMS Systems B–11



C
DEC Ada Packages

DEC Ada provides the packages listed in Table C–1. As noted in Table C–1,
this appendix and the DEC Ada Language Reference Manual provide
specifications or parts of the specifications for some of these packages.

You can obtain the complete specifications and, in some cases, the bodies for
any of these packages by using the ACS EXTRACT SOURCE command. For
example, the following command causes the specifications of the packages
STARLET, STANDARD, and TEXT_IO, to be placed in your current default
directory:

$ ACS EXTRACT SOURCE/SPECIFICATION_ONLY STARLET, $STANDARD, TEXT_IO

You must have defined a current program library to execute this command.
The current program library can be either the library ADA$PREDEFINED or
a library into which the predefined units from ADA$PREDEFINED have been
entered. See Developing Ada Programs on OpenVMS Systems or type HELP
ACS EXTRACT SOURCE at the OpenVMS prompt for more information.

Table C–1 DEC Ada Predefined Packages

Package Name1 Description

ASSERT Instantiation of the package ASSERT_GENERIC.
Assumes all of the defaults in the package ASSERT_
GENERIC, including the use of the procedure TEXT_
IO.PUT_LINE to report failures.

ASSERT_EXCEPTIONS Declares all exceptions that can be raised by instantiations
of the package ASSERT_GENERIC.

ASSERT_GENERIC Provides types and operations that allow you to insert and
enable code-checking assertions in your Ada source code.

1Some package specifications appear in the DEC Ada Language Reference Manual and this appendix. All
package specifications are available from the DEC Ada library of predefined units, ADA$PREDEFINED.

(continued on next page)

DEC Ada Packages C–1



Table C–1 (Cont.) DEC Ada Predefined Packages

Package Name1 Description

AUX_IO_EXCEPTIONS Defines the exceptions needed by the DEC Ada relative
and indexed input-output packages.

CALENDAR Provides time-related types and operations.

CDD_TYPES Provides Ada equivalents for CDD/Repository data types;
additional equivalents are in the packages STANDARD
and SYSTEM.

CLI Provides types and operations for calling OpenVMS
Command Language Utility routines.

CONDITION_HANDLING Provides types and operations needed to evaluate the
condition values returned by system routines.

Depends on the package SYSTEM.

CONTROL_C_INTERCEPTION Establishes A DEC Ada Ctrl/C handler when it is
elaborated.

C_TYPES Collection of Ada type definitions and conversion
operations that correspond to familiar types defined by
the C language.

DIRECT_IO Provides types and operations for working with direct files
of uniform-type elements.

DIRECT_MIXED_IO Provides types and operations for working with direct files
of mixed-type elements.

DTK Provides types and operations for calling the OpenVMS
Run-Time Library DTK$ routines.

GET_TASK_INFO Provides information about specific Ada tasks.

INDEXED_IO Provides types and operations for working with indexed
files of uniform-type elements.

INDEXED_MIXED_IO Provides types and operations for working with indexed
files of mixed-type elements.

IO_EXCEPTIONS Defines exceptions needed by all of the input-output
packages.

LBR Provides types and operations for calling the OpenVMS
Librarian Utility routines.

LIB Provides types and operations for calling the OpenVMS
Run-Time Library LIB$ routines.

1Some package specifications appear in the DEC Ada Language Reference Manual and this appendix. All
package specifications are available from the DEC Ada library of predefined units, ADA$PREDEFINED.

(continued on next page)

C–2 DEC Ada Packages



Table C–1 (Cont.) DEC Ada Predefined Packages

Package Name1 Description

MATH_LIB Provides a set of operations and exceptions that
correspond to some of the OpenVMS Run-Time Library
Mathematical Library routines and conditions.

MTH Provides types and operations for calling the OpenVMS
Run-Time Library MTH$ routines.

NCS Provides types and operations for calling the National
Character Set Utility
routines.

OTS Provides types and operations for calling the OpenVMS
Run-Time Library OTS$ routines.

PPL Provides types and operations for calling the OpenVMS
Run-Time Library PPL$ routines.

RELATIVE_IO Provides types and operations for working with relative
files of uniform-type elements.

RELATIVE_MIXED_IO Provides types and operations for working with relative
files of mixed-type elements.

RMS_ASYNCH_OPERATIONS Provides supporting operations for the package TASKING_
SERVICES.

SEQUENTIAL_IO Provides types and operations for working with sequential
files of uniform-type elements.

SEQUENTIAL_MIXED_IO Provides types and operations for working with sequential
files of mixed-type elements.

SMG Provides types and operations for calling the OpenVMS
Run-Time Library SMG$ routines.

SOR Provides types and operations for calling the Sort/Merge
Utility routines.

STANDARD Provides all the predefined types, operations, and
exceptions defined by the language, as well as the
additional DEC Ada types SHORT_INTEGER, SHORT_
SHORT_INTEGER, LONG_INTEGER, LONG_FLOAT,
and LONG_LONG_FLOAT.

STARLET Provides the types, operations, constants, and so on that
you need to call OpenVMS system service and RMS
routines.

1Some package specifications appear in the DEC Ada Language Reference Manual and this appendix. All
package specifications are available from the DEC Ada library of predefined units, ADA$PREDEFINED.

(continued on next page)

DEC Ada Packages C–3



Table C–1 (Cont.) DEC Ada Predefined Packages

Package Name1 Description

STR Provides types and operations for calling the OpenVMS
Run-Time Library STR$ routines.

SYNCHRONIZE_NONREENTRANT_
ACCESS

Provides procedures that let you set up a locking protocol
that prevent problems when you are calling routines that
are not fully reentrant.

SYSTEM Provides implementation-defined types, operations,
constants, and named numbers, some of which are
required by the language standard, and some of which
are provided by DEC Ada.

SYSTEM_RUNTIME_TUNING Provides operations for changing system parameters that
are normally controlled by the DEC Ada run-time library.

TASKING_SERVICES Provides task-synchronous, process-asynchronous forms of
some of the OpenVMS system services.

TEXT_IO Provides types and operations for working with text files.

VAXELN_SERVICES Interfaces for VAXELN routines; useful only with VAXELN
Ada programs.

1Some package specifications appear in the DEC Ada Language Reference Manual and this appendix. All
package specifications are available from the DEC Ada library of predefined units, ADA$PREDEFINED.

C–4 DEC Ada Packages



Index

A
Abort statement, 7–32

asynchronous implementation of, 7–32
synchronous implementation of, 7–32

Access methods
Ada equivalents for OpenVMS, 5–23

Access modes
OpenVMS equivalents for DEC Ada,

5–23
Access types

Ada semantics for passing parameters of,
4–23

allocation of collection for, 1–20
deallocation of storage for, 1–20, 1–46
effect of length representation clauses on

declaration of, 1–20
packing, 1–24
representation of, 1–20
storage size for values of, 1–20
unchecked conversion of, 9–2

ADA$INPUT logical name, 2–9
ADA$OUTPUT logical name, 2–9
ADA$PREDEFINED

extracting predefined package
specifications from, 5–2, C–1

ADA$_EXCCOP condition value
for marking copied signal arguments in an

exception, 3–6
ADA$_EXCCOPLOS condition value

for marking copied and modified signal
arguments in an exception, 3–6

ADA$_EXCEPTION condition value, 3–1,
3–4, 3–6, 3–7, 3–15

Ada semantics
for parameter passing, 4–23

ADDRESS attribute, 9–1
causing locally volatile parameter or

variable, 9–1
effect on storage allocation, 1–45
using to pass Ada subprograms as

parameters, 5–24
Address clauses, 1–22, 1–38

example of use of, 1–40
example of using to make indirect calls,

4–7
using to specify an imported routine, 4–5

ADDRESS type, 1–21, 9–1
Address types

packing, 1–24
representation of, 1–21

Address values
working with, 9–1

ADDRESS_ZERO
as default expression for optional

parameter, 5–12
ADDRESS_ZERO constant, 5–24
A descriptor, B–9
Alignment clauses, 1–36
Area control block, B–4

using to return array type function
results, B–4

using to return record type function
results, B–4

Index–1



Argument list
passed between languages and system

service routines, 5–11
state of optional parameters in calls to

system routines, 5–11, 5–12
Arrays

assigning values to, 9–14
definition of packable components of,

1–23
example of calculating size of, 1–15
example of sorting interactively using

tasks, 7–8
examples of packing, 1–25, 1–26
properties of multidimensional, 1–15

Array types
Ada semantics for passing parameters of,

4–23
default alignment of components in, 1–15
effects of packing components of, 1–24
packing, 1–24
representation of, 1–15
representation of multidimensional, 1–15
storage sizes of, 1–15

ASSERT package, C–1
ASSERT_EXCEPTIONS package, C–1
ASSERT_GENERIC package, C–1
ASTLM (AST Queue Limit) quota

effect of delay statements on, 7–31
AST reentrancy, 7–38
ASTs (Asynchronous System Traps), 7–45,

7–50
constraints on handling, 7–53
delivered to completed or abnormal tasks,

7–53
effect on size of task control block, 7–9
examples of handling, 7–55
execution of in tasks, 7–13
handling from tasks, 7–52
rules for Ada routines, 7–54
storage allocated for, 7–53

AST_ENTRY attribute, 7–51
example of using, 7–56

AST_ENTRY pragma, 7–51
effect on size of task control block, 7–10
example of using, 7–56

AUX_IO_EXCEPTIONS package, 2–84, C–2

B
Binary input-output, 2–38
Blocks

as masters of tasks, 7–2
exception handlers for, 3–2
stack frames for, 3–2

BOOLEAN type
packing, 1–23
representation of, 1–2

Buffers
control of terminal text file, 2–80
flushing of text file, 2–80

Busy waiting, 7–30
avoiding during task call to SYS$SETAST,

7–47
avoiding to avoid AST deadlock, 7–54

C
CALLABLE attribute

value of during task AST handling, 7–53
Callable utilities

writing interfaces to from DEC Ada, 5–19
Call-back routines

and generic code sharing, 8–15
example of writing and calling from DEC

Ada, 5–39
Carriage control

FORTRAN control characters for, 2–83
options for Ada text files, 2–81

Catch-all exception handlers
and fault handlers, 3–27
behavior of, 3–2

CDD (Common Data Dictionary)
DEC Ada translator utility for, 6–2
examples of using with DEC Ada, 6–5

CDD/Repository
equivalent Ada data types for, 6–4
using with DEC Ada, 6–1

CDDL (Common Data Dictionary Language)
DEC Ada equivalent data types for, 6–3

Index–2



CDD_TYPES package, 6–2, C–2
CHARACTER type

representation of, 1–2, 1–24
Checks

method for eliminating run-time, 8–20
suppressing run-time, 3–10

Circular wait
See Task deadlock

C language
default data alignment in, 4–30
default function return mechanisms in,

4–30
default parameter-passing mechanisms in,

4–30
example of passing array parameters to,

4–34, 4–35, 4–36
example of sharing a common data area

with, 4–32, 4–34
example of using floating-point values

with, 4–36, 4–37
mixing Ada code with, 4–30
nonreentrancy of run-time library

routines, 4–32
passing strings to and from, 4–26

CLI package, 5–2, C–2
See also System-routine packages

CLOSE procedure
FORM parameter, 2–10

CMA$E_INSFMEM condition
DEC Ada equivalent for, 3–8

CMA$E_NOSTACKMEM condition
DEC Ada equivalent for, 3–8

CMA$E_STACKOVF condition
DEC Ada equivalent for, 3–8

CMS (DEC/Code Management System)
example of calling a routine from Ada,

5–25
CODE

optional parameter to the pragma
IMPORT_EXCEPTION, 3–13

Code Management System (CMS)
See CMS

Collection
definition of, 1–20

Collections
allocation of for access types, 1–20
deallocation of for access types, 1–20,

1–46
default allocation for, 1–45
effect of length representation clauses on,

1–20
efficient allocation of, 1–45

Common Data Dictionary
See CDD, CDD/Repository

Common storage area
example of sharing with C, 4–32, 4–34
example of sharing with Fortran, 4–38,

4–41
Common storage areas

defining, 4–27
example of, 4–28

COMMON_OBJECT pragma
properties of objects specified with, 4–29

Compilation notes
obtaining, 4–9, 4–10

Complex numbers
example of passing and returning to and

from Fortran programs, 4–42
COMPONENT_ALIGNMENT pragma,

1–22, 1–27
comparison to other representation

features, 1–23
example of interaction with the pragma

PACK, 1–31
example of using, 1–30
using in mixed-language programs, 4–37

Condition codes
See Conditions (OpenVMS)

Condition handlers
calling fault handlers from, 3–27
general DEC Ada, 3–3

Condition handling
See Exception handling

Condition-handling facility
summary of exception-handling

implementation, 3–3

Index–3



Condition-handling facility (OpenVMS)
used to implement exception handling,

3–1
Conditions (OpenVMS)

continuing the signals for from an Ada
program, 3–19

effects of handling from an Ada program,
3–21

equivalent Ada predefined exceptions for,
3–7

examples of calling from an Ada program,
3–16

importing into an Ada program, 3–13
matching Ada exceptions with, 3–7
noncontinuable execution of, 3–22
not caught by Ada exception handlers,

3–22
signaling from an Ada program, 3–16
that match Ada exceptions, 3–8
unhandled, 3–2

Condition values
See also Exceptions, Exception handling
giving to Ada exceptions, 3–14

CONDITION_HANDLING package, 5–2,
C–2

example of using MATCH_COND
function, 5–27

provision of interface to LIB$MATCH_
COND, 5–26

using to signal OpenVMS conditions from
an Ada program, 3–16

using to test status values, 5–26
Constrainedness bits, B–1

example of passing, B–4
CONSTRAINT_ERROR

OpenVMS condition equivalent for, 3–8
CONSTRAINT_ERROR exception

checks that raise, 8–21
OpenVMS condition equivalent for, 3–8
raised when passing parameters, B–7,

B–8, B–9, B–10
raised when using UNSIGNED_

LONGWORD type, 9–12
raised with varying strings, 9–13
underlying run-time checks for, 3–10

CONTINUE command (DCL)
entering after Ctrl/Y in tasking program,

7–33
Control blocks

declarations of types for in the
system-routine packages, 5–8

example of using OpenVMS RMS, 5–35
structure of in the system-routine

packages, 5–8
CONTROL_C_INTERCEPTION package,

7–33, C–2
Copy-in/copy-back semantics, 4–23
CPUs

sharing memory between, 9–17
CPU time

decreasing for a DEC Ada program, 8–19
techniques for reducing, 8–18

CREATE procedure, 2–2, 2–32, 2–33
FILE parameter, 2–5
FORM parameter, 2–3, 2–5
MODE parameter, 2–34
NAME parameter, 2–5

Creation-time attributes
of input-output files, 2–32

Ctrl/C
interception with AST entry, 7–59

Ctrl/Y
interrupting tasks with, 7–32

C_TYPES package, 5–2, C–2
example of using to handle null-

terminated strings, 4–26

D
Data

Ada features for optimizing, 1–22
Data alignment

default C, 4–30
in mixed-language programs, 4–25

Data representation
in mixed-language programs, 4–25

Data structures
OpenVMS, 5–4

Index–4



Deadlock
See Task deadlock

Deallocation
of storage associated with access types,

1–20, 1–46
DEBUG command (DCL)

entering after Ctrl/Y in tasking program,
7–33

DEC/CMS
See CMS

DEC Performance and Coverage Analyzer
See PCA

DECthreads routines
calling from tasks, 7–49

Default parameters
in system routines vs. Ada, 5–11

Delay statement, 7–31
avoiding during task call to SYS$SETAST,

7–46
avoiding to avoid AST deadlock, 7–54
using with abnormal tasks, 7–32

Descriptor classes
allowed for Ada parameters, B–6
explanation of for DEC Ada, B–6

DESCRIPTOR mechanism option
for exported function results, 4–10
for exported subprogram parameters,

4–10
for imported function results, 4–10
for imported subprogram parameters,

4–10
Descriptors, B–4

using to pass parameters to exported Ada
subprograms, B–11

Direct file
definition of, 2–3

Direct files, 2–3
default attributes for, 2–45
specifying record size for, 2–46

DIRECT_IO
default file attributes provided by, 2–46

DIRECT_IO package, 2–1, 2–3, 2–38, C–2

DIRECT_MIXED_IO package, 2–1, 2–3,
2–39, C–2

default file attributes provided by, 2–47
example of using, 2–49

Discriminants
See Record discriminants

Documentation reading path, xv
DSC$K_CLASS_A, B–10
DSC$K_CLASS_S, B–11
DSC$K_CLASS_SB, B–11
DSC$K_CLASS_UBS, B–11
DSC$K_CLASS_UBSB, B–11
DTK package, 5–1, C–2

See also System-routine packages
Dynamic component

definition of, 1–17
Dynamic memory

use of to allocate storage, 1–45
D_floating representation, 1–5, 1–6, 1–7,

1–8, 1–9, 1–10, 1–12
D_FLOAT type

model numbers for, 1–9
representation of, 1–7, 1–8
safe numbers for, 1–10
storage size of, 1–7

E
Edit/FDL Utility

using to optimize external files, 2–17
ELABORATE pragma

using to improve run-time performance,
8–22

Elaboration
order of for programs involving tasks,

7–1
Elapsed time

decreasing in a DEC Ada program, 8–27
techniques for reducing, 8–18

END_ERROR
raised during terminal input-output,

2–68
Enumeration representation clauses, 1–32

See also Representation clauses

Index–5



Enumeration types
declaring signed internal codes for, 1–32
example of representation of, 1–4
examples of using representation clauses

with, 1–32
internal codes for, 1–2
internal codes for literals of, 1–2
packing, 1–24
representation of, 1–2
specifying internal codes for literals of,

1–32
storage allocated for objects of, 1–3

Environment task, 7–1
Equivalence strings

for process-permanent files, 2–9
pairing with logical names, 2–8

Exception handlers
and OpenVMS conditions, 3–21
catch-all, 3–2
DEC Ada run-time, 3–2
general DEC Ada run-time, 3–2
invoking, 3–3
OpenVMS default, 3–2, 3–28
search for, 3–2
unwinding to, 3–2

Exception handling, 3–1
and input-output, 2–84
in non-Ada code, 3–7
making the best use of, 3–9
relationship to OpenVMS condition

handling, 3–1
Exceptions

Ada format, 3–4, 3–5, 3–6, 3–15
and fault handlers, 3–27
associating OpenVMS conditions with,

3–14
avoiding propagation of unhandled, 7–46
avoiding propagation of unhandled to

avoid AST deadlock, 7–54
copying of signal arguments for, 3–4, 3–6,

3–29
effect on text file buffers, 2–80
example of handling in a mixed-language

environment, 3–24, 3–26

Exceptions (cont’d)
example of handling in mixed-language

environment, 3–23
exporting to other languages as OpenVMS

conditions, 3–15
handling in mixed-language programs,

3–11
importing from other languages, 3–11
information lost during signal argument

copying, 3–6
input-output, 2–84
interaction with tasking, 3–27
matching of imported, 3–7
matching of user-defined, 3–7
matching OpenVMS conditions with, 3–7
matching signal arguments of, 3–15
matching system-defined conditions with,

3–8
mechanism argument vectors for, 3–1
naming and encoding, 3–5
noncontinuable execution of, 3–4
OpenVMS condition equivalents for

predefined, 3–7
OpenVMS condition values for predefined,

3–1
OpenVMS condition values for

user-defined, 3–1
OpenVMS format, 3–4, 3–5, 3–6
predefined, 3–4, 3–5, 3–8
propagation of, 3–4, 3–28
raising, 3–1, 3–3
raising at point of task rendezvous, 3–4
raising imported, 3–13
relationship to condition-handling facility,

3–3
re-raising, 3–3, 3–4
signal argument vectors for, 3–1
suppressing checks that raise, 3–10, 3–11
underlying run-time checks for, 3–10
unhandled in tasking programs, 3–2,

3–27
user-defined, 3–4, 3–5, 3–6
using to signal OpenVMS conditions,

3–16
VMS format, 3–15

Index–6



EXISTENCE_ERROR
raised when reading Ada relative files,

2–51
EXIT command (DCL)

entering after Ctrl/Y in tasking program,
7–33

Exit handlers
restrictions on writing in Ada, 7–48

Exported subprograms
controlling the parameter-passing and

function result mechanisms for, 4–9
Exporting objects, 4–27
Exporting subprograms, 4–7
Export pragmas, 4–7

using the MECHANISM option for, 4–10
using the RESULT_MECHANISM option

for, 4–10
EXPORT_EXCEPTION pragma, 3–11, 3–14

and NON_ADA_ERROR exception, 3–15
examples of using, 3–14
using to associate an Ada exception with

an OpenVMS condition, 3–14
using to give user-defined exceptions

OpenVMS format, 3–6
EXPORT_FUNCTION pragma

use of in routine interfaces, 5–22
EXPORT_PROCEDURE pragma

use of in routine interfaces, 5–22
using in a Run-Time Library routine call,

5–39
EXPORT_VALUED_PROCEDURE pragma

default passing mechanism for first
parameter of, 5–23

parameter modes for, 5–22
required mode of first parameter of, 5–23
treatment of first parameter of, 4–24
use of to write call-back routines, 5–22

External files
See also Files
creation- and run-time attributes of, 2–32
default attributes of, 2–33
naming, 2–5
relationship to file objects, 2–3
specifying attributes of, 2–10

External routines
calling Ada subprograms from, 4–7
calling from Ada subprograms, 4–2

Extra parameter method, 4–24

F
FAB (file access block)

record type declared for in the package
STARLET, 5–8

FAO signal arguments
matching of in non-Ada code, 3–15
zeroed during signal argument copying,

3–6
Fault handlers, 3–27

effect of Ada exception handling on, 3–21
method for setting up in DEC Ada, 3–27
restrictions on using in an Ada program,

3–27
FDL (File Definition Language), 2–10

commonly used attributes for Ada files,
2–18, 2–19

effect on performance, 2–31
primary attributes of, 2–11
rules for using, 2–16
secondary attributes of, 2–11
using to give values to FORM parameters,

2–10
using to tune external files, 2–31

FIFO scheduling, 7–18
File objects, 2–2

association with RMS files, 2–3
creating or opening, 2–2

FILE parameter, 2–5
Files

Ada direct, 2–3, 2–10
Ada indexed, 2–4, 2–10
Ada relative, 2–4, 2–10
Ada sequential, 2–3
Ada text, 2–5
buffering text, 2–79
carriage-control attributes for Ada text,

2–81
carriage control of text, 2–80, 2–81

Index–7



Files (cont’d)
changing creation-time attributes of

external, 2–32
commonly used FDL attributes for

external, 2–18
comparative key searching of indexed,

2–55
consistency checking of attributes of

external, 2–33
creation-time attributes of external, 2–32
default attributes for Ada direct, 2–46
default attributes for Ada indexed, 2–54
default attributes for Ada relative, 2–50
default attributes for Ada sequential,

2–43
default attributes for Ada text, 2–64
default attributes for external, 2–33
default characteristics of input-output,

2–3
default logical names for OpenVMS, 2–8
default specifications for, 2–7
defining keys in indexed, 2–4
definition of Ada input-output, 2–3
definition of external, 2–3
equivalence strings for process-permanent,

2–10
example of using mixed-type for

input-output, 2–40, 2–41
example of using uniform-type for

input-output, 2–42
external, 2–2
FDL attributes for tuning external, 2–31
FORTRAN carriage-control characters for

Ada text, 2–83
input-output, 2–2
input-output terminators in, 2–77
keyed access of indexed, 2–55
locking records in, 2–37
logical names for, 2–8
mixed-type, 2–39
naming external, 2–5
optimizing external, 2–17
optimizing performance of, 2–35
process-permanent, 2–9
reading indexed, 2–55

Files (cont’d)
run-time attributes of external, 2–32
sequential access of indexed, 2–55
sharing input-output, 2–34
specifying attributes for external, 2–10
specifying FDL attributes for external,

2–16
specifying key information for indexed,

2–53
specifying record size for Ada direct, 2–46
specifying record size for Ada relative,

2–49
specifying RMS attributes of, 2–10
terminators in Ada text, 2–76
using FORM parameter to control

attributes of external, 2–10
using FORM parameter to control sharing

of, 2–34
writing OpenVMS specifications for, 2–6

File specifications
OpenVMS syntax for, 2–6

File terminator
in Ada text file, 2–76
in an Ada text file, 2–77

FIRST attribute
using to obtain unsigned numbers, 9–12

First-in-first-out scheduling, 7–18
Fixed-point types

accuracy of, 1–13
definition of, 1–13
packing, 1–24
representation of, 1–13
truncation of operations on, 1–14

Floating-point types
accuracy of, 1–8
definition of, 1–5
example of passing to and returning from

C, 4–36, 4–37
how compiler chooses representation of,

1–8
model numbers defined for, 1–9
packing, 1–24
representation of, 1–5, 1–6, 1–7, 1–8
representations and storage sizes for, 1–6
representations chosen for specified digits,

1–8

Index–8



Floating-point types (cont’d)
safe numbers defined for, 1–10

FLOAT type
as parent type for nonpredefined

floating-point type, 1–7
model numbers for, 1–9
representation of, 1–6
safe numbers for, 1–10
storage size of, 1–6

FLOAT_MATH_LIB package, A–1
example of using, 5–18

FLOAT_REPRESENTATION pragma, 1–10
FLOAT_TEXT_IO package, 2–83, A–1
FORM

See also Exceptions, Ada format
See also Exceptions, OpenVMS format
optional parameter to the pragma

IMPORT_EXCEPTION, 3–13
FORM parameter, 2–10, 2–33, 2–34

See also CREATE procedure, OPEN
procedure

association with FDL string or file, 2–10
rules for specifying, 2–11
specifying record locking with, 2–37
using to name an external file, 2–5
using to specify carriage control

attributes, 2–80
Fortran

default function return mechanisms in,
4–38

default parameter-passing mechanisms in,
4–38

example of handling exceptiong
propagated from, 3–24, 3–26

example of handling exceptions
propagated from, 3–24

example of passing and returning complex
numbers to and from, 4–42

example of sharing a common block with
Ada, 4–38, 4–41

exporting an Ada function to, B–11
handling exceptions propagated from,

3–23
mixing with Ada code, 4–37
sharing common blocks with, 4–28

FORTRAN
importing a routine from, 4–14
nonreentrancy of run-time library, 7–39

Frames
definition of Ada vs. OpenVMS, 3–3
distinction between Ada and stack, 3–2
exception handlers for, 3–2

Full reentrancy, 7–39
Function results

Ada conventions for returning, 4–22
area control block for returning array

type, B–4
controlling the return mechanisms for

exported, 4–9
controlling the return mechanisms for

imported, 4–9
for which there are no default return

mechanisms, 4–13, 4–14, 4–17
linkage conventions for DEC Ada, 4–24
passing between Ada and C, 4–30
passing between Ada and Fortran, 4–38
passing exported by descriptor, 4–10
passing exported by reference, 4–10
passing exported by value, 4–10
passing imported by descriptor, 4–10
passing imported by reference, 4–10
passing imported by value, 4–10

Functions
See Subprograms

F_floating representation, 1–5, 1–6, 1–7,
1–8, 1–9, 1–10

F_FLOAT type
model numbers for, 1–9
representation of, 1–7
safe numbers for, 1–10
storage size of, 1–7

G
Garbage collection, 1–20, 1–46
Generic code sharing

benefits of, 8–15
effect on your program, 8–17
maximizing, 8–16
performance of code generated for, 8–16

Index–9



Generic instantiations
creating library packages of, 8–17
predefined, A–1
sharing code for, 8–14
using to improve program efficiency, 8–17

Generics
DEC Ada implementation of, 8–12
inline expansion of bodies of, 8–13
making use of, 8–11
sharing code for, 8–14

Generic subprograms
effects of the pragma INLINE on, 8–9
using the pragma INLINE with

instantiations of, 8–5
GET_ITEM procedure, 2–39
GET_LINE procedure, 2–68
GET_TASK_INFO package, C–2
Global literals

See Symbol definitions
G_floating representation, 1–5, 1–6, 1–7,

1–8, 1–9, 1–10, 1–12
G_FLOAT type

model numbers for, 1–9
representation of, 1–7, 1–8
safe numbers for, 1–10
storage size of, 1–7

H
H_floating representation, 1–5, 1–6, 1–7,

1–8, 1–9, 1–10
H_FLOAT type

model numbers for, 1–9
representation of, 1–7
safe numbers for, 1–10
storage size of, 1–7

I
IEEE double float representation, 1–5, 1–6,

1–7, 1–8, 1–9
IEEE single float representation, 1–5, 1–6,

1–7, 1–8, 1–9, 1–10

IEEE_DOUBLE_FLOAT
safe numbers for, 1–10

IEEE_DOUBLE_FLOAT type
model numbers for, 1–9
representation of, 1–7
storage size of, 1–7

IEEE_FLOAT type
representation of, 1–8

IEEE_SINGLE_FLOAT type
model numbers for, 1–9
representation of, 1–7
safe numbers for, 1–10
storage size of, 1–7

Imported routines
controlling the parameter-passing and

function result mechanisms for, 4–9
parameters for which there are no default

passing mechanisms, 4–14
Importing exceptions, 3–11
Importing objects, 4–27
Importing routines

written in C, 4–30
Importing subprograms, 4–2
Import pragmas, 4–2

See also individual pragmas by name
using in routine interfaces, 5–19
using the MECHANISM option for, 4–10
using the RESULT_MECHANISM option

for, 4–10
using to write system- and utility-routine

interfaces, 5–2
IMPORT_EXCEPTION pragma, 3–11

and NON_ADA_ERROR exception, 3–15
examples of using, 3–13
using to associate an Ada exception with

an OpenVMS condition, 3–14
using to give user-defined exceptions

OpenVMS format, 3–6
IMPORT_FUNCTION pragma

use of in routine interfaces, 5–22
IMPORT_PROCEDURE pragma

use of in routine interfaces, 5–22
IMPORT_VALUED_PROCEDURE pragma

parameter modes for, 5–22
required mode of first parameter of, 5–23

Index–10



IMPORT_VALUED_PROCEDURE pragma
(cont’d)

treatment of first parameter of, 4–24
use of in routine interfaces, 5–22
using to call SYS$TRNLNM system

service, 5–45
IMPORT_VALUE function, 5–25

example of using, 5–47
Indexed files, 2–4

default attributes for, 2–53
specifying key information for, 2–53

INDEXED_IO package, 2–1, 2–4, 2–38, C–2
default file attributes provided by, 2–54
example of using, 2–60

INDEXED_MIXED_IO package, 2–1, 2–4,
2–39, C–2

default file attributes provided by, 2–55
example of using, 2–63

Inlinable
definition of, 8–4

Inline expansion
of generic bodies, 8–12
of subprograms, 8–2

INLINE pragma, 8–2
and dependences on generic bodies, 8–5
examples of, 8–6
explicit use of, 8–3
implicit use of, 8–6
using to improve run-time performance,

8–22
INLINE_GENERIC pragma, 8–11, 8–12

comparison with the pragma SHARE_
GENERIC, 8–12

effect on compilation unit dependences,
8–13

examples of, 8–13
Input

nonterminal, 2–79
terminal, 2–79

Input-output, 2–1
See also Files
and exception handling, 2–84
and task wait states, 2–85
avoiding during task call to SYS$SETAST,

7–46

Input-output (cont’d)
avoiding to prevent AST deadlock, 7–54
binary, 2–38
buffering text, 2–79
carriage control in text, 2–80
direct, 2–45
example of using tasks with, 7–2
flushing of buffers at program exit, 7–48
improving, 8–27, 8–28
indexed, 2–53
interaction of with tasking, 2–85
predefined packages for, 2–1
relative, 2–49
sequential, 2–42
synchronization of operations for, 2–85
terminal, 2–66, 2–69, 2–71, 2–73
text, 2–63

Input-output packages, 2–1
Instantiations

See Generic instantiations
INTEGER type

range of values for, 1–5
representation of, 1–4
storage size of, 1–5

Integer types
declaring unsigned, 1–30
packing, 1–24
range of values for predefined, 1–5
representation of, 1–4
required symmetry of, 9–10

INTEGER_TEXT_IO package, 2–83, A–1
INTERFACE pragma

using in routine interfaces, 5–19, 5–22
Interfaces (routine)

access methods for parameters in, 5–23
default and optional parameters in, 5–24
determining kind of subprogram for,

5–22
determining parameter types for, 5–3
parameter passing mechanisms for, 5–24
writing in DEC Ada, 5–19, 5–20

INTERFACE_NAME pragma
use of in routine interfaces, 5–22

Index–11



Interlocked instructions, 1–37
predefined in the package SYSTEM, 9–6

Interlocked queue instructions
example of using, 9–7, 9–10
operations in the package SYSTEM for,

9–6
IO_EXCEPTIONS package, 2–84, C–2

exceptions predefined in, 3–5

L
LBR package, 5–2, C–2

See also System-routine packages
Length representation clause

effect on collections allocated for access
types, 1–20

effect on fixed-point types, 1–13, 1–30
Length representation clauses, 1–30

See also Representation clauses
effect of on first named subtypes, 1–4
efficient use of, 1–45

LIB$FILE_SCAN routine
example of calling from Ada, 5–39

LIB$FILE_SCAN_END routine
example of calling from Ada, 5–39

LIB$MATCH_COND routine
interface for in the package CONDITION_

HANDLING, 5–26
provided in CONDITION_HANDLING

package, 5–2
LIB$SIGNAL routine

provided in CONDITION_HANDLING
package, 5–2

use of to implement the raising of
exceptions, 3–3

using to signal OpenVMS conditions from
an Ada program, 3–16

LIB$STOP routine
provided in CONDITION_HANDLING

package, 5–2
used in exception handling, 3–1
use of to implement the raising of

exceptions, 3–3, 3–4
using to signal OpenVMS conditions from

an Ada program, 3–16

LIB package, 5–1, C–2
See also System-routine packages
example of using to call LIB$FILE_SCAN

and LIB$FILE_SCAN_END routines,
5–39

Library packages
DEC Ada predefined, 8–18, C–1
extracting specifications for DEC Ada

predefined, 5–2, C–1
Line terminator

in Ada text file, 2–76
in an Ada text file, 2–77

Linkage conventions, 4–24
LOCK_ERROR

raised on access to a locked record, 2–37
Logical names, 2–8

equivalence strings for default, 2–10
OpenVMS tables for, 2–8
predefined, 2–8
using to denote file specifications, 2–8

LONG_FLOAT
safe numbers for, 1–10

LONG_FLOAT pragma, 1–12
effect on nonpredefined floating-point

types, 1–7
using ACS commands to change the value

of, 1–13
LONG_FLOAT type

as parent type for nonpredefined
floating-point type, 1–7

model numbers for, 1–9
representation of, 1–6
safe numbers for, 1–10
storage size of, 1–6

LONG_FLOAT_MATH_LIB package, A–1
LONG_FLOAT_TEXT_IO package, 2–83,

A–1
LONG_INTEGER type

range of values fr, 1–5
representation of, 1–4
storage size of, 1–5

LONG_LONG_FLOAT
safe numbers for, 1–10

Index–12



LONG_LONG_FLOAT type
as parent type for nonpredefined

floating-point type, 1–7, 1–8
model numbers for, 1–9
representation of, 1–6
storage size of, 1–6

LONG_LONG_FLOAT_MATH_LIB package,
A–1

LONG_LONG_FLOAT_TEXT_IO package,
2–83, A–1

Loop parameters
effect of length representation clauses on,

1–4
Low-level features

using, 9–6

M
MACHINE_SIZE attribute

comparison with SIZE attribute, 1–41
results of for types, 1–42, 1–43
using with types, 1–41

Main program
See also Main task
as environment task, 7–1
execution of, 7–1
termination of, 7–2

Main task, 7–1
See also Task stack
controlling size of stack for, 7–16
increasing and decreasing the top guard

stack area of, 7–16
increasing and decreasing the working

storage area of, 7–16
program region for allocating task stack

for, 7–16
size of task control block for, 7–10

MAIN_STORAGE pragma
effect on program region for task stacks,

7–12
to control size and allocation of main task

stack, 7–16
using to control size and allocation of

main task stack, 7–14

Math routines
calling from an Ada program, 5–17
example of importing from OpenVMS

Run-Time Library, 3–13
MATH_LIB package, 5–1, 5–17, C–3

predefined instantiations of operations in,
8–18

Mechanism arguments
in raising exceptions, 3–1

MECHANISM option, 4–10
DESCRIPTOR, 4–10
REFERENCE, 4–10
VALUE, 4–10

Memory
sharing between CPUs, 9–17

Mixed-language programming, 4–1
and data representation, 4–25
conventions for passing data in, 4–22
example of handling exceptions in, 3–23
examples of, 4–4
exception handling in, 3–11, 3–21
implementation details related to, B–1
with tasks, 7–39

Model numbers
defined for each floating-point type, 1–9

MODE parameter, 2–34
MTH$_UNDEXP condition

DEC Ada equivalent for, 3–8
MTH package, 5–1, 5–18, C–3

See also System-routine packages

N
NAM (name block)

record type declared for in the package
STARLET, 5–8

NAME parameter, 2–5
NCA descriptor, B–10
NCS package, 5–2

See also System-routine packages
NEW_LINE, 2–78, 2–79
NEW_PAGE, 2–78, 2–79
Non-Ada routines

sharing storage with, 4–25

Index–13



Nonreentrancy
example of, 7–40
example of handling, 7–43
of C run-time library routines, 4–32

NON_ADA_ERROR
as match for imported OpenVMS

conditions, 3–7
encoding of, 3–15

NON_ADA_ERROR exception, 3–15
NULL_PARAMETER attribute, 5–12, 5–17,

5–24
example of use in the package STARLET,

5–13

O
Object

definition of an, 1–1
Objects

aligning components of record, 1–36
allocation of storage for, 1–45
controlling stack sizes of task, 7–14
control over representation and storage of,

1–1
declaring for mixed-language

programming, 1–37
determining size of, 1–40
dynamic allocation of, 1–45
effect of lifetimes on storage allocation,

1–45
exporting, 4–27
how the compiler represents and stores,

1–1
importing, 4–27
initialization of, 1–38
loop parameter, 1–4
overlaying onto storage locations using

address clauses, 1–39
passing to non-Ada routines, 1–33
relationship to types, 1–1
representation and storage of, 1–1
representation and storage of integer,

1–4
representation of, 1–2
representation of address, 1–21

Objects (cont’d)
representation of array, 1–15
representation of fixed-point, 1–13
representation of floating-point, 1–5
representation of record, 1–16
representation of task, 1–21
results of size attributes for, 1–43
sharing common storage areas among,

4–27
sharing storage of with non-Ada code,

4–25
size and representation of those

designated by access types, 1–20
stack allocation of, 1–45
static allocation of, 1–45
storage allocated for enumeration, 1–3
storage sizes of array, 1–15
task, 7–1, 7–2
using SIZE attribute with, 1–41

OPEN procedure, 2–2, 2–32, 2–33
FILE parameter, 2–5
FORM parameter, 2–3, 2–5, 2–10, 2–34
MODE parameter, 2–34
NAME parameter, 2–5

OpenVMS access methods
equivalents for, 5–23

OpenVMS calling standard
conformance of Run-Time Library routines

to, 5–11
conformance of system services to, 5–11

OpenVMS conditions
effects of handling from an Ada program,

3–21
signaling from an Ada program, 3–16

OpenVMS data structures, 5–4
OpenVMS data types

DEC Ada equivalents for, 4–17
OpenVMS routine examples, 5–28
OpenVMS Run-Time Library routines

See also System-routine packages,
individual packages by name,
Interfaces (routine)

calling from an Ada program, 5–1
calling from tasks, 7–12

Index–14



OpenVMS Run-Time Library routines
(cont’d)

calling mathematical from DEC Ada,
5–17

example of calling, 5–39
testing condition values returned by,

5–26
OpenVMS system services

See also System-routine packages,
STARLET package, Interfaces
(routine)

calling asynchronous, 5–17
calling asynchronous from tasks, 7–45
calling from an Ada program, 5–1
calling from tasks, 7–12
calling from the package STARLET, 5–13
example of calling using the package

STARLET, 5–30, 5–33
example of item-list structure in call to,

5–30, 5–33
examples of calls to from the package

STARLET, 5–13
testing condition values returned by,

5–26
Operators

inline expansion of implicit declarations
of, 8–4

Optimizations, 8–1
suppressing, 9–1

/OPTIMIZE qualifier (compilation commands)
effect on generics, 8–11

Optional parameters
in system routines vs. Ada, 5–11

OTS package, 5–1, C–3
See also System-routine packages

Output
nonterminal, 2–79
terminal, 2–79

P
Packable types, 1–24
Packages

as masters of tasks, 7–2

Packages (cont’d)
extracting specifications of DEC Ada

predefined, 5–2, C–1
summary of DEC Ada predefined, C–1
using the DEC Ada system-routine, 5–3

PACK pragma, 1–22, 1–23
comparison to other representation

features, 1–22
effect on CHARACTER type, 1–24
example of interaction with the pragma

COMPONENT_ALIGNMENT, 1–31
using to change default array

representations, 1–15
Page terminator

in Ada text file, 2–76
in an Ada text file, 2–77

Paging
controlling, 8–27

Parameter passing
Ada semantics for, 4–23
between languages and OpenVMS system

service routines, 5–11
in OpenVMS system routines, 5–7
mechanisms for in system routines, 5–24
of subprograms in system routines, 5–24

Parameters
access methods for system or utility

routines, 5–23
Ada conventions for passing, 4–22
Ada semantics for passing, 4–23
controlling the passing mechanisms for

exported subprogram, 4–9
controlling the passing mechanisms for

imported routine, 4–9
default and optional in system routines,

5–11
default and optional to callable routines,

5–24
default in DEC Ada, 4–9, 5–11
default mechanisms for imported routine,

4–2
determining mechanisms for passing,

4–2, 4–9, 4–10
determining types for in routine

interfaces, 5–3

Index–15



Parameters (cont’d)
example of passing array to C, 4–34,

4–35, 4–36
for which there are no default passing

mechanisms, 4–14, 4–16
linkage conventions for DEC Ada, 4–24
mechanisms for passing OpenVMS data

type, 4–17
modes of for imported or exported

subprograms, 5–22
optional in DEC Ada, 4–9
optional in system and Run-Time Library

routines, 5–11
passing Ada subprograms to system

routines, 5–24
passing between Ada and C, 4–30
passing between Ada and Fortran, 4–38
passing by descriptor to exported

subprograms, B–10, B–11
passing exported by descriptor, 4–10
passing exported by reference, 4–10
passing exported by value, 4–10
passing imported by descriptor, 4–10
passing imported by reference, 4–10
passing imported by value, 4–10
passing mechanisms for, 4–12
passing mechanisms for OpenVMS system

routines, 5–7
passing to system or utility routines,

5–24
required modes for in imported and

exported subprograms, 5–23
Passive tasks, 7–21

improving performance with, 7–21
Path name

CDD, 6–2
PCA

using to improve performance, 8–19
Performance

See also Run-Time performance
improving CPU, 8–18
improving run-time, 8–1

Performance and Coverage Analyzer
See PCA

PPL package, 5–1, C–3
See also System-routine packages

Pragmas
using to control object representation and

storage, 1–1
Predefined exceptions, 3–5
Predefined floating-point types, 1–6
Predefined instantiations, A–1
Predefined integer types, 1–4
Predefined packages

See also Packages, individual packages by
name

PRIORITY pragma
for controlling task scheduling, 7–19
for setting task priorities, 7–19
using to overcome busy waiting, 7–30

Private types
example of portable technique for reading

and writing, 9–6
Procedures

See Subprograms
Process-permanent files

equivalence strings for, 2–10
Program sections

definition of PROPERTIES, 4–30
establishing with COMMON_OBJECT

pragma, 4–29
PROGRAM_ERROR exception

underlying run-time checks for, 3–10
PUT_ITEM procedure, 2–39
PUT_LINE procedure, 2–79

Q
Queue instructions, 1–37

R
RAB (record access block)

record type declared for in the package
STARLET, 5–8

Record discriminants
effect on size of record objects, 1–17
representation of in record layout, 1–16

Index–16



Record representation clauses, 1–33
See also Alignment clauses
See also Representation clauses
effect on the laying out of records in

storage, 1–16
example of use of, 1–33
using to conserve space, 1–34
using to force efficient storage of records,

1–35
Records

biasing of component values of, 1–36
definition of packable components of,

1–23
dynamic components in, 1–17
efficient storage of, 1–35
examples of aligning components of, 1–37
examples of discriminants in, 1–16
examples of using representation clauses

with, 1–33
examples of variant, 1–17
how the compiler lays out, 1–16
locking RMS, 2–37

Record types
Ada semantics for passing parameters of,

4–23
aligning components of, 1–36
effects of packing components of, 1–24
packing, 1–24
representation clauses with, 1–16, 1–33
representation of, 1–16
size of, 1–18
using representation clauses to force

efficient storage of, 1–35
Record variants

effect of the pragma PACK on, 1–26
representation clauses with, 1–34
representation of in record layouts, 1–17

Recursive reentrancy, 7–38
Reentrancy

avoiding nonreentrancy, 7–41
example of, 7–41
in mixed-language programs, 4–32
in mixed-language tasking programs,

7–39

REFERENCE mechanism option
for exported function results, 4–10
for exported subprogram parameters,

4–10
for imported function results, 4–10
for imported subprogram parameters,

4–10
Reference semantics, 4–23
Registers

operations in the package SYSTEM for,
9–6

used to allocate object storage, 1–45
used to return function results, 4–24

Relative files, 2–4
default attrbutes for, 2–49
example of using, 2–36
specifying record size for, 2–49

RELATIVE_IO package, 2–1, 2–4, C–3
default attributes provided by, 2–50
example of using, 2–53

RELATIVE_MIXED_IO package, 2–1, 2–4,
2–39, C–3

default file attributes provided by, 2–51
Rendezvous, 7–2

during AST handling, 7–52
tentative, 7–31

Representation clauses, 1–22
comparison to other representation

features, 1–23
enumeration, 1–32
length, 1–30
record, 1–33
specifying alignment with, 1–36
use of to control object representation and

storage, 1–1
Representation pragmas, 1–22
RESULT_MECHANISM option, 4–10

DESCRIPTOR, 4–10
REFERENCE, 4–10
VALUE, 4–10

RMS (Record Management Services)
See also System-routine packages,

STARLET package, Interfaces
(routine)

calling from an Ada program, 5–1

Index–17



RMS (Record Management Services) (cont’d)
calling from the package STARLET, 5–13
example of calls to from the package

STARLET, 5–16
example of using control blocks, 5–35
STARLET type declarations for, 5–8
testing condition values returned by,

5–26
RMS services

calling asynchronous from tasks, 7–45
RMS_ASYNCH_OPERATIONS package,

C–3
Round-robin scheduling, 7–18
Run-time attributes

of input-output files, 2–32
Run-Time Library routines

See OpenVMS Run-Time Library routines
Run-time performance

controlling paging to improve, 8–27
eliminating checks to improve, 8–20
improving, 8–1
improving by reducing CPU and elapsed

time, 8–18
overlapping execution to improve, 8–28
reducing subprogram call costs to improve,

8–22
using generics to improve, 8–11
using scalar types and simple operations

to improve, 8–24
using shared generics to improve, 8–16

S
Safe numbers

defined for each floating-point type, 1–10
SB descriptor, B–9
Scalar types

Ada semantics for passing parameters of,
4–23

using to improve run-time performance,
8–24

Scale factor
for fixed-point types, 1–13

S descriptor, B–8
Sequential file

definition of, 2–3
Sequential files, 2–3

default attributes for, 2–42
SEQUENTIAL_IO package, 2–1, 2–3, 2–38,

C–3
default file attributes provided by, 2–43
example of using, 2–44, 2–45

SEQUENTIAL_MIXED_IO package, 2–1,
2–3, 2–39, C–3

default file attributes provided by, 2–44
Serial reentrancy, 7–38
Shared memory

example of between CPUs, 9–17, 9–23
SHARED pragma, 7–34, 7–35

comparison with the pragma VOLATILE,
7–36

effect of, 7–35
Shared variables

in tasking program, 7–34
SHARE_GENERIC pragma, 8–11, 8–14

comparison with the pragma INLINE_
GENERIC, 8–12

examples of using, 8–14
Sharing data

in mixed-language programs, 4–25, 4–27
Sharing objects, 4–27
SHORT_INTEGER type

range of values for, 1–5
representation of, 1–4
storage size of, 1–5

SHORT_INTEGER_TEXT_IO package,
2–83, A–1

SHORT_SHORT_INTEGER type
range of values for, 1–5
representation of, 1–4
storage size of, 1–5

SHORT_SHORT_INTEGER_TEXT_IO
package, 2–83, A–1

Signal arguments
copying of during exception handling,

3–6, 3–29
information lost during exception

handling, 3–6

Index–18



Signal arguments (cont’d)
in raising exceptions, 3–1
matching in mixed-language exception

handling, 3–15
SIZE attribute

comparison of results of for types and
objects, 1–42, 1–43

comparison with MACHINE_SIZE
attribute, 1–41

using to determine the size of objects and
types, 1–40

SKIP_LINE procedure, 2–68
SMG package, 5–1, C–3

See also System-routine packages
example of using, 5–42

SOR package, 5–2, C–3
See also System-routine packages

SS$_ACCVIO violation
occurrence of in mixed-language tasking

programs, 7–17
occurrence of in tasking programs, 7–12

SS$_DEBUG condition
and Ada exception handlers, 3–22

SS$_FLTDIV condition
DEC Ada equivalent for, 3–8

SS$_FLTDIV_F condition
DEC Ada equivalent for, 3–8

SS$_FLTOVF condition
DEC Ada equivalent for, 3–8

SS$_FLTOVF_F condition
DEC Ada equivalent for, 3–8

SS$_HPARITH condition
DEC Ada equivalent for, 3–8

SS$_INTDIV condition
DEC Ada equivalent for, 3–8

SS$_INTOVF condition
DEC Ada equivalent for, 3–8

SS$_RANGEERR condition
DEC Ada equivalent for, 3–8

SS$_UNWIND condition
and Ada exception handlers, 3–22

STANDARD package, C–3
exceptions predefined in, 3–5
recompilation of with the pragma

LONG_FLOAT, 1–12

STARLET package, 5–1, 7–44, C–3
See also System-routine packages
example of using OpenVMS RMS control

blocks from, 5–35
example of using to call SYS$GETQUI

system service, 5–33
example of using to call SYS$TRNLNM

system service, 5–30
obtaining specifications for types and

operations in, 5–2
severity codes provided in, 5–26
type declarations in for OpenVMS RMS

control blocks, 5–8
use of the pragma IMPORT_VALUED_

PROCEDURE in, 5–22
use of underscores in routine names in,

5–7
Static memory

use of to allocate storage, 1–45
Status values

constants defined in the package
STARLET, 5–26

STOP command (DCL)
entering after Ctrl/Y in tasking program,

7–33
Storage

controlling for programs with tasks, 7–10
sharing with non-Ada routines, 4–25

Storage allocation, 1–44, 1–45
effect of ADDRESS attribute on, 1–45
for tasks, 7–11
improving efficiency of, 1–45

Storage deallocation, 1–44, 1–46
for tasks, 7–11

STORAGE_ERROR exception
not being raised in mixed-language

programs, 7–17
raising of for task stack overflow, 7–13,

7–17
raising of in tasking programs, 7–10
underlying run-time checks for, 3–10

STORAGE_SIZE attribute
application of to tasks, 7–15
using to control size and allocation of task

stacks, 7–14

Index–19



Strings
working with varying, 9–13

STRING type
packability of, 1–24

String types
parameters of in mixed-language

programs, 4–26
STR package, 5–1

See also System-routine packages
Subprograms

Ada semantics for calling, 4–24
as masters of tasks, 7–2
calling Ada from external routines, 4–7
calling external routines from Ada, 4–2
calling from non-Ada AST service

routines, 7–53
controlling the parameter-passing

mechanisms for exported, 4–9
controlling the parameter-passing

mechanisms for imported, 4–9
DEC Ada linkage conventions for calls to,

4–24
default mechanisms for imported, 4–2
effect of implicit inline expansion on, 8–6
effect of the pragma INLINE on library,

8–8
effects of the pragma INLINE on generic,

8–9
examples of inline expansion of, 8–6
explicit inline expansion of, 8–4
implicit inline expansion of, 8–6
inline expansion of, 8–2
inline expansion of calls to, 8–3
inline expansion of derived, 8–4
inline expansion of generic instantiations

of, 8–5
inline expansion of specifications and

bodies, 8–6, 8–7
passing as parameters to system routines,

5–24
reducing costs for calls of, 8–22
use of in routine interfaces, 5–22

SUPPRESS pragma
using to suppress run-time checks, 3–10

SUPPRESS_ALL pragma
example of using, 3–12
using to suppress run-time checks, 3–10,

8–20
Symbol definitions

obtaining, 5–25
SYNCHRONIZE_NONREENTRANT_

ACCESS package, C–4
SYS$ASSIGN system service

example of specification and calls to,
5–13

SYS$COMMAND logical name, 2–8
equivalence strings for, 2–10
representing process-permanent file, 2–9

SYS$CRMPSC system service
example of using, 5–35

SYS$DCLEXH system service
calling from tasks, 7–48

SYS$DEQ system service
example of specification and calls to,

5–14
SYS$DISK logical name, 2–8
SYS$ERROR logical name, 2–8

equivalence strings for, 2–10
output file for error messages, 3–2
representing process-permanent file, 2–9

SYS$EXIT system service
avoiding calls to from tasks, 7–47
example of in tasking program, 7–48

SYS$GETJPIW
example of handling status values from,

3–18, 3–21
SYS$GETQUI system service

calling using the package STARLET,
5–33

SYS$HIBER system service
avoiding calls to from tasks, 7–47

SYS$INPUT logical name, 2–8
equivalence strings for, 2–10
representing process-permanent file, 2–9

SYS$LOGIN logical name, 2–8
SYS$NET logical name, 2–9
SYS$OPEN RMS routine

example of calling, 5–35

Index–20



SYS$OUTPUT logical name, 2–9
equivalence strings for, 2–10
output file for error messages, 3–2
representing process-permanent file, 2–9

SYS$SCRATCH logical name, 2–9
SYS$SETAST system service, 7–46
SYS$SETIMR routine

use of to implement delay statements,
7–31

SYS$TRNLNM
example of Ada routine interface for,

5–20
SYS$TRNLNM system service

calling using the package STARLET,
5–30

example of calling using the pragma
IMPORT_VALUED_PROCEDURE,
5–45

SYS$UNWIND system service
use of to invoke an exception handler,

3–3
SYS$WRITE RMS routine

example of specification and calls to,
5–16

SYSTEM package, 5–1, C–4
equivalents for VAX instructions, 9–6
exceptions predefined in, 3–5
NON_ADA_ERROR in, 3–7
type ADDRESS in, 1–21, 9–1
unsigned types in, 9–10
using types and operations declared in,

9–6
System-routine packages

See also individual packages by name
default and optional parameters in, 5–11
examples of using, 5–28
naming conventions in, 5–7
obtaining specifications for, 5–2, C–1
parameter-passing mechanisms in, 5–7
parameter types used in, 5–3
provision of initialization constants for

record types, 5–9
record type declarations in, 5–8
reserved fields in record components in,

5–10

System-routine packages (cont’d)
rules for default and optional parameters,

5–12
steps for calling routines with optional

parameters, 5–13
System routines

declaring record types for, 1–33
example of handling status values from,

3–18, 3–21
obtaining symbol definitions for, 5–25
writing interfaces to from DEC Ada, 5–19

System services
See OpenVMS system services

SYSTEM_RUNTIME_TUNING package,
5–2, C–4

using in programs that call asynchronous
system services, 5–17

T
Task

definition of, 7–1
Task control block, 7–2, 7–8

address of as value of task object, 1–21
estimating size of, 7–9
example of releasing, 7–11

Task deadlock, 7–26
and time slicing, 7–20
caused by SYS$SETAST, 7–46
due to busy waiting, 7–30
during AST handling, 7–53
during call from non-Ada AST service

routine, 7–53
example of caused by call to

SYS$SETAST, 7–46
example of circular-calling, 7–28, 7–29
example of dynamic-circular-calling, 7–29
example of exception-induced, 7–27
example of self-calling, 7–28
exception-induced, 7–26
self-calling, 7–26

Tasking
interaction of with input-output, 2–85

Index–21



TASKING_SERVICES package, 5–1, 7–44,
7–45, 7–50, C–4

use of overloading for optional parameters
in, 5–17

Tasks, 7–1
See also Main task
as masters of tasks, 7–2
busy waiting of, 7–30, 7–31
calling DECthreads routines from, 7–49
calling non-Ada routines from, 7–39
calling system services from, 7–44, 7–45
changing priority to improve performance,

7–59
controlling priorities of, 7–19
controlling scheduling of, 7–19
controlling stack sizes of, 7–14
coordination of information among, 7–37
deadlock with, 7–26
DEC Ada scheduling strategy for, 7–18
default scheduling of, 7–18
definition of suspension of, 7–18
delivery of ASTs to completed or

abnormal, 7–53
dependence on masters, 7–2, 7–8
effect of priority on action taken after

Ctrl/Y, 7–33
effects of system service calls on, 7–44
environment, 7–1
example of serializing, 7–42
example of using, 7–2
first-in-first-out scheduling of, 7–18
handling ASTs from, 7–52
improving run-time behavior with, 8–28
in context of single process, 7–2
increasing concurrency of when calling

system services, 7–44
increasing concurrency with TASKING_

SERVICES, 7–45
interaction with exception handling, 3–27
interference of busy waiting with

scheduling, 7–30
interrupting with Ctrl/Y, 7–32
main, 7–1, 7–10
measuring and tuning performance, 7–59

Tasks (cont’d)
preventing termination messages from,

3–28
priorities and responsiveness of, 7–19
raising exceptions at point of rendezvous,

3–4
reentrancy with, 7–38
round-robin scheduling of, 7–18, 7–20
scheduling of, 7–18
scheduling of during system service calls,

7–44
serializing to prevent reentry, 7–43
sharing variables with, 7–34
special considerations in using, 7–21
storage allocated for, 7–8
storage allocated for when AST delivered,

7–53
switching of, 7–18
synchronization of input-output operations

in, 2–85
system services to avoid calling from,

7–45
tentative rendezvous with, 7–31
termination messages for, 3–28
termination of, 3–28, 7–2, 7–32
time slicing, 7–20
using abort statements in, 7–32
using delay statements in, 7–31
using delay statement to force completion

of abnormal, 7–32
wait states caused by input-output

operations, 2–85
Task scheduling, 7–18

See also Task switching
during system service calls, 7–44
first-in-first-out (FIFO), 7–18
round-robin, 7–20

Task stack, 7–2, 7–11
See also Main task
default top guard area of, 7–12
default working area of, 7–12
detecting overflow of, 7–13
example of controlling the size of, 7–16
fixed-size, 7–12
for main task, 7–11

Index–22



Task stack (cont’d)
increasing and decreasing the top guard

area of, 7–13
increasing and decreasing the working

area of, 7–13
limits of, 7–11, 7–12
overflow when calling non-Ada code, 7–17
program region for allocating main, 7–16
reasons for specifying size of, 7–13
top guard area of, 7–12
using top guard area for detecting

overflow, 7–17
working storage area of, 7–12

Task switching, 7–2, 7–18
See also Task scheduling

Task synchronization, 7–2
Task types

Ada semantics for passing parameters of,
4–23

packing, 1–24
representation of, 1–21

TASK_STORAGE pragma
application of to tasks, 7–15
to control task stack top guard area, 7–14
using to control size of task stacks, 7–14

Terminal input-output, 2–66
buffering, 2–79
data-oriented method for, 2–71
flexible method for, 2–73
line-oriented method for, 2–69
mixed method for, 2–73

TERMINATED attribute
value of during task AST handling, 7–53

Text file
definition of, 2–5

Text files, 2–5
buffering input-output of, 2–79
carriage control in, 2–80
DEC Ada implementation of, 2–64
default attributes for, 2–63
terminators in, 2–76

TEXT_IO
predefined instantiations of packages in,

2–83

TEXT_IO package, 2–1, 2–5, 2–63, C–4
carriage control in, 2–80
default file attributes provided by, 2–64
example of using, 2–67, 2–71, 2–73, 2–76
predefined instantiations of packages in,

8–18
using for terminal input-output, 2–66

Time slicing, 7–20
effect on TQELM quota, 7–31

TIME_SLICE pragma, 7–59
effect on TQELM quota, 7–31

See also TQELM
recommended values for, 7–21
using to cause round-robin task

scheduling, 7–20
using to control task scheduling, 7–20
using to overcome busy waiting, 7–30

TQELM (Timer Queue Entry Limit) quota
effect on delay statements, 7–31

TT logical name, 2–9
Types

See also individual types by name
Ada equivalents for OpenVMS data, 4–17
DEC Ada equivalents for CDD, 6–3, 6–4
determining size of, 1–40
features for controlling representation of,

1–22
packable, 1–24
parameter-passing mechanisms for, 4–12
relationship to objects, 1–1
representation of, 1–2
results of size attributes for, 1–43
unsigned, in the package SYSTEM, 9–10
using MACHINE_SIZE attribute with,

1–41
using SIZE attribute with, 1–41

U
UBA descriptor, B–8
UBSB descriptor, B–8
UBS descriptor, B–7
Unchecked conversions

between address and access types, 1–20
of access types, 9–2

Index–23



Unchecked deallocation
using to control access type storage, 1–46

UNCHECKED_CONVERSION procedure
between address and access types, 1–20
effect of the pragma INLINE on an

instantiation of, 8–5
UNCHECKED_DEALLOCATION procedure,

1–46
example of using, 1–49
using to control access type storage,

1–46, 1–49
Unsigned types

explanation of Ada, 9–10
in the package SYSTEM, 9–10

UNSIGNED_BYTE type, 9–10
UNSIGNED_LONGWORD type, 9–10

characteristics of, 9–10
UNSIGNED_WORD type, 9–10
Usages (OpenVMS)

See OpenVMS data structures
USE_ERROR exception

raised for concurrent opening of magnetic
tape files, 2–35

raised for FDL errors in FORM
parameter, 2–16

raised for mismatch of file attributes,
2–32, 2–33

raised for opening an open file, 2–35
raised on access to a locked record, 2–37
raised when writing text files, 2–64

Utility routines
See OpenVMS utility routines

V
VALUE mechanism option

for exported function results, 4–10
for exported subprogram parameters,

4–10
for imported function results, 4–10
for imported subprogram parameters,

4–10
Variables

effect of the pragma SHARED on, 7–35
effect of the pragma VOLATILE on, 7–36

Varying strings
working with, 9–13

VAX instructions
equivalents in the package SYSTEM, 9–6

VOLATILE pragma, 7–34, 7–35
comparison with the pragma SHARED,

7–36
effect of, 7–36
effect on storage allocation, 1–45
example of use in system service call,

5–30
example of using with OpenVMS RMS

control blocks, 5–35
using with address objects, 9–1
with address determined by ADDRESS

attribute, 9–1

X
XAB (extended attribute block)

record type declared for in the package
STARLET, 5–8

Index–24


	DEC Ada Run-Time Reference Manual for OpenVMS Systems
	Contents
	Preface
	1  Object Representation and Storage
	1.1 Type and Object Representations
	1.2 Data Optimization
	1.3 Determining the Sizes of Types and Objects
	1.4 Storage Allocation and Deallocation

	2  Input-Output Facilities
	2.1 Files and File Access
	2.2 Naming External Files
	2.3 Specifying External File Attributes
	2.4 File Sharing
	2.5 Record Locking
	2.6 Binary Input-Output
	2.7 Text Input-Output
	2.8 Input-Output and Exception Handling
	2.9 Input-Output and Tasking

	3  Exception Handling
	3.1 Relationship Between Ada Exception Handling and OpenVMS Condition Handling
	3.2 Making the Best Use of Ada Exception Handling
	3.3 Suppressing Checks
	3.4 Mixed-Language Exception Handling
	3.5 Exceptions and Tasking

	4  Mixed-Language Programming
	4.1 Calling External Routines from Ada Subprograms
	4.2 Calling Ada Subprograms from External Routines
	4.3 Controlling the Passing Mechanisms for Imported and Exported Subprogram Parameters and Function Results
	4.4 Ada Conventions for Passing Parameters and Returning Function Results in Mixed-Language Programs
	4.5 Sharing Data with Non-Ada Routines
	4.6 Mixing C and Ada Code
	4.7 Mixing Fortran and Ada Code

	5  Calling System or Other Callable Routines
	5.1 Using the DEC Ada OpenVMS System-Routine Packages
	5.2 Writing Your Own Routine Interfaces
	5.3 Obtaining Symbol Definitions
	5.4 Testing Return Condition Values
	5.5 OpenVMS Routine Examples

	6  Using CDD/Repository from DEC Ada
	6.1 Using the DEC Ada-from-CDD Translator Utility
	6.2 Equivalent DEC Ada and CDDL Data Types
	6.3 Example of Using the Ada-from-CDD Translator

	7  Tasking
	7.1 Introduction to Using Ada Tasks on the OpenVMS Operating System
	7.2 Task Storage Allocation
	7.3 Task Switching and Scheduling
	7.4 Special Tasking Considerations
	7.5 Calling OpenVMS System Service Routines from Tasks
	7.6 Calling DECthreads Routines from Tasks (Alpha Systems Only)
	7.7 Handling Asynchronous System Traps (ASTs)
	7.8 Measuring and Tuning Tasking Performance

	8  Improving Run-Time Performance
	8.1 Compiler Optimizations
	8.2 Using the Pragma INLINE
	8.3 Making Use of Generics
	8.4 Techniques for Reducing CPU Time and Elapsed Time

	9  Additional Programming Considerations
	9.1 Working with Address Values
	9.2 Unchecked Conversion of Access Types
	9.3 Using Low-Level System Features
	9.4 Working with Varying Strings
	9.5 Assigning Array Values
	9.6 Sharing Memory Between CPUs

	A  DEC Ada Predefined Instantiations
	B  Implementation Details Related to Mixed-Language Programs on OpenVMS Systems
	B.1 Constrainedness Bits
	B.2 Area Control Block
	B.3 Descriptors

	DEC Ada Packages
	Index

