DEC Ada

Run-Time Reference Manual for
OpenVMS Systems

Order Number: AA-PWGZB-TK

February 1995

This manual describes implementation details of DEC Ada in the context of
the underlying operating system. It contains information on input-output,
representation of types and objects, exception handling, mixed-language
programming, tasking, and increasing program efficiency. It also lists the
DEC Ada predefined packages and explains where and how to find the
package specifications.

Revision/Update Information: This revised manual supersedes
the DEC Ada Run-Time Reference
Manual for OpenVMS Systems
(Order No.: AA-PWGZA-TE).

Operating System and Version: VMS VAX Version 5.4 or higher
OpenVMS Alpha Version 6.1 or higher

Software Version: DEC Ada Version 3.2

Digital Equipment Corporation
Maynard, Massachusetts

February 1995

Revised, May 1989
Revised, January 1993
Revised, February 1995

Digital Equipment Corporation makes no representations that the use of its products in the
manner described in this publication will not infringe on existing or future patent rights, nor do
the descriptions contained in this publication imply the granting of licenses to make, use, or sell
equipment or software in accordance with the description.

Possession, use, or copying of the software described in this publication is authorized only
pursuant to a valid written license from Digital or an authorized sublicensor.

© Digital Equipment Corporation 1985, 1989, 1993, 1995. All Rights Reserved.

The following are trademarks of Digital Equipment Corporation: CDD, CDD/Plus,
CDD/Repository, DEC, DEC Ada, DECnet, DECset, DECthreads, Digital, OpenVMS, VAX,
VAX Ada, VMS, VMS RMS, and the DIGITAL logo.

The following is a third-party trademark:
Motif is a registered trademark of the Open Software Foundation, Inc.
ZK5575

This document is available on CD-ROM.

This document was prepared using VAX DOCUMENT Version 2.1.

Contents

Preface

New and Changed Features

1 Object Representation and Storage

1.1
1.11
1.1.2
1.1.3
1.131
1.1.3.2
1.1.4
1.15
1.16
1.1.7
118
119
1.2
1.2.1
122
123
1.2.4
1.25
1.2.6
1.2.7
13
1.4
14.1
1.4.2

Type and Object Representations

Enumeration Types and Objects
Integer Typesand Objects
Floating-Point Types and Objects.

Pragma FLOAT_REPRESENTATION

Pragma LONG_FLOAT
Fixed-Point Types and Objects
Array Types and Objects
Record Types and Objects
Access Typesand Objects
Address Types and Objects.
Task Types and Objects

Data Optimization
Pragma PACK

Pragma COMPONENT_ALIGNMENT
Length Representation Clauses
Enumeration Representation Clauses
Record Representation Clauses

Alignment Clauses . .
Address Clauses. . . .

Determining the Sizes of Types and Objects
Storage Allocation and Deallocation.

Storage Allocation . .

Storage Deallocation

XV

XXi

AOOOWNONWNEPRPOOUGWNOUOADNNDN

Rl il il il

|1
NN NN
o O

2

Input-Output Facilities

21

211
2.1.2
2.13
214
2.15
2.2

221
2.2.2
2.3

231

2.3.2
2.3.3
2.4

2.5

2.6
26.1
2.6.2
2.6.3
26.4
2.7
2.7.1
27.1.1
2.7.1.2
27.1.3
27.1.4
2.7.2

2.7.3
27.4
275
2.8
29

Files and File Access
Ada Sequential Files .

Ada Direct Files
Ada Relative Files . ..
Ada Indexed Files ...
Ada Text Files
Naming External Files. . .

File Specification Syntax

Logical Names

Specifying External File Attributes
The OpenVMS File Definition Language (FDL): Primary and

Secondary Attributes .

Creation-Time and Run-Time Attributes
Default External File Attributes

File Sharing
Record Locking.
Binary Input-Output

Sequential File Input-Output.
Direct File Input-Output
Relative File Input-Output.
Indexed File Input-Output

Text Input-Output

Using the Package TEXT_IO for Terminal Input-Output. . . .
Line-Oriented Method
Data-Oriented Method

Mixed Method . ..

Flexible Method . .

Line Terminators, Page Terminators, and File

Terminators

Text Input-Output Buffering
TEXT_IO Carriage Control
Predefined Instantiations of TEXT_IO Packages
Input-Output and Exception Handling.

Input-Output and Tasking

N
LEPPPLLRee
Lo h~bwwN

|
RSN
[N

WWRFR OOOWWWOWOUINOWN M

RENENERENENESENENE SN
NNNOOOUOEDNDWWWWW

3 Exception Handling

3.1

3.11
3.1.2
3.1.3

3.2
3.3
3.4
34.1
3.4.2
3.4.3
3.4.4
3.45

3.4.6
3.5

Relationship Between Ada Exception Handling and OpenVMS
Condition Handling
Naming and Encoding Ada Exceptions
Copying Exception Signal Arguments
The Matching of Ada Exceptions and System-Defined
Conditions
Making the Best Use of Ada Exception Handling
Suppressing Checks
Mixed-Language Exception Handling.
Importing Exceptions
Exporting Exceptions
The Exception Choice NON_ADA ERROR...............
Signaling OpenVMS Conditions
Effects of Handling OpenVMS Conditions from an Ada
Program
Fault Handlers (VAX Systems Only)
Exceptionsand Tasking

4 Mixed-Language Programming

4.1
4.2
4.3

43.1

4.3.2

4.3.3
4.4

44.1
4.4.2
4.5

45.1

45.2
45.3
4.6
4.7

Calling External Routines from Ada Subprograms
Calling Ada Subprograms from External Routines
Controlling the Passing Mechanisms for Imported and Exported
Subprogram Parameters and Function Results
Using the MECHANISM and RESULT_MECHANISM
OPtioNS . . .
Working with Imported Routine Parameters or Function
Results for Which There Are No Defaults
DEC Ada Equivalents for OpenVMS Data Types
Ada Conventions for Passing Parameters and Returning
Function Results in Mixed-Language Programs.
Ada SemantiCs
DEC Ada Linkage Conventions
Sharing Data with Non-Ada Routines
Data Layout and Alignment in Mixed-Language
Programs
Importing and Exporting Objects
Sharing Common Storage Areas for Objects
MixingCand AdaCode
Mixing Fortranand Ada Codet

5 Calling System or Other Callable Routines

5.1 Using the DEC Ada OpenVMS System-Routine Packages

511 Parameter Types
5.1.2 Parameter-Passing Mechanisms
5.1.3 Naming Conventionscciiiennnn..
514 Record Type Declarations.
5.1.5 Default and Optional Parameters
5.1.6 Calling Asynchronous System Services
5.1.7 Calling Mathematical Routines
5.2 Writing Your Own Routine Interfaces
5.2.1 Parameter TYpesS e
5.2.2 Determining the Kindof Call
5.2.3 Determining the Access Method
5.24 Passing Parameters
5.2.5 Passing Routines or Subprograms as Parameters
5.2.6 Default and Optional Parameters

5.3 Obtaining Symbol Definitions
5.4 Testing Return Condition Values
55 OpenVMS Routine Examples L.

6 Using CDD/Repository from DEC Ada

6.1 Using the DEC Ada-from-CDD Translator Utility
6.2 Equivalent DEC Ada and CDDL Data TypeS
6.3 Example of Using the Ada-from-CDD Translator

7 Tasking

vi

7.1 Introduction to Using Ada Tasks on the OpenVMS Operating
SYStEM . .
7.2 Task Storage Allocation

7.2.1 Storage Created for a Task Object—The Task Control

Block
7.2.2 Storage Created for a Task Activation—The Task Stack
7.2.2.1 Controlling the Stack Sizes of Task Objects
7.2.2.2 Controlling the Size of a Main Task Stack (VAX Systems
ONly) ..
7.2.3 Stack Overflow and Non-Ada Code
7.3 Task Switching and Scheduling
7.3.1 Controlling Task Priorities.
7.3.2 Using Time Slicing i

7.4 Special Tasking Considerations

a1
o1 1 1 |<.I)‘IL|TILI)‘ILH<J‘I

|_\
COCOUPRAPRAPNMNWNRPONNPRPONSNW®

o1 o101 OO o1 o1 O1O1 o1 o1 Ol

|
NNNNNNNNNE PR

7.4.1 Passive Tasks

74.1.1 Passive Tasks and Rendezvous
74.1.2 Pragma PASSIVE
7.4.2 Deadlock
7.4.3 Busy Waiting and Non-Ada Code
7.4.4 Tentative Rendezvous
7.4.5 Using Delay Statements
7.4.6 Using Abort Statements.
7.4.7 Interrupting Your Program with Ctrl/Y
7.4.8 Using Shared Variables
7.4.9 Reentrancy
7.4.9.1 Coding Reentrant Ada Subprograms
7.4.9.2 Ensuring that Nonreentrant Routines are Called by One
TaskataTime............
7.4.9.3 Serializing Calls to Nonreentrant Code
7.5 Calling OpenVMS System Service Routines from Tasks
7.5.1 Effects of System Service Callson Tasks
7.5.2 System Services Requiring Special Care
7.6 Calling DECthreads Routines from Tasks (Alpha Systems
ONlY)
7.7 Handling Asynchronous System Traps (ASTS)
7.7.1 The Pragma AST_ENTRY and the AST_ENTRY
Attribute
7.7.2 Constraints on Handling ASTs.
7.7.3 Calling Ada Subprograms from Non-Ada AST Service
RoUtINeS
7.7.4 Examples of Handling ASTs from Ada Programs
7.8 Measuring and Tuning Tasking Performance

Improving Run-Time Performance

8.1 Compiler Optimizations
8.2 Using the Pragma INLINE

8.2.1 ExplicitUse
8.2.2 Implicit Use
8.2.3 Pragma INLINE Examples
8.2.3.1 Inline Expansion of Subprogram Specifications and
Bodies
8.2.3.2 Inline Expansion of Generic Subprograms
8.3 Making Use of Genericso
8.3.1 Using the Pragma INLINE_GENERIC
8.3.2 Using the Pragma SHARE_GENERIC
8.3.3 Library-Level Generic Instantiations

NN NN N N NN N N NN

|
A WWWWWWWNNDNN
RPOARANNRPRPPOO UG AMPE

N
AR
N -

7-44
7-44
7-45

Vii

8.4
8.4.1
8411
8.4.1.2
8.4.1.3

8.4.2

8421
8.4.2.2
8.4.2.3

Techniques for Reducing CPU Time and Elapsed Time
Decreasing the CPU Time of a DEC Ada Program.........
Eliminating Run-Time Checks
Reducing Function and Procedure Call Costs.
Using Scalar Variables and Avoiding Expensive
Operations on Composite Types
Decreasing the Elapsed Time of a DEC Ada Program
Controlling Paging Behavior
Improving Input-Output Behavior
Overlapping Unrelated Input-Output and Instruction
Execution

9 Additional Programming Considerations

9.1
9.2
9.3
931

9.3.2
9.4
9.5
9.6

Working with Address Values
Unchecked Conversion of Access Types
Using Low-Level System Features
The VAX Device and Processor Register and Interlocked
Operations (VAX Systems Only)
Unsigned Types in the Package SYSTEM
Working with Varying Strings
Assigning Array Values
Sharing Memory Between CPUs

A DEC Ada Predefined Instantiations

B

viii

Implementation Details Related to Mixed-Language
Programs on OpenVMS Systems

B.1

B.2

B.3

B.3.1
B.3.2
B.3.3
B.3.4
B.3.5
B.3.6
B.3.7
B.3.8

Constrainedness Bits

Area Control Block

DeSCriplorso
UBS DesCriptoro e e
UBSB DesCriptor
UBA DeSCriptorot e e
S DeSCriptor
SB DesCriptor.o
A DeSCriptor. e
NCA DesCriptorot e e
Passing Parameters by Descriptor to Exported
SUbprograms

O OVWWOWWmWOonNI~DPRP

AN
=

C DEC Ada Packages

Index
Examples

1-1 Using the Pragma COMPONENT_ALIGNMENT 1-29
1-2 Interaction Between the Pragmas PACK and

COMPONENT_ALIGNMENT 1-31
1-3 Using an Address Clause and LIB$GET VM. 1-39
1-4 Using UNCHECKED_DEALLOCATION to Control Access

Type Storage Deallocation 1-47
2-1 Creating and Opening a Relative File for Read Sharing 2-35
2-2 Using a Mixed-Type File 2-40
2-3 Using the Package SEQUENTIAL_IO 2-45
2-4 Using the Package DIRECT_MIXED_IO 2-47
2-5 Using the Package RELATIVE_IO 2-52
2-6 Using the Package INDEXED_IO 2-56
2-7 Using the Package INDEXED MIXED 10............... 2-60
2-8 Using the Package TEXT 1O 2-66
2-9 Example of Line-Oriented TEXT IO 2-70
2-10 Example of Data-Oriented TEXT_IO 2-71
2-11 Example of Flexible TEXT 10 2-74
3-1 Use of Pragma SUPPRESS ALL 3-12
3-2 Handling SYS$GETJPIW Status Values as Ada

EXCeplions 3-17
3-3 Handling SYS$GETJPIW Status Values as OpenVMS

Conditions 3-19
4-1 Using an Address Clause to Make Indirect Calls. 4-5
4-2 Sharing a Common Data Area with a C Program 4-32
4-3 Passing Arrays to C, Where the Array Values Are Not

Changed 4-35
4-4 Passing an Array to C, Where the Array Value Is

Changed 4-36
4-5 Passing Floating-Point Valuesto C 4-37
4-6 Sharing a Fortran Common Block 4-39
4-7 Returning Complex Numbers from Fortran Programs on

Alpha Systems 4-42

5-1
5-2
5-3
5-4

5-5
5-6
5-7

7-1
7-2
7-3
7-4
7-5

-7
7-8
7-9
7-10
7-11
7-12
7-13

7-14
9-1

9-2
9-3

Calling SYS$TRNLNM Using the Package STARLET
Calling SYS$GETQUI Using the Package STARLET
Calling SYS$CRMPSC Using the Package STARLET

Calling LIB$FILE_SCAN and LIB$FILE_SCAN_END Using
the Package LIB

Calling SMG Routines Using the Package SMG
Calling SYS$TRNLNM Using an Import Pragma

Using SYSTEM.IMPORT_VALUE to Obtain a Global Symbol
Value . .

Interactive Array Sort Using Tasks
Leaving a Master to Release a Task Control Block
Controlling the Size of a Task’s Stack
An Exception-Induced Deadlock
A Self-Calling Deadlock
A Circular-Calling Deadlock.
A Dynamic-Circular-Calling Deadlock
A Nonreentrant Subprogram
A Reentrant Subprogram
Using a Serializing Task to Prevent Reentry
Deadlock Caused by a Call to SYS$SETAST
Unpredictability of SYS$EXIT

Simple Use of the Pragma AST_ENTRY and the
AST_ENTRY Attribute.

Using an AST Entry to Intercepta Ctrl/C

A Portable Technique for Reading and Writing Private
TYPeS . o

One Use of the Interlocked Queue Operations
Sharing Memory Between Two or More Programs Running
onOneorMore CPUSy
Calling an Ada Subprogram and Passing Constrainedness
Bits . ..

5-29
5-30
5-33

5-36
5-39
5-42

5-45

7-3
7-11
7-15
7-27
7-27
7-28
7-29
7-40
7-41
7-42
7-46
7-47

7-55
7-57

9-4
9-8

9-17

B-2

Figures

1
2

2-1
2-2
2-3
3-1

3-2

3-3

Tables
1
1-1
1-2

1-3

1-4
1-5
1-6
1-7

1-8
1-9
1-10

1-11

Documentation Reading Path for Related Documents

Documentation Reading Path for DEC Ada
Documentation

Using a Mixed-Type File
Using a Uniform-Type File.

An Ada Text File, Showing Line, Page, and File
Terminators

Execution of a Fortran Program with
FOR$SUNDERFLOW _HANDLER

The Effect of an Ada Procedure Containing an Others
Handler

FORSUNDERFLOW_HANDLER Established for a Fortran
Subroutine

Area Control Block Used in Returning Some Function
Results

Conventions Used in ThisManual

Range of Values and Storage Sizes for DEC Ada Predefined
Integer Types

Representations and Storage Sizes for DEC Ada Predefined
Package STANDARD i

Representations and Storage Sizes for DEC Ada Predefined
Package SYSTEM

Representations Chosen for Specified Digits
Model Numbers Defined for Each Floating-Point Type
Safe Numbers Defined for Each Floating-Point Type

Comparison of DEC Ada Features for Controlling Type
Representations

Packable Types
Effects of Packing the Components of Arrays and Records. .

Comparison of SIZE and MACHINE_SIZE Attribute
Results

Results of Size Attributes for Various Types and Objects.. . . .
Predefined (Default) Logical Names

XVi

XVil

2-41

2-42

2-77

3-24

3-25

3-26

B-5

XiX
1-5
1-6
1-7
1-8
1-9

1-10
1-22
1-24
1-24

1-41
1-43

xi

Xii

2-2

2-3
2-4
2-5

2-7
2-8
2-9
2-10
2-11
2-12
2-13
2-14
2-15
3-1

3-2
3-3
34

4-1

4-2

4-4

4-5

4-6

5-1

5-2
6-1

Equivalence Strings for Default Logical Names for
Process-Permanent Files

FDL Primary and Secondary Attribute Descriptions
Commonly Used FDL Attributes
SEQUENTIAL_IO: Default File Attributes
SEQUENTIAL_MIXED_IO: Default File Attributes
DIRECT_IO: Default File Attributes
DIRECT_MIXED_IO: Default File Attributes
RELATIVE_IO: Default File Attributes
RELATIVE_MIXED_IO: Default File Attributes
INDEXED_IO: Default File Attributes.
INDEXED_MIXED_IO: Default File Attributes
TEXT _IO: Default File Attributes
DEC Ada Carriage-Control Options
FORTRAN Carriage-Control Characters

Relationship Between Ada Exception Handling and the
OpenVMS Condition-Handling Facility

Ada Predefined Exceptions.
System-Defined Conditions that Match Ada Exceptions.

Run-Time Checks and Their Corresponding Predefined
EXCeptions

Parameter-Passing Mechanisms and Allowed Data Types . ..
Function Return Mechanisms and Allowed Data Types

Cases in Which Mechanisms Must Be Specified for Imported
Subprogram Parameters

Cases in Which Mechanisms Must Be Specified for Imported
Function Results

DEC Ada Equivalents for OpenVMS Data Types and Their
Valid Passing Mechanisms in DECAda

Program Section Properties
OpenVMS Data Structures
DEC Ada Equivalents for OpenVMS Access Methods

Equivalent CDD and DEC Ada Data Types for OpenVMS
SYSTEMS . . .

Definition of Terms in Task Control Block Size Equation. . ..

Comparison of the Effects of the Pragmas
INLINE_GENERIC and SHARE_GENERIC

2-10
2-11
2-19
2-43
2-44
2-46
2-47
2-50
2-51
2-54
2-55
2-64
2-81
2-83

3-3
3-5
3-8

3-10
4-12
4-13
4-16
4-17
4-17
4-30

5-4
5-23

64
7-10

8-12

9-1

B-1
C-1

VAX Instructions Provided in the Predefined Package

SYSTEM

Predefined Instantiations of Commonly Used Generic

Packages
Descriptor Classes Allowed for
DEC Ada Predefined Packages

Passing Ada Parameters

9-6
A-1

B-6
C-1

Xii

Preface

Ada is a general-purpose programming language suitable for writing large-
scale and real-time systems programs. For example, Ada is strongly typed,
provides for exact or approximate numerical calculations, supports concurrency,
and allows separate compilation of program units. The language is specified
in ANSI/MIL-STD-1815A-1983 and 1S0O/8652-1987, Reference Manual for the
Ada Programming Language, which has been reproduced with supplementary
Digital insertions as the DEC Ada Language Reference Manual.

This manual describes implementation details of DEC Ada in the context of
the underlying operating system. It contains information on input-output,
representation of types and objects, mixed-language programming, calling
system services, exception handling, tasking, and increasing program efficiency.
It also lists and gives the specifications for some of the DEC Ada predefined
packages.

All references to VMS systems refer to OpenVMS Alpha and OpenVMS VAX
systems unless otherwise specified.

Intended Audience

This manual is intended primarily for systems and applications programmers,
or any other programmers whose work requires the use of operating system
features outside of the language, advanced Ada features, or more than one
programming language. The reader should have a working knowledge of the
Ada language and some familiarity with the operating system.

Documentation Reading Path

Figures 1 and 2 show the relationship of the Ada documentation set to other
documentation that may be helpful.

XV

Figure 1 Documentation Reading Path for Related Documents

OpenVMS Environment

For more information

on the OpenVMS System

Other Layered Products

For more information

on various layered
products

Ada Language

For introductory or

tutorial Ada language
information

XVi

OpenVMS _
System

Individual
Layered
Product

Documentation

Documentation

Commercial
Ada
Textbooks

ZK-5349A-2-GE

Figure 2 Documentation Reading Path for DEC Ada Documentation

DEC Ada

) DEC Ada
Developing and -

compiling Developing
Ada
Programs

*

) DEC Ada
Implementation and I

run—time details Run-Time
Reference
Manual

o) DEC Ada

Designing and imple— -
menting applications Language
Reference

Manual

DEC Ada

Installation
Guide

* Operating System—Specific Manual

ZK-5349A-1-GE

XVii

Document Structure
This manual contains the following chapters and appendixes:

= Chapter 1 explains how DEC Ada objects and types are represented and
sized. It also gives information on sharing object storage among Ada and
non-Ada routines.

e Chapter 2 discusses DEC Ada input-output, giving details about file
sharing, record locking, and the DEC Ada input-output packages. This
chapter also summarizes information about the OpenVMS File Definition
Language and the specification of file names.

e Chapter 3 describes the implementation of DEC Ada exception handling
and discusses the importing and exporting of OpenVMS conditions and Ada
exceptions.

= Chapter 4 describes the DEC Ada parameter-passing mechanisms and
import-export pragmas and discusses how to write mixed-language
programs that involve DEC Ada.

= Chapter 5 explains how to call system and other callable routines
(OpenVMS system services, Run-Time Library routines, and so on).

= Chapter 6 describes how to access CDD/Repository FROM DEC Ada.

e Chapter 7 discusses tasking issues, including issues related to calling
non-Ada routines (such as OpenVMS system services) from tasks.

= Chapter 8 gives information on how to make DEC Ada programs more
efficient.

e Chapter 9 discusses additional details of DEC Ada that you need to
consider when writing DEC Ada programs.

= Appendix A lists all of the DEC Ada predefined generic instantiations.

= Appendix B provides implementation details related to mixed-language
programming.

= Appendix C lists all of the DEC Ada packages.

Xviii

Conventions

Table 1 shows the conventions used in this manual.

Table 1 Conventions Used in This Manual

Convention

Description

VMS systems

$

Ctrl/x

boldface monospace
text

file-spec, . ..

0

[expression]

{, mechanism_name }

boldface text

Refers to OpenVMS Alpha and OpenVMS VAX systems
unless otherwise specified.

A dollar sign ($) represents the OpenVMS DCL system
prompt.

In interactive examples, a label enclosed in a box indicates
that you press a key on the terminal, for example, |[Return|.

The key combination Ctrl/x indicates that you must press
the key labeled Ctrl while you simultaneously press another
key, for example, Ctrl/Y or Ctrl/Z.

In interactive examples, boldface monospace text represents
user input.

A horizontal ellipsis following a parameter, option, or value
in syntax descriptions indicates that additional parameters,
options, or values can be entered.

A lowercase italic n indicates the generic use of a number.

A horizontal ellipsis in an Ada example or figure indicates
that not all of the statements are shown.

A vertical ellipsis in an interactive figure or example
indicates that not all of the commands and responses are
shown.

In format descriptions, if you choose more than one option,
parentheses indicate that you must enclose the choices in
parentheses.

Square brackets indicate that the enclosed item is optional.
(Square brackets are not, however, optional in the syntax of
a directory name in a file specification or in the syntax of a
substring specification in an assignment statement.)

Braces in Ada syntax indicate that the enclosed item can be
repeated zero or more times. Braces in debugger command
syntax enclose lists from which you must choose one item.

Boldface text indicates Ada reserved words.
(continued on next page)

Xix

XX

Table 1 (Cont.) Conventions Used in This Manual

Convention Description

italic text Italic text emphasizes important information, indicates
variables, and indicates complete titles of manuals. Italic
text also represents information that can vary in system
messages (for example, Internal error number.)

type_name Italicized words in syntax descriptions indicate descriptive

UPPERCASE TEXT

prefixes that are intended to give additional semantic
information rather than to define a separate syntactic
catgegory.

Uppercase indicates the name of a command, routine,
parameter, procedure, utility, file, file protection code, or the
abbreviation for a system privilege.

New and Changed Features

This release improves the functionality of DEC Ada.

The following lists changes for the DEC Ada Version 3.2 user:

Changes have been made to the packages SYSTEM.

Support included for passive tasks and pragma PASSIVE, which can
significantly improve the performance of rendezvous in programs.
Requirements for passive tasks are detailed Chapter 7.

Support included for the Professional Development Option on both the
OpenVMS Alpha and OpenVMS VAX platforms.

Support for 64-bit integers and floating point numbers has been added to
the OpenVMS Alpha platform.

The implementation of Al-00866, which permits an 8-bit character set
based on ISO standard 8859/1 (commonly known as Latin—1) has been
added.

In addition to the information in this manual, see the release notes and the
DEC Ada Language Reference Manual for more information about these
changes.

XXi

1

Object Representation and Storage

An Ada object is an entity that can have values of a particular type. For each
Ada object, the DEC Ada compiler determines how much storage is required,
where and when that storage will be allocated and deallocated, and how the
different values of the object are represented. The compiler makes these
determinations based on the type of the object, the subtype of the object, and
the use of the object.

In simple cases, the representation and storage of objects is determined at
compile time. In more complex cases (such as the case of an array object whose
bounds are not computed until run time), the compiler generates code that
computes the amount of storage required at run time. In general, the compiler
chooses storage sizes and representations that make the best compromise
between CPU time, the amount of memory required for the generated code,
and the amount of memory required for the objects.

Pragmas and representation clauses allow you to control how objects are
represented and stored. You most often need this control when you are
working with the following objects:

= Objects whose addresses are explicitly obtained with the ADDRESS
attribute

< Objects whose addresses are explicitly specified with an address
representation clause

= Objects that are passed to imported routines or used in exported
subprograms

= Objects that are imported or exported

To increase efficiency, the DEC Ada compiler may use alternative
representations for some objects. However, the compiler does not choose

an alternative representation for objects that are visible outside the Ada
program. It does not choose an alternative representation for any of the objects
in the previous list.

Object Representation and Storage 1-1

This chapter discusses the following topics:

= The representation and storage chosen by the DEC Ada compiler for
objects of a variety of DEC Ada types (Section 1.1)

= How to tailor the representation of the objects in your program to suit your
particular application (Section 1.2)

= Methods for determining how much storage has been allocated for
particular types and objects

= Storage allocation and deallocation (Section 1.4)

You should be familiar with the material in Chapters 3 and 13 of the DEC Ada
Language Reference Manual before using the material in this chapter.

1.1 Type and Object Representations

The following sections describe the representations and storage sizes that
the DEC Ada compiler chooses for objects of the various Ada type classes,
including scalar (enumeration, integer, floating-point, and fixed-point), array,
record, access, address, and task types.

1.1.1 Enumeration Types and Objects

Each enumeration literal in an enumeration type has a corresponding internal
code. Unless otherwise specified in an enumeration representation clause, the
internal codes for an enumeration type are represented by the integers from
0 to N — 1, where N is the number of enumeration literals in the type. For
example, the internal codes for the enumeration literals of the Ada predefined
types STANDARD.BOOLEAN and STANDARD.CHARACTER are as follows:

Enumeration Type Internal Codes
STANDARD.BOOLEAN 0 (FALSE)
1 (TRUE)

STANDARD.CHARACTER 0.. 255!

1The internal code for each character is its conventional ASCII value. The NUL character has the
internal code 0, A’ has the internal code 65, "a’ has the internal code 97, and so on. See the
specification of the package STANDARD in Annex C of the DEC Ada Language Reference Manual.

Section 1.2.4 explains how to use an enumeration representation clause to
specify other values (including negative values) for internal codes.

DEC Ada implements Al-00866, which permits an 8-bit character set based on
ISO standard 8859/1 (commonly known as Latin-1).

1-2 Object Representation and Storage

Changes to the definition of the enumeration type CHARACTER, which are
permitted by AI-00866, cause some previously correct DEC Ada programs to be
in error. For example:

= Programs that assume that the representation of CHARACTER'LAST is
127 or that type CHARACTER has 128 values need to be changed. The
representation of CHARACTER'LAST is 255, and type CHARACTER has
256 values.

= Programs that assume that the DEL character is CHARACTER'LAST need
to be changed.

< Programs that assume that the representations of all upper- or lower- case
characters are contiguous are incorrect and should be changed.

= Programs that include a case statement with an expression of the type
CHARACTER (or a type derived from the type CHARACTER) may require
modified choices or additional case statement alternatives.

e Programs that include a record variant part with a discriminant of type
CHARACTER (or a type derived from the type CHARACTER) may require
modified choices or additional variants.

= Programs that include a record representation clause that assume that the
type CHARACTER is 7 bits long are incorrect.

= Programs that count all the elements of the type CHARACTER using
an 8-bit integer type, such as SHORT_SHORT_INTEGER, may be
incorrect. The value of SHORT_SHORT_INTEGER'LAST is 127, and
the representation of CHARACTER'LAST is 255.

The following are restrictions on the use of 8-bit characters:
= The debugger does not support extended characters in identifiers.

= Some devices (some printers, for example) do not display all graphic
characters in the Latin-1 character set.

e Latin-1 differs slightly from the DEC 8-bit multinational character set.
You should set your terminal or window to ISO Latin-1 mode to correctly
display Latin-1 characters.

The amount of storage that the DEC Ada allocates for an object of an
enumeration type depends on the range of the internal codes and on any length
representation clauses that provide a size for the type or first named subtype.
(A first named subtype is a subtype declared by a type declaration. See
Chapter 13 of the DEC Ada Language Reference Manual for more information.)

Object Representation and Storage 1-3

When you specify a length representation clause for a first named subtype, the
clause can not be applied to the representation of objects of the base type. For
example, this effect may occur with loop parameters.

For simple enumeration objects and enumeration components of unpacked
arrays and records, the DEC Ada compiler chooses 1 byte (8 bits), 2 bytes (16
bits), 4 bytes (32 bits), or 8 bytes (64 bits on Alpha systems)—whichever is
smallest—to represent an object of an enumeration type. The size chosen is
large enough to represent all of the values of the type, and it is greater than or
equal to any applicable length representation clause.

For most enumeration types, the representation is unsigned. The
representation is signed only when the first internal code is negative. For
example:

type ANSWER is (YES, NO, UNDECIDED);

An object of the type ANSWER will be stored in an unsigned byte because a
byte is all that is needed to represent the default internal codes

(0, 1, and 2) corresponding to YES, NO, and UNDECIDED. To guarantee

a particular representation, use an enumeration representation clause (see
Section 1.2.4).

1.1.2 Integer Types and Objects
DEC Ada provides four predefined integer types:

SHORT_SHORT_INTEGER
SHORT_INTEGER
INTEGER
LONG_INTEGER

These types are declared in the predefined package STANDARD (see Annex C
of the DEC Ada Language Reference Manual).

Values for objects of all four integer types are represented as signed, two'’s
complement (binary) numbers.

You can achieve an unsigned representation for integer objects by declaring an
integer type with a length representation clause (see Section 1.2.3). However,
because of the way the Ada language defines integer operations, operations on
these unsigned objects will involve signed intermediate values.

Table 1-1 lists the range of integer values and storage sizes for each of these
predefined integer types.

1-4 Object Representation and Storage

Table 1-1 Range of Values and Storage Sizes for DEC Ada Predefined Integer

Types
Storage Size
Ada Type Range of Values (Bits)
SHORT_SHORT_INTEGER 27 .2" -1 8
-128 .. 127
SHORT_INTEGER 215 215 1 16
INTEGER 2%t 2% 1 32
LONG_INTEGER 2% 2% 1 32!

LIn Alpha, the value of LONG_INTEGER is 64 bits. User-defined integer types can now be 64 bits,
provided that their range is large enough.

See Chapter 9 for more information on working with unsigned types.

1.1.3 Floating-Point Types and Objects

Floating-point types provide approximations to the real numbers, with
relative bounds on the errors. For each floating-point type—predefined

and nonpredefined—the DEC Ada compiler chooses a hardware floating-point
representation, depending on:

= The required range and accuracy of the DEC Ada pragma FLOAT _
REPRESENTATION

e The value of the DEC Ada pragma FLOAT _REPRESENTATION
On VAX systems, the following floating-point representations are possible:

F_floating
D _floating
G_floating
H_floating

On Alpha systems, the following representations are possible:

F_floating
D_floating
G_floating
IEEE single float
IEEE double float

The compiler uses chosen representation and size for all objects of the type,
regardless of the objects’ subtypes and regardless of whether or not the objects
are themselves part of packed array or record objects.

Object Representation and Storage 1-5

For detailed information about the layout of VAX and Alpha floating-point
representations, see the following manuals:

= VAX Architecture Handbook

= VAX Architecture Reference Manual
e Alpha Architecture Handbook

= Alpha Architecture Reference Manual

= ANSI/IEEE Standard 754-1985, IEEE Standard for Binary Floating-Point
Arithmetic

DEC Ada provides a number of predefined floating-point types. Section 1.1.3.1
lists the representation and storage size for each type.

Table 1-2 Representations and Storage Sizes for DEC Ada Predefined
Package STANDARD

Storage Size
Ada Type Representation (Bits)

FLOAT F_floating® 32
IEEE single float?

LONG_FLOAT D_floating or G_floating® 64
IEEE double float?

LONG_LONG_FLOAT* H_floating 128

LONG_LONG_FLOAT® G._floating 64

1When the value of the pragma FLOAT_REPRESENTATION is VAX_FLOAT (see Section 1.1.3.1);
the default on all OpenVMS systems.

2When the value of the pragma FLOAT_REPRESENTATION is IEEE_FLOAT (see Section 1.1.3.1);
available on Alpha systems only.

3The representation of the type LONG_FLOAT depends on the values of the pragmas FLOAT_
REPRESENTATION and LONG_FLOAT. You can also use the ACS CREATE LIBRARY, CREATE
SUBLIBRARY, and SET PRAGMA commands to control the representation. See Sections 1.1.3.1
and 1.1.3.2 and Chapter 3 of the DEC Ada Language Reference Manual for more information about
the pragmas. See the Developing Ada Programs on OpenVMS Systems for more information about
the ACS commands.

40n VAX systems.
50n Alpha systems.

1-6 Object Representation and Storage

Table 1-3 Representations and Storage Sizes for DEC Ada Predefined
Package SYSTEM

Storage Size

Ada Type Representation (Bits)
F_FLOAT F_floating 32
D_FLOAT D_floating 64
G_FLOAT G_floating 64
H_FLOAT? H_floating 128
IEEE_SINGLE_FLOAT? IEEE single float 32
IEEE_DOUBLE_FLOAT? IEEE double float 64

10n VAX systems only.
20n Alpha systems only.

DEC Ada lets you define your own floating-point types. The choice of
representation for nonpredefined floating-point types that are not explicitly
derived depends on the precision (digits) and the range specified. The
DEC Ada compiler chooses the first of the types STANDARD.FLOAT,
STANDARD.LONG_FLOAT, and STANDARD.LONG_LONG_FLOAT (on
VAX systems only) that has adequate precision and range and uses it as the
parent type from which the new type is derived.

Depending on the default or explicit values of the pragmas FLOAT _
REPRESENTATION and LONG_FLOAT, the representations given in
Table 1-4 are used if the specified range can also be accommodated.
See Section 1.1.3.1 for more information about the pragma FLOAT _
REPRESENTATION. See Section 1.1.3.2 for more information about the
pragma LONG_FLOAT.

Object Representation and Storage 1-7

Table 1-4 Representations Chosen for Specified Digits

Value of the
Value of the Pragma Pragma Digits
FLOAT_REPRESENTATION LONG_FLOAT Specified Representations
VAX_FLOAT G_FLOAT 1.. 6 F_floating
7..15 G_floating
16 .. 33 H_floating®
VAX_FLOAT D_FLOAT 1.. 6 F_floating
7.. 9 D_floating
10 .. 33 H_floating®
IEEE_FLOAT? Not applicable 1.. 6 IEEE single
float?
7..15 IEEE double
float?

10n VAX systems only.
20n Alpha systems only.

For example, in the following declaration the pragma LONG_FLOAT ensures
that the D_floating representation of the type LONG_FLOAT is in effect when
the declaration is compiled. On VAX systems, the compiler chooses the type
STANDARD.LONG_LONG_FLOAT as the parent type for the type SIZE.
Although a D_floating representation satisfies the precision, it does not satisfy
the range.

pragma FLOAT REPRESENTATION (VAX FLOAT) ;
pragma LONG FLOAT (D _FLOAT) ;
package FLOAT TYPES is
type SIZE is digits 9 range -0.1E-50 .. 0.1E+50;

end FLOAT TYPES;

In all cases, the model number limits specified by the Ada language determine
the choice of representation for a floating-point type. See Chapter 3 of the
DEC Ada Language Reference Manual. Once the representation is chosen, the
full accuracy of the underlying floating-point type is used in any calculations
involving numbers of that type. For example, the following type declaration
causes the full 16 decimal digits of accuracy provided by the D_floating
representation to be used in calculations involving objects of the type:

1-8 Object Representation and Storage

pragma FLOAT REPRESENTATION (VAX FLOAT);
pragma LONG FLOAT (D_FLOAT) ;

package FLOAT TYPES is

type VOLUME is digits 9 range -100.0 .. 100.0;

end FLOAT TYPES;

Table 1-5 lists the model numbers for each underlying floating-point type
(and, thereby, for each DEC Ada predefined floating-point type). The ranges in
the table are approximate. The exact ranges are listed in Appendix F of the
DEC Ada Language Reference Manual. You can also find the exact ranges by
evaluating language-defined attributes T SMALL and T'LARGE, where T is
the floating-point type.

Table 1-5 Model Numbers Defined for Each Floating-Point Type

Mantissa Exponent

DEC Ada Representations and Digits Bits Range Approximate
Types (D) (B) (-4*B..+4*B) Magnitude
F_floating 6 21 -84..84 2.5E-26..1.9E+25
F_FLOAT
FLOAT
D_floating 9 31 -124..124 2.3E-38..2.1E+37
D_FLOAT
LONG_FLOAT
G_floating 15 51 —204..204 1.9E-62..2.5E+61
G_FLOAT
LONG_FLOAT
H_floating® 33 111 —444..444 1.1E-134..4.5E+133
H_FLOAT
LONG_LONG_FLOAT
IEEE single float? 6 21 —84..84 2.6E-26..1.9E+25
IEEE_SINGLE_FLOAT
FLOAT
IEEE double float? 15 51 —204..204 1.9E-62..2.6E+61
IEEE_DOUBLE_FLOAT
LONG_FLOAT

10n VAX systems only.
20n Alpha systems only.

For both predefined and nonpredefined types, the Ada language rules about
safe numbers also apply (see Chapter 3 of the DEC Ada Language Reference
Manual). Table 1-6 lists the safe numbers for each underlying floating-point
type (and, thereby, for each DEC Ada floating-point type).

Object Representation and Storage 1-9

The ranges in the table are approximate. The exact ranges are listed in
Appendix F of the DEC Ada Language Reference Manual. You can also find the
exact ranges by evaluating the language-defined attributes T SAFE_SMALL
and T'SAFE_LARGE, where T is the floating-point type.

Table 1-6 Safe Numbers Defined for Each Floating-Point Type

Mantissa Exponent
DEC Ada Representations and Digits Bits Range Approximate
Types (D) (B) (-E..+E) Magnitude

F_floating 6 21 -127..127 2.9E-39..1.7E+38
F_FLOAT
FLOAT

D_floating 9 31 -127..127 2.9E-39..1.7E+38
D_FLOAT
LONG_FLOAT

G_floating 15 51 -1023..1023 5.5E-309..8.9E+307
G_FLOAT
LONG_FLOAT

H_floating 33 111 -16383..16383 8.4E-4933..5.9E+4931
H_FLOAT
LONG_LONG_FLOAT

IEEE single float? 6 21 -126..127 1.2E-38..4.3E+37
IEEE_SINGLE_FLOAT
FLOAT

IEEE double float? 15 51 -1022..1023 2.2E-308..2.3E+307
IEEE_DOUBLE_FLOAT
LONG_FLOAT

10n VAX OpenVMS systems only.
20n Alpha OpenVMS systems only.

1.1.3.1 Pragma FLOAT_REPRESENTATION

The DEC Ada predefined pragma FLOAT _REPRESENTATION acts as a
program library switch that controls the representation of the DEC Ada
predefined floating-point types STANDARD.FLOAT, STANDARD.LONG_
FLOAT, and STANDARD.LONG_LONG_FLOAT. It also controls the
representation of types declared with a floating-point definition. You can
specify values for this pragma as follows:

= On VAX systems, the only value you can specify is VAX_FLOAT. This
value causes floating-point types to be represented by the underlying VAX
hardware types: F_floating, D_floating, G_floating, or H_floating.

1-10 Object Representation and Storage

e On Alpha systems, you can specify either VAX_FLOAT (the default) or
IEEE_FLOAT. When you specify VAX_FLOAT, floating-point types are
represented by any of the VAX hardware types except H_floating. When
you specify IEEE_FLOAT, floating-point types are represented by the IEEE
floating-point types: IEEE single float and IEEE double float.

On all OpenVMS systems, when the value of the pragma FLOAT _REPRESENTATION
is VAX_FLOAT, the default representation of the type LONG_FLOAT is G_

floating. You can control the representation of the type LONG_FLOAT (or

types derived from the type LONG_FLOAT) by using the pragma LONG _

FLOAT (see Section 1.1.3.2).

Use of the pragma FLOAT_REPRESENTATION implies a recompilation of
the predefined environment—the package STANDARD—for a given program
library. SEE Developing Ada Programs on OpenVMS Systems for a discussion
of the implications of recompiling the package STANDARD.

For example, the compilation of the following unit causes all subsequent
compilations in the same library to use the IEEE floating-point representations
to represent floating-point types (the value IEEE_FLOAT valid only on Alpha
systems):

pragma FLOAT REPRESENTATION (IEEE FLOAT);
package USE IEEE FLOAT is

-- Declare some floating-point types

end USE_IEEE FLOAT;

To return to VAX floating-point representations, you can use one of the
following methods:

e Compile another unit (in the same library) that contains the pragma
FLOAT_REPRESENTATION(VAX_FLOAT).

e Use the ACS SET PRAGMA command.

= Recreate your library by first deleting it with either the ACS DELETE
LIBRARY or DELETE SUBLIBRARY command, and then creating it with
the ACS CREATE LIBRARY or SUBLIBRARY command.

See Developing Ada Programs on OpenVMS Systems for information on the
ACS commands.

Object Representation and Storage 1-11

1.1.3.2 Pragma LONG_FLOAT
The DEC Ada predefined pragma LONG_FLOAT acts as a program library
switch that controls whether to use the G_floating or D_floating representation
to represent the type LONG_FLOAT. (By default, the G_floating representation
is used.)

Note

The pragma LONG_FLOAT has an effect only when the value of the
pragma FLOAT_REPRESENTATION is VAX_FLOAT (the only possible
value on VAX systems and the default value on Alpha OpenVMS
systems). See Section 1.1.3.1 for more information.

Use of this pragma implies a recompilation of the predefined environment—
the package STANDARD—for a given program library. See the DEC Ada
Language Reference Manual for the specific rules governing the use of this
pragma. See Developing Ada Programs on OpenVMS Systems for a discussion
of the implications of recompiling the package STANDARD.

For example, the compilation of the following unit causes all subsequent
compilations in the same library to use the set of representations that include
D_floating, as appropriate (see Section 1.1.3):

pragma LONG FLOAT (D_FLOAT) ;
package USE D FLOAT is

-- D_floating representation will be used.

type MY D FLOAT is digits 9 range -100.0 .. 100.0;

-- H floating representation will be used (on VAX systems only).

type MY H FLOAT is digits 11 range -100.0 .. 100.0;

-- D floating representation will be used.

D OBJECT: LONG FLOAT;
end USE D FLOAT;

To return to G_floating representations, you can use one of the following
methods:

e Compile another unit (in the same library) that contains the pragma
LONG_FLOAT(G_FLOAT).

e Use the ACS SET PRAGMA command.

1-12 Object Representation and Storage

< Recreate your library by:

1. Deleting it with either the ACS DELETE LIBRARY or DELETE
SUBLIBRARY command

2. Creating it with the ACS CREATE LIBRARY or SUBLIBRARY
command

See Developing Ada Programs on OpenVMS Systems for information on the
ACS commands.

1.1.4 Fixed-Point Types and Objects

Fixed-point types provide approximations to the real numbers with absolute
bounds on errors determined by the value T SMALL, where T is the fixed-point
type. T'SMALL is defined to be less than or equal to the delta specified in the
type declaration.

DEC Ada supports values of T'SMALL in the range 2.07%2 .. 2.031. In the
absence of a length representation clause for T SMALL, the compiler chooses
the largest power of 2 that is less than or equal to the delta value. For
example, in the following declaration MY_FIXED’SMALL is 0.03125 (27°):

type MY FIXED is delta 0.05 range 0.0 .. 1.0;

In the presence of a length clause, the compiler uses the value specified in the
clause. For example, in the following declaration MY_FIXED’ SMALL is 0.05:

type MY FIXED is delta 0.05 range 0.0 .. 1.0;
for MY FIXED'SMALL use 0.05;

The underlying model numbers chosen for the type are evenly spaced multiples
of the value of T'SMALL. The set of model numbers is also limited by the
range specified in the type declaration.

Values for objects of a fixed-point type are represented in DEC Ada as signed or
unsigned, two's complement (binary) numbers that are multipliers of the value
of T'SMALL. You can use length representation clauses to achieve unsigned
representations. See Section 1.2.3 for more information.

In DEC Ada, the storage size for an object of any fixed-point type is determined
by its delta and range, and—if the object is not packed—the storage size is
rounded up to an 8-, 16-, or 32-bit boundary. You can change the size with a
representation clause (see Section 1.2 of this manual and Chapter 13 of the
DEC Ada Language Reference Manual for more information). Storage size for
the fixed-point type may be affected when you specify the value of T SMALL
in a length representation clause.

Object Representation and Storage 1-13

Unless the language specifies otherwise, operations on fixed-point types are
handled as follows:

= On VAX systems, results that are powers of two are truncated towards 0.0.
Results that are not powers of two are rounded.

e On Alpha systems, all results are rounded.

Both model numbers and model intervals are used to define the permissible
legal values for the results of operations on real (in this case, fixed-point)
types. Any value that falls in the defined model interval for an operation is
a legal result value for that operation. When you are working with fixed-
point numbers, you may obtain results that in some cases are not what you
expect. (See Chapter 4 of the DEC Ada Language Reference Manual for more
information on model intervals and operations involving real types.)

For example, consider the following declaration:
type FP_TYPE is delta 0.1 range 0.0 .. 1.0;

Because there is no representation clause for the type FP_TYPE, FP_
TYPE'SMALL is 0.0625 (2-%); 0.0625 is the largest power of 2 that is not
greater than the delta (0.1). Suppose that your program uses an object of type
FP_TYPE as follows:

A: FP_TYPE := 0.1;

A';='3*A;

Because FP_TYPE’'SMALL is 0.0625, and the model numbers used to
represent objects of the type FP_TYPE are multiples of 0.0625, the model
numbers for A are 0.0625, 0.125, 0.1875, 0.25, and so on up to 1.0. In this

case, the model interval for A is 0.0625 .. 0.125. The model interval for 3*A is
3*0.0625 .. 3*0.125, or 0.1875 .. 0.375.

Because 0.125 is too large, it is not a possible value for A. However, the
lower bound (0.0625) is a possible (and legal) value for A. For efficiency and
to guarantee that the value of 3*A is also legal, the compiler could choose
0.0625 for A. Then 3*A would result in 0.1875, which may be rounded up
when printed out with an input-output procedure (rounding occurs when the
FORE or AFT parameters constrain the number of decimal digits that the
input-output procedure can print).

If FP_TYPE'SMALL were 0.03125 (either because of a different delta or
because of a representation clause), the model interval for A would be
0.09375 .. 0.125. Again, 0.125 is too large, but this time if the lower bound
(0.09375) is chosen for the value of A, 3*A results in 0.28125. This value is
closer to the expected value, and it is rounded up to 0.3 when printed out.

1-14 Object Representation and Storage

When working with fixed-point types and the results are not what you expect,
consider tuning the distance between the underlying model numbers by using
a length representation clause. See Chapter 13 of the DEC Ada Language
Reference Manual for more information.

1.1.5 Array Types and Objects

In DEC Ada, an object of an array type is stored as a vector of equally spaced
storage cells, one cell for each component. Any space between the components
is assumed to belong to the array object, and the space may or may not be
read or written by operations on the object. The storage size for an object of an
array type is determined by the following equation:

number of comgponents * (component s1ze + distance between components)

Multidimensional arrays are stored in row-major order. The default alignment
of DEC Ada array components is as follows:

= On VAX systems, array components are byte-aligned by default.

= On Alpha OpenVMS systems, array components are naturally aligned by
default. Natural alignment means that 1-byte components are aligned
on byte boundaries, 2-byte components are aligned on 2-byte boundaries,
4-byte components are aligned on 4-byte boundaries, and so on.

You can use the pragma COMPONENT_ALIGNMENT to change the default
alignment for any array type (see Section 1.2.2).

To force bit alignment and/or to minimize gaps, use the pragma PACK with the
array type declaration (see Section 1.2.1).

Consider the following declarations:

type COLORS is (RED, ORANGE, YELLOW, GREEN, BLUE, VIOLET);
type SPECTRUM is array(l .. 10) of COLORS;
WHITE LIGHT: SPECTRUM;

Because values of the type COLORS are stored in a byte
(see Section 1.1.1), and SPECTRUM has 10 components of the type COLORS,
10 bytes are allocated for the object WHITE_LIGHT.

In the next example, the object CHAR_ARRAY is stored in 30 bytes (thirty
8-bit components):

subtype INT is INTEGER range 1 .. 10;
type TWO DIM ARRAY is

array (INT range <>, INT range <>) of CHARACTER;
CHAR ARRAY: TWO DIM ARRAY(1 .. 5,5 .. 10);

Object Representation and Storage 1-15

1.1.6 Record Types and Objects

In DEC Ada, the representation chosen for objects of a record type depends on
a complex interaction among any applicable representation clauses or pragmas
and the types and subtypes of the record components. DEC Ada does not place
any implementation-defined components within the object.

For example, if the offset from the start of the object to a particular component
depends on a value of a discriminant of the object, that offset is recalculated
rather than stored in a hidden component in the record. This implementation
lets you explicitly specify all of the components of a record object and expect
the result to be suitable for mixed-language programming.

Record objects are laid out so that all components affected by record
representation clauses are first placed at the specified storage places. The
remaining components are then laid out in the order in which they appear
in the record declaration, discriminants first. Variants are overlaid and
any alignment requirements of the components are met. See Chapter 13
of the DEC Ada Language Reference Manual and Sections Section 1.2.6
and Section 1.2.2 of this manual for more information on record component
alignments.

In the absence of a record representation clause, record components and
subcomponents are aligned by default as follows:

= On VAX systems, byte alignment is the default.

e On Alpha systems, natural alignment is the default. Natural alignment
means that 1-byte components are aligned on byte boundaries, 2-byte
components are aligned on 2-byte boundaries, 4-byte components are
aligned on 4-byte boundaries, and so on.

You can use the pragma COMPONENT_ALIGNMENT to change the default
alignment (see Section 1.2.2).

In the following example, the components are laid out in the order I, J, A,
and B:

type SIMPLE ARRAY is array (INTEGER range <>) of BOOLEAN;
type SIMPLE LAYQOUT (I,J: INTEGER) is
record
A: INTEGER;
B: SIMPLE ARRAY(I .. J);
end record;

1-16 Object Representation and Storage

Consider another example:

type SHOW_LAYOUT (DISCRIMINANT: BOOLEAN) is
record
A: INTEGER;
case DISCRIMINANT is
when TRUE => B: CHARACTER;
when FALSE => C: INTEGER;
end case;
end record;

Here the components are laid out so that DISCRIMINANT appears first, then
A. Because they are not affected by representation clauses, the variants are
laid out starting on the first byte boundary after A.

The type SHOW_LAYOUT from the preceding example can be declared with a
representation clause that specifically places one of the variants elsewhere. In
this case, that variant is laid out first. In the preceding example, if SHOW _
LAYOUT is declared in the following representation clause, the compiler lays
out B first, then DISCRIMINANT, then A, then C:

for SHOW LAYOUT use
record
B at 0*8 range 0 .. 7;
end record;

In records with discriminants, the offset from the start of the record object to a
particular component may depend on the values of the discriminants and may
differ from one object to another. Similarly, the sizes of record objects of the
same type may vary because of different discriminant values.

A component whose size or position cannot be determined until run time is
called a dynamic component. Within any record type, dynamic components
cause succeeding components unaffected by representation clauses to be
allocated at run-time-computed offsets from the start of the record.

The dynamic calculation of component offsets and sizes can be done when the
type is elaborated, or it can be done later when any of the following occur:

= The subtypes of all of the components are forced
= The type is forced

e The component is selected (This happens when the actual value of a
discriminant is needed to make the calculation.)

In the following example, A and B are both dynamically allocated: A because
it is a dynamic component (an array with variable bounds), and B because its
offset depends on the size of A:

Object Representation and Storage 1-17

type COMPONENT ARRAY is array (INTEGER range <>) of INTEGER;
type ANOTHER ORDER (I,J: INTEGER) is
record
A: COMPONENT ARRAY(I .. J);
B: INTEGER;
end record;

The laying out of a record type lets the compiler determine the size of the
type, where the size of the type is also the size of the largest possible object
of that type. The size is related not to the sum of the sizes of the record’s
components but to where the compiler laid out the last component, including
any allowances that were made for alignments.

The size of a record type is computed as:

= The position of the last component that physically appears in the layout
plus

= The size of the last component (rounded up to an appropriate boundary if
necessary). (Rounding depends on whether or not the record type itself is
packable; see Section 1.2.1.)

Consider the following example:

type BIT ARRAY is

array (INTEGER range <>, INTEGER range <>) of BOOLEAN;
pragma PACK (BIT ARRAY);
subtype N is INTEGER range 1 .. 25;

type OFFICE SECTION LAYOUT (LENGTH : N := 1;
WIDTH : N := 1) is
record
OCCUPIED : BIT_ARRAY(l .. LENGTH, 1 .. WIDTH);
end record;

FLOOR1 : OFFICE_SECTION_ LAYOUT;

The component OCCUPIED is an array of 1-bit components whose bounds
depend on the values of LENGTH and WIDTH. When an unconstrained
object (such as FLOORL1) is declared, it must be allocated enough storage to
accommodate a value in which LENGTH and WIDTH could have any value
in the range 1 .. 25. For example, FLOOR1 can be assigned the following
aggregate:

FLOORL := (20, 25, (1 .. 20 => (1 .. 25 => FALSE)));

Because the storage size allocated for an object like FLOOR1 must be adequate
for any value that can be assigned to that object, the storage size must be the
maximum storage size for the object. (The maximum storage size for an object
is equal to the size of the type of the object.)

1-18 Object Representation and Storage

For example, you can calculate the maximum storage size of FLOORL1 as
follows. The maximum values for LENGTH and WIDTH are each 25, and
the largest possible OCCUPIED component is a 25-by-25 array (625 1-bit
components). Because LENGTH and WIDTH are each of an integer subtype,
one longword (32 bits) is allocated for each, and 625 bits are allocated for the
component OCCUPIED. The type is not packable. It does not have a compile-
time constant size of 32 or fewer bits. The estimated storage is rounded up
to a byte boundary. Therefore, a total of 88 bytes ((32 + 32 + 625 + rounding
bits)/8) is allocated for FLOORL.

The exact calculation of the size of a record may be nontrivial. For example,
the size of the following record type can be calculated only by determining each
possible record object and then choosing the largest result (which occurs when
the value of the discriminant D is 5 or 6):

subtype INT is INTEGER range 1 .. 10;
type TWO DIM ARRAY is

array (INT range <>, INT range <>) of CHARACTER;
type REC (D: INT :=1) is

record

A: TWO DIM ARRAY(1 .. D,D .. 10);

end record;

REC_OBJECT: REC;

In addition, the compiler uses simplifyinf assumptions to calculate the size

of the type REC (REC'SIZE is also the maximum storage size for the object
REC_OBJECT). These assumptions can cause the size allocated (or the values
returned by the SIZE and MACHINE_SIZE attributes to differ from what you
might otherwise expect.

For example, if you manually calculate the number of bits required for
component A and add that to the number of bits required for discriminant

D, you arrive at one answer. Alternatively, if you ask the compiler for REC
OBJECT'SIZE or REC_OBJECT'MACHINE_SIZE, you receive a different
answer. In fact, the compiler bases its answer on a value of 10 for the upper
bound of the first dimension and a value of 1 for the lower bound of the second
dimension. Therefore, the assumed maximum number of elements is 100, and
the assumed storage size—(100 * 8) + 32—is 832 bits.

See Chapter 13 of the DEC Ada Language Reference Manual for more
information on the size attributes.

Object Representation and Storage 1-19

1.1.7 Access Types and Objects

DEC Ada uses a virtual address to represent the value of an access type.

The storage size for this value is 4 bytes (32 bits). The objects designated by
values of an access type are sized and represented according to their specified
types. If the designated type is an unconstrained array, the virtual address
points to an array descriptor that is chosen by the same rules used for choosing
descriptors during parameter passing (see Chapter 4).

Note

Since these addresses do not necessarily point directly to objects of the
target, the accessed, or the designated type, it is unsafe (as well as
nonportable) to use the predefined generic procedure UNCHECKED _
CONVERSION to convert between addresses and access types.
Unchecked conversion does not work between machine addresses

and access types that point to unconstrained arrays. See Section 9.2
for more information.

Each nonderived access type is associated with a collection, which is storage
used for the objects designated by the type when allocators of that type are
evaluated. If you specify a nonzero value in a length representation clause
for the access type, that value determines the number of bytes (rounded up to
an appropriate boundary) to be allocated for the collection associated with the

type.

The collection is not extended if it is exhausted. If you specify a zero or
negative value, no storage is allocated for the collection, and the collection is
not extended. If you do not specify a length representation clause, the effective
size of the collection is all of the available memory. No initial allocation is
made, and the collection is extended as needed.

The collection associated with an access type is released when the scope of the
access type is exited. DEC Ada does not provide automatic garbage collection.
See Section 1.4.2 for more information on storage deallocation. See Chapter 13
of the DEC Ada Language Reference Manual for more information on length
representation clauses and collections.

In the following example, a 512-byte collection is initially allocated for the
access type NUM_PTR. One allocator is evaluated for FIRST_NUM, and 64
allocators are evaluated in the loop. Each evaluation causes 8 bytes of storage
to be allocated as follows:

= The designated object in each case is of the type NUM_RECORD and
requires 4 bytes (32 bits) for the integer component NUM.

1-20 Object Representation and Storage

e Each access type component (NEXT_NUM) requires 4 bytes (32 bits).

When | reaches 63, a total of 64 allocators has been evaluated, and the
collection limit has been reached. When | reaches 64, the collection limit is
exceeded and not extended, and the exception STORAGE_ERROR is raised.

-- Procedure to construct a linked-list of integers.

procedure COLLECTION is

type NUM_RECORD;
type NUM PTR is access NUM RECORD;
for NUM PTR’'STORAGE SIZE use 512;
type NUM RECORD is
record
NUM: INTEGER;
NEXT NUM: NUM PTR;
end record;

FIRST NUM,ASSIGN NUM: NUM_PTR;
begin

FIRST NUM := new NUM_RECORD’(O,null);

ASSIGN NUM := FIRST NUM;

for T in 1 .. 64 loop
ASSIGN NUM.NEXT NUM := new NUM_RECORD’(I,null);
ASSIGN NUM := ASSIGN NUM.NEXT NUM;

end loop;

end COLLECTION;

1.1.8 Address Types and Objects

DEC Ada uses a virtual address to represent the value of an object of the type
SYSTEM.ADDRESS. The storage size for an object of an address type is 4
bytes (32 bits).

1.1.9 Task Types and Objects

When you declare an object of a task type, the value of the object is used by the
DEC Ada run-time library to determine the address of the task control block
created for the task.

The storage size for an object of a task type is as follows:
= On VAX systems, it is 4 bytes (32 bits).
= On Alpha systems, it is 8 bytes (64 bits).

See Chapter 7 for more information on task storage allocation.

Object Representation and Storage 1-21

1.2 Data Optimization

DEC Ada provides the following to let you tailor the representation of
nonpredefined types:

Representation clauses

Address clauses

The language-defined representation pragma PACK

The DEC Ada representation pragma COMPONENT_ALIGNMENT

Type representation clauses and pragmas also let you control the
representation of any new or derived types that you declare.

The following sections discuss the individual DEC Ada features available for
controlling type representations. When choosing a particular feature, consider
the following parameters:

= The level of control that you want or need (where level of control means
the ability to specify particular layouts or alignments for specific types).

= Interactions between representation clauses and representation pragmas.
Types inherit representation clauses or representation pragmas from
parent types, but an explicit pragma can override the effect of an inherited
pragma.

e Performance.
= Portability.

Table 1-7 is a general comparison of the DEC Ada features with respect to
these parameters. Sections Section 1.2.1 to Section 1.2.7 discuss individual
features in more detail.

Table 1-7 Comparison of DEC Ada Features for Controlling Type Representations

Feature Level of Control Other Considerations

Pragma PACK Moderate; minimizes Overridden by representation

see Section 1.2.1 space but may clauses. Overrides the pragma
not align types COMPONENT_ALIGNMENT.

the way you want
them aligned. For
example, may cause
byte a“gnment on Exact effects may or may not

Alpha systems. be portable.
(continued on next page)

Changes in alignments may
affect performance.

1-22 Object Representation and Storage

Table 1-7 (Cont.) Comparison of DEC Ada Features for Controlling Type Representations

Feature Level of Control Other Considerations

Pragma COMPONENT_ALIGNMENT Moderate; changes Overridden by representation

see Section 1.2.2 overall alignments clauses and the pragma PACK.
of record or array

In programs that are to

run on multiple systems, is
useful for ensuring that a
layout is chosen for optimal
performance on each system.

components.

Useful for maintaining
portability in situations where
record or array types need

to have a particular layout
and alignment (for example,
in mixed-language programs
or in programs where data

is written to or read from
files and must have the same
layout on all systems).

Representation Clause High; allows you to Overrides the pragmas
see Sections 1.2.3 to Section 1.2.6 control specific layout PACK and COMPONENT _
and alignment of ALIGNMENT.

data. May or may not affect

performance.
May not be portable.

1.2.1 Pragma PACK

The predefined pragma PACK lets you minimize gaps between the components
of composite types (record and array types). When you apply the pragma PACK
to a DEC Ada record or array type declaration, it has an effect on the record or
array components that are packable. It may also have an effect on component

alignment.

In DEC Ada, a component is packable if its type allows it to be aligned on
an arbitrary bit boundary. For example, if you use the pragma PACK to pack
an array of BOOLEAN components, any gaps between the components are
minimized because enumeration type components are packable. However, the
pragma PACK may have no effect on an array of record components.

Table 1-8 lists the type categories provided in DEC Ada and shows whether or
not components of each type are packable.

Object Representation and Storage 1-23

Table 1-8 Packable Types

Considered
Packable Affected by the Pragma PACK if a
Type Category as a Type Component of a Record or Array
Integer Yes Yes
Enumeration® Yes Yes
Fixed-point Yes Yes
Floating-point No Yes
Address No Yes
Access No Yes
Task No Yes
Record Depends? Only if packable
Array Depends® Only if packable

1Even in the presence of the pragma PACK, composite-type components of the type CHARACTER
(or derived from the type CHARACTER) are not packed into 7 bits. The predefined enumeration
type CHARACTER (in the package STANDARD) is implemented as though the following
declaration occurred in the package STANDARD: for CHARACTER' SIZE use 8.

20nly if the record type has a compile-time constant size that is less than or equal to 32 bits, and
if all of its components are packable.

30nly if the array type is itself a packed array of packable arrays, or if it is an array of 1-bit
components. Components of the predefined array type STRING are not packable because the type
STRING does not have 1-bit or packable array components.

Table 1-9 shows the effect of the pragma PACK on arrays and records with
packable components.

Table 1-9 Effects of Packing the Components of Arrays and Records

With Length Without Length
Representation Clause Representation Clause
on Component Type on Component Type
With the Space between array and Space between array and record
Pragma PACK record components is components is minimized.
minimized. Component size Component size is the default
is determined by the length allocation for the component type.
clause.

(continued on next page)

1-24 Object Representation and Storage

Table 1-9 (Cont.) Effects of Packing the Components of Arrays and Records

With Length Without Length
Representation Clause Representation Clause
on Component Type on Component Type
Saves only as much space as Saves the maximum amount of
the length clause allows. storage space.
Without the Space between array and Space between array and record
Pragma PACK record components is not components is not minimized.
minimized. Component size Component size is the default
is determined by the length allocation for the component type.
clause.
Saves only as much space Saves no storage space.

as the length clause and the
default alignment allow (see
Sections 1.1.5 and 1.1.6).

In the following example, the pragma PACK is used to minimize gaps in an
array of fixed-point numbers:

type SMALL FIXED POINT is

delta 2.0**(-4) range 0.0 .. 0.5;
type SMALL FIXED POINT ARRAY is

array (INTEGER range <>) of SMALL FIXED POINT;
pragma PACK (SMALL FIXED POINT ARRAY);

If SMALL_FIXED_POINT_ARRAY is not packed, the space-saving benefit of
the small range of the SMALL_FIXED_POINT components is lost. In this case,
the compiler aligns all components on byte boundaries, causing 8-bit instead of
the expected 3-bit component representations and increasing the array size.

The next example shows the difference in space saving when length
representation clauses are involved. (See Section 1.2.3 for more information on
length clauses):

type SMALL INTEGER is new INTEGER range 0 .. 7;
for SMALL INTEGER'SIZE use 4;

type UNPACKED SMALL INTEGER ARRAY is array (1 .. 10) of SMALL INTEGER;

type PACKED SMALL INTEGER ARRAY is array (1 .. 10) of SMALL INTEGER;
pragma PACK (PACKED SMALL INTEGER ARRAY) ;

Object Representation and Storage 1-25

In this example, the range of the type SMALL_INTEGER causes it to require
only 3 bits. However, the length clause specifies a size of 4 bits. For the array
UNPACKED_SMALL_INTEGER_ARRAY, the length clause is honored for the
SMALL_INTEGER components.

Because the array is declared without the pragma PACK, all of the components
are aligned on byte boundaries, and each component has an effective size of
8 bits instead of 4. The size of the array is 80 bits. For the array PACKED _
SMALL_INTEGER_ARRAY, each component has a size of 4 bits, and any extra
space between the components is eliminated. The size of the array is 40 bits.

When using the pragma PACK, you must be careful to pack at the appropriate
level. The pragma packs the components with respect to each other. It does
not pack the subcomponents of the components closer together. In the following
example, the size of the record UNPACKED_COMPONENTS is significantly
larger than the size of the record PACKED_COMPONENTS, even though both
are declared with the pragma PACK:

type UNSIGNED INTEGER is new INTEGER range 0 .. 7;
for UNSIGNED INTEGER'SIZE use 3;

type PACKED ARRAY is array (1 .. 10) of BOOLEAN;
pragma PACK (PACKED ARRAY);

type UNPACKED ARRAY is array (1 .. 10) of BOOLEAN;

type UNPACKED COMPONENTS is
record
A,B: UNSIGNED INTEGER;
C: UNPACKED_ARRAY;
end record;
pragma PACK (UNPACKED_COMPONENTS);

type PACKED COMPONENTS is
record
D,E: UNSIGNED INTEGER;
F: PACKED_ARRAY;

end record;
pragma PACK (PACKED_COMPONENTS);
BIG RECORD: UNPACKED COMPONENTS; -- Size is 88 bits.
COMPACT RECORD: PACKED COMPONENTS; -- Size is 16 bits.

The pragma PACK never forces a component that begins a record variant off
of a byte boundary. Such components are allocated on the next byte boundary.
To force a component that begins a record variant to a boundary other than a
byte boundary, you must use a record representation clause. See Sections 1.1.6
and 1.2.5 of this manual and Chapter 13 of the DEC Ada Language Reference
Manual.

1-26 Object Representation and Storage

1.2.2 Pragma COMPONENT_ALIGNMENT

DEC Ada provides the pragma COMPONENT_ALIGNMENT, which lets you
control the default alignment of array and record components (see Sections
1.1.5 and 1.1.6).

You can use the /WARNINGS=COMPILATION_NOTES qualifier with any of
the DEC Ada compilation commands to determine:

Alignments the compiler has chosen for the array components in your
program

Alignments the compiler has chosen for the record components in your
program

You may want to change or ensure the alignment of certain record and array
components for various reasons. For example:

You are working with data that is defined in a specific format (something
other than Ada format, Alpha format, and so on) and you need to match it.

You are concerned about performance. For example, access speed is faster
on Alpha systems if your data is naturally aligned. However, if you are
working on program with large amounts of data, paging may begin to
interfere with performance. In that case, you may want to compress the
data and byte align it.

You are writing mixed-language programs that involve Fortran common
blocks.

You can specify a pragma COMPONENT_ALIGNMENT for a specific array or
record type or for a declarative part. The alignment choices are as follows:

COMPONENT_SIZE—produces natural alignment.

COMPONENT _SIZE_4—produces natural alignment for components with
a size of 4 or fewer bytes. Anything larger is aligned on a 4-byte boundary.

DEFAULT—produces the default alignment for the system you are working
on (see Sections 1.1.5 and 1.1.6).

STORAGE_UNIT—produces byte alignment.

For example, the following declaration uses the pragma COMPONENT_
ALIGNMENT to specify natural alignment for the components of the record
type FLOAT_REC:

Object Representation and Storage 1-27

type FLOAT REC is record
SINGLE: FLOAT;
DOUBLE: LONG_FLOAT;
end record;
pragma COMPONENT_ALIGNMENT(COMPONENT_SIZE, FLOAT_REC);

In Example 1-1, the pragma COMPONENT_ALIGNMENT applies to all of the
record or array declarations in the declarative part (unless they are already
specified in another representation pragma or representation clause).

1-28 Object Representation and Storage

Example 1-1 Using the Pragma COMPONENT_ALIGNMENT

package ALIGNMENT EXAMPLE is

-- No pragma applies.

type ARR NO PRAGMA is array(l .. 10) of INTEGER;

-- Pragma 1; specifies byte alignment.

pragma COMPONENT ALIGNMENT (STORAGE UNIT) ;

-- Pragma 2 applies.

type REC_COMP SIZE is

record
Cl : CHARACTER; -- at byte 0
C2 : SHORT INTEGER; -- at byte 2
C3 : LONG_FLOAT; -- at byte 8
end record;

-- Pragma 2; specifies natural alignment.

pragma COMPONENT ALIGNMENT (COMPONENT SIZE, REC COMP_SIZE) ;

-- Pragma 1 applies.
type REC_STOR UNIT is

record
Cl : CHARACTER; -- at byte 0
C2 : SHORT INTEGER; -- at byte 1
C3 : LONG_FLOAT; -- at byte 3
end record;

-- Pragma 3 (in private part) applies.

type REC COMP SIZE 4 is

record
Cl : CHARACTER; -- at byte 0
C2 : SHORT INTEGER; -- at byte 2
C3 : LONG_FLOAT; -- at byte 4
end record;

-- Pragma 1 applies.

type ARR _STOR UNIT is array(l .. 10) of INTEGER;

-- Pragma 1 applies.

type REC_STOR UNIT ALSO is

record
Cl : CHARACTER; -- at byte 0
C2 : ARR STOR UNIT; -- at byte 1
end record;

(continued on next page)
Object Representation and Storage 1-29

Example 1-1 (Cont.) Using the Pragma COMPONENT_ALIGNMENT
private

-- Pragma 3.

-- Specifies that components with a size of 4 or fewer bytes
-- are naturally aligned; components that are larger than 4 bytes
-- are placed on the next 4-byte boundary.

pragma COMPONENT ALIGNMENT (COMPONENT SIZE 4, REC COMP SIZE 4);
end ALIGNMENT EXAMPLE;

When the pragma PACK and the pragma COMPONENT_ALIGNMENT are
directly applied to the same type, the pragma PACK takes precedence over the
pragma COMPONENT_ALIGNMENT.

Derived types inherit any representation pragmas or clauses that apply to
their parent types, but an explicit pragma applied to the derived type takes
precedence over an inherited pragma. An explicit pragma COMPONENT _
ALIGNMENT takes precedence over an inherited pragma PACK and vice
versa. Example 1-2 shows how the pragmas PACK and COMPONENT_
ALIGNMENT interact.

For more information about the pragma PACK, see Section 1.2.1 and Chapter
13 of the DEC Ada Language Reference Manual. For more information about
the pragma COMPONENT_ALIGNMENT, see Chapter 13 of the DEC Ada
Language Reference Manual. For more examples of situations where the
pragma COMPONENT_ALIGNMENT is used, see Sections Section 4.6 and
Section 4.7.

1.2.3 Length Representation Clauses

Length representation clauses let you explicitly control the amount of storage
allocated for objects of a particular type.

The following example shows how length representation clauses are useful for
declaring unsigned integer and unsigned fixed-point objects:

type UNSIGNED INTEGER is new INTEGER range 0 .. 2**16-1;
for UNSIGNED INTEGER'SIZE use 16;

type UNSIGNED FIXED POINT is
delta 2.0**(-8) range 0.0 .. 255.0%2.0%*(-8);
for UNSIGNED FIXED POINT’'SIZE use 8;

1-30 Object Representation and Storage

ALIGNMENT

package INTERACTION EXAMPLE is
-- Pragma COMPONENT ALIGNMENT 1.

Example 1-2 Interaction Between the Pragmas PACK and COMPONENT_

pragma COMPONENT ALIGNMENT (COMPONENT SIZE);
-- Pragma COMPONENT ALIGNMENT 1 applies, causing COMPONENT SIZE

-- (natural) alignment.
type REC_COMP SIZE is
record
Cl : CHARACTER;
C2 : SHORT INTEGER;
C3 : LONG_FLOAT;
end record;

-- Pragma PACK applies.
type REC_PACKED is
record
Cl : CHARACTER;
C2 : SHORT_INTEGER;
C3 : LONG_FLOAT;
end record;
pragma PACK(REC_PACKED);

-- Pragma PACK applies.

at
at
at

at
at
at

o

byte
byte
byte

o N

o

byte
byte
byte

w =

type REC_PACKED 2 is new REC PACKED;
-- Pragma COMPONENT ALIGNMENT 2 applies, causing COMPONENT SIZE 4

-- alignment.

type REC_COMP SIZE 4 is new REC PACKED;

-- C1 is at byte 0
-- C2 is at byte 2
-- C3 is at byte 4

-- Pragma COMPONENT ALIGNMENT 2.

pragma COMPONENT ALIGNMENT (COMPONENT SIZE 4, REC_COMP_SIZE 4);

end INTERACTION EXAMPLE;

Object Representation and Storage 1-31

The first declaration causes objects of the type UNSIGNED_INTEGER to be
stored as unsigned 2-byte quantities, rather than as signed 4-byte quantities.
The second declaration causes objects of the type UNSIGNED_FIXED_POINT
to be stored as unsigned bytes, rather than as signed 2-byte quantities.
Because of Ada language rules, arithmetic operations involving these objects
are signed.

A length representation clause is also useful for controlling the size of
components in packed arrays. For example:

type SMALL INTEGER is new INTEGER range 0 .. 7;
for SMALL INTEGER'SIZE use 4;

type SMALL INTEGER ARRAY is array (1 .. 16) of SMALL INTEGER;
pragma PACK (SMALL INTEGER ARRAY);

In this example, the range of SMALL_INTEGER and the use of the pragma

PACK would cause the size of each component of SMALL_INTEGER_ARRAY
to be 3 bits. However, the length representation clause overrides the pragma
PACK and causes the size of each component in the packed array to be 4 bits.

Chapter 13 of the DEC Ada Language Reference Manual gives complete
information on the use of length representation clauses. See Table 1-9 for
information on the interaction between length representation clauses and the
pragma PACK.

1.2.4 Enumeration Representation Clauses

Enumeration representation clauses let you specify the internal codes that
represent the literals of an enumeration type. When you use an enumeration
representation clause, the storage size of each enumeration type is the amount
of storage required to represent the full range of codes specified. For example:

type ANSWER is (YES, NO, UNDECIDED);
for ANSWER use (YES => 0, NO => 8, UNDECIDED => 65535);
MY UNSIGNED ANSWER: ANSWER;

The storage allocated for MY_UNSIGNED_ANSWER is 2 bytes (16 bits). Even
though only three integer codes must be represented, 2 bytes (16 bits) are
needed to store values in the range 0 .. 65535.

If any of the internal codes specified by the representation clause are negative,
the representation for the type is signed. Otherwise, it is unsigned. If you
redeclare the type ANSWER as follows, the internal codes will be signed:

type ANSWER is (NO, YES, UNDECIDED);
for ANSWER use (NO => -8, YES=> 0, UNDECIDED => 65535);
MY STGNED ANSWER: ANSWER;

1-32 Object Representation and Storage

The signed representation requires an additional sign bit. To meet both
the range of values (0 .. 65535) and the signed representation, the storage
allocated for MY_SIGNED_ANSWER is 4 bytes (32 bits).

1.2.5 Record Representation Clauses

Record representation clauses let you force a record type to have a particular
representation. They are useful any time you need to lay out an area of
memory in a particular way. For example:

= You can use a record with a record representation clause to lay out a series
of objects in a particular order.

= You can use record representation clauses to lay out record types that
declare objects that may be passed to other-language routines, operating-
system routines, or run-time library routines.

In particular, it is good programming practice to specify the layout of any
record that is read from or written to an external file.

The following example defines a 16-bit mask, which contains four 4-bit fields:

-- Record defining a 4-bit field.
type FIELD TYPE is
record
BIT1 : BOOLEAN;
BIT2 : BOOLEAN;
BIT3 : BOOLEAN;
BIT4 : BOOLEAN;
end record;

for FIELD TYPE'SIZE use 4;
for FIELD TYPE use
record
BIT1 at 0 range
BIT2 at 0 range
BIT3 at 0 range
BIT4 at 0 range
end record;

w D - o
w NP o

-- Record defining a 16-bit mask; the record
-- representation clause lays out the 4-bit fields
-- so that they are contiguous half-bytes.
type BIT MASK TYPE is
record
FIELD1 : FIELD TYPE;
FIELD2 : FIELD TYPE;
FIELD3 : FIELD TYPE;
FIELD4 : FIELD TYPE;
end record;

Object Representation and Storage 1-33

for BIT MASK TYPE use
record
FIELD1 at 0 range 0
FIELD2 at 0 range 4 ..
FIELD3 at 1 range 0 ..
FIELD4 at 1 range 4 ..
end record;

~ W Jw

for BIT MASK TYPE'SIZE use 16;

When declaring record types with variants, you can use record representation
clauses to conserve space. For example:

package ALIGN VAR is

type SMALL INT is new INTEGER range 0 .. 7;
for SMALL INT'SIZE use 3;

type VARIANT RECORD (VAR: BOOLEAN) is
record
A: SMALL INT;
case VAR is
when TRUE => X: CHARACTER;
Y: SMALL INT;
when FALSE => Z: SMALL INT;
end case;
end record;

for VARIANT RECORD use
record

A at 0 range 0 ..
VAR at 0 range 3 .. 3;
X at 0 range 4 .. 11;
Y at 0 range 12 .. 14;
Z at 0 range 4

end record;

end ALIGN VAR;

The representation clause on the type VARIANT_RECORD causes the
discriminant, VAR, to be aligned on a bit boundary. When an object is declared
and a case choice is made, the appropriate component is stored starting on

bit 4 of the word of the storage allocated for the record object. Without the
representation clause, the variants would be aligned on byte boundaries.

If you declare a record type with fixed-size components that follow (or are
interspersed with) varying-size components, you generate slower, less efficient
code than if you declare a record type where all of the fixed-size components
precede the varying-size components. For example:

1-34 Object Representation and Storage

package SLOW _LAYOUT is
type VARYING ARRAY is array (INTEGER range <>) of BOOLEAN;

type SLOW_RECORD (I,J: INTEGER) is
record
A: INTEGER;
B: VARYING_ARRAY(I o J);
C: INTEGER;
D: VARYING_ARRAY(I o I);
end record;

SLOW_OBJECT: SLOW _RECORD(1,10);
end SLOW_LAYOUT;

The compiler can set up the layout for the type SLOW_RECORD only to the
point of SLOW_RECORD.B. The rest of the layout and the allocation of storage
for SLOW_OBJECT must be done at run time. Furthermore, each time you
access SLOW_OBJECT.C, the size of SLOW_OBJECT.B must be calculated,
decreasing the efficiency of any code that uses SLOW_OBJECT.

If the logical layout of a record type such as SLOW_RECORD is important,
you can improve the efficiency of your code by declaring the type with a
representation clause that forces the fixed-size components to known locations.
For example:

package NOT SO SLOW LAYOUT is

type VARYING ARRAY is array (INTEGER range <>) of BOOLEAN;
pragma PACK (VARYING ARRAY);

type FASTER_RECORD(I,J: INTEGER) is
record
A: INTEGER;
B: VARYING_ARRAY(I o d);
C: INTEGER;
D: VARYING_ARRAY(I Lo I);
end record;

for FASTER RECORD use
record
I at 0 range
J at 4 range
A at 8 range
C at 12 range
end record;

FASTER OBJECT: FASTER RECORD(1,10);

.. 31;
.. 31;
.. 31;

. 31;

O O O o

end NOT SO SLOW_LAYOUT;

Object Representation and Storage 1-35

FASTER_OBJECT is laid out so that the components fall in the following
order: I, J, A, C, B, and D. The type representation clause forces the allocation
of the components FASTER_OBJECT.B and FASTER_OBJECT.D to the end of
the record.

When you use a record representation clause to request a small storage space
for a component of a nonfixed-point discrete type, the record component value
may be biased. (Its value can be altered predictably.)

When biasing occurs, the value stored is the unsigned quantity formed by
subtracting COMPONENT_SUBTYPE'FIRST from the original value.

Because subtraction or addition is required to assign or fetch from the
component storage location, the generated code uses slightly more machine
time than the unbiased form.

In the following example, the values of R.C are biased so that they can be
stored in the 2 bits required by the record representation clause. Without the
record representation clause, they are each stored in 32 bits:

subtype S is INTEGER range 100 .. 103;
type R is
record
C : S;
end record;
for R use
record
C at 0 range 0 .. 1;
end record;

0 : R;

0.C := 100;

1.2.6 Alignment Clauses

When you use a record representation clause to define the layout of a
particular record type, you have the option of specifying an alignment clause to
determine the alignment of all record objects (including record objects that are
components) of that type. The DEC Ada Language Reference Manual gives the
syntax and rules for using alignment clauses.

In DEC Ada, records can be aligned on any byte address that is a power of

2, up to 512 (or 29). In the following fragment, the value of ALIGN_AT can

be any integer in the series 1, 2, 4, 8, ..., 512. A value of 1 indicates byte
alignment, a value of 2 indicates 2-byte alignment, and a value of 512 indicates
512-byte alignment.

1-36 Object Representation and Storage

type SMALLNUM is new INTEGER range 0 .. 7;
for SMALLNUM'SIZE use 3;

ALIGN_AT: constant := 2;

type ALIGNED RECORD is
record
Al: BOOLEAN;
A2: SMALLNUM;
end record;

for ALIGNED RECORD use
record at mod ALIGN AT;
Al at 0 range 0 .. 0;
A2 at 0 range 1 .. 3;
end record;

type SHOW ALIGNMENT is
record
S1,52,S3: ALIGNED RECORD;
end record;

In this example, the components of the record SHOW_ALIGNMENT are
aligned on 2-byte (word) boundaries, and the record SHOW_ALIGNMENT
itself is aligned so that its component alignment can be observed. If the value
of ALIGN_AT is 16, then the components of the record SHOW_ALIGNMENT
are aligned on 16-byte boundaries.

If you declare an array of components of the type ALIGNED_RECORD and
apply the pragma PACK to the array, the pragma would have no effect because
the alignment clause interacts with the pragma. This is legal because the
components of ALIGNED_RECORD are packable, and the record can have a
compile-time size of less than 32 bits.

Alignment clauses can be useful in a mixed-language environment where
you may want to force objects to particular boundaries. However, the VAX
hardware generally requires little alignment:

= Only a few instructions and OpenVMS Run-Time Library routines need
alignments (for example, queue and interlocked instructions).

e DEC Ada currently generates few interlocked instructions.
The Alpha hardware runs more efficiently with naturally aligned data.

The DEC Ada pragma COMPONENT_ALIGNMENT is also useful in a
mixed-language environment. See Section 1.2.2 for more information.

Object Representation and Storage 1-37

1.2.7 Address Clauses

In DEC Ada, you can use address clauses to store objects (constants and
variables) or imported subprograms at specific memory locations. You can use
address clauses to precisely map and overlay memory areas during program
execution. Chapter 13 of the DEC Ada Language Reference Manual gives the
syntax and rules for using address clauses. In particular, note the following:

= A program should not use address clauses to overlay two or more Ada
objects.

< When you declare an object with an address clause, the usual implicit or
explicit initialization associated with the type of the object is performed.
See Section 3.2.1 of the DEC Ada Language Reference Manual for the rules
about intializing objects. Access values are initialized to null, and record
components can also receive initial values.

For example, consider the following declarations:

type HEADER TYPE is record
HEADER FIELD: BYTE_ARRAY(l .. LENGTH_OF_FIELD);
FILLER : BYTE_ARRAY(l .. LENGTH_OF_FILLER)
:= (others => SLASH) ;
end record;

X: HEADER TYPE;
for X use at SOME ADDRESS;

Because the component FILLER is initialized by declaring the type HEADER _
TYPE, you might expect X.FILLER to be initialized to the same value. Instead,
because the DEC Ada compiler is following the Ada language rule about
initializing X when it is declared with the address clause, both X.HEADER_
FIELD and X.FILLER are initialized with a null value chosen by the compiler.
The type initialization is overwritten by the object initialization.

To control the initialization of X and still have the effect of an address clause,
you can rewrite the previous code as follows:

type BAHT is access HEADER TYPE;

for AHT’STORAGE SIZE use 0;
function TO AHT is new UNCHECKED_CONVERSION(ADDRESS, AHT) ;
X: HEADER TYPE renames TO_AHT(SOME_ADDRESS).all;

When you declare an object without an address clause, the compiler chooses
an appropriate location for storing the object. However, when you specify an
address clause, the compiler does not check that the address you have specified
is appropriate. When you use address clauses, you need to be sure that you
choose values that are meaningful in the OpenVMS environment.

1-38 Object Representation and Storage

One way to obtain a meaningful value is to use the OpenVMS Run-Time
Library (RTL) routine LIB$GET_VM to obtain a storage location. Example 1-3
is a complete procedure showing the use of an address clause to overlay an
Ada record object onto storage allocated by LIBSGET_VM. The OpenVMS RTL
Library (LIB$) Manual describes LIB$GET_VM in more detail.

Example 1-3 Using an Address Clause and LIB$GET_VM

with CONDITION HANDLING; use CONDITION HANDLING;
with SYSTEM; use SYSTEM;

with INTEGER TEXT IO; use INTEGER TEXT IO;

with TEXT I0; use TEXT I0;

with LIB;

procedure USE ADDRESS CLAUSE is

-- Declare a record for which storage will be allocated
-- by the OpenVMS Run-Time Library routine LIB$GET VM; and
-- freed by LIBSFREE VM.
subtype STRING 14 is STRING(1 .. 14);
type OBJ REC is
record
A: CHARACTER;
B: INTEGER;
C: STRING 14;
end record;

-- Declare the values needed to be passed to LIBSGET VM and
-- LIB$FREE_VM.

NUM BYTES: constant INTEGER := OBJ REC’'MACHINE SIZE/S;
BASE ADDR: ADDRESS;
STATUS: COND VALUE TYPE;

begin
-- Allocate the storage for a record of type OBJ REC.

LIB.GET VM (STATUS, NUM_BYTES, BASE_ADDR);
if not CONDITION_HANDLING.SUCCESS(STATUS)
then
PUT LINE("Failed to allocate memory");
else
PUT ("Address of allocated storage is ");
PUT(TO_INTEGER(BASE_ADDR));
NEW LINE;
end if;

(continued on next page)

Object Representation and Storage 1-39

Example 1-3 (Cont.) Using an Address Clause and LIB$GET_VM

-- Declare an object of type OBJ REC, and place it at the
-- storage location obtained with LIBSGET VM using an
-- address clause.

declare
OBJECT: OBJ_REC;
for OBJECT use at BASE ADDR;
0: STRING 14 := "Time for fun..";

-- Do some useful work with the record object, and
-- then free the storage by calling LIBSFREE VM.

begin
OBJECT := (A => 'A’, B => 5, C => "Summer is a...");
PUT_LINE(OBJECT.C);
OBJECT.C := O;
PUT_LINE(OBJECT.C);
end;
LIB.FREE VM (STATUS, NUM_BYTES, BASE_ADDR);

end USE_ADDRESS CLAUSE;

1.3 Determining the Sizes of Types and Objects

DEC Ada provides a number of methods for determining how much storage is
allocated for particular types and objects:

= You can use the predefined attributes T'SIZE and T MACHINE_SIZE to
determine the number of bits used and allocated for a given type or object.

= You can use the /IWARNINGS=COMPILATION_NOTES qualifier on
any of the compilation commands (DCL ADA and ACS COMPILE and
RECOMPILE) to determine how record types and other structures are laid
out.

= You can use the debugger (after compiling and linking your program) to
examine the sizes of your variables.

The first of these methods is discussed in this section, and the other two are
described in Developing Ada Programs on OpenVMS Systems.

As indicated by its name, the predefined SIZE attribute returns information
on the size of a type or an object (see Chapter 13 of the DEC Ada Language
Reference Manual). When using this attribute, note the following differences in
the values it returns:

1-40 Object Representation and Storage

e T'SIZE (where T represents a type) returns the minimum number of bits
needed to represent an object of the type.

= O'SIZE (where O represents an object) returns the actual number of bits
used for the object’s current value.

The minimum number of bits and the actual number of bits can often
be different. For example, given the following declarations, the value of
BOOL'SIZE is 1, and the value of B’ SIZE is 8:

type BOOL is new BOOLEAN;
B: BOOL;

One bit is the minimum amount of storage required for an object of the type
BOOL. Eight bits is the actual amount of storage used by the object B.

The DEC Ada attribute T MACHINE_SIZE provides similar information for
a type or subtype that O’ SIZE provides for an object. Table 1-10 summarizes
the differences between T'SIZE, O’ SIZE, and T MACHINE_SIZE.

Table 1-10 Comparison of SIZE and MACHINE_SIZE Attribute Results

Type or Subtype T'SIZE

O’ SIZE

T'MACHINE_SIZE

Minimum number
of bits needed to
represent an object
of the type or
subtype T.

Discrete or fixed-
point without length
clause

Actual number of
bits used by O. If

O is not a record

or array component
or is unpacked, the
result is the same as
the T MACHINE_
SIZE result for O's
subtype. If O is a

packed component, the

result is the number
of bits needed so that
components can be
packed as tightly as
possible.

Total number of
bits allocated for an
object of the subtype.
Result is the actual
number of bits used,
rounded up to an 8-,
16-, 32-, or 64-bit
boundary (64-bit
boundaries apply

to discrete types on
AXP systems only).
Representation is
signed.

(continued on next page)

Object Representation and Storage 1-41

Table 1-10 (Cont.) Comparison of SIZE and MACHINE_SIZE Attribute Results

Type or Subtype

T’ SIZE

O’ SIZE

T'MACHINE_SIZE

Discrete or fixed-
point with length
clause

All other types, with
or without length
clauses

Actual number of bits

needed to represent an

object of the type or
subtype T.

Minimum number
of bits needed to
represent an object
of the type or
subtype T.

Actual number of bits
used by O; length
clause determines
upper bound (except if
O is a component of a
record specified with a
component clause).

Actual number of bits
used by O.

Total number of

bits allocated for an
object of the type or
subtype T. Result is
the actual number of
bits used, rounded up
to an 8-, 16-, 32-, or
64-bit boundary (64-
bit boundaries apply
to discrete types on
AXP systems only).
Representation can
be unsigned.

Total number of

bits allocated for an
object of the type or
subtype T. Result is
the actual number of
bits used, rounded up
to a byte boundary.

The T MACHINE_SIZE of a base type can be equal to or greater than the
T SIZE of the same base type. Consider the following declarations:

type INT8 is range 0 ..

255;

for INT8'SIZE use 8;

I: INTS;

An examination of INT8 and | produces the following results:

INT8’ SIZE

INT8' MACHINE_SIZE

I"SIZE

INT8'BASE' SIZE
INT8' BASE’' MACHINE_SIZE

8
8
8

16
16

The number of bits needed to represent the specified range values
symmetrically about 0 is 16, so that INT8'BASE' SIZE is 16. This value

is greater than the values of INT8 MACHINE_SIZE, INT8’SIZE, and I’ SIZE.
The values of INT8' MACHINE_SIZE and I’ SIZE are equal.

1-42 Object Representation and Storage

Table 1-11 gives a set of results for a variety of interesting cases.

Table 1-11 Results of Size Attributes for Various Types and Objects

Declaration and Attributes

Number of Bits

type BOOL17 is new BOOLEAN,;
for BOOL17’SIZE use 17;
B: BOOL17;

Type BOOL17' SIZE 17
Object B’ SIZE 17
Type BOOL17' MACHINE_SIZE 32
Type BOOL17' BASE' SIZE 17
Type BOOL17' BASE' MACHINE_SIZE 32
type ET is range 0 .. 255;

for ET' SIZE use 8§;

E: ET;

Type ET' SIZE 8
Object E’ SIZE 8
Type ET' MACHINE_SIZE 8
Type ET'BASE’ SIZE 16
Type ET'BASE’' MACHINE_SIZE 16

(continued on next page)

Object Representation and Storage 1-43

Table 1-11 (Cont.) Results of Size Attributes for Various Types and Objects

type NET is new ET range 0 .. 7,
NE: NET;

Type NET' SIZE

Object NE’ SIZE

Type NET’MACHINE_SIZE

Type NET' BASE’ SIZE

Type NET'BASE’ MACHINE_SIZE

= e
o O 0 ™

type NT is new INTEGER range 0 .. 255;
for NT’ SIZE use 8;
N:NT;

Type NT' SIZE

Object N’ SIZE

Type NT" MACHINE_SIZE

Type NT'BASE' SIZE

Type NT'BASE’' MACHINE_SIZE

N N 00 00

w w

type BIT_ARRAY is array (1 .. 10) of
BOOLEAN,;

pragma PACK (BIT_ARRAY);

BA: BIT_ARRAY,

Type BIT_ARRAY ' SIZE 10
Object BA’ SIZE 10
Type BIT_ARRAY’ MACHINE_SIZE 16
Type BIT_ARRAY ' BASE' SIZE 10
Type BIT_ARRAY ' BASE’ MACHINE_SIZE 16

1.4 Storage Allocation and Deallocation

To make efficient use of storage from your DEC Ada programs, you need to
know how and where objects are stored. You also need to know how and when
objects, particularly objects designated by access types, are deallocated. The
following sections give information on both of these topics.

1-44 Object Representation and Storage

1.4.1 Storage Allocation

The DEC Ada compiler stores objects in registers, on a stack, in static memory,
or in dynamic memory (on the heap) depending upon the objects’ sizes, when
their sizes are known, their types, how long their lifetimes are, and how they
are used.

If you take the address of an object (O’ ADDRESS), an implicit pragma
VOLATILE is assumed for the object within the scope of the subprogram or
task where the address is taken. Within that scope, the object is guaranteed
to be allocated at a unique memory location, regardless of where the object is
declared.

If the object is also declared within that scope, the object is allocated in
memory for the duration of the object’s lifetime. The object receives a unique
memory address and keeps it from the time the object is elaborated until the
time when its containing scope is left. See Chapter 9 for more information
on working with address values. See Chapter 9 of the DEC Ada Language
Reference Manual and Chapter 7 of this manual for more information on the
pragma VOLATILE.

The compiler always stores objects created by allocators in dynamic memory.
In accordance with Ada language rules, the dynamic memory allocated for
each access type is structured as a collection. A collection is a memory area
that comes into existence when the access type is elaborated and goes out of
existence when the scope containing the access type is left.

Each time an allocator is evaluated, storage for the resulting object is allocated
from the collection belonging to the corresponding access type. There is some
CPU overhead involved, both when the collection is allocated and when the
collection is deallocated. See Section 1.4.2 for more information on storage
deallocation.

By default, no storage is initially allocated for a collection. Storage is allocated
as needed, until all virtual memory is depleted. You can change the default
behavior with a length clause. See Chapter 13 of the DEC Ada Language
Reference Manual for more information. See Section 1.1.7 for more information
on the representation and allocation of objects of access types.

You may be able to improve the efficiency of your program by carefully sizing
the collections allocated for access types. When you use a length representation
clause (T STORAGE_SIZE) to specify the sizes of access type collections,
choose values that will be integrally related after they have been rounded up.
(T STORAGE_SIZE specifies the number of bytes to be used for a collection.
In DEC Ada, this number is rounded up to an appropriate boundary). For
example, the values 512*4, 512*8, and 512*12 are better than the values

Object Representation and Storage 1-45

512*2, 512*7, and 512*13. There is no common denominator for 2, 7, and 13,
but there is a common denominator for 4, 8, and 12.

This practice results in reduced fragmentation of memory. Also, when you free
several collections (implicitly) at scope exit, the freed storage is likely in blocks
large enough to be useful for other collections.

1.4.2 Storage Deallocation

DEC Ada does not provide garbage collection. However, there are at least two
ways in which you can deallocate objects of access types:

= Make use of the fact that the collection associated with an access type is
automatically deallocated when the end statement of the scope containing
the access type is encountered.

= Instantiate the language-defined generic procedure UNCHECKED _
DEALLOCATION and call the instantiation to explicitly deallocate
the storage for an object designated by a value of an access type. See
Chapter 13 of the DEC Ada Language Reference Manual for the syntax of
UNCHECKED_DEALLOCATION.

When you call an instantiation of UNCHECKED_DEALLOCATION,
storage is deallocated for the object within the collection allocated for the
access type. You conserve the use of the collection, rather than deallocating
the collection for general use by your program.

The collections for access types declared in library packages are not deallocated
until the entire program has completed executing. The only way you can
conserve the use of such storage is to use an instantiation of the procedure
UNCHECKED_DEALLOCATION.

Example 1-4 shows a main program that depends on an access type declared
in a library package. The program uses an instantiation of the procedure
UNCHECKED_DEALLOCATION to deallocate the storage for the access type.

1-46 Object Representation and Storage

Example 1-4 Using UNCHECKED_DEALLOCATION to Control Access Type
Storage Deallocation

-- Package containing declarations of access type and

-- corresponding deallocation procedure. Collection size is
-- set using a length clause, to simulate a limited-storage
-- application.

with UNCHECKED DEALLOCATION;
package ACCESS TYPES is

type LIST ELEMENT CLASS is (HEAD, ELEMENT) ;
type LIST_ELEMENT(CLASS: LIST_ELEMENT_CLASS);
type LIST ELEMENT PTR is access LIST ELEMENT;
for LIST ELEMENT PTR’'STORAGE SIZE use 8+*512;
type LIST ELEMENT (CLASS: LIST_ELEMENT_CLASS) is
record
NEXT: LIST ELEMENT PTR;
case CLASS is
when ELEMENT => ELEMENT VALUE: INTEGER;
when HEAD => HEAD VALUE: INTEGER := 0;
end case;
end record;

procedure FREE ELEMENT is
new UNCHECKED DEALLOCATION(LIST ELEMENT,
LIST ELEMENT PTR);

end ACCESS TYPES;

-- Main program that demonstrates how a collection can be used up
-- quickly: the main program creates a 65-element linked list

-- (including the header); the block inside the program creates an
-- array of tasks, which, in turn, create linked lists of various
-- lengths. If the access types used by the tasks were declared
-- only in the block, the storage would be deallocated at the end
-- of the block. Because the types are declared in a library

-- package used by both the main program and the block, the

-- collection for the access type is maintained until the main

-- program finishes and exits. Unchecked deallocation must be

-- used instead to conserve use of collection storage.

with INTEGER TEXT IO; use INTEGER TEXT IO;
with ACCESS TYPES; use ACCESS TYPES;
procedure CONTROL STORAGE is

(continued on next page)

Object Representation and Storage 1-47

Example 1-4 (Cont.) Using UNCHECKED_DEALLOCATION to Control
Access Type Storage Deallocation

-- Procedure to create and initialize a unidirectional linked
-- list of integers; the parameter to the procedure determines
-- the list length.

procedure MAKE LIST (Y : in INTEGER) is

HEAD ELEMENT: LIST ELEMENT PTR := new LIST ELEMENT (HEAD) ;
THIS ELEMENT, NEXT ELEMENT: LIST ELEMENT PTR;
N : INTEGER := Y;

begin

-- Create and initialize values of list, starting at the
-- first element.
THIS ELEMENT := HEAD ELEMENT;
for T in 1 .. N loop
THIS ELEMENT.NEXT := new LIST ELEMENT’ (CLASS => ELEMENT,
NEXT => null,
ELEMENT VALUE => I);
THIS _ELEMENT := THIS ELEMENT.NEXT;
end loop;

-- Do something with the linked list...and then deallocate
-- the storage.

loop
THIS_ELEMENT := HEAD ELEMENT.NEXT;
exit when THIS ELEMENT = null;
HEAD ELEMENT.NEXT := THIS ELEMENT.NEXT;
FREE_ELEMENT(THIS_ELEMENT);
end loop;

end MAKE LIST;
begin

-- Create (and deallocate) the list for the main program.

MAKE LIST(64);

(continued on next page)

1-48 Object Representation and Storage

Example 1-4 (Cont.) Using UNCHECKED_DEALLOCATION to Control
Access Type Storage Deallocation

-- Concurrently, create (and deallocate) the series of
-- lists used by an array of tasks.
INNER BLOCK:
declare
task type USE SPACE is
entry NUM ELEMENTS (X : in INTEGER);
end USE SPACE;

type TASK ARRAY is array (1 .. 10) of USE SPACE;
SPACE_ARRAY: TASK ARRAY;

task body USE SPACE is
begin
accept NUM ELEMENTS (X : in INTEGER) do
MAKE_LIST(X);
end;
end USE SPACE;

begin
for I in SPACE ARRAY'RANGE loop
SPACE_ARRAY (I) .NUM ELEMENTS (I);
end loop;

end INNER BLOCK;
end CONTROL_STORAGE;

Object Representation and Storage 1-49

2

Input-Output Facilities

Although DEC Ada lets you invoke OpenVMS input-output system services
and Record Management Services (RMS) directly (see Chapters Chapter 4 and
Chapter 5), for most applications it is not necessary to do so. The DEC Ada
predefined input-output packages provide a rich and comprehensive set of

file operations, and each input-output package is tailored for operations on a
specific kind of file.

DEC Ada predefines the following packages:

SEQUENTIAL_IO
DIRECT_IO
RELATIVE_IO
INDEXED_10
SEQUENTIAL_MIXED_IO
DIRECT_MIXED_IO
RELATIVE_MIXED_IO
INDEXED_MIXED_IO
TEXT_IO

The packages SEQUENTIAL_IO, DIRECT_IO, and TEXT_IO are predefined
by the Ada language. The other packages are predefined by the DEC Ada
implementation. All of the package specifications, as well as explanations of
the operations provided by each package, are presented in Chapter 14 of the
DEC Ada Language Reference Manual.

The DEC Ada predefined packages and their operations are implemented
using RMS file organizations and facilities. This chapter describes the
implementation and explores some of its implications.

The information in this chapter is based on the information about input—output
in the DEC Ada Language Reference Manual. You should also be familiar with
the following:

= RMS file organizations and access methods

< How to work with OpenVMS file specifications and directories

Input-Output Facilities 2-1

e The OpenVMS File Definition Language (FDL)

If you need introductory information on OpenVMS file specifications and
directories or FDL, see the Guide to OpenVMS File Applications. For

more information about RMS and RMS services, see the OpenVMS Record
Management Services Reference Manual. For more information on FDL, see
the OpenVMS Record Management Utilities Reference Manual.

2.1 Files and File Access

2-2

To input and output data to and from an Ada program, you must first associate
the file objects in your program with external files. All of the DEC Ada input-
output packages supply CREATE and OPEN procedures that let you make this
association:

= Each CREATE procedure creates a new external file and then associates a
file object with it.

= Each OPEN procedure associates a file object with an existing external file.

In the following example, EXTERNAL_FILE.TXT is created only once, but it is
associated with both file objects ONE_FILE and ANOTHER_FILE at different
points in the procedure:

with TEXT IO; use TEXT IO;
procedure MAKE FILES is

ONE FILE: FILE TYPE;
ANOTHER FILE: FILE TYPE;
begin

-- Create external file.text and associate it with
-- the file object ONE FILE.
CREATE (FILE => ONE FILE,

NAME => "external file.text");

-- Close external file.text and disassociate it with
-- the file object ONE FILE.

CLOSE (ONE_FILE) ;

-- Reopen external file.text and associate it with
-- a different file object.
OPEN (FILE => ANOTHER FILE,

MODE => OUT FILE,

NAME => "external file.text");

end MAKE FILES;

Input-Output Facilities

When you create or open a DEC Ada file object, the external file with which it
is associated is an RMS file that has a particular kind of organization and that
allows a particular kind of access. Each element in the file is associated with
an RMS record that has a particular kind of format. A default organization,
access, and record format is determined by the input-output package that you
use to create the file. Depending on the package, you can change these defaults
with a CREATE or OPEN FORM parameter.

Section 2.3 discusses the FORM parameter and system-dependent external file
attributes in more detail. Sections Section 2.6.1 to Section 2.7 provide tables of
default attributes for each DEC Ada input-output package.

The following sections summarize how file objects, called Ada files in this
chapter, and external files (RMS files) are related. See the DEC Ada Language
Reference Manual for detailed definitions of Ada files. See the Guide to
OpenVMS File Applications for detailed definitions of RMS file organizations
and record formats.

2.1.1 Ada Sequential Files

An Ada sequential file is a set of file elements occupying consecutive positions
in linear order. Values are transferred in the order in which they are read
or written to the file, and when you open a file, the transfer starts from the
beginning of the file.

The packages SEQUENTIAL_IO and SEQUENTIAL_MIXED IO provide
sequential access to Ada sequential files. See Section 2.6.1 for more
information about sequential files.

You can associate an Ada sequential file with an RMS file of any organization.
The records in the RMS file can have fixed-length, variable-length, variable-
length with fixed-length control (VFC), or stream format.

2.1.2 Ada Direct Files

An Ada direct file is a set of file elements occupying consecutive positions in
linear order. You can transfer values to or from an element of the file at any
selected position. The position of an element is specified by its index, which is
an integer in the subtype POSITIVE_COUNT. The first element, if any, has an
index of 1. The index of the last element, if any, is called the current size. The
current size is zero if there are no elements.

An open Ada direct file has a current index, which is set to 1 when you create,
open, or reset the file. The current index determines which element is involved
in the next read or write operation.

The packages DIRECT_10 and DIRECT_MIXED_10 provide direct access to
Ada direct files. See Section 2.6.2 for more information about direct files.

Input-Output Facilities 2-3

You can associate an Ada direct file only with an RMS file with sequential
organization. The records in the RMS file must have fixed-length format.

2.1.3 Ada Relative Files

An Ada relative file is a set of fixed-length cells occupying consecutive positions
in linear order. Cells in a relative file are numbered from 1 to 231 — 1 (the
numbers are values of the subtype POSITIVE_COUNT). The number of a

cell is called its index. The cells in a relative file can either be empty or can
contain fixed- or variable-length elements.

An open Ada relative file has a current index, which is set to 1 when the file is
created or opened. The current index determines which element is involved in
the next read or write operation. The concept of size does not apply to relative
files. End-of-file is true if, starting at the current index, all cells are empty.

The packages RELATIVE_IO and RELATIVE_MIXED_IO provide relative
access to Ada relative files. See Section 2.6.3 for more information about
relative files.

You can associate an Ada relative file only with an RMS file with relative
organization. The records in the RMS file can have fixed-length, variable-
length, or variable-length with fixed-length control (VFC) format.

2.1.4 Ada Indexed Files

2-4

An Ada indexed file is a set of file elements that are ordered by predefined
keys. Each element has at least one primary key (numbered 0), and may have
as many as 254 alternate keys (numbered 1 to 254). You define keys in the
form string (in the FORM parameter) when the file is created. The elements of
an indexed file can be accessed by any key.

An open Ada indexed file has a next element, which is the first element
determined by the primary key when the file is first opened. The next element
is redefined after each successful read operation, or it may be reset to the first
sequential element according to the specified key. The concept of size does not
apply to Ada indexed files: end-of-file is true if, starting at next element in the
file, no elements exist.

The packages INDEXED_ 10 and INDEXED_MIXED 10O provide indexed access
to Ada indexed files. See Section 2.6.4 for more information about indexed
files.

You can associate an Ada indexed file only with an RMS file with indexed
organization. The records in the RMS file can have fixed-length or variable-
length format.

Input-Output Facilities

2.1.5 Ada Text Files

An Ada text file is a sequence of pages where a page is a sequence of lines,
and a line is a sequence of characters. Characters, lines, and pages are all
numbered starting from 1 and range to INTEGER'LAST. (The numbers are
values of the subtype POSITIVE_COUNT.) The number of a character is called
its column number. The line terminator that marks the end of a line has a
column number that is 1 more than the number of characters in the line.

The current column number in a text file is the column number of the next
character or line terminator to be read or written. Similarly, the current line
number is the number of the current line, and the current page number is the
number of the current page.

The package TEXT_IO provides sequential access to Ada text files. See
Section 2.7 for more information about text files.

You can associate an Ada text file only with an RMS file with sequential
organization. The records in the RMS file can have fixed-length, variable-
length, or variable-length with fixed-length control (VFC) format.

2.2 Naming External Files

In DEC Ada, you identify external files using OpenVMS file specifications. All
of the DEC Ada input-output packages have CREATE and OPEN procedures,
which have a NAME parameter that lets you associate the name of an external
file with a particular file object. The NAME parameter can have one of the
following values:

= A string that denotes an OpenVMS file specification or a logical name.
If the value of NAME is a file specification, the Ada file object given by
the FILE parameter in the particular CREATE or OPEN procedure is
associated with an external file named by that specification.

= A null string (the default). If the value of NAME is a null string, then
the external file is a temporary file that is deleted when the file is closed.
Temporary files have no file name. However, they are created using the
file specification SYS$SCRATCH:. To redirect temporary files to another
device, redefine the logical name SYS$SCRATCH to name a different
device. Because temporary files are not entered in a directory, they cannot
inherit the file ownership of any directory.

The CREATE and OPEN procedures also have a FORM parameter that
lets you identify an external file (see Section 2.3). In DEC Ada, the FORM
parameter takes as its value an OpenVMS FDL string or a reference to a
file of FDL statements. By specifying a value for the FDL FILE DEFAULT_
NAME attribute in a CREATE or OPEN FORM parameter, you can give file

Input-Output Facilities 2-5

specification information that is used by default if any of that information
is omitted from the string given for the NAME parameter. In the following
example, the external file has the specification SOME_FILE.DAT:

CREATE (FILE => F,
MODE => OUT FILE,
NAME => "SOME FILE",
FORM => "FILE; DEFAULT NAME '.DAT'");

The value of the NAME parameter governs, even if you give a value using the
FORM parameter and FDL attributes. For example, if you omit a value for the
NAME parameter and try to specify a complete file name with the FDL FILE
DEFAULT_NAME attribute, the default name is ignored, and the external file
is still a temporary file that is deleted when the file is closed.

You cannot use the FDL FILE NAME attribute to name an external file. A
value specified with that attribute is ignored.

The following sections summarize how to write and use logical names in place
of file specifications. For a full description of file specifications and logical
names, see the OpenVMS User’s Manual and the Guide to OpenVMS File
Applications.

2.2.1 File Specification Syntax

2-6

A file specification identifies an external file or a device on the OpenVMS
operating system. The syntax is as follows:

node::device:[directory]filename.type;version

Note

You can access files that reside on non-OpenVMS systems by enclosing
the name of the file (in its required format) in a quoted string. See the
OpenVMS User’s Manual for more information.

node
The name of a network node. This element applies only to systems that are
part of a network (systems that support DECnet).

device

The name of the physical device on which the file is stored or is to be written.
The device name is the only part of a file specification that is used for record-
oriented devices (such as printers and card readers).

Input-Output Facilities

directory

The name of the directory (and any subdirectories) under which the file

is cataloged on the specified device. You must delimit the directory name

with square brackets ([]), as shown in the syntax description, or with angle
brackets (<>). You must use a period to separate a series of directories or
subdirectories within the square or angle brackets. Directory names apply only
to files stored on disk devices (as opposed to files stored on tape).

filename

The name of the file. The maximum length is 39 characters. The allowed
characters are upper- or lowercase letters, digits, underscore (_), hyphen (-),
or dollar sign ($). A file name specification is appropriate only for files stored
on mass storage devices (such as disks and tape).

type

The type of the file. The maximum length is 39 characters. The allowed
characters are upper- or lowercase letters, digits, underscore (_), hyphen (-),
or dollar sign ($). The type must begin with a letter or digit. By convention,
the type is an abbreviation that describes the kind of data in the file. You
must use a period to separate the file name and type. A type specification is
appropriate only for files stored on mass storage devices.

version

A decimal number that specifies which version of the file is desired. The
version number is incremented by one each time a new version of a file is
created. The maximum version number is 32767. You can refer to version
numbers in a relative manner by specifying 0 as the latest (highest numbered)
version of the file, —1 as the next most recent version, —2 as the version before
that, and so on. You can use either a semicolon, as shown in the syntax
description, or a period to separate type and version. A version number is
appropriate only for files stored on mass storage devices (such as disks and
tape).

The maximum size of a file specification, including all delimiters, is 255
characters.

You do not need to explicitly state all of the elements of a file specification. If
you omit an element, a default value is applied. For more information, see the
OpenVMS User’s Manual.

You can use DEC Ada form strings (that is, the value of the FORM parameter
in an input-output package CREATE or OPEN procedure) to further define or
change default file specifications. See Section 2.3.3.

Input-Output Facilities 2-7

2.2.2 Logical Names

A logical name is a name that represents a file, directory, or physical device.
Every logical name is paired with an equivalence string (or list of equivalence
strings). An equivalence string is a character string denoting a full file
specification, a device name, or another logical name. Logical names are

a convenient shorthand for file names to which you refer frequently. See

the OpenVMS User’s Manual and Guide to OpenVMS File Applications for
complete explanations of logical names and examples of their use. See also the
descriptions of the DCL ASSIGN and DEFINE commands in the OpenVMS
DCL Dictionary.

Logical names are maintained by the system in four logical name tables: your
process table, the job table for your process, your group table, and the system
table. These tables are described in the OpenVMS User’s Manual.

By default, OpenVMS creates a set of logical names for you when you log
in. Table 2-1 lists the predefined names that are most relevant to DEC Ada
input-output.

Table 2-1 Predefined (Default) Logical Names
Table in Which the

Logical Name Name is Stored What the Name Represents

SYS$SCOMMAND Process Original (first-level) SYS$INPUT
stream.

SYS$DISK Process Default device established at

login or changed by the DCL SET
DEFAULT command.

SYS$ERROR Process Default device or file to which
the system writes error messages
generated by warnings, errors, and
Severe errors.

SYSSINPUT Process Default input stream for the
process.
SYSS$LOGIN Job Device and directory established at

login time as the home directory for
the process.

(continued on next page)

2-8 Input-Output Facilities

Table 2-1 (Cont.) Predefined (Default) Logical Names

Logical Name

Table in Which the
Name is Stored

What the Name Represents

SYS$NET

SYS$OUTPUT
SYS$SCRATCH

TT
ADASINPUT

ADASOUTPUT

Process

Process
Job

Process
Determined by user

Determined by user

The source process that invokes a
target process in DECnet task-to-task
communication. When opened by the
target process, SYSSNET represents
the logical link over which that process
can exchange data with its partner.
SYS$NET is defined only during task-
to-task communication. (Task-to-task
communication refers to tasks that
are OpenVMS images running in the
context of a process, not Ada tasks.)

Default output stream for the process.

Default device and directory to which
temporary files are written.

Default device name for terminals.

Default device or file from which Ada
TEXT_IO input is read; SYS$INPUT if
not defined by the user.

Default device or file to which

Ada TEXT_IO output is written;
SYS$OUTPUT if not defined by the
user.

The names SYS$COMMAND, SYS$SERROR, SYS$INPUT, and SYS$OUTPUT
represent process-permanent files (files that are open for the life of your
process). They have different equivalence strings associated with them
depending on whether they are used interactively, in a batch job, or in a
command procedure. You can also redefine them. The OpenVMS User’s
Manual explains and demonstrates the use of these names. Table 2—2 shows
the source of the equivalence strings associated with them.

Input-Output Facilities 2-9

Table 2-2 Equivalence Strings for Default Logical Names for Process-
Permanent Files

Logical Name Interactive Mode! Batch Mode! Command Procedure?
SYS$COMMAND Terminal Disk Terminal

SYSSINPUT Terminal Disk Disk

SYS$ERROR Terminal Log file Terminal
SYS$OUTPUT Terminal Log file Terminal

INote the following definition of terms: terminal is the device name of your terminal; disk is the
batch input or command file; and log file is the batch job log file.

2.3 Specifying External File Attributes

2-10

The CREATE and OPEN procedures in the DEC Ada input-output packages all
have a FORM parameter that lets you specify the system-dependent attributes
of an external file. Most of the time you do not need to use the FORM
parameter when you create or open a file because each input-output package
assumes certain attributes for the external file by default (see Section 2.3.3).
In fact, you never need to specify a value for FORM when you open an existing
file. You do need to specify it under the following conditions when you create a
file:

< With a relative or direct file where the item by which the input-output
package is instantiated is unconstrained, you must specify the maximum
size of the file elements (records) in bytes.

= With a relative mixed-type or direct mixed-type file, you must specify the
maximum size of the file elements (records) in bytes.

= With an indexed file, you must specify information about the primary and
any alternate keys.

The value of the FORM parameter must be an OpenVMS FDL string or a
reference to a file of FDL statements.

FDL is a special-purpose language that is written as an ordered sequence of
file attribute keywords (sometimes called FDL statements) and their associated
values. These keywords and values determine the characteristics of external
files. By using an FDL string (or a reference to a file of FDL statements) as the
value of the FORM parameter in a CREATE or OPEN input-output operation,
you can give your file any of the RMS attributes available in FDL, and you
thereby supersede the default file attributes of your input-output package (see
Section 2.3.3).

Input-Output Facilities

If you are not familiar with FDL, see the Guide to OpenVMS File Applications.
It introduces FDL and shows how to design files using the Edit/FDL Utility.
See the OpenVMS Record Management Utilities Reference Manual for complete
information about FDL, including specific definitions of the FDL statements.
The following sections summarize the FDL concepts and statements that you
need to know to specify file attributes in DEC Ada FORM parameters.

2.3.1 The OpenVMS File Definition Language (FDL): Primary and
Secondary Attributes

FDL statements—whether in an FDL file or in a DEC Ada form string—
specify predefined RMS file attributes. Primary attributes take a single value
or represent a group of related, or secondary, attributes, which also take
values. Most of the primary attributes that have secondary attributes do not
themselves take a value. Table 2-3 lists the available primary and secondary
attributes.

Table 2-3 FDL Primary and Secondary Attribute Descriptions

Primary Attribute Function Secondary Attributes

TITLE

IDENT

SYSTEM

Primary attribute gives a title to None
the FDL file.

Primary attribute gives the date None

and time of creation of the FDL

file, and specifies the name of the

creating utility (either Edit/FDL

or Analyze/RMS_File).

Primary attribute takes no DEVICE, SOURCE, TARGET
value.

Secondary attributes give system

identification information.

(continued on next page)

Input-Output Facilities 2-11

Table 2-3 (Cont.) FDL Primary and Secondary Attribute Descriptions

Primary Attribute

Function

Secondary Attributes

FILE

DATE

2-12

Primary attribute takes no
value.

Secondary attributes determine
file characteristics: its default
name, owner, organization,
protection, and revision; what
happens when it is opened or
closed; whether or not data
checking is done when the file
is read or written; what kind of
processing is allowed; how much
space is allocated for the file,
and whether or not the space is
contiguous; and so on.

Secondary attributes also allow
specification of magnetic tape
file operations. Some FILE
secondary attributes have
corresponding AREA secondary
attributes.

Primary attribute takes no
value.

Secondary attributes specify
dates and times for backup,
creation, expiration, and revision
of the file. In general, the only
secondary attribute that can

be routinely and safely set is
EXPIRATION; the others should
be set by the system, and are
not useful in an Ada FORM
parameter.

Input-Output Facilities

ALLOCATION,
BEST_TRY_CONTIGUOUS,
BUCKET _SIZE, CLUSTER_SIZE,
CONTEXT, CONTIGUOUS,
CREATE_IF, DEFAULT_NAME,
DEFERRED_WRITE,
DELETE_ON_CLOSE,
DIRECTORY_ENTRY,
EXTENSION, FILE_MONITORING,
GLOBAL_BUFFER_COUNT,
MAXIMIZE_VERSION,
MAX_RECORD_NUMBER,
MT_BLOCK_SIZE,
MT_CLOSE_REWIND,
MT_CURRENT_POSITION,
MT_NOT_EOF,
MT_OPEN_REWIND,
MT_PROTECTION,

NAME, NON_FILE_STRUCTURED,
ORGANIZATION,

OUTPUT _FILE_PARSE, OWNER,
PRINT ON_CLOSE,
PROTECTION, READ_CHECK,
REVISION, SEQUENTIAL_ONLY,
SUBMIT_ON_CLOSE,
SUPERSEDE, TEMPORARY,
TRUNCATE_ON_CLOSE,
USER_FILE_OPEN,
WINDOW_SIZE, WRITECHECK

BACKUP, CREATION,
EXPIRATION, REVISION

(continued on next page)

Table 2-3 (Cont.) FDL Primary and Secondary Attribute Descriptions

Primary Attribute

Function

Secondary Attributes

RECORD

ACCESS

NETWORK

SHARING

Primary attribute takes no
value.

Secondary attributes specify
the characteristics of records
in the file: their size; the kind
of carriage control; and their
format.

Primary attribute takes no
value.

Secondary attributes specify
the file-processing operations
allowed on the file.

Primary attribute takes no
value.

Secondary attributes set run-

time network access parameters.

Primary attribute takes no
value.

Secondary attributes specify
whether or not multiple readers
or writers can concurrently
access the file.

BLOCK_SPAN,
CARRIAGE_CONTROL,
CONTROL_FIELD,
FORMAT, SIZE

BLOCK_I1O, DELETE, GET, PUT,
RECORD_I0, TRUNCATE, UPDATE

BLOCK_COUNT
LINK_CACHE_ENABLE
LINK_TIMEOUT
NETWORK_DATA_CHECKING

DELETE, GET, MULTISTREAM,
PROHIBIT, PUT, UPDATE,
USER_INTERLOCK

(continued on next page)

Input-Output Facilities 2-13

Table 2-3 (Cont.) FDL Primary and Secondary Attribute Descriptions

Primary Attribute

Function

Secondary Attributes

CONNECT

Primary attribute takes no
value.

Secondary attributes specify
run-time attributes that are
application dependent and
related to record access and
performance.

2-14 Input-Output Facilities

ASYNCHRONOUS, BLOCK_I0O,
BUCKET IO, CONTEXT,
END_OF FILE, FAST DELETE,
FILL_BUCKETS,
KEY_GREATER_EQUAL,
KEY_GREATER_THAN,
KEY_LIMIT,

KEY_OF REFERENCE,
LOCATE_MODE, LOCK_ON_READ,
LOCK_ON_WRITE,
MANUAL_UNLOCKING,
MULTIBLOCK_COUNT,
MULTIBUFFER_COUNT, NOLOCK,
NONEXISTENT _RECORD,
READ_AHEAD,
READ_REGARDLESS,
TIMEOUT _ENABLE,
TIMEOUT_PERIOD,
TRUNCATE_ON_PUT,
TT_CANCEL_CONTROL _O,
TT_PROMPT,
TT_PURGE_TYPE_AHEAD,
TT_READ_NOECHO,
TT_READ_NOFILTER,
TT_UPCASE_INPUT,
UPDATE_IF,
WAIT_FOR_RECORD,
WRITE_BEHIND

(continued on next page)

Table 2-3 (Cont.) FDL Primary and Secondary Attribute Descriptions

Primary Attribute

Function

Secondary Attributes

AREA

KEY

ANALYSIS_OF
AREA

Primary attribute takes an
integer value in the range O to
254, which identifies the area in
an indexed file. (Multiple areas
must have a separate AREA
section defined for each.)

Secondary attributes specify
characteristics of the area: how
much space is allocated; whether
or not the space is contiguous;
positioning of the area; the
volume on which the area will
reside, and so on.

Most AREA secondary attributes
have corresponding FILE
secondary attributes.

Primary attribute takes an
integer value in the range 0 to
254, which gives the number
of a key in an indexed file; the
primary key number must be 0.

Secondary attributes specify the
characteristics of keys in the
indexed file.

Result of using Analyze/RMS_
File Utility; appears only in FDL
files that describe indexed files.
Neither primary nor secondary
attributes are useful in an Ada
FORM parameter.

ALLOCATION,
BEST_TRY_CONTIGUOUS,
BUCKET_SIZE, CONTIGUOQUS,
EXACT_POSITIONING,
EXTENSION, POSITION,
VOLUME

CHANGES, COLLATING_SEQUENCE,

DATA_AREA,DATA_FILL,
DATA_KEY_COMPRESSION,
DATA_RECORD_COMPRESSION,
DUPLICATES, INDEX_AREA,
INDEX_COMPRESSION,
INDEX_FILL, LENGTH,
LEVEL1_INDEX_AREA, NAME,
NULL_KEY, NULL_VALUE,
POSITION, PROLOG,
SEGn_LENGTH,
SEGNn_POSITION, TYPE

RECLAIMED_SPACE

(continued on next page)

Input-Output Facilities 2-15

Table 2-3 (Cont.) FDL Primary and Secondary Attribute Descriptions

Primary Attribute Function Secondary Attributes
ANALYSIS_OF_ Result of using Analyze/RMS_ DATA_FILL,
KEY File Utility; appears only in FDL DATA_KEY_COMPRESSION,

files that describe indexed files. DATA_RECORD_COMPRESSION,
Neither primary nor secondary DATA_RECORD_COUNT,
attributes are useful in an Ada DATA_SPACE_OCCUPIED,
FORM parameter. DEPTH,
DUPLICATES_PER_SIDR,
INDEX_COMPRESSION,
INDEX_FILL,
INDEX_SPACE_OCCUPIED,
LEVEL1_RECORD_COUNT,
MEAN_DATA_LENGTH,
MEAN_INDEX_LENGTH

When using FDL to specify the attributes of an Ada external file, observe the
following FDL rules. Any FDL errors occurring in a FORM parameter raises
the Ada predefined exception USE_ERROR.

= The primary attributes must appear in the order shown in Table 2-3.

= Each attribute string (primary or secondary) constitutes an FDL statement,
and must be terminated with a semicolon. In the following example,
RECORD, FORMAT FIXED, and SIZE 120 are three separate FDL
statements:

-- Create SOME FILE.DAT with fixed record format and
-- a record size of 120 bytes.
CREATE (FILE => MY FILE,

MODE => OUT FILE,

NAME => "SOME FILE.DAT",

FORM => "RECORD; FORMAT FIXED; SIZE 120;");

The exclamation point is the comment character in FDL, and anything
following it is ignored. For example:

-- Create SOME FILE.DAT with 80-byte records.
CREATE (FILE => MY FILE,
MODE => OUT FILE,
NAME => "SOME FILE.DAT",
FORM => "RECORD; SIZE 80; !80-byte records");

2-16 Input-Output Facilities

e Each FDL statement can represent only one primary or secondary attribute
and its associated value. Each statement can have no more than 132
characters (including blanks). To format your program without adding
extra blanks to the form string, use the Ada catenation operator (&) to
break up the form string into individual statement strings. So, you could
rewrite the preceding example as follows:

CREATE (FILE => MY FILE,
MODE => OUT FILE,
NAME => "SOME FILE.DAT ",

FORM => "RECORD; " &
"FORMAT FIXED; " &
"SIZE 120;") ;

< If you are working with an indexed file that has two or more AREA
primary attributes, they must follow one another in numerical order.

= If you are working with an indexed file that has two or more KEY primary
attributes, they must follow one another in numerical order. In addition,
any SEGn secondary attributes must follow one another in numerical
order, and the SEGn numbers must be dense. If you use SEG3 to label a
key segment, then segments SEGO, SEG1, and SEG2 must also exist.

= Keywords can be truncated to their shortest unique abbreviations, and
strings must be enclosed either in a pair of apostrophes (* /) or a pair
of double quotation marks ("). Ada based integers or integers with
underscores are not legal FDL syntax.

In addition to allowing you to specify file attributes directly in a form string,
DEC Ada also lets you give a reference to an FDL file using a OpenVMS
file specification. The specification must be preceded by an at sign (@). For
example:

-- Create SOME FILE.DAT with specifications declared in
-- the FDL file FILE ATTRIBUTES.FDL.

CREATE (FILE => MY FILE,
MODE => OUT FILE,
NAME => "SOME_FILE.DAT",
FORM => "@FILE ATTRIBUTES.FDL");

An advantage of being able to give a reference to an FDL file is that you can
use the Edit/FDL Utility to construct the FDL file. The utility is designed

to help you choose file attributes that help optimize the efficiency of your
program. In particular, the utility is helpful in tuning indexed files. For
example, it can plot graphs to help you determine appropriate bucket sizes for
specific indexed files. See the Guide to OpenVMS File Applications for more
information on the Edit/FDL Utility and file design.

Input-Output Facilities 2-17

Table 2—4 describes the primary and secondary FDL attributes that you are
most likely to use in a DEC Ada program and gives their default values.
For convenience, primary attributes are shown in boldface type. Secondary
attributes are shown in regular type and indented. The intent of the table is
to provide a quick reference and to summarize information presented in the
OpenVMS Record Management Utilities Reference Manual. See that manual
for details.

As shown in Table 2—4, the value assigned to an attribute can take one of the
following forms:

Switch A logical value, set to TRUE, YES, FALSE, or NO. TRUE (or YES)
sets the attribute. FALSE (or NO) clears it. (You can also use the
abbreviations T, Y, F, and N for TRUE, YES, FALSE, and NO.)

Keyword An actual word that you must type (in either upper- or lowercase)
after the attribute name. You can truncate a keyword to its shortest
unique abbreviation.

Integer A 32-bit decimal integer (based integers or underscores are not
allowed).

(continued on next page)

2-18 Input-Output Facilities

Table 2-4 (Cont.)
String

Commonly Used FDL Attributes
A character string (enclosed in either a pair of apostrophes or a pair of
double quotation marks) that you must type after the attribute name.
The null string is a valid string value. To use double quotation marks
in the same statement, you must write the form string following Ada
conventions. For example:

CREATE (FILE => F,
MODE => OUT FILE,
FORM => "FILE;" &
"DEFAULT NAME ""SOME FILE.DAT"";"&
-- A pair of quotation marks
-- inside a string represents one
-- quotation mark.

"RECORD; " &
"FORMAT FIXED;" &
"SIZE 100;")
Alternatively, you can use apostrophes to make your code easier to

read:

CREATE (FILE => F,
MODE => OUT FILE,

FORM => "FILE;" &
"DEFAULT NAME 'SOME_FILE.DAT';" &
"RECORD; " &
"FORMAT FIXED;" &
"SIZE 100;")i
Table 2-4 Commonly Used FDL Attributes
FDL Attributes Kind of Value and Default Function
TITLE String of up to 132 Names the FDL file.
characters, including the
TITLE keyword.
No default value.
IDENT String of up to 132 Record identifying file information.

characters, including the
IDENT keyword.

Default value is the date,
time of creation, name of
creating utility if created
with Edit/FDL or Analyze
/RMS_File; otherwise, no
default value.

(continued on next page)

Input-Output Facilities 2-19

Table 2-4 (Cont.) Commonly Used FDL Attributes

FDL Attributes

Kind of Value and Default

Function

SYSTEM
DEVICE

FILE
ALLOCATION

BEST_TRY_
CONTIGUOUS

BUCKET_SIZE

CONTIGUOUS

2—-20 Input-Output Facilities

String.

Default value is a null
string.

Integer in the range O to
4294967295.

Default value is 0.

Switch.
Default value is NO.

Integer in the range 0 to 63.
Default value is 0.

Switch.
Default value is NO.

Comment (names the disk model on
which the file will reside).

Sets the number of blocks that are
initially allocated for the file. If

0, the system does not preallocate
space for the file.

Controls whether the file will be
allocated contiguously if there

is enough space for it. If set to
YES, and there is enough space for
the file, the file will be allocated
contiguously; if there is not enough
space, the file will not be allocated
contiguously. If set to NO, this
attribute is ignored.

Sets the number of blocks per
bucket. If 0, RMS computes the
bucket size to be the smallest
bucket size capable of holding the
largest record.

Controls whether the file must be
allocated contiguously. When set to
YES and there is not enough space
for the file’s initial allocation, an
error message results. When set to
NO or no allocation is specified, the
attribute is ignored.

(continued on next page)

Table 2-4 (Cont.) Commonly Used FDL Attributes

FDL Attributes

Kind of Value and Default

Function

DEFAULT_NAME

EXTENSION

FILE_MONITORING

MAX_RECORD_
NUMBER

ORGANIZATION

PRINT_ON_CLOSE

String.

Default value is a null
string.

Integer in the range O to
65535.

Default value is 0.

Switch.

Default value is NO.
Integer in the range O to
2147483647.

Default value is 0.

Keyword.

Default value is
SEQUENTIAL.

Switch.
Default value is NO.

Uses its string value to define
portions of the file specification of
the file to be created. If you supply
only a partial file specification

in the NAME parameter to an
Ada OPEN or CREATE operation,
the DEFAULT_NAME value is
used for the missing part of the
file specification. If you have not
specified a value for DEFAULT _
NAME, the RMS defaults are used
for the missing part.

Sets the number of blocks for the
default extension value for the
file. Each time the file is extended,
the specified number of blocks is
added. If 0, the extension size is
determined by the system each
time the file must be extended.

Turns on RMS statistics gathering
for subsequent use in doing
performance analysis.

Specifies the maximum number

of records that can be placed in

a relative file. If 0, then you can
place as many records as you want
in the file, up to 2,147,483,647 (or
2% _1).

Defines the kind of file organi-
zation. Value must be one of
the keywords SEQUENTIAL,
RELATIVE, or INDEXED.

Controls whether the data file is
to be spooled to the process default
print queue (SYS$PRINT) when
the file is closed. When set to YES,
the data file is spooled; when set to
NO, the attribute is ignored. (This
attribute applies to sequential files
only.)

(continued on next page)

Input-Output Facilities 2-21

Table 2-4 (Cont.) Commonly Used FDL Attributes

FDL Attributes

Kind of Value and Default

Function

PROTECTION

SEQUENTIAL_ONLY

SUBMIT_ON_CLOSE

2-22

Input-Output Facilities

String.

Default value is the system
or process default.

Switch.
Default value is NO.

Switch.
Default value is NO.

Defines the levels of file protection
for the file. Its value can take

one of two forms (SYSTEM=code,
OWNER=code, GROUP=code,
WORLD=code) or (SYSTEM:code,
OWNER:code, GROUP:code,
WORLD:code) where the code is

a protection specification for READ,
WRITE, EXECUTE, and DELETE
in the form RWED. To deny a
specific access right, you omit it
from the code. To give no access
rights to a user classification, you
omit the classification from the list.

For example, the following
string gives all access rights to
SYSTEM and OWNER, gives
only READ access to GROUP,
and gives no access rights to
WORLD: (SYSTEM=RWED,
OWNER=RWED, GROUP=R).

Indicates that the file can only be
processed sequentially, allowing
certain processing optimizations.
Any attempt to perform random
access results in an error.

Determines whether the data file
is submitted to the process batch
queue (SYS$BATCH) when the

file is closed. When set to YES,
the data file is submitted to the
process default batch queue; this
setting makes sense only if the file
is a command file with sequential
organization. When set to NO, this
attribute is ignored.

(continued on next page)

Table 2-4 (Cont.) Commonly Used FDL Attributes

FDL Attributes

Kind of Value and Default

Function

DATE
EXPIRATION

RECORD

CARRIAGE_
CONTROL

FORMAT

SIZE

String in the form dd-
mmm-yyyy hh:mm:ss.cc.

Default value is a null
string.

Keyword.

Default value is CARRIAGE _
RETURN.

Keyword.
Default value is VARIABLE.

Integer.
No default value.

Sets the date and time after which
a disk file can be considered for
deletion. For magnetic tape files,
this attribute sets the date and
time after which you can overwrite
the file. This is the only DATE
secondary attribute that you can
routinely and safely set.

Specifies the kind of carriage
control for the records in the

file. Value must be one of the
keywords CARRIAGE_RETURN,
FORTRAN, NONE, or PRINT. See
Section 2.7.4 of this manual and
the OpenVMS Record Management
Utilities Reference Manual for more
information.

Sets the record format for the
data file. Value must be one of
the keywords FIXED, STREAM,
STREAM_CR, STREAM_LF,
UNDEFINED, VARIABLE,
VFC. See the OpenVMS Record
Management Utilities Reference
Manual for more information.

Sets the maximum record size in
bytes. With fixed-length records,
this value is the length of every

record in the file. With variable-
length records, this value is the

length of the longest record that
can be placed in the file.

If the file has sequential or indexed
organization, you can specify 0
and the system does not impose

a maximum record length. The
records in an indexed file, however,
cannot cross bucket boundaries.

(continued on next page)

Input-Output Facilities 2-23

Table 2-4 (Cont.) Commonly Used FDL Attributes

FDL Attributes

Kind of Value and Default

Function

ACCESS
DELETE

GET

PUT

TRUNCATE

UPDATE

2-24 Input-Output Facilities

Switch.
The default value is FALSE.
Switch.

Default value is GET when
a file is being opened and no
other ACCESS secondary
attribute has been specified
and SHARING DELETE or
SHARING UPDATE have
been specified.

Switch.

PUT when creating a file.
Switch.

Default value is FALSE.
Switch.

Default value is FALSE.

If the file has relative organization,
the SIZE attribute is used with the
BUCKET_SIZE attribute to set the
size of the fixed-length cells.

If the records have variable-length
with fixed control (VFC) format,
the fixed-control portion of the
record is not included in the SIZE
calculation; only the data portion is
set by this attribute. The fixed area
is the size, in bytes, of the fixed-
control portion of VFC records.
Regular variable-length records
have a fixed-control size of 0. See
the OpenVMS Record Management
Utilities Reference Manual for the
maximum sizes allowed for the
various record organizations and
formats.

Permits RMS delete operations.

Permits RMS get or find operations.

Permits RMS put or extend
operations.

Permits RMS truncate
operations.

Permits RMS update or extend
operations.

(continued on next page)

Table 2-4 (Cont.) Commonly Used FDL Attributes

FDL Attributes

Kind of Value and Default

Function

SHARING
DELETE

GET

PROHIBIT

PUT

UPDATE

CONNECT

MULTIBUFFER_
COUNT

Switch.
No default value.
Switch.

TRUE if ACCESS GET has

also been specified.
Switch.

YES if ACCESS DELETE,
ACCESS PUT, ACCESS
TRUNCATE, or ACCESS
UPDATE has been
specified; otherwise, no
default value.

Switch.
No default value.
Switch.
No default value.

Integer in the range O to
127.

No default value.

Lets other users delete records from
the file.

Lets other users read the file.

Prohibits any kind of file sharing
by other users. When set to YES,
this attribute takes precedence
over all other ACCESS secondary
attributes. A value of YES in

a DEC Ada form string takes
precedence over any other default
values that may be implied

by values of other SHARING
secondary attributes. When an
OPEN or CREATE form string
specifies any SHARING secondary
attribute without specifying
SHARING PROHIBIT, then no
default is chosen (equivalent to a
value of NO).

Lets other users write records to
the file.

Lets other users update records
that currently exist in the file.

Specifies the number of buffers to
be allocated when the file is opened.
If the value is not set or 0, RMS
chooses a default value (see the
OpenVMS Record Management
Utilities Reference Manual). This
attribute is ignored for DECnet
operations.

(continued on next page)

Input-Output Facilities 2-25

Table 2-4 (Cont.) Commonly Used FDL Attributes

FDL Attributes Kind of Value and Default

Function

Switch.
No default value.

READ_AHEAD

TIMEOUT_ENABLE Switch.

No default value.

TIMEOUT_PERIOD Integer in the range O to

255.
No default value.

2-26 Input-Output Facilities

Indicates read-ahead operations;

to be used with multiple buffers.
When one buffer is filled, the

next record is read into the next
buffer while the input-output
operation takes place for the first
buffer. Because the system does
not have to wait for input-output
completion, input and computing
can overlap. This attribute is
ignored for DECnet operations. See
the OpenVMS Record Management
Utilities Reference Manual for more
information.

Specifies the maximum time, in
seconds, that are allowed for a
record input wait (see TIMEOUT _
PERIOD). The input wait can be
caused by a locked record if the
WAIT_FOR_RECORD attribute
has also been specified, or it can be
caused by the input of a character
from the terminal. If the timeout
period expires, RMS returns an
error status. This attribute is
ignored for DECnet operations.

Specifies the maximum number

of seconds that an RMS get
operation can take; if the operation
is specified from the terminal

and you specify 0, the current
contents of the type-ahead buffer
are returned. You must use the
TIMEOUT_ENABLE attribute with
TIMEOUT_PERIOD. This attribute
is ignored for DECnet operations.

(continued on next page)

Table 2-4 (Cont.) Commonly Used FDL Attributes

FDL Attributes Kind of Value and Default

Function

TRUNCATE_ON_PUT Switch.
No default value.

UPDATE_IF Switch.
No default value.

WAIT_FOR_RECORD Switch.
No default value.

WRITE_BEHIND Switch.
No default value.

Specifies that an RMS put or write
operation can occur at any point

in a file, truncating the file at that
point. A write operation causes
the end-of-file mark to immediately
follow the last byte written. You
can use this attribute only with
RMS sequential files.

Indicates that if a put operation

is specified for a record that

exists in the file, the operation

is converted to an update. This
attribute is necessary to overwrite
(as opposed to update) an existing
record in RMS relative and indexed
sequential files. Indexed files
using this attribute must not allow
duplicates on the primary key.

Specifies that RMS should wait
for a currently locked record until
it becomes available. You can use
this attribute with the TIMEOUT _
ENABLE and TIMEOUT_PERIOD
attributes to limit waiting periods
to a specified time.

Indicates that write-behind
operations are to occur when
multiple buffers are used. When
one buffer is filled, the next record
is written into the next buffer while
the input-output operation takes
place for the first buffer. Because
the system does not have to wait for
input-output completion, computing
and output can overlap. See the
OpenVMS Record Management
Utilities Reference Manual for more
information.

AREA This attribute and its secondary attributes apply only to
files with indexed organization. See the OpenVMS Record
Management Utilities Reference Manual for details.

(continued on next page)

Input-Output Facilities 2-27

Table 2-4 (Cont.) Commonly Used FDL Attributes

FDL Attributes

Kind of Value and Default

Function

KEY

CHANGES

DATA KEY_
COMPRESSION

DATA_RECORD _
COMPRESSION

2-28 Input-Output Facilities

Integer in range O to 254.
No default value.

Switch.
Default value is NO.

Switch.
Default value is YES.

Switch.
Default value is YES.

Denotes the key number for a file
with indexed organization. The
value for the primary key must
be 0; the value for alternate keys
can be any integer in the range
1 to 254. This attribute and its
secondary attributes apply only to
files with indexed organization.

Determines whether or not key
values can be changed with an
RMS update operation. A value of
YES for primary keys is an error; a
value of YES for alternate keys is
allowed.

Controls whether leading and
trailing repeating characters in the
primary key are compressed. For
compression to occur, you should
define your indexed file as a Prolog
3 file with the FDL attributes
KEY PROLOG; KEY PROLOG 3
is the default. You should set this
attribute for indexed files involved
in DECnet operations.

Controls whether repeating
characters are compressed in data
records. For compression to occur,
your indexed file must be defined
as a Prolog 3 file with the FDL
attributes KEY PROLOG; KEY
PROLOG 3 is the default. You
should set this attribute for indexed
files involved in DECnet operations.

(continued on next page)

Table 2-4 (Cont.) Commonly Used FDL Attributes

FDL Attributes

Kind of Value and Default

Function

DUPLICATES

INDEX_COMPRESSION

LENGTH

NAME

Switch.

Default value is NO for
the primary key; YES for
alternate keys.

Switch.
Default value is YES.

Integer.
No default value.

String of from 1 to 32
characters.

Default value is a null
string.

Controls whether duplicate keys
are allowed in files with indexed
organization. When set to YES,
this attribute specifies that there
can be more than one record with
the same specific key value. When
set to NO, duplicate keys are not
allowed, and any attempt to write
a record where the key would be a
duplicate results in an error.

Controls whether leading repeating
characters in the index are
compressed. For compression

to occur, you should define your
indexed file as a Prolog 3 file with
the FDL attributes KEY PROLOG;
KEY PROLOG 3 is the default. You
should set this attribute for indexed
files involved in DECnet operations.

Sets the length of the key, in
bytes. This value, along with the
POSITION and TYPE attributes, is
used when the key is unsegmented.
Because there is no default, this
value must be specified.

Assigns a name to a key. This value
is optional. The specified string is
padded with ASCII null characters
to a length of 32 bytes.

(continued on next page)

Input-Output Facilities 2-29

Table 2-4 (Cont.) Commonly Used FDL Attributes

FDL Attributes

Kind of Value and Default

Function

NULL_VALUE

POSITION

PROLOG

SEGn_LENGTH

2-30 Input-Output Facilities

Character or unsigned deci-
mal integer representing an
ASCII value.

Default value is the ASCII
null character (0).

Integer.
No default value.

Integer in the range 1 to 3.

Default value is the system
or process default.

Integer in the range O to 7.
No default value.

Defines the null value that
instructs the system not to create
an alternate index entry for the
record that has the null value in
every byte of the key field. If the
alternate key is of the type STRING
or DSTRING, you can specify the
null value by either specifying the
character itself or by specifying

an unsigned decimal number
denoting the character’s ASCII
value. To specify the character,
enclose it in apostrophes; to specify
the decimal ASCII value, type it
without enclosing apostrophes.

Defines the byte position of the
beginning of the key field within
the record. The first position is
0; primary keys work best if they
start at byte 0. You can use this
attribute along with the KEY
LENGTH and TYPE attributes,
when the key is unsegmented.

Defines the internal structure of a
file with indexed organization. See
the OpenVMS Record Management
Utilities Reference Manual for
details.

Defines the length of the key
segment, in bytes. This attribute is
used with the SEGn_POSITION
attribute when the key is
segmented. The “n” is the number
of the segment and may be
numbered from O to 7; the first
segment must be numbered 0.
Segmented keys must be of the
type STRING or DSTRING, and
segments may not overlap for
Prolog 3 files.

(continued on next page)

Table 2-4 (Cont.) Commonly Used FDL Attributes

FDL Attributes Kind of Value and Default

Function

SEGNn_POSITION Integer.

TYPE

No default value.

Keyword.
Default value is STRING.

Defines the key segment’s starting
position within the record. The
first position is 0. Segmented keys
must be of the type STRING or
DSTRING, and segments may not
overlap for Prolog 3 files.

Defines the type of the key. May
have any of the following values:
BIN2, BIN4, BIN8, COLLATED,
DCOLLATED, DBIN2, DBIN4,
DBINS8, DECIMAL, DDECIMAL,
DINT2, DINT4, DINT8, DSTRING,
INT2, INT4, INT8, STRING. See
the OpenVMS Record Management
Utilities Reference Manual for more
information.

Certain FDL attributes can significantly improve application performance.

If the files used by the application are designed and tuned properly, the
application runs more efficiently, often because a minimum number of input-
output operations occur. File design and tuning are important for large files,
especially indexed files. The characteristics you specify when you create a file
often have a significant effect on application performance at run time.

The following FDL attributes from Table 2—4 can affect application

performance:

FILE ALLOCATION

FILE BEST_TRY_CONTIGUOUS
FILE BUCKET_SIZE

FILE CONTIGUOUS

FILE EXTENSION

CONNECT READ_AHEAD
CONNECT WRITE_BEHIND
ACCESS and SHARING attributes
certain KEY attributes

The following attributes not listed in Table 2—4 can also affect performance:

FILE DEFERRED_WRITE
CONNECT FAST_DELETE

CONNECT GLOBAL_BUFFER_COUNT

CONNECT MULTIBLOCK_COUNT

Input-Output Facilities 2-31

CONNECT MULTIBUFFER_COUNT
FILE SEQUENTIAL_ONLY
FILE WINDOW_SIZE

See the Guide to OpenVMS File Applications for more information.

2.3.2 Creation-Time and Run-Time Attributes

2-32

Of the many attributes that you can associate with an external file, some exist
as long as the external file exists. These are called creation-time attributes.
FILE ORGANIZATION and RECORD SIZE are examples of creation-time
attributes.

The rest of the attributes exist only as long as the external file is associated
with a particular file object. These are called run-time attributes. Any of

the attributes secondary to the primary CONNECT, ACCESS, or SHARING
attributes, as well as the FILE secondary PRINT_ON_CLOSE attribute, are
run-time attributes. Run-time attributes can change dynamically at run time,
and must be respecified each time the file is opened.

The Guide to OpenVMS File Applications identifies all creation-time and
run-time attributes and discusses them in more detail.

You can change a file’s creation-time characteristics only by creating or
recreating the file. Inside an Ada program, you can give creation-time
attributes to an external file with a call to a CREATE procedure. The file
inherits these attributes in subsequent calls to OPEN procedures. Outside an
Ada program, you can change the creation-time characteristics of an external
file by using the Edit/FDL and Convert or Convert/Reclaim Utilities to create a
new external file and populate it with elements of the old file.

Any creation-time file attributes specified in an OPEN procedure are considered
to be only assertions. They do not affect the external file’s characteristics. DEC
Ada protects you from making wrong assertions of creation-time attributes in
a call to an OPEN procedure. If you specify a form string value for the
FORM parameter in an OPEN procedure call, the OPEN procedure checks the
following creation-time attributes of the external file against any assertions of
the attributes in the form string:

e The FILE secondary attribute ORGANIZATION
e The RECORD secondary attribute CARRIAGE_CONTROL
e The RECORD secondary attribute FORMAT

Input-Output Facilities

e The RECORD secondary attribute SIZE
= Every KEY section (in an indexed file)

If there is a mismatch, then the exception USE_ERROR is raised. For example,
if a form string asserts that the organization of the external file is indexed,
but the external file being opened is sequential, the exception USE_ERROR

is raised. If no creation-time-attribute assertions are made, then no check is
performed.

2.3.3 Default External File Attributes

When you open a file (using either a CREATE or an OPEN procedure), the
input-output package you are using provides a set of default external file
attributes. One purpose of the default attributes is to allow your program

to pass a null form string (the default) to an OPEN procedure and still open
the external file. You do not need a form string (a FORM parameter value)
when you use an OPEN procedure to open a file. However, in some situations
you must specify certain external file attributes when you call a CREATE
procedure (see Section 2.3).

Sections Section 2.6.1 to Section 2.7 provide tables of default attributes for
each DEC Ada input-output package. Default external files have the following
attributes:

= Creation-time attributes specified in the FORM parameter of an OPEN
procedure have no effect except to cause a consistency check against the
creation-time attributes that exist for the file (see Section 2.3.2).

= Many FDL default attributes are applied automatically, but they are
not shown in the default attribute tables. See the OpenVMS Record
Management Utilities Reference Manual for the FDL defaults. The DEC
Ada input-output packages impose certain restrictions on the attributes of
the external files that they open:

— If the file is being created, these restrictions are checked against
any external file characteristics given in the FORM parameter of the
CREATE procedure.

— If the file is being opened, the restrictions are checked after any
assertions in the FORM parameter of the OPEN procedure have been
checked against the existing attributes of the file.

If the restrictions are violated at either point, the exception USE_ERROR
is raised.

Input-Output Facilities 2-33

2.4 File Sharing

2-34

File sharing in DEC Ada enables concurrent access to the same external

file. File sharing permits multiple file objects to be associated with the same
external file. File sharing can take place in the same OpenVMS process or
across multiple processes. You can share external files for reading, writing, or
modifying.

Because DEC Ada files are layered on RMS file organizations, the rules that
apply to read and write sharing of RMS files also apply to Ada files. The Guide
to OpenVMS File Applications gives complete information on file sharing in the
OpenVMS environment. For descriptions of the organizations chosen for Ada
files, see Section 2.1.

The FDL ACCESS and SHARING primary attributes have secondary
attributes that control the scope of access and sharing of an external file.
The ACCESS secondary attributes determine the kinds of operations (read,
write, update, and so on) that your program can perform on the external file.
The SHARING secondary attributes determine the kinds of operations other
concurrently active programs can perform on the file.

When you open a file, DEC Ada uses the MODE parameter to select
appropriate default ACCESS and SHARING secondary attributes (see

Section 2.3.3 and Tables Table 2-5 through Table 2-13). If the FORM
parameter in an OPEN or CREATE procedure specifies values for the ACCESS
or SHARING attributes, those values supersede any previously specified or
default values.

To determine whether or not you need to specify ACCESS or SHARING
attributes, follow these steps:

1. Check the table of default attributes for the package you are working with.
For example if you are working with relative files, look at Table 2-9.

2. If the table does not show a default for a particular attribute, check
Table 2—4 or the OpenVMS Record Management Utilities Reference
Manual.

3. If the combined set of default values does not reflect the action you want,
use the form string to set the attribute values.

When choosing attribute values:

e The ACCESS and SHARING attributes interact to some degree. For
example, YES values for ACCESS DELETE, PUT, TRUNCATE, or
UPDATE cause a value of YES for SHARING PROHIBIT.

Input-Output Facilities

< In any attempt to open an external file that has already been opened, the
value of the ACCESS attribute must match the value of the SHARING
attribute given to the file when it was first opened (or created). Also, the
value of the SHARING attribute must match the value of the ACCESS
attribute given to the file when it was first opened (or created). Otherwise,
the attempt to open the external file raises the exception USE_ERROR.

= If you specify any SHARING attribute and do not specify PROHIBIT, then
PROHIBIT has no default value (which is equivalent to a default of NO).

e The SHARING attributes are ignored for record-oriented devices and
magnetic tape files that are mounted foreign. For ANSI magnetic tape
files, a concurrent OPEN operation raises the exception USE_ERROR,
even though a SHARING attribute may be specified in the initial OPEN
operation. The number of shared files is restricted by the system-wide
shared-file database.

= Although write sharing is allowed for all files, you can improve the
performance of your program if you avoid write sharing. See the Guide to
OpenVMS File Applications for more information.

In Example 2—1, read sharing is desired for the relative file REL_FILE.

Example 2-1 Creating and Opening a Relative File for Read Sharing

with RELATIVE IO;
package REL PKG is new RELATIVE IO (STRING);

with REL PKG; use REL PKG;
procedure CREATE RELATIVE is
REL FILE: FILE TYPE;

begin
CREATE (FILE => REL FILE,

MODE => INOUT FILE, 1

NAME => "REL FILE.DAT",

FORM => "RECORD;" &

"SIZE 30;" &
"SHARING;" & 2

"GET YES;");

end CREATE RELATIVE;

(continued on next page)

Input-Output Facilities 2-35

Example 2-1 (Cont.) Creating and Opening a Relative File for Read Sharing

with REL PKG; use REL PKG;

with CREATE RELATIVE;

procedure SHARE RELATIVE is
IO FILE: FILE TYPE;

begin
CREATE_RELATIVE; 3

OPEN (FILE => IO FILE,
MODE => IN FILE,

NAME => "REL FILE.DAT", 4
FORM => "RECORD;" &
"SIZE 30;" &
"SHARING; " & 5
"PUT YES;");

CLOSE (I0_FILE) ;
end SHARE RELATIVE;

Key to Example 2-1:

1 The CREATE statement creates a relative, in-out file. DEC Ada gives it
the following attributes by default (see Table 2-9):

ACCESS; DELETE YES;
ACCESS; GET YES;
ACCESS; PUT YES;
ACCESS; UPDATE YES;
SHARING; GET NO;

Because YES values are in effect for ACCESS DELETE, PUT, and
UPDATE, the value of SHARING PROHIBIT is also YES (see Table 2—4).

2 The CREATE statement specifies a value of YES for SHARING GET. By
default, SHARING GET is disallowed and all other sharing is prohibited.
SHARING GET indicates that the external file REL_FILE.DAT can be
shared with other users who wish to read the file.

3 The procedure SHARE_RELATIVE calls the procedure CREATE_
RELATIVE. Because CREATE_RELATIVE does not close REL_FILE.DAT,
the file is still open and needs to be shared when SHARE_RELATIVE tries
to access it.

4 The OPEN statement opens REL_FILE.DAT as an in file as only reading is
required.

2-36 Input-Output Facilities

5 The OPEN statement specifies a value of YES for SHARING PUT,
which lets SHARE_RELATIVE open the external file REL_FILE.DAT.
If SHARING PUT is not specified, the file cannot be opened, and the
exeception USE_ERROR is raised.

2.5 Record Locking

The RMS record locking facility lets more than one program concurrently add,
delete, or update an RMS record in a controlled manner. Record locking is
available to external files in the same OpenVMS process and across different
processes. The Guide to OpenVMS File Applications explains RMS record
locking in detail.

In DEC Ada, record locking is available for all files. When you open a file for
which the attributes SHARING GET, SHARING PUT, or SHARING UPDATE
have been specified in the FORM parameter, RMS locks each record as it is
accessed. The same external file may then be reopened and associated with
another Ada file according to the kind of sharing specified.

When a record of a relative or indexed external file is locked as the result
of an operation on a particular Ada file, any other operation on another Ada
file that attempts to access the same record fails, and the exception LOCK _
ERROR is raised. When an attempt is made to access a record of any other
kind of external file, the exception USE_ERROR is raised. For all files, any
subsequent file operation (for example, read, write, modify, delete, end-of-file,
and so on) could potentially unlock a previously locked record. See the DEC
Ada Language Reference Manual for descriptions of the effects of the various
file operations on locking and unlocking the elements of Ada files.

The following example shows a technique for handling LOCK_ERROR. In
this example, attempts to access the record are continued each time a Y (Yes)
answer is given to an interactive prompt.

Input-Output Facilities 2-37

-- REL FILE has been created and opened for read sharing;
-- 1t is associated with the external file "REL FILE.DAT".
REL PKG.READ (FILE => REL FILE,

ITEM => READ VALUE,

FROM => REL PKG.COUNT(I));

-- Additional processing of the record at location COUNT (I)
-- could take place here.

-- I0_FILE has been opened to read the same external file

-- "REL FILE.DAT". Because both this and the previous READ
-- statement access the same record, potential lock errors
-- could occur.

-- Thus, a loop conditionalized on the BOOLEAN variable
-- HAVE RECORD checks for lock error and issues an interactive
-- prompt if a lock error has occurred. By answering the prompt,
-- the application user can control whether the application
-- waits until the lock is cleared or execution is terminated.
while not HAVE RECORD loop
begin
REL_PKG.READ(FILE => I0 FILE,
ITEM => READ VALUE,
FROM => REL PKG.COUNT(I));
HAVE RECORD := TRUE;
exception
when LOCK ERROR =>
TEXT I0.PUT("Record locked - try again? (Y or N)");
TEXT_I0.GET (RESPONSE) ;
if RESPONSE = "N" then
raise; -- Re-raise LOCK ERROR.
end if;
end;
end loop;

2.6 Binary Input-Output
DEC Ada provides two kinds of binary input-output packages:

e The first Kind—SEQUENTIAL_IO, DIRECT_IO, RELATIVE_IO, and
INDEXED_I10—Iets you work with binary files containing elements that
are all of the same type (a file of elements of an integer type, a file of
elements of a record type, a file of elements of an array type, and so on).
These packages are all generic. You must instantiate them with the type of
the elements in the file before you can use their operations.

2-38 Input-Output Facilities

e The second kind—SEQUENTIAL_MIXED_IO, DIRECT_MIXED_IO,
RELATIVE_MIXED 10, and INDEXED_MIXED_I10—Ilets you work with
binary files of mixed types. For example, you can have a mixed-type
file that contains elements of three different integer types or a file that
contains elements that are a mixture of integer types, array types, string
types, and so on.

The mixed-type packages are nongeneric, but they involve buffer operations
that are generic. For example, you must instantiate the generic GET _

ITEM and PUT_ITEM operations to move values in and out of a buffer.

You then read or write the buffer to transfer a record to or from your file.
Example 2-2 and Figure 2-1 show the use of a mixed-type file (using the
package DIRECT_MIXED_IO). The circled numbers in Figure 2-1 match
statements in the program EXPENSE_ACCOUNT (Example 2-2) to elements
in the file EXPENSES. Figure 2-2 shows the use of a file with elements of the
same type (using the package DIRECT_10).

Sections Section 2.1.1 to Section 2.1.5 describe the structure of DEC Ada files
and give their relationship to RMS files. Chapter 14 of the DEC Ada Language
Reference Manual describes the packages and their operations in more detail.
The following sections give more information (including default file attributes)
and present examples that show the features of each kind of package. If

you are interested in information about designing files and tuning them for
optimum performance, see the Guide to OpenVMS File Applications.

Input-Output Facilities 2-39

Example 2-2 Using a Mixed-Type File

with DIRECT MIXED IO; use DIRECT MIXED IO;
procedure EXPENSE ACCOUNT is
type AMOUNT is delta 0.01 range 0.00..5000.00;
subtype DATE TYPE is STRING(1..8);
COUNT: NATURAL := 0;

procedure
procedure
procedure

procedure
procedure
procedure

EXPENSES:
begin

PUT DATE is new PUT ITEM(DATE TYPE);
PUT COUNT is new PUT ITEM (NATURAL) ;
PUT COST is new PUT_ITEM (AMOUNT) ;

GET DATE is new GET ITEM(DATE TYPE);
GET COUNT is new GET ITEM(NATURAL);
GET COST is new GET_ ITEM (AMOUNT) ;

FILE TYPE;

CREATE (FILE => EXPENSES,
MODE => INOUT FILE,
NAME => "EXPENSES.DAT",

FORM => "RECORD;" &

"FORMAT FIXED;" &
"SIZE 32;");

PUT DATE (EXPENSES, "01-08-91"); 1

WRITE (EXPENSES, 1) ; 2

PUT COST (EXPENSES, 0.80); 3

COUNT := COUNT + 1;

PUT COST (EXPENSES, 27.95); 4

COUNT := COUNT + 1;

PUT_COST (EXPENSES, 35.00); 5

COUNT := COUNT + 1;

WRITE (EXPENSES, 3); 6

PUT COUNT (EXPENSES, COUNT) ; 7

WRITE (EXPENSES, 2); 8

RESET (EXPENSES) ;

READ (EXPENSES, 2) ; 9

GET_COUNT (EXPENSES, COUNT); 10

CLOSE (EXPENSES) ;

end EXPENSE ACCOUNT;

Input-Output Facilities

Figure 2-1 Using a Mixed-Type File

@ rieEXPENSES: Empty.
Buffer (32-byte): [01-08-91 |
element 1
@ FieExPENSES | 01-08-91 |
Buffer (32-byte): Empty.
element 1
@ FieExPENsEs [01-08-91 |

Buffer (32-byte): | 0.80 |

element 1
@ Ficexpenses [01-08-91 |

Buffer (32-byte): | 0.80 27.95 |

element 1
@ FieexPensEs [01-08-91 |

Buffer (32-byte): | 0.80 27.95 35.00 |

element 1 2 3
@ FieExPENsES | 01-08-91 | [o80 27.95 3500 |
Buffer (32-byte): Empty.
element 1 2 3
@ FieexPensEs [01-08-91 [[0.80 2795 3500 |

Buffer (32-byte): | 3 |

element 1 2 3
@ rieExPENSES [01-08-91 [3 [080 2795 3500 |
Buffer (32-byte): Empty.
element 1 2 3
@ Ficexpenses [01-08-91 IE [080 27.95 3500 |

Buffer (32-byte): | 3 |

@ count=a.

Buffer is empty.

ZK-4043-2-GE

Input-Output Facilities 2-41

Figure 2-2 Using a Uniform-Type File

with DIRECT_IO;
procedure POWERS_OF_TEN is
package TEN_IO is new DIRECT_IO (NATURAL);
use TEN_IO;
TEN: NATURAL = 10;
POWER: NATURAL;
TEN_FILE: FILE_TYPE;
begin
CREATE (TEN_FILE,INOUT_FILE,"ten_file.data");
for POWER in 0..5 loop
WRITE (TEN_FILE, TEN «+ POWER);
end loop;
RESET (TEN_FILE);
READ (TEN_FILE, TEN, 3);
end POWERS_OF_TEN;

element

(index) 1 2 3 4 5
State of TEN_FILE _
at end of loop: 1 10 100 1000 || 10000 |end_of_file
Element read [
by READ statement: TEN =100

ZK-4042-GE

2.6.1 Sequential File Input-Output

For creating and working with sequential files of uniform-type elements, DEC
Ada provides the generic package SEQUENTIAL_IO. For creating and working
with sequential files of mixed-type elements, DEC Ada provides the nongeneric
package SEQUENTIAL_MIXED_I10.

When you create a file with the package SEQUENTIAL_1O, DEC Ada gives
it the default attributes listed in Table 2-5. When you create a file with
the package SEQUENTIAL_MIXED_IO, DEC Ada gives it the default
attributes listed in Table 2—-6. You can use the operations in the packages
SEQUENTIAL_I0O and SEQUENTIAL_MIXED_IO to open and read files of
any RMS organization.

2-42 Input-Output Facilities

Table 2-5 SEQUENTIAL_IO: Default File Attributes

File Attribute

Default Value

FILE
ORGANIZATION
SEQUENTIAL_ONLY
RECORD
CARRIAGE_CONTROL
FORMAT

SIZE

ACCESS
GET
PUT

TRUNCATE

SHARING
GET

CONNECT
READ_AHEAD
TRUNCATE_ON_PUT

WRITE_BEHIND

SEQUENTIAL
YES

CARRIAGE_RETURN

FIXED if ELEMENT_TYPE is constrained;
VARIABLE if unconstrained

(ELEMENT_TYPE’' MACHINE_SIZE + 7)/8 if
ELEMENT _TYPE is constrained; 0 (unlimited)
if not (However, there are physical limitations
to SIZE; see the OpenVMS Record Management
Services Reference Manual)

YES

YES if MODE is OUT_FILE;
NO if MODE is IN_FILE

YES if MODE is OUT_FILE;
NO if MODE is IN_FILE

YES if MODE is IN_FILE;
NO if MODE is OUT_FILE

YES

YES if MODE is OUT_FILE;
NO if MODE is IN_FILE

YES if MODE is OUT_FILE

Input-Output Facilities 2-43

Table 2-6 SEQUENTIAL_MIXED_IO: Default File Attributes

File Attribute Default Value
FILE
ORGANIZATION SEQUENTIAL
SEQUENTIAL_ONLY YES
RECORD
CARRIAGE_CONTROL CARRIAGE_RETURN
FORMAT VARIABLE
SIZE 0 (record size is unlimited; however, SIZE has

physical limitations; see the OpenVMS Record
Management Services Reference Manual)

ACCESS
GET YES
PUT YES if MODE is OUT_FILE;
NO if MODE is IN_FILE
TRUNCATE YES if MODE is OUT_FILE;
NO if MODE is IN_FILE
SHARING
GET YES if MODE is IN_FILE;
NO if MODE is OUT_FILE
CONNECT
READ_AHEAD YES
TRUNCATE_ON_PUT YES if MODE is OUT_FILE;
NO if MODE is IN_FILE
WRITE_BEHIND YES if MODE is OUT_FILE

Example 2—3 shows how to instantiate the package SEQUENTIAL_IO. It also
shows how to open, close, read, and write from an Ada sequential file.

The item input-output operations provided by the package SEQUENTIAL _
MIXED_IO are basically the same as those provided for the other mixed-type
packages. See Figure 2-1 and Examples Example 2—4 and Example 2—7 for
examples of using the item input-output operations.

2-44 Input-Output Facilities

Example 2-3 Using the Package SEQUENTIAL_IO

with SEQUENTIAL IO;
procedure SHOW SEQ is

type STRING TYPE is new STRING(1 .. 10);
package INOUT STRING is new SEQUENTIAL IO (STRING TYPE);
use INOUT STRING;

STRING_FILE : FILE TYPE;
STRING VAR : STRING TYPE;

begin
-- Write a string to the file STRINGDAT.DAT.

CREATE (FILE => STRING FILE,

MODE => OUT FILE,

NAME => "STRINGDAT.DAT");
WRITE (STRING FILE, "tenletters");
CLOSE (STRING FILE);

-- Read a string from the same file.

OPEN (FILE => STRING FILE,

MODE => IN FILE,

NAME => "STRINGDAT.DAT");
READ (STRING FILE, STRING VAR) ;
CLOSE (STRING FILE) ;

end SHOW SEQ;

2.6.2 Direct File Input-Output

For creating and working with direct files of uniform-type elements, DEC Ada
provides the generic package DIRECT_IO. For creating and working with
direct files of mixed-type elements, DEC Ada provides the nongeneric package
DIRECT_MIXED_IO.

When you create a file with the package DIRECT_10, DEC Ada gives it the
default file attributes listed in Table 2—7. When you create a file with the
package DIRECT_MIXED_IO, DEC Ada gives it the default file attributes
listed in Table 2—8. You can use these packages only with files having the FDL
attributes ORGANIZATION SEQUENTIAL and RECORD FORMAT FIXED.

If you try to use DIRECT_IO or DIRECT_MIXED_IO with a file that has
different ORGANIZATION and RECORD FORMAT attributes, the exception
USE_ERROR is raised.

Input-Output Facilities 2-45

2-46

When creating files with the package DIRECT IO, you must specify a
maximum record size with the FORM parameter if you instantiate the package
with an unconstrained element type. When creating files with the package
DIRECT_MIXED_IO, you must specify a maximum record size with the FORM
parameter. The maximum record size determines the maximum size of an
element in the file. In the case of DIRECT_MIXED_IO, the maximum record
size also determines the size of the file buffer for performing item input-output.
If you write a value to a direct file element that is smaller than the size
specified, the corresponding external file record is padded with zeros.

Table 2-7 DIRECT _IO: Default File Attributes

File Attribute

Default Value

FILE
ORGANIZATION
RECORD
CARRIAGE_CONTROL
FORMAT
SIZE

ACCESS
GET
PUT

SHARING
GET

CONNECT
UPDATE_IF

SEQUENTIAL

CARRIAGE_RETURN
FIXED

(ELEMENT_TYPE' MACHINE_SIZE + 7)/8 if
ELEMENT_TYPE is constrained; otherwise, a value
must be specified (no default if ELEMENT_TYPE is
unconstrained)

YES

YES if MODE is OUT_FILE;
NO if MODE is IN_FILE

YES if MODE is IN_FILE;
NO if MODE is OUT_FILE

YES

Input-Output Facilities

Table 2-8 DIRECT_MIXED_10: Default File Attributes

File Attribute Default Value
FILE
ORGANIZATION SEQUENTIAL
RECORD
CARRIAGE_CONTROL CARRIAGE_RETURN
FORMAT FIXED
SIZE None; this attribute must be specified in the FORM
parameter
ACCESS
GET YES
PUT YES if MODE is OUT_FILE;
NO if MODE is IN_FILE
SHARING
GET YES if MODE is IN_FILE;
NO if MODE is OUT_FILE
CONNECT
UPDATE_IF YES

Example 2—4 shows the reading and writing of items into a direct file using the
package DIRECT_MIXED_IO. For an example of using the package DIRECT _
10, see Figure 2-2.

Read and write operations to direct files do not have to be to consecutive
elements. However, if you read from an empty element, the value returned is
unpredictable.

Example 2-4 Using the Package DIRECT_MIXED_10

with DIRECT MIXED IO; use DIRECT MIXED IO;
procedure SHOW DIRECT MIXED is

OLD STRING : STRING(1 .. 5) := "FOUR ";
NEW _STRING : STRING(1 .. 5) := "FIVE ";
OLD INT : INTEGER := 1;

NEW INT : INTEGER := 4;

MY FILE : FILE TYPE;

(continued on next page)

Input-Output Facilities 2-47

2-48

Example 2—-4 (Cont.) Using the Package DIRECT_MIXED_IO
-- Instantiate the GET and PUT procedures.

procedure GET INT is new GET ITEM
procedure GET STR is new GET ITEM
procedure PUT INT is new PUT ITEM
procedure PUT STR is new PUT ITEM

INTEGER) ;
STRING) ;
INTEGER) ;
STRING) ;

begin

-- Create the file; sequential organization is the default,
-- but is specified for completeness; a record size
-- must be specified (there is no default).
CREATE (FILE => MY FILE,
MODE => INOUT FILE,
NAME => "MY FILE.DAT",

FORM => "FILE;" &
"ORGANIZATION SEQUENTIAL;" &
"RECORD; " &

"SIZE 120;") ;

-- Alternately put a string in the buffer and write it
-- to the file as a single-element record.
PUT_STR(MY_FILE,OLD_STRING);
WRITE (FILE => MY FILE,
TO =>1); -- String will be written to element 1.

PUT STR (MY FILE,OLD STRING);
WRITE(FILE => MY FILE); -- String will be written to element 2.

PUT STR (MY FILE,OLD STRING);
WRITE (FILE => MY FILE,

TO =>5); -- String will be written to element 5.
SET INDEX (MY FILE, 7); -- Reposition file pointer to element 7.
PUT_INT (MY FILE,OLD INT);
WRITE (FILE => MY FILE); -- Integer will be written to element 7.

-- Reset for reading.

RESET (MY FILE);

(continued on next page)

Input-Output Facilities

Example 2-4 (Cont.) Using the Package DIRECT_MIXED_IO

-- Read values from the file.

READ (MY_FILE) ; -- Put the record from element 1
-- into the buffer.
GET_STR(MY_FILE,NEW_STRING);
READ (FILE => MY FILE, -- Put the record from element 7
FROM => 7); -- into the buffer.

end SHOW DIRECT MIXED;

2.6.3 Relative File Input-Output

For creating and working with relative files of uniform-type elements, DEC

Ada provides the generic package RELATIVE_IO. For creating and working
with relative files of mixed-type elements, DEC Ada provides the nongeneric
package RELATIVE_MIXED I0.

When you create a file with the package RELATIVE_IO, DEC Ada gives it
the default file attributes listed in Table 2-9. When you create a file with the
package RELATIVE_MIXED_ 10, DEC Ada gives it the default file attributes
listed in Table 2-10. You can use these packages only with files having the
attribute ORGANIZATION RELATIVE. If you try to use RELATIVE_IO and
RELATIVE_MIXED_IO with a file with any other ORGANIZATION attribute,
the exception USE_ERROR is raised.

When creating files with the package RELATIVE_IO, you must specify a
maximum record size with the FORM parameter if you instantiate the package
with an unconstrained element type. When creating files with the package
RELATIVE_MIXED_IO, you must specify a maximum record size with the
FORM parameter. The maximum record size determines the maximum size of
an element in the file. In the case of RELATIVE_MIXED_IO, the maximum
record size also determines the size of the file buffer for performing item
input-output.

Input-Output Facilities 2-49

Table 2-9 RELATIVE_IO: Default File Attributes

File Attribute Default Value
FILE
ORGANIZATION RELATIVE
RECORD
CARRIAGE_CONTROL CARRIAGE_RETURN
FORMAT FIXED if ELEMENT_TYPE is constrained;
VARIABLE if not
SIZE (ELEMENT_TYPE'MACHINE_SIZE + 7)/8 if

ELEMENT_TYPE is constrained; if not, a value
must be specified (there is no default if ELEMENT_
TYPE is unconstrained)

ACCESS
DELETE YES if MODE is OUT_FILE or INOUT_FILE;
NO if MODE is IN_FILE
GET YES
PUT YES if MODE is OUT_FILE or INOUT_FILE;
NO if MODE is IN_FILE
UPDATE YES if MODE is OUT_FILE or INOUT_FILE;
NO if MODE is IN_FILE
SHARING
GET YES if MODE is IN_FILE;

NO if MODE is OUT_FILE or INOUT_FILE

2-50 Input-Output Facilities

Table 2-10 RELATIVE_MIXED_|O: Default File Attributes

File Attribute

Default Value

FILE
ORGANIZATION
RECORD
CARRIAGE_CONTROL
FORMAT
SIZE

ACCESS
DELETE

GET
PUT

UPDATE

SHARING
GET

RELATIVE

CARRIAGE_RETURN
VARIABLE

None; a value must be specified in the FORM
parameter

YES if MODE is OUT_FILE or INOUT_FILE;
NO if mode is IN_FILE

YES

YES if MODE is OUT_FILE or INOUT_FILE;
NO if MODE is IN_FILE

YES if MODE is OUT_FILE or INOUT_FILE;
NO if MODE is IN_FILE

YES if MODE is IN_FILE;
NO if MODE is OUT_FILE or INOUT_FILE

Example 2-5 shows the reading and writing of records to cells in a relative file
using the package RELATIVE_IO. Read and write operations to relative files
do not have to be to consecutively numbered. However, if you try to read at a
position for which there is no element, the exception EXISTENCE_ERROR is

raised.

The item input-output operations provided by the package RELATIVE_
MIXED_IO are basically the same as those provided for the other mixed-type
packages. See Figure 2—-1 and Examples Example 2—4 and Example 2-7 for
examples of using the item input-output operations.

Input-Output Facilities 2-51

Example 2-5 Using the Package RELATIVE_IO

with RELATIVE IO;
procedure SHOW RELATIVE IO is

type SMALL RECORD is
record
NUM: INTEGER := 0;
LET: CHARACTER :=
end record;

IAI;

-- Instantiate and make visible a RELATIVE IO package
-- that operates on elements of type SMALL RECORD.

package REC IO is new RELATIVE IO (SMALL RECORD) ;
use REC_IO;

-- Declare the objects to be used.

RELATIVE FILE : FILE TYPE;

POS : POSITIVE COUNT;
REC : SMALL RECORD;
RECX : SMALL RECORD := (NUM => 1, LET => 'X');
RECY : SMALL RECORD := (NUM => 2, LET => 'Y');
I : INTEGER;

begin

-- Create the file.

CREATE (RELATIVE FILE,OUT FILE,"RELATIVE FILE.DAT");

-- Write records, incrementing the NUM value, to file
-- cells in positions 1 through 10.
for T in 1 .. 10 loop
WRITE(RELATIVE_FILE,REC);
REC.NUM := REC.NUM + 1;
end loop;

-- Prepare the file for reading.

RESET (RELATIVE FILE,IN FILE);

-- Read contents of records in cells at positions 2 and 3.

POS := INDEX (RELATIVE FILE);
READ (RELATIVE FILE,RECX,2);
POS := INDEX(RELATIVE FILE);
READ (RELATIVE FILE,RECY);

(continued on next page)

2-52 Input-Output Facilities

Example 2-5 (Cont.) Using the Package RELATIVE_IO

-- Prepare the file for writing.

RESET (RELATIVE FILE,OUT FILE);

-- Write to records in cells at positions 12 and 16.

WRITE (RELATIVE FILE,REC,12);
REC.NUM := REC.NUM + 1;
WRITE (RELATIVE FILE,REC,16);

end SHOW RELATIVE IO;

2.6.4 Indexed File Input-Output

For creating and working with indexed files of uniform-type elements, DEC
Ada provides the generic package INDEXED_10. For creating and working
with indexed files of mixed-type elements, DEC Ada provides the nongeneric
package INDEXED_MIXED _10.

When you create a file with the package INDEXED_IO, DEC Ada gives it the
default file attributes listed in Table 2—11. When you create a file with the
package INDEXED MIXED_ 10, DEC Ada gives it the default file attributes
listed in Table 2-12. You can use these packages only with files having the
attribute ORGANIZATION INDEXED. If you try to use INDEXED_IO or
INDEXED_MIXED_IO with a file that has a different ORGANIZATION
attribute, the exception USE_ERROR is raised.

When creating indexed files, you must use the FORM parameter to specify any
information about the keys (no default key values are provided by the CREATE
procedures). There is no default bucket size. If you do not specify a bucket
size with the FORM parameter, RMS calculates the bucket size based on the
maximum record size. (The default is 0).

Input-Output Facilities 2-53

2-54

Table 2-11 INDEXED_IO: Default File Attributes

File Attribute

Default Value

FILE
ORGANIZATION
RECORD
CARRIAGE_CONTROL
FORMAT

SIZE

ACCESS
DELETE

GET
PUT

UPDATE

SHARING
GET

INDEXED

CARRIAGE_RETURN

FIXED if ELEMENT_TYPE is constrained;
VARIABLE if not

(ELEMENT_TYPE'MACHINE_SIZE + 7)/8 if
ELEMENT_TYPE is constrained; 0 if not (there

is no maximum record size; however, SIZE is also
limited by the bucket size; see the OpenVMS Record
Management Services Reference Manual)

YES if MODE is OUT_FILE or INOUT_FILE;
NO if MODE is IN_FILE

YES

YES if MODE is OUT_FILE or INOUT_FILE;
NO if MODE is IN_FILE

YES if MODE is OUT_FILE or INOUT_FILE;
NO if MODE is IN_FILE

YES if MODE is IN_FILE;
NO if MODE is OUT_FILE or INOUT_FILE

Input-Output Facilities

Table 2-12 INDEXED_MIXED_IO: Default File Attributes

File Attribute Default Value
FILE
ORGANIZATION INDEXED
RECORD
CARRIAGE_CONTROL CARRIAGE_RETURN
FORMAT VARIABLE
SIZE 0 (the record size is unlimited; however, the record

size is limited by the bucket size; see the OpenVMS
Record Management Services Reference Manual)

ACCESS
DELETE YES if MODE is OUT_FILE or INOUT_FILE;
NO if MODE is IN_FILE
GET YES
PUT YES if MODE is OUT_FILE or INOUT_FILE;
NO if MODE is IN_FILE
UPDATE YES if MODE is OUT_FILE or INOUT_FILE;
NO if MODE is IN_FILE
SHARING
GET YES if MODE is IN_FILE;

NO if MODE is OUT_FILE or INOUT_FILE

You can access indexed files with both sequential and keyed access methods.
Sequential access retrieves consecutive components, which are sorted according
to the specified key field. Keyed access retrieves components randomly,
according to the value of a particular key field. Once you select a key (using
the RESET or READ_BY_KEY procedures), a sequential read (using the READ
procedure) retrieves components with ascending or descending key field values.

Example 2-6 shows the use of the package INDEXED IO to create an
indexed file that has a string-type primary key that sorts the file in ascending
order and a string-type alternate key that sorts the file in descending order.
In particular, the example shows how to do comparative key searching in an
indexed file.

In DEC Ada, the way to do comparative key searching is to use the indexed
input-output package READ_BY_KEY procedures (see Chapter 14 of the
DEC Ada Language Reference Manual for their specifications). The kind

of comparison (equal or next, equal, or next) is determined by the value of
the READ_BY_KEY RELATION parameter. The parameter is of the type

Input-Output Facilities 2-55

2-56

RELATION_TYPE, and its default value for both packages INDEXED_IO and
INDEXED_MIXED_IO is EQUAL. The value of a READ_BY_KEY RELATION
parameter overrides any search option setting you may have made in a
CREATE or OPEN FORM parameter. The FDL CONNECT EQUAL_NEXT
and CONNECT_NEXT attributes never have an effect when you are using a
READ _BY_KEY procedure.

Example 2-6 Using the Package INDEXED_IO

-- Create an INDEXED IO package for indexed files containing
-- string data.

with INDEXED IO;

package STRING INDEXED IO is new INDEXED IO (STRING);

with TEXT IO; use TEXT IO;
with STRING INDEXED IO; use STRING INDEXED IO;
procedure SHOW_ INDEX is

IFILE : STRING INDEXED IO.FILE TYPE;
STR : STRING (1 .. 10) := " "
KEY STR : STRING (1 .. 1);

-- Instantiate generic READ BY KEY procedure for ascending
-- string matching (as opposed to numeric key matching) .

procedure READ BY STRING KEY is new READ BY KEY (STRING, 0);

begin
PUT LINE ("-- Test of INDEXED IO.");
PUT LINE ("-- Creating file");

-- The CREATE procedure must give key information. KEY 0 has
-- ascending sort order; KEY 1 has descending -- the sort

-- order is determined by the value of the KEY TYPE

-- attributes in the form string: STRING or DSTRING. (Do

-- not confuse this STRING with the Ada type STRING.)

(continued on next page)

Input-Output Facilities

Example 2-6 (Cont.) Using the Package INDEXED_IO

-- Because this is an indexed file of the Ada type STRING, and
-- the Ada type STRING is an unconstrained type, you must

-- also specify the maximum record size. A size of 0 bytes

-- 1s used so that the system will not impose a maximum

-- record length.

CREATE (FILE => IFIL

MODE
NAME
FORM

E,

=> INOUT FILE,

=> "INDEXED STRING.TXT",
=> "FILE;" &
"ORGANIZATION INDEXED;" &
"RECORD; " &
"SIZE 0;" &
"KEY 0;" &

"KEY

-- Populate file.

PUT LINE ("--

WRITE
WRITE
WRITE
WRITE
WRITE
WRITE

(IFILE,

Popula
"Mary
"Larry
"Charl
"Kirk

"Spencer "

"Susan

-- Key value STRING causes
-- ascending sort.
"TYPE STRING;"
"POSITION 0;"
"LENGTH 1;"
"DUPLICATES YES;"
;" &
-- Key value DSTRING causes
-- descending sort.
"TYPE DSTRING;" &
"POSITION O;" &
&
)

R R R R

"LENGTH 1;"
"DUPLICATES YES;"

]

ting file");
")

ie "

(continued on next page)

Input-Output Facilities 2-57

Example 2-6 (Cont.) Using the Package INDEXED_IO

-- Read file sequentially using ascending index.
PUT LINE ("-- Read file sequentially: ascending sort");
RESET (FILE => IFILE ,
MODE => INOUT FILE,
KEY NUMBER => 0);
while not END_OF_FILE(IFILE)
loop
READ (IFILE, STR);
PUT LINE (STR);
end loop;

-- Read file sequentially using descending index.

PUT LINE ("-- Read file sequentially: descending sort");
RESET (FILE => IFILE,
MODE => INOUT FILE,

KEY NUMBER => 1);
while not END OF FILE(IFILE)
loop
READ (IFILE, STR);
PUT LINE (STR);
end loop;

-- Change the search to EQUAL NEXT using the instantiation
-- of READ BY KEY (READ BY STRING KEY), and read the whole
-- file by ascending key.

PUT LINE ("-- READ BY KEY: ascending index");
RESET (FILE => IFILE);
KEY STR := "M";

-- Read the first item that is equal to or that follows a string
-- whose first character is "M". Use READ BY STRING KEY to
-- set the character match, key number (0 in this example
-- translates to an ascending key), and relation.
READ BY STRING KEY (FILE => IFILE,
ITEM => STR,
KEY => KEY STR,
KEY NUMBER => 0,
RELATION => EQUAL NEXT);
PUT LINE (STR);

(continued on next page)

2-58 Input-Output Facilities

Example 2-6 (Cont.) Using the Package INDEXED_IO

-- Read the rest of the strings that meet the
-- requirements specified in the READ BY STRING KEY statement
-- using READ (a loop of READ BY KEY will endlessly
-- return the first match).
while not END_OF_FILE(IFILE)
loop
READ (IFILE, STR);
PUT LINE (STR);
end loop;

-- Read by descending key only those records that begin
-- with "S". Use READ BY STRING KEY to set the character
-- match, key number (1 in this example translates to a
-- descending key), and relation.
PUT LINE ("-- READ BY KEY: descending index");
RESET (FILE => IFILE);
KEY STR := "8";
READ BY STRING KEY (FILE => IFILE,

ITEM => STR,

KEY => KEY STR,

KEY NUMBER => 1,

RELATION => EQUAL) ;
PUT LINE (STR);

(continued on next page)

Input-Output Facilities 2-59

Example 2-6 (Cont.) Using the Package INDEXED_IO

while not END_OF_FILE(IFILE)
loop
READ (IFILE, STR);
PUT_LINE (STR) ;
end loop;

-- Finish.

PUT LINE ("-- Closing file");
CLOSE (FILE => IFILE);

end SHOW INDEX;

Example 2—7 shows the use of the package INDEXED_MIXED_IO, shows how
to create a mixed-type indexed file, and then shows how to read and write from
the file using the primary key.

Example 2—7 Using the Package INDEXED_MIXED_IO

with INDEXED MIXED IO; use INDEXED MIXED IO;
procedure SHOW INDEXED MIXED is

type INTEGER ARRAY TYPE is array (INTEGER range <>) of INTEGER;
type COLORS is (RED,BLUE, YELLOW) ;

-- Declare objects to be used to fill the file with values.
INDEXED FILE : FILE TYPE;

INTEGER ARRAY : INTEGER _ARRAY TYPE(1l .. 3);

INT1, INT2, INT3,

INT4, INT5, INT6, INT7 : INTEGER;

CHAR1, CHAR2,

CHAR3, CHAR4 : CHARACTER;
COL1, COL2 : COLORS;
ARRAY INDEX : INTEGER;

-- Instantiate the generic READ BY KEY procedures.

procedure READ 0 is new READ BY KEY (INTEGER,O);
procedure READ 1 is new READ BY KEY (CHARACTER,1);

(continued on next page)

2-60 Input-Output Facilities

Example 2-7 (Cont.) Using the Package INDEXED_MIXED_IO

-- Instantiate the
procedure
procedure
procedure
procedure

GET INT

GET CHAR
GET_ENUM

procedure PUT INT
procedure
procedure

procedure

PUT CHAR
PUT_ENUM

procedure

GET FLOAT

PUT FLOAT

GET ARRAY

generic GET ITEM and PUT ITEM procedures.
is
is
is
is

new
new
new
new

GET ITEM(INTEGER) ;
GET ITEM(FLOAT) ;
GET_ITEM(CHARACTER) ;
GET ITEM(COLORS) ;

PUT ITEM(INTEGER) ;

is (

PUT ITEM (FLOAT) ;
(
(

is
is
is

new
new
new
new

PUT:ITEM CHARACTER) ;
PUT ITEM(COLORS) ;

INT is new

GET_ARRAY (INTEGER, INTEGER, INTEGER ARRAY TYPE) ;

begin

-- Create the file.

-- Fill the element buffer with a character,
-- and an

CREATE (FILE =>
MODE =>
NAME =>
FORM =>

ouT

"KEY 0;"

"KEY 1;"

enumeration

INT1
CHARL :=
COL1 :=

1;
IAI;
YELLOW;

INDEXED FILE,

FILE,

"F.DAT",
"FILE;"

"ORGANIZATION INDEXED;"

"INDEX FILL 4;"
"TYPE INT4;"
"DUPLICATES YES;"
"POSITION 0;"
"LENGTH 4;"

"INDEX FILL 1;"
"TYPE STRING;"
"DUPLICATES YES;"
"POSITION 4;"
"LENGTH 1;"

R R R R RYRYRYR R DR

)

an integer,
value.

PUT INT (INDEXED FILE,INT1);

PUT CHAR (INDEXED FILE,CHARI);
PUT ENUM (INDEXED FILE,COL1);

(continued on next page)

Input-Output Facilities 2-61

Example 2—7 (Cont.) Using the Package INDEXED_MIXED_IO
-- Write the element to the file.
WRITE (INDEXED FILE);

-- Prepare to read the record from the file.

RESET (INDEXED FILE,INOUT FILE);

-- Read the record from the file sorting on
-- the primary key (integer).

READ 0 (INDEXED FILE,INT1,0);
GET INT (INDEXED FILE,INT2);

GET CHAR (INDEXED FILE,CHAR2) ;
GET_ ENUM (INDEXED FILE,COL2) ;

-- Prepare to add more elements to the file.

RESET (INDEXED FILE);
SET POSITION (INDEXED FILE,1);

-- Fill the buffer with an integer, a character,
-- and three more integers, and write the buffer to

-- the file.
INT3 := 3;
CHAR3 := 'B’;
INT4 := 4;
INTS5 :=5;
INT6 := 6;

PUT INT (INDEXED FILE, INT3);
PUT CHAR (INDEXED FILE,CHAR3);
PUT INT (INDEXED FILE,INT4);
PUT INT (INDEXED FILE,INTS5);
PUT INT (INDEXED FILE, INT6);

WRITE (INDEXED FILE);

(continued on next page)

2-62 Input-Output Facilities

Example 2-7 (Cont.) Using the Package INDEXED_MIXED_IO

-- Read the record from the file sorting on
-- key 1 (string).

READ 1 (INDEXED FILE,CHAR3,1);

-- Get the items from the buffer; in particular, read
-- three integers directly into the integer array.

GET_INT (INDEXED FILE,INT7);
GET CHAR (INDEXED FILE, CHAR4) ;
GET ARRAY INT (INDEXED FILE, INTEGER ARRAY,ARRAY INDEX) ;

-- Do some more work and then close the file.

CLOSE (INDEXED FILE);
end SHOW INDEXED MIXED;

2.7 Text Input-Output

DEC Ada provides the package TEXT_IO for creating and working with text
files. TEXT_IO is not generic, but it does include generic packages for the
input and output of integers, floating-point numbers, fixed-point numbers, and
enumeration values. When you create a file with this package, DEC Ada gives
it the defaults listed in Table 2-13.

You can use this package only with files that have the attribute
ORGANIZATION SEQUENTIAL. For example, you can use TEXT_IO
operations to open and read files created with the packages SEQUENTIAL_IO,
SEQUENTIAL_MIXED_IO, DIRECT_IO, or DIRECT_MIXED_IO, as well

as TEXT_IO. If you try to use this package with files that have a different
ORGANIZATION attribute, the exception USE_ERROR IS raised.

Input-Output Facilities 2-63

2-64

Table 2-13 TEXT _10: Default File Attributes

File Attribute Default Value
FILE
ORGANIZATION SEQUENTIAL
SEQUENTIAL_ONLY YES
RECORD
CARRIAGE_CONTROL PRINT if device is a terminal; CARRIAGE_
RETURN otherwise
FORMAT VFEC if device is a terminal; VARIABLE
otherwise
SIZE 0 (record size is unlimited; however, the record size

has physical limitations; see the OpenVMS Record
Management Services Reference Manual)

ACCESS
GET YES
PUT YES if MODE is OUT_FILE;
NO if MODE is IN_FILE
TRUNCATE YES if MODE is OUT_FILE;
NO if MODE is IN_FILE
SHARING
GET YES if MODE is IN_FILE;
NO if MODE is OUT_FILE
CONNECT
READ_AHEAD YES
WRITE_BEHIND YES if MODE is OUT_FILE

As shown in Table 2-13, DEC Ada text files are implemented as RMS
sequential files. Each line in a text file corresponds to a single RMS record.
DEC Ada text files are not stream files.

Although DEC Ada creates text files with variable-length records by default,
you can use the FORM parameter (see Section 2.3) to create text files with
fixed-length records. When a text file with fixed-length records is being
written, the line length (if nonzero) must be less than or equal to the record
size. The exception USE_ERROR is raised if you try to change the line length
to a value greater than the record size. This exception is also raised when a
line being written is longer than the record size. When you write a program
that creates text files with fixed-length records, set the line length to the record
size. If the line being written does not fill the entire (fixed-length) record,

Input-Output Facilities

spaces are used to pad the rest of the record (and the spaces are then regarded
as characters in the file).

You can also use the FORM parameter to create text files with lines of
indefinite length, including lengths greater than the maximum RMS record
size. DEC Ada recognizes files with the following characteristics as files of
indefinite line length:

= The print form of carriage control

= A 2-byte header size (applies to all records in the external file)

= Variable-length with fixed-length control field (VFC) record format
= A maximum record size of zero

To create a DEC Ada text file with lines of indefinite length, use a
FORM parameter in the TEXT_I0.CREATE procedure and specify these
characteristics (either explicitly or by relying on defaults). For example:

CREATE (FILE => INDEFINITE LINE LENGTH FILE,

FORM => "RECORD;" &
"CARRIAGE CONTROL PRINT;" &
"CONTROL_FIELD 2;" &
"FORMAT VFC;" &
"SIZE 0;");

If you specify a nonzero record size, your text file has lines of the length
specified. (The record size must be within the normal range of values for the
length of an RMS record.)

Because the "CARRIAGE_CONTROL PRINT" statement gives a default control
field size of 2 bytes and a VFC format, you could also use the following form
string to create a text file with lines of indefinite length:

CREATE (FILE => INDEFINITE LINE LENGTH FILE,

FORM => "RECORD;" &
"CARRIAGE_CONTROL PRINT;" &
"SIZE 0;");

Lines are written to files with indefinite line length as one or more RMS
records. The characters in each record’'s 2-byte header keep track of which
records comprise the beginning, middle, and end of a line.

In some cases you may wish to open a text file that has the characteristics
of an indefinite-line-length file (for example a file created by some other
OpenVMS-related software). If you do not want the file to be treated as

Input-Output Facilities 2-65

one with indefinite line length, then open the file with the TEXT_I0.OPEN
procedure and specify a nonzero record length in the form string. For example:

TEXT I0.OPEN (
FILE => FIXED LINE_LENGTH FILE,
MODE => IN FILE,
NAME => "FIXED FILE.DAT",
FORM => "RECORD;"
"SIZE 1;m);

Regardless of its value, the only effect of the nonzero record length in this case
is to prevent the file from being treated as one with indefinite line length.

2.7.1 Using the Package TEXT_ IO for Terminal Input-Output

When using the package TEXT_IO to read from or write to a terminal, keep
the following points in mind:

e DEC Ada TEXT_IO operations are implemented with RMS input-output
operations, and RMS operations always involve complete records.

= Buffering is used in both terminal input and output (see Section 2.7.3).

= Terminal input is not processed until a line (an RMS record) is terminated
by a carriage return (or other line terminator).

e Ctrl/Z is interpreted sometimes as a file terminator and sometimes as a
line terminator followed by a page terminator followed by a file terminator.
(The importance and interpretation of the various terminators is discussed
in Section 2.7.2.) The difference in interpretation can cause a difference in
effect.

Example 2—-8 shows the use of TEXT_IO operations to write text from a
terminal to a file. Sections Section 2.7.1.1 to Section 2.7.1.4 discuss a number
of coding methods for accomplishing interactive terminal input-output.

Example 2-8 Using the Package TEXT_IO

with TEXT IO; use TEXT IO;
procedure COPY is

MY COPY : FILE TYPE;
INPUT 80 : STRING (1 .. 80);
CURRENT PAGE : POSITIVE COUNT;
LAST : NATURAL;

begin

(continued on next page)

2-66 Input-Output Facilities

Example 2-8 (Cont.) Using the Package TEXT_IO

CREATE (MY COPY, OUT FILE, "MYCOPY.TXT");
PUT LINE("Start typing your book.");
PUT LINE("Type Ctrl/Z to finish.");

loop
-- Remember current page, then get at most
-- 80 characters, then write out the line
-- to the text file.
CURRENT PAGE := PAGE (CURRENT INPUT);
GET LINE (INPUT 80, LAST);
PUT (MY COPY, INPUT 80(1 .. LAST));

-- If a new page is started, then terminate

-- the page in the file. Do not write an explicit
-- end-of-page if the page change is a result of
-- an end-of-file (Ctrl/Z). Otherwise, start

-- a new line.

if CURRENT PAGE < PAGE (CURRENT_INPUT) then

if not END OF FILE then
NEW_PAGE (MY_COPY);

end if;

else
NEW LINE (MY COPY);

end if;

end loop;

exception
when END ERROR =>
NEW_LINE (3);
PUT ("Your text is in file MYCOPY.TXT");
CLOSE (MY COPY);

end COPY;
When working with text input-output in general and with terminal input-

output in particular, keep in mind that each DEC Ada TEXT_IO operation
behaves exactly as it is described in the DEC Ada Language Reference Manual.

Input-Output Facilities 2-67

2-68

For example:

with TEXT IO; use TEXT IO;
procedure SHOW GETS is

INOUT LINE: STRING(1 .. 10) := "tenletters";
LAST CHAR: NATURAL;
begin

PUT LINE("Do a GET LINE");
GET LINE(INOUT LINE,LAST CHAR);
PUT_LINE (INOUT LINE) ;
PUT LINE("Do another GET LINE");
GET LINE(INOUT LINE,LAST CHAR);
PUT (INOUT LINE) ;

end SHOW GETS;

If you run this program and press Ctrl/Z as the only input to the GET_LINE
operation, the immediate result is that the OpenVMS exit prompt appears on
your screen, and then the string "tenletters is printed. This result occurs
because GET_LINE is defined as a procedure that replaces the characters of its
string argument with input characters until it encounters a line terminator.

Because Ctrl/Z in this case represents a line terminator followed by a page
terminator followed by a file terminator (see Section 2.7.2), GET_LINE
immediately encounters a line terminator. Then, according to the language
definition of GET_LINE, SKIP_LINE is called, and the subsequent page
terminator is skipped. The initial string is output because it was not changed
by GET_LINE. Because the file terminator remains as input for the next
GET_LINE operation, the exception END_ERROR is raised when the next
GET_LINE operation is executed. If the first GET_LINE had been a GET, the
exception END_ERROR would have been raised immediately.

Similarly, if you use the GET_LINE procedure to read a value into a string
variable of N characters, and you enter exactly N characters followed by

a carriage return, the END_OF_LINE function returns the value FALSE.
However, another call to GET_LINE reads in a null string, indicating that
there was a line terminator in the input buffer (the carriage return), which
was entered after the N characters were entered. This effect occurs because
when you read in exactly as many characters as are on the line, the SKIP_
LINE procedure is not called after the characters are transferred. The effect
is in accordance with the description of the GET_LINE procedure in the DEC
Ada Language Reference Manual.

When you do a SKIP_LINE operation in DEC Ada (or any operation that, in
effect, does a SKIP_LINE, such as a GET_LINE. See Chapter 14 of the DEC
Ada Language Reference Manual), the skipping of the page terminator (if

any) is delayed. A subsequent operation may require that the skipped page
terminator be retrieved, and the result is a request for more input from the

Input-Output Facilities

file. This delaying process enables a GET_LINE operation from a terminal
device to be (partially) satisfied immediately after a carriage return and then
for execution of the program to continue.

2.7.1.1 Line-Oriented Method

Example 2-9 shows a line-oriented method of using TEXT_10O operations for
interactive terminal input-output. Arbitrary lines are obtained using the
procedure GET_LINE within a loop. The actual interpretation of data on each
line is deferred to other code, so this method is flexible and adaptable. The
method expects the user to enter one of the following:

= Aline of data
= A null line (carriage return)
= An end-of-file indicator (Ctrl/Z)

If you want to let the user respond with multiple Ctrl/Zs, you need to declare
a file variable to serve as the input file rather than using the default standard
input file. You need to use a file variable because the only way to get past the
first Ctrl/Z is to reset the file, and you cannot pass the standard input file as a
parameter to the procedure RESET (RESET's file parameter has a mode of in
out. The standard input file can be used only with a mode of in). Example 2-9
declares the variable TERMINAL for this purpose.

Example 2-9 can be extended to obtain whatever data is on each line by using
those TEXT_1O operations that read data from a string (in this case, the string
variable LINE).

After trying Example 2-9, a Ctrl/Z is interpreted sometimes as a file terminator
and sometimes as a line terminator followed by a page terminator followed by
a file terminator. An explanation for this follows:

e Ctrl/Z requires a prior line.
< If there is a prior line, the Ctrl/Z is interpreted as a file terminator.

= If there is no prior line, the Ctrl/Z inserts a null line, and is interpreted
as a line terminator followed by a page terminator followed by a file
terminator.

A call to GET_LINE that encounters a Ctrl/Z may or may not return a null line
before resulting in an END_ERROR.

Input-Output Facilities 2-69

Example 2-9 Example of Line-Oriented TEXT_IO

with TEXT I0; use TEXT I0;
procedure IO EXAMPLE is

-- This example shows how to input a command line from a

-- terminal. It shows how to prompt using PUT followed by GET,
-- and shows how to recover from END ERROR (Ctrl/z).

TERMINAL : FILE TYPE;

subtype LINE TYPE is STRING(1 .. 132);

LEN : NATURAL;
LINE : LINE_TYPE;
begin

PUT LINE("This example is programmed so that entering");
PUT LINE("a Return or Ctrl/zZ is ignored.");
PUT_LINE("All other entries are echoed.");

PUT LINE("To quit, type Q or g.");

-- NOTE: To recover from Ctrl/Z (end-of-file) on a terminal, you
must do a RESET. To do a RESET, you must have a file variable.

-- Thus, you must open the file so that it "speaks" to the

-- terminal. You cannot use the standard input file (ADASINPUT)

-- as the file because RESET takes an ’'in out’ file as a

-- parameter, and the standard input file can be used only as an

-- 'in’ parameter.

-- This example uses the file variable TERMINAL. When TERMINAL is
-- opened, it is associated with the external file "USER_INPUT:",
-- which you have defined as a logical name that points to the
-- terminal. The file variable TERMINAL can be used as an actual
-- parameter to the RESET procedure.
OPEN (TERMINAL, IN FILE, ”USER_INPUT:");
loop
begin
-- Note that calls to PUT are buffered until a NEW LINE or
-- a GET is entered from the same device. Thus, the
-- sequence 'PUT GET’ results in prompting.
PUT ("Command> ") ;
GET_LINE(TERMINAL, LINE, LEN);

(continued on next page)

2-70 Input-Output Facilities

Example 2-9 (Cont.) Example of Line-Oriented TEXT_IO

if LEN = 0 then
PUT LINE("Thank you for entering a null line.");
else
PUT LINE("Thank you for entering the command " &
LINE(1 .. LEN));

if LINE(1 .. LEN) = "g" or LINE(1l .. LEN) = "Q" then
PUT LINE("Exiting now...");
exit;
end if;
end if;
exception

when END ERROR =>

RESET (TERMINAL) ;
PUT LINE("Thank you for entering a Ctrl/Z.");
end;
end loop;

end IO EXAMPLE;

2.7.1.2 Data-Oriented Method

Example 2-10 shows a data-oriented method of using TEXT 1O operations. A

sequence of data values is obtained using a series of calls to the GET procedure
within a loop. The interpretation of the data is important and embedded in the
code that does the input-output, but how the data is laid out across lines is not
important. The user is expected to enter one data value (not necessarily a line)
at a time. If the wrong kind of data is entered, the exception DATA_ERROR is
raised.

Example 2-10 Example of Data-Oriented TEXT_ IO

with TEXT IO; use TEXT IO;

with FLOAT TEXT IO; use FLOAT TEXT IO;
with INTEGER TEXT IO; use INTEGER TEXT IO;
procedure ANOTHER IO EXAMPLE is

TERMINAL : FILE TYPE;

FLT1 VALUE,
FLT2_VALUE,
FLT3 VALUE : FLOAT;

(continued on next page)

Input-Output Facilities 2-71

2-72

Example 2-10 (Cont.) Example of Data-Oriented TEXT_IO

INT1 VALUE,
INT2_VALUE,
INT3 VALUE : INTEGER;

begin

PUT LINE("This example is programmed so that entering");
PUT LINE("a Return or Ctrl/z is ignored.");

PUT LINE("All other entries are echoed.");

OPEN (TERMINAL, IN FILE, "USER_INPUT:");

loop
begin
PUT ("Enter 3 integers on arbitrary lines");
PUT (" (to quit enter 0)");

GET (TERMINAL, INTl_VALUE);
exit when INT1 VALUE = 0;
GET (TERMINAL, INT2 VALUE);

]

GET (TERMINAL, INT3:VALUE ;

PUT
PUT

"Ok, we got: ");
INTl_VALUE);

PUT INTZ_VALUE);

PUT INT3_VALUE);
NEW LINE;

PUT ("Enter 3 floats on arbitrary lines");
PUT (" (to quit enter 0.0)");

GET (TERMINAL, FLTl_VALUE);
exit when FLT1 VALUE = 0.0;
GET (TERMINAL, FLTZ_VALUE);
GET (TERMINAL, FLT3_VALUE);

PUT
PUT

"Ok, we got: ");
FLTl_VALUE);

PUT FLTZ_VALUE);

PUT FLT3_VALUE);
NEW LINE;

(continued on next page)

Input-Output Facilities

Example 2-10 (Cont.) Example of Data-Oriented TEXT_IO

exception
when END ERROR =>
RESET (TERMINAL) ;
PUT LINE("Ok, let’s try again");
end;
end loop;

end ANOTHER IO EXAMPLE;

2.7.1.3 Mixed Method

The mixed method of using TEXT_10O operations sometimes obtains whole lines
using the GET_LINE procedure and sometimes obtains individual data values
using the GET procedure. This method is much trickier than the line-oriented
or data-oriented method because GET and GET_LINE treat line terminators
differently:

= GET skips leading line terminators before reading data.
e GET_LINE (usually) skips line terminators after reading data.

Therefore, if you follow a GET with a GET_LINE, the GET_LINE is likely to
return a null string found at the end of the current line.

To make GET and GET_LINE compatible, you need to follow the last GET on
every line with a SKIP_LINE. However, the SKIP_LINE ignores any data that
the user may have typed after the GET.

The incompatible nature of GET and GET_LINE makes this style complicated
and error-prone.

2.7.1.4 Flexible Method

In some cases, you may want to mix the kinds of data the user can enter. For
example, you may want to allow users to enter integers where real numbers
are normally expected; that is, to enter 3 when 3.0 is expected. You can
accomplish this by handling the exception DATA_ERROR as follows:

e Try to read a real number.
< |If DATA_ERROR is raised, handle it by trying to read an integer.

Input-Output Facilities 2-73

Example 2-11 shows the use of this method. The example also shows how you
can display a default value that is used if the user enters no data (a carriage

return or Ctrl/Z).

Note

When you enter a Ctrl/Z after entering a line that ends with a carriage
return, the Ctrl/Z is considered to be the end-of-file. A sequence of two
Ctrl/Zs is equivalent to the sequence Return Ctrl/Z.

Example 2-11 Example of Flexible TEXT_IO

with TEXT I0; use TEXT I0;
with INTEGER TEXT IO; use INTEGER TEXT IO;

with LONG FLOAT TEXT I0; use LONG FLOAT TEXT I0;

procedure GET NUM (INPUT: in out FILE TYPE; X: in out LONG FLOAT) is

NUM : INTEGER;
subtype LINE TYPE is STRING(1 .. 132);
LINE : LINE TYPE;

L, LAST: INTEGER;
begin

(continued on next page)

2-74 Input-Output Facilities

Example 2-11 (Cont.) Example of Flexible TEXT_IO

");

PUT(II [ll)’.
PUT(X,3,2,0);
PUT("]: u)’.
loop
begin
GET_LINE(INPUT, LINE, L);
exit when L = 0;
GET (LINE(1 .. L),X,LAST);
exit;
exception
when END ERROR =>
RESET (INPUT) ;
exit;
when DATA ERROR =>
begin
GET(LINE(1 .. L), NUM,LAST);
X := LONG_FLOAT(NUM);
exit;
exception
when DATA ERROR =>
PUT(" Invalid data, try again:
end;
end;
end loop;
end GET NUM;
with GET NUM;

with TEXT IO; use TEXT IO;
with INTEGER TEXT IO; use INTEGER TEXT IO;

with LONG FLOAT TEXT I0; use LONG FLOAT TEXT IO;
procedure THIRD IO EXAMPLE is

NUM : LONG FLOAT := 1.0;
INPUT: TEXT IO.FILE TYPE;

(continued on next page)

Input-Output Facilities 2-75

Example 2-11 (Cont.) Example of Flexible TEXT_IO

begin

OPEN(INPUT,IN_FILE,"TT:");
loop
PUT ("Enter a real or integer format number (0 to exit) ");
exit when NUM = 0.0;
GET_NUM(INPUT,NUM);
NEW_LINE;
PUT("Ok, we received: ");
PUT (NUM) ;
NEW LINE;
end loop;

end THIRD IO EXAMPLE;

2.7.2 Line Terminators, Page Terminators, and File Terminators

The Ada language defines “logical” text files and text file operations in terms
of line terminators, page terminators, and file terminators (see Chapter 14

of the DEC Ada Language Reference Manual). This definition means that a
text file is logically structured so that the end of a line is marked by a line
terminator (LT), the end of a page is marked by a line terminator followed by a
page terminator (LT PT), and the end of a file is marked by a line terminator
followed by a page terminator followed by a file terminator (LT PT FT).
Figure 2—-3 shows a three-page text file.

2-76 Input-Output Facilities

Figure 2-3 An Ada Text File, Showing Line, Page, and File Terminators

Number

Line

1

2

Column
Number

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

T H 1 S I s THE@

F I R S T PAGE.@
T H E SECOND@
G E I s B L AN kK .-ED

I s I s THE@

T H | R D PAGE,@

o F ()

—
T
m
M
—
m

-

ZK-4041-GE

DEC Ada interprets these terminators as follows:

A line terminator (LT) is designated by the end of an RMS record except
when the next record in the file logically represents a line terminator
followed by a page terminator (LT PT; see the next item). In an empty file,
a line terminator is designated by the end of the file. In a line of indefinite
line length, the line terminator occurs in the last record in the line, and
has the same properties as any other line terminator. See Section 2.7 for
more information about indefinite-line-length files.

A line terminator followed by a page terminator (LT PT) is designated by
one of the following:

An entire record consisting of a single form-feed control character (for
text files with variable-length records)

An entire record with a form-feed control character as the first byte of
the record (for text files with fixed-length records)

Input-Output Facilities 2-77

2-78

— An empty record with RMS PRN information that indicates a form-feed
control character (for variable-length with fixed-length control records
and files created with the CARRIAGE_CONTROL PRINT attributes)

— The end of the file, whenever the last record of the file does not itself
represent a page terminator (that is, when the last record does not
represent a line terminator followed by a page terminator; LT PT)

= A file terminator (FT) is designated by the end of the file. An empty file
represents a line terminator followed by a page terminator followed by a
file terminator (LT PT FT). If the file is not empty and the last record of the
file does not represent a line terminator followed by a page terminator (LT
PT) (if, for example, the file consists of a single line ending in only a line
terminator), then the end of the file represents a page terminator followed
by a file terminator (PT FT). When the last record of the file represents a
line terminator followed by a page terminator (LT PT), the end of the file is
a file terminator (FT).

For example, an external file created by the following three operations contains
exactly one empty record:

CREATE (MY FILE);
NEW_LINE (MY_FILE);
CLOSE (MY FILE);

Because the NEW_LINE procedure uses the default spacing of 1 and because
no new pages are created, the NEW_LINE in this example produces one line
terminator (LT). In this case, a line terminator is represented by a single,
empty RMS record in the corresponding external file. (See the DEC Ada
Language Reference Manual for a complete description of the NEW_LINE
procedure.)

By replacing the NEW_LINE procedure with a NEW_PAGE procedure, you
would produce a file with one recorD consisting of a single form-feed control
character. (MY_FILE has variable-length records because it is created using
the default attributes provided by TEXT_IO.) By completely eliminating the
NEW_LINE operation, you would produce an empty file. All three cases
mentioned produce the same logical file consisting of a line terminator followed
by a page terminator followed by a file terminator (LT PT FT).

Input-Output Facilities

2.7.3 Text Input-Output Buffering

Line buffering is done for most text input-output operations (terminal or
nonterminal). Line buffering means that as characters are read or written to
a DEC Ada text file, they are stored in an internal line buffer until a complete
record can be transferred through RMS. Line buffering is done because DEC
Ada TEXT_IO operations are implemented with RMS input-output operations.
RMS operations always involve complete records, so the transfer of characters
between a physical input-output device and a DEC Ada text file is complete
only when a line terminator is detected (except in certain cases involving
indefinite-line-length files).

Line buffering has the following effects:

e Terminal input is not processed until the line is terminated by a carriage
return (or other line terminator).

= In situations when you provide more information in a line than the current
input operation needs, the remaining characters are kept in a buffer to be
processed by subsequent input operations. Each time an operation requires
more input from the external file, a new read operation from that file is
initiated.

= Text output is buffered until a NEW_LINE or a NEW_PAGE (or any other
operation that in effect performs a NEW_LINE or a NEW_PAGE, such as
PUT_LINE) is executed.

Partial buffering is done when you are performing terminal output, and
you have specified the attributes FDL CARRIAGE_CONTROL CARRIAGE_
RETURN or CARRIAGE_CONTROL PRINT in a CREATE or OPEN FORM
parameter (see Section 2.3). (PRINT is the default CARRIAGE_CONTROL
attribute provided by the package TEXT_IO for external files that are
terminals; see Table 2-13.)

Partial buffering means that PUT operations to the terminal output file are
buffered until one of the following actions occurs:

= Input is attempted for any other file that is associated with the same
terminal device. For example, your program executes a PUT, or a series of
PUT operations, followed by a GET.

= Execution of one or more PUT operations causes 1000 or more characters
to be written to the buffer.

Input-Output Facilities 2-79

When one of these actions occurs, the contents of the file buffer is output to
your terminal whether or not the record represented by the buffer is complete.
For example, the following program buffers the four characters produced by
the PUT operations. Then, when the GET is executed, the program prints the
letters “abcd” on the screen as a single line and waits for input.

with TEXT I0; use TEXT I0;
procedure PRINTCHAR is

C: CHARACTER;
begin

PUT(C) ;
end PRINTCHAR;
The contents of any text file buffers (partial or full) are also written to your
terminal (flushed) whenever your program image exits (such as when an
unhandled exception propagates out of a main program). In this situation, all
unclosed files are also closed by an exit handler.

2.7.4 TEXT_IO Carriage Control

The FDL CARRIAGE_CONTROL attribute specifies the carriage-control format
for a file. You can also use this attribute to control line buffering for files being
written to terminal devices.

As described in Section 2.3, you can specify the CARRIAGE_CONTROL
attribute with a FORM parameter as follows:

TEXT IO.CREATE (FILE

A\

file object name,

MODE => OUT FILE,

NAME => external file name,

FORM => "RECORD; CARRIAGE CONTROL value;");
TEXT IO.OPEN (FILE => file object name,

MODE => OUT FILE,

NAME => external file name,

FORM => "RECORD; CARRIAGE CONTROL value;");

The CARRIAGE_CONTROL attribute is a creation-time attribute (see
Section 2.3.2), and you cannot use an OPEN procedure to change what
was specified when the file was created.

2-80 Input-Output Facilities

The possible CARRIAGE_CONTROL values are as follows:

CARRIAGE_RETURN

PRINT

NONE

FORTRAN

The default if the device is not a terminal. Generally provides
the desired behavior for most terminal and nonterminal
applications.

The default if the device is a terminal and the file mode

is OUT_FILE. Results in the use of a variable-length with
fixed-length control (VFC) record format. The control portion
of each record contains carriage-control information that
indicates line and page boundaries.

Useful in applications that need to move the cursor randomly
and update the screen. Output to files specified with this
option is buffered until an operation that requires a line
terminator is executed. Calls to PUT_LINE or NEW_LINE
can be used to control when the actual RMS line termination
operation occurs.

Useful for applications that want to use FORTRAN carriage-
control characters.

Table 2-14 summarizes the meaning of the FDL CARRIAGE_CONTROL
values when they are applied to DEC Ada text files (for both terminal and
nonterminal input-output).

Table 2-14 DEC Ada Carriage-Control Options

Option

Kind of Input-Output Carriage Control

CARRIAGE_RETURN

Terminal input Each record corresponds to a single
Nonterminal input line. A 1-byte record containing a
form feed designates a page.

Terminal output A VFC record format with a 2-byte
control portion is used regardless
of what is sp