

 OpenVMS x86-64 Cross-Compiler Release Notes

 Revision V9.2-2_XGLO

 11-May-2023

 Copyright 2023 VMS Software, Inc.

1 Changes For The V9.2-1 Cross Compilers

This release includes refreshed C and Macro-32 cross-compilers; and

refreshed LINKER and ANALYZE tools. The BLISS, Fortran, Pascal,

COBOL, and x86 native assembler, cross-compilers are unchanged from

the V9.2 release.

2 Code Recompilation

While code compiled and linked on V9.2 should continue to work, we

strongly suggest that you recompile and relink with the V9.2-1

cross-tools. There have been changes made to compilers and linker to

improve the debugging and exception handling experience.

3 Native Compilers Now Available

Most of the compilers are now available as native compilers. You can

download the field test kits from the VSI Service Platform

(http://sp.vmssoftware.com).

The native compilers include optimization and better debug support.

The native compilers still do not include things like /MACHINE_CODE or

"long double" support.

4 VSI BLISS

The x86-64 cross-tools kit includes the VSI BLISS-32 and BLISS-64

cross-compilers hosted on OpenVMS IA64 that generate code for OpenVMS

x86.

The commands to invoke the BLISS cross-compilers are BLISS/X32 and

BLISS/X64.

These cross-compilers behave very much like the native IA64 compilers

in terms of command line options and language features. In addition,

some lexical functions were added along with changes to how LINKAGES

and GLOBAL REGISTERs are implemented for communication with Macro-32

code.

The compiler versions numbers are:

$ bliss/x32/version

BLISS-32X T1.12-129-50W5U

$ bliss/x64/version

BLISS-32X T1.12-129-50W5U

4.1 New Lexical Functions

The lexical function %BLISS now access BLISS32X and BLISS64X as the

compiler name parameter.

 - The lexical function %BLISS(BLISS32X) will return 1 when

 compiled with the BLISS-32 x86 compiler; otherwise it will

 return 0.

 - The lexical function %BLISS(BLISS64X) will return 1 when

 compiled with the BLISS-64 x86 compiler; otherwise it will

 return 0.

The lexical function %TARGET now accepts X86_64 and X86 as a

parameter. The function will return 1 when compiled with either

BLISS-32 for x86-64 or BLISS-64 for x86-64. %TARGET will also return

0 for names it does not recognize so a misspelling like "X64_64" will

just return 0 and not be flagged as an error.

4.2 LINKAGEs And GLOBAL REGISTERs

Unlike other BLISS target architectures, BLISS registers on x86 are

mapped to memory locations managed by the operating system. (See the

section for Macro-32 for more information). BLISS will automatically

convert uses of Alpha registers R0-R30 into memory loads and stores to

backing memory locations. The behavior should be identical to that on

OpenVMS Alpha or OpenVMS Itanium. However, since these registers are

now memory operations, BLISS linkages written as a performance

enhancement might now result in slower code since the default calling

conventions will pass the first six arguments in x86-64 hardware

registers and the remaining arguments on the stack.

4.3 /ALPHA_REGISTER_MAPPING

The /ALPHA_REGISTER_MAPPING DCL qualifier from BLISS for Itanium is

available on the x86 compiler but is hardcoded on. It cannot be

turned off. All register references correspond directly to the Alpha

R0-R30 register set to be compatible with the Macro-32 compiler's

behavior. On OpenVMS x86, register numbers correspond to the

equivalent Alpha pseudo registers implented by the Macro-32 compiler.

4.4 Bugs Fixed Since The T1.12-125 Release

 - Ensure that the count before a PLIT stays immediately before

 the data and does not have alignment holes inserted.

 - Handle a GLOBAL BIND to a location "outside" of the variable.

 For example,

 OWN V : VECTOR[5,LONG];

 GLOBAL BIND GB = V[-10];

 - Insert compiler-generated filler to ensure data layout of

 complex PLITs and UPLITs matches the alignment and layout

 from Itanium systems.

4.5 Bugs Fixed Since The T1.12-123 Release

 - The BLISS builtins that emulate VAX floating now actually use

 VAX floating format.

4.6 Known Issues

 - More Than One MODULE Per Source File

 BLISS on prior OpenVMS systems allow multiple MODULE/ELUDOMs

 in a single source file. Such files will get an LLVM

 assertion or ACCVIO. We will attempt to resolve this in a

 future release, but we suggest that you break up the single

 source file into multiple source files with a single MODULE

 per file.

5 VSI C

The x86-64 cross-tools kit includes the VSI C x86-64 cross-compiler

hosted on OpenVMS IA64 that generates code for OpenVMS x86.

The command to invoke the C cross-compiler is XCC.

The cross-compiler behaves very much like the native IA64 compiler in

terms of command line options and language features.

The compiler version number is:

$ xcc/version

VSI C X7.4-644 (GEM 50W81) for X86 on OpenVMS IA64 V8.4-2L1

Note that the cross compiler will not interfere with the normal CC

installed on the system. You can invoke either CC or XCC without

having to perform any intervening setup unless you also use the

DECC$SYSTEM_INCLUDE, DECC$USER_INCLUDE or DECC$TEXT_LIBRARY logicals.

Both compilers use those logicals in the same way, so if you use them

to locate header files that might not be suited to both IA64 and

x86-64, you may need to redefine them.

The cross compiler uses the logical X86$LIBRARY to find

DECC$RTLDEF.TLB and DECC$SHR.EXE. In addition, any header files

normally found in SYS$LIBRARY and SYS$STARLET_C.TLB must also be

present in X86$LIBRARY.

This cross compiler behaves very much like the native IA64 compiler in

terms of command line options, language features, etc. The primary

differences are in the pragma linkage support and the builtin

functions. Also, the macros specifying IA64 architecture are not

predefined, instead __x86_64 and __x86_64__ are predefined (which is

the same practice in Clang and gcc compilers on x86-64).

5.1 Pragma Linkage

For x86-64, only general-purpose registers R0 through R30 are allowed.

These registers are not mapped to any x86-64 hardware registers but

rather to legacy pseudo registers that are used to support interfaces

with Macro-32 code.

5.2 Using Itanium Builtins

The philosophy for the builtin functions is that any existing uses of

IA64 builtins should continue to work under x86-64 where possible, but

that the compiler will issue diagnostics where it cannot support an

IA64 builtin on x86-64.

The builtins.h header file contains a section conditionalized for

__x86_64 with all the x86-specific builtins. This section also

includes macro definitions for all the registers that can be specified

to the __getReg/__setReg/__getIndReg/__setIntReg builtins.

5.3 Bugs Fixed Since The X7.4-547 Release

 - Fix LLVM assertion when a ternary operator is used with

 function calls in both "true" and "false" expressions

5.4 Bugs Fixed Since The X7.4-528 Release

 - Outbound calls to routines using pragma linkage that specify

 "r16" and "r17" as parameter locations should be treated to

 mean "standard location for this target"

5.5 Bugs Fixed Since The X7.4-493 Release

 - VAX floating support has been enabled to match the Itanium

 behavior

 - Modify the "align(page)" attribute to aligned to 2**13 bytes

 on x86-64

5.6 Known Issues

 - long double

 The long double data type is not yet fully supported. Known

 issues include compile-time initialization of global/static

 variables (including structures/unions with long double data

 types) and calls to math intrinsic functions.

 - varargs.h vs stdarg.h

 Due to how the AMD64 ABI Calling Standard is defined,

 varargs.h is awkward to support. Most Linux platforms don't

 even support it at all. We have tried to retain as much as

 possible, but strongly suggest that you convert to using

 <stdarg.h> instead. It will require source modifications but

 they will work on Alpha and Itanium so you can keep common

 code going forward.

6 VSI Fortran

The x86-64 cross-tools kit includes the VSI Fortran cross-compiler

hosted on OpenVMS IA64 that generates code for OpenVMS x86.

The command to invoke the Fortran cross-compiler is FORTRAN

The cross-compiler behave very much like the native IA64 compiler in

terms of command line options and language features.

The compiler version number is:

$ fortran/version

VSI Fortran X8.4-104966 (GEM 50V4V) for X86 systems

The cross compiler uses the same CLD as the installed Fortran

compiler. Using the cross compiler will prevent you from running an

installed native Fortran compiler. You have to deassign the F90$MAIN

and F90$MSG logical names to regain access to the native compiler.

This version of Fortran adds support for the ENTRY statement and fixes

several compiler crashes when using the /DEBUG qualifier.

This Fortran cross-compiler does not support VAX floating. Using

/FLOAT=G or /FLOAT=D is ignored and floating point data is stored in

IEEE format. However, the native Fortran compiler does support VAX

floating. If VAX floating in the cross-compiler is important, please

enter a support ticket and let us know.

6.1 Bugs Fixed Since The X8.4-104965 Release

 - Fix bugs with multi-ENTRY point routines interaction with

 statement functions and certain format statements.

 - Ignore the /SEPARATE_COMPILATION qualifier. The version of

 LLVM used by the cross-compilers does not easily support this

 feature. We will revisit this in a future update.

6.2 Known Issues

 - Some of the run-time overflow checking has not been

 implemented yet

 - REAL*16 is not fully supported at this time

7 VSI Macro-32 (XMACRO)

The x86-64 cross-tools kit includes the VSI Macro-32 (XMACRO)

cross-compiler hosted on OpenVMS IA64 that generates code for OpenVMS

x86.

The command to invoke the Macro-32 cross-compiler is MACRO

The cross-compiler behave very much like the native IA64 compiler in

terms of command line options and language features.

The compiler version number is:

$ macro/flag=compiler_version tt:

XMAC X6.0-112 (GEM 50F9M)

.end

Yes, we know that if you don't type ".end" but rather type a

control-Z, you'll get a compiler error and traceback. A proper

/VERSION qualifier will be added.

7.1 Bugs Fixed Since The X6.0-111 Release

 - The CMPx instructions did not properly sign-extend literals

 before comparing with non-literal operands.

7.2 Bugs Fixed Since The X6.0-109 Release

 - Sign-extended underlying register after a BBSS, BBSC, BBCS,

 or BBCC that might have changed the signbit

 - Fix handling of auto-increment operands which also are used

 as target operands. The auto-increment was deferred until

 the end of the instruction but should have been ignored. For

 example,

 MOVL (R7)+, R7

 - CMPB and CMPW of the most negative number would set incorrect

 condition codes and subsequent conditional branches would be

 wrong. This is due to the subtle difference between the VAX

 CMPL instruction and the x86 cmp instruction.

7.3 Bugs Fixed Since The X6.0-107 Release

 - The code for the BBxx and BBxxI instructions was not

 byte-granular and the interlocked BBSSI/BBCCI did not provide

 the atomic interlocked access.

7.4 Known Issues

 - Most of the IA64_ builtins from OpenVMS IA64 are not

 supported on OpenVMS x86-64. The builtins tend to be very

 architecture specific and have no counterparts on x86-64.

 - The EVAX_EXTWH, EVAX_EXTLH, EVAX_EXTQH, EVAX_INSWH,

 EVAX_INSLH, and EVAX_INSQH builtins are not supported since

 we didn't find any uses in the OS code. If they are

 required, let us know.

 - The EVAX_INSBL, EVAX_INSBH, EVAX_INSWL, EVAX_INSLL, and

 EVAX_INSQL are not supported with a non-literal as the 2nd

 operand. If they are required, let us know.

 - Due to differences in architecture and calling standards,

 code that JSBs to a .CALL_ENTRY might have to be modified if

 the code accesses the argument list. Since this would have

 not been legal on the VAX, the behavior is poorly defined at

 best. The solution is to create a CALLG-style argblock, copy

 the arguments, and use the EVAX_CALLG_64 or CALLG instruction

 to transfer control to the .CALL_ENTRY target.

 - You will see a message

 %XMAC-I-CONCODEXP, built-in used does not set condition codes; earlier instruction used
instead

 if you use the PROBER or PROBEW VAX instructions. On OpenVMS

 x86, these are implemented via macros. The current macro

 expansion triggers these false messages from the compiler.

 The underlying macro expansion is correct. We'll remove

 these messages in a future release.

 - The VAX floating and VAX packed decimal instructions are not

 available. On OpenVMS Alpha and OpenVMS Itanium via a set of

 macros and some emulation routines. Those routines are not

 available yet. While the macros in STARLET.MLB might expand,

 there may be undefined symbols at link-time or undefined

 behavior.

8 VSI Pascal

The x86-64 cross-tools kit includes the VSI Pascal cross-compiler

hosted on OpenVMS IA64 that generates code for OpenVMS x86.

The command to invoke the Pascal cross-compiler is PASCAL

The cross-compiler behave very much like the native IA64 compiler in

terms of command line options and language features.

The compiler version number is:

$ pascal/version

VSI Pascal x86-64 X6.3-136 (50VCS) on OpenVMS I64 V8.4-2L1

The cross compiler uses the same CLD as the installed Pascal compiler.

Using the cross compiler will prevent you from running an installed

native Pascal compiler. You have to deassign the PASCAL, PASCALER1,

and PASCALER2 logical names to regain access to the native compiler.

8.1 Bugs Fixed Since The X6.3-133 Release

 - A new DCL /USAGE=64BIT_TO_DESCR option has been added to

 allow a well-defined P2 address (00000000.8xxxxxxx) to be

 fetched from the DSC$A_POINTER field of a 32-bit descriptor.

 This allows P2-allocated varibles to be passed to conformant

 array parameters.

 - Fix a bug with SET OF CHAR constructors used characters with

 values greater than 127.

 - Fix a bug that prevented TO BEGIN DO, TO END DO, and

 [INITIALIZE] from working.

8.2 Bugs Fixed Since The X6.3-132 Release

 - VAX floating support has been enabled to match the Itanium

 behavior

8.3 Known Issues

 - Some of the run-time overflow checking has not been

 implemented yet

 - Some of the run-time error messages produce a bogus NONAME

 message in addition to the appropriate error. For example,

 $ run dka100:[pvs56]err06t

 ERROR...6.4.5-15 (ERR06T)

 %NONAME-W-NOMSG, Message number 00000000

 %PAS-F-SUBASGVAL, subrange assignment value is out of range

 - QUADRUPLE is not fully supported at this time

 - Using bound procedure values (PROCEDURE parameters that rely

 on uplevel references) will result in link-time error with a

 pair of missing RTL routines. These routines will be

 implemented soon.

 - Uplevel GOTOs will generate a run-time error by mistake.

 - The cross-compiler will accept PEN files created by the VSI

 Pascal compiler for Itanium systems with an informational

 messages. Normally, the compiler will not accept PEN files

 from other platforms, but the cross-compiler allows this.

9 VSI COBOL

The x86-64 cross-tools kit includes the VSI COBOL cross-compiler

hosted on OpenVMS IA64 that generates code for OpenVMS x86.

The command to invoke the COBOL cross-compiler is COBOL

The cross-compiler behave very much like the native IA64 compiler in

terms of command line options and language features.

The compiler version number is:

$ cobol/version

VSI COBOL x86-64 X3.1-0013 (50V8U) on OpenVMS IA64 V8.4-2L1

The cross compiler uses the same CLD as the installed COBOL compiler.

Using the cross compiler will prevent you from running an installed

native COBOL compiler. You have to deassign the COBOL and COBOL$MSG

logical names to regain access to the native compiler.

9.1 Bugs Fixed Since The X3.1-0012 Release

 - VAX floating support has been enabled

9.2 Known Issues

 - The /NATIONALITY=JAPAN qualifier may cause an internal

 compiler error

 - VSI has only conducted some limited testing ourselves so

 there are other errors not yet enumerated. Your help is

 appreciated.

10 X86-64 Assembler

This kit includes the LLVM tool named "llvm-mc". This provides a

native x86-64 assembler that is highly compatible with the gnu "gas"

assembler.

It is actived as a "foreign command" in DCL and a symbol "llvm_mc" is

created by the setup script.

The compiler version number is:

$ llvm_mc -version

LLVM (http://llvm.org/):

 LLVM version 3.4.2

 DEBUG build with assertions.

 Built May 9 2018 (14:34:01).

 Default target: x86_64-pc-linux-gnu

 Host CPU: (unknown)

 Registered Targets:

 x86 - 32-bit X86: Pentium-Pro and above

 x86-64 - 64-bit X86: EM64T and AMD64

A sample command is:

llvm_mc -filetype=obj -o=objectfilename.obj sourcefilename.s

Specify "--help" for additional options.

10.1 Known Issues

 - Source Files Must Be STREAM_LF

 llvm-mc will ACCVIO if the assembly source file is not

 STREAM_LF format.

11 Known Issues For All Compilers

 1. The cross-compilers ignore the /OPTIMIZE qualifier and

 generate non-optimized code. Native compilers (other than

 the Macro-32 compiler) will provide the complete set of LLVM

 optimizations. The Macro-32 compiler does provide some

 optimization at present but additional code quality

 improvments will appear in future releases.

 2. The cross-compilers ignore the /MACHINE_CODE qualifier. You

 can use the ANALYZE/OBJECT/DISASSEMBLE command to see the

 generated code. You can also use the undocumented

 /SWITCH=ASSEMBLY to get an assembly code output file with the

 suffix ".S" instead of an ".OBJ" file. The assembly code

 file also contains static data declarations and

 initializations.

 3. Debug support is not fully implemented and the compiler may

 generate an assertion when using /DEBUG.

 4. VAX floating support has been enabled for all compilers other

 than Fortran. The native Fortran compiler, currently in

 field test, has VAX floating support.

 5. /DEBUG support is not yet complete. The compilers may

 generate an assertion when compile code with /DEBUG. In that

 case, remove the qualifier and enter a bug report with a

 reproducer.

 6. Quadruple precision floating point (long double, REAL*16,

 QUADRUPLE, etc.) is currently not supported. The upcoming

 native compilers will introduce that support.

12 VSI Linker, ANALYZE/OBJECT, And ANALYZE/IMAGE

The x86-64 cross-tools kit includes the cross-linker hosted on OpenVMS

IA64 that generates images for OpenVMS x86. The kit also contains an

Itanium-hosted ANALYZE that works on both Itanium and x86 objects and

images.

The command to invoke the cross-linker is LINK. The command to invoke

the ANALYZE tool is ANALYZE.

The linker version number is "I02-94" and be found in a link map file.

The analyze version number is "I01-86" and can be found in the analyze

output.

 - The linker generated incorrect run-time fixups for COMMON

 blocks from an installed shared image. This has been fixed.

 - The linker's internal sorting of symbol tables did not scale

 well with static libraries and a large number of symbols (for

 example, the static SSL library has over 300,000 symbols).

 The simple sort was upgraded to use the CRTL's qsort()

 interface instead.

 - The linker will automatically enable /THREAD_ENABLE if it

 sees a reference to PTHREAD_CREATE. It will also print a

 message about the qualifier. Adding an explicit

 /THREAD_ENABLE will turn off the message.

 - ANALYZE/OBJECT now knows about DWARF-related ELF section

 types that are generated by the LLVM backend but are not

 present on OpenVMS Itanium.

 - ANALYZE/OBJECT now knows about the OpenVMS-unique SFC (Source

 File Correlation) records that are generated along with the

 standard .debug_line table. These SFC records allow the

 debugger and traceback convert between the source file

 numbers in the .debug_line table and listing line numbers

 that are used in the traceback and debugger output.

 - The linker now recognizes certain ELF sections generated by

 C++ such as ".fini_array" and ignores them. The fini_array

 feature is not supported by OpenVMS. The supported mechanism

 is to provide a LIB$INITIALIZE or init_array routine and have

 it call the atexit() or SYS$DCLEXH service.

 - The linker now generates exception handling (EH) data for

 linker-generated routines. The lack of this exception

 handling data would cause the stack walking code in the

 operating system would stop too soon. This caused various

 bugs and cause the debugger to be unable to walk the stack.

 While images linked older linkers should still work, we

 strongly suggest that you relink images with this new linker.

 The linker in the V9.2 "update 2" ECO kit contains the native

 version with the same fix.

 - The default MAP file now contains the cluster and image

 section synopsis that were previously only present in the

 /FULL MAP file

 - New /TRACEBACK=LINE_NUMBERS keyword

 The /TRACEBACK qualifier causes all of the debug information

 in the object files to be copied into the final. It is

 essentially /DEBUG but the debugger doesn't start by default.

 There is a new /TRACEBACK=LINE_NUMBERS which only includes a

 subset of the debug information for module names and line

 numbers in the traceback but does not include routine names.

 If you want module names, routine names, and line numbers,

 you must use /TRACEBACK.

 - New Informational Messages in Linker I02-82

 When the cross-linker encounters writeable code sections,

 with PSECT attributes set to WRT and EXE, it now prints the

 following informational message:

 %ILINK-I-MULPSC, conflicting attributes for section <PSECT name>

 conflicting attribute(s): EXE,WRT

 module: <module name>

 file: <obj-or-olb-filename>

 When the cross-linker finds unwind data in a module, but no

 section with the PSECT attribute set to EXE, it prints the

 following informational message:

 %ILINK-I-BADUNWSTRCT, one or more unwind related sections are

 missing or corrupted

 section: .eh_frame, there is no non-empty EXE section

 module: <module name>

 file: <obj-or-olb-filename>

 These messages are seen mainly with Macro-32 and BLISS source

 modules. It is recommended to make all code sections

 non-writeable. It is recommended to have code in sections

 with the PSECT attribute set to EXE

 - Starting with version I02-82, the linker now includes

 additional traceback and debug information in the image file.

 This additional information will result in slightly larger

 image files. The information is not read by the image

 activator so it will not result in slower image activation.

 This new information is only used by the newly supported

 traceback and a future release of the debugger.

 - The x86-64 cross-linker and cross-analyzer accept the same

 qualifiers and options as the native IA64 linker and ANALYZE.

 The linker qualifier /SEGMENT_ATTRIBUTE=SHORT= is ignored

 because there is no short segment on x86-64.

 - The x86-64 cross-linker uses the X86$LIBRARY logical for

 default library searches.

 - Some parts of ELF object and image files are

 processor-specific, and so will be different on this new

 processor architecture. Certain flags, the ELF relocation

 types, and ANALYZE's disassembly output are different.

 - There is no GP or short data segment in x86-64. Instead,

 code segments will have an accompanying global offset table

 (GOT) segment. These are marked with the FIXED OFFSET

 attribute in Linker maps and ANALYZE output.

 - There are no function descriptors on x86-64, so the way

 ANALYZE displays transfer vectors and symbol vectors is

 different.

 - Each x86-64 symbol vector entry contains two addresses,

 compared to the single address in IA64 symbol vector entries.

 - The default page size for x86-64 is 0x2000 (4Kb), compared to

 0x10000 (8Kb) for IA64.

 - Code will be placed in 64-bit-addressible P2 space by

 default. You can override this by using the

 /SEGMENT_ATTRIBUTE=CODE=P0 linker qualifier.

 - With code now in 64-bit P2 space, you will encounter

 DIR32NOT32BITS linker errors if you attempt to initialize

 static data with the address of a routine. For example,

 creating the arguments to a call to $LKWSET accepts a vector

 of 2 32-bit addresses. For 64-bit addresss, you should use

 $LKWSET_64.

 - Non-code PSECTs marked with the EXE attribute by linker

 options files will also result in that PSECT being loaded

 into 64-bit address space. OpenVMS x86 requires that all

 static data remain in 32-bit address space. You should

 remove any non-code PSECT EXE attributes from linker options

 files.

13 Programming Changes For OpenVMS X86-64

13.1 Code In 64-bit Address Space

On all prior releases of OpenVMS, user code resides in the 32-bit P0

address space. Since the stack and 32-bit heap memory also reside in

the P0 address space, a large executable could restrict the amount of

stack or heap.

On OpenVMS Itanium, it is possible to place code into P2 space by

using the LINK qualifier /SEGMENT=CODE=P2 (C++ programs must be

compiled with /POINTER_SIZE=64 in order to use this feature).

For OpenVMS x86, we have changed the default to place all executable

code into 64-bit P2 space. You can restore the old behavior with

/SEGMENT=CODE=P0.

The LINKER creates small stub routines in 32-bit P0 space to allow the

address of a routine to be stored in a 32-bit variable.

In most cases, the move to 64-bit address space is invisible to a

program. However, there are two places where you might notice.

 - The PC field in the exception signal array is only 32-bits

 wide. Condition handlers would need to check the 64-bit

 signal array for the correct value.

 - Code that attempts to use the $LKWSET system service to

 "lock" code into the working set can encounter a LINKER

 DIRNOT32BITS error trying to store the 64-bit code address

 will not fit into a 32-bit data structure passed to $LKWSET

 (the address of the 32-bit stub routine would not give the

 intended behavior). Programs should have already been using

 the LIB$LOCK_IMAGE routine that was provided beginning with

 OpenVMS Itanium.

13.2 OpenVMS X86-64 Calling Standard

OpenVMS x86 is using the AMD64 ABI calling standard (the same one used

by Linux 64-bit systems) with a small set of upward compatible

extensions. The OpenVMS Calling Standard document has been updated to

include the x86 information and lists the OpenVMS specific extensions.

13.3 LIB$WAIT And Other Floating Routines

With VAX floating now enabled in the compilers, the system routines

like LIB$WAIT, CVT$CONVERT_FLOAT, LIB$CVT_DX_DX, and others now work

correctly.

