I I I VMS Software

VSI OpenVMS x86-64 V9.2-1
Release Notes

Document Number: DO-RNV921-01A
Publication Date: June 2023

Operating System and Version: VS| OpenVMS x86-64 V9.2-1

VMS Software, Inc. (VSI)
Boston, Massachusetts, USA

Release Notes

III VMS Software

Copyright © 2023 VMS Software, Inc. (VSI), Boston, Massachusetts, USA

Legal Notice

Confidential computer software. Valid license from VSI required for possession, use or copying. Consistent with FAR 12.211 and 12.212,
Commercial Computer Software, Computer Software Documentation, and Technical Data for Commercial Items are licensed to the U.S.
Government under vendor's standard commercial license.

The information contained herein is subject to change without notice. The only warranties for VSI products and services are set forth in the
express warranty statements accompanying such products and services. Nothing herein should be construed as constituting an additional
warranty. VSI shall not be liable for technical or editorial errors or omissions contained herein.

HPE, HPE Integrity, and HPE Alpha are trademarks or registered trademarks of Hewlett Packard Enterprise.
Intel and x86 are registered trademarks of Intel Corporation or its subsidiaries in the United States and other countries.
Microsoft and Windows are registered trademarks of Microsoft Corporation.

Apple and macOS are registered trademarks of Apple Computer Inc.

VirtualBox is a registered trademark of Oracle Corporation.

VMware is a registered trademark or trademark of VMware, Inc.

PuTTY is copyrighted by Simon Tatham.

Apache and the Apache feather logo are trademarks of The Apache Software Foundation.

Motif is a registered trademark of The Open Group.

POSIX is a trademark of The IEEE.

Kerberos is a trademark of the Massachusetts Institute of Technology.

OpenSSL is a registered trademark owned by OpenSSL Software Foundation.

ii

Release Notes

PrEface cooueeneiniiensnenieensnensnensnenssnnsssnsssnssssnsssssssssesssessasssssssssssssssssssssssssssssssssssassssassssssssssssassse vii
L INETOAUCTION it e ettt e e e e s et e e e e e e e vii
2. Intended AUIEIICE ...cocoiiiiiiiiiiiiiie ettt e et e e e e vii
3. DOCUMENT STIUCTUIEuviiiiiiiiiiiiiiiiiiitiiie e eeeeeee vii
4. Related DOCUMEIES .ooeeeiiiiiiiiiiiiieeiiiiie ettt e ettt e e e e e et et e e e e e vii

Chapter 1. Before You Start... Read These Firstccoiiienivnricnissnricssssnniccsssnnsecssssnsseces 1
1.1, Supported DisK TYPES ..cooeeueiiiiiiiiieeiiiiie ettt e e e e e e e 1
1.2. Tested Platforms ...c.oooueiiiiiiiieeiii ettt e 1
1.3. MD5 Checksum for the X8609210E.ZIP Fileccoovviiiiiiiiiiiiiiiiiiiiiieeeeeeeiieeeeeen, 2
1.4. CPU Compatibility Checks for Virtual Machinesccccccoovviuiiiiiiiieiiinnniiiiiccieeeenins 3
1.5. Terminal EmMulator SETNEScc.evvviiiiieiiiiiiiiiiiieee et ee e 3
1.6. MemoryDisk and the Command Procedure SYSSMD.COMccocoviiiiiiiiiiinniiiiennnn, 4
L €T T34 13 1 = PR 5

1.7.1. Using a VMware vSphere Hypervisor Basic Licenseccccceeeeiinniiiiieeceennnn. 5
1.8. NEetWOTKING OPLIONSvviiiiieeeiiiiiiiiiieee e ettt e e ettt e e e e ettt et e e e e e s niibibeeeeeeens 7
1.8.1. TCP/IP Services Uses BIND 9.11.37 SeIVercccuvvviiieiiiiiniiiiiiiieeeeeiieeeeeen 8
1.8.2. VSI TCP/IP Services X6.0-22cccciiiiiiiiiiiiiieeaiiiiiiiieeeee ettt 8
1.8.3. Upgrade From E9.2-1 to V9.2-1 Does Not Properly Update a Script Used by
DHOECP CHENL ...eiiiiieeeee ettt ettt e e e e ettt e e e e e et eeeeeeeesaaaaes 9
1.8.4. TCPDUMP-provoked System Crashccccoevvuiiiiiiiiiiiiiiiiiiieiieeeiniiieeeeeenn 10
L.8.5. VST DECIIEE ...eeiiiiiiiiiiiiiieteet ettt ettt ee e 10
1.8.6. Empty File for DECNet-PIuscccoiiiiiiiiiiiiiiieee e 10
1.8.7. Bridged NEetWOTKINGuuui e 10
1.9. OPenSSL UPAALe ..ceeviiiniiiiiiiiiieeiii ettt e et e e e e e 10
1.10. VSI OpenSSH V8.9-1D for OpenVIMSccooiiiiiiiiiiiiiiiiiiiiieee e 11
1.11. VSI Kerberos V3.3-2A for OpenVMScccoiiiiiiiiiiiiiiiiiiieee e 11
1.12. VSI DECwindows Motif V1.8 for OpenVMScooiiiiiiiiiiiiiiiiiiiieeeeeeeee 11
1.13. Required Layered Productscooveiiiiiiiiiiiiiiiiiiiiiiiiiiiiieieieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeees 11

Chapter 2. Release Notes 13

2.1. Operating SYStEM INOLESceetitiiiiiiiiiiiiee ettt e e e e et e e e e e e e 13

2110 NEeW FEAtUIES ..ocoviiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiieeeeeeeeeeeeeeeteeeeeeeeee et 13

2.1.1.1. Support for AMD ProCeSSOTSccceeriimmmiiiiiiiieeiiiiiiiiieeee e eiieeeeeee e 13

2.1.1.2. Large Hardware Page USageccceeeiiiimiiiiiiiiiiiiiiiiiiieeee e 13

2.1.1.3. Interleaved DUMPScoeiiiiiiiiiiiiiiiiiiiiiiiiiiieieeeeeeeeeeeee e e e 13

0 T R B 3 113 (0] o) OO SUUUPPRPRI 13
2.1.2. Features Not Available in VSI OpenVMS x86-64 VO9.2-1ccccccovmmnimiiiiiieninnn. 15
2.1.3. Additional Prompt During OpenVMS x86-64 Installationc.cccovvuvveeeeeeeenn. 15
2.1.4. BACKUP/INITIALIZE to a Disk Mounted /FOREIGN Does Not Work 16
2.1.5. Cross-Tools Kit UPdateccoeuiiiiiiiiiiiiiiiiiiiieieee e 16
2.1.6. Display of License Charge Information for x86-64 Nodesccccccevvvurirneeeeen. 17
2.1.7. ENCRYPT Utility Does Not Work as Expectedoocouiiiiiiiiiiinniiiiiiicienennn. 17
2.1.8. Extended File Cache (XFC)uuuuiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiieeiieieeeneeneneeennenenennnes 17
2.1.9. HYPERSORT Utility Availablecccoomiiiiiiiiiiiiiiiiiiiiieeee e 17
2.1.10. New LIBSINITIALIZE Handling in the Linkercccccooniiiiiinniiienniieeenns 17
2.1.11. Linker: New Informational MeSSagesccccvvviriiiiiiiiiiiiiiiiiiiiiiieeeeeieeeeeeeeeeens 17
2.1.12. New Handling of Threaded Applications in Linkercccceeeeeiiinn. 18
2.1.13. Different Image Layout on x86-64 and [A64 ..., 18
2.1.14. MEMOTY DISKS ...t 18
2.1.15. OpenVMS Clusters on Virtual Machinescccccceviiiiiiiiieiiininniiiiiceeeeeenae 19
2.1.16. VSI OpenVMS x86-64 Will Not Support Swap Filescccceevviiiiiiiicnnnn. 20
2.1.17. Privileged Images Linked /SYSEXE Should Be Relinkedcccccceevnnnniiie. 20

iii

Release Notes

2.1.18. Process DUMPSuuuuuieeiiiiiiiiiiiiieeeeeeeeieiees e e e e e e eeeabtaseeeeeeeeeasseeeeeeeeaeesssennnns 20
2.1.19. Running x86-64 Images on Integrity Systems Causes an Access Violation 20
2.1.20. Symmetric Multiprocessing (SMP)coeiiiiiiiiiiiiiiiiie e 20
2.1.21. SYSGEN Parameter Changescccevvvvivieiieeeeeiiiiiiiiiineeeeeeeerissineeeeeseeesnnees 21
2.1.22. System Crash DUIMPScoooiiiiiiiieeiiiiiiiiie e e e e e e e e e e e eevaeeeanes 25
2.1.23. Traceback SUPPOTTuuuniieeeiiiiiiiiiee e e et e e e e e e e eea s e e e eeeeessneens 28
2.1.24. Viewing Call Stack in Pthread Debuggercccceoeieeiiiiiiiiiiiiiieeeeeeeeeinen. 28
2.1.25. VSI DECram for OpenVIMSoooiiiiiiiiiieiieeeieee e e e e e e e e aeens 29
2.1.26. Symbolic Links and POSIX Pathname Supportcccceeeeeeiiiiiiiiiiieeeeeeeeeeiiiennnn. 29
2.1.26.1. Device Names in the POSIX ROOt ..o 29
2.1.26.2. /SYMLINK Qualifier in DCL Commandsc....cceeeeeriiiieeeriiineennnnn. 29
2.1.26.3. Symlink Support in COPY and CREATEcccovviiiiiiiiiiin, 30
2.1.26.4. Symlink Support in RENAMEooiiiiiiiiiiiiiiceee e 30
2.1.26.5. Symlink Support in BACKUPoooviiiiiiiiiiiiciiie e, 30
2.1.26.6. Symlinks and File VErsionsccccceeeiiiiiiiiiiiineeeeiiiiiicieeeeeeeeeeeviinnes 30
2.1.26.7. Symlinks Pointing to Multiple File Versionscccccccvveeieeeeerennnnnnn. 30
2.1.27. Symbolic DEDUZEELcccoeiiiiiiiiiiie e 31
2.1.27.1. Supported REGISTETSeeeiiiiiiiiiiiiieeeeeeeiiiieis e e e e et e e e e eereaa e 31
2.1.27.2. Older Versions of Compilers Always Set Language to C 31
2.1.27.3. Language Support LImitationscceeeeeerriviiiiiiiieeeeereeiiiienneeeeeeeessnnens 31
2.1.27.4. Source Line Correlationeeuueuemeuumeririiiiiiiieiieeeiieneieeeeeeeeeaeens 32
2.1.27.5. Floating-Point SUPPOItoovviiiiiiieieiiiiiiicciie e 32
2.1.27.6. Not Supported or Not Working Featuresccccoeeeeviviiiiiiiiineeeeineniinnnnn. 32
2.1.28. Running DHCP Client and failSAFE IP are not Compatible on the Same
0 (USRS 32
2.1.29. User-Written x86-Assembler Modulescccoeiii 33
2.1.30. Connecting to a Shared LD Container in a Mixed Architecture Cluster 33
2.1.31. LSI Lo@iC CONIOIIETS ...uuunieiiiiiiiiiiiiiieeeeee et e e e ettt e e e e e e e enavan e e eeeaaenaes 34
2.1.32. CD Audio Functionality Not Supported on X86-64covvvveeeeeeerrrerieinnnnnn. 34
2.1.33. STABACKIT.COM Deprecatedcccvvriuuuiiieeeeiiiiiiiiiiieeeeeeeeviiieineeeeeeeennnnens 34
2.1.34. Cluster Nodes Running VSI OpenVMS V9.2 May Cause All x86-64 Cluster
MEMDBETS 10 Crash ...eeeiiiiiiiiiiiiiiiiiiiit ettt e beeeseeeeeseeenenes 34
2.1.35. C RuUn-Time Library ISSUESccciriiiiriiiiieeeeiiiiiiiiiieiieeeeeeeeviiinneeeeeeeeeesneennnns 34
2.1.36. TCPIP$BIND CONF.TEMPLATE FORWARD Requires Adjustment in
Environments Not Supporting DNSSECccouviiiiiiiiiiiiiiiiiiiiee e 35
2.1.37. NTPDATE No Longer Supportedouueiiieeeiiiiiiiiiiiieeeeeeeeeviieeeeeeeeeeeevvaeens 35
2.1.38. SMP Timeout Parameters InCreasedcccevviiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiieeeee, 36
2.1.39. Improvements to System Memory Allocationccceeeeeeeiiiiiiiiiiinneeeeneeeiine, 36
2.1.40. FTP/SSL No Longer Fails to Connect to a System Running TCP/IP X6.0 36
2.1.41. TCPIP MOUNT /SHARE Command Causes a System Hang 36
2.1.42. Contiguous Best Try Qualifier for SET FILE/ATTRIBUTESccccoeeeiiie. 37
2.1.43. JEXTENTS Qualifier for ANALYZE/DISK_STRUCTUREccccoiiiinennnnn. 37
2.1.44. /OPTIONS qualifier for PRODUCT SHOW PRODUCTccccceeeeiiiiiiiiieenn. 38
2.1.45. CHECKSUM Utility Supports SHA1 and SHA256 Algorithms 39
2.1.46. VSI C Run-Time Library (C RTL) Updateucceeieieiiiiiiiiiciieeeeeeeeeevinee, 39
2.1.47. ZIP/UNZIP TOOIS .eeiiieeiiiiiiiiiieee ettt ettt e e e e e e e e e e e 39
2.1.48. TCPIP SHOW VERSION Displays Incorrect Version of TCP/IP Services 40
2.1.49. Data Needed for SHOW NETWORK to Report Network Status Is Not
Available When UsSing DHCPcooiiiiiiiiiiiii e eeeeeees 40
2.1.50. System Crashes In SYSINIT Phase When Booting With the DEVELOPER
BOOt FIAZ ittt e e e e e e e et e eeeaaeaaaraaaas 40

2.2, VItUALIZATION INOTES ...uiniinieeie ettt et et e e et e et e e et et et e it eanenns 41

Release Notes

2.2.1. Changing Settings of a Running Virtual Machine May Cause a Hang 41
2.2.2. Time of Day May Not Be Correctly Maintained in Virtual Machine
ENVITONIMEILS ... e e e e e e e e e e e e e e e as 41
2.2.3. System Time on KVM Virtual Machinesccooeeeiiiiiiiiiiiiieeeeieiiiiiicciie e 41
2.2.4. VirtualBox and Hyper-V Compatibility on Windows 10 and 11 Hosts 41
2.2.5. VirtualBox: TCP Ports May Become Unusable After Guest Is Terminated 42
2.2.6. VMware Guest May Fail to Boot After Adding Second SATA Controller 43
2.2.7. Boot Manager Displays Incomplete List of Bootable Devicescceevvvneenn. 43
2.2.8. Booting Issues with VMware Workstation 17 Player Correctedccceveenneeen. 44
2.2.9. Possible Issues with VMware Virtual Machinesccccoeeeiiiiiii, 44
2.2.10. VSI OpenSSH V8.9-1C Must Be Uninstalled Before Upgrading to VSI
OPENVIMS VO.2-1 e e e et e e e e e e et aa et e e e e e e e eessssnnnnns 45
2.2.11. One VirtlO-SCSI Adapter Supported on KVMccceiiiiiiiiiiiiiiiiiiee e, 45
2.3. Layered and Open Source Products NOLEScceeeeeiiiiiiiiiiiieeeeeeeeiiiiiee e e e e 46
Appendix A. VSI C Run-Time Library (C RTL) Notes 47
F N B O L B U T 1 U 47
AT L. CO9 FUNCHONS ..eeiiiiiiiiiiiiiiiiiiiiiieitiee ettt ettt ettt ettt tete ettt eee ettt e eeeeeeeeeeeeeeeeeeees 48
AL L APCIaSSIEY .. eaeens 49
A.1.1.2. isblank, 1SWDIAnKccccooiiiiiiiiii 49
A.1.1.3. isgreater, isgreaterequal, isless, islessequal, islessgreater, isunordered 49
A.1.1.4. llrint, Hrintf) Trint] ... 50
A.1.1.5. llround, lroundf, llroundlccooiviiiiiiiii e 50
A.1.1.6. nearbyint, nearbyintf, nearbyintlc....oooiiiiiiiiiiiiii i 51
A.1.1.7. round, roundf, roundlcooiiiiiiii 51
A.1.1.8. scalbln, scalblnf, scalblnl, scalbn, scalbnf, scalbnlcoeevnnnnnn. 51
A.1.1.9. strtof, strtold, wcstof, WCStOldoivveiiiiiiiiiie 52
ALTLTTO. VA COPY eeiiiiiiiiiiiie e e e e ettt iee e e e e e e eeetataeeeeeeeeeessaesnaeeeeeressssnnnnaaaaasaeens 53
ALT.1.11. WeStoll, WCStOULL ..viivnniiiii e 53
A.1.1.12. Print and scan conversion specifier and argument types 54
A.1.1.13. strftime, wcsftime, strptime — additional conversion specifiers 54
A.2. CRTL ECO V3.0 CRANEZES ...uuuuieeeiiiiiiiiiiiieeeeeeeeiiiiieaeeeeeeeesstanenaaeeessessssnenaaaeesessssssnnns 55
A2.1. BUZ FIXES ittt e e e et e e e e e e aaaraaanas 55
AL2.2. NEW CONSTANTS ... e e e e e e e e as 56
AL2.3. NEW FIAZS oiiiiiiiiiiieiceciee et e e e e et e e e e e e e e e e e aaaaaaes 56
WA T [B 1 1 o1 U 56
A2.5. NeW HeEAET .oiviiiiiiiiiiiiiiiiiiiiiiiiiiiee e 56
A.2.6. INterface ChaNGEccoiviiiiiiiiiieeie et e e e e e e e e e eeaara e s 56
A.2.7. New Feature Logical: DECC$PRN _PRE BYTEccccooviiiiiiiiiiieeiiiieeeeen 57
AL2.8. NEW FUNCHIONS ..o 57
A2.8.1. freeifaddrs ..o 57
WA T < 74 (<) 1L USSP 58
A.2.8.3. gethOStDYNAME T ..oovvviiiiiiiiiiiiiieee e 58
A2.8.4, getifaddrS ..ooovviieiii i 59
AL2.8.5. GOLIUSAZE 1ovvvvveiieeeeeiiiiiiiiieee e e e e ettt e e e e e e eeerari e e eeeeeeesssannaaeeeeeeesrsannnns 59
AL 2.0, SEPCPY euneeeeiiiiiiiiiiiee e e e e ettt eae e e e e e et ta it e eeeeeetaab e aeaeeaaaraa i aaaaaaaaaas 60
AR TR 5 (<) 4 (o) ol S PRRR 60
A.2.8.8. Strtoimax, SIITOUIMIAXuuiiiuniiinieiineeeie e e eiee et e e e e e e e e eeanns 61
AL2.8.9. SHNAUP ..oiiiiiiiiiieee e e e e e e et e e e e e e e e e rb e e e e e eeeaaaaaans 61
A.3. Additional C RTL Changescccuuuuiiiieieiiiiiiiiiiiieeeeeeeerriiiineeeeeeerssrsanaeeeeseeesssennnns 62
A3 L NEW FUNCHONS .o 63
A.3.2. Updates t0 FUNCLIONScccevviiiiiiiiieeeeiiiiiiieie e e e e ee et e e e e e e eeeeareieseeeeeeeeasneens 67
AL3.3. BUZ FIXES .ottt e e e e e e eaaaaeaaas 68

Release Notes

A.3.4. New Header Filesooooiiiiiiiiiiiiiiiiiiieteeeeeeeeeeeeeeeeeeeeeeee 69

A.3.5. KNOWn LIMITAtIoN oeeeeeiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiieeeeee ettt ettt 69

A.3.6. Documentation Updateouuiiieiiiiiiiiiiiiiie e e et eeeeeaaeeaans 69
Appendix B. Security Enhancements for VSI TCP/IP Services X6.0-22 FTPS 71
B.1. Changes in Connection BEhaviorccccoeeiiiiiiiiiiiiiie e 71

B.2. Changes in Certificate VerifiCationccouvuuiiiiieeeiiiiiiiiiiieeeeeeeeiiiiiineeeeeeeeeersannnnnns 71

vi

Preface

1. Introduction

VMS Software, Inc. (VSI) is pleased to introduce VSI OpenVMS x86-64 V9.2-1.

2. Intended Audience

This document is intended for all users of VSI OpenVMS x86-64 V9.2-1. Read this document before
you install or use VSI OpenVMS x86-64 V9.2-1.

3. Document Structure

This document contains the following sections:
* Before You Start... Read These First

* Release Notes

» VSIC Run-Time Library (C RTL) Notes

» Security Enhancements for VSI TCP/IP Services X6.0-22 FTPS

4. Related Documents

The following documents provide additional information in support of this release. They are available
on the VSI Documentation website.

* VSI OpenVMS x86-64 V9.2-1 Installation Guide
* VSI OpenVMS x86-64 Boot Manager User Guide
» VSI OpenVMS Calling Standard Manual

* VSI OpenVMS Linker Utility Manual

» VSI OpenVMS x86-64 Cross-Tools Kit Installation and Startup Guide

vii

https://docs.vmssoftware.com/

Preface

viii

Chapter 1. Before You Start... Read
These First

Before you download the VSI OpenVMS x86-64 V9.2-1 installation kit, VSI strongly recommends
that you read the notes in this section. These notes provide information about the hypervisors tested
by VSI, CPU feature checks for virtual machines, terminal emulator settings, and licensing on
OpenVMS x86-64 systems. The notes also describe the new boot method called MemoryDisk, and
available networking options.

Note that if an entry describing a problem or a change in one of the previous release notes (especially
for field test versions) is not present in the current release notes, then it is either fixed or no longer
applicable.

1.1. Supported Disk Types

VSI OpenVMS x86-64 V9.2-1 supports SATA disks across all supported hypervisors.

On ESXi, VSI OpenVMS also supports the configuration of up to four (4) LSI Logic Parallel SCSI
controllers per virtual machine. LSI Logic SAS controllers are not supported.

1.2. Tested Platforms

VSI OpenVMS x86-64 V9.2-1 can be installed as a guest operating system on Oracle VM VirtualBox,
KVM, and VMware virtual machines using the X8609210E.ISO file.

VirtualBox
VSl tests with VirtualBox V7.0.x and regularly installs patches when they are available.
KVM

For KVM, VSI recommends ensuring that your system is up-to-date with KVM kernel modules and
the associated packages necessary for your particular Linux distribution.

VSI has tested VSI OpenVMS x86-64 V9.2-1 with KVM on several Linux distributions. The
following table includes the Linux distribution, version, and the QEMU version:

Linux Distribution QEMU Version (package information)

openSUSE Leap 15.4 6.2.0 (6.2.0-150400.37.8.2)

Rocky Linux 8.6 6.2.0 (gemu-kvm-6.2.0-11.module
+¢18.6.0+1052+ff61d164.6)

Rocky Linux 8.7 6.2.0 (gemu-kvm-6.2.0-21.module
+el8.7.0+1125+fc135¢6d.2)

Rocky Linux 9.0 4.2.0 (gemu-kvm-4.2.0-59.module
+€l8.5.0+726+ce09¢e88.1)

Rocky Linux 9.1 7.0.0-13

Ubuntu 22.04 LTS 6.2.0 (Debian 1:6.2+dfsg-2ubuntu6.5)

Oracle Linux 8.8 4.2.1 (gemu-kvm-4.2.1-26)

Chapter 1. Before You Start... Read These First

VMware

VSI has tested VSI OpenVMS x86-64 V9.2-1 with the following VMware products:

VMware Product Version Tested by VSI

Workstation Pro V16.2.x, V17.0.x

Workstation Player V17.0.x

Fusion Pro V13.0.x

Fusion Player V12.2.x

ESXi V6.7.x, V7.0.x, V8.0.x (with compatibility of V8,
V7U2, V7UL, V6.7U2)

vSphere Client V8.0

Warning

If you choose to upgrade from a previous version of VMware Fusion to VMware Fusion 13, from a
previous version of VMware Workstation to VMware Workstation 17, or from a previous version of
VMware ESXi to VMware ESXi 8, you will not be able to run any VMs with VSI OpenVMS x86-64
versions prior to V9.2-1. However, VMs running VSI OpenVMS x86-64 V9.2 can be upgraded to
VSI OpenVMS x86-64 V9.2-1 and will run under VMware Fusion 13/VMware Workstation 17/
VMware ESXi 8.

VMware Licenses

Note that not all VMware license types are currently supported for running VSI OpenVMS x86-64
V9.2-1. The following table lists VMware license types that have been tested by VSI.

VMware License VSI Tested

Enterprise Plus ESXi V6.7.x, V7.0.x, and V8.0.x
Enterprise Not tested

Essentials Plus Not currently supported
Essentials Not currently supported
Standard Not currently supported
Hypervisor Not currently supported

The VMware licenses that are marked as “Not currently supported” do not support the use of virtual
serial lines in a virtual machine. OpenVMS requires a serial port connection with a terminal emulator,
and therefore VMware systems with these licenses are not currently supported for running OpenVMS.
This support will be added in a future release of VSI OpenVMS x86-64.

1.3. MD5 Checksum for the X8609210E.ZIP
File

VSI recommends that you verify the MD5 checksum of the X8609210E.ZIP file after it has been
downloaded from the VMS Software Service Platform to your target system. The MDS5 checksum of
X8609210E.ZIP must correspond to the following value:

964F2EECF535059DE36A46C59DFBCF2B

Chapter 1. Before You Start... Read These First

To calculate the MDS5 checksum, you can use any platform-specific utilities or tools that are available
for your system.

1.4. CPU Compatibility Checks for Virtual
Machines

VSI OpenVMS x86-64 requires that the CPU supports certain features that are not present in all
x86-64 processors. When using virtual machines, both the host system and guest virtual machine must
have the required features.

Host System Check

Before downloading the VSI OpenVMS x86-64 V9.2-1 installation kit, VSI recommends that you
determine whether your host system has the required CPU features to run VSI OpenVMS x86-64. For
this purpose, execute a Python script called vmscheck.py on your host system. This script, along with
the accompanying PDF document entitled VMS CPUID Feature Check, can be downloaded from the
OpenVMS V9.2-1 web page.

The VMS CPUID Feature Check document contains instructions on how to run the script and interpret
the results and also describes script limitations.

Guest Virtual Machine Check

The OpenVMS Boot Manager performs the CPU feature check on the guest virtual machine. The
CPU feature check is performed automatically every time the Boot Manager is launched. If the check
has passed successfully, the following message is displayed:

Checki ng Required Processor Features: PASSED

In addition, before booting VSI OpenVMS x86-64 V9.2-1, you can issue the following Boot Manager
command to list the compatibility details:

BOOTMGR> DEVI CE CPU

Important

VSI OpenVMS x86-64 will not boot on the system that fails either of the following CPU feature
checks:

* The host system check (via the vmscheck.py script)

* The guest virtual machine check (via the OpenVMS Boot Manager).

Note

In case the system has the required CPU features but lacks some of the optional CPU features, the
OpenVMS operating system may have noticeably lower performance.

1.5. Terminal Emulator Settings

When you are in the Boot Manager and before proceeding with the installation of OpenVMS x86-64,
you are required to access the system through a serial port connection with a terminal emulator, such
as PuTTY. You may need to experiment in order to find the appropriate setting for your emulator.

https://vmssoftware.com/about/v921

Chapter 1. Before You Start... Read These First

Refer to the OpenVMS x86-64 Boot Manager User Guide for more details on emulator settings.

On Windows, VSI recommends using PuTTY. Some PuTTY users have found success with the

following settings:

» If the connection type is Raw, the following settings should be used:

Category Setting Value

Session Connection type Raw

Terminal Implicit CR in every LF Unchecked

Terminal Implicit LF in every CR Unchecked

Terminal Local echo Force off

Terminal Local line editing Force off (character mode)

* If'the Connection type is Telnet, the following settings should be used:

Category

Setting

Value

Session

Connection type

Telnet

Connection > Telnet

Telnet negotiation mode

Switch from Active to Passive.
This yields a connection to a
PuTTY window.

Connection > Telnet

Telnet negotiation mode

Uncheck Return key sends
new line instead of "M

Note

As there is no Telnet server on the virtual machine host for the console communication, it is not
literally a Telnet connection, but it can be used because not all emulators support a Raw connection.

1.6. MemoryDisk and the Command
Procedure SYS$MD.COM

VSI OpenVMS x86-64 uses a new boot method called MemoryDisk that simplifies the boot process
by eliminating boot complexity and decoupling the VSI OpenVMS Boot Manager (chain loader) from
a specific device or version of VSI OpenVMS x86-64. VSI provides a pre-packaged MemoryDisk
container file (SYS$SMD.DSK) on the distribution kit.

The MemoryDisk contains all files that are required to boot the minimum OpenVMS kernel and

all files needed to write system crash dumps. Changes such as file modifications or PCSI kit/patch
installations require the operating system to execute a procedure to update the MemoryDisk container,
thus assuring that the next boot will use the new images. A command procedure, SYS$MD.COM,

keeps the MemoryDisk up-to-date.

Note

Do not invoke SYS$MD.COM directly unless you are advised to do so by VSI Support, or
when required while following documented procedures. For example, if you load a user-written
execlet by running SYSSUPDATE:VMSS$SYSTEM IMAGES.COM, you must then invoke
SYS$UPDATE:SYS$MD.COM. For more details, see Section 2.1.14 of this document.

Chapter 1. Before You Start... Read These First

Note

VSI does not recommend to change or manipulate SYS$MD.DSK or SYS$SEFI.SYS (or the
underlying EFI partition) in any way. These files are needed to boot the system and are maintained by
OpenVMS.

1.7. x86-64 Licensing

During the installation, you will be prompted to register the Product Authorization Keys (License
PAKs) that you own.

A PAK is represented as a text structure containing a series of named fields and unique values that
were generated by VSI. When prompted to register your PAKs, you have the option of deferring that
until after the installation (which is recommended) and then registering them as a script (or using the
LICENSE utility to enter values). If you choose to enter your PAKs during the installation, you can
either type the values of each requested field manually, or copy-and-paste the values into the console
(assuming your console connection supports this action, which terminal emulators do).

Below is an example of a license text structure inside a PAK:

$ LI CENSE REG STER OPENVMB- X86- HACE -
/1 SSUER=VSI -

/ AUTHORI ZATI ON=1- VS| - 20220608- 00000 -
/ PRODUCER=VS| -

/UNI TS=1 -

/ TERM NATI ON_DATE=31- OCT- 2022 -

/ OPTI ONS=(PCL, X86_64) -

/ CHECKSUME2- XXXX- XXXX- XXXX- XXXX

1.7.1. Using a VMware vSphere Hypervisor Basic
License

Use this procedure to run VMware vSphere Hypervisor on an ESXi server with a basic license (not
Enterprise or Enterprise Plus). You must use serial ports within the same ESX server.

E| localhost.localdomain - Manage

System Hardware Licensing Packages Services Security & users
4@ Assign license .y Remove license & Refresh £} Actions

VMware vSphere 6 Hypervisor

Key

Expiration date: Mever

Features: Up to 8-way virtual SMP

Using the named pipe functionality, map COM1/OPAO: on the VMS virtual machine to a pipe on a
management server on which a terminal emulator is installed.

Chapter 1. Before You Start... Read These First

With the VM system in client mode, use the following syntax: \ \ . \ pi pe_nane

With the management system in server mode, use the following syntax: \ \ . \ pi pe_nane, where
pi pe_name is a unique string for each VM.

The terminal emulator should be set for serial connection at 115200 baud.

The two figures below show how to set up pipes for a local terminal-emulator-based console.

(5 Edit settings - VMS_x86_1 (E$Xi 6.7 virtual machine)

USE controlier 1

™ & Serial Fort 1 Use named pipe

Status COnNect al power on
Connection Pipé nama \ipipa_vme1
Near End Chient
Far End
» Ml Metwork Adapter 1 Vinet_VLAN2 Connect
» M Metwork Adapter 2 VMnel_SCS Connact
» 5 COVDVD Drive 1 Datastoce 1SO file ([Connect

» [H video Card

Save Cancel
i
d|
T Edit settings - LAB.VMS.MGR1 (ESXi 6.7 virtual machine)
|
= (G Serial Port 1 Usé named pige
Status B connect at power on
Coennecton Fipe name pipe_vms1
MNear End Server
Far End
~ B Serial Port 2 Use named pipe
Satus B Connect at power on
Connection Pipe name pipe_vms2
Mear End Servar
Far End
~ (B8 Serial Port 3 Use named pipe
Hatus B Connect at power on
Pipe nam
Connection Fipé name pipe_vmsd
Mear End Sanver
Save Cancal

The two figures below show how to set up pipes between two local virtual machines where one
plays the role of VMS console. This could be a virtual machine guest running any OS that supports a
terminal emulator.

Chapter 1. Before You Start... Read These First

Edit Settings opens X
Virtual Hardware VM Options
~
USB controller USB 2.0
Video card Auto-detect settings
VMCI device Device on the virtual machine PCI bus that provides support for the
virtual machine communication interface
SATA controller O AHCI
Serial port 1 Use named pipe ’ ®
Status Connect At Power On
Pipe name Wipipe\com_1
Near End Server
Far End) A virtual machine
/O Mode Yield CPU on poll
Other Additional Hardware Vv

Edit Settings = windows-Openvms X
Virtual Hardware VM Options
Network adapter 1 VM Network Connected o
, CD/DVD drivel (D) Host Device [connected
Video card igs
VMCI device Device on the virtual machine PCl bus that provides support for the
virtual machine communication interface
Serial port 1 Use named pipe - Connected
Status Connect At Power On
Pipe name Wipipeicom_1
Mear End Client
Far End A virtual machine
1/0 Mode Yield CPU on poll
Other Additional Hardware v

1.8. Networking Options

VSI OpenVMS x86-64 V9.2-1 provides support for the following network protocols:
* VSI TCP/IP Services

Chapter 1. Before You Start... Read These First

¢ VSI DECnet Phase IV
¢ VSI DECnet-Plus

VSI TCP/IP Services X6.0-22 is part of the OpenVMS x86-64 V9.2-1 installation and will be
installed along with the operating system.

During the OpenVMS x86-64 V9.2-1 installation, you will also be offered to install either VSI
DEChnet Phase IV or VSI DECnet-Plus. Note that if you plan to use DECnet, you must choose
between VSI DECnet Phase IV and VSI DECnet-Plus. Only one of these products can be installed on
your system at a time.

1.8.1. TCP/IP Services Uses BIND 9.11.37 Server

The current version of VSI TCP/IP Services for OpenVMS uses the BIND 9.11.37 Server.

Using Bind 9.11.37 is documented in the VST TCP/IP Services for OpenVMS Management manual.
VSI also recommends that users refer to the Internet Systems Consortium (ISC) website for the latest
updates to Bind 9 configurations and resources.

1.8.2. VSI TCP/IP Services X6.0-22

VSI OpenVMS x86-64 V9.2-1 includes VSI TCP/IP Services X6.0-22. The services listed below are
available in X6.0-22. Note that many of these services are yet to be qualified by VSI, however based
on the testing done so far, they are ready for initial external testing. If you encounter any issues using
VSI TCP/IP Services X6.0-22, please report them to VSI via the VMS Software Service Platform.

 BIND
+ FTP
 FTPS
* Finger

¢ FailSafe IP

« LBROKER
« LPR/LPD

« NFS

« NTP4

« POP

* Remote (R) Commands
+ SMTP
+ SNMP

¢ Socket API

https://docs.vmssoftware.com/vsi-tcpip-services-for-openvms-management/
https://www.isc.org/bind/

Chapter 1. Before You Start... Read These First

* TELNET (except Kerberos authentication)

- XDM

Warning

VSI TCP/IP Services X6.0-22 kit does not include an SSH component. If you are planning to use SSH
in your environment, VSI recommends that you use the latest available version of VSI OpenSSH.

With VSI TCP/IP Services X6.0-22, VSI introduces security enhancements for FTPS (FTP over SSL).
For details, refer to Appendix B of this document.

Before starting VSI TCP/IP Services, you must run the TCPIPSCONFIG configuration procedure. To
start TCPIP$CONFIG, enter the following command:

$ @YSSMANAGER: TCPI P$CONFI G COM
To start the network stack after configuring it, enter the following command:
$ @YS$STARTUP: TCPI P$STARTUP. COM

For detailed information on running the TCPIPSCONFIG configuration procedure, refer to the V.SI
TCP/IP Services for OpenVMS Installation and Configuration manual.

For a configuration example for FTP and TELNET, refer to the V'SI OpenVMS x86-64 V9.2-1
Installation Guide.

Note

If FTP does not work after it has been started, switch to passive mode with the following command:

FTP> SET PASSI VE ON
Passive is ON

In passive mode, the FTP client always initiates a data connection. This is useful in virtual machine
environments when there is network address translation (NAT) in your network.

To run this command automatically when you invoke FTP, put it into SYSSLOGIN:FTPINIT.INI. For
the full description of the SET PASSIVE command, refer to the VST TCP/IP Services for OpenVMS
Users Guide.

1.8.3. Upgrade From E9.2-1 to V9.2-1 Does Not
Properly Update a Script Used by DHCP Client

Currently, a VSI OpenVMS system where an updated version of TCP/IP Services is installed will not
receive an updated version of DHCLIENT-SCRIPT.COM, which is a script used by DHCP client.

To work around this issue, perform the following steps after installing VSI OpenVMS V9.2-1:
1. Using TCPIPSCONFIG, disable DHCP client on the system.
2. Delete SYS$SSYSDEVICE:[TCPIPSDHCP]DHCLIENT-SCRIPT.COM.

3. Using TCPIPSCONFIG, enable DHCP client on the system.

https://vmssoftware.com/docs/VSI_TCPIP_SERVICES_INSTALL_CONFIG.pdf
https://vmssoftware.com/docs/VSI_TCPIP_SERVICES_INSTALL_CONFIG.pdf
https://vmssoftware.com/docs/VSI_TCPIP_SERVICES_UG.pdf
https://vmssoftware.com/docs/VSI_TCPIP_SERVICES_UG.pdf

Chapter 1. Before You Start... Read These First

1.8.4. TCPDUMP-provoked System Crash

Using TCPDUMP with more than 6500 buffers specified by the - b option may result in a system
crash. This will be addressed in an upcoming operating system update.

1.8.5. VS| DECnet

Install either VSI DECnet Phase IV or VSI DECnet-Plus on VSI OpenVMS x86-64 V9.2-1 and then
configure the product you have chosen just as you would for an OpenVMS Alpha or OpenVMS
Integrity release.

If you have DECnet Phase IV installed on your system and you want to use DECnet-Plus, you have to
uninstall DECnet Phase IV and then install and configure DECnet-Plus.

Note

If your DECnet installation was not part of the main installation procedure for OpenVMS x86-64,
you must update the MemoryDisk after you install DECnet. The MemoryDisk update ensures that
SYSSNETWORK SERVICES.EXE is loaded on boot. Use the following commands:

$ @®ys$updat e: sys$nd. com
After the next system reboot, you may want to purge the MemoryDisk.
$ purge sys$l oadabl e_i nages: sys$nd. dsk

If you install DECnet as part of the main OpenVMS x86-64 installation procedure, you do not need to
update the MemoryDisk. The MemoryDisk is updated at the end of the OpenVMS x86-64 installation.

After DECnet has been installed and configured, you can set host and copy files to/from other systems
running DECnet.

1.8.6. Empty File for DECnet-Plus

The OpenVMS x86-64 installation procedure now provides an empty file NETSCONFIG.DAT before
installing the DECnet-Plus kit.

1.8.7. Bridged Networking

To understand how to configure your virtual machine network (devices and network configuration),
please consult the VirtualBox, KVM, and VMware documentation. Some configurations may be
incompatible with the operation of OpenVMS applications. For example, configuring a bridged
adapter with a MacVTap device may inhibit the MAC address change done by DECnet, and
configuring DECnet on VirtualBox may require allowing promiscuous mode on the NIC.

1.9. OpenSSL Update

VSI SSL3 V3.0-8, based on the OpenSSL 3.0.8, is the new default SSL offering on VSI OpenVMS
V9.2-1. Most of the OpenVMS BOE components that are reliant on SSL features have been updated
to use VSI SSL3.

VSI's previous version of OpenSSL, VSI SSL111 V1.1-1S (based on OpenSSL 1.1.15s) is also
available in this release in order to allow the existing SSL-based customer applications to continue

10

Chapter 1. Before You Start... Read These First

to run. VSI SSL3 is designed to co-exist in parallel with VSI SSL111 by means of using different
symbols for different versions.

VSI recommends that applications using VSI SSL111 be upgraded to use VSI SSL3 in order to stay
up-to-date with the latest security standards and fixes.

1.10. VSI OpenSSH V8.9-1D for OpenVMS

VSI has ported OpenSSH V8.9-1D to OpenVMS. In this release, OpenSSH has been integrated
into the VSI OpenVMS x86-64 V9.2-1 kit as a required layered product, that will be installed
unconditionally with the OS. For post-installation and configuration instructions, refer to the V'S/
OpenVMS x86-64 V9.2-1 Installation Guide.

For a detailed description of the features and bug fixes included in this release of OpenSSH V8.9,
please refer to https://www.openssh.com/txt/release-8.9.

1.11. VSI Kerberos V3.3-2A for OpenVMS

VSI OpenVMS x86-64 V9.2-1 includes VSI Kerberos V3.3-2A for OpenVMS.

1.12. VSI DECwindows Motif V1.8 for
OpenVMS

VSI OpenVMS x86-64 V9.2-1 includes VSI DECwindows Motif V1.8. VSI DECwindows Motif
V1.8 is a fully working DECwindows Motif kit that replaces V1.7-X, which was previously used as a
placeholder to allow building DECwindows objects against it.

1.13. Required Layered Products

The following layered products will be installed unconditionally with VSI OpenVMS x86-64 V9.2-1:
» VSI TCP/IP Services

* VSI Kerberos

+ VSISSL111

» VSISSL3

* VSI OpenSSH

* VMSPORTS x86VMS PERL534 T5.34-0

https://www.openssh.com/txt/release-8.9

Chapter 1. Before You Start... Read These First

12

Chapter 2. Release Notes
2.1. Operating System Notes

The notes in this section announce support for new functionality and also describe known issues and
limitations in VSI OpenVMS x86-64 V9.2-1.

2.1.1. New Features

The notes in this section describe features that are new in VSI OpenVMS x86-64 V9.2-1 compared to
VSI OpenVMS x86-64 V9.2.

2.1.1.1. Support for AMD Processors

VSI OpenVMS x86-64 V9.2-1 features full support of AMD processors

2.1.1.2. Large Hardware Page Usage

VSI OpenVMS x86-64 V9.2-1 is now taking advantage of 2 MB hardware pages in limited areas of
the operating system. Usage of the larger page size allows for faster memory access. Larger pages are
used by parts of the executive code and data along with some internal memory management data.

2.1.1.3. Interleaved Dumps

VSI OpenVMS x86-64 V9.2-1 includes support for a new system memory dump format: Interleaved
Dumps. For details, see Section 2.1.22.

2.1.1.4. Entropy

VSI OpenVMS x86-64 V9.2-1 collects information from stochastic system events and hardware-
provided entropy sources, when available, to create a pool of random data which may be used as seeds
for random number and cryptographic algorithms. New features associated with entropy collection
include a new SYSGEN parameter named RANDOM_SOURCES and a new system service named
SYSSGET _ENTROPY.

Note

On hardware that supports the Intel RDRAND instruction, entropy collection will include random
data from the RDRAND instruction as part of the entropy pool mix. However, in spite of the host
hardware supporting RDRAND, not all hypervisors support this instruction, and hypervisor support
may be configurable on a per-VM basis. To display the information about the status of the RDRAND
instruction, use the new DCL command SHOW ENTROPY.

2.1.1.41. New SYSGEN Parameter RANDOM_SOURCES

The new SYSGEN parameter RANDOM_ SOURCES allows you to select the software and hardware
sources of data that will contribute to the entropy pool. The default value is - 1, meaning all possible
sources are enabled.

Chapter 2. Release Notes

Note

Not all categories of sources are implemented at this time. It is expected that additional sources will
be added in subsequent updates or operating system releases.

For a detailed desciption of RANDOM_SOURCES, execute the command HELP

SYS_PARAMETERS RANDOM SOURCES.

VSI recommends leaving RANDOM_SOURCES set to - 1 unless you are advised differently by VSI
support or engineering. RANDOM_SOURCES is a dynamic parameter and changes do not require a

reboot.

2.1.1.4.2. New System Service SYSSGET_ENTROPY

SYS$GET_ENTROPY

SYSSGET ENTROPY — Returns up to 256 bytes of entropy from the system-wide entropy pool.

This service accepts 64-bit addresses.
Format
SYS$GET_ENTROPY buffer, buflen

C Prototype:
int sys$get_entropy(void * buffer,
Parameters

BUFFER

unsi gned __int64 buflen);

A 32- or 64-bit address of a buffer to receive the random data. The service will fill the buffer with
random data up to buffer length number of bytes. The maximum amount of data returned in a single

call is 256 bytes.

OpenVMS Usage: address
Type: address
Access: write only
Mechanism: by value
BUFLEN

Size of the buffer in bytes. The maximum value is 256.

OpenVMS Usage: byte count
Type: integer
Access: read only
Mechanism: by value
Description

The SYSSGET _ENTROPY service retrieves bytes of data from the system entropy pool, writing them

to the address specified in the buffer parameter.

14

Chapter 2. Release Notes

Required Privileges
None.

Required Quota
None.

Condition Values Returned

SS$ NORMAL Successful completion.

SS$_ACCVIO The supplied buffer is not writeable in the callers
mode.

SS$ BADBUFLEN Buffer length is zero or larger than 256.

2.1.1.4.3. New Command SHOW ENTROPY

VSI OpenVMS x86-64 V9.2-1 introduces a new command, SHOW ENTROPY. This command
provides the information about the state of the entropy engine. For more information, see VSI
OpenVMS DCL Dictionary: N-Z and the VSI OpenVMS HELP entry for this command.

2.1.2. Features Not Available in VSI OpenVMS x86-64
V9.2-1

The following functionalities, products, and commands are not available in VSI OpenVMS x86-64
V9.2-1:

* ACME_SERVER (only LOGINS82 (SYSUAF) authentication is available)
* Availability Manager
* Process swapping (see Section 2.1.16 of this document)
* RAD support
* Support for privileged applications, such as:
» User written device drivers

* Code that directly calls internal system routines such as those that manage page tables

TECO Editor

2.1.3. Additional Prompt During OpenVMS x86-64
Installation

During the installation of OpenVMS x86-64 V9.2-1, if you choose to install DECnet Phase IV for
OpenVMS x86-64 or TCP/IP Services for OpenVMS x86-64, you will see an output similar to the
following:

* Product VSI X86VMsS TCPIP X6.0-22 requires a systemreboot.
Can the system be REBOOTED after the installation conpletes? [YES]

https://docs.vmssoftware.com/vsi-openvms-dcl-dictionary-n-z/
https://docs.vmssoftware.com/vsi-openvms-dcl-dictionary-n-z/

Chapter 2. Release Notes

Note

The product named in the message may be either DECnet Phase IV or TCP/IP Services.

If this happens, you must answer with the default response (YES), otherwise the installation will be
terminated.

Later in the installation, you will see the following messages:

%PCSI - | - SYSTEM REBOOT, executing reboot procedure ...

Shut down/ reboot deferred when this product is installed as part of the OS
i nstall ation/upgrade

These messages may be safely ignored.
If you are installing both optional products, you will see these messages twice.

VSI will address this issue in a future release.

2.1.4. BACKUPI/INITIALIZE to a Disk Mounted
/[FOREIGN Does Not Work

A BACKUP command of the form:

$ BACKUP/ I NI TI ALI ZE i nput -di sk:[directories...]*.*; output-disk:save-
set . bck/ SAVE

where the output volume is a disk that has been mounted /FOREIGN, does not work in VSI
OpenVMS x86-64 V9.2-1 and may yield the following error:

YBACKUP- F- OPENQUT, error openi ng DKA200: [000000] DKA200$504. BCK; as out put
- SYSTEM W BADI RECTORY, bad directory file format

This type of operation was originally developed to allow the backup of a large non-removable disk
onto a series of smaller removable disks. The feature, referred to as “sequential disk” operation, is
described in the VSI OpenVMS System Manager's Manual, Volume 1: Essentials.

As a workaround, initialize and mount an output volume of a size sufficient to hold the entire backup
save set before issuing the BACKUP command as in the following example:

$ I NI TI ALI ZE out put - di sk: | abel

$ MOUNT out put - di sk: | abel

$ CREATE/ DI RECTORY out put _di sk: []

$ BACKUP input-disk:[directories...]*.*; output-disk:save-set.bck/ SAVE

If a sufficiently large output disk is not available, you can instead create and mount a volume set using
multiple disks with INITIALIZE and MOUNT/BIND commands.

2.1.5. Cross-Tools Kit Update

With VSI OpenVMS x86-64 V9.2-1, use the new V9.2-1_XGIS5 cross-tools kit (X86 XTOOLS-
V0902-1_XGI5-1.ZIP).

For details on the changes to the cross-tools in the V9.2-1_XGIS kit, refer to the release notes bundled
with the kit. Before the cross-tools kit installation, the release notes file can be extracted from the
PCSI kit with the following command:

16

https://vmssoftware.com/docs/VSI_SYS_MGMT_MANUAL_VOL_I.PDF

Chapter 2. Release Notes

$ product extract release_notes x86_xtools /log [/source=ddcu: [dir]]

Refer to the VSI OpenVMS x86-64 Cross-Tools Kit Installation and Startup Guide for complete
information on installing the cross-tools kit.

2.1.6. Display of License Charge Information for x86-64
Nodes

In a cluster with x86-64 nodes running VSI OpenVMS x86-64 V9.2-1 and Alpha or Integrity nodes
running previous versions of OpenVMS, the SHOW LICENSE/CLUSTER/CHARGE command run
from a non-x86-64 node displays the existing x86-64 nodes but does not display the license charge
information for x86-64 systems.

This issue will be fixed in a future update for previous VSI OpenVMS versions.

2.1.7. ENCRYPT Utility Does Not Work as Expected

Most operations with the ENCRYPT utility return the following error:

YENCRYPT- F- | LLALGSEL, al gorithm sel ection unknown, unavail abl e, or unsupported

This issue will be addressed in a future release of VSI OpenVMS x86-64.

2.1.8. Extended File Cache (XFC)

VSI OpenVMS x86-64 has extended file caching (XFC) enabled by default.

2.1.9. HYPERSORT Utility Available

The high-performance Sort/Merge utility (HYPERSORT) is available in VSI OpenVMS x86-64.
Enable the utility with the following command:

$ DEFI NE SORTSHR SYS$LI BRARY: HYPERSORT. EXE

2.1.10. New LIBS$INITIALIZE Handling in the Linker

Programs that use the LIBSINITIALIZE startup mechanism must declare a LIBSINITIALIZE
PSECT and include the LIBSINITIALIZE module from STARLET.OLB when linking. Traditionally,
besides the PSECT, source programs simply declared an external reference to that module, and the
linker resolved the reference from STARLET.OLB. However, the LLVM backend used by the cross-
compilers removes that external reference from the object file since there were no additional source
references to the routine.

The linker was changed to automatically include the required module if it encounters a
LIBSINITIALIZE PSECT. For details, see the VSI OpenVMS Linker Utility Manual.

This change does not affect any source module where external references to the LIBSINITIALIZE
module were declared. This change also does not affect any existing link commands that explicitly
include the LIBSINITIALIZE module from STARLET.OLB.

2.1.11. Linker: New Informational Messages

When the linker encounters writable code sections, with PSECT attributes set to WRT and EXE, it
now prints the following informational message:

https://docs.vmssoftware.com/vsi-openvms-linker-utility-manual/

Chapter 2. Release Notes

% LI NK-1-MIPSC, conflicting attributes for section <PSECT nane>
conflicting attribute(s): EXE, WRT
nodul e: <nodul e nanme>
file: <obj-or-olb-fil enane>

When the linker finds unwind data in a module, but no section with the PSECT attribute set to EXE, it
prints the following informational message:

9% L1 NK- | - BADUNWSTRCT, one or nore unwi nd rel ated sections are
m ssing or corrupted
section: .eh_frane, there is no non-enpty EXE section
nmodul e: <nodul e nane>
file: <obj-or-olb-fil enane>

These messages are seen mainly with Macro-32 and BLISS source modules. All code sections must
be non-writable. You must have code in sections with the PSECT attribute set to EXE.

2.1.12. New Handling of Threaded Applications in
Linker

When linking applications that use the POSIX Threads Library (PTHREADS$RTL), you can set up
the application in such a way that it can receive upcalls from VMS and/or that VMS should map
user threads to multiple kernel threads. This behavior can be enabled with the / THREADS ENABLE
qualifier. However, if that qualifier is not specified, the linker now automatically enables upcalls and
displays an informational message to make the user aware of that. The user can overwrite the default
behavior by expliclitly specifying / NOTHREADS ENABLE.

2.1.13. Different Image Layout on x86-64 and |1A64

When porting an application from [A64 to x86-64, be aware that the image layout may change in
an incompatible way — although the compile and link commands/options did not change. This is an
architectural difference.

On [A64, the compiler may generate short data which is accessed in an efficient way. The [A64
linker always collects short data to the DEFAULT CLUSTER, no matter where the object module that
defines this short data is collected. That is, in a partially protected shareable image, an object module
may be collected into a protected linker cluster, but its short data may be collected into an unprotected
cluster, and so it is not protected. User-mode code in the shareable image can write to it.

On x86-64, there is no short data. All data defined in an object module will go where the module goes
(except the defining PSECT, which is moved with an explicit COLLECT option). That is, on x86-64,
for partially protected shareable images, all data defined by an object module which is collected into a
protected linker cluster will be protected. User-mode code in the shareable image can not write to it.

2.1.14. Memory Disks

If you change anything that affects the boot path or dumping, you must run the command procedure
SYSSMD.COM before rebooting. For instance, if you change any files referenced or loaded during
booting (up to and including the activation of STARTUP), or any files used by the dump kernel, then
you must run SYS$MD.COM.

However, in VSI OpenVMS x86-64 V9.2-1 there are two exceptions to the above statement. If you
make any of the following changes that affect the boot path or dumping, you do not need to run
SYS$MD.COM:

18

Chapter 2. Release Notes

1. Use SYSGEN WRI TE CURRENT or SYSMAN PARAM WRI TE CURRENT. These commands
will access the parameter file on the memory disk directly.

2. Copy a file directly to the memory disk when specifically advised by VSI Support Engineers to do
SO.

Use the following command exactly as specified here:

$ @ys$updat e: sys$nd

No parameters are needed, since the defaults should apply.
When SYS$MD.COM completes, you must reboot.

When SYS$SMD.COM is invoked, the system will display something like the following:

$ @ys$updat e: sys$nd
Created nenory di sk DKEL10O: [VMS$COMVON. SYS$LDR] SYS$MD. DSK; 1
- using 184064 blocks in 1 extent with 1010 spare bl ocks
- mounted on LDWR323: with volume | abel MD230120DD6A
- contains OpenVMs V9. 2-1

$
After the next system reboot, purge the memory disk with the following command:

$ purge sys$l oadabl e_i nages: sys$nmd. dsk

2.1.15. OpenVMS Clusters on Virtual Machines

VSI OpenVMS x86-64 V9.2-1 supports VirtualBox, KVM, and VMware virtual machines in
OpenVMS clusters. However, shared disk access on virtual machines is not supported. Note that this
means no shared data disks or cluster common system disks.

VSI OpenVMS x86-64 V9.2-1 has been tested in a clustered configuration using V8.4-1H1, V8.4-2,
V8.4-21L1, V8.4-2L.2, and V8.4-2L.3. VSI has tested 2-node and 3-node clusters with MSCP-served
disks where appropriate, CLUSTER _CONFIG_LAN.COM, and many relevant SET, SHOW, and
SYSMAN commands. Other configurations will be tested at a later date.

Adding a Node Using a Copy of an Existing System Disk

On VSI OpenVMS x86-64 systems, you must perform an additional step if you use a copy of an
existing system disk as the initial system disk of a new node that is being added to a cluster.

In addition to tasks such as modifying the SCSNODE and SCSSYSTEMID parameters and changing
the label on the new system disk, you must also change the label for the memory disk. Follow these
steps:

Note

The following steps assume that the new system disk is DKA300:, and it is already mounted.

1. Invoke LDSSTARTUP.COM by using the following command:
@YS$STARTUP: LD$STARTUP. COM

2. Connect and mount the memory disk container file using the following commands:

$ LD CONNECT DKA300: [VMS$COMMON. SYS$LDR] SYS$MD. DSK LDM LDDEV

Chapter 2. Release Notes

$ MOUNT/ OVER=| D LDDEV

3. Note the label of the memory disk. It will be of the form “MD20345927FD”. Change the last letter
to create a unique name. For example:

$ SET VOLUME LDDEV / LABEL=MD20345927FE
4. Dismount the memory disk before completing the other setup tasks for the new system disk.

$ DI SMOUNT LDDEV
$ LD DI SCONNECT LDDEV

2.1.16. VSI OpenVMS x86-64 Will Not Support Swap
Files

VSI OpenVMS x86-64 will not support swap files. The system’s physical memory should be managed
with appropriately sized system memory and page file(s).

The AUTOGEN and SWAPFILES procedures no longer create swap files on the system disk. If a
swap file resides on the system disk, it will no longer be installed as part of the system startup.

In the current release, the SYSGEN | NSTALL command does not support the / SWAPFI LE qualifier.
The use of the qualifier will result in a syntax error.

Processes may be seen in the computable outswapped (COMO) state. This is a transient state for
newly created processes. Processes will never appear in the local event flag wait outswapped (LEFO)
or hibernate outswapped (HIBO) states. All performance counters associated with swapping are still
present in the system. Various MONITOR displays will show swapping metrics.

2.1.17. Privileged Images Linked /SYSEXE Should Be
Relinked

VSI recommends that any privileged image linked /SYSEXE should be relinked for the V9.2-1
release because data structures and interfaces are subject to change for each new version.

2.1.18. Process Dumps

VSI OpenVMS x86-64 provides support for process dumps. The only method currently available
for analyzing process dumps is using the System Dump Analyzer (SDA). Most SDA commands that
display data about a process can be used to examine the state of the process. For example, SHOW
PROCESS, SHOW CRASH, SHOW EXCEPTION, SHOW CALL, EXAMINE, MAP. Support for
the Symbolic Debugger interface will be added in a future release of VSI OpenVMS x86-64.

2.1.19. Running x86-64 Images on Integrity Systems
Causes an Access Violation

When you run a VSI OpenVMS x86-64 image on VSI OpenVMS Integrity, no message from the
image activator appears but an access violation occurs.

This issue will be corrected in a future patch kit for VSI OpenVMS for Integrity Servers.

2.1.20. Symmetric Multiprocessing (SMP)

VSI OpenVMS x86-64 V9.2-1 supports a maximum of 32 CPUs.

20

Chapter 2. Release Notes

If you increase the number of CPUs in your virtual machine configuration, you will see messages like
the following during system startup:

%SMP- | - CPUTRN, CPU #2 has joined the active set.
%SMP- | - CPUTRN, CPU #1 has joi ned the active set.
%SMP- | - CPUTRN, CPU #3 has joined the active set.

Once VSI OpenVMS x86-64 is up and running, the DCL command SHOW CPU will reflect your
CPU count. For example:

$ show cpu
System X86VMs5, VBOX VBOXFACP
CPU ownership sets:

Active 0-3
Configure 0-3
CPU state sets:
Pot enti al 0-3
Aut ost art 0-3
Power ed Down None
Not Present None
Har d Excl uded None
Fai | over None

$

The DCL command STOP/ CPU n will remove a CPU from the set of CPUs being used. For
example:

$ stop/cpu 3
%6MP- | - CPUTRN, CPU #3 was renopved fromthe active set.

The DCL command START/ CPU n will add a CPU to the set of CPUs being used. For example:

$ start/cpu 3
%SMP- | - CPUTRN, CPU #3 has joined the active set.

2.1.21. SYSGEN Parameter Changes

The following changes and additions have been made to the SYSGEN Ultility for VSI OpenVMS
x86-64. For more information about SYSGEN qualifiers and parameters, see VSI OpenVMS System
Management Utilities Reference Manual, Volume II: M—Z.

Table 2.1. SYSGEN Commands Used for VSI OpenVMS x86-64

Command Parameter Description

USE CURRENT Specifies that source information is to be retrieved from the
current system parameter file on disk.

On OpenVMS x86-64 systems, the system parameter file is
SYSSSYSTEM:X86 64VMSSYS.PAR.

WRITE CURRENT Specifies that source information is to be written to the
current system parameter file on disk. The new values will
take effect the next time the system is booted.

On OpenVMS x86-64 systems, command
modifies the current system parameter on disk,
SYSSSYSTEM:X86 64VMSSYS.PAR.

21

https://vmssoftware.com/docs/VSI_SYS_MAN_UTIL_REF_VOL_II.pdf
https://vmssoftware.com/docs/VSI_SYS_MAN_UTIL_REF_VOL_II.pdf

Chapter 2. Release Notes

Table 2.2. System Parameters

Parameter

Description

BOOT BITMAPI

On x86-64 systems, this parameter defines the required size

in megabytes of the first boot-time allocation bitmap used by
SYSBOOT during the bootstrap process on x86-64. If this value is
too small, the system may be unable to boot.

This parameter does not apply to OpenVMS Alpha or OpenVMS
Integrity systems.

BOOT_BITMAP2

On x86-64 systems, this parameter defines the required size in
megabytes of the second boot-time allocation bitmap used by
SYSBOOT during the bootstrap process on x86-64. If this value is
too small, the system may be unable to boot.

This parameter does not apply to OpenVMS Alpha or OpenVMS
Integrity systems.

DISABLE X86 FT

On x86-64 systems, DISABLE X86 FT is a bit mask used to
inhibit the use of certain X86 processor features by the operating
system.

It is used to decide which variant of the SYSTEM_ PRIMITIVES
execlet gets loaded. Setting all bits (disabling the use of all
optional features) results in SYSTEM_PRIMITIVES 0 being
loaded.

The following bits are defined:

Bit Definition

0 If 1, do not use the XSAVEOPT

instruction.

If 1, do not use the RDFSBASE,
WRFSBASE, RDGSBASE, or
WRGSBASE instructions.

If 1, do not provide software
mitigation against the Intel MDS
vulnerabilities.

DISABLE x86 FT is a STATIC parameter.

This parameter does not apply to Alpha or Integrity systems.

GH_EXEC_CODE_S2

On x86-64 systems, GH_EXEC _CODE_S2 specifies the size in
pages of the execlet code granularity hint region in S2 space.

GH_EXEC CODE_S2 has the AUTOGEN and FEEDBACK
attributes.

This parameter does not apply to Alpha or Integrity systems.

GH EXEC DATA S2

On x86-64 systems, GH _EXEC DATA S2 specifies the size in
pages of the execlet data granularity hint region in S2 space.

GH_EXEC _DATA_S2 has the AUTOGEN and FEEDBACK
parameters.

22

Chapter 2. Release Notes

Parameter

Description

This parameter does not apply to Alpha or Integrity systems.

GH_RES_DATA S2

On x86-64 systems, GH_RES DATA _S2 specifies the size in
pages of the resident image data granularity hint region in S2
space.

GH_RES DATA S2 has the AUTOGEN and FEEDBACK
attributes.

This parameter does not apply to Alpha or Integrity systems.

GH_RES CODE

This parameter now applies to x86-64 systems. On x86-64,
Integrity, and Alpha systems, GH _RES CODE specifies the size
in pages of the resident image code granularity hint region in SO
space.

GH_RES_CODE has the AUTOGEN and FEEDBACK attributes.

GH_RO_EXEC_S0

On x86-64 systems, GH RO _EXEC S0 specifies the size in pages
of the read-only execlet data granularity hint region in SO space.

GH RO _EXEC SO0 has the AUTOGEN and FEEDBACK
attributes.

This parameter does not apply to Alpha or Integrity systems.

GH RO _RES_S0

On x86-64 systems, GH_RO_RES SO0 specifies the size in pages
of the read-only resident image data granularity hint region in SO
space.

GH_RO_EXEC S0 has the AUTOGEN and FEEDBACK
attributes.

This parameter does not apply to Alpha or Integrity systems.

LOAD SYS IMAGES

This special parameter is used by VSI and is subject to change. Do
not change this parameter unless VSI recommends that you do so.

LOAD_SYS IMAGES controls the loading of system
images described in the system image data file, VMS
SSYSTEM IMAGES. This parameter is a bit mask.

The following bits are defined:

Bit Description

0(Enables loading alternate
SGNS$V_LOAD SYS IMAGES |execlets specified in VMS

) $SYSTEM _IMAGES.DATA.

1 (SGN$V_EXEC SLICING) |Enables executive slicing. Note
that executive slicing is always
enabled on x86-64 systems.

2 (SGN$SV_RELEASE PENS) |Enables releasing unused
portions of granularity hint
regions on Alpha servers.

23

Chapter 2. Release Notes

Parameter

Description

These bits are on by default. Using conversational bootstrap exec
slicing can be disabled.

LOAD _SYS IMAGES is an AUTOGEN parameter.

RAD_SUPPORT

RAD_SUPPORT enables RAD-aware code to be executed on
systems that support Resource Affinity Domains (RADs).

On x86-64 systems, the default, minimum, and maximum values
for RAD SUPPORT are all zeros because RAD support is not
currently available on that platform.

SCSBUFFCNT SCSBUFFCNT is reserved for VSI use only.
On x86-64, Alpha, and Integrity servers, the system
communication services (SCS) buffers are allocated as needed, and
SCSBUFFCNT is not used.

VCC FLAGS The static system parameter VCC_FLAGS enables and disables

file system data caching. If caching is enabled, VCC_FLAGS
controls which file system data cache is loaded during system
startup.

Value Description

0 Disables file system data
caching on the local node and
throughout the OpenVMS

Cluster. In an OpenVMS
Cluster, if caching is disabled

on any node, none of the other
nodes can use the extended

file cache or the virtual I/O
cache. They cannot cache any
file data until that node either
leaves the cluster or reboots with
VCC_FLAGS set to a nonzero
value.

1 Enables file system data caching
and selects the Virtual 1/0
Cache. This value is relevant
only for Alpha systems.

2 Enables file system data caching
and selects the extended file
cache.

Note

On x86-64 and Integrity servers, the volume caching product
[SYSSLDR]SYS$VCC.EXE is not available. XFC caching
is the default caching mechanism. Setting the VCC_FLAGS
parameter to 1 is equivalent to not loading caching at all or to
setting VCC_FLAGS to 0.

24

Chapter 2. Release Notes

Parameter Description
VCC_FLAGS is an AUTOGEN parameter.

All system parameters are exposed on every platform: x86-64, Integrity, and Alpha. In addition, flags
can be set or cleared on any platform using the SYSGEN Utility. However, the flag may not have any
effect on a platform for which it is not intended.

2.1.22. System Crash Dumps

VSI OpenVMS x86-64 system crash dumps are written using a minimal VMS environment called
the Dump Kernel. All files used by the Dump Kernel are included in the MemoryDisk described in
Section 2.1.14

New System Crash Dump - Interleaved Dumps

VSI OpenVMS x86-64 V9.2-1 supports two system crash dump types: Compressed Selective Dump
and Interleaved Dump.

A Compressed Selective Dump is written using only the primary CPU running in the Dump Kernel,
while an Interleaved Dump makes use of the available secondary CPUs. If the dump device is a Solid
State Disk, the dump can be written much faster, thus allowing the system to be rebooted sooner.

The DUMPSTYLE parameter specifies which dump type is being used. The default value for the
parameter is 9 (Compressed Selective Dump). However, if the system has more than one CPU and the
SYS$SSYSTEM:MODPARAMS.DAT file does not include a value for the DUMPSTYLE parameter,
then, when AUTOGEN runs, it will set the value of DUMPSTYLE to 128 (Interleaved Dump).

In OpenVMS x86-64, the only other pertinent bits in the DUMPSTYLE parameter are bit 1 (full
console output: registers, stack, and system image layout) and bit 5 (only dump system memory, key
processes, and key global pages). Either or both of these bits can be set in addition to the two base
values (9 and 128). Bit 2 (dump off system disk) is no longer required.

Dump Off System Disk

Crash dumps can be written to the system disk or to an alternate disk which is specifically designated
for this purpose.

Dumps to the system disk are written to SYS$SSYSDEVICE:[SYSn.SYSEXE]SYSDUMP.DMP which
can be created or extended using the SYSGEN utility.

Dumps to an alternate device can be set up as described in the example below:

1. Create a dump file on the desired device using the SYSGEN utility. In this example, we will use
the DKA100: disk.

$ RUN SYS$SYSTEM SYSGEN

SYSGEN> CREATE DKA100: [SYS0. SYSEXE] SYSDUWP. DMP / SI ZE=200000
SYSGEN> EXIT

2. Enter the following command:

$ SET DUMP_OPTI ONS/ DEVI CE=DKA100:

You have set DKA100: as the dump device.

25

Chapter 2. Release Notes

You can view the setting by using the SHOW DUMP_OPTIONS command. The change is effective
immediately, a reboot is not required.

Changes in SET DUMP_OPTIONS

A new qualifier, / MAXI MUMECPUS=N, has been added to the SET DUMP_OPTI| ONS command.
This qualifier sets the number of CPUs used by the Dump Kernel when writing an Interleaved Dump.
It has no effect when a Compressed Selective Dump is used. By default, the Dump Kernel will use
all eligible secondary CPUs that are available in the system, up to a maximum of 10 (including the
primary CPU). Eligible CPUs are those that were halted successfully when the system crashed, and
that did not trigger the crash with a MACHINECHK or KRNLSTAKNYV Bugcheck.

The maximum number of CPUs that can be specified in the command is also 10.

System Dump Analysis

VSI strongly recommends that the version of SDA.EXE and SDA$SHARE.EXE used to analyze a
system dump be exactly the same as the version of OpenVMS that was in use when the system crash
occurred. However, it is often possible to use SDA images from a different version of OpenVMS,

provided there are no major differences between the versions and the warning messages by SDA are
ignored (either %SDA-W-LINKTIMEMISM, or %SDA-W-SDALINKMISM, or both).

New SDA command qualifiers in OpenVMS x86-64

The SDA commands below now have new qualifiers that are specific to OpenVMS x86-64. Also, the
format of several output messages has been changed to accommodate the architectural differences.

SHOW DUMP command

The qualifier / PERFORMANCE has been added to display the performance data collected by the
Dump Kernel while writing a dump.

Depending on the additional keywords used, the data displayed by the SHOWV DUMP/ PERFORMANCE
command can include system information (/ PERFORMANCE=SYSTEM), per-CPU information

(/ PERFORMANCE=CPU), and per-process information (/ PERFORMANCE=PROCESS). If no
additional keywords are specified with the command, all information mentioned above will be
displayed.

SHOW EXECUTIVE command

The qualifier / SDA_EXTENSI ON has been added to limit the list of displayed executive images to
those that are paired with SDA extensions. For example, SWISSDEBUG.EXE.

SHOW PAGE_TABLE and SHOW PROCESS /PAGE_TABLE commands

The qualifiers / BPTE, / PDE, / PDPTE, / PML4E, and / PML5E have been added to allow you to
display a specific level of page table entries. The default behavior is to display the base page table
entry (BPTE).

The qualifier / MODE has been added to display the page tables for a specific mode. The default
behavior is to display the page tables for all modes. Valid keywords are: KERNEL, EXECUTI VE,
SUPERVI SOR, and USER

SHOW POOL command

26

Chapter 2. Release Notes

The output for the qualifier /RING BUFFER is now affected by the additional qualifiers / ALL
and / S2_NPP. The default behavior for SHOW POOL / RI NG_BUFFER s to display all entries
in the Nonpaged Pool ring buffer. If / S2__NPP is specified, then the ring buffer for S2 pool is
displayed. If / ALL is specified, then the contents of both ring buffers are displayed, interleaved by
their timestamps.

The qualifier / S2_NPP, when used without / Rl NG_BUFFER, displays only the S2 pool. The default
behavior is to display all pool types.

The qualifier / USB displays only the nonpaged pool that is reserved for use by USB devices. The
default behavior is to display all pool types.

VALIDATE POOL command

The qualifier / S2_NPP allows validation of only the S2 pool. The default behavior is to validate all
pool types.

The qualifier / USB allows validation of only the nonpaged pool that is reserved for use by USB
devices. The default behavior is to validate all pool types.

SDA commands and qualifiers not available in VSI OpenVMS
x86-64

The following commands and qualifiers are not applicable to VSI OpenVMS x86-64 systems:
+ SHOW GALAXY

+ SHOW GCT

+ SHOW GLOCK

+ SHOW GVDB

+ SHOW SHM CPP

+ SHOW SHM REG

* SHOW VHPT

+ VALI DATE SHM CPP

« EVALUATE and EXAM NE, qualifiers / FPSR /| FS,/ | SR,/ PFS, and / PSR

+ SHOW PACE_TABLE and SHOW PROCESS / PAGE_TABLE, qualifiers / L1,/ L2,/ L3, and
| SPTW

+ SHOW PQOQL, qualifier / BAP

VALI DATE PQOQL, qualifier / BAP

Other SDA command changes

The COPY command qualifiers / COVPRESS, / DECOMPRESS, and / PARTI AL cannot be used with
an Interleaved Dump.

27

Chapter 2. Release Notes

2.1.23. Traceback Support

The linker includes sufficient traceback information in the image file for a functional symbolic
traceback. As a result, by default, the image file may be larger than in previous versions/updates.

This additional debug information is not read by the image activator, so it will not slow down image
activation. However, to make image files smaller, the linker was changed to include reduced traceback
information. This affects the traceback output, as it no longer prints the routine name. Any other
traceback output is unaffected. This feature can be enabled with the LINE NUMBER keyword for
the /TRACE qualifier. For details, see the Linker manual.

Traceback now prints the image name, routine name, and line numbers much like traceback on
OpenVMS Alpha and OpenVMS Integrity server systems with the following differences:

1. Traceback is unable to determine the module name so instead it prints the "basename" of the
source file used to create the module.

2. The position of the values in their respective columns may not line up with the header line.

These differences will be addressed in a future release of VSI OpenVMS x86-64.

2.1.24. Viewing Call Stack in Pthread Debugger

In VSI OpenVMS x86-64 V9.2-1, the call stack can be viewed in the Pthread debugger. To show the
call stack, use the "-o C" option in the t hr eads command. For example, if the debugger runs in the
PTHREAD SDA extension, the command to show the call stack for thread id 3 is the following:

SDA> pthread threads -0 "C' 3

Process nanme: SECURI TY_SERVER Extended PID: 0000008F Thread data:

"threads -0 "C'" 3"

thread 3 (bl ocked, tinmed-cond) "Process Proxy Task", created by pthread

Stack trace:

Oxf f f f 83000c83bla5 (pc Oxffff83000c83bla5, sp 0x00000000024e3228)
Oxf f f f 83000c87b53a (pc Oxffff83000c87b53a, sp 0x00000000024e3230)
Oxf f f f 83000c858493 (pc Oxffff83000c858493, sp 0x00000000024e32e0)
Oxf f f f 83000c852b04 (pc Oxffff83000c852b04, sp 0x00000000024e33f 0)
Oxf f f f 83000c8499a3 (pc Oxffff83000c8499a3, sp 0x00000000024e34d0)
Oxffff83000c844e9a (pc Oxffff83000c844e9a, sp 0x00000000024e3800)
0x0000000080004ad8 (pc 0x0000000080004ad8, sp 0x00000000024e3900)
0x0000000080007f e6 (pc 0x0000000080007f e6, sp 0x00000000024e3950)
Oxf f f f 83000c8887df (pc Oxffff83000c8887df, sp 0x00000000024e3bd0)
Oxf fff83000c83b0ea (pc Oxffff83000c83b0ea, sp 0x00000000024e3f 00)

However, the output of the Pthread debugger command t hr eads - 0 u, which shows an
SDA SHOW CALL command, cannot yet be used in SDA.

SDA> pthread threads -o u 3

Process nane: SECURI TY_SERVER Extended PID: 0000008F Thread data:

“threads -o u 3"

thread 3 (bl ocked, timed-cond) "Process Proxy Task", created by pthread
Unwi nd seed for SDA SHOW CALL 00000000024e2e40

SDA> SHOW CALL 00000000024e2e40

00000000. 024E2E40 is no valid handle for a call stack start of

00000000. 00000000

28

Chapter 2. Release Notes

SDA>

2.1.25. VSI DECram for OpenVMS

VSI DECram for OpenVMS, also referred to as a RAMdisk, is fully operational in VSI OpenVMS
x86-64.

For details of the DECram disk characteristics and configuration, refer to the DECram for OpenVMS
User s Manual.

2.1.26. Symbolic Links and POSIX Pathname Support

Symbolic links (symlinks) and POSIX pathnames are documented in Chapter 13 of the V'SI C Run-
Time Library Reference Manual for OpenVMS Systems. The release notes in this section augment that
documentation.

2.1.26.1. Device Names in the POSIX Root

The POSIX file namespace begins at a single root directory. The location of the POSIX root in
OpenVMS is defined by the system manager using the SET ROOT command. Files may be located
via a path starting in the root using an absolute pathname that starts with the / character. For example,
/ bi n identifies the bin directory located in the POSIX root directory. Additionally, all disk devices
on an OpenVMS system may be located by using their device name as a name in the POSIX root.

For example, the path / DKAQ' USER identifies the directory DKAO:[USER]. The name after the /
character may be an actual device name or a logical name that resolves to a device name (and possibly
one or more directory names). Device names are not actually present in the POSIX root directory. In
resolving an absolute pathname, OpenVMS first searches for the name in the POSIX root. If it is not
found, it tries to locate the name as a device or logical name.

2.1.26.2. /ISYMLINK Qualifier in DCL Commands

A number of DCL commands that operate on files accept the /SYMLINK qualifier to control whether
the command operates on a file that a symlink points to or on the symlink itself, and whether symlinks
are followed in wildcard searches. For more information, refer to V.SI DCL Dictionary: A—M and VSI
DCL Dictionary: N—Z.

Most commands require /SYMLINK to be used with a keyword. The valid keywords are as follows:

Keyword Explanation

NOWILDCARD Indicates that symlinks are disabled during
directory wildcard searches.

WILDCARD Indicates that symlinks are enabled during
directory wildcard searches.

NOELLIPSIS Indicates that symlinks are matched for all
wildcard fields except for ellipsis.

ELLIPSIS Equivalent to WILDCARD (included for
command symmetry).

NOTARGET Indicates that the command operates on the
named file whether it is an ordinary file or a
symlink.

29

https://docs.vmssoftware.com/vsi-decram-for-openvms-users-manual/
https://docs.vmssoftware.com/vsi-decram-for-openvms-users-manual/
https://docs.vmssoftware.com/vsi-c-run-time-library-reference-manual-for-openvms-systems/
https://docs.vmssoftware.com/vsi-c-run-time-library-reference-manual-for-openvms-systems/
https://docs.vmssoftware.com/vsi-openvms-dcl-dictionary-a-m/
https://docs.vmssoftware.com/vsi-openvms-dcl-dictionary-n-z/
https://docs.vmssoftware.com/vsi-openvms-dcl-dictionary-n-z/

Chapter 2. Release Notes

Keyword Explanation

TARGET Indicates that if the named file is a symlink, the
symlink is followed to operate on the symlink
target.

Some commands, such as COPY, DIRECTORY, DUMP, or SET FILE, accept /SYMLINK with no
keyword value. In such cases, the qualifier causes the command to operate on the symlink; by default
the command operates on the file pointed to by the symlink.

2.1.26.3. Symlink Support in COPY and CREATE

If the input file of a COPY command is a symlink and the /SYMLINK qualifier is specified, the
command copies the symlink; otherwise it copies the target of the symlink. If the output named in a
COPY or CREATE command is an existing symlink, COPY creates a file as identified by the target
name of the symlink. Thus, it is possible to create a symlink that points to a nonexistent file, and then
create the file by specifying the symlink as the output of the command.

2.1.26.4. Symlink Support in RENAME

The RENAME command always operates on the file specified in the command. That is, if the input
file is a symlink, the symlink is renamed. If a symlink corresponding to the output name exists, it will
not be followed.

2.1.26.5. Symlink Support in BACKUP

The BACKUP command never follows symlinks and has no /SYMLINK qualifier. If the input file
is a symlink, the symlink is saved or copied. When a save set is restored, BACKUP does not follow
symlinks named as output files — instead, the specified name is created. Also, BACKUP does not
follow symlinks in its directory wildcarding operation. Any symlinks encountered during directory
searches are saved or copied as symlinks.

2.1.26.6. Symlinks and File Versions

A symlink, while implemented as a type of file, may not have multiple versions. Depending on the
usage, commands that create files (such as COPY, BACKUP, and RENAME) may attempt to create a
new version of a symlink or create a symlink where one or more versions of a file exist. Operations of
this kind fail with the following error:

NOSYM.I NKVERS, cannot create nultiple versions of a symink

2.1.26.7. Symlinks Pointing to Multiple File Versions

Even though a symlink is limited to a single file version, it may point to a file that has multiple
versions. When a DCL command that searches for multiple files (such as, DIRECTORY or

SET FILE) locates a file via a symlink, it returns the name of the symlink even though it is operating
on the target file. As a result, even though multiple versions of the symlink target may exist, the DCL
command operates only on the latest version of the target file.

For example, in the following sequence of commands:

$ CREATE/ SYMLI NK=FI LE. TXT LI NK. TXT
$ COPY FI LE2. TXT LI NK. TXT

30

Chapter 2. Release Notes

$ COPY FI LE2. TXT LI NK. TXT
$ COPY FI LE2. TXT LI NK. TXT

three versions of the file FILE.TXT will exist, but a DIRECTORY command will show only the latest
version in response to the name LINK.TXT. Likewise, the command $ TYPE LI NK. TXT; * will
display only the latest version of FILE. TXT, not all three versions.

2.1.27. Symbolic Debugger

VSI OpenVMS x86-64 V9.2-1 now includes an initial implementation of the Symbolic Debugger.
While many features work, there are some that do not work. These are listed in the following sections.
VSI will address these issues in a future release. In addition, some of the missing features will require
future native compilers, as the cross compilers are unable to provide sufficient debug information to
the debugger.

2.1.27.1. Supported Registers

All integer registers (see the table below) are currently supported, including the 32, 16, and 8-bit
variants.

Table 2.3. Supported registers

64-bit registers Y%rax, %rbx, %rcx, %rdx, %rsi, %ordi, %orsp,
%rbp, %r8, %r9, %rl0, %rll, %rl2, %rl3, %rl4,
%rl5

32-bit registers %eax, %ebx, %ecx, %edx, %oesi, %edi, Yoesp,

%ebp, %r8d, %r9d, %r10d, %rlld, %rl2d,
%r13d, %rl4d, %rl15d

16-bit registers %ax, %bx, %cx, Y%dx, %osi, %di, Y%osp, %bp,
%r8w, %r9w, %r10w, %rllw, Y%rl2w, %rl3w,
%rl4w, %rl5w

8-bit registers %al, %ah, %bl, %bh, %cl, %ch, %dl, %dh, %sil,
%dil, %spl, %bpl, %r8b, %r9b, %r10b, %rll1b,
%r12b, %rl13b, %rl4b, %rl5b

2.1.27.2. Older Versions of Compilers Always Set Language to C

The issue with the x86-64 compilers setting the debug language to C by default has been resolved in
the current release of VSI OpenVMS x86-64.

However, older versions of cross-compilers still set the debug language to C by default. This means
that when the debugger regains control, the language is set to C, even if the module being debugged
was written in another language.

The way to work around this problem is simply to use the SET LANGUAGE command to set the
default language to that which is being debugged.

2.1.27.3. Language Support Limitations

There is some support for language-specific features when using the EXAMINE and DEPOSIT
commands. However, some of the more complex data structures may not work correctly and can have
unexpected and undefined behaviour.

31

Chapter 2. Release Notes

As mentioned previously, the cross compilers all set the language type to C in the debug output.
This may appear to prevent language-specific features from working. Using the SET LANGUAGE
command will resolve this.

2.1.27.4. Source Line Correlation

In this release, the debugger fully supports source line correlation. Note, however, that the current
version of the debugger requires you to use the latest versions of cross-compilers and/or native
compilers.

Previous versions of the debugger do not support source line correlation because the previous versions
of compilers generate listing line numbers in their debug data, not source lines. In most instances, this
will lead to quite a large disparity between the line numbers available to the debugger and the actual
line numbers of the source file. This can manifest itself in messages similar to the following:

break at DANCE\ pause_acti ons\%. NE 138517

YDEBUG- | - NOTORI GSRC, ori gi nal version of source file not found
file used i s SYS$SYSDEVI CE: [DEBUG. BLUEY] DANCE. C; 1

YOEBUG- W UNAREASRC, unable to read source file SYS$SYSDEVI CE:

[DEBUG. BLUEY] DANCE. C; 1

-RVB-E-ECF, end of file detected

To work around this issue, VSI recommends you use the debugger with accompanying source listings
to locate relevant lines reported by break points and the EXAMINE command.

The lack of source line correlation support also means that the STEP/LINE command does not always
work correctly and can behave like the STEP/INSTRUCTION command.

2.1.27.5. Floating-Point Support

There is currently no support for floating-point registers. Although it is possible to examine and
deposit them, the contents are inaccurate and will not be updated.

2.1.27.6. Not Supported or Not Working Features

Below is the list of commands and functionalities that are currently not supported or do not function
correctly:

« SET MODE SCREEN is not available

SET MODE SCREEN (and associated commands) are not currently available. Executing the SET
MODE SCREEN command will result in undefined behaviour that may cause the debugger to
become unstable.

» There is a known problem with STEP/LINE, which can behave like STEP/INSTRUCTION in
some cases.

2.1.28. Running DHCP Client and failSAFE IP are not
Compatible on the Same NIC
You cannot run the DHCP and the failSAFE IP client on the same NIC on VSI TCP/IP Services for

OpenVMS X6.x. If a customer is running the DHCP client on a NIC, then failSAFE IP should not
be configured on this NIC. Since the assigned address is actually controlled by DHCP, VSI TCP/IP

32

Chapter 2. Release Notes

Services for OpenVMS should not reassign this address. If a customer needs to run the DHCP client
and provide a failover mechanism, they should configure the NIC in a lan failover set.

2.1.29. User-Written x86-Assembler Modules

User-written x86-assembler code must follow the VSI OpenVMS calling standard (see the VSI
OpenVMS Calling Standard manual, chapter "OpenVMS x86-64 Conventions") to provide exception
handling information that is used by the exception handling mechanism to find a handler in one of the
callers of the assembler module. Without that information, exception handling can only call the last
chance handler, which means the application will likely not be able to handle the exception.

See the following example of a user-written x86-assembler module:

.vns_nodul e "MYTEST", " X- 01"

.text
.globl MYTESTRTN
.align 16
.type MYTESTRTN, @ uncti on
MYTESTRTN:
.cfi_startproc
pushq % bp /1 Establish a franme pointer
.cfi_def cfa offset 16 /1 Record distance to saved PC

.cfi_offset %bp, -16
novq % sp, % bp
.cfi_def _cfa register % bp

/1 function body

novq % bp, % sp /!l Restore stack and return
popq % bp

.cfi_def _cfa %sp, 8 /1 Adjust distance to saved PC
retq

.Size MYTESTRTN, .-MTESTRTN
.cfi_endproc

2.1.30. Connecting to a Shared LD Container in a
Mixed Architecture Cluster

In OpenVMS x86-64 V9.2-1, a container file can only be connected as a shared LD device accessible
to multiple architectures as follows:

1. Connect to the file on all OpenVMS Alpha and/or OpenVMS Integrity systems first, using a
command such as:

$ LD CONNECT/ al | ocl ass=1/ share DI SK$SLDTEST: [LD] SHARED LD. DSK LDA5:

2. Once all required connections on OpenVMS Alpha and/or OpenVMS Integrity systems are
complete, you may then connect to the file on any OpenVMS x86-64 systems.

If you connect to the file on an OpenVMS x86-64 system first, any subsequent attempts to connect
on an OpenVMS Alpha and/or OpenVMS Integrity system will fail with an error message such as:

% D F- FI LEI NUSE, File inconpatible connected to other LD disk in cluster
-LD- F- CYLI NDERS, Cylinders nisnatch

33

https://docs.vmssoftware.com/vsi-openvms-calling-standard/#X86_64_CONVENTIONS_CH
https://docs.vmssoftware.com/vsi-openvms-calling-standard/#X86_64_CONVENTIONS_CH

Chapter 2. Release Notes

VSI intends to provide an update for OpenVMS Alpha and OpenVMS Integrity systems that are
running VSI OpenVMS V8.4-1H1 or later, that will allow the connections to the shared container
file to be performed in any order.

2.1.31. LSl Logic Controllers

As of VSI OpenVMS x86-64 V9.2 with the Update V1.0 patch installed and higher, VSI OpenVMS
supports the configuration of up to four (4) LSI Logic Parallel SCSI controllers per ESXi virtual
machine.

LSI Logic SAS controllers are not supported on ESXi.

2.1.32. CD Audio Functionality Not Supported on
x86-64

CD audio functionality is not supported on VSI OpenVMS running on x86-64. CD audio functionality
has been deprecated for all x86 platforms and beyond.

This does not apply to VSI OpenVMS running on Alpha or Integrity platforms.

2.1.33. STABACKIT.COM Deprecated

SYSSUPDATE:STABACKIT.COM has been been deprecated in VSI OpenVMS x86-64 V9.2-1.

The STABACKIT functionality originally supported Standalone Backup for VAX systems and has
long been replaced by SYSSSYSTEM:AXPVMSSPCSI INSTALL MIN.COM for OpenVMS Alpha
and SYS$SYSTEM:164VMS$PCSI_INSTALL MIN.COM for OpenVMS Integrity systems. The
referenced command procedures produce a minimal installation of OpenVMS on a target device
which may be booted to allow a full backup of the system disk. STABACKIT would offer to run the
appropriate procedure for you.

VSI OpenVMS x86-64 V9.2-1 currently does not support minimal installation of the operating system
on a non-system disk. Backup options for virtual machines include the ability to perform backup from
the host operating system and the ability to checkpoint or clone within the hypervisor. One may also
boot from the installation media and choose the DCL subprocess menu entry to perform a backup of
the system device.

VSI may implement minimal installation for OpenVMS x86-64 in a future release.

2.1.34. Cluster Nodes Running VSI OpenVMS V9.2 May
Cause All x86-64 Cluster Members to Crash

In a mixed-version cluster where at least one node is running VSI OpenVMS x86-64 V9.2, certain
conditions might trigger a crash of all x86-64 systems, regardless of which OpenVMS version they
run. This can happen when a V9.2 MSCP node that is serving disks to other cluster members gets
rebooted. In this case, other x86-64 cluster members will see the disks served by MSCP go into mount
verification. Upon the verification completion, the MSCP client node might crash.

The fix for this problem is to upgrade all x86-64 cluster nodes to VSI OpenVMS x86-64 V9.2-1.

2.1.35. C Run-Time Library Issues

Below is the list of known C Run-Time Library issues in VSI OpenVMS x86-64 V9.2-1:

34

Chapter 2. Release Notes

e Writing 0 bytes to a mailbox fails and returns an error.

Writing 0 bytes to a mailbox created with SYSSCREMBX incorrectly returns an error instead of
sending an EOF to the mailbox.

» Several pol | () problems:
* Using pol | () asa high-precision sl eep() doesn’t work.

Calling pol I (NULL, O, timeout) to sleep for timeout seconds results in the process
consuming CPU time

» Polling sockets can sometimes result in excessive buffered 1/Os

* Requesting non-blocking I/0 when transferring large buffers on sockets results in an
unexpected network error.

The C RTL now supports non-blocking I/O (f cnt | () with O NONBLOCK flag) but a
network error will be reported if requesting non-blocking I/O on sockets and transferring
buffers larger than 62696 bytes.

These issues will be addressed in a future release.

2.1.36. TCPIP$BIND CONF.TEMPLATE_FORWARD
Requires Adjustment in Environments Not Supporting
DNSsec

The following lines in the TCPIPSBIND CONF.TEMPLATE FORWARD template file set up the
forwarders' addresses and the DNSSEC validation:

/1 Specifies the IP addresses to be used for forwarding.
/1 The default is the enpty list (no forwarding).
forwarders {

8.8.8.8;

8.8.4.4;

s

dnssec-validation auto; //Enable DNSSEC vali dati on.
// Not e dnssec-enable al so needs to be set to
/lyes to be effective. The default is yes.

However, if forwarders are changed to DNS servers that do not support DNSSEC or have it disabled,
DNS lookup replies will be discarded when the DNSSEC validation fails.

To avoid this, please comment out the line of dnssec- val i dati on auto.

2.1.37. NTPDATE No Longer Supported

NTPDATE is no longer supported and will be removed from an upcoming release of VSI TCP/IP
Services. To perform the equivalent of NTPDATE, run NTPD making use of the - g and " - G'
options.

$ ntpd :== $tcpi pSntp
$ ntpd "-G' -q

35

Chapter 2. Release Notes

nt p. exe[538969120] : ntpd 4.2.8pl5@. 3728 Fri Sep 22 07:00: 58 UTC 2020 (2):
Starting

nt p. exe[538969120]: Command |ine: tbd$dka200:[sys0. syscomon.][sysexe]tcpip

$ntp.exe -G -q -4

Nt p. exe[538969120] i - ------- - - m i oo e oo
nt p. exe[538969120]: ntp-4 is maintai ned by Network Ti ne Foundati on,

nt p. exe[538969120]: Inc. (NTF), a non-profit 501(c)(3) public-benefit

nt p. exe[538969120]: corporation. Support and training for ntp-4 are

nt p. exe[538969120]: avail able at https://ww. nwti nme. or g/ support

Ntp. exe[538969120 @ - ------ - m oo oo oo
nt p. exe[538969120]: proto: precision = 1000.000 usec (-10)

nt p. exe[538969120]: proto: fuzz beneath 0.710 usec

nt p. exe[538969120]: basedate set to 2022-05-21

nt p. exe[538969120]: gps base set to 2022-05-22 (week 2211)

nt p. exe[538969120]: Listen and drop on O v4wi |l dcard 0.0.0.0: 123

nt p. exe[538969120]: Listen normally on 1 LQ0 127.0.0.1:123

nt p. exe[538969120]: Listen normally on 2 WEO 10. 10. 116. 182: 123

nt p. exe[538969120]: Listening on routing socket on fd #4 for interface
updat es

nt p. exe[538969120]: ntpd: tine set -50.590756 s

ntpd: tinme set -50.590756s

$

2.1.38. SMP Timeout Parameters Increased

The default values for the system parameters SMP_SPINWAIT and SMP_LNGSPINWAIT have been
increased. This change was made to avoid potential CPUSPINWAIT and CLUEXIT crashes occurring
on virtual machines.

2.1.39. Improvements to System Memory Allocation

When allocating large amounts of system memory such as when allocating a large DECram disk, the
operation could take a long time. These operations could result in a CLUEXIT or CPUSPINWAIT
crash. Improvements have been made to the system to improve the efficiency of system memory
allocation.

2.1.40. FTP/SSL No Longer Fails to Connect to a
System Running TCP/IP X6.0

Previously, using FTP/SSL to connect to a system running TCP/IP X6.0 would fail when attempting
to use a variety of commands after authenticating the user's username and password. This issue has
been fixed in the current release.

2.1.41. TCPIP MOUNT /SHARE Command Causes a
System Hang

When using the TCP/IP 6.0-22 NFS client, entering the command TCPI P MOUNT / SHARE will
cause the system to hang.

Until this issue is resolved, VSI recommends restricting the access to the NFS mount commands
to privileged users only. This can be done by setting the permissions on the SYSSSHARE: TCPIP
$DNFS_MOUNT_ SHR.EXE file as follows:

SET SECURI TY/ PROTECTI ON=VWWORLD SYS$SHARE: TCPI PSDNFS_MOUNT_SHR. EXE

36

Chapter 2. Release Notes

2.1.42. Contiguous Best Try Qualifier for
SET FILE/ATTRIBUTES

The SET FILE/ATTRIBUTES command now supports the Contiguous Best Try (CBT) keyword.

With CBT enabled, the file system will allocate additional blocks to a file contiguously on a best
effort basis. The file system will disable the attribute if the best effort algorithm cannot complete the
file extension with at most three additional extents.

To enable CBT, use the following command:
$ SET FI LE/ ATTRI BUTES=CBT

To disable CBT, use the following command:

$ SET FI LE/ ATTRI BUTES=NOCBT

2.1.43. |[EXTENTS Qualifier for
ANALYZE/DISK_STRUCTURE

The ANALYZE/DISK _STRUCTURE command now supports the /EXTENTS qualifier.

ANALYZE/DISK _STRUCTURE/EXTENTS will produce a report on the fragmentation of free
space on a volume. By default, the only output is the number of extents of free space and the total
number of free blocks. For additional details, specify one of the following additional qualifiers with
the ANALYZE/DISK STRUCTURE/EXTENTS command:

Qualifier Syntax Description

/LARGEST /LARGEST[=n] Displays a list of block counts for the n largest

extents of free space on the volume in descending
size order. The default for # is 10. The qualifier is
ignored if you specify zero or a negative number.

The list is also saved in the DCL symbol
ANALYZESLARGEST EXTENTS (as a
comma-separated list of decimal values). The
symbol is set to an empty string if there is no free
space on the disk.

There is no upper limit on », but if the DCL
symbol exceeds 1024 characters, the number of
extents in the symbol will be reduced to ensure
the symbol is no more than 1024 characters.

/LOCK_VOLUME /LOCK_VOLUME Locks the volume against allocation while the

data is being collected. By default, the volume is
/NOLOCK_VOLUME |1ocked.

/OUTPUT /OUTPUT[=filespec] Specifies the output file for the
fragmentation report produced by the
/NOOUTPUT ANALYZE/DISK_STRUCTURE utility. If

you omit the qualifier or the entire filename,

37

Chapter 2. Release Notes

Qualifier Syntax Description

SYS$OUTPUT will be used. The default
filename is ANALYZESEXTENTS.LIS.

/REQUIRED /REQUIRED=n Displays the number of extents required to satisfy
an allocation request of n blocks (starting with the
largest extent). There is no default for #. If you
specify zero or a negative number, the qualifier is
ignored.

The result is also saved in the DCL symbol
ANALYZESREQUIRED EXTENTS. The
symbol is set to an empty string if there is
insufficient space on the disk to satisfy the
allocation request.

Consider the following example:
$ ANALYZE/ DI SK_STRUCTURE/ EXTENTS/ LARGEST/ REQUI RED=20000 LDWMB063:

Extent report for _X86VNMS$LDMBO63:

The disk has 6 extents of free space for a total of 25262 free bl ocks.
The extent sizes are:

17176
5591
2469

15
9
2

2 extents are required for an allocation of 20000 bl ocks.

2.1.44. |OPTIONS qualifier for PRODUCT SHOW
PRODUCT

The PRODUCT SHOW PRODUCT command supports the / OPTI ONS=keywor d qualifier. A
keyword is required. Currently, the only defined value is EXTENDED DISPLAY. If you specify

/ OPTI ONS=EXTENDED_DI SPLAY, the system will output an additional line of information for
each of the listed products, giving you the DESTINATION that was specified during the product
installation. If no alternative destination was used during the product installation, the system disk will
be shown as the destination. See the following example:

$ product show product/options=extended_di splay *vns

PRODUCT KIT TYPE STATE

VSI X86VNMS OPENVMS V9. 2-1 Pl atform Installed
Destination: DI SK$SYSTEM DI SK: [VMS$COMVON. |

VSI X86VMS VMS V9. 2-1 Oper Systeminstalled

Destination: DI SK$SYSTEM DI SK: [VIVB$SCOVVON. |

38

Chapter 2. Release Notes

2 itens found

The /OPTIONS qualifier has been available since V8.4-1H1. It can be combined with other qualifiers,
for example, /FULL.

2.1.45. CHECKSUM Utility Supports SHA1 and SHA256
Algorithms

In VSI OpenVMS x86-64, the CHECKSUM utility supports the SHA1 and SHA256 secure hash
algorithms to calculate file checksums. These algorithms calculate a checksum for all bytes within a
file and ignore possible record structures.

Use the CHECKSUM command qualifier /ALGORITHM=option to specify the algorithm for the file
checksum calculation.

For information about all supported checksum algorithms, refer to the CHECKSUM command help or
the VSI OpenVMS DCL Dictionary: A-M.

2.1.46. VSI C Run-Time Library (C RTL) Update

VSI OpenVMS x86-64 V9.2-1 includes the updated VSI C Run-Time Library (C RTL). The update
provides bug fixes, as well as new functions, including the additional C99 Standard functions, new
constants, new and updated header files.

See Appendix A of this document for more detailed information.

2.1.47. ZIP/UNZIP Tools

VSI provides the Freeware executables for managing ZIP archives on OpenVMS x86-64 systems.
In VSI OpenVMS x86-64 V9.2-1, the installation procedure automatically puts these files in the
following directories on the system disk:

39

https://vmssoftware.com/docs/VSI_DCL_DICT_VOL_I.pdf

Chapter 2. Release Notes

Files Folder
UNZIP.EXE SYS$COMMON:[SYSHLP.UNSUPPORTED.UNZIP]
UNZIPSFX.EXE

UNZIPSFX CLIEXE
UNZIP_CLIL.EXE

UNZIP_MSG.EXE
ZIP.EXE SYSSCOMMON:[SYSHLP.UNSUPPORTED.ZIP]

ZIPCLOAK.EXE
ZIPNOTE.EXE
ZIPSPLIT.EXE

ZIP CLI.EXE

ZIP MSG.EXE

2.1.48. TCPIP SHOW VERSION Displays Incorrect
Version of TCP/IP Services

The DCL command TCPI P SHOW VERSI ON (/ ALL) and TCPIP command SHOW VERSI ON
(/ ALL) will indicate an incorrect version when reporting the status of TCP/IP Services.

2.1.49. Data Needed for SHOW NETWORK to Report
Network Status Is Not Available When Using DHCP

When using DHCP client to configure interface(s), the information needed for the command SHOW
NETWORK to report the TCP/IP network status is not initialized. In this scenario, SHON NETWORK
will display the following:

$ show net wor k

Product: TCP/IP Node: <TCP/IP host/node nane not yet avail abl e>
Address(es): 0.0.0.0

If necessary, the missing information may be obtained with one or more options of the TCPI P SHOWN
command.

2.1.50. System Crashes In SYSINIT Phase When
Booting With the DEVELOPER Boot Flag

The DEVELOPER boot flag 0x08000000 is reserved for use by VSI and its function is subject to
change. Booting with this flag set can result in unexpected system behavior.

40

Chapter 2. Release Notes

2.2. Virtualization Notes

The notes in this section describe known issues and limitations when running VSI OpenVMS x86-64
V9.2-1 as a guest operating system in Oracle VM VirtualBox, KVM, and VMware virtual machines.

2.2.1. Changing Settings of a Running Virtual Machine
May Cause a Hang
Even if the hypervisor appears to allow it, do not change the configuration of a VSI OpenVMS virtual

machine while it is running. This may hang the virtual machine. Before editing the settings, make sure
to power off the virtual machine.

2.2.2. Time of Day May Not Be Correctly Maintained in
Virtual Machine Environments

VSI OpenVMS x86-64 may not correctly maintain the time of day in virtual machine environments
after certain events. To keep the time of day accurate, the system manager may need to issue a SET
TIME command after booting, suspending, taking a snapshot of a virtual machine, or any other
similar events, depending on the virtual machine host. This will be addressed in a future release of
VSI OpenVMS x86-64.

2.2.3. System Time on KVM Virtual Machines

On KVM/QEMU systems, when a virtual machine is powered on, the system time is set based on the
value of the CLOCK OFFSET parameter in the configuration file of that virtual machine. The default
value is ' ut ¢' . Depending on the physical location of the host system, this might lead to differences
between system times of the VM and the host.

To resolve this problem, use the vi r sh edi t command to edit the XML configuration file of your
virtual machine and change the value of the CLOCK OFFSET parameter to ' | ocal ti me' , like so:

<cl ock offset="localtine' >

For more information, see the official documentation for your Linux distribution

2.2.4. VirtualBox and Hyper-V Compatibility on
Windows 10 and 11 Hosts

Host systems running Windows 10 and 11 that have previously run Microsoft Hyper-V hypervisor
may fail the CPU feature checks. The issue is that certain CPU features are supported on the host
system (the vimscheck.py script passes), but not on the guest system (the OpenVMS Boot Manager
check fails). Primarily, the XSAVE instruction may not be present on the guest system.

This issue persists even if the Hyper-V feature has been removed. This happens because certain
Hyper-V services interfere with VirtualBox.

The VirtualBox developers are aware of this issue and are working to improve the interoperability
with Hyper-V.

To explicitly disable execution of the Hyper-V services that interfere with VirtualBox, perform the
following steps on your Windows host system:

41

Chapter 2. Release Notes

1. Run Command Prompt as administrator.

2. In Command Prompt, execute the following command to disable Hyper-V:

bcdedit /set hypervisorlaunchtype off

3. Shut down your Windows host system by executing the following command:

shutdown -s -t 2
4. Power on and boot your Windows host system again.
The XSAVE instruction should now be available to your VirtualBox guest.

For more information about the CPU feature checks, see Section 1.4 in the Before You Start... Read
These First section.

Tips on How To Determine If Hyper-V Services Impact Your
VirtualBox VM

When you launch a VirtualBox guest, look for the icon in the guest window status bar.

A green turtle icon (E'.E) indicates that the VirtualBox host is running as a Hyper-V guest with
diminished performance.

An icon with a V symbol (D) indicates that you are running directly on a VirtualBox host.
View the log file VBOX.LOG.

1. To open the log file, in the VirtualBox VM Manager window, right-click on the virtual machine
entry and select Show Log from the menu.

2. Inthe log file, search for “XSAVE”.
» Ifitshows "1 (1)", your VM guest has XSAVE.
* Ifitshows "0 (1)", your VM guest has Hyper-V services impacting it.

3. In the log file, search for “HM”. The following message also indicates that Hyper-V is active:

{timestanp} HM HVR3Init: Attenpting fall back to NEM VT-x is not avail able
{timestanp} NEM WHvCapabilityCodeHypervisorPresent is TRUE, so this m ght work.

2.2.5. VirtualBox: TCP Ports May Become Unusable
After Guest Is Terminated

When running VSI OpenVMS x86-64 as a guest in a VirtualBox VM, TCP console ports may become
unusable after a guest session has been terminated. After that, you cannot connect to your VirtualBox
VM again. These ports remain in the LISTEN state even after you have disconnected the remote
terminal session.

As a workaround, use the following commands to free your TCP ports and connect to your VirtualBox
VM:

vboxmanage control vm <vimane> changeuart nodel di sconnect ed

42

Chapter 2. Release Notes

vboxmanage control vm <vimane> changeuart nodel tcpserver <port>

The VirtualBox developers have indicated that the fix will be provided in an upcoming VirtualBox
maintenance release.

2.2.6. VMware Guest May Fail to Boot After Adding
Second SATA Controller

It has been reported that a VMware guest does not boot when a second SATA controller is added to
the configuration. In their case, removing the second SATA controller eliminates the issue.

VSI has not observed boot issues when adding a second SATA controller during testing. If you
encounter this situation, please report your issue via the VMS Software Service Platform.

2.2.7. Boot Manager Displays Incomplete List of
Bootable Devices

If you are running a VMware virtual machine with multiple buses, you may run into a problem with
the list of bootable devices displayed by the Boot Manager.

If, after entering the DEVI CE command, your Boot Manager display normally looks similar to the
following:

VIRTUAL MACHINE GUEST: VMware (TH) Mo Mouse support; Use Commands or Arrow Keys

CONMECT A REMOTE TERMINAL SESSION NOH,
DEVICE

but occasionally, upon shutting down your VMware virtual machine, it appears as shown below:

DKBG @ 80000100

VIRTUAL MACHIME GUEST: VMware (TM)

CONNECT & REMOTE TERMINAL SESSICe

DEVICE

this means, not all of your devices and/or buses have been configured properly. Proceeding to boot
your VMware virtual machine from this truncated configuration display may result in an incomplete
configuration of your Virtual Machine’s buses and the disk devices on those buses.

This happens because, by default, VMware products do not allow the UEFI Shell to be launched by
the platform firmware Boot Option and have the Quick Boot option enabled.

43

Chapter 2. Release Notes

These problems can be resolved by setting the correct values for the
efi.shell.activeByDefault andefi. qui ckBoot. enabl ed parameters. To do so,
follow the procedure described in Section 2.2.9

2.2.8. Booting Issues with VMware Workstation 17
Player Corrected

Recent release of VMware Workstation 17 Player was unable to boot VSI OpenVMS x86-64 V9.2.
This issue has been corrected for version V9.2-1.

2.2.9. Possible Issues with VMware Virtual Machines

Virtual machines created in VMware hypervisors (ESXi, Workstation Pro, Player, Fusion) may not
operate as intended until you manually set the parameters listed in the table below.

Depending on your specific configuration, there may be cases where you may not need to set one
or more of these parameters. VSI provides this information in case you experience the issues these
parameters address.

Key/Parameter Name | Value Description

efi.serialconsole.enabled |TRUE This parameter enables serial console access to the UEFI
Shell and VSI OpenVMS Boot Manager.

By default, VMware disables serial port console
access. Because of this, a remote serial connection only
becomes active once OpenVMS is booted (SYSBOOT
or beyond).

efi.shell.activeByDefault | TRUE By default, VMware products do not allow the the UEFI
Shell to be launched by the platform firmware Boot
Option. Setting this parameter to TRUE will allow for
automatic launching of the Shell.

efi.quickBoot.enabled FALSE By default, the Quick Boot option is enabled. With
Quick Boot enabled, the VM attempts to map only

the essential devices to speed up the boot process.
However, to make sure that a// devices are visible to
the VSI OpenVMS Boot Manager, Quick Boot must
be disabled. Be aware that on large configurations with
hundreds of disks, the boot process can take several
minutes.

Warning

Note that key names are case-sensitive.

To set these parameters for a VMware ESXi virtual machine, follow these steps:
1. Select your VM and click Edit.
2. Switch to the VM Options tab.

3. Expand the Advanced menu.

44

Chapter 2. Release Notes

4. Under Configuraton Parameters, click Edit Configuration.
5. Click Add Parameter.

6. Enter the new key (parameter name) and set the value according to the table above.

Note

Quotes around the values are not required on ESXi.

7. Click OK
8. Repeat steps 5 through 7 to add the other two parameters.
9. Click Save.

To set these parameters for a virtual machine running under any other VMware product, follow these
steps:

1. Determine the location of your VM configuration file. To do so, perform the following steps:
a. Select your VM and bring up its Settings window.
b. Switch to the Options tab.

c. The directory specified in the Working Directory field is where you will find your VM
configuration file (it will be named vin_name.vmx).

2. Make sure your VM is powered off.
3. Open the folder that contains your VM configuration file.
4. Open the file in an editor.

5. Enter the new keys (parameter names) and set their values according to the table above.

Note

Quotes around the values are required when manually editing VMX files.

6. Save and close the file.

2.2.10. VSI OpenSSH V8.9-1C Must Be Uninstalled
Before Upgrading to VSI OpenVMS V9.2-1

When upgrading from the previous version of VSI OpenVMS to VSI OpenVMS V9.2-1, make sure
that VSI OpenSSH V8.9-1C is not installed on the system. Otherwise, the upgrade procedure will not
be completed properly, and the system might not be usable.

2.2.11. One VirtlO-SCSI Adapter Supported on KVM

On KVM/QEMU, only one VirtlO-SCSI adapter can be configured and used on a VSI OpenVMS
x86-64 V9.2-1 system.

45

Chapter 2. Release Notes

2.3. Layered and Open Source Products
Notes

Layered and open source products for VSI OpenVMS x86-64 V9.2-1 can be downloaded individually
from the VMS Software Service Platform. For detailed information about the products, please refer to
the associated product release notes bundled with the kits.

46

Appendix A. VSI C Run-Time Library
(C RTL) Notes

A.1. C99 Update

VSI OpenVMS x86-64 V9.2-1 includes the updated C RTL that provides additional C99 Standard
functions and functionality that were not previously available.

These functions are also available on the following VSI OpenVMS versions:

* VSI OpenVMS Integrity V8.4-2L1 and V8.4-2L3

e VSIOpenVMS Alpha V8.4-2LL1 and V8.4-2L.2

To utilize C99 Standard functions, compile your applications with the /STANDARD=C99,
/STANDARD=LATEST or /STANDARD=RELAXED (default) switches. See the section

Section A.1.1 for a list of functions.

The value of the CRTL_VER macro, predefined by the VSI C Compiler, has been changed from
80400000 to 80500000.

Note

If you develop an application on a system with the CRTL C99 or any later kit installed and intend
it to be run on a system without those kits, you must compile your application with the switch
/DEFINE=(__CRTL_VER_OVERRIDE=80400000).

This release also includes changes to some header files to make them more consistent with the
standards.

MATH.H, FP.H and Definitions have been moved around/between these header files to
FLOAT.H match the C99 Standard requirements.

STDINT.H and Definitions from INTTYPES.H have been moved into a new header
INTTYPES.H file, STDINT.H, to match the standard’s requirements. INTTYPES.H

now contains ‘#include <STDINT.h>" so that existing applications
will continue to compile without any changes. In addition, some new
names have been defined for data types to match the C99 Standard.
For example, int64 t.

Possible errors when compiling applications

With the addition of new data type and function definitions, it is possible that applications may

incur compilation errors if the applications include definitions that conflict with the definitions now
provided in the system header files. For example, if an application contains a definition of int64 t that
differs from the definition included in STDINT.H, the compiler generates a %CC-E-NOLINKAGE
error. Conflicting function definitions can result in various %CC errors or warnings. To diagnose such
problems, compile the application using /LIST/SHOW=INCLUDE and then examine the listing file.

There are different ways to resolve such problems. Some examples are following:

47

Appendix A. VSI C Run-Time Library (C RTL) Notes

* Remove the application-specific definition if the system-provided definition provides the proper
functionality.

* Undefine the system-provided definition before making the application-specific definition. For
example:

#i fdef alloca

#undefine all oca

#endi f

<application-specific definition of alloca>

* Guard the application-specific definition. For example:

#i fndef all oca
<application-specific definition of alloca>
#endi f

Possible informational and warning messages when linking applications

The implementations of i snan() andi snor mal () have changed and now utilize functions

in the Math Run-Time Library (DPML$SHR.EXE). If your application includes references

toi snan() ori snormal () and you encounter the %ILINK-I-UDFSYM and %ILINK-
W-USEUNDEF messages for MATHS symbols when linking your application, you may add
SYSSLIBRARY:DPML$SHR/SHAREABLE to your options file as one way of resolving undefined
symbolic references.

UNSUPCONVSPEC warning

When using the new format specifiers with print and scan (see the section Section A.1.1.12) the
system will generate a %CC-W-UNSUPCONVSPEC warning.

You can eliminate the warnings by adding #pragma message disable UNSUPCONVSPEC to your
code or by compiling your code with the switch, /WARNING=DISABLE=UNSUPCONVSPEC. This
warning will be removed in a future update to the C compiler.

va_copy()
va_copy() will be enabled with a future VSI C Compiler Version 7.5.
Online Help

A future version of VSI OpenVMS x86-64 will update the Online Help contents of the C RTL with
the functions listed in this document.

A.1.1. C99 Functions

This section describes the C99 functions that have been added to the C RTL. For VSI OpenVMS
x86-64, these functions are included in the C RTL.

For VSI OpenVMS Integrity and VSI OpenVMS Alpha systems, these functions are included in the
following kits:

« C99 V1.0
« C99 V2.0
« RTL V2.0

48

Appendix A. VSI C Run-Time Library (C RTL) Notes

A.1.1.1. fpclassify

Format

#i ncl ude <math. h>
int fpclassify (real-floating x);

Description

The f pcl assi fy macro classifies its argument value as NaN, infinite, normal, subnormal, zero,

or into another implementation-defined category. First, an argument represented in a format wider
than its semantic type is converted to its semantic type. Then classification is based on the type of the
argument.

Returns

The f pcl assi f y macro returns the value of the number classification macro appropriate to the
value of its argument.

A.1.1.2. isblank, iswblank

Format

#i ncl ude <ctype. h>

int isblank (int c);

#i ncl ude <wctype. h>

int iswblank (wint_t wc);

Description

The i sbl ank function tests for any character that is a standard blank character or is one of a locale-
specific set of characters for which i sspace is true and that is used to separate words within a line
of text. The standard blank characters are the following: space (' '), and horizontal tab ("\t'). In the "C"
locale, i sbl ank returns true only for the standard blank characters.

The i swbl ank function tests for any wide character that is a standard blank wide character or is one
of a locale-specific set of wide characters for which i swspace is true and that is used to separate
words within a line of text. The standard blank wide characters are the following: space (L' "), and
horizontal tab (L"\t"). In the "C" locale, i swhl ank returns true only for the standard blank characters.

Returns

These functions return true if and only if the value of the character or wide character has the property
described in the description.

A.1.1.3. isgreater, isgreaterequal, isless, islessequal,
islessgreater, isunordered

Format

#i ncl ude <mat h. h>

int isgreater (x, y);

int isgreaterequal (x, y);
int isless (X, y);

int islessequal (x, Yy);
int islessgreater (X, Yy);

49

Appendix A. VSI C Run-Time Library (C RTL) Notes

int isunordered (x, y);
Description

The normal relation operations (like <, "less than") will fail if one of the operands is NaN. This will
cause an exception. To avoid this, C99 defines the macros listed below.

These macros are guaranteed to evaluate their arguments only once. The arguments must be of real
floating-point type (note: do not pass integer values as arguments to these macros, since the arguments
will not be promoted to real-floating types).

isgreater () determines (x) > (y) without an exception if x or y is NaN.

isgreaterequal () determines (x) >= (y) without an exception if x or y is NaN.

isless () determines (x) < (y) without an exception if x or y is NaN.

islessequal () determines (x) <= (y) without an exception if X or y is NaN.

islessgreater () determines (x) < (y) || (x) > (y) without an exception if x or y is NaN.
This macro is not equivalent to x !=y because that expression is true
if x or y is NaN.

isunordered () determines whether its arguments are unordered, that is, whether at

least one of the arguments is a NaN.
Returns

The macros other than i sunor der ed() return the result of the relational comparison; these macros
return O if either argument is a NaN.

i sunor der ed() returns 1 if x or y is NaN and 0 otherwise.

A.1.1.4. lirint, llrintf, llrintl

Format

#i ncl ude <mat h. h>

long long int Ilrint (double x);

long long int Ilrintf (float x);

long long int Ilrintl (long double x);
Description

The |l | ri nt functions round their argument to the nearest integer value, rounding according to the
current rounding direction. If the rounded value is outside the range of the return type, the numeric
result is unspecified and a domain error or range error may occur.

Returns

The | | ri nt functions return the rounded integer value.

A.1.1.5. liround, liroundf, llroundi

Format

#i ncl ude <mat h. h>

50

Appendix A. VSI C Run-Time Library (C RTL) Notes

long long int Ilround (double x);

long long int Ilroundf (float x);

long long int Ilroundl (long double x);
Description

The | | r ound functions round their argument to the nearest integer value, rounding halfway cases
away from zero, regardless of the current rounding direction. If the rounded value is outside the range
of the return type, the numeric result is unspecified and a domain error or range error may occur.

Returns

The | | r ound functions return the rounded integer value.

A.1.1.6. nearbyint, nearbyintf, nearbyintl

Format

#i ncl ude <mat h. h>

doubl e nearbyi nt (double x);

float nearbyintf (float x);

| ong doubl e nearbyintl (long double x);
Description

The near byi nt functions round their argument to an integer value in floating-point format, using
the current rounding direction and without raising the "inexact" floating-point exception.

Returns

The near byi nt functions return the rounded integer value.

A.1.1.7. round, roundf, roundl

Format

#i ncl ude <mmat h. h>

doubl e round (double x);

float roundf (float x);

| ong doubl e roundl (long double x);

Description

The round functions round their argument to the nearest integer value in floating-point format,
rounding halfway cases away from zero, regardless of the current rounding direction.

Returns

The round functions return the rounded integer value.

A.1.1.8. scalbln, scalbinf, scalblnl, scalbn, scalbnf, scalbnl

Format

#i ncl ude <mat h. h>
doubl e scal bl n (double x, long int n);

51

Appendix A. VSI C Run-Time Library (C RTL) Notes

float scalblnf (float x, long int n);

| ong doubl e scal bl nl (long double x, long int n);
doubl e scal bn(double x, int n);

float scal bnf(float x, int n);

| ong doubl e scal bnl (1 ong double x, int n);

Description

These functions multiply their first argument x by FLT RADIX (probably 2) to the power of n, which
is:

x * FLT_RADI X ** n

The definition of FLT RADIX can be obtained by including <float.h>.
Returns

On success, these functions return x x FLT RADIX ** n.

If x is a NaN, a NaN is returned.

If x is positive or negative infinity, positive or negative infinity is returned.
If x is +/- 0, +/- 0 is returned.

If the result overflows, a range error occurs, and the functions return HUGE VAL, HUGE_VALF, or
HUGE_VALL, respectively, with a sign the same as x.

If the result underflows, a range error occurs, and the functions return zero, with a sign the same as x.

A.1.1.9. strtof, strtold, wcstof, wcstold

Format

#i ncl ude <stdlib. h>

float strtof (const char * restrict nptr, char ** restrict endptr);

| ong double strtold (const char * restrict nptr, char ** restrict endptr);
#i ncl ude <wchar. h>

float westof (const wchar t * restrict nptr,

wchar _t ** restrict endptr);

| ong doubl e westold (const wchar t * restrict nptr,

wchar _t ** restrict endptr);

Function Variants

The st rt of function has variants named _strt of 32 and _st rt of 64 for use with 32-bit and
64-bit pointer sizes, respectively. The st rt ol d function has variants named _strt ol d32 and
_strt ol d64 for use with 32-bit and 64-bit pointer sizes, respectively. The wcst of function

has variants named _wcst of 32 and _wcst of 64 for use with 32-bit and 64-bit pointer sizes,
respectively. The wcst ol d function has variants named _wcst ol d32 and _wcst ol d64 for use
with 32-bit and 64-bit pointer sizes, respectively. See VSI C Run-Time Library Reference Manual for
OpenVMS Systems for more information on using pointer-size-specific functions.

Description

These functions convert the initial portion of the string or wide string pointed to by nptr to float, and
long double representation, respectively. First, they decompose the input string into three parts: an

52

https://vmssoftware.com/docs/VSI_CRTL_REF.pdf
https://vmssoftware.com/docs/VSI_CRTL_REF.pdf

Appendix A. VSI C Run-Time Library (C RTL) Notes

initial, possibly empty, sequence of white-space characters (as specified by the i sspace function), a
subject sequence resembling a floating-point constant or representing an infinity or NaN, and a final
string of one or more unrecognized characters, including the terminating null character of the input
string. Then, they attempt to convert the subject sequence to a floating-point number, and return the
result.

The expected form of the (initial portion of the) string or wide string is optional leading white space,
an optional plus ('+') or minus sign ('-') and then either (i) a decimal number, or (ii) a hexadecimal
number, or (iii) an infinity, or (iv) a NAN (not-a-number).

Returns

The functions return the converted value, if any. If no conversion could be performed, zero is
returned. If the correct value is outside the range of representable values, plus or minus HUGE VAL,
HUGE VALF, or HUGE VALL is returned (according to the return type and sign of the value), and
the value of the macro ERANGE is stored in errno. If the result underflows, the functions return a
value whose magnitude is no greater than the smallest normalized positive number in the return type;
whether errno acquires the value ERANGE is implementation-defined.

A.1.1.10. va_copy

Format

#i ncl ude <stdarg. h>
void va_copy (va_list dest, va_ list src);

Description

The va_copy macro initializes dest as a copy of src, as if the va_start macro had been applied to dest
followed by the same sequence of uses of the va_ar g macro as had previously been used to reach
the present state of src. Neither the va_copy nor va_st art macro shall be invoked to reinitialize
dest without an intervening invocation of the va_end macro for the same dest.

This macro will be enabled with a future VSI C Compiler Version 7.5.
Returns

The va_copy macro returns no value.

A.1.1.11. wcestoll, wcstoull

Format

#i ncl ude <wchar. h>

long long int westoll (const wchar_t * restrict nptr,

wchar _t ** restrict endptr, int base);

unsi gned long long int westoull (const wchar_t * restrict nptr,
wchar _t ** restrict endptr, int base);

Function Variants

The west ol | function has a variant named _wcst ol | 64 for use with 64-bit pointer sizes. The
westuoll function has a variant named _wcst oul | 64 for use with 64-bit pointer sizes. See the V.SI
C Run-Time Library Reference Manual for OpenVMS Systems for more information on using pointer-
size-specific functions.

53

https://vmssoftware.com/docs/VSI_CRTL_REF.pdf
https://vmssoftware.com/docs/VSI_CRTL_REF.pdf

Appendix A. VSI C Run-Time Library (C RTL) Notes

Description

Thewcst ol | andwcst oul | functions convert the initial portion of the wide string pointed to by
nptr to long long int and unsigned long long int representation, respectively. First, they decompose
the input string into three parts: an initial, possibly empty, sequence of white-space wide characters
(as specified by the i swspace function), a subject sequence resembling an integer represented in
some radix determined by the value of base and a final wide string of one or more unrecognized wide
characters, including the terminating null wide character of the input wide string. Then, they attempt
to convert the subject sequence to an integer, and return the result.

Returns
The functions return the converted value, if any. If no conversion could be performed, zero is
returned. If the correct value is outside the range of representable values, LONG MIN, LONG _MAX,

LLONG_MIN, LLONG MAX, ULONG MAX, or ULLONG MAX is returned (according to the
return type sign of the value, if any), and the value of the macro ERANGE is stored in errno.

A.1.1.12. Print and scan conversion specifier and argument types

The C RTL now supports the F conversion specifier and the hh, t, j and z argument types in print and
scan.

F Similar to f.

hh Specifies that a following d, 1, 0, u, X, or X conversion specifier applies to a

signed char or unsigned char argument (the argument will have been promoted
according to the integer promotions, but its value shall be converted to signed char
or unsigned char before printing); or that a following n conversion specifier applies
to a pointer to a signed char argument.

t Specifies that a following d, 1, 0, u, X, or X conversion specifier applies to a
ptrdiff t or the corresponding unsigned integer type argument; or that a following n
conversion specifier applies to a pointer to a ptrdiff t argument.

J Specifies that a following d, i, 0, u, X, or X conversion specifier applies to an
intmax_t or uintmax_t argument; or that a following n conversion specifier applies
to a pointer to an intmax_t argument.

zZ Specifies that a following d, 1, 0, u, X, or X conversion specifier applies to a size ¢
or the corresponding signed integer type argument; or that a following n conversion
specifier applies to a pointer to a signed integer type corresponding to size ¢
argument.

A.1.1.13. strftime, wcsftime, strptime — additional conversion
specifiers

Description

The following conversion specifiers have been added to st rfti nme,wcsfti me andstrpti ne:

%F is equivalent to “%Y—%m—%d”’ (the ISO 8601 date format). [tm_year, tm_mon,
tm_mday]

%g is replaced by the last 2 digits of the week-based year as a decimal number (00—99).
[tm_year, tm_wday, tm_yday]

54

Appendix A. VSI C Run-Time Library (C RTL) Notes

%G is replaced by the week-based year as a decimal number (e.g., 1997). [tm_year,
tm_wday, tm_yday]

%k The hour (24-hour clock) as a decimal number (range 0 to 23); single digits are
preceded by a blank.

%l The hour (12-hour clock) as a decimal number (range 1 to 12); single digits are
preceded by a blank.

%P Like %p but in lowercase: "am" or "pm" or a corresponding string for the current
locale.

%s The number of seconds since the Epoch, 1970-01-01 00:00:00 +0000 (UTC).

%u The day of the week as a decimal, range 1 to 7, with Monday being 1.

%z The +Ahmm or -hhmm numeric timezone (that is, the hour and minute offset from
UTC).

%Z The timezone name.

%o+ The date and time in date format.

A.2. CRTL ECO V3.0 Changes

For VSI OpenVMS Integrity and VSI OpenVMS Alpha systems, VSI provides the CRTL ECO V8.0
kit that includes bug fixes, new functions, new constants and a new header file.

For VSI OpenVMS x86-64, all these changes are included in the C RTL.

A.2.1. Bug Fixes

Calling the function 164a with an invalid argument no longer causes a memory leak.
Calling the function 164a_r with a null buffer pointer no longer causes an ACCVIO.

Calling the functions r eadv or wr i t ev with an invalid file descriptor no longer causes a
memory leak.

Fixed a possible memory leak in r eal pat h.

Fixed possible undefined behavior in make_cl i _comm
Fixed a memory leak in the return path of neww n.
Fixed definitions of i snan, i snanf,andi snanl .

Fixed f st at to return the proper value in the stat field, st _i no, when FID$W_SEQ field has
the high bit set and USE STD STAT has been defined.

Fixed headers to define i sbl ank and i swbl ank when compiling with /STANDARD=C99.
Fixed the definition of C99 routines when compiling with /STANDARD=RELAXED.

Fixed headers so that nan, nanf, and nanl are only defined when using IEEE floating point.
Fixed headers so that va_copy is only defined when using the latest compiler.

Fixed SEMAPHORE.H so that it no longer generates a compiler error when compiled with
/STANDARD=ANSI89 or /STANDARD=VAXC.

55

Appendix A. VSI C Run-Time Library (C RTL) Notes

A.2.2. New Constants

The following constants were added to LIMITS.H:
* LLONG _MAX — Maximum value for an object of type long long int.
* LLONG_MIN — Minimum value for an object of type long long int.

¢ ULLONG MAX — Maximum value for an object of type unsigned long long int.

A.2.3. New Flags

The following flags were added to DLFCN.H:
« RTLD GLOBAL

« RTLD LOCAL

A.2.4. New Datatypes

The following type was added to SOCKET.H:

» socklen t— Socket address length type.

The following types were added to DECC$TYPES.H:
* typedef const unsigned int * __ const_u_int_ptr64;
* typedefint * int ptr64;

* typedef constint * const int ptr64;

A.2.5. New Header

This ECO includes MALLOC.H.

A.2.6. Interface Change

The interface for the function i sat t y has been modified.

Previously, in case of an error, the function returned -1. This is not compatible with the POSIX 1003.1
standard. This leads to errors that are hard to find. With this release, in case of an error, the function
returns 0 and stores the error in errno.

If your code assumes a return value of 0, this means that the fd is not a tty. If your code assumes a
return value of -1, this means an error, you will need to change the code. See the following example:

Existing code:

int val = isatty(fd);
if (val == 1) {

/1l fdis tty

}

56

Appendix A. VSI C Run-Time Library (C RTL) Notes

else if (val == 0) {
/[l fd is not tty

else if (val == -1) {
!/l error

}
Changed code:

int val = isatty(fd);
if (val == 1) {

[l fdis tty

}

else if (val == 0) {
if (errno) {
/1l error

}
el se {
/1 fd is not tty

}
}

A.2.7. New Feature Logical: DECC$PRN_PRE_BYTE

A change introduced by Hewlett Packard Enterprise (HPE) during OpenVMS V8.4 maintenance
allowed systems that used the CIFS product (SAMBA) to display files in the appropriate format.
However, that change affected files with Print File Carriage Control (also known as Fortran Carriage
Control). For some environments, the print codes that are removed when transferring files between
systems cause incorrect printing behavior resulting in form feeds being lost.

A new C RTL feature logical name, DECC$SPRN_ PRE BYTE, when enabled, converts the print
codes in files with Print File Carriage Control to their ASCII control code equivalents. CIFS then
sends them to the client.

Enabling this new logical, in addition to enabling the logical DECC$TERM REC_CRLF, which is
used by CIFS, correctly includes the print codes on transferred files.

To enable the DECC$PRN_PRE BYTE feature, use:

$ DEFI NE/ SYSTEM DECC$PRN_PRE_BYTE ENABLE

A.2.8. New Functions

This section describes the functions that have been added to the C RTL. For VSI OpenVMS x86-64,
they are included in the C RTL.

For VSI OpenVMS Integrity and VSI OpenVMS Alpha systems, these functions are included in the
RTL V3.0 kit.

A.2.8.1. freeifaddrs

Format

#i ncl ude <ifaddrs. h>
void freeifaddrs(struct ifaddrs *ifp);

57

Appendix A. VSI C Run-Time Library (C RTL) Notes

Description

The f r eei f addr s function frees the dynamically allocated data returned by the get i f addr s
function. ifp is the address returned by a previous call to get i f addr s. If ifp is a NULL pointer no
action occurs.

A.2.8.2. getgrent_r

Format

#i ncl ude <grp. h>
int getgrent_r(struct group *grp, char *buffer, size_t bufsize, struct
group **result);

Function Variant

The get gr ent _r function has a variant named __get gr ent _r 64 and for use with 64-bit
pointers. See the VSI C Run-Time Library Reference Manual for OpenVMS Systems for more
information on using pointer-size-specific functions.

Description

The get gr ent _r function is the reentrant version of get gr ent . The get gr ent _r function
returns a pointer to a structure containing the broken-out fields of a record in the group database.
When first called, get gr ent _r returns a pointer to a group structure containing the first entry in
the group database. Thereafter, it returns a pointer to the next group structure in the group database,
so successive calls can be used to search the entire database. It updates the group structure pointed
to by grp and stores a pointer to that structure at the location pointed to by result. Storage referenced
by the group structure is allocated from the memory provided with the buffer argument, which is
bufsize characters in size. The maximum size needed for this buffer can be determined with the

_SC GETGR R _SIZE MAX parameter of the sysconf function.

If the requested entry is not found or an error is encountered, a NULL pointer is returned at the
location pointed to by result.

Returns

On success, the function returns 0 and *result is a pointer to the struct group. On error, the function
returns an error value and *result is NULL.

A.2.8.3. gethostbyname _r

Format

#i ncl ude <netdb. h>
i nt gethostbynane_r(const char *nane, struct hostent *ret, char *buffer
size_t buflen, struct hostent **result, int *h _errnop);

Description

The get host byname_r function is the reentrant version of get host byname. The caller supplies
a hostent structure ret which will be filled in on success, and a temporary work buffer buffer of size
buflen. After the call, result will point to the result on success. In case of an error or if no entry is
found result will be NULL. The functions return 0 on success and a nonzero error number on failure.
In addition to the errors returned by the nonreentrant version, if buffer is too small, the functions will

58

https://vmssoftware.com/docs/VSI_CRTL_REF.pdf

Appendix A. VSI C Run-Time Library (C RTL) Notes

return ERANGE, and the call should be retried with a larger buffer. The global variable /_errno is not
modified, but the address of a variable in which to store error numbers is passed in /#_errnop.

Returns

The functions return 0 on success and a nonzero error number on failure. The global variable 4 _errno
is not modified, but the address of a variable in which to store error numbers is passed in 4_errnop.

Note

Modules which include calls to get host bynane or get host bynane_r must be compiled with
the C switch /PREFIX=ALL.

A.2.8.4. getifaddrs

Format

#i ncl ude <sys/socket. h>
#i ncl ude <i faddrs. h>
int getifaddrs(struct ifaddrs **ifap);

Function Variants

The get i f addr s function has variants named _get i f addrs32 and _geti f addr s64 for use
with 32-bit and 64-bit pointer sizes, respectively. See the VSI C Run-Time Library Reference Manual
for OpenVMS Systems for more information on using pointer-size-specific functions.

Description

The get i f addr s function creates a linked list of structures describing the network interfaces, one
for each network interface on the host machine. The get i f addr s function stores a reference to a

linked list of the network interfaces on the local machine in the memory referenced by ifap. The list
consists of i f addr s structures, as defined in the include file <ifaddrs.h>. The i f addr s structure
contains the following entries:

struct i faddrs *ifa_ next; /* Pointer to next struct */

char *i fa_narme; /* Interface nane */

u_int i fa_flags; /* Interface flags */

struct sockaddr *ifa_addr; /* Interface address */

struct sockaddr *ifa_net mask; /* Interface netmask */

struct sockaddr *ifa_broadaddr; /* Interface broadcast address */
struct sockaddr *ifa_dstaddr; /* P2P interface destination */
voi d *i fa_dat a; /* unused */

The data returned by get i f addr s is dynamically allocated and should be freed using
freei f addr s when no longer needed.

Returns

The get i f addr s function returns the value 0 if successful; otherwise the value -1 is returned and
the global variable errno is set to indicate the error.

A.2.8.5. getrusage

Format

59

https://vmssoftware.com/docs/VSI_CRTL_REF.pdf
https://vmssoftware.com/docs/VSI_CRTL_REF.pdf

Appendix A. VSI C Run-Time Library (C RTL) Notes

#i ncl ude <sys/resource. h>
int getrusage(int who, struct rusage *r_usage);

Description

The get r usage function provides measures of the resources used by the current process or its
terminated and waited-for child processes. If the value of the who argument is RUSAGE_SELF,
information is returned about resources used by the current process. If the value of the who argument
is RUSAGE_CHILDREN, information is returned about resources used by the terminated and waited-
for children of the current process. If the child is never waited for, the resource information for the
child process is discarded and not included in the resource information provided by get r usage.

Currently, only getting elapsed user time (r u_ut i me) and maximum resident memory
(r u_maxr ss) is supported.

Returns

Upon successful completion, get r usage returns 0; otherwise, -1 is returned and errno set to
indicate the error.

A.2.8.6. stpcpy

Format

#i ncl ude <string. h>
char *stpcpy(char *dest, const char *src);

Function Variants

The st pcpy function has variants named _st pcpy32 and _st pcpy64 for use with 32-bit and
64-bit pointer sizes, respectively. See the VSI C Run-Time Library Reference Manual for OpenVMS
Systems for more information on using pointer-size-specific functions.

Description

The function St pcpy uses st r | en to determine the length of src then copies the src to dest. The
difference from the strcpy function is that stpcpy returns a pointer to the final "\0', and not to the
beginning of the line.

Returns

Pointer to the end of the string dest.

A.2.8.7. strerror_r

Format

#i ncl ude <string. h>
int strerror_r(int error_code, char *buf, size_ t buflen);

Description

The st rerror _r function is the reentrant version of St rerror. The strerror _r function
uses the error number in error_code to retrieve the appropriate locale dependent error message.
The contents of the error message strings are determined by the LC_ MESSAGES category of the
program's current locale.

60

https://vmssoftware.com/docs/VSI_CRTL_REF.pdf
https://vmssoftware.com/docs/VSI_CRTL_REF.pdf

Appendix A. VSI C Run-Time Library (C RTL) Notes

If error_code is EVMSERR the function looks at vaxc$errno to get the OpenVMS error condition.
Returns

Upon successful completion, St r err or _r returns 0 and puts the error message in the character
array pointed to by buf. The array is buflen characters long and should have space for the error
message and the terminating null character.

A.2.8.8. strtoimax, strtoumax

Format

#i ncl ude <inttypes. h>
intmax_t strtoi max(const char *nptr, char **endptr, int base);
uintmax_t strtoumax(const char *nptr, char **endptr, int base);

Function Variants

The st rt oi max function has variants named st rt oi max32 and st rt oi max64 for use

with 32-bit and 64-bit pointer sizes, respectively. The St r t ounmax function has variants named
_Sstrtoumax32 and _st rt ounax64 for use with 32-bit and 64-bit pointer sizes, respectively. See
the VSI C Run-Time Library Reference Manual for OpenVMS Systems for more information on using
pointer-size-specific functions.

Description

The st rt oi max and st rt ounax functions converts strings of ASCII characters pointed to by nptr
to the appropriate signed and unsigned numeric values. St rt oi max is a synonym forstrtol |,
strtoumax is a synonym for St r t oul | . The functions recognizes strings in various formats,
depending on the value of the base. Any leading white-space characters (as defined by i sspace in
<ctype.h>) in the given string are ignored. The function recognizes an optional plus or minus sign,
then a sequence of digits or letters that may represent an integer constant according to the value of the
base. The first unrecognized character ends the conversion and is pointed to by endptr.

Leading zeros after the optional sign are ignored, and 0x or 0X is ignored if the base is 16.

If base is 0, the sequence of characters is interpreted by the same rules used to interpret an integer
constant: after the optional sign, a leading 0 indicates octal conversion, a leading 0x or 0X indicates
hexadecimal conversion, and any other combination of leading characters indicates decimal
conversion.

Returns
* If successful, an integer value corresponding to the contents of nptr is returned.

* If'the converted value falls out of range of corresponding return type, a range error occurs (setting
errno to ERANGE) and INTMAX MAX, INTMAX_ MIN, UINTMAX MAX or 0 is returned, as
appropriate.

» Ifno conversion can be performed, 0 is returned.

A.2.8.9. strndup

Format

#i ncl ude <string. h>

61

https://vmssoftware.com/docs/VSI_CRTL_REF.pdf

Appendix A. VSI C Run-Time Library (C RTL) Notes

char *strndup(const char *s, size_t size);
Function Variants

The st r ndup function has variants named _st r ndup32 and _st r ndup64 for use with 32-
bit and 64-bit pointer sizes, respectively. See the VSI C Run-Time Library Reference Manual for
OpenVMS Systems for more information on using pointer-size-specific functions.

Description

The st r ndup function duplicates a specific number of bytes from a string. The st r ndup function
is equivalent to the St r dup function, duplicating the provided string in a new block of memory
allocated as if by using mal | oc, with the exception that St r ndup copies at most size plus one bytes
into the newly allocated memory, terminating the new string with a NUL character. If the length of

s is larger than size, only size bytes will be duplicated. If size is larger than the length of s, all bytes

in s will be copied into the new memory buffer, including the terminating NUL character. The newly
created string will always be properly terminated.

Returns

A pointer to the resulting string or NULL if there is an error.

A.3. Additional C RTL Changes

VSI OpenVMS x86-64 includes the updated C RTL that provides additional C RTL functions, updates
to some functions, bug fixes, new header files, a documentation update, and identifies a known
limitation.

The current ECO patch kit RTL V8.0 may be applied to the following VSI OpenVMS versions:
* VSI OpenVMS Integrity Versions 8.4-2L1 and 8.4-2L3
e VSIOpenVMS Alpha Versions 8.4-2L1 and 8.4-21.2

VSI OpenVMS x86-64 Version 9.1-A Field Test and future versions of VSI OpenVMS for x86-64,
including the current release of VSI OpenVMS x86-64 V9.2-1, will contain the C RTL changes
implemented in the ECO patch kit RTL V7.0.

Note

If you develop an application on a system with the RTL C99 or any later kit installed and intend
it to be run on a system without those kits, you must compile your application with the switch
/DEFINE=(__ CRTL VER OVERRIDE=80400000).

Possible errors when compiling applications

It is possible that applications may incur compilation errors if the applications include definitions that
conflict with the definitions now provided in the system header files. For example, if an application
contains a definition of int64 _t that differs from the definition included in STDINT.H, the compiler
generates a %CC-E-NOLINKAGE error.

One solution is to remove the application-specific definition if the system-provided definition
provides the proper functionality. To diagnose such problems, compile the application using
/LIST/SHOW=INCLUDE and then examine the listing file.

62

https://vmssoftware.com/docs/VSI_CRTL_REF.pdf
https://vmssoftware.com/docs/VSI_CRTL_REF.pdf

Appendix A. VSI C Run-Time Library (C RTL) Notes

There are different ways to resolve such problems.

* Remove the application-specific definition if the system-provided definition provides the proper
functionality.

* Undefine the system-provided definition before making the application-specific definition. For
example:

#i fdef alloca

#undefine al |l oca

#endi f

<application-specific definition of alloca>

* Guard the application-specific definition. For example:

#i fndef all oca
<application-specific definition of alloca>
#endi f

Manipulating Variable Argument Lists on x86-64

The implementation of variable argument lists on x86-64 is different than on Integrity and Alpha and
may require source code changes, depending on how the lists are used.

On Integrity and Alpha, it is possible to copy one variable argument list to another using an
assignment operator. For example:

va2 = val

On x86-64, this does not work. Use the va_ copy function for this purpose. For example:
va_copy (va2, val)

On Integrity and Alpha, it is also possible to reference specific entries in the variable argument list
using the subscript notation. For example:

int arg2 = va[1]
On x86-64, this does not work. Use the va_ar g function for this purpose. For example:
int arg2 = va_arg(va,int)

Online Help

The OpenVMS CRTL Help Library has been updated with the changes from several previously
released ECO RTL patch kits, including the ECO patch kit RTL V8.0.

A.3.1. New Functions
This section describes the new C RTL functions introduced in the ECO patch kit RTL V8.0.

alloca

Format

#i ncl ude <al | oca. h>

63

Appendix A. VSI C Run-Time Library (C RTL) Notes

void *alloca (unsigned int size);
Description

The al | oca function allocates size bytes from the stack frame of the caller. The memory is
automatically freed when the function that calls al | oca returns to its caller. See VSI C User's Guide
for OpenVMS Systems for the ALLOCA macro.

Returns

The al | oca function returns a pointer to the allocated memory.

mempcpy
Format

#i ncl ude <string. h>
voi d *menpcpy (void *dest, const void *source, size_t size);

Function Variants

The menpcpy function has variants named _nmenpcpy32 and _nmenpcpy64 for use with 32-bit
and 64-bit pointer sizes, respectively.

Description

The menpcpy function, similar to the mentpy function, copies size bytes from the object pointed to
by source to the object pointed to by dest; it does not check for the overflow of the receiving memory
area (dest). Instead of returning the value of dest, menpcpy returns a pointer to the byte following the
last written byte.

Returns

The menpcpy function returns a pointer to the byte following the last written byte.

getline, getwline, getdelim, getwdelim

Format

#i ncl ude <stdio. h>

ssize_t getline (char **lineptr, size_t *n, FILE *strean;

ssize_t getwine (wchar_t **lineptr, size_t *n, FILE *strean;

ssize_t getdelim (char **lineptr, size_t *n, int delimter, FILE *strean;
ssize t getwdelim (wchar_t **lineptr, size t *n, wint_t delimter,

FI LE *strean);

Function Variants

The get | i ne function has variants named _get | i ne32 and _get | i ne64 for use with 32-bit
and 64-bit pointer sizes, respectively.

The get W i ne function has variants named _get w i ne32 and _get W i ne64 for use with 32-
bit and 64-bit pointer sizes, respectively.

The get del i mfunction has variants named _get del i 82 and _get del i n64 for use with 32-
bit and 64-bit pointer sizes, respectively.

64

https://docs.vmssoftware.com/vsi-c-user-s-guide-for-openvms-systems/
https://docs.vmssoftware.com/vsi-c-user-s-guide-for-openvms-systems/

Appendix A. VSI C Run-Time Library (C RTL) Notes

The get wdel i mfunction has variants named _get wdel i 82 and _get wdel i n64 for use with
32-bit and 64-bit pointer sizes, respectively.

Description

The get | i ne and get W i ne functions read an entire line from stream, storing the address of the
buffer, which contains the text into */ineptr. The buffer is null-terminated and includes the newline
character if one was found.

If *lineptr is NULL, then get | i ne will allocate a buffer for storing the line, which should be freed
by the user program. (In this case, the value in *n is ignored.)

Alternatively, before calling get | i ne, */ineptr can contain a pointer to a mal | oc allocated buffer
*n bytes in size. If the buffer is not large enough to hold the line, get | i ne resizes it with r eal | oc,
updating */ineptr and *n as necessary.

The get del i mand get wdel i mfunctions work like get | i ne and get W i ne, respectively,
except that a line delimiter other than newline can be specified as the delimiter argument. As with
getli ne and get W i ne a delimiter character is not added if one was not present in the input
before end of file was reached.

Returns

On success, all functions return the number of characters read, including the delimiter character, but
not including the terminating null byte.

qgsort_r

Format

#i nclude <stdlib. h>
void qsort_r (void *base, size_t nnenb, size_ t size,
int (*conmpar)(const void *, const void *, void *), void *arg)

Function Variants

The gsort _r function has variants named _qsort _r 32 and _qsort _r 64 for use with 32-bit
and 64-bit pointer sizes, respectively.

Description

The gsort _r function is the reentrant version of qsor t . See the gsor t description in the VSI C
User's Guide for OpenVMS Systems. qsort _r isidentical to qsort except that the comparison
function compar takes a third argument. A pointer is passed to the comparison function via arg.

Returns

The gsort _r function returns no value.

mkostemp

Format

#i nclude <stdlib. h>
i nt nkostenp (char *tenplate, int flags)

Description

65

https://vmssoftware.com/docs/VSI_C_USER.pdf
https://vmssoftware.com/docs/VSI_C_USER.pdf

Appendix A. VSI C Run-Time Library (C RTL) Notes

The nkost enp function is equivalent to mkst enp, with the difference that flags as for open may be
specified in flags.

The nkost enp function replaces the six trailing Xs of the string pointed to by template with a
unique set of characters, and returns a file descriptor for the file opened using the flags specified in

flags.

The string pointed to by template should look like a filename with six trailing X's. The mkost enp
function replaces each X with a character from the portable filename character set, making sure not to
duplicate an existing filename.

If the string pointed to by template does not contain six trailing Xs, -1 is returned.
Returns
On success, the mkost enp function returns a file descriptor for the open file.

-1 indicates an error. The string pointed to by template does not contain six trailing Xs.
posix_memalign

Format

#i ncl ude <stdlib. h>
int posix_nemalign (void ** nenptr, size t alignment, size_ t size)

Function Variants

The posi x_nmemal i gn function has variants named _posi Xx_nmenal i gn32 and
_posi x_memnal i gn64 for use with 32-bit and 64-bit pointer sizes, respectively.

Description

The posi x_nmemal i gn() function allocates Si ze bytes of memory such that the allocation's base
address is an exact multiple of al i gnment , and returns the allocation in the value pointed to by
menpt r .

The requested alignment must be a power of 2 at least as large as sizeof(void *). Memory that is
allocated via posi x_memal i gn() can be used as an argument in subsequent calls to r eal | oc()
andfree().

Note

The allocation returned by r eal | oc() is not guaranteed to preserve the original alignment

Returns

The posi x_nmemal i gn function returns 0 if successful, and an error value otherwise.

aligned_alloc

Format

#i ncl ude<stdl i b. h>
void * aligned alloc (size_ t alignnent, size t size)

66

Appendix A. VSI C Run-Time Library (C RTL) Notes

Function Variants

The al i gned_al | oc function has variants named _al i gned_al | 0oc32 and
_al i gned_al | oc64 for use with 32-bit and 64-bit pointer sizes, respectively.

Description

The al i gned_al | oc function allocates space for an object whose alignment is specified by

al i gnnment , whose size is specified by Si ze, and whose value is indeterminate. Memory that is
allocated via al i gned_al | oc() can be used as an argument in subsequent calls to r eal | oc()
andfree().

Note

The allocation returned by r eal | oc() is not guaranteed to preserve the original alignment.

Returns

The al i gned_al | oc function returns a pointer to the allocated memory or NULL if the memory
can't be allocated.

A.3.2. Updates to Functions

* Theopen, f open, and popen functions have been updated to support close on exec. The open
function now supports the O CLOEXEC flag. The f open and popen functions now support “e”
in the access mode.

+ Thefcntl function has been updated to support the O NONBLOCK flag in the F_SETFL and
F_GETFL modes.

* The set buf and set vbuf functions have been updated to take 64-bit arguments.

However, the buffer parameter must contain a 32-bit memory buffer, therefore when compiling the
application in 64-bit mode with /POINTER=64 or /POINTER=LONG, _nal | 0¢32 must be used
to allocate the buffer.

» Forget opt and| ocal econv, 64-bit function variants (_get opt 64 and _| ocal econv64)
have been added.

* The addrinfo and passwd structures have been updated to work better in 64-bit mode with the
get addri nf o, f reeaddri nf o, get pwnam get pwui d, and get pwent functions.

Previously, to use the 64-bit versions of addrinfo and passwd, it was necessary to use
__addreinfo64 and __ passwd64 structures because addrinfo and passwd were always 32-bit.

Now, when compiling in 64-bit mode with /POINTER=64 or /POINTER=LONG, addrinfo and
passwd structures are correctly compiled as the 64-bit versions, addreinfo64 and __ passwd64.
This behavior is similar to other 64-bit structures.

To retain the previous 32-bit behavior of addrinfo and passwd when compiling in 64-bit

mode, you can either replace the addrinfo and passwd structures with their 32-bit versions,
__addreinfo32 and ___passwd32, or revert to the previous definitions of these structures by
compiling your application with the /DEFINE=(__CRTL VER OVERRIDE = 80400000) switch.

* The pol | function has been updated to support pipes, mailboxes, TTYs, and files.

67

Appendix A. VSI C Run-Time Library (C RTL) Notes

The arguments to f wri t e() are now checked to conform to the POSIX standard

The arguments to the exec* () functions are checked to avoid access violation errors when the
ar gv parameter is NULL

The execv, execve, and execvp functions have been enhanced to support 64-bit pointers for
the argv argument

O _NONBLOCK mode can be enabled or disabled for mailboxes and channels

Thegetti m() function now supports CLOCK_MONOTONIC,
CLOCK_MONOTONIC_COARSE, and CLOCL_ MONOTONIC RAW

Calling i net _anon() with 64-bit arguments no longer result in an ACCVIO error
Performance of the set | ocal e() function has been improved
The functionswritev(),pwite(),wite(),andfwite() are now atomic

A 64-bit version of execl e() has been added

A.3.3. Bug Fixes

The open function now works properly when opening / dev/ nul | and/ dev/tty when
DECCS$POSIX COMPLIANT PATHNAMES is defined as 1, 2, or 3.

Multiple processes or multiple threads attempting to open a file for append at the same time now
correctly open the same file.

If the f open function is called with the O TRUNC flag and the file specification includes a file
version number, the function truncates the file when open rather than returns an error.

The shnget function can be called a second time with the same key value and a size of 0.

The st at function now returns the correct value for st _bl ocks when the file allocation value
is greater than 65536 blocks.

The f pcl assi fy syntax has been fixed in MATH.H to compile classification macros correctly.
The st r pt i me function now works properly with the %Ow conversion specifier.

The unl i nk function now works properly when called with a POSIX path but without defining
the required DECCS feature logical or without specifying the K UNIX argument.

The nanosl eep function is now reentrant.

MATHS$FP_CLASS <n>X functions, added as part of the C99 work, have been added to
STARLET.OLB

f open() and open() correctly create a new version of a file, rather than overwriting the
existing one, if the file is opened for trunc (O_TRUNC) and the file specification contains a
semicolon but no version number

Writing 0 bytes to a mailbox device now sends an EOF to the mailbox rather than returning an
error

68

Appendix A. VSI C Run-Time Library (C RTL) Notes

» Idle Samba processes no longer execute excessive buffered I/Os per second
* Various processes, including NTP, no longer go into a compute intensive state

* Specifying non-blocking I/O on sockets no longer results in an I/O error when transferring buffers
larger than 62696 bytes

» The fuction execl | e() no longer causes an ACCVIO when called incorrectly

» Buffer overflows have been fixed in execl (), execl e(), and execl p()

A.3.4. New Header Files

ALLOCA H.
PARAMS.H
TERMIOS.H

The macro va_copy has been added to STDARG.H for Alpha and TA64.

#define va_copy(cp, ap) ((cp) = (ap))

A.3.5. Known Limitation

On Integrity, math routines that perform comparisons, with one or both of the parameters being a long
double NaN, do not compare correctly.

A.3.6. Documentation Update

The sem _open() function returns a 64-bit pointer to a semaphore, so you must allocate a 64-bit
pointer to receive the returned semaphore pointer. One way to do this is as follows:

#pragma __required_pointer_size __ save
#pragma __required_pointer_size 64

semt *mysenp = NULL;

#pragma __required_pointer_size _ restore
nysenp = semopen (...);

The action routine called by the decc$t o_vns function takes an optional third parameter which is a
void pointer to an argument that is passed to the action routine. This optional parameter to the action
routine is passed as an optional, final argument to decc$t o_vns. The format for decc$t o_vns
is:

#i ncl ude <unixlib. h>

int decc$to_vms (const char *unix_style_filespec,

int (*action_routine) (char *QpenVMS_style filespec,

int type_of file, ...), int allowwld, int no_directory, ...);

The action routine called by the decc$f r om_vns function takes an optional second parameter
which is a void pointer to an argument that is passed to the action routine. This optional parameter
to the action routine is passed as an optional, final argument to decc$f r om virs. The format for
decc$from vns is:

#i ncl ude <unixlib. h>
int decc$fromvns (const char *vns_fil espec,

69

Appendix A. VSI C Run-Time Library (C RTL) Notes

int (*action_routine) (char *UNI X style filespec, ...),
int wild flag, ...);

70

Appendix B. Security Enhancements
for VSI TCP/IP Services X6.0-22 FTPS

FTPS (FTP over SSL) allows for an encrypted data connection when using FTP. FTPS is run by using
either FTP /SSL or COPY /FTP /SSL commands.

B.1. Changes in Connection Behavior

With TCP/IP Services V5.7 and prior versions, if you use FTPS and the FTP server is not set up
to run SSL by not having the proper certificate, the following messages will be displayed, and the
connection will continue in plain text:

TCPI P$_FTP_SSLERR, SSL not enabl ed on server
TCPI P$_FTP_SSLERR, Session will continue in plain text

See the following example:

$ ftp /ssl nodel

220 nodel. donai n. com FTP Server (Version 5.7) Ready.
Connected to nodel.

500 AUTH conmand unsuccessful .

TCPI P$_FTP_SSLERR, SSL not enabl ed on server

TCPI P$_FTP_SSLERR, Session will continue in plain text
Nane (nodel: usernane):

$ copy /ftp /ssl /log node2"usernane password"::file.txt *.*
TCPI P$_FTP_SSLERR, SSL not enabl ed on server
TCPI P$_FTP_SSLERR, Session will continue in plain text

%ICPI P- S- FTP_COPI ED, NODE2. DOVAI N. COM' user nane
password"::file.txt copied to D SK: [USERNAME] FI LE. TXT; 7
(968408 byt es)

With VSI TCP/IP Services X6.0-22, if you use FTPS and the FTP server is not set up to run SSL, the
connection will be terminated. See the following examples:

$ ftp /ssl nodel

220 nodel. domai n.com FTP Server (Version 5.7) Ready.
Connected to nodel.

500 AUTH conmand unsuccessful .

%ICPl P- E- SSLERR, SSL not enabl ed on server

$ copy /ftp /ssl /log node2"username password"::file.txt *.*
%I CPI P- E- SSLERR, SSL not enabl ed on server

You must either connect to an SSL-enabled FTP server or reissue the command without the /SSL
qualifier.

B.2. Changes in Certificate Verification

VSI TCP/IP Services V5.7 and prior versions only check for certificate integrity but do not perform
the full server certificate verification. Blindly using a self-signed certificate is not a secure practice.

In the following example, VSI TCP/IP Services V5.7 allows the connection to the FTP server without
notifying about the self-signed certificate used by the server.

71

Appendix B. Security Enhancements for VSI TCP/IP Services X6.0-22 FTPS

$ ftp /ssl node3

220 node3. domai n. com FTP Server (Version 5.7) Ready.
Connected to node3.

234 AUTH conmand successful .

200 PBSZ conmmand successful .

200 PROT conmand successful .

Nane (node3: usernane):

$ copy /ftp /ssl /log node3"username password"::file.txt *.*
%ICPI P- S- FTP_COPI ED, node3"user nanme password”:: Fl LE. TXT; 18 copi ed
t o DI SKSWORK: [USERNAME] FI LE. TXT; 19 (1476 bytes)

VSI TCP/IP Services X6.0-22 includes a check for a self-signed or expired server certificate and
outputs the appropriate message if such certificates are encountered. You can use a self-signed
certificate if you trust the certificate and accept to use it.

The following example shows the connection to the FTP server with a self-signed certificate using
VSI TCP/IP Services X6.0-22:

$ ftp /ssl node4d

220 node4. domai n. com FTP Server (Version 6.0) Ready.
Connected t o node4.

234 AUTH conmand successful .

200 PBSZ conmand successful .

200 PROT conmand successful .

9%ICPI P- F- SSLERR, self signed certificate

Country: US
State: MA
Locality: Boston
Organi zation: Certificate Conpany
Name: conpany.com
E-Mail: first.|ast@onpany.com
Valid from 30-Apr-2021 22:57
Expires: 30-Apr-2022 22:57

If you trust the certificate, re-issue the conmand with the /TRUST
qualifier.

$ copy /ftp /ssl node3"usernane password"::file.txt *.*
%ICPI P- F- SSLERR, self signed certificate

Country: US
State: MA
Locality: Boston
Organi zation: Certificate Conpany
Name: conpany.com
E-Mail: first.|ast@onpany.com
Valid from 30-Apr-2021 22:57
Expires: 30-Apr-2022 22:57

If you trust the certificate, re-issue the conmand with the /TRUST
qualifier.

Add the /TRUST qualifier to the command to proceed with the FTPS connection as in the following
example:

72

Appendix B. Security Enhancements for VSI TCP/IP Services X6.0-22 FTPS

$ ftp /ssl /trust node4d

220 node4. domai n. com FTP Server (Version 6.0) Ready.
Connected to node4.

234 AUTH command successf ul

200 PBSZ command successf ul

200 PROT command successf ul

9%ICPI P-1-SSLERR, self signed certificate

%ICPI P-1-SSLERR, TRUST specified; FTP/SSL conti nui ng..
Nane (node4:usernane):

$ copy /ftp /ssl /log /trust node4"usernanme password"::file.txt *.*
9%ICPI P-1-SSLERR, self signed certificate
%ICPI P-1-SSLERR, TRUST specified; FTP/SSL conti nui ng..

%ICPI P- S- FTP_COPI ED, node4"user nanme password”:: FILE. TXT; 18 copied to
DI SK: FI LE. TXT; 22 (1476 bytes)

73

Appendix B. Security Enhancements for VSI TCP/IP Services X6.0-22 FTPS

74

	Release Notes
	Table of Contents
	Preface
	1. Introduction
	2. Intended Audience
	3. Document Structure
	4. Related Documents

	Chapter 1. Before You Start... Read These First
	1.1. Supported Disk Types
	1.2. Tested Platforms
	1.3. MD5 Checksum for the X860921OE.ZIP File
	1.4. CPU Compatibility Checks for Virtual Machines
	1.5. Terminal Emulator Settings
	1.6. MemoryDisk and the Command Procedure SYS$MD.COM
	1.7. x86-64 Licensing
	1.7.1. Using a VMware vSphere Hypervisor Basic License

	1.8. Networking Options
	1.8.1. TCP/IP Services Uses BIND 9.11.37 Server
	1.8.2. VSI TCP/IP Services X6.0-22
	1.8.3. Upgrade From E9.2-1 to V9.2-1 Does Not Properly Update a Script Used by DHCP Client
	1.8.4. TCPDUMP-provoked System Crash
	1.8.5. VSI DECnet
	1.8.6. Empty File for DECnet-Plus
	1.8.7. Bridged Networking

	1.9. OpenSSL Update
	1.10. VSI OpenSSH V8.9-1D for OpenVMS
	1.11. VSI Kerberos V3.3-2A for OpenVMS
	1.12. VSI DECwindows Motif V1.8 for OpenVMS
	1.13. Required Layered Products

	Chapter 2. Release Notes
	2.1. Operating System Notes
	2.1.1. New Features
	2.1.1.1. Support for AMD Processors
	2.1.1.2. Large Hardware Page Usage
	2.1.1.3. Interleaved Dumps
	2.1.1.4. Entropy
	2.1.1.4.1. New SYSGEN Parameter RANDOM_SOURCES
	2.1.1.4.2. New System Service SYS$GET_ENTROPY
	SYS$GET_ENTROPY

	2.1.1.4.3. New Command SHOW ENTROPY

	2.1.2. Features Not Available in VSI OpenVMS x86-64 V9.2-1
	2.1.3. Additional Prompt During OpenVMS x86-64 Installation
	2.1.4. BACKUP/INITIALIZE to a Disk Mounted /FOREIGN Does Not Work
	2.1.5. Cross-Tools Kit Update
	2.1.6. Display of License Charge Information for x86-64 Nodes
	2.1.7. ENCRYPT Utility Does Not Work as Expected
	2.1.8. Extended File Cache (XFC)
	2.1.9. HYPERSORT Utility Available
	2.1.10. New LIB$INITIALIZE Handling in the Linker
	2.1.11. Linker: New Informational Messages
	2.1.12. New Handling of Threaded Applications in Linker
	2.1.13. Different Image Layout on x86-64 and IA64
	2.1.14. Memory Disks
	2.1.15. OpenVMS Clusters on Virtual Machines
	2.1.16. VSI OpenVMS x86-64 Will Not Support Swap Files
	2.1.17. Privileged Images Linked /SYSEXE Should Be Relinked
	2.1.18. Process Dumps
	2.1.19. Running x86-64 Images on Integrity Systems Causes an Access Violation
	2.1.20. Symmetric Multiprocessing (SMP)
	2.1.21. SYSGEN Parameter Changes
	2.1.22. System Crash Dumps
	2.1.23. Traceback Support
	2.1.24. Viewing Call Stack in Pthread Debugger
	2.1.25. VSI DECram for OpenVMS
	2.1.26. Symbolic Links and POSIX Pathname Support
	2.1.26.1. Device Names in the POSIX Root
	2.1.26.2. /SYMLINK Qualifier in DCL Commands
	2.1.26.3. Symlink Support in COPY and CREATE
	2.1.26.4. Symlink Support in RENAME
	2.1.26.5. Symlink Support in BACKUP
	2.1.26.6. Symlinks and File Versions
	2.1.26.7. Symlinks Pointing to Multiple File Versions

	2.1.27. Symbolic Debugger
	2.1.27.1. Supported Registers
	2.1.27.2. Older Versions of Compilers Always Set Language to C
	2.1.27.3. Language Support Limitations
	2.1.27.4. Source Line Correlation
	2.1.27.5. Floating-Point Support
	2.1.27.6. Not Supported or Not Working Features

	2.1.28. Running DHCP Client and failSAFE IP are not Compatible on the Same NIC
	2.1.29. User-Written x86-Assembler Modules
	2.1.30. Connecting to a Shared LD Container in a Mixed Architecture Cluster
	2.1.31. LSI Logic Controllers
	2.1.32. CD Audio Functionality Not Supported on x86-64
	2.1.33. STABACKIT.COM Deprecated
	2.1.34. Cluster Nodes Running VSI OpenVMS V9.2 May Cause All x86-64 Cluster Members to Crash
	2.1.35. C Run-Time Library Issues
	2.1.36. TCPIP$BIND_CONF.TEMPLATE_FORWARD Requires Adjustment in Environments Not Supporting DNSsec
	2.1.37. NTPDATE No Longer Supported
	2.1.38. SMP Timeout Parameters Increased
	2.1.39. Improvements to System Memory Allocation
	2.1.40. FTP/SSL No Longer Fails to Connect to a System Running TCP/IP X6.0
	2.1.41. TCPIP MOUNT /SHARE Command Causes a System Hang
	2.1.42. Contiguous Best Try Qualifier for SET FILE/ATTRIBUTES
	2.1.43. /EXTENTS Qualifier for ANALYZE/DISK_STRUCTURE
	2.1.44. /OPTIONS qualifier for PRODUCT SHOW PRODUCT
	2.1.45. CHECKSUM Utility Supports SHA1 and SHA256 Algorithms
	2.1.46. VSI C Run-Time Library (C RTL) Update
	2.1.47. ZIP/UNZIP Tools
	2.1.48. TCPIP SHOW VERSION Displays Incorrect Version of TCP/IP Services
	2.1.49. Data Needed for SHOW NETWORK to Report Network Status Is Not Available When Using DHCP
	2.1.50. System Crashes In SYSINIT Phase When Booting With the DEVELOPER Boot Flag

	2.2. Virtualization Notes
	2.2.1. Changing Settings of a Running Virtual Machine May Cause a Hang
	2.2.2. Time of Day May Not Be Correctly Maintained in Virtual Machine Environments
	2.2.3. System Time on KVM Virtual Machines
	2.2.4. VirtualBox and Hyper-V Compatibility on Windows 10 and 11 Hosts
	2.2.5. VirtualBox: TCP Ports May Become Unusable After Guest Is Terminated
	2.2.6. VMware Guest May Fail to Boot After Adding Second SATA Controller
	2.2.7. Boot Manager Displays Incomplete List of Bootable Devices
	2.2.8. Booting Issues with VMware Workstation 17 Player Corrected
	2.2.9. Possible Issues with VMware Virtual Machines
	2.2.10. VSI OpenSSH V8.9-1C Must Be Uninstalled Before Upgrading to VSI OpenVMS V9.2-1
	2.2.11. One VirtIO-SCSI Adapter Supported on KVM

	2.3. Layered and Open Source Products Notes

	Appendix A. VSI C Run-Time Library (C RTL) Notes
	A.1. C99 Update
	A.1.1. C99 Functions
	A.1.1.1. fpclassify
	A.1.1.2. isblank, iswblank
	A.1.1.3. isgreater, isgreaterequal, isless, islessequal, islessgreater, isunordered
	A.1.1.4. llrint, llrintf, llrintl
	A.1.1.5. llround, llroundf, llroundl
	A.1.1.6. nearbyint, nearbyintf, nearbyintl
	A.1.1.7. round, roundf, roundl
	A.1.1.8. scalbln, scalblnf, scalblnl, scalbn, scalbnf, scalbnl
	A.1.1.9. strtof, strtold, wcstof, wcstold
	A.1.1.10. va_copy
	A.1.1.11. wcstoll, wcstoull
	A.1.1.12. Print and scan conversion specifier and argument types
	A.1.1.13. strftime, wcsftime, strptime – additional conversion specifiers

	A.2. CRTL ECO V3.0 Changes
	A.2.1. Bug Fixes
	A.2.2. New Constants
	A.2.3. New Flags
	A.2.4. New Datatypes
	A.2.5. New Header
	A.2.6. Interface Change
	A.2.7. New Feature Logical: DECC$PRN_PRE_BYTE
	A.2.8. New Functions
	A.2.8.1. freeifaddrs
	A.2.8.2. getgrent_r
	A.2.8.3. gethostbyname_r
	A.2.8.4. getifaddrs
	A.2.8.5. getrusage
	A.2.8.6. stpcpy
	A.2.8.7. strerror_r
	A.2.8.8. strtoimax, strtoumax
	A.2.8.9. strndup

	A.3. Additional C RTL Changes
	A.3.1. New Functions
	A.3.2. Updates to Functions
	A.3.3. Bug Fixes
	A.3.4. New Header Files
	A.3.5. Known Limitation
	A.3.6. Documentation Update

	Appendix B. Security Enhancements for VSI TCP/IP Services X6.0-22 FTPS
	B.1. Changes in Connection Behavior
	B.2. Changes in Certificate Verification

