uma Software

VSI OpenVMS

Alpha Guide to Upgrading Privileged-
Code Applications

Document Number: DO-DUPGAP-01A

Publication Date: August 2019

Alpha privileged-code applications link against the system base image (SYS
$BASE_IMAGE.EXE) on OpenVMS Alpha. This guide explains the changes that
might impact Alpha privileged-code applications as a result of the OpenVMS Alpha
64-bit virtual addressing and kernel threads support provided in OpenVMS Alpha
Version 7.0 and later.

Privileged-code applications from versions prior to OpenVMS Alpha Version 7.0
might require the source-code changes described in this guide.

Revision Update Information: This is a new manual.

Operating System and Version: VS| OpenVMS 164 Version 8.4-2
VSI OpenVMS Alpha 8.4-2L1

VMS Software, Inc. (VSI)
Bolton, Massachusetts, USA

Copyright © 2019 VMS Software, Inc., (VSI), Bolton Massachusetts, USA

L egal Notice

Confidential computer software. Valid license from VS| required for possession, use or copying. Consistent with FAR 12.211 and 12.212,
Commercial Computer Software, Computer Software Documentation, and Technical Datafor Commercial Items are licensed to the U.S.
Government under vendor's standard commercial license.

The information contained herein is subject to change without notice. The only warranties for VS| products and services are set forth in the
express warranty statements accompanying such products and services. Nothing herein should be construed as constituting an additional
warranty. VS| shall not beliable for technical or editorial errors or omissions contained herein.

HPE, HPE Integrity, HPE Alpha, and HPE Proliant are trademarks or registered trademarks of Hewlett Packard Enterprise.

The VS| OpenVMS documentation set is available on DVD.

Alpha Guide to Upgrading Privileged-Code Applications

Preface .oueeieniinnniniinninnnnnnsnensnensnsssanssssesssnsssnsssssssssssssssssssssasssssssssssssssssasssassssassssssssssssasses vii
Lo ADOUL VST ottt e e e ettt e e e e e et vii
2. Who Should Use This Manualccccoouiiiiiiiiiiiiiiiiiie e vii
3. How This Manual Is Organizedc.coooiiiiiiiiiiiiiiiiiiiieeeee e vii
4. Related DOCUMEIES .ooeeeiiiiiiiiiiiiieeiiiiie ettt e ettt e e e e e et et e e e e e vii
5. VSI Encourages Your COMMENTScceeviiiiiiiiiiiiiiiiiiiiiiiiiiieiiiiieieieteieteeeeeteeeeeeeeeeeeeeeeeeees viii
6. How to Order Additional Documentationceceeiiiiiiiiiiiiieieeeiniiiieeeee e viii
7. COMVEITIONS ...uiieiiieieeeee e ettt e e e ettt e e e e e ettt et e e e e e s ettt et eeeeesaaabbbtbeeeeeeeesanaanes viii

Chapter 1. INtroduCtiONcueeieenieeisnnnsinnsnenssensssnssnsssnesssesssssssasssssssssnsssssssasssssssssssssssssasss 1
1.1. Quick Description of OpenVMS Alpha 64-Bit Virtual Addressingcccccevvvvuvneeeeeen. 1
1.2. Quick Description of OpenVMS Alpha Kernel Threadscccccceeiinniiiiieiiiiiiniiiinen. 1
1.3. Quick Description of OpenVMS Industry Standard 64cccccoomiiiiiiiiiiiiinnnniiiieeeeen, 2
1.4. HoW t0 USe This GUIALceviiiiiiiiiiiiiiiieiiiiiieee et 2

Chapter 2. Upgrading Privileged Software to OpenVMS Alpha Version 7.0 3
2.1. Recommendations for Upgrading Privileged-Code Applicationsccccceeeevrinnnnneeeen. 3

2.1.1. Summary of Infrastructure Changescccccevmmriiiiiiiiiieiiiiiiiiiee e 3
2.1.2. Changes Not Identified by Warning MesSagescocuvvvieeieeiiiniiiiiiieeeeeennnne 4

2.2, J/O CRANEZES ..ceeiiiiiiiiiteee ettt e et e e e e e e e e e e e e 4
2.2.1. Impact of IRPE Data Structure Changesccoovvuuiiieiiieiiiiniiiiiieeeeeeeeieeee 5
2.2.2. Impact of MMG_STDSIOLOCK, MMG_STD$UNLOCK Changescc...... 6
2.2.2.1. Direct I/O FUNCHONScoeiiiiiiiiiiiiiiiieeiiiiiiiece et 6

2.2.3. Impact of MMG STDSSVAPTECHK Changesc.cccceeeeriiieeeiniiieeenniieeeens 8
2.2.4. Impact of PFN Database Entry Changesccccccovviiiiiiiiiiiiiiniiiiiiieeeie 9
2.2.5. Impact of IRP Changesuuviiiiiiiiiiiiiiiee et 9

2.3. General Memory Management Infrastructure Changescccccoovveuiiiieiieieininniiiiiiceeeeenn, 9
2.3.1. Location of Process Page Tablesuuuuuuiuiiiiiiiiiiiiiiiiiiiiieiieiereeeneeeeerenenenenenes 9
2.3.2. Interpretation of Global and Process Section Table Indexccoeeuvviiieeieiinn. 10
2.3.3. Location of Process and System Working Set Listsc...ceeeeeiiiiniiiiiceieennnnn. 10
2.3.4. Size of a Working Set List ENtrycccoeiiiiiiiiiiiiiiiiceeeccee e, 10
2.3.5. Location of Page Frame Number (PFN) Databaseccccceeeiiiiiiin. 11
2.3.6. Format of PFN Database Entrycoooeeeiiiiiiiiieieieiceeeeeeeeeeeeeeeeeeeeeeeeeeeeee e 11
2.3.7. Process Header WSLX and BAK AITAYSccoeeiiiimiiiiiiieiieiiiiiiiiiceeee e 11
2.3.8. Free S0/S1 System Page Table Entry Listccoooooiiiiiiiiiiiiiiiiiie, 11
2.3.9. Location of the Global Page Tablecccuviiiiiiiiiiiiiiiiiiec e, 12
2.3.10. Free Global Page Table Entry Listcceeveieiiiiiiiiiiiiiiiiiiiiiiiiieceeee e 12
2.3.11. Region Descriptor Entries (RDES)ccooiviiiiiiiiiiiiiiiieeeeeeee 12

2.4. Kernel Threads Changescccoeeiiiiiiiiiiiiieiiiiiiicee ettt ee e e e 12
2.4.1. The CPUSL _CURKTB Fieldcooiiiiiiiiiiiiiiiiiiiiceeeice e 12
2.4.2. MULEX LOCKINE ...ttt 12
2.4.3. Scheduling ROULINESevviiiiiiiiiiiiiiiiceiee e 13
2.4.4. New MWAIT State ...oooooiiiiiiiiiiiiieeiiiiit ettt e e 13
2.4.5. System Services DiSpatChingcoooviiiiiiiiiiiiiiiie e 13
2.4.6. Asynchronous System Traps (ASTS) .eccceeriiriiiiiiiiiiiiiiiiieee e 13
2.4.7. TB Invalidation and MacCIOSc.cccouriimiiiiiiieieiiiiiiiiieeee e 13
2.4.8. New PCB/KTB Fieldscccooiiiiiiiiiiiiiiiiiiiiiceeeeeee e 15
2.4.9. CTLSAL STACK and CTLSAL STACKLIMccooooiiiiiiiiiiiiniiieeeeieeeeeee 16
2.4.10. Floating-Point Register and Execution Data Blocks (FREDS) 16

2.5. Registering Images That Have Version Dependencieseveveeerereverereverenerenenenes 16
2.5.1. Version Identification (ID) Number Change to Three Subsystemsc......... 17
Chapter 3. Replacements for Removed Privileged Symbolsccceeevvneiicnicnnerccccsnnneees 19

iii

Alpha Guide to Upgrading Privileged-Code Applications

3.1. Removed Date Structure Fieldscccoeiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiieeeeeeeeeeeeeeeeeeeeee e 19
3.2. Removed ROULINESoooeiiiiiiiii 24
3.3, ReMOVEd MACTOS ...oeeeiiiiiieeee e 29
3.3.1. Removed MACRO-32 Macros Formerly in SYSSLIBRARY:LIB.MLB 29
3.3.2. C Header Files Removed From SYSSLIBRARY:SYSSLIB C.TLB 29

3.4. Removed System Data CellSoouiuiiiiiieeiiiiiiiiiiie e eeeeceee e e e e e e e eeevaaeeanns 29
Chapter 4. Modifying Device Drivers to Support 64-Bit Addressingccccceevueeesunneene 33
4.1. Recommendations for Modifying Device DITVETSccooeeeiiiiiiiiiiiiieeeeiieiiiieeee e 33
4.2. Mixed Pointer Environment in € ... 33
4.3. $QIO Support for 64-Bit AdAIESSESccvvvieeeiiiiieeeiiiieeeeeieee et e e eeaeeee s 34
4.4. Declaring Support for 64-Bit Addresses in DIIVETSuvveeiieieeiiiiiiiiiciieeeeeeeeeeiieen 36
4.4.1. Drivers WIIen 10 € ..oooieeiiieeeee e 36
4.4.2. Drivers Written in MACRO-32uuiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiieeeeeeeeeee 37
4.4.3. Drivers Written in BLISS 37

T VO I (S1e] o 23013 4 4 LR 37
4.5.1. Simple Buffered I/Oooovviiiiiiiiiee e 38
4.5.2. DITECE T/O e s 39
4.5.3. Direct I/O Buffer Map (DIOBM)cooiiiiiiiiiiieeececeeee e 39
454, 04-Bit AST oottt e e et e e e e e aaaaeas 40
4.5.5. 64-Bit ACB Within the TRPcccoiiiiiiii e 41
4.5.6. 1/O Function Definitionsuuueumumeuiuiiiiiiiiiiiiiiiiiiiiiiiiiiiieeeeaeee 41

4.6. 64-Bit Support in EXample DIIVETouvuiiiiiiiiiiiiiiiiie e e e e e e e eeeaeee 43
4.6.1. Example: Declaring 64-Bit FUNCtIONScooeviiiiiiiiiiiiiieeeeeeccciiieeee e, 43
4.6.2. Example: Declaring 64-Bit Buffered I/O Packetcccooeeeiiiiiiiiiiiiiininiiiiinn, 43
4.6.3. Example: Changes to LRSWRITEccccooiiiiiiiiiiieiiieeiee e 44
4.6.4. Example: Changes to LRESETMODEcccccooiviiiiiiiiiiieeieeeieee e 45
4.6.5. Example: Changes to LRESTARTIOccveeeiiiieiiiiieiiieeeiieeeiee e 45
Chapter 5. Modifying User-Written SyStem ServiCesc..ccceeerecrsercssseressercssserssssssssnsscs 47
Chapter 6. Kernel Threads Process StruCtUIecoceeeecceecssnicssnicssnicsssnscssssesssssesssssenes 51
6.1. Process Control Blocks (PCBs) and Process Headers (PHDS)ccooeeeeveieieieieieeeeeeeeee, 51
6.1.1. Effect of a Multithreaded Process on the PCB and PHDccooeveieieeenenennnn. 51

6.2. Kernel Thread BIOCKS (KTBS) ...uuuuuuuuuuuriiuiuiiiuriiunururuiuesraessnssssssnsssssnnsnsssssssssssssnnnsrns 52
6.2.1. KTB VECIOT .oeoiiiiiiiiiiiiiiiii 52
6.2.2. Floating-Point Registers and Execution Data Blocks (FREDS)cccuveeee.... 53
6.2.3. Kernel Threads REIONccivviiiiiiiiiiiiiiiiiiiiiiiiiiiciceeeeeeeeeeeeeeeeeeee e ea e 53
6.2.4. Per-Kernel Thread Stackscccceviiiiiiiiiii 53
6.2.5. Per-Kernel Thread Data Cellscccooeeiiiiiiiiiiieeee e, 54
6.2.6. Layout of the Per-Kernel Threadcccoeveveieieieieieieieiececececeee e 54
6.2.7. Summary of Process Data StrucCturesccccceeevieiiiiiiiiiiiieeeeeeeeeeeeeeeeeee, 54

6.3. Process Identifiers (PIDS)oiviiiiiiiiiiiiiiiiiiiiiiiiiiirieeeieeeee e e e eeee e eeeeeereeeeeeeeeeeeeeeeeeeeees 55
6.3.1. Multithread Effects on the PIDccoooeiiiiiiiiiii e 56
6.3.2. Range Checking and S€qUENCE VECIOTSvvvvvvvrrvrrrrrrrrrrrererernnnrnnesnnnnnnnnnnnne 57

6.4. Process Statts BilSccoiiiiiiiiiiiiiiiiiei it e e 57
Appendix A. Data Structure Changes 59
A.1. Pointer SiZ€ CONVENLIONSccevvviiiiiiiiiiiiieiiieieieieteerieeeeeeeeeeeeeeeeeeeeeeeeeeeeeteeeeeeeeseeeeeeeee 59
A.2. Buffer Object Descriptor (BOD)cccoeeeieieee e 60
A.3. Buffered I/O (BUFTO) ..coiiiiiiiiiiiiee ettt a e 60
A.4. Complex Chained BUffer (CXB)uuuuvuviviviriieiiiiiiirreierireresersrsssrsrsrrrersrsrsrerss————.. 62
A.5. Data Chain Block (DCBE)uuuvviviiiiiiiiiiiiiiiiiiisisesesssssssssssssssssssrssnssssssssssssssss... 62
A.6. Direct I/O Buffer Map (DIOBM)cccviiiiiiiiiiiiiiiiiiiiiiiiieeieeeeeeeeeeeeeeee e eeee e e eeeeeeee e 63

Alpha Guide to Upgrading Privileged-Code Applications

A.7. Function Decision Table (FDT)ccoouviiiiiiiiiiiicciee e 68
A.8. I/0O Request Packet (IRP) ...ouuuueieiiiiiiiiieiee e e e e e e eeaaaeeas 69
A.9. I/O Request Packet Extension (IRPE)ccccooiiiiiiiiiiiiiieiieee e 73
A.10. Process Header (PHD)coouiiiiiiiiiiiieeie et e et e e e eeens 75
A.11. SCSI-2 Diagnose Buffer (S2DGB)uuoeiiiiiiiiiiiiiiie e 76
A.12. VMS Communications Request Packet (VCRP)ooieiiiiiiiiiiiiiiieeiciee e, 76
Appendix B. I/O Support Routine Changes 79
B.1. ACP_STD$READBLK and ACP_STDSWRITEBLKcccccoiiiiiiiiieeeniiieee e 79
B.2. EXE_ STDSALLOC BUFIO 32, EXE STDSALLOC BUFIO 64c.cccocvvvevuveannnnne 79
B.3. EXE_STDSALLOC DIAGBUFooiiiiiiiiiiiiiiiee ettt 80
B.4. EXE STDSLOCK ERR CLEANUPoooiiiiiiiiiiiiiiiee et ettt 81
B.5. EXE_ STDSMODIFY, EXE STDSREAD, EXE STDSWRITEccccovvvviiiiiieeen. 82
B.6. EXE_STD$MODIFYLOCK, EXE_STD$READLOCK, EXE STD$WRITELOCK 83
B.6.1. CALL xLOCK and CALL xLOCK ERR MaCIoscccoeeeeeiiiiiiiiiiieeeeeeeeninnens 84

B.7. EXE_STD$READCHK and EXE STDSWRITECHKc.cocoviiiiiiiniiieeeiiee e 84
B.7.1. CALL xCHK and CALL XCHKR MaCIOSccuuueriieieriiiiiiiiiineeeeeeeeeviii e 84

B.8. EXE STD$SETCHAR and EXE _STDSSETMODEccccoviiiiiiiieiiiiiee e 84
B.9. IOC_STDSCREATE DIOBMcoiiiiiiiiieiiiiiee et ettt e et e e eveae e enaaeeeeanes 85
B.10. IOC_STDSFILL DIOBM ...ccoiiiiiiiiiiiiiiiie et e ettt e e e e e e e e e e e e e 86
B.11. IOC_STDSPTETOPENccoiiiiiiieiiiiiieeeiiiie ettt e e e e e et e e e e e e nsaeaeeenenees 88
B.12. IOC_STDSRELEASE DIOBMccotiiiiiiiiiiieiiiiiee et et e e e eieaaa e 88
B.13. IOC_STD$SIMREQCOM, IOCSSIMREQCOMcotviiiiiiiieeiiiiieeeiiiee e 89
B.13.1. CALL_SIMREQCOM MaCTOcuvtiiiiiaeeeeiiiiiiieiieeaeeeeeeiieeteeaaaeeeeennneneeeaaaeeas 89
B.13.2. IOCSSIMREQUCOMooiiiiiiiiiiieiieeee ettt e e e e e eeeaeeea e 89
B.14. IOC_STDSSVAPTE IN BUF ...ccoiiiiiiiiiiiie ettt e 89
B.15. IOC _STDSVA TO PA oottt e e ettt e e e e e e neeaneeae s 90
B.16. MMG_STDSGET PTE FOR VA ...ttt 91
B.17. MMG_STDS$IOLOCK, MMGS$IOLOCK, MMG _STDSIOLOCK BUFcccuveennn. 92
B.17.1. CALL _TOLOCK MACIO ...eettiieeiiiiiiiiiiiieeeeeeeeiiiieeeeae e e e et eeeaaeeesennneaeeeeaeens 95
B.18. MMG_STDS$SUNLOCK, MMG$UNLOCK, MMG_STD$IOUNLOCK BUF 95
B.18.1. CALL UNLOCK MACIOcevviiiiiiieeeeiiiiiiiiiieeeeeeeeeeiiiiiineeeeeeeesssseneeeeeseessnenns 96
B.19. MMG_STD$SVAPTECHK, MMGSSVAPTECHKcccvvvviiiiiiiieiiiiee e 96
Appendix C. Kernel Threads Routines and Macroscccccceeeveeecssanccssnncssnncsssescssssscsenns 929
EXESCVT IPID TO KTB ROUHNEcceiiiiiiiiieee ettt ettt e e e 99
EXESCVT _EPID _TO _KTB ROULNE ...ccoeiiiiiiiiiieee ettt eeae e 100
GET _CURKTB MACTO ...cceeviiiiiiiiiieeeiiieiiiiieiseeeeeeeeeiitieseeeeeeeeesatenaeeeeesesssssnnnaaeeessessssnnnnns 101
CVT _IPID TO PCB_KTB MACIO ..eeiiiiieiiiiiiiiiiiee e ettt tee e e e e ettt e e e e e e eneeereeaaaeeeanaes 102
CVT _IPID TO _KTB MACIO ...uuueiiiiieeeeeieiiiitiiee e e e e ettt e e e e e e ettt e e e e e e e s nneeaeeeaaeeeeennes 103

Alpha Guide to Upgrading Privileged-Code Applications

vi

Preface

uma Software

This document describes reference information for System Management utilities used with the Open-
VMS Alpha operating system.

1. About VSI

VMS Software, Inc., (VSI) is an independent software company licensed by Hewlett Packard Enter-
prise to develop and support the OpenVMS operating system.

VSI seeks to continue the legendary development prowess and customer-first priorities that are so
closely associated with the OpenVMS operating system and its original author, Digital Equipment
Corporation.

2. Who Should Use This Manual

This guide is intended for system programmers who use privileged-mode interfaces in their applica-
tions.

3. How This Manual Is Organized

This manual is organized as follows:
* Chapter 1 describes how to use this guide.

* Chapters 2 and 3 describe the infrastructure changes that might affect privileged-code applications
and provides guidelines for upgrading them to OpenVMS Alpha Version 7.0.

* Chapters 4, 5, and 6 describe the changes that can be made to customer-written system services
and device drivers to support 64-bit addresses and kernel threads.

* The appendixes contain descriptions of I/O routines, I/O data structures, kernel threads routines,
and kernel threads macros.

4. Related Documents

* OpenVMS Alpha Guide to 64-Bit Addressing and VLM Features
* OpenVMS Programming Concepts Manual
* OpenVMS Record Management Services Reference Manual

* OpenVMS System Services Reference Manual: A--GETUAI and OpenVMS System Services Ref-
erence Manual: GETUTC--Z

For additional information about HP OpenVMS products and services, visit the following World Wide
Web address:

TBS

vii

Preface

5. VSI Encourages Your Comments

You may send comments or suggestions regarding this manual or any VSI document by sending elec-
tronic mail to the following Internet address: <doci nf o@nssof t war e. con®. Users who have
OpenVMS support contracts through VSI can contact <suppor t @nssof t war e. con® for help
with this product. Users who have OpenVMS support contracts through HPE should contact their
HPE Support channel for assistance.

6. How to Order Additional Documentation

For information about how to order additional documentation, email the VSI OpenVMS information
account: <i nf o@nssof t war e. conr. We will be posting links to documentation on our corpo-
rate website soon.

7. Conventions

The following conventions are used in this manual:

Convention Meaning

A horizontal ellipsis in examples indicates one of the following possibili-
ties:

» Additional optional arguments in a statement have been omitted.
* The preceding item or items can be repeated one or more times.

* Additional parameters, values, or other information can be entered.

A vertical ellipsis indicates the omission of items from a code example or
command format; the items are omitted because they are not important to
the topic being discussed.

O) In command format descriptions, parentheses indicate that you must en-
close choices in parentheses if you specify more than one.

[] In command format descriptions, brackets indicate optional choices. You
can choose one or more items or no items. Do not type the brackets on the
command line. However, you must include the brackets in the syntax for
OpenVMS directory specifications and for a substring specification in an
assignment statement,

In command format descriptions, vertical bars separate choices within
brackets or braces. Within brackets, the choices are optional; within braces,
at least one choice is required. Do not type the vertical bars on the com-
mand line.

{} In command format descriptions, braces indicate required choices; you
must choose at least one of the items listed. Do not type the braces on the
command line.

bold text This typeface represents the name of an argument, an attribute, or a reason.

italic text Italic text indicates important information, complete titles of manuals, or
variables. Variables include information that varies in system output (Inter-
nal error number), in command lines (/PRODUCER= name), and in com-

viii

Preface

Convention Meaning
mand parameters in text (where dd represents the predefined code for the
device type).

UPPERCASE TEXT |Uppercase text indicates a command, the name of a routine, the name of a

file, or the abbreviation for a system privilege.

Monospace text

Monospace type indicates code examples and interactive screen displays.

In the C programming language, monospace type in text identifies the fol-
lowing elements:keywords, the names of independently compiled external
functions and files, syntax summaries, and references to variables or identi-
fiers introduced in an example.

A hyphen at the end of a command format description, command line, or
code line indicates that the command or statement continues on the follow-
ing line.

numbers

All numbers in text are assumed to be decimal unless otherwise noted.
Nondecimal radixes—binary, octal, or hexadecimal—are explicitly indicat-
ed.

ix

Preface

Chapter 1. Introduction

This manual is divided into two parts: the first, which discusses changes to privileged code on Open-
VMS Alpha to support 64-bit addressing and kernel threads; and the second, which discusses the
changes necessary to privileged code and to OpenVMS physical infrastructure to support the Open-
VMS operating system on the Intel ® Itanium ® architecture.

This is not an application porting guide. If you are looking for information on how to port applications
that run on OpenVMS Alpha to OpenVMS 164, see Porting Applications from VSI OpenVMS Alpha to
VSI OpenVMS Industry Standard 64 for Integrity Servers.

1.1. Quick Description of OpenVMS Alpha 64-
Bit Virtual Addressing

OpenVMS Alpha Version 7.0 made significant changes to OpenVMS Alpha privileged interfaces and
data structures to support 64-bit virtual addresses and kernel threads.

For 64-bit virtual addresses, these changes were necessary infrastructure work to enable processes to
grow their virtual address space beyond the existing 1 GB limit of PO space and the 1 GB limit of P1
space to include P2 space, making a total of 8TB.Likewise, S2 is the extension of system space.

Support for 64-bit virtual addresses,makes more of the 64-bit virtual address space defined by the Al-
pha architecture available to the OpenVMS Alpha operating system and to application programs. The
64-bit address features allow processes to map and access data beyond the previous limits of 32-bit
virtual addresses. Both process-private and system virtual address space now extend to 8 TB.

In addition to the dramatic increase in virtual address space, OpenVMS Alpha 7.0 significantly in-
creases the amount of physical memory that can be used by individual processes.

Many tools and languages supported by OpenVMS Alpha (including the Debugger, run-time library
routines, and DEC C)are enhanced to support 64-bit virtual addressing. Input and output operations
can be performed directly to and from the 64-bit addressable space by means of RMS services, the
$QIO system service, and most of the device drivers supplied with OpenVMS Alpha systems.

Underlying this are new system services that allow an application to allocate and manage the 64-bit
virtual address space that is available for process-private use.

For more information about OpenVMS Alpha 64-bit virtual address features, see the OpenVMS Al-
pha Guide to 64-Bit Addressing and VLM Features.

As a result of these changes, some privileged-code applications might need to make source-code
changes to run on OpenVMS Alpha Version 7.0 and later.

This chapter briefly describes OpenVMS Alpha Version 7.0 64-bit virtual address and kernel threads
support and suggests how you should use this guide to ensure that your privileged-code application
runs successfully on OpenVMS Alpha Version 7.0 and later.

1.2. Quick Description of OpenVMS Alpha
Kernel Threads

OpenVMS Alpha Version 7.0 provides kernel threads features, which extend process scheduling ca-
pabilities to allow threads of a process to run concurrently on multiple CPUs in a multiprocessor sys-

Chapter 1. Introduction

tem. The only interface to kernel threads is through the DECthreads package. Existing threaded code
that uses either the CMA API or the POSIX threads API should run without change and gain the ad-
vantages provided by the kernel threads project.

Kernel threads support causes significant changes to the process structure within OpenVMS (most no-
tably to the process control block (PCB)).Although kernel threads support does not explicitly change
any application programming interfaces (APIs) within OpenVMS, it does change the use of the PCB
in such a way that some existing privileged code may be impacted.

Kernel threads allows a multithreaded process to execute code flows independently on more than one
CPU at a time .This allows a threaded application to make better use of multiple CPUs in an SMP sys-
tem. DECthreads uses these independent execution contexts as virtual CPUs and schedules applica-
tion threads on them. OpenVMS then schedules the execution contexts (kernel threads) onto physical
CPUs. By providing a callback mechanism from the OpenVMS scheduler to the DECthreads thread
scheduler, scheduling latencies inherent in user-mode-only thread managers is greatly reduced. Open-
VMS informs DECthreads when a thread has blocked in the kernel. Using this information,DEC-
threads can then opt to schedule some other ready thread.

For more information about kernel threads, refer to the Bookreader version of the OpenVMS Pro-
gramming Concepts Manual and Chapter 6 in this guide.

1.3. Quick Description of OpenVMS Industry
Standard 64

OpenVMS 164 8.2 has a 64-bit model and basic system functions that are similar to OpenVMS Alpha.
OpenVMS Alpha and OpenVMS 164 are produced from a single-source code base. OpenVMS 164 has
the same look and feel as OpenVMS Alpha. Minor changes to the operating system were made to ac-
commodate the architecture, but the basic structure and capabilities of the operating system are the
same.

1.4. How to Use This Guide

Read Part I to learn about the changes that might be required for privileged-code applications to run
on OpenVMS Alpha Version 7.0 and how to enhance customer-written system services and device
drivers with OpenVMS Version 7.0 features.

Refer to Part II for information about changes that might be required for privileged-code applications
to run on OpenVMS 164. In most cases, you can change your code so that it is common code with
OpenVMS Alpha.

Refer to the Appendixes for more information about some of the data structures and routines men-
tioned throughout this guide.

Chapter 2. Upgrading Privileged
Software to OpenVMS Alpha Version
7.0

The new features provided in OpenVMS Alpha Version 7.0 have required corresponding changes in
internal system interfaces and data structures. These internal changes might require changes in some
privileged software.

This chapter contains recommendations for upgrading privileged-code applications to ensure that they
run on OpenVMS Alpha Version 7.0.0nce your application is running on OpenVMS Alpha Version
7.0,you can enhance it as described in Part II.

2.1. Recommendations for Upgrading Privi-
leged-Code Applications

To ensure that a privileged-code application runs on OpenVMS Alpha Version 7.0,do the following:

1. Recompile and relink your application to identify almost all of the places where source changes
will be necessary. Some changes can be identified by inspection.

2. Ifyou encounter compile-time or link-time warnings or errors, you must make the source-code
changes required to resolve them.

See Section 2.1.1 for descriptions of the infrastructure changes that can affect your applications
and more information about how to handle them.

3. Refer to Chapter 3 for information about the data structure fields, routines, macros, and system da-
ta cells obviated by OpenVMS Alpha Version 7.0 that might affect privileged-code applications.

4. Once your application recompiles and relinks without errors, you can enhance it to take advantage
of the OpenVMS Alpha Version 7.0 features described in ??7?.

2.1.1. Summary of Infrastructure Changes

This section summarizes OpenVMS Alpha Version 7.0changes to the kernel that may require source
changes in customer-written drivers and inner-mode software. The recommendations in bold face type
indicate how each change can be handled.

» Page tables have moved from the balance set slots to page table space. (Compile and link the ap-
plication.)

* The global page table has moved from S0/S1 space to S2 space. (Compile and link the applica-
tion.)

* The PFN database has moved from S0/S1 space to S2 space. (Compile C applications. Inspect
MACRO applications for changes that might not cause warning messages. Link all applica-
tions.)

* PFN database entry format has changed. (Compile and link the application.)

Chapter 2. Upgrading Privileged Software to OpenVMS Alpha Version 7.0

Routines MMGS$IOLOCK and MMGSUNLOCK are obsolete and are replaced by MMG_STD
$IOLOCK_BUF and DIOBM. (Compile and link the application.)

A buffer locked for direct I/O is now described by SVAPTE, BOFF, BCNT, and a DIOBM.

Be aware of code that clears IRPSL._SVAPTE to keep a buffer locked even after the IRP is reused
or deleted. (Inspect the code for changes.)

A single IRPE can only be used to lock down a single region of pages. (Compile and link the ap-
plication.)

Some assumptions about I/O structure field adjacencies may no longer be true; for example, IRP
$L_QIO_P1 and IRPSL_QIO_P2 are now more than 4 bytes apart. (Compile, link, inspect the
code.)

The IRPSL_AST, IRPSL._ASTPRM, and IRPSL_IOSB cells have been removed.(Compile and
link the application.)

Two types of ACBs; an IRP is always in ACB64 format.(Compile, link, inspect the code.)

MMGSSVAPTECHK can longer be used for PO/P1 addresses. In addition, P2/S2 are not allowed;
only SO/S1 are supported. (Inspect the code.)

Two types of buffer objects; buffer objects can be mapped into S2 space. (Inspect the code.)

The remaining sections in this chapter contain more details about these changes.

Important

All device drivers, VCI clients, and inner-mode components must be recompiled and relinked to run
on OpenVMS Alpha Version 7.0.

2.1.2. Changes Not Identified by Warning Messages

A few necessary source changes might not always be immediately identified by compile-time or link-
time warnings. Some of these are:

Pointers to a PFN database entry are now 64-bits wide. If you save or restore them, you must pre-
serve the full 64 bits of these pointers.

The MMG[STD]$SVAPTECHK routine can handle only S0/S1 addresses. If you pass it an ad-
dress in any other space, such as PO, it will declare a bugcheck.

The various SCHS routines that put a process (now kernel thread) into a wait state now require the
KTB instead of the PCB.(This is not a 64-bit change, but it could affect drivers OpenVMS Alpha
Version 7.0 device drivers.)

2.2. 1/0 Changes

This section describes OpenVMS Alpha Version 7.0 changes to the I/O subsystem that might require
source changes to device drivers.

Chapter 2. Upgrading Privileged Software to OpenVMS Alpha Version 7.0

2.2.1. Impact of IRPE Data Structure Changes

As described in Section A.9, the I/O Request Packet Extension (IRPE) structure now manages a single
additional locked-down buffer instead of two. The general approach to deal with this change is to use
a chain of additional IRPE structures.

Current users of the IRPE may be depending on the fact that a buffer locked for direct I/O could be
fully described by the i r p$l _svapte,irp$l _boff,andir p$l _bcnt values. For example, it
is not uncommon for an IRPE to be used in this fashion:

1. The second buffer that will be eventually associated with the IRPE is locked first by calling EX-
E STDSREADLOCK with the IRP.

2. Theirp$l _svapte,irp$l _boff,andirp$l _bcnt values are copied from the IRP in-
to the IRPE. The i r p$l _svapt e cell is then cleared. The locked region is now completely de-
scribed by the IRPE.

3. The first buffer is locked by calling EXE STDSREADLOCK with the IRP again.

4. A driver-specific error callback routine is required for the EXE STDSREADLOCK calls. This er-
ror routine calls MMG_STD$UNLOCK to unlock any region associated with the IRP and deallo-
cates the IRPE.

This approach no longer works correctly. As described in Appendix A, the DIOBM structure that is
embedded in the IRP will be needed as well. Moreover, it may not be sufficient to simply copy the
DIOBM from the IRP to the IRPE. In particular, the i r p$l _svapt e may need to be modified if the
DIOBM is moved.

The general approach to this change is to lock the buffer using the IRPE directly. This approach is
shown in some detail in the following example:

i rpe->irpe$b_type = DYN$C | RPE; (1]
irpe->irpe$l _driver_p0 = (int) irp; (2]

status = exe_std$readl ock(irp, pcb, uch, ccb, (3]
bufl, bufl len, lock err_rtn @);
i f(!$VME_STATUS SUCCESS(status)) return status;

irpe->irpe$b_rmod = irp->irp$b_rnod; ©

status = exe_std$readl ock((IRP *)irpe, pcb, uch, cch, (6]
buf2, buf2 len, lock err_rtn);

i f(!$VM5_STATUS SUCCESS(status)) return status;

©® The IRPE needs to be explicitly identified as an IRPE because the error callback routine depends
on being able to distinguish an IRP from an IRPE.

® The IRPE needs to contain a pointer to the original IRP for this I/O request for potential use by
the error callback routine. Here, a driver-specific cell in the IRPE is used.

® The first buffer is locked using the IRP.

0 IfEXE STDSREADLOCK cannot lock the entire buffer into memory, the following occurs:

a. The error callback routine, LOCK_ERR_RTN, is invoked.

b. Depending on the error status, either the I/O is aborted or backed out for automatic retry. In
any event, the IRP is deallocated.

c¢. EXE STDSREADLOCK returns the SS§ FDT COMPL warning status.

Chapter 2. Upgrading Privileged Software to OpenVMS Alpha Version 7.0

© The caller's access mode must be copied into the IRPE in preparation for locking the second
buffer using the IRPE.

O The second buffer is locked using the IRPE. If this fails, the error callback routine LOCK ER-
R_RTN is called with the IRPE.

This approach is easily generalized to more buffers and IRPEs. The only thing omitted from this ex-
ample is the code that allocates and links together the IRPEs. The following example shows the asso-
ciated error callback routine in its entirety;it can handle an arbitrary number of IRPEs.

void lock_err_rtn (IRP *const lock_irp, @
PCB *const pcb, UCB *const ucb, CCB *const cch,
const int errsts,
IRP **real _irp_p ®)

{
IRP *irp;
if(lock_irp->irp$b_type == DYN$C | RPE)
irp = (IRP *) ((IRPE *)lock_irp)->irpe$l _driver_p0; ©
el se
irp = lock_irp;
exe_std$l ock_err_cleanup (irp); O
*real _irp_p =irp;, ©
return;
}

©® Thel ock_i r p parameter can be either an IRP or an IRPE, depending on the data structure that
was used with EXE STDSREADLOCK.

® Before returning from this error callback routine, you must provide the original IRP via the r e-
al _i r p_p parameter so that the I/O can be properly terminated.

©® Ifthis routine has been passed an IRPE, a pointer to the original IRP from the i r pe$l _dri -
ver _pO0 cell is obtained because it was explicitly placed there.

O The new EXE STDSLOCK ERR CLEANUP routine does all the needed unlocking and deallo-
cation of IRPEs.

® Provide the address of the original IRP to the caller.

2.2.2. Impact of MMG_STDS$IOLOCK, MMG_STD$UN-
LOCK Changes

The interface changes to the MMG_STDS$IOLOCK and MMG_STD$UNLOCK routines are de-
scribed in Appendix B.The general approach to these changes is to use the corresponding replacement
routines and the new DIOBM structure.

2.2.2.1. Direct I/0 Functions

OpenVMS device drivers that perform data transfers using direct I/O functions do so by locking the
buffer into memory while still in process context, that is,in a driver FDT routine. The PTE address

of the first page that maps the buffer is obtained and the byte offset within the page to the start of the
buffer is computed. These values are saved in the IRP (i r p$l _svapt e andi r p$l _bof f). The
rest of the driver then uses values in the i r p$l _svapt e andi r p$l _bof f cells and the byte count
ini rp$l _bcnti n order to perform the transfer. Eventually when the transfer has completed and the
request returns to process context for I/O post-processing,the buffer is unlocked using the i r p$l _s-
vapt e value and not the original process buffer address.

To support 64-bit addresses on a direct I/O function, one only needs to ensure the proper handling of
the buffer address within the FDT routine.

Chapter 2. Upgrading Privileged Software to OpenVMS Alpha Version 7.0

Almost all device drivers that perform data transfers via a direct I/O function use OpenVMS-supplied
FDT support routines to lock the buffer into memory. Because these routines obtain the buffer address
either indirectly from the IRP or directly from a parameter that is passed by value,the interfaces for
these routines can easily be enhanced to support 64-bit wide addresses.

However, various OpenVMS Alpha memory management infrastructure changes made to support 64-
bit addressing have a potentially major impact on the use of the 32-biti r p$l _svapt e cell by de-
vice drivers prior to OpenVMS Alpha Version 7.0.In general, there are two problems:

1. It takes a full 64-bits to address a process PTE in page table space.

2. The 64-bit page table space address for a process PTE is only valid when in the context of that
process. This is also known as the "cross-process PTE problem.

In most cases, both of these PTE access problems are solved by copying the PTEs that map the buffer
into nonpaged pool and setting i r p$l _svapt e to point to the copies. This copy is done immedi-
ately after the buffer has been successfully locked. A copy of the PTE values is acceptable because
device drivers only read the PTE values and are not allowed to modify them. These PTE copies are
held in a new nonpaged pool data structure, the Direct I/O Buffer Map (DIOBM) structure. A stan-
dard DIOBM structure (also known as a fixed-size primary DIOBM) contains enough room for a vec-
tor of 9 (DIOBMS$K PTECNT FIX) PTE values. This is sufficient for a buffer size up to 64K bytes
on a system with8 KB pages. It is expected that most I/O requests are handled by this mechanism and
that the overhead to copy a small number of PTEs is acceptable, especially given that these PTEs have
been recently accessed to lock the pages.

The standard IRP contains an embedded fixed-size DIOBM structure. When the PTEs that map a
buffer fit into the embedded DIOBM,the i r p$l _svapt e cell is set to point to the start of the PTE
copy vector within the embedded DIOBM structure in that IRP.

If the buffer requires more than 9 PTEs, then a separate “secondary” DIOBM structure that is vari-
ably-sized is allocated to hold the PTE copies. If such a secondary DIOBM structure is needed, it is
pointed to by the original, or “primary” DIOBM structure. The secondary DIOBM structure is deal-
located during I/O post-processing when the buffer pages are unlocked. In this case, the i r p$l _s-
vapt e cell is set to point into the PTE vector in the secondary DIOBM structure. The secondary
DIOBM requires only 8 bytes of nonpaged pool for each page in the buffer. The allocation of the sec-
ondary DIOBM structure is not charged against the process BY TLM quota,but it is controlled by the
process direct I/O limit (DIOLM).This is the same approach used for other internal data structures
that are required to support the I/O, including the kernel process block,kernel process stack, and the
IRP itself.

However, as the size of the buffer increases, the run-time overhead to copy the PTEs into the DIOBM
becomes noticeable. At some point it becomes less expensive to create a temporary window in S0/S1
space to the process PTEs that map the buffer. The PTE window method has a fixed cost, but the cost
is relatively high because it requires PTE allocation and TB invalidates. For this reason, the PTE win-
dow method is not used for moderately sized buffers.

The transition point from the PTE copy method with a secondary DIOBM to the PTE window method
is determined by a new system data cell, i oc$gl _di obm pt ecnt _max, which contains the max-
imum desirable PTE count for a secondary DIOBM. The PTE window method will be used if the
buffer is mapped by more than i oc$gl _di obm pt ecnt _nmax PTEs.

When a PTE window is used, i r p$l _svapt e is set to the S0/S1 virtual address in the allocated
PTE window that points to the first PTE that maps the buffer. This S0/S1 address is computed by tak-
ing the S0/S1 address that is mapped by the first PTE allocated for the window and adding the byte

Chapter 2. Upgrading Privileged Software to OpenVMS Alpha Version 7.0

offset within page of the first buffer PTE address in page table space. A PTE window created this way
is removed during I/O post-processing.

The PTE window method is also used if the attempt to allocate the required secondary DIOBM struc-
ture fails due to insufficient contiguous nonpaged pool. With an 8 Kb page size, the PTE window re-
quires a set of contiguous system page table entries equal to the number of 8 Mb regions in the buffer
plus 1.Failure to create a PTE window as a result of insufficient SPTEs is unusual. However, in the
unlikely event of such a failure,if the process has not disabled resource wait mode,the $QIO request
is be backed out and the requesting process is put into a resource wait state for nonpaged pool (RSN
$§ NPDYNMEM).When the process is resumed, the I/O request is retried. If the process has disabled
resource wait mode, a failure to allocate the PTE window results in the failure of the I/O request.

When the PTE window method is used,the level-3 process page table pages that contain the PTEs that
map the user buffer are locked into memory as well. However, these level-3 page table pages are not
locked when the PTEs are copied into nonpaged pool or when the SPT window is used.

The new IOC_STDSFILL DIOBM routine is used to set i r p$l _svapt e by one of the previously
described three methods. The OpenVMS-supplied FDT support routines EXE_ STD$SMODIFYLOCK,
EXE STDSREADLOCK, and EXE STD$WRITELOCK use the IOC_STDS$FILL DIOBM routine
in the following way:

1. The buffer is locked into memory by calling the new MMG_STDS$IOLOCK BUF routine. This
routine returns a 64-bit pointer to the PTEs and replaces the obsolete MMG_STDS$IOLOCK rou-
tine.

status = my_st d$i ol ock_buf (buf_ptr, bufsiz, is_read, pcb, &rp->irp
$pg_vapt e,

& rp->i rp$Sps_fdt_context->fdt_context
$g_gio_r1_val ue);

For more information about this routine, see Section B.17.

2. A value for the 32-biti r p$l _svapt e cell is derived by calling the new IOC_STDS$FIL-
L_DIOBM routine with a pointer to the embedded DIOBM in the IRP, the 64-bit pointer to the
PTEs that was returned by MMG_STDSIOLOCK BUF, and the address of the i r p$l _svapt e
cell.

status = ioc_std$fill_di obm (& rp->irp$r_diobm irp->irp$pg_vapte,
pt e_count,
DI OBMBM_NORESWAI T, & rp->irp$l _svapte);

The DIOBM structure is fully described in Section A.6 and this routine is described in Sec-
tion B.10.

Device drivers that call MMG_STDS$IOLOCK directly will need to examine their use of the returned
values and might need to call the IOC_STDS$SFILL DIOBM routine.

2.2.3. Impact of MMG_STD$SVAPTECHK Changes

Prior to OpenVMS Alpha Version 7.0,the MMG_STD$SVAPTECHK and MMGS$SVAPTECHK rou-
tines compute a 32-bit svapt e for either a process or system space address. As of OpenVMS Alpha
Version 7.0, these routines are restricted to an SO/S1 system space address and no longer accept an ad-
dress in PO/P1 space. The MMG_STD$SVAPTECHK and MMGSSVAPTECHK routines declare a
bugcheck for an input address in PO/P1 space. These routines return a 32-bit system virtual address
through the SPT window for an input address in S0/S1 space.

Chapter 2. Upgrading Privileged Software to OpenVMS Alpha Version 7.0

The MMG_STD$SVAPTECHK and MMGS$SVAPTECHK routines are used by a number of Open-
VMS Alpha device drivers and privileged components. In most instances, no source changes are re-
quired because the input address is in nonpaged pool.

The 64-bit process-private virtual address of the level 3 PTE that maps a PO/P1 virtual address can be
obtained using the new PTE_ VA macro. Unfortunately, this macro is not a general solution because it
does not address the cross-process PTE access problem. Therefore, the necessary source changes de-
pend on the manner in which the svapt e output from MMG STD$SVAPTECHK is used.

The INIT_CRAM routine uses the MMGS$SVAPTECHK routine in its computation of the physical ad-
dress of the hardware I/O mailbox structure within a CRAM that is in PO/P1 space. If you need to ob-
tain a physical address,use the new IOC_STD$VA _TO_PA routine.

If you call MMGS$SVAPTECHK and IOC$SVAPTE TO_PA, use the new IOC_STD$VA TO PA
routine instead.

The PTE address in dcb$l _svapt e must be expressible using32 bits and must be valid regardless
of process context. Fortunately, the caller's address is within the buffer that was locked down earlier

in the CONV_TO _DIO routine via a call to EXE STD$WRITELOCK and the EXE STDSWRITE-
LOCK routine derived a value for the i r p$l _svapt e cell using the DIOBM in the IRP. Therefore,
instead of calling the MMGS$SVAPTECHK routine, the BUILD DCB routine has been changed to
call the new routine EXE_STD$SVAPTE IN BUF, which computes a value for the dcb$l _svapt e
cell based on the caller's address,the original buffer address in the i r p$l _qi o_p1 cell,and the ad-
dress in the i r p$l _svapt e cell.

2.2.4. Impact of PFN Database Entry Changes

There are changes to the use of the PFN database entry cells containing the page reference count and
back link pointer.

For more information, see Section 2.3.6.

2.2.5. Impact of IRP Changes

All source code references to the i r p$l _ast,irp$l _astprmandir p$l _i osb cells have been
changed. These IRP cells were removed and replaced by new cells.

For more information, see Appendix A.

2.3. General Memory Management Infrastruc-
ture Changes

This section describes OpenVMS Alpha Version 7.0 changes to the memory management subsystem
that might affect privileged-code applications.

For complete information about OpenVMS Alpha support for 64-bit addresses,see the ?77?.

2.3.1. Location of Process Page Tables

The process page tables no longer reside in the balance slot. Each process references its own page ta-
bles within page table space using 64-bit pointers.

Chapter 2. Upgrading Privileged Software to OpenVMS Alpha Version 7.0

Three macros (located in VMS_MACROS.H in SYSSLIBRARY:SYSSLIB_C.TLB)are available to
obtain the address of a PTE in Page Table Space:

* PTE VA — Returns level 3 PTE address of input VA
* L2PTE VA — Returns level 2 PTE address of input VA
 LIPTE VA — Returns level 1 PTE address of input VA

Two macros (located in SYSSLIBRARY:LIB.MLB) are available to map and unmap a PTE in another
process's page table space:

* MAP PTE — Returns address PTE through system space window.
*+ UNMAP_PTE — Clears mapping of PTE through system space window.

Note that use of MAP_PTE and UNMAP_PTE requires the caller to hold the MMG spinlock across
the use of these macros and that UNMAP_PTE must be invoked before another MAP_PTE can be is-
sued.

2.3.2. Interpretation of Global and Process Section Ta-
ble Index

As of OpenVMS Alpha Version 7.0, the global and process section table indexes,stored primarily in

the PHD and PTEs, have different meanings. The section table index is now a positive index into the
array of section table entries found in the process section table or in the global section table. The first
section table index in both tables is now 1.

To obtain the address of a given section table entry, do the following:
1. Add the PHD address to the value in PHDSL PST BASE OFFSET.
2. Multiply the section table index by SEC$C LENGTH.

3. Subtract the result of Step 2 from the result of Step 1.

2.3.3. Location of Process and System Working Set
Lists

The base address of the working set list can no longer be found within the process PHDor the system
PHD. To obtain the address of the process working set list,use the 64-bit data cell CTL$GQ WSL To
obtain the address of the system working set list,use the 64-bit data cell MMGS$GQ SYSWSL.

Note that pointers to working set list entries must be 64-bit addresses in order to be compatible with
future versions of OpenVMS Alpha after Version 7.0.

2.3.4. Size of a Working Set List Entry

Each working set list entry (WSLE) residing in the process or the system working set list is now 64
bits in size. Thus, a working set list index must be interpreted as an index into an array of quadwords
instead of an array of longwords, and working set list entries must be interpreted as 64 bits in size.
Note that the layout of the low bits in the WSLE is unchanged.

10

Chapter 2. Upgrading Privileged Software to OpenVMS Alpha Version 7.0

2.3.5. Location of Page Frame Number (PFN) Database

Due to the support for larger physical memory systems in OpenVMS Alpha Version 7.0, the PFN
database has been moved to S2 space, which can only be accessed with 64-bit pointers. Privileged
routine interfaces within OpenVMS Alpha that pass PFN database entry addresses by reference have
been renamed to force compile-time or link-time errors.

Privileged code that references the PFN database must be inspected and possibly modified to ensure
that 64-bit pointers are used.

2.3.6. Format of PFN Database Entry

The offset PFN$SL_REFCNT in the PFN database entry has been replaced with a different-sized offset
that is packed together with other fields in the PFN database.

References to the field PFNSL REFCNT should be modified to use the following macros (located in
PFN_MACROS.H within SYSSLIBRARY:SYSSLIB C.TLB).

¢ INCREF — Increments the PFN's reference count.
¢ DECREF — Decrements the PFN's reference count.

As of OpenVMS Alpha Version 7.0, the offset PENSL PTE in the PFN database entry has been re-
placed with a new PTE backpointer mechanism. This mechanism can support page table entries that
reside in 64-bit virtual address space.

References to the field PENSL PTE should be modified to use one of the following macros (located
in PFN. MACROS.H within SYSSLIBRARY:SYSSLIB C.TLB).

* ACCESS BACKPOINTER — Accepts a PFN database entry address, and returns a virtual ad-
dress at which you may access the PTE that maps that PFN.

+ ESTABLISH BACKPOINTER — Replaces a write of a PTE address to PENSL_PTE.
* TEST BACKPOINTER — Replaces a test for zero in PFNSL PTE.

Note that pointers to PFN database entries must be 64 bits.

2.3.7. Process Header WSLX and BAK Arrays

Prior to OpenVMS Alpha Version 7.0, the process header contained two internal arrays of information
that were used to help manage the balance slot contents (specifically, page table pages) during process
swapping. These two arrays, along with the working set list index (WSLX)and backing storage (BAK)
arrays, no longer are required for page table pages.

The swapper process now uses the upper-level page table entries and the working set list itself to man-
age the swapping of page table pages. A smaller version of the BAK array, now used only for back-
ing storage information for balance slot pages, is located at the end of the fixed portion of the process
header at the offset PHD$Q BAK ARRAY.

2.3.8. Free S0/S1 System Page Table Entry List

The format of a free page table entry in S0/S1 space has been changed to use index values from the
base of page table space instead of the base of SO/S1 space. The free SO/S1 PTE list also uses page ta-
ble space index values. The list header has been renamed to LDR$GQ FREE S0S1_PT.

Chapter 2. Upgrading Privileged Software to OpenVMS Alpha Version 7.0

2.3.9. Location of the Global Page Table

In order to support larger global sections and larger numbers of global sections in OpenVMS Alpha
Version 7.0, the global page table has been moved to S2 space, which can be accessed only with 64-
bit pointers.

Privileged code that references entries within GPT must be inspected and possibly modified to ensure
that 64-bit pointers are used.

2.3.10. Free Global Page Table Entry List

The format of the free GPT entry has been changed to use index values from the base of the global
page table instead of using the free pool list structure. The free GPT entry format is now similar to the
free SO/S1 PTE format.

Note that pointers to GPT entries must be 64 bits.

2.3.11. Region Descriptor Entries (RDEs)

As of OpenVMS Alpha Version 7.0, each process virtual addressing region is described by a region
descriptor entry (RDE). The program region (P0) and control region (P1) have region descriptor en-
tries that contain attributes of the region and describe the current state of the region. The program re-
gion RDE is located at offset PHD$SQ PO RDE within the process's PHD. The control region RDE is
located at offset PHD$Q P1 RDE, also within the process's PHD.

Many internal OpenVMS Alpha memory management routines accept a pointer to the region's RDE
associated with the virtual address also passed to the routine.

The following two functions (located in MMG_FUNCTIONS.H in SYSSLIBRARY:SYSS$LIB C.TL-
B)are available to obtain the address of an RDE:

* S$lookup rde va — Returns the address of the RDE given a virtual address.

* S$lookup rde id — Returns the address of the RDE given the region id.

2.4. Kernel Threads Changes

This section describes the OpenVMS Alpha kernel threads features that might require changes to priv-
ileged-code applications.

2.4.1. The CPUSL_CURKTB Field

The CPUSL_CURKTB field in the CPU databases contains the current kernel thread executing on that
CPU. If kernel-mode codes own the SCHED spinlock, then the current KTB address can be obtained
from this field. Before kernel threads implementation, this was the current PCB address.

2.4.2. Mutex Locking

No changes are necessary to kernel-mode code that locks mutexes. All of SCH$LOCK*, SCH$UN-
LOCK*, and SCH$IOLOCK* routines determine the correct kernel thread if it must wait because the
mutex is already owned.

12

Chapter 2. Upgrading Privileged Software to OpenVMS Alpha Version 7.0

2.4.3. Scheduling Routines

Code that calls any of the scheduling routines that previously took the current PCB as a parameter
must be changed to pass the current KTB. These scheduling routines are as follows:

EXESKERNEL WAIT SCH$WAIT _PROC
EXESKERNEL WAIT PS SCHSUNWAIT
SCHSRESOURCE_WAIT RPTEVT macro
SCH$RESOURCE_WAIT _PS SCH$REPORT EVENT
SCH$RESOURCE_WAIT SETUP SCH$CHANGE_CUR_PRIORITY
SCHS$CHSE SCH$REQUIRE_CAPABILITY
SCH$CHSEP SCH$RELEASE CAPABILITY

Code that calls any of the scheduling routines that previously took the process PID as a parameter
must be changed to pass the thread's PID. These scheduling routines are as follows:

SCHS$POSTEF SCHSWAKE

2.4.4. New MWAIT State

A thread that is waiting for ownership of the inner-mode semaphore may be put into MWAIT. The
KTBSL EFWM field contains a process-specific MWAIT code. The low word of the field contains
RSN$ INNER MODE, and the upper word contains the process index from the PID.

2.4.5. System Services Dispatching

The system services dispatcher has historically passed the PCB address to the inner-mode services.
This is still true with kernel threads. The current KTB is not passed to the services.

2.4.6. Asynchronous System Traps (ASTs)

The ACBSL_PID field in the ACB should represent the kernel thread to which the AST is targeted.
All other AST context is the same.

Inner-mode ASTs can be delivered on whichever kernel thread is currently in inner mode. ASTs that
have the ACBSV_THREAD_ SAFE bit set will always be delivered to the targeted thread, regardless
of other-inner mode activity. Use extreme care if this is used. Attempted thread-safe AST delivery to a
kernel thread that has been deleted is delivered to the initial thread.

2.4.7. TB Invalidation and Macros

With the kernel threads implementation, the address space for a process can be active on multiple
CPUs at the same time. Any privileged code that creates or deletes process virtual address space “by
hand” must do the proper invalidation across all CPUs. A set of macros have been created for BLISS,
C, and MACRO-32 to facilitate translation buffer invalidation. The macros are as follows:

« TBI DATA 64

* TBI SINGLE

Chapter 2. Upgrading Privileged Software to OpenVMS Alpha Version 7.0

« TBI ALL

Table 2.1 describes the arguments for the TBI DATA 64 and TBI_SINGLE macros. Note that the
difference between TBI DATA 64 and TBI SINGLE is that the former invalidates an entry from the
data translation buffer only, while the latter invalidates an entry from both the data and the instruction

translation buffers.

Table 2.1. Arguments for TBI_DATA_64 and TBI_SINGLE

Keyword

Value

Meaning

ADDR

= The virtual address to be
invalidated. The address can
be either a 64-bit VA or a
sign-extended 32-bit VA. For
MACRO-32, the address must
be specified in a register.

ENVIRON

= THIS_CPU_ONLY

Indicates that this invocation of
TBIS is to be executed strictly
within the context of the local
CPU only. Thus,no attempt is
made whatsoever to extend the
TBIS request to any CPU or oth-
er “processor” that might exist
within the system.

= ASSUME PRIVATE

Indicates that this is a threads
environment and that the address
should be treated as a private ad-
dress and not be checked. There-
fore, in an SMP environment, it
is necessary to do the invalidate
to other CPUs that are running a
kernel thread from this process.
This argument is used for system
space addresses that should be
treated as private to the process.

= ASSUME_SHARED

Indicates that this invocation
of TBIS should be broadcast to
all other CPUs in the system.
ASSUME_SHARED is the op-
posite of THIS CPU_ONLY.

=LOCAL

This is now obsolete and gener-
ates an error.

= anything other than the above

Forces the TB invalidate to be
extended to all components of
the system that may have cached
PTEs.

PCBADDR

= Address of current process
control block. Default is
NO_PCB, which means that a
PCB address does not need to be

This argument must be speci-
fied if the address to be invali-
dated is process-private (either
ENVIRON=ASSUME_ PRI-
VATE or no keyword for the

14

Chapter 2. Upgrading Privileged Software to OpenVMS Alpha Version 7.0

Keyword

Value

Meaning

specified. The default is R31 for
the MACRO-32 macros.

ENVIRON qualifier was speci-
fied).

Table 2.2 describes the arguments for the TBI_ALL macro.

Table 2.2. Arguments for TBI_ALL

Keyword

Value

Meaning

ENVIRON

=THIS_CPU ONLY

Indicates that this invocation

of TBI_ALL is to be executed
strictly within the context of the
local CPU. No attempt is made
to extend the TBIA request to
any CPU or other “processor”
that might exist within the sys-
tem.

=LOCAL

This is now obsolete and gener-
ates an error.

= anything other than the above

Forces the TB invalidate to be
extended to all components of
the system that may have cached
PTEs.

2.4.8. New PCB/KTB Fields

Table 2.3 shows the new PCB and KTB fields as defined by PCBDEF.

Table 2.3. New PCB/KTB Fields

Field

Meaning

PCB$SK_MAX KT COUNT

Maximum number of kernel threads

PCBSL_ACTIVE CPUS

CPUs owned by this process

PCBSL TQUANTUM

Per-user thread quantum

PCBSL MULTITHREAD

Maximum thread count

PCBSL KT COUNT

Current thread count

PCBSL KT HIGH

Highest KTB vector entry used

PCBSL_KTBVEC

KTB vector address

PCBSL_IM_ASTQFL_SPK

Special kernel AST queue forward link (head)

PCBSL IM ASTQBL SPK

Special kernel AST queue back link (tail)

PCBSL IM_ASTQFL K

Kernel AST queue forward link (head)

PCBSL IM_ASTQBL K

Kernel AST queue back link (tail)

PCBSL IM_ASTQFL E

Executive AST queue forward link (head)

PCBSL IM ASTQBL E

Executive AST queue back link (tail)

PCBSL_INITIAL KTB

Initial KTB, overlays KTBSL PCB

KTBSL PCB

PCB address, overlays PCBSL INITIAL KTB

Chapter 2. Upgrading Privileged Software to OpenVMS Alpha Version 7.0

Field Meaning

KTBSL FRED Address of FRED block

KTBSL PER KT AREA Address of per-kernel thread data area
KTBSL TQUANT Remaining per-user thread quantum
KTBSL QUANT Remaining per-kernel thread quantum
KTBSL TM CALLBACKS Address of thread manager callback vector

2.4.9. CTL$SAL_STACK and CTL$AL_STACKLIM

The two arrays containing stack bounds information are now quadwords. The arrays are now CTL
$AQ STACK and CTLSAQ STACKLIM and are still indexed by access mode. The entries are
QUADWORDS.

The arrays pointed to by these two data cells represent only the stack pointers for the initial kernel
thread. For a process with multiple kernel threads, the stack arrays are in the per-kernel thread da-

ta area. The address of this structure can be found using the KTBSL PER KT AREA field. These
fields are defined in PKTADEF. The initial thread has a permanent per-kernel thread, so no distinc-
tion is needed between the initial thread and other threads when accessing this data. Table 2.4 shows
the stack arrays.

Table 2.4. Stack Arrays

Array Meaning
PKTA$Q STACK STACK pointer array
PKTA$Q STACKLIM STACK limit pointer array

2.4.10. Floating-Point Register and Execution Data
Blocks (FREDs)

The FRED is defined by FREDDEF. The KTBSL FRED field in the KTB points to the FRED block.
The section of the PHD that contains the HWPCB and floating-point register save area for the initial
thread is identical to the layout of the FRED. Therefore, no distinction is needed between the initial
thread and other threads when accessing this data.

2.5. Registering Images That Have Version
Dependencies

Note

The information in this section does not apply to device drivers, nor to any images that reference the
following data structures:

BOD
CDRP
CXB
DCBE
FDT
IRP

16

Chapter 2. Upgrading Privileged Software to OpenVMS Alpha Version 7.0

IRPE
PFN
PHD
UCB
VCRP

The need for change in any image (including device drivers,as well as privileged applications linked
against SYS$BASE IMAGE.EXE) is normally detected by a system version check. That check is de-
signed to prevent an application that may need change from producing incorrect results or causing
system failures.

The version checks do not necessarily mean that the applications require any change. VSI recom-
mends that you perform some analysis to determine compatibility for privileged images before you
run them on Version 7.0systems.

OpenVMS Alpha Version 7.0 provides an Image Registry facility that may obviate the need for re-
linking images when you upgrade from previous versions of OpenVMS Alpha. The Image Registry is
a central registry of images (including layered products, customer applications, and third-party soft-
ware) that have version dependencies but have been identified as being compatible with the Open-
VMS operating system software. The products in the registry are exempted from version checking.

The Image Registry facility has several benefits, particularly when you have only image files, not
source or object files. In addition, it eases version compatibility problems on mixed-version clusters
because the same images can be used on all nodes. It also simplifies the addition of third-party soft-
ware and device drivers to the system.

The registry is a file that contains registered images. These images include main images (images that

you can run directly), shared libraries, and device drivers that are identified byname, the image iden-

tification string, and the link time of the image. The registered images bypass normal system version

checking in the INSTALL,system image loader, and image activator phases. With the Image Registry
facility, images for different versions of applications can be registered independently.

Images linked as part of installation need not be registered because they match the version of the run-
ning system. However, linking during installation cannot ensure the absence of system version depen-
dencies.

2.5.1. Version Identification (ID) Number Change to
Three Subsystems

The OpenVMS executive defines 18 logical subsystems. Each of these subsystems contains its own
version identification (ID)number. This modularization makes it possible for OpenVMS releases to
include changes to a portion of the executive, impacting only those privileged programs which use
that portion of the executive.

For OpenVMS Alpha Version 7.0, the following 3 subsystems have changed,and their version IDs
have been incremented:

I/0
Memory Management
Process Scheduling

Developers should check privileged code (that is, any image linked against the system symbol table
SYS$BASE IMAGE.EXE) to determine whether the image is affected by the changes to the subsys-
tems. If the code is affected, the developer should make any necessary changes.

Chapter 2. Upgrading Privileged Software to OpenVMS Alpha Version 7.0

18

Chapter 3. Replacements for
Removed Privileged Symbols

This chapter describes the closest equivalent mechanism to a number of internal routines, data struc-
ture cells, and system data cells that have been removed in OpenVMS Alpha Version 7.0.

Each table lists the previous name, any replacements, and a brief explanation.

Important

The internal data structure fields,routines, macros, and data cells described in this chapter should not
be interpreted as being part of the documented interfaces that drivers or other privileged software

should routinely depend on.

If you were using the removed mechanism correctly, this chapter will assist you in using the closest
equivalent in OpenVMS Alpha Version 7.0.However, you should not use this as an opportunity to
start using these mechanisms. Doing so is likely to increase the work required to maintain compatibili-

ty of your privileged software with future releases of OpenVMS.

3.1. Removed Date Structure Fields

Table 3.1 lists the data structure fields that have been removed as of OpenVMS Alpha Version 7.0.

Table 3.1. Removed Date Structure Fields

Removed Field

Replacement

Comments

BODSL BASEPVA

BOD$PQ BASEPVA

64-bit process virtual address of
buffer mapped by the buffer ob-
ject. See Appendix A.

CDRPSL_AST cdrp$pq_acb64 ast Increased to a quadword and re-
named.

CDRPSL_ASTPRM CDRP$SQ_A See Appendix A.

CDRPS$L_IOSB CDRP$PQ IOSB See Appendix A.

CPTSL IOVA CPTS$PQ IOVA Increased to a quadword and re-
named.

DMPS$M BITS 12 15 Still have this field. Same value.

DMPS$S BITS 12 15 Still have this field. Same value.

DMP$V_BITS 12 15 Still have this field. Same value.

DYNSC F64 F64DATA TBS—Dollar

DYNSC NET TIM_TEB

DYNSC NET TIM_NTEB

Renamed because the DECnet
structure it indicates (network

timer element block) was re-
named from TEB to NTEB.

FDT_CON-
TEXTS$L_QIO R1_VALUE

FDT_CON-
TEXT$Q QIO R1_VALUE

See Appendix A.

IRPSL_AST

IRPSPQ ACB64 AST

Removed to ensure that any ref-
erence to the $QIO

Chapter 3. Replacements for Removed Privileged Symbols

Removed Field

Replacement

Comments

ast adr
via a 32-bit addressand
astprm

as a 32-bit value aredetected at
compile-time or link-time.

IRPSL_ASTPRM

IRP$SQ ACB64 ASTPRM

Removed to ensure that any ref-
erence to the $QIO

ast adr
via a 32-bit addressand
astprm

as a 32-bit value aredetected at
compile-time or link-time.

IRPSL_IOSB

IRP$SPQ I0SB

Removed to ensure that any ref-
erence to the $QIO

i osb

via a 32-bit address isdetected at
compile-time or link-time.

IRPESL BCNTI1 IRPESL BCNT See Appendix A.
IRPESL BCNT2 None. Removed.
IRPESL_BOFF1 IRPESL_BOFF See Appendix A.
IRPESL BOFF2 None. Removed.
IRPESL SVAPTEI IRPESL_SVAPTE

IRPESL_SVAPTE2 None. Removed.

LCKCTXS$SL CPLADR

LCKCTX$PQ CPLADR

Increased in length to quadword.

LCKCTXS$L CPLPRM

LCKCTX$Q_CPLPRM

Increased in length to quadword.

LCKCTXSL_CR3

LCKCTXS$Q CR3

Increased in length to quadword.

LCKCTXS$L CR4

LCKCTX$Q CR4

Increased in length to quadword.

LCKCTXS$L CRS

LCKCTX$Q CR5

Increased in length to quadword.

LCKCTXS$L CRETADR

LCKCTX$PQ_CREADR

Increased in length to quadword.

LCKCTX$L CTX_PRMI

LCKCTX$Q CTX_PRMI

Increased in length to quadword.

LCKCTXSL CTX_PRM2

LCKCTX$Q CTX PRM2

Increased in length to quadword.

LCKCTXSL CTX_PRM3

LCKCTX$Q CTX PRM3

Increased in length to quadword.

LCKCTXS$L _RETI

LCKCTX$PQ RETI

Increased in length to quadword.

LCKCTX$L TMP1

LCKCTX$Q TMPI

Increased in length to quadword.

LKB$C_ACBLEN

Removed.

LKB$SK_ACBLEN

Removed.

LKBSL AST

LKBS$PQ AST

Increased in length to quadword.

20

Chapter 3.

Replacements for Removed Privileged Symbols

Removed Field

Replacement

Comments

LKBSL_ASTPRM

LKB$Q ASTPRM

Increased in length to quadword.

LKBSL BLKASTADR

LKBS$PQ CPLASTADR

Increased in length to quadword.

LKBSL CPLASTADR

LKB$PQ CPLASTADR

Increased in length to quadword.

LKBSL LKSB

LKB$PQ LKSB

Increased in length to quadword.

LKBSL OLDASTPRM

LKB$Q_OLDASTPRM

Increased in length to quadword.

LKBSL OLDBLKAST

LKB$PQ OLDBLKAST

Increased in length to quadword.

LMB$C GBL No name change. Value changed from 2 to 3.
LMBS$C PROCESS No name change. Value changed from 3 to 4.
LMBS$C_S0 LMBS$C_S0S1 Value =1

LMBS$C SPT LMBS$C SPTW Not guaranteed to be in a dump.

LMBSL BAD MEM_END

LMB$PQ BAD MEM END

Supports a 64-bit address.

LMBSL BAD MEM START

LMBS$PQ BAD MEM START

Supports a 64-bit address.

LMBSL_HOLE_START VA

LMB$PQ BAD MEM START

Supports a 64-bit address.

LMBSL_HOLE TO-
TAL PAGES

LMB$Q HOLE_TO-
TAL PAGES

Supports a 64-bit address.

MMGS$C_PTSPACE_OFFSET
MMGS$K_PTSPACE_OFFSET

MMGS$GL L1 _INDEX

Compile-time constant that de-
fined a fixed base address for
page table address space. This
has been replaced by a run-time
mechanism which chooses a
base address for page table ad-
dress space during bootstrap,
with the index of level 1 page ta-
ble entry used to map the page
tables stored in the new data
cell.

PCBSL_ADB_LINK

None

Supported a feature that was
never implemented.

PCBSL PSX ACTPRM

PCB$Q_PSX ACTPRM

Increased in length to quadword.

PCBSL TOTAL EVTAST

None

Supported a feature that was
never implemented.

PFN$C_ENTRY_ SHIFT SIZE

None

The size of a single PFN data-
base entry was formerly a pow-
er of two. As of Version 7.0, that
is no longer true and the symbol
was deleted.

PFNSL_PTE

This offset in the PFN database
was replaced with a new PTE
backpointer mechanism that is
capable of supporting page table
entries that reside in 64-bit virtu-
al address space. Any code that
formerly touched PFNSL PTE
must be recoded to use one of

21

Chapter 3. Replacements for Removed Privileged Symbols

Removed Field

Replacement

Comments

the following macros supplied in
LIB.MLB:

ACCESS BACKPOINTER
ESTABLISH BACKPOINTER
TEST_BACKPOINTER

ACCESS BACKPOINTER

Accepts a PFN database en-

try address and returns a vir-

tual address at which you may
access the PTE that maps that
PFN. This replaces a fetch of

a SVAPTE from PFNSL PTE,
which would subsequently be
used as an operand for a memory
read or write instruction.

ESTABLISH BACKPOINTER

Replaces a write of a SVAPTE
to PFNSL_PTE.

TEST_BACKPOINTER

Replaces a test for zero in PFN
$L PTE.

PFNSL_REFCNT

INCREF DECREF

This offset in the PFN database
was replaced with a different-
ly sized offset that is packed to-
gether with other fields in the
PFN database. The supplied
macro INCREF should be used
to replace any existing increment
of the value in PFNSL_REFC-
NT, while DECREF should be
used to replace any existing
decrement.

PFNSL_WSLX

PFNSL_WSLX QW

This offset was renamed to re-
flect a fundamental change in
working set list indexes. Prior
to Version 7.0, the working set
list index (WSLX) was a long-
word index. The WSLX has be-
come a quadword index as of
Version 7.0, therefore the name
of the offset was changed to fo-
cus attention on existing code
that must be changed to view the
value stored at this offset as a
quadword index rather than as a
longword index.

PHD$C PHDPAGCTX

None

Supported a feature that was
never implemented.

PHD$SL BAK

PHD$L BAK ARRAY

PHDSL BAK contained an off-
set to an internally maintained
array which was used to sup-

22

Chapter 3. Replacements for Removed Privileged Symbols

Removed Field

Replacement

Comments

port swapping of the balance
slot contents. As of Version 7.0,
the implementation of this ar-
ray changed to better accommo-
date the balance slot contents.
PHDS$L BAK was replaced by
PHD$SL BAK ARRRAY which
is the symbolic offset from the
start of the process header to
where this array begins.

PHDSL L2PT VA

L2PTE_VA

This process header offset for-
merly contained the system
space address of the process's
level 2 page table page that was
used to map PO and P1 spaces.
As of Version 7.0, the page ta-
bles no longer reside in the bal-
ance slot, and a process is no
longer limited to having only
one level 2 page table page. This
offset was used to derive ad-
dresses of level 2 page table en-
tries. Use the L2PTE VA macro
to derive from a given VA the
address of the level 2 PTE that
maps that VA.

PHDSL_L3PT VA PHD
SL_L3PT VA Pl

PTE_VA

These process header offsets
formerly contained the system
space addresses of the bases of
the PO and P1 page tables that
resided in the process's balance
slot. As of Version 7.0, the page
tables no longer reside in the
balance slot, and the concep-
tual overlap of the PO and P1
page tables in virtual memory no
longer exists. Use the PTE_VA
macro to derive from a given VA
the address of the level 3 PTE
that maps that VA.

PHDSL POLENGTH

None

Different page table layout.

PHDSL PILENGTH

None

Different page table layout.

PHDSL PSTBASMAX

PHD$SL PST BASE MAX

Contains new-style section in-
dex.

PHDSL PSTBASOFF

PHDSL PST BASE_OFFSET

Name changed.

PHDSL_PSTFREE

PHDSL PST FREE

Contains new-style section in-
dex.

23

Chapter 3.

Replacements for Removed Privileged Symbols

Removed Field

Replacement

Comments

PHDSL_PSTLAST

PHDSL PST LAST

Contains new-style section in-
dex.

PHDSL PTWSLELCK PHD
$L PTWSLEVAL

PFN database

These process header offsets for-
merly contained internal book-
keeping information for man-
aging page table pages for a
process. These have been re-
placed by a bookkeeping mech-
anism that resides in the PFN
database entries for page ta-
ble pages. It is highly unlikely
that anyone is affected by this
change.

PHDSL QUANT

KTBSL QUANT

PHDSL WSL CTL$GQ_WSL You can no longer count on
WSL (data cell) following PHD,
use pointer to WSL in CTL
$GQ_WSL instead.

PHDSL WSLX None WSLX array is no longer in

PHD as a result of the new
swapper design.

PTESL_COUNT

PTESL_FREE_COUNT

Offset to the number of free
PTEs in a free PTE structure.

PTESL_LINK

PTE$Q INDEX

Contains an index to the next
free element in the free PTE list.
The contents of the field is a
quadword index off the base of
page table space. Free system
PTEs and free global PTEs are
linked together in this manner.

PTESM_SINGLE SPTE

PTESM_SINGLE PTE

A mask or flag denoting whether
a free element describes a single
PTE or multiple PTEs.

PTESV_SINGLE_SPTE

None

The contents of a free PTE el-
ement are AND'ed with PTE
$M_SINGLE PTE to determine
whether the element describes a
single PTE.

3.2. Removed Routines

Table 3.2 lists the routines that have been removed as of OpenVMS Alpha Version 7.0.

Table 3.2. Removed Routines

Removed Routine

Replacement

Comments

MMGSALCSTX

MMG_STD$ALCSTX

Returns new-style section index.

24

Chapter 3.

Replacements for Removed Privileged Symbols

Removed Routine

Replacement

Comments

MMGS$ALLOC_PFN_ALGND

MMGS$ALLOC_PFN_AL-
GND_64

MMGSALLOC PFN_AL-
GND_64 should not be called
directly. Instead, use the AL-
LOCPFN macro. Note that 64-
bit virtual addresses are required
to access PFN database entries.

MMGS$ALLOC_ZERO AL-
GND

MMGS$ALLOC_ZERO AL-
GND_64

MMGS$ALLOC_ZERO AL-
GND_ 64 should not be called
directly. Instead, use the AL-
LOC_ZERO_PFN macro. Note
that 64-bit virtual addresses are
required to access PFN database
entries.

MMGS$CREPAG

MMGS$CREPAG 64
MMG_STD$CREPAG 64

Accepts 64-bit addresses and has
3 new inputs: RDE (R12), page
file cache (R13) mmg_flags
(R14). See mmg_routines.h for
STD interface.

MMGS$DALCSTX

MMG_STDSDALCSTX

Accepts new-style section index.

MMGS$DECPTREF

MMG_STD$DECPTRE-
F_PFNDB MMG_STD$DECP-
TREF_GPT

MMGSDECPTREEF expected a
32-bit system space address of a
PTE as an input parameter. Page
table entries are now located in
64-bit addressable memory. This
routine was replaced by two
routines: MMG_STD$DECP-
TREF PFNDB and MMG_STD
$DECPTREF_GPT.

MMG_STD$DECPTRE-
F_PFNDB accepts as input a 64-
bit virtual address of a PFN data-
base entry for a page table, the
reference count of which is to be
decremented.

MMG_STD$SDECPTREF GPT,
accepts as input a 64-bit virtu-
al address of a global page table
entry, which lies within a certain
global page table page, of which
a reference count must be decre-
mented.

MMGS$DECSECREF

MMG_STD$DECSECREF

Accepts new-style section index.

MMGSDECSECREFL

MMG_STD$DECSECREFL

Accepts new-style section index.

MMGS$DELPAG

MMGS$DELPAG 64
MMG STDSDELPAG 64

Accepts 64-bit addresses and
has 2 new inputs, RDE (R12)
and mmg_flags (R14). See

25

Chapter 3. Replacements for Removed Privileged Symbols

Removed Routine

Replacement

Comments

mmg_routines.h for STD inter-
face.

MMGS$DELWSLEPPG

MMG_STD$DEL-
WSLEPPG_64

Replacement reflects a change
in input from a 32-bit address-
able system space address of a
PTE to a 64-bit address of a PTE
in page table space. Other ar-
gument changes may have oc-
curred as well.

MMGSDELWSLEX

MMG_STDSDELWSLEX 64

Replacement reflects a change
in input from a 32-bit address-
able system space address of a
PTE to a 64-bit address of a PTE
in page table space. Other ar-
gument changes may have oc-
curred as well.

MMGSFREWSLX

MMGSFREWSLX 64

Replacement reflects a change
in input from a 32-bit address-
able system space address of a
PTE to a 64-bit address of a PTE
in page table space. Other ar-
gument changes may have oc-
curred as well.

MMGS$GETGSNAM

MMG_STDSGETGSNAM

Converted to STD interface. (No
prototype in mmg_routines.h.)

MMGS$GSDSCAN

MMG_STD$GSDSCAN

Converted to STD interface. See
mmg_routines.h for interface de-
finition.

MMGSINCPTREF

MMG_STDS$INCPTREF_64

Replacement reflects a change
in input from a 32-bit address-
able system space address of a
PTE to a 64-bit address of a PTE
in page table space. Other ar-
gument changes may have oc-
curred as well.

MMGSINIBLDPKT

None

This routine was used internal-
ly only. Its symbol has been re-
moved from the base image.

MMGSININEW PFN

MMG_STDSININEWPEN_ 64

Replacement reflects a change
in input from a 32-bit address-
able system space address of a
PTE to a 64-bit address of a PTE
in page table space. Other ar-
gument changes may have oc-
curred as well.

MMGSINIT PGFLQUOTA

MMG_STDSINIT PGFLQUO-
TA $INIT_PGFLQUOTA

Converted to STD interface. See
mmg_functions.h for interface
definition.

26

Chapter 3. Replacements for Removed Privileged Symbols

Removed Routine

Replacement

Comments

MMGS$IN_REGION

MMG_STD$IN REGION 64
$IN_REGION_64

Converted to STD interface. See
mmg_functions.h for interface
definition.

MMGS$IOLOCK

MMG_STD$IOLOCK_BUF

See Appendix B.

MMGS$LOCKPGTB

MMG_STDSLOCKPGTB_64

Replacement reflects a change
in input from a 32-bit address-
able system space address of a
PTE to a 64-bit address of a PTE
in page table space. Other ar-
gument changes may have oc-
curred as well.

MMGSMAKE WSLE

MMG _STDSMAKE WSLE 64

Replacement reflects a change
in input from a 32-bit address-
able system space address of a
PTE to a 64-bit address of a PTE
in page table space. Other ar-
gument changes may have oc-
curred as well.

MMGSMORE PGFLQUOTA

MMG_STD
$MORE_PGFLQUOTA
$MORE_PGFLQUOTA

Converted to STD interface. See
mmg_functions.h for interface
definition.

MMG$MOVPTLOCK MMG
$MOVPTLOCKI1

None

Page table locking redesign has
obviated these routines. No re-
placement exists.

MMGS$PTEINDX

None

Used internally only. Obviated
by design as of Version 7.0.

MMGSPTEREF

MMGSPTEREF 64

This replacement reflects a
change in interface including
MMG STDS$PTEREF accep-
tance as input a 64-bit virtual ad-
dress.

MMGS$PURGEMPL

MMGS$PURGE _MPL

Renamed because the interface
changed slightly. This is a JSB
entry with arguments in RO-R2.
It now accepts an additional ar-
gument in R3, the PTBR of the
process owning the PTEs, for
range-based requests. This re-
quest type also now accepts 64-
bit PTE addresses rather than
32-bit SVAPTE addresses.

MMGS$SUBSECREF

MMG STD$DECSECREFL

Accepts new-style section index.

MMGS$SUBSECREFL

MMG_STD$SUBSECREFL

Accepts new-style section index.

MMGS$TBI_SINGLE 64

TBI _SINGLE Macro

MMGSTBI_SINGLE 64 should
not be called directly. Instead,
use the TBI_SINGLE macro.

27

Chapter 3. Replacements for Removed Privileged Symbols

Removed Routine

Replacement

Comments

MMGS$TRY ALL

MMG STDSTRY ALL 64

Converted to STD interface. See
mmg_routines.h for interface de-
finition.

MMGSULKGBLWSL None This routine was used internal-
ly only. Its symbol has been re-
moved from the base image.

MMGS$UNLOCK MMG STDS$IOUNLOCK BUF |See Appendix B.

MMG _STDSALLOC PFN

MMG_STDSALLOC_PFN_64

This routine should not be called
directly. Instead, use the AL-
LOCPFN macro. Note that 64-
bit virtual addresses are required
to access PFN database entries.

MMG_STDSALLOC ZE-
RO PFN

MMG_STDSALLOC_ZE-
RO _PFN_64

This routine should not be called
directly. Instead, use the AL-
LOC _ZERO_PFN macro. Note
that 64-bit virtual addresses are
required to access PFN database
entries.

MMG STDSDALLOC PFN

MMG STD$DAL-
LOC PFN 64

Note that 64-bit virtual addresses
are required to access PFN data-
base entries.

MMG_STD$DEL PFNLST

MMG_STDSDEL PFNLST 64

Note that 64-bit virtual addresses
are required to access PFN data-
base entries.

MMG_STDSININEW PFN

MMG STDSININEWPEN 64

Note that 64-bit virtual addresses
are required to access PFN data-
base entries.

MMG_STDS$INS PFNH

MMG STDSINS PFNH_64

Note that the 64-bit virtual ad-
dresses are required to access
PFN database entries.

MMG_STD$INS PFNT

MMG STDSINS PFNT 64

Note that the 64-bit virtual ad-
dresses are required to access
PFN database entries.

MMG_STDSIOLOCK

MMG_STD$IOLOCK_BUF

See Appendix B.

MMG_STDSPTEINDX

None

Used internally only. Obviated
by design as of OpenVMS Al-
pha Version 7.0.

MMG STDS$REL PFN

MMG STDSREL PFN_ 64

Note that the 64-bit virtual ad-
dresses are required to access
PFN database entries.

MMG STD$REM PFN

MMG_STDSREM PFN_64

Note that the 64-bit virtual ad-
dresses are required to access
PFN database entries.

MMG STD$REM PFNH

MMG_STDSREM PFNH_64

Note that the 64-bit virtual ad-
dresses are required to access
PFN database entries.

28

Chapter 3.

Replacements for Removed Privileged Symbols

Removed Routine

Replacement

Comments

MMG _STDS$TBI SINGLE 64

TBI_SINGLE Macro

MMG _STDS$TBI SINGLE 64
should not be called directly.
Instead, use the TBI_SINGLE
macro.

MMG_STD$UNLOCK

MMG STDSIOUNLOCK BUF

See Appendix B.

SWPSFILL L1L2 PT

None

Removed.

3.3. Removed Macros

This section lists the macros that have been removed as of OpenVMS Alpha Version 7.0.

3.3.1. Removed MACRO-32 Macros Formerly in SYS
$LIBRARY:LIB.MLB

* $VADEF — Moved to SYSSLIBRARY:STARLET.MLB

« TBI_SINGLE 64 — MMGSTBI SINGLE 64

3.3.2. C Header Files Removed From SYS
$LIBRARY:SYSS$LIB C.TLB

* msb codec reg.h

* msb regh

+ vadef.h — Moved to SYSSLIBRARY:SYSSSTARLET C.TLB

3.4. Removed System Data Cells

Table 3.3 lists the system data cells that have been removed as of OpenVMS Alpha Version 7.0.

Table 3.3. Removed System Data Cells

Removed Cell

Replacement

Comments

CTLSAL STACK

CTL$AQ STACK

Arrays are now quadwords.

CTLSAL STACKLIM

CTLSAQ_STACKLIM

Arrays are now quadwords.

EXE$SGL_GPT

MMG$GQ FREE GPT

As of Version 7.0, free GPTEs
are managed in the same manner
as free system PTEs. Note that
64-bit virtual addresses are re-
quired to access GPTEs.

LDR$SGL_FREE PT

LDR$GQ FREE S0S1_PT

Contains the address of the start
of the free SO/S1 PTE list. The
format of the free PTEs has
changed for Version 7.0.

MMGS$GL_FRESVA

MMG$GQ NEX-
T FREE S0S1 VA

29

Chapter 3.

Replacements for Removed Privileged Symbols

Removed Cell

Replacement

Comments

MMGS$GL _GPTBASE

MMG$GQ GPT BASE

As of Version 7.0, free GPTEs
are managed in the same manner
as free system PTEs. Note that
64-bit virtual addresses are re-
quired to access GPTEs.

MMGS$GL MAXGPTE

MMGS$GQ MAX GPTE

As of Version 7.0, free GPTEs
are managed in the same manner
as free system PTEs. Note that
64-bit virtual addresses are re-
quired to access GPTEs.

MMGS$GL PO PTLEN None Obviated by the removal of the
process page tables from the bal-
ance slot.

MMGS$GL PX VPN LENGTH [None This data cell is obviated by the

removal of the process page ta-
bles from the balance slot.

MMG$GL_RESERVED SVA

MMG$GQ WINDOW VA

Increased in length to quadword.

MMGS$GL_RESERVED SVA2

MMGS$GQ_WINDOW2 VA

Increased in length to quadword.

MMGS$GL RESERVED S- MMGS$GQ WIN- 64-bit pointer to PFN field of
VAPTE DOW_PTE PFN first reserved PTE.
MMGS$GL RESERVED S- MMGS$GQ_WIN- 64-bit pointer to PFN field of

VAPTE2

DOW2_PTE_PFN

second reserved PTE.

MMG$GL_SHARED L2P-
T PFN

None

This cell was deleted since it

is possible to have more than
one shared L2PT. That is system
space may span over multiple
L2PTs.

MMGS$GL_SPT L2PTE BIAS

None

This cell was deleted since it

is possible to have more than
one shared L2PT. That is system
space may span over multiple
L2PTs.

MMG$GL VA _TO PX_VPN

None

This data cell has been com-
pletely obviated by the removal
of the process page tables from
the balance slot.

MMGS$GL_ZERO_SVA

MMGS$GQ WINDOW VA

Increased in length to quadword.

MMG$GL_ZERO _S-
VAPTE_PFN

MMG$GQ WIN-
DOW _PTE_PFN

64-bit pointer to PFN field of re-
served PTE.

MMG$GQ PT VA

MMG$GQ PT BASE

MMGS$GQ PT VA was re-
named to ensure that any code
that had assumed a fixed lo-

30

Chapter 3. Replacements for Removed Privileged Symbols

Removed Cell

Replacement

Comments

cation of page table space as a
function of page size would be
revisited. The location of page
table space is now variable to
meet the individual bootstrap
needs of supporting Version 7.0,
as well as being a function of the
page size.

MPWSGW_HILIM

MPWS$GL_HILIM

Increased in length to a long-
word.

MPW$GW_LOLIM

MPW$GL_LOLIM

Increased in length to a long-
word.

PFN$SGB_LENGTH

None

PFNSPL DATABASE

PFN$PQ DATABASE

The PFN database was moved to
S2 space, which is only address-
able with 64-bit pointers.

PHVSGL REFCBAS

PHV$GL REFCBAS LW

The process header reference
count vector has been promoted
from an array of words to an ar-
ray of longwords.

SGN$GL_PHDAPCNT

None

This cell was deleted as a result
of moving the process page ta-
bles out of the balance slot.

SGNSGL PHDP1WPAG

None

This cell was deleted as a result
of moving the process page ta-
bles out of the balance slot.

SGN$GL_PHDRESPAG

None

This cell was deleted as a result
of moving the process page ta-
bles out of the balance slot.

SGNSGL PTPAGCNT

None

This cell was deleted as a result
of moving the process page ta-
bles out of the balance slot.

SWPSGL L1PT SVAPTE

None

L1 page table now mapped vir-
tually in page table space.

SWPSGL LIPT VA

None

L1 page table now mapped vir-
tually in page table space.

SWP$GW_BAKPTE

None

This cell was deleted as a result
of moving the process page ta-
bles out of the balance slot.

31

Chapter 3. Replacements for Removed Privileged Symbols

32

Chapter 4. Modifying Device Drivers
to Support 64-Bit Addressing

This chapter describes how to modify customer-written device drivers to support 64-bit addresses.

For more information about the data structures and routines described in this chapter, see Appendix A
and Appendix B.

4.1. Recommendations for Modifying Device
Drivers

Before you can modify a device driver to support 64-bit addresses,your driver must recompile and re-
link without errors on OpenVMS Alpha Version 7.0. See Chapter 2. If you are using OpenVMS-sup-
plied FDT routines, supporting 64-bitaddresses can be automatic or easily obtained. Device drivers
written in C are usually easier to modify than drivers written in MACRO-32.Drives using direct I/O
are usually easier to modify than those using buffered I/O.

When your device driver runs successfully as a 32-bit addressable driver on OpenVMS Alpha Version
7.0,you can modify it to support 64-bit addresses as follows:

e Select the functions that you want to support 64-bit functions.
* Follow your IRPSL_ QIO P1 value and promote all references to 64-bit addresses.
* Declare 64-bit support for the I/O function.

The remaining sections in this chapter provide more information about these recommendations.

4.2. Mixed Pointer Environment in C

OpenVMS Alpha 64-bit addressing support for mixed pointers includes the following features:

* OpenVMS Alpha 64-bit virtual address space layout that applies to all processes. (There are no
special 64-bit processes or 32-bit processes.)

* 64-bit pointer support for addressing the entire 64-bit OpenVMS Alpha address space layout in-
cluding PO, P1, and P2 address spaces and S0/S1, S2, and page table address spaces.

* 32-bit pointer compatibility for addressing PO, P1, and S0/S1 address spaces.

* Many new 64-bit system services which support PO, P1, and P2 space addresses.

» Many existing system services enhanced to support 64-bit addressing.

* 32-bit sign-extension checking for all arguments passed to 32-bit pointer only system services.
* Cand MACRO-32 macros for handling 64-bit addresses.

To support 64-bit addresses in device drivers,you must use the new version (V5.2) of the DEC C com-
piler as follows:

33

Chapter 4. Modifying Device Drivers to Support 64-Bit Addressing

Compile your device driver using /POINTER SIZE=32

$ CC/ STANDARD=RELAXED ANSI 89 -
/ I NSTRUCTI ON=NOFLOATI NG_POI NT -
/ EXTERN=STRI CT - / PO NTER_SI ZE=32 -
LRDRI VER+SYS$LI BRARY: SYS$LI B_C. TLB/ LI BRARY

#pragma _ required pointer size 32|64
64-bit pointer types are defined by header files; e.g.

#i ncl ude <far_pointers. h>
VO D PQ user_va;, /* 64-bit "void *" */

#i ncl ude <pt edef. h>
PTE * svapt e; /* 32-bit pointer to a
PTE */ PTE_PQ va_pte; /* Quadword pointer to a
PTE */ PTE_PPQ vapte_p; /* Quadword pointer to a
* quadword pointer to a PTE */

Pointer size truncation warning
pO0_va = p2_va; "% C- W MAYLOSEDATA, |In this statenent,

“p2_va" has a larger data size than
“short pointer to char”

4.3. $QIO Support for 64-Bit Addresses

The $QIO and $QIOW system services accept the following arguments:

$Q W efn, chan, func,iosb, astadr, ast prm pl, p2, p3, p4, p5, p6

These services have a 64-bit friendly interface(as described in OpenVMS Alpha Guide to 64-Bit Ad-
dressing and VLM Features),which allows these services to support 64-bit addresses.

Table 4.1 summarizes the changes to the data types of the $QIO and $QIOW system service argu-
ments to accommodate 64-bit addresses.

Table 4.1. SQIO[W] Argument Changes

Argument Prior Type New Type Description

efn Unsigned longword - Event flag number. Un-
changed.

chan Unsigned word - Channel number. Un-
changed.

func Unsigned longword - I/O function code. Un-
changed.

iosb 32-bit pointer ! 64-bit pointer Pointer to a quadword 1/
O status block (IOSB).
The IOSB format is un-
changed.

astadr 32-bit pointer ! 64-bit pointer Procedure value of the
caller's AST routine. On

34

Chapter 4. Modifying Device Drivers to Support 64-Bit Addressing

Argument

Prior Type

New Type

Description

Alpha systems, the pro-
cedure value is a point-
er to the procedure de-
scriptor.

astprm

Unsigned longword 2

Quadword

Argument value for the
AST routine.

P1

Longword 2

Quadword

Device-dependent ar-
gument. Often P1 isa
buffer address.

P2

Longword 2

Quadword

Device-dependent ar-
gument. Only the low-
order 32-bits will be
used by system-supplied
FDT routines that use
P2 as the buffer size.

P3

Longword 2

Quadword

Device-dependent argu-
ment.

P4

Longword 2

Quadword

Device-dependent argu-
ment.

P5

Longword 2

Quadword

Device-dependent argu-
ment.

P6

Longword 2

Quadword

Device-dependent ar-
gument. Sometimes P6
is used to contain the
address of a diagnostic
bufter.

132-bit pointer was sign-extended to 64 bits as required by the OpenVMS Calling Standard.
232-bit longword value was sign-extended to 64 bits as required by the OpenVMS Calling Standard.

Usually the $QIO P1 argument specifies a buffer address. All the system-supplied upper-level FDT
routines that support the read and write functions use this convention. The P1 argument determines
whether the caller of the $QIO service requires 64-bitsupport. If the $QIO system service rejects a 64-

bit I/O request, the following fatal system error status is returned:

SS$_NOT64DEVFUNC 64-bit address not supported by device for this function

This fatal condition value is returned under the following circumstances:

» The caller has specified a 64-bit virtual address in the P1device dependent argument, but the de-
vice driver does not support64-bit addresses with the requested 1/0 function.

» The caller has specified a 64-bit address for a diagnostic buffer,but the device driver does not sup-
port 64-bit addresses for diagnostic buffers.

* Some device drivers may also return this condition value when64-bit buffer addresses are passed
using the P2 through P6arguments and the driver does not support a 64-bit address with the re-

quested I/O function.

For more information about the $QIO, $QIOW, and $SYNCH system services, see the OpenVMS

System Services Reference Manual: GETUTC--Z.

35

Chapter 4. Modifying Device Drivers to Support 64-Bit Addressing

4.4. Declaring Support for 64-Bit Addresses
in Drivers

Device drivers declare that they can support a 64-bit address by individual function. The details vary
depending on the language used to code the initialization of the driver's Function Decision Table.

4.4.1. Drivers Written in C

Drivers written in C use the i ni _f dt _act macro to initialize an FDT entry for an I/O function.
This macro uses the DRIVERSINI FDT ACT routine. Both the macro and the routine have been en-
hanced for OpenVMS Alpha Version7.0.

The format of the macro in releases prior to OpenVMS Alpha Version 7.0 was:

ini _fdt_act (fdt, func, action, bufflag)

where the buf f | ag parameter must be one of the following:

BUFFERED The specified function is
buftered.

NOT_BUFFERED The specified function is direct.
This is a synonym for DIRECT.

DIRECT The specified function is di-
rect. This is a synonym for
NOT_BUFFERED.

The use of the buf f | ag parameter has been enhanced to include the declaration of 64-bit support by
allowing 3 additional values:

BUFFERED_ 64 The specified function is
buffered and supports a 64-bit
address in the p1 parameter.

NOT_BUFFERED 64 The specified function is direct
and supports a 64-bit address in
the p1 parameter.

DIRECT 64 The specified function is direct
and supports a 64-bit address in
the p1 parameter.

If a driver does not support a 64-bit address on any of its functions,there is no need to change its use
ofthei ni _fdt_act macro.

For example, the following C code segment declares that the I0§ READVBLK and I0$ READL-
BLK functions support 64-bit addresses.

ini _fdt_act (&driver$fdt, | Ob_SENSEMODE, mny_sensenode_fdt, BUFFERED);
ini _fdt_act (&driver$fdt, | Ob_SETMODE, ny_set node_f dt, BUFFERED) ;
ini _fdt_act (&driver$fdt, | Ob_READVBLK, acp_std$readbl k, D RECT_64);
ini _fdt_act (&driver$fdt, | Ob_READLBLK, acp_std$readbl k, D RECT_64);

The interpretation of the buf f | ag parameter to the DRIVERSINI_FDT_ ACT routine has been en-
hanced to support the new values and the setting of the 64-bit support mask in the FDT data structure.

36

Chapter 4. Modifying Device Drivers to Support 64-Bit Addressing

4.4.2. Drivers Written in MACRO-32

As of OpenVMS Alpha Version 7.0,drivers written in MACRO-32 use a new FDT 64 macro to de-
clare the set of I/O functions for which the driver supports 64-bit addresses. The use of the FDT 64
macro is similar to the use of the existing FDT BUF macro. If a driver does not support a 64-bit ad-
dress on any of its functions,there is no need to use the new FDT 64 macro.

For example, the following MACRO-32 code segment declares that the I0$ READVBLK and 10
$ READLBLK functions support 64-bit addresses.

FDT_INI MY_FDTFDT_BUF

<SENSEMODE, SETMODE>FDT_64

<READVBLK, READLBLK>FDT_ACT ACP_STD$READBLK,
<READVBLK, READLBLK>

4.4.3. Drivers Written in BLISS

As of OpenVMS Alpha Version 7.0,drivers written in BLISS-32 and BLISS-64 use a new optional
keyword parameter, FDT 64, to the existing FDTAB macro to declare the set of I/O functions that
support 64-bit addresses. The use of the new FDT 64 parameter is similar to the use of the existing
FDT BUF parameter. If a driver does not support a 64-bit address on any of its functions,there is no
need to use the new FDT 64 parameter.

For example, the following BLISS code segment declares that the I0§ READVBLK and 10
$ READLBLK functions support 64-bit addresses.

FDTAB (
FDT_NAME = MY_FDT,
FDT_BUF = (SENSEMODE, SETMODE)
FDT 64 = (READVBLK, READLBLK),
FDT_ACT = (ACP_STDSREADBLK, (READVBLK, READLBLK))

)
4.5. 1/0 Mechanisms

Table 4.2 summarizes the I/O mechanisms that support 64-bit addresses.

Table 4.2. Summary of 64-Bit Support by I/O Mechanism

Mechanism 64-Bits Comments

Simple buffered I/O Yes 32/64-bit BUFIO packet headers

Complex Buffered I/O No Used by XQP and ACPs

Complex Chained Buffered I/O |Yes New cells in CXB

Direct /0 Yes Cross-process PTE problem

LAN VCI Yes Cross-process PTE problem

VMS I/O Cache Yes 64-bit support is transparent to
other components

Buffer Objects Yes Special case of direct I/O

Diagnostic buffers Yes Driver-wide attribute

37

Chapter 4. Modifying Device Drivers to Support 64-Bit Addressing

4.5.1. Simple Buffered I/O

Figure 4.1 shows a 32-bit buffered 1/O packet header.

Figure 4.1. 32-Bit Buffered 1/0 Packet Header

BUFID$PS_PKTDATA

BUFIDSPS_UvA3P

unused BUFIDSB_TYFE BUFIOSW_SIZE

Start of buffered data {offset BUFIDSK_HORLENS2)

12

ZK-B203A-GE

BUFIO$PS PKTDATA Contains pointer to buffered data in packet

BUFIOS$PS UVA32 Contains 32-bit user virtual address

* No symbolic offsets currently defined.

* Frequent use of manifest constants; for example:

MVAB 12(R2), (R2)

» Dependencies on the packet header layout can be anywhere in the driver code path.

* Drivers allocate and initialize these packets.

A 64-bit buffered packet header is as shown in Figure 4.2.

Figure 4.2. New 64-Bit Buffered I/O Packet Header

BUFID$PS_PKTOATA
BUFID$PS_UVAZ2 {must contaln -1}
unused BUFID$B_TYPE BUFIDSW _SIZE
unused

BUFID$FQ_UVAG4

Start of buffered data {offset BUFID$K_HORLENS2)

24

ZK-8204A-GE

BUFIO$PS PKTDATA Contains pointer to buffered data in packet

BUFIOS$PS UVA32 Must contain BUFIO$K 64 (-1) value

38

Chapter 4. Modifying Device Drivers to Support 64-Bit Addressing

BUFIO$PQ _UVA64 Contains 64-bit user virtual address

¢ BUFIO structures and offsets now defined.

Both 32-bit and 64-bit formats supported.
* BUFIO packets are self-identifying.
* New routines are EXE STDSALLOC BUFIO 64, EXE STDSALLOC BUFIO 32.

» Used for diagnostic buffers as well.

4.5.2. Direct I/O

* The caller's virtual address for the buffer is used only in FDT context.
* Most of the driver identifies buffer start by IRPSL._SVAPTE and IRPSL_BOFF.
* Driver “layering” in start [/O or fork environments.
* Most drivers use either OpenVMS-supplied upper-level FDT routines or FDT support routines.
* The moving of the page tables has a significant impact:
1. Only the current process's PPTEs are available at any given time.
This is called the “cross-process PTE access” problem.

2. A 64-bit address is required to access page table entries in page table space: process, global,
and system PTEs.

3. Because “SVAPTE, BOFF, BCNT” are used in many device drivers, the impact of 1 and 2 is
not insignificant.

4.5.3. Direct I/O Buffer Map (DIOBM)

Figure 4.3 shows the DIOBM data structure.

Figure 4.3. Direct I/O Buffer Map Data Structure

DIDBEMEPS_AUX_DIDEM 0

DIDBEMEL_PTE_COUNT 4

DIDBMSB_SUBTYPE DIOBMSB_TYFE DIDEMEW _SIZE 8
DIDEMEL_FLAGS 12
DIDBM$OQ_PTE_VECTOR {0 entdes) 16

ZK-B205A-GE

39

Chapter 4. Modifying Device Drivers to Support 64-Bit Addressing

Use PTE vector in DIOBM for buffers up to 64 Kb

Use "secondary" DIOBM for buffers up to 5.2 Mb

Use PTE window method with DIOBM for larger buffer

DIOBM embedded in IRP, IRPE, VCRP, DCBE

MMG_STDS$IOLOCK BUF replaces MMG_STDSIOLOCK

New DIOBM routines; for example IOC_STDSFILL _DIOBM

Also of interest to LAN VCI clients

4.5.4. 64-Bit AST

Figure 4.4 shows a 64-Bit AST.

Figure 4.4. 64-Bit AST

ACBSL_ASTOFL 1]

ACBSL_ASTOBEL 4

ACB$BE_RMOD ACB$BE_TYPFE ACBSW_SIZE 8
ACBSL_PID 12
ACBESL_AST/ACBSL_ACBE4X 16
ACBESL_ASTFRM 20
ACBSL_FLAGS 24
ACBSL_THREAD_FID 23
ACBSL_KAST 32
unused 38
ACBBASPQ_AST 40
ACBBASD_ASTPFRM 43

ZK-BZ20BA-GE

ACB$B_RMOD

New ACB$V_FLAGS_ VALID bit (last spare bit)

ACBSL_FLAGS

Contains ACBS$V_64BITS bit (was filler space)

ACBSL _ACB64X

Byte offset to ACB64X structure

40

Chapter 4. Modifying Device Drivers to Support 64-Bit Addressing

* Both ACB and ACB64X formats are supported.

* ACB packets are self-identifying.

¢ An ACB64 is an ACB with an immediate ACB64X.

4.5.5. 64-Bit ACB Within the IRP

An embedded ACB64 at the start of the IRP is shown in Figure 4.5.

Figure 4.5. Embedded ACB64

IRPEL_IDOFL 1]

IRPSL_IDQEBL 4

IRP%E_RMODO IPREB_TYFE IRPSW_SIZE]
IRPEL_PID 12
IRP%L_ACBE4X_OFFSET 16
{unused, form erly Irp$l_astpm) 20
IRPSL_ACB_FLAGS 24
IRPSL_THREAO_PFID 28
IRPSL_KAST 32
IRPEL_UCE 1
IRFEFO_ACEBA_AST 40
IRP$D_ACBE4_ASTFRM 48

ZK-8207A-GE

An IRP created by the $QIO system service uses the ACB64 layout unconditionally.

IRP$B_RMOD

New ACBSV_FLAGS_VALID bit always set

IRPSL_ACB_FLAGS

New ACB$V_64BITS bit always set

IRPSL_ACB64X_OFFSET

Contains hex 28

4.5.6. I/0 Function Definitions

I/0 functions are defined as follows:

Chapter 4. Modifying Device Drivers to Support 64-Bit Addressing

1. Direct I/O, raw data transfer

Functions in this category are implemented as direct I/O operations and transfer raw data from the
caller's buffer to the device without significant alteration or interpretation of the data.

2. Direct I/O, control data transfer

Functions in this category are implemented as direct I/O operations and transfer control informa-
tion from the caller's buffer to the device driver. The device driver usually interprets the data or
uses it to control the operation of the device.

Usually these functions do not support 64-bit addresses. In contrast to the raw data transfers, con-
trol data transfers tend to be smaller and are invoked less frequently. Thus, there is less need to be
able to store such data in a 64-bit addressable region. The only area impacted in the driver are the
corresponding FDT routines. However, control data often introduces the problem of embedded 32-
bit pointers.

3. Buffered I/O, raw data transfer

Functions in this category are implemented as buffered I/O operations by the device driver but are
otherwise the same type of raw data transfer from the caller's buffer as the first category.

4. Buffered I/O, control data transfer

Functions in this category are implemented as buffered I/O operations by the device driver but are
otherwise the same type of control data transfer from the caller's buffer as the second category.

5. Control operation, no data transfer, with parameters

Functions in this category control the device and do not transfer any data between a caller's buffer
and the device. Since there is no caller's buffer it does not matter whether the function is designat-
ed as a buffered or direct I/O function. The control operation has parameters that are specified in
p1l through p6 however these parameters do not point to a buffer.

6. Control operation, no data transfer, with no parameters

Functions in this category control the device and do not transfer any data between a caller's buffer
and the device. Since there is no caller's buffer it does not matter whether the function is designat-
ed as a buffered or direct I/O function. In addition, there are no parameters for these functions.

Table 4.3 summarizes the I/O functions described in this section.

Table 4.3. Guidelines for 64-Bit Support by I/0O Function

Function Type 64-Bits Area of Impact

Direct I/O, raw data transfer Yes FDT only

Direct /O, control data transfer |No FDT only

Buffered I/O, raw data transfer |No/yes Entire driver, new BUFIO pack-
et

Buffered /O, control data trans- |No Entire driver, new BUFIO pack-

fer et

Control, no data transfer, param |No Entire path but usually simple

42

Chapter 4. Modifying Device Drivers to Support 64-Bit Addressing

Function Type 64-Bits Area of Impact
Control, no data transfer, no Moot None
params

4.6. 64-Bit Support in Example Driver

This section summarizes changes made to the example device driver (LRDRIVER.C) to support 64-
bit buffer addresses on all I/O functions.

This sample driver is available in the SYSSEXAMPLES directory.

1.

2.

All functions are declared as capable of supporting a 64-bit P1 parameter.

The 64-bit buffered I/O packet header defined by bufiodef.h is used instead of a privately defined
structure that corresponds to the 32-bit buffered I/O packet header.

The pointer to the caller's set mode buffer is defined as a 64-bit pointer.
IRP$Q QIO _P1 is used instead of IRPSL_QIO P1.

The EXE STDSALLOC BUF 64 routine is used instead of EXE STD$SDEBIT BYTCNT ALO
to allocate the buffered 1/0O packet.

No infrastructure changes were necessary to this driver. The original version could have been simply
recompiled and relinked and it would have worked correctly with 32-bitbuffer addresses.

4.6.1. Example: Declaring 64-Bit Functions

Original:

ini_fdt_act(...,|O08_WR TELBLK, | r$write, BUFFERED):

ini _fdt_act(..., | Ob_SENSECHAR, exe_st d$sensenode,
BUFFERED) ;

64-Bit Version:

ini_fdt_act(...,| Os_WR TELBLK, | r$write, BUFFERED 64);: ©

ini_fdt_act(...,| 08 _WR TEPBLK, | r$write, BUFFERED 64);

ini_fdt_act(...,1 08 _WR TEVBLK, | r$write, BUFFERED 64);

ini_fdt_act(...,!Os _SETMODE, | r $set node, BUFFERED 64); ©

ini_fdt_act(...,1O6 _SETCHAR, | r $set node, BUFFERED 64) ;

ini _fdt_act(...,|Os_SENSEMODE, exe_st d$sensennde,
BUFFERED 64): ©

ini _fdt_act(...,]O8_SENSECHAR, exe_st d$sensennde,
BUFFERED 64) ;

©® Source changes required to LREWRITE routine

® Source changes required to LRESETMODE routine

® No user buffer, no $QIO parameters

4.6.2. Example: Declaring 64-Bit Buffered 1/0 Packet

Original:

43

Chapter 4. Modifying Device Drivers to Support 64-Bit Addressing

typedef struct _sysbuf_hdr { (1]
char *pkt_dat ap;
char *usr_buf p;
short pkt_size;
short :16;
SYSBUF_HDR;

64-Bit Version:
#i ncl ude <bufi odef. h> (1]

© Locally defined type, SYSBUF HDR, for a buffered I/O packet header was necessary.
© The new bufiodef.h header file defines the BUFIO type, which includes both the 32-bit and 64-
bit buffered I/O packet header cells.

4.6.3. Example: Changes to LRSWRITE

Original:

char *qi o_buf p; o
SYSBUF_HDR *sys_buf p;

gio bufp = (char *) irp->irp$l _qio pl; ©
sys_buflen = qgio_buflen + sizeof (SYSBUF HDR); ©

status = exe_std$debit bytcnt al o(sys_buflen, @
pch,
&sys_bufl en,
(void **) &sys bufp);

irp->rp$l _svapte = (void *) sys_bufp; ©
irp->irp$l _boff = sys_buflen;
sys_datap = (char *) sys bufp + sizeof (SYSBUF_HDR); ©

Define 32-bit pointer to caller's buffer

Pointer is initialized using the 32-bit $QIO P1 value
Size of buffered I/O packet includes header size
Allocate pool for buffered I/O packet

Connect the buffered I/O packet to IRP

Compute pointer to data region within packet

Q00000

64-Bit Version:

CHAR_PQ gi o_buf p; OBUFI O *sys_buf p;

gio bufp = (CHAR PQ irp->irp$g gio pi,; (2]

sys_buflen = gio_buflen + BUFI 8K HDRLEN64; ©

status = exe_std%$al | oc_bufio_64(irp, o
pch,

(VA D_PQ gio_bufp,

sys_bufl en);
sys_bufp i rp->irp$ps_bufio_pkt; (5]
sys_datap = sys_buf p- >bufi o$ps_pkt dat a; (6]

© Define a 64-bit pointer to caller's buffer.
® Pointer is initialized using the 64-bit $QIO P1 value. No source changes on references, for ex-
ample:

44

Chapter 4. Modifying Device Drivers to Support 64-Bit Addressing

exe_std$writechk(irp, pcb, uch, gi o_bufp, gi o_bufl en);
mencpy (sys_datap, gio_bufp, qio_buflen);

Size of buffered I/O packet includes 64-bit header size.

Allocate pool for a 64-bit buffered I/O packet and connect it to the IRP.
Get pointer to the buffered I/0 packet.

Get pointer to data region within packet.

4.6.4. Example: Changes to LR$SETMODE

Original:

©0 00

SETMODE_BUF *set node_bufp; @
set nrode_bufp = (SETMODE BUF *) irp->irp$l _gio pl; ©

64-Bit Version:

#pragma __required_pointer_size _ save
#pragma _ _required_pointer_size _ long ©

t ypedef SETMODE BUF * SETMODE_BUF_PQ ©
#pragma __required_pointer_size __restore ©

SETMODE_BUF_PQ set node_bufp; ©
set node_bufp = (SETMODE BUF_PQ irp->irp$g_qgio pl; ©

32-bit pointer to a SETMODE_BUF.

Pointer is initialized using the 32-bit $QIO P1 value.

Change pointer size to 64-bits.

Define a type for a 64-bit pointer to a SETMODE_BUF structure.
Restore saved pointer size, 32-bits.

Define a 64-bit pointer to a SETMODE_BUF structure.

Pointer is initialized using the 64-bit $QIO P1 value.

4.6.5. Example: Changes to LR$STARTIO

Original:

000000

ucb->ucb$r _uch. uch$l svapte =
(char *) ucb->ucb$r_ucb. ucb$l svapte +
si zeof (SYSBUF_HDR) ; (1]

64-Bit Version:
ucbh->ucb$r _uch. ucb$l _svapte =
(char *) uch->ucb$r_ucb. ucbh$l _svapte +

BUFI OsK_HDRLENG4; (1]

©® Skip 32-bit buffered I/O packet header.
©® Skip 64-bit buffered I/O packet header.

45

Chapter 4. Modifying Device Drivers to Support 64-Bit Addressing

46

Chapter 5. Modifying User-Written
System Services

An application can contain certain routines that perform privileged functions, called user-written sys-
tem services. This chapter describes the OpenVMS Alpha Version 7.0 changes that can affect user-
written system services.

For more information about how to create user-written system services,see the OpenVMS Program-
ming Concepts Manual.

As part of the 64-bit virtual addressing support, the Alpha system service dispatcher automatically
performs a sign-extension check on service arguments to ensure that only 32-bit sign extended virtu-
al addresses are passed. This sign-extension check prevents an application from passing a 64-bit vir-
tual address to system services that are not equipped to handle 64-bit virtual addresses. This sign-ex-
tension check occurs for the system services (regardless of mode) provided by VSI as well as for user-
written system services.

Although the sign-extension check occurs by default, it is possible to disable the check for services
that can properly handle 64-bit virtual addresses. A new flag, PLVSM 64 BIT ARGS (see Ta-

ble 5.2), can be specified when creating a user-written system service that is designed to accept 64-bit
virtual addresses. The system service dispatcher purposely omits the sign-extension check when this
flag is set for a particular service. Table 5.1 shows the components of the Alpha Privileged Library
Vector that are new or changed as of OpenVMS Alpha Version 7.0.

Table 5.1. Components of the Alpha Privileged Library Vector

Component Symbol Description
User-supplied rundown routine |PLVEPS EXEC RUN- May contain the address of a
for executive mode services DOWN_HANDLER user-supplied rundown routine

that performs image-specific
cleanup and resource deallo-
cation. When the image linked
against the user-written system
service is run down by the sys-
tem, this run-time routine is in-
voked. Unlike exit handlers, the
routine is always called when a
process or image exits. (Image
rundown code calls this routine
with a JSB instruction; it returns
with an RSB instruction called
in executive mode at IPL 0.)

Kernel Routine Flags Vector PLVSPS KER- Contains either the address of an
NEL ROUTINE FLAGS array of longwords which con-
tain the defined flags associat-
ed with each kernel system ser-
vice, or a zero. Table 5.2 con-
tains a description of the avail-

able flags.
Executive Routine Flags Vector [PLVSPS EX- Contains either the address of an
EC ROUTINE FLAGS array of longwords which con-

47

Chapter 5. Modifying User-Written System Services

Component

Symbol

Description

tain the defined flags associat-
ed with each executive mode
system service, or a zero. Ta-
ble 5.2 contains a description of
the available flags.

Table 5.2. Flags for 64-Bit User-Written Services

Flag

Description

PLV$M_WAIT CALLERS_MODE

Informs the system service dispatcher

that the service can return the status SS

$ WAIT CALLERS MODE. This flag can only
be specified for kernel mode services.

PLVSM_WAIT CALLERS NO REEXEC

Informs the system service dispatcher

that the service can return the status SS

$ WAIT CALLERS MODE but should not re-
execute the service. This flag can only be speci-
fied for kernel mode services.

PLV$SM_CLRREG

Informs the system service dispatcher to clear the
scratch integer registers before returning to the
system service requester. A security-related ser-
vice may set this flag to ensure that sensitive in-
formation is not left in scratch registers. This flag
can be specified for both kernel and executive
mode system services.

PLVSM_RETURN_ANY

Flags the system service dispatcher that the ser-
vice can return arbitrary values in RO. This flag
can only be specified for kernel mode system ser-
vices.

PLVSM_WCM _NO_SAVE

Informs the system service dispatcher that the
service has taken steps to save the contents of

the scratch integer registers. In this case, the dis-
patcher will not take the extra steps to save and
restore these registers. This flag can only be spec-
ified for kernel mode system services.

PLVSM STACK ARGS

Use of this flag is reserved to VSI.

PLVSM_THREAD SAFE

Informs the system service dispatcher that the ser-
vice requires no explicit synchronization. It is as-
sumed by the dispatcher that the service provides
its own internal data synchronization and that
multiple kernel threads can safely execute oth-

er inner mode code in parallel. This flag can be
specified for both kernel and executive mode sys-
tem services.

PLVSM 64 BIT ARGS

Informs the system service dispatcher that the ser-
vice can accept 64-bit virtual addresses. When
set, the dispatcher will not perform the sign-ex-
tension check on the service arguments. The sign-
extension check is the method used to guarantee

48

Chapter 5. Modifying User-Written System Services

Flag Description

that only 32-bit,sign-extended virtual addresses
are passed to system services. This check is en-
abled by default. This flag can be specified for
both kernel and executive mode system services.

PLVSM CHECK UPCALL Use of this flag is reserved to VSI.

Example 5.1 illustrates how to create a PLV on Alpha systems using C.

Example 5.1. Creating a Privileged Library Vector (PLV) for C on Alpha Systems

/* "Forward routine" declarations */

i nt first_service(),
second_service(),
third_service(),
fourth_service();

i nt rundown_handl er () ;

/* Kernel and exec routine lists: */
int (*(kernel _table[]))() = {
first_service,
second_servi ce,
fourth_service};

int (*(exec_table[]))() = {
third_service};

/*
** Kernel and exec flags. The flag settings bel ow enabl e second_service
** and fourth_service to be 64-bit capable. First_service and
third _service
** cannot accept a 64-bit pointer. Attenpts to pass 64-bit pointers to
** these services will result in a return status of SS$ ARG GIR 32 BITS.
** The PLV$M 64_BIT_ARGS flag instructs the system service dispatcher to
** pypass sign-extension checking of the service argunents for a particular
** service.

*/
i nt
kernel flags [] = {
Ol
PLV$M 64_BI T_ARGS,
0},
exec_flags [] = {
PLV$M 64_BI T_ARGS};
/ *

** The next two defines allow the kernel and executive routine counts
** to be filled in automatically after lists have been declared for
** kernel and exec nbde. They nust be placed before the PLV

** declaration and initialization, and for this nodule will be

** functionally equivalent to:**** #defi ne KERNEL_ROUTI NE_COUNT 3

** #defi ne EXEC_ROUTI NE_COUNT 1

* %

*/

49

Chapter 5. Modifying User-Written System Services

#def i ne EXEC_ROUTI NE_COUNT si zeof (exec_t abl e)/si zeof (i nt *)
#def i ne KERNEL_ROUTI NE_COUNT si zeof (kernel _tabl e)/sizeof (int *)

/*

** Now build and initialize the PLV structure. Since the PLV nust have
** the VEC psect attribute, and nust be the first thing in that psect,
** we use the strict external ref-def nmodel which allows us to put the
** PLV structure in its own psect. This is |like the gl obal def

** extension in VAX C, where you can specify in what psect a gl oba

** synbol may be found; unlike globaldef, it allows the declaration

** jtself to be ANSI-conmpliant. Note that the initialization here

** relies on the change-node-specific portion (plv$r_cnpod_data) of the
** PLV being decl ared before the portions of the PLV which are specific
** to message vector PLVs (plv$r_nsg_data) and system service intercept
** PLVs (plv$r_ssi_data).

* %

*/

#i fdef __ ALPHA
#pragma extern_nodel save
#pragma extern_nodel strict_refdef "USER SERVI CES'

#endi f

extern const PLV user_services = {
PLV$C_TYP_CMOD, /[* type */
0, /* version */
{ { KERNEL_RQUTI NE_CQUNT, [* # of kernel routines */
EXEC _ROUTI NE_COUNT, /* # of exec routines */
ker nel _tabl e, /* kernel routine list */
exec_t abl e, /* exec routine list */
rundown_handl er, /* kernel rundown handler */
rundown_handl er, /* exec rundown handl er */
0, /* no RMS di spatcher */
kernel _fl ags, /* kernel routine flags */
exec_fl ags} /* exec routine flags */
}
b

#i fdef __ ALPHA

#pragma extern_nodel restore

#endi f

50

Chapter 6. Kernel Threads Process
Structure

This chapter describes the components that make up a kernel threads process. This chapter contains
the following sections:

» Section 6.1 describes the process control block (PCB) and the process header (PHD).
» Section 6.2 describes the kernel thread block (KTB).

» Section 6.3 describes the process identifier (PID).

» Section 6.4 describes the process status bits.

For more information about kernel threads features, seethe OpenVMS Alpha Version 7.0Bookreader
version of the OpenVMS Programming Concepts Manual.

6.1. Process Control Blocks (PCBs) and
Process Headers (PHDs)

Two primary data structures exist in the OpenVMS executive that describe the context of a process:
» Software process control block (PCB)
* Process header (PHD)

The PCB contains fields that identify the process to the system. The PCB comprises contexts that per-
tain to quotas and limits, scheduling state, privileges, AST queues, and identifiers. In general, any in-
formation that must be resident at all times is in the PCB. Therefore, the PCB is allocated from non-
paged pool.

The PHD contains fields that pertain to a process's virtual address space. The PHD consists of the
working set list, and the process section table. The PHD also contains the hardware process con-
trol block (HWPCB), and a floating point register save area. The HWPCB contains the hardware
execution context of the process. The PHD is allocated as part of a balance set slot, and it can be
outswapped.

6.1.1. Effect of a Multithreaded Process on the PCB
and PHD

With multiple execution contexts within the same process, the multiple threads of execution all share
the same address space but have some independent software and hardware context. This change to a
multithreaded process impacts the PCB and PHD structures and any code that references them.

Before the implementation of kernel threads, the PCB contained much context that was per process.
With the introduction of multiple threads of execution, much context becomes per thread. To accom-
modate per-thread context,a new data structure—the kernel thread block (KTB)— is created, with the
per-thread context removed from the PCB. However, the PCB continues to contain context common

51

Chapter 6. Kernel Threads Process Structure

to all threads, such as quotas and limits. The new per-kernel thread structure contains the scheduling
state, priority, and the AST queues.

The PHD contains the HWPCB, which gives a process its single execution context. The HWPCB re-
mains in the PHD; this HWPCB is used by a process when it is first created. This execution context
is also called the initial thread. A single threaded process has only this one execution context. Since
all threads in a process share the same address space, the PHD continues to describe the entire virtual
memory layout of the process.

A new structure, the floating-point registers and execution data (FRED) block,contains the hardware
context for newly created kernel threads.

6.2. Kernel Thread Blocks (KTBs)

The kernel thread block (KTB) is a new per-kernel thread data structure. The KTB contains all per-
thread context moved from the PCB. The KTB is the basic unit of scheduling, a role previously per-
formed by the PCB, and is the data structure placed in the scheduling state queues. Since the KTB is
the logical extension of the PCB, the SCHED spinlock synchronizes access to the KTB and the PCB.

Typically, the number of KTBs a multithreaded process has, matches the number of CPUs on the sys-
tem. Actually, the number of KTBs is limited by the value of the system parameter MULTITHREAD.
If MULTITHREAD is zero, the OpenVMS kernel support is disabled. With kernel threads disabled,
user-level threading is still possible with DECthreads. The environment is identical to the OpenVMS
environment prior to this release that implements kernel threads. If MULTITHREAD is nonzero, it
represents the maximum number of execution contexts or kernel threads that a process can own, in-
cluding the initial one.

In reality the KTB is not an independent structure from the PCB. Both the PCB and KTB are defined
as sparse structures. The fields of the PCB that move to the KTB retain their original PCB offsets in
the KTB. In the PCB, these fields are unused. In effect, if the two structures are overlaid, the result is
the PCB as it currently exists with new fields appended at the end. The PCB and KTB for the initial
thread occupy the same block of nonpaged pool; therefore, the KTB address for the initial thread is
the same as for the PCB.

6.2.1. KTB Vector

When a process becomes multithreaded, a vector similar to the PCB vector is created in pool. This
vector contains the list of pool addresses for the kernel thread blocks in use by the process. The KTB
vector entries are reused as kernel threads are created and deleted. An unused entry contains a zero.
The vector entry number is used as a kernel thread ID. The first entry always contains the address of
the KTB for the initial thread, which is by definition kernel thread ID zero. The kernel thread ID is
used to build unique PIDs for the individual kernel threads. Section 6.3.1describes PID changes for
kernel threads.

To implement these changes, the following four new fields have been added to the PCB:
+ PCBSL_KTBVEC

+ PCBSL _INITIAL KTB

+ PCBSL_KT COUNT

.« PCBSL KT HIGH

52

Chapter 6. Kernel Threads Process Structure

The PCBSL INITIAL KTB field actually overlays the new KTBSL PCB field. For a single threaded
process,PCBSL_KTBVEC is initialized to contain the address of PCBSL INITIAL KTB. The PCB
$L_INITIAL KTB always contains the address of the initial thread's KTB. As a process transitions
from being single threaded to multithreaded and back, PCB$SL_KTBVEC is updated to point to either
the KTB vector in pool or PCBSL _INITIAL KTB.

The PCBSL_KT COUNT field counts the valid entries in the KTB vector. The PCBSL_ KT HIGH
field gives the highest vector entry number in use.

6.2.2. Floating-Point Registers and Execution Data
Blocks (FREDs)

To allow for multiple execution contexts, not only are additional KTBs required to maintain the soft-
ware context, but additional HWPCBs must be created to maintain the hardware context. Each HW-
PCB has allocated with ita block of 256 bytes for preserving the contents of the floating-point regis-
ters across context switches. Another 128 bytes is allocated for per-kernel thread data. Presently, only
a clone of the PHDSL FLAGS?2 field is defined.

The combined structure that contains the HWPCB, floating-point register save area, and per-ker-

nel thread data is called the floating-point registers and execution data (FRED) block. It is 512 bytes
in length. These structures reside in the process's balance set slot. This allows the FREDs to be
outswapped with the process header. On the first page allocated for FRED blocks, the first 512 bytes
are reserved for the inner-mode semaphore.

6.2.3. Kernel Threads Region

Much process context resides in P1 space, taking the form of data cells and the process stacks. Some
of these data cells need to be per-kernel thread, as do the stacks. By calling the appropriate system
service,a kernel thread region in P1 space is initialized to contain the per-kernel thread data cells and
stacks. The region begins at the boundary between PO and P1 space at address 40000000x, and it
grows toward higher addresses and the initial thread's user stack. The region is divided into per-kernel
thread areas. Each area contains pages for data cells and the four stacks.

6.2.4. Per-Kernel Thread Stacks

A process is created with four stacks; each access mode has one stack. All four of these stacks are lo-
cated in P1 space. Stack sizes are either fixed,determined by a SYSGEN parameter, or expandable.
The parameter KSTACKPAGES controls the size of the kernel stack. This parameter continues to
control all kernel stack sizes, including those created for new execution contexts. The executive stack
is a fixed size of two pages; with kernel threads implementation, the executive stack for new exe-
cution contexts continues to be two pages in size. The supervisor stack is a fixed size of four pages;
with kernel threads implementation, the supervisor stack for new execution contexts is reduced to two
pages in size.

For the user stack, a more complex situation exists. OpenVMS allocates P1space from high to lower
addresses. The user stack is placed after the lowest P1 space address allocated. This allows the user
stack to expand on demand toward PO space. With the introduction of multiple sets of stacks,the loca-
tions of these stacks impose a limit on the size of each area in which they can reside. With the imple-
mentation of kernel threads, the user stack is no longer boundless. The initial user stack remains se-
mi-boundless; it still grows toward PO space, but the limit is the per-kernel thread region instead of
POspace.

53

Chapter 6. Kernel Threads Process Structure

6.2.5. Per-Kernel Thread Data Cells

Several pages in P1 space contain process state in the form of data cells. A number of these cells must
have a per-kernel thread equivalent. These data cells do not all reside on pages with the same protec-
tion. Because of this,the per-kernel area reserves approximately two pages for these cells. Each page
has a different page protection; one page protection is user read, user write (URUW), the other is user
read, executive write (UREW). The top of the user stack is used for the URUW data cells.

6.2.6. Layout of the Per-Kernel Thread

Each per-kernel thread area contains a set of stacks and two pages for data. Each area is a fixed size.
For a system using the default values for the kernel stack and user stack size, each area has the layout
shown in Figure 6.1.

Figure 6.1. Default Kernel Stack and User Stack Sizes

h &

grows towand
FFFFFFFF T

data cells
1 page
UREW

data cells

Usaer atack
8 pages
URUW

ot l data aren

Supemvlsor stack
2 pages
URSW

Executive atack
2 pages
SREYY

Kemel stack
1 page
SHKW

guand page
1 page
null

40000000%

ZK-T926A-GE

6.2.7. Summary of Process Data Structures

Process creation results in a PCB/KTB, a PHD/FRED, and a set of stacks. All processes have a single
kernel thread, the initial thread. A multithreaded process always begins as a single threaded process.
A multithreaded process contains a PCB/KTB pair and a PHD/FRED pair for the initial thread; for
its other threads, it contains additional KTBs, additional FREDs, and additional sets of stacks. When
the multithreaded application exists, the process returns to its single threaded state, and all additional
KTBs, FREDs, and stacks are deleted.

Figure 6.2 shows the relationships and locations of the data structures for a process.

54

Chapter 6. Kernel Threads Process Structure

Figure 6.2. Structure of a Multithreaded Process

Systemn Space F1 Space PO Space
FFFFFFFF.FFFFFFFF 7FFFFFFFF 3FFFFFFF
data O
Kemel user
Exec thread
Super
User user
Stacks thread
FCB PHDO
user
Inltlal nitial thread
thread thread
FRED
K:B o user
thread
user
Inner thread
mode data 1
Sema-
hore Kemel user
F Exec thread
I Super
User
KTR user
— 1 FH1ED Stacks thread
data 2
user
KTE Kemel thread
vector Exec
HKTB FRED Super user
2 2 User thread
Stacks
user
thread
datan user
Kemel thread
KTR FRED Exco 10
n n Super
User
Stacks
user
thread
m
FFFFFFF.80000000 40000000 00000000

6.3. Process ldentifiers (PIDs)

OpenVMS qualifies much context by the process ID (PID). With the implementation of kernel
threads, much of that process context moves to the thread level. With kernel threads, the basic unit

FHK-T922A-GE

55

Chapter 6. Kernel Threads Process Structure

of scheduling is no longer the process but rather the kernel thread. Because of this, kernel threads
need a method to identify them which is similar to the PID. To satisfy this need, the meaning of the
PID is extended. The PID continues to identify a process, but can also identify a kernel thread within
that process. An overview follows that presents the features of the PID, and the extended process ID
(EPID), which is the cluster-visible extension of the PID.

The PID in this form is typically known as the internal PID (IPID). It consists of two pieces of infor-
mation, both one word in length. Figure 6.3 shows the layout.

Figure 6.3. Process ID (PID)

31 15 1]

seq # PIX

ZK-7923A-GE

The low word is the process index (PIX). The PIX is used as an index into the PCB vector. This is a
vector of PCB addresses. Therefore the PIX gives a quick method of determining the PCB address
given a PID.

Another array, also indexed by PIX, contains a sequence number entry for each PIX. The sequence
number increments every time a PIX is reused. The high word of the IPID is a copy of the value in the
array for a particular PIX. This feature validates a PID to ensure that the ID is not for a process which
has been deleted. The sequence number in the IPID must match the one in the sequence number array
for that PIX.

The EPID is the cluster-visible PID. It consists of five parts, as Figure 6.4 shows.

Figure 6.4. Extended Process ID (EPID)

31 30 20 P8 2120 0
loseq # CSID seq#\ PIX

FK-T924A-GE

The EPID takes its low 21 bits from the two word IPID fields seen in Figure 6.3. The value of MAX-
PROCESSCNT determines the number of bits within the 21 bits used for the PIX (5 to 13 bits). The
sequence number uses the remaining bits (8 to 16 bits). The PIX cannot be larger than 8192; the se-
quence number no larger than 32767. If the system is an OpenVMS cluster member, the next 10 bits
of the EPID uniquely identify the PID within the cluster. They contain 8 bits of the cluster system ID
(CSID) for the system,and a 2 bit sequence number. The system service SYS$GETJPI uses the high
bit (31). If set, the bit specifies that the PID is a wildcard context value. This allows collecting infor-
mation for all processes in the system.

6.3.1. Multithread Effects on the PID

With kernel threads implementation, the PID's definition undergoes two changes:
+ MAXPROCESSCNT's maximum value is increased to 16,384.

To do this, the maximum PIX field width for the EPID is increased by one bit. This results in
shrinking the sequence number field by one bit.

* A redefinition of the sequence number.

56

Chapter 6. Kernel Threads Process Structure

The redefinition of the usage of the sequence number results in it taking on a dual meaning. It con-
tinues to be used to validate a PID; it also becomes the means for determining the kernel thread
ID. Instead of a single sequence number being assigned to a PIX, a range of sequence numbers are
used, one for each kernel thread. Therefore, the format of a kernel thread PID is identical to that of
the PID in either its IPID, or EPID representation. The PIX and sequence number fields are in the
same location, and they are the same size. In the EPID, the 10 bits used to uniquely identify the
PID within the cluster remain the same; this enables kernel threads to be visible clusterwide.

6.3.2. Range Checking and Sequence Vectors

Every process has at least one kernel thread, the initial thread, which is always thread ID zero; there-
fore, given a particular PID, the PIX continues to be used as an index into the PCB and sequence vec-
tors. A range check validates the sequence numbers.

Before kernel threads implementation, the sequence number vector(SCH$GL SEQVEC) was a vec-
tor of words. After kernel threads implementation,it is a vector of longwords that enables range check-
ing for sequence number validation. The low word in each longword is the base sequence number for
a particular PIX, and the upper word is the next sequence number for that PIX. The sequence number
for a single-threaded process must be equal to the base value. Kernel threads PID sequence numbers
must fall within the base and next values.

Figure 6.5shows the flow of range checking of sequence numbers.

Figure 6.5. Range Checking and Sequence Vectors

SCH$GL_SEQVEC SCH$GL_PCBVEC
Sequence Vector PCB Vector
FCB
next base FCRB Address
KTB veotor
30 21 0
1] seq # FIX
1} KTE address
1 KTB address
Seq# -base —p 2 KTB address
3 KTB address

ZK-Fa25A-GE

6.4. Process Status Bits

Similar to the fields in the PCB that migrate to the KTB, there are several status bits that need to be
per thread. The interface for the SYSSGETJPI and SYSSPROCESS SCAN system services indicates

57

Chapter 6. Kernel Threads Process Structure

that the entire longword fields that contain the status bits can be returned. Therefore, all the status bits
must remain defined as they are. The PCB specific bits are “reserved”in the KTB structure defini-
tion. Likewise, the KTB specific bits are “reserved” in the PCB. Because the PCB is really an over-
laid structure with the initial thread's KTB, just the PCB status bits need to be returned for the initial
thread. The status longword returned for other threads is built by first masking out the initial thread's
bits, and then OR'ing the remainder with the status longword in the appropriate KTB.

If a thread in a multithreaded process requests information about itself using SYS$GETIPI (passes

PID=0), then the status bits for the kernel thread it is running on are returned. Since each kernel thread
has its own PID,SYSSGETJPI can be called for each of the kernel threads in a process. The return sta-
tus bits are the combination of the PCB status bits and those in the KTB associated with the input PID.

58

Appendix A. Data Structure Changes

This appendix contains descriptions of the OpenVMS Alpha Version 7.0I/O data structure changes
made to support 64-bit addressing.

The data structures are listed in alphabetical order. However, the individual structure members are
listed in the order in which they are defined within each data structure. Note, however, that the follow-
ing sections only describe new or changed structure members. Existing unchanged members are not
described. In addition, unused or “fill” structure members that might be added to obtain natural align-
ment are not listed. Thus, you can not use the following descriptions to calculate the precise memory
layout of the structures. However, you can assume that any new or changed structure members will be
naturally aligned within the structure.

A.1. Pointer Size Conventions

Any unqualified use of the term “pointer” implies a 32-bit pointer. All 64-bit pointers will be explicit-
ly identified as either a 64-bit or quadword pointer.

As of OpenVMS Alpha Version 7.0,a new C compiler pragma controls the pointer size. To facilitate
the use of 64-bit pointers,a new header file, f ar _poi nt ers. h in SYS$STARLET C.TLB, defines
types for 64-bit pointers to the intrinsic C data types.

Table A.1 summarizes the 64-bit pointer data types.

Table A.1. 64-Bit Pointer Data Types

Type Name 32-Bit Analog Description Defined by

CHAR PQ char * 64-bit pointer to a char |far pointers.h

CHAR _PPQ char ** 64-bit pointer to a far pointers.h
CHAR_PQ

INT _PQ int * 64-bit pointer to a 32-bit|far_pointers.h
int

INT64 _PQ int64 * 64-bit pointer to a 64-bit|far pointers.h
int

UINT64 PQ uint64 * 64-bit pointer to a 64-bit|far pointers.h
int

VOID PQ void * 64-bit pointer to arbi- |far pointers.h
trary data

VOID _PPQ void ** 64-bit pointer to a far_pointers.h
VOID _PQ

IOSB_PQ IOSB * 64-bit pointer to an iosbdef.h
IOSB structure

IOSB_PPQ IOSB ** 64-bit pointer to an iosbdef.h
I0OSB_PQ

PTE PQ PTE * 64-bit pointer to a PTE |ptedef.h

PTE _PPQ PTE ** 64-bit pointer to a ptedef.h
PTE PQ

59

Appendix A. Data Structure Changes

A.2. Buffer Object Descriptor (BOD)

This section describes the additions and changes to cells in the buffer object descriptor (BOD) struc-
ture (see Table A.2).

Table A.2. BOD Structure Changes

Field Type Comments

bod$v_s2 window Bit A bit equal to BOD
$M_S2 WINDOW in the bod
$I _flags cell.

When this bit is clear, the buffer
object is mapped into the SO/

S1 portion of system space and
the bod$ps_svapt e and bod
$l _basesva cells are valid.

When this bit is set, the buffer
object is mapped into the S2
portion of system space and the
bod$pqg_va_pt e and bod
$pq_basesva cells are valid.

bod$pq basepva VOID PQ Process virtual address for
the start of the buffer object.
This cell replaces the bod
$l _basepva cell.

bod$l basepva - This cell will be removed. It
will be replaced by the bod
$pg_basepva cell.

bod$pq basesva VOID PQ System virtual address for

the start of the buffer object.
This cell is overlaid on the
bod$l _basesva cell and

this use is valid only if BOD
$M_S2 WINDOW is set in bod
$l _flags.

bod$pq va pte PTE PQ Virtual address for the first sys-
tem PTE that maps the buffer
object. This cell is overlaid on
the bod$ps_svapt e cell and
this use is valid only if BOD
$M_S2 WINDOW is set in bod
$l _flags.

A.3. Buffered 1/0 (BUFIO)

The existing 32-bit Buffered I/O (BUFIO) packet format will continue to be supported. In addition, a
new 64-bit BUFIO packet format will be supported. These BUFIO packets are “self identifying”.That
is, it is possible to distinguish a 32-bit from a 64-bit format BUFIO packet from information in the
packet.

60

Appendix A. Data Structure Changes

Although the structure type code DYNS$C BUFIO is defined and there is an expected layout for the
header of buffered I/O packet, there currently is no formal definition of a structure. Existing code in
drivers and IOCIOPOST.MAR uses numeric constants as offsets.

The existing 32-bit BUFIO packet will be formally defined along with a new 64-bit BUFIO packet

format. The 64-bit BUFIO structure format will also be used for64-bit diagnostic buffer packets (see
Table A.3).

Table A.3. BUFIO Packet

Field Type Comments

bufio$ps_pktdata void * Pointer to the buffered data
within the packet.

bufio$ps_uva32 void * 32-bit pointer to user's address
space. On a read function, data
is transferred from that user vir-
tual address to the buffer pack-
et during FDT processing. On

a write function, data is trans-
ferred to that user virtual address
from the buffer packet during I/
O Post-processing. If this cell
contains the value BUFIO$K 64
(-1), then the pointer to the user
buffer is in buf i 0$pg_u-
va64.

bufio$w_size unsigned short Size of the BUFIO packet in
bytes.

bufio$b_type unsigned char Nonpaged pool packet type
code, DYNSC BUFIO

BUFIO$K HDRLEN32 constant Size in bytes of the minimal
buffered I/0 packet header with
a 32-bit user virtual address

(12).

bufio$pq uva64 VOID PQ 64-bit pointer to user's address
space. On a read function, data is
transferred from that user virtual
address to the buffer packet dur-
ing FDT processing. On a write
function, data is transferred to
that user virtual address from the
buffer packet during I/O Post-
processing. This cell contains

a valid address only if the bu-

fi o$ps_uva32 cell contains
the value BUFIOSK 64 (-1).

BUFIO$K HDRLENG64 constant Size in bytes of the minimal
buffered 1/0 packet header with

a 64-bit user virtual address
(24).

61

Appendix A. Data Structure Changes

A.4. Complex Chained Buffer (CXB)

The CXB structure defines the format of entries that are linked together to build a complex chained
buffered 1/O packet.

The CXB structure will be enhanced such that it can be used by existing code with no source changes

to support a 32-bit caller's buffer address. However, the same enhanced CXB structure can be used to
support a64-bit caller's buffer address as well (see Table A.4).

Table A.4. CXB Structure Changes

Field Type Comments

cxbS$ps_pktdata void * Pointer to the buffered data
within the packet. This cell will
be overlaid on the existing cxb
$I _f1 cell to reflect its current
alternate use.

cxb$ps_uva32 void * 32-bit pointer to user's address
space. If this cell contains the
value BUFIO$K 64 (-1) then
the pointer to the user buffer is
in cxb$pq_uvab4. This cell
will be overlaid on the existing
cxb$l _bl cell to reflect its
current alternate use.

cxb$pq uva64 VOID_PQ 64-bit pointer to user's address
space. This cell contains a valid
address only if the cxb$ps_u-
va32 cell contains the val-

ue BUFIO$K 64 (-1). This

cell will be inserted as the last
aligned quadword just before the
end of the standard CXB head-
er which is CXB$K LENGTH
bytes long.

A.5. Data Chain Block (DCBE)

The DCBE structure is the Data Chain Block that is used by the OpenVMS LAN driver VMS Com-
munications Interface (VCI).A DCBE is used to connect to a VCRP all or part of the data to be trans-
mitted. A chain of DCBEs is used when the data is contained in more than one discontinuous buffer in
virtual memory.

There are two mutually exclusive methods that a DCBE can use to identify the start of the buffer:

1. When the dcbe$l _buf f er _addr ess cell contains a zero, the buffer address is specified by
the dcbe$l _svapt e and dcbe$l _bof f cells. A fixed-size primary DIOBM structure will be
added to the DCBE. This embedded DIOBM structure is available for use by an upper-level VCM
if it needs to derive a 32-bit SVAPTE from a 64-bit VA PTE for the PTEs that map the buffer. The
lower-level VCM will not alter this embedded DIOBM or make any assumptions about it.

62

Appendix A. Data Structure Changes

2. When the dcbe$l _buf f er _addr ess cell contains the a non-zero value, this value is the sys-
tem virtual address of the buffer. This method remains unchanged.

Because a VCRP can also be used as a DCBE, the named DCBE cells must be at the same offsets as
their VCRP counterparts. Therefore, DCBE changes are reflected in the VCRP and changes to the

common portion of the VCRP are reflected in the DCBE.

In addition, SYSSPEDRIVER overlays a DCBE with the vcr p$t _i nt er nal _st ack area with-
in the VCRP. Therefore, an increase in the size of the DCBE must be reflected by a corresponding in-
crease in the size of the internal stack area within the VCRP (see Table A.5).

Table A.5. DCBE Structure Changes

Field

Type

Comments

dcbe$l reserved

int32[13]

This existing vector of 6 filler
longwords has been increased to
13 fill longwords to reflect the
increased size of the common
portion of the VCRP. The com-
mon portion of the VCRP has
been increased to accommodate
either an ACB64 or ACB struc-
ture.

dcbe$pq buffer addro4

VOID_PQ

64-bit buffer address. This cell
is available for use by upper-lev-
el VCMs only. Note that this
cell does not replace the dcbe
$I _buf fer_address cell
which continues to be used by
lower-level VCMs. The dcbe
$pqg_buf f er _addr 64 cell
has been added after the dcbe
$I _bent cell.

dcbe$r diobm

DIOBM

Embedded fixed-size primary
"direct I/O buffer map" struc-
ture. This DIOBM structure is
available for use by upper-lev-
el VCMs that need to lock down
a buffer and provide a value for
the dcbe$l _svapt e cell. This
structure has been added just be-
fore the end of the DCBE head-
er.

A.6. Direct I/O Buffer Map (DIOBM)

The Direct I/O Buffer Map (DIOBM) is a new structure that is used to solve the “cross-process PTE
problem” for buffers that have been locked into memory for direct I/O.

There are two variants of the DIOBM structure. The first is the primary DIOBM structure. The prima-
ry DIOBM structure can be used in the following mutually exclusive ways:

1. To contain copies of the actual PTEs that map the buffer.

63

Appendix A. Data Structure Changes

2. To point to a larger secondary DIOBM structure if the primary DIOBM structure has insufficient
room for all the PTEs that map the user buffer.

3. To manage a PTE window in S0/S1 space onto the actual PTEs that map the buffer if the required
PTE count exceeds the capacity of the largest allowable DIOBM structure.

Each of these methods yields a 32-bit system virtual address for the PTEs that map the buffer. This ad-
dress is valid regardless of process or system context.

The fixed-size DIOBM structure contains room for exactly DIOBM$K PTECNT FIX (9) PTEs and
is 88 bytes long. Most primary DIOBM structures are fixed-sized and embedded in other structures.
For example, the IRP, IRPE, VCRP,and DCBE structures all contain an embedded fixed-sized prima-
ry DIOBM structure.

A secondary DIOBM structure can have room for up to i oc$gl _di obm pt ecnt _nmax PTEs and
is used only for PTE copies.

Although the offsets and types for both the primary and secondary DIOBM structures are identical,
for clarity, they are described in separate tables (see Table A.6 and Table A.7).

Table A.6. Primary DIOBM Structure

Field Type Comments

diobm$ps_aux_ diobm DIOBM * This is a pointer to a sec-
ondary DIOBM structure that

is valid if and only if DIOBM
$M_AUX INUSE indi obm
$I _f 1 ags is set. The sec-
ondary DIOBM structure con-
tains copies of the PTE that map
the buffer. When a secondary
DIOBM is used, the only use for
the primary DIOBM is to locate
the secondary.

diobm$l pte count unsigned int If DIOBM$M_PTE WINDOW
is clear in di obn®l _f | ags,
this cell contains the count of
PTEs that have been copied

to the PTE vector di obm
$g_pt e_vect or in this
DIOBM structure.

If DIOBM$M PTE WINDOW
is set in di obn®l _f | ags, this
cell contains the count of SPTEs
that have been allocated for a
PTE window in S0/S1 space to
the actual PTEs that map the

buffer.

diobm$w_size unsigned short Size of the DIOBM packet in
bytes.

diobm$b_type unsigned char Nonpaged pool packet type

code, DYNSC MISC

64

Appendix A. Data Structure Changes

Field

Type

Comments

diobm$b_subtype

unsigned char

Nonpaged pool packet subtype
code, new DYNSC_MISC sub-
type code DYNSC DIOBM

diobm$l1 flags

unsigned int

Flag bits.

diobm$v _rel dealloc

bit

A bit equal to DIOBM
$M_REL_DEALLOC in the

di obn®l _fl ags cell. If

set, routine IOC_STD$RE-
LEASE DIOBM deallocates
this DIOBM structure. The rou-
tine [OC_STDS$FILL DIOBM
sets this bit on any secondary
DIOBM structure that it may al-
locate. The routine IOC_STD
$CREATE_DIOBM sets this bit
on the primary DIOBM structure
that it allocates.

diobm$v_pte window

bit

A bit equal to DIOBM
$M_PTE_WINDOW in the

di obn®l _f1 ags cell. This
bit is set if the direct I/O buffer
is too large for a DIOBM pack-
et (the buffer requires more
than ioc$gl diobm ptecnt max
PTEs) and a window in SO to
its PTEs has been allocated.
When this bit is set, di obm

$l _pte_count contains

the count of SPTEs that have
been allocated and the di obm
$l _pt ew_sva cell contains
the system virtual address that
is mapped by the first SPTE al-
located for the PTE window.
This bit must be clear if di obm
$v_aux_i nuse is set.

diobm$v_aux_inuse

bit

A bit equal to DIOBM

$M_AUX INUSE in the di obm
$l _fl ags cell. The di obm
$ps_aux_di obmcell con-
tains a pointer to a secondary
DIOBM structure if and only if
the di obnfbv_aux_i nuse

bit is set. This bit must be clear
ifdi obn®v_pt e_wi ndowis
set.

diobm$v_inuse

bit

A bit equal to DIOBM
$M_INUSE in the di obm
$I _f1 ags cell. This flag is

65

Appendix A. Data Structure Changes

Field

Type

Comments

an aid to detecting in proper

use of DIOBM structures and

is used only by the full-check-
ing versions of the routines in
the IO ROUTINES MON.EXE
execlet. This flag is set by the
IOC_STDSFILL DIOBM and
I0OC_STDSCREATE DIOBM
routines and is cleared by the
IOC _STDSRELEASE DIOBM
routine. Prior to setting the flag,
the IOC_STDSFILL DIOBM
routine checks this flag if the

di obn$b_t ype cell contains
the DYNSC MISC value and

di obn®b_subt ype contains
DYN$C DIOBM. If the di obm
$v_i nuse flag is set under
these conditions, the IOC_STD
$FILL DIOBM routine declares
a INCONSTATE bugcheck.

diobm$v_sOpte_window

bit

A bit equal to DIOBM
$M_SOPTE_WINDOW in

the di obn®l _f | ags cell.
This bit is set if the SO/S1 PTE
window was used to derive

a 32-bit PTE address for this
buffer. When this bit is set the
di obn®v_pt e_wi ndowand
di obn®v_aux_i nuse flags
must be clear and the di obm
$l _pte_count cell must con-
tain 0.

DIOBM$K_HDRLEN

constant

Size in bytes of the minimal
DIOBM packet header exclud-
ing the PTE vector. This is equal
to the byte offset of the di obm
$g_pte_vector[0] cell

(16).

diobm$q_pte vector

PTE[diobm$]_pte_count]

Vector of di obm

$l _pt e_count quadword
PTEs that are copies of the PTEs
that map the buffer that has been
locked for direct I/0. This vec-
tor is valid only if both DIOBM
$M_AUX INUSE and DIOBM
$M_PTE_WINDOW in di obm
$l _fl ags are clear.

DIOBMS$K_PTECNT FIX

constant

This constant specifies the num-
ber of PTE entries (9) that fit in-

66

Appendix A. Data Structure Changes

Field

Type

Comments

to the PTE vector in a fix-sized
DIOBM structure.

DIOBM$K_PTECN-
T MAX_UNI

constant

This constant specifies the num-
ber of PTE entries (94) that fit
into the PTE vector in the largest
allowable DIOBM structure on
an uniprocessor system.

DIOBMS$K_PTECN-
T MAX_SMP

constant

This constant specifies the num-
ber of PTE entries (430) that fit
into the PTE vector in the largest
allowable DIOBM structure on
an SMP system.

diobm$ps_ptew sva

void *

The lowest S0/S1 space virtu-

al address that is mapped by the
PTEs that have been allocated
for the window onto the direct I/
O buffer PTEs. This cell is used
to deallocate the PTE window.
This cell is overlaid on a por-
tion of di obnfbq_pt e_vec-

t or since its use is mutually ex-
clusive. This cell is valid if and
only if DIOBM$M_PTE WIN-
DOW in di obntl _f | ags is
set.

DIOBMS$M NORESWAIT

constant

This is an option bit mask for the
flags parameter to the IOC_STD
$FILL _DIOBM and IOC_STD
$CREATE_ DIOBM routines.

When this option bit is set and
there are insufficient resources
for the needs of these routines
an error status is returned to
their callers instead of putting
the process into a resource wait
state.

Table A.7. Secondary DIOBM Structure

Field

Type

Comments

diobm$ps_aux_diobm

DIOBM *

This cell must be zero in a sec-
ondary DIOBM structure.

diobm$l pte count

unsigned int

Contains the number of PTEs
that can fit into the di obm
$g_pt e_vect or in this
DIOBM structure.

diobm$w_size

unsigned short

Size of the DIOBM packet in
bytes.

67

Appendix A. Data Structure Changes

Field

Type

Comments

diobm§$b_type

unsigned char

Nonpaged pool packet type
code, DYNSC_MISC

diobm$b_subtype

unsigned char

Nonpaged pool packet subtype
code, new DYNS$C MISC sub-
type code DYNSC_DIOBM

diobm$1_flags

unsigned int

Flag bits.

diobm$v_rel dealloc

bit

A bit equal to DIOBM
$M_REL DEALLOC in the
di obn®l _fl ags cell. If
set, routine IOC_STD$RE-
LEASE DIOBM deallocates
this DIOBM structure.

diobm$v_pte window

bit

A bit equal to DIOBM
$M_PTE_WINDOW in the

di obn®l _f 1 ags cell. This
bit must be clear in a secondary
DIOBM structure.

diobm$v_aux inuse

bit

A bit equal to DIOBM
$M_AUX_INUSE in the di obm
$I _f1 ags cell. This bit must
be clear in a secondary DIOBM
structure.

diobm$v_sOpte_window

bit

A bit equal to DIOBM
$M_SOPTE_WINDOW in the
di obn®l _f | ags cell. This
bit must be clear in a secondary
DIOBM structure.

diobm$q_pte vector

PTE[diobm$l] pte count]

Vector of di obm

$l _pte_count quadword
PTEs that are copies of the PTEs
that map the buffer that has been
locked for direct I/O.

A.7. Function Decision Table (FDT)

This section describes the additions to the driver Function Decision Table (FDT) structure(see

Table A.8).

Table A.8. FDT Structure Changes

Field

Type

Comments

fdtSq_ok64bit

unsigned int64

A 64-bit mask corresponding
to the 64 possible 1/0 function
codes. The corresponding bit

is set if the function supports a
64-bit $QIO p1 parameter val-
ue. This cell is initialized to ze-
ro by the MACRO-32 macro

68

Appendix A. Data Structure Changes

Field

Type

Comments

FDT _INI, the BLISS macro FD-
TAB, and in the prototype FDT,
DRIVERSFDT, which is used
by drivers written in C. This cell
has been added to the end of the
existing FDT structure.

A.8. /0 Request Packet (IRP)

This section describes the additions and changes to cells in the I/O Request Packet (IRP) structure.

The significant IRP changes are:

1. The IRP resembles a 64-bit capable ACB64 structure instead of the existing ACB structure.

2. A fixed-size primary DIOBM is embedded in the IRP for use in deriving a 32-bit system virtual
address for the PTEs that map a buffer locked into memory for direct 1/O.

3. The IRP cells that contain copies of the 64-bit $QIO parameter values and the caller's IOSB ad-
dress have been expanded from 32-bits to 64-bits.

4. Any cells overlaid onthe i r p$l _ast,irp$l _astprmorirp$l _i osb cells move to the
low-order longword of their quadword replacements.

5. Alternative cell names have been defined for the ast , ast pr m and i osb cells that can be used
for arbitrary parameters in internal IRPs.

The size of an IRP has increased by 160 bytes (43%), from 376to 536 bytes (see Table A.9).

Table A.9. IRP Changes
Field Type Comments
irp$b_mode unsigned char This is an existing cell in the

IRP that contains the caller's
mode in the low-order 2 bits.
Thei rp$l _acb_f1 ags cell
is considered valid by SCH
$QAST if and only if ACB
$M_FLAGS_VALID mask

is set in this cell. The ACB
$M_FLAGS VALID mask is
always set in this cell by EXE
$QIO when the IRP is allocated.

irp$l_acb64x_offset

nt

Offset to the ACB64X struc-
ture embedded in this IRP. This
cell is considered valid by SCH
$QAST if and only if ACB
$M_64BITS is setin thei rp
$l _acb_f1 ags cell. This cell
is initialized to the offset value
of the i r p$pq_ach64_ast
field. This cell corresponds to
the acb64$l _ach64x cell.
Because this cell is at the same

69

Appendix A. Data Structure Changes

Field

Type

Comments

offset as the acb$l _ast cell,
thei r p$l _ast cell has been
removed.

irp$l_acb_flags

unsigned int

This cell has been initial-

ized to the mask value ACB
$M_64BITS to indicate that the
i rp$l _acb64x_of f set
field contains an offset to the
ACB64X structure. Corresponds
to the acb$l _f | ags cell.

irp$1_thread pid

int

Corresponds to the ach

$l _thread_pi d cell. Re-
served for use by the Kernel
Threads project.

irp$pq_acb64 ast

VOID FUNC PQ

This cell corresponds to the
acb64$pqg_ast cell and re-
places the i r p$l _ast cell.

irp$l_ast

This cell has been removed. It
has been replaced by the i r p
$pg_ach64_ast cell.

irp$1_shd_iofl

IRP *

This is an existing cell that
contains the link to the cloned
shadowing IRPs. This cell was
overlaid oni r p$l _ast and
is now overlaid on the low-
order longword of the i r p
$pg_ach64_ast cell.

irp$1_iirp_p0

int

Generic parameter cell that

is available in internal IRPs.
This cell overlays the low-
order longword of the i r p
$pg_ach64_ast cell and is
intended for use by components
that use the i r p$l _ast cell
for this purpose.

irp$q_acb64 astprm

int64

This cell corresponds to the
achb643$q_ast pr mcell and
replaces the i r p$l _ast prm
cell.

irp$l_astprm

This cell has been removed.
It is replaced by the i r p
$g_ach64_ast pr meell.

irp$l_shad

SHAD *

This is an existing cell in [IRPs
cloned by shadowing that points
to the SHAD structure. This cell
was overlaid oni r p$l _ast -
pr mand is now overlaid on the

70

Appendix A. Data Structure Changes

Field

Type

Comments

low-order longword of the i r p
$g_ach64_ast pr meell.

irp$1_hrb

HRB *

This is an existing cell in MSCP
server IRPs that points to a
Host Request Block structure.
This cell was overlaid oni r p
$| _ast pr mand is now over-
laid on the low-order longword
of thei r p$q_ach64_ast -
pr mcell.

irp$l_mv_tmo

int

This cell is used in internal
mount verification IRPs to con-
tain the timeout value. This cell
overlays the low-order longword
of thei r p$q_ach64_ast -

pr mcell and is intended for use
by components that currently use
thei r p$l _ast pr mcell for
this purpose.

irp$1_iirp pl

nt

Generic parameter cell that

is available in internal IRPs.
This cell overlays the low-
order longword of the i r p
$q_ach64_ast pr mcell and
is intended for use by compo-
nents that use the i r p$l _ast -
pr mcell for this purpose.

irp$q_user thread id

uint64

Unique user thread iden-

tifier. Corresponds to the
acb64$q_user thread_ id
cell. Reserved for use by the
Kernel Threads project.

irp$pq_iosb

VOID _PQ

64-bit pointer to the caller's
IOSB. This cell replaces i r p
$l _i osb.

irp$1_iosb

This cell has been removed. It is
replaced by the i r p$pq_i osb
cell.

irp$l_cln_wle

unsigned int

This is an existing cell that con-
tains the shadowing write log
state. This cell was overlaid on

i rp$l _i osb and is now over-
laid on the low-order longword
of the i r p$pq_i osb cell.

irp$1_iirp_p2

int

Generic parameter cell that is
available in internal IRPs. This
cell overlays the low-order long-
word of the i r p$pq_i osb

71

Appendix A. Data Structure Changes

Field

Type

Comments

cell and is intended for use by
components that use the i r p
$I _i osb cell for this purpose.

irp$pq_va pte

PTE_PQ

A 64-bit pointer to the actual
PTEs that map the user buffer. If
the user buffer is not in shared
system space, then this PTE vir-
tual address is only valid in the
caller's process context.

irp$1_svapte

PTE *

A 32-bit pointer to PTE values
that map the user buffer. The
PTE values may be copies of
the actual PTEs in Page Table
Space that map the user buffer.
If zero, then no PTEs have been
locked for this request. Note that
for compatibility with existing
drivers, this cell remains over-
laid oni r p$ps_bufio_p-

kt and this use is valid only if
IRP$SM_BUFIO is clearini r p
$l _st s. Note also that this cell
contains a pointer into the CPT
structure if IRPSM_CACHEIO
issetini r p$l _sts2.

irp$ps_bufio pkt

BUFIO *

Pointer for the buffered I/O
packet for this request. If ze-
ro, then no packet has been al-
located for this request. Note
that for compatibility with ex-
isting drivers, this cell remains
overlaidoni r p$l _svapt e
and this use is valid only if
IRP$M_BUFIO is setini rp
$l _sts.

irp$r_diobm

DIOBM

Embedded fixed-size primary
"direct I/O buffer map" struc-
ture. This embedded DIOBM
structure is valid if and only if

i rp$l _svapt e points to a
set of PTEs whose pages have
been locked down for direct I/
0. Specifically, the DIOBM is in
use when both IRP$M_BUFIO
and IRP§M_CACHEIO ini rp
$l _stsareclearandthei rp
$l _svapt e cell contains a
non-zero value. See Section A.6

72

Appendix A. Data Structure Changes

Field Type Comments
for a complete description of the
DIOBM structure.

irp$q_qio_pl int64 Copy of device dependent $QIO

parameter pl. The low order 32-
bits of this cell remain accessible

viai rp$l _qi o_p1.

irp$q_qio p2 int64 Copy of device dependent $QIO
parameter p2. The low order 32-
bits of this cell remain accessible

viairp$l _qi o_p2.

irp$q_qio_p3 int64 Copy of device dependent $QIO
parameter p3. The low order 32-
bits of this cell remain accessible
viairp$l _qi o_p3.

irp$q_qio p4 int64 Copy of device dependent $QIO
parameter p4. The low order 32-
bits of this cell remain accessible
viai rp$l _qi o_p4.

irp$q_qio_p5 int64 Copy of device dependent $QIO
parameter p5. The low order 32-
bits of this cell remain accessible
viai r p$l _qi o_p5.

irp$q_qio p6 int64 Copy of device dependent $QIO
parameter p6. The low order 32-
bits of this cell remain accessible

viairp$l _qi o_p6.

A.9. 1/0 Request Packet Extension (IRPE)

This section describes the additions and changes to cells in the I/O Request Packet Extension (IRPE)
structure. An IRPE structure can contain additional driver-specific information that needs to be associ-
ated with an IRP. It can also be used to manage additional buffers that are locked down for direct I/O.

If the IRP$M_EXTEND bitis setini r p$l _st s thenthei r p$l _ext end cell contains a pointer
to an associated IRPE structure. Similarly, if the IRPESM_EXTEND bit is set in the i r pe$l _st s
cell, then the i r pe$l _ext end cell contains a pointer to another IRPE. In general, if there is an
IRPE cell with the name i r pe$X and an IRP cell with the name i r p$X, then the cells must be at the
same offsets such that the IRP and the IRPE can be used interchangeably in contexts that depend only
on these common cells.

Currently, a single IRPE structure can be used to keep track of two separate regions of locked down
pages. The new IRPE structure can only manage a single region of locked down pages and contains a
single fixed-size primary DIOBM structure for that purpose (see Table A.10).

Table A.10. IRPE Changes
Field Type Comments
irpe$b_rmod unsigned char Requester's access mode. This

corresponds to the i r p$b_r -
nod cell. The space for this

73

Appendix A. Data Structure Changes

Field

Type

Comments

IRPE cell was reserved but the
cell was not previously formally
defined. The addition of this cell
facilitates the usage of an IRPE
with the EXE_STD$READ-
LOCK routines because the

i rpe$b_r nod cell is one of
the required implicit inputs.

irpe$l_oboff

unsigned int

Original byte offset into first
page for buffer locked into
memory. This corresponds to the
i rp$l _obof f cell that was
added to the IRP on OpenVMS
Alpha but was not formally de-
fined in the IRPE. This corrects
that omission.

irpe$q_driver p0

nt64

Available for use by driver. This
cell is overlaid on what was pre-
viously filler space.

irpe$l_driver p0

nt

Available for use by driver. This
cell is overlaid on the low-or-
der 32-bits of i r pe$qg_dri -
ver _pO0.

irpe$1_driver pl

int

Available for use by driver. This
cell is overlaid on the high-or-
der 32-bits of i r pe$qg_dri -
ver _pO0.

irpe$q_driver p2

int64

Available for use by driver. This
cell is overlaid on what was pre-
viously filler space.

irpe$l_driver p2

int

Available for use by driver. This
cell is overlaid on the low-or-
der 32-bits of i r pe$q_dri -
ver _p2.

irpe$1_driver p3

nt

Available for use by driver. This
cell is overlaid on the high-or-
der 32-bits of i r pe$qg_dri -
ver_p2.

irpe$pq_va pte

PTE PQ

A 64-bit pointer to the actual
PTEs that map the user buffer. If
the user buffer is not in shared
system space, then this PTE vir-
tual address is only valid in the
caller's process context.

irpe$l svapte

PTE *

A 32-bit pointer to a copy of the
PTEs that map the user buffer.
If zero, then no PTEs have been
locked for this request. This

74

Appendix A. Data Structure Changes

Field

Type

Comments

cell replaces the i r pe$l _s-
vapt el cell.

irpe$1_svaptel

This cell has been removed. It
is replaced by the i r pe$l _s-
vapt e cell.

irpe$l bent

unsigned int

Byte count for buffer locked into
memory. This cell replaces the
i rpe$l _bent 1 cell.

irpe$1_bentl

This cell has been removed. It is
replaced by the i r pe$l _bcnt
cell.

irpe$1_boff

unsigned int

Byte offset into first page for
buffer locked into memory.
This cell replaces the i r pe
$I _bof f 1 cell.

irpe$1_boffl

This cell has been removed. It is
replaced by the i r pe$l _bof f
cell.

irpe$r_diobm

DIOBM

Embedded fixed-size primary
"direct I/O buffer map" struc-
ture. This embedded DIOBM
structure is valid if and only if
thei r pe$l _svapt e cell con-
tains a non-zero value. See Sec-
tion A.6 for a complete descrip-
tion of the DIOBM structure.

irpe$l_svapte2

This cell has been removed. It
was used to contain a pointer to
the first PTE for a second buffer
that was locked into memory. If
zero, then there was no second
buffer.

irpe$1_bent2

This cell has been removed. It
was used for the byte count for
the second buffer locked into
memory.

irpe$l_boff2

This cell has been removed. It
was used for the byte offset for
the second buffer locked into
memory.

A.10. Process Header (PHD)

This section describes the 1/0-specific additions to cells in Process Header (PHD) structure (see

Table A.11).

75

Appendix A. Data Structure Changes

Table A.11. PHD Structure Changes

Field Type Comments

phd$l iorefc uint32 Number of reasons to keep the
PHD resident due to groups

of pages locked for direct I/O.
This count is incremented by
MMG STDSIOLOCK BUF
and decremented by MMG_STD
$IOUNLOCK BUF. On the ze-
ro-to-one transition of this cell,
the slot reference count for the
process in the PHV$SGL RE-
FCBAS LW vector is incre-
mented. On the one-to-zero tran-
sition of this cell, the slot refer-
ence count for the process in the
PHVSGL REFCBAS LW vec-
tor is decremented.

A.11. SCSI-2 Diagnose Buffer (S2DGB)

For information about S2DGB 64-bit addressing support,see the OpenVMS Alpha Guide to 64-Bit
Addressing and VLM Features.

A.12. VMS Communications Request Packet
(VCRP)

The VCRP structure is the VMS Communications Request Packet that is used by the OpenVMS LAN
driver VMS Communications Interface (VCI).A VCRP is used to transfer data between an upper- and
lower-level VCM.

The VCRP is designed so that it can be used as an ACB by an upper-level VCM. Therefore, the
VCRP has been enhanced such that it can be used either as an ACB or ACB64 structure by an up-
per-level VCM. This allows upper-level VCMs the flexibility of providing 64-bit AST support at
some time in the future without requiring another VCRP change and the forced recompilation of all
VCMs (see Table A.12).

Table A.12. VCRP Structure Changes

Field Type Comments

verp$v_acb_flags valid bit This is a new bit in the vcr p
$b_r nmod cell that corresponds
to the acb$v_fl ags_valid
bit. This bit is available for the
exclusive use of upper-level
VCMs.

verp$l acb64x_offset int Offset to the ACB64X struc-
ture embedded in this VCRP.
This cell corresponds to the ach
$l _ach64x cell and is overlaid

76

Appendix A. Data Structure Changes

Field

Type

Comments

onvcr p$l _ast. This cell is
available for the exclusive use of
upper-level VCMs.

verp$l acb flags

unsigned int

This cell corresponds to the ach
$I _fl ags cell and is over-
laid on the first longword of the
existing fork block filler space
in the VCRP. This cell is avail-
able for the exclusive use of up-
per-level VCMs.

verp$l thread id

int

This cell corresponds to the ach
$l _thread_pi d cell and is
on the second longword of the
existing fork block filler space in
the VCRP. Reserved for use by
the Kernel Threads project.

verp$pq_acb64 ast

VOID FUNC PQ

This cell corresponds to the
acb64$pqg_ast cell. This cell
is available for the exclusive use
of upper-level VCMs.

verp$q_acb64 astprm

int64

This cell corresponds to the
acb643$q_ast pr mcell. This
cell is available for the exclusive
use of upper-level VCMs.

verp$q_user thread id

uint64

Unique user thread iden-

tifier. Corresponds to the
acb64$q_user _thread_id
cell. This cell is available for
the exclusive use of upper-level
VCMs.

verp$pq buffer addr64

VOID PQ

64-bit buffer address. This cell
is available for use by upper-lev-
el VCMs only. Note that this
cell does not replace the vcr p
$l _buf f er _address cell
which continues to be used by
lower-level VCMs.

verp$r_diobm

DIOBM

Embedded fixed-size primary
"direct I/O buffer map" struc-
ture. This DIOBM structure is
available for use by upper-lev-
el VCMs that need to lock down
a buffer and provide a value for
the ver p$l _svapt e cell.

verp$t_internal stack

char[220]

This existing internal stack area
of 92 bytes has been increased
to 220 bytes to reflect the in-
creased size of a DCBE. SYS

71

Appendix A. Data Structure Changes

Field Type Comments

$PEDRIVER requires that it can
place a DCBE within this stack
area. This space is available for
the exclusive use of upper-level
VCMs

78

Appendix B. I/0 Support Routine
Changes

This appendix contains detailed descriptions of the changes to I/O support routines and the new I/O
support routines that are available to enhance device drivers to support64-bit addresses.

The routines are listed in alphabetical order.

B.1. ACP_STD$READBLK and ACP_STD
$WRITEBLK

The routines ACP_STD$READBLK and ACP_STDS$SWRITEBLK are upper-level FDT routines, so
their interfaces remain unchanged:

int acp_std$readblk (IRP *irp, PCB *pcb, UCB *uch, CCB *cch)
int acp_std$witeblk (IRP *irp, PCB *pcb, UCB *uch, CCB *cch)

These routines obtain the address of the caller's buffer from i r p- >i r p$l _qgi 0_p1l. These routines

have been modified to obtain the full 64-bit buffer address from i r p- >i r p$q_qi 0_p1l and pass it

to EXE STDSREADLOCK or EXE STD$WRITELOCK. Note, however,that the buffer size remains
a longword and is obtained from i r p- >i r p$l _qgi 0_p2 without checking the upper 32-bits.

B.2. EXE_STD$ALLOC_BUFIO_ 32, EX-
E_STD$ALLOC_BUFIO 64

Routines EXE_STDSALLOC BUFIO 32 and EXE STDSALLOC BUFIO_64 are new routines that
device drivers can use to allocate and initialize simple buffered I/O (BUFIO) packets. The appropri-
ate IRP and BUFIO header cells are initialized but it is up to the caller to copy any data into the pack-
et.

The interfaces for these routines are:

int exe_std$alloc bufio 32 (IRP *irp, PCB *pch, void *uva, int pktsiz)
int exe_std$alloc bufio 64 (IRP *irp, PCB *pch, VA D PQ uva, int pktsiz)

Table B.1 summarizes the use of the arguments.

Table B.1. EXE_STDSALLOC_BUFIO_32, EXE STDSALLOC_BUFIO_64 Arguments

Argument Type Access Description

irp IRP * Input Pointer to the current
IRP.

pcb PCB * Input Pointer to the process
PCB.

uva VOID PQ Input User virtual address,
EXE_STDS$AL-
LOC_BUFIO_64

void * Input User virtual address,

EXE_STDS$AL-
LOC_BUFIO 32

79

Appendix B. I/O Support Routine Changes

Argument Type Access Description

pktsiz int Input Required size of the
packet including the
packet header.

These routines use the EXE_STD$SDEBIT BYTCNT _ALO routine to allocate the packet and charge
the process for the required BYTCNT quota. Any failure status from this routine is returned to the

caller.

Table B.2 lists all the implicit outputs that are valid on successful return from these routines.

Table B.2. EXE_STDSALLOC_BUFIO 32, EXE_STDSALLOC_BUFIO_64 Implicit

Outputs

Field Value on Successful Completion

irp$ps_bufio pkt Pointer to the allocated BUFIO packet.

irp$1_boff Number of charged bytes and size of allocated
packet.

bufio$ps pktdata Pointer to the packet data region in the allocated

BUFIO packet.

bufio$ps_uva32

For EXE_STDSALLOC_BUFIO 32, value of
uva.

For EXE_STD$SALLOC BUFIO 64, BUFIO
SK_64.

bufio$w_size

Size of allocated packet.

bufio$b_type

DYNS$C_BUFIO.

bufio$pq_uva64

For EXE_STDSALLOC_BUFIO 64, value of
uva.

B.3. EXE_STD$ALLOC_DIAGBUF

Routine EXE_STD$ALLOC DIAGBUF is a new routine that allocates either a 32-bit or 64-bit di-
agnostic buffer packet and initializes the diagnostic buffer packet header. Diagnostic buffer packets
use the same layout as BUFIO packets. This routine initializes the appropriate IRP and BUFIO header
cells in the diagnostic buffer packet header but it is up to the caller to copy any data into the packet.

The allocation of a 32-bit or 64-bit format diagnostic buffer packet is controlled by a flag bit in the
packet size value that is passed to this routine. This allows callers to simply pass in the value of the
ddt $w_di agbuf cell directly to this routine.

The interface for this routine is:
int exe_std$all oc_diagbuf (IRP *irp, VO D _PQ *uva, int pktsiz)
Table B.3 summarizes the use of the arguments.

Table B.3. EXE_STDSALLOC_DIAGBUF Arguments

Argument Type Access Description

Pointer to the current
IRP.

irp IRP * Input

80

Appendix B. I/O Support Routine Changes

Argument Type Access Description
uva VOID PQ Input User virtual address.
pktsiz int Input The low-order 15-bits

of this parameter spec-
ify the required size of
the packet including
the diagnostic packet
header. If bit-16 (DDT
$M_DIAGBUF64) is
set a 64-bit diagnostic
buffer packet is allocat-
ed. Otherwise a 32-bit
diagnostic buffer packet
is allocated.

This routine uses the EXE STDSALLOCBUF routine to allocate the packet. Any failure status from
this routine is returned to the caller of EXE STDSALLOC DIAGBUF. Note that the EXE STD$AL-
LOCBUF routine may put the process in a resource wait state and there is no additional process quota
charge for a diagnostic buffer packet.

Table B.4 lists all the implicit outputs that are valid on successful return from this routine.

Table B.4. EXE_STDSALLOC_DIAGBUF Implicit Qutputs

Field Value on Successful Completion

irp$l_diagbuf Pointer to the allocated diagnostic buffer packet.

irp$l_sts Status flag IRPSM_DIAGBUF is set to indicate
that the IRP has an associated diagnostic buffer
packet.

bufio$ps_pktdata Pointer to the packet data region in the allocated
diagnostic BUFIO packet.

bufio$ps_uva32 If DDT$M_DIAGBUF64 clear, value of uva.

If DDT$SM_DIAGBUF64 set, BUFIOSK 64.

bufio$w_size Size of allocated diagnostic buffer packet.
bufio$b_type DYN$C BUFIO
bufio$pq_uva64 If DDT$M_DIAGBUF64 set, value of uva.

B.4. EXE_STD$LOCK_ERR_CLEANUP

Routine EXE_STDSLOCK ERR CLEANUP is a new routine. This routine unlocks any previous-
ly locked down buffers that are associated with the specified IRP or any IRPEs that are attached to it.
Additionally, all the attached IRPEs are deallocated.

This routine is designed to be called in a driver-supplied error callback routine that is called if any er-
ror is encountered in the EXE STDSREADLOCK, EXE STD$SWRITELOCK, or EXE_STD$SMODI-
FY_LOCK routines.

The interface for this routine is:

voi d exe_std$l ock_err_cleanup (IRP *irp)

81

Appendix B. I/O Support Routine Changes

Table B.5 summarizes the use of the arguments.

Table B.5. EXE_STDSLOCK_ERR_CLEANUP Arguments

Argument Type Access Description
irp IRP * Input Pointer to the current
IRP.

Table B.6 lists all the implicit inputs and outputs that are used by this routine.

Table B.6. EXE_STDSLOCK_ERR_CLEANUP Implicit Inputs and Outputs

Implicit Inputs from the IRP

Field

Use

irp$l_svapte

If non-zero, points to the first PTE for a set of
pages that will be unlocked.

irp$1_bent Used only if irp$1_svapte is non-zero to calculate
number of pages that will be unlocked.
irp$1_boff Used only if irp$l svapte is non-zero to calculate

number of pages that will be unlocked.

irp$v_extend

If set, the IRPE pointed to by irp$l_extend will be
processed.

irp$l_extend

Used only if irp$v_extend is set to find the first
IRPE.

Implicit Inputs from Each IRPE

Field

Use

irpe$1_svapte

If non-zero, points to the first PTE for a set of
pages that will be unlocked.

irpe$l bent Used only if irpe$l_svapte is non-zero to calcu-
late number of pages that will be unlocked.
irpe$l boff Used only if irpe$l_svapte is non-zero to calcu-

late number of pages that will be unlocked.

irpe$v_extend

If set, the IRPE pointed to by irpe$l_extend will
be processed.

irpe$l_extend

Used only if irpe$v_extend is set to find the next
IRPE.

Implicit Outputs in the IRP

Field

Value Written

irp$l_svapte

Cleared to indicate no locked pages.

irp$v_extend

Cleared to indicate no attached IRPEs.

B.5. EXE_STD$MODIFY, EXE_STD$READ,

EXE_STD$WRITE

The routines EXE_ STD$SMODIFY, EXE STD$READ, and EXE_STD$WRITE are upper-level FDT

routines, so their interfaces remain unchanged:

82

Appendix B. I/O Support Routine Changes

int exe_std$nodify (IRP *irp, PCB *pcb, UCB *ucbh, CCB *ccbh)
int exe_std$read (IRP *irp, PCB *pch, UCB *ucbh, CCB *cch)
int exe_std$wite (IRP *irp, PCB *pch, UCB *ucb, CCB *cch)

These routines obtain the address of the caller's buffer from i r p- >i r p$l _qgi o_p1l. These routines
have been modified to obtain the full 64-bit buffer address from i r p- >i r p$g_qi 0_p1 and pass
it to EXE_STDSREADLOCK or EXE _STD$\WRITELOCK. Note, however,that the buffer size re-
mains a longword and is obtained from i r p- >i r p$l _qi o_p2 without checking the upper 32-bits.

B.6. EXE_STD$MODIFYLOCK, EX-
E_STD$READLOCK, EXE_STD$WRITELOCK

The routines EXE STD$\MODIFYLOCK, EXE STD$\READLOCK, and EXE STD$\WRITE
\LOCK are FDT support routines that:

» Probe the accessibility of a specified buffer by the mode contained ini r p- >i r p$b_node
* Lock the buffer into memory if the probe succeeds
* Return the address of the first PTE that maps the buffer ini r p- >i r p$l _svapt e

If an error is encountered, an optional error callback routine is invoked and the I/O request is aborted.
If the entire buffer is not resident then the I/O request is backed out and a special status is returned to
request a page fault of the needed page.

In releases prior to OpenVMS Alpha Version 7.0,the interfaces for these routines were:

int exe_std$nodi fylock (IRP *irp, PCB *pch, UCB *uch, CCB *ccbh,

void *buf, int bufsiz, void (*err_rout)(...))
i nt exe_std$readl ock (IRP *irp, PCB *pcb, UCB *ucb, CCB *ccbh,

void *buf, int bufsiz, void (*err_rout)(...))
int exe_std$witelock (IRP *irp, PCB *pch, UCB *uch, CCB *ccbh,

void *buf, int bufsiz, void (*err_rout)(...))

The new interfaces for these routines are:

int exe_std$nodifylock (IRP *irp, PCB *pch, UCB *uchb, CCB *ccbh,

VO D PQ buf, int bufsiz [, void (*err_rout)(...)])
int exe_std$readl ock (IRP *irp, PCB *pcb, UCB *ucb, CCB *ccb,

VO D PQ buf, int bufsiz [, void (*err_rout)(...)])
int exe_std$witelock (IRP *irp, PCB *pch, UCB *uchb, CCB *ccbh,

VO D PQ buf, int bufsiz [, void (*err_rout)(...)])

There are two differences in the new OpenVMS Alpha Version 7.0 interfaces:
1. These functions now use the full 64-bits of the buffer address buf that is passed by value.

Previously, the buffer address was a 32-bit value that was sign-extended into a 64-bit parameter
value.

2. Itis possible to omit the er r _r out parameter. Currently, one can pass in the value 0 to specify
that there is no error routine.

The new interface supports either method of specifying that there is no error routine. Because
many callers do not require an error routine, this allows them to call these routines more efficient-
ly with six parameters.

83

Appendix B. I/O Support Routine Changes

Both of these interface changes are upwardly compatible.

B.6.1. CALL_xLOCK and CALL_xLOCK_ERR Macros

There are six MACRO-32 macros that facilitate the use of the routines described in Section B.6 by
code that was originally written to use the JSB-interface counterparts for these routines. These macros
have implicit register inputs and outputs that correspond to the register inputs and outputs of the JSB-
interface routines.

The CALL_MODIFYLOCK, CALL_READLOCK, and CALL_WRITELOCK macros have been
modified to pass the full 64-bits of RO as the buffer address and to omit the optional error routine pa-
rameter instead of passing the value 0.

The CALL MODIFYLOCK ERR, CALL. READLOCK ERR, and CALL. WRITELOCK ERR
macros have been modified to pass the full 64-bits of RO as the buffer address.

This is an upwardly compatible change to the implementation of these macros. This change is trans-
parent to users prior to OpenVMS Alpha Version 7.0,because RO currently contains the 32-bit buffer
address sign-extended to 64-bits.

B.7. EXE_STDSREADCHK and EX-
E_STDSWRITECHK

The routines EXE STD$\READCHK and EXE STD$\WRITECHK probe the accessibility of a spec-
ified buffer by the mode contained ini r p- >i r p$b_node.

In releases prior to OpenVMS Alpha Version 7.0,the interfaces for these routines were:

int exe_std$readchk (IRP *irp, PCB *pcb, UCB *uch, void *buf, int bufsiz)
int exe_std$witechk (IRP *irp, PCB *pcb, UCB *uch, void *buf, int bufsiz)

As of OpenVMS Alpha Version 7.0, the new interfaces for these routines are:

int exe_std$readchk (IRP *irp, PCB *pcb, UCB *ucb, VO D_PQ buf, int
buf si z)
int exe_std$witechk (IRP *irp, PCB *pcb, UCB *ucb, VO D_PQ buf, int
buf si z)

The only difference in the new interface is that these functions now use the full 64-bits of the buffer
address buf that is passed by value. Previously, the buffer address was a 32-bit value sign-extended
into a 64-bit parameter value. Thus, this is an upward compatible change to the interface.

B.7.1. CALL_xCHK and CALL_xCHKR Macros

The CALL READCHK, CALL READCHKR, CALL WRITECHK, and CALL WRITECHKRMA-
CRO-32 macros have been modified to pass the full 64-bits of the buffer address in a similar fashion
as described in Section B.6.1.

B.8. EXE_STD$SETCHAR and EXE_STD$SET-
MODE

The routines EXE_STDS\SETCHAR and EXE_STD$\SETMODE are upper-level FDT routines, thus
their interfaces remain unchanged:

84

Appendix B. I/O Support Routine Changes

int exe_std$setchar (IRP *irp, PCB *pch, UCB *ucb, CCB *ccbh)
int exe_std$setnode (IRP *irp, PCB *pch, UCB *ucb, CCB *ccbh)

Both of these routines use the local routine CHECK_SET to obtain and validate a pointer to the
caller's buffer from i r p- >i r p$l _qi 0o_p1.The routine CHECK_SET has been modified to obtain
the full 64-bit buffer address from i r p- >i r p$g_qi o_p1l. Routines EXE _STDS$\SETCHAR and
EXE STDS$\SETMODE has been modified to use the 64-bit pointer returned by CHECK SET when
loading the UCB characteristics from the caller's buffer.

B.9. 10C_STD$CREATE_DIOBM

Routine IOC_STD$CREATE DIOBM is a new routine that is used to derive a 32-bit system virtual
address for a specific number of PTEs that are pointed to by a 64-bit process virtual address. This rou-
tine allocates a "primary" DIOBM structure of sufficient size for its needs and returns a pointer to it.
When the derived 32-bit system virtual address is no longer required the DIOBM must be released by
calling the IOC_STDSRELEASE DIOBM routine.

The algorithm used by this routine is very similar to the one used by IOC_STDS$FILL DIOBM as de-
scribed in Section B.10.The significant difference is that [IOC_STDSCREATE DIOBM allocates a
sufficiently sized primary DIOBM structure for its needs and does not depend on a preallocated fixed-
size DIOBM. This routine is designed for previous users of the MMGS$IOLOCK routine that do not
have an embedded DIOBM to work with, but can maintain a single pointer to the external DIOBM
structure that is returned by IOC_STDSCREATE DIOBM.

The interface for IOC_STDSCREATE DIOBM is:

int ioc_std$create_diobm (const PTE PQ va pte, const uint32 pte_count,
const uint32 flags,
PTE **svapte_p, DI OBM **di obm p)

Table B.7 summarizes the use of the arguments.

Table B.7. IOC_STDSCREATE_DIOBM Arguments

Argument Type Access Description
va_pte PTE _PQ Input A 64-bit pointer to the
first PTE that maps the

user buffer.

pte_count uint32 Input Number of PTEs that
are required to map the
entire buffer.

svapte p PTE ** Output Pointer to a 32-bit PTE
address that is returned.
The returned address is
always a 32-bit system
virtual address.

flags uint32 Input Option flags. The fol-
lowing bit mask values
can be set:

DIOBM
$M_NORESWAIT -
Disable resource wait.

85

Appendix B. I/O Support Routine Changes

Argument Type Access Description
All other option bits
must be zero.

diobm _p DIOBM ** Output Pointer to DIOBM ad-
dress that is returned.

This routine requires system resources, nonpaged pool and possibly SPTEs. If there are insufficient
resources, this routine will, by default, place the process (kernel thread) in a kernel mode wait state
for nonpaged pool and try again until it succeeds. In this case, the return value of this routine is al-
ways SS§ NORMAL because it will not return until it can do so successfully.

However, the caller can inhibit this resource wait by setting the DIOBM$M_ NORESWAIT option

in the flags parameter. When this is done an error status is returned to the caller if there are insuffi-
cient system resources. This capability is intended to be used in contexts where either a resource wait
in kernel mode is not acceptable or the caller can readily put the process into a wait state in the re-
quester's mode.

This routine must be called in process context and assumes that it was called at IPL 2, or minimally,
that it can lower IPL to 2.

The use of the DIOBM structure by this routine is described in detail in Appendix A.

This routine is coded in C and is contained in the new DIOBM.C module.

B.10. I0C_STDS$FILL_DIOBM

Routine IOC_STDS$FILL DIOBM is a new routine that is used to derive a 32-bit system virtual ad-
dress for a specific number of PTEs that are pointed to by a 64-bit process virtual address. This rou-
tine employs a previously allocated or embedded "primary" DIOBM structure that must be supplied
as one of its inputs. When the derived 32-bit system virtual address is no longer required,the DIOBM
must be released by calling the IOC_STDSRELEASE DIOBM routine.

This routine derives a 32-bit system virtual address for the PTEs using one of the following methods:

1. Ifthe PTEs are in the region of the page table space that maps S0/S1 space, a 32-bit PTE address
using the SPT window is returned.

2. Ifless than or equal to DIOBMS$K PTECNT FIX PTEs are required, the PTEs are copied into the
PTE vector in the DIOBM and the 32-bit system virtual address of the PTE vector in the DIOBM
is returned.

3. If more than DIOBMS$K PTECNT FIX and less than or equal to i oc$gl _di obm pt ecn-
t _max PTEs are required, a secondary DIOBM is allocated, the PTEs are copied into the PTE
vector in the secondary DIOBM, and the 32-bit system virtual address of the PTE vector in the
secondary DIOBM is returned.

4. If more thani oc$gl _di obm pt ecnt _max PTEs are required, a temporary PTE window in
S0/S1 space is created that maps the necessary process level-3 page table pages. These level-3
page table pages are locked into memory and the 32-bit S0/S1 address of the PTEs through the
PTE window is returned.

The interface for IOC_STDSFILL DIOBM is:

int ioc_std$fill_di obm (D OBM *const di obm const PTE_PQ va_pte,

86

Appendix B. I/O Support Routine Changes

const uint32 pte_count, const uint32 flags,
PTE **svapte_p)

Table B.8 summarizes the use of the arguments.

Table B.8. IOC_STDSFILL_DIOBM Arguments

Argument Type Access Description

diobm DIOBM * Input Pointer to a previously
allocated but unused or
uninitialized DIOBM
structure.

va_pte PTE PQ Input A 64-bit pointer to the
first PTE that maps the
user buffer.

pte_count uint32 Input Number of PTEs that
are required to map the
entire buffer.

flags uint32 Input Option flags. The fol-
lowing bit mask values
can be set:

DIOBM
$M_NORESWAIT -
Disable resource wait.

All other option bits
must be zero.

svapte p PTE ** Output Pointer to a 32-bit PTE
address that is returned.
The returned address is
always a 32-bit system
virtual address.

This routine may require system resources, either nonpaged pool or SPTEs,depending on the number
of PTEs that are required to map the buffer. If there are insufficient resources this routine will, by de-
fault, place the process (kernel thread) in a kernel mode wait state for nonpaged pool and try again
until it succeeds. In this case, the return value of this routine is always SS§ NORMAL because it will
not return until it can do so successfully.

However, the caller can inhibit this resource wait by setting the DIOBM$M_NORESWAIT option

in the flags parameter. When this is done, an error status is returned to the caller if there are insuffi-
cient system resources. This capability is intended to be used in contexts where either a resource wait
in kernel mode is not acceptable or the caller can readily put theprocess into a wait state in the re-
questor's mode.

This routine must be called in process context and assumes that it was called at IPL 2, or minimally
that it can lower IPL to 2.

The use of the DIOBM structure by this routine is described in detail in Appendix A.The nor-
mal version of the IOC_STDS$FILL DIOBM routine makes no assumptions about the con-
tents of the input DIOBM structure. In contrast, the full checking version of this routine in the

87

Appendix B. I/O Support Routine Changes

I0_ROUTINES MON.EXE execlet performs some initial validation and declares an INCONSTATE
bugcheck should this check fail.

B.11. I0C_STD$PTETOPFN

The routine IOC_STDSPTETOPFN allows drivers or other components to obtain the PFN for a page
that has been previously locked into memory but the valid bit in its PTE is currently clear. This rou-
tine handles transition PTEs and PTEs that have reverted into GPTX format

In releases prior to OpenVMS Alpha Version 7.0,the interface for this routine was:
int ioc_std$ptetopfn (PTE *pte);

The new interface for this routine is:

int ioc_std$ptetopfn (PTE_PQ pte);

The first interface difference is that IOC_STDSPTETOPFN uses the full 64-bitsof the caller's PTE
address that is passed by value. The second interface difference is not apparent from the above func-
tion prototype. The IOC_STDS$PTETOPFN routine has been enhanced to handle the case where the
pt e$v_val i d bit is set in the PTE. Therefore, drivers can use this routine without first checking the
valid bit.

Both of these are upwardly compatible changes to the interface.

B.12. IOC_STD$RELEASE_DIOBM

Routine IOC_STDSRELEASE DIOBM is a new routine that is used to release the PTE mapping re-
sources that were set up by a prior call to either the IOC_STD$SCREATE DIOBM or IOC _STDS$FIL-
L DIOBM routines.

The interface for [OC_STDSRELEASE DIOBM is:

int ioc_std$rel ease_di obm (Dl OBM *const di obn)

Table B.9 summarizes the use of the arguments.

Table B.9. IOC_STDSRELEASE_DIOBM Arguments

Argument Type Access Description
diobm DIOBM * Input Pointer to an active pri-
mary DIOBM.

This routine deallocates any secondary DIOBM that is connected to the primary DIOBM. If this pri-
mary DIOBM has a PTE window, the resources used for the window are deallocated. If the primary

DIOBM was allocated by IOC_STDSCREATE DIOBM,the primary DIOBM is deallocated as well.
The use of the DIOBM structure by this routine is described in detail in Appendix A.

The returned value of this routine is always SS§ NORMAL.

This routine does not depend on process context. However, the IPL and spinlocks of the caller must
allow this routine to acquire and restore the MMG spinlock.

This routine is coded in C and is contained in the new DIOBM.C module.

88

Appendix B. I/O Support Routine Changes

B.13. I0OC_STD$SIMREQCOM, IOC$SIMREQ-
COM

The routine IOC_STD$SIMREQCOM allows drivers or other components to complete an I/O that
does not have a normal IRP associated with it. Because this routine does not have an IRP, the neces-
sary information to signal an I/O completion is passed directly in separate parameters. For example,
the user's IOSB address, the event flag value, a pointer to an ACB, and the caller's access mode are
among the parameters.

In releases prior to OpenVMS Alpha Version 7.0,the interface for this routine was:

int ioc_std$sinmeqgcom (int32 iosb[2], int pri, int efn, int32 iost[2],
ACB *ach, int acnode);

The new interface for this routine is:

int ioc_std$sinreqgcom (VO D PQiosb_p, int pri, int efn, int32 iost[2],
ACB *ach, int acnode);

The first interface difference is that [OC_STD$SIMREQCOM uses the full 64-bitsof the caller's IOSB
address i 0Sb_p that is passed by value. The second interface difference is not apparent from the
above function prototype. The IOC_STD$SIMREQCOM routine has been enhanced to accept either a
pointer to an ACB64 or an ACB structure.

Both of these are upwardly compatible changes to the interface.

B.13.1. CALL_SIMREQCOM Macro

The CALL_SIMREQCOM MACRO-32 macro facilitates the use of the [IOC_STDS\SIM\REQ\COM
routine by code that was originally written to use the JSB-interface counterpart IOC$SIMREQCOM.

The CALL_SIMREQCOM macro has implicit register inputs that correspond to the register inputs of
the JSB-interface for the IOC$\SIM\REQ\COM routine.

Because this macro uses registers for its inputs, it can be altered to use the full 64-bit value of the
caller's IOSB address which is passed in register R1.

B.13.2. IOC$SIMREQCOM

The IOC$SIMREQCOM routine is simply a JSB-to-CALL jacket routine around IOC_STD$SIMRE-
QCOM. Because it is implemented through the use of the CALL SIMREQCOM macro,JIOC$SIMRE-
QCOM transparently supports a 64-bit caller's IOSB address in the R1 parameter. Similarly, this rou-
tine allows RS to point to either an ACB or an ACB64 structure.

B.14. 10C_STD$SVAPTE_IN_BUF

Routine IOC_STD$SVAPTE IN BUF is a new routine that is used to calculate a 32-bit PTE address
for a virtual address within a buffer that has been previously locked for this IRP and for which a32-bit
PTE address has been derived.

It is the caller's responsibility to ensure that the virtual address is a legal address within a buffer that
has been locked into memory prior to calling this routine and that a 32-bit PTE address has been de-
rived for this buffer. The IOC_STDS$SVAPTE IN BUF routine may declare a bugcheck if either of
these conditions have not been met.

89

Appendix B. I/O Support Routine Changes

The interface for [IOC_STD$SVAPTE IN BUEF is:
int ioc_std$svapte_in _buf (IRP *irp, VOD PQ va, PTE **svapte_p)

Table B.10 summarizes the use of the arguments.

Table B.10. IOC_STDSSVAPTE_IN_BUF Arguments

Argument Type Access Description

irp IRP * Input Pointer to the current
IRP.

va VOID PQ Input Virtual address with-
in the buffer that was
locked for this IRP.

svapte p PTE ** Output Pointer to a 32-bit PTE

address that is returned.
The returned address

is a 32-bit system vir-
tual address that is de-
rived based on the val-
ues in irp$l_svapte and

irp$q_qio pl.
Table B.11 lists all the implicit inputs that are used by this routine.
Table B.11. IOC_STDSSVAPTE IN BUF Implicit Inputs
Field Use
irp$q_qio_pl Virtual address of the start of the buffer that has
been previously locked into memory for this IRP.
irp$l_svapte 32-bit PTE address for the PTEs that map the
bufter.

The returned value of this routine is always SS§ NORMAL.

This routine is coded in C and is contained in the new SVAPTE2.C module.

B.15.10C_STD$VA_TO PA

Routine IOC_STD$VA TO PA is a new routine that is used to derive a 64-bit physical memory
address for a 64-bit virtual address. The virtual address is interpreted in the context of the current
process and may be in either process-private or system space.

It is the caller's responsibility to ensure that the virtual address is a legal address and that the memory
page containing the specified virtual address is locked into memory prior to calling this routine. The
I0C_STD$VA TO_PA routine may declare a bugcheck if either of these conditions have not been
met.

The interface for [IOC_STD$VA TO PA is:
VO D PQ ioc_std$va to pa (VO D PQ va, VA D PPQ pa_p)

The returned value of this routine is the 64-bit physical address. Table B.12 summarizes the use of the
arguments.

90

Appendix B. I/O Support Routine Changes

Table B.12. IOC_STDSVA_TO_PA Arguments

Argument Type Access Description
va VOID PQ Input A 64-bit virtual address.
pa p VOID _PPQ Output Pointer to a 64-bit phys-

ical address that is re-
turned. This parameter
is optional and may ei-
ther be omitted entirely
or specified as zero. The
physical address is also
returned as the value of
the routine.

Currently, the physical address for a process virtual address can be derived by calling MMG_STD
$SVAPTECHK followed by IOC$SVAPTE TO_PA. However, as described in Section 2.2.3,

the MMG_STD$SVAPTECHK routine no longer accepts a PO/P1 address. The new IOC_STD
$VA_TO_PA routine provides a direct way of computing the physical address from a process virtual
address.

B.16. MMG_STD$GET_PTE_FOR_VA

Routine MMG_STDSGET PTE _FOR_VA is a new routine that is being added for use in the Remote
SDA SYSAP within SYS$SCS.

Routine MMG _STD$GET PTE FOR VA attempts to obtain the Level-3 PTE containing a PFN that
maps the specified virtual address for a specified process. If the requested PTE cannot be accessed ei-
ther because the virtual address is not mapped or a needed page table page is not currently in physical
memory, an error status is returned. Additionally,if the Level-3 PTE does not contain a useable PFN,

an error status is returned.

A successful return status from this routine means that the PFN field of the returned PTE contains

the physical page number for the input virtual address. Note that there are page states where the PTE
contains a useable PFN but the PTE§V_VALID bit is clear. Therefore, the PTESV_VALID bit in the
returned PTE might be clear. Note also, that this routine returns a PTE from the Global Page Table
when the slave PTE has reverted to GPTX format and the master PTE in the GPT still contains a PFN.

This routine is somewhat similar to MMG_STDSCALC_VAPTE except that it does not assume that
the virtual address is valid or that the necessary page tables are resident in memory. Because this rou-
tine does not assume the virtual address is valid, it uses the reserved system space window to traverse
the specified process' page tables in a top-down fashion. It uses this method for all process-private vir-
tual addresses even if the specified process happens to be the current process on this CPU. This allows
this routine to locate theLevel-3 PTE even if some of the intervening page table pages are in transi-
tion. However, for shared system space virtual addresses this routine uses the currently active page ta-
bles instead of the reserved system window to locate the corresponding Level-3 PTE. This is possible
because shared system space page table pages are not pageable and have PTE§V_VALID set if they
are mapped.

This routine acquires and restores the MMG spinlock. This routine declares a bugcheck if the reserved
system space window is already in use. This routine releases and invalidates the window before re-
turning.

The interface for MMG_STDSGET PTE FOR VA is:

91

Appendix B. I/O Support Routine Changes

i nt

mg_st d$get _pte_for_va (VO D_PQ const va,

Table B.13 summarizes the use of the arguments.

Table B.13. MMG_STDSGET PTE_FOR_VA Arguments

PHD *const

phd, PTE_PQ pte_p)

Argument

Type

Access

Description

va

VOID PQ

Input

A 64-bit virtual address.

phd

PHD *

Input

Pointer to the PHD for
the desired process ad-
dress space. If zero,
the current process on
the current CPU is as-
sumed. This parameter
is not used, and may be
zero, if the virtual ad-
dress is in shared sys-
tem space.

pte_p

PTE PQ

Output

Address of Level-3 PTE
value that is returned. A
PTE value is returned
only if the routine re-
turns a successful con-
dition value.

The returned value of this routine is a system condition value:

SS$ NORMAL

The PTE that maps the specified
virtual address in the address
space of the specified process
contains a physical page number
and was successfully returned.

SS$_ACCVIO

The PTE that maps the specified
virtual address in the address
space of the specified process
could not be obtained, that is, the
specified virtual address is not
mapped or one of the necessary
page table pages is not currently
resident, or the level-3 PTE did
not contain a physical page num-
ber.

B.17. MMG_STD$IOLOCK, MMG$IOLOCK,
MMG_STD$IOLOCK_BUF

The interface for the MMG_STDSIOLOCK routine is:

i nt

my_st d$i ol ock (void *buf,

**svapte_p)

i nt

bufsiz, int

is_read, PCB *pch,

voi d

92

Appendix B. I/O Support Routine Changes

This routine returns a 32-bit address by reference (the svapt e_p parameter) which, depending on
the routine status, may specify the address of the first PTE or the address of a location in the buffer

that must be faulted in.

The new version of this routine must accept a 64-bit buffer address. In addition, the new version must
also return either a 64-bit PTE or buffer address. This is an incompatible interface change because this
return parameter is passed by reference. Thus, MMG_STDS$SIOLOCK has been removed and is re-

placed by the new MMG_STDS$IOLOCK BUF routine.

The interface for MMG_STDSIOLOCK _BUF is:

i nt mMy_std$i ol ock_buf (VA D _PQ const
const

Table B.14 summarizes the use of the arguments.

Table B.14. MMG_STDSIOLOCK BUF Arguments

buf, const
i s_read, PCB *const
PTE_PPQ va_pte_p,

buf si z,
pch,
VO D **faul t_va_p)

Argument

Type

Access

Description

buf

VOID PQ

Input

64-bit pointer to the
buffer that is to be
locked.

bufsiz

int

Input

Size of the buffer in
bytes.

is_read

int

Input

Contains the value 0 if
buffer will be only writ-
ten to the device, 1 if
the buffer will be only
read from device, 5 if
the buffer will be modi-
fied by the device.

pcb

PCB *

Input

Pointer to the process
PCB.

va _pte p

PTE_PPQ

Output

Pointer to a 64-bit PTE
address that is returned.
If the returned value

of the function is suc-
cessful, then the ad-
dress returned is the 64-
bit virtual address of
the first PTE that maps
the buffer. For all oth-
er function return val-
ues, the value returned
in this parameter is un-
defined.

fault va p

VOID PPQ

Output

Pointer to a 64-bit ad-
dress that is returned.
If the returned value
of the function is ze-
ro, then the address re-

93

Appendix B. I/O Support Routine Changes

Argument Type Access Description

turned is the 64-bit ad-
dress within the buffer
that must be faulted in.
For all other function
return values, the value
returned in this parame-
ter is undefined.

The returned value of this routine is a system condition value or the value zero:

Success A successful VMS condition
value indicates that the buffer
has been locked and that the 64-
bit virtual address of the first
PTE that maps the buffer has
been returned using the va_pte p
parameter.

0 This return value means that a
page fault is required for a page
in the buffer. The virtual address
of the page is returned using the
fault va p parameter. Any por-
tion of the buffer that may have
been locked before this condi-
tion was detected has been un-
locked before returning.

Failure Standard VMS condition value
that indicates the failure.

Just like MMG_STDS$IOLOCK, the MMG_STDS$SIOLOCK BUF routine must be called in process
context at IPL 2 and it acquires and releases the MMG spinlock.

Although the interfaces for the MMG _STDSIOLOCK BUF and MMG_STDS$SIOLOCK routines are
similar,there are important differences between these routines that go beyond the width of the address
parameters.

1.

The 32-bit address that is returned by MMG_STDSIOLOCK in the svapt e_p parameter is
valid regardless of process context. In contrast, the 64-bit address that is returned by MMG_STD
$IOLOCK BUF in the va_pt e_p parameter may be valid only in the context of the current
process. The new routines [OC_STDS$FILL DIOBM and IOC_STD$CREATE_DIOBM are de-
signed to deal with this difference.

The MMG_STDSIOLOCK routine locks into memory the level-3 page tables that contain the
PTEs that map the buffer as well as the buffer pages. In contrast, MMG_STD$IOLOCK BUF on-
ly locks the buffer pages. It does not lock the level-3 page tables because it would be difficult to
unlock them in the absence of process context where MMG_STD$IOUNLOCK BUF is called.
Moreover, the mechanisms used by IOC_STDSFILL DIOBM and IOC_STDSCREATE DIOBM
usually do not require the locking of the level-3 page tables. Only when the PTE window method
is used by IOC_STDSFILL DIOBM or IOC_STDSCREATE DIOBM will these routines need

to lock the level-3 page table pages into memory. When this case applies, the IOC_STD$RE-
LEASE DIOBM routine has enough information to unlock the level-3 page tables regardless of
process context.

94

Appendix B. I/O Support Routine Changes

The existing callers of MMG_STDS$IOLOCK need to be very aware of the first of these differences.
The second difference is likely to be transparent to most callers.

Because the routine MMGS$SIOLOCK is simply a JSB-to-CALL jacket routine around MMG_STD
$I0LOCK,the MMGSIOLOCK routine has also been removed.

B.17.1. CALL_IOLOCK Macro

The CALL_IOLOCK MACRO-32 macro facilitates the use of the MMG_STDS$IOLOCK routine
by code that was originally written to use the JSB-interface counterpart MMGS$IOLOCK. The CAL-
L IOLOCK macro has implicit register inputs and outputs that correspond to the register inputs and
outputs of the JSB-interface for the MMGSIOLOCK routine.

Because this macro uses registers for its inputs and outputs, it can be altered to use the full 64-bit val-
ues in these registers and it can call the MMG_STDS$IOLOCK BUF routine instead of MMG_STD
$IOLOCK. Nevertheless, the CALL_IOLOCK macro has been modified to generate a suppressible in-
terface warning at compile-time, because:

* The full 64-bits of register R1 are now significant on return.
* The returned PTE address is a 64-bit process virtual address.

» Callers of MMG_STDS$IOLOCK BUF are very likely to need to call the new IOC_STDSFIL-
L DIOBM or IOC_STD$CREATE DIOBM routines.

The format of the macro call is:
CALL_| OLOCK [| NTERFACE_WARNI NG=YES| NO]
By default the interface warning is enabled and generates the following warning at compile-time:

YAMAC- W GENWARN, generated WARNING 0 CALL I OLOCK interface has changed for
64-bit virtual addressing; set | NTERFACE WARNI NG=NO to di sabl e nessages.
YAMAC- W GENWARN, generated WARNING 0 CALL | OLOCK uses the 64-hbit buffer
address in RO

Y%AMAC- W GENWARN, generated WARNING 0 CALL I OLOCK returns a 64-bit VA PTE
or fault VA in Rl

Y%AMAC- W GENWARN, generated WARNING 0 CALL | OLOCK does not | ock the page

t abl e pages

YAMAC- W GENWARN, generated WARNING 0 A call to |1 OC STD$FILL_DI OBM may be
required to derive a SVAPTE

The compile-time warning serves to identify the existing callers of this macro. Once the
invoking code has been modified, the warning can be suppressed by specifying INTER-
FACE_WARNING=NO.

B.18. MMG_STD$SUNLOCK, MMGS$UNLOCK,
MMG_STD$IOUNLOCK_BUF

The interface for the MMG_STDSUNLOCK routine is:
voi d nmg_std$unl ock (int npages, void *svapte)

The MMGS$UNLOCK routine is simply a JSB-to-CALL jacket routine around MMG_STD$\UN-
LOCK.

95

Appendix B. I/O Support Routine Changes

Because 32-bit PTE addresses that may point to PTE copies are sufficient for the needs of the
MMG_STD$UNLOCK routine,there is no absolute requirement to change the interface of these
routines. However, it is extremely likely that all callers of MMG_ STD$UNLOCK and MMGS$UN-
LOCK need to use the new DIOBM structure and need to call the new routine IOC_STD$RE-
LEASE DIOBM immediately after unlocking the memory buffer. Therefore, routine MMG_STD
$UNLOCK has been renamed to MMG_STDSIOUNLOCK BUF and the MMG$UNLOCK routine
has been removed in order to make it difficult to miss the places where this source change is needed.

The interface for MMG_STDSIOUNLOCK BUF is:
voi d nmg_st d$i ounl ock_buf (const int npages, PTE PQ const va_pte);

Just like MMG_STDSUNLOCK, the MMG STDSIOUNLOCK BUF routine does not depend on
process context. However, the IPL and spinlocks of the caller must allow this routine to acquire and
restore the MMG spinlock.

B.18.1. CALL_UNLOCK Macro

The CALL_UNLOCK MACRO-32 macro facilitates the use of the MMG_STD$UNLOCK routine
by code that was originally written to use the JSB-interface counterpart MMG$UNLOCK. The CAL-
L UNLOCK macro has implicit register inputs that correspond to the register inputs and outputs of
the JSB-interface for the MMG$UNLOCK routine.

This macro has been modified to use the full 64-bits of the R3 input which contains the PTE address.
The macro calls the new MMG_STDSIOUNLOCK BUF routine instead of MMG_STDS$SUNLOCK.
In addition, the CALL._ UNLOCK macro has been modified to generate a suppressible interface warn-
ing at compile-time. The format of the macro call is:

CALL_UNLCOCK [| NTERFACE_WARNI NG=YES| NO]

By default the interface warning is enabled and generates the following warning at compile-time:

YAMAC- W GENWARN, generated WARNING 0 CALL_UNLOCK interface has changed for
64-bit virtual addressing; set | NTERFACE WARNI NG=NO t o di sabl e nessages.
YAMAC- W GENWARN, generated WARNING 0 CALL_UNLOCK uses the 64-bit PTE
address in R3

YAMAC- W GENWARN, generated WARNI NG 0 CALL_UNLOCK does not unl ock the page
t abl e pages

YAMAC- W GENWARN, generated WARNING 0 A call to | OC STD$SRELEASE DI OBM nmay
be required to derive a SVAPTE

B.19. MMG_STD$SVAPTECHK, MMG
$SVAPTECHK

The current versions of the MMG_STD$SVAPTECHK and MMGS$SVAPTECHK routines compute
a 32-bit svapt e for either a process or system space address. As of OpenVMS Alpha Version 7.0,
these routines are be restricted to an S0/S1 system space address and no longer accept an address in
PO/P1 space. The MMG_STD$SVAPTECHK and MMGS$SVAPTECHK routines check the full 64
bits of the input address and declare a bugcheck for an input address that is not in S0/S1 space. For
S0/S1 input addresses, these routines return a 32-bit system virtual address of the PTE through the
SPT window.

In releases prior to OpenVMS Alpha Version 7.0,the interface for this routine was:

96

Appendix B. I/O Support Routine Changes

voi d mg_st d$svaptechk (void *va, PCB *pcb, PHD *phd, void **svapte_p);
The new interface for this routine is:
voi d nmmg_st d$svapt echk (VO D _PQ va, PCB *pch, PHD *phd, PTE **svapte p);

The majority of callers of this routine use it with an SO/S1 address and do not need to change.

97

Appendix B. I/O Support Routine Changes

98

Appendix C. Kernel Threads Routines
and Macros

This appendix describes the new routines and macros available implementing for kernel threads.

In addition to a few new routines to convert a PID to a KTB address, the EXESNAM TO PCB rou-
tine is modified to return the KTB address in R2, which previously was a scratch register. The new
routines and macros all assume the caller is executing in kernel mode.

EXE$CVT IPID_TO_KTB Routine

EXES$CVT IPID TO_KTB Routine — Converts an internal PID to a KTB address.

Format

EXESCVT IPID TO KTB ipid ,ktb ,pcb

Returns

Table C.1.

OpenVMS usage cond_value

type longword (unsigned)
access write only
mechanism by value

Status indicating the success or failure of the operation.

Arguments

ipid

Table C.2.

OpenVMS usage process_id

type longword (unsigned)
access read

mechanism by value

This argument provides the internal PID to be converted.

ktb

Table C.3.

OpenVMS usage address
type quadword

99

Appendix C. Kernel Threads Routines and Macros

access ‘ write

mechanism ‘by reference

This argument provides the KTB address.

pcb

Table C.4.

OpenVMS usage address
type quadword
access write
mechanism by reference

This argument provides the PCB address.

Description

The EXESCVT _IPID _TO_KTB routine converts an internal PID to a KTB address.

Return Values

Table C.5.
SS$ NONEXPR The process does not exist.
SS$ NOSUCHTHREAD The process exists but the thread does not.

EXE$CVT_EPID_TO_KTB Routine

EXES$CVT _EPID TO_KTB Routine — Converts an external PID to a KTB address.

Format

EXESCVT EPID TO KTB epid ,ktb ,pcb

Returns

Table C.6.

OpenVMS usage cond_value

type longword (unsigned)
access write only
mechanism by value

Status indicating the success or failure of the operation.

Arguments

epid

100

Appendix C. Kernel Threads Routines and Macros

Table C.7.

OpenVMS usage process_id

type longword (unsigned)
access read

mechanism by value

This argument provides the external PID to be converted.

ktb

Table C.8.

OpenVMS usage address
type quadword
access write
mechanism by reference

This argument provides the KTB address.

pcb

Table C.9.

OpenVMS usage address

type quadword
access write
mechanism by reference

This argument provides the PCB address.

Description

The EXESCVT EPID TO_KTB routine converts an external PID to a KTB address.

Return Values

Table C.10.

SS$ NONEXPR

The process does not exist.

SS$ NOSUCHTHREAD

The process exists but the thread does not.

GET_CURKTB Macro

GET_CURKTB Macro — Obtains the current process or thread KTB address. Applicable to BLISS,
C, and MACRO-32. The following three command formats are for BLISS, C, and MACRO-32, re-

spectively.

Format

GET CURKTB;

Appendix C. Kernel Threads Routines and Macros

GET CURKTB()

GET_CURKTB ktbreg , pcbreg, [preserve][test multi=yes]

Arguments

ktbreg

This argument is the destination to return the KTB address. The default is R14.

pcbreg

This argument is the register containing the address of the PCB. The default is R14.
preserve

This argument is optional. The default is YES to preserve RO and R1. Otherwise, it is NO.
test_multi

This argument is optional. The default is YES to test and validate if there is more than one KTB. If
NO, it is assumed that the process is already known to be multithreaded.

Description

The GET_CURKTB macro obtains the current process or thread KTB address.

CVT_IPID_TO_PCB_KTB Macro

CVT_IPID TO PCB_KTB Macro — Converts a PID to PCB and KTB addresses. Applicable to
MACRO-32 only.

Format

CVT_IPID TO PCB_KTB ipid ,ktbreg ,pcbreg ,fail

Returns

Table C.11.

OpenVMS usage cond_value

type longword (unsigned)
access write only
mechanism by value

Status indicating the success or failure of the operation.

Arguments

ipid

102

Appendix C. Kernel Threads Routines and Macros

This argument provides the internal PID to be converted.

ktbreg

This argument is the destination to return the KTB address. The default is R14.
pcbreg

This argument provides the register which returns the PCB. The default is R14.
preserve

This argument is not used by this macro but is passed to CVT_IPID TO_KTB to indicate whether to
preserve RO and R1.

fail

This argument provides the address to transfer control if the ipid argument is not valid. If this transfer
1s taken, RO contains one of the status values in the Return Values section.

Description

The CVT_IPID_TO_PCB_KTB macro converts a PID to PCB and KTB addresses. This macro ap-
plies to MACRO-32 only.

Return Values

Table C.12.
SS$ NONEXPR The process does not exist.
SS$ NOSUCHTHREAD The process exists but the thread does not.

CVT_IPID_TO_KTB Macro

CVT IPID TO KTB Macro — Converts a PID to a KTB address. Applies to MACRO-32 only.

Format

CVT _IPID TO KTB ipid ,ktbreg ,pcbreg ,perserve ,fail

Returns

Table C.13.

OpenVMS usage cond_value

type longword (unsigned)
access write only
mechanism by value

Status indicating the success or failure of the operation.

103

Appendix C. Kernel Threads Routines and Macros

Arguments

ipid

This argument provides the internal PID to be converted.

ktbreg

This argument provides the register that returns the KTB. The default is R14.
pcbreg

This argument provides the register which holds the PCB. The default is R14.
preserve

This argument's default is YES to save RO and R1.

fail

This argument provides the address to transfer control if the ipid argument is not valid. If this transfer
is taken, RO contains one of the status values in the Return Values section.

Description

The CVT _IPID_TO_KRB macro converts a PID to a KTB address. This macro applies to
MACRO-32 only.

Return Values

Table C.14.
SS$ NONEXPR The process does not exist.
SS$ NOSUCHTHREAD The process exists but the thread does not.

104

	Alpha Guide to Upgrading Privileged-Code Applications
	Table of Contents
	Preface
	1. About VSI
	2. Who Should Use This Manual
	3. How This Manual Is Organized
	4. Related Documents
	5. VSI Encourages Your Comments
	6. How to Order Additional Documentation
	7. Conventions

	Chapter 1. Introduction
	1.1. Quick Description of OpenVMS Alpha 64-Bit Virtual Addressing
	1.2. Quick Description of OpenVMS Alpha Kernel Threads
	1.3. Quick Description of OpenVMS Industry Standard 64
	1.4. How to Use This Guide

	Chapter 2. Upgrading Privileged Software to OpenVMS Alpha Version 7.0
	2.1. Recommendations for Upgrading Privileged-Code Applications
	2.1.1. Summary of Infrastructure Changes
	2.1.2. Changes Not Identified by Warning Messages

	2.2. I/O Changes
	2.2.1. Impact of IRPE Data Structure Changes
	2.2.2. Impact of MMG_STD$IOLOCK, MMG_STD$UNLOCK Changes
	2.2.2.1. Direct I/O Functions

	2.2.3. Impact of MMG_STD$SVAPTECHK Changes
	2.2.4. Impact of PFN Database Entry Changes
	2.2.5. Impact of IRP Changes

	2.3. General Memory Management Infrastructure Changes
	2.3.1. Location of Process Page Tables
	2.3.2. Interpretation of Global and Process Section Table Index
	2.3.3. Location of Process and System Working Set Lists
	2.3.4. Size of a Working Set List Entry
	2.3.5. Location of Page Frame Number (PFN) Database
	2.3.6. Format of PFN Database Entry
	2.3.7. Process Header WSLX and BAK Arrays
	2.3.8. Free S0/S1 System Page Table Entry List
	2.3.9. Location of the Global Page Table
	2.3.10. Free Global Page Table Entry List
	2.3.11. Region Descriptor Entries (RDEs)

	2.4. Kernel Threads Changes
	2.4.1. The CPU$L_CURKTB Field
	2.4.2. Mutex Locking
	2.4.3. Scheduling Routines
	2.4.4. New MWAIT State
	2.4.5. System Services Dispatching
	2.4.6. Asynchronous System Traps (ASTs)
	2.4.7. TB Invalidation and Macros
	2.4.8. New PCB/KTB Fields
	2.4.9. CTL$AL_STACK and CTL$AL_STACKLIM
	2.4.10. Floating-Point Register and Execution Data Blocks (FREDs)

	2.5. Registering Images That Have Version Dependencies
	2.5.1. Version Identification (ID) Number Change to Three Subsystems

	Chapter 3. Replacements for Removed Privileged Symbols
	3.1. Removed Date Structure Fields
	3.2. Removed Routines
	3.3. Removed Macros
	3.3.1. Removed MACRO-32 Macros Formerly in SYS$LIBRARY:LIB.MLB
	3.3.2. C Header Files Removed From SYS$LIBRARY:SYS$LIB_C.TLB

	3.4. Removed System Data Cells

	Chapter 4. Modifying Device Drivers to Support 64-Bit Addressing
	4.1. Recommendations for Modifying Device Drivers
	4.2. Mixed Pointer Environment in C
	4.3. $QIO Support for 64-Bit Addresses
	4.4. Declaring Support for 64-Bit Addresses in Drivers
	4.4.1. Drivers Written in C
	4.4.2. Drivers Written in MACRO-32
	4.4.3. Drivers Written in BLISS

	4.5. I/O Mechanisms
	4.5.1. Simple Buffered I/O
	4.5.2. Direct I/O
	4.5.3. Direct I/O Buffer Map (DIOBM)
	4.5.4. 64-Bit AST
	4.5.5. 64-Bit ACB Within the IRP
	4.5.6. I/O Function Definitions

	4.6. 64-Bit Support in Example Driver
	4.6.1. Example: Declaring 64-Bit Functions
	4.6.2. Example: Declaring 64-Bit Buffered I/O Packet
	4.6.3. Example: Changes to LR$WRITE
	4.6.4. Example: Changes to LR$SETMODE
	4.6.5. Example: Changes to LR$STARTIO

	Chapter 5. Modifying User-Written System Services
	Chapter 6. Kernel Threads Process Structure
	6.1. Process Control Blocks (PCBs) and Process Headers (PHDs)
	6.1.1. Effect of a Multithreaded Process on the PCB and PHD

	6.2. Kernel Thread Blocks (KTBs)
	6.2.1. KTB Vector
	6.2.2. Floating-Point Registers and Execution Data Blocks (FREDs)
	6.2.3. Kernel Threads Region
	6.2.4. Per-Kernel Thread Stacks
	6.2.5. Per-Kernel Thread Data Cells
	6.2.6. Layout of the Per-Kernel Thread
	6.2.7. Summary of Process Data Structures

	6.3. Process Identifiers (PIDs)
	6.3.1. Multithread Effects on the PID
	6.3.2. Range Checking and Sequence Vectors

	6.4. Process Status Bits

	Appendix A. Data Structure Changes
	A.1. Pointer Size Conventions
	A.2. Buffer Object Descriptor (BOD)
	A.3. Buffered I/O (BUFIO)
	A.4. Complex Chained Buffer (CXB)
	A.5. Data Chain Block (DCBE)
	A.6. Direct I/O Buffer Map (DIOBM)
	A.7. Function Decision Table (FDT)
	A.8. I/O Request Packet (IRP)
	A.9. I/O Request Packet Extension (IRPE)
	A.10. Process Header (PHD)
	A.11. SCSI-2 Diagnose Buffer (S2DGB)
	A.12. VMS Communications Request Packet (VCRP)

	Appendix B. I/O Support Routine Changes
	B.1. ACP_STD$READBLK and ACP_STD$WRITEBLK
	B.2. EXE_STD$ALLOC_BUFIO_32, EXE_STD$ALLOC_BUFIO_64
	B.3. EXE_STD$ALLOC_DIAGBUF
	B.4. EXE_STD$LOCK_ERR_CLEANUP
	B.5. EXE_STD$MODIFY, EXE_STD$READ, EXE_STD$WRITE
	B.6. EXE_STD$MODIFYLOCK, EXE_STD$READLOCK, EXE_STD$WRITELOCK
	B.6.1. CALL_xLOCK and CALL_xLOCK_ERR Macros

	B.7. EXE_STD$READCHK and EXE_STD$WRITECHK
	B.7.1. CALL_xCHK and CALL_xCHKR Macros

	B.8. EXE_STD$SETCHAR and EXE_STD$SETMODE
	B.9. IOC_STD$CREATE_DIOBM
	B.10. IOC_STD$FILL_DIOBM
	B.11. IOC_STD$PTETOPFN
	B.12. IOC_STD$RELEASE_DIOBM
	B.13. IOC_STD$SIMREQCOM, IOC$SIMREQCOM
	B.13.1. CALL_SIMREQCOM Macro
	B.13.2. IOC$SIMREQCOM

	B.14. IOC_STD$SVAPTE_IN_BUF
	B.15. IOC_STD$VA_TO_PA
	B.16. MMG_STD$GET_PTE_FOR_VA
	B.17. MMG_STD$IOLOCK, MMG$IOLOCK, MMG_STD$IOLOCK_BUF
	B.17.1. CALL_IOLOCK Macro

	B.18. MMG_STD$UNLOCK, MMG$UNLOCK, MMG_STD$IOUNLOCK_BUF
	B.18.1. CALL_UNLOCK Macro

	B.19. MMG_STD$SVAPTECHK, MMG$SVAPTECHK

	Appendix C. Kernel Threads Routines and Macros
	EXE$CVT_IPID_TO_KTB Routine
	EXE$CVT_EPID_TO_KTB Routine
	GET_CURKTB Macro
	CVT_IPID_TO_PCB_KTB Macro
	CVT_IPID_TO_KTB Macro

