
VSI OpenVMS

Utility Routines Manual

Document Number: DO-UTRMAN-01A

Publication Date: April 2020

Revision Update Information: This is a new manual.

Operating System and Version: VSI OpenVMS Integrity Version 8.4-1H1
VSI OpenVMS Alpha Version 8.4-2L1

VMS Software, Inc. (VSI)
Burlington, Massachusetts, USA

Utility Routines Manual

Copyright © 2020 VMS Software, Inc. (VSI), Burlington, Massachusetts, USA

Legal Notice

Confidential computer software. Valid license from VSI required for possession, use or copying. Consistent with FAR 12.211 and 12.212,
Commercial Computer Software, Computer Software Documentation, and Technical Data for Commercial Items are licensed to the U.S.
Government under vendor's standard commercial license.

The information contained herein is subject to change without notice. The only warranties for VSI products and services are set forth in the
express warranty statements accompanying such products and services. Nothing herein should be construed as constituting an additional
warranty. VSI shall not be liable for technical or editorial errors or omissions contained herein.

HPE, HPE Integrity, HPE Alpha, and HPE Proliant are trademarks or registered trademarks of Hewlett Packard Enterprise.

The VSI OpenVMS documentation set is available on DVD.

ii

Utility Routines Manual

Preface .. ix
1. About VSI ... ix
2. Intended Audience ... ix
3. Document Structure ... ix
4. Related Documents ... x
5. VSI Encourages Your Comments ... x
6. Conventions .. x

Chapter 1. Introduction to Utility Routines ... 1
Chapter 2. Access Control List (ACL) Editor Routine ... 3

2.1. Introduction to the ACL Editor Routine .. 3
2.2. Using the ACL Editor Routine: An Example ... 3
2.3. ACL Editor Routine ... 4

Chapter 3. Backup (BACKUP) Routine ... 9
3.1. Introduction to the Backup API .. 9
3.2. Using the Backup API: An Example ... 10
3.3. Backup API ... 11

Chapter 4. Command Language Interface (CLI) Routines ... 37
4.1. Introduction to CLI Routines .. 37
4.2. Using the CLI Routines: An Example ... 37
4.3. CLI Routines ... 40

Chapter 5. Common File Qualifier Routines .. 51
5.1. Introduction to the Common File Qualifier Routines .. 51
5.2. Using the Common File Qualifier Routines ... 51

5.2.1. Calling UTIL$CQUAL_FILE_PARSE .. 52
5.2.1.1. Specifying Times .. 52
5.2.1.2. Specifying Exclude Pattern Strings .. 53

5.2.2. Calling UTIL$CQUAL_FILE_MATCH .. 53
5.2.2.1. Specifying Prompts ... 53
5.2.2.2. Ignoring Qualifiers .. 54

5.2.3. Calling UTIL$CQUAL_FILE_END ... 54
5.2.4. Calling UTIL$CQUAL_CONFIRM_ACT ... 55
5.2.5. Creating a Command Language Definition File ... 55

5.3. UTIL$CQUAL Routines ... 60
Chapter 6. Convert (CONVERT) Routines .. 71

6.1. Introduction to CONVERT Routines ... 71
6.2. Using the CONVERT Routines: Examples .. 71
6.3. CONVERT Routines .. 76

Chapter 7. Data Compression/Expansion (DCX) Routines ... 93
7.1. Introduction to DCX Routines .. 93

7.1.1. Compression Routines ... 93
7.1.2. Expansion Routines ... 94

7.2. Using the DCX Routines: Examples .. 95
7.3. DCX Routines .. 103

Chapter 8. DEC Text Processing Utility (DECTPU) Routines 119
8.1. Introduction to DECTPU Routines .. 119

8.1.1. Interfaces to Callable DECTPU .. 119
8.1.1.1. Simplified Callable Interface ... 119
8.1.1.2. Full Callable Interface ... 120

iii

Utility Routines Manual

8.1.2. The DECTPU Shareable Image .. 121
8.1.3. Passing Parameters to Callable DECTPU Routines .. 121
8.1.4. Error Handling .. 121
8.1.5. Return Values .. 122

8.2. Simplified Callable Interface ... 122
8.3. Full Callable Interface .. 123

8.3.1. Main Callable DECTPU Utility Routines .. 124
8.3.2. Other DECTPU Utility Routines ... 124
8.3.3. User-Written Routines .. 125

8.4. Using the DECTPU Routines: Examples ... 125
8.5. Creating and Calling a USER Routine ... 142

8.5.1. The CALL_USER Code ... 142
8.5.2. Linking the CALL_USER Image .. 145

8.6. Accessing the USER Routine from DECTPU ... 145
8.7. DECTPU Routines ... 147

Chapter 9. DECdts Portable Applications Programming Interface 191
9.1. DECdts Time Representation .. 191

9.1.1. Absolute Time Representation .. 191
9.1.2. Relative Time Representation ... 193

9.2. Time Structures .. 195
9.2.1. The utc Structure ... 195
9.2.2. The tm Structure .. 196
9.2.3. The timespec Structure ... 196
9.2.4. The reltimespec Structure ... 196
9.2.5. The OpenVMS Time Structure ... 197

9.3. DECdts API Header Files ... 197
9.4. Linking Programs with the DECdts API .. 197
9.5. DECdts API Routine Functions ... 197
9.6. Example Using the DECdts API Routines .. 254

Chapter 10. EDT Routines ... 259
10.1. Introduction to EDT Routines ... 259
10.2. Using the EDT Routines: An Example ... 259
10.3. EDT Routines ... 260

Chapter 11. Encryption (ENCRYPT) Routines .. 271
11.1. Introduction to Encryption Routines .. 271
11.2. Encrypt AES Features ... 272

11.2.1. ENCRYPT-AES Key, Flag Mask, and Value ... 273
11.3. How the Routines Work .. 274

11.3.1. Encryption Keys .. 274
11.3.1.1. Deleting AES Keys ... 275
11.3.1.2. DES Key and Data Semantics .. 275

11.3.2. File Encryption and Decryption .. 277
11.4. Maintaining Keys ... 277
11.5. Operations on Files ... 278
11.6. Operations on Records and Blocks .. 279
11.7. Routine Descriptions ... 279

11.7.1. Specifying Arguments .. 279
11.7.2. Bitmasks .. 279
11.7.3. Error Handling ... 280

Chapter 12. File Definition Language (FDL) Routines .. 305

iv

Utility Routines Manual

12.1. Introduction to FDL Routines .. 305
12.2. Using the FDL Routines: Examples ... 306
12.3. FDL Routines ... 310

Chapter 13. Librarian (LBR) Routines ... 327
13.1. Introduction to LBR Routines ... 327

13.1.1. Types of Libraries .. 327
13.1.2. Structure of Libraries ... 328

13.1.2.1. Library Headers .. 328
13.1.2.2. Modules .. 328
13.1.2.3. Indexes and Keys .. 328

13.1.3. Summary of LBR Routines .. 331
13.2. Using the LBR Routines: Examples ... 333

13.2.1. Creating, Opening, and Closing a Text Library .. 334
13.2.2. Inserting a Module ... 336
13.2.3. Extracting a Module ... 340
13.2.4. Deleting a Module ... 343
13.2.5. Using Multiple Keys and Multiple Indexes .. 345
13.2.6. Accessing Module Headers ... 348
13.2.7. Reading Library Headers .. 350
13.2.8. Displaying Help Text ... 351
13.2.9. Listing and Processing Index Entries ... 353

13.3. LBR Routines ... 354
Chapter 14. Lightweight Directory Access Protocol (LDAP) Routines 407

14.1. Introduction .. 407
14.1.1. Overview of the LDAP Model .. 407
14.1.2. Overview of LDAP API Use .. 407
14.1.3. LDAP API Use on OpenVMS Systems ... 408
14.1.4. 64-bit Addressing Support .. 409

14.1.4.1. Background ... 409
14.1.4.2. Implementation ... 409
14.1.4.3. Mixing Pointer Sizes ... 412

14.1.5. Multithreading Support ... 412
14.2. Common Data Structures and Memory Handling .. 412
14.3. LDAP Error Codes ... 414
14.4. Initializing an LDAP Session .. 416
14.5. LDAP Session Handle Options .. 417
14.6. Working with Controls ... 419
14.7. Authenticating to the Directory ... 420
14.8. Closing the Session .. 422
14.9. Searching ... 422

14.9.1. Reading and Listing the Children of an Entry .. 425
14.10. Comparing a Value Against an Entry ... 426
14.11. Modifying an Entry ... 427
14.12. Modifying the Name of an Entry ... 429
14.13. Adding an Entry ... 430
14.14. Deleting an Entry ... 432
14.15. Extended Operations ... 433
14.16. Abandoning an Operation .. 434
14.17. Obtaining Results and Looking Inside LDAP Messages .. 435
14.18. Handling Errors and Parsing Results .. 436

14.18.1. Stepping Through a List of Results ... 438

v

Utility Routines Manual

14.19. Parsing Search Results .. 439
14.19.1. Stepping Through a List of Entries ... 439
14.19.2. Stepping Through the Attributes of an Entry .. 440
14.19.3. Retrieving the Values of an Attribute .. 441
14.19.4. Retrieving the Name of an Entry .. 442
14.19.5. Retrieving Controls from an Entry .. 443
14.19.6. Parsing References ... 443

14.20. Encoded ASN.1 Value Manipulation ... 444
14.20.1. Encoding ... 445

14.20.1.1. Encoding Example .. 447
14.20.2. Decoding ... 448

14.20.2.1. Decoding Example .. 450
14.21. Using LDAP with VSI SSL for OpenVMS .. 452

14.21.1. VSI SSL Certificate Options ... 452
14.21.2. Obtaining a Key Pair .. 453

14.22. Sample LDAP API Code .. 453
Chapter 15. LOGINOUT (LGI) Routines ... 457

15.1. Introduction to LOGINOUT .. 457
15.1.1. The LOGINOUT Process ... 457
15.1.2. Using LOGINOUT with External Authentication ... 457
15.1.3. The LOGINOUT Data Flow ... 458

15.2. LOGINOUT Callouts .. 459
15.2.1. LOGINOUT Callout Routines .. 459
15.2.2. LOGINOUT Callback Routines .. 459

15.3. Using Callout Routines ... 460
15.3.1. Calling Environment .. 460
15.3.2. Callout Organization .. 461
15.3.3. Activating the Callout Routines .. 462
15.3.4. Callout Interface .. 463
15.3.5. Sample Program .. 466

15.4. LOGINOUT Callout Routines ... 470
15.5. LOGINOUT Callback Routines ... 485

Chapter 16. Mail Utility Routines .. 497
16.1. Messages .. 497
16.2. Folders ... 498
16.3. Mail Files ... 498
16.4. User Profile Database ... 499
16.5. Mail Utility Processing Contexts ... 499

16.5.1. Callable Mail Utility Routines .. 500
16.5.2. Single and Multiple Threads ... 501

16.6. Programming Considerations ... 501
16.6.1. Condition Handling .. 502
16.6.2. Item Lists and Item Descriptors .. 502

16.6.2.1. Structure of an Item Descriptor .. 502
16.6.2.2. Null Item Lists .. 503
16.6.2.3. Declaring Item Lists and Item Descriptors .. 503
16.6.2.4. Terminating an Item List ... 503

16.6.3. Action Routines ... 503
16.7. Managing Mail Files ... 504

16.7.1. Opening and Closing Mail Files ... 505
16.7.1.1. Using the Default Specification for Mail Files 505

vi

Utility Routines Manual

16.7.1.2. Specifying an Alternate Mail File Specification 505
16.7.2. Displaying Folder Names ... 506
16.7.3. Purging Mail Files Using the Wastebasket Folder .. 507

16.7.3.1. Reclaiming Disk Space .. 507
16.7.3.2. Compressing Mail Files ... 507

16.8. Message Context .. 507
16.8.1. Selecting Messages .. 508
16.8.2. Reading and Printing Messages .. 509
16.8.3. Modifying Messages .. 509
16.8.4. Copying and Moving Messages .. 509

16.8.4.1. Creating Folders .. 510
16.8.4.2. Deleting Folders .. 510
16.8.4.3. Creating Mail Files ... 510

16.8.5. Deleting Messages ... 510
16.9. Send Context .. 510

16.9.1. Sending New Messages .. 511
16.9.1.1. Creating a Message ... 511
16.9.1.2. Creating an Address List ... 512

16.9.2. Sending Existing Messages .. 512
16.9.3. Send Action Routines ... 512

16.9.3.1. Success Action Routines .. 512
16.9.3.2. Error Handling Routines .. 512
16.9.3.3. Aborting a Send Operation .. 513

16.10. User Profile Context ... 513
16.10.1. User Profile Entries .. 513

16.10.1.1. Adding Entries to the User Profile Database 514
16.10.1.2. Modifying or Deleting User Profile Entries 514

16.11. Input Item Codes .. 514
16.12. Output Item Codes .. 518
16.13. Using the MAIL Routines: Examples ... 520
16.14. MAIL Routines ... 528

Chapter 17. National Character Set (NCS) Utility Routines ... 607
17.1. Introduction to NCS Routines ... 607

17.1.1. List of NCS Routines ... 607
17.1.2. Sample Application Process .. 608

17.2. Using the NCS Utility Routines: Examples .. 608
17.3. NCS Routines ... 613

Chapter 18. Print Symbiont Modification (PSM) Routines .. 629
18.1. Introduction to PSM Routines ... 629
18.2. Print Symbiont Overview .. 630

18.2.1. Components of the Print Symbiont ... 630
18.2.2. Creation of the Print Symbiont Process ... 630
18.2.3. Symbiont Streams .. 631
18.2.4. Symbiont and Job Controller Functions ... 631
18.2.5. Print Symbiont Internal Logic ... 632

18.3. Symbiont Modification Procedure .. 634
18.3.1. Guidelines and Restrictions .. 634
18.3.2. Writing an Input Routine .. 636

18.3.2.1. Internal Logic of the Symbiont's Main Input Routine 637
18.3.2.2. Symbiont Processing of Carriage Control ... 638

18.3.3. Writing a Format Routine ... 639

vii

Utility Routines Manual

18.3.3.1. Internal Logic of the Symbiont's Main Format Routine 639
18.3.4. Writing an Output Routine ... 640

18.3.4.1. Internal Logic of the Symbiont's Main Output Routine 640
18.3.5. Other Function Codes .. 641
18.3.6. Writing a Symbiont Initialization Routine ... 641
18.3.7. Integrating a Modified Symbiont .. 642

18.4. Using the PSM Routines: An Example .. 644
18.5. PSM Routines .. 648

Chapter 19. Symbiont/Job Controller Interface (SMB) Routines 673
19.1. Introduction to SMB Routines ... 673

19.1.1. Types of Symbiont ... 673
19.1.2. Symbionts Supplied with the Operating System ... 673
19.1.3. Symbiont Behavior in the OpenVMS Environment .. 674
19.1.4. Writing a Symbiont .. 675
19.1.5. Guidelines for Writing a Symbiont ... 675
19.1.6. The Symbiont/Job Controller Interface Routines .. 676
19.1.7. Choosing the Symbiont Environment .. 677

19.1.7.1. Synchronous Versus Asynchronous Delivery of Requests 677
19.1.7.2. Single-Streaming Versus Multistreaming .. 682

19.1.8. Reading Job Controller Requests .. 682
19.1.9. Processing Job Controller Requests ... 682
19.1.10. Responding to Job Controller Requests ... 685

19.2. SMB Routines .. 685
Chapter 20. Sort/Merge (SOR) Routines .. 707

20.1. High-Performance Sort/Merge (Alpha Only) .. 707
20.1.1. High-Performance SOR Routine Behavior ... 707
20.1.2. Using Threads with High-Performance Sort/Merge .. 709

20.2. Introduction to SOR Routines ... 709
20.2.1. Arguments to SOR Routines ... 710
20.2.2. Interfaces to SOR Routines .. 711

20.2.2.1. Sort Operation Using File Interface .. 711
20.2.2.2. Sort Operation Using Record Interface ... 711
20.2.2.3. Merge Operation Using File Interface ... 712
20.2.2.4. Merge Operation Using Record Interface .. 712

20.2.3. Reentrancy ... 712
20.3. Using the SOR Routines: Examples ... 712
20.4. SOR Routines ... 730

Chapter 21. Traceback Facility (TBK) Routines ... 769
21.1. Introduction to TBK Routines ... 769
21.2. Using TBK Routines---Example .. 769

21.2.1. TBK$I64_SYMBOLIZE Example---Part 1 .. 769
21.2.2. TBK$I64_SYMBOLIZE Example---Part 2 .. 771
21.2.3. TBK$I64_SYMBOLIZE Example---Part 3 .. 773

21.3. TBK Routines .. 776

viii

Preface

1. About VSI
The VSI OpenVMS System Manager’s Manual, Volume 1: Essentials is Volume 1 of the VSI Open-
VMS System Manager’s Manual two-volume set.

2. Intended Audience
This manual is intended for programmers who want to invoke and use the functions provided by
OpenVMS utilities.

3. Document Structure
Chapter 1 introduces the utility routines and lists the documentation format used to describe each set
of utility routines, as well as the individual routines in each set. Each subsequent chapter contains an
introduction to a set of utility routines, a programming example to illustrate the use of the routines in
the set, and a detailed description of each routine.

This manual presents the following utility routine sets:

• Access Control List (ACL) editor routine

• Backup API routine

• Command Language Interface (CLI) routines

• Common File Qualifier routines

• Convert (CONVERT) routines

• Data Compression/Expansion (DCX) routines

• DEC Text Processing Utility (DECTPU) routines

• DIGITAL Distributed Time Service (DECdts) Portable Applications Programming Interface

• EDT routines

• Encryption (ENCRYPT) routines

• File Definition Language (FDL) routines

• Librarian (LBR) routines

• Lightweight Directory Access Protocol (LDAP) routines

• LOGINOUT (LGI) routines

• Mail utility (MAIL) routines

ix

Preface

• National character set (NCS) utility routines

• Print Symbiont Modification (PSM) routines

• Symbiont/Job Controller Interface (SMB) routines

• Sort/Merge (SOR) routines

• Traceback facility (TBK) routines

4. Related Documents
For additional information about VSI OpenVMS products and services, see:

 ;http://www.hp.com/go/openvms

5. VSI Encourages Your Comments
You may send comments or suggestions regarding this manual or any VSI document by sending elec-
tronic mail to the following Internet address: <docinfo@vmssoftware.com>. Users who have
OpenVMS support contracts through VSI can contact <support@vmssoftware.com> for help
with this product. Users who have OpenVMS support contracts through HPE should contact their
HPE Support channel for assistance.

6. Conventions
The following conventions may be used in this manual:

Integrity servers Abbreviation representing "VSI OpenVMS for Integrity servers".
Ctrl/ x A sequence such as Ctrl/ x indicates that you must hold down the

key labeled Ctrl while you press another key or a pointing device
button.

PF1 x A sequence such as PF1 x indicates that you must first press and
release the key labeled PF1 and then press and release another key
or a pointing device button.

 In examples, a key name enclosed in a box indicates that you press
a key on the keyboard. (In text, a key name is not enclosed in a
box.)

In the HTML version of this document, this convention appears as
brackets, rather than a box.

… Horizontal ellipsis points in examples indicate one of the following
possibilities:

• Additional optional arguments in a statement have been omit-
ted.

• The preceding item or items can be repeated one or more times.

• Additional parameters, values, or other information can be en-
tered.

x

Preface

. . . Vertical ellipsis points indicate the omission of items from a code
example or command format; the items are omitted because they
are not important to the topic being discussed.

() In command format descriptions, parentheses indicate that you
must enclose choices in parentheses if you specify more than one.

[] In command format descriptions, brackets indicate optional choic-
es. You can choose one or more items or no items. Do not type
the brackets on the command line. However, you must include the
brackets in the syntax for OpenVMS directory specifications and
for a substring specification in an assignment statement.

| In command format descriptions, vertical bars separate choices
within brackets or braces. Within brackets, the choices are optional
within braces, at least one choice is required. Do not type the verti-
cal bars on the command line.

{ } In command format descriptions, braces indicate required choic-
es you must choose at least one of the items listed. Do not type the
braces on the command line.

bold type Bold type represents the introduction of a new term. It also repre-
sents the name of an argument, an attribute, or a reason.

italic text Italic text indicates important information, complete titles of man-
uals, or variables. Variables include information that varies in sys-
tem output (Internal error number), in command lines (/PRODUC-
ER= name), and in command parameters in text (where dd repre-
sents the predefined code for the device type).

Example This typeface indicates code examples, command examples, and
interactive screen displays. In text, this type also identifies URLs,
UNIX commands and pathnames, PC-based commands and fold-
ers, and certain elements of the C programming language.

UPPERCASE TYPE Uppercase type indicates a command, the name of a routine, the
name of a file, or the abbreviation for a system privilege.

- A hyphen at the end of a command format description, command
line, or code line indicates that the command or statement contin-
ues on the following line.

numbers All numbers in text are assumed to be decimal unless otherwise
noted. Nondecimal radixes—binary, octal, or hexadecimal—are
explicitly indicated.

xi

Preface

xii

Chapter 1. Introduction to Utility
Routines
A set of utility routines performs a particular task or set of tasks. For example, you can use the Print
Symbiont Modification (PSM) routines to modify the print symbiont and the EDT routines to invoke
the EDT editor from a program.

Some of the tasks performed by utility routines can also be performed at the Digital Command Lan-
guage (DCL) level (for example, the DCL command EDIT invokes the EVE editor). While DCL com-
mands invoke utilities that let you perform tasks at your terminal, you can perform some of these tasks
at the programming level through the use of the utility routines.

When using a set of utility routines that performs the same tasks as the related utility, you should read
the documentation for that utility; doing so will provide additional information about the tasks the
routines can perform as a set. The following table lists the utilities and their corresponding routines:

Utility or Editor Utility Routines
Access control list editor ACL editor routine
Backup application programming interface Backup API routine
Command Definition Utility CLI routines
Common File Qualifier routines UTIL$CQUAL routines
Convert and Convert/Reclaim utilities CONVERT routines
Data Compression/Expansion (DCX) facility DCX routines
DEC Text Processing Utility DECTPU routines
Digital Distributed Time Service (DECdts)
portable applications programming interface

DECdts API routines

EDT editor EDT routines
Encryption routines ENCRYPT routines
File Definition Language facility FDL routines
Librarian utility LBR routines
Lightweight Directory Access Protocol (LDAP)
application programming interface

LDAP API routines

LOGINOUT callout routines LGI routines
Mail utility MAIL routines
National Character Set utility NCS routines
Print Symbiont Modification (PSM) facility PSM routines
Symbiont/Job Controller Interface facility SMB routines
Sort/Merge utility SOR routines
Traceback facility TBK routines

When a set of utility routines performs functions that you cannot perform by invoking a utility, the
functions provided by that set of routines is termed a facility. The following facilities have no other
user interface except the programming interface provided by the utility routines described in this man-
ual:

1

Chapter 1. Introduction to Utility Routines

Facility Utility Routines
Data Compression/Expansion facility DCX routines
Print Symbiont Modification facility PSM routines
Symbiont/Job Controller Interface facility SMB routines
Traceback faciltiy TBK routines

Like all other system routines in the OpenVMS environment, the utility routines described in this
manual conform to the VSI OpenVMS Calling Standard. Note that for stylistic purposes, the calling
syntax illustrated for routines documented in this manual is consistent. However, you should consult
your programming language documentation to determine the appropriate syntax for calling these rou-
tines.

Each chapter of this book documents one set of utility routines. Each chapter has the following major
components, documented as a major heading:

• An introduction to the set of utility routines. This component discusses the utility routines as a
group and explains how to use them.

• One or more programming examples that illustrate how the utility routines are used.

• A series of descriptions of each utility routine in the set.

2

Chapter 2. Access Control List (ACL)
Editor Routine
This chapter describes the access control list editor (ACL editor) routine, ACLEDIT$EDIT. User-
written applications can use this callable interface of the ACL editor to manipulate access control lists
(ACLs).

2.1. Introduction to the ACL Editor Routine
The ACL editor is a utility that lets you create and maintain access control lists. Using ACLs, you can
limit access to the following protected objects available to system users:

• Devices

• Files

• Group global sections

• Logical name tables

• System global sections

• Common event flag clusters

• Queues

• Resource domains

• Security classes

• Volumes

The ACL editor provides one callable interface that allows the application program to define an object
for editing.

Note that the application program should declare referenced constants and return status symbols as ex-
ternal symbols; these symbols will be resolved upon linking with the utility shareable image.

See the VSI OpenVMS Programming Concepts Manual for fundamental conceptual information on
the creation, translation, and maintenance of access control entries (ACEs).

2.2. Using the ACL Editor Routine: An Exam-
ple
Example 2.1 shows a VAX BLISS program that calls the ACL editor routine.

Example 2.1. Calling the ACL Editor with a VAX BLISS Program

MODULE MAIN (LANGUAGE (BLISS32), MAIN = STARTUP) =
BEGIN
LIBRARY 'SYS$LIBRARY:LIB';
ROUTINE STARTUP =
BEGIN
LOCAL

3

Chapter 2. Access Control List (ACL) Editor Routine

 STATUS, ! Routine return status
 ITMLST : BLOCKVECTOR [6, ITM$S_ITEM, BYTE];
 ! ACL editor item list
EXTERNAL LITERAL
 ACLEDIT$V_JOURNAL,
 ACLEDIT$V_PROMPT_MODE,
 ACLEDIT$C_OBJNAM,
 ACLEDIT$C_OBJTYP,
 ACLEDIT$C_OPTIONS;
EXTERNAL ROUTINE
 ACLEDIT$EDIT
 : ADDRESSING_MODE (GENERAL), ! Main routine
 CLI$GET_VALUE, ! Get qualifier value
 CLI$PRESENT, ! See if qualifier present
 LIB$PUT_OUTPUT, ! General output routine
 STR$COPY_DX; ! Copy string by descriptor
! Set up the item list to pass back to TPU so it can figure out what to do.
CH$FILL (0, 6*ITM$S_ITEM, ITMLST);
ITMLST[0, ITM$W_ITMCOD] = ACLEDIT$C_OBJNAM;
ITMLST[0, ITM$W_BUFSIZ] = %CHARCOUNT ('YOUR_OBJECT_NAME');
ITMLST[0, ITM$L_BUFADR] = $DESCRIPTOR ('YOUR_OBJECT_NAME');
ITMLST[1, ITM$W_ITMCOD] = ACLEDIT$C_OBJTYP;
ITMLST[1, ITM$W_BUFSIZ] = 4;
ITMLST[1, ITM$L_BUFADR] = UPLIT (ACL$C_FILE);
ITMLST[2, ITM$W_ITMCOD] = ACLEDIT$C_OPTIONS;
ITMLST[2, ITM$W_BUFSIZ] = 4;
ITMLST[2, ITM$L_BUFADR] = UPLIT (1 ^ ACLEDIT$V_PROMPT_MODE OR
 1 ^ ACLEDIT$V_JOURNAL);
RETURN ACLEDIT$EDIT (ITMLST);
END; ! End of routine STARTUP
END
ELUDOM

2.3. ACL Editor Routine
This section describes the ACL editor routine.

ACLEDIT$EDIT—Edit Access Control List
ACLEDIT$EDIT—Edit Access Control List — The ACLEDIT$EDIT routine creates and modifies an
access control list (ACL) associated with any protected object.

Format
ACLEDIT$EDIT item_list

Returns
OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. Most utility routines return a condition value in R0. Condition values that
this routine can return are listed under Condition Values Returned.

4

Chapter 2. Access Control List (ACL) Editor Routine

Argument

item_list

OpenVMS usage: item_list_3
type: longword (unsigned)
access: read only
mechanism: by descriptor

Item list used by the callable ACL editor. The item_list argument is the address of one or more
descriptors of arrays, routines, or longword bit masks that control various aspects of the editing ses-
sion.

Each entry in an item list is in the standard format shown in the following figure:

The following table provides a detailed description of each item list entry:

Item Identifier Description

ACLEDIT$C_OBJNAM Specifies the name of the object whose ACL is being edited.
ACLEDIT$C_OBJTYP A longword value that specifies the object type code for

the type or class of the object whose ACL is being edited.
These type codes are defined in $ACLDEF. The default ob-
ject type is FILE (ACL$C_FILE).
Represents a longword bit mask of the various options
available to control the editing session.
Flag Function
ACLEDIT$V_JOURNAL Indicates that the

editing session is
to be journaled.

ACLEDIT$V_RECOVER Indicates that the
editing session is
to be recovered
from an existing
journal file.

ACLEDIT$C_OPTIONS

ACLEDIT$C_BIT_TABLE

ACLEDIT$V_KEEP_RECOVER Indicates that the
journal file used to
recover the editing
session is not to be
deleted when the

5

Chapter 2. Access Control List (ACL) Editor Routine

Item Identifier Description
recovery is com-
plete.

ACLEDIT$V_KEEP_JOURNAL Indicates that the
journal file used
for the editing ses-
sion is not to be
deleted when the
session ends.

ACLEDIT$V_PROMPT_MODE Indicates that the
session is to use
automatic text in-
sertion (prompt-
ing) to build new
access control list
entries (ACEs).

ACLEDIT$C_BIT_TABLE Specifies a vector of 32 quadword string descriptors of
strings that define the names of the bits present in the access
mask. (The first descriptor defines the name of bit 0; the last
descriptor defines the name of bit 31.) These descriptors are
used in parsing or formatting an ACE. The buffer address
field of the item descriptor contains the address of this vec-
tor.

ACLEDIT$C_CLSNAM A string descriptor that points to the class name of the ob-
ject whose ACL is being modified. The following are valid
class names:

• COMMON_EVENT_FLAG_CLUSTER

• DEVICE

• FILE

• GROUP_GLOBAL_SECTION

• LOGICAL_NAME_TABLE

• QUEUE

• RESOURCE_DOMAIN

• SECURITY_CLASS

• SYSTEM_GLOBAL_SECTION

• VOLUME

If both OBJTYP and CLSNAM are omitted, the object is
assumed to belong to the FILE class.

Description
Use the ACLEDIT$EDIT routine to create and modify an ACL associated with any security object.

6

Chapter 2. Access Control List (ACL) Editor Routine

Under normal circumstances, the application calls the ACL editor to modify an object's ACL, and
control is returned to the application when you finish or abort the editing session.

If you also want to use a customized version of the ACL editor section file, the logical name
ACLEDT$SECTION should be defined. See the VSI OpenVMS System Management Utilities Refer-
ence Manual for more information.

Condition Values Returned
SS$_NORMAL

Normal successful completion.

RMS$_xxx

See the OpenVMS Record Management Services Reference Manual for a description of Open-
VMS RMS status codes.

TPU$_xxx

See Chapter 8 for a description of the TPU-specific condition values that may be returned by
ACLEDIT$EDIT.

7

Chapter 2. Access Control List (ACL) Editor Routine

8

Chapter 3. Backup (BACKUP) Routine
This chapter describes the Backup application programming interface (API). User-written applications
can use the Backup API to perform BACKUP operations.

3.1. Introduction to the Backup API
The Backup API allows application programs to save individual files or the contents of entire disk
volume sets. The Backup API also allows application programs to get information about files or disk
and tape volumes.

In general, the Backup API gives application programs access to (relevant) BACKUP functions that
are available to an interactive user via the DCL command BACKUP. The application program calls
routine BACKUP$START with an argument that points to a variable-length array, which consists of
option structures to specify the required BACKUP operation. The call to BACKUP$START in combi-
nation with the option structures in the variable-length array form the equivalent of a BACKUP com-
mand at DCL level.

Each relevant BACKUP qualifier is represented by an option structure or combination of option struc-
tures. Each option structure consists of a longword that contains the option structure identifier, fol-
lowed by a value field of 1 to 7 longwords. Each option structure must be quadword-aligned within
the variable-length array. There are six option structure types:

Option Definition
bck_opt_struct_adr 32-bit address
bck_opt_struct_dsc Static string descriptor
bck_opt_struct_dsc64 Reserved for use by VSI
bck_opt_struct_dt Date/Time quadword (ADT)
bck_opt_struct_flag Logical bit flags
bck_opt_struct_int 32-bit integer

The option structure types are defined in the language definition files. Table 3.1 lists the language def-
inition files.

Table 3.1. Backup API Language Definition Files

Language API Definitions Media Format (Save
Set) Definitions

Backup Utility Data
Structures

BASIC BAPIDEF.BAS BACKDEF.BAS BACKSTRUC.BAS
BLISS BAPIDEF.R32 BACKDEF.R32 BACKSTRUC.R32
C BAPIDEF.H BACKDEF.H BACKSTRUC.H
Fortran BAPIDEF.FOR BACKDEF.FOR BACKSTRUC.FOR
MACRO BAPIDEF.MAR BACKDEF.MAR BACKSTRUC.MAR

See the VSI OpenVMS System Management Utilities Reference Manual for detailed definitions of the
DCL command BACKUP qualifiers. See the VSI OpenVMS System Manager's Manual for detailed
information about using BACKUP. You can also use the Help facility for more information about the
Backup command and its qualifiers.

9

Chapter 3. Backup (BACKUP) Routine

3.2. Using the Backup API: An Example
Example 3.1 shows a VAX C program that calls the Backup API. This program produces the same re-
sult as the following DCL command:

 $ BACKUP [.WRK]*.* A.BCK/SAVE

Example 3.1. Calling the Backup API with a VAX C Program

#include <stdio.h>
#include <stdlib.h>
#include <ssdef.h>
#include <descrip.h>
#include "sys$examples:bapidef.h"

typedef struct _buf_arg
 {
 bck_opt_struct_dsc arg1;
 bck_opt_struct_dsc arg2;
 bck_opt_struct_flag arg3;
 bck_opt_struct_flag arg4;
 bck_opt_struct_flag arg5;

 } buf_arg;
struct dsc$descriptor
 input_dsc,
 output_dsc,
 event_type_dsc;
buf_arg myarg_buff;
unsigned int status;

extern unsigned int backup$start(buf_arg *myarg_buff);
unsigned int subtest(void *);

static char input_str[] = "[.wrk]";
static char output_str[] = "a.bck";

main()
{
 input_dsc.dsc$b_dtype =
 output_dsc.dsc$b_dtype = DSC$K_DTYPE_T;

 input_dsc.dsc$b_class =
 output_dsc.dsc$b_class = DSC$K_CLASS_S;

 input_dsc.dsc$w_length = sizeof(input_str);
 output_dsc.dsc$w_length = sizeof(output_str);

 input_dsc.dsc$a_pointer = input_str;
 output_dsc.dsc$a_pointer = output_str;

 myarg_buff.arg1.opt_dsc_type = BCK_OPT_K_INPUT;
 myarg_buff.arg1.opt_dsc = input_dsc;

 myarg_buff.arg2.opt_dsc_type = BCK_OPT_K_OUTPUT;
 myarg_buff.arg2.opt_dsc = output_dsc;

10

Chapter 3. Backup (BACKUP) Routine

 myarg_buff.arg3.option_type = BCK_OPT_K_SAVE_SET_OUT;
 myarg_buff.arg3.opt_flag_value = TRUE;

 myarg_buff.arg4.option_type = BCK_OPT_K_OPERATION_TYPE;
 myarg_buff.arg4.opt_flag_value = BCK_OP_K_SAVE ;

 myarg_buff.arg5.option_type = BCK_OPT_K_END_OPT;
 myarg_buff.arg5.opt_flag_value = FALSE;

 status = backup$start(&myarg_buff);

 exit (status);
}

3.3. Backup API
This section describes the Backup API.

BACKUP$START
BACKUP$START — is the entry point through which applications invoke the OpenVMS Backup
utility.

Format
BACKUP$START argument-buffer"

Returns

OpenVMS usage: COND_VALUE
type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. Condition values that this routine can return are listed under Condition
Values Returned.

Argument
argument-buffer

OpenVMS usage: user-defined array
type: longword (unsigned)
access: read only
mechanism: by reference

Arguments that specify the BACKUP operation to be performed. The argument-buffer argument is
the address of a variable-length array of one or more Backup API option structures that define the at-
tributes of the requested BACKUP operation. The variable-length array is terminated by an option
structure of 16 bytes that contains all zeros. Table 3.2 describes the option structures.

11

Chapter 3. Backup (BACKUP) Routine

Note

The length of the terminating option structure is 2 longwords (16 bytes). The first longword identifies
the option structure and has a value of 0. It is recommended that the second longword contain a value
of 0.

Table 3.2. BACKUP Option Structure Types

Option Structure Description
BCK_OPT_K_END_OPT Flag that contains all zeros to denote the end of

argument-buffer. This option structure consists
of 2 longwords. The first longword, with a value
of 0, identifies the BCK_OPT_K_END_OPT op-
tion structure. The second longword is ignored by
BACKUP. However it is recommended that the
second longword contain all zeros.

BCK_OPT_K_ALIAS Flag that specifies whether to maintain the previ-
ous behavior of multiple processing of alias and
primary file entries.

Values are TRUE (default) or FALSE. (See the
BACKUP qualifier /ALIAS.)

Note

Use of BCK_OPT_K_ALIAS and BCK_OP-
T_K_PHYSICAL in the same call results in a fa-
tal error.

BCK_OPT_K_ASSIST Flag that specifies whether to allow operator or
user intervention if a request to mount a magnetic
tape fails during a BACKUP operation.

Values are TRUE (default) or FALSE.

(See the BACKUP qualifier /ASSIST.)
BCK_OPT_K_BACKUP Flag that specifies whether to select files accord-

ing to the BACKUP date written in the file header
record.

Values are TRUE or FALSE. Use this flag
to set the corresponding logical bit flag for
BCK_OPT_K_BEFORE_TYPE and BCK_OP-
T_K_SINCE_TYPE.

(See the BACKUP qualifiers /BEFORE, /SINCE,
and /BACKUP.)

BCK_OPT_K_BEFORE_TYPE Logical bit flags that qualify the date specified
in the BCK_OPT_K_BEFORE_VALUE option
structure. Type can be one of the following:

12

Chapter 3. Backup (BACKUP) Routine

Option Structure Description
BCK_OPTYP_BEFORE_K_BACKUP

Selects files last saved or copied by BACK-
UP before the date specified. Also selects
files with no BACKUP date.

BCK_OPTYP_BEFORE_K_CREATED

Selects files created before the date specified.

BCK_OPTYP_BEFORE_K_EXPIRED

Selects files that have expired as of the date
specified.

BCK_OPTYP_BEFORE_K_MODIFIED

(Default) Selects files last modified before
the date specified.

BCK_OPTYP_BEFORE_K_SPECIFIED

Reserved for use by VSI.

(See the BACKUP qualifiers /BEFORE, /BACK-
UP, /CREATED, /EXPIRED, and /MODIFIED.)

BCK_OPT_K_BEFORE_VALUE Date-Time Quadword that specifies the date qual-
ified by BCK_OPT_K_BEFORE_TYPE. You
cannot use delta time. (See the BACKUP qualifi-
er /BEFORE.)

BCK_OPT_K_BLOCK Integer that specifies the block size in bytes for
data records in the BACKUP save set.

The default block size for magnetic tape is 8,192
bytes. The default block size for disk is 32,256
bytes.

(See the BACKUP qualifier /BLOCK_SIZE.)
BCK_OPT_K_CARTRIDGE_MEDIA_IN1 32-bit descriptor.

Note

Use of BCK_OPT_K_CARTRIDGE_MEDIA_IN
and BCK_OPT_K_CARTRIDGE_NAME_IN or
any of the BCK_OPT_K_SCRATCH_* option
structures in the same call results in a fatal error.

BCK_OPT_K_CARTRIDGE_NAME_IN1 32-bit descriptor.

13

Chapter 3. Backup (BACKUP) Routine

Option Structure Description

Note

Use of BCK_OPT_K_CARTRIDGE_NAME_IN
and BCK_OPT_K_CARTRIDGE_MEDIA_IN
or any of the BCK_OPT_K_SCRATCH_* option
structures in the same call results in a fatal error.

BCK_OPT_K_CARTRIDGE_SIDE_IN1 32-bit descriptor.

Note

Use of BCK_OPT_K_CARTRIDGE_SIDE_IN
without BCK_OP-
T_K_CARTRIDGE_NAME_IN in the same call
results in a fatal error.

Note

Use of BCK_OPT_K_CARTRIDGE_SIDE_IN
with any of the BCK_OPT_K_SCRATCH_* op-
tion structures in the same call results in a fatal
error.

BCK_OPT_K_CARTRIDGE_MEDIA_OUT1 32-bit descriptor.

Note

Use of BCK_OP-
T_K_CARTRIDGE_MEDIA_OUT and
BCK_OPT_K_CARTRIDGE_NAME_OUT or
any of the BCK_OPT_K_SCRATCH_* option
structures in the same call results in a fatal error.

BCK_OPT_K_CARTRIDGE_NAME_OUT1 32-bit descriptor.

Note

Use of BCK_OP-
T_K_CARTRIDGE_NAME_OUT and
BCK_OPT_K_CARTRIDGE_MEDIA_OUT or
any of the BCK_OPT_K_SCRATCH_* option
structures in the same call results in a fatal error.

BCK_OPT_K_CARTRIDGE_SIDE_OUT1 32-bit descriptor.

Note

Use of BCK_OPT_K_CARTRIDGE_SIDE_OUT
without BCK_OP-

14

Chapter 3. Backup (BACKUP) Routine

Option Structure Description
T_K_CARTRIDGE_NAME_OUT in the same
call results in a fatal error.

Note

Use of BCK_OPT_K_CARTRIDGE_SIDE_OUT
with any of the BCK_OPT_K_SCRATCH_* op-
tion structures in the same call results in a fatal
error.

BCK_OPT_K_COMMAND Reserved for use by VSI.
BCK_OPT_K_COMMENT 32-bit descriptor that specifies a comment string

to be placed in the output save set.(See the
BACKUP qualifier /COMMENT.)

BCK_OPT_K_COMPARE Flag that specifies whether to compare the entity
specified by BCK_OPT_K_INPUT with the enti-
ty specified by BCK_OPT_K_OUTPUT. Values
are TRUE and FALSE (default).(See the BACK-
UP qualifier /COMPARE.)

BCK_OPT_K_CONFIRM Flag that specifies whether to prompt for confir-
mation before processing each file.

Values are TRUE and FALSE (default).

(See the BACKUP qualifier /CONFIRM.)
BCK_OPT_K_CRC Flag that specifies whether the software cyclic re-

dundancy check (CRC) is to be performed.

Values are TRUE (default) and FALSE.

(See the BACKUP qualifier /CRC.)
BCK_OPT_K_CREATED Flag that specifies whether to select files accord-

ing to the creation date written in the file header
record.

Values are TRUE or FALSE.

Use this flag to set the corresponding logical bit
flag for BCK_OPT_K_BEFORE_TYPE and
BCK_OPT_K_SINCE_TYPE.

(See the BACKUP qualifiers /BEFORE, /SINCE,
and /CREATED.)

BCK_OPT_K_DATA_FORMAT_COMPRESS Flag that specifies whether data compression
or decompression to be performed. Values are
TRUE or FALSE (default).

BCK_OPT_K_DCL_INTERFACE Reserved for use by VSI.

15

Chapter 3. Backup (BACKUP) Routine

Option Structure Description
BCK_OPT_K_DELETE Flag that specifies whether a copy or backup op-

eration is to delete the input files from the input
volume when the operation is complete.

Values are TRUE and FALSE (default).

(See the BACKUP qualifier /DELETE.)
BCK_OPT_K_DENSITY Integer that specifies the recording density of the

output magnetic tape in bits per inch (bits/in).

The density specified must be supported by the
magnetic tape hardware. The default density is
the current density on the output tape drive. (See
the BACKUP qualifier /DENSITY.)

Note: Use of BCK_OPT_K_DENSITY and
BCK_OPT_K_MEDIA_FORMAT in the same
call results in a fatal error.

BCK_OPT_K_DISMOUNT Reserved for use by VSI.
BCK_OPT_K_DISPOSITION1 Logical bit flags. Values are the following:

BCK_OPTYP_DISP_K_KEEP, BCK_OP-
TYP_DISP_K_RELEASE.

BCK_OPT_K_DRIVE_CLASS_IN1 32-bit descriptor.
BCK_OPT_K_DRIVE_CLASS_OUT1 32-bit descriptor.
BCK_OPT_K_ENCRYPTb Flag.
BCK_OPT_K_ENCRYPT_USERALGb 32-bit descriptor.
BCK_OPT_K_ENCRYPT_USERKEYb 32-bit descriptor.

Note: Use of BCK_OPT_K_ENCRYP-
T_USERKEY and BCK_OPT_K_ENCRYP-
T_KEY_VALUE in the same call results in a fa-
tal error.

BCK_OPT_K_ENCRYPT_KEY_VALUEb 32-bit descriptor.

Note: Use of BCK_OPT_K_ENCRYP-
T_KEY_VALUE and BCK_OPT_K_ENCRYP-
T_USERKEY in the same call results in a fatal
error.

BCK_OPT_K_EVENT_CALLBACK Address of a routine in the calling application to
be called to process BACKUP events. See the
Description section for detailed information about
event callbacks.

BCK_OPT_K_EXACT_ORDER Flag that specifies whether a BACKUP operation
is to accept an exact order of tape volume labels,
preserve an existing volume label, and prevent
previous volumes of a multivolume save opera-
tion from being overwritten.

16

Chapter 3. Backup (BACKUP) Routine

Option Structure Description
Values are TRUE (default) and FALSE.

(See the BACKUP qualifier /EXACT_ORDER.)
BCK_OPT_K_EXCLUDE 32-bit descriptor that specifies the name of an in-

put file to be excluded from the current BACKUP
save or copy operation. Wildcards are permitted.
Each file specification, whether wildcarded or
not, requires its own BCK_OPT_K_EXCLUDE
option structure (lists are not supported).(See the
BACKUP qualifier /EXCLUDE.)

BCK_OPT_K_EXPIRED Flag that specifies whether to select files accord-
ing to the expiration date written in the file header
record.

Values are TRUE or FALSE.

Use this flag to set the corresponding logical bit
flag for BCK_OPT_K_BEFORE_TYPE and
BCK_OPT_K_SINCE_TYPE.

(See the BACKUP qualifiers /BEFORE, /SINCE,
and /EXPIRED.)

BCK_OPT_K_FAST Flag that specifies whether to reduce processing
time by performing a fast file scan of the input
specifier.

Values are TRUE and FALSE (default).

(See the BACKUP qualifier /FAST.)
BCK_OPT_K_FILE_CALLBACK Reserved for use by VSI.
BCK_OPT_K_FILEMERGE Reserved for use by VSI.
BCK_OPT_K_FULL Flag that specifies whether to display informa-

tion produced by a BCK_OPT_K_LIST value of
TRUE in a format similar to that produced by the
DCL command DIRECTORY/FULL.

Values are TRUE and FALSE (default).

(See the BACKUP qualifiers /LIST and /FULL.)
BCK_OPT_K_GROUP Integer that specifies the number of backup

blocks or backup buffers BACKUP places in each
redundancy group.

The default is 10 blocks.

(See the BACKUP qualifier /GROUP_SIZE.)
BCK_OPT_K_HANDLE Reserved for use by VSI.
BCK_OPT_K_IGNORE_TYPES Logical bit flags that override tape labeling

checks or restrictions placed on files. Values are
one of the following:

17

Chapter 3. Backup (BACKUP) Routine

Option Structure Description
BCK_OPTYP_IGNORE_K_ACCESS

Processes files on a tape that is protected by a
volume accessibility character, or a tape cre-
ated by HSC Backup. Applies to all tapes in
the save set.

BCK_OPTYP_IGNORE_K_INTERLOCK

Processes files otherwise inaccessible be-
cause of file access conflicts.

BCK_OPTYP_IGNORE_K_LABELS

Ignores the contents of the volume head-
er record. You cannot use this flag if the
BCK_OPTYP_K_EXACT_ORDER option
structure flag value is TRUE.

BCK_OPTYP_IGNORE_K_NOBACKUP

Processes both the file header and the con-
tents of files marked with the NOBACKUP
option.

(See the BACKUP qualifier /IGNORE.)
BCK_OPT_K_IMAGE Flag that directs that an entire volume or volume

set be processed.

Values are TRUE and FALSE (default).

(See the BACKUP qualifier /IMAGE.)
BCK_OPT_K_INCREMENTAL Flag that specifies whether to restore an incre-

mental save set.

Values are TRUE and FALSE (default).

(See the BACKUP qualifier /INCREMENTAL.)
BCK_OPT_K_INITIALIZE Flag that specifies whether to initialize an entire

output volume, thereby making its previous con-
tents inaccessible.

Values are TRUE and FALSE (default, except for
image restore and copy operations).

(See the BACKUP qualifier /INITIALIZE.)
BCK_OPT_K_INPUT 32-bit descriptor that specifies a single in-

put-specifier. You can use wildcards. You must
use a separate BCK_OPT_K_INPUT option
structure for each specification.(See the BACK-
UP Format description.)

18

Chapter 3. Backup (BACKUP) Routine

Option Structure Description
BCK_OPT_K_INTERCHANGE Flag that specifies whether to process files in a

manner suitable for data interchange.

Values are TRUE and FALSE (default).

(See the BACKUP qualifier /INTERCHANGE.)
BCK_OPT_K_JOURNAL Flag that specifies whether a BACKUP journal

file is to be processed. You can specify a journal
file name other than BACKUP.BJL (the default)
with the BCK_OPT_K_JOURNAL_FILE option
structure.

Values are TRUE and FALSE (default).

(See the BACKUP qualifier /JOURNAL.)
BCK_OPT_K_JOURNAL_FILE 32-bit descriptor that specifies the name of a

BACKUP journal file to be processed.(See the
BACKUP qualifier /JOURNAL.)

BCK_OPT_K_LABEL 32-bit descriptor that specifies the volume label
to be written. To specify more than one label, use
additional BCK_OPT_K_LABEL option struc-
tures.

(See the BACKUP qualifier /LABEL.)

Note

Use of BCK_OPT_K_LABEL with any
BCK_OPT_K_SCRATCH_* option structure in
the same call results in a fatal error.

BCK_OPT_K_LIST Flag that specifies whether to process a BACKUP
list file. You can specify a list output destination
other than TTY: (the default) with the BCK_OP-
T_K_LIST_FILE option structure.

Values are TRUE and FALSE (default).

(See the BACKUP qualifier /LIST.)
BCK_OPT_K_LIST_FILE 32-bit descriptor that specifies the name of a file

of a BACKUP journal file to be processed.(See
the BACKUP qualifier /LIST.)

BCK_OPT_K_LOG Flag that specifies whether to display the file
specification of each file processed. The display
is to SYS$OUTPUT.

Values are TRUE and FALSE (default).

(See the BACKUP qualifier /LOG.)

19

Chapter 3. Backup (BACKUP) Routine

Option Structure Description
BCK_OPT_K_MEDIA_FORMAT Logical bit flags that specify whether data records

are automatically compacted and blocked togeth-
er. The tape drive must support compaction.

Values are one of the following: BCK_OP-
TYP_MEDIA_K_COMPACTION, BCK_OP-
TYP_MEDIA_K_NO_COMPACTION (de-
fault).

(See the BACKUP qualifier /MEDIA_FOR-
MAT.)

Note

Use of BCK_OPT_K_MEDIA_FORMAT and
BCK_OPT_K_DENSITY in the same call results
in a fatal error.

BCK_OPT_K_MODIFIED Flag that specifies whether to select files accord-
ing to the modification date written in the file
header record.

Values are TRUE and FALSE.

Use this flag to set the corresponding logical bit
flag for BCK_OPT_K_BEFORE_TYPE and
BCK_OPT_K_SINCE_TYPE.

(See the BACKUP qualifiers /BEFORE, /SINCE,
and /MODIFIED.)

BCK_OPT_K_NEW_VERSION Flag that specifies whether to create a new ver-
sion of a file if a file with an identical file specifi-
cation already exists at the location to which the
file is being copied or restored.

Values are TRUE and FALSE (default).

Because this qualifier causes version numbers to
change, using it with the BCK_OPT_K_VERIFY
flag set to TRUE can cause unpredictable results.
VSI recommends that you not use these two op-
tions in combination.

(See the BACKUP qualifier /NEW_VERSION.)
BCK_OPT_K_OPERATION_TYPE Logical bit flags that specify the type of BACK-

UP operation to be performed.

Values are one of the following:
BCK_OP_K_SAVE (default),
BCK_OP_K_RESTORE BCK_OP_K_COPY,
BCK_OPT_K_LIST, BCK_OPT_K_COMPARE

20

Chapter 3. Backup (BACKUP) Routine

Option Structure Description
BCK_OPT_K_OUTPUT 32-bit descriptor that specifies the name of a sin-

gle output-specifier. You can use wildcards. Each
file specification requires a separate BCK_OP-
T_K_OUTPUT option structure. Lists are not
supported.(See BACKUP Format description.)

BCK_OPT_K_OVERLAY Flag that specifies whether to overlay (at the same
physical location) an existing file with a file spec-
ification identical to that of the file that is being
copied or restored.

Values are TRUE and FALSE (default).

(See the BACKUP qualifier /OVERLAY.)
BCK_OPT_K_OWNER_IN_VALUE Integer that specifies the user identification code

(UIC) of the files to be processed by a BACK-
UP input operation. The default is the UIC of the
current process. If you do not include this op-
tion structure, BACKUP processes all files speci-
fied by BCK_OPT_K_INPUT.(See the BACKUP
qualifier /BY_OWNER.)

BCK_OPT_K_OWNER_OUT_TYPE Logical bit flags to specify the user identification
code (UIC) of restored files.

Values are one of the following:

BCK_OPTYP_OWN_OUT_K_DEFAULT

Sets the owner UIC to the UIC of the cur-
rent process (default unless BCK_OPT_K_I-
MAGE or BCK_OPT_K_INCREMENTAL
is TRUE).

BCK_OPTYP_OWN_OUT_K_ORIGINAL

Retains the owner UIC of the file being re-
stored (default if BCK_OPT_K_IMAGE or
BCK_OPT_K_INCREMENTAL is TRUE).

BCK_OPTYP_OWN_OUT_K_PARENT

Sets the owner UIC to the owner UIC of the
directory to which the file is being written.
The current process must have the SYSPRV
user privilege, or be the owner of the output
volume, or must have the parent UIC.

(See the BACKUP qualifier /BY_OWNER.)
BCK_OPT_K_OWNER_OUT_VALUE Integer that redefines the UIC of the files written

by a BACKUP restore or copy operation, or spec-
ifies the UIC of an output save set.

21

Chapter 3. Backup (BACKUP) Routine

Option Structure Description
If BCK_OPT_K_OUTPUT specifies a save set,
the default is the UIC of the current process. To
specify the UIC of a Files-11 save set, the current
process must have the SYSPRV user privilege, or
must have the UIC specified.

If BCK_OPT_K_OUTPUT specifies files, the
UIC of the output files is set to the UIC specified.
To specify the UIC, the UIC must be that of the
current process, or must have the SYSPRV user
privilege, or the current process must be the own-
er of the output device.

(See the BACKUP qualifier /BY_OWNER.)
BCK_OPT_K_PHYSICAL Flag that specifies that a BACKUP operation is

to ignore any file structure on the input volume
and instead process the volume in terms of logical
blocks.

Values are TRUE and FALSE (default). Note that
output operations on a save set must be performed
with the same physical option as that used to cre-
ate the save set. (See the BACKUP qualifier /
PHYSICAL.)

Note

Use of BCK_OPT_K_PHYSICAL and BCK_OP-
T_K_UNSHELVE or BCK_OPT_K_ALIAS in
the same call results in a fatal error.

BCK_OPT_K_PROTECTION Logical bit flags that specify file protection. Bits
0 to 15 of the option structure value field are in
the format of the RMS field XAB$W_PRO. See
the OpenVMS Record Management Services Ref-
erence Manual for information about the format
of this field.

(Also see BACKUP utility qualifier /PROTEC-
TION.)

BCK_OPT_K_RECORD Flag that specifies whether to record the current
date and time in the BACKUP date field in each
file header once a file is successfully saved or
copied.

Values are TRUE and FALSE (default).

(See the BACKUP qualifier /RECORD.)
BCK_OPT_K_RELEASE_TAPE Flag that specifies whether to dismount and un-

load a tape after a BACKUP save operation has

22

Chapter 3. Backup (BACKUP) Routine

Option Structure Description
either reached the end of the tape or has written
and verified the save set.

Values are TRUE and FALSE (default).

(See the BACKUP qualifier /RELEASE_TAPE.)
BCK_OPT_K_REPLACE Flag that specifies whether to replace (at a differ-

ent physical location), with an identical version
number, an existing file with a file specification
identical to that of the file that is being copied or
restored.

Values are TRUE and FALSE (default).

(See the BACKUP qualifier /REPLACE.)
BCK_OPT_K_REWIND Flag. Reserved for use by VSI.
BCK_OPT_K_REWIND_IN Flag that specifies whether the input device is

a tape drive, and that it is to be rewound to the
beginning-of-tape marker before beginning the
BACKUP operation.

Values are TRUE and FALSE (default).

(See the BACKUP qualifier /REWIND.)
BCK_OPT_K_REWIND_OUT Flag that specifies whether the output device is a

tape drive, and that it is to be rewound to the be-
ginning-of-tape marker and initialized before be-
ginning the BACKUP operation.

Values are TRUE and FALSE (default).

(See the BACKUP qualifier /REWIND.)

Note

Use of BCK_OPT_K_REWIND_OUT with any
BCK_OPT_K_SCRATCH_* option structure in
the same call results in a fatal error.

BCK_OPT_K_SAVE_SET_IN Flag that indicates whether the input specifier is a
BACKUP save-set file.

Values are TRUE and FALSE (default; indicates
that the input specifier refers to a Files-11 file).

(See the BACKUP qualifier /SAVE_SET.)
BCK_OPT_K_SAVE_SET_OUT Flag that indicates whether the output specifier

specifies a BACKUP save-set file.

Values are TRUE and FALSE (default; indicates
that the output specifier refers to a Files-11 file).

23

Chapter 3. Backup (BACKUP) Routine

Option Structure Description
(See the BACKUP qualifier /SAVE_SET.)

BCK_OPT_K_SCRATCH_ASGN_TYPE1 Logical bit flags.

Note

Use of BCK_OPT_K_SCRATCH_ASGN_TYPE
with BCK_OPT_K_LABEL, BCK_OP-
T_K_REWIND_OUT, any of the BCK_OP-
T_K_CARTRIDGE_* option structures, or any
other BCK_OPT_K_SCRATCH_* option struc-
ture in the same call results in a fatal error.

BCK_OPT_K_SCRATCH_COLLECTION1 32-bit descriptor.

Note

Use of BCK_OPT_K_SCRATCH_COLLEC-
TION with BCK_OPT_K_LABEL, BCK_OP-
T_K_REWIND_OUT, any of the BCK_OP-
T_K_CARTRIDGE_* option structures, or any
other BCK_OPT_K_SCRATCH_* option struc-
ture in the same call results in a fatal error.

BCK_OPT_K_SCRATCH_LOCATION1 32-bit descriptor.

Note

Use of BCK_OPT_K_SCRATCH_LOCATION
with BCK_OPT_K_LABEL, BCK_OP-
T_K_REWIND_OUT, any of the BCK_OP-
T_K_CARTRIDGE_* option structures, or any
other BCK_OPT_K_SCRATCH_* option struc-
ture in the same call results in a fatal error.

BCK_OPT_K_SCRATCH_MEDIA_NAME1 32-bit descriptor.

Note

Use of BCK_OP-
T_K_SCRATCH_MEDIA_NAME
with BCK_OPT_K_LABEL, BCK_OP-
T_K_REWIND_OUT, any of the BCK_OP-
T_K_CARTRIDGE_* option structures, or any
other BCK_OPT_K_SCRATCH_* option struc-
ture in the same call results in a fatal error.

BCK_OPT_K_SELECT 32-bit descriptor that references the file speci-
fication of a file or files from the input save set
to be processed by the current BACKUP save or
copy operation. Wildcards are permitted. Each
file specification, whether wildcards are used or

24

Chapter 3. Backup (BACKUP) Routine

Option Structure Description
not, requires its own BCK_OPT_K_SELECT op-
tion structure (lists are not supported).(See the
BACKUP qualifier /SELECT.)

BCK_OPT_K_SINCE_TYPE Logical bit flags that qualify the date specified in
the BCK_OPT_K_SINCE_VALUE option struc-
ture.

Type can be one of the following:

BCK_OPTYP_SINCE_K_BACKUP

Selects files last saved or copied by BACK-
UP on or after the date specified. Also selects
files with no BACKUP date.

BCK_OPTYP_SINCE_K_CREATED

Selects files created on or after the date speci-
fied.

BCK_OPTYP_SINCE_K_EXPIRED

Selects files that have expired since the date
specified.

BCK_OPTYP_SINCE_K_MODIFIED

Selects files last modified on or after the date
specified (default).

BCK_OPTYP_SINCE_K_SPECIFIED

Reserved for use by VSI.

(See the BACKUP qualifiers /SINCE, /BACK-
UP, /CREATED, /EXPIRED, and /MODIFIED.)

BCK_OPT_K_SINCE_VALUE Date-Time Quadword that specifies the date qual-
ified by BCK_OPTYP_K_SINCE_TYPE. You
cannot use delta time.(See the BACKUP qualifi-
er /SINCE.)

BCK_OPT_K_STORAGE_MANAGEMENT1 32-bit descriptor.
BCK_OPT_K_TAPE_EXPIRATION ADT (Date-Time) that specifies when the tape

expires.(See the BACKUP qualifier /TAPE_EX-
PIRATION.)

BCK_OPT_K_TRUNCATE Flag that specifies whether a copy or restore oper-
ation truncates a sequential output file at the end-
of-file (EOF) when creating it.

Values are TRUE and FALSE (default; the size of
the output file is determined by the allocation of
the input file).

25

Chapter 3. Backup (BACKUP) Routine

Option Structure Description
(See the BACKUP qualifier /TRUNCATE.)

BCK_OPT_K_UNSHELVE Flag that is reserved for use with file-shelving
layered products.

Values are TRUE and FALSE.

Note

Use of BCK_OPT_K_UNSHELVE and
BCK_OPT_K_PHYSICAL in the same call re-
sults in a fatal error.

BCK_OPT_K_VALIDATE_PARAMETERS Reserved for use by VSI.
BCK_OPT_K_VERIFY Flag that specifies whether the contents of the

output specifier be compared with the contents of
the input specifier after a save, restore, or copy
operation has been completed.

Values are TRUE and FALSE (default).

(See the BACKUP qualifier /VERIFY.)
BCK_OPT_K_VOLUME Integer that specifies the specific disk volume

in a disk volume set to be processed (valid only
when BCK_OPT_K_IMAGE is TRUE). (See the
BACKUP qualifier /VOLUME.)

1Reserved for use by Media Management Extension (MME) layered products.
bReserved for future use by a security utility or layered product.

Description
Application programs call the Backup API to invoke the OpenVMS Backup utility via a call to the
BACKUP$START routine. There is only one parameter, the address of an argument buffer that con-
tains a number of option structures that together define the operation requested of the Backup utili-
ty. Most of these option structures are equivalent, singly or in combination, to the qualifiers available
when invoking the BACKUP utility with the DCL command BACKUP; the call to the API is analo-
gous to a user entering an interactive command to the Backup utility.

The call to BACKUP$START is synchronous; that is, it does not return until the operation is complete
or is terminated by a fatal error. In the case of a fatal error, the call is aborted.

BACKUP Event Callbacks
An application can request that the BACKUP API notify the application whenever specific events
occur. The application can specify different callback routines to handle different types of BACKUP
events, or one routine to handle all events. To do so, the application registers the callback routine by
including option structure BCK_OPTYP_K_EVENT_CALLBACK in the call to BACKUP$START.
This option structure specifies an event type (or all events) and the address of a routine to be called
when the event occurs. The application must include one such option structure for each requested
event type. To specify all events, use BCK_EVENT_K_ALL. Table 3.4 lists the specific event types
and identifiers.

A callback routine:

26

Chapter 3. Backup (BACKUP) Routine

• Is called with one argument; a pointer to a bckEvent data structure that contains information to en-
able the application to process the event

• Returns an unsigned integer status value (of any valid OpenVMS message) in R0 to enable the
API to perform proper logging of the event

Note

The API does not currently process the return status of the callback routine. However, VSI strongly
recommends that the callback routine provide the appropriate status in R0 when returning control to
the API.

The bckEvent structure contains information about the type of event, and also contains a descriptor of
a data structure that contains information to be used to process the event. The bckEvent structure may
point to a bckControl structure that specifies control aspects of an event that may require user or oper-
ator action.

Table 3.3 describes the format of the bckEvent data structure. Table 3.6 describes the format of the
bckControl data structure.

Table 3.3. bckEvent Format

Data Type Element Name Description
struct dsc$descriptor bckevt_r_event_buffer Pointer to event data
unsigned int bckevt_l_event_type Event type
unsigned int bckevt_l_event_subtype Event subtype (if any)
unsigned int bckevt_q_event_ctx [2] Reserved for use by VSI
unsigned int bckevt_l_event_handle Reserved for use by VSI

Table 3.4 describes the values returned in the bckEvent data structure.

Table 3.4. Event Callback Buffer Formats

Type/Subtype Format Value Returned
BCK_EVENT_K_CONTROL bckControl See Table 3.5.
BCK_EVENT_K_ERROR_MSG
 (no subtype) bckMsgVect Message vector (use $PUT-

MSG to output message to
user).

BCK_EVENT_K_JOURNAL_OPEN
 (no subtype) dsc$descriptor String descriptor (name of file

to create).
BCK_EVENT_K_JOURNAL_CLOSE
 (no subtype) dsc$descriptor String descriptor (name of file

to close).
BCK_EVENT_K_JOURNAL_WRITE
 (no subtype) 512-byte block File descriptor of journal buffer

(condensed journal records, re-

27

Chapter 3. Backup (BACKUP) Routine

Type/Subtype Format Value Returned
fer to the BJLDEF structure de-
finition in the BAPIDEF files).

Type/Subtype Format Value Returned
BCK_EVENT_K_LIST_CLOSE
 (no subtype) Array of 2 longwords LIST_TOTFILE: Total files

listed.

LIST_TOTSIZE: Total blocks
listed. Note: The application
should close the list file.

BCK_EVENT_K_LIST_OPEN
 TRUE dsc$descriptor File specification of list file to

open (TRUE = 1, indicates /
FULL listing).

 FALSE dsc$descriptor (FALSE = 0).
BCK_EVENT_K_LIST_WRITE
 BRH$K_SUMMARY BSRBLK List BACKUP save set - save

set summary record.
 BRH$K_VOLUME BSRBLK List BACKUP save set - vol-

ume summary record.
 BRH$K_PHYSVOL PVABLK List BACKUP save set - physi-

cal volume record.
 BRH$K_FILE FARBLK List BACKUP save set - file

record.
BCK_EVENT_K_LISTJOUR_WRITE Subtype is a condition value

that indicates the type of action
that occurred for the specified
file/item. Obtain message text
with the $GETMSG system ser-
vice.

 TRUE bckLisJourblk Journal file listing information
(TRUE = 1, indicates a change
of volume or save set).

 FALSE dsc$descriptor Journal file listing of file/item
specification string (descriptor)
(FALSE = 0).

BCK_EVENT_K_LOG
 BACKUP$_AECREATED dsc$descriptor String descriptor (file logging).
 BACKUP$_COMPARED dsc$descriptor String descriptor (file logging).
 BACKUP$_COPIED dsc$descriptor String descriptor (file logging).
 BACKUP$_CREATED dsc$descriptor String descriptor (file logging).
 BACKUP$_CREDIR dsc$descriptor String descriptor (file logging).
 BACKUP$_HEADCOPIED dsc$descriptor String descriptor (file logging).
 BACKUP$_INCDELETE dsc$descriptor String descriptor (file logging).

28

Chapter 3. Backup (BACKUP) Routine

Type/Subtype Format Value Returned
 BACKUP$_NEWSAVSET dsc$descriptor String descriptor (file logging).
BCK_EVENT_K_OP_PHASE
 BACKUP$_STARTVERIFY Condition Value Start of verify operation (obtain

message text with $GETMSG).
 BACKUP$_STARTDELETE Condition Value Start of delete operation (obtain

message text with $GETMSG).
 BACKUP$_STARTRECORD Condition Value Start of record operation (obtain

message text with $GETMSG).
BCK_EVENT_K_SAVESET_CLOSE
 (no subtype) RMS FOB A BACKUP save set must be

closed.
BCK_EVENT_K_SAVESET_OPEN
 (no subtype) RMS FOB A BACKUP save set must be

opened or created.
BCK_EVENT_K_SAVESET_READ
 (no subtype) BACKUP Buffer Control Block

(BCBBLK)
A BACKUP save set block/
buffer has been read from the
input save set.

BCK_EVENT_K_SAVESET_WRITE
 (no subtype) BACKUP Buffer Control Block

(BCBBLK)
A BACKUP save set block/
buffer is ready to be written to
the output save set.

BCK_EVENT_K_STATISTICS
 (no subtype) bckMsgVect Statistics message; one of the

following message condi-
tion values (use $PUTMSG
to output message to user):
BACKUP$_STAT_PHYSI-
CAL, BACKUP$_STAT_SAV-
COP_ACT, BACK-
UP$_STAT_INACTIVE,
BACKUP$_STAT_COMPARE,
BACKUP$_STAT_RESTORE.

BCK_EVENT_K_USER_MSG
 (no subtype) bckMsgVect Message vector (use $PUT-

MSG to output message to
user).

Table 3.5 describes the control event subtypes of the BCK_EVENT_K_CONTROL event callback.
Table 3.6 describes the format of the bckControl data structure.

29

Chapter 3. Backup (BACKUP) Routine

Table 3.5. Control Event Subtypes

 Format
Subtype Field Description
BCKEVTST_K_CONFIRM_EVENT Confirmation is required for compare

or copy operation.
 bckCntrl_l_event BCKCNTRL_K_CONFIRM_EVENT
 bckCntrl_l_function Backup operation type (integer value)
 bckCntrl_a_outmsgvect Confirmation message (bckMsgVect,

BACKUP$_CNTRL_CONFCOMP or
BACKUP$_CNTRL_CONFCOPY)

 bckCntrl_v_response_required TRUE (response is required)
 bckCntrl_r_response_buffer dsc$descriptor ("Yes/No" string descrip-

tor)
BCKEVTST_K_ASSIST_EVENT Operator or user assistance is required

to determine continuation/actions.
 bckCntrl_l_event BCKCNTR-

L_K_USER_ASSIST_EVENT or BCK-
CNTRL_K_OPER_ASSIST_EVENT

 bckCntrl_l_function Backup operation type (integer value)
 bckCntrl_a_outmsgvect bckMsgVect (assist and other messages)
 bckCntrl_v_response_required TRUE or FALSE (TRUE = 1, if response

is required)
 bckCntrl_r_response_buffer dsc$descriptor (response string descrip-

tor)
BCKCNTRL_K_RESTART_EVENT BACKUP operation restart is initiated.
 bckCntrl_l_event BCKCNTRL_K_RESTART_EVENT
 bckCntrl_l_function Backup operation type (integer value)
 bckCntrl_a_outmsgvect bckMsgVect (operation restart message

vector)
 bckCntrl_v_response_required FALSE (= 0, no response is required)
 bckCntrl_r_response_buffer dsc$descriptor ("Yes/No" string descrip-

tor)

Control events are described by the Control event subtype, via the bckevt_l_event_subtype field in the
bckEvent structure. Table 3.6 describes the format of the bckControl data structure.

Table 3.6. bckControl Format

Data Type Element Name Description
unsigned int bckCntrl_l_event Control event type.
unsigned int bckCntrl_l_function Backup operation type.
bckMsgVect *bckCntrl_a_outmsgvect Output messages and parameters.
union {

unsigned int bckCntrl_l_ctlflags Flags.

30

Chapter 3. Backup (BACKUP) Routine

Data Type Element Name Description
struct {

unsigned bckCntrl_v_response_required : 1 Response required = 1.
unsigned bckCntrl_v_fill_5 : 7 Filler.
}

}
struct dsc$descriptor bckCntrl_r_response_buffer Descriptor for buffer to which re-

sponse text is to be written.
unsigned int bckCntrl_l_response_status Reserved for use by VSI.
unsigned int bckCntrl_l_control_options Reserved for use by VSI.

Error Messages
Where possible, the Backup API emulates the behavior of the interactive BACKUP utility if you pass
a call that contains conflicting qualifiers by:

1. Making a best guess as to your intentions

2. Ignoring the least likely of the conflicting qualifiers

3. Issuing a message that warns of the conflicting qualifiers

4. Processing the BACKUP request

See the VSI OpenVMS System Management Utilities Reference Manual for a table of valid combina-
tions of BACKUP qualifiers.

Condition Values Returned
SS$_NORMAL

Normal successful completion.

BACKUP$_BADOPTDSC

Invalid callable interface option descriptor.

BACKUP$_BADOPTTYP

Invalid callable interface option type.

BACKUP$_BADOPTVAL

Invalid callable interface option value.

BACKUP$_BADOPTVALQ

Invalid callable interface option value.

BACKUP$_DUPOPT

Previously specified callable interface option type invalid.

BACKUP$_NOAPIARGS

Callable interface required parameter not specified or invalid.

31

Chapter 3. Backup (BACKUP) Routine

Any condition value returned by the OpenVMS Backup utility.

Example
The following C example program demonstrates calling the Backup API to perform the following
DCL commands:

$ BACKUP/LOG/VERIFY/CRC/ALIAS APITEST1_IN:*.*;* -
_$ APITEST1_OUT:A.BCK/SAVE_SET

$ BACKUP/LOG/VERIFY/CRC/ALIAS APITEST1_OUT:A.BCK/SAVE_SET -
_$ APITEST2_OUT:*.*;*

#include <stdio.h>
#include <stdlib.h>
#include <ssdef.h>
#include <descrip.h>
#include "sys$examples:bapidef.h"

/*
** Define a fixed size (simple) structure for specifying the
** BACKUP operation.
*/
typedef struct _buf_arg
 {
 bck_opt_struct_flag arg1;
 bck_opt_struct_flag arg2;
 bck_opt_struct_flag arg3;
 bck_opt_struct_flag arg4;
 bck_opt_struct_dsc arg5;
 bck_opt_struct_dsc arg6;
 bck_opt_struct_flag arg7;
 bck_opt_struct_flag arg8;
 bck_opt_struct_adr arg9;
 bck_opt_struct_adr arg10;
 bck_opt_struct_adr arg11;
 bck_opt_struct_flag arg12;
 bck_opt_struct_flag arg13;
 } buf_arg;

struct dsc$descriptor
 input_dsc,
 output_dsc,
 event_type_dsc;
buf_arg myarg_buff;
unsigned int status;

extern unsigned int backup$start(buf_arg *myarg_buff);
unsigned int subtest(bckEvent *param);

static char input_str[] = "APITEST1_IN:";
static char output_str1[] = "APITEST1_OUT:a.bck";
static char output_str2[] = "APITEST2_OUT:";

main()
{
 myarg_buff.arg1.option_type = BCK_OPT_K_ALIAS;

32

Chapter 3. Backup (BACKUP) Routine

 myarg_buff.arg1.opt_flag_value = TRUE;

 myarg_buff.arg2.option_type = BCK_OPT_K_VERIFY;
 myarg_buff.arg2.opt_flag_value = TRUE;

 myarg_buff.arg3.option_type = BCK_OPT_K_CRC;
 myarg_buff.arg3.opt_flag_value = TRUE;

 myarg_buff.arg4.option_type = BCK_OPT_K_LOG;
 myarg_buff.arg4.opt_flag_value = TRUE;

 myarg_buff.arg5.opt_dsc_type = BCK_OPT_K_INPUT;
 myarg_buff.arg5.opt_dsc.dsc$b_dtype = DSC$K_DTYPE_T;
 myarg_buff.arg5.opt_dsc.dsc$b_class = DSC$K_CLASS_S;
 myarg_buff.arg5.opt_dsc.dsc$w_length = sizeof(input_str) - 1;
 myarg_buff.arg5.opt_dsc.dsc$a_pointer = input_str;

 myarg_buff.arg6.opt_dsc_type = BCK_OPT_K_OUTPUT;
 myarg_buff.arg6.opt_dsc.dsc$b_dtype = DSC$K_DTYPE_T;
 myarg_buff.arg6.opt_dsc.dsc$b_class = DSC$K_CLASS_S;
 myarg_buff.arg6.opt_dsc.dsc$w_length = sizeof(output_str1) - 1;
 myarg_buff.arg6.opt_dsc.dsc$a_pointer = output_str1;

 myarg_buff.arg7.option_type = BCK_OPT_K_SAVE_SET_OUT;
 myarg_buff.arg7.opt_flag_value = TRUE;

 myarg_buff.arg8.option_type = BCK_OPT_K_OPERATION_TYPE;
 myarg_buff.arg8.opt_flag_value = BCK_OP_K_SAVE ;

 myarg_buff.arg9.opt_adr_type = BCK_OPT_K_EVENT_CALLBACK;
 myarg_buff.arg9.opt_adr_attributes = BCK_EVENT_K_LOG;
 myarg_buff.arg9.opt_adr_value[0] = (int *)subtest;
 myarg_buff.arg9.opt_adr_value[1] = 0;

 /*
 ** Specify that this application will handle user-visible messages.
 ** (The operation phase, and user/file-logging messages.)
 */
 myarg_buff.arg10.opt_adr_type = BCK_OPT_K_EVENT_CALLBACK;
 myarg_buff.arg10.opt_adr_attributes = BCK_EVENT_K_OP_PHASE;
 myarg_buff.arg10.opt_adr_value[0] = (int *)subtest;
 myarg_buff.arg10.opt_adr_value[1] = 0;

 myarg_buff.arg11.opt_adr_type = BCK_OPT_K_EVENT_CALLBACK;
 myarg_buff.arg11.opt_adr_attributes = BCK_EVENT_K_USER_MSG;
 myarg_buff.arg11.opt_adr_value[0] = (int *)subtest;
 myarg_buff.arg11.opt_adr_value[1] = 0;

 /*
 ** Indicate the end of options that specify the BACKUP operation
 ** to be performed.
 */
 myarg_buff.arg12.option_type = BCK_OPT_K_END_OPT;
 myarg_buff.arg12.opt_flag_value = FALSE;

33

Chapter 3. Backup (BACKUP) Routine

 /*
 ** Notes:
 ** An extra option structure (# 13) was allocated for testing.
 **
 ** The DCL command analogous to the following BACKUP API call
 ** is illustrated below.
 **
 ** "$ BACKUP/LOG/VERIFY/CRC/ALIAS APITEST1_IN:*.*;* -"
 ** "_$ APITEST1_OUT:a.bck/SAVE_SET "
 */

 status = backup$start(&myarg_buff);

 if (! (status & 1))
 {
 exit (status); /* EXIT if the first part of the test failed. */
 }

 /*
 ** Now use the resultant saveset to perform a restore operation.
 */

 /*
 ** Change the input string to specify the saveset, ("output_str1").
 */
 myarg_buff.arg5.opt_dsc.dsc$w_length = sizeof(output_str1) - 1;
 myarg_buff.arg5.opt_dsc.dsc$a_pointer = output_str1;

 /*
 ** Change the output string to specify the output device/directory).
 */
 myarg_buff.arg6.opt_dsc.dsc$w_length = sizeof(output_str2) - 1;
 myarg_buff.arg6.opt_dsc.dsc$a_pointer = output_str2;

 /*
 ** Change the option to denote it is now an input saveset,
 ** (not an output saveset).
 */
 myarg_buff.arg7.option_type = BCK_OPT_K_SAVE_SET_IN;

 /*
 ** Change the option to specify a restore operation,
 ** (not a save operation).
 */
 myarg_buff.arg8.opt_flag_value = BCK_OP_K_RESTORE;

 /*
 ** The DCL command analogous to the following BACKUP API call
 ** is illustrated below.
 **
 ** "$ BACKUP/LOG/VERIFY/CRC/ALIAS APITEST1_OUT:a.bck/SAVE_SET -"
 ** "_$ APITEST2_OUT:*.*;*"
 */

 status = backup$start(&myarg_buff);

34

Chapter 3. Backup (BACKUP) Routine

 exit (status);
}

unsigned int subtest(bckEvent *param)
{

 printf("\n BACKUP API Event Type = %d,\n",param->bckevt_l_event_type);
 printf(" Subtype = %d\n",param->bckevt_l_event_subtype);

 if (param->bckevt_l_event_type == BCK_EVENT_K_LOG)
 {
 printf(" BACKUP API LOG Event item:\n %.*s\n",
 param->bckevt_r_event_buffer.dsc$w_length,
 param->bckevt_r_event_buffer.dsc$a_pointer);
 }

 if (param->bckevt_l_event_type == BCK_EVENT_K_OP_PHASE)
 {
 printf(" BACKUP API Operation Phase Event\n %.*s\n",
 param->bckevt_r_event_buffer.dsc$w_length,
 param->bckevt_r_event_buffer.dsc$a_pointer);
 }

 fflush(stdout);

 return (1);
}

35

Chapter 3. Backup (BACKUP) Routine

36

Chapter 4. Command Language
Interface (CLI) Routines
The command language interface (CLI) routines process command strings using information from a
command table. A command table contains command definitions that describe the allowable formats
for commands. To create or modify a command table, you must write a command definition file and
then process this file with the Command Definition Utility (the SET COMMAND command). For in-
formation about how to use the Command Definition Utility, see the VSI OpenVMS Command Defini-
tion, Librarian, and Message Utilities Manual.

4.1. Introduction to CLI Routines
The CLI routines include the following:

• CLI$DCL_PARSE

• CLI$DISPATCH

• CLI$GET_VALUE

• CLI$PRESENT

When you use the Command Definition Utility to add a new command to your process command ta-
ble or to the DCL command table, use the CLI$PRESENT and CLI$GET_VALUE routines in the
program invoked by the new command. These routines retrieve information about the command string
that invokes the program.

When you use the Command Definition Utility to create an object module containing a command
table and you link this module with a program, you must use all four CLI routines. First, use CLI
$DCL_PARSE and CLI$DISPATCH to parse command strings and invoke routines. Then, use CLI
$PRESENT and CLI$GET_VALUE within the routines that execute each command.

Note that the application program should declare referenced constants and return status symbols as ex-
ternal symbols; these symbols are resolved upon linking with a utility shareable image.

A CLI must be present in order to use the CLI routines. If your application can be run from a detached
process, the application should first verify that a CLI exists. For information about how to verify that
a CLI exists for a process, see the description of the $GETJPI system service in the VSI OpenVMS
System Services Reference Manual.

Note

Do not use the CLI routines to obtain values from foreign commands. Using a foreign command to ac-
tivate an image (instead of the SET COMMAND command) disrupts the building of the DCL parse
tables.

4.2. Using the CLI Routines: An Example
Example 4.1 contains a command definition file (SUBCOMMANDS.CLD) and a Fortran program
(INCOME.FOR). INCOME.FOR uses the command definitions in SUBCOMMANDS.CLD to
process commands. To execute the example, enter the following commands:

$ SET COMMAND SUBCOMMANDS/OBJECT=SUBCOMMANDS

37

Chapter 4. Command Language Interface (CLI) Routines

$ FORTRAN INCOME
$ LINK INCOME,SUBCOMMANDS
$ RUN INCOME

INCOME.FOR accepts a command string and parses it using CLI$DCL_PARSE. If the command
string is valid, the program uses CLI$DISPATCH to execute the command. Each routine uses CLI
$PRESENT and CLI$GET_VALUE to obtain information about the command string.

Example 4.1. Using the CLI Routines to Retrieve Information About Command Lines in
a Fortran Program

**
 SUBCOMMANDS.CLD
**

MODULE INCOME_SUBCOMMANDS

DEFINE VERB ENTER
ROUTINE ENTER

DEFINE VERB FIX
ROUTINE FIX
QUALIFIER HOUSE_NUMBERS, VALUE (LIST)

DEFINE VERB REPORT
ROUTINE REPORT
QUALIFIER OUTPUT, VALUE (TYPE = $FILE,
 DEFAULT = "INCOME.RPT")
 DEFAULT

**
 INCOME.FOR
**
PROGRAM INCOME
INTEGER STATUS,
2 CLI$DCL_PARSE,
2 CLI$DISPATCH
INCLUDE '($RMSDEF)'
INCLUDE '($STSDEF)'
EXTERNAL INCOME_SUBCOMMANDS,
2 LIB$GET_INPUT

! Write explanatory text
STATUS = LIB$PUT_OUTPUT
2 ('Subcommands: ENTER - FIX - REPORT')
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))
STATUS = LIB$PUT_OUTPUT
2 ('Press Ctrl/Z to exit')
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))
! Get first subcommand
STATUS = CLI$DCL_PARSE (%VAL (0),
2 INCOME_SUBCOMMANDS, ! CLD module
2 LIB$GET_INPUT, ! Parameter routine
2 LIB$GET_INPUT, ! Command routine
2 'INCOME> ') ! Command prompt
 ! Do it until user presses Ctrl/Z
DO WHILE (STATUS .NE. RMS$_EOF)

38

Chapter 4. Command Language Interface (CLI) Routines

! If no error on dcl_parse
IF (STATUS) THEN
! Dispatch depending on subcommand
STATUS = CLI$DISPATCH ()
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))
! Do not signal warning again
ELSE IF (IBITS (STATUS, 0, 3) .NE. STS$K_WARNING) THEN
CALL LIB$SIGNAL (%VAL (STATUS))
END IF
! Get another subcommand
STATUS = CLI$DCL_PARSE (%VAL (0),
2 INCOME_SUBCOMMANDS, ! CLD module
2 LIB$GET_INPUT, ! Parameter routine
2 LIB$GET_INPUT, ! Command routine
2 'INCOME> ') ! Command prompt
END DO
END

INTEGER FUNCTION ENTER ()
INCLUDE '($SSDEF)'
TYPE *, 'ENTER invoked'
ENTER = SS$_NORMAL
END

INTEGER FUNCTION FIX ()
INTEGER STATUS,
2 CLI$PRESENT,
2 CLI$GET_VALUE
CHARACTER*15 HOUSE_NUMBER
INTEGER*2 HN_SIZE
INCLUDE '($SSDEF)'
EXTERNAL CLI$_ABSENT
TYPE *, 'FIX invoked'
! If user types /house_numbers=(n,...)
IF (CLI$PRESENT ('HOUSE_NUMBERS')) THEN
! Get first value for /house_numbers
STATUS = CLI$GET_VALUE ('HOUSE_NUMBERS',
2 HOUSE_NUMBER,
2 HN_SIZE)
! Do it until the list is depleted
DO WHILE (STATUS)
TYPE *, 'House number = ', HOUSE_NUMBER (1:HN_SIZE)
STATUS = CLI$GET_VALUE ('HOUSE_NUMBERS',
2 HOUSE_NUMBER,
2 HN_SIZE)
END DO
! Make sure termination status was correct
IF (STATUS .NE. %LOC (CLI$_ABSENT)) THEN
CALL LIB$SIGNAL (%VAL (STATUS))
END IF
END IF
FIX = SS$_NORMAL
END

INTEGER FUNCTION REPORT ()
INTEGER STATUS,
2 CLI$GET_VALUE
CHARACTER*255 FILENAME

39

Chapter 4. Command Language Interface (CLI) Routines

INTEGER*2 FN_SIZE
INCLUDE '($SSDEF)'
TYPE *, 'REPORT entered'
! Get value for /output
STATUS = CLI$GET_VALUE ('OUTPUT',
2 FILENAME,
2 FN_SIZE)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))
TYPE *, 'Output file: ', FILENAME (1:FN_SIZE)
REPORT = SS$_NORMAL
END

4.3. CLI Routines
This section describes the individual CLI routines.

CLI$DCL_PARSE
Parse DCL Command String — The CLI$DCL_PARSE routine supplies a command string to DCL
for parsing. DCL separates the command string into its individual elements according to the syntax
specified in the command table.

Format
CLI$DCL_PARSE [command_string] ,table [,param_routine] [,prompt_routine]
 [,prompt_string]

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. Most utility routines return a condition value in R0. Condition values that
this routine can return are listed under Condition Values Returned.

Arguments
command_string

OpenVMS usage: char_string
type: character string
access: read only
mechanism: by descriptor—fixed length

Character string containing the command to be parsed. The command_string argument is the ad-
dress of a descriptor specifying the command string to be parsed. If the command string includes a
comment (delimited by an exclamation mark), DCL ignores the comment.

If the command string contains a hyphen to indicate that the string is being continued, DCL uses
the routine specified in the prompt_routine argument to obtain the rest of the string. The com-

40

Chapter 4. Command Language Interface (CLI) Routines

mand string is limited to 256 characters. However, if the string is continued with a hyphen, CLI
$DCL_PARSE can prompt for additional input until the total number of characters is 1024.

If you specify the command_string argument as zero and specify a prompt routine, then DCL
prompts for the entire command string. However, if you specify the command_string argument as
zero and also specify the prompt_routine argument as zero, DCL restores the parse state of the
command string that originally invoked the image.

CLI$DCL_PARSE does not perform DCL-style symbol substitution on the command string.

table

OpenVMS usage: address
type: address
access: read only
mechanism: by value

Address of the compiled command tables to be used for command parsing. The command tables
are compiled separately by the Command Definition Utility using the DCL command SET COM-
MAND/OBJECT and are then linked with your program. A global symbol is defined by the Com-
mand Definition Utility that provides the address of the tables. The global symbol's name is taken
from the module name given on the MODULE statement in the command definition file, or from the
file name if no MODULE statement is present.

param_routine

OpenVMS usage: procedure
type: procedure value
access: read only
mechanism: by reference

Name of a routine to obtain a required parameter not supplied in the command text. The
param_routine argument is the address of a routine containing a required parameter that was not
specified in the command_string argument.

To specify the parameter routine, use the address of LIB$GET_INPUT or the address of a routine of
your own that has the same three-argument calling format as LIB$GET_INPUT. See the description
of LIB$GET_INPUT in the VSI OpenVMS RTL Library (LIB$) Manual for information about the call-
ing format.

If LIB$GET_INPUT returns error status, CLI$DCL_PARSE propagates the error status outward or
signals RMS$_EOF in the cases listed in the Description section.

You can obtain the prompt string for a required parameter from the command table specified in the
table argument.

prompt_routine

OpenVMS usage: procedure
type: procedure value
access: read only

41

Chapter 4. Command Language Interface (CLI) Routines

mechanism: by reference

Name of a routine to obtain all or part of the text of a command. The prompt_routine argument
is the address of a routine to obtain the text or the remaining text of the command depending on the
command_string argument. If you specify a zero in the command_string argument, DCL uses
this routine to obtain an entire command line. DCL uses this routine to obtain a continued command
line if the command string (obtained from the command_string argument) contains a hyphen to
indicate that the string is being continued.

To specify the prompt routine, use the address of LIB$GET_INPUT or the address of a routine of
your own that has the same three-argument calling format as LIB$GET_INPUT. See the description
of LIB$GET_INPUT in the VSI OpenVMS RTL Library (LIB$) Manual for information about the call-
ing format.

If LIB$GET_INPUT returns error status, CLI$DCL_PARSE propagates the error status outward or
signals RMS$_EOF in the cases listed in the Description section.

prompt_string

OpenVMS usage: char_string
type: character string
access: read only
mechanism: by descriptor

Character string containing a prompt. The prompt_string argument is the address of a string de-
scriptor pointing to the prompt string to be passed as the second argument to the prompt_routine
argument.

If DCL is using the prompt routine to obtain a continuation line, DCL inserts an underscore char-
acter before the first character of the prompt string to create the continuation prompt. If DCL is us-
ing the prompt routine to obtain an entire command line (that is, a zero was specified as the com-
mand_string argument), DCL uses the prompt string exactly as specified.

The prompt string is limited to 32 characters. The string COMMAND> is the default prompt string.

Description

The CLI$DCL_PARSE routine supplies a command string to DCL for parsing. DCL parses the com-
mand string according to the syntax in the command table specified in the table argument.

The CLI$DCL_PARSE routine can prompt for required parameters if you specify a parameter routine
in the routine call. In addition, the CLI$DCL_PARSE routine can prompt for entire or continued com-
mand lines if you supply the address of a prompt routine.

If you do not specify a command string to parse and the user enters a null string in response to the
DCL prompt for a command string, CLI$DCL_PARSE immediately terminates and returns the status
CLI$_NOCOMD.

If DCL prompts for a required parameter and the user presses Ctrl/Z, CLI$DCL_PARSE immediately
terminates and returns the status CLI$_NOCOMD, regardless of whether you specify or do not speci-
fy a command string to parse. If DCL prompts for a parameter that is not required and the user presses
Ctrl/Z, CLI$DCL_PARSE returns the status CLI$_NORMAL.

42

Chapter 4. Command Language Interface (CLI) Routines

Whenever CLI$DCL_PARSE encounters an error, it both signals and returns the error.

Condition Values Returned
CLI$_INVREQTYP

Calling process did not have a CLI to perform this function, or the CLI did not support the re-
quest.

CLI$_IVKEYW

Invalid keyword.

CLI$_IVQUAL

Unrecognized qualifier.

CLI$_IVVERB

Invalid or missing verb.

CLI$_NOCOMD

Routine terminated. You entered a null string in response to a prompt from the prompt_rou-
tine argument, causing the CLI$DCL_PARSE routine to terminate.

CLI$_NORMAL

Normal successful completion.

CLI$_ONEVAL

List of values not allowed; enter one only.

RMS$_EOF

Routine terminated. You pressed Ctrl/Z in response to a prompt, causing the CLI$DCL_PARSE
routine to terminate.

CLI$DISPATCH
Dispatch to Action Routine — The CLI$DISPATCH routine invokes the subroutine associated with
the verb most recently parsed by a CLI$DCL_PARSE routine call.

Format
CLI$DISPATCH [userarg]

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only

43

Chapter 4. Command Language Interface (CLI) Routines

mechanism: by value

Longword condition value. Most utility routines return a condition value in R0. The condition value
that this routine can return is listed under Condition Values Returned.

Argument
userarg

OpenVMS usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by value

Data to be passed to the action routine. The userarg argument is a longword that contains the data
to be passed to the action routine. This data can be used in any way you want.

Description
The CLI$DISPATCH routine invokes the subroutine associated with the verb most recently parsed by
a CLI$DCL_PARSE routine call. If the routine is successfully invoked, the return status is the status
returned by the action routine. Otherwise, a status of CLI$_INVROUT is returned.

Condition Values Returned
CLI$_INVREQTYP

Calling process did not have a CLI to perform this function or the CLI did not support the request.

CLI$_INVROUT

CLI$DISPATCH unable to invoke the routine. An invalid routine is specified in the command ta-
ble, or no routine is specified.

CLI$GET_VALUE
Get Value of Entity in Command String — The CLI$GET_VALUE routine retrieves a value associat-
ed with a specified qualifier, parameter, keyword, or keyword path from the parsed command string.

Format
CLI$GET_VALUE entity_desc ,retdesc [,retlength]

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

44

Chapter 4. Command Language Interface (CLI) Routines

Longword condition value. Most utility routines return a condition value in R0. Condition values that
this routine can return are listed under Condition Values Returned.

Arguments
entity_desc

OpenVMS usage: char_string
type: character string
access: read only
mechanism: by descriptor

Character string containing the label (or name if no label is defined) of the entity. The entity_de-
sc argument is the address of a string descriptor that points to an entity that may appear on a com-
mand line. The entity_desc argument can be expressed as one of the following:

• A parameter, qualifier, keyword name, or label

• A keyword path

The entity_desc argument can contain qualifiers, parameters, keyword names, or labels that were
assigned with the LABEL clause in the command definition file. If you used the LABEL clause to as-
sign a label to an entity, you must specify the label in the entity_desc argument. Otherwise, use
the name of the entity.

Use a keyword path to reference keywords used as values of parameters, qualifiers, or other key-
words. A keyword path contains a list of entity names or labels separated by periods. If the LABEL
clause was used to assign a label to an entity, you must specify the label in the keyword path. Other-
wise, you must use the name of the entity.

The following command string illustrates a situation where keyword paths are needed to uniquely
identify keywords. In this command string, you can use the same keywords with more than one qual-
ifier. (This is defined in the command definition file by having two qualifiers refer to the same DE-
FINE TYPE statement.)

$ NEWCOMMAND/QUAL1=(START=5,END=10)/QUAL2=(START=2,END=5)

The keyword path QUAL1.START identifies the START keyword when it is used with QUAL1; the
keyword path QUAL2.START identifies the keyword START when it is used with QUAL2. Because
the name START is an ambiguous reference if used alone, the keywords QUAL1 and QUAL2 are
needed to resolve the ambiguity.

You can omit keywords from the beginning of a keyword path if they are not needed to unambiguous-
ly resolve a keyword reference. A keyword path can be no more than eight names long.

If you use an ambiguous keyword reference, DCL resolves the reference by checking, in the following
order:

1. The parameters in your command definition file, in the order they are listed

2. The qualifiers in your command definition file, in the order they are listed

3. The keyword paths for each parameter, in the order the parameters are listed

4. The keyword paths for each qualifier, in the order the qualifiers are listed

45

Chapter 4. Command Language Interface (CLI) Routines

DCL uses the first occurrence of the entity as the keyword path. Note that DCL does not issue an er-
ror message if you provide an ambiguous keyword. However, because the keyword search order may
change in future releases of OpenVMS, you should never use ambiguous keyword references.

If the entity_desc argument does not exist in the command table, CLI$GET_VALUE signals
a syntax error (by means of the signaling mechanism described in the VSI OpenVMS Programming
Concepts Manual).

retdesc

OpenVMS usage: char_string
type: character string
access: write only
mechanism: by descriptor

Character string containing the value retrieved by CLI$GET_VALUE. The retdesc argument is
the address of a string descriptor pointing to the buffer to receive the string value retrieved by CLI
$GET_VALUE. The string is returned using the STR$COPY_DX Run-Time Library routine.

If there are errors in the specification of the return descriptor or in copying the results using that de-
scriptor, the STR$COPY_DX routine will signal the errors. For a list of these errors, see the Open-
VMS RTL String Manipulation (STR$) Manual.

retlength

OpenVMS usage: word_unsigned
type: word (unsigned)
access: write only
mechanism: by reference

Word containing the number of characters DCL returns to retdesc. The retlength argument is
the address of the word containing the length of the retrieved value.

Description
The CLI$GET_VALUE routine retrieves a value associated with a specified qualifier, parameter, key-
word, or keyword path from the parsed command string.

Note

Only use the CLI$GET_VALUE routine to retrieve values from parsed command strings (through
DCL or CLI$DCL_PARSE). When you use a foreign command to activate an image, the DCL pars-
ing process is interrupted. As a result, CLI$GET_VALUE returns either values from the previously
parsed command string or a status of CLI$_ABSENT if it is the first command string parsed.

You can use the following label names with CLI$GET_VALUE to retrieve special strings:

$VERB Describes the verb in the command string (the first four letters of the spelling as
defined in the command table, instead of the string that was actually typed).

$LINE Describes the entire command string as stored internally by DCL. In the internal
representation of the command string, multiple spaces and tabs are removed, al-

46

Chapter 4. Command Language Interface (CLI) Routines

phabetic characters are converted to uppercase, and comments are stripped. In-
tegers are converted to decimal. If dates and times are specified in the command
string, DCL fills in any defaulted fields. Also, if date-time strings (such as YES-
TERDAY) are used, DCL substitutes the corresponding absolute time value.

To obtain the values for a list of entities, call CLI$GET_VALUE repeatedly until all values have been
returned. After each CLI$GET_VALUE call, the returned condition value indicates whether there
are more values to be obtained. Call CLI$GET_VALUE until you receive a condition value of CLI
$_ABSENT.

When you are using CLI$GET_VALUE to obtain a list of qualifier or keyword values, get all values
in the list before starting to parse the next entity.

Condition Values Returned
SS$_NORMAL

Returned value terminated by a blank or an end-of-line. This shows that the value is the last, or
only, value in the list.

CLI$_ABSENT

No value returned. The value is not present, or the last value in the list was already returned.

CLI$_COMMA

Returned value terminated by a comma. This shows there are additional values in the list.

CLI$_CONCAT

Returned value concatenated to the next value with a plus sign. This shows there are additional
values in the list.

CLI$_INVREQTYP

Calling process did not have a CLI to perform this function or the CLI did not support the request.

CLI$PRESENT
Determine Presence of Entity in Command String — The CLI$PRESENT routine examines the
parsed command string to determine whether the entity referred to by the entity_desc argument is
present.

Format
CLI$PRESENT entity_desc

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

47

Chapter 4. Command Language Interface (CLI) Routines

Longword condition value. Most utility routines return a condition value in R0. Condition values that
this routine can return are listed under Conditon Values Returned.

Argument
entity_desc

OpenVMS usage: char_string
type: character string
access: read only
mechanism: by descriptor

Character string containing the label (or name if no label is defined) of the entity. The entity_de-
sc argument is the address of a string descriptor that points to an entity that may appear on a com-
mand line. An entity can be expressed as one of the following:

• A parameter, qualifier, or keyword name or label

• A keyword path

A keyword path is used to reference keywords that are accepted by parameters, qualifiers, or other
keywords. A keyword path contains a list of entity names separated by periods. See the description of
the entity_desc argument in the CLI$GET_VALUE routine for more information about specify-
ing keyword paths as arguments for CLI routines.

The entity_desc argument can contain parameter, qualifier, or keyword names, or can contain la-
bels that were assigned with the LABEL clause in the command definition file. If the LABEL clause
was used to assign a label to a qualifier, parameter, or keyword, you must specify the label in the en-
tity_desc argument. Otherwise, you must use the actual name of the qualifier, parameter, or key-
word.

If the entity_desc argument does not exist in the command table, CLI$PRESENT signals a syn-
tax error (by means of the signaling mechanism described in the VSI OpenVMS Programming Con-
cepts Manual).

Description
The CLI$PRESENT routine examines the parsed command string to determine whether the entity re-
ferred to by the entity_desc argument is present.

When CLI$PRESENT tests whether a qualifier is present, the condition value indicates whether the
qualifier is used globally or locally. You can use a global qualifier anywhere in the command line; you
use a local qualifier only after a parameter. A global qualifier is defined in the command definition
file with PLACEMENT=GLOBAL; a local qualifier is defined with PLACEMENT=LOCAL.

When you test for the presence of a global qualifier, CLI$PRESENT determines if the qualifi-
er is present anywhere in the command string. If the qualifier is present in its positive form, CLI
$PRESENT returns CLI$_PRESENT; if the qualifier is present in its negative form, CLI$PRESENT
returns CLI$_NEGATED.

You can test for the presence of a local qualifier when you are parsing parameters that can be followed
by qualifiers. After you call CLI$GET_VALUE to fetch the parameter value, call CLI$PRESENT to
determine whether the local qualifier is present. If the local qualifier is present in its positive form,

48

Chapter 4. Command Language Interface (CLI) Routines

CLI$PRESENT returns CLI$_LOCPRES; if the local qualifier is present in its negative form, CLI
$PRESENT returns CLI$_LOCNEG.

A positional qualifier affects the entire command line if it appears after the verb but before the first
parameter. A positional qualifier affects a single parameter if it appears after a parameter. A positional
qualifier is defined in the command definition file with the PLACEMENT=POSITIONAL clause.

To determine whether a positional qualifier is used globally, call CLI$PRESENT to test for the qual-
ifier before you call CLI$GET_VALUE to fetch any parameter values. If the positional qualifier is
used globally, CLI$PRESENT returns either CLI$_PRESENT or CLI$_NEGATED.

To determine whether a positional qualifier is used locally, call CLI$PRESENT immediately after
a parameter value has been fetched by CLI$GET_VALUE. The most recent CLI$GET_VALUE
call to fetch a parameter defines the context for a qualifier search. Therefore, CLI$PRESENT tests
whether a positional qualifier was specified after the parameter that was fetched by the most recent
CLI$GET_VALUE call. If the positional qualifier is used locally, CLI$PRESENT returns either CLI
$_LOCPRES or CLI$_LOCNEG.

Condition Values Returned
CLI$_ABSENT

Specified entity not present, and it is not present by default.

CLI$_DEFAULTED

Specified entity not present, but it is present by default.

CLI$_INVREQTYP

Calling process did not have a CLI to perform this function, or the CLI did not support the re-
quest.

CLI$_LOCNEG

Specified qualifier present in negated form (with /NO) and used as a local qualifier.

CLI$_LOCPRES

Specified qualifier present and used as a local qualifier.

CLI$_NEGATED

Specified qualifier present in negated form (with /NO) and used as a global qualifier.

CLI$_PRESENT

Specified entity present in the command string. This status is returned for all entities except local
qualifiers and positional qualifiers that are used locally.

49

Chapter 4. Command Language Interface (CLI) Routines

50

Chapter 5. Common File Qualifier
Routines
This chapter describes the common file qualifier (UTIL$CQUAL) routines. The UTIL$CQUAL rou-
tines allow you to parse the command line for qualifiers related to certain file attributes, and to match
files you are processing against the selected criteria retrieved from the command line.

5.1. Introduction to the Common File Qualifier
Routines
The common file qualifier routines begin with the characters UTIL$CQUAL. Your program calls
these routines using the OpenVMS Calling Standard. When you call a UTIL$CQUAL routine, you
must provide all the required arguments. Upon completion, the routine returns its completion status as
a condition value. Section 5.3 provides detailed descriptions of the routines.

The following table lists the common file qualifier routines.

Table 5.1. UTIL$CQUAL Routines

Routine Name Description
UTIL$CQUAL_FILE_PARSE Parses the command line for the file qualifiers

listed in Table 5.2, and obtains associated values.
Returns a context value that is used when calling
the matching and ending routines.

UTIL$CQUAL_FILE_MATCH Compares the routine file input to the command
line data obtained from the parse routine call.

UTIL$CQUAL_FILE_END Deletes all virtual memory allocated during the
command line parse routine call.

UTIL$CQUAL_CONFIRM_ACT Prompts a user for a response from SYS$COM-
MAND.

5.2. Using the Common File Qualifier Rou-
tines
Follow these steps to use the common file qualifier routines:

1. Call UTIL$CQUAL_FILE_PARSE to parse the command line for the common file qualifiers.
(See Table 5.2 for a list of the qualifiers.)

2. Call UTIL$CQUAL_FILE_MATCH for each checked file. UTIL$CQUAL_FILE_MATCH re-
turns an indication that the file is, or is not, to be processed.

3. Call UTIL$CQUAL_FILE_END to release the virtual memory held by the common file qualifier
package.

You may optionally call UTIL$CQUAL_CONFIRM_ACT to ask for user confirmation without call-
ing the other common qualifier routines.

51

Chapter 5. Common File Qualifier Routines

5.2.1. Calling UTIL$CQUAL_FILE_PARSE
When you call UTIL$CQUAL_FILE_PARSE, specify the qualifiers listed in Table 5.2 that you want
to parse by setting bits in a flags longword and passing the longword address as the first parameter.

Table 5.2. UTIL$CQUAL_FILE_PARSE Command Line Qualifiers

Qualifier Description
BEFORE= Selects a file before the specified time.
CONFIRM Prompts the user for confirmation.
SINCE= Selects a file on or after the specified time.
MODIFIED Specifies that the file's revision time (time of last modification) is used

for comparison with the time specified in either the /BEFORE or /SINCE
qualifier.

CREATED (default) Specifies that the file's creation time is used for comparison with the time
specified in either the /BEFORE or /SINCE qualifier.

BACKUP Specifies that the file's most recent backup time is used for comparison
with the time specified in either the /BEFORE or /SINCE qualifier.

EXPIRED Specifies that the file's expiration date is used for comparison with the
time specified in either the /BEFORE or /SINCE qualifier.

BY_OWNER= Selects a file based on the file owner's user identification code. The de-
fault is the UIC of the current process.

EXCLUDE= Selects a file only if it does not match the specification or list of specifica-
tions given with this qualifier.

The following segment from a sample C program shows the flags longword set to search for the com-
mon file qualifiers supported by this package:

 input_flags = UTIL$M_CQF_CONFIRM | UTIL$M_CQF_EXCLUDE |
 UTIL$M_CQF_BEFORE | UTIL$M_CQF_SINCE |
 UTIL$M_CQF_CREATED | UTIL$M_CQF_MODIFIED |
 UTIL$M_CQF_EXPIRED | UTIL$M_CQF_BACKUP |
 UTIL$M_CQF_BYOWNER;

Optionally, you can provide the flags longword address for UTIL$CQUAL_FILE_PARSE to return
an indication of what common file qualifiers were present on the command line. For example, if /
CONFIRM is enabled and was found on the command line, the application can determine if confirma-
tion prompts need to be built. The following is an example call in C:

 status = UTIL$CQUAL_FILE_PARSE (&input_flags,
 &context,
 &output_flags);

The context variable contains the address of the common file qualifier value which is used in other
common file qualifier routine calls.

5.2.1.1. Specifying Times
The times specified with the /SINCE= and /BEFORE= qualifiers must be in either absolute or combi-
nation time format. When DCL gathers these times from the command line, it converts truncated time
values, combination time values, and keywords (such as BOOT, LOGIN, TODAY, TOMORROW, or
YESTERDAY) into absolute time format. Files are selected based on the times entered on the com-

52

Chapter 5. Common File Qualifier Routines

mand line, and are compared to the time of the file's backup date, creation date (default), expiration
date, or last modification date as indicated by the modifier qualifiers /BACKUP, /CREATED, /EX-
PIRED, and /MODIFIED respectively.

For complete information on specifying time values, see the OpenVMS User's Manual or the topic
DCL_TIPS Date_Time in online help.

5.2.1.2. Specifying Exclude Pattern Strings
Pattern strings are used to exclude specific files from being processed. The pattern strings may con-
tain a combination of a directory specification, filename, filetype, and version number. Node names
and device names are not permitted. Relative directory specifications are allowed (such as [.subdi-
rectory] or [-]), but relative version numbers have no meaning as a pattern string component. UTIL
$CQUAL_FILE_PARSE assumes relative version numbers are a wildcard, and matches all versions.
An FID or DID specification is also not allowed.

To exclude more than one specification, use a comma-separated list enclosed within parentheses.

5.2.2. Calling UTIL$CQUAL_FILE_MATCH
When calling UTIL$CQUAL_FILE_MATCH, specify a file that you want checked against criteria in
the common file qualifier context. The context address was returned as the first parameter in a prior
call to UTIL$CQUAL_FILE_PARSE, and is the first parameter for UTIL$CQUAL_FILE_MATCH.

To specify a file, provide either a string descriptor containing the specification or an RMS FAB. The
FAB must contain an NAM block that has been filled in by RMS, so that comparisons with exclud-
ed file specifications can occur. If the FAB indicates that the file is open, and any of the /BEFORE, /
SINCE or /BY_OWNER qualifiers are to be evaluated, then the appropriate XAB blocks must be in
the XAB chain (XABDAT and XABPRO). The XAB blocks must be filled in by RMS during the file
open.

Note

The files passed in with a DID or an FID specification may cause the common qualifier package to
stop processing if that portion of the file specification needs to be matched against a pattern string
from the /EXCLUDE qualifier.

5.2.2.1. Specifying Prompts
You can provide one or two prompts when specifying prompts as confirmation messages. If confir-
mation is active, at least one prompt string must be specified. When providing two prompts, use the
shorter prompt as the prompt_string_1 parameter. Table 5.5 lists the valid confirmation prompt re-
sponses. CONDENSED and EXPANDED are used when switching between prompts.

The user responding CONDENSED (or just C) displays the prompt_string_1 string. For a more de-
scriptive or detailed prompt, use prompt_string_2 in your call. For example, the OpenVMS utili-
ties construct prompts from the short and long fields of an RMS NAML block. The prompt from the
short field is passed through prompt_string_1, and the prompt from the long field is passed through
prompt_string_2.

You have the option of specifying a prompt routine. The first parameter for the prompt routine will
contain a string descriptor of the prompt to be displayed. The second parameter will contain the ad-
dress of a buffer for the user's response. You must modify the response buffer to reflect the length of

53

Chapter 5. Common File Qualifier Routines

the user's response. Table 5.5 lists the valid prompt routine responses. All other responses display an
invalid response warning, and call the prompt routine again.

When two prompts are supplied to UTIL$CQUAL_FILE_MATCH, the optional parameter curren-
t_form can be used to determine which prompt string is displayed first. Table 5.4 lists the valid cur-
rent_form values.

If the value stored in current_form is not in the values listed, then UTIL$K_CQF_SHORT is as-
sumed. If the value is UTIL$K_CQF_UNSPECIFIED, or this parameter is absent from the call, then
the form stored in the common file qualifier database is used. The value currently stored in the com-
mon file qualifier database is the final form active when UTIL$CQUAL_FILE_MATCH returned
from the previous call with the current database context. If there was no previous call, UTIL$K_C-
QF_SHORT is stored in the database.

If the current_form parameter can be written to, the final active form is stored before UTIL
$CQUAL_FILE_MATCH returns.

Note

If only one prompt string is provided to UTIL$CQUAL_FILE_MATCH, the final form will be the
form corresponding to that prompt string even if the user requests the alternate form. For example, if
only the short prompt string is provided and the user requests the long prompt, the user receives the
short prompt. UTIL$K_CQF_SHORT is returned through the current_form parameter if that para-
meter is writable.

5.2.2.2. Ignoring Qualifiers
The final parameter, which is also optional, is a flags longword used to ignore certain qualifier pro-
cessing when calling UTIL$CQUAL_FILE_MATCH. The modifier qualifiers for date comparisons
(/CREATED, /MODIFIED, /BACKUP, and /EXPIRED) cannot be ignored. If either the /SINCE or /
BEFORE modifier qualifiers are active, then the date comparison modifier qualifiers must be active to
determine which dates to compare. For example, to operate on the top two versions of a file set when
confirmation is active, an application can keep track of the first two instances and prompt the user.
Once the application reaches that number, it sets the UTIL$M_CQF_CONFIRM bit in the disable pa-
rameter flags longword, and the user is not prompted for confirmation during that call. The following
is an example call in C:

 status = UTIL$CQUAL_FILE_MATCH (&context,
 0,
 &result_desc,
 &short_prompt,
 &long_prompt,
 0,
 &prompt_form,
 &ignore_flags);

5.2.3. Calling UTIL$CQUAL_FILE_END
When calling UTIL$CQUAL_FILE_END, specify the context variable that contains the common file
qualifier database context to be terminated. The database location was returned in a prior call to UTIL
$CQUAL_FILE_PARSE. The UTIL$CQUAL_FILE_END call deallocates all virtual memory held
by the common file qualifier value in the context parameter. The context variable is zeroed before this
routine returns. The following is an example call in C:

status = UTIL$CQUAL_FILE_END (&context);

54

Chapter 5. Common File Qualifier Routines

5.2.4. Calling UTIL$CQUAL_CONFIRM_ACT
Similar to UTIL$CQUAL_FILE_MATCH, the parameter list used when calling UTIL
$CQUAL_CONFIRM_ACT is a subset of the UTIL$CQUAL_FILE_MATCH parameter list.

When specifying prompts as confirmation messages, you can provide one or two prompts. At least
one prompt string must be specified. When providing two prompts, use the shorter of the two prompts
as the prompt_string_1 parameter. Table 5.5 lists valid responses to a confirmation prompt, and lists
CONDENSED and EXPANDED to switch between prompts.

The user responding CONDENSED (or just C) causes the prompt_string_1 string to be displayed. To
give the user a more descriptive or detailed prompt, use prompt_string_2 in your call. For example,
the OpenVMS utilities construct prompts from the short and long fields of an RMS NAML block. The
prompt from the short field is passed through prompt_string_1, and the prompt from the long field is
passed through prompt_string_2.

You have the option of specifying a prompt routine. The first parameter for the prompt routine is a
string descriptor of the prompt to be displayed. The second parameter contains the address of a buffer
for the user's response. You must modify the response buffer to reflect the length of the user's re-
sponse. Table 5.5 lists valid prompt routine responses. All other responses display an invalid response
warning, and call the prompt routine again.

When two prompts are supplied to UTIL$CQUAL_CONFIRM_ACT, the optional parameter curren-
t_form can be used to determine which prompt string is displayed first. The valid values are listed in
Table 5.4. If the value stored is other than the values listed, UTIL$K_CQF_SHORT is assumed. If the
value is UTIL$K_CQF_UNSPECIFIED or this parameter is absent from the call, then UTIL$K_C-
QF_SHORT is used.

If the current_form parameter can be written to, the final active form is stored before UTIL
$CQUAL_CONFIRM_ACT returns.

Note

If only one prompt string is passed into the UTIL$CQUAL_CONFIRM_ACT call, the final form will
be the form corresponding to that prompt string even if the user requests the alternate form. For exam-
ple, if only the short prompt string is provided and the user requests the long prompt, the user receives
the short prompt again. UTIL$K_CQF_SHORT is returned through the current_form parameter if
that parameter is writable.

The following is an example call in C:

 status = UTIL$CQUAL_CONFIRM_ACT (&short_prompt,
 &long_prompt,
 0,
 &prompt_form);

5.2.5. Creating a Command Language Definition File
For UTIL$CQUAL_FILE_PARSE to function properly, you need the following Command Language
Definition (CLD) file template in the command tables being examined:

 define verb foo
 image foo
 parameter p1,prompt="File",value(list,impcat,required,type=
$infile)
 qualifier confirm

55

Chapter 5. Common File Qualifier Routines

 qualifier exclude,value(required,list)
 qualifier before,value(default=today,type=$datetime)
 qualifier since,value(default=today,type=$datetime)
 qualifier created
 qualifier modified
 qualifier expired
 qualifier backup
 qualifier by_owner,value(type=$uic)

For example, if the line qualifier expired was omitted, a call to UTIL$CQUAL_FILE_PARSE would
result in:

 $ foo *.c
 %CLI-F-SYNTAX, error parsing 'EXPIRED'
 -CLI-E-ENTNF, specified entity not found in command tables
 %TRACE-F-TRACEBACK, symbolic stack dump follows
 image module routine line rel PC
 abs
 ...

Note

A default value for the /SINCE= and /BEFORE= qualifiers is provided in the CLD file. If you do not
require a value, specify a default or you may not get the desired result.

The following example shows a C program that retrieves files from the command line, and lists which
ones will be processed, if processing is required.

Example 5.1. Using UTIL$CQUAL Routines to Process Files

$ create foo.c
#include <stdio.h>
#include <string.h>

#include <rms.h>
#include <starlet.h>
#include <descrip.h>
#include <lib$routines.h>
#include <libfildef.h>
#include <cli$routines.h>

#include <cqualdef.h>
#include <util$routines.h>

#ifdef NAML$C_BID /* determine if HFS support is here */
#define HFS_Support 1
#else
#define HFS_Support 0
#endif

#if !HFS_Support /* compensate for lack of HFS support */
#define naml$l_rsa nam$l_rsa
#define naml$b_rsl nam$b_rsl
#define naml$l_long_result nam$l_rsa
#define naml$l_long_result_size nam$b_rsl
#define NAML$C_MAXRSS NAM$C_MAXRSS
#define LIB$M_FIL_LONG_NAMES 0
#endif

56

Chapter 5. Common File Qualifier Routines

unsigned int input_flags;
unsigned int output_flags;
unsigned int ignore_flags = 0;
unsigned int *context;
char get_value[NAM$C_MAXRSS];
char *prompt_string = "Confirmation for ";
char *prompt_end = " [N] ? ";
char *process = " Will process ";
char *noprocess = " Will not process ";
char short_string[NAM$C_MAXRSS+80];
unsigned int prompt_form = 0;
unsigned int status;
struct fabdef *find_file_context;
unsigned int find_file_flags;
unsigned short ret_length;
$DESCRIPTOR(parm_1, "P1");
$DESCRIPTOR(get_val_desc, get_value);
$DESCRIPTOR(short_prompt, short_string);
$DESCRIPTOR(result_desc, "");
char long_string[NAML$C_MAXRSS+80];
char outstring[NAML$C_MAXRSS+80];
$DESCRIPTOR(long_prompt, long_string);

#if HFS_Support
struct namldef *nam_block;
#else
struct namdef *nam_block;
#endif

extern UTIL$_QUICONACT; /* external literal */
extern UTIL$_QUIPRO; /* external literal */

int main(void) {

input_flags = UTIL$M_CQF_CONFIRM | UTIL$M_CQF_EXCLUDE |
 UTIL$M_CQF_BEFORE | UTIL$M_CQF_SINCE |
 UTIL$M_CQF_CREATED | UTIL$M_CQF_MODIFIED |
 UTIL$M_CQF_EXPIRED | UTIL$M_CQF_BACKUP |
 UTIL$M_CQF_BYOWNER;

if (!(status = UTIL$CQUAL_FILE_PARSE (&input_flags,
 &context,
 &output_flags) & 1)) {
 return status;
 };

find_file_flags = LIB$M_FIL_MULTIPLE | LIB$M_FIL_LONG_NAMES;

get_val_desc.dsc$w_length = sizeof(get_value);
status = cli$get_value(&parm_1, &get_val_desc, &ret_length);

result_desc.dsc$b_class = DSC$K_CLASS_D;
result_desc.dsc$a_pointer = 0;

while (status & 1) {
 get_val_desc.dsc$w_length = ret_length;

57

Chapter 5. Common File Qualifier Routines

 while ((status != (int)&UTIL$_QUIPRO) && /* treat as external
 literal*/

 (LIB$FIND_FILE(&get_val_desc, &result_desc,
 &find_file_context, 0, 0, 0,
 &find_file_flags) & 1)) {
#if HFS_Support
 nam_block = find_file_context->fab$l_naml;
#else
 nam_block = find_file_context->fab$l_nam;
#endif
 if ((output_flags && UTIL$M_CQF_CONFIRM) != 0) {
 strcpy(short_string, prompt_string);
 strncat(short_string, nam_block->naml$l_rsa,
 (int)nam_block->naml$b_rsl);
 strcat(short_string, prompt_end);
 short_prompt.dsc$w_length = strlen(short_string);
 strcpy(long_string, prompt_string);
 strncat(long_string, nam_block->naml$l_long_result,
 (int)nam_block->naml$l_long_result_size);
 strcat(long_string, prompt_end);
 long_prompt.dsc$w_length = strlen(long_string);
 }
 else {
 short_prompt.dsc$w_length = 0;
 long_prompt.dsc$w_length = 0;
 };
 if ((status = UTIL$CQUAL_FILE_MATCH(&context,
 0,
 &result_desc,
 &short_prompt,
 &long_prompt,
 0,
 &prompt_form,
 &ignore_flags)) & 1) {
 strcpy(outstring, process);
 }
 else {
 strcpy(outstring, noprocess);
 };
 if (prompt_form == UTIL$K_CQF_SHORT) {
 strncat(outstring, nam_block->naml$l_rsa,
 (int)nam_block->naml$b_rsl);
 }
 else {
 strncat(outstring, nam_block->naml$l_long_result,
 (int)nam_block->naml$l_long_result_size);

 };
 printf("%s\n", outstring);
 if (status == (int)&UTIL$_QUICONACT) { /* treat as external
 literal*/
 output_flags &= ~UTIL$M_CQF_CONFIRM;
 };
 };
 if (status != (int)&UTIL$_QUIPRO) {
 get_val_desc.dsc$w_length = sizeof(get_value);
 status = cli$get_value(&parm_1, &get_val_desc, &ret_length);

58

Chapter 5. Common File Qualifier Routines

 };
 };
status = UTIL$CQUAL_FILE_END (&context);
return status;
}
$ cc/list foo.c
$ link foo.c
$ set command foo.cld
$ define foo sys$disk:[]foo.exe
$ directory/noexclude

Directory MDA2000:[main]

EDTINI.EDT;1 FOO.BAR;1 FOO.C;2
FOO.C;1 FOO.CLD;2 FOO.CLD;1
FOO.EXE;3 FOO.EXE;2 FOO.EXE;1
FOO.LIS;1 FOO.OBJ;1 LAST.COM;1
LOGIN.COM;1 MAIL.MAI;1 MDA0.DAT;1
NOTE.DAT;1 QUEUE.COM;1 TPUINI.TPU;1

Total of 18 files.
$ foo/exclude=*.c *.*;*
 Will process MDA2000:[main]EDTINI.EDT;1
 Will process MDA2000:[main]FOO.BAR;1
 Will not process MDA2000:[main]FOO.C;2
 Will not process MDA2000:[main]FOO.C;1
 Will process MDA2000:[main]FOO.CLD;2
 Will process MDA2000:[main]FOO.CLD;1
 Will process MDA2000:[main]FOO.EXE;3
 Will process MDA2000:[main]FOO.EXE;2
 Will process MDA2000:[main]FOO.EXE;1
 Will process MDA2000:[main]FOO.LIS;1
 Will process MDA2000:[main]FOO.OBJ;1
 Will process MDA2000:[main]LAST.COM;1
 Will process MDA2000:[main]LOGIN.COM;1
 Will process MDA2000:[main]MAIL.MAI;1
 Will process MDA2000:[main]MDA0.DAT;1
 Will process MDA2000:[main]NOTE.DAT;1
 Will process MDA2000:[main]QUEUE.COM;1
 Will process MDA2000:[main]subdir.DIR;1
 Will process MDA2000:[main]TPUINI.TPU;1
$ foo/confirm *.*
Confirmation for MDA2000:[main]EDTINI.EDT;1 [N] ? n
 Will not process MDA2000:[main]EDTINI.EDT;1
Confirmation for MDA2000:[main]FOO.BAR;1 [N] ? n
 Will not process MDA2000:[main]FOO.BAR;1
Confirmation for MDA2000:[main]FOO.C;2 [N] ? y
 Will process MDA2000:[main]FOO.C;2
Confirmation for MDA2000:[main]FOO.CLD;2 [N] ? q
 Will not process MDA2000:[main]FOO.CLD;2
$ foo/since=yesterday/modified/exclude=(*.*;2,l*) foo.*;*,*.com;*
 Will process MDA2000:[main]FOO.BAR;1
 Will not process MDA2000:[main]FOO.C;2
 Will process MDA2000:[main]FOO.C;1
 Will not process MDA2000:[main]FOO.CLD;2
 Will process MDA2000:[main]FOO.CLD;1
 Will process MDA2000:[main]FOO.EXE;3
 Will not process MDA2000:[main]FOO.EXE;2

59

Chapter 5. Common File Qualifier Routines

 Will process MDA2000:[main]FOO.EXE;1
 Will process MDA2000:[main]FOO.LIS;1
 Will process MDA2000:[main]FOO.OBJ;1
 Will not process MDA2000:[main]LAST.COM;1
 Will not process MDA2000:[main]LOGIN.COM;1
 Will process MDA2000:[main]QUEUE.COM;1
$ _

5.3. UTIL$CQUAL Routines
This section describes the UTIL$CQUAL routines.

UTIL$CQUAL_FILE_PARSE
UTIL$CQUAL_FILE_PARSE — The UTIL$CQUAL_FILE_PARSE routine parses the command
line for the common file qualifiers.

Format

UTIL$CQUAL_FILE_PARSE flags ,context [,found_flags"]"

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. Most utility routines return a condition value in R0. Condition Values Re-
turned lists condition values that this routine returns.

Argument

flags

OpenVMS usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by reference

Longword of bit flags. UTIL$CQUAL_FILE_PARSE scans the command line for the qualifiers
whose associated bit is set in the flags longword. The following table lists the allowed mask and field
specifier values.

Table 5.3. UTIL$CQUAL_FILE_PARSE Flags and Masks

Qualifier Mask Value Field Specifier
/CONFIRM UTIL$M_CQF_CONFIRM UTIL$V_CQF_CONFIRM
/EXCLUDE UTIL$M_CQF_EXCLUDE UTIL$V_CQF_EXCLUDE

60

Chapter 5. Common File Qualifier Routines

Qualifier Mask Value Field Specifier
/BEFORE UTIL$M_CQF_BEFORE UTIL$V_CQF_BEFORE
/SINCE UTIL$M_CQF_SINCE UTIL$V_CQF_SINCE
/CREATED UTIL$M_CQF_CREATED UTIL$V_CQF_CREATED
/MODIFIED UTIL$M_CQF_MODIFIED UTIL$V_CQF_MODIFIED
/EXPIRED UTIL$M_CQF_EXPIRED UTIL$V_CQF_EXPIRED
/BACKUP UTIL$M_CQF_BACKUP UTIL$V_CQF_BACKUP
/BY_OWNER UTIL$M_CQF_BYOWNER UTIL$V_CQF_BYOWNER

context

OpenVMS usage: longword_unsigned
type: longword (unsigned)
access: write only
mechanism: by reference

The address of a longword that receives the common file qualifier database address. The ad-
dress of the context variable must be passed to the UTIL$CQUAL_FILE_MATCH and UTIL
$CQUAL_FILE_END routines when they are called.

found_flags

OpenVMS usage: longword_unsigned
type: longword (unsigned)
access: write only
mechanism: by reference

Longword of bit flags. This optional parameter is the longword address of the value that indicates
which common file qualifiers were present on the command line. The mask and field specifier values
are the same values as the flags parameter, and are listed in Table 5.3.

Description

Using the CLI$PRESENT and CLI$GET_VALUE routines, the UTIL$CQUAL_FILE_PARSE rou-
tine searches the command line for the qualifiers specified in the flags longword. When command line
parsing finishes, UTIL$CQUAL_FILE_PARSE returns a pointer to the common file qualifier value in
the context parameter.

The context parameter must be used when calling either the UTIL$CQUAL_FILE_MATCH or UTIL
$CQUAL_FILE_END routines. If a third parameter is specified, UTIL$CQUAL_FILE_PARSE re-
turns a longword of flags indicating which qualifiers were found during the command line parse. The
mask and field specifiers are listed in Table 5.3.

Condition Values Returned

SS$_NORMAL

Normal successful completion.

61

Chapter 5. Common File Qualifier Routines

LIB$_INVARG

Invalid argument. A bit in the flags parameter was set without an associated qualifier.

CLI$_INVQUAVAL

An unusable value was given on the command line for any of the following qualifiers: /EX-
CLUDE, /BEFORE, /SINCE, or /BY_OWNER (for example, /BEFORE=mintchip).

SS$_CONFQUAL

More than one of the following appeared on the command line at the same time: /CREATED, /
MODIFIED, /EXPIRED, /BACKUP.

Any unsuccessful return from LIB$GET_VM.

UTIL$CQUAL_FILE_MATCH
UTIL$CQUAL_FILE_MATCH — The UTIL$CQUAL_FILE_MATCH routine matches a file with
the selection criteria.

Format
UTIL$CQUAL_FILE_MATCH context" [,user_fab"] [,file_name"] [,prompt_string_1"] [,promp-
t_string_2"] [,prompt_rtn"] [,current_form"] [,disable"]

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. Most utility routines return a condition value in R0. Condition Values Re-
turned lists condition values that this routine returns.

Argument
context

OpenVMS usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by reference

The longword address that received the common file qualifier database address from a prior call to
UTIL$CQUAL_FILE_PARSE.

user_fab

OpenVMS usage: longword_unsigned
type: longword (unsigned)

62

Chapter 5. Common File Qualifier Routines

access: read only
mechanism: by reference

The FAB address of the file to be evaluated. This FAB must point to a valid NAM or NAML block.
If the file is open and the file header criteria are to be evaluated, the appropriate XABs (XABPRO or
XABDAT) must be chained to the FAB and properly filled in by RMS. If the file is not open when
this routine is called, then the XAB chain is not necessary, but may be present. This argument is
optional. If it is not present, the file_name parameter must be present. Both arguments may not be
present at the same time.

file_name

OpenVMS usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by reference

The file name descriptor address of the file to be processed. This parameter can be used instead of the
user_fab argument. Both arguments may not be present at the same time.

prompt_string_1

OpenVMS usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by reference

Longword address of a prompt string descriptor. This prompt is used when prompting to a terminal
device and the current prompt form is UTIL$K_CQF_SHORT.

prompt_string_2

OpenVMS usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by descriptor

Longword address of a prompt string descriptor. This prompt is used when prompting to a terminal
device and the current prompt form is UTIL$K_CQF_LONG.

prompt_rtn

OpenVMS usage: procedure
type: longword (unsigned)
access: function call
mechanism: by value

User-supplied longword routine address used for prompting and accepting input from the user. The
user routine is responsible for end-of-file processing and must return RMS$_EOF when appropriate.

63

Chapter 5. Common File Qualifier Routines

current_form

OpenVMS usage: longword_unsigned
type: longword (unsigned)
access: read write
mechanism: by reference

This optional parameter supplies the initial prompt form displayed to the user. If it contains the value
UTIL$K_CQF_UNSPECIFIED, then the form last requested by the user is used if that form is avail-
able. If there was no previous call to UTIL$CQUAL_FILE_MATCH, and the current_form is un-
specified, UTIL$K_CQF_SHORT is assumed.

When exiting UTIL$CQUAL_FILE_MATCH, the current_form parameter contains the last user re-
quested prompt form. If a previous call to UTIL$CQUAL_FILE_MATCH requested quit processing
or quit confirmation prompting, then this parameter is not modified.

disable

OpenVMS usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by reference

Longword of bit flags. This optional parameter specifies which common file qualifiers are ignored
in the current call to UTIL$CQUAL_FILE_MATCH. Qualifiers that cannot be ignored are /CREAT-
ED, /MODIFIED, /EXPIRED, and /BACKUP).

Description
UTIL$CQUAL_FILE_MATCH compares the file named in either the user_fab or file_name parame-
ter (only one can be specified) against criteria specified by the common file qualifier database pointed
to by the context and the disable parameter flags. UTIL$CQUAL_FILE_MATCH returns a status as
to whether the file does or does not match the criteria.

If a failure occurs during processing, such as those listed in the Abnormal Completion Codes, the rou-
tine quits processing files for the context under which the failure occurred. A processing failure is the
same as receiving a quit processing response from a user prompt. Any additional calls to this routine
with the context that incurred the processing failure will return UTIL$_QIOPRO. This applies even if
the user responded ALL to a previous confirmation prompt.

For a description of the /CONFIRM prompting, see UTIL$CQUAL_CONFIRM_ACT.

Note

The UTIL$CQUAL_FILE_MATCH current_form parameter is different from the same parameter
in UTIL$CQUAL_CONFIRM_ACT. UTIL$CQUAL_FILE_MATCH retains the user's last requested
form between calls.

Condition Values Returned
Normal Completion Codes:

64

Chapter 5. Common File Qualifier Routines

Abnormal Completion Codes:

SS$_NORMAL

File matches the criteria and can be processed.

UTIL$_QUICONACT

User requests that confirmation prompting cease, but that other common file qualifier criteria be
applied on subsequent file specifications.

UTIL$_FILFAIMAT

File failed the evaluation, and should not be processed.

UTIL$QUIPRO

User requests that processing stops.

LIB$INVARG

Incorrect parameter list.

SS$_ACCVIO

Unable to access one or more of the parameters (such as the common file database or user_fab).

UTIL$_FILFID

File specification contains an FID. Due to file specification aliases, converting an FID to a file
specification is inappropriate for /EXCLUDE processing.

UTIL$_FILDID

File specification contains a DID. Due to directory specification aliases, converting a DID to a di-
rectory patch is inappropriate for /EXCLUDE processing when the directory patch needs to be
compared.

LIB$_INVXAB

Invalid XAB chain. A necessary XAB (XABPRO or XABDAT) is missing from the opened file's
XAB chain.

Any unsuccessful code from RMS, LIB$GET_VM, or any unsuccessful return status from the user-
supplied routine (other than RMS$_EOF).

UTIL$CQUAL_FILE_END
UTIL$CQUAL_FILE_END — The UTIL$CQUAL_FILE_END routine returns all allocated virtual
memory from the call to UTIL$CQUAL_FILE_PARSE.

Format

UTIL$CQUAL_FILE_END context"

65

Chapter 5. Common File Qualifier Routines

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. Most utility routines return a condition value in R0. Condition Values Re-
turned lists condition values that this routine returns.

Argument
context

OpenVMS usage: longword_unsigned
type: longword (unsigned)
access: read write
mechanism: by reference

The longword address that received the common file qualifier database address from a prior call to
UTIL$CQUAL_FILE_PARSE.

Description
UTIL$CQUAL_FILE_END deallocates the virtual memory obtained by the common file qualifier
package during the call to UTIL$CQUAL_FILE_PARSE. The virtual memory held information for
calls to UTIL$CQUAL_FILE_MATCH.

Condition Values Returned
SS$_NORMAL

Normal successful completion.

Any unsuccessful code from LIB$FREE_VM.

UTIL$CQUAL_CONFIRM_ACT
UTIL$CQUAL_CONFIRM_ACT — The UTIL$CQUAL_CONFIRM_ACT routine prompts the user
for confirmation, using the optional prompt routine if present, and returns an indication of the user's
response.

Format
UTIL$CQUAL_CONFIRM_ACT [prompt_string_1"] [,prompt_string_2"] [,prompt_rtn"] [,curren-
t_form"]

Returns

OpenVMS usage: cond_value

66

Chapter 5. Common File Qualifier Routines

type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. Most utility routines return a condition value in R0. Condition Values Re-
turned lists condition values that this routine returns.

Argument
prompt_string_1

OpenVMS usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by descriptor

Longword address of a prompt string descriptor. The prompt is used when prompting to a terminal de-
vice, and the current prompt form is UTIL$K_CQF_SHORT.

prompt_string_2

OpenVMS usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by descriptor

Longword address of a prompt string descriptor. The prompt is used when prompting to a terminal de-
vice, and the current prompt form is UTIL$K_CQF_LONG.

prompt_rtn

OpenVMS usage: procedure
type: longword (unsigned)
access: function call
mechanism: by value

Longword address of a user-supplied routine for prompting and accepting user input. The user routine
is responsible for end-of-file processing and must return RMS$_EOF when appropriate.

current_form

OpenVMS usage: longword_unsigned
type: longword (unsigned)
access: read write
mechanism: by reference

This optional parameter supplies the initial prompt form to be displayed to the user. If present, this pa-
rameter receives the form of the last prompt displayed. The following table shows the valid prompting
form values:

67

Chapter 5. Common File Qualifier Routines

Table 5.4. Prompting Form Values

Value Description
UTIL$K_CQF_SHORT Use prompt_string_1.
UTIL$K_CQF_LONG Use prompt_string_2.
UTIL$K_CQF_UNSPECIFIED None specified; use default.

Description
UTIL$CQUAL_CONFIRM_ACT prompts the user for confirmation. You must supply at least one
prompt string to this routine. If you supply both strings, you should have an expanded and condensed
form of the prompt. The condensed form should be supplied through the prompt_string_1 parameter;
the expanded form through prompt_string_2. The prompt string supplied by prompt_string_1 is ini-
tially used if the prompt_string_1 is present, does not have a length of zero, and either:

• The current_form parameter is not specified

• The current_form parameter is specified and contains:

• UTIL$K_CQF_SHORT

• UTIL$K_CQF_UNSPECIFIED

• A value greater than UTIL$K_CQF_MAX_FORM

The prompt string supplied by prompt_string_2 is used initially if prompt_string_2 is present, does
not have a length of zero, and either:

• prompt_string_1 is not present or has a length of zero

• The current_form parameter is specified and contains the value UTIL$K_CQF_LONG

Once the initial form is displayed, the user can switch between the two forms by responding to the
prompt with either CONDENSED or EXPANDED. The user can only switch to another form if there
was a prompt string provided for that form. Responding with either CONDENSED or EXPANDED
causes a reprompt to occur, even if the current display form was not switched.

If a prompt routine is provided, the routine is called with the address of the prompt string descriptor in
the first parameter, and the string descriptor address to receive the user's response in the second para-
meter. The routine returns a success status or RMS$_EOF.

If an unsuccessful status other than RMS$_EOF is received, then UTIL$CQUAL_CONFIRM_ACT
exits without processing any response in the response buffer (the second parameter that was passed
to the prompt routine). UTIL$CQUAL_CONFIRM_ACT returns the status received from the user
prompt routine. The prompt routine is responsible for end-of-file processing, and must return RMS
$_EOF when appropriate. If an optional prompt routine is provided, it should be provided for all calls
to UTIL$CQUAL_CONFIRM_ACT. Not doing so can cause unpredictable end-of-file processing.

When the user is prompted, they may respond with the following:

Table 5.5. Prompt Responses

PositiveResponse NegativeResponse StopProcessing StopPrompting SwitchPrompts
YES NO QUIT ALL CONDENSED

68

Chapter 5. Common File Qualifier Routines

PositiveResponse NegativeResponse StopProcessing StopPrompting SwitchPrompts
TRUE FALSE Ctrl/Z EXPANDED
1 0

<Return>

Note

Entering ALL assumes that subsequent files are a positive response from the user, and no further
prompting occurs. The routine UTIL$CQUAL_FILE_MATCH properly handles this response. Since
UTIL$CQUAL_CONFIRM_ACT does not contain context from a previous call, callers of this routine
should not call UTIL$CQUAL_CONFIRM_ACT if the user has previously responded ALL unless the
application needs explicit confirmation on certain items.

The user can use any combination of uppercase and lowercase letters for word responses. Word re-
sponses can be abbreviated to one or more letters (for example, T, TR, or TRU for TRUE), but these
abbreviations must be unique.

After a valid response is received from the user, the procedure returns the current_form parameter.
The current_form parameter contains the last form presented to the user if it was specified and write
access is permitted.

Condition Values Returned
SS$_NORMAL

Positive answer.

LIB$_NEGANS

Negative answer.

UTIL$_QUIPRO

Quit processing.

UTIL$_QUICONACT

Continue processing, but cease prompting.

LIB$_INVARG

Invalid argument list (no prompt strings).

SS$_ACCVIO

Access violation (on user routine address).

Any unsuccessful return from RMS, SYS$ASSIGN, $QIOW, or from the user-supplied routine (other
than RMS$_EOF).

69

Chapter 5. Common File Qualifier Routines

70

Chapter 6. Convert (CONVERT)
Routines
This chapter describes the CONVERT routines. These routines perform the functions of both the Con-
vert and Convert/Reclaim utilities.

6.1. Introduction to CONVERT Routines
The Convert utility copies records from one or more files to an output file, changing the record format
and file organization to that of the output file. You can invoke the functions of the Convert utility from
within a program by calling the following series of three routines, in this order:

1. CONV$PASS_FILES

2. CONV$PASS_OPTIONS

3. CONV$CONVERT

Note that the application program should declare referenced constants and return status symbols as ex-
ternal symbols; these symbols are resolved upon linking with the utility shareable image. Also note
that File Definition Language (FDL) errors may be returned to the calling program where applicable.

The Convert/Reclaim utility reclaims empty buckets in Prolog 3 indexed files so new records can be
written in them. You can invoke the functions of the Convert/Reclaim utility from within a program
by calling the CONV$RECLAIM routine.

While these routines can be invoked within a single thread of a threaded process, the callable Convert
utility is not a reentrant, thread safe utility. Multiple concurrent invocations of the callable Convert
utility interface are not supported. These routines are not reentrant and cannot be called from the asyn-
chronous system trap (AST) level. In addition, these routines require ASTs to remain enabled in order
to function properly.

6.2. Using the CONVERT Routines: Examples
Example 6.1 shows how to use the CONVERT routines in a Fortran program.

Example 6.1. Using the CONVERT Routines in a Fortran Program

* This program calls the routines that perform the
* functions of the Convert Utility. It creates an
* indexed output file named CUSTDATA.DAT from the
* specifications in an FDL file named INDEXED.FDL.
* The program then loads CUSTDATA.DAT with records
* from the sequential file SEQ.DAT. No exception
* file is created. This program also returns the
* "BRIEF" CONVERT statistics.

* Program declarations

 IMPLICIT INTEGER*4 (A - Z)

* Set up parameter list: number of options, CREATE,
* NOSHARE, FAST_LOAD, MERGE, APPEND, SORT, WORK_FILES,
* KEY=0, NOPAD, PAD CHARACTER, NOTRUNCATE,

71

Chapter 6. Convert (CONVERT) Routines

* NOEXIT, NOFIXED_CONTROL, FILL_BUCKETS, NOREAD_CHECK,
* NOWRITE_CHECK, FDL, and NOEXCEPTION.
*
 INTEGER*4 OPTIONS(19)
 1 /18,1,0,1,0,0,1,2,0,0,0,0,0,0,0,0,0,1,0/

* Set up statistics list. Pass an array with the
* number of statistics that you want. There are four
* --- number of files, number of records, exception
* records, and good records, in that order.

 INTEGER*4 STATSBLK(5) /4,0,0,0,0/

* Declare the file names.

 CHARACTER IN_FILE*7 /'SEQ.DAT'/,
 1 OUT_FILE*12 /'CUSTDATA.DAT'/,
 1 FDL_FILE*11 /'INDEXED.FDL'/

* Call the routines in their required order.

 STATUS = CONV$PASS_FILES (IN_FILE, OUT_FILE, FDL_FILE)
 IF (.NOT. STATUS) CALL LIB$STOP (%VAL(STATUS))

 STATUS = CONV$PASS_OPTIONS (OPTIONS)
 IF (.NOT. STATUS) CALL LIB$STOP (%VAL(STATUS))

 STATUS = CONV$CONVERT (STATSBLK)
 IF (.NOT. STATUS) CALL LIB$STOP (%VAL(STATUS))

* Display the statistics information.

 WRITE (6,1000) (STATSBLK(I),I=2,5)
1000 FORMAT (1X,'Number of files processed: ',I5/,
 1 1X,'Number of records: ',I5/,
 1 1X,'Number of exception records: ',I5/,
 1 1X,'Number of valid records: ',I5)

 END

Example 6.2 shows how to use the advanced features of the CONVERT routines in a C program.

Example 6.2. Using the CONVERT Routines in a C Program

/*
** This module calls the routines that perform the functions
** of the Convert utility. It creates an indexed output file
** named CUSTDATA.DAT from the specifications in an FDL file
** named INDEXED.FDL, and loads CUSTDATA.DAT with records from
** the sequential file SEQ.DAT. No exception file is created.
** This module also returns the CONVERT and SORT statistics
** for each key that is loaded by utilizing the new callback
** feature that is available through the CONV$CONVERT call.
*/

#include <stdio>
#include <descrip>
#include <lib$routines>

72

Chapter 6. Convert (CONVERT) Routines

#include <conv$routines>
#include <convdef>
#include <starlet>
/*

** Allocate a statistics block structure using the template provided by
** <convdef.h>. This structure will be passed to the CONV$CONVERT routine
** to receive both the basic and extended statistics from CONVERT. The
** fields returned to the structure from CONVERT are listed in table 5-1.
**
** The number of statistics to be returned is passed as the first element
** in the array. The value CONV$K_MAX_STATISTICS will return the set of
** basic statistics, while the value CONV$K_EXT_STATISTICS will return
 all
** statistics.
*/
struct conv$statistics stats;

/*
** Main program (CONVSTAT) starts here
*/
int CONVSTAT (void)

{
$DESCRIPTOR (input_file, "SEQ.DAT");
$DESCRIPTOR (output_file, "CUSTDATA.DAT");
$DESCRIPTOR (fdl_file, "INDEXED.FDL");

void callback();

int stat;

/*
** Allocate an options block structure using the template provided by
** <convdef.h>. This structure will be passed to the CONV$PASS_OPTIO
NS
** routine to indicate what options are to be used for the file convert.
** The fields passed to the structure are listed in table 5-2.
*/
struct conv$options param_list;

param_list.conv$l_options_count = CONV$K_MAX_OPTIONS;
param_list.conv$l_create = 1;
param_list.conv$l_share = 0;
param_list.conv$l_fast = 1;
param_list.conv$l_merge = 0;
param_list.conv$l_append = 0;
param_list.conv$l_sort = 1;
param_list.conv$l_work_files = 2;
param_list.conv$l_key = 0;
param_list.conv$l_pad = 0;
param_list.conv$l_pad_character = 0;
param_list.conv$l_truncate = 0;
param_list.conv$l_exit = 0;
param_list.conv$l_fixed_control = 0;
param_list.conv$l_fill_buckets = 0;
param_list.conv$l_read_check = 0;
param_list.conv$l_write_check = 0;

73

Chapter 6. Convert (CONVERT) Routines

param_list.conv$l_fdl = 1;
param_list.conv$l_exception = 0;
param_list.conv$l_prologue = 0;
param_list.conv$l_ignore_prologue = 1;
param_list.conv$l_secondary = 1;

/*
** Init the number of statistics to be returned
*/
stats.conv$l_statistics_count = CONV$K_EXT_STATISTICS;

LIB$INIT_TIMER(); /* Start a timer */

/*
** First call to pass all the file names
*/
stat = CONV$PASS_FILES (&input_file, &output_file, &fdl_file);
if (!(stat & 1)) return stat;

/*
** Second call to pass particular options chosen as indicated in array.
*/
stat = CONV$PASS_OPTIONS (¶m_list);
if (!(stat & 1)) return stat;

/*
** Final call to perform actual convert, passing statistics block and
** callback routine address.
*/
stat = CONV$CONVERT (&stats, 0, &callback);
if (stat & 1)
{
/*
** Successful Convert! Print out counters from statistics.
*/
 printf ("Number of files processed : %d\n", stats.conv$l_file_count);
 printf ("Number of records : %d\n", stats.conv$l_record_count);
 printf ("Number of exception records : %d\n", stats.conv$l_except_count);
 printf ("Number of valid records : %d\n", stats.conv$l_valid_count);
 LIB$SHOW_TIMER();
 }
 return stat; /* success or failure */
}

void callback ()
{
 int status, SYS$ASCTIM();
 int cvtflg = 1;
 static char date[15];
 $DESCRIPTOR(out_date, date);

printf ("Statistics for Key : %d\n", stats.conv$l_key_number);
printf (" Records Sorted : %d\n", stats.conv$l_rec_out);
printf (" Sort Nodes : %d\n", stats.conv$l_nodes);
printf (" Work file allocation : %d\n", stats.conv$l_wrk_alq);
printf (" Initial Sort Runs : %d\n", stats.conv$l_ini_runs);
printf (" Merge Order : %d\n", stats.conv$l_mrg_order);
printf (" Merge Passes : %d\n", stats.conv$l_mrg_passes);

74

Chapter 6. Convert (CONVERT) Routines

printf (" Sort Direct IO : %d\n", stats.conv$l_sort_dio_count);
printf (" Sort Buffered IO : %d\n", stats.conv$l_sort_bio_count);
status = SYS$ASCTIM (0, &out_date, &stats.conv$q_sort_elapsed_time,
 cvtflg);
if (!(status & 1)) LIB$STOP (status);
printf (" Sort Elapsed Time : %s\n", date);
status = SYS$ASCTIM (0, &out_date, &stats.conv$q_sort_cpu_time, cvtflg);
if (!(status & 1)) LIB$STOP (status);
printf (" Sort Cpu Time : %s\n", date);
printf (" Sort Page Faults : %d\n\n", stats.conv$l_sort_pf_count);

printf (" Load Direct IO : %d\n", stats.conv$l_load_dio_count);
printf (" Load Buffered IO : %d\n", stats.conv$l_load_bio_count);
status = SYS$ASCTIM (0, &out_date, &stats.conv$q_load_elapsed_time,
 cvtflg);
if (!(status & 1)) LIB$STOP (status);
printf (" Load Elapsed Time : %s\n", date);
status = SYS$ASCTIM (0, &out_date, &stats.conv$q_load_cpu_time, cvtflg);
if (!(status & 1)) LIB$STOP (status);
printf (" Load Cpu Time : %s\n", date);
printf (" Load Page Faults : %d\n\n", stats.conv$l_load_pf_count);

return;
}

Example 6.3 shows how to use the CONV$RECLAIM routine in a Fortran program.

Example 6.3. Using the CONV$RECLAIM Routine in a Fortran Program

* This program calls the routine that performs the
* function of the Convert/Reclaim utility. It
* reclaims empty buckets from an indexed file named
* PROL3.DAT. It also returns all the CONVERT/RECLAIM
* statistics.
* Program declarations

 IMPLICIT INTEGER*4 (A - Z)

* Set up a statistics block. There are four -- data
* buckets scanned, data buckets reclaimed, index
* buckets reclaimed, total buckets reclaimed.

 INTEGER*4 OUTSTATS(5) /4,0,0,0,0/

* Declare the input file.

 CHARACTER IN_FILE*9 /'PROL3.DAT'/

* Call the routine.

 STATUS = CONV$RECLAIM (IN_FILE, OUTSTATS)
 IF (.NOT. STATUS) CALL LIB$STOP (%VAL(STATUS))

* Display the statistics.

 WRITE (6,1000) (OUTSTATS(I),I=2,5)
1000 FORMAT (1X,'Number of data buckets scanned: ',I5/,
 1 1X,'Number of data buckets reclaimed: ',I5/,

75

Chapter 6. Convert (CONVERT) Routines

 1 1X,'Number of index buckets reclaimed: ',I5/,
 1 1X,'Total buckets reclaimed: ',I5)

 END

Example 6.4 shows how to use the CONV$RECLAIM routine in a C program.

Example 6.4. Using the CONV$RECLAIM Routine in a C Program

/*
** This module calls the routine that performs the
** function of the CONVERT/RECLAIM utility. It reclaims
** empty buckets from an indexed file named PROL3.DAT.
**
** This module also returns and prints all of the
** CONVERT/RECLAIM statistics.
*/

#include <stdio>
#include <descrip>

CONVREC ()
{
$DESCRIPTOR (filename, "PROL3.DAT");/* Provide your file name */
struct { int statistics_count, /* must precede actual statistics */
 scanned_buckets,
 data_buckets_reclaimed,
 index_buckets_reclaimed,
 total_buckets_reclaimed; } stats = 4 /* 4 statistic arguments
 */;
int stat;
/*
** Perform actual operation.
*/
stat = CONV$RECLAIM (&filename, &stats);
if (stat & 1)
 {
 /*
 ** Successful RECLAIM. Now format and print the counts.
 */
 printf ("Data buckets scanned : %d\n", stats.scanned_buckets);
 printf ("Data buckets reclaimed : %d\n",
 stats.data_buckets_reclaimed);
 printf ("Index buckets reclaimed : %d\n",
 stats.index_buckets_reclaimed);
 printf ("Total buckets reclaimed : %d\n",
 stats.total_buckets_reclaimed);
 }
return stat /* succes or failure */;
}

6.3. CONVERT Routines
This section describes the individual CONVERT routines.

76

Chapter 6. Convert (CONVERT) Routines

CONV$CONVERT
Initiate Conversion — The CONV$CONVERT routine uses the Convert utility to perform the actual
conversion begun with CONV$PASS_FILES and CONV$PASS_OPTIONS. Optionally, the routine
can return statistics about the conversion. Note that the CONV$CONVERT routine may return appro-
priate File Definition Language (FDL) error messages to the calling program, where applicable.

Format
CONV$CONVERT [status_block_address] [,flags] [,callback_routine]

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. Most utility routines return a condition value in R0. Condition values that
this routine can return are listed under Condition Values Returned.

Arguments
status_block_address

OpenVMS usage: vector_longword_unsigned
type: longword (unsigned)
access: write only
mechanism: by reference

The conversion statistics. The status_block_address argument is the address of a vari-
able-length array of longwords that receives statistics about the conversion.

You can request conversion statistics using zero-based, symbolic offsets (CONV$K_) into the vari-
able-length array of longwords that contains the statistics. The array is defined as a structure (CONV
$STATISTICS) of named longwords (CONV$L_) to support access by high-level progamming lan-
guages.

Table 6.1 lists the array elements by number and by symbol. The first element specifies the num-
ber of statistics to return by array order. For example, if you assign the symbol CONV$L_S-
TATISTICS_COUNT the value 2, the routine returns the statistics from the first two statistics ele-
ments:

• Number of files converted

• Number of records converted

Table 6.1. Conversion Statistics Array

Array Element Field Name Description
#0 CONV$L_STATISTICS_COUNT Number of statistics specified

77

Chapter 6. Convert (CONVERT) Routines

Array Element Field Name Description
#1 CONV$L_FILE_COUNT Number of files
#2 CONV$L_RECORD_COUNT Number of records
#3 CONV$L_EXCEPT_COUNT Number of exception record
#4 CONV$L_VALID_COUNT Number of valid records
#5 CONV$L_KEY_NUMBER Most recent key processed
#6 CONV$L_REC_OUT Number of records sorted
#7 CONV$L_NODES Nodes in sort tree
#8 CONV$L_WRK_ALQ Work file allocation
#9 CONV$L_INI_RUNS Initial dispersion runs
#10 CONV$L_MRG_ORDER Maximum merge order
#11 CONV$L_MRG_PASSES Number of merge passes
#12 CONV$L_SORT_DIO_COUNT Sort direct IO
#13 CONV$L_SORT_BIO_COUNT Sort buffered IO
#14 CONV$Q_SORT_ELAPSED_TIME Sort elapsed time
#15 CONV$Q_SORT_CPU_TIME Sort CPU time
#16 CONV$L_SORT_PF_COUNT Number of page faults for sort
#17 CONV$L_LOAD_DIO_COUNT Load direct IO
#18 CONV$L_LOAD_BIO_COUNT Load buffered IO
#19 CONV$Q_LOAD_ELAPSED_TIME Load elapsed time
#20 CONV$Q_LOAD_CPU_TIME Load CPU time
#21 CONV$L_LOAD_PF_COUNT Number of page faults for load

flags

OpenVMS usage: mask_longword
type: longword (unsigned)
access: read only
mechanism: by reference

Flags (or masks) that control how the CONV$PASS_FILES fdl_filespec argument is interpret-
ed and how errors are signaled. The flags argument is the address of a longword containing control
flags (or a mask). If you omit the flags argument or specify it as zero, no flags are set. The flags and
their meanings are described in the following table:

Flag Function
CONV$V_FDL_STRING Interprets the fdl_filespec argument sup-

plied in the call to CONV$PASS_FILES as an
FDL specification in string form. By default, this
argument is interpreted as the file name of an
FDL file.

CONV$V_SIGNAL Signals any error. By default, the status code is
returned to the calling image.

78

Chapter 6. Convert (CONVERT) Routines

By default, an error status is returned rather than signaled.

callback_routine

OpenVMS usage: procedure
type: procedure value
access: read only
mechanism: by reference

Name of a user-supplied routine to process the statistics information. The callback_routine ar-
gument is the address of the procedure value of a user-supplied routine to call at the completion of
each key load.

Condition Values Returned

SS$_NORMAL

Normal successful completion.

CONV$_BADBLK

Invalid option block.

CONV$_BADLOGIC

Internal logic error detected.

CONV$_BADSORT

Error trying to sort input file.

CONV$_CLOSEIN

Error closing file specification as input.

CONV$_CLOSEOUT

Error closing file specification as output.

CONV$_CONFQUAL

Conflicting qualifiers.

CONV$_CREA_ERR

Error creating output file.

CONV$_CREATEDSTM

File specification has been created in stream format.

CONV$_DELPRI

Cannot delete primary key.

79

Chapter 6. Convert (CONVERT) Routines

CONV$_DUP

Duplicate key encountered.

CONV$_EXTN_ERR

Unable to extend output file.

CONV$_FATALEXC

Fatal exception encountered.

CONV$_FILLIM

Exceeded open file limit.

CONV$_IDX_LIM

Exceeded maximum index level.

CONV$_ILL_KEY

Illegal key or value out of range.

CONV$_ILL_VALUE

Illegal parameter value.

CONV$_INP_FILES

Too many input files.

CONV$_INSVIRMEM

Insufficient virtual memory.

CONV$_KEY

Invalid record key.

CONV$_LOADIDX

Error loading secondary index n.

CONV$_NARG

Wrong number of arguments.

CONV$_NOKEY

No such key.

CONV$_NOTIDX

File is not an indexed file.

CONV$_NOTSEQ

Output file is not a sequential file.

80

Chapter 6. Convert (CONVERT) Routines

CONV$_NOWILD

No wildcard permitted.

CONV$_OPENEXC

Error opening exception file specification.

CONV$_OPENIN

Error opening file specification as input.

CONV$_OPENOUT

Error opening file specification as output.

CONV$_ORDER

Routine called out of order.

CONV$_PAD

Packet Assembly/Disassembly (PAD) option ignored; output record format not fixed.

CONV$_PLV

Unsupported prolog version.

CONV$_PROERR

Error reading prolog.

CONV$_PROL_WRT

Prolog write error.

CONV$_READERR

Error reading file specification.

CONV$_REX

Record already exists.

CONV$_RMS

Record caused RMS severe error.

CONV$_RSK

Record shorter than primary key.

CONV$_RSZ

Record does not fit in block/bucket.

CONV$_RTL

Record longer than maximum record length.

81

Chapter 6. Convert (CONVERT) Routines

CONV$_RTS

Record too short for fixed record format file.

CONV$_SEQ

Record not in order.

CONV$_UDF_BKS

Cannot convert UDF records into spanned file.

CONV$_UDF_BLK

Cannot fit UDF records into single block bucket.

CONV$_VALERR

Specified value is out of legal range.

CONV$_VFC

Record too short to fill fixed part of VFC record.

CONV$_WRITEERR

Error writing file specification.

CONV$PASS_FILES
Specify Conversion Files — The CONV$PASS_FILES routine specifies a file to be converted using
the CONV$CONVERT routine.

Format
CONV$PASS_FILES input_filespec ,output_filespec [,fdl_filespec]
 [,exception_filespec] [,flags]

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. Most utility routines return a condition value in R0. Condition values that
this routine can return are listed under Condition Values Returned.

Arguments
input_filespec

OpenVMS usage: char_string

82

Chapter 6. Convert (CONVERT) Routines

type: character-coded text string
access: read only
mechanism: by descriptor—fixed-length string descriptor

The name of the file to be converted. The input_filespec argument is the address of a string de-
scriptor pointing to the name of the file to be converted.

output_filespec

OpenVMS usage: char_string
type: character-coded text string
access: read only
mechanism: by descriptor—fixed-length string descriptor

The name of the file that receives the records from the input file. The output_filespec argument
is the address of a string descriptor pointing to the name of the file that receives the records from the
input file.

fdl_filespec

OpenVMS usage: char_string
type: character-coded text string
access: read only
mechanism: by descriptor—fixed-length string descriptor

The name of the FDL file that defines the output file. The fdl_filespec argument is the address
of a string descriptor pointing to the name of the FDL file.

exception_filespec

OpenVMS usage: char_string
type: character-coded text string
access: read only
mechanism: by descriptor—fixed-length string descriptor

The name of the file that receives copies of records that cannot be written to the output file. The ex-
ception_filespec argument is the address of a string descriptor pointing to this name.

flags

OpenVMS usage: mask_longword
type: longword (unsigned)
access: read only
mechanism: by reference

Flags (or masks) that control how the fdl_filespec argument is interpreted and how errors are
signaled. The flags argument is the address of a longword containing the control flags (or mask). If
you omit this argument or specify it as zero, no flags are set. If you specify a flag, it remains in effect
until you explicitly reset it in a subsequent call to a CONVERT routine.

83

Chapter 6. Convert (CONVERT) Routines

The flags and their meanings are described in the following table:

Flag Function
CONV$V_FDL_STRING Interprets the fdl_filespec argument as an

FDL specification in string form. By default, this
argument is interpreted as a file name of an FDL
file.

CONV$V_SIGNAL Signals any error. By default, the status code is
returned to the calling image.

By default, an error status is returned rather than signaled.

Description
The CONV$PASS_FILES routine specifies a file to be converted using the CONV$CONVERT rou-
tine. A single call to CONV$PASS_FILES allows you to specify an input file, an output file, an FDL
file, and an exception file. If you have multiple input files, you must call CONV$PASS_FILES once
for each file. You need to specify only the input_filespec argument for the additional files, as
follows:

status = CONV$PASS_FILES (input_filespec)

The additional calls must immediately follow the original call that specified the output file specifica-
tion.

Wildcard characters are not allowed in the file specifications passed to the CONVERT routines.

Condition Values Returned
SS$_NORMAL

Normal successful completion.

CONV$_INP_FILES

Too many input files.

CONV$_INSVIRMEM

Insufficient virtual memory.

CONV$_NARG

Wrong number of arguments.

CONV$_ORDER

Routine called out of order.

CONV$PASS_OPTIONS
Specify Processing Options — The CONV$PASS_OPTIONS routine specifies which qualifiers are to
be used by the Convert utility (CONVERT).

84

Chapter 6. Convert (CONVERT) Routines

Format
CONV$PASS_OPTIONS [parameter_list_address] [,flags]

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. Most utility routines return a condition value in R0. Condition values that
this routine can return are listed under Condition Values Returned.

Arguments
parameter_list_address

OpenVMS usage: vector_longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by reference

Address of a variable-length array of longwords used to specify the CONVERT qualifiers. The array
is symbolically defined as a structure (CONV$OPTIONS) that you can access in one of the following
ways:

• As an array of named longwords using zero-based symbols (CONV$L_ …)

• As an array using zero-based offsets (CONV$K_ …)

The first longword in the array (CONV$L_OPTIONS_COUNT) specifies the number of elements
in the array, and each remaining element is associated with a CONVERT qualifier, as shown in Ta-
ble 6.2. You can use the first element to assign values to the first n CONVERT qualifiers—where n is
the value of CONV$L_OPTIONS_COUNT—and take default values for the remaining qualifiers. For
example, to assign values to only the first three qualifiers and to take the default value for the remain-
ing qualifiers, specify CONV$L_OPTIONS_COUNT=3. This effectively changes the size of the array
to include only the first three elements, as follows, which have values you specify:

• /CREATE

• /SHARE

• /FAST_LOAD

The remaining qualifiers take the default values depicted in Table 6.2.

To assign individual values to the CONVERT qualifiers, access the array and specify the desired val-
ue (1 or 0). See the OpenVMS Record Management Utilities Reference Manual for detailed descrip-
tions of the CONVERT qualifiers.

If you do not specify parameter_list_address, your program effectively sends the routine all
of the default values listed in Table 6.2.

85

Chapter 6. Convert (CONVERT) Routines

Table 6.2. CONVERT Qualifiers

Element Number Symbolic Value Longword De-
fault Value

Qualifier Default Value

#0 CONV$L_OP-
TIONS_COUNT

None Not applicable

#1 CONV$L_CREATE 1 /CREATE
#2 CONV$L_SHARE 0 /NOSHARE
#3 CONV$L_FAST 1 /FAST_LOAD
#4 CONV$L_MERGE 0 /NOMERGE
#5 CONV$L_APPEND 0 /NOAPPEND
#6 CONV$L_SORT 1 /SORT
#7 CONV$L_WORK_FILES 2 /WORK_FILES=2
#8 CONV$L_KEY 0 /KEY=0
#9 CONV$L_PAD 0 /NOPAD
10 CONV$L_PAD_CHARAC-

TER
0 1 Pad character=0

11 CONV$L_TRUNCATE 0 /NOTRUNCATE
12 CONV$L_EXIT 0 /NOEXIT
13 CONV$L_FIXED_CON-

TROL
0 /NOFIXED_CONTROL

14 CONV$L_FILL_BUCKETS 0 /NOFILL_BUCKETS
15 CONV$L_READ_CHECK 0 /NOREAD_CHECK
16 CONV$L_WRITE_CHECK 0 /NOWRITE_CHECK
17 CONV$L_FDL 0 /NOFDL
18 CONV$L_EXCEPTION 0 /NOEXCEPTION
19 CONV$L_PROLOGUE None /PROLOGUE= n 2

20 CONV$L_IGNORE_PRO-
LOGUE

0 Not applicable

21 CONV$L_SECONDARY 1 SECONDARY=1
1Null character. To specify non-null pad character, insert ASCII value of desired pad character.
2System or process default setting.

If you specify /EXIT and the utility encounters an exception record, CONVERT returns with a fatal
exception status.

If you specify an FDL file specification in the CONV$PASS_FILES routine, you must place a 1 in the
FDL longword. If you also specify an exceptions file specification in the CONV$PASS_FILES rou-
tine, you must place a 1 in the EXCEPTION longword. You may specify either, both, or neither of
these files, but the values in the CONV$PASS_FILES call must match the values in the parameter list.
If they do not, the routine returns an error.

The PROLOG longword overrides the KEY PROLOG attribute supplied by the FDL file. If you use
the PROLOG longword, enter one of the following values:

• The value 0 (default) specifies the system or process prolog type.

86

Chapter 6. Convert (CONVERT) Routines

• The value 2 specifies a Prolog 1 or 2 file in all instances, even when circumstances would allow
you to create a Prolog 3 file.

• The value 3 specifies a Prolog 3 file. If a Prolog 3 file is not allowed, you want the conversion to
fail.

If the size of the options block that you pass to CONV$PASS_OPTIONS includes the SECONDARY
longword value, then you must specify a value for the IGNORE_PROLOGUE field.

This field is used in conjunction with the PROLOGUE offset to determine if the prologue version of
the output file is to be taken from a passed FDL, the input file, the process default or system default,
or from the options block itself.

A value of 0 (zero) for the IGNORE_PROLOGUE field indicates that the prologue version of the out-
put file is to be taken from the PROLOGUE value specified in the options block.

If the PROLOGUE value in the options block contains a 0 (zero), the process default or system de-
fault prologue version will be used. This will override the prologue version specified in an FDL file or
in the input file's characteristics.

A value of 1 (one) for the IGNORE_PROLOGUE field implies that the prologue version of the output
file will come from the FDL file (if specified) or from the input file's characteristics.

flags

OpenVMS usage: mask_longword
type: longword (unsigned)
access: read only
mechanism: by reference

Flags (or masks) that control how the fdl_filespec argument, used in calls to the CONV
$PASS_FILES routine, is interpreted and how errors are signaled. The flags argument is the ad-
dress of a longword containing the control flags (or a mask). If you omit this argument or specify it as
zero, no flags are set. If you specify a flag, it remains in effect until you explicitly reset it in a subse-
quent call to a CONVERT routine.

The flags and their meanings are described in the following table:

Flag Function
CONV$V_FDL_STRING Interprets the fdl_filespec argument sup-

plied in the call to CONV$PASS_FILES as an
FDL specification in string form. By default, this
argument is interpreted as the file name of an
FDL file.

FDL$V_SIGNAL Signals any error. By default, the status code is
returned to the calling image.

By default, an error status is returned rather than signaled.

Description
You can use an options array to generate programmatic CONVERT commands. For example, you
can generate the following programmatic CONVERT command by configuring the options array de-
scribed by the pseudocode that follows the example command line:

87

Chapter 6. Convert (CONVERT) Routines

$ CONVERT/FAST_LOAD/SORT/WORK_FILES=6/EXIT

OPTIONS ARRAY [12] {Allocate a 13-cell array}
OPTIONS[0] = 12 {Number of options]
OPTIONS[1] = 1 {Specifies the /CREATE option}
OPTIONS[2] = 0 {Specifies the /NOSHARE option}
OPTIONS[3] = 1 {Specifies the /FAST_LOAD option}
OPTIONS[4] = 0 {Specifies the /NOMERGE option}
OPTIONS[5] = 0 {Specifies the /NOAPPEND option}
OPTIONS[6] = 1 {Specifies the /SORT option}
OPTIONS[7] = 6 {Specifies the /WORK_FILES=6 option}
OPTIONS[8] = 0 {Specifies the /KEY=0 option}
OPTIONS[9] = 0 {Specifies the /NOPAD option}
OPTIONS[10] = 0 {Specifies the null pad character}
OPTIONS[11] = 0 {Specifies the /NOTRUNCATE option}
OPTIONS[12] = 1 {Specifies the /EXIT option}

Condition Values Returned

SS$_NORMAL

Normal successful completion.

CONV$_BADBLK

Invalid option block.

CONV$_CONFQUAL

Conflicting qualifiers.

CONV$_INSVIRMEM

Insufficient virtual memory.

CONV$_NARG

Wrong number of arguments.

CONV$_OPENEXC

Error opening exception file file specification.

CONV$_ORDER

Routine called out of order.

CONV$RECLAIM
Invoke Convert/Reclaim Utility — The CONV$RECLAIM routine invokes the functions of the Con-
vert/Reclaim utility.

Format
CONV$RECLAIM input_filespec [,statistics_blk] [,flags] [key_number]

88

Chapter 6. Convert (CONVERT) Routines

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. Most utility routines return a condition value in R0. Condition values that
this routine can return are listed under Condition Values Returned.

Arguments
input_filespec

OpenVMS usage: char_string
type: character-coded text string
access: read only
mechanism: by descriptor—fixed-length string descriptor

Name of the Prolog 3 indexed file to be reclaimed. The input_filespec argument is the address
of a string descriptor pointing to the name of the Prolog 3 indexed file.

statistics_blk

OpenVMS usage: vector_longword_unsigned
type: longword (unsigned)
access: modify
mechanism: by reference

Bucket reclamation statistics. The statistics_blk argument is the address of a variable-length
array of longwords that receives statistics on the bucket reclamation. You can choose which statistics
you want returned by specifying a number in the first element of the array. This number determines
how many of the four possible statistics the routine returns.

You can request bucket reclamation statistics using symbolic names or numeric offsets into the vari-
able-length array of longwords that contains the statistics. The array is defined as a structure of named
longwords (RECL$STATISTICS) to support access by high-level programming languages.

Table 6.3 lists the array elements by number and by symbol. The first element specifies one or more
statistics by array order. For example, if you assign the symbol RECL$L_STATISTICS_COUNT the
value 3, the routine returns the statistics from the first three statistics elements:

• Data buckets scanned

• Data buckets reclaimed

• Index buckets reclaimed

Table 6.3. Bucket Reclamation Statistics Array

Array Element Field Name Description
#0 RECL$L_STATISTICS_COUNT Number of statistics specified

89

Chapter 6. Convert (CONVERT) Routines

Array Element Field Name Description
#1 RECL$L_SCAN_COUNT Data buckets scanned
#2 RECL$L_DATA_COUNT Data buckets reclaimed
#3 RECL$L_INDEX_COUNT Index buckets reclaimed
#4 RECL$L_TOTAL_COUNT Total buckets reclaimed

flags

OpenVMS usage: mask_longword
type: longword (unsigned)
access: read only
mechanism: by reference

Flags (or masks) that control how the fdl_filespec argument, used in calls to the CONV
$PASS_FILES routine, is interpreted and how errors are signaled. The flags argument is the ad-
dress of a longword containing control flags (or a mask). If you omit the flags argument or specify
it as zero, no flags are set. The flag is defined as follows:

CONV$V_SIGNAL Signals any error. By default, the status code is
returned to the calling image.

By default, an error status is returned rather than signaled.

key_number

OpenVMS usage: address
type: longword (unsigned)
access: read only
mechanism: by reference

The optional key_number argument permits the calling program to selectively reclaim buckets by
key number. If the calling program omits this argument or passes a NULL value in the argument, all
buckets are reclaimed, without regard to key designation. If the calling program passes a valid key
number as the value for this argument, the routine reclaims only the buckets for the specified key.

Condition Values Returned
SS$_NORMAL

Normal successful completion.

CONV$_BADLOGIC

Internal logic error detected.

CONV$_INSVIRMEM

Insufficient virtual memory.

CONV$_INVBKT

Invalid bucket at VBN n.

90

Chapter 6. Convert (CONVERT) Routines

CONV$_NOTIDX

File is not an indexed file.

CONV$_NOWILD

No wildcard permitted.

CONV$_OPENIN

Error opening file specification as input.

CONV$_PLV

Unsupported prolog version.

CONV$_PROERR

Error reading prolog.

CONV$_PROL_WRT

Prolog write error.

CONV$_READERR

Error reading file specification.

CONV$_WRITEERR

Error writing output file.

91

Chapter 6. Convert (CONVERT) Routines

92

Chapter 7. Data Compression/
Expansion (DCX) Routines
The set of routines described in this chapter comprises the Data Compression/Expansion (DCX) facil-
ity. There is no DCL-level interface to this facility, nor is there a DCX utility.

7.1. Introduction to DCX Routines
Using the DCX routines described in this chapter, you can decrease the size of text, binary data, im-
ages, and any other type of data. Compressed data uses less space, but there is a trade-off in terms of
access time to the data. Compressed data must first be expanded to its original state before it is usable.
Thus, infrequently accessed data makes a good candidate for data compression.

The DCX facility provides routines that analyze and compress data records and expand the com-
pressed records to their original state. In this process, no information is lost. A data record that has
been compressed and then expanded is in the same state as it was before it was compressed.

Most collections of data can be reduced in size by DCX. However, there is no guarantee that the size
of an individual data record will always be smaller after compression; in fact, some may grow larger.

The DCX facility allows for the independent analysis, compression, and expansion of more than one
stream of data records at the same time. This capability is provided by means of a “context variable,”
which is an argument in each DCX routine. Most applications have no need for this capability; for
these applications, there is a single context variable.

Some of the DCX routines make calls to various Run-Time Library (RTL) routines, for example, LIB
$GET_VM. If any of these RTL routines fails, a return status code indicating the cause of the failure
is returned. In such a case, you must refer to the documentation of the appropriate RTL routine to de-
termine the cause of the failure. The status codes documented in this chapter are primarily DCX status
codes.

Note also that the application program should declare referenced constants and return status symbols
as external symbols; these symbols are resolved upon linking with the utility shareable image.

7.1.1. Compression Routines
Compressing a file with the DCX routines involves the following steps:

1. Initialize an analysis work area—Use the DCX$ANALYZE_INIT routine to initialize a work
area for analyzing the records. The first (and, typically, the only) argument passed to DCX$AN-
ALYZE_INIT is an integer variable for storing the context value. The DCX facility assigns a val-
ue to the context variable and associates the value with the created work area. Each time you want
to analyze a record in that area, specify the associated context variable. You can analyze two or
more files at once by creating a different work area for each file, giving each area a different con-
text variable, and analyzing the records of each file in the appropriate work area.

2. Analyze the records in the file—Use the DCX$ANALYZE_DATA routine to pass each record in
the file to an analysis work area. During analysis, the DCX facility gathers information that DCX
$MAKE_MAP uses to create the compression/expansion function for the file. To ensure that the
first byte of each record is passed to the DCX facility rather than being interpreted as a carriage
control, specify CARRIAGECONTROL = NONE when you open the file to be compressed.

93

Chapter 7. Data Compression/Expansion (DCX) Routines

3. Create the compression/expansion function—Use the DCX$MAKE_MAP routine to create the
compression/expansion function. You pass DCX$MAKE_MAP a context variable, and DCX
$MAKE_MAP uses the information stored in the associated work area to compute a compres-
sion/expansion function for the records being compressed. If DCX$MAKE_MAP returns a status
value of DCX$_AGAIN, repeat Steps 2 and 3 until DCX$MAKE_MAP returns a status of DCX
$_NORMAL, indicating that a compression/expansion function has been created.

In Example 7.1, the integer function GET_MAP analyzes each record in the file to be compressed
and invokes DCX$MAKE_MAP to create the compression/expansion function. The function val-
ue of GET_MAP is the return status of DCX$MAKE_MAP, and the address and length of the
compression/expansion function are returned in the GET_MAP argument list. The main program,
COMPRESS_FILES, invokes the GET_MAP function, examines its function value, and, if neces-
sary, invokes the GET_MAP function again (see the ANALYZE DATA program section).

4. Clean up the analysis work area—Use the DCX$ANALYZE_DONE routine to delete a work area.
Identify the work area to be deleted by passing DCX$ANALYZE_DONE routine a context vari-
able.

5. Save the compression/expansion function—You cannot expand compressed records without the
compression/expansion function. Therefore, before compressing the records, write the compres-
sion/expansion function to the file that will contain the compressed records.

If your programming language cannot use an address directly, pass the address of the compres-
sion/expansion function to a subprogram (WRITE_MAP in Example 7.1). Pass the subprogram
the length of the compression/expansion function as well.

In the subprogram, declare the dummy argument corresponding to the function address as a one-
dimensional, adjustable, byte array. Declare the dummy argument corresponding to the function
length as an integer, and use it to dimension the adjustable array. Write the function length and the
array containing the function to the file that is to contain the compressed records. (The length must
be stored so that you can read the function from the file using unformatted I/O; see Section 7.1.2.)

6. Compress each record—Use the DCX$COMPRESS_INIT routine to initialize a compression
work area. Specify a context variable for the compression area just as for the analysis area.

Use the DCX$COMPRESS_DATA routine to compress each record. As you compress each
record, use unformatted I/O to write the compressed record to the file containing the compres-
sion/expansion function. For each record, write the length of the record and the substring contain-
ing the record. See the COMPRESSDATA section in Example 7.1. (The length is stored with the
substring so that you can read the compressed record from the file using unformatted I/O; see Sec-
tion 7.1.2.)

7. Use DCX$COMPRESS_DONE to delete the work area created by DCX$COMPRESS_INIT.
Identify the work area to be deleted by passing DCX$COMPRESS_DATA a context variable. Use
LIB$FREE_VM to free the virtual memory that DCX$MAKE_MAP used for the compression/ex-
pansion function.

7.1.2. Expansion Routines
Expanding a file with the DCX routines involves the following steps:

1. Read the compression/expansion function—When reading the compression/expansion function
from the compressed file, do not make any assumptions about the function's size. The best practice
is to read the length of the function from the compressed file and then invoke the LIB$GET_VM

94

Chapter 7. Data Compression/Expansion (DCX) Routines

routine to get the necessary amount of storage for the function. The LIB$GET_VM routine returns
the address of the first byte of the storage area.

If your programming language cannot use an address directly, pass the address of the storage area
to a subprogram. Pass the subprogram the length of the compression/expansion function as well.

In the subprogram, declare the dummy argument corresponding to the storage address as a one-
dimensional, adjustable, byte array. Declare the dummy argument corresponding to the function
length as an integer and use it to dimension the adjustable array. Read the compression/expan-
sion function from the compressed file into the dummy array. Because the compression/expansion
function is stored in the subprogram, do not return to the main program until you have expanded
all of the compressed records.

2. Initialize an expansion work area—Use the DCX$EXPAND_INIT routine to initialize a work area
for expanding the records. The first argument passed to DCX$EXPAND_INIT is an integer vari-
able to contain a context value (see step 1 in Section 7.1.1). The second argument is the address of
the compression/expansion function.

3. Expand the records—Use the DCX$EXPAND_DATA routine to expand each record.

4. Clean up the work area—Use the DCX$EXPAND_DONE routine to delete an expansion work
area. Identify the work area to be deleted by passing DCX$EXPAND_DONE a context variable.

7.2. Using the DCX Routines: Examples
Example 7.1 shows how to use the callable DCX routines to compress a file in a VSI Fortran program.

Example 7.2 expands a compressed file. The first record of the compressed file is an integer contain-
ing the number of bytes in the compression/expansion function. The second record is the compres-
sion/expansion function. The remainder of the file contains the compressed records. Each compressed
record is stored as two records: an integer containing the length of the record and a substring contain-
ing the record.

Example 7.1. Compressing a File in a VSI Fortran Program

PROGRAM COMPRESS_FILES
! COMPRESSION OF FILES

! status variable
INTEGER STATUS,
2 IOSTAT,
2 IO_OK,
2 STATUS_OK
PARAMETER (IO_OK = 0)
PARAMETER (STATUS_OK = 1)
INCLUDE '($FORDEF)'
EXTERNAL DCX$_AGAIN

! context variable
INTEGER CONTEXT
! compression/expansion function
INTEGER MAP,
2 MAP_LEN

! normal file name, length, and logical unit number
CHARACTER*256 NORM_NAME

95

Chapter 7. Data Compression/Expansion (DCX) Routines

INTEGER*2 NORM_LEN
INTEGER NORM_LUN
! compressed file name, length, and logical unit number
CHARACTER*256 COMP_NAME
INTEGER*2 COMP_LEN
INTEGER COMP_LUN

! Logical end-of-file
LOGICAL EOF
! record buffers; 32764 is maximum record size
CHARACTER*32764 RECORD,
2 RECORD2
INTEGER RECORD_LEN,
2 RECORD2_LEN

! user routine
INTEGER GET_MAP,
2 WRITE_MAP

! Library procedures
INTEGER DCX$ANALYZE_INIT,
2 DCX$ANALYZE_DONE,
2 DCX$COMPRESS_INIT,
2 DCX$COMPRESS_DATA,
2 DCX$COMPRESS_DONE,
2 LIB$GET_INPUT,
2 LIB$GET_LUN,
2 LIB$FREE_VM

! get name of file to be compressed and open it
STATUS = LIB$GET_INPUT (NORM_NAME,
2 'File to compress: ',
2 NORM_LEN)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))
STATUS = LIB$GET_LUN (NORM_LUN)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))
OPEN (UNIT = NORM_LUN,
2 FILE = NORM_NAME(1:NORM_LEN),
2 CARRIAGECONTROL = 'NONE',
2 STATUS = 'OLD')

! ************
! ANALYZE DATA
! ************
! initialize work area
STATUS = DCX$ANALYZE_INIT (CONTEXT)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))
! get compression/expansion function (map)
STATUS = GET_MAP (NORM_LUN,
2 CONTEXT,
2 MAP,
2 MAP_LEN)
DO WHILE (STATUS .EQ. %LOC(DCX$_AGAIN))
 ! go back to beginning of file
 REWIND (UNIT = NORM_LUN)

96

Chapter 7. Data Compression/Expansion (DCX) Routines

 ! try map again
 STATUS = GET_MAP (NORM_LUN,
2 CONTEXT,
2 MAP,
2 MAP_LEN)
 END DO
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))
! clean up work area
STATUS = DCX$ANALYZE_DONE (CONTEXT)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))

! *************
! COMPRESS DATA
! *************
! go back to beginning of file to be compressed
REWIND (UNIT = NORM_LUN)
! open file to hold compressed records
STATUS = LIB$GET_LUN (COMP_LUN)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))
STATUS = LIB$GET_INPUT (COMP_NAME,
2 'File for compressed records: ',
2 COMP_LEN)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))
OPEN (UNIT = COMP_LUN,
2 FILE = COMP_NAME(1:COMP_LEN),
2 STATUS = 'NEW',
2 FORM = 'UNFORMATTED')

! initialize work area
STATUS = DCX$COMPRESS_INIT (CONTEXT,
2 MAP)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))
! write compression/expansion function to new file
CALL WRITE_MAP (COMP_LUN,
2 %VAL(MAP),
2 MAP_LEN)

! read record from file to be compressed
EOF = .FALSE.
READ (UNIT = NORM_LUN,
2 FMT = '(Q,A)',
2 IOSTAT = IOSTAT) RECORD_LEN,
2 RECORD(1:RECORD_LEN)
IF (IOSTAT .NE. IO_OK) THEN
 CALL ERRSNS (,,,,STATUS)
 IF (STATUS .NE. FOR$_ENDDURREA) THEN
 CALL LIB$SIGNAL (%VAL(STATUS))
 ELSE
 EOF = .TRUE.
 STATUS = STATUS_OK
 END IF
 END IF

DO WHILE (.NOT. EOF)
 ! compress the record
 STATUS = DCX$COMPRESS_DATA (CONTEXT,

97

Chapter 7. Data Compression/Expansion (DCX) Routines

2 RECORD(1:RECORD_LEN),
2 RECORD2,
2 RECORD2_LEN)
 IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))
 ! write compressed record to new file
 WRITE (UNIT = COMP_LUN) RECORD2_LEN
 WRITE (UNIT = COMP_LUN) RECORD2 (1:RECORD2_LEN)
 ! read from file to be compressed
 READ (UNIT = NORM_LUN,
2 FMT = '(Q,A)',
2 IOSTAT = IOSTAT) RECORD_LEN,
2 RECORD (1:RECORD_LEN)
 IF (IOSTAT .NE. IO_OK) THEN
 CALL ERRSNS (,,,,STATUS)
 IF (STATUS .NE. FOR$_ENDDURREA) THEN
 CALL LIB$SIGNAL (%VAL(STATUS))
 ELSE
 EOF = .TRUE.
 STATUS = STATUS_OK
 END IF
 END IF
 END DO

! close files and clean up work area
CLOSE (NORM_LUN)
CLOSE (COMP_LUN)
STATUS = LIB$FREE_VM (MAP_LEN,
2 MAP)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))
STATUS = DCX$COMPRESS_DONE (CONTEXT)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))

END

INTEGER FUNCTION GET_MAP (LUN, ! passed
2 CONTEXT, ! passed
2 MAP, ! returned
2 MAP_LEN) ! returned
! Analyzes records in file opened on logical
! unit LUN and then attempts to create a
! compression/expansion function using
! DCX$MAKE_MAP.

! dummy arguments
! context variable
INTEGER CONTEXT
! logical unit number
INTEGER LUN
! compression/expansion function
INTEGER MAP,
2 MAP_LEN

! status variable
INTEGER STATUS,
2 IOSTAT,
2 IO_OK,
2 STATUS_OK

98

Chapter 7. Data Compression/Expansion (DCX) Routines

PARAMETER (IO_OK = 0)
PARAMETER (STATUS_OK = 1)
INCLUDE '($FORDEF)'

! Logical end-of-file
LOGICAL EOF
! record buffer; 32764 is the maximum record size
CHARACTER*32764 RECORD
INTEGER RECORD_LEN

! library procedures
INTEGER DCX$ANALYZE_DATA,
2 DCX$MAKE_MAP

! analyze records
EOF = .FALSE.
READ (UNIT = LUN,
2 FMT = '(Q,A)',
2 IOSTAT = IOSTAT) RECORD_LEN,RECORD
IF (IOSTAT .NE. IO_OK) THEN
 CALL ERRSNS (,,,,STATUS)
 IF (STATUS .NE. FOR$_ENDDURREA) THEN
 CALL LIB$SIGNAL (%VAL(STATUS))
 ELSE
 EOF = .TRUE.
 STATUS = STATUS_OK
 END IF
 END IF

DO WHILE (.NOT. EOF)
 STATUS = DCX$ANALYZE_DATA (CONTEXT,
2 RECORD(1:RECORD_LEN))
 IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))
 READ (UNIT = LUN,
2 FMT = '(Q,A)',
2 IOSTAT = IOSTAT) RECORD_LEN,RECORD
 IF (IOSTAT .NE. IO_OK) THEN
 CALL ERRSNS (,,,,STATUS)
 IF (STATUS .NE. FOR$_ENDDURREA) THEN
 CALL LIB$SIGNAL (%VAL(STATUS))
 ELSE
 EOF = .TRUE.
 STATUS = STATUS_OK
 END IF
 END IF
 END DO

STATUS = DCX$MAKE_MAP (CONTEXT,
2 MAP,
2 MAP_LEN)
GET_MAP = STATUS

END

SUBROUTINE WRITE_MAP (LUN, ! passed
2 MAP, ! passed
2 MAP_LEN) ! passed

99

Chapter 7. Data Compression/Expansion (DCX) Routines

IMPLICIT INTEGER(A-Z)
! write compression/expansion function
! to file of compressed data

! dummy arguments
INTEGER LUN, ! logical unit of file
2 MAP_LEN ! length of function
BYTE MAP (MAP_LEN) ! compression/expansion function

! write map length
WRITE (UNIT = LUN) MAP_LEN
! write map
WRITE (UNIT = LUN) MAP

END

Example 7.2 shows how to expand a compressed file in a VSI Fortran program.

Example 7.2. Expanding a Compressed File in a VSI Fortran Program

PROGRAM EXPAND_FILES
IMPLICIT INTEGER(A-Z)
! EXPANSION OF COMPRESSED FILES

! file names, lengths, and logical unit numbers
CHARACTER*256 OLD_FILE,
2 NEW_FILE
INTEGER*2 OLD_LEN,
2 NEW_LEN
INTEGER OLD_LUN,
2 NEW_LUN

! length of compression/expansion function
INTEGER MAP,
2 MAP_LEN

! user routine
EXTERNAL EXPAND_DATA

! library procedures
INTEGER LIB$GET_LUN,
2 LIB$GET_INPUT,
2 LIB$GET_VM,
2 LIB$FREE_VM

! open file to expand
STATUS = LIB$GET_LUN (OLD_LUN)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))
STATUS = LIB$GET_INPUT (OLD_FILE,
2 'File to expand: ',
2 OLD_LEN)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))
OPEN (UNIT = OLD_LUN,
2 STATUS = 'OLD',
2 FILE = OLD_FILE(1:OLD_LEN),
2 FORM = 'UNFORMATTED')
! open file to hold expanded data
STATUS = LIB$GET_LUN (NEW_LUN)

100

Chapter 7. Data Compression/Expansion (DCX) Routines

IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))
STATUS = LIB$GET_INPUT (NEW_FILE,
2 'File to hold expanded data: ',
2 NEW_LEN)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))
OPEN (UNIT = NEW_LUN,
2 STATUS = 'NEW',
2 CARRIAGECONTROL = 'LIST',
2 FILE = NEW_FILE(1:NEW_LEN))

! expand file
! get length of compression/expansion function
READ (UNIT = OLD_LUN) MAP_LEN
STATUS = LIB$GET_VM (MAP_LEN,
2 MAP)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))
! expand records
CALL EXPAND_DATA (%VAL(MAP),
2 MAP_LEN, ! length of function
2 OLD_LUN, ! compressed data file
2 NEW_LUN) ! expanded data file
! delete virtual memory used for function
STATUS = LIB$FREE_VM (MAP_LEN,
2 MAP)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))
END

SUBROUTINE EXPAND_DATA (MAP, ! passed
2 MAP_LEN, ! passed
2 OLD_LUN, ! passed
2 NEW_LUN) ! passed
! expand data program

! dummy arguments
INTEGER MAP_LEN, ! length of expansion function
2 OLD_LUN, ! logical unit of compressed file
2 NEW_LUN ! logical unit of expanded file
BYTE MAP(MAP_LEN) ! array containing the function

! status variables
INTEGER STATUS,
2 IOSTAT,
2 IO_OK,
2 STATUS_OK
PARAMETER (IO_OK = 0)
PARAMETER (STATUS_OK = 1)
INCLUDE '($FORDEF)'

! context variable
INTEGER CONTEXT

! logical end_of_file
LOGICAL EOF
! record buffers
CHARACTER*32764 RECORD,
2 RECORD2
INTEGER RECORD_LEN,

101

Chapter 7. Data Compression/Expansion (DCX) Routines

2 RECORD2_LEN

! library procedures
INTEGER DCX$EXPAND_INIT,
2 DCX$EXPAND_DATA,
2 DCX$EXPAND_DONE

! read data compression/expansion function
READ (UNIT = OLD_LUN) MAP
! initialize work area
STATUS = DCX$EXPAND_INIT (CONTEXT,
2 %LOC(MAP(1)))
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))
! expand records
EOF = .FALSE.
! read length of compressed record
READ (UNIT = OLD_LUN,
2 IOSTAT = IOSTAT) RECORD_LEN
IF (IOSTAT .NE. IO_OK) THEN
 CALL ERRSNS (,,,,STATUS)
 IF (STATUS .NE. FOR$_ENDDURREA) THEN
 CALL LIB$SIGNAL (%VAL(STATUS))
 ELSE
 EOF = .TRUE.
 STATUS = STATUS_OK
 END IF
 END IF
DO WHILE (.NOT. EOF)
 ! read compressed record
 READ (UNIT = OLD_LUN) RECORD (1:RECORD_LEN)
 ! expand record
 STATUS = DCX$EXPAND_DATA (CONTEXT,
2 RECORD(1:RECORD_LEN),
2 RECORD2,
2 RECORD2_LEN)
 IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))
 ! write expanded record to new file
 WRITE (UNIT = NEW_LUN,
2 FMT = '(A)') RECORD2(1:RECORD2_LEN)
 ! read length of compressed record
 READ (UNIT = OLD_LUN,
2 IOSTAT = IOSTAT) RECORD_LEN
 IF (IOSTAT .NE. IO_OK) THEN
 CALL ERRSNS (,,,,STATUS)
 IF (STATUS .NE. FOR$_ENDDURREA) THEN
 CALL LIB$SIGNAL (%VAL(STATUS))
 ELSE
 EOF = .TRUE.
 STATUS = STATUS_OK
 END IF
 END IF
 END DO
! clean up work area
STATUS = DCX$EXPAND_DONE (CONTEXT)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))
END

102

Chapter 7. Data Compression/Expansion (DCX) Routines

7.3. DCX Routines
This section describes the individual DCX routines.

DCX$ANALYZE_DATA
Perform Statistical Analysis on a Data Record — The DCX$ANALYZE_DATA routine performs sta-
tistical analysis on a data record. The results of the analysis are accumulated internally in the context
area and are used by the DCX$MAKE_MAP routine to compute the mapping function.

Format
DCX$ANALYZE_DATA context ,record

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. Most utility routines return a condition value in R0. Condition values that
this routine can return are listed under Condition Values Returned.

Arguments

context

OpenVMS usage: context
type: longword (unsigned)
access: read only
mechanism: by reference

Value identifying the data stream that DCX$ANALYZE_DATA analyzes. The context argument
is the address of a longword containing this value. DCX$ANALYZE_INIT initializes this value; you
should not modify it. You can define multiple context arguments to identify multiple data streams
that are processed simultaneously.

record

OpenVMS usage: char_string
type: character string
access: read only
mechanism: by descriptor

Record to be analyzed. DCX$ANALYZE_DATA reads the record argument, which is the address
of a descriptor for the record string. The maximum length of the record string is 65,535 characters.

103

Chapter 7. Data Compression/Expansion (DCX) Routines

Description
The DCX$ANALYZE_DATA routine performs statistical analysis on a single data record. This rou-
tine is called once for each data record to be analyzed.

During analysis, the DCX facility gathers information that DCX$MAKE_MAP uses to create the
compression/expansion function for the file. After the data records have been analyzed, call the DCX
$MAKE_MAP routine. Upon receiving the DCX$_AGAIN status code from DCX$MAKE_MAP,
you must again analyze the same data records (in the same order) using DCX$ANALYZE_DATA
and then call DCX$MAKE_MAP again. On the second iteration, DCX$MAKE_MAP returns the
DCX$_NORMAL status code, and the data analysis is complete.

Condition Values Returned
DCX$_INVCTX

Error. The context variable is invalid, or the context area is invalid or corrupted. This may be
caused by a failure to call the appropriate routine to initialize the context variable or by an appli-
cation program error.

DCX$_NORMAL

Normal successful completion.

This routine also returns any condition values returned by LIB$ANALYZE_SDESC_R2.

DCX$ANALYZE_DONE
Specify Analysis Completed — The DCX$ANALYZE_DONE routine deletes the context area and
sets the context variable to zero, undoing the work of the DCX$ANALYZE_INIT routine. Call DCX
$ANALYZE_DONE after data records have been analyzed and the DCX$MAKE_MAP routine has
created the map.

Format
DCX$ANALYZE_DONE context

Returns

OpenVMS usage: cond_value
type: longword
access: write only
mechanism: by value

Longword condition value. Most utility routines return a condition value in R0. Condition values that
this routine can return are listed under Condition Values Returned.

Argument
context

OpenVMS usage: context

104

Chapter 7. Data Compression/Expansion (DCX) Routines

type: longword
access: modify
mechanism: by reference

Value identifying the data stream that DCX$ANALYZE_DONE deletes. The context argument is
the address of a longword containing this value. DCX$ANALYZE_INIT initializes this value; you
should not modify it. You can define multiple context arguments to identify multiple data streams
that are processed simultaneously.

Condition Values Returned
DCX$_INVCTX

Error. The context variable is invalid, or the context area is invalid or corrupted. This may be
caused by a failure to call the appropriate routine to initialize the context variable or by an appli-
cation program error.

DCX$_NORMAL

Normal successful completion.

This routine also returns any condition values returned by LIB$FREE_VM.

DCX$ANALYZE_INIT
Initialize Analysis Context — The DCX$ANALYZE_INIT routine initializes the context area for a
statistical analysis of the data records to be compressed.

Format
DCX$ANALYZE_INIT context [,item_code ,item_value]

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. Most utility routines return a condition value in R0. Condition values that
this routine can return are listed under Condition Values Returned.

Arguments
context

OpenVMS usage: context
type: longword (unsigned)
access: write only
mechanism: by reference

105

Chapter 7. Data Compression/Expansion (DCX) Routines

Value identifying the data stream that DCX$ANALYZE_INIT initializes. The context argument is
the address of a longword containing this value. DCX$ANALYZE_INIT writes this context into the
context argument; you should not modify its value. You can define multiple context arguments
to identify multiple data streams that are processed simultaneously.

item_code

OpenVMS usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by reference

Item code specifying information that you want DCX$ANALYZE_INIT to use in its analysis of
data records and in its computation of the mapping function. DCX$ANALYZE_INIT reads this
item_code argument, which is the address of the longword contained in the item code.

For each item_code argument specified in the call, you must also specify a correspond-
ing item_value argument. The item_value argument contains the interpretation of the
item_code argument.

The following symbolic names are the five legal values of the item_code argument:

DCX$C_BOUNDED
DCX$C_EST_BYTES
DCX$C_EST_RECORDS
DCX$C_LIST
DCX$C_ONE_PASS

item_value

OpenVMS usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by reference

Value of the corresponding item_code argument. DCX$ANALYZE_INIT reads the item_value
argument, which is the address of a longword containing the item value.

The item_code and item_value arguments always occur as a pair, and together they specify one
piece of “advice” for the DCX routines to use in computing the map function. Note that, unless stat-
ed otherwise in the list of item codes and item values, no piece of “advice” is binding on DCX; that is,
DCX is free to follow or not to follow the “advice.”

The following table shows, for each item_code argument, the possible values for the corresponding
item_value argument:

Item Code Corresponding Item Value
DCX$C_BOUNDED A Boolean variable. If bit <0> is true (equals 1),

you are stating your intention to submit for analy-
sis all data records that will be compressed; doing
so often enables DCX to compute a better com-
pression algorithm. If bit <0> is false (equals 0)
or if the DCX$C_BOUNDED item code is not

106

Chapter 7. Data Compression/Expansion (DCX) Routines

Item Code Corresponding Item Value
specified, DCX computes a compression algo-
rithm without regard for whether all records to be
compressed will also be submitted for analysis.

DCX$C_EST_BYTES A longword value containing your estimate of the
total number of data bytes that will be submitted
for compression. This estimate is useful in those
cases where fewer than the total number of bytes
are presented for analysis. If you do not specify
the DCX$C_EST_BYTES item code, DCX sub-
mits for compression the same number of bytes
that was presented for analysis. Note that you
may specify DCX$C_EST_RECORDS or DCX
$C_EST_BYTES, or both.

DCX$C_EST_RECORDS A longword value containing your estimate of
the total number of data records that will be sub-
mitted for compression. This estimate is useful in
those cases where fewer than the total number of
records are presented for analysis. If you do not
specify the DCX$C_EST_RECORDS item code,
DCX submits for compression the same number
of bytes that was presented for analysis.

DCX$C_LIST Address of an array of 2* n+1 longwords. The
first longword in the array contains the value 2*
n+1. The remaining longwords are paired; there
are n pairs. The first member of the pair is an item
code, and the second member of the pair is the
address of its corresponding item value. The DCX
$C_LIST item code allows you to construct an ar-
ray of item-code and item-value pairs and then to
pass the entire array to DCX$ANALYZE_INIT.
This is useful when your language has difficulty
interpreting variable-length argument lists. Note
that the DCX$C_LIST item code may be speci-
fied, in a single call, alone or together with any of
the other item-code and item-value pairs.

DCX$C_ONE_PASS A Boolean variable. If bit <0> is true (equals 1),
you make a binding request that DCX make only
one pass over the data to be analyzed. If bit <0>
is false (equals 0) or if the DCX$C_ONE_PASS
item code is not specified, DCX may make mul-
tiple passes over the data, as required. Typically,
DCX makes one pass.

Description
The DCX$ANALYZE_INIT routine initializes the context area for a statistical analysis of the da-
ta records to be compressed. The first (and typically the only) argument passed to DCX$ANA-
LYZE_INIT is an integer variable to contain the context value. The DCX facility assigns a value to
the context variable and associates the value with the created work area. Each time you want a record
analyzed in that area, specify the associated context variable. You can analyze two or more files at

107

Chapter 7. Data Compression/Expansion (DCX) Routines

once by creating a different work area for each file, giving each area a different context variable, and
analyzing the records of each file in the appropriate work area.

Condition Values Returned
DCX$_INVITEM

Error; invalid item code. The number of arguments specified in the call was incorrect (this num-
ber should be odd), or an unknown item code was specified.

DCX$_NORMAL

Normal successful completion.

This routine also returns any condition values returned by LIB$GET_VM.

DCX$COMPRESS_DATA
Compress a Data Record — The DCX$COMPRESS_DATA routine compresses a data record. Call
this routine for each data record to be compressed.

Format
DCX$COMPRESS_DATA context ,in_rec ,out_rec [,out_length]

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. Most utility routines return a condition value in R0. Condition values that
this routine can return are listed under Condition Values Returned.

Arguments
context

OpenVMS usage: context
type: longword (unsigned)
access: read only
mechanism: by reference

Value identifying the data stream that DCX$COMPRESS_DATA compresses. The context argu-
ment is the address of a longword containing this value. DCX$COMPRESS_INIT initializes the val-
ue; you should not modify it. You can define multiple context arguments to identify multiple data
streams that are processed simultaneously.

in_rec

OpenVMS usage: char_string

108

Chapter 7. Data Compression/Expansion (DCX) Routines

type: character string
access: read only
mechanism: by descriptor

Data record to be compressed. The in_rec argument is the address of the descriptor of the data
record string.

out_rec

OpenVMS usage: char_string
type: character string
access: write only
mechanism: by descriptor

Data record that has been compressed. The out_rec argument is the address of the descriptor of the
compressed record that DCX$COMPRESS_DATA returns.

out_length

OpenVMS usage: word_signed
type: word integer (signed)
access: write only
mechanism: by reference

Length (in bytes) of the compressed data record. The out_length argument is the address of a
word into which DCX$COMPRESS_DATA returns the length of the compressed data record.

Description
The DCX$COMPRESS_DATA routine compresses a data record. Call this routine for each data
record to be compressed. As you compress each record, write the compressed record to the file con-
taining the compression/expansion map. For each record, write the length of the record and substring
string containing the record to the same file. See the COMPRESS DATA section in Example 7.1.

Condition Values Returned
DCX$_INVCTX

Error. The context variable is invalid, or the context area is invalid or corrupted. This may be
caused by a failure to call the appropriate routine to initialize the context variable or by an appli-
cation program error.

DCX$_INVDATA

Error. You specified the item value DCX$C_BOUNDED in the DCX$ANALYZE_INIT routine
and attempted to compress a data record (using DCX$COMPRESS_DATA) that was not present-
ed for analysis (using DCX$ANALYZE_DATA). Specifying the DCX$C_BOUNDED item val-
ue means that you must analyze all data records that are to be compressed.

DCX$_INVMAP

Error; invalid map. The map argument was not specified correctly in the DCX$ANALYZE_INIT
routine or the context area is invalid.

109

Chapter 7. Data Compression/Expansion (DCX) Routines

DCX$_NORMAL

Normal successful completion.

DCX$_TRUNC

Error. The compressed data record has been truncated because the out_rec descriptor did not
specify enough memory to accommodate the record.

This routine also returns any condition values returned by LIB$ANALYZE_SDESC_R2 and LIB
$SCOPY_R_DX.

DCX$COMPRESS_DONE
Specify Compression Complete — The DCX$COMPRESS_DONE routine deletes the context area
and sets the context variable to zero.

Format
DCX$COMPRESS_DONE context

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. Most utility routines return a condition value in R0. Condition values that
this routine can return are listed under Condition Values Returned.

Argument
context

OpenVMS usage: context
type: longword (unsigned)
access: write only
mechanism: by reference

Value identifying the data stream that DCX$COMPRESS_DONE deletes. The context argument
is the address of a longword containing this value. DCX$COMPRESS_INIT writes the value into the
context argument; you should not modify its value. You can define multiple context arguments
to identify multiple data streams that are processed simultaneously.

Description
The DCX$COMPRESS_DONE routine deletes the context area and sets the context variable to ze-
ro, undoing the work of the DCX$COMPRESS_INIT routine. Call DCX$COMPRESS_DONE when
all data records have been compressed (using DCX$COMPRESS_DATA). After calling DCX$COM-
PRESS_DONE, call LIB$FREE_VM to free the virtual memory that DCX$MAKE_MAP used for the
compression/expansion function.

110

Chapter 7. Data Compression/Expansion (DCX) Routines

Condition Values Returned
DCX$_INVCTX

Error. The context variable is invalid or the context area is invalid or corrupted. This may be
caused by a failure to call the appropriate routine to initialize the context variable or by an appli-
cation program error.

DCX$_NORMAL

Normal successful completion.

This routine also returns any condition values returned by LIB$FREE_VM.

DCX$COMPRESS_INIT
Initialize Compression Context — The DCX$COMPRESS_INIT routine initializes the context area
for the compression of data records.

Format
DCX$COMPRESS_INIT context ,map

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. Most utility routines return a condition value in R0. Condition values that
this routine can return are listed under Condition Values Returned.

Arguments
context

OpenVMS usage: context
type: longword (unsigned)
access: write only
mechanism: by reference

Value identifying the data stream that DCX$COMPRESS_INIT initializes. The context argument
is the address of a longword containing this value. You should not modify the context value after
DCX$COMPRESS_INIT initializes it. You can define multiple context arguments to identify mul-
tiple data streams that are processed simultaneously.

map

OpenVMS usage: address
type: longword (unsigned)

111

Chapter 7. Data Compression/Expansion (DCX) Routines

access: read only
mechanism: by reference

The function created by DCX$MAKE_MAP. The map argument is the address of the compres-
sion/expansion function's virtual address.

The map argument must remain at this address until data compression is completed and the context is
deleted by means of a call to DCX$COMPRESS_DONE.

Description
The DCX$COMPRESS_INIT routine initializes the context area for the compression of data records.

Call the DCX$COMPRESS_INIT routine after calling the DCX$ANALYZE_DONE routine.

Condition Values Returned
DCX$_INVMAP

Error; invalid map. The map argument was not specified correctly, or the context area is invalid.

DCX$_NORMAL

Normal successful completion.

This routine also returns any condition values returned by LIB$GET_VM and LIB$FREE_VM.

DCX$EXPAND_DATA
Expand a Compressed Data Record — The DCX$EXPAND_DATA routine expands (or restores) a
compressed data record to its original state.

Format
DCX$EXPAND_DATA context ,in_rec ,out_rec [,out_length]

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. Most utility routines return a condition value in R0. Condition values that
this routine can return are listed under Condition Values Returned.

Arguments
context

OpenVMS usage: context
type: longword (unsigned)

112

Chapter 7. Data Compression/Expansion (DCX) Routines

access: read only
mechanism: by reference

Value identifying the data stream that DCX$EXPAND_DATA expands. The context argument
is the address of a longword containing this value. DCX$EXPAND_INIT initializes this value; you
should not modify it. You can define multiple context arguments to identify multiple data streams
that are processed simultaneously.

in_rec

OpenVMS usage: char_string
type: character string
access: read only
mechanism: by descriptor

Data record to be expanded. The in_rec argument is the address of the descriptor of the data record
string.

out_rec

OpenVMS usage: char_string
type: character string
access: write only
mechanism: by descriptor

Data record that has been expanded. The out_rec argument is the address of the descriptor of the
expanded record returned by DCX$EXPAND_DATA.

out_length

OpenVMS usage: word_signed
type: word integer (signed)
access: write only
mechanism: by reference

Length (in bytes) of the expanded data record. The out_length argument is the address of a word
into which DCX$EXPAND_DATA returns the length of the expanded data record.

Description
The DCX$EXPAND_DATA routine expands (or restores) a compressed data record to its original
state. Call this routine for each data record to be expanded.

Condition Values Returned
DCX$_INVCTX

Error. The context variable is invalid, or the context area is invalid or corrupted. This may be
caused by a failure to call the appropriate routine to initialize the context variable or by an appli-
cation program error.

113

Chapter 7. Data Compression/Expansion (DCX) Routines

DCX$_INVDATA

Error. A compressed data record is invalid (probably truncated) and therefore cannot be expanded.

DCX$_INVMAP

Error; invalid map. The map argument was not specified correctly, or the context area is invalid.

DCX$_NORMAL

Normal successful completion.

DCX$_TRUNC

Warning. The expanded data record has been truncated because the out_rec descriptor did not
specify enough memory to accommodate the record.

This routine also returns any condition values returned by LIB$ANALYZE_SDESC_R2 and LIB
$SCOPY_R_DX.

DCX$EXPAND_DONE
Specify Expansion Complete — The DCX$EXPAND_DONE routine deletes the context area and sets
the context variable to zero.

Format
DCX$EXPAND_DONE context

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. Most utility routines return a condition value in R0. Condition values that
this routine can return are listed under Condition Values Returned.

Argument
context

OpenVMS usage: context
type: longword (unsigned)
access: write only
mechanism: by reference

Value identifying the data stream that DCX$EXPAND_DONE deletes. The context argument is
the address of a longword containing this value. DCX$EXPAND_INIT initializes this value; you
should not modify it. You can define multiple context arguments to identify multiple data streams
that are processed simultaneously.

114

Chapter 7. Data Compression/Expansion (DCX) Routines

Description

The DCX$EXPAND_DONE routine deletes the context area and sets the context variable to zero,
thus undoing the work of the DCX$EXPAND_INIT routine. Call DCX$EXPAND_DONE when all
data records have been expanded (using DCX$EXPAND_DATA).

Condition Values Returned

DCX$_INVCTX

Error. The context variable is invalid, or the context area is invalid or corrupted. This may be
caused by a failure to call the appropriate routine to initialize the context variable or by an appli-
cation program error.

DCX$NORMAL

Normal successful completion.

This routine also returns any condition values returned by LIB$FREE_VM.

DCX$EXPAND_INIT
Initialize Expansion Context — The DCX$EXPAND_INIT routine initializes the context area for the
expansion of data records.

Format
DCX$EXPAND_INIT context ,map

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. Most utility routines return a condition value in R0. Condition values that
this routine can return are listed under Condition Values Returned.

Arguments

context

OpenVMS usage: context
type: longword (unsigned)
access: write only
mechanism: by reference

Value identifying the data stream that DCX$EXPAND_INIT initializes. The context argument is
the address of a longword containing this value. After DCX$EXPAND_INIT initializes this con-

115

Chapter 7. Data Compression/Expansion (DCX) Routines

text value, you should not modify it. You can define multiple context arguments to identify mul-
tiple data streams that are processed simultaneously.

map

OpenVMS usage: address
type: longword (unsigned)
access: read only
mechanism: by reference

Compression/expansion function (created by DCX$MAKE_MAP). The map argument is the address
of the compression/expansion function's virtual address.

The map argument must remain at this address until data expansion is completed and context is
deleted by means of a call to DCX$EXPAND_DONE.

Description
The DCX$EXPAND_INIT routine initializes the context area for the expansion of data records.

Call the DCX$EXPAND_INIT routine as the first step in the expansion (or restoration) of compressed
data records to their original state.

Before you call DCX$EXPAND_INIT, read the length of the compressed file from the compres-
sion/expansion function (the map). Invoke LIB$GET_VM to get the necessary amount of storage for
the function. LIB$GET_VM returns the address of the first byte of the storage area.

Condition Values Returned
DCX$_INVMAP

Error; invalid map. The map argument was not specified correctly, or the context area is invalid.

DCX$_NORMAL

Normal successful completion.

This routine also returns any condition values returned by LIB$GET_VM.

DCX$MAKE_MAP
Compute the Compression/Expansion Function — The DCX$MAKE_MAP routine uses the statistical
information gathered by DCX$ANALYZE_DATA to compute the compression/expansion function.

Format
DCX$MAKE_MAP context ,map_addr [,map_size]

Returns

OpenVMS usage: cond_value
type: longword (unsigned)

116

Chapter 7. Data Compression/Expansion (DCX) Routines

access: write only
mechanism: by value

Longword condition value. Most utility routines return a condition value in R0. Condition values that
this routine can return are listed under Condition Values Returned.

Arguments
context

OpenVMS usage: context
type: longword (unsigned)
access: write only
mechanism: by reference

Value identifying the data stream that DCX$MAKE_MAP maps. The context argument is the ad-
dress of a longword containing this value. DCX$ANALYZE_INIT initializes this value; you should
not modify it. You can define multiple context arguments to identify multiple data streams that are
processed simultaneously.

map_addr

OpenVMS usage: address
type: longword (unsigned)
access: write only
mechanism: by reference

Starting address of the compression/expansion function. The map_addr argument is the address of
a longword into which DCX$MAKE_MAP stores the virtual address of the compression/expansion
function.

map_size

OpenVMS usage: longword_signed
type: longword (unsigned)
access: write only
mechanism: by reference

Length of the compression/expansion function. The map_size argument is the address of the long-
word into which DCX$MAKE_MAP writes the length of the compression/expansion function.

Description
The DCX$MAKE_MAP routine uses the statistical information gathered by DCX$ANALYZE_DA-
TA to compute the compression/expansion function. In essence, this map is the algorithm used to
shorten (or compress) the original data records as well as to expand the compressed records to their
original form.

The map must be available in memory when any data compression or expansion takes place; the ad-
dress of the map is passed as an argument to the DCX$COMPRESS_INIT and DCX$EXPAND_INIT
routines, which initialize the data compression and expansion procedures, respectively.

117

Chapter 7. Data Compression/Expansion (DCX) Routines

The map is stored with the compressed data records, because the compressed data records are indeci-
pherable without the map. When compressed data records have been expanded to their original state
and no further compression is desired, you should delete the map using the LIB$FREE_VM routine.

DCX requires that you submit data records for analysis and then call the DCX$MAKE_MAP routine.
Upon receiving the DCX$_AGAIN status code, you must again submit data records for analysis (in
the same order) and call DCX$MAKE_MAP again; on the second iteration, DCX$MAKE_MAP re-
turns the DCX$_NORMAL status code.

Condition Values Returned
DCX$_AGAIN

Informational. The map has not been created and the map_addr and map_size arguments
have not been written because further analysis is required. The data records must be analyzed (us-
ing DCX$ANALYZE_DATA) again, and DCX$MAKE_MAP must be called again before DCX
$MAKE_MAP will create the map and return the DCX$_NORMAL status code.

DCX$_INVCTX

Error. The context variable is invalid, or the context area is invalid or corrupted. This may be
caused by a failure to call the appropriate routine to initialize the context variable or by an appli-
cation program error.

DCX$_NORMAL

Normal successful completion.

This routine also returns any condition values returned by LIB$GET_VM and LIB$FREE_VM.

118

Chapter 8. DEC Text Processing
Utility (DECTPU) Routines
This chapter describes callable DEC Text Processing Utility (DECTPU) routines. It describes the pur-
pose of the DECTPU callable routines, the parameters for the routine call, and the primary status re-
turns. The parameter in the call syntax represents the object that you pass to a DECTPU routine. Each
parameter description lists the data type and the passing mechanism for the object. The data types are
standard OpenVMS data types. The passing mechanism indicates how the parameter list is interpret-
ed.

This chapter is written for system programmers who are familiar with the:

• OpenVMS Calling Standard

• OpenVMS Run-Time Library

• Precise manner in which data types are represented on an Alpha processor

• Method for calling routines written in a language other than the one you are using for the main
program

8.1. Introduction to DECTPU Routines
Callable DECTPU routines make DECTPU accessible from within other languages and applications
supported by OpenVMS. DECTPU can be called from a program written in any language that gen-
erates calls using the OpenVMS Calling Standard. You can also call DECTPU from OpenVMS utili-
ties, for example, the Mail utility. Callable DECTPU lets you perform text-processing functions with-
in your program.

Callable DECTPU consists of a set of callable routines that resides in the DECTPU shareable images.
You access callable DECTPU by linking against the shareable images, which include the callable in-
terface routine names and constants. As with the DCL-level DECTPU interface, you can use files for
input to and output from callable DECTPU. You can also write your own routines for processing file
input, output, and messages.

The calling program must ensure that parameters passed to a called procedure, in this case DECTPU,
are of the type and form that the DECTPU procedure accepts.

The DECTPU routines described in this chapter return condition values indicating the routine's com-
pletion status. When comparing a returned condition value with a test value, you should use the LIB
$MATCH routine from the Run-Time Library. Do not test the condition value as if it were a simple in-
teger.

8.1.1. Interfaces to Callable DECTPU
There are two interfaces you can use to access callable DECTPU: the simplified callable interface and
the full callable interface.

8.1.1.1. Simplified Callable Interface
The easiest way to use callable DECTPU is to use the simplified callable interface. DECTPU provides
two alternative routines in its simplified callable interface. These routines in turn call additional rou-
tines that do the following:

119

Chapter 8. DEC Text Processing Utility (DECTPU) Routines

• Initialize the editor

• Provide the editor with the parameters necessary for its operation

• Control the editing session

• Perform error handling

When using the simplified callable interface, you can use the TPU$TPU routine to specify a command
line for DECTPU, or you can call the TPU$EDIT routine to specify an input file and an output file.
TPU$EDIT builds a command string that is then passed to the TPU$TPU routine. These two routines
are described in detail in Section 8.2.

If your application parses information that is not related to the operation of DECTPU, make sure the
application obtains and uses all non-DECTPU parse information before the application calls the sim-
plified callable interface. You must do this because the simplified callable interface destroys all parse
information obtained and stored before the simplified callable interface was called.

8.1.1.2. Full Callable Interface
To use the full callable interface, have your program access the main callable DECTPU routines di-
rectly. These routines do the following:

• Initialize the editor (TPU$INTIALIZE)

• Execute DECTPU procedures (TPU$EXECUTE_INIFILE and TPU$EXECUTE_COMMAND)

• Give control to the editor (TPU$CONTROL)

• Terminate the editing session (TPU$CLEANUP)

When using the full callable interface, you must provide values for certain parameters. In some cases,
the values you supply are actually addresses for additional routines. For example, when you call TPU
$INITIALIZE, you must include the address of a routine that specifies initialization options. Depend-
ing on your particular application, you might also have to write additional routines. For example, you
might need to write routines for performing file operations, handling errors, and otherwise controlling
the editing session. Callable DECTPU provides utility routines that can perform some of these tasks
for you. These utility routines can do the following:

• Parse the command line and build the item list used for initializing the editor

• Handle file operations

• Output error messages

• Handle conditions

If your application calls the DECwindows version of DECTPU, the application can call TPU
$INITIALIZE only once.

Various topics relating to the full callable interface are discussed in the following sections:

• Section 8.3 begins by briefly describing the interface. However, most of this section describes the
main callable DECTPU routines (TPU$INITIALIZE, TPU$EXECUTE_INIFILE, TPU$CON-
TROL, TPU$EXECUTE_COMMAND, and TPU$CLEANUP).

• Section 8.3.2 discusses additional routines that DECTPU provides for use with the full callable in-
terface.

120

Chapter 8. DEC Text Processing Utility (DECTPU) Routines

• Section 8.3.3 defines the requirements for routines that you can write for use with the full callable
interface.

The full callable interface consists of the main callable DECTPU routines and the DECTPU utility
routines.

8.1.2. The DECTPU Shareable Image
Whether you use the simplified callable interface or the full callable interface, you access callable
DECTPU by linking against the DECTPU shareable image. This image contains the routine names
and constants available for use by an application. In addition, the shareable image provides the fol-
lowing symbols:

• TPU$GL_VERSION—The version of the shareable image

• TPU$GL_UPDATE—The update number of the shareable image

• TPU$_FACILITY—The DECTPU facility code

For more information about how to link to the shareable image TPUSHR.EXE, refer to the OpenVMS
Programming Environment Manual.1

8.1.3. Passing Parameters to Callable DECTPU Rou-
tines
Parameters are passed to callable DECTPU routines by reference or by descriptor. When the parame-
ter is a routine, the parameter is passed by descriptor as a bound procedure value (BPV) data type.

A bound procedure value is a two-longword entity in which the first longword contains a procedure
value and the second longword is the environment value (see the following figure). The environment
value is determined in a language-specific manner when the original bound procedure value is gener-
ated. When the bound procedure is called, the calling program loads the second longword into R1.

8.1.4. Error Handling
When you use the simplified callable interface, DECTPU establishes its own condition handler, TPU
$HANDLER, to handle all errors. When you use the full callable interface, there are two ways to han-
dle errors:

• You can use the DECTPU default condition handler, TPU$HANDLER.

• You can write your own condition handler to process some of the errors and call TPU$HANDLER
to process the rest.

The default condition handler, TPU$HANDLER, is described in Section 8.7. Information about writ-
ing your own condition handler can be found in the VSI OpenVMS Programming Concepts Manual.

1This manual has been archived but is available on the OpenVMS Documentation CD-ROM.

121

Chapter 8. DEC Text Processing Utility (DECTPU) Routines

8.1.5. Return Values
All DECTPU condition codes are declared as universal symbols. Therefore, you automatically have
access to these symbols when you link your program to the shareable image. The condition code val-
ues are returned in R0. Return codes for DECTPU can be found in the DEC Text Processing Utility
Reference Manual. DECTPU return codes and their messages are accessible from the Help/Message
facility.

Additional information about condition codes is provided in the descriptions of callable DECTPU
routines found in subsequent sections. This information is provided under the heading Condition Val-
ues Returned and indicates the values that are returned when the default condition handler is estab-
lished.

8.2. Simplified Callable Interface
The DECTPU simplified callable interface consists of two routines: TPU$TPU and TPU$EDIT. These
entry points to DECTPU are useful for the following kinds of applications:

• Those able to specify all the editing parameters on a single command line

• Those that need to specify only an input file and an output file

If your application parses information that is not related to the operation of DECTPU, make sure the
application obtains and uses all non-DECTPU parse information before the application calls the sim-
plified callable interface. You must do this because the simplified callable interface destroys all parse
information obtained and stored before the simplified callable interface was called.

The following example calls TPU$EDIT to edit text in the file INFILE.DAT and writes the result to
OUTFILE.DAT. Note that the parameters to TPU$EDIT must be passed by descriptor.

/*
 Sample C program that calls DECTPU. This program uses TPU$EDIT to
 provide the names of the input and output files
*/

#include descrip

int return_status;

static $DESCRIPTOR (input_file, "infile.dat");
static $DESCRIPTOR (output_file, "outfile.dat");

main (argc, argv)
 int argc;
 char *argv[];

 {
 /*
 Call DECTPU to edit text in "infile.dat" and write the result
 to "outfile.dat". Return the condition code from DECTPU as the
 status of this program.
 */

 return_status = TPU$EDIT (&input_file, &output_file);
 exit (return_status);
 }

122

Chapter 8. DEC Text Processing Utility (DECTPU) Routines

The next example performs the same task as the previous example. This time, the TPU$TPU entry
point is used. TPU$TPU accepts a single argument which is a command string starting with the verb
TPU. The command string can contain all of the qualifiers that are accepted by the EDIT/TPU com-
mand.

/*
 Sample C program that calls DECTPU. This program uses TPU$TPU and
 specifies a command string
*/

#include descrip

int return_status;

static $DESCRIPTOR (command_prefix, "TPU/NOJOURNAL/NOCOMMAND/OUTPUT=");
static $DESCRIPTOR (input_file, "infile.dat");
static $DESCRIPTOR (output_file, "outfile.dat");
static $DESCRIPTOR (space_desc, " ");

char command_line [100];
static $DESCRIPTOR (command_desc, command_line);

main (argc, argv)
 int argc;
 char *argv[];

 {
 /*
 Build the command line for DECTPU. Note that the command verb
 is TPU instead of EDIT/TPU. The string we construct in the
 buffer command_line will be
 "TPU/NOJOURNAL/NOCOMMAND/OUTPUT=outfile.dat infile.dat"
 */

 return_status = STR$CONCAT (&command_desc,
 &command_prefix,
 &output_file,
 &space_desc,
 &input_file);
 if (! return_status)
 exit (return_status);

 /*
 Now call DECTPU to edit the file
 */
 return_status = TPU$TPU (&command_desc);
 exit (return_status);
 }

The following section contains detailed information about the routines in the full DECTPU callable
interface. If you use the simplified interface, that interface calls these routines for you. If you use the
full interface, your code calls these routines directly.

8.3. Full Callable Interface
 The DECTPU full callable interface consists of a set of routines that you can use to perform the fol-
lowing tasks:

123

Chapter 8. DEC Text Processing Utility (DECTPU) Routines

• Specify initialization parameters

• Control file input/output

• Specify commands to be executed by the editor

• Control how conditions are handled

When you use the simplified callable interface, these operations are performed automatically. The in-
dividual DECTPU routines that perform these functions can be called from a user-written program
and are known as the DECTPU full callable interface. This interface has two sets of routines: the main
DECTPU callable routines and the DECTPU utility routines. These DECTPU routines, as well as
your own routines that pass parameters to the DECTPU routines, are the mechanism that your applica-
tion uses to control DECTPU.

The following sections describe the main callable routines, how parameters are passed to these rou-
tines, the DECTPU utility routines, and the requirements of user-written routines.

8.3.1. Main Callable DECTPU Utility Routines
The following callable DECTPU routines are described in this chapter:

• TPU$INITIALIZE

• TPU$EXECUTE_INIFILE

• TPU$CONTROL

• TPU$EXECUTE_COMMAND

• TPU$CLEANUP

Note

Before calling any of these routines, you must establish TPU$HANDLER or provide your own con-
dition handler. See the routine description of TPU$HANDLER in this chapter and the VSI OpenVMS
Calling Standard for information about establishing a condition handler.

8.3.2. Other DECTPU Utility Routines
The full callable interface includes several utility routines for which you can provide parameters. De-
pending on your application, you might be able to use these routines rather than write your own rou-
tines. These DECTPU utility routines and their descriptions follow:

• TPU$CLIPARSE—Parses a command line and builds the item list for TPU$INITIALIZE

• TPU$PARSEINFO—Parses a command and builds an item list for TPU$INITIALIZE

• TPU$FILEIO—The default file I/O routine

• TPU$MESSAGE—Writes error messages and strings using the built-in procedure MESSAGE

• TPU$HANDLER—The default condition handler

• TPU$CLOSE_TERMINAL—Closes the DECTPU channel to the terminal (and its associated
mailbox) for the duration of a CALL_USER routine

124

Chapter 8. DEC Text Processing Utility (DECTPU) Routines

• TPU$SPECIFY_ASYNC_ACTION—Specifies an asynchronous event for interrupting the TPU
$CONTROL routine

• TPU$TRIGGER_ASYNC_ACTION—Interrupts the TPU$CONTROL routine on a specified
asynchronous event

Note that TPU$CLIPARSE and TPU$PARSEINFO destroy the context maintained by the CLI$ rou-
tines for parsing commands.

8.3.3. User-Written Routines
This section defines the requirements for user-written routines. When these routines are passed to
DECTPU, they must be passed as bound procedure values. (See Section 8.1.3 for a description of
bound procedure values.) Depending on your application, you might have to write one or all of the
following routines:

• Routine for initialization callback—This is a routine that TPU$INITIALIZE calls to obtain values
for initialization parameters. The initialization parameters are returned as an item list.

• Routine for file I/O—This is a routine that handles file operations. Instead of writing your own file
I/O routine, you can use the TPU$FILEIO utility routine. DECTPU does not use this routine for
journal file operations or for operations performed by the built-in procedure SAVE.

• Routine for condition handling—This is a routine that handles error conditions. Instead of writing
your own condition handler, you can use the default condition handler, TPU$HANDLER.

• Routine for the built-in procedure CALL_USER—This is a routine that is called by the built-in
procedure CALL_USER. You can use this mechanism to cause your program to get control during
an editing session.

8.4. Using the DECTPU Routines: Examples
Example 8.1, Example 8.2, Example 8.3, and Example 8.4 use callable DECTPU. These examples are
included here for illustrative purposes only; VSI does not assume responsibility for supporting these
examples.

Example 8.1. Sample VAX BLISS Template for Callable DECTPU

MODULE file_io_example (MAIN = top_level,
 ADDRESSING_MODE (EXTERNAL = GENERAL)) =

BEGIN

FORWARD ROUTINE
 top_level, ! Main routine of this example
 tpu_init, ! Initialize TPU
 tpu_io; ! File I/O routine for TPU
!
! Declare the stream data structure passed to the file I/O routine
!
MACRO
 stream_file_id = 0, 0, 32, 0 % , ! File ID
 stream_rat = 6, 0, 8, 0 % , ! Record attributes
 stream_rfm = 7, 0, 8, 0 % , ! Record format
 stream_file_nm = 8, 0, 0, 0 % ; ! File name descriptor
!

125

Chapter 8. DEC Text Processing Utility (DECTPU) Routines

! Declare the routines that would actually do the I/O. These must be
 supplied
! in another module
!
EXTERNAL ROUTINE
 my_io_open, ! Routine to open a file
 my_io_close, ! Routine to close a file
 my_io_get_record, ! Routine to read a record
 my_io_put_record; ! Routine to write a record

!
! Declare the DECTPU routines
!
EXTERNAL ROUTINE
 tpu$fileio, ! DECTPU's internal file I/O routine
 tpu$handler, ! DECTPU's condition handler
 tpu$initialize, ! Initialize DECTPU
 tpu$execute_inifile, ! Execute the initial procedures
 tpu$execute_command, ! Execute a DECTPU statement
 tpu$control, ! Let user interact with DECTPU
 tpu$cleanup; ! Have DECTPU cleanup after itself
!
! Declare the DECTPU literals
!
EXTERNAL LITERAL
 tpu$k_close, ! File I/O operation codes
 tpu$k_close_delete,
 tpu$k_open,
 tpu$k_get,
 tpu$k_put,

 tpu$k_access, ! File access codes
 tpu$k_io,
 tpu$k_input,
 tpu$k_output,

 tpu$_calluser, ! Item list entry codes
 tpu$_fileio,
 tpu$_outputfile,
 tpu$_sectionfile,
 tpu$_commandfile,
 tpu$_filename,
 tpu$_journalfile,
 tpu$_options,

 tpu$m_recover, ! Mask for values in options bitmask
 tpu$m_journal,
 tpu$m_read,
 tpu$m_command,
 tpu$m_create,
 tpu$m_section,
 tpu$m_display,
 tpu$m_output,

 tpu$m_reset_terminal, ! Masks for cleanup bitmask
 tpu$m_kill_processes,
 tpu$m_delete_exith,
 tpu$m_last_time,

126

Chapter 8. DEC Text Processing Utility (DECTPU) Routines

 tpu$_nofileaccess, ! DECTPU status codes
 tpu$_openin,
 tpu$_inviocode,
 tpu$_failure,
 tpu$_closein,
 tpu$_closeout,
 tpu$_readerr,
 tpu$_writeerr,
 tpu$_success;

ROUTINE top_level =

 BEGIN
!++
! Main entry point of your program
!--
! Your_initialization_routine must be declared as a BPV

 LOCAL
 initialize_bpv: VECTOR [2],
 status,
 cleanup_flags;
 !
 ! First establish the condition handler
 !
 ENABLE
 tpu$handler ();
 !
 ! Initialize the editing session, passing TPU$INITIALIZE the address
 of
 ! the bound procedure value which defines the routine which DECTPU is
 ! to call to return the initialization item list
 !
 initialize_bpv [0] = tpu_init;
 initialize_bpv [1] = 0;
 tpu$initialize (initialize_bpv);
 !
 ! Call DECTPU to execute the contents of the command file, the debug
 file
 ! or the TPU$INIT_PROCEDURE from the section file.
 !
 tpu$execute_inifile();
 !
 ! Let DECTPU take over.
 !
 tpu$control();
 !
 ! Have DECTPU cleanup after itself
 !
 cleanup_flags = tpu$m_reset_terminal OR ! Reset the terminal
 tpu$m_kill_processes OR ! Delete Subprocesses
 tpu$m_delete_exith OR ! Delete the exit handler
 tpu$m_last_time; ! Last time calling the
 editor

 tpu$cleanup (cleanup_flags);

127

Chapter 8. DEC Text Processing Utility (DECTPU) Routines

 RETURN tpu$_success;

 END;
ROUTINE tpu_init =

 BEGIN

 !
 ! Allocate the storage block needed to pass the file I/O routine as a
 ! bound procedure variable as well as the bitmask for the
 initialization
 ! options
 !
 OWN
 file_io_bpv: VECTOR [2, LONG]
 INITIAL (TPU_IO, 0),
 options;
 !
 ! These macros define the file names passed to DECTPU
 !
 MACRO
 out_file = 'OUTPUT.TPU' % ,
 com_file = 'TPU$COMMAND' % ,
 sec_file = 'TPU$SECTION' % ,
 inp_file = 'FILE.TPU' % ;

 !
 ! Create the item list to pass to DECTPU. Each item list entry
 consists of
 ! two words which specify the size of the item and its code, the
 address of
 ! the buffer containing the data, and a longword to receive a result
 (always
 ! zero, since DECTPU does not return any result values in the item
 list)
 !
 ! +--------------------------------+
 ! | Item Code | Item Length |
 ! +----------------+---------------+
 ! | Buffer Address |
 ! +--------------------------------+
 ! | Return Address (always 0) |
 ! +--------------------------------+
 !
 ! Remember that the item list is always terminated with a longword
 containing
 ! a zero
 !
 BIND
 item_list = UPLIT BYTE (
 WORD (4), ! Options bitmask
 WORD (tpu$_options),
 LONG (options),
 LONG (0),

 WORD (4), ! File I/O routine
 WORD (tpu$_fileio),

128

Chapter 8. DEC Text Processing Utility (DECTPU) Routines

 LONG (file_io_bpv),
 LONG (0),

 WORD (%CHARCOUNT (out_file)), ! Output file
 WORD (tpu$_outputfile),
 LONG (UPLIT (%ASCII out_file)),
 LONG (0),

 WORD (%CHARCOUNT (com_file)), ! Command file
 WORD (tpu$_commandfile),
 LONG (UPLIT (%ASCII com_file)),
 LONG (0),

 WORD (%CHARCOUNT (sec_file)), ! Section file
 WORD (tpu$_sectionfile),
 LONG (UPLIT (%ASCII sec_file)),
 LONG (0),

 WORD (%CHARCOUNT (inp_file)), ! Input file
 WORD (tpu$_filename),
 LONG (UPLIT (%ASCII inp_file)),
 LONG (0),

 LONG (0)); ! Terminating longword of 0
 !
 ! Initialize the options bitmask
 !
 options = tpu$m_display OR ! We have a display
 tpu$m_section OR ! We have a section file
 tpu$m_create OR ! Create a new file if one does
 not
 ! exist
 tpu$m_command OR ! We have a section file
 tpu$m_output; ! We supplied an output file
 spec

 !
 ! Return the item list as the value of this routine for DECTPU to
 interpret
 !
 RETURN item_list;

 END; ! End of routine tpu_init
ROUTINE tpu_io (p_opcode, stream: REF BLOCK [,byte], data) =
!
! This routine determines how to process a TPU I/O request
!
 BEGIN

 LOCAL
 status;
!
! Is this one of ours, or do we pass it to TPU's file I/O routines?
!
 IF (..p_opcode NEQ tpu$k_open) AND (.stream [stream_file_id] GTR 511)
 THEN
 RETURN tpu$fileio (.p_opcode, .stream, .data);

129

Chapter 8. DEC Text Processing Utility (DECTPU) Routines

!
! Either we're opening the file, or we know it's one of ours
! Call the appropriate routine (not shown in this example)
!
 SELECTONE ..p_opcode OF
 SET

 [tpu$k_open]:
 status = my_io_open (.stream, .data);

 [tpuk_close, tpuk_close_delete]:
 status = my_io_close (.stream, .data);

 [tpu$k_get]:
 status = my_io_get_record (.stream, .data);

 [tpu$k_put]:
 status = my_io_put_record (.stream, .data);

 [OTHERWISE]:
 status = tpu$_failure;

 TES;

 RETURN .status;

 END; ! End of routine TPU_IO

END ! End Module
 file_io_example

ELUDOM

Example 8.2 shows normal DECTPU setup in VSI Fortran.

Example 8.2. Normal DECTPU Setup in VSI Fortran

C A sample Fortran program that calls DECTPU to act
C normally, using the programmable interface.
C
C IMPLICIT NONE

 INTEGER*4 CLEAN_OPT !options for clean up routine
 INTEGER*4 STATUS !return status from DECTPU
 routines
 INTEGER*4 BPV_PARSE(2) !set up a bound procedure value
 INTEGER*4 LOC_PARSE !a local function call
C declare the DECTPU functions

 INTEGER*4 TPU$CONTROL
 INTEGER*4 TPU$CLEANUP
 INTEGER*4 TPU$EXECUTE_INIFILE
 INTEGER*4 TPU$INITIALIZE
 INTEGER*4 TPU$CLIPARSE
C declare a local copy to hold the values of DECTPU cleanup
 variables

 INTEGER*4 RESET_TERMINAL

130

Chapter 8. DEC Text Processing Utility (DECTPU) Routines

 INTEGER*4 DELETE_JOURNAL
 INTEGER*4 DELETE_BUFFERS,DELETE_WINDOWS
 INTEGER*4 DELETE_EXITH,EXECUTE_PROC
 INTEGER*4 PRUNE_CACHE,KILL_PROCESSES
 INTEGER*4 CLOSE_SECTION
C declare the DECTPU functions used as external

 EXTERNAL TPU$HANDLER
 EXTERNAL TPU$CLIPARSE

 EXTERNAL TPU$_SUCCESS !external error message

 EXTERNAL LOC_PARSE !user supplied routine to
C call TPUCLIPARSE and setup
C declare the DECTPU cleanup variables as external these are the
C external literals that hold the value of the options

 EXTERNAL TPU$M_RESET_TERMINAL
 EXTERNAL TPU$M_DELETE_JOURNAL
 EXTERNAL TPU$M_DELETE_BUFFERS,TPU$M_DELETE_WINDOWS
 EXTERNAL TPUM_DELETE_EXITH,TPUM_EXECUTE_PROC
 EXTERNAL TPUM_PRUNE_CACHE,TPUM_KILL_PROCESSES

100 CALL LIB$ESTABLISH (TPU$HANDLER) !establish the condition
 handler
C set up the bound procedure value for the call to TPU$INITIALIZE

 BPV_PARSE(1) = %LOC(LOC_PARSE)
 BPV_PARSE(2) = 0
C call the DECTPU initialization routine to do some set up work

 STATUS = TPU$INITIALIZE (BPV_PARSE)

C Check the status if it is not a success then signal the error

 IF (STATUS .NE. %LOC (TPU$_SUCCESS)) THEN

 CALL LIB$SIGNAL(%VAL(STATUS))
 GOTO 9999

 ENDIF
C execute the TPU$_ init files and also a command file if it
C was specified in the command line call to DECTPU

 STATUS = TPU$EXECUTE_INIFILE ()

 IF (STATUS .NE. %LOC (TPU$_SUCCESS)) THEN !make sure everything
 is ok

 CALL LIB$SIGNAL(%VAL(STATUS))
 GOTO 9999

 ENDIF
C invoke the editor as it normally would appear

 STATUS = TPU$CONTROL () !call the DECTPU editor

131

Chapter 8. DEC Text Processing Utility (DECTPU) Routines

 IF (STATUS .NE. %LOC (TPU$_SUCCESS)) THEN !make sure everything
 is ok

 CALL LIB$SIGNAL(%VAL(STATUS))
C GOTO 9999
 ENDIF
C Get the value of the option from the external literals. In Fortran
 you
C cannot use external literals directly so you must first get the
 value
C of the literal from its external location. Here we are getting
 the
C values of the options that we want to use in the call to TPU
$CLEANUP.

 DELETE_JOURNAL = %LOC (TPU$M_DELETE_JOURNAL)
 DELETE_EXITH = %LOC (TPU$M_DELETE_EXITH)
 DELETE_BUFFERS = %LOC (TPU$M_DELETE_BUFFERS)
 DELETE_WINDOWS = %LOC (TPU$M_DELETE_WINDOWS)
 EXECUTE_PROC = %LOC (TPU$M_EXECUTE_PROC)
 RESET_TERMINAL = %LOC (TPU$M_RESET_TERMINAL)
 KILL_PROCESSES = %LOC (TPU$M_KILL_PROCESSES)
 CLOSE_SECTION = %LOC (TPU$M_CLOSE_SECTION)
C Now that we have the local copies of the variables we can do the
C logical OR to set the multiple options that we need.

 CLEAN_OPT = DELETE_JOURNAL .OR. DELETE_EXITH .OR.
 1 DELETE_BUFFERS .OR. DELETE_WINDOWS .OR. EXECUTE_PROC
 1 .OR. RESET_TERMINAL .OR. KILL_PROCESSES .OR. CLOSE_SECTION

C do the necessary clean up
C TPU$CLEANUP wants the address of the flags as the parameter so
C pass the %LOC of CLEAN_OPT which is the address of the variable

 STATUS = TPU$CLEANUP (%LOC (CLEAN_OPT))

 IF (STATUS .NE. %LOC (TPU$_SUCCESS)) THEN

 CALL LIB$SIGNAL(%VAL(STATUS))

 ENDIF

9999 CALL LIB$REVERT !go back to normal processing -- handlers

 STOP
 END
C
C
 INTEGER*4 FUNCTION LOC_PARSE

 INTEGER*4 BPV(2) !A local bound procedure value

 CHARACTER*12 EDIT_COMM !A command line to send to TPU
$CLIPARSE
C Declare the DECTPU functions used

 INTEGER*4 TPU$FILEIO
 INTEGER*4 TPU$CLIPARSE

132

Chapter 8. DEC Text Processing Utility (DECTPU) Routines

C Declare this routine as external because it is never called
 directly and
C we need to tell Fortran that it is a function and not a variable

 EXTERNAL TPU$FILEIO

 BPV(1) = %LOC(TPU$FILEIO) !set up the bound procedure value
 BPV(2) = 0

 EDIT_COMM(1:12) = 'TPU TEST.TXT'
C parse the command line and build the item list for TPU$INITIALIZE
9999 LOC_PARSE = TPU$CLIPARSE (EDIT_COMM, BPV , 0)

 RETURN
 END

Example 8.3 shows how to build a callback item list with VSI Fortran.

Example 8.3. Building a Callback Item List with VSI Fortran

 PROGRAM TEST_TPU
C
 IMPLICIT NONE
C
C Define the expected DECTPU return statuses
C
 EXTERNAL TPU$_SUCCESS
 EXTERNAL TPU$_QUITTING
 EXTERNAL TPU$_EXITING
C
C Declare the DECTPU routines and symbols used
C
 EXTERNAL TPU$M_DELETE_CONTEXT
 EXTERNAL TPU$HANDLER
 INTEGER*4 TPU$M_DELETE_CONTEXT
 INTEGER*4 TPU$INITIALIZE
 INTEGER*4 TPU$EXECUTE_INIFILE
 INTEGER*4 TPU$CONTROL
 INTEGER*4 TPU$CLEANUP
C
C Use LIB$MATCH_COND to compare condition codes
C
 INTEGER*4 LIB$MATCH_COND
C
C Declare the external callback routine
C
 EXTERNAL TPU_STARTUP ! the DECTPU set-up function
 INTEGER*4 TPU_STARTUP

 INTEGER*4 BPV(2) ! Set up a bound procedure value
C
C Declare the functions used for working with the condition handler
C
 INTEGER*4 LIB$ESTABLISH
 INTEGER*4 LIB$REVERT
C
C Local Flags and Indices
C

133

Chapter 8. DEC Text Processing Utility (DECTPU) Routines

 INTEGER*4 CLEANUP_FLAG ! flag(s) for DECTPU cleanup
 INTEGER*4 RET_STATUS
 INTEGER*4 MATCH_STATUS
C
C Initializations
C
 RET_STATUS = 0
 CLEANUP_FLAG = %LOC(TPU$M_DELETE_CONTEXT)
C
C Establish the default DECTPU condition handler
C
 CALL LIB$ESTABLISH(%REF(TPU$HANDLER))
C
C Set up the bound procedure value for the initialization callback
C
 BPV(1) = %LOC (TPU_STARTUP)
 BPV(2) = 0
C
C Call the DECTPU procedure for initialization
C
 RET_STATUS = TPU$INITIALIZE(BPV)

 IF (RET_STATUS .NE. %LOC(TPU$_SUCCESS)) THEN
 CALL LIB$SIGNAL (%VAL(RET_STATUS))
 ENDIF
C
C Execute the DECTPU initialization file
C
 RET_STATUS = TPU$EXECUTE_INIFILE()

 IF (RET_STATUS .NE. %LOC(TPU$_SUCCESS)) THEN
 CALL LIB$SIGNAL (%VAL(RET_STATUS))
 ENDIF
C
C Pass control to DECTPU
C
 RET_STATUS = TPU$CONTROL()
C
C Test for valid exit condition codes. You must use LIB$MATCH_COND
C because the severity of TPU$_QUITTING can be set by the TPU
C application
C
 MATCH_STATUS = LIB$MATCH_COND (RET_STATUS, %LOC (TPU$_QUITTING),
 1 %LOC (TPU$_EXITING))
 IF (MATCH_STATUS .EQ. 0) THEN
 CALL LIB$SIGNAL (%VAL(RET_STATUS))
 ENDIF
C
C Clean up after processing
C
 RET_STATUS = TPU$CLEANUP(%REF(CLEANUP_FLAG))

 IF (RET_STATUS .NE. %LOC(TPU$_SUCCESS)) THEN
 CALL LIB$SIGNAL (%VAL(RET_STATUS))
 ENDIF
C
C Set the condition handler back to the default
C

134

Chapter 8. DEC Text Processing Utility (DECTPU) Routines

 RET_STATUS = LIB$REVERT()

 END

 INTEGER*4 FUNCTION TPU_STARTUP

 IMPLICIT NONE

 INTEGER*4 OPTION_MASK ! temporary variable for DECTPU
 CHARACTER*44 SECTION_NAME ! temporary variable for DECTPU
C
C External DECTPU routines and symbols
C
 EXTERNAL TPU$K_OPTIONS
 EXTERNAL TPU$M_READ
 EXTERNAL TPU$M_SECTION
 EXTERNAL TPU$M_DISPLAY
 EXTERNAL TPU$K_SECTIONFILE
 EXTERNAL TPU$K_FILEIO
 EXTERNAL TPU$FILEIO
 INTEGER*4 TPU$FILEIO
C
C The bound procedure value used for setting up the file I/O routine
C
 INTEGER*4 BPV(2)

C
C Define the structure of the item list defined for the callback
C
 STRUCTURE /CALLBACK/
 INTEGER*2 BUFFER_LENGTH
 INTEGER*2 ITEM_CODE
 INTEGER*4 BUFFER_ADDRESS
 INTEGER*4 RETURN_ADDRESS
 END STRUCTURE
C
C There are a total of four items in the item list
C
 RECORD /CALLBACK/ CALLBACK (4)
C
C Make sure it is not optimized!
C
 VOLATILE /CALLBACK/
C
C Define the options we want to use in the DECTPU session
C
 OPTION_MASK = %LOC(TPU$M_SECTION) .OR. %LOC(TPU$M_READ)
 1 .OR. %LOC(TPU$M_DISPLAY)
C
C Define the name of the initialization section file
C
 SECTION_NAME = 'TPU$SECTION'
C
C Set up the required I/O routine. Use the DECTPU default.
C
 BPV(1) = %LOC(TPU$FILEIO)
 BPV(2) = 0

135

Chapter 8. DEC Text Processing Utility (DECTPU) Routines

C
C Build the callback item list
C
C Set up the edit session options
C
 CALLBACK(1).ITEM_CODE = %LOC(TPU$K_OPTIONS)
 CALLBACK(1).BUFFER_ADDRESS = %LOC(OPTION_MASK)
 CALLBACK(1).BUFFER_LENGTH = 4
 CALLBACK(1).RETURN_ADDRESS = 0
C
C Identify the section file to be used
C
 CALLBACK(2).ITEM_CODE = %LOC(TPU$K_SECTIONFILE)
 CALLBACK(2).BUFFER_ADDRESS = %LOC(SECTION_NAME)
 CALLBACK(2).BUFFER_LENGTH = LEN(SECTION_NAME)
 CALLBACK(2).RETURN_ADDRESS = 0
C
C Set up the I/O handler
C
 CALLBACK(3).ITEM_CODE = %LOC(TPU$K_FILEIO)
 CALLBACK(3).BUFFER_ADDRESS = %LOC(BPV)
 CALLBACK(3).BUFFER_LENGTH = 4
 CALLBACK(3).RETURN_ADDRESS = 0
C
C End the item list with zeros to indicate we are finished
C
 CALLBACK(4).ITEM_CODE = 0
 CALLBACK(4).BUFFER_ADDRESS = 0
 CALLBACK(4).BUFFER_LENGTH = 0
 CALLBACK(4).RETURN_ADDRESS = 0
C
C Return the address of the item list
C
 TPU_STARTUP = %LOC(CALLBACK)

 RETURN
 END

Example 8.4 shows how to specify a user-written file I/O routine in VAX C.

Example 8.4. Specifying a User-Written File I/O Routine in VAX C

/*
Segment of a simple VAX C program to invoke DECTPU. This program provides
 its
own FILEIO routine instead of using the one provided by DECTPU. This
 program
will run correctly if you write the routines it calls.
*/

/*
** To compile this example use the command:
$ CC <file-name>

** To link this example after a successful compilation:

$ LINK <file-name>,sys$input/
SYS$LIBRARY:VAXCRTL/SHARE

136

Chapter 8. DEC Text Processing Utility (DECTPU) Routines

<PRESS-Ctrl/Z>

The TPUSHR shareable image is found by the linker in IMAGELIB.OLB.

*/
#include descrip
#include stdio

/* data structures needed */

struct bpv_arg /* bound procedure value */
 {
 int *routine_add ; /* pointer to routine */
 int env ; /* environment pointer */
 } ;

struct item_list_entry /* item list data structure */
 {
 short int buffer_length; /* buffer length */
 short int item_code; /* item code */
 int *buffer_add; /* buffer address */
 int *return_len_add; /* return address */
 } ;

struct stream_type
 {
 int ident; /* stream id */
 short int alloc; /* file size */
 short int flags; /* file record attributes/format */
 short int length; /* resultant file name length */
 short int stuff; /* file name descriptor class & type */
 int nam_add; /* file name descriptor text pointer */
 } ;

globalvalue tpu$_success; /* TPU Success code */
globalvalue tpu$_quitting; /* Exit code defined by TPU */

globalvalue /* Cleanup codes defined by TPU */
 tpu$m_delete_journal, tpu$m_delete_exith,
 tpu$m_delete_buffers, tpu$m_delete_windows, tpu$m_delete_cache,
 tpum_prune_cache, tpum_execute_file, tpu$m_execute_proc,
 tpu$m_delete_context, tpu$m_reset_terminal, tpu$m_kill_processes,
 tpu$m_close_section, tpu$m_delete_others, tpu$m_last_time;
globalvalue /* Item codes for item list entries */
 tpuk_fileio, tpuk_options, tpu$k_sectionfile,
 tpu$k_commandfile ;
globalvalue /* Option codes for option item */
 tpu$m_display, tpu$m_section, tpu$m_command, tpu$m_create ;

globalvalue /* Possible item codes in item list */
 tpuk_access, tpuk_filename, tpu$k_defaultfile,
 tpu$k_relatedfile, tpu$k_record_attr, tpu$k_maximize_ver,
 tpuk_flush, tpuk_filesize;

globalvalue /* Possible access types for tpu$k_access
 */
 tpuk_io, tpuk_input, tpu$k_output;

137

Chapter 8. DEC Text Processing Utility (DECTPU) Routines

globalvalue /* OpenVMS RMS File Not Found message code
 */
 rms$_fnf;
globalvalue /* FILEIO routine functions */
 tpuk_open, tpuk_close, tpu$k_close_delete,
 tpuk_get, tpuk_put;
int lib$establish (); /* RTL routine to establish an event
 handler */
int tpu$cleanup (); /* TPU routine to free resources used */
int tpu$control (); /* TPU routine to invoke the editor */
int tpu$execute_inifile (); /* TPU routine to execute initialization
 code */
int tpu$handler (); /* TPU signal handling routine */
int tpu$initialize (); /* TPU routine to initialize the editor */

/*
 This function opens a file for either read or write access, based upon
 the itemlist passed as the data parameter. Note that a full
 implementation
 of the file open routine would have to handle the default file, related
 file, record attribute, maximize version, flush and file size item code
 properly.
 */
open_file (data, stream)

int *data;
struct stream_type *stream;

{
 struct item_list_entry *item;
 char *access; /* File access type */
 char filename[256]; /* Max file specification size */

 FILE *fopen();

 /* Process the item list */

 item = data;
 while (item->item_code != 0 && item->buffer_length != 0)
 {
 if (item->item_code == tpu$k_access)
 {
 if (item->buffer_add == tpu$k_io) access = "r+";
 else if (item->buffer_add == tpu$k_input) access = "r";
 else if (item->buffer_add == tpu$k_output) access = "w";
 }
 else if (item->item_code == tpu$k_filename)
 {
 strncpy (filename, item->buffer_add, item->buffer_length);
 filename [item->buffer_length] = 0;
 lib$scopy_r_dx (&item->buffer_length, item->buffer_add,
 &stream->length);
 }
 else if (item->item_code == tpu$k_defaultfile)
 { /* Add code to handle default file */
 } /* spec here */
 else if (item->item_code == tpu$k_relatedfile)
 { /* Add code to handle related */

138

Chapter 8. DEC Text Processing Utility (DECTPU) Routines

 } /* file spec here */
 else if (item->item_code == tpu$k_record_attr)
 { /* Add code to handle record */
 } /* attributes for creating files */
 else if (item->item_code == tpu$k_maximize_ver)
 { /* Add code to maximize version */
 } /* number with existing file here */
 else if (item->item_code == tpu$k_flush)
 { /* Add code to cause each record */
 } /* to be flushed to disk as written */
 else if (item->item_code == tpu$k_filesize)
 { /* Add code to handle specification */
 } /* of initial file allocation here */
 ++item; /* get next item */
 }
 stream->ident = fopen(filename,access);
 if (stream->ident != 0)
 return tpu$_success;
 else
 return rms$_fnf;
}
/*
 This procedure closes a file
 */
close_file (data,stream)
struct stream_type *stream;

{
 close(stream->ident);
 return tpu$_success;
}
/*
 This procedure reads a line from a file
 */
read_line(data,stream)
struct dsc$descriptor *data;
struct stream_type *stream;

{
 char textline[984]; /* max line size for TPU records
 */
 int len;

 globalvalue rms$_eof; /* RMS End-Of-File code */

 if (fgets(textline,984,stream->ident) == NULL)
 return rms$_eof;
 else
 {
 len = strlen(textline);
 if (len > 0)
 len = len - 1;
 return lib$scopy_r_dx (&len, textline, data);
 }
}
/*
 This procedure writes a line to a file
 */

139

Chapter 8. DEC Text Processing Utility (DECTPU) Routines

write_line(data,stream)
struct dsc$descriptor *data;
struct stream_type *stream;

{
 char textline[984]; /* max line size for TPU records
 */

 strncpy (textline, data->dsc$a_pointer, data->dsc$w_length);
 textline [data->dsc$w_length] = 0;
 fputs(textline,stream->ident);
 fputs("\n",stream->ident);
 return tpu$_success;
}
/*
 This procedure will handle I/O for TPU
 */
fileio(code,stream,data)
int *code;
int *stream;
int *data;

{
 int status;

/* Dispatch based on code type. Note that a full implementation of the
 */
/* file I/O routines would have to handle the close and delete code
 properly */
/* instead of simply closing the file
 */

 if (*code == tpu$k_open) /* Initial access to file */
 status = open_file (data,stream);
 else if (*code == tpu$k_close) /* End access to file */
 status = close_file (data,stream);
 else if (*code == tpu$k_close_delete) /* Treat same as close */
 status = close_file (data,stream);
 else if (*code == tpu$k_get) /* Read a record from a file
 */
 status = read_line (data,stream);
 else if (*code == tpu$k_put) /* Write a record to a file
 */
 status = write_line (data,stream);
 else
 { /* Who knows what we have? */
 status = tpu$_success;
 printf ("Bad FILEIO I/O function requested");
 }
 return status;
}
/*
 This procedure formats the initialization item list and returns it as
 its return value.
 */
callrout()
{
 static struct bpv_arg add_block =

140

Chapter 8. DEC Text Processing Utility (DECTPU) Routines

 { fileio, 0 } ; /* BPV for fileio routine */
 int options ;
 char *section_name = "TPU$SECTION";
 static struct item_list_entry arg[] =
 {/* length code buffer add return add */
 { 4,tpu$k_fileio, 0, 0 },
 { 4,tpu$k_options, 0, 0 },
 { 0,tpu$k_sectionfile,0, 0 },
 { 0,0, 0, 0 }
 };

 /* Setup file I/O routine item entry */
 arg[0].buffer_add = &add_block;

 /* Setup options item entry. Leave journaling off. */
 options = tpu$m_display | tpu$m_section;
 arg[1].buffer_add = &options;

 /* Setup section file name */
 arg[2].buffer_length = strlen(section_name);
 arg[2].buffer_add = section_name;

 return arg;
}

/*
 Main program. Initializes TPU, then passes control to it.
 */
main()
{
 int return_status ;
 int cleanup_options;
 struct bpv_arg add_block;

/* Establish as condition handler the normal DECTPU handler */

 lib$establish(tpu$handler);

/* Setup a BPV to point to the callback routine */

 add_block.routine_add = callrout ;
 add_block.env = 0;

/* Do the initialize of DECTPU */

 return_status = tpu$initialize(&add_block);
 if (!return_status)
 exit(return_status);

/* Have TPU execute the procedure TPU$INIT_PROCEDURE from the section file
 */
/* and then compile and execute the code from the command file */

 return_status = tpu$execute_inifile();
 if (!return_status)
 exit (return_status);

141

Chapter 8. DEC Text Processing Utility (DECTPU) Routines

/* Turn control over to DECTPU */

 return_status = tpu$control ();
 if (!return_status)
 exit(return_status);

/* Now clean up. */

 cleanup_options = tpu$m_last_time | tpu$m_delete_context;
 return_status = tpu$cleanup (&cleanup_options);
 exit (return_status);

 printf("Experiment complete");
}

8.5. Creating and Calling a USER Routine
This section describes the steps involved in creating an executable image for the USER routine and
how to call the routine from a C program in the DECTPU environment. The following list describes
the steps in creating the executable image:

1. Write a program in the appropriate high-level language; in the supporting example, the language is
C. The program must contain a global routine named TPU$CALLUSER.

2. Compile the program.

3. Link the program with an options file to create a shareable image.

4. Define the logical name TPU$CALLUSER to point to the file containing the USER routine.

5. Invoke DECTPU.

6. From within a DECTPU session, call the high-level program to perform its function by specifying
the built-in procedure CALL_USER with the appropriate parameters. The built-in procedure pass-
es the specified parameters to the appropriate routine.

8.5.1. The CALL_USER Code
This is an example of a USER routine written in the VAX C programming language. The comments in
the code explain the various routine functions.

/* call_user.c */
/*
A sample of a TPU CALL_USER routine written in VAX C.
The routine is compiled and linked as a shareable image and then the
DCL logical TPU$CALLUSER is defined to point at the image.

From within TPU, when the built-in CALL_USER is called, this image
will be activated and the tpu$call_user routine will be called.

This example is for VAX C but can be updated to work with DEC C with
 little
effort.

*/
#include <descrip.h>

142

Chapter 8. DEC Text Processing Utility (DECTPU) Routines

extern int lib$sget1_dd(),
 vaxc$crtl_init();

globalvalue
 tpu$_success;

/*
 Because we know we are being called from a non-C based routine, call
 the CRTL initialization routine once
*/

static int
 rtl_inited = 0;

extern int tpu$calluser (
 int *int_param,
 struct dsc$descriptor *str_param,
 struct dsc$descriptor *result_param)
/*
 A sample TPU CALL_USER routine that checks access to the file specified
 in the str_param descriptor.

 Return (in result_param):
 ACCESS - specified access is allowed
 NOACCESS - specified access is not allowed
 ERROR - Either invalid param or the file does not exist
 PARAM_ERROR - Invalid param passed
 MEMORY_ERROR - An error occured allocating memory

 An example from TPU code would be:

 file_access := CALL_USER (0, "SYS$LOGIN:LOGIN.COM");
 !
 ! Only look at the return value of ACCESS,
 !
 IF file_access = "ACCESS"
 THEN
 file_exists := 1;
 ELSE
 file_exists := 0;
 ENDIF;

 See the description of the CALL_USER built-in for more information on how
 to
 use the built-in.

*/
{
 static char
 *error_str = "ERROR",
 *param_error_str = "PARAM_ERROR",
 *memory_error_str = "MEMORY_ERROR",
 *access_str = "ACCESS",
 *noaccess_str = "NOACCESS";
 char
 *result_str_ptr;
 int

143

Chapter 8. DEC Text Processing Utility (DECTPU) Routines

 result_str_length;
 /*
 If this is the first time in, call the VAXCRTL routine to init things
 */
 if (rtl_inited == 0) {
 vaxc$crtl_init();
 rtl_inited = 1;
 }
 /*
 The integer must be between 0 and 7 for the
 call to the C RTL routine ACCESS
 */
 if ((*int_param < 0) || (*int_param > 7)) {
 result_str_length = strlen (param_error_str);
 result_str_ptr = param_error_str;
 }
 else {
 /*
 If we were passed a null string,
 set the param_error return value
 */
 if (str_param->dsc$w_length == 0) {
 result_str_length = strlen (param_error_str);
 result_str_ptr = param_error_str;
 }
 else {
 /*
 Because there is NO way of knowing if the descriptor we have
 been passed ends with a \0, we need to create a valid string
 pass to the rtl routine "access"
 */
 char
 *str_ptr;
 /*
 Allocate memory enough for the string plus the null character
 */
 str_ptr = (char *) malloc (str_param->dsc$w_length + 1);
 /*
 Make sure the memory allocation worked...
 */
 if (str_ptr == 0) {
 result_str_length = strlen (memory_error_str);
 result_str_ptr = memory_error_str;
 }
 else {
 /*
 Move the bytes from the descriptor into the memory
 pointed to by str_ptr, and end it with a \0
 Then call the access routine, free the memory
 */
 sprintf (str_ptr, "%.*s\0", str_param->dsc$w_length,
 str_param->dsc$a_pointer);
 if (access (str_ptr, *int_param) == 0) {
 result_str_length = strlen (access_str);
 result_str_ptr = access_str;
 }
 else {
 result_str_length = strlen (noaccess_str);

144

Chapter 8. DEC Text Processing Utility (DECTPU) Routines

 result_str_ptr = noaccess_str;
 }
 free (str_ptr);
 }
 }
 }
 /* Setup the return descriptor */
 lib$sget1_dd (&result_str_length, result_param);
 /*
 Copy the result bytes into the descriptor's dynamic
 memory
 */
 memcpy (result_param->dsc$a_pointer, result_str_ptr,
 result_str_length);

 return tpu$_success;
}

Use the following command to compile the routine with the VAX C compiler:

$ CC/LIST call_user.c

8.5.2. Linking the CALL_USER Image
To link the CALL_USER image as a shareable image requires a linker option file similar to the one
that follows:

! CALL_USER.OPT
call_user.obj
UNIVERSAL=TPU$CALLUSER
SYS$LIBRARY:VAXCRTL/SHARE

After you create the linker option file, use the following command to link the shareable image:

$ LINK CALL_USER/OPT/SHARE/MAP/FULL

This command produces a shareable image named CALL_USER.EXE.

The description of the DECTPU built-in CALL_USER states that you must define the logical name
TPU$CALLUSER to point to the image that contains the USER procedure. Use the following com-
mand to define the logical name:

$ DEFINE TPU$CALLUSER SYS$DISK:[]CALL_USER.EXE

If you move the image to another device and directory, you must appropriately revise the pointer.

8.6. Accessing the USER Routine from DECT-
PU
To access the USER routine from DECTPU, your code must call the CALL_USER built-in proce-
dure. The CALL_USER built-in procedure activates the shareable image pointed to by the logical
name TPU$CALLUSER and calls the USER routine within that image. The following is an example
of DECTPU code that can be used with the USER example routine in Section 8.5.1.

! Module: CALL_USER.TPU - the access routine
!
! Constants used with the call to this procedure (or directly to the
 call_user

145

Chapter 8. DEC Text Processing Utility (DECTPU) Routines

! routine).
!
CONSTANT
 ACCESS_FILE_EXISTS := 0,
 ACCESS_FILE_EXECUTE := 1,
 ACCESS_FILE_WRITE := 2,
 ACCESS_FILE_DELETE := 2,
 ACCESS_FILE_READ := 4,
 ACCESS_FILE_EXE_DEL := ACCESS_FILE_EXECUTE + ACCESS_FILE_DELETE,
 ACCESS_FILE_EXE_WRITE := ACCESS_FILE_EXE_DEL,
 ACCESS_FILE_DEL_READ := ACCESS_FILE_DELETE + ACCESS_FILE_READ,
 ACCESS_FILE_DEL_WRITE := ACCESS_FILE_DEL_READ,
 ACCESS_FILE_EXE_READ := ACCESS_FILE_EXECUTE + ACCESS_FILE_READ;

PROCEDURE access (val, the_file)
!
! Call the CRTL function ACCESS via the TPU CALL_USER built-in
!
! 0 = exists
! 1 = execute
! 2 = write (& delete)
! 4 = read
! (add them for combinations)
! Return Values:
! 1 = requested access is allowed
! 0 = requested access is NOT allowed
! -1 = an error occured with the built-in
! Side Effects:
! A message may end up in the message buffer if there is an error
!
LOCAL
 ret_val;
! Handle the call_user errors
ON_ERROR
 [TPU$_BADUSERDESC] :
 MESSAGE (ERROR_TEXT);
 RETURN -1;
 [TPU$_NOCALLUSER] :
 MESSAGE ("Could not find access call_user routine - check logicals");
 RETURN -1;
 [TPU$_CALLUSERFAIL] :
 MESSAGE ("Something is wrong in the access call_user routine");
 MESSAGE (ERROR_TEXT);
 RETURN -1
 [OTHERWISE] :
 MESSAGE (ERROR_TEXT);
 RETURN -1;
ENDON_ERROR;

ret_val := CALL_USER (val, the_file);
CASE ret_val
 ["ACCESS"] :
 RETURN 1;
 ["NOACCESS"] :
 RETURN 0;
 [OUTRANGE] :
 MESSAGE ("Error with call to access routine: " + ret_val);

146

Chapter 8. DEC Text Processing Utility (DECTPU) Routines

ENDCASE;
RETURN -1;
ENDPROCEDURE;

You can extend the EVE editor using the DECTPU code described at the beginning of this section.
Copy the code to a file named CALL_USER.TPU in the current working directory and then execute
the following commands:

GET FILE CALL_USER.TPU
EXTEND ALL

To use the DECTPU routine ACCESS from EVE, write a DECTPU procedure EVE_EXISTS, coded
as follows:

PROCEDURE eve_exists (the_file)
IF access (ACCESS_FILE_EXISTS, the_file) = 1
THEN
 MESSAGE ("File " + the_file + " exists");
ELSE
 MESSAGE ("No such file " + the_file);
ENDIF;
ENDPROCEDURE;

This enables calls from the command line such as:

Command: exists sys$login:login.com

This command directs that the message window indicate whether the file SYS$LOGIN:LOGIN.COM
exists.

8.7. DECTPU Routines
This section describes the individual DECTPU routines.

TPU$CLEANUP
Free System Resources Used During DECTPU Session — The TPU$CLEANUP routine cleans up in-
ternal data structures, frees memory, and restores terminals to their initial state. This is the final rou-
tine called in each interaction with DECTPU.

Format
TPU$CLEANUP flags

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. Most utility routines return a condition value in R0. The condition value
that this routine can return is listed under Condition Value Returned.

147

Chapter 8. DEC Text Processing Utility (DECTPU) Routines

Argument

flags

OpenVMS usage: mask_longword
type: longword (unsigned)
access: read only
mechanism: by reference

Flags (or mask) defining the cleanup options. The flags argument is the address of a longword bit
mask defining the cleanup options or the address of a 32-bit mask defining the cleanup options. This
mask is the logical OR of the flag bits you want to set. Following are the various cleanup options:

Flag1 Function
TPU$M_DELETE_JOURNAL Closes and deletes the journal file if it is open.
TPU$M_DELETE_EXITH Deletes the DECTPU exit handler.
TPU$M_DELETE_BUFFERS Deletes all text buffers. If this is not the last time

you are calling DECTPU, then all variables refer-
ring to these data structures are reset, as if by the
built-in procedure DELETE. If a buffer is delet-
ed, then all ranges and markers within that buffer,
and any subprocesses using that buffer, are also
deleted.

TPU$M_DELETE_WINDOWS Deletes all windows. If this is not the last time
you are calling DECTPU, then all variables refer-
ring to these data structures are reset, as if by the
built-in procedure DELETE.

TPU$M_DELETE_CACHE Deletes the virtual file manager's data structures
and caches. If this deletion is requested, then all
buffers are also deleted. If the cache is deleted,
the initialization routine has to reinitialize the vir-
tual file manager the next time it is called.

TPU$M_PRUNE_CACHE Frees up any virtual file manager caches that have
no pages allocated to buffers. This frees up any
caches that may have been created during the ses-
sion but are no longer needed.

TPU$M_EXECUTE_FILE Reexecutes the command file if TPU$EXE-
CUTE_INIFILE is called again. You must set this
bit if you plan to specify a new file name for the
command file. This option is used in conjunction
with the option bit passed to TPU$INITIALIZE
indicating the presence of the /COMMAND qual-
ifier.

TPU$M_EXECUTE_PROC Looks up TPU$INIT_PROCEDURE and exe-
cutes it the next time TPU$EXECUTE_INIFILE
is called.

TPU$M_DELETE_CONTEXT Deletes the entire context of DECTPU. If this op-
tion is specified, then all other options are im-

148

Chapter 8. DEC Text Processing Utility (DECTPU) Routines

Flag1 Function
plied, except for executing the initialization file
and initialization procedure.

TPU$M_RESET_TERMINAL Resets the terminal to the state it was in upon en-
try to DECTPU. The terminal mailbox and all
windows are deleted. If the terminal is reset, then
it is reinitialized the next time TPU$INITIALIZE
is called.

TPU$M_KILL_PROCESSES Deletes all subprocesses created during the ses-
sion.

TPU$M_CLOSE_SECTION2 Closes the section file and releases the associat-
ed memory. All buffers, windows, and process-
es are deleted. The cache is purged and the flags
are set for reexecution of the initialization file and
initialization procedure. If the section is closed
and if the option bit indicates the presence of the
SECTION qualifier, then the next call to TPU
$INITIALIZE attempts a new restore operation.

TPU$M_DELETE_OTHERS Deletes all miscellaneous preallocated data struc-
tures. Memory for these data structures is reallo-
cated the next time TPU$INITIALIZE is called.

TPU$M_LAST_TIME This bit should be set only when you are calling
DECTPU for the last time. Note that if you set
this bit and then recall DECTPU, the results are
unpredictable.

1The prefix can be TPU$M_ or TPU$V_. TPU$M_ denotes a mask corresponding to the specific field in which the bit is set. TPU$V_ is a
bit number.
2Using the simplified callable interface does not set TPU$_CLOSE_SECTION. This feature allows you to make multiple calls to TPU$TPU
without requiring you to open and close the section file on each call.

Description
The cleanup routine is the final routine called in each interaction with DECTPU. It tells DECTPU to
clean up its internal data structures and prepare for additional invocations. You can control what is re-
set by this routine by setting or clearing the flags described previously.

When you finish with DECTPU, call this routine to free the memory and restore the characteristics of
the terminal to their original settings.

If you intend to exit after calling TPU$CLEANUP, do not delete the data structures; the operating sys-
tem does this automatically. Allowing the operating system to delete the structures improves the per-
formance of your program.

Notes
1. When you use the simplified interface, DECTPU automatically sets the following flags:

• TPU$V_RESET_TERMINAL

• TPU$V_DELETE_BUFFERS

• TPU$V_DELETE_JOURNAL

149

Chapter 8. DEC Text Processing Utility (DECTPU) Routines

• TPU$V_DELETE_WINDOWS

• TPU$V_DELETE_EXITH

• TPU$V_EXECUTE_PROC

• TPU$V_EXECUTE_FILE

• TPU$V_PRUNE_CACHE

• TPU$V_KILL_PROCESSES

2. If this routine does not return a success status, no other calls to the editor should be made.

Condition Value Returned
TPU$_SUCCESS

Normal successful completion.

TPU$CLIPARSE
Parse a Command Line — The TPU$CLIPARSE routine parses a command line and builds the item
list for TPU$INITIALIZE.

Format
TPU$CLIPARSE string ,fileio ,call_user

Returns

OpenVMS usage: item_list
type: longword (unsigned)
access: read only
mechanism: by reference

This routine returns the address of an item list.

Arguments
string

OpenVMS usage: char_string
type: character string
access: read only
mechanism: by descriptor

Command line. The string argument is the address of a descriptor of a DECTPU command.

fileio

150

Chapter 8. DEC Text Processing Utility (DECTPU) Routines

OpenVMS usage: vector_longword_unsigned
type: bound procedure value
access: read only
mechanism: by descriptor

File I/O routine. The fileio argument is the address of a descriptor of a file I/O routine.

call_user

OpenVMS usage: vector_longword_unsigned
type: bound procedure value
access: read only
mechanism: by descriptor

Call-user routine. The call_user argument is the address of a descriptor of a call-user routine.

Description
This routine calls CLI$DCL_PARSE to establish a command table and a command to parse. It then
calls TPU$PARSEINFO to build an item list for TPU$INITIALIZE.

If your application parses information that is not related to the operation of DECTPU, make sure the
application obtains and uses all non-DECTPU parse information before the application calls TPU
$CLIPARSE. You must do this because TPU$CLIPARSE destroys all parse information obtained and
stored before TPU$CLIPARSE was called.

TPU$CLOSE_TERMINAL
Close Channel to Terminal — The TPU$CLOSE_TERMINAL routine closes the DECTPU channel
to the terminal.

Format
TPU$CLOSE_TERMINAL

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. Most utility routines return a condition value in R0. The condition value
that this routine can return is listed under Condition Value Returned.

Description
This routine is used with the built-in procedure CALL_USER and its associated call-user routine to
control the DECTPU access to the terminal. When a call-user routine invokes TPU$CLOSE_TERMI-

151

Chapter 8. DEC Text Processing Utility (DECTPU) Routines

NAL, DECTPU closes its channel to the terminal and the channel of the DECTPU associated mail-
box.

When the call-user routine returns control to it, DECTPU automatically reopens a channel to the ter-
minal and redisplays the visible windows.

A call-user routine can use TPU$CLOSE_TERMINAL at any point in the program and as many times
as necessary. If the terminal is already closed to DECTPU when TPU$CLOSE_TERMINAL is used,
the call is ignored.

Condition Value Returned

TPU$_SUCCESS

Normal successful completion.

TPU$CONTROL
Pass Control to DECTPU — The TPU$CONTROL routine is the main processing routine of the
DECTPU editor. It is responsible for reading the text and commands and executing them. When you
call this routine (after calling TPU$INITIALIZE), control is turned over to DECTPU.

Format
TPU$CONTROL [integer]

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. Most utility routines return a condition value in R0. Condition values that
this routine can return are listed under Condition Values Returned.

Argument

integer

OpenVMS usage: integer
type: longword (unsigned)
access: read only
mechanism: by reference

Prevents DECTPU from displaying the message “Editing session is not being journalled” when the
calling program gives control to DECTPU. Specify a true (odd) integer to preserve compatibility in

152

Chapter 8. DEC Text Processing Utility (DECTPU) Routines

future releases. If you omit the parameter, DECTPU displays the message if journalling is not en-
abled.

Description

This routine controls the editing session. It is responsible for reading the text and commands and for
executing them. Windows on the screen are updated to reflect the edits made. Your program can re-
gain control by interrupting DECTPU using the TPU$SPECIFY_ASYNC_ACTION routine, together
with the TPU$TRIGGER_ASYNC_ACTION routine.

Note

Control is also returned to your program if an error occurs or when you enter either the built-in proce-
dure QUIT or the built-in procedure EXIT.

Condition Values Returned

TPU$_EXITING

A result of EXIT (when the default condition handler is established).

TPU$_NONANSICRT

A result of operation termination — results when you call DECTPU with TPU$DISPLAYFILE
set to nodisplay and you attempt to execute screen-oriented commands.

TPU$_QUITTING

A result of QUIT (when the default condition handler is established).

TPU$_RECOVERFAIL

A recovery operation was terminated abnormally.

TPU$EDIT
Edit a File — The TPU$EDIT routine builds a command string from its parameters and passes it to
the TPU$TPU routine. TPU$EDIT is another entry point to the DECTPU simplified callable inter-
face.

Format
TPU$EDIT input ,output

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only

153

Chapter 8. DEC Text Processing Utility (DECTPU) Routines

mechanism: by value

Longword condition value. Most utility routines return a condition value in R0. Condition values that
this routine can return are listed under Condition Values Returned.

Arguments

input

OpenVMS usage: char_string
type: character string
access: read only
mechanism: by descriptor

Input file name. The input argument is the address for a descriptor of a file specification.

output

OpenVMS usage: char_string
type: character string
access: read only
mechanism: by descriptor

Output file name. The output argument is the address for a descriptor of an output file specification.
It is used with the /OUTPUT command qualifier.

Description

This routine builds a command string and passes it to TPU$TPU. If the length of the output descrip-
tor is nonzero, then the /OUTPUT qualifier is added to the command string. The /OUTPUT qualifier
causes a file to be written to the specified file even if no modifications are made to the input file. If the
QUIT built-in procedure is called, it prompts the user as if changes had been made to the buffer. This
allows applications to check for the existence of the output file to see if the editing session was termi-
nated, which is consistent with other OpenVMS callable editors.

If your application parses information that is not related to the operation of DECTPU, make sure the
application obtains and uses all non-DECTPU parse information before the application calls TPU
$EDIT. Your application must do this because TPU$EDIT destroys all parse information obtained and
stored before TPU$EDIT is called.

Condition Values Returned

This routine returns the same values as TPU$TPU.

TPU$EXECUTE_COMMAND
Execute One or More DECTPU Statements — The TPU$EXECUTE_COMMAND routine allows
your program to execute DECTPU statements.

154

Chapter 8. DEC Text Processing Utility (DECTPU) Routines

Format
TPU$EXECUTE_COMMAND string

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. Most utility routines return a condition value in R0. Condition values that
this routine can return are listed under Condition Values Returned.

Argument

string

OpenVMS usage: char_string
type: character string
access: read only
mechanism: by value

DECTPU statement. The string argument is the address of a descriptor of a character string denot-
ing one or more DECTPU statements.

Description

This routine performs the same function as the built-in procedure EXECUTE described in the DEC
Text Processing Utility Reference Manual.

Condition Values Returned

TPU$_SUCCESS

Normal successful completion.

TPU$_EXECUTEFAIL

Execution aborted. This could be because of execution errors or compilation errors.

TPU$_EXITING

EXIT built-in procedure was invoked.

TPU$_QUITTING

QUIT built-in procedure was invoked.

155

Chapter 8. DEC Text Processing Utility (DECTPU) Routines

TPU$EXECUTE_INIFILE
Execute Initialization Files — The TPU$EXECUTE_INIFILE routine allows you to execute a user-
written initialization file. This routine must be executed after the editor is initialized and before any
other commands are processed.

Format
TPU$EXECUTE_INIFILE

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. Most utility routines return a condition value in R0. Condition values that
this routine can return are listed under Condition Values Returned.

Description
Calling the TPU$EXECUTE_INIFILE routine causes DECTPU to perform the following steps:

1. The command file is read into a buffer. The default is TPU$COMMAND.TPU. If you specified
a file on the command line that cannot be found, an error message is displayed and the routine is
aborted.

2. If you specified the /DEBUG qualifier on the command line, the DEBUG file is read into a buffer.
The default is SYS$SHARE:TPU$DEBUG.TPU.

3. The DEBUG file is compiled and executed (if available).

4. TPU$INIT_PROCEDURE is executed (if available).

5. The Command buffer is compiled and executed (if available).

6. TPU$INIT_POSTPROCEDURE is executed (if available).

Note

If you call this routine after calling TPU$CLEANUP, you must set the flags TPU$_EXECUTEPRO-
CEDURE and TPU$_EXECUTEFILE. Otherwise, the initialization file does not execute.

Condition Values Returned
TPU$_SUCCESS

Normal successful completion.

TPU$_COMPILEFAIL

The compilation of the initialization file was unsuccessful.

156

Chapter 8. DEC Text Processing Utility (DECTPU) Routines

TPU$_EXECUTEFAIL

The execution of the statements in the initialization file was unsuccessful.

TPU$_EXITING

A result of EXIT. If the default condition handler is being used, the session is terminated.

TPU$_FAILURE

General code for all other errors.

TPU$_QUITTING

A result of QUIT. If the default condition handler is being used, the session is terminated.

TPU$FILEIO
Perform File Operations — The TPU$FILEIO routine handles all DECTPU file operations. Your own
file I/O routine can call this routine to perform some operations for it. However, the routine that opens
the file must perform all operations for that file. For example, if TPU$FILEIO opens the file, it must
also close it.

Format
TPU$FILEIO code ,stream ,data

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. Most utility routines return a condition value in R0. Condition values that
this routine can return are listed under Condition Values Returned.

Arguments

code

OpenVMS usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by reference

Item code specifying a DECTPU function. The code argument is the address of a longword contain-
ing an item code from DECTPU specifying a function to perform. Following are the item codes that
you can specify in the file I/O routine:

157

Chapter 8. DEC Text Processing Utility (DECTPU) Routines

• TPU$K_OPEN—This item code specifies that the data parameter is the address of an item list.
This item list contains the information necessary to open the file. The stream parameter should be
filled in with a unique identifying value to be used for all future references to this file. The resul-
tant file name should also be copied with a dynamic string descriptor.

• TPU$K_CLOSE—The file specified by the stream argument is to be closed. All memory being
used by its structures can be released.

• TPU$K_CLOSE_DELETE—The file specified by the stream argument is to be closed and
deleted. All memory being used by its structures can be released.

• TPU$K_GET—The data parameter is the address of a dynamic string descriptor to be filled with
the next record from the file specified by the stream argument. The routine should use the rou-
tines provided by the Run-Time Library to copy text into this descriptor. DECTPU frees the mem-
ory allocated for the data read when the file I/O routine indicates that the end of the file has been
reached.

• TPU$K_PUT—The data parameter is the address of a descriptor for the data to be written to the
file specified by the stream argument.

stream

OpenVMS usage: unspecified
type: longword (unsigned)
access: modify
mechanism: by reference

File description. The stream argument is the address of a data structure consisting of four long-
words. This data structure describes the file to be manipulated.

This data structure is used to refer to all files. It is written to when an open file request is made. All
other requests use information in this structure to determine which file is being referenced.

The following figure shows the stream data structure:

The first longword holds a unique identifier for each file. The user-written file I/O routine is restricted
to values between 0 and 511. Thus, you can have up to 512 files open simultaneously.

The second longword is divided into three fields. The low word is used to store the allocation quan-
tity, that is, the number of blocks allocated to this file from the FAB (FAB$L_ALQ). This value is
used later to calculate the output file size for preallocation of disk space. The low-order byte of the

158

Chapter 8. DEC Text Processing Utility (DECTPU) Routines

second word is used to store the record attribute byte (FAB$B_RAT) when an existing file is opened.
The high-order byte is used to store the record format byte (FAB$B_RFM) when an existing file is
opened. The values in the low word and the low-order and high-order bytes of the second word are
used for creating the output file in the same format as the input file. These three fields are to be filled
in by the routine opening the file.

The last two longwords are used as a descriptor for the resultant or the expanded file name. This name
is used later when DECTPU processes EXIT commands. This descriptor is to be filled in with the file
name after an open operation. It should be allocated with either the routine LIB$SCOPY_R_DX or
the routine LIB$SCOPY_DX from the Run-Time Library. This space is freed by DECTPU when it is
no longer needed.

data

OpenVMS usage: item_list_3
type: longword (unsigned)
access: modify
mechanism: by reference

Stream data. The data argument is either the address of an item list or the address of a descriptor.

Note

The meaning of this parameter depends on the item code specified in the code field.

When the TPU$K_OPEN item code is issued, the data parameter is the address of an item list contain-
ing information about the open request. The following DECTPU item codes are available for specify-
ing information about the open request:

• TPU$K_ACCESS item code lets you specify one of three item codes in the buffer address field, as
follows:

• TPU$K_IO

• TPU$K_INPUT

• TPU$K_OUTPUT

• TPU$K_FILENAME item code is used for specifying the address of a string to use as the name
of the file you are opening. The length field contains the length of this string, and the address field
contains the address.

• TPU$K_DEFAULTFILE item code is used for assigning a default file name to the file being
opened. The buffer length field contains the length, and the buffer address field contains the ad-
dress of the default file name.

• TPU$K_RELATEDFILE item code is used for specifying a related file name for the file being
opened. The buffer length field contains the length, and the buffer address field contains the ad-
dress of a string to use as the related file name.

• TPU$K_RECORD_ATTR item code specifies that the buffer address field contains the value for
the record attribute byte in the FAB (FAB$B_RAT) used for file creation.

159

Chapter 8. DEC Text Processing Utility (DECTPU) Routines

• TPU$K_RECORD_FORM item code specifies that the buffer address field contains the value for
the record format byte in the FAB (FAB$B_RFM) used for file creation.

• TPU$K_MAXIMIZE_VER item code specifies that the version number of the output file should
be one higher than the highest existing version number.

• TPU$K_FLUSH item code specifies that the file should have every record flushed after it is writ-
ten.

• TPU$K_FILESIZE item code is used for specifying a value to be used as the allocation quantity
when creating the file. The value is specified in the buffer address field.

Description

By default, TPU$FILEIO creates variable-length files with carriage-return record attributes (FAB
$B_RFM = VAR, FAB$B_RAT = CR). If you pass to it the TPU$K_RECORD_ATTR or TPU
$K_RECORD_FORM item, that item is used instead.

The following combinations of formats and attributes are acceptable:

Format Attributes
STM,STMLF,STMCR 0,BLK,CR,BLK+CR
VAR 0,BLK,FTN,CR,BLK+FTN,BLK+CR

All other combinations are converted to VAR format with CR attributes.

This routine always puts values greater than 511 in the first longword of the stream data structure. Be-
cause a user-written file I/O routine is restricted to the values 0 through 511, you can easily distin-
guish the file control blocks (FCB) this routine fills in from the ones you created.

Note

DECTPU uses TPU$FILEIO by default when you use the simplified callable interface. When you use
the full callable interface, you must explicitly invoke TPU$FILEIO or provide your own file I/O rou-
tine.

Condition Values Returned

The TPU$FILEIO routine returns an OpenVMS RMS status code to DECTPU. The file I/O routine is
responsible for signaling all errors if any messages are desired.

TPU$FILE_PARSE
Parse the Given File Specification — The TPU$FILE_PARSE routine provides a simplified interface
to the $PARSE system service. DECTPU calls this routine when the built-in procedure FILE_PARSE
is executed from TPU code.

Format
TPU$FILE_PARSE result-string ,flags ,filespec ,default-spec ,related-spec

160

Chapter 8. DEC Text Processing Utility (DECTPU) Routines

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. Most utility routines return a condition value in R0. See Condition Values
Returned.

Arguments

result-string

OpenVMS usage: char_string
type: character string
access: write only
mechanism: by descriptor

Includes the components of the file specification specified by the flags argument. The memory for
the return string is allocated via the Run-Time Library routine LIB$SGET1_DD. Use the Run-Time
Library routine LIB$SFREE1_DD to deallocate the memory for the return string.

flags

OpenVMS usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by reference

Determine what file specification components should be returned. The following table shows the valid
values for the flags argument:

Flag Bit1 Description
TPU$M_NODE Returns the node component of the file specifica-

tion.
TPU$M_DEV Returns the device component of the file specifi-

cation.
TPU$M_DIR Returns the directory component of the file speci-

fication.
TPU$M_NAME Returns the name component of the file specifica-

tion.
TPU$M_TYPE Returns the type component of the file specifica-

tion.
TPU$M_VER Returns the version component of the file specifi-

cation.

161

Chapter 8. DEC Text Processing Utility (DECTPU) Routines

Flag Bit1 Description
TPU$M_HEAD Returns NODE, DEVICE and DIRECTORY

components of the file specification. If the TPU
M_NODE, TPUM_DEV or TPU$M_DIR bits
are set while TPU$M_HEAD is set, the routine
signals the error TPU$_INCKWDCOM and re-
turns control to the caller.

TPU$M_TAIL Returns NAME, TYPE and VERSION com-
ponents of the file specification. If the TPU
M_NAME, TPUM_TYPE or TPU$M_VER
bits are set while TPU$M_TAIL is set, the routine
signals the error TPU$_INCKWDCOM and re-
turns control to the caller.

1TPU$M … indicates a mask. There is a corresponding value for each mask in the form TPU$V ….

filespec

OpenVMS usage: char_string
type: character string
access: read only
mechanism: by descriptor

The object file specification.

default-spec

OpenVMS usage: char_string
type: character string
access: read only
mechanism: by descriptor

Contains the default file specification. The default file specification fields are used in the result string
as substitutes for fields omitted in the filespec argument. You can also make substitutions in the
result string using the related-spec argument.

Use the value 0 when no default-spec is to be applied to the file specification.

related-spec

OpenVMS usage: char_string
type: character string
access: read only
mechanism: by descriptor

Contains the related file specification. The fields in the related file specification are substituted in the
result-string if a particular field is missing from both the filespec and default-spec
arguments.

Use the value 0 when no default-spec is to be applied to the file specification.

162

Chapter 8. DEC Text Processing Utility (DECTPU) Routines

Description

The TPU$FILE_PARSE routine returns a string containing the fields requested of the file specified.
The file is not required to exist when the parse is done. The intention of the TPU$FILE_PARSE rou-
tine is to construct a valid file specification from the information passed in through the file specifica-
tion, the default file specification, and the related file specification.

The routine uses the $PARSE system service to return the requested information.

The TPU$FILE_PARSE routine is also called by DECTPU when the TPU built-in procedure
FILE_PARSE is executed from TPU code. The return value of the built-in procedure is the string re-
turned in the result-string argument.

Condition Values Returned

TPU$_SUCCESS

Normal successful completion. If the return string contains a null-string, then the last match of the
search operations has occurred.

TPU$_INCKWDCOM

The flags argument had an illegal combination of values.

TPU$_PARSEFAIL

The parse failed.

TPU$FILE_SEARCH
Search File System for Specified File — The TPU$FILE_SEARCH routine provides a simplified
interface to the $SEARCH system service. DECTPU call this routine when TPU code executes the
FILE_SEARCH built-in procedure.

Format
TPU$FILE_SEARCH result-string ,flags ,filespec ,default-spec ,related-spec

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. Most utility routines return a condition value in R0. See Condition Values
Returned.

Arguments

result-string

163

Chapter 8. DEC Text Processing Utility (DECTPU) Routines

OpenVMS usage: char_string
type: character string
access: write only
mechanism: by descriptor

Includes the components of the file specification passed by the flags argument. The memory for the
return string is allocated via the Run-Time Library routine LIB$SGET1_DD. To deallocate memory
for the string, use the Run-Time Library routine LIB$SFREE1_DD.

flags

OpenVMS usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by reference

Determines what file specification components should be returned. The following table lists the valid
flag values:

Flag1 Function
TPU$M_NODE Returns the node component of the file specifica-

tion.
TPU$M_DEV Returns the device component of the file specifi-

cation.
TPU$M_DIR Returns the directory component of the file speci-

fication.
TPU$M_NAME Returns the name component of the file specifica-

tion.
TPU$M_TYPE Returns the type component of the file specifica-

tion.
TPU$M_VER Returns the version component of the file specifi-

cation.
TPU$M_REPARSE Reparses the file specification before processing.

This is intended to be used to reset the file search.
TPU$M_HEAD Returns NODE, DEVICE, and DIRECTORY

components of the file specification. If the TPU
M_NODE, TPUM_DEV or TPU$M_DIR bits
are set while TPU$M_HEAD is set, the routine
will signal the error TPU$_INCKWDCOM and
return.

TPU$M_TAIL Returns NAME, TYPE and VERSION com-
ponents of the file specification. If the TPU
M_NAME, TPUM_TYPE or TPU$M_VER
bits are set while TPU$M_TAIL is set, the routine
will signal the error TPU$_INCKWDCOM and
return.

1TPU$M … indicates a mask. There is a corresponding value for each mask in the form TPU$V ….

164

Chapter 8. DEC Text Processing Utility (DECTPU) Routines

filespec

OpenVMS usage: char_string
type: character string
access: read only
mechanism: by descriptor

Object file specification.

default-spec

OpenVMS usage: char_string
type: character string
access: read only
mechanism: by descriptor

The default file specification. The default file specification fields are used to fill in the re-
sult-string when fields are omitted in the filespec argument. Use the related-spec ar-
gument to specify other substitutions.

Use the value 0 when no default-spec is to be applied to the file specification.

related-spec

OpenVMS usage: char_string
type: character string
access: read only
mechanism: by descriptor

Contains the related file specification. The fields in the related file specification are used in the re-
sult-string for fields omitted in the filespec and default-spec arguments.

Use the value 0 when no default-spec is to be applied to the file specification.

Description

This routine allows an application to verify the existence of, and return components of, a file specifi-
cation. Wildcard operations are permitted. The routine uses the $PARSE and $SEARCH system ser-
vices to seek the file specification.

If no wildcards are included in the file specification string and the result-string returns a zero
(0) length string, no file was found. If wildcard characters were present in the file specification and
the result-string returns a zero (0) length string, there are no more files that match the wild-
cards.

To find all the files that match a wildcard specification, repeatedly call this routine, passing the same
arguments, until the routine returns a zero-length result string.

165

Chapter 8. DEC Text Processing Utility (DECTPU) Routines

The TPU$FILE_SEARCH routine is called by DECTPU when the TPU built-in procedure
FILE_SEARCH is executed from TPU code. The return value of the built-in procedure is the string
returned in the result-string argument.

Condition Values Returned

TPU$_SUCCESS

Normal successful completion. If the return string contains a null string, the final match operation
was detected.

TPU$_INCKWDCOM

The flags argument had an illegal combination of values.

TPU$_PARSEFAIL

The requested repeat parse failed.

TPU$_SEARCHFAIL

An error occurred during the search operation.

TPU$HANDLER
TPU$HANDLER — The TPU$HANDLER routine is the DECTPU condition handler. The DECTPU
condition handler invokes the $PUTMSG system service, passing it the address of TPU$MESSAGE.

Format
TPU$HANDLER signal_vector ,mechanism_vector

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. Most utility routines return a condition value in R0. See Condition Values
Returned.

Arguments

signal_vector

OpenVMS usage: arg_list
type: longword (unsigned)
access: modify
mechanism: by reference

166

Chapter 8. DEC Text Processing Utility (DECTPU) Routines

Signal vector. See the VSI OpenVMS System Services Reference Manual for information about the
signal vector passed to a condition handler.

mechanism_vector

OpenVMS usage: arg_list
type: longword (unsigned)
access: read only
mechanism: by reference

Mechanism vector. See the VSI OpenVMS System Services Reference Manual for information about
the mechanism vector passed to a condition handler.

Description
The TPU$MESSAGE routine performs the actual output of the message. The $PUTMSG system ser-
vice only formats the message. It gets the settings for the message flags and facility name from the
variables described in Section 8.1.2. Those values can be modified only by the DECTPU built-in pro-
cedure SET.

If the condition value received by the handler has a FATAL status or does not have the DECTPU fa-
cility code, the condition is resignaled.

If the condition is TPU$_QUITTING, TPU$_EXITING, or TPU$_RECOVERFAIL, a request to UN-
WIND is made to the establisher of the condition handler.

After handling the message, the condition handler returns with a continue status. DECTPU error mes-
sage requests are made by signaling a condition to indicate which message should be written out. The
arguments in the signal array are a correctly formatted message argument vector. This vector some-
times contains multiple conditions and formatted ASCII output (FAO) arguments for the associated
messages. For example, if the editor attempts to open a file that does not exist, the DECTPU message
TPU$_NOFILEACCESS is signaled. The FAO argument to this message is a string for the name of
the file. This condition has an error status, followed by the OpenVMS RMS status field (STS) and sta-
tus value field (STV). Because this condition does not have a fatal severity, the editor continues after
handling the error.

The editor does not automatically return from TPU$CONTROL. If you call the TPU$CONTROL rou-
tine, you must explicitly establish a way to regain control (for example, using the built-in procedure
CALL_USER). If you establish your own condition handler but call the DECTPU handler for certain
conditions, the default condition handler must be established at the point in your program where you
want to return control. You can also interrupt TPU$CONTROL by having your program specify and
then trigger an asynchronous routine via the TPU$SPECIFY_ASNYC_ACTION and TPU$TRIG-
GER_ASYNC_ACTION routines.

See the VSI OpenVMS Calling Standard for details on writing a condition handler.

TPU$INITIALIZE
Initialize DECTPU for Processing — The TPU$INITIALIZE routine initializes DECTPU for text pro-
cessing. This routine allocates global data structures, initializes global variables, and calls the appro-
priate setup routines for each of the major components of the editor, including the Screen Manager
and the I/O subsystem.

167

Chapter 8. DEC Text Processing Utility (DECTPU) Routines

Format
TPU$INITIALIZE callback [,user_arg]

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. Most utility routines return a condition value in R0. Condition values that
this routine can return are listed under Condition Values Returned.

Argument
callback

OpenVMS usage: vector_longword_unsigned
type: bound procedure value
access: read only
mechanism: by descriptor

Callback routine. The callback argument is the address of a user-written routine that returns the
address of an item list containing initialization parameters or a routine for handling file I/O operations.
This callback routine must call a command line parsing routine, which can be TPU$CLIPARSE or a
user-written parsing routine.

Callable DECTPU defines item codes that you can use to specify initialization parameters. The fol-
lowing rules must be followed when building the item list:

• If you use the TPU$_OTHER_FILENAMES item code, it must follow the TPU$_FILENAME
item code.

• If you use either the TPU$_CHAIN item code or the TPU$_ENDLIST code, it must be the last
item code in the list.

The following figure shows the general format of an item descriptor. For information about how to
build an item list, refer to the programmer's manual associated with the language you are using. Any
reference to command line qualifiers refer to those command line qualifiers that you use with the
EDIT/TPU command.

The return address in an item descriptor is usually 0.

168

Chapter 8. DEC Text Processing Utility (DECTPU) Routines

The following item codes are available:

Item Code Description
TPU$_OPTIONS Enables the command qualifiers. The bits in the

bit mask specified by the buffer address field cor-
respond to the various DECTPU command quali-
fiers.

TPU$_JOURNALFILE Passes the string specified with the /JOURNAL
qualifier. The buffer length field is the length
of the string, and the buffer address field is the
address of the string. This string is available
with GET_INFO (COMMAND_LINE, “JOUR-
NAL_FILE”). This string can be a null string.

TPU$_SECTIONFILE Passes the string that is the name of the binary
initialization file (section file) to be mapped in.
The buffer length field is the length of the string,
and the buffer address field is the address of the
string. If the TPU$V_SECTION bit is set, this
item code must be specified.

TPU$_OUTPUTFILE Passes the string specified with the /OUTPUT
qualifier. The buffer length field is the length of
the string, and the buffer address field specifies
the address of the string. This string is returned
by the built-in procedure GET_INFO (COM-
MAND_LINE, “OUTPUT_FILE”). The string
can be a null string.

TPU$_DISPLAYFILE Passes the string specified with the /DISPLAY
qualifier. The buffer length field defines the
length of the string, and the buffer address field
defines the string address. The interface between
the TPUSHR image and the display file image
is not documented. Applications should only use
this option with documented display files such as
TPU$CCTSHR or TPU$MOTIFSHR.

TPU$_COMMANDFILE Passes the string specified with the /COMMAND
qualifier. The buffer length field is the length
of the string, and the buffer address field is the
address of the string. This string is returned
by the built-in procedure GET_INFO (COM-
MAND_LINE, “COMMAND_FILE”). The string
can be a null string.

TPU$_FILENAME Passes the string that is the name of the first
input file specified on the command line. The
buffer length field specifies the length of this
string, and the buffer address field specifies its
address. This string is returned by the built-in
procedure GET_INFO (COMMAND_LINE,
“FIRST_FILE_NAME”). This file name can be a
null string.

169

Chapter 8. DEC Text Processing Utility (DECTPU) Routines

Item Code Description
TPU$_OTHER_FILENAMES Passes a string that contains the name of an in-

put file that follows the first input file on the
command line. The buffer length field specifies
the length of this string, and the buffer address
field specifies its address. Each additional file
specified on the command line requires its own
TPU$_OTHER_FILENAMES item entry. These
strings are returned by the GET_INFO (COM-
MAND_LINE, “NEXT_FILE_NAME”) built-
in procedure in the order they appear in the item
list. This item code must appear after the TPU
$_FILENAME item in the item list.

TPU$_FILEIO Passes the bound procedure value of a routine
to be used for handling file operations. You can
provide your own file I/O routine, or you can
call TPU$FILEIO, the utility routine provided
by DECTPU for handling file operations. The
buffer address field specifies the address of a two-
longword vector. The first longword of the vector
contains the address of the routine. The second
longword specifies the environment value that
DECTPU loads into R1 before calling the routine.

TPU$_CALLUSER Passes the bound procedure value of the user-
written routine that the built-in procedure CAL-
L_USER is to call. The buffer address field spec-
ifies the address of a two-longword vector. The
first longword of the vector contains the address
of the routine. The second longword specifies the
environment value that DECTPU loads into R1
before calling the routine.

TPU$_INIT_FILE Passes the string specified with the /
INITIALIZATION qualifier. The buffer length
field is the length of the string, and the buffer ad-
dress field is the address of the string. This string
is returned by the built-in procedure GET_INFO
(COMMAND_LINE, “INIT_FILE”).

TPU$_START_LINE Passes the starting line number for the edit.
The buffer address field contains the first of the
two integer values you specified as part of the /
START_POSITION command qualifier. The
value is available using the built-in procedure
GET_INFO (COMMAND_LINE, “LINE”). Usu-
ally an initialization procedure uses this informa-
tion to set the starting position in the main editing
buffer. The first line in the buffer is line 1.

TPU$_START_CHAR Passes the starting column position for the ed-
it. The buffer address field contains the second
of the two integer values you specified as part
of the /START_POSITION command qualifier.

170

Chapter 8. DEC Text Processing Utility (DECTPU) Routines

Item Code Description
The value is available using the built-in procedure
GET_INFO (COMMAND_LINE, “CHARAC-
TER”). Usually an initialization procedure uses
this information to set the starting position in the
main editing buffer. The first column on a line to
character 1.

TPU$_CHARACTERSET Passes the string specified with the /CHARAC-
TER_SET qualifier. The buffer length field spec-
ifies the string length and the buffer address field
specifies the string address. Valid strings are
“DEC_MCS ” (the default value), “ISO_LATIN1
”, and “GENERAL ”. If the application tries to
pass any other string, the routine signals an error
and passes the default string (DEC_MCS).

TPU$_WORKFILE Passes the string specified with the /WORK qual-
ifier. The buffer length field specifies the string
length and the buffer address specifies the string
address. This string is available with GET_INFO
(COMMAND_LINE, “WORK_FILE”).

TPU$_CHAIN Passes the address of the next item list to the
process specified by the buffer address field.

TPU$_ENDLIST Signals the end of the item list.
TPU$_PARENT_WIDGET Passes the appropriate parent widget when invok-

ing the DECwindows version of the editor. This
routine is not specified by the application; DECT-
PU invokes its own application shell. The widget
address is passed in the buffer address field. This
item code is only valid when using the DECwin-
dows interface.

TPU$_APPLICATION_CONTEXT Passes the application context to use with the
TPU$_PARENT_WIDGET. DECTPU defaults
to its own application context. The buffer ad-
dress field specifies the application context ad-
dress. This item code is only valid when using the
DECwindows interface.

TPU$_DEFAULTSFILE Specifies which file DECTPU uses to initialize
the X defaults database. The buffer length field
specifies the string length and the buffer address
field specifies the string address. This item code
is only valid when using the DECwindows inter-
face.

TPU$_CTRL_C_ROUTINE Passes the bound procedure value of a routine to
be used for handling Ctrl/C asynchronous sys-
tem traps (ASTs). DECTPU calls the routine
when a Ctrl/C AST occurs. If the routine returns
a FALSE value, DECTPU assumes that the Ctrl/
C has been handled. If the routine returns a TRUE
value, DECTPU aborts any currently executing

171

Chapter 8. DEC Text Processing Utility (DECTPU) Routines

Item Code Description
DECTPU procedure. The buffer address field
specifies the address of a two-longword vector.
The first longword of the vector contains the ad-
dress of the routine. The second longword spec-
ifies the environment value that DECTPU loads
into R1 before calling the routine.

TPU$_DEBUGFILE Passes the string specified with the /DEBUG
command qualifier. The buffer length field is the
length of the string, and the buffer address field is
the address of the string.

TPU$_FILE_SEARCH Passes the bound procedure value of a routine to
be used to replace the TPU$FILE_SEARCH rou-
tine which is called when the built-in procedure
FILE_SEARCH is called from TPU code. See the
description of the TPU$FILE_SEARCH and the
user routine FILE_SEARCH for more informa-
tion.

TPU$_FILE_PARSE Passes the bound procedure value of a routine to
be used to replace the TPU$FILE_PARSE rou-
tine which is called when the built-in procedure
FILE_PARSE is called from TPU code. See the
description of the TPU$FILE_PARSE and the
user routine FILE_PARSE for more information.

Table 8.1 lists the bits and corresponding masks enabled by the item code TPU$K_OPTIONS and
shows how each bit affects TPU$INITIALIZE operation. Several bits in the TPU$_OPTIONS mask
require additional item code entries in the item list. An example of this is TPU$M_COMMAND
which requires a TPU$_COMMANDFILE entry in the item list.

Table 8.1. Valid Masks for the TPU$K_OPTIONS Item Code

Mask1 GET_INFO Re-
quest String 2

Description

TPU$M_COMMAND COMMAND If DECTPU senses the presence of the
TPU$_COMMANDFILE item, it tries
to read, compile and execute the un-
bound TPU code.

TPU$M_COMMAND_DFLTED Not applicable Specifies that DECTPU should use the
default command file name of TPU
$COMMAND.TPU when reading in
the command file. No error is report-
ed if the default command file is not
found. TPU$INITIALIZE fails when
the TPU$M_COMMAND_DFLTED
bit is set to 0 and no file is specified in
the item list.

TPU$M_CREATE CREATE The behavior of DECTPU is not affect-
ed by this bit. Its interpretation is left to
the application layered on DECTPU.

172

Chapter 8. DEC Text Processing Utility (DECTPU) Routines

Mask1 GET_INFO Re-
quest String 2

Description

TPU$M_DEBUG Not applicable If DECTPU senses the presence of the
TPU$_DEBUGFILE item, it tries to
read the file, and then proceeds to com-
pile and execute its contents as TPU
statements.

TPU$M_DEFAULTS Not applicable If DECTPU senses the presence of the
TPU$_DEFAULTSFILE item, it uses
the specified DECwindows X resource
file to initialize the DECwindows X re-
source database.

TPU$M_DISPLAY DISPLAY If DECTPU senses the presence of the
TPU$_DISPLAYFILE item, it tries to
image activate the specified image as
its screen manager. When the bit is 0,
DECTPU uses SYS$OUTPUT for dis-
play and only the READ_LINE built-in
procedure may be used for input.

TPU$M_INIT INITIALIZATION If DECTPU senses the presence of
the TPU$_INIT_FILE item, it re-
turns the specified string through
the built-in procedure GET_INFO
(COMMAND_LINE, “INITIALIZA-
TION_FILE”). Processing of the ini-
tialization file is left to the application.

TPU$M_JOURNAL JOURNAL If DECTPU senses the presence of the
TPU$_JOURNALFILE item, it outputs
the keystrokes entered during the edit-
ing session to the specified file.

Note: VSI recommends the use of
buffer change journalling in new appli-
cations.

TPU$M_MODIFY MODIFY The behavior of DECTPU is not affect-
ed by this bit. Its interpretation is left to
the application layered on DECTPU.

TPU$M_NODEFAULTS Not applicable DECTPU initializes the DECwindows
X resource database only with resource
files that the DECwindows toolkit rou-
tine XtApplInitialize loads into the data-
base.

TPU$M_NOMODIFY NOMODIFY The behavior of DECTPU is not affect-
ed by this bit. Its interpretation is left to
the application layered on DECTPU.

TPU$M_OUTPUT OUTPUT The behavior of DECTPU is not affect-
ed by this bit. Its interpretation is left to
the application layered on DECTPU.

173

Chapter 8. DEC Text Processing Utility (DECTPU) Routines

Mask1 GET_INFO Re-
quest String 2

Description

TPU$M_READ READ_ONLY The behavior of DECTPU is not affect-
ed by this bit. Its interpretation is left to
the application layered on DECTPU.

TPU$M_RECOVER RECOVER The behavior of DECTPU is not affect-
ed by this bit. Its interpretation is left to
the application layered on DECTPU.

TPU$M_SECTION SECTION If DECTPU senses the presence of the
TPU$_SECTIONFILE item, it tries
to read the specified file as a binary
initialization file. TPU$INITIALIZE
fails if this bit is set to 1 and the TPU
$_SECTIONFILE item is not present in
the item list.

TPU$M_SEC_LNM_MODE Not applicable If DECTPU senses the presence of the
TPU$M_SEC_LNM_MODE item, it
looks only at executive mode logical
names when attempting to read in a
section file.

TPU$M_WORK WORK If DECTPU senses the presence of the
TPU$_WORKFILE item, it uses the
specified file for memory management.
If no item list entry is present, and this
bit is set to 1, a file is created in SYS
$LOGIN:.TPU$WORK.

TPU$M_WRITE WRITE The behavior of DECTPU is not affect-
ed by this bit. Its interpretation is left to
the application layered on DECTPU.

1The prefix can be TPU$M_ or TPU$V_. TPU$M_ denotes a mask corresponding to the specific field in which the bit is set. TPU$V_ is a
bit number.
2Most bits in the mask have a corresponding GET_INFO (COMMAND_LINE) request string.

To create the bits, start with the value 0, then use the OR operator on the mask (TPU$M …) of each
item you want to set. Another way to create the bits is to treat the 32 bits as a bit vector and set the bit
(TPU$V …) corresponding to the item you want.

user_arg

OpenVMS usage: user_arg
type: longword (unsigned)
access: read only
mechanism: by value

User argument. The user_arg argument is passed to the user-written initialization routine
INITIALIZE.

The user_arg parameter is provided to allow an application to pass information through TPU
$INITIALIZE to the user-written initialization routine. DECTPU does not interpret this data in any
way.

174

Chapter 8. DEC Text Processing Utility (DECTPU) Routines

Description
This is the first routine that must be called after establishing a condition handler.

This routine initializes the editor according to the information received from the callback routine. The
initialization routine defaults all file specifications to the null string and all options to off. However, it
does not default the file I/O or call-user routine addresses.

Condition Values Returned
TPU$_SUCCESS

Initialization was completed successfully.

TPU$_FAILURE

General code for all other errors during initialization.

TPU$_INSVIRMEM

Insufficient virtual memory exists for the editor to initialize.

TPU$_NOFILEROUTINE

No routine has been established to perform file operations.

TPU$_NONANSICRT

The input device (SYS$INPUT) is not a supported terminal.

TPU$_RESTOREFAIL

An error occurred during the restore operation.

TPU$_SYSERROR

A system service did not work correctly.

TPU$MESSAGE
Write Message String — The TPU$MESSAGE routine writes error messages and strings using the
built-in procedure, MESSAGE. Call this routine to have messages written and handled in a manner
consistent with DECTPU. This routine should be used only after TPU$EXECUTE_INIFILE.

Format
TPU$MESSAGE string

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only

175

Chapter 8. DEC Text Processing Utility (DECTPU) Routines

mechanism: by value

Longword condition value.

Note

The return status should be ignored because it is intended for use by the $PUTMSG system service.

Argument
string

OpenVMS usage: char_string
type: character string
access: read only
mechanism: by descriptor

Formatted message. The string argument is the address of a descriptor of text to be written. It must
be completely formatted. This routine does not append the message prefixes. However, the text is ap-
pended to the message buffer if one exists. In addition, if the buffer is mapped to a window, the win-
dow is updated.

TPU$PARSEINFO
Parse Command Line and Build Item List — The TPU$PARSEINFO routine parses a command and
builds the item list for TPU$INITIALIZE.

Format
TPU$PARSEINFO fileio ,call_user

Returns

OpenVMS usage: item_list
type: longword (unsigned)
access: read only
mechanism: by reference

The routine returns the address of an item list.

Arguments
fileio

OpenVMS usage: vector_longword_unsigned
type: bound procedure value
access: read only
mechanism: by descriptor

176

Chapter 8. DEC Text Processing Utility (DECTPU) Routines

File I/O routine. The fileio argument is the address for a descriptor of a file I/O routine.

call_user

OpenVMS usage: vector_longword_unsigned
type: bound procedure value
access: read only
mechanism: by descriptor

Call-user routine. The call_user argument is the address for a descriptor of a call-user routine.

Description
The TPU$PARSEINFO routine parses a command and builds the item list for TPU$INITIALIZE.

This routine uses the command language (CLI) routines to parse the current command. It makes
queries about the command parameters and qualifiers that DECTPU expects. The results of these
queries are used to set up the proper information in an item list. The addresses of the user routines are
used for those items in the list. The address of this list is the return value of the routine.

If your application parses information that is not related to the operation of DECTPU, make sure the
application obtains and uses all non-DECTPU parse information before the application calls the TPU
$PARSEINFO interface. This is because TPU$PARSEINFO destroys all parse information obtained
and stored before TPU$PARSEINFO was called.

TPU$SIGNAL
Signal a TPU Status — The TPU$SIGNAL routine allows applications and user-written TPU routines
such as FILEIO to easily signal error messages in order for TPU error handlers to perform correctly.

Format
TPU$SIGNAL condition-code

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. In most cases, the routine returns either the same signal passed to it in the
condition value argument, or the return value of LIB$SIGNAL. If the routine fails, it signals TPU
$_FAILURE and returns control to the caller.

Argument
condition-code

OpenVMS usage: cond_value
type: longword (unsigned)

177

Chapter 8. DEC Text Processing Utility (DECTPU) Routines

access: read only
mechanism: by value

The condition-code is an unsigned longword that contains the condition code to be signaled. In most
cases, this argument is a TPU message code.

Description
TPU$SIGNAL performs the same function as the Run-Time Library routine LIB$SIGNAL, but it also
processes TPU facility messages to allow TPU language ON_ERROR handlers to be called.

For example, assume that a user-written file input/output routine is designed to signal the error TPU
$_OPENIN when it fails to open a file. Calling the TPU$SIGNAL routine and passing the value TPU
$_OPENIN allows a case-style TPU ON_ERROR handler to receive the error, thus preserving the
documented return values for TPU built-in procedures such as READ_FILE.

Note

You must call TPU$INITIALIZE before you call the TPU$SIGNAL routine.

If TPU$_QUITTING, TPU$_EXITING, or TPU$_RECOVERFAIL are passed to the routine, it calls
the Run-Time Library routine LIB$SIGNAL.

If facility messages other than TPU messages are passed to the TPU$SIGNAL routine, it calls the LIB
$SIGNAL routine and passes the appropriate condition value.

TPU$SPECIFY_ASYNC_ACTION
Register an Asynchronous Action — The TPU$SPECIFY_ASYNC_ACTION routine allows applica-
tions using the DECTPU full callable interface to register asynchronous actions with DECTPU.

Format
TPU$SPECIFY_ASYNC_ACTION facility_index [,tpu_statement]

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. Most utility routines return a condition value in R0. Condition values that
this routine can return are listed under Condition Values Returned.

Argument
facility_index

OpenVMS usage: longword_unsigned
type: longword (signed)

178

Chapter 8. DEC Text Processing Utility (DECTPU) Routines

access: read only
mechanism: by reference

Represents an index of the asynchronous action. This index is used with the TPU$TRIG-
GER_ASYNC_ACTION routine to let DECTPU know what action to perform. It may also be used to
delete an action routine (by omitting the tpu_statement). You may register several asynchronous
actions depending on your application's needs. This facility index number may be any positive integer.

tpu_statement

OpenVMS usage: char_string
type: character string
access: read only
mechanism: by descriptor

The DECTPU statement you want executed when you call the TPU$TRIGGER_ASYNC_ACTION
routine. The statement is compiled and then stored internally. If you omit the parameter, DECTPU re-
moves the action from its list of asynchronous events.

Description
The TPU$SPECIFY_ASYNC_ACTION routine, along with TPU$TRIGGER_ASYNC_ACTION, al-
low applications to interrupt DECTPU after calling TPU$CONTROL. The specified DECTPU state-
ment is compiled and saved.

This routine must be called after TPU$INITIALIZE. It will not complete successfully if keystroke
journalling is enabled.

Condition Values Returned
TPU$_SUCCESS

Normal successful completion.

TPU$_COMPILEFAIL

The code specified in tpu_statement did not compile successfully.

TPU$_INVPARM

An invalid parameter was passed.

TPU$_JNLACTIVE

Keystroke journalling is active. This routine requires that either journalling be turned off or that
buffer change journalling be used.

TPU$TPU
Invoke DECTPU — The TPU$TPU routine invokes DECTPU and is equivalent to the DCL command
EDIT/TPU.

179

Chapter 8. DEC Text Processing Utility (DECTPU) Routines

Format
TPU$TPU command

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. Most utility routines return a condition value in R0. Condition values that
this routine can return are listed under Condition Values Returned.

Argument
command

OpenVMS usage: char_string
type: character string
access: read only
mechanism: by descriptor

Command string. Note that the verb is TPU instead of EDIT/TPU. The command argument is the ad-
dress for a descriptor of a command line.

Description
This routine takes the command string specified and passes it to the editor. DECTPU uses the infor-
mation from this command string for initialization purposes, just as though you had entered the com-
mand at the DCL level.

Using the simplified callable interface does not set TPU$CLOSE_SECTION. This feature lets you
make multiple calls to TPU$TPU without requiring you to open and close the section file on each call.

If your application parses information that is not related to the operation of DECTPU, make sure the
application obtains and uses all non-DECTPU parse information before the application calls TPU
$TPU. This is because TPU$TPU destroys all parse information obtained and stored before TPU
$TPU was called.

Condition Values Returned
This routine returns any condition value returned by TPU$INITIALIZE, TPU$EXECUTE_INIFILE,
TPU$CONTROL, and TPU$CLEANUP.

TPU$TRIGGER_ASYNC_ACTION
Execute DECTPU Command at Asynchronous Level — The TPU$TRIGGER_ASYNC_ACTION
routine allows applications using the DECTPU full callable interface to interrupt the DECTPU TPU
$CONTROL loop at an asynchronous level.

180

Chapter 8. DEC Text Processing Utility (DECTPU) Routines

Format
TPU$TRIGGER_ASYNC_ACTION facility_index

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. Most utility routines return a condition value in R0. Condition values that
this routine can return are listed under Condition Values Returned.

Arguments
facility_index

OpenVMS usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by reference

The facility_index argument represents the asynchronous action to be taken. This is the same
index passed to the TPU$SPECIFY_ASYNC_ACTION routine registering what DECTPU statements
to execute.

Description
The TPU$TRIGGER_ASYNC_ACTION routine, along with TPU$SPECIFY_ASYNC_ACTION
routine allow applications to interrupt DECTPU after calling TPU$CONTROL. The command that
was specified for this facility_index is put on the DECTPU queue of work items and is handled
as soon as no other work items are present. This allows DECTPU to complete and stabilize its envi-
ronment before executing the command. This routine must be called after control has been passed to
DECTPU via the TPU$CONTROL routine.

Condition Values Returned
TPU$_SUCCESS

Normal successful completion.

TPU$_UNKFACILITY

The facility_index passed to this routine does not match any facility index passed to TPU
$SPECIFY_ASYNC_ACTION.

FILEIO
User-Written Routine to Perform File Operations — The user-written FILEIO routine is used to han-
dle DECTPU file operations. The name of this routine can be either your own file I/O routine or the
name of the DECTPU file I/O routine (TPU$FILEIO).

181

Chapter 8. DEC Text Processing Utility (DECTPU) Routines

Format
FILEIO code ,stream ,data

Returns

OpenVMS usage: cond_value
type: longword (usigned)
access: write only
mechanism: by reference

Longword condition value. Most utility routines return a condition value in R0. Condition values that
this routine can return are listed under Condition Values Returned.

Arguments
code

OpenVMS usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by reference

Item code specifying a DECTPU function. The code argument is the address of a longword contain-
ing an item code from DECTPU, which specifies a function to perform.

stream

OpenVMS usage: unspecified
type: longword (unsigned)
access: modify
mechanism: by reference

File description. The stream argument is the address of a data structure containing four longwords.
This data structure is used to describe the file to be manipulated.

data

OpenVMS usage: item_list_3
type: longword (unsigned)
access: modify
mechanism: by reference

Stream data. The data argument is either the address of an item list or the address of a descriptor.

Note

The value of this parameter depends on which item code you specify.

182

Chapter 8. DEC Text Processing Utility (DECTPU) Routines

Description
The bound procedure value of this routine is specified in the item list built by the callback routine.
This routine is called to perform file operations. Instead of using your own file I/O routine, you can
call TPU$FILEIO and pass it the parameters for any file operation you do not want to handle. Note,
however, that TPU$FILEIO must handle all I/O requests for any file it opens. Also, if it does not open
the file, it cannot handle any I/O requests for the file. In other words, you cannot mix the file opera-
tions between your own file I/O routine and the one supplied by DECTPU.

Condition Values Returned
The condition values returned are determined by the user and should indicate success or failure of the
operation.

FILE_PARSE
User-Written Routine to Perform File Parse Operations — This is a user-written routine that can be
used in place of the TPU$FILE_PARSE routine.

Format
FILE_PARSE result-string ,flags ,filespec ,default-spec ,related-spec

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. The return value is ignored by DECTPU. User-written FILE_PARSE rou-
tines should include calls to the TPU$SIGNAL routine to ensure proper error handling.

Arguments
result-string

OpenVMS usage: char_string
type: character string
access: write only
mechanism: by descriptor

Return value for the built-in procedure FILE_PARSE. The calling program should fill in this descrip-
tor with a dynamic string allocated by the string routines, such as the Run-Time Library routine LIB
$SGET1_DD. DECTPU frees this string when necessary.

flags

OpenVMS usage: longword_unsigned
type: longword (unsigned)

183

Chapter 8. DEC Text Processing Utility (DECTPU) Routines

access: read only
mechanism: by reference

The following table lists the valid flag values used to request file specification components:

Flag1 Function
TPU$M_NODE Requests for the node component of the file spec-

ification.
TPU$M_DEV Requests for the device component of the file

specification.
TPU$M_DIR Requests for the directory component of the file

specification.
TPU$M_NAME Requests for the name component of the file spec-

ification.
TPU$M_TYPE Requests for the type component of the file speci-

fication.
TPU$M_VER Requests for the version component of the file

specification.
TPU$M_HEAD Requests for the NODE, DEVICE, and DIREC-

TORY components of the file specification.
TPU$M_TAIL Requests for NAME, TYPE, and VERSION com-

ponents of the file specification.
1TPU$M … indicates a mask. There is a corresponding value for each mask in the form TPU$V ….

filespec

OpenVMS usage: char_string
type: character string
access: read only
mechanism: by descriptor

The object file specification.

default-spec

OpenVMS usage: char_string
type: character string
access: read only
mechanism: by descriptor

Contains the default file specification. The value 0 is passed if there is no default-spec argument.

related-spec

OpenVMS usage: char_string
type: character string
access: read only
mechanism: by descriptor

184

Chapter 8. DEC Text Processing Utility (DECTPU) Routines

The related-spec argument contains the related file specification. The value 0 is passed if there
is no related-spec.

Description
This routine allows an application to replace the TPU$FILE_PARSE routine with its own file-parsing
routine. The calling program passes the address of the file-parsing routine to TPU$INITIALIZE using
the TPU$_FILE_PARSE item code.

When the DECTPU built-in procedure FILE_PARSE is called from TPU code, DECTPU calls either
the user-written routine (if one was passed to TPU$INITIALIZE) or the TPU$FILE_PARSE routine.
The return value of the built-in procedure is the string returned in the result-string argument.

To ensure proper operation of the user's ON_ERROR error handlers, errors should be signaled using
the TPU$SIGNAL routine.

FILE_SEARCH
User-Written Routine to Perform File Search Operations — This is a user-written routine that is used
in place of the TPU$FILE_SEARCH routine.

Format
FILE_SEARCH result-string ,flags ,filespec ,default-spec ,related-spec

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. If an odd numeric value is returned, the next call to the built-in proce-
dure FILE_SEARCH automatically sets the TPU$M_REPARSE bit in the flags longword. TPU
$M_REPARSE is also set if the result-string has a length of 0.

Arguments
result-string

OpenVMS usage: char_string
type: character string
access: write only
mechanism: by descriptor

Return value for the built-in procedure FILE_SEARCH. Your program should fill in this descrip-
tor with a dynamic string allocated by the string routines such as the Run-Time Library routine LIB
$SGET1_DD. DECTPU frees this string when necessary.

The TPU$M_REPARSE bit is set in the flags longword if the result-string has a length of zero.
The bit is intended to reset the file search when wildcard searches are performed.

185

Chapter 8. DEC Text Processing Utility (DECTPU) Routines

flags

OpenVMS usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by reference

The following table shows the flags used for specifying the file components:

Flag1 Function
TPU$M_NODE Requests for the node component of the file spec-

ification.
TPU$M_DEV Requests for the device component of the file

specification.
TPU$M_DIR Requests for the directory component of the file

specification.
TPU$M_NAME Requests for the name component of the file spec-

ification.
TPU$M_TYPE Requests for the type component of the file speci-

fication.
TPU$M_VER Requests for the version component of the file

specification.
TPU$M_REPARSE Reparses the file specification before processing.

This is intended as a way to restart the file search.
This flag will automatically be set by DECTPU
if on a previous call to the FILE_SEARCH user
routine the result-string has a zero length
or the routine returns a odd (noneven) status.

TPU$M_HEAD Requests for the NODE, DEVICE, and DIREC-
TORY components of the file specification.

TPU$M_TAIL Requests for the NAME, TYPE, and VERSION
component of the file specification.

1TPU$M … indicates a mask. There is a corresponding value for each mask in the form TPU$V ….

filespec

OpenVMS usage: char_string
type: character string
access: read only
mechanism: by descriptor

The object file specification.

default-spec

OpenVMS usage: char_string
type: character string
access: read only

186

Chapter 8. DEC Text Processing Utility (DECTPU) Routines

mechanism: by descriptor

The default-spec argument contains the default file specification.

The value 0 is passed if there is no default-spec.

related-spec

OpenVMS usage: char_string
type: character string
access: read only
mechanism: by descriptor

The related-spec argument contains the related file specification.

The value 0 is passed if there is no related-spec.

Description
The FILE_SEARCH user routine allows an application to replace the TPU$FILE_SEARCH routine
with its own file-searching routine. The calling program passes the address of the routine to the TPU
$INITIALIZE routine using the TPU$_FILE_SEARCH item code.

When the DECTPU built-in procedure FILE_SEARCH is called from TPU code, DECTPU calls ei-
ther the user-written FILE_SEARCH routine (if one was passed to TPU$INITIALIZE) or the TPU
$FILE_SEARCH routine. The return value of the built-in procedure is the string returned in the re-
sult-string argument.

To ensure proper operation of the user's ON_ERROR handlers, errors in the user-written
FILE_PARSE routine should be signaled using the TPU$SIGNAL routine.

HANDLER
User-Written Condition Handling Routine — The user-written HANDLER routine performs condition
handling.

Format
HANDLER signal_vector ,mechanism_vector

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value.

Arguments
signal_vector

187

Chapter 8. DEC Text Processing Utility (DECTPU) Routines

OpenVMS usage: arg_list
type: longword (unsigned)
access: modify
mechanism: by reference

Signal vector. See the VSI OpenVMS System Services Reference Manual for information about the
signal vector passed to a condition handler.

mechanism_vector

OpenVMS usage: arg_list
type: longword (unsigned)
access: read only
mechanism: by reference

Mechanism vector. See the VSI OpenVMS System Services Reference Manual for information about
the mechanism vector passed to a condition handler.

Description
If you need more information about writing condition handlers and programming concepts, refer to
VSI OpenVMS Programming Concepts Manual.

Instead of writing your own condition handler, you can use the default condition handler, TPU$HAN-
DLER. If you want to write your own routine, you must call TPU$HANDLER with the same parame-
ters that your routine received to handle DECTPU internal signals.

INITIALIZE
User-Written Initialization Routine — The user-written initialization callback routine is passed to
TPU$INITIALIZE as a bound procedure value and called to supply information needed to initialize
DECTPU.

Format
INITIALIZE [user_arg]

Returns

OpenVMS usage: item_list
type: longword (unsigned)
access: read only
mechanism: by reference

This routine returns the address of an item list.

Arguments
user_arg

188

Chapter 8. DEC Text Processing Utility (DECTPU) Routines

OpenVMS usage: user_arg
type: longword (unsigned)
access: read only
mechanism: by value

User argument.

Description
The user-written initialization callback routine is passed to TPU$INITIALIZE as a bound procedure
value and called to supply information needed to initialize DECTPU.

If the user_arg parameter was specified in the call to TPU$INITIALIZE, the initialization call-
back routine is called with only that parameter. If user_arg was not specified in the call to TPU
$INITIALIZE, the initialization callback routine is called with no parameters.

The user_arg parameter is provided to allow an application to pass information through TPU
$INITIALIZE to the user-written initialization routine. DECTPU does not interpret this data in any
way.

The user-written callback routine is expected to return the address of an item list containing initializa-
tion parameters. Because the item list is used outside the scope of the initialization callback routine, it
should be allocated in static memory.

The item list entries are discussed in the section about TPU$INITIALIZE. . Most of the initialization
parameters have a default value; strings default to the null string, and flags default to false. The only
required initialization parameter is the address of a routine for file I/O. If an entry for the file I/O rou-
tine address is not present in the item list, TPU$INITIALIZE returns with a failure status.

USER
User-Written Routine Called from a DECTPU Editing Session — The user-written USER routine al-
lows your program to take control during a DECTPU editing session (for example, to leave the editor
temporarily and perform a calculation).

Format
USER integer ,stringin ,stringout

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value.

Arguments
integer

189

Chapter 8. DEC Text Processing Utility (DECTPU) Routines

OpenVMS usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by reference

First parameter to the built-in procedure CALL_USER. This is an input-only parameter and must not
be modified.

stringin

OpenVMS usage: char_string
type: character string
access: read only
mechanism: by descriptor

Second parameter to the built-in procedure CALL_USER. This is an input-only parameter and must
not be modified.

stringout

OpenVMS usage: char_string
type: character string
access: modify
mechanism: by descriptor

Return value for the built-in procedure CALL_USER. Your program should fill in this descriptor with
a dynamic string allocated by the string routines (such as LIB$SGET1_DD) provided by the Run-
Time Library. The DECTPU editor frees this string when necessary.

Description
This user-written routine is invoked by the DECTPU built-in procedure CALL_USER. The built-in
procedure CALL_USER passes three parameters to this routine. These parameters are then passed
to the appropriate part of your application to be used as specified. (For example, they can be used as
operands in a calculation within a Fortran program.) Using the string routines provided by the Run-
Time Library, your application fills in the stringout parameter in the call-user routine, which re-
turns the stringout value to the built-in procedure CALL_USER.

The description of the built-in procedure CALL_USER in the DEC Text Processing Utility Reference
Manual shows an example of a BASIC program that is a call-user routine.

See Section 8.5 for a description of how to create an executable image for the USER routine and how
to call the routine from a C program in the DECTPU environment.

190

Chapter 9. DECdts Portable
Applications Programming Interface
You can use the Digital Distributed Time Service (DECdts) programming routines to obtain time-
stamps that are based on Coordinated Universal Time (UTC). You can also use the DECdts routines
to translate among different timestamp formats and perform calculations on timestamps. Applications
can use the timestamps that DECdts supplies to determine event sequencing, duration, and scheduling.
Applications can call the DECdts routines from DECdts server or clerk systems.

The Digital Distributed Time Service routines are written in the C programming language. You should
be familiar with the basic DECdts concepts before you attempt to use the applications programming
interface (API).

The DECdts API routines can perform the following basic functions:

• Retrieve timestamp information

• Convert between binary timestamps that use different time structures

• Convert between binary timestamps and ASCII representations

• Convert between UTC time and local time

• Convert the binary time values in the OpenVMS (Smithsonian-based) format to or from UTC-
based binary timestamps (OpenVMS systems only)

• Manipulate binary timestamps

• Compare two binary time values

• Calculate binary time values

• Obtain time zone information

DECdts can convert between several types of binary time structures that are based on different cal-
endars and time unit measurements. DECdts uses UTC-based time structures and can convert other
types of time structures to its own presentation of UTC-based time.

The following sections describe DECdts time representations, DECdts time structures, API header
files, and API routines.

9.1. DECdts Time Representation
UTC is the international time standard that has largely replaced Greenwich Mean Time (GMT). The
standard is administered by the International Time Bureau (BIH) and is widely used. DECdts uses
opaque binary timestamps that represent UTC for all of its internal processes. You cannot read or dis-
assemble a DECdts binary timestamp; the DECdts API allows applications to convert or manipulate
timestamps, but they cannot be displayed. DECdts also translates the binary timestamps into ASCII
text strings, which can be displayed.

9.1.1. Absolute Time Representation
An absolute time is a point on a time scale. For DECdts, absolute times reference the UTC time
scale; absolute time measurements are derived from system clocks or external time-providers. When

191

Chapter 9. DECdts Portable Applications Programming Interface

DECdts reads a system clock time, it records the time in an opaque binary timestamp that also in-
cludes the inaccuracy and other information. When you display an absolute time, DECdts converts the
time to ASCII text, as shown in the following display:

1996-11-21-13:30:25.785-04:00I000.082

DECdts displays all times in a format that complies with the International Standards Organization
(ISO) 8601 (1988) standard. Note that the inaccuracy portion of the time is not defined in the ISO
standard (times that do not include an inaccuracy are accepted). Figure 9.1 explains the ISO format
that generated the previous display.

Figure 9.1. Time Display Format

In Figure 9.1, the relative time preceded by the plus (+) or minus (-) character indicates the hours and
minutes that the calendar date and time are offset from UTC. The presence of this time differential
factor (TDF) in the string also indicates that the calendar date and time are the local time of the sys-
tem, not UTC. Local time is UTC minus the TDF. The Inaccuracy designator I indicates the beginning
of the inaccuracy component associated with the time.

Although DECdts displays all times in the previous format, variations in the ISO format shown in Fig-
ure 9.2 are also accepted as input for the ASCII conversion routines.

Figure 9.2. Time Display Format Variants

192

Chapter 9. DECdts Portable Applications Programming Interface

In Figure 9.2, the Time designator T separates the calendar date from the time, a comma separates sec-
onds from fractional seconds, and the plus or minus character indicates the beginning of the inaccura-
cy component.

The following examples show some valid time formats.

The following represents July 4, 1776 17:01 GMT and an infinite inaccuracy (default).

1776-7-4-17:01:00

The following represents a local time of 12:01 (17:01 GMT) on July 4, 1776 with a TDF of -5 hours
and an inaccuracy of 100 seconds.

1776-7-4-12:01:00-05:00I100

Both of the following represent 12:00 GMT in the current day, month, and year with an infinite inac-
curacy.

12:00 and T12

The following represents July 14, 1792 00:00 GMT with an infinite inaccuracy.

1792-7-14

9.1.2. Relative Time Representation
A relative time is a discrete time interval that is usually added to or subtracted from another time. A
TDF associated with an absolute time is one example of a relative time. A relative time is normally
used as input for commands or system routines.

Figure 9.3 shows the full syntax for a relative time.

Figure 9.3. Relative Time Syntax

Notice that a relative time does not use the calendar date fields, because these fields concern absolute
time. A positive relative time is unsigned; a negative relative time is preceded by a minus (-) sign. A
relative time is often subtracted from or added to another relative or absolute time. The relative times
that DECdts uses internally are opaque binary timestamps. The DECdts API offers several routines
that can be used to calculate new times using relative binary timestamps.

The following example shows a relative time of 21 days, 8 hours, and 30 minutes, 25 seconds with an
inaccuracy of 0.300 second.

21-08:30:25.000I00.300

193

Chapter 9. DECdts Portable Applications Programming Interface

The following example shows a negative relative time of 20.2 seconds with an infinite inaccuracy (de-
fault).

-20.2

The following example shows a relative time of 10 minutes, 15.1 seconds with an inaccuracy of 4 sec-
onds.

10:15.1I4

Representing Periods of Time
A given duration of a period of time can be represented by a data element of variable length that uses
the syntax shown in Figure 9.4.

Figure 9.4. Time Period Syntax

The data element contains the following parts:

• The designator P precedes the part that includes the calendar components, including the following:

• The number of years followed by the designator Y

• The number of months followed by the designator M

• The number of weeks followed by the designator W

• The number of days followed by the designator D

• The designator T precedes the part that includes the time components, including the following:

• The number of hours followed by the designator H

• The number of minutes followed by the designator M

• The number of seconds followed by the designator S

• The designator I precedes the number of seconds of inaccuracy.

The following example represents a period of 1 year, 6 months, 15 days, 11 hours, 30 minutes, and 30
seconds and an infinite inaccuracy.

P1Y6M15DT11H30M30S

The following example represents a period of 3 weeks and an inaccuracy of 4 seconds.

P3WI4

194

Chapter 9. DECdts Portable Applications Programming Interface

9.2. Time Structures
DECdts can convert between several types of binary time structures that are based on different base
dates and time unit measurements. DECdts uses UTC-based time structures and can convert other
types of time structures to its own presentation of UTC-based time. The DECdts API routines are used
to perform these conversions for applications on your system.

Table 9.1 lists the absolute time structures that the DECdts API uses to modify binary times for appli-
cations.

Table 9.1. Absolute Time Structures

Structure Time Units Base Date Approximate Range
utc 100-nanosecond 15 October 1582 A.D. 1 to A.D. 30,000
tm second 1 January 1900 A.D. 1 to A.D. 30,000
timespec nanosecond 1 January 1970 A.D. 1970 to A.D. 2106

Table 9.2 lists the relative time structures that the DECdts API uses to modify binary times for appli-
cations.

Table 9.2. Relative Time Structures

Structure Time Units Approximate Range
utc 100-nanosecond ± 30,000 years
tm second ± 30,000 years
reltimespec nanosecond ± 68 years

The remainder of this section explains the DECdts time structures in detail.

9.2.1. The utc Structure
Coordinated Universal Time (UTC) is useful for measuring time across local time zones and for
avoiding the seasonal changes (summer time or daylight saving time) that can affect the local time.
DECdts uses 128-bit binary numbers to represent time values internally; throughout this manual, these
binary numbers representing time values are referred to as binary timestamps. The DECdts utc struc-
ture determines the ordering of the bits in a binary timestamp; all binary timestamps that are based on
the utc structure contain the following information:

• The count of 100-nanosecond units since 00:00:00.00, 15 October 1582 (the date of the Gregorian
reform to the Christian calendar)

• The count of 100-nanosecond units of inaccuracy applied to the above

• The time differential factor (TDF), expressed as the signed quantity

• The timestamp version number

The binary timestamps that are derived from the DECdts utc structure have an opaque format. This
format is a cryptic character sequence that DECdts uses and stores internally. The opaque binary time-
stamp is designed for use in programs, protocols, and databases.

195

Chapter 9. DECdts Portable Applications Programming Interface

Note

Applications use the opaque binary timestamps when storing time values or when passing them to
DECdts.

The API provides the necessary routines for converting between opaque binary timestamps and char-
acter strings that can be displayed and read by users.

9.2.2. The tm Structure
The tm structure is based on the time in years, months, days, hours, minutes, and seconds since
00:00:00 GMT (Greenwich Mean Time), 1 January 1900. The tm structure is defined in the <time.h>
header file.

The tm structure declaration follows:

struct tm {
 int tm_sec; /* Seconds (0 - 59) */
 int tm_min; /* Minutes (0 - 59) */
 int tm_hour; /* Hours (0 - 23) */
 int tm_mday; /* Day of Month (1 - 31) */
 int tm_mon; /* Month of Year (0 - 11) */
 int tm_year; /* Year - 1900 */
 int tm_wday; /* Day of Week (Sunday = 0) */
 int tm_yday; /* Day of Year (0 - 364) */
 int tm_isdst; /* Nonzero if Daylight Savings Time */
 /* is in effect */
 };

Not all of the tm structure fields are used for each routine that converts between tm structures and utc
structures. See the parameter descriptions that accompany the routines in this chapter for additional
information about which fields are used for specific routines.

9.2.3. The timespec Structure
The timespec structure is normally used in combination with or in place of the tm structure to provide
finer resolution for binary times. The timespec structure is similar to the tm structure, but the timespec
structure specifies the number of seconds and nanoseconds since the base time of 00:00:00 GMT, 1
January 1970. You can find the structure in the <utc.h> header file.

The timespec structure declaration follows:

struct timespec {

 unsigned long tv_sec; /* Seconds since 00:00:00 GMT, */
 /* 1 January 1970 */
 long tv_nsec; /* Additional nanoseconds since */
 /* tv_sec */

 } timespec_t;

9.2.4. The reltimespec Structure
The reltimespec structure represents relative time. This structure is similar to the timespec structure,
except that the first field is signed in the reltimespec structure. (The field is unsigned in the timespec
structure.) You can find the reltimespec structure in the <utc.h> header file.

196

Chapter 9. DECdts Portable Applications Programming Interface

The reltimespec structure declaration follows:

struct reltimespec {

 long tv_sec; /* Seconds of relative time */
 long tv_nsec; /* Additional nanoseconds of */
 /* relative time */

 } reltimespec_t;

9.2.5. The OpenVMS Time Structure
The OpenVMS time structure is based on Smithsonian time, which has a base date of November 17,
1858. The binary OpenVMS structure is a signed, 64-bit integer that has a positive value for absolute
times. You can use the DECdts API to translate an OpenVMS structure representing an absolute time
to or from the DECdts UTC-based binary timestamp.

9.3. DECdts API Header Files
On OpenVMS systems, the header files are located in the SYS$LIBRARY directory. The <time.h>
and <utc.h> header files contain the data structures, type definitions, and define statements that are
referenced by the DECdts API routines. The <time.h> header file is present on all OpenVMS systems.
The <utc.h> header file includes <time.h> and contains the timespec , reltimespec , and utc structures.

9.4. Linking Programs with the DECdts API
The DECdts API is implemented by a shared image. To use the API with your program, you must link
the program with this shared image. On DECnet-Plus for OpenVMS systems, the DECdts API is im-
plemented by the shared image SYS$LIBRARY:DTSS$SHR.EXE. The following example shows
how to link a program with the DECdts shared image:

$ CC MYPROGRAM.C/OUTPUT=MYPROGRAM.OBJ
$ LINK MYPROGRAM.OBJ, SYS$INPUT:/OPTIONS
SYS$LIBRARY:DTSS$SHR.EXE/SHARE [Ctrl-z]
$

9.5. DECdts API Routine Functions
Figure 9.5 categorizes the DECdts portable interface routines by function.

197

Chapter 9. DECdts Portable Applications Programming Interface

Figure 9.5. DTS Portable Interface Categories

An alphabetical listing of the DECdts portable interface routines and a brief description of each one
follows:

utc_abstime Computes the absolute value of a binary relative time.
utc_addtime Computes the sum of two binary timestamps; the timestamps can

be two relative times or a relative time and an absolute time.

198

Chapter 9. DECdts Portable Applications Programming Interface

utc_anytime Converts a binary timestamp into a tm structure, using the TDF
information contained in the timestamp to determine the TDF re-
turned with the tm structure.

utc_anyzone Gets the time zone label and offset from GMT, using the TDF con-
tained in the input utc.

utc_ascanytime Converts a binary timestamp into an ASCII string that represents
an arbitrary time zone.

utc_ascgmtime Converts a binary timestamp into an ASCII string that expresses a
GMT time.

utc_asclocaltime Converts a binary timestamp to an ASCII string that represents a
local time.

utc_ascreltime Converts a binary timestamp that expresses a relative time to its
ASCII representation.

utc_binreltime Converts a relative binary timestamp into timespec structures that
express relative time and inaccuracy.

utc_bintime Converts a binary timestamp into a timespec structure.
utc_boundtime Given two UTC times, one before and one after an event, returns a

single UTC time whose inaccuracy includes the event.
utc_cmpintervaltime Compares two binary timestamps or two relative binary time-

stamps.
utc_cmpmidtime Compares two binary timestamps or two relative binary time-

stamps, ignoring inaccuracies.
utc_gettime Returns the current system time and inaccuracy as an opaque bina-

ry timestamp.
utc_getusertime Returns the time and process-specific TDF, rather than the sys-

tem-specific TDF.
utc_gmtime Converts a binary timestamp into a tm structure that expresses

GMT or the equivalent UTC.
utc_gmtzone Gets the time zone label and zero offset from GMT, given utc.
utc_localtime Converts a binary timestamp into a tm structure that expresses lo-

cal time.
utc_localzone Gets the time zone label and offset from GMT, given utc.
utc_mkanytime Converts a tm structure and TDF (expressing the time in an arbi-

trary time zone) into a binary timestamp.
utc_mkascreltime Converts a null-terminated character string, which represents a rel-

ative timestamp to a binary timestamp.
utc_mkasctime Converts a null-terminated character string, which represents an

absolute timestamp, to a binary timestamp.
utc_mkbinreltime Converts a timespec structure expressing a relative time to a binary

timestamp.
utc_mkbintime Converts a timespec structure into a binary timestamp.
utc_mkgmtime Converts a tm structure that expresses GMT or UTC to a binary

timestamp.

199

Chapter 9. DECdts Portable Applications Programming Interface

utc_mklocaltime Converts a tm structure that expresses local time to a binary time-
stamp.

utc_mkreltime Converts a tm structure that expresses relative time to a binary
timestamp.

utc_mkvmsanytime Converts a binary OpenVMS format time and TDF (expressing the
time in an arbitrary time zone) to a binary timestamp.

utc_mkvmsgmtime Converts a binary OpenVMS format time expressing GMT (or the
equivalent UTC) into a binary timestamp.

utc_mkvmslocaltime Converts a local binary OpenVMS format time to a binary time-
stamp, using the host system's TDF.

utc_mulftime Multiplies a relative binary timestamp by a floating-point value.
utc_multime Multiplies a relative binary timestamp by an integer factor.
utc_pointtime Converts a binary timestamp to three binary timestamps that repre-

sent the earliest, most likely, and latest time.
utc_reltime Converts a binary timestamp that expresses a relative time into a

tm structure.
utc_spantime Given two (possibly unordered) UTC timestamps, returns a sin-

gle UTC time interval whose inaccuracy spans the two input time-
stamps.

utc_subtime Computes the difference between two binary timestamps that ex-
press two relative times (an absolute time and a relative time, two
relative times, or two absolute times).

utc_vmsanytime Converts a binary timestamp to a binary OpenVMS-format time,
using the TDF contained in the binary timestamp.

utc_vmsgmtime Converts a binary timestamp to a binary OpenVMS-format time
expressing GMT or the equivalent UTC.

utc_vmslocaltime Converts a binary timestamp to a local binary OpenVMS format
time, using the host system's time differential factor.

Note

Absolute time is a point on a time scale; absolute time measurements are derived from system clocks
or external time-providers. For DECdts, absolute times reference the UTC standard and include the
inaccuracy and other information. When you display an absolute time, DECdts converts the time to
ASCII text, as shown in the following display:

1996-11-21-13:30:25.785-04:00I000.082

Relative time is a discrete time interval that is usually added to or subtracted from an absolute time.
A time differential factor (TDF) associated with an absolute time is one example of a relative time.
Note that a relative time does not use the calendar date fields, because these fields concern absolute
time.

Coordinated Universal Time (UTC) is the international time standard that DECdts uses. The zero
hour of UTC is based on the zero hour of Greenwich Mean Time (GMT). The documentation con-
sistently refers to the time zone of the Greenwich Meridian as GMT. However, this time zone is also
sometimes referred to as UTC.

200

Chapter 9. DECdts Portable Applications Programming Interface

The time differential factor (TDF) is the difference between UTC and the time in a particular time
zone.

OpenVMS systems do not have a default time zone rule. You select a time zone by defining sys
$timezone_rule during the sys$manager:net$configure.com procedure, or by explicit-
ly defining sys$timezone_rule.

Unless otherwise specified, the default input and output parameters for the DECDts API routine com-
mands are as follows:

• If utc is not specified as an input parameter, the current time is used.

• If inacc is not specified as an input parameter, infinity is used.

• If no output parameter is specified, no result (or an error) is returned.

The following command reference section includes all DECdts API routines.

utc_abstime
utc_abstime — Computes the absolute value of a relative binary timestamp.

Format
#include <utc.h>
int utc_abstime(result, *utc1)

utc_t result ;
const utc_t *utc1;

Parameter

Input

utc1

Relative binary timestamp.

Output

result

Absolute value of the input relative binary timestamp.

Description
The Absolute Time routine computes the absolute value of a relative binary timestamp. The input
timestamp represents a relative (delta) time.

Returns

0 Indicates that the routine executed successfully.
--1 Indicates an invalid time parameter or invalid results.

201

Chapter 9. DECdts Portable Applications Programming Interface

Example
The following example scales a relative time, computes its absolute value, and prints the result.

utc_t relutc, scaledutc;
char timstr[UTC_MAX_STR_LEN];

/*
 * Make sure relative timestamp represents a positive interval...
 */

utc_abstime(&relutc, /* Out: Abs-value of rel time */
 &relutc); /* In: Relative time to scale */

/*
 * Scale it by a factor of 17...
 */

utc_multime(&scaledutc, /* Out: Scaled relative time */
 &relutc, /* In: Relative time to scale */
 17L); /* In: Scale factor */

utc_ascreltime(timstr, /* Out: ASCII relative time */
 UTC_MAX_STR_LEN, /* In: Length of input string */
 &scaledutc); /* In: Relative time to */
 /* convert */

printf("%s\n",timstr);

/*
 * Scale it by a factor of 17.65...
 */

utc_mulftime(&scaledutc, /* Out: Scaled relative time */
 &relutc, /* In: Relative time to scale */
 17.65); /* In: Scale factor */

utc_ascreltime(timstr, /* Out: ASCII relative time */
 UTC_MAX_STR_LEN, /* In: Length of input string */
 &scaledutc); /* In: Relative time to */
 /* convert */

printf("%s\n",timstr);

utc_addtime
utc_addtime — Computes the sum of two binary timestamps; the timestamps can be two relative
times or a relative time and an absolute time.

Format
#include <utc.h>
int utc_addtime(result, *utc1, *utc2)

utc_t result ;
const utc_t *utc1;
const utc_t *utc2;

202

Chapter 9. DECdts Portable Applications Programming Interface

Parameter

Input

utc1

Binary timestamp or relative binary timestamp.

utc2

Binary timestamp or relative binary timestamp.

Output

result

Resulting binary timestamp or relative binary timestamp, depending on the operation performed:

• relative time + relative time = relative time

• absolute time + relative time = absolute time

• relative time + absolute time = absolute time

• absolute time + absolute time is undefined. See NOTES.

Description
The Add Time routine adds two binary timestamps, producing a third binary timestamp whose inac-
curacy is the sum of the two input inaccuracies. One or both of the input timestamps typically repre-
sent a relative (delta) time. The TDF in the first input timestamp is copied to the output.

Although no error is returned, do not use the combination absolute time + absolute time.

Returns

0 Indicates that the routine executed successfully.
--1 Indicates an invalid time parameter or invalid results.

Example
The following example shows how to compute a timestamp that represents a time at least 5 seconds in
the future.

utc_t now, future, fivesec;
reltimespec_t tfivesec;
timespec_t tzero;

/*
 * Construct a timestamp that represents 5 seconds...
 */
tfivesec.tv_sec = 5;
tfivesec.tv_nsec = 0;
tzero.tv_sec = 0;
tzero.tv_nsec = 0;
utc_mkbinreltime(&fivesec, /* Out: 5 secs in binary timestamp */

203

Chapter 9. DECdts Portable Applications Programming Interface

 &tfivesec, /* In: 5 secs in timespec */
 &tzero); /* In: 0 secs inaccuracy in timespec */

/*
 * Get the maximum possible current time...
 * (NULL input parameter is used to specify the current time.)
 */
utc_pointtime((utc_t *)0, /* Out: Earliest possible current time */
 (utc_t *)0, /* Out: Midpoint of current time */
 &now, /* Out: Latest possible current time */
 (utc_t *)0);/* In: Use current time */

/*
 * Add 5 seconds to get future timestamp...
 */
utc_addtime(&future, /* Out: Future binary timestamp */
 &now, /* In: Latest possible time now */
 &fivesec); /* In: 5 secs */

Related Functions
utc_subtime

utc_anytime
utc_anytime — Converts a binary timestamp to a tm structure, using the time differential factor (TDF)
information contained in the timestamp to determine the TDF returned with the tm structure.

Format
#include <utc.h>
int utc_anytime(timetm, *tns, *inacctm, *ins, *tdf, *utc)

struct tm timetm ;
long *tns;
struct tm *inacctm;
long *ins;
long *tdf;
const utc_t *utc;

Parameter

Input

utc

Binary timestamp.

Output

timetm

Time component of the binary timestamp expressed in the timestamp's local time.

tns

Nanoseconds since time component of the binary timestamp.

204

Chapter 9. DECdts Portable Applications Programming Interface

inacctm

Seconds of inaccuracy component of the binary timestamp. If the inaccuracy is finite, then tm_m-
day returns a value of --1 and tm_mon and tm_year return values of 0. The field tm_yday contains
the inaccuracy in days. If the inaccuracy is infinite, all tm structure fields return values of --1.

ins

Nanoseconds of inaccuracy component of the binary timestamp.

tdf

TDF component of the binary timestamp in units of seconds east or west of GMT.

Description
The Any Time routine converts a binary timestamp to a tm structure. The TDF information contained
in the timestamp is returned with the time and inaccuracy components; the TDF component deter-
mines the offset from GMT and the local time value of the tm structure. Additional returns include
nanoseconds since Time and nanoseconds of inaccuracy.

Returns

0 Indicates that the routine executed successfully.
--1 Indicates an invalid time argument or invalid results.

Example
The following example converts a timestamp, using the TDF information in the timestamp, then prints
the result.

utc_t evnt;
struct tm tmevnt;
timespec_t tevnt, ievnt;
char tznam[80];

/*
 * Assume evnt contains the timestamp to convert...
 *
 * Get time as a tm structure, using the time zone information in
 * the timestamp...
 */
utc_anytime(&tmevnt, /* Out: tm struct of time of evnt */
 (long *)0, /* Out: nanosec of time of evnt */
 (struct tm *)0, /* Out: tm struct of inacc of evnt */
 (long *)0, /* Out: nanosec of inacc of evnt */
 (int *)0, /* Out: tdf of evnt */
 &evnt); /* In: binary timestamp of evnt */

/*
 * Get the time and inaccuracy as timespec structures...
 */
utc_bintime(&tevnt, /* Out: timespec of time of evnt */
 &ievnt, /* Out: timespec of inacc of evnt */
 (int *)0, /* Out: tdf of evnt */

205

Chapter 9. DECdts Portable Applications Programming Interface

 &evnt); /* In: Binary timestamp of evnt */

/*
 * Construct the time zone name from time zone information in the
 * timestamp...
 */
utc_anyzone(tznam, /* Out: Time zone name */
 80, /* In: Size of time zone name */
 (long *)0, /* Out: tdf of event */
 (long *)0, /* Out: Daylight saving flag */
 &evnt); /* In: Binary timestamp of evnt */

/*
 * Print timestamp in the format:
 *
 * 1991-03-05-21:27:50.023I0.140 (GMT-5:00)
 * 1992-04-02-12:37:24.003Iinf (GMT+7:00)
 *
 */

printf("%d-%02d-%02d-%02d:%02d:%02d.%03d",
 tmevnt.tm_year+1900, tmevnt.tm_mon+1, tmevnt.tm_mday,
 tmevnt.tm_hour, tmevnt.tm_min, tmevnt.tm_sec,
 (tevnt.tv_nsec/1000000));

if ((long)ievnt.tv_sec == -1)
 printf("Iinf");
else
 printf("I%d.%03d", ievnt.tv_sec, (ievnt.tv_nsec/1000000));

printf(" (%s)\n", tznam);

Related Functions
utc_mkanytime, utc_anyzone, utc_gettime, utc_getusertime, utc_gmtime,
utc_localtime

utc_anyzone
utc_anyzone — Gets the time zone label and offset from GMT, using the TDF contained in the input
utc.

Format
#include <utc.h>
int utc_anyzone(tzname, tzlen, *tdf, isdst, *utc)

char tzname ;
size_t tzlen ;
long *tdf;
int *isdst;
const utc_t *utc;

Parameter

Input

206

Chapter 9. DECdts Portable Applications Programming Interface

tzlen

Length of the tzname buffer.

utc

Binary time.

Output

tzname

Character string that is long enough to hold the time zone label.

tdf

Longword with differential in seconds east or west of GMT.

isdst

Integer with a value of --1, indicating that no information is supplied as to whether it is standard
time or daylight saving time. A value of --1 is always returned.

Description
The Any Zone routine gets the time zone label and offset from GMT, using the TDF contained in the
input utc. The label returned is always of the form GMT + n or GMT - n, where n is the TDF ex-
pressed in hours:minutes. (The label associated with an arbitrary time zone is not known; only the off-
set is known.)

All of the output parameters are optional. No value is returned and no error occurs if the pointer is
null.

Returns

0 Indicates that the routine executed successfully.
--1 Indicates an invalid time argument or an insufficient buffer.

Example
See the sample program for the utc_anytime routine.

Related Functions
utc_anytime, utc_gmtzone, utc_localzone

utc_ascanytime
utc_ascanytime — Converts a binary timestamp to an ASCII string that represents an arbitrary time
zone.

Format
#include <utc.h>

207

Chapter 9. DECdts Portable Applications Programming Interface

int utc_ascanytime(*cp, stringlen, *utc)

char *cp;
size_t stringlen ;
const utc_t *utc;

Parameter

Input

stringlen

The length of the cp buffer.

utc

Binary timestamp.

Output

cp

ASCII string that represents the time.

Description
The ASCII Any Time routine converts a binary timestamp to an ASCII string that expresses a time.
The TDF component in the timestamp determines the local time used in the conversion.

Returns

0 Indicates that the routine executed successfully.
--1 Indicates an invalid time parameter or invalid results.

Example
The following example converts a time to an ASCII string that expresses the time in the time zone
where the timestamp was generated.

utc_t evnt;
char localTime[UTC_MAX_STR_LEN];

/*
 * Assuming that evnt contains the timestamp to convert, convert
 * the time to ASCII in the following format:
 *
 * 1991-04-01-12:27:38.37-8:00I2.00
 */

utc_ascanytime(localtime, /* Out: Converted time */
 UTC_MAX_STR_LEN, /* In: Length of string */
 &evnt); /* In: Time to convert */

Related Functions
utc_ascgmtime, utc_asclocaltime

208

Chapter 9. DECdts Portable Applications Programming Interface

utc_ascgmtime
utc_ascgmtime — Converts a binary timestamp to an ASCII string that expresses a GMT time.

Format
#include <utc.h>
int utc_ascgmtime(*cp, stringlen, *utc)

char *cp;
size_t stringlen ;
const utc_t *utc;

Parameter

Input

stringlen

Length of the cp buffer.

utc

Binary timestamp.

Output

cp

ASCII string that represents the time.

Description
The ASCII GMT Time routine converts a binary timestamp to an ASCII string that expresses a time
in GMT.

Returns

0 Indicates that the routine executed successfully.
--1 Indicates an invalid time parameter or invalid results.

Example
The following example converts the current time to GMT format.

char gmTime[UTC_MAX_STR_LEN];

/*
 * Convert the current time to ASCII in the following format:
 *
 * 1991-04-01-12:27:38.37I2.00
 */

utc_ascgmtime(gmTime, /* Out: Converted time */
 UTC_MAX_STR_LEN, /* In: Length of string */
 (utc_t*) NULL); /* In: Time to convert */

209

Chapter 9. DECdts Portable Applications Programming Interface

 /* Default is current time */

Related Functions
utc_ascanytime, utc_asclocaltime

utc_asclocaltime
utc_asclocaltime — Converts a binary timestamp to an ASCII string that represents a local time.

Format
#include <utc.h>
int utc_asclocaltime(*cp, stringlen, *utc)

char *cp;
size_t stringlen ;
const utc_t *utc;

Parameter

Input

stringlen

Length of the cp buffer.

utc

Binary timestamp.

Output

cp

ASCII string that represents the time.

Description
The ASCII Local Time routine converts a binary timestamp to an ASCII string that expresses local
time.

OpenVMS systems do not have a default time zone rule. You select a time zone by defining sys
$timezone_rule during the sys$manager:net$configure.com procedure, or by explicit-
ly defining sys$timezone_rule.

Returns

0 Indicates that the routine executed successfully.
--1 Indicates an invalid time parameter or invalid results.

Example
The following example converts the current time to local time.

210

Chapter 9. DECdts Portable Applications Programming Interface

char localTime[UTC_MAX_STR_LEN];

/*
 * Convert the current time...
 */

utc_asclocaltime(localTime, /* Out: Converted time */
 UTC_MAX_STR_LEN, /* In: Length of string */
 (utc_t*) NULL); /* In: Time to convert */
 /* Default is current time */

Related Functions
utc_ascanytime, utc_ascgmtime

utc_ascreltime
utc_ascreltime — Converts a relative binary timestamp to an ASCII string that represents the time.

Format
#include <utc.h>
int utc_ascreltime(*cp, stringlen, *utc)

char *cp;
const size_t stringlen ;
const utc_t *utc;

Parameter

Input

utc

Relative binary timestamp.

stringlen

Length of the cp buffer.

Output

cp

ASCII string that represents the time.

Description
The ASCII Relative Time routine converts a relative binary timestamp to an ASCII string that repre-
sents the time.

Returns

0 Indicates that the routine executed successfully.
--1 Indicates an invalid time parameter or invalid results.

211

Chapter 9. DECdts Portable Applications Programming Interface

Example
See the sample program for the utc_abstime routine.

Related Functions
utc_mkascreltime

utc_binreltime
utc_binreltime — Converts a relative binary timestamp to two timespec structures that express rela-
tive time and inaccuracy.

Format
#include <utc.h>
int utc_binreltime(*timesp, *inaccsp, *utc)

reltimespec_t *timesp;
timespec_t *inaccsp;
const utc_t *utc;

Parameter

Input

utc

Relative binary timestamp.

Output

timesp

Time component of the relative binary timestamp, in the form of seconds and nanoseconds since
the base time (1970-01-01:00:00:00.0 + 00:00I0).

inaccsp

Inaccuracy component of the relative binary timestamp, in the form of seconds and nanoseconds.

Description
The Binary Relative Time routine converts a relative binary timestamp to two timespec structures
that express relative time and inaccuracy. These timespec structures describe a time interval.

Returns
0 Indicates that the routine executed successfully.
--1 Indicates an invalid time argument or invalid results.

Example
The following example measures the duration of a process, then prints the resulting relative time and
inaccuracy.

212

Chapter 9. DECdts Portable Applications Programming Interface

utc_t before, duration;
reltimespec_t tduration;
timespec_t iduration;

/*
 * Get the time before the start of the operation...
 */

utc_gettime(&before); /* Out: Before binary timestamp */

/*
 * ...Later...
 *
 * Subtract, getting the duration as a relative time.
 *
 * NOTE: The NULL argument is used to obtain the current time.
 */

utc_subtime(&duration, /* Out: Duration rel bin timestamp */
 (utc_t *)0, /* In: After binary timestamp */
 &before); /* In: Before binary timestamp */

/*
 * Convert the relative times to timespec structures...
 */

utc_binreltime(&tduration, /* Out: Duration time timespec */
 &iduration, /* Out: Duration inacc timespec */
 &duration); /* In: Duration rel bin timestamp */

/*
 * Print the duration...
 */

printf("%d.%04d", tduration.tv_sec, (tduration.tv_nsec/10000));

if ((long)iduration.tv_sec == -1)
 printf("Iinf\n");
else
printf("I%d.%04d\n", iduration.tv_sec, (iduration.tv_nsec/100000));

Related Functions
utc_mkbinreltime

utc_bintime
utc_bintime — Converts a binary timestamp to a timespec structure.

Format
#include <utc.h>
int utc_bintime(*timesp, *inaccsp, *tdf, *utc)

timespec_t *timesp;
timespec_t *inaccsp;
long *tdf;

213

Chapter 9. DECdts Portable Applications Programming Interface

const utc_t *utc;

Parameter
Input

utc

Binary timestamp.

Output

timesp

Time component of the binary timestamp, in the form of seconds and nanoseconds since the base
time.

inaccsp

Inaccuracy component of the binary timestamp, in the form of seconds and nanoseconds.

tdf

TDF component of the binary timestamp in the form of signed number of seconds east or west of
GMT.

Description
The Binary Time routine converts a binary timestamp to a timespec structure. The TDF informa-
tion contained in the timestamp is returned.

Returns

0 Indicates that the routine executed successfully.
--1 Indicates an invalid time argument or invalid results.

Example
See the sample program for the utc_anytime routine.

Related Functions
utc_binreltime, utc_mkbintime

utc_boundtime
utc_boundtime — Given two UTC times, one before and one after an event, returns a single UTC
time whose inaccuracy includes the event.

Format
#include <utc.h>
int utc_boundtime(*result, *utc1, *utc2)

214

Chapter 9. DECdts Portable Applications Programming Interface

utc_t *result;
const utc_t *utc1;
const utc_t *utc2;

Parameter

Input

utc1

Before binary timestamp or relative binary timestamp.

utc2

After binary timestamp or relative binary timestamp.

Output

result

Spanning timestamp.

Description
Given two UTC times, the Bound Time routine returns a single UTC time whose inaccuracy bounds
the two input times. This is useful for timestamping events; the routine gets the utc values before and
after the event, then calls utc_boundtime to build a timestamp that includes the event.

The TDF in the output UTC value is copied from the utc2 input. If one or both input values have infi-
nite inaccuracies, the returned time value also has an infinite inaccuracy and is the average of the two
input values.

Returns

0 Indicates that the routine executed successfully.
--1 Indicates an invalid time parameter or invalid parameter order.

Example
The following example records the time of an event and constructs a single timestamp, which includes
the time of the event. Note that the utc_getusertime routine is called so the time zone informa-
tion that is included in the timestamp references the user's environment rather than the system's de-
fault time zone.

OpenVMS systems do not have a default time zone rule. You select a time zone by defining sys
$timezone_rule during the sys$manager:net$configure.com procedure, or by explicit-
ly defining sys$timezone_rule.

utc_t before, after, evnt;

/*
 * Get the time before the event...
 */

215

Chapter 9. DECdts Portable Applications Programming Interface

utc_getusertime(&before); /* Out: Before binary timestamp */

/*
 * Get the time after the event...
 */

utc_getusertime(&after); /* Out: After binary timestamp */

/*
 * Construct a single timestamp that describes the time of the
 * event...
 */

utc_boundtime(&evnt, /* Out: Timestamp that bounds event */
 &before, /* In: Before binary timestamp */
 &after); /* In: After binary timestamp */

Related Functions
utc_gettime, utc_pointtime, utc_spantime

utc_cmpintervaltime
utc_cmpintervaltime — Compares two binary timestamps or two relative binary timestamps.

Format
#include <utc.h>
int utc_cmpintervaltime(*relation, *utc1, *utc2)

enum utc_cmptype *relation;
const utc_t *utc1;
const utc_t *utc2;

Parameter

Input

utc1

Binary timestamp or relative binary timestamp.

utc2

Binary timestamp or relative binary timestamp.

Output

relation

Receives the result of the comparison of utc1:utc2, where the result is an enumerated type with
one of the following values:

• utc_equalTo

• utc_lessThan

216

Chapter 9. DECdts Portable Applications Programming Interface

• utc_greaterThan

• utc_indeterminate

Description
The Compare Interval Time routine compares two binary timestamps and returns a flag indicating
that the first time is greater than, less than, equal to, or overlapping with the second time. Two times
overlap if the intervals (time - inaccuracy, time + inaccuracy) of the two times intersect.

The input binary timestamps express two absolute or two relative times. Do not compare relative bina-
ry timestamps and binary timestamps. If you do, no meaningful results and no errors are returned.

This routine does a temporal ordering of the time intervals.

utc1 is utc_lessThan utc2 iff
 utc1.time + utc1.inacc < utc2.time - utc2.inacc

utc1 is utc_greaterThan utc2 iff
 utc1.time - utc1.inacc > utc2.time + utc2.inacc

utc1 utc_equalTo utc2 iff
 utc1.time == utc2.time and
 utc1.inacc == 0 and
 utc2.inacc == 0

utc1 is utc_indeterminate with respect to utc2 if the intervals
overlap.

Returns

0 Indicates that the routine executed successfully.
--1 Indicates an invalid time argument.

Example
The following example checks to see if the current time is definitely after 1:00 P.M. today GMT.

struct tm tmtime, tmzero;
enum utc_cmptype relation;
utc_t testtime;

/*
 * Zero the tm structure for inaccuracy...
 */

memset(&tmzero, 0, sizeof(tmzero));

/*
 * Get the current time, mapped to a tm structure...
 *
 * NOTE: The NULL argument is used to get the current time.
 */

utc_gmtime(&tmtime, /* Out: Current GMT time in tm struct */
 (long *)0, /* Out: Nanoseconds of time */

217

Chapter 9. DECdts Portable Applications Programming Interface

 (struct tm *)0, /* Out: Current inaccuracy in tm struct */
 (long *)0, /* Out: Nanoseconds of inaccuracy */
 (utc_t *)0); /* In: Current timestamp */

/*
 * Construct a tm structure that corresponds to 1:00 PM...
 */

tmtime.tm_hour = 13;
tmtime.tm_min = 0;
tmtime.tm_sec = 0;

/*
 * Convert to a binary timestamp...
 */

utc_mkgmtime(&testtime, /* Out: Binary timestamp of 1:00 PM */
 &tmtime, /* In: 1:00 PM in tm struct */
 0, /* In: Nanoseconds of time */
 &tmzero, /* In: Zero inaccuracy in tm struct */
 0); /* In: Nanoseconds of inaccuracy */

/*
 * Compare to the current time, noting the use of the
 * NULL argument...
 */

utc_cmpintervaltime(&relation, /* Out: Comparison relation */
 (utc_t *)0, /* In: Current timestamp */
 &testtime); /* In: 1:00 PM timestamp */

/*
 * If it is not later - wait, print a message, etc.
 */

if (relation != utc_greaterThan) {

/*
 * Note: It could be earlier than 1:00 PM or it could be
 * indeterminate. If indeterminate, for some applications
 * it might be worth waiting.
 */
}

Related Functions

utc_cmpmidtime

utc_cmpmidtime
utc_cmpmidtime — Compares two binary timestamps or two relative binary timestamps, ignoring in-
accuracies.

Format
#include <utc.h>

218

Chapter 9. DECdts Portable Applications Programming Interface

int utc_cmpmidtime(*relation, *utc1, *utc2)

enum utc_cmptype *relation;
const utc_t *utc1;
const utc_t *utc2;

Parameter

Input

utc1

Binary timestamp or relative binary timestamp.

utc2

Binary timestamp or relative binary timestamp.

• utc_equalTo

• utc_lessThan

• utc_greaterThan

Output

relation

Result of the comparison of utc1:utc2, where the result is an enumerated type with one of the fol-
lowing values:

• utc_equalTo

• utc_lessThan

• utc_greaterThan

Description

The Compare Midpoint Times routine compares two binary timestamps and returns a flag indicating
that the first timestamp is greater than, less than, or equal to the second timestamp. Inaccuracy infor-
mation is ignored for this comparison; the input values are, therefore, equivalent to the midpoints of
the time intervals described by the input binary timestamps.

The input binary timestamps express two absolute or two relative times. Do not compare relative bina-
ry timestamps and binary timestamps. If you do, no meaningful results and no errors are returned.

The following routine does a lexical ordering on the time interval midpoints.

utc1 is utc_lessThan utc2 iff
 utc1.time < utc2.time

utc1 is utc_greaterThan utc2 iff
 utc1.time > utc2.time

utc1 is utc_equalTo utc2 iff

219

Chapter 9. DECdts Portable Applications Programming Interface

 utc1.time == utc2.time

Returns

0 Indicates that the routine executed successfully.
--1 Indicates an invalid time argument.

Example

The following example checks if the current time (ignoring inaccuracies) is after 1:00 P.M. today local
time.

struct tm tmtime, tmzero;
enum utc_cmptype relation;
utc_t testtime;

/*
 * Zero the tm structure for inaccuracy...
 */

memset(&tmzero, 0, sizeof(tmzero));

/*
 * Get the current time, mapped to a tm structure...
 *
 * NOTE: The NULL argument is used to get the current time.
 */

utc_localtime(&tmtime, /* Out: Current local time in tm struct */
 (long *)0, /* Out: Nanoseconds of time */
 (struct tm *)0, /* Out: Current inacc in tm struct */
 (long *)0, /* Out: Nanoseconds of inaccuracy */
 (utc_t *)0); /* In: Current timestamp */

/*
 * Construct a tm structure that corresponds to 1:00 P.M....
 */

tmtime.tm_hour = 13;
tmtime.tm_min = 0;
tmtime.tm_sec = 0;

/*
 * Convert to a binary timestamp...
 */

utc_mklocaltime(&testtime, /* Out: Binary timestamp of 1:00 P.M. */
 &tmtime, /* In: 1:00 P.M. in tm struct */
 0, /* In: Nanoseconds of time */
 &tmzero, /* In: Zero inaccuracy in tm struct */
 0); /* In: Nanoseconds of inaccuracy */

/*
 * Compare to the current time, noting the use of the
 * NULL argument...
 */

220

Chapter 9. DECdts Portable Applications Programming Interface

utc_cmpmidtime(&relation, /* Out: Comparison relation */
 (utc_t *)0, /* In: Current timestamp */
 &testtime); /* In: 1:00 P.M. timestamp */

/*
 * If the time is not later - wait, print a message, etc.
 */

if (relation != utc_greaterThan) {

/* It is not later then 1:00 P.M. local time. Note that
 * this depends on the setting of the user's environment.
 */
}

Related Functions

utc_cmpintervaltime

utc_gettime
utc_gettime — Returns the current system time and inaccuracy as a binary timestamp.

Format
#include <utc.h>
int utc_gettime(*utc)

utc_t *utc;

Parameter

Input

None.

Output

utc

System time as a binary timestamp.

Description

The Get Time routine returns the current system time and inaccuracy in a binary timestamp. The rou-
tine takes the TDF from the operating system's kernel; the TDF is specified in a system-dependent
manner.

Returns

0 Indicates that the routine executed successfully.
--1 Generic error that indicates the time service cannot be accessed.

221

Chapter 9. DECdts Portable Applications Programming Interface

Example
See the sample program for the utc_binreltime routine.

utc_getusertime
utc_getusertime — Returns the time and process-specific TDF, rather than the system-specific TDF.

Format
#include <utc.h>
int utc_getusertime(*utc)

utc_t *utc;

Parameter

Input

None.

Output

utc

System time as a binary timestamp.

Description
The Get User Time routine returns the system time and inaccuracy in a binary timestamp. The routine
takes the TDF from the user's environment, which determines the time zone rule. OpenVMS systems
do not have a default time zone rule. You select a time zone by defining sys$timezone_rule
during the sys$manager:net$configure.com procedure, or by explicitly defining sys
$timezone_rule.

Returns

0 Indicates that the routine executed successfully.
--1 Generic error that indicates the time service cannot be accessed.

Example
See the sample program for the utc_boundtime routine.

Related Functions
utc_gettime

utc_gmtime
utc_gmtime — Converts a binary timestamp to a tm structure that expresses GMT or the equivalent
UTC.

222

Chapter 9. DECdts Portable Applications Programming Interface

Format
#include <utc.h>
int utc_gmtime(*timetm, *tns, *inacctm, *ins, *utc)

struct tm *timetm;
long *tns;
struct tm *inacctm;
long *ins;
const utc_t *utc;

Parameter

Input

utc

Binary timestamp to be converted to tm structure components.

Output

timetm

Time component of the binary timestamp.

tns

Nanoseconds since time component of the binary timestamp.

inacctm

Seconds of inaccuracy component of the binary timestamp. If the inaccuracy is finite, then tm_m-
day returns a value of --1 and tm_mon and tm_year return values of zero. The field tm_yday con-
tains the inaccuracy in days. If the inaccuracy is infinite, all tm structure fields return values of
--1.

ins

Nanoseconds of inaccuracy component of the binary timestamp. If the inaccuracy is infinite, ins
returns a value of --1.

Description
The Greenwich Mean Time (GMT) routine converts a binary timestamp to a tm structure that
expresses GMT (or the equivalent UTC). Additional returns include nanoseconds since time and
nanoseconds of inaccuracy.

Returns

0 Indicates that the routine executed successfully.
--1 Indicates an invalid time argument or invalid results.

Example
See the sample program for the utc_cmpintervaltime routine.

223

Chapter 9. DECdts Portable Applications Programming Interface

Related Functions

utc_anytime, utc_gmtzone, utc_localtime, utc_mkgmtime

utc_gmtzone
utc_gmtzone — Gets the time zone label for GMT.

Format
#include <utc.h>
int utc_gmtzone(*tzname, tzlen, *tdf, *isdst, *utc)

char *tzname;
size_t tzlen ;
long *tdf;
int *isdst;
const utc_t *utc;

Parameter

Input

tzlen

Length of buffer tzname.

utc

Binary timestamp. This parameter is ignored.

Output

tzname

Character string long enough to hold the time zone label.

tdf

Longword with differential in seconds east or west of GMT. A value of zero is always returned.

isdst

Integer with a value of zero, indicating that daylight saving time is not in effect. A value of zero is
always returned.

Description

The Greenwich Mean Time Zone routine gets the time zone label and zero offset from GMT. Out-
puts are always tdf = 0 and tzname = GMT. This routine exists for symmetry with the Any Zone
(utc_anyzone) and the Local Zone (utc_localzone) routines.

All of the output parameters are optional. No value is returned and no error occurs if the tzname point-
er is NULL.

224

Chapter 9. DECdts Portable Applications Programming Interface

Returns

0 Indicates that the routine executed successfully (always returned).

Example
The following example prints out the current time in both local time and GMT time.

utc_t now;
struct tm tmlocal, tmgmt;
long tzoffset;
int tzdaylight;
char tzlocal[80], tzgmt[80];

/*
 * Get the current time once, so both conversions use the same
 * time...
 */

utc_gettime(&now);

/*
 * Convert to local time, using the process TZ environment
 * variable...
 */

utc_localtime(&tmlocal, /* Out: Local time tm structure */
 (long *)0, /* Out: Nanosec of time */
 (struct tm *)0, /* Out: Inaccuracy tm structure */
 (long *)0, /* Out: Nanosec of inaccuracy */
 &now); /* In: Current binary timestamp */

/*
 * Get the local time zone name, offset from GMT, and current
 * daylight savings flag...
 */

utc_localzone(tzlocal, /* Out: Local time zone name */
 80, /* In: Length of loc time zone name */
 &tzoffset, /* Out: Loc time zone offset in secs */
 &tzdaylight, /* Out: Local time zone daylight flag */
 &now); /* In: Current binary timestamp */

/*
 * Convert to GMT...
 */

utc_gmtime(&tmgmt, /* Out: GMT tm structure */
 (long *)0, /* Out: Nanoseconds of time */
 (struct tm *)0, /* Out: Inaccuracy tm structure */
 (long *)0, /* Out: Nanoseconds of inaccuracy */
 &now); /* In: Current binary timestamp */

/*
 * Get the GMT time zone name...
 */

225

Chapter 9. DECdts Portable Applications Programming Interface

utc_gmtzone(tzgmt, /* Out: GMT time zone name */
 80, /* In: Size of GMT time zone name */
 (long *)0, /* Out: GMT time zone offset in secs */
 (int *)0, /* Out: GMT time zone daylight flag */
 &now); /* In: Current binary timestamp */

/*
 * Print out times and time zone information in the following
 * format:
 *
 * 12:00:37 (EDT) = 16:00:37 (GMT)
 * EDT is -240 minutes ahead of Greenwich Mean Time.
 * Daylight savings time is in effect.
 */

printf("%d:%02d:%02d (%s) = %d:%02d:%02d (%s)\n",
 tmlocal.tm_hour, tmlocal.tm_min, tmlocal.tm_sec, tzlocal,
 tmgmt.tm_hour, tmgmt.tm_min, tmgmt.tm_sec, tzgmt);
printf("%s is %d minutes ahead of Greenwich Mean Time\n",
 tzlocal, tzoffset/60);
if (tzdaylight != 0)
 printf("Daylight savings time is in effect\n");

Related Functions

utc_anyzone, utc_gmtime, utc_localzone

utc_localtime
utc_localtime — Converts a binary timestamp to a tm structure that expresses local time.

Format
#include <utc.h>
int utc_localtime(*timetm, *tns, *inacctm, *ins, *utc)

struct tm *timetm;
long *tns;
struct tm *inacctm;
long *ins;
const utc_t *utc;

Parameter

Input

utc

Binary timestamp.

Output

timetm

Time component of the binary timestamp, expressing local time.

226

Chapter 9. DECdts Portable Applications Programming Interface

tns

Nanoseconds since time component of the binary timestamp.

inacctm

Seconds of inaccuracy component of the binary timestamp. If the inaccuracy is finite, then t-
m_mday returns a value of --1 and tm_mon and tm_year return values of zero. The field t-
m_yday contains the inaccuracy in days. If the inaccuracy is infinite, all tm structure fields re-
turn values of --1.

ins

Nanoseconds of inaccuracy component of the binary timestamp. If the inaccuracy is infinite, ins
returns a value of --1.

Description
The Local Time routine converts a binary timestamp to a tm structure that expresses local time.

OpenVMS systems do not have a default time zone rule. You select a time zone by defining sys
$timezone_rule during the sys$manager:net$configure.com procedure, or by explicit-
ly defining sys$timezone_rule.

Additional returns include nanoseconds since time and nanoseconds of inaccuracy.

Returns

0 Indicates that the routine executed successfully.
--1 Indicates an invalid time argument or invalid results.

Example
See the sample program for the utc_gmtzone routine.

Related Functions
utc_anytime, utc_gmtime, utc_localzone, utc_mklocaltime

utc_localzone
utc_localzone — Gets the local time zone label and offset from GMT, given utc .

Format
#include <utc.h>
int utc_localzone(*tzname, tzlen, *tdf, *isdst, *utc)

char *tzname;
size_t tzlen ;
long *tdf;
int *isdst;
const utc_t *utc;

227

Chapter 9. DECdts Portable Applications Programming Interface

#include <utc.h>

int utc_localzone(*tzname, tzlen, *tdf, *isdst, *utc)

Parameter

Input

tzlen

Length of the tzname buffer.

utc

Binary timestamp.

Output

tzname

Character string long enough to hold the time zone label.

tdf

Longword with differential in seconds east or west of GMT.

isdst

Integer with a value of zero if standard time is in effect or a value of 1 if daylight savings time is
in effect.

Description
The Local Zone routine gets the local time zone label and offset from GMT, given utc.

OpenVMS systems do not have a default time zone rule. You select a time zone by defining sys
$timezone_rule during the sys$manager:net$configure.com procedure, or by explicit-
ly defining sys$timezone_rule.

All of the output parameters are optional. No value is returned and no error occurs if the pointer is
null.

Returns

0 Indicates that the routine executed successfully.
--1 Indicates an invalid time argument or an insufficient buffer.

Example
See the sample program for the utc_gmtzone routine.

Related Functions
utc_anyzone, utc_gmtzone, utc_localtime

228

Chapter 9. DECdts Portable Applications Programming Interface

utc_mkanytime
utc_mkanytime — Converts a tm structure and TDF (expressing the time in an arbitrary time zone) to
a binary timestamp.

Format
#include <utc.h>
int utc_mkanytime(*utc, *timetm, tns, *inacctm, ins, tdf)

utc_t *utc;
const struct tm *timetm;
long tns ;
const struct tm *inacctm;
long ins ;
long tdf ;

Parameter

Input

timetm

A tm structure that expresses the local time; tm_wday and tm_yday are ignored on input.

tns

Nanoseconds since time component.

inacctm

A tm structure that expresses days, hours, minutes, and seconds of inaccuracy. If tm_yday is
negative, the inaccuracy is considered to be infinite; tm_mday, tm_mon, tm_wday, tm_is-
dst, tm_gmtoff, and tm_zone are ignored on input.

ins

Nanoseconds of inaccuracy component.

tdf

Time differential factor to use in conversion.

Output

utc

Resulting binary timestamp.

Description
The Make Any Time routine converts a tm structure and TDF (expressing the time in an arbitrary
time zone) to a binary timestamp. Required inputs include nanoseconds since time and nanoseconds
of inaccuracy.

Returns
0 Indicates that the routine executed successfully.

229

Chapter 9. DECdts Portable Applications Programming Interface

--1 Indicates an invalid time argument or invalid results.

Example

The following example converts a string ISO format time in an arbitrary time zone to a binary time-
stamp. This may be part of an input timestamp routine, although a real implementation will include
range checking.

utc_t utc;
struct tm tmtime, tminacc;
float tsec, isec;
double tmp;
long tnsec, insec;
int i, offset, tzhour, tzmin, year, mon;
char *string;

/* Try to convert the string... */

if(sscanf(string, "%d-%d-%d-%d:%d:%e+%d:%dI%e",
 &year, &mon, &tmtime.tm_mday, &tmtime.tm_hour,
 &tmtime.tm_min, &tsec, &tzhour, &tzmin, &isec) != 9) {

/* Try again with a negative TDF... */

if (sscanf(string, "%d-%d-%d-%d:%d:%e-%d:%dI%e",
 &year, &mon, &tmtime.tm_mday, &tmtime.tm_hour,
 &tmtime.tm_min, &tsec, &tzhour, &tzmin, &isec) != 9) {

/* ERROR */

 exit(1);
 }

/* TDF is negative */

 tzhour = -tzhour;
 tzmin = -tzmin;

}

/* Fill in the fields... */

tmtime.tm_year = year - 1900;
tmtime.tm_mon = --mon;
tmtime.tm_sec = tsec;
tnsec = (modf(tsec, &tmp)*1.0E9);
offset = tzhour*3600 + tzmin*60;
tminacc.tm_sec = isec;
insec = (modf(isec, &tmp)*1.0E9);

/* Convert to a binary timestamp... */

utc_mkanytime(&utc, /* Out: Resultant binary timestamp */
 &tmtime, /* In: tm struct that represents input */
 tnsec, /* In: Nanoseconds from input */
 &tminacc, /* In: tm struct that represents inacc */
 insec, /* In: Nanoseconds from input */

230

Chapter 9. DECdts Portable Applications Programming Interface

 offset); /* In: TDF from input */

Related Functions
utc_anytime, utc_anyzone

utc_mkascreltime
utc_mkascreltime — Converts a null-terminated character string that represents a relative timestamp
to a binary timestamp.

Format
#include <utc.h>
int utc_mkascreltime(*utc, *string)

utc_t *utc;
char *string;

Parameter

Input

string

A null-terminated string that expresses a relative timestamp in its ISO format.

Output

utc

Resulting binary timestamp.

Description
The Make ASCII Relative Time routine converts a null-terminated string, which represents a relative
timestamp, to a binary timestamp.

The ASCII string must be null-terminated.

Returns
0 Indicates that the routine executed successfully.
--1 Indicates an invalid time parameter or invalid results.

Example
The following example converts an ASCII relative time string to its binary equivalent.

utc_t utc;
char str[UTC_MAX_STR_LEN];

/*
 * Relative time of 333 days, 12 hours, 1 minute, 37.223 seconds
 * Inaccuracy of 50.22 sec. in the format: -333-12:01:37.223I50.22
 */

231

Chapter 9. DECdts Portable Applications Programming Interface

(void)strcpy((void *)str,
 "-333-12:01:37.223I50.22");

utc_mkascreltime(&utc, /* Out: Binary utc */
 str); /* In: String */

Related Functions
utc_ascreltime

utc_mkasctime
utc_mkasctime — Converts a null-terminated character string that represents an absolute time to a bi-
nary timestamp.

Format
#include <utc.h>
int utc_mkasctime(*utc, *string)

utc_t *utc;
char *string;

Parameter

Input

string

A null-terminated string that expresses an absolute time.

Output

utc

Resulting binary timestamp.

Description
The Make ASCII Time routine converts a null-terminated string that represents an absolute time to a
binary timestamp.

The ASCII string must be null-terminated.

Returns
0 Indicates that the routine executed successfully.
--1 Indicates an invalid time parameter or invalid results.

Example
The following example converts an ASCII time string to its binary equivalent.

utc_t utc;
char str[UTC_MAX_STR_LEN];

232

Chapter 9. DECdts Portable Applications Programming Interface

/*
 * July 4, 1776, 12:01:37.223 local time
 * TDF of -5:00 hours
 * Inaccuracy of 3600.32 seconds
 */

(void)strcpy((void *)str,
 "1776-07-04-12:01:37.223-5:00 I 3600.32");

utc_mkasctime(&utc, /* Out: Binary utc */
 str); /* In: String */

Related Functions
utc_ascanytime, utc_ascgmtime, utc_asclocaltime

utc_mkbinreltime
utc_mkbinreltime — Converts a timespec structure expressing a relative time to a binary timestamp.

Format
#include <utc.h>
int utc_mkbinreltime(*utc, *timesp, *inaccsp)

utc_t *utc;
const reltimespec_t *timesp;
const timespec_t *inaccsp;

Parameter

Input

timesp

A reltimespec structure that expresses a relative time.

inaccsp

A timespec structure that expresses inaccuracy. If tv_sec is set to a value of --1, the inaccu-
racy is considered to be infinite.

Output

utc

Resulting relative binary timestamp.

Description
The Make Binary Relative Time routine converts a timespec structure that expresses relative time
to a binary timestamp.

Returns
0 Indicates that the routine executed successfully.

233

Chapter 9. DECdts Portable Applications Programming Interface

--1 Indicates an invalid time argument or invalid results.

Example
See the sample program for the utc_addtime routine.

Related Functions
utc_binreltime, utc_mkbintime

utc_mkbintime
utc_mkbintime — Converts a timespec structure to a binary timestamp.

Format
#include <utc.h>
int utc_mkbintime(*utc, *timesp, *inaccsp)

utc_t *utc;
const timespec_t *timesp;
const timespec_t *inaccsp;
long tdf ;

Parameter

Input

timesp

A timespec structure that expresses time since 1970-01-01:00:00:00.0+0:00I0.

inaccsp

A timespec structure that expresses inaccuracy. If tv_sec is set to a value of --1, the inaccu-
racy is considered to be infinite.

tdf

TDF component of the binary timestamp.

Output

utc

Resulting binary timestamp.

Description
The Make Binary Time routine converts a timespec structure time to a binary timestamp. The TDF in-
put is used as the TDF of the binary timestamp.

Returns
0 Indicates that the routine executed successfully.
--1 Indicates an invalid time argument or invalid results.

234

Chapter 9. DECdts Portable Applications Programming Interface

Example
The following example obtains the current time from time(), converts it to a binary timestamp with
an inaccuracy of 5.2 seconds, and specifies GMT.

timespec_t ttime, tinacc;
utc_t utc;

/*
 * Obtain the current time (without the inaccuracy)...
 */

ttime.tv_sec = time((time_t *)0);
ttime.tv_nsec = 0;

/*
 * Specify the inaccuracy...
 */

tinacc.tv_sec = 5;
tinacc.tv_nsec = 200000000;

/*
 * Convert to a binary timestamp...
 */

utc_mkbintime(&utc, /* Out: Binary timestamp */
 &ttime, /* In: Current time in timespec */
 &tinacc, /* In: 5.2 seconds in timespec */
 0); /* In: TDF of GMT */

Related Functions
utc_bintime, utc_mkbinreltime

utc_mkgmtime
utc_mkgmtime — Converts a tm structure that expresses GMT or UTC to a binary timestamp.

Format
#include <utc.h>
int utc_mkgmtime(*utc, *timetm, tns, *inacctm, ins)

utc_t *utc;
const struct tm *timetm;
long tns ;
const struct tm *inacctm;
long ins ;

Parameter

Input

timetm

A tm structure that expresses GMT. On input, tm_wday and tm_yday are ignored.

235

Chapter 9. DECdts Portable Applications Programming Interface

tns

Nanoseconds since time component.

inacctm

A tm structure that expresses days, hours, minutes, and seconds of inaccuracy. If tm_yday is neg-
ative, the inaccuracy is considered to be infinite. On input, tm_mday , tm_mon , tm_wday , tm_is-
dst , tm_gmtoff , and tm_zone are ignored.

ins

Nanoseconds of inaccuracy component.

Output

utc

Resulting binary timestamp.

Description
The Make Greenwich Mean Time routine converts a tm structure that expresses GMT or UTC to a
binary timestamp. Additional inputs include nanoseconds since the last second of time and nanosec-
onds of inaccuracy.

Returns

0 Indicates that the routine executed successfully.
--1 Indicates an invalid time argument or invalid results.

Example
See the sample program for the utc_cmpintervaltime routine.

Related Functions
utc_gmtime

utc_mklocaltime
utc_mklocaltime — Converts a tm structure that expresses local time to a binary timestamp.

Format
#include <utc.h>
int utc_mklocaltime(*utc, *timetm, tns, *inacctm, ins)

utc_t *utc;
const struct tm *timetm;
long tns ;
const struct tm *inacctm;
long ins ;

236

Chapter 9. DECdts Portable Applications Programming Interface

Parameter

Input

timetm

A tm structure that expresses the local time. On input, tm_wday and tm_yday are ignored.

tns

Nanoseconds since time component.

inacctm

A tm structure that expresses days, hours, minutes, and seconds of inaccuracy. If tm_yday is neg-
ative, the inaccuracy is considered to be infinite. On input, tm_mday , tm_mon , tm_wday , tm_is-
dst , tm_gmtoff , and tm_zone are ignored.

ins

Nanoseconds of inaccuracy component.

Output

utc

Resulting binary timestamp.

Description
The Make Local Time routine converts a tm structure that expresses local time to a binary time-
stamp.

OpenVMS systems do not have a default time zone rule. You select a time zone by defining sys
$timezone_rule during the sys$manager:net$configure.com procedure, or by explicit-
ly defining sys$timezone_rule.

Additional inputs include nanoseconds since the last second of time and nanoseconds of inaccuracy.

Returns

0 Indicates that the routine executed successfully.
--1 Indicates an invalid time argument or invalid results.

Example
See the sample program for the utc_cmpmidtime routine.

Related Functions
utc_localtime

utc_mkreltime
utc_mkreltime — Converts a tm structure that expresses relative time to a relative binary timestamp.

237

Chapter 9. DECdts Portable Applications Programming Interface

Format
#include <utc.h>
int utc_mkreltime(*utc, *timetm, tns, *inacctm, ins)

utc_t *utc;
const struct tm *timetm;
long tns ;
const struct tm *inacctm;
long ins ;

Parameter

Input

timetm

A tm structure that expresses a relative time. On input, tm_wday and tm_yday are ignored.

tns

Nanoseconds since time component.

inacctm

A tm structure that expresses seconds of inaccuracy. If tm_yday is negative, the inaccuracy is con-
sidered to be infinite. On input, tm_mday , tm_mon , tm_year , tm_wday , tm_isdst , and tm_zone
are ignored.

ins

Nanoseconds of inaccuracy component.

Output

utc

Resulting relative binary timestamp.

Description
The Make Relative Time routine converts a tm structure that expresses relative time to a relative bi-
nary timestamp. Additional inputs include nanoseconds since the last second of time and nanoseconds
of inaccuracy.

Returns

0 Indicates that the routine executed successfully.
--1 Indicates an invalid time argument or invalid results.

Example
The following example converts a string relative time in the format (1991-04-01-12:12:12.12I12.12)
to a binary timestamp. This may be part of an input relative timestamp routine, though a real imple-
mentation will include range checking.

238

Chapter 9. DECdts Portable Applications Programming Interface

utc_t utc;
struct tm tmtime, tminacc;
float tsec, isec;
double tmp;
long tnsec, insec;
int i, tzhour, tzmin, year, mon;
char *string;

/*
 * Try to convert the string...
 */

if(sscanf(string, "%d-%d-%d-%d:%d:%eI%e",
 &year, &mon, &tmtime.tm_mday, &tmtime.tm_hour,
 &tmtime.tm_min, &tsec, &isec) != 7) {

/*
 * ERROR...
 */
 exit(1);

}

/*
 * Fill in the fields...
 */

tmtime.tm_year = year - 1900;
tmtime.tm_mon = --mon;
tmtime.tm_sec = tsec;
tnsec = (modf(tsec, &tmp)*1.0E9);
tminacc.tm_sec = isec;
insec = (modf(isec, &tmp)*1.0E9);

/*
 * Convert to a binary timestamp...
 */

utc_mkreltime(&utc, /* Out: Resultant binary timestamp */
 &tmtime, /* In: tm struct that represents input */
 tnsec, /* In: Nanoseconds from input */
 &tminacc, /* In: tm struct that represents inacc */
 insec); /* In: Nanoseconds from input */

Related Functions

utc_reltime

utc_mkvmsanytime
utc_mkvmsanytime — Converts a binary OpenVMS format time and TDF (expressing the time in an
arbitrary time zone) to a binary timestamp.

Format
#include <utc.h>

239

Chapter 9. DECdts Portable Applications Programming Interface

int utc_mkvmsanytime(*utc, *timadr, tdf)

utc_t *utc;
const long *timadr;
const long tdf ;

Parameter

Input

*timadr

Binary OpenVMS format time.

tdf

Time differential factor to use in conversion.

Output

*utc

Binary timestamp.

Description
The Make VMS Any Time routine converts a binary time in the OpenVMS (Smithsonian) format
and an arbitrary TDF to a UTC-based binary timestamp. Because the input and output values are
based on different time standards, any input representing a value after A.D. 30,000 returns an error.

Returns

0 Indicates that the routine executed successfully.
--1 Indicates an invalid time argument or invalid results.

Example
The following example shows how to convert between OpenVMS format binary timestamps and UTC
binary timestamps, while specifying the TDF for each. The TDF value determines the offset from
GMT and the local time.

/*****
 start example mkvmsanytime,vmsanytime
 *****/
#include <utc.h>

main()
{
struct utc utcTime;
int vmsTime[2];

SYS$GETTIM(vmsTime); /* read the current time */

/*
 * convert the VMS local time to a UTC, applying a TDF of

240

Chapter 9. DECdts Portable Applications Programming Interface

 * -300 minutes (the timezone is -5 hours from GMT)
 */
if (utc_mkvmsanytime(&utcTime,vmsTime,-300))
 exit(1);

/*
 * convert UTC back to VMS local time. A TDF of -300 is applied
 * to the UTC, since utcTime was constructed with that same value.
 * This effectively gives us the same VMS time value we started
 * with.
 */
if (utc_vmsanytime(vmsTime,&utcTime))
 exit(2);
}
/****
 end example
 ****/

Related Functions
utc_vmsanytime

utc_mkvmsgmtime
utc_mkvmsgmtime — Converts a binary OpenVMS format time expressing GMT (or the equivalent
UTC) into a binary timestamp.

Format
#include <utc.h>
int utc_mkvmsgmtime(*utc, *timadr)

utc_t *utc;
const long *timadr;

Parameter

Input

*timadr

Binary OpenVMS format time representing GMT or the UTC equivalent.

Output

*utc

Binary timestamp.

Description
The Make VMS Greenwich Mean Time routine converts an OpenVMS format binary time repre-
senting GMT to a binary timestamp with the equivalent UTC value. Since the input and output values
are based on different time standards, any input representing a value after A.D. 30,000 returns an er-
ror.

241

Chapter 9. DECdts Portable Applications Programming Interface

Returns

0 Indicates that the routine executed successfully.
--1 Indicates an invalid time argument or invalid results.

Example

See the sample program for the vmsgmtime routine.

Related Functions

utc_vmsgmtime

utc_mkvmslocaltime
utc_mkvmslocaltime — Converts a local binary OpenVMS format time to a binary timestamp, using
the host system's time differential factor.

Format
#include <utc.h>
int utc_mkvmslocaltime(*utc, *timadr)

const long *timadr;
utc_t *utc;

Parameter

Input

*timadr

Binary OpenVMS format time expressing local time.

Output

*utc

Binary timestamp expressing the system's local time.

Description

The Make VMS Local Time routine converts a binary OpenVMS format time, representing the lo-
cal time of the host system, to a binary timestamp. The system's local time value is defined by the
time zone rule in sys$timezone_rule, which is created by the system configuration process sys
$manager:net$configure.com.

If the routine call is made during a seasonal time zone change when the local time is indeterminate, an
error is returned. For example, if the time zone change occurs at the current local time of 2:00 A.M. to
a new local time of 1:00 A.M., and the routine is called between 1:00 A.M. and 2:00 A.M., it cannot
be determined which TDF applies.

242

Chapter 9. DECdts Portable Applications Programming Interface

Returns

0 Indicates that the routine executed successfully.
--1 Indicates an invalid time argument, invalid results, or invalid routine call during a time zone

change.

Example

The following example shows how to retrieve the current local time of the system in the binary Open-
VMS format, convert the OpenVMS format time to a UTC-based binary timestamp (using the sys-
tem's TDF), and print an ASCII representation of the binary timestamp.

/*********
 start example mkvmslocaltime
 *********/
#include <utc.h>

main()
{
char outstring[UTC_MAX_STR_LEN];
struct utc utcTime;
int vmsTime[2];

SYS$GETTIM(vmsTime); /* read current time */

if (utc_mkvmslocaltime(&utcTime,vmsTime)) /* convert the local time */
 exit(1); /* vmsTime to UTC using */
 /* the system tdf. */

/* convert to ISO ascii*/
 utc_asclocaltime(outstring,UTC_MAX_STR_LEN,&utcTime);
/* format and print */
 printf("Current time=> %s\n",outstring);
}
/*****
 end example
 *****/

Related Functions

utc_vmslocaltime

utc_mulftime
utc_mulftime — Multiplies a relative binary timestamp by a floating-point value.

Format
#include <utc.h>
int utc_mulftime(*result, *utc1, factor)

utc_t *result;
const utc_t *utc1;
const double factor ;

243

Chapter 9. DECdts Portable Applications Programming Interface

Parameter

Input

utc1

Relative binary timestamp.

factor

Real scale factor (double-precision floating-point)

Output

result

Resulting relative binary timestamp.

Description

The Multiply a Relative Time by a Real Factor routine multiplies a relative binary timestamp by a
floating-point value. Either or both may be negative; the resulting relative binary timestamp has the
appropriate sign. The unsigned inaccuracy in the relative binary timestamp is also multiplied by the
absolute value of the floating-point value.

Returns

0 Indicates that the routine executed successfully.
--1 Indicates an invalid time argument or invalid results.

Example

The following example scales and prints a relative time.

utc_t relutc, scaledutc;
struct tm sacledreltm;
char timstr[UTC_MAX_STR_LEN];

/*
 * Assume relutc contains the time to scale.
 * Scale it by a factor of 17...
 */

utc_multime(&scaledutc, /* Out: Scaled rel time */
 &relutc, /* In: Rel time to scale */
 17L); /* In: Scale factor */

utc_ascreltime(timstr, /* Out: ASCII rel time */
 UTC_MAX_STR_LEN, /* In: Length of input str */
 &scaledutc); /* In: Rel time to convert */

printf("%s\n",timstr);

/*

244

Chapter 9. DECdts Portable Applications Programming Interface

 * Scale it by a factor of 17.65...
 */

utc_mulftime(&scaledutc, /* Out: Scaled rel time */
 &relutc, /* In: Rel time to scale */
 17.65); /* In: Scale factor */

utc_ascreltime(timstr, /* Out: ASCII rel time */
 UTC_MAX_STR_LEN, /* In: Input str length */
 &scaledutc); /* In: Rel time to convert */

printf("%s\n",timstr);

/*
 * Convert it to a tm structure and print it.
 */

utc_reltime(&scaledreltm, /* Out: Scaled rel tm */
 (long *)0, /* Out: Scaled rel nano-sec */
 (struct tm *)0, /* Out: Scaled rel inacc tm */
 (long *)0, /* Out: Scd rel inacc nanos */
 &scaledutc); /* In: Rel time to convert */

printf("Approximately %d days, %d hours and %d minutes\n",
 scaledreltm.tm_yday, scaledreltm.tm_hour, scaledreltm.tm_min);

Related Functions
utc_multime

utc_multime
utc_multime — Multiplies a relative binary timestamp by an integer factor.

Format
#include <utc.h>
int utc_multime(*result, *utc1, factor)

utc_t *result;
const utc_t *utc1;
long factor ;

Parameter

Input

utc1

Relative binary timestamp.

factor

Integer scale factor.

Output

245

Chapter 9. DECdts Portable Applications Programming Interface

result

Resulting relative binary timestamp.

Description

The Multiply Relative Time by an Integer Factor routine multiplies a relative binary timestamp by an
integer. Either or both may be negative; the resulting binary timestamp has the appropriate sign. The
unsigned inaccuracy in the binary timestamp is also multiplied by the absolute value of the integer.

Returns

0 Indicates that the routine executed successfully.
--1 Indicates an invalid time argument or invalid results.

Example

See the sample program for the utc_mulftime routine.

Related Functions

utc_mulftime

utc_pointtime
utc_pointtime — Converts a binary timestamp to three binary timestamps that represent the earliest,
most likely, and latest time.

Format
#include <utc.h>
int utc_pointtime(*utclp, *utcmp, *utchp, *utc)

utc_t *utclp;
utc_t *utcmp;
utc_t *utchp;
const utc_t *utc;

Parameter

Input

utc

Binary timestamp or relative binary timestamp.

Output

utclp

Lowest (earliest) possible time that the input binary timestamp or shortest possible relative time
that the relative binary timestamp can represent.

246

Chapter 9. DECdts Portable Applications Programming Interface

utcmp

Midpoint of the input binary timestamp or the midpoint of the input relative binary timestamp.

utchp

Highest (latest) possible time that the input binary timestamp or the longest possible relative time
that the relative binary timestamp can represent.

Description
The Point Time routine converts a binary timestamp to three binary timestamps that represent the ear-
liest, latest, and most likely (midpoint) times. If the input is a relative binary time, the outputs repre-
sent relative binary times.

All outputs have zero inaccuracy. An error is returned if the input binary timestamp has an infinite in-
accuracy.

Returns
0 Indicates that the routine executed successfully.
--1 Indicates an invalid time argument.

Example
See the sample program for the utc_addtime routine.

Related Functions
utc_boundtime, utc_spantime

utc_reltime
utc_reltime — Converts a relative binary timestamp to a tm structure.

Format
#include <utc.h>
int utc_reltime(*timetm, *tns, *inacctm, *ins, *utc)

struct tm *timetm;
long *tns;
struct tm *inacctm;
long *ins;
const utc_t *utc;

Parameter

Input

utc

Relative binary timestamp.

Output

247

Chapter 9. DECdts Portable Applications Programming Interface

timetm

Relative time component of the relative binary timestamp. The field tm_mday returns a value of
--1 and the fields tm_year and tm_mon return values of zero. The field tm_yday contains the num-
ber of days of relative time.

tns

Nanoseconds since time component of the relative binary timestamp.

inacctm

Seconds of inaccuracy component of the relative binary timestamp. If the inaccuracy is finite,
then tm_mday returns a value of --1 and tm_mon and tm_year return values of zero. The field
tm_yday contains the inaccuracy in days. If the inaccuracy is infinite, all tm structure fields return
values of --1.

ins

Nanoseconds of inaccuracy component of the relative binary timestamp.

Description
The Relative Time routine converts a relative binary timestamp to a tm structure. Additional returns
include nanoseconds since time and nanoseconds of inaccuracy.

Returns
0 Indicates that the routine executed successfully.
--1 Indicates an invalid time argument or invalid results.

Example
See the sample program for the utc_mulftime routine.

Related Functions
utc_mkreltime

utc_spantime
utc_spantime — Given two (possibly unordered) binary timestamps, returns a single UTC time inter-
val whose inaccuracy spans the two input binary timestamps.

Format
#include <utc.h>
int utc_spantime(*result, *utc1, *utc2)

utc_t *result;
const utc_t *utc1;
const utc_t *utc2;

Parameter

Input

248

Chapter 9. DECdts Portable Applications Programming Interface

utc1

Binary timestamp.

utc2

Binary timestamp.

Output

result

Spanning timestamp.

Description
Given two binary timestamps, the Span Time routine returns a single UTC time interval whose inac-
curacy spans the two input timestamps (that is, the interval resulting from the earliest possible time of
either timestamp to the latest possible time of either timestamp).

The tdf in the output UTC value is copied from the utc2 input. If either input binary timestamp has an
infinite inaccuracy, an error is returned.

Returns

0 Indicates that the routine executed successfully.
--1 Indicates an invalid time argument.

Example
The following example computes the earliest and latest times for an array of 10 timestamps.

utc_t time_array[10], testtime, earliest, latest;
int i;

/*
 * Set the running timestamp to the first entry...
 */

testtime = time_array[0];

for (i=1; i<10; i++) {

 /*
 * Compute the minimum and the maximum against the next
 * element...
 */

utc_spantime(&testtime, /* Out: Resultant interval */
 &testtime, /* In: Largest previous interval */
 &time_array[i]); /* In: Element under test */
}

/*
 * Compute the earliest possible time...
 */

249

Chapter 9. DECdts Portable Applications Programming Interface

utc_pointtime(&earliest, /* Out: Earliest poss time in array */
 (utc_t *)0, /* Out: Midpoint */
 &latest, /* Out: Latest poss time in array */
 &testtime); /* In: Spanning interval */

Related Functions
utc_boundtime, utc_gettime, utc_pointtime

utc_subtime
utc_subtime — Computes the difference between two binary timestamps that express either an ab-
solute time and a relative time, two relative times, or two absolute times.

Format
#include <utc.h>
int utc_subtime(*result, *utc1, *utc2)

utc_t *result;
const utc_t *utc1;
const utc_t *utc2;

Parameter

Input

utc1

Binary timestamp or relative binary timestamp.

utc2

Binary timestamp or relative binary timestamp.

Output

result

Resulting binary timestamp or relative binary timestamp, depending on the operation performed:

• absolute time - absolute time = relative time

• relative time - relative time = relative time

• absolute time - relative time = absolute time

• relative time - absolute time is undefined. See NOTES.

Description
The Subtract Time routine subtracts one binary timestamp from another. The resulting timestamp is
utc1 minus utc2. The inaccuracies of the two input timestamps are combined and included in the out-
put timestamp. The TDF in the first timestamp is copied to the output.

250

Chapter 9. DECdts Portable Applications Programming Interface

Although no error is returned, do not use the combination relative time - absolute time.

Returns

0 Indicates that the routine executed successfully.
--1 Indicates an invalid time argument or invalid results.

Example
See the sample program for the utc_binreltime routine.

Related Functions
utc_addtime

utc_vmsanytime
utc_vmsanytime — Converts a binary timestamp to a binary OpenVMS format time. The TDF encod-
ed in the input timestamp determines the TDF of the output.

Format
#include <utc.h>
int utc_vmsanytime(*timadr, *utc)

const utc_t *utc;
long *timadr;

Parameter

Input

*utc

Binary timestamp.

Output

*timadr

Binary OpenVMS format time.

Description
The VMS Any Time routine converts a UTC-based binary timestamp to a 64-bit binary time in the
OpenVMS (Smithsonian) format. Because the input and output values are based on different time
standards, any input representing a value before the Smithsonian base time of November 17, 1858 re-
turns an error.

Returns

0 Indicates that the routine executed successfully.
--1 Indicates an invalid time argument or invalid results.

251

Chapter 9. DECdts Portable Applications Programming Interface

Example
See the sample program for the mkvmsanytime routine.

Related Functions
utc_mkvmsanytime

utc_vmsgmtime
utc_vmsgmtime — Converts a binary timestamp to a binary OpenVMS format time expressing GMT
or the equivalent UTC.

Format
#include <utc.h>
int utc_vmsgmtime(*timadr, *utc)

const utc_t *utc;
long *timadr;

Parameter

Input

*utc

Binary timestamp to be converted.

Output

*timadr

Binary OpenVMS format time representing GMT or the UTC equivalent.

Description
The OpenVMS Greenwich Mean Time routine converts a UTC-based binary timestamp to a 64-bit
binary time in the OpenVMS (Smithsonian) format. The OpenVMS format time represents Greenwich
Mean Time or the equivalent UTC. Because the input and output values are based on different time
standards, any input representing a value before the Smithsonian base time of November 17, 1858 re-
turns an error.

Returns

0 Indicates that the routine executed successfully.
--1 Indicates an invalid time argument or invalid results.

Example
The following example shows the following time zone and time format conversions:

1. Retrieve a binary timestamp representing UTC with the sys$getutc system service.

252

Chapter 9. DECdts Portable Applications Programming Interface

2. Convert the binary timestamp to a OpenVMS format binary time representing GMT

3. Convert the OpenVMS format binary time representing GMT back to a UTC-based binary time-
stamp with a TDF of 0 (zero)

4. Convert the UTC-based binary time to a binary OpenVMS format time representing the local
time; use the TDF from the system

/*****
 start example vmsgmtime, mkvmsgmtime, vmslocaltime
 *****/
#include <utc.h>

main()
{
int status;
struct utc utcTime;
int vmsTime[2];

 if (!((status=SYS$GETUTC(&utcTime))&1))
 exit(status); /* read curr time as a utc */

/*
 * convert the utcvalue into a vms time, with a timezone of 0
 * (GMT). Printing the resultant vmstime yields the time at
 * the prime meridian in Greenwich, not (necessarily) the
 * local time.
 */
 if (utc_vmsgmtime(vmsTime,&utcTime))
 exit(1);

/*
 * Convert the vmstime (which is in GMT) to a utc
 */
if (utc_mkvmsgmtime(&utcTime, vmsTime))
 exit(2);

/*
 * convert the UTC to local 64-bit time. Note that this is the
 * value we would have read if we had issued a 'SYS$GETTIM' in
 * the initial statement.
 */
if (utc_vmslocaltime(vmsTime, &utcTime))
 exit(3);
}
/*****
 end example
 *****/

Related Functions
utc_mkvmsgmtime

utc_vmslocaltime
utc_vmslocaltime — Converts a binary timestamp to a local binary OpenVMS format time, using the
host system's time differential factor.

253

Chapter 9. DECdts Portable Applications Programming Interface

Format
#include <utc.h>
int utc_vmslocaltime(*timadr, *utc)

const utc_t *utc;
long *timadr;

Parameter

Input

*utc

Binary timestamp.

Output

*timadr

Binary OpenVMS format time expressing local time.

Description
The VMS Local Time routine converts a binary timestamp to a binary OpenVMS format time; the
output value represents the local time of the host system. The system's offset from UTC and the local
time value are defined by the time zone rule in sys$timezone_rule, which is created by the sys-
tem configuration process sys$manager:net$configure.com.

Returns
0 Indicates that the routine executed successfully.
--1 Indicates an invalid time argument or invalid results.

Example
See the sample program for the vmsgmtime routine.

Related Functions
utc_vmsmklocaltime

9.6. Example Using the DECdts API Routines
This section contains a C programming example showing a practical application of the DECdts API
programming routines. The program performs the following actions:

• Prompts the user to enter time coordinates.

• Stores those coordinates in a tm structure.

• Converts the tm structure to a utc structure.

• Determines which event occurred first.

• Determines if Event 1 may have caused Event 2 by comparing the intervals.

254

Chapter 9. DECdts Portable Applications Programming Interface

• Prints out the utc structure in ISO text format.

#include <time.h> /* time data structures */
#include <utc.h> /* utc structure definitions */

void ReadTime();
void PrintTime();

/*
 * This program requests user input about events, then prints out
 * information about those events.
 */

main()
{
 struct utc event1,event2;
 enum utc_cmptype relation;

 /*
 * Read in the two events.
 */

 ReadTime(&event1);
 ReadTime(&event2);

 /*
 * Print out the two events.
 */

 printf("The first event is : ");
 PrintTime(&event1);
 printf("\nThe second event is : ");
 PrintTime(&event2);
 printf("\n");

 /*
 * Determine which event occurred first.
 */
 if (utc_cmpmidtime(&relation,&event1,&event2))
 exit(1);

 switch(relation)
 {
 case utc_lessThan:
 printf("comparing midpoints: Event1 < Event2\n");
 break;
 case utc_greaterThan:
 printf("comparing midpoints: Event1 > Event2\n");
 break;
 case utc_equalTo:
 printf("comparing midpoints: Event1 == Event2\n");
 break;
 default:
 exit(1);
 break;
 }

 /*

255

Chapter 9. DECdts Portable Applications Programming Interface

 * Could Event 1 have caused Event 2? Compare the intervals.
 */

 if (utc_cmpintervaltime(&relation,&event1,&event2))
 exit(1);

 switch(relation)
 {
 case utc_lessThan:
 printf("comparing intervals: Event1 < Event2\n");
 break;
 case utc_greaterThan:
 printf("comparing intervals: Event1 > Event2\n");
 break;
 case utc_equalTo:
 printf("comparing intervals: Event1 == Event2\n");
 break;
 case utc_indeterminate:
 printf("comparing intervals: Event1 ? Event2\n");
 default:
 exit(1);
 break;
 }

}

/*
 * Print out a utc structure in ISO text format.
 */

void PrintTime(utcTime)
struct utc *utcTime;
{

 char string[50];

 /*
 * Break up the time string.
 */

 if (utc_ascgmtime(string, /* Out: Converted time */
 50, /* In: String length */
 utcTime)) /* In: Time to convert */
 exit(1);
 printf("%s\n",string);
}

/*
 * Prompt the user to enter time coordinates. Store the
 * coordinates in a tm structure and then convert the
 * tm structure to a utc structure.
 */

void ReadTime(utcTime)
struct utc *utcTime;
{
struct tm tmTime,tmInacc;

256

Chapter 9. DECdts Portable Applications Programming Interface

 (void)memset((void *)&tmTime, 0,sizeof(tmTime));
 (void)memset((void *)&tmInacc, 0,sizeof(tmInacc));
 (void)printf("Year? ");
 (void)scanf("%d",&tmTime.tm_year);
 tmTime.tm_year -= 1900;
 (void)printf("Month? ");
 (void)scanf("%d",&tmTime.tm_mon);
 tmTime.tm_mon -= 1;
 (void)printf("Day? ");
 (void)scanf("%d",&tmTime.tm_mday);
 (void)printf("Hour? ");
 (void)scanf("%d",&tmTime.tm_hour);
 (void)printf("Minute? ");
 (void)scanf("%d",&tmTime.tm_min);
 (void)printf("Inacc Secs? ");
 (void)scanf("%d",&tmInacc.tm_sec);

 if (utc_mkanytime(utcTime,
 &tmTime,
 (long)0,
 &tmInacc,
 (long)0,
 (long)0))
 exit(1);

}

Assume the preceding program is named compare_events.c. To compile and link the program
on a DECnet-Plus for OpenVMS system, enter the following command:

$ cc compare_events.c/output=compare_events.obj
$ link compare_events.obj, sys$input:/options[Return]
sys$library:dtss$shr.exe/share[Ctrl-z]
$

257

Chapter 9. DECdts Portable Applications Programming Interface

258

Chapter 10. EDT Routines
On OpenVMS operating systems, the EDT editor can be called from a program written in any lan-
guage that generates calls using the OpenVMS Calling Standard.

You can set up your call to EDT so the program handles all the editing work, or you can make EDT
run interactively so you can edit a file while the program is running.

This chapter on callable EDT assumes that you know how to call an external facility from the lan-
guage you are using. Callable EDT is a shareable image, which means that you save physical memory
and disk space by having all processes access a single copy of the image.

10.1. Introduction to EDT Routines
You must include a statement in your program accessing the EDT entry point. This reference state-
ment is similar to a library procedure reference statement. The EDT entry point is referenced as EDT
$EDIT. You can pass arguments to EDT$EDIT; for example, you can pass EDT$FILEIO or your own
routine. When you refer to the routines you pass, call them FILEIO, WORKIO, and XLATE. There-
fore, FILEIO can be either a routine provided by EDT (named EDT$FILEIO) or a routine that you
write.

10.2. Using the EDT Routines: An Example
Example 10.1 shows a VAX BASIC program that calls EDT. All three routines (FILEIO, WORKIO,
and XLATE) are called. Note the reference to the entry point EDT$EDIT in line number 500.

Example 10.1. Using the EDT Routines in a VAX BASIC Program

100 EXTERNAL INTEGER EDT$FILEIO
200 EXTERNAL INTEGER EDT$WORKIO
250 EXTERNAL INTEGER AXLATE
300 EXTERNAL INTEGER FUNCTION EDT$EDIT
400 DECLARE INTEGER RESULT

450 DIM INTEGER PASSFILE(1%)
460 DIM INTEGER PASSWORK(1%)
465 DIM INTEGER PASSXLATE(1%)
470 PASSFILE(0%) = LOC(EDT$FILEIO)
480 PASSWORK(0%) = LOC(EDT$WORKIO)
485 PASSXLATE(0%) = LOC(AXLATE)

500 RESULT = EDT$EDIT('FILE.BAS','','EDTINI','',0%,
 PASSFILE(0%)BY REF, PASSWORK(0%) BY REF,
 PASSXLATE(0%) BY REF)
600 IF (RESULT AND 1%) = 0%
 THEN
 PRINT "SOMETHING WRONG"
 CALL LIB$STOP(RESULT BY VALUE)
900 PRINT "EVERYTHING O.K."
1000 END

The external entry points EDT$FILEIO, EDT$WORKIO, and AXLATE are defined so they can
be passed to callable EDT.

259

Chapter 10. EDT Routines

Arrays are used to construct the two-longword structure needed for data type BPV.
Here is the call to EDT. The input file is FILE.BAS, the output and journal files are defaulted,
and the command file is EDTINI. A 0 is passed for the options word to get the default EDT op-
tions.
The array PASSFILE points to the entry point for all file I/O, which is set up in this example
to be the EDT-supplied routine with the entry point EDT$FILEIO. Similarly, the array PASS-
WORK points to the entry point for all work I/O, which is the EDT-supplied routine with the en-
try point EDT$WORKIO.
PASSXLATE points to the entry point that EDT will use for all XLATE processing.
PASSXLATE points to a user-supplied routine with the entry point AXLATE.

10.3. EDT Routines
This section describes the individual EDT routines.

EDT$EDIT
Edit a File — The EDT$EDIT routine invokes the EDT editor.

Format
EDT$EDIT in_file [,out_file] [,com_file] [,jou_file] [,options] [,fileio]
 [,workio] [,xlate]

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. Most utility routines return a condition value in R0. Condition values that
this routine can return are listed under Condition Values Returned.

Arguments
in_file

OpenVMS usage: char_string
type: character-coded text string
access: read only
mechanism: by descriptor

File specification of the input file that EDT$EDIT is to edit. The in_file argument is the address
of a descriptor pointing to this file specification. The string that you enter in this calling sequence is
passed to the FILEIO routine to open the primary input file. This is the only required argument.

out_file

OpenVMS usage: char_string

260

Chapter 10. EDT Routines

type: character-coded text string
access: read only
mechanism: by descriptor

File specification of the output file that EDT$EDIT creates. The out_file argument is the ad-
dress of a descriptor pointing to this file specification. The default is that the input file specification is
passed to the FILEIO routine to open the output file for the EXIT command.

com_file

OpenVMS usage: char_string
type: character-coded text string
access: read only
mechanism: by descriptor

File specification of the startup command file to be executed when EDT is invoked. The com_file
argument is the address of a descriptor pointing to this file specification. The com_file string is
passed to the FILEIO routine to open the command file. The default is the same as that for EDT com-
mand file defaults.

jou_file

OpenVMS usage: char_string
type: character-coded text string
access: read only
mechanism: by descriptor

File specification of the journal file to be opened when EDT is invoked. The jou_file argument is
the address of a descriptor pointing to this file specification. The jou_file string is passed to the
FILEIO routine to open the journal file. The default is to use the same file name as in_file.

options

OpenVMS usage: mask_longword
type: aligned bit string
access: read only
mechanism: by reference

Bit vector specifying options for the edit operation. The options argument is the address of an
aligned bit string containing this bit vector. Only bits <5:0> are currently defined; all others must be 0.
The default options have all bits set to 0. This is the same as the default setting when you invoke EDT
to edit a file from DCL.

Symbols and their descriptions follow:

Symbol Description
EDT$M_RECOVER If set, bit <0> causes EDT to read the journal file

and execute the commands in it, except for the
EXIT or QUIT commands, which are ignored.

261

Chapter 10. EDT Routines

Symbol Description
After the journal file commands are processed,
editing continues normally. If bit <0> is set, the
FILEIO routine is asked to open the journal file
for both input and output; otherwise FILEIO is
asked only to open the journal file for output. Bit
<0> corresponds to the /RECOVER qualifier on
the EDT command line.

EDT$M_COMMAND If set, bit <1> causes EDT to signal if the start-
up command file cannot be opened. When
bit <1> is 0, EDT intercepts the signal from
the FILEIO routine indicating that the start-
up command file could not be opened. Then,
EDT proceeds with the editing session with-
out reading any startup command file. If no
command file name is supplied with the call
to the EDT$EDIT routine, EDT tries to open
SYS$LIBRARY:EDTSYS.EDT or, if that fails,
EDTINI.EDT. Bit <1> corresponds to the /COM-
MAND qualifier on the EDT command line. If
EDT$M_NOCOMMAND (bit <4>) is set, bit
<1> is overridden because bit <4> prevents EDT
from trying to open a command file.

EDT$M_NOJOURNAL If set, bit <2> prevents EDT from opening the
journal file. Bit <2> corresponds to the /NO-
JOURNAL or /READ_ONLY qualifier on the
EDT command line.

EDT$M_NOOUTPUT If set, bit <3> prevents EDT from using the input
file name as the default output file name. Bit <3>
corresponds to the /NOOUTPUT or /READ_ON-
LY qualifier on the EDT command line.

EDT$M_NOCOMMAND If set, bit <4> prevents EDT from opening a start-
up command file. Bit <4> corresponds to the /
NOCOMMAND qualifier on the EDT command
line.

EDT$M_NOCREATE If set, bit <5> causes EDT to return to the caller if
the input file is not found. The status returned is
the error code EDT$_INPFILNEX.

fileio

OpenVMS usage: vector_longword_unsigned
type: bound procedure value
access: function call
mechanism: by reference

User-supplied routine called by EDT to perform file I/O functions. The fileio argument is the ad-
dress of a bound procedure value containing the user-supplied routine. When you do not need to inter-
cept any file I/O, either use the entry point EDT$FILEIO for this argument or omit it. When you only
need to intercept some amount of file I/O, call the EDT$FILEIO routine for the other cases.

262

Chapter 10. EDT Routines

To avoid confusion, note that EDT$FILEIO is a routine provided by EDT whereas FILEIO is a rou-
tine that you provide.

In order to accommodate routines written in high-level languages that do up-level addressing, this
argument must have a data type of BPV (bound procedure value). BPV is a two-longword entity in
which the first longword contains the address of a procedure value and the second longword is the en-
vironment value. When the bound procedure is called, EDT loads the second longword into R1. If you
use EDT$FILEIO for this argument, set the second longword to <0>. You can pass a <0> for the argu-
ment, and EDT will set up EDT$FILEIO as the default and set the environment word to 0.

workio

OpenVMS usage: vector_longword_unsigned
type: bound procedure value
access: function call
mechanism: by reference

User-supplied routine called by EDT to perform I/O between the work file and EDT. The workio
argument is the address of a bound procedure value containing the user-supplied routine. Work file
records are addressed only by number and are always 512 bytes long. If you do not need to intercept
work file I/O, you can either use the entry point EDT$WORKIO for this argument or omit it.

In order to accommodate routines written in high-level languages that do up-level addressing, this ar-
gument must have a data type of BPV (bound procedure value). This means that EDT loads R1 with
the second longword addressed before calling it. If EDT$WORKIO is used for this argument, set the
second longword to 0. You can pass a 0 for this argument, and EDT will set up EDT$WORKIO as the
default and set the environment word to 0.

xlate

OpenVMS usage: vector_longword_unsigned
type: bound procedure value
access: function call
mechanism: by reference

User-supplied routine that EDT calls when it encounters the nokeypad command XLATE. The xlate
argument is the address of a bound procedure value containing the user-supplied routine. The XLATE
routine allows you to gain control of your EDT session. If you do not need control of EDT during the
editing session, you can either use the entry point EDT$XLATE for this argument or omit it.

In order to accommodate routines written in high-level languages that do up-level addressing, this ar-
gument must have a data type of BPV (bound procedure value). This means that EDT loads R1 with
the second longword addressed before calling it. If EDT$XLATE is used for this argument, set the
second longword to 0. You can pass a 0 for this argument, and EDT will set up EDT$XLATE as the
default and set the environment word to 0.

Description

If the EDT session is terminated by EXIT or QUIT, the status will be a successful value (bit <0> = 1).
If the session is terminated because the file was not found and if the /NOCREATE qualifier was in
effect, the failure code EDT$_INPFILNEX is returned. In an unsuccessful termination caused by an

263

Chapter 10. EDT Routines

EDT error, a failure code corresponding to that error is returned. Each error status from the FILEIO
and WORKIO routines is explained separately.

Three of the arguments to the EDT$EDIT routine, fileio, workio, and xlate are the entry point
names of user-supplied routines.

Condition Values Returned
SS$_NORMAL

Normal successful completion.

EDT$_INPFILNEX

/NOCREATE specified and input file does not exist.

This routine also returns any condition values returned by user-supplied routines.

FILEIO
FILEIO — The user-supplied FILEIO routine performs file I/O functions. Call it by specifying it as
an argument in the EDT$EDIT routine. It cannot be called independently.

Format
FILEIO code ,stream ,record ,rhb

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

A status code that your FILEIO routine returns to EDT$EDIT. The fileio argument is a longword
containing the status code. The only failure code that is normally returned is RMS$_EOF from a GET
call. All other OpenVMS RMS errors are signaled, not returned. The RMS signal should include the
file name and both longwords of the RMS status. Any errors detected with the FILEIO routine can
be indicated by setting status to an error code. That special error code will be returned to the program
by the EDT$EDIT routine. There is a special status value EDT$_NONSTDFIL for nonstandard file
opening.

Condition values are returned in R0.

Arguments
code

OpenVMS usage: longword_unsigned
type: longword (unsigned)
access: read only

264

Chapter 10. EDT Routines

mechanism: by reference

A code from EDT that specifies what function the FILEIO routine is to perform. The code argument
is the address of a longword integer containing this code. Following are the valid function codes:

Function Code Description
EDT$K_OPEN_INPUT The record argument names a file to be opened

for input. The rhb argument is the default file
name.

EDT$K_OPEN_OUTPUT_SEQ The record argument names a file to be opened
for output as a sequenced file. The rhb argument
is the default file name.

EDT$K_OPEN_OUTPUT_NOSEQ The record argument names a file to be opened
for output. The rhb argument is the default file
name.

EDT$K_OPEN_IN_OUT The record argument names a file to be opened
for both input and output. The rhb argument is
the default file name.

EDT$K_GET The record argument is to be filled with da-
ta from the next record of the file. If the file has
record prefixes, rhb is filled with the record pre-
fix. If the file has no record prefixes, rhb is not
written. When you attempt to read past the end of
file, status is set to RMS$_EOF.

EDT$K_PUT The data in the record argument is to be written
to the file as its next record. If the file has record
prefixes, the record prefix is taken from the rhb
argument. For a file opened for both input and
output, EDT$K_PUT is valid only at the end of
the file, indicating that the record is to be ap-
pended to the file.

EDT$K_CLOSE_DEL The file is to be closed and then deleted. The
record and rhb arguments are not used in the
call.

EDT$K_CLOSE The file is to be closed. The record and rhb ar-
guments are not used in the call.

stream

OpenVMS usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by reference

A code from EDT that indicates which file is being used. The stream argument is the address of a
longword integer containing the code. Following are the valid codes:

Function Code Description
EDT$K_COMMAND_FILE The command file.

265

Chapter 10. EDT Routines

Function Code Description
EDT$K_INPUT_FILE The primary input file.
EDT$K_INCLUDE_FILE The secondary input file. Such a file is opened in

response to an INCLUDE command. It is closed
when the INCLUDE command is complete and
will be reused for subsequent INCLUDE com-
mands.

EDT$K_JOURNAL_FILE The journal file. If bit 0 of the options is set, it
is opened for both input and output and is read
completely. Otherwise, it is opened for output on-
ly. After it is read or opened for output only, it is
used for writing. On a successful termination of
the editing session, the journal file is closed and
deleted. EXIT/SAVE and QUIT/SAVE close the
journal file without deleting it.

EDT$K_OUTPUT_FILE The primary output file. It is not opened until you
enter the EXIT command.

EDT$K_WRITE_FILE The secondary output file. Such a file is opened
in response to a WRITE or PRINT command. It
is closed when the command is complete and will
be reused for subsequent WRITE or PRINT com-
mands.

record

OpenVMS usage: char_string
type: character-coded text string
access: modify
mechanism: by descriptor

Text record passed by descriptor from EDT to the user-supplied FILEIO routine; the code argument
determines how the record argument is used. The record argument is the address of a descriptor
pointing to this argument. When the code argument starts with EDT$K_OPEN, the record is a file
name. When the code argument is EDT$K_GET, the record is a place to store the record that was
read from the file. For code argument EDT$K_PUT, the record is a place to find the record to be
written to the file. This argument is not used if the code argument starts with EDT$K_CLOSE.

Note that for EDT$K_GET, EDT uses a dynamic or varying string descriptor; otherwise, EDT has no
way of knowing the length of the record being read. EDT uses only string descriptors that can be han-
dled by the Run-Time Library routine STR$COPY_DX.

rhb

OpenVMS usage: char_string
type: character-coded text string
access: modify
mechanism: by descriptor

Text record passed by descriptor from EDT to the user-supplied FILEIO routine; the code argument
determines how the rhb argument is used. When the code argument starts with EDT$K_OPEN, the

266

Chapter 10. EDT Routines

rhb argument is the default file name. When the code is EDT$K_GET and the file has record pre-
fixes, the prefixes are put in this argument. When the code is EDT$K_PUT and the file has record
prefixes, the prefixes are taken from this argument. Like the record argument, EDT uses a dynamic
or varying string descriptor for EDT$K_GET and uses only string descriptors that can be handled by
the Run-Time Library routine STR$COPY_DX.

Description

If you do not need to intercept any file I/O, you can use the entry point EDT$FILEIO for this argu-
ment or you can omit it. If you need to intercept only some file I/O, call the EDT$FILEIO routine for
the other cases.

When you use EDT$FILEIO as a value for the fileio argument, files are opened as follows:

• The record argument is always the RMS file name.

• The rhb argument is always the RMS default file name.

• There is no related name for the input file.

• The related name for the output file is the input file with OFP (output file parse). EDT passes the
input file name, the output file name, or the name from the EXIT command in the record argu-
ment.

• The related name for the journal file is the input file name with the OFP RMS bit set.

• The related name for the INCLUDE file is the input file name with the OFP set. This is unusual
because the file is being opened for input.

EDT contains support for VFC files. Normally, EDT will zero the length of the RHB field if the file
is not a VFC file. However, when the user supplies the FILEIO routines, they are responsible for per-
forming this operation.

EDT checks for a VFC file with the following algorithm:

IF FAB$B_RFM = FAB$C_VFC
AND FAB$B_RAT <> FAB$M_PRN
THEN
 VFC file
ELSE
 not VFC file, zero out RHB descriptor length field.

Condition Values Returned

SS$_NORMAL

Normal successful completion.

EDT$_NONSTDFIL

File is not in standard text format.

RMS$_EOF

End of file on a GET.

267

Chapter 10. EDT Routines

WORKIO
WORKIO — The user-supplied WORKIO routine is called by EDT when it needs temporary storage
for the file being edited. Call it by specifying it as an argument in the EDT$EDIT routine. It cannot be
called independently.

Format
WORKIO code ,recordno ,record

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by immediate value

Longword value returned as a status code. It is generally a success code, because all OpenVMS RMS
errors should be signaled. The signal should include the file name and both longwords of the RMS
status. Any errors detected within work I/O can be indicated by setting status to an error code, which
will be returned by the EDT$EDIT routine.

The condition value is returned in R0.

Arguments
code

OpenVMS usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by reference

A code from EDT that specifies the operation to be performed. The code argument is the address of a
longword integer containing this argument. The valid function codes are as follows:

Function Code Description
EDT$K_OPEN_IN_OUT Open the work file for both input and output. Nei-

ther the record nor recordno argument is
used.

EDT$K_GET Read a record. The recordno argument is the
number of the record to be read. The record ar-
gument gives the location where the record is to
be stored.

EDT$K_PUT Write a record. The recordno argument is the
number of the record to be written. The record
argument tells the location of the record to be
written.

268

Chapter 10. EDT Routines

Function Code Description
EDT$K_CLOSE_DEL Close the work file. After a successful close,

the file is deleted. Neither the record nor
recordno argument is used.

recordno

OpenVMS usage: longword_signed
type: longword integer (signed)
access: read only
mechanism: by reference

Number of the record to be read or written. The recordno argument is the address of a longword in-
teger containing this argument. EDT always writes a record before reading that record. This argument
is not used for open or close calls.

record

OpenVMS usage: char_string
type: character string
access: modify
mechanism: by descriptor

Location of the record to be read or written. This argument always refers to a 512-byte string during
GET and PUT calls. This argument is not used for open or close calls.

Description
Work file records are addressed only by number and are always 512 bytes long. If you do not need to
intercept work file I/O, you can use the entry point EDT$WORKIO for this argument or you can omit
it.

Condition Value Returned
SS$_NORMAL

Normal successful completion.

XLATE
XLATE — The user-supplied XLATE routine is called by EDT when it encounters the nokeypad
command XLATE. You cause it to be called by specifying it as an argument in the EDT$EDIT rou-
tine. It cannot be called independently.

Format
XLATE string

Returns

OpenVMS usage: cond_value

269

Chapter 10. EDT Routines

type: longword (unsigned)
access: write only
mechanism: by value

Longword value returned as a status code. It is generally a success code. If the XLATE routine cannot
process the passed string for some reason, it sets status to an error code. Returning an error code from
the XLATE routine aborts the current key execution and displays the appropriate error message.

The condition value is returned in R0.

Argument
string

OpenVMS usage: char_string
type: character-coded text string
access: modify
mechanism: by descriptor

Text string passed to the nokeypad command XLATE. You can use the nokeypad command XLATE
by defining a key to include the following command in its definition:

XLATEtext^Z

The text is passed by the string argument. The string argument can be handled by the Run-Time
Library routine STR$COPY_DX.

This argument is also a text string returned to EDT. The string is made up of nokeypad commands that
EDT is to execute.

Description
The nokeypad command XLATE allows you to gain control of the EDT session. (See the OpenVMS
EDT Reference Manual1 for more information about the XLATE command.) If you do not need to
gain control of EDT during the editing session, you can use the entry point EDT$XLATE for this ar-
gument or you can omit it.

Condition Value Returned
SS$_NORMAL

Normal successful completion.

1This manual has been archived but is available on the OpenVMS Documentation CD-ROM.

270

Chapter 11. Encryption (ENCRYPT)
Routines
The encryption routines (APIs) allow you to program encryption operations into applications. Open-
VMS Version 8.3 Integrity servers and Alpha systems support the Advanced Encryption Standard
(AES) algorithm, which allows any OpenVMS user, system manager, security manager, or program-
mer to secure their files, save sets, or application data with AES Encryption. The former DES algo-
rithm is also supported for complete backward compatibility. This allows updating archived data en-
crypted with DES to the more secure AES encryption algorithm.

Note

The DES encryption standard, reviewed and approved by the National Bureau of Standards (NBS)
every five years, remained the popular standard until 1992. The Natonal Institue of Standards and
Technology (NIST) later declared the minimum encryption standard to be Triple-DES (or TDEA).
Triple-DES typically uses at least two or three different secret keys. Since 1999, the older single DES
standard is used only for legacy government systems.

Since 2001, the Advanced Encryption Standard (AES) (FIPS PUB 197[5]) is the approved symmetric
encryption algorithm that replaced DES.

Encryption is used to convert sensitive or otherwise private data to an unintelligible form called ci-
pher text. Decryption reverses this process, taking the unintelligible cipher text and converting da-
ta back to its original form, called plain text. Encryption and decryption are also known as cipher and
decipher.

Note

OpenVMS Version 8.3 integrates the former Encryption for OpenVMS software product into the op-
erating system, eliminating the requirement for a separate installation and product license.

11.1. Introduction to Encryption Routines
Encryption provides the following routines, listed by function:

• Defining, generating, and deleting keys:

• ENCRYPT$DEFINE_KEY

• ENCRYPT$GENERATE_KEY

• ENCRYPT$DELETE_KEY

• Encrypting and decrypting files:

• ENCRYPT$ENCRYPT

• ENCRYPT$ENCRYPT_FILE

• ENCRYPT$DECRYPT

271

Chapter 11. Encryption (ENCRYPT) Routines

• Intializing and terminating the context area:

• ENCRYPT$INIT

• ENCRYPT$FINI

• Returning statistics:

• ENCRYPT$STATISTICS

11.2. Encrypt AES Features
AES encryption, like DES, is a symmetric block cipher. However, its algorithm is very different, its
key scheduling and number of rounds is based on key size (10, 12, or 14 rounds for 128, 192, and 256
bit keys), making AES much stronger cryptographically. AES features allows any user, system man-
ager, security manager, or programmer to secure their files, save-sets, or application data with strong
AES Encryption. It is integrated with OpenVMS Version 8.3 and does not require a separate product
license or installation.

Encrypt-AES provides the following features and compatibility:

• The former data encryption standard (DES) algorithm is maintained for use with existing DES da-
ta and their applications. All the functions that existed with DES continue to provide that same
level of DES support.

• Encrypt-AES is integrated with BACKUP for encrypting and decrypting save sets with AES or
DES.

• Command-line use of Encrypt-AES is the same as Encrypt-DES, with minor changes to qualifiers
(see the encryption routines later in this chapter).

• Changes to the ENCRYPT$ application programming interface (API) are minimal, with only tex-
tual parameter or flag changes required to use the AES algorithm.

• Encrypt-AES supports the AES algorithm with four different cipher modes. With each mode, you
can specify a secret key in three different lengths (128, 192, and 256 bits), for a total of 12 differ-
ent cipher and decipher operations:

• Cipher block chaining:

AESCBC128
AESCBC192
AESCBC256

• Electronic code book:

AESECB128
AESECB192
AESECB256

• Cipher feedback:

AESCFB128
AESCFB192
AESCFB256

272

Chapter 11. Encryption (ENCRYPT) Routines

• Output feedback:

AESOFB128
AESOFB192
AESOFB256

• The additional AES algorithm, modes, and key sizes are specified in the algorithm parameter
to the ENCRYPT$ENCRYPT_FILE and the ENCRYPT$INIT routine, or specified in the algo-
rithm-name parameter for the ENCRYPT$GENERATE_KEY routine.

• AES Key-Length Requirements--- The AES key requirements are the actual number of bits uti-
lized for each of the AES modes. This is actually the minimum number of bytes needed for the en-
cryption or decryption operation. The minimum required key sizes are as follows:

• 128 bit mode = 16 byte key

• 192 bit mode = 24 byte key

• 256 bit mode = 32 byte key

For more information in encryption keys, see Section 11.3.1.

11.2.1. ENCRYPT-AES Key, Flag Mask, and Value
There are no new Encrypt-AES API routines in OpenVMS V8.3. However, to accommodate the AES
algorithm and the various key-length values, an additional AES key and AES file flag mask and value
are added to OpenVMS Version 8.3:

• AES key flag

The KEY_AES mask value specified an AES key (as a longword by reference) to the EN-
CRYPT$DEFINE_KEY, ENCRYPT$DELETE_KEY, and ENCRYPT$GENERATE_KEY rou-
tines.

• ENCRYPT$M_KEY_AES

• ENCRYPT$V_KEY_AES

• AES file flag

An additional FILE_AES flag mask (and value) is used with the ENCRYPT$ENCRYPT_FILE
routine when encrypting files that use an AES algorithm.

The ENCRYPT$ENCRYPT_FILE_FLAGS flags are used to control file operations such as cipher
direction, file compression, and so on. The FILE_AES flag controls file AES initialization and en-
cryption operations and also flags AES keys.

• ENCRYPT$M_FILE_AES

• ENCRYPT$V_FILE_AES

The AES algorithm, mode, and a key length (128, 192, or 256 bits) are specified in the algorithm
parameter for the ENCRYPT$ENCRYPT_FILE and ENCRYPT$INIT routines, or the are speci-
fied in the algorithm-name parameter for the ENCRYPT$GENERATE_KEY routine. This para-
meter is in the form of a character string descriptor reference (pointer), as follows:

273

Chapter 11. Encryption (ENCRYPT) Routines

• Block mode ciphers

AESCBC128 - Cipher Block Chaining
AESCBC192 - Cipher Block Chaining
AESCBC256 - Cipher Block Chaining
AESECB128 - Electronic Code Book
AESECB192 - Electronic Code Book
AESECB256 - Electronic Code Book

• Stream mode ciphers

AESCFB128 - Cipher Feedback
AESCFB192 - Cipher Feedback
AESCFB256 - Cipher Feedback
AESOFB128 - Output Feedback
AESOFB192 - Output Feedback
AESOFB256 - Output Feedback

Note

AESCBC128 is the default cipher and is also used for encryption and decryption of the users key for
storage of logical names. These ciphers are looked up in the order in which they are stored in their al-
gorithm table with the new image file SYS$SHARE:ENCRYPT$ALG$AES.EXE file.

11.3. How the Routines Work
You can call the Encryption for OpenVMS routines from any language that supports the OpenVMS
Calling Standard in 32 bit mode. After it is called, each routine:

• Performs its function

• Returns a 32-bit status code value for the calling program to determine success or failure

• Returns control to the calling program

The callable routines do not provide all the options of the file selection qualifiers available with the
DCL ENCRYPT and DECRYPT commands. The functions of /BACKUP, /BEFORE, /BY_OWN-
ER, /CONFIRM, /EXCLUDE, /EXPIRED, /SINCE, and /SHOW are supported only at the DCL-inter-
face level. For more information, see the Guide to Creating OpenVMS Modular Procedures.

11.3.1. Encryption Keys
This section provides information about encryptions for AES and DES.

• AES Keys are created, encrypted (always with AESCBC128 and a master key), and stored in a
logical name table. During an encrypt operation, the key is fetched, decrypted, and used as a 16-,
24- or 32-byte key, depending on the chosen algorithm/key size for the cipher operation.

• Non-literal DES keys are compressed, that is, converted to uppercase. Only the characters A-Z,
0-9, dollar sign ($), period (.), and underscore (_) are allowed. All others are converted to spaces,
and multiple spaces are removed. AES ASCII key values are not compressed.

274

Chapter 11. Encryption (ENCRYPT) Routines

• Use caution when creating keys to ensure they meet the minimum key length when later used for
the algorithm/key size selected. This condition was not a problem with 8-byte DES keys. Any key
(literal or nonliteral) that is longer in length than necessary is folded for the proper 16-, 24- or 32-
byte key size.

• The key name is a logical name for the key as stored in the logical name table (SYSTEM, JOB,
GROUP, or PROCESS - the default). The value can be ASCII (normal text keys), or hexadeci-
mal/binary. When creating a literal key (key-flags = ENCRYPT$M_LITERAL_KEY), the value
is stored as a literal value and it is not compressed.

• Errors can result when using the ENCRYPT$GENERATE_KEY routine to generate AES keys
and specifying key lengths that are not multiples of 16.

• Exercise care when supplying the key to the ENCRYPT$INIT routine; it must match the key
stored in the logical name table. The descriptor type determines how the DES key is handled:

• As text to be compressed, or

• As a binary value not to be compressed

AES key values are not compressed. The key flag (1 = literal, 0 = name) determines how the key-
name parameter is interpreted:

• As a literal value passed directly to INIT, or

• As a key name for logical name lookup, translation, and decryption.

Note that errors can result if you use an incorrect key type. For example, an error occurs if the key
flag = 0 (name) and a literal key value is provided instead of a key name. An error could also oc-
cur if you attempt to provide a key name to be used as a literal value.

For the ENCRYPT$INIT routine, key name descriptors of type DSCK_DTYPE_T, DSCK_D-
TYPE_VT, and DSC$K_DTYPE_Z specify that the key value should be compressed for DES
keys. AES key values are not compressed.

11.3.1.1. Deleting AES Keys
Like DES keys, AES keys are deleted or removed with the encrypt command-line qualifier /RE-
MOVE_KEY or with the ENCRYPT$DELETE_KEY routine:

$ ENCRYPT/REMOVE_KEY KEYNAME /AES

The user's secret key is encrypted with a master key and stored in a logical name table (PROCESS,
JOB, GROUP or SYSTEM-ENCRYP$SYSTEM table), the default is the PROCESS logical name ta-
ble. To delete a key in a table other than the PROCESS logical name table, the appropriate qualifier (/
JOB, /GROUP, or /SYSTEM) must also be specified in the ENCRYPT /REMOVE_KEY command.

Because the users secret key name is unique, only one key with the same name can exist in the same
logical name table, whether this is a DES key or an AES key. This means that the /AES qualifier is
unnecessary, although it is implemented nevertheless.

11.3.1.2. DES Key and Data Semantics
The National Bureau of Standards (NBS) document FIPS-PUB-46 describes the operation of the DES
algorithm in detail. The bit-numbering conventions in the NBS document are different from Open-
VMS numbering conventions.

275

Chapter 11. Encryption (ENCRYPT) Routines

Note

For the AES algorithm, see the National Institute of Standards and Technology (NIST) document
FIPS-PUB-197, pages 7 through 9.

If you are using Encryption for OpenVMS routines in conjunction with an independently developed
DES encryption system, ensure that you are familiar with the relationship between the NBS and
OpenVMS numbering conventions. Table 11.1 highlights the differences.

Table 11.1. Comparison of NBS and OpenVMS Numbering Conventions

NBS Encryption for OpenVMS
Numbers bits from left to right. Numbers bits from right to left.
Displays bytes in memory from left to right. Displays bytes in memory from right to left.
Handles keys and data in 8-byte blocks. Handles 8-byte blocks in OpenVMS display or-

der.
Treats keys and data as byte strings. Treats keys and data as character strings.
The "most significant byte" is byte 1. Same.
In DES keys, the parity bits are DES bits 8, 16,
24, and so forth.

In DES keys, the parity bits are OpenVMS bits 0,
8, 16, and so forth.

DES keys, when expressed as strings of hexadeci-
mal digits, are given starting with the high digit of
byte 1, then the low digit of byte 1, then the high
digit of byte 2, and so forth, through the low digit
of byte 8.

Same.

To convert a hexadecimal key string into the 8-byte binary key, convert from hex to binary one byte
at a time. For example, a quadword hex-to-binary conversion, using the library subroutine OTS
$CVT_TZ_L, yields an incorrect, byte-reversed key.

Figure 11.1. OpenVMS Numbering Overlay on FIPS-46 Numbering

276

Chapter 11. Encryption (ENCRYPT) Routines

Figure 11.2. NBS Numbering Overlay on an OpenVMS Quadword

Note

On OpenVMS Integrity server systems, AES uses an OpenVMS numbering overlay on FIPS-197
numbering. For a description of AES key and data semantics, see the National Institute of Standards
and Technology (NIST) document FIPS-PUB-197, pages 7 through 9.

11.3.2. File Encryption and Decryption
Once a key has been created, you can encrypt and decrypt files. This can be accomplished at the com-
mand line with the ENCRYPT and DECRYPT commands, or by using the ENCRYPT$ENCRYP-
T_FILE routine.

File encryption encrypts RMS files in fixed-length, 512- byte records. The file characteristics and at-
tributes of the file are preserved, for example, the file creation and modify date, and whether the file
was organized as sequential or indexed, and its record format (STREAM_LF, VAR, or other). You
specify a key to be used for the encrypting a file and a data algorithm. However, the user key is used
to encrypt the random key, initialization vector (IV), and data algorithm in the random key record. The
random key encrypts the files attributes and feature records, and its data records, using the data algo-
rithm that you specify.

When decrypting the file, the key specified decrypts the random key record, which retrieves the ran-
dom (data) key, IV, and data algorithm file. Then the file's attributes, feature records, and data records
are decrypted with the random key, IV, and data algorithm from the fixed-length 512-byte records, and
then restored to its original format and creation date. The modified (or revised) file date is then updat-
ed.

11.4. Maintaining Keys
When you use AES or DES symmetric key encryption routines, first define the key that will be used
in the encryption operation. Similarly, to decrypt a file specify the same key. Table 11.2 describes the
callable routines that maintain keys.

Table 11.2. Routines for Maintaining Keys

Routine Description
ENCRYPT$DEFINE_KEY Creates a key definition with a key name and a

key value. Puts the definition into a key storage
table. Similar to the ENCRYPT /CREATE_KEY
command.

277

Chapter 11. Encryption (ENCRYPT) Routines

Routine Description
ENCRYPT$DELETE_KEY Removes a key definition from a key storage

table. Uses the key name to identify the key to
be removed. Similar to the ENCRYPT /RE-
MOVE_KEY command.

ENCRYPT$GENERATE_KEY Generates random key values.

When you call these routines, use the following arguments:

• With ENCRYPT$DEFINE_KEY

• To pass the values for the key name and key value, use the key-name and the key-value argu-
ments.

• To specify a key storage table, use the key-flags argument.

• To specify other key options, use the key-flags argument.

• On DES, to override key compression, use the key-flags argument. (AES keys are not com-
pressed.)

• With ENCRYPT$DELETE_KEY

• To pass the key name, use the key-name argument.

• To specify the key storage table in which the key resides, use the key-flags argument.

• With ENCRYPT$GENERATE_KEY

• To define the length of the key, use the key-length argument in increments of 8 bytes for DES
and 16-bytes for AES (that is, the block size).

• To specify the buffer into which the generated key is to be placed, use the key-buffer argu-
ment.

• To specify the algorithm that will use the key, use the algorithm-name argument.

• To optionally pass three arbitrary values for added security, use the factor-a, factor-b, and
factor-c arguments. These values are randomizing factors when the routine generates a key
value. For example, the factors might be:

• Time an operation started

• Size of a certain stack

• Copy of the last command line

11.5. Operations on Files
The ENCRYPT$ENCRYPT_FILE routine is similar to the DCL ENCRYPT and DECRYPT com-
mands in that you use this routine with entire files.

The ENCRYPT$ENCRYPT_FILE routine specifies the key, the input file specification, the output file
specification, and other file operation information.

278

Chapter 11. Encryption (ENCRYPT) Routines

Specify the type of operation, either encryption or decryption, with the file-flags argument for DES
and file-AES argument for AES operations.

ENCRYPT$ENCRYPT_FILE does not require a prior call to ENCRYPT$INIT.

11.6. Operations on Records and Blocks
To operate on small records or blocks of data, use the following routines:

• ENCRYPT$ENCRYPT_ONE_RECORD

• ENCRYPT$DECRYPT_ONE_RECORD

These routines are a shorthand form of the ENCRYPT$INIT, ENCRYPT$ENCRYPT, EN-
CRYPT$DECRYPT, ENCRYPT$FINI sequence of calls.

Do not use these routines for data larger than a few records.

To use AES for one record ciphers, an AES key must first be created and stored in the logical name
table (encrypted). The key name of an AES key is specified as an address of a descriptor that con-
tains the ASCII text for the selected AESmmmkkk (mode and key size) algorithm, for example,
AESCBC256. Note that the input and output buffers (descriptor addresses) are also provided.

11.7. Routine Descriptions
This section describes the syntax of each callable routine. The routines are listed alphabetically.

11.7.1. Specifying Arguments
Each routine's argument list shows the mandatory arguments first, followed by the optional argu-
ments. Brackets ([]) identify optional arguments in the argument list.

For example, this format line shows that the required arguments are context, input, and output, and
that the optional arguments are output-length and p1:

ENCRYPT$DECRYPT context ,input ,output [,output-length] [,p1]

When you specify arguments, follow these guidelines:

• The order is important. Specify arguments in the order in which they appear in the argument list.

• Separate each argument with a comma.

• Pass a zero value for each optional argument that you omit.

11.7.2. Bitmasks
Constants are associated with the symbolic names of the bitmasks used by the Encryption routines.
These constants are defined in the ENCRYPT_STRUCTURES files that are provided with the kit.

The examples directory, ENCRYPT$EXAMPLES, has a copy of the ENCRYPT_STRUCTURES file
in each supported programming language.

279

Chapter 11. Encryption (ENCRYPT) Routines

11.7.3. Error Handling
By default, Encryption signals error conditions with messages. To intercept a message that is inappro-
priate for your application, supply a condition handler.

For information about implementing condition handlers, see your programming language reference
manual.

ENCRYPT$DECRYPT
ENCRYPT$DECRYPT — Decrypts the next record of ciphertext according to the algorithm specified
in the ENCRYPT$INIT call.

Format

ENCRYPT$DECRYPT context, " input, " output " [,output-length "] [,p1"]

Argument

context

OpenVMS usage:
type: longword integer (signed)
access: write only
mechanism: by reference

Context area initialized when ENCRYPT$INIT completes execution. The context argument is the ad-
dress of a longword of unspecified interpretation that is used to convey context between encryption
operations.

input

OpenVMS usage:
type: char_string
access: read only
mechanism: by descriptor

Ciphertext record that ENCRYPT$DECRYPT is to decrypt. The input argument is the address of a
descriptor pointing to a byte-aligned buffer containing the input record to the decryption operation.

output

OpenVMS usage:
type: char_string
access: write only
mechanism: by descriptor

Plaintext record that results when ENCRYPT$DECRYPT completes execution. The output argument
is the address of a descriptor pointing to a byte-aligned padding buffer that will contain the output
record from the decryption operation.

280

Chapter 11. Encryption (ENCRYPT) Routines

If the descriptor is dynamic and insufficient space is allocated to contain the output record, storage
will be allocated from dynamic memory. If insufficient space exists to contain the output of the opera-
tion, then an error status is returned.

The ENCRYPT$DECRYPT routine adjusts the length of the output descriptor, if possible, to re-
flect the actual length of the output string. If the descriptor type is not DSC$K_DTYPE_VS (varying
string), DSC$K_DTYPE_V (varying), or DSC$K_DTYPE_D (dynamic), the routine takes the actual
output count from the output-length argument.

The output buffer must be able to accommodate a padded block to an increment of the block length.
For AES this is 16 bytes and for DES, eight bytes.

output-length

OpenVMS usage:
type: word integer
access: write only
mechanism: by reference

Optional argument.

Number of bytes that ENCRYPT$DECRYPT wrote to the output buffer. The output-length argu-
ment is the address of a word containing the number of bytes written to the output buffer, including
any bytes of pad characters generated by the selected algorithm to meet length requirements of the in-
put buffer, if any. Output length does not count padding in the case of a fixed-length string.

Some encryption algorithms have specific requirements for the length of the input and output strings.
In particular, DESECB and DESCBC pad input data with from 1 to 7 bytes to form complete 64-bit
blocks for operation. The values of the pad characters are indeterminate.

When you decrypt fewer than 8 bytes, present the full 8 bytes resulting from the ENCRYPT$EN-
CRYPT to ENCRYPT$DECRYPT. Retain the byte count of the input data in order to strip trail-
ing pad bytes after a subsequent decryption operation. Note that the AES block mode algorithms
(AESCBCxxx and AESECBxxx), pad the data to even 16 byte block boundaries. For AES, one byte
encrypts and decrypts to 16 bytes, 72 bytes to 80, and so forth. The AES padding character is a HEX
number of bytes indicating the number of bytes padded, for example, the one byte encrypted pad
would decrypt to 15 characters of 0F following the one decrypted byte of data. For the 72 bytes of
data, eight bytes of padding characters (08 08 ... 08), would follow the 72 bytes of decrypted da-
ta. DESECB and DESCBC modes always pad with characters of zeros. The character stream modes
(AESCFBxxx, AESOFBxxx, DESCFB), do not pad the data, so the output-length will match the actu-
al number of data bytes.

p1

OpenVMS usage:
type: quadword[1](DES), quadword[2](AES)
access: read only
mechanism: by reference

Optional argument. The p1 argument is the address of a quadword initialization vector used to seed
the two modes of the DES algorithm for which it is applicable (DESECB and DESCFB). (That is, the
DES IV initialization vector is a quadword reference, to an eight byte value.)

281

Chapter 11. Encryption (ENCRYPT) Routines

For AES, the optional P1 argument for the AES IV initialization vector is a reference to a 16 byte
(two quadwords) value.

If this argument is omitted, the initialization vector used is the residue of the previous use of the speci-
fied context block. ENCRYPT$INIT initializes the context block with an initialization vector of zero.

Description

The ENCRYPT$DECRYPT routine decrypts the next record of ciphertext according to the algorithm
specified in the ENCRYPT$INIT call. Any errors encountered in the operation are returned as status
values. The message authentication mode (DESMAC) is not supported by ENCRYPT$DECRYPT.

The ENCRYPT$DECRYPT routine returns a 32-bit status code indicating the success or failure of the
routine's operation.

Condition Values Returned

SS$_NORMAL

Record successfully decrypted.

ENCRYPT$ xyz

An error reported by the Encryption software. xyz identifies the message.

SS$_xyz

A return status from a called system service. xyz identifies the return status.

ENCRYPT$DECRYPT_ONE_RECORD
ENCRYPT$DECRYPT_ONE_RECORD — Decrypts a small amount of data on a decrypt stream.
To use AES for one record ciphers, you must first create an AES key, which is stored in the logical
name table (encrypted). The key name of an AES key is specified as an address of a descriptor that
contains the ASCII text for the selected AESmmmkkk (mode and key size) algorithm, for example,
AESCBC256. The input and output buffers (descriptor addresses) are also provided.

Format

ENCRYPT$DECRYPT_ONE_RECORD input, " output, " key-name, " algorithm" "

Argument

input

OpenVMS usage:
type: char_string
access: read only
mechanism: by descriptor

Ciphertext record to be decrypted. The input argument is the address of a string descriptor pointing to
a byte-aligned buffer containing the input record to be decrypted.

output

OpenVMS usage:

282

Chapter 11. Encryption (ENCRYPT) Routines

type: char_string
access: write only
mechanism: by descriptor

Plaintext record resulting when ENCRYPT$DECRYPT_ONE_RECORD completes execution. The
output argument is the address of a string descriptor pointing to a byte-aligned buffer that will contain
the plaintext record.

If the descriptor is dynamic and insufficient space is allocated to contain the output record, storage is
allocated from dynamic memory. If insufficient space exists to contain the output of the operation, an
error is returned.

The ENCRYPT$DECRYPT_ONE_RECORD routine adjusts the length of the output descriptor, if
possible, to reflect the actual length of the output string.

key-name

OpenVMS usage:
type: char_string
access: read only
mechanism: by descriptor

Key used to initialize the decrypt stream. The key-name argument is the address of a string descriptor
pointing to the name of the previously defined user key to be used.

algorithm

OpenVMS usage:
type: char_string
access: read only
mechanism: by descriptor

Algorithm used for the decryption operation. The algorithm argument is the address of a string de-
scriptor pointing to a code for the selected algorithm. The algorithm code is an ASCII string. Specify
the descriptor type value as one of the following:

• DSC$K_DTYPE_T (text)

• DSC$K_DTYPE_VT (varying text)

• DSC$K_DTYPE_Z (unspecified)

For DES, the following algorithms are valid:

• DESCBC (default)

• DESECB

• DESCFB

For AES, the following algorithms are valid:

• Cipher block chaining:

AESCBC128 (default)

283

Chapter 11. Encryption (ENCRYPT) Routines

AESCBC192
AESCBC256

• Electronic code book:

AESECB128
AESECB192
AESECB256

• Cipher feedback:

AESCFB128
AESCFB192
AESCFB256

• Output feedback:

AESOFB128
AESOFB192
AESOFB256

Description

In some applications, only a small amount of data needs to be decrypted on a particular decrypt
stream. The ENCRYPT$DECRYPT_ONE_RECORD routine allows you to perform such a decryp-
tion operation.

The ENCRYPT$DECRYPT_ONE_RECORD routine is a shorthand form of the ENCRYPT$INIT,
ENCRYPT$DECRYPT, and ENCRYPT$FINI sequence of calls. However, using ENCRYPT$DE-
CRYPT_ONE_RECORD repeatedly to decrypt records of a file is extremely inefficient.

The ENCRYPT$DECRYPT_ONE_RECORD routine returns a 32-bit status code indicating the suc-
cess or failure of the routine's operation.

Condition Values Returned

SS$_NORMAL

Operation performed.

ENCRYPT$ xyz

An error reported by the Encryption software. xyz identifies the message.

SS$_ xyz

A return status from a called system service. xyz identifies the return status.

ENCRYPT$DEFINE_KEY
ENCRYPT$DEFINE_KEY — Places a key definition into the process, group, job, or system key stor-
age table.

Format

ENCRYPT$DEFINE_KEY key-name, " key-value, " key-flags"

284

Chapter 11. Encryption (ENCRYPT) Routines

Argument

key-name

OpenVMS usage:
type: char_string
access: read only
mechanism: by descriptor

Name of the key defined when ENCRYPT$DEFINE_KEY completes execution. The key-name argu-
ment is the address of a string descriptor pointing to a char_string that is interpreted as the name of the
key to be defined. A maximum of 243 characters is permitted.

Note

Key names beginning with ENCRYPT$ are reserved for VSI.

key-value

OpenVMS usage:
type: char_string
access: read only
mechanism: by descriptor

Key value defined when ENCRYPT$DEFINE_KEY completes execution. The key-value argument is
the address of a string descriptor pointing to a vector of unsigned byte values that are assigned to the
named key. A maximum of 240 bytes may be assigned.

key-flags

OpenVMS usage:
type: longword
access: read only
mechanism: by reference

Flags that ENCRYPT$DEFINE_KEY uses when defining a key. The key-flags argument is the ad-
dress of a longword containing flags that control the key definition process.

Each flag has a symbolic name. The constants associated with these names are defined in the EN-
CRYPT$EXAMPLES:ENCRYPT_STRUCTURES files in various programming languages.

Table 11.3 defines the function of each flag.

Table 11.3. ENCRYPT$DEFINE_KEY Flags

Flag Function
Symbolic Name Function
ENCRYPT$M_KEY_PROCESS Places definition in process table
ENCRYPT$M_KEY_GROUP Places definition in group table
ENCRYPT$M_KEY_JOB Places definition in job table

285

Chapter 11. Encryption (ENCRYPT) Routines

Flag Function
Symbolic Name Function
ENCRYPT$M_KEY_SYSTEM Places definition in system table
ENCRYPT$M_KEY_LITERAL Stores key without compressing
ENCRYPT$M_KEY_AES Designates an AES key value

The following AES mask can be used in addition to (OR with) other flags for the key-flags parameter
(as a longword by reference). An associated AES key value can be used for testing the bit within the
program. Use the KEY_AES key flag to specify an AES key:

• ENCRYPT$M_KEY_AES

• ENCRYPT$V_KEY_AES

Description

The ENCRYPT$DEFINE_KEY routine places a key definition into the process, group, job, or system
key storage table. The key value supplied with the routine is processed as specified and placed in the
key storage table under the indicated name. The ENCRYPT$DEFINE_KEY routine does not interpret
the key value.

By default, DES keys are treated as char_string keys, using the Digital Multinational Character Set
and are compressed before being inserted into the key storage table. The compression proceeds as fol-
lows:

1. The string is converted to uppercase characters.

2. The digits 0 through 9 are left unchanged.

3. All characters except letters, digits, dollar signs, periods, and underscores are converted to spaces.

4. All sequences of multiple spaces (or characters that have been converted into spaces) are convert-
ed into single spaces.

When a char_string key is retrieved from key storage for use as a DES key, it is folded into an 8-byte
key by exclusive OR-ing 8-byte segments of the key string together, and then applying odd parity to
each byte by modifying the sign bit (bit 7).

The key flag ENCRYPT$M_KEY_LITERAL specifies that the key string supplied is a binary key. A
binary key is not compressed, but is placed into key storage as is. When a binary key is used as a DES
key, it is likewise folded into an 8-byte key by exclusive OR-ing 8-byte segments together. For DES,
odd parity is then applied by modifying the low bit (bit 0) of each byte.

AES key values are not subject to ASCII compression. Therefore, any 8 bit character is allowed for
AES keys.

The ENCRYPT$DEFINE_KEY routine returns a 32-bit status code indicating the success or failure
of the routine's operation.

Condition Values Returned

SS$_NORMAL

Key has been defined.

286

Chapter 11. Encryption (ENCRYPT) Routines

ENCRYPT$ xyz

An error reported by the Encryption software. xyz identifies the message.

SS$_xyz

A return status from a called system service. xyz identifies the return status.

ENCRYPT$DELETE_KEY
ENCRYPT$DELETE_KEY — Deletes a key definition from a key storage table.

Format

ENCRYPT$DELETE_KEY key-name," key-flags"

Argument

key-name

OpenVMS usage:
type: char_string
access: read only
mechanism: by descriptor

Name of the key removed from a key storage table when ENCRYPT$DELETE_KEY completes ex-
ecution. The key-name argument is the address of a string descriptor pointing to a char_string that is
interpreted as the name of the key to be deleted. A maximum of 243 characters is permitted.

key-flags

OpenVMS usage:
type: longword
access: read only
mechanism: by reference

Key table from which ENCRYPT$DELETE_KEY removes a key. The key-flags argument is a long-
word containing flags that control the deletion process. The following flags are available:

ENCRYPT$M_KEY_PROCESS Deletes a key from process table
ENCRYPT$M_KEY_GROUP Deletes a key from group table
ENCRYPT$M_KEY_JOB Deletes a key from job table
ENCRYPT$M_KEY_SYSTEM Deletes a key from system table
ENCRYPT$M_KEY_AES Designates an AES key value

The following AES mask can be used in addition to (or with) other flags for the key-flags parameter
(as a longword by reference). An associated AES key value can be used for testing the bit within the
program. Use the KEY_AES key flag to specify an AES key:

• ENCRYPT$M_KEY_AES

• ENCRYPT$V_KEY_AES

287

Chapter 11. Encryption (ENCRYPT) Routines

Description

The ENCRYPT$DELETE_KEY routine deletes a key definition from a key storage table. The EN-
CRYPT$DELETE_KEY routine returns a 32-bit status code indicating the success or failure of the
routine's operation.

Condition Values Returned

SS$_NORMAL

Key has been deleted.

ENCRYPT$ xyz

An error reported by the Encryption software. xyz identifies the message.

SS$_ xyz

A return status from a called system service. xyz identifies the return status.

ENCRYPT$ENCRYPT
ENCRYPT$ENCRYPT — Transforms the next record of plaintext according to the algorithm you
specify in the ENCRYPT$INIT call. This routine performs either an encryption or decryption opera-
tion.

Format

ENCRYPT$ENCRYPT context, " input, " output " [,output-length "] [,p1"]

Argument

context

OpenVMS usage:
type: longword integer (signed)
access: write only
mechanism: by reference

Context area initialized when ENCRYPT$INIT completes execution. The context argument is the ad-
dress of a longword of unspecified interpretation that is used to convey context between encryption
operations.

input

OpenVMS usage:
type: char_string
access: read only
mechanism: by descriptor

Plaintext record to encrypt. The input argument is the address of a descriptor pointing to a byte-
aligned buffer containing the input record to the encryption operation.

288

Chapter 11. Encryption (ENCRYPT) Routines

output

OpenVMS usage:
type: char_string
access: write only by descriptor
mechanism:

Ciphertext record that results when ENCRYPT$ENCRYPT completes execution. The output argu-
ment is the address of a descriptor pointing to a byte-aligned buffer that will contain the output record
from the encryption operation.

If the descriptor is dynamic and insufficient space is allocated to contain the output record, storage is
allocated from dynamic memory.

ENCRYPT$ENCRYPT adjusts the length of the output descriptor, if possible, to reflect the actual
length of the output string. If the descriptor type is not DSC$K_DTYPE_VS (varying string), DSC
$K_DTYPE_V (varying), or DSC$K_DTYPE_D (dynamic), the routine takes the actual output count
from the output-length argument.

The output buffer must be able to accommodate a padded block to an increment of the block length.
For AES this is 16 bytes and for DES, 8 bytes.

output-length

OpenVMS usage:
type: word integer
access: write only
mechanism: by reference

Optional argument. Number of bytes that ENCRYPT$ENCRYPT wrote to the output buffer. The out-
put-length argument is the address of a word containing the number of bytes written to the output
buffer.

Some encryption algorithms have specific requirements for the length of the input and output strings.
In particular, DESECB and DESCBC pad input data with from 1 to 7 bytes to form complete 64-bit
blocks for operation. The values of the pad characters are indeterminate.

When you decrypt fewer than 8 bytes, preserve and present to ENCRYPT$DECRYPT the full 8 bytes
resulting from ENCRYPT$ENCRYPT. Retain the byte count of the input data in order to strip trailing
pad bytes after a subsequent decryption operation.

Note that the AES block mode algorithms (AESCBCxxx and AESECBxxx) pad the data to even 16
byte block boundaries. For AES, one byte encrypts and decrypts to 16 bytes, 72 bytes to 80, and so
forth. The AES padding character is a HEX number of bytes indicating the number of bytes padded.
For example, the one-byte encrypted pad would decrypt to 15 characters of 0F following the one en-
crypted byte of data. For the 72 bytes of data, eight bytes of padding characters (08 08 ... 08), would
follow the 72 bytes of encrypted data. DESECB and DESCBC modes always pad with characters
of zeros. The character stream modes (AESCFBxxx, AESOFBxxx, DESCFB). In order that the out-
put-length will match the actual number of data bytes, do not pad the data.

p1

OpenVMS usage:

289

Chapter 11. Encryption (ENCRYPT) Routines

type: quadword[1] (DES), quadword[2] (AES)
access: read only
mechanism: by reference

Optional argument. The p1 argument is the address of a quadword initialization vector used to seed
the three modes (DESECB, DESCFB, and DESMAC) of the DES algorithm for which it is applicable.
The DES IV initialization vector is a quadword reference, to an eight byte value.

For AES, the optional P1 argument for the AES IV initialization vector is a reference to a 16 byte
(two quadwords) value.

If you omit this argument, the initialization vector used is the residue of the previous use of the speci-
fied context block. ENCRYPT$INIT initializes the context block with an initialization vector of zero.

Description

The ENCRYPT$ENCRYPT routine transforms the next record of plaintext according to the algorithm
specified in the ENCRYPT$INIT call. Any errors encountered in the operation are returned as status
values. The ENCRYPT$ENCRYPT routine returns a 32-bit status code indicating the success or fail-
ure of the routine's operation.

Condition Values Returned

SS$_NORMAL

Record successfully encrypted.

ENCRYPT$ xyz

An error reported by the Encryption software. xyz identifies the message.

SS$_xyz

A return status from a called system service. xyz identifies the return status.

ENCRYPT$ENCRYPT_FILE
ENCRYPT$ENCRYPT_FILE — Encrypts or decrypts data files.

Format

ENCRYPT$ENCRYPT_FILE input-file, " output-file, " key-name, " algorithm, " file-flags " [,item-
list"]

Argument

input-file

OpenVMS usage:
type: char_string
access: read only
mechanism: by descriptor

290

Chapter 11. Encryption (ENCRYPT) Routines

Name of the input file that ENCRYPT$ENCRYPT_FILE is to process. The input-file argument is the
address of a string descriptor pointing to the file specification string for the input file.

Wildcard characters are valid. To specify multiple input files, you must use wildcard characters.

output-file

OpenVMS usage:
type: char_string
access: read only
mechanism: by descriptor

Name of the output file that ENCRYPT$ENCRYPT_FILE is to generate. The output-file argument is
the address of a string descriptor pointing to the file specification for the output file to be processed.

You can use wildcard characters. To specify the same names for the output and input files, use a null
character as the output-file argument.

key-name

OpenVMS usage:
type: char_string
access: read only
mechanism: by descriptor

Name of the key used when ENCRYPT$ENCRYPT_FILE processes files. The key-name argument
is the address of a string descriptor pointing to the name of the key to be used in initializing the en-
crypt or decrypt stream used for each file processed.

algorithm

OpenVMS usage:
type: char_string
access: read only
mechanism: by descriptor

Name of the algorithm that ENCRYPT$ENCRYPT_FILE uses to initialize the process stream. The
algorithm argument is the address of a string descriptor pointing to the name of the algorithm.

For DES, the following algorithms are valid:

• DESCBC (default)

• DESECB

• DESCFB

For AES, the following algorithms are valid:

• Cipher block chaining:

AESCBC128 (default)
AESCBC192

291

Chapter 11. Encryption (ENCRYPT) Routines

AESCBC256

• Electronic code book:

AESECB128
AESECB192
AESECB256

• Cipher feedback:

AESCFB128
AESCFB192
AESCFB256

• Output feedback:

AESOFB128
AESOFB192
AESOFB256

file-flags

OpenVMS usage:
type: longword
access: read only
mechanism: by reference

Flags that specify how ENCRYPT$ENCRYPT_FILE performs the file operation. The file-flags argu-
ment is the address of a longword containing a mask of flags. Table 11.4 shows the function of each
flag.

Table 11.4. ENCRYPT$ENCRYPT_FILE Flags

Flag Function
ENCRYPT$M_FILE_COMPRESS Compresses file data before encryption.
ENCRYPT$M_FILE_ENCRYPT Flag set: encrypts the file. Flag clear: decrypts the

file.
ENCRYPT$M_FILE_DELETE Deletes the input file when the operation com-

pletes.
ENCRYPT$M_FILE_ERASE Erases the file with the security data pattern be-

fore deleting it.
ENCRYPT$M_FILE_KEY_VALUE Flag set: Treats the key value as a literal value

and does not compress it. Flag clear: Treats the
key value as a text string that can be compressed.
If the KEY_NAME parameter is present, this flag
is ignored.

ENCRYPT$M_FILE_AES Flag set: indicates encrypting a file with an AES
key and algorithm

There is an additional FILE_AES flag mask (and value) that is used with the ENCRYPT$EN-
CRYPT_FILE routine when encrypting files using an AES algorithm. The ENCRYPT$ENCRYP-

292

Chapter 11. Encryption (ENCRYPT) Routines

T_FILE_FLAGS are used to control file operations such as cipher direction, file compression and so
on. The FILE_AES flag controls file AES initialization and cipher operation.

item-list

OpenVMS usage:
type: item_list_3
access: read only
mechanism: by descriptor

The optional item-list argument is used to override the data algorithm parameter. This argument sub-
stitutes one algorithm for another that is similar in function but that may be different in its name. In
other words, it overrides the name of the algorithm that is found in the random key record with the
name of the algorithm you provided in the override descriptor. This process provides a way to open
files that were encrypted with an algorithm name that may be different than the algorithm name in the
decrypt environment.

ENCRYPT$K_DATA_ALGORITHM

OpenVMS usage:
type: 3 longwords
access: read only
mechanism: by descriptor

Algorithm to be used to encrypt the file. This argument specifies the address and length of the name
string of the algorithm.

The following algorithms are valid:

• DESCBC (default)

• DESECB

• DESCFB

For AES, the following algorithms are valid:

• Cipher block chaining:

AESCBC128 (default)
AESCBC192
AESCBC256

• Electronic code book:

AESECB128
AESECB192
AESECB256

• Cipher feedback:

AESCFB128
AESCFB192

293

Chapter 11. Encryption (ENCRYPT) Routines

AESCFB256

• Output feedback:

AESOFB128
AESOFB192
AESOFB256

Description

The ENCRYPT$ENCRYPT_FILE routine either encrypts or decrypts data files from within an appli-
cation.

The routine uses the user key and the specified algorithm to protect only the randomly generated key
and the initialization vector that are used with the DESCBC algorithm to encrypt the file.

The ENCRYPT$ENCRYPT_FILE routine returns a 32-bit status code indicating the success or failure
of the routine's operation.

When you use this routine, do not also use ENCRYPT$INIT or ENCRYPT$FINI.

Condition Values Returned

SS$_NORMAL

Record successfully encrypted.

ENCRYPT$ xyz

An error reported by the Encryption software. xyz identifies the message.

SS$_ xyz

A return status from a called system service. xyz identifies the return status.

ENCRYPT$ENCRYPT_ONE_RECORD
ENCRYPT$ENCRYPT_ONE_RECORD — Encrypts a small amount of data in an encrypt stream.
To use AES for one record ciphers, you must first create an AES key, which is stored in the logical
name table (encrypted). The key name of an AES key is specified as an address of a descriptor that
contains the ASCII text for the selected AESmmmkkk (mode and key size) algorithm, for example,
AESCBC256. The input and output buffers (descriptor addresses) are also provided.

Format

ENCRYPT$ENCRYPT_ONE_RECORD input," output," key-name," algorithm"

Argument

input

OpenVMS usage:
type: char_string
access: read only
mechanism: by descriptor

294

Chapter 11. Encryption (ENCRYPT) Routines

Plaintext record to be encrypted. The input argument is the address of a string descriptor pointing to a
byte-aligned buffer containing the input record to be encrypted.

output

OpenVMS usage:
type: char_string
access: write only
mechanism: by descriptor

Ciphertext record resulting when the routine completes execution. The output argument is the address
of a string descriptor pointing to a byte-aligned buffer that will contain the ciphertext record.

If the descriptor is dynamic, and insufficient space is allocated to contain the output record, storage is
allocated from dynamic memory. If insufficient space exists to contain the output of the operation, an
error is returned.

The ENCRYPT$ENCRYPT_ONE_RECORD routine adjusts the length of the output descriptor, if
possible, to reflect the actual length of the output string.

key-name

OpenVMS usage:
type: char_string
access: read only
mechanism: by descriptor

Key used to initialize the encrypt stream. The key-name argument is the address of a string descriptor
pointing to the name of the previously defined user key to be used.

algorithm

OpenVMS usage:
type: char_string
access: read only
mechanism: by descriptor

Algorithm used for the encryption operation. The algorithm argument is the address of a string de-
scriptor pointing to a code for the selected algorithm. The algorithm code is an ASCII string. For de-
scriptor type value, use one of the following:

• DSC$K_DTYPE_T (text)

• DSC$K_DTYPE_VT (varying text)

• DSC$K_DTYPE_Z (unspecified)

For DES, the following algorithms are valid:

• DESCBC (default)

• DESECB

295

Chapter 11. Encryption (ENCRYPT) Routines

• DESCFB

For AES, the following algorithms are valid:

• Cipher block chaining:

AESCBC128 (default)
AESCBC192
AESCBC256

• Electronic code book:

AESECB128
AESECB192
AESECB256

• Cipher feedback:

AESCFB128
AESCFB192
AESCFB256

• Output feedback:

AESOFB128
AESOFB192
AESOFB256

Description

To encrypt only a small amount of data, use the ENCRYPT$ENCRYPT_ONE_RECORD routine.

The ENCRYPT$ENCRYPT_ONE_RECORD routine is a shorthand form of the ENCRYPT$INIT,
ENCRYPT$ENCRYPT, and ENCRYPT$FINI sequence of calls. However, using ENCRYPT$EN-
CRYPT_ONE_RECORD repeatedly to encrypt records of a file is extremely inefficient.

The ENCRYPT$ENCRYPT_ONE_RECORD routine returns a 32-bit status code indicating the suc-
cess or failure of the routine's operation.

Condition Values Returned

SS$_NORMAL

Operation performed.

ENCRYPT$ xyz

An error reported by the Encryption software. xyz identifies the message.

SS$_xyz

A return status from a called system service. xyz identifies the return status.

ENCRYPT$FINI
ENCRYPT$FINI — Disassociates the encryption context and releases it.

296

Chapter 11. Encryption (ENCRYPT) Routines

Format

ENCRYPT$FINI context"

Argument

context

OpenVMS usage:
type: longword integer (signed)
access: read/write
mechanism: by reference

Context area terminated when ENCRYPT$FINI completes execution. The context argument is the
address of a longword initialized by the ENCRYPT$INIT routine.

Description

The ENCRYPT$FINI routine disassociates the indicated encryption context and releases it. The EN-
CRYPT$FINI routine returns a 32-bit status code indicating the success or failure of the routine's op-
eration.

Condition Values Returned

SS$_NORMAL

Encryption context successfully terminated.

ENCRYPT$ xyz

An error reported by the Encryption software. xyz identifies the message.

SS$_ xyz

A return status from a called system service. xyz identifies the return status.

ENCRYPT$GENERATE_KEY
ENCRYPT$GENERATE_KEY — Generates a random key value.

Format

ENCRYPT$GENERATE_KEY algorithm-name, " key-length " [,factor-a "] [,factor-b "] [,factor-c "]
[,key buffer"]

Argument

algorithm-name

OpenVMS usage:
type: char_string
access: read only

297

Chapter 11. Encryption (ENCRYPT) Routines

mechanism: by descriptor

The name of the algorithm that will use the generated key.

key-length

OpenVMS usage:
type: word unsigned
access: read only
mechanism: by reference

Unsigned integer indicating the size of the key to be generated. The key-length argument is the ad-
dress of an unsigned word containing a value that indicates the length of the key.

For AES, the key-length argument takes values as increments of AES block size: 16 bytes, 32, bytes,
and 48 bytes, and so on.

factor-a, factor-b, factor-c

OpenVMS usage:
type: char_string
access: read only
mechanism: by descriptor

Optional arguments. The factor-a, factor-b, and factor-c arguments are operation-dependent data
used as randomizing factors when the routine generates a key value. For example, the factors might
be:

• Time an operation started

• Size of a certain stack

• Copy of the last command line

key-buffer

OpenVMS usage:
type: char_string
access: write
mechanism: by descriptor

Buffer into which the generated key is to be placed. The key-buffer argument is the address of a
string descriptor referencing the appropriate buffer.

If you specify a class D descriptor, dynamic memory is allocated to contain the entire key.

Description

The ENCRYPT$GENERATE_KEY routine generates a random key value. The ENCRYPT$GENER-
ATE_KEY routine returns a 32-bit status code indicating the success or failure of the routine's opera-
tion.

298

Chapter 11. Encryption (ENCRYPT) Routines

Condition Values Returned

SS$_NORMAL

Key has been created.

ENCRYPT$ xyz

An error reported by the Encryption software. xyz identifies the message.

SS$_ xyz

A return status from a called system service. xyz identifies the return status.

ENCRYPT$INIT
ENCRYPT$INIT — Initializes the context for the encryption operation.

Format

ENCRYPT$INIT context," algorithm," key-type," key-name " [,p1"]

Argument

context

OpenVMS usage:
type: longword integer signed
access: write only
mechanism: by reference

Context area that is initialized. The context argument is the address of a longword of unspecified in-
terpretation that is used to convey context between encryption operations. An uninitialized context
longword is defined to be zero and is initialized to nonzero by this routine. The context area itself is
allocated from process dynamic memory.

algorithm

OpenVMS usage:
type: char_string
access: read/write
mechanism: by descriptor

Algorithm used for the encryption operation. The algorithm argument is the address of a string de-
scriptor pointing to a code for the selected algorithm. The algorithm code is an ASCII string. For de-
scriptor type value, use one of the following:

DSC$K_DTYPE_T (text)
DSC$K_DTYPE_VT (varying text)
DSC$K_DTYPE_Z (unspecified)

For DES, the following algorithms are valid:

299

Chapter 11. Encryption (ENCRYPT) Routines

• DESCBC (default)

• DESECB

• DESCFB

For AES, the following algorithms are valid:

• Cipher block chaining:

AESCBC128 (default)
AESCBC192
AESCBC256

• Electronic code book:

AESECB128
AESECB192
AESECB256

• Cipher feedback:

AESCFB128
AESCFB192
AESCFB256

• Output feedback:

AESOFB128
AESOFB192
AESOFB256

key-type

OpenVMS usage:
type: longword logical unsigned
access: read only
mechanism: by reference

Code specifying how ENCRYPT$INIT is to interpret the key-name argument. The key-type argu-
ment is the address of an unsigned longword indicating whether key-name is the name of the key or
the key value. If you specify:

Key-type as 0 ENCRYPT$INIT interprets key-name as a descriptor pointing to
the key name string.

Key-type as 1 ENCRYPT$INIT interprets key-name as the descriptor for the val-
ue of the key to be used.

key-name

OpenVMS usage:
type: char_string
access: read only

300

Chapter 11. Encryption (ENCRYPT) Routines

mechanism: by descriptor

Key that ENCRYPT$INIT passes to the selected encryption routine. The key-name argument is the
address of a character string descriptor containing the name of the key or the address of the actual key
value. ENCRYPT$INIT interprets this argument based on the value of key-type. If this argument is:

The key name Actual key value is retrieved from key storage by the selected en-
cryption routine.

A key value It is stored with a temporary name, which is passed to the selected
encryption routine.

If the key-name argument is used to specify a key value (that is, if key-type has been specified as
1), the key-name string descriptor type field determines whether the key value is to be treated as a
char_string or as a binary value to be used exactly as specified.

If the descriptor type is DSC$K_DTYPE_T (char_string), DSC$K_DTYPE_VT (varying
char_string), or DSC$K_DTYPE_Z (unspecified), the value is treated as a text string to be com-
pressed for DES key values. ASCII compression converts lowercase characters to uppercase, only A--
Z, 0--9, $, . (period), and _ (underscore) are allowed. Other characters are converted to spaces, and the
extra spaces are removed. AES ASCII key values are not subject to ASCII compression, allowing any
8-bit ASCII character.

All other descriptor types are treated as though the key value is to be used exactly as specified.

Note

The key name descriptors of type DSCK_DTYPE_T, DSCK_DTYPE_VT, and DSC$K_DTYPE_Z
all specify that the key value should be compressed. For OpenVMS V8.3, this functionality applies
only to DES, not AES. AES keys are not compressed.

p1

OpenVMS usage:
type: quadword[1] (DES), quadword[2] (AES)
access: read only
mechanism: by reference

Optional argument. The p1 argument is the address of a quadword initialization vector used to seed
the three modes of the DES algorithm that uses an initialization vector. These modes are: DESCBC
(default), DESCFB, and DESMAC. That is, the DES IV initialization vector is a quadword reference,
to an eight byte value.

For AES, the optional P1 argument for the AES IV initialization vector is a reference to a 16 byte
(two quadwords) value.

If you omit this argument, the initialization vector used is the residue of the previous use of the speci-
fied context block. ENCRYPT$INIT initializes the context block with an initialization vector of zero.

Description

ENCRYPT$INIT initializes the context for the encryption operation. ENCRYPT$INIT creates pre-
initialized key tables in the context area to speed the encryption or decryption process. Before you can

301

Chapter 11. Encryption (ENCRYPT) Routines

re-use a context with a new algorithm, key, or other values specified with ENCRYPT$INIT, terminate
the old context with a call to ENCRYPT$FINI.

Note

Always initialize the context with ENCRYPT$INIT when you change the operation from encryption
to decryption, or from decryption to encryption.

ENCRYPT$INIT returns a 32-bit status code indicating the success or failure of the routine's opera-
tion.

Condition Values Returned

SS$_NORMAL

Initialization successfully completed.

ENCRYPT$ xyz

An error reported by the Encryption software. xyz identifies the message.

SS$_ xyz

A return status from a called system service. xyz identifies the return status.

ENCRYPT$STATISTICS
ENCRYPT$STATISTICS — Gains access to the statistics maintained by the Encryption software.

Format

ENCRYPT$STATISTICS context, " code, " destination, " return-length"

Argument

context

OpenVMS usage:
type: longword
access: read only
mechanism: by reference

Context area initialized by ENCRYPT$INIT. The context argument is the address of a longword ini-
tialized by the ENCRYPT$INIT routine.

code

OpenVMS usage:
type: longword
access: read only
mechanism: by reference

302

Chapter 11. Encryption (ENCRYPT) Routines

Code specifying the desired statistic. The code argument is the address of a longword containing the
code. The only accepted value is 1, which indicates that ENCRYPT$STATISTICS is to return all sta-
tistics to the destination buffer.

destination

OpenVMS usage:
type: char_string
access: write only
mechanism: by descriptor

Buffer into which ENCRYPT$STATISTICS places the statistics. The destination argument is the ad-
dress of a string descriptor describing the buffer. Ensure that the destination buffer is at least 20 bytes
long and contains:

• One longword indicating the number of times the primitive has been entered referencing this en-
cryption stream

• One quadword indicating the total bytes processed for this stream

• One quadword indicating the total CPU time, in OpenVMS time format, spent on processing re-
quests for this stream

return-length

OpenVMS usage:
type: longword
access: write only
mechanism: by reference

Number of bytes written to the destination buffer. The return-length argument is the address of a
word containing the number of bytes.

Description

To track the progress and performance of an encryption operation, the Encryption for OpenVMS
software maintains statistics in the context area. You can access these statistics with the EN-
CRYPT$STATISTICS routine. The ENCRYPT$STATISTICS routine returns a 32-bit status code in-
dicating the success or failure of the routine's operation.

Condition Values Returned

SS$_NORMAL

Statistics returned.

ENCRYPT$ xyz

An error reported by the Encryption software. xyz identifies the message.

SS$_ xyz

A return status from a called system service. xyz identifies the return status.

303

Chapter 11. Encryption (ENCRYPT) Routines

304

Chapter 12. File Definition Language
(FDL) Routines
This chapter describes the File Definition Language (FDL) routines. These routines perform many of
the functions of the File Definition Language that define file characteristics. Typically, you use FDL
to perform the following operations:

• Specify file characteristics otherwise unavailable from your language.

• Examine or modify the file characteristics of an existing data file to improve program or system
interaction with that file.

12.1. Introduction to FDL Routines
You specify FDL attributes for a data file when you use FDL to create the data file, set the desired file
characteristics, and close the file. You can then use the appropriate language statement to reopen the
file. Because the data file is closed between the time the FDL attributes are set and the time your pro-
gram accesses the file, you cannot use FDL to specify run-time attributes (attributes that are ignored
or deleted when the associated data file is closed).

The FDL$CREATE routine is the one most likely to be called from a high-level language. It creates
a file from an FDL specification and then closes the file. The following VSI Fortran program seg-
ment creates an empty data file named INCOME93.DAT using the file characteristics specified by the
FDL file INCOME.FDL. The STATEMENT variable contains the number of the last FDL statement
processed by FDL$CREATE; this argument is useful for debugging an FDL file.

INTEGER STATEMENT
INTEGER STATUS,
2 FDL$CREATE

STATUS = FDL$CREATE ('INCOME.FDL',
2 'INCOME93.DAT',
2 ,,,,
2 STATEMENT,
2 ,,)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))
 .
 .
 .

The following three FDL routines provide a way to specify all the options OpenVMS RMS allows
when it executes create, open, or connect operations. They also allow you to specify special process-
ing options required for your applications.

• The FDL$GENERATE routine produces an FDL specification by interpreting a set of RMS con-
trol blocks in an existing data file. It then writes the FDL specification either to an FDL file or to a
character string. If your programming language does not provide language statements that access
RMS control blocks (for example, VSI Fortran), you must use FDL$GENERATE from within the
context of a user-open routine to generate an FDL file.

• The FDL$PARSE routine parses an FDL specification, allocates RMS control blocks, and fills in
the relevant fields.

305

Chapter 12. File Definition Language (FDL) Routines

• The FDL$RELEASE routine deallocates the virtual memory used by the RMS control blocks cre-
ated by FDL$PARSE.

These routines cannot be called from asynchronous system trap (AST) level. In addition, in order to
function properly, these routines require ASTs to remain enabled.

An FDL specification can be in either a file or a character string. When specifying an FDL specifica-
tion in a character string, use semicolons to delimit the statements of the FDL specification.

12.2. Using the FDL Routines: Examples
This section provides examples that demonstrate the use of the FDL routines in various programming
scenarios.

• Example 12.1 shows how to use the FDL$CREATE routine in a Fortran program.

• Example 12.2 shows how to use the FDL$PARSE and FDL$RELEASE routines in a C program.

• Example 12.3 shows a VSI Pascal program that uses the FDL$PARSE routine to fill in the RMS
control blocks in a data file. The program then uses the FDL$GENERATE routine to create an
FDL file using the information in the control blocks.

Example 12.1. Using FDL$CREATE in a Fortran Program

* This program calls the FDL$CREATE routine. It
* creates an indexed output file named NEW_MASTER.DAT
* from the specifications in the FDL file named
* INDEXED.FDL. You can also supply a default filename
* and a result name (that receives the name of the
* created file). The program also returns all the
* statistics.
*
 IMPLICIT INTEGER*4 (A - Z)
 EXTERNAL LIBGET_LUN, FDLCREATE
 CHARACTER IN_FILE*11 /'INDEXED.FDL'/,
 1 OUT_FILE*14 /'NEW_MASTER.DAT'/,
 1 DEF_FILE*11 /'DEFAULT.FDL'/,
 1 RES_FILE*50
 INTEGER*4 FIDBLK(3) /0,0,0/
 I = 1
 STATUS = FDL$CREATE (IN_FILE,OUT_FILE,
 DEF_FILE,RES_FILE,FIDBLK,,)
 IF (.NOT. STATUS) CALL LIB$STOP (%VAL(STATUS))

 STATUS=LIB$GET_LUN(LOG_UNIT)
 OPEN (UNIT=LOG_UNIT,FILE=RES_FILE,STATUS='OLD')
 CLOSE (UNIT=LOG_UNIT, STATUS='KEEP')

 WRITE (6,1000) (RES_FILE)
 WRITE (6,2000) (FIDBLK (I), I=1,3)

1000 FORMAT (1X,'The result filename is: ',A50)

306

Chapter 12. File Definition Language (FDL) Routines

2000 FORMAT (/1X,'FID-NUM: ',I5/,
 1 1X,'FID-SEQ: ',I5/,
 1 1X,'FID-RVN: ',I5)

 END

Example 12.2 shows how to use the FDL$PARSE and FDL$RELEASE routines in a C program.

Example 12.2. Using FDL$PARSE and FDL$RELEASE in a C Program

/* FDLEXAM.C
** This program calls the FDL utility routines FDL$PARSE and
** FDL$RELEASE. First, FDL$PARSE parses the FDL specification
** PART.FDL. Then the data file named in PART.FDL is accessed
** using the primary key. Last, the control blocks allocated
** by FDL$PARSE are released by FDL$RELEASE.
** Note; to try this program use the following command on any
** file with textual data: $ANALYZE/RMS/FDL/OUT=PART.FDL
*/

#include <descrip>
#include <rms>
#define REC_SIZE 80 /* as appropriate for files used */

FDLEXAM ()
{

struct FAB *fab_ptr; /* variable to hold pointer to FAB structure */
struct RAB *rab_ptr; /* variable to hold pointer to RAB structure */
$DESCRIPTOR (fdl_file, "PART.FDL"); /* free choice of name */
char record_buffer[REC_SIZE+1]; /* allow for null terminator */
int stat;

/*
** Read and parse FDL file allocating and initializing RAB and
** and FAB accordingly, returning pointers to the FAB & RAB.
*/
stat = FDL$PARSE (&fdl_file, &fab_ptr, &rab_ptr);
if (!(stat & 1)) LIB$STOP (stat);

/*
** Try to open file as described by information in the FAB.
** Signal open errors. Note the usage of STAT, instead of
** FAB_PTR->FAB$L_STS because just in case the FAB is invalid,
** the only status returned is STAT.
*/
stat = SYS$OPEN (fab_ptr);
if (!(stat & 1)) LIB$STOP (stat, fab_ptr->fab$l_stv);

stat = SYS$CONNECT (rab_ptr);
if (!(stat & 1)) LIB$STOP (stat, rab_ptr->rab$l_stv);

/*
** Opened the file and connect some internal buffers.
** Fill in the record output buffer information which is the only
** missing information in the RAB that was created for us by FDL.
** Print a header recod and perform the initial $GET.
*/

307

Chapter 12. File Definition Language (FDL) Routines

rab_ptr->rab$w_usz = REC_SIZE;
rab_ptr->rab$l_ubf = record_buffer;
printf ("------------------- start of records -------------- \n");
stat = SYS$GET (rab_ptr);
while (stat & 1) /* As long as the $GET is successful */
 {
 record_buffer[rab_ptr->rab$w_rsz] = 0; /* Terminate for printf */
 printf ("%s\n", record_buffer); /* Current record */
 stat = SYS$GET (rab_ptr); /* Try to get next one */
 }

/*
** At this point in the execution, the status should be EOF indicating
** Successfully read the file to end. If not, signal real error.
*/
if (stat != RMS$_EOF) LIB$STOP (rab_ptr->rab$l_sts, rab_ptr->rab$l_stv);

printf ("-------------------- end of records --------------- \n");
stat = SYS$CLOSE (fab_ptr); /* implicit $DISCONNECT */
if (!(stat & 1)) LIB$STOP (fab_ptr->fab$l_sts, fab_ptr->fab$l_stv);

/*
** Allow FDL to release the FAB and RAB structures and any other
** structures (XAB) that it allocated on behalf of the program.
** Return with its status as final status (success or failure).
*/
return FDL$RELEASE (&fab_ptr, &rab_ptr);
}

Example 12.3 shows a VSI Pascal program that uses the FDL$PARSE routine to fill in the RMS con-
trol blocks in a data file, and then uses the FDL$GENERATE routine to create an FDL file.

Example 12.3. Using FDL$PARSE and FDL$GENERATE in a VSI Pascal Program

[INHERIT ('SYS$LIBRARY:STARLET')]
PROGRAM FDLexample (input,output,order_master);

(* This program fills in its own FAB, RAB, and *)
(* XABs by calling FDL$PARSE and then generates *)
(* an FDL specification describing them. *)
(* It requires an existing input FDL file *)
(* (TESTING.FDL) for FDL$PARSE to parse. *)
TYPE
(*+ *)
(* FDL CALL INTERFACE CONTROL FLAGS *)
(*- *)
 $BIT1 = [BIT(1),UNSAFE] BOOLEAN;

 FDL2$TYPE = RECORD CASE INTEGER OF
 1: (FDL$_FDLDEF_BITS : [BYTE(1)] RECORD END;
);
 2: (FDL$V_SIGNAL : [POS(0)] $BIT1;
 (* Signal errors; don't return *)
 FDL$V_FDL_STRING : [POS(1)] $BIT1;
 (* Main FDL spec is a char string *)
 FDL$V_DEFAULT_STRING : [POS(2)] $BIT1;
 (* Default FDL spec is a char string *)

308

Chapter 12. File Definition Language (FDL) Routines

 FDL$V_FULL_OUTPUT : [POS(3)] $BIT1;
 (* Produce a complete FDL spec *)
 FDL$V_$CALLBACK : [POS(4)] $BIT1;
 (* Used by EDIT/FDL on input (DEC only) *)
)
 END;

 mail_order = RECORD
 order_num : [KEY(0)] INTEGER;
 name : PACKED ARRAY[1..20] OF CHAR;
 address : PACKED ARRAY[1..20] OF CHAR;
 city : PACKED ARRAY[1..19] OF CHAR;
 state : PACKED ARRAY[1..2] OF CHAR;
 zip_code : [KEY(1)] PACKED ARRAY[1..5]
 OF CHAR;
 item_num : [KEY(2)] INTEGER;
 shipping : REAL;
 END;

 order_file = [UNSAFE] FILE OF mail_order;
 ptr_to_FAB = ^FAB$TYPE;
 ptr_to_RAB = ^RAB$TYPE;
 byte = 0..255;

VAR
 order_master : order_file;
 flags : FDL2$TYPE;
 order_rec : mail_order;
 temp_FAB : ptr_to_FAB;
 temp_RAB : ptr_to_RAB;
 status : integer;

FUNCTION FDL$PARSE
 (%STDESCR FDL_FILE : PACKED ARRAY [L..U:INTEGER]
 OF CHAR;
 VAR FAB_PTR : PTR_TO_FAB;
 VAR RAB_PTR : PTR_TO_RAB) : INTEGER; EXTERN;

FUNCTION FDL$GENERATE
 (%REF FLAGS : FDL2$TYPE;
 FAB_PTR : PTR_TO_FAB;
 RAB_PTR : PTR_TO_RAB;
 %STDESCR FDL_FILE_DST : PACKED ARRAY [L..U:INTEGER]
 OF CHAR) : INTEGER;
 EXTERN;

BEGIN

 status := FDL$PARSE ('TESTING',TEMP_FAB,TEMP_RAB);
 flags::byte := 0;
 status := FDL$GENERATE (flags,
 temp_FAB,
 temp_RAB,
 'SYS$OUTPUT:');

END.

309

Chapter 12. File Definition Language (FDL) Routines

12.3. FDL Routines
This section describes the individual FDL routines.

Note that the fdl_desc and the default_fdl_desc arguments that are used as part of these routine calls
are character strings that can be either of the following:

• A string descriptor pointing to a file that contains a specification

• A character string that is the actual specification

For additional details, see the descriptions of the individual routine calls.

FDL$CREATE
Create a File from an FDL Specification and Close the File — The FDL$CREATE routine creates a
file from an FDL specification and then closes the file.

Format
FDL$CREATE fdl_desc [,filename] [,default_name] [,result_name] [,fid_block]
 [,flags] [,stmnt_num] [,retlen] [,sts] [,stv] [,default_fdl_desc]

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. Most utility routines return a condition value in R0. Condition values that
this routine can return are listed under Condition Values Returned.

Arguments
fdl_desc

OpenVMS usage: char_string
type: character-coded text string
access: read only
mechanism: by descriptor—fixed-length string descriptor

The fdl_desc argument is one of the following:

• A character string descriptor pointing to a file containing the FDL specification to be parsed

• A character string containing the actual FDL specification

The choice depends on the application making the call. For example, if the application wants to create
data files that are compatible with a PC application, it might create the following FDL file and name it
TRANSFER.FDL:

310

Chapter 12. File Definition Language (FDL) Routines

FILE
 ORGANIZATION sequential
RECORD
 FORMAT stream_lf

The application could then include the address of the FDL file as the fdl_desc argument to the
FDL$PARSE call:

 call fdl$parse transfer.fdl ,…

Optionally, the application might code the FDL specification itself into the call using a quoted charac-
ter string as the fdl_desc argument:

 call fdl$parse "FILE; ORG SEQ; FORMAT STREAM_LF;" ,…

Note that directly including the FDL specification into the call requires you to do the following:

• Enclose the fdl_desc argument in quotation marks

• Use a semicolon to delimit statements within the fdl_desc argument

• Assign the symbol FDL$M_FDL_STRING as the flags mask value

filename

OpenVMS usage: char_string
type: character-coded text string
access: read only
mechanism: by descriptor—fixed-length string descriptor

Name of the OpenVMS RMS file to be created using the FDL specification. The filename argu-
ment is the address of a character string descriptor pointing to the RMS file name. This name over-
rides the default_name parameter given in the FDL specification.

default_name

OpenVMS usage: char_string
type: character-coded text string
access: read only
mechanism: by descriptor—fixed-length string descriptor

Default name of the file to be created using the FDL specification. The default_name argument is
the address of a character string descriptor pointing to the default file name. This name overrides any
name given in the FDL specification.

result_name

OpenVMS usage: char_string
type: character-coded text string
access: write only
mechanism: by descriptor—fixed-length string descriptor

311

Chapter 12. File Definition Language (FDL) Routines

Resultant name of the file created by FDL$CREATE. The result_name argument is the address of
a character string descriptor that receives the resultant file name.

fid_block

OpenVMS usage: vector_longword_unsigned
type: longword (unsigned)
access: write only
mechanism: by reference

File identification of the RMS file created by FDL$CREATE. The fid_block argument is the
address of an array of longwords that receives the RMS file identification information. The first
longword contains the FID_NUM, the second contains the FID_SEQ, and the third contains the
FID_RVN. They have the following definitions:

FID_NUM The location of the file on the disk. Its value can
range from 1 up to the number of files the disk
can hold.

FID_SEQ The file sequence number, which is the number of
times the file number has been used.

FID_RVN The relative volume number, which is the volume
number of the volume on which the file is stored.
If the file is not stored on a volume set, the rela-
tive volume number is 0.

flags

OpenVMS usage: mask_longword
type: longword (unsigned)
access: read only
mechanism: by reference

Flags (or masks) that control how the fdl_desc argument is interpreted and how errors are sig-
naled. The flags argument is the address of a longword containing the control flags (or a mask).
If you omit this argument or specify it as 0, no flags are set. The following table shows the flags and
their meanings:

Flag Function
FDL$V_FDL_STRING Interprets the fdl_desc argument as an FDL

specification in string form. By default, the
fdl_desc argument is interpreted as the file
name of an FDL file.

FDL$V_LONG_NAMES Returns the RESULT_NAME using the long result
name from a long name access block (NAML).
By default, the RESULT_NAME is returned from
the short fields of a name access block (NAM)
and thus may have a generated specification.

This flag is valid for OpenVMS Alpha only.

312

Chapter 12. File Definition Language (FDL) Routines

Flag Function
FDL$V_SIGNAL Signals any error. By default, the status code is

returned to the calling image.

By default, an error status is returned rather than signaled.

stmnt_num

OpenVMS usage: longword_unsigned
type: longword (unsigned)
access: write only
mechanism: by reference

FDL statement number. The stmnt_num argument is the address of a longword that receives the
FDL statement number. If the routine finishes successfully, the stmnt_num argument is the number
of statements in the FDL specification. If the routine does not finish successfully, the stmnt_num ar-
gument receives the number of the statement that caused the error. Note that line numbers and state-
ment numbers are not the same and that an FDL specification in string form has no “lines.”

retlen

OpenVMS usage: longword_unsigned
type: longword (unsigned)
access: write only
mechanism: by reference

Number of characters returned in the result_name argument. The retlen argument is the ad-
dress of a longword that receives this number.

sts

OpenVMS usage: longword_unsigned
type: longword_unsigned
access: write only
mechanism: by reference

RMS status value FAB$L_STS. The sts argument is the address of a longword that receives the sta-
tus value FAB$L_STS from the $CREATE system service.

stv

OpenVMS usage: longword_unsigned
type: longword (unsigned)
access: write only
mechanism: by reference

RMS status value FAB$L_STV. The stv argument is the address of a longword that receives the sta-
tus value FAB$L_STV from the $CREATE system service.

default_fdl_desc

313

Chapter 12. File Definition Language (FDL) Routines

OpenVMS usage: char_string
type: character-coded text string
access: read only
mechanism: by descriptor—fixed-length string descriptor

The default_fdl_desc argument is one of the following:

• A character string descriptor pointing to a file containing the default FDL specification to be
parsed

• A character string containing the actual default FDL specification

See the description of the fdl_desc argument for details.

This argument allows you to specify default FDL attributes. In other words, FDL$CREATE processes
the attributes specified in this argument unless you override them with the attributes you specify in the
fdl_desc argument.

You can code the FDL defaults directly into your program, typically with an FDL specification in
string form.

Description
FDL$CREATE calls the FDL$PARSE routine to parse the FDL specification. The FDL specification
can be in a file or a character string.

Source of FDL Specification Advantages Disadvantages
FDL file Variability; for example, if the

specification changes regularly,
you can revise the file without
revising the calling program.

File must be in default directory.
Slower.

Character string You do not have to be concerned
with locating a file.

Program must be recoded to
change FDL specification.

 Faster access.

If the FDL specification is relatively simple and is not going to change, put the FDL specification in a
character string as the fdl_desc argument to the call.

FDL$CREATE opens (creates) the specified RMS file and then closes it without putting any data in
it.

FDL$CREATE does not create the output file if an error status is either returned or signaled.

Condition Values Returned
RMS$_NORMAL

Normal successful completion.

FDL$_ABKW

Ambiguous keyword in statement number <CRLF> reference-text.

314

Chapter 12. File Definition Language (FDL) Routines

FDL$_ABPRIKW

Ambiguous primary keyword in statement number <CRLF> reference-text.

FDL$_BADLOGIC

Internal logic error detected.

FDL$_CLOSEIN

Error closing filename as input.

FDL$_CLOSEOUT

Error closing filename as output.

FDL$_CREATE

Error creating filename.

FDL$_CREATED

Filename created.

FDL$_CREATED_STM

Filename created in stream format.

FDL$_FDLERROR

Error parsing FDL file.

FDL$_ILL_ARG

Wrong number of arguments.

FDL$_INSVIREM

Insufficient virtual memory.

FDL$_INVBLK

Invalid RMS control block at virtual address ’hex-offset ’.

FDL$_MULPRI

Multiple primary definition in statement number.

FDL$_OPENFDL

Error opening filename.

FDL$_OPENIN

Error opening filename as input.

FDL$_OPENOUT

Error opening filename as output.

315

Chapter 12. File Definition Language (FDL) Routines

FDL$_OUTORDER

Key or area primary defined out of order in statement number.

FDL$_READERR

Error reading filename.

FDL$_RFLOC

Unable to locate related file.

FDL$_SYNTAX

Syntax error in statement number reference-text.

FDL$_UNPRIKW

Unrecognized primary keyword in statement number <CRLF> reference-text.

FDL$_UNQUAKW

Unrecognized qualifier keyword in statement number <CRLF> reference-text.

FDL$_UNSECKW

Unrecognized secondary keyword in statement number <CRLF> reference-text.

FDL$_VALERR

Specified value is out of legal range.

FDL$_VALPRI

Value required on primary in statement number.

FDL$_WARNING

Parsed with warnings.

FDL$_WRITEERR

Error writing filename.

RMS$_ACT

File activity precludes operation.

RMS$_CRE

Ancillary control process (ACP) file create failed.

RMS$_CREATED

File was created, not opened.

RMS$_DNF

Directory not found.

316

Chapter 12. File Definition Language (FDL) Routines

RMS$_DNR

Device not ready or not mounted.

RMS$_EXP

File expiration date not yet reached.

RMS$_FEX

File already exists, not superseded.

RMS$_FLK

File currently locked by another user.

RMS$_PRV

Insufficient privilege or file protection violation.

RMS$_SUPERSEDE

Created file superseded existing version.

RMS$_WLK

Device currently write locked.

FDL$GENERATE
Generate an FDL Specification — The FDL$GENERATE routine produces an FDL specification and
writes it to either an FDL file or a character string.

Format
FDL$GENERATE flags ,fab_pointer ,rab_pointer [,fdl_file_dst]
 [,fdl_file_resnam] [,fdl_str_dst] [,bad_blk_addr] [,retlen]

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. Most utility routines return a condition value in R0. Condition values that
this routine can return are listed under Condition Values Returned.

Arguments
flags

OpenVMS usage: mask_longword

317

Chapter 12. File Definition Language (FDL) Routines

type: longword (unsigned)
access: read only
mechanism: by reference

Flags (or masks) that control how the fdl_str_dst argument is interpreted and how errors are sig-
naled. The flags argument is the address of a longword containing the control flags (or a mask). If
you omit this argument or specify it as zero, no flags are set. The flags and their meanings are as fol-
lows:

Flag Function
FDL$V_FDL_STRING Interprets the fdl_str_dst argument as an

FDL specification in string form. By default, the
fdl_str_dst argument is interpreted as the
file name of an FDL file.

FDL$V_FULL_OUTPUT Includes the FDL attributes to describe all the
bits and fields in the OpenVMS RMS control
blocks, including run-time options. If this flag is
set, every field is inspected before being written.
By default, only the FDL attributes that describe
permanent file attributes are included (producing
a much shorter FDL specification).

FDL$V_LONG_NAMES Returns the FDL_FILE_RESNAME using the
long result name from a long name access block
(NAML). By default, the FDL_FILE_RESNAM
is returned from the short fields of a name ac-
cess block (NAM) and thus may have a generated
specification.

This flag is valid for OpenVMS Alpha only.
FDL$V_SIGNAL Signals any error. By default, the status code is

returned to the calling image.

By default, an error status is returned rather than signaled.

fab_pointer

OpenVMS usage: address
type: longword (unsigned)
access: read only
mechanism: by reference

RMS file access block (FAB). The fab_pointer argument is the address of a longword containing
the address of a FAB.

rab_pointer

OpenVMS usage: address
type: longword (unsigned)
access: read only

318

Chapter 12. File Definition Language (FDL) Routines

mechanism: by reference

RMS record access block (RAB). The rab_pointer argument is the address of a longword con-
taining the address of a RAB.

fdl_file_dst

OpenVMS usage: char_string
type: character-coded text string
access: read only
mechanism: by descriptor

Name of the FDL file to be created. The fdl_file_dst argument is the address of a char-
acter-string descriptor containing the file name of the FDL file to be created. If the FDL
$V_FDL_STRING flag is set in the flags argument, this argument is ignored; otherwise, it is re-
quired. The FDL specification is written to the file named in this argument.

fdl_file_resnam

OpenVMS usage: char_string
type: character-coded text string
access: write only
mechanism: by descriptor—fixed-length string descriptor

Resultant name of the FDL file created. The fdl_file_resnam argument is the address of a vari-
able character-string descriptor that receives the resultant name of the FDL file created (if FDL$GEN-
ERATE is directed to create an FDL file).

fdl_str_dst

OpenVMS usage: char_string
type: character-coded text string
access: write only
mechanism: by descriptor—fixed-length string descriptor

FDL specification. The fdl_str_dst argument is the address of a variable character string descrip-
tor that receives the FDL specification created. If the FDL$V_FDL_STRING bit is set in the flags
argument, this argument is required; otherwise, it is ignored.

bad_blk_addr

OpenVMS usage: address
type: longword (unsigned)
access: write only
mechanism: by reference

Address of an invalid RMS control block. The bad_blk_addr argument is the address of a long-
word that receives the address of an invalid control block (a fatal error). If an invalid control block is
detected, this argument is returned; otherwise, it is ignored.

319

Chapter 12. File Definition Language (FDL) Routines

retlen

OpenVMS usage: longword_unsigned
type: longword (unsigned)
access: write only
mechanism: by reference

Number of characters received in either the fdl_file_resnam or the fdl_str_dst argument.
The retlen argument is the address of a longword that receives this number.

Condition Values Returned
SS$_NORMAL

Normal successful completion.

FDL$_INVBLK

Invalid block.

RMS$_ACT

File activity precludes operation.

RMS$_CONTROLC

Operation completed under Ctrl/C.

RMS$_CONTROLO

Output completed under Ctrl/O.

RMS$_CONTROLY

Operation completed under Ctrl/Y.

RMS$_DNR

Device not ready or mounted.

RMS$_EXT

ACP file extend failed.

RMS$_OK_ALK

Record already locked.

RMS$_OK_DUP

Record inserted had duplicate key.

RMS$_OK_IDX

Index update error occurred.

320

Chapter 12. File Definition Language (FDL) Routines

RMS$_PENDING

Asynchronous operation pending completion.

RMS$_PRV

Insufficient privilege or file protection violation.

RMS$_REX

Record already exists.

RMS$_RLK

Target record currently locked by another stream.

RMS$_RSA

Record stream currently active.

RMS$_WLK

Device currently write locked.

SS$_ACCVIO

Access violation.

STR$_FATINERR

Fatal internal error in run-time library.

STR$_ILLSTRCLA

Illegal string class.

STR$_INSVIRMEM

Insufficient virtual memory.

FDL$PARSE
Parse an FDL Specification — The FDL$PARSE routine parses an FDL specification, allocates Open-
VMS RMS control blocks (FABs, RABs, or XABs), and fills in the relevant fields.

Format
FDL$PARSE fdl_desc ,fdl_fab_pointer ,fdl_rab_pointer [,flags]
 [,default_fdl_desc] [,stmnt_num]

Returns

OpenVMS usage: cond_value
type: longword (unsigned)

321

Chapter 12. File Definition Language (FDL) Routines

access: write only
mechanism: by value

Longword condition value. Most utility routines return a condition value in R0. Condition values that
this routine can return are listed under Condition Values Returned.

Arguments
fdl_desc

OpenVMS usage: char_string
type: character-coded text string
access: read only
mechanism: by descriptor—fixed-length string descriptor

Name of the FDL file or the actual FDL specification to be parsed. See the description of the
fdl_desc argument for the FDL$CREATE routine for details.

fdl_fab_pointer

OpenVMS usage: address
type: longword (unsigned)
access: write only
mechanism: by reference

Address of an RMS file access block (FAB). The fdl_fab_pointer argument is the address of
a longword that receives the address of the FAB. FDL$PARSE both allocates the FAB and fills in its
relevant fields.

fdl_rab_pointer

OpenVMS usage: address
type: longword (unsigned)
access: write only
mechanism: by reference

Address of an RMS record access block (for Alpha, it is the RAB64). The fdl_rab_pointer ar-
gument is the address of a longword that receives the address of the RAB or RAB64. FDL$PARSE
both allocates the RAB or RAB64 and fills in any fields designated in the FDL specification.

For Alpha, the 64-bit record access block (RAB64) consists of the traditional 32-bit RAB followed by
some 64-bit fields. The RAB64 is automatically allocated for Alpha users, who can either use it as a
RAB64 or overlay it with the 32-bit RAB definition and use it as a traditional 32-bit RAB.

flags

OpenVMS usage: mask_longword
type: longword (unsigned)
access: read only

322

Chapter 12. File Definition Language (FDL) Routines

mechanism: by reference

Flags (or masks) that control how the default_fdl_desc argument is interpreted and how errors
are signaled. The flags argument is the address of a longword containing the control flags. If you
omit this argument or specify it as zero, no flags are set. The flags and their meanings are as fol-
lows:

Flag Function
FDL$V_DEFAULT_STRING Interprets the default_fdl_desc argument

as an FDL specification in string form. By de-
fault, the default_fdl_desc argument is in-
terpreted as the file name of an FDL file.

FDL$V_FDL_STRING Interprets the fdl_desc argument as an FDL
specification in string form. By default, the
fdl_desc argument is interpreted as the file
name of an FDL file.

FDL$V_LONG_NAMES Allocates and returns a long name access block
(NAML) linked to the returned RMS file access
block (FAB). The appropriate values are set in the
NAML and FAB blocks so that the long file name
fields of the NAML block will be used.

By default, a name block is not allocated and the
file name fields of FAB are used.

If the FDL$V_LONG_NAMES flag is set, then
the FDL$V_LONG_NAMES bit must also be set
in the flags argument to the FDL$RELEASE
routine to ensure that memory allocated for the
NAML block is deallocated properly.

This flag is valid for OpenVMS Alpha only.
FDL$V_SIGNAL Signals any error. By default, the status code is

returned to the calling image.

By default, an error status is returned rather than signaled.

default_fdl_desc

OpenVMS usage: char_string
type: character-coded text string
access: read only
mechanism: by descriptor—fixed-length string descriptor

The default_fdl_desc argument is the address of a character-string descriptor pointing to either
the default FDL file or the default FDL specification. See the description of the fdl_desc argument
for the FDL$CREATE routine for details.

 This argument allows you to specify default FDL attributes. In other words, FDL$PARSE processes
the attributes specified in this argument unless you override them with the attributes you specify in the
fdl_desc argument.

323

Chapter 12. File Definition Language (FDL) Routines

You can code the FDL defaults directly into your program, typically with an FDL specification in
string form.

stmnt_num

OpenVMS usage: longword_unsigned
type: longword (unsigned)
access: write only
mechanism: by reference

FDL statement number. The stmnt_num argument is the address of a longword that receives the
FDL statement number. If the routine finishes successfully, the stmnt_num argument is the number
of statements in the FDL specification. If the routine does not finish successfully, the stmnt_num ar-
gument receives the number of the statement that caused the error. Note that line numbers and state-
ment numbers are not the same and that an FDL specification in string form has no “lines.”

By default, an error status is returned rather than signaled.

Condition Values Returned
SS$_NORMAL

Normal successful completion.

LIB$_BADBLOADR

Bad block address.

LIB$_BADBLOSIZ

Bad block size.

LIB$_INSVIRMEM

Insufficient virtual memory.

RMS$_DNF

Directory not found.

RMS$_DNR

Device not ready or not mounted.

RMS$_WCC

Invalid wildcard context (WCC) value.

FDL$RELEASE
Free Virtual Memory Obtained By FDL$PARSE — The FDL$RELEASE routine deallocates the vir-
tual memory used by the OpenVMS RMS control blocks created by FDL$PARSE. You must use FDL
$PARSE to populate the control blocks if you plan to deallocate memory later with FDL$RELEASE.

324

Chapter 12. File Definition Language (FDL) Routines

Format
FDL$RELEASE [fab_pointer] [,rab_pointer] [,flags] [,badblk_addr]

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. Most utility routines return a condition value in R0. Condition values that
this routine can return are listed under Condition Values Returned.

Arguments
fab_pointer

OpenVMS usage: address
type: longword (unsigned)
access: read only
mechanism: by reference

File access block (FAB) to be deallocated using the LIB$FREE_VM routine. The fab_pointer ar-
gument is the address of a longword containing the address of the FAB. The FAB must be the same
one returned by the FDL$PARSE routine. Any name blocks (NAMs) and extended attribute blocks
(XABs) connected to the FAB are also released.

If you omit this argument or specify it as zero, the FAB (and any associated NAMs and XABs) is not
released.

rab_pointer

OpenVMS usage: address
type: longword (unsigned)
access: read only
mechanism: by reference

Record access block (RAB) to be deallocated using the LIB$FREE_VM system service. The
rab_pointer argument is the address of a longword containing the address of the RAB. The ad-
dress of the RAB must be the same one returned by the FDL$PARSE routine. Any XABs connected
to the RAB are also released.

If you omit this argument or specify it as zero, the RAB (and any associated XABs) is not released.

flags

OpenVMS usage: mask_longword
type: longword (unsigned)
access: read only

325

Chapter 12. File Definition Language (FDL) Routines

mechanism: by reference

Flag (or mask) that controls how errors are signaled. The flags argument is the address of a long-
word containing the control flag (or a mask). If you omit this argument or specify it as zero, no flag is
set. The flag is defined as follows:

FDL$V_SIGNAL Signals any error. By default, the status code is
returned to the calling image.

FDL$V_LONG_NAMES Deallocates any virtual memory used for a long
name access block (NAML) created by the FDL
$PARSE routine.

This flag is valid for OpenVMS Alpha only.

badblk_addr

OpenVMS usage: address
type: longword (unsigned)
access: write only
mechanism: by reference

Address of an invalid RMS control block. The badblk_addr argument is the address of a longword
that receives the address of an invalid control block. If an invalid control block (a fatal error) is detect-
ed, this argument is returned; otherwise, it is ignored.

Condition Values Returned
SS$_NORMAL

Normal successful completion.

FDL$_INVBLK

Invalid RMS control block at virtual address ’hex-offset ’.

LIB$_BADBLOADR

Bad block address.

RMS$_ACT

File activity precludes operation.

RMS$_RNL

Record not locked.

RMS$_RSA

Record stream currently active.

SS$_ACCVIO

Access violation.

326

Chapter 13. Librarian (LBR) Routines
The Librarian (LBR) routines let you create and maintain libraries and their modules, and use the da-
ta stored in library modules. You can also create and maintain libraries at the DCL level by using the
DCL command LIBRARY. For more information, see the VSI OpenVMS DCL Dictionary.

13.1. Introduction to LBR Routines
This section briefly describes the types of libraries you can create and maintain using LBR routines
and how the libraries are structured. This section also lists and briefly describes the LBR routines.
Section 13.2 provides sample programs showing how to use various LBR routines. Section 13.3 is a
reference section that provides details about each of the LBR routines.

13.1.1. Types of Libraries
You can use the LBR routines to maintain the following types of libraries:

• Object libraries, including Integrity servers (ELF) object libraries and Alpha object libraries, con-
tain the object modules of frequently called routines. The Linker utility searches specified object
module libraries when it encounters a reference it cannot resolve in one of its input files. For more
information about how the linker uses libraries, see the description of the Linker utility in the VSI
OpenVMS Linker Utility Manual.

An object library has a default file type of .OLB and defaults the file type of input files to .OBJ.

• Macro libraries contain macro definitions used as input to the assembler. The assembler searches
specified macro libraries when it encounters a macro that is not defined in the input file. For infor-
mation on porting code to Integrity server systems, see the Porting Applications from VSI Open-
VMS Alpha to VSI OpenVMS Industry Standard 64 for Integrity Servers.

A macro library has a default file type of .MLB and defaults the file type of input files to .MAR.

• Help libraries contain modules of help messages that provide user information about a program.
You can retrieve help messages at the DCL level by using the DCL command HELP, or in your
program by calling the appropriate LBR routines. For information about creating help modules for
insertion into help libraries, see the description of the Librarian utility in the VSI OpenVMS Com-
mand Definition, Librarian, and Message Utilities Manual.

A help library has a default file type of .HLB and defaults the file type of input files to .HLP.

• Text libraries contain any sequential record files that you want to retrieve as data for a program.
For example, some compilers can retrieve program source code from text libraries. Each text file
inserted into the library corresponds to one library module. Your programs can retrieve text from
text libraries by calling the appropriate LBR routines.

A text library has a default file type of .TLB and defaults the file type of input files to .TXT.

• Shareable image libraries, including Integrity servers (ELF) shareable image libraries and Alpha
shareable symbol table libraries contain the symbol tables of shareable images used as input to the
linker. For information about how to create a shareable image library, see the descriptions of the
Librarian and Linker utilities in the VSI OpenVMS Command Definition, Librarian, and Message
Utilities Manual and the VSI OpenVMS Linker Utility Manual, respectively.

327

Chapter 13. Librarian (LBR) Routines

A shareable image library has a default type of .OLB and defaults the file type of input files
to .EXE.

• National character set (NCS) libraries contain definition modules that define collating sequences
and conversion functions. NCS libraries have the default file type .NLB. For information about
how to create an NCS library, see the OpenVMS National Character Set Utility Manual. 1

• User-developed libraries have characteristics specified when you call the LBR$OPEN routine to
create a new library. User-developed libraries allow you to use the LBR routines to create and
maintain libraries that are not structured in the form assigned by default to the other library types.
Note that you cannot use the DCL command LIBRARY to access user-developed libraries.

Table 13.1shows the libraries that are created by the Librarian utility for each OpenVMS platform.

Table 13.1. Libraries Created by OpenVMS Platforms

OpenVMS Alpha OpenVMS Integrity servers
Alpha object Integrity servers object
Alpha shareable image Integrity servers shareable image
Macro Macro
Text Text
Help Help

13.1.2. Structure of Libraries
You create libraries by executing the DCL command LIBRARY or by calling the LBR$OPEN rou-
tine. When object, macro, text, help, or shareable image libraries are created, the Librarian utility
structures them as described in Figure 13.1 and Figure 13.2. You can create user-developed libraries
only by calling LBR$OPEN; they are structured as described in Figure 13.3.

13.1.2.1. Library Headers

Every library contains a library header that describes the contents of the library, for example, its type,
size, version number, creation date, and number of indexes. You can retrieve data from a library's
header by calling the LBR$GET_HEADER routine.

13.1.2.2. Modules

Each library module consists of a header and data. The data is the information you inserted into the
library; the header associated with the data is created by the LBR routine and provides information
about the module, including its type, attributes, and date of insertion into the library. You can read and
update a module's header by calling the LBR$SET_MODULE routine.

13.1.2.3. Indexes and Keys

Libraries contain one or more indexes, which can be thought of as directories of the library's mod-
ules. The entries in each index are keys, and each key consists of a key name and a module reference.

1This manual has been archived but is available on the VSI OpenVMS Documentation CD.

328

Chapter 13. Librarian (LBR) Routines

The module reference is a pointer to the module's header record and is called that record's file address
(RFA). Macro, text, and help libraries (see Figure 13.1) contain only one index, called the module
name table. The names of the keys in the index are the names of the modules in the library.

Object and shareable image libraries (see Figure 13.2) contain two indexes: the module name table
and a global symbol table. The global symbol table consists of all the global symbols defined in the
modules in the library. Each global symbol is a key in the index and points to the module in which it
was defined.

If you need to point to the same module with several keys, you should create a user-developed library,
which can have up to eight indexes (see Figure 13.3). Each index consists of keys that point to the li-
brary's modules.

The LBR routines differentiate library indexes by numbering them, starting with 1. For all but user-
developed libraries, the module name table is index number 1 and the global symbol table, if present,
is index number 2. You number the indexes in user-developed libraries. When you access libraries that
contain more than one index, you may have to call LBR$SET_INDEX to tell the LBR routines which
index to use.

Figure 13.1. Structure of a Macro, Text, or Help Library

329

Chapter 13. Librarian (LBR) Routines

Figure 13.2. Structure of an Object or Shareable Image Library

330

Chapter 13. Librarian (LBR) Routines

Figure 13.3. Structure of a User-Developed Library

13.1.3. Summary of LBR Routines
All the LBR routines begin with the characters LBR$. Your programs can call these routines by using
the OpenVMS Calling Standard. When you call an LBR routine, you must provide all required argu-
ments. Upon completion, the routine returns its completion status as a condition value. In addition to
the listed condition values, some routines may return the success code SS$_NORMAL as well as vari-
ous OpenVMS RMS or system status (SS) error codes.

When you link programs that contain calls to LBR routines, the linker locates the routines during its
default search of SYS$SHARE:LBRSHR. Table 13.2 lists the routines and summarizes their func-
tions.

Table 13.2. LBR Routines

Routine Name Function
LBR$CLOSE Closes an open library.
LBR$DELETE_DATA Deletes a specified module's header and data.
LBR$DELETE_KEY Deletes a key from a library index.
LBR$FIND Finds a module by using an address returned by a

preceding call to LBR$LOOKUP_KEY.

331

Chapter 13. Librarian (LBR) Routines

Routine Name Function
LBR$FLUSH Writes the contents of modified blocks to the li-

brary file and returns the virtual memory that con-
tained those blocks.

LBR$GET_HEADER Retrieves information from the library header.
LBR$GET_HELP Retrieves help text from a specified library.
LBR$GET_HISTORY Retrieves library update history records and calls

a user-supplied routine with each record returned.
LBR$GET_INDEX Calls a routine to process modules associated

with some or all of the keys in an index.
LBR$GET_RECORD Reads a data record from the module associated

with a specified key.
LBR$INI_CONTROL Initializes a control index that the Librarian uses

to identify a library.
LBR$INSERT_KEY Inserts a new key in the current library index.
LBR$LOOKUP_KEY Looks up a key in the current index.
LBR$LOOKUP_TYPE Searches the index for the key from a particular

module (RFA) and returns the key's type for that
module.

LBR$MAP_MODULE Integrity servers only. Maps a module in P2
space.

LBR$OPEN Opens an existing library or creates a new one.
LBR$OUTPUT_HELP Retrieves help text from an explicitly named li-

brary or from user-supplied default libraries,
and optionally prompts you for additional help
queries.

LBR$PUT_END Terminates the writing of a sequence of records to
a module using the LBR$PUT_RECORD routine.

LBR$PUT_HISTORY Inserts a library update history record.
LBR$PUT_MODULE Integrity servers only. Puts an entire module, with

the module's file address (RFA), from memory
space into the current library.

LBR$PUT_RECORD Writes a data record to the module associated
with the specified key.

LBR$REPLACE_KEY Replaces an existing key in the current library in-
dex.

LBR$RET_RMSSTV Returns the last RMS status value.
LBR$SEARCH Finds index keys that point to specified data.
LBR$SET_INDEX Sets the index number to be used during process-

ing of the library.
LBR$SET_LOCATE Sets Librarian subroutine record access to locate

mode.
LBR$SET_MODULE Reads and optionally updates a module header as-

sociated with a given record's file address (RFA).

332

Chapter 13. Librarian (LBR) Routines

Routine Name Function
LBR$SET_MOVE Sets Librarian subroutine record access to move

mode.
LBR$UNMAP_MODULE Integrity servers only. Unmaps a module from

process P2 space.

13.2. Using the LBR Routines: Examples
This section provides programming examples that call LBR routines. Although the examples do not
illustrate all the LBR routines, they do provide an introduction to the various data structures and the
calling syntax.

The program examples are written in VSI Pascal and the subroutine examples are written in VSI For-
tran. The listing of each program example contains comments and is followed by notes about the pro-
gram. The highlighted numbers in the notes are keyed to the highlighted numbers in the examples.

Each sample program calls the LBR$INI_CONTROL routine and the LBR$OPEN routine before call-
ing any other routine.

Note

The one exception is that when you call the LBR$OUTPUT_HELP routine, you need not call the
LBR$INI_CONTROL routine and the LBR$OPEN routine.

The sample programs require access to various symbols derived from definition macros. Use the IN-
HERIT attribute to access these symbols from definition macros in SYS$LIBRARY:STARLET.PEN.

The LBR$INI_CONTROL routine sets up a control index; do not confuse this with a library index.
The control index is used in subsequent LBR routine calls to identify the applicable library (because
you may want your program to work with more than one library at a time).

Note

Do not alter the control index value.
LBR$INI_CONTROL specifies the library function, which can be to either create and update a new
library (LIB$C_CREATE), modify an existing library (LIB$C_UPDATE), or read an existing library
without updating it (LIB$C_READ).

Upon completion of the LBR$INI_CONTROL routine, call the LBR$OPEN routine to open the li-
brary. Open an existing library, or create and open a new library, in either the UPDATE or READ
mode, checking for an error status value of RMS$_FNF. If this error occurs, open the library in CRE-
ATE mode.

When you open the library, specify the library type and pass the file specification or partial file speci-
fication of the library file.

If you are creating a new library, pass the create options array. The CRE symbols identify the signif-
icant longwords of the array by their byte offsets into the array. Convert these values to subscripts
for an array of integers (longwords) by dividing by 4 and adding 1. If you do not load the significant
longwords before calling LBR$INI_CONTROL, the library may be corrupted upon creation.

Finally, pass any defaults for the file specification. If you omit the device and directory parts of the
file specification, the current default device and directory are used.

333

Chapter 13. Librarian (LBR) Routines

When you finish working with a library, call LBR$CLOSE to close the library by providing the con-
trol index value. You must close a library explicitly before updates can be posted. Remember to call
LBR$INI_CONTROL again if you want to reopen the library. LBR$CLOSE deallocates all the mem-
ory associated with the library, including the control index.

The order in which you call the routines between LBR$OPEN and LBR$CLOSE depends upon the li-
brary operations you need to perform. You may want to call LBR$LOOKUP_KEY or LBR$GET_IN-
DEX to find a key, then perform some operation on the module associated with the key. You can think
of a module as being both the module itself and its associated keys. To access a module, you first need
to access a key that points to it; to delete a module, you first need to delete any keys that point to it.

Note

Do not use LBR$INI_CONTROL, LBR$OPEN, and LBR$CLOSE for writing help text with LBR
$OUTPUT_HELP. Simply invoke LBR$OUTPUT_HELP.

13.2.1. Creating, Opening, and Closing a Text Library
Example 13.1 is a sample VSI Pascal program that creates, opens, and then closes a text library. The
program is summarized in the following steps:

1. Initialize the library—Call LBR$INI_CONTROL to initialize the library.

2. Open the library—Call LBR$OPEN to open the library.

3. Close the library—Call LBR$CLOSE to close the library.

Example 13.1. Creating a New Library Using VSI Pascal

PROGRAM createlib(INPUT,OUTPUT);
 (*This program creates a text library*)
TYPE (*Data type of*)
 Create_Array = ARRAY [1..20] OF INTEGER; (*create options array*)
VAR (*Constants and return status
 error
 codes for LBR$_OPEN & LBR
$INI_CONTROL.
 These are defined in $LBRDEF
 macro*)
 LBRC_CREATE,LBRC_TYP_TXT,LBR$_ILLCREOPT,LBR$_ILLCTL,
 LBR$_ILLFMT,LBR$_NOFILNAM,LBR$_OLDMISMCH,LBR$_TYPMISMCH :
 [EXTERNAL] INTEGER;
 (*Create options array codes.
 These
 are defined in $CREDEF macro*)
 CREL_TYPE,CREL_KEYLEN,CREL_ALLOC,CREL_IDXMAX,CRE$L_ENTALL,
 CREL_LUHMAX,CREL_VERTYP,CREL_IDXOPT,CREC_MACTXTCAS,
 CRE$C_VMSV3 : [EXTERNAL]INTEGER;
 Lib_Name : VARYING [128] OF CHAR; (*Name of library to create*)
 Options : Create_Array; (*Create options array*)
 File_Type : PACKED ARRAY [1..4] (*Character string that is
 default*)
 OF CHAR := '.TLB'; (*file type of created lib
 file*)
 lib_index_ptr : UNSIGNED; (*Value returned in library init*)

334

Chapter 13. Librarian (LBR) Routines

 status : UNSIGNED; (*Return Status for function
 calls*)
 (*-*-*-*-Function and Procedure Definitions-*-*-*-*)
 (*Function that returns library
 control index used by Librarian*)
FUNCTION LBR$INI_CONTROL (VAR library_index: UNSIGNED;
 func: UNSIGNED;
 typ: UNSIGNED;
 VAR namblk: ARRAY[l..u:INTEGER]
 OF INTEGER := %IMMED 0):
 INTEGER; EXTERN;
 (*Function that creates/opens
 library*)
FUNCTION LBR$OPEN (library_index: UNSIGNED;
 fns: [class_s]PACKED ARRAY[l..u:INTEGER] OF CHAR;
 create_options: Create_Array;
 dns: [CLASS_S] PACKED ARRAY [l3..u3:INTEGER] OF CHAR;
 rlfna: ARRAY [l4..u4:INTEGER] OF INTEGER := %IMMED 0;
 rns: [CLASS_S] PACKED ARRAY [l5..u5:INTEGER] OF CHAR :=
 %IMMED 0;
 VAR rnslen: INTEGER := %IMMED 0):
 INTEGER; EXTERN;
 (*Function that closes library*)
FUNCTION LBR$CLOSE (library_index: UNSIGNED):
 INTEGER; EXTERN;
 (*Error handler to check error
 codes
 if open/create not successful*)
PROCEDURE Open_Error;
 BEGIN
 WRITELN('Open Not Successful'); (*Now check specific error codes*)
 IF status = IADDRESS(LBR$_ILLCREOPT) THEN
 WRITELN(' Create Options Not Valid Or Not Supplied');
 IF status = IADDRESS(LBR$_ILLCTL) THEN
 WRITELN(' Invalid Library Index');
 IF status = IADDRESS(LBR$_ILLFMT) THEN
 WRITELN(' Library Not In Correct Format');
 IF status = IADDRESS(LBR$_NOFILNAM) THEN
 WRITELN(' Library Name Not Supplied');
 IF status = IADDRESS(LBR$_OLDMISMCH) THEN
 WRITELN(' Old Library Conflict');
 IF status = IADDRESS(LBR$_TYPMISMCH) THEN
 WRITELN(' Library Type Mismatch')
 END; (*of procedure Open_Error*)
BEGIN (* *************** DECLARATIONS COMPLETE *************************
 *************** MAIN PROGRAM BEGINS HERE ********************** *)
 (*Prompt for Library Name*)
 WRITE('Library Name: '); READLN(Lib_Name);
 (*Fill Create Options Array.
 Divide
 by 4 and add 1 to get proper
 subscript*)
 Options[IADDRESS(CRE$L_TYPE) DIV 4 + 1] := IADDRESS(LBR$C_TYP_TXT);
 Options[IADDRESS(CRE$L_KEYLEN) DIV 4 + 1] := 31;
 Options[IADDRESS(CRE$L_ALLOC) DIV 4 + 1] := 8;
 Options[IADDRESS(CRE$L_IDXMAX) DIV 4 + 1] := 1;
 Options[IADDRESS(CRE$L_ENTALL) DIV 4 + 1] := 96;

335

Chapter 13. Librarian (LBR) Routines

 Options[IADDRESS(CRE$L_LUHMAX) DIV 4 + 1] := 20;
 Options[IADDRESS(CRE$L_VERTYP) DIV 4 + 1] := IADDRESS(CRE$C_VMSV3);
 Options[IADDRESS(CRE$L_IDXOPT) DIV 4 + 1] := IADDRESS(CRE
$C_MACTXTCAS);
 (*Initialize library control
 index*)
 status := LBR$INI_CONTROL (lib_index_ptr,
 IADDRESS(LBR$C_CREATE), (*Create
 access*)
 IADDRESS(LBR$C_TYP_TXT)); (*Text
 library*)
 IF NOT ODD(status) THEN (*Check return status*)
 WRITELN('Initialization Failed')
 ELSE (*Initialization was successful*)
 BEGIN (*Create and open the library*)
 status := LBR$OPEN (lib_index_ptr,
 Lib_Name,
 Options,
 File_Type);
 IF NOT ODD(status) THEN (*Check return status*)
 Open_Error (*Call error handler*)
 ELSE (*Open/create was successful*)
 BEGIN (*Close the library*)
 status := LBR$CLOSE(lib_index_ptr);
 IF NOT ODD(status) THEN (*Check return status*)
 WRITELN('Close Not Successful')
 END
 END
END. (*of program creatlib*)

Each item in the following list corresponds to a number highlighted in Example 13.1:

Use the INHERIT attribute to access the LBR and CRE symbols from SYS$LIBRARY:STAR-
LET.PEN.
Start the declarations of the LBR routines that are used by the program. Each argument to be
passed to the Librarian is specified on a separate line and includes the name (which just acts as a
placeholder) and data type (for example: UNSIGNED, which means an unsigned integer value,
and PACKED ARRAY OF CHAR, which means a character string). If the argument is preceded
by VAR, then a value for that argument is returned by the LBR to the program.
Declare the procedure Open_Error, which is called in the executable section if the Librarian re-
turns an error when LBR$OPEN is called. Open_Error checks the Librarian's return status value
to determine the specific cause of the error. The return status values for each routine are listed in
the descriptions of the routines.
Initialize the array called Options with the values the Librarian needs to create the library.
Call LBR$INI_CONTROL, specifying that the function to be performed is create and that the li-
brary type is text.
Call LBR$OPEN to create and open the library; pass the Options array initialized in item 5 to
the Librarian.
If the call to LBR$OPEN was unsuccessful, call the procedure Open_Error (see item 4) to deter-
mine the cause of the error.

13.2.2. Inserting a Module
Example 13.2 illustrates the insertion of a module into a library from a VSI Pascal program. The pro-
gram is summarized in the following steps:

336

Chapter 13. Librarian (LBR) Routines

1. Ensure that the module does not already exist by calling LBR$LOOKUP_KEY. The return status
should be LBR$_KEYNOTFND. This step is optional.

2. Construct the module by calling LBR$PUT_RECORD once for each record going into the mod-
ule. Pass the contents of the record as the second argument. LBR$PUT_RECORD returns the
record file address (RFA) in the library file as the third argument on the first call. On subsequent
calls, you pass the RFA as the third argument, so do not alter its value between calls.

3. Call LBR$PUT_END after the last call to LBR$PUT_RECORD.

4. Call LBR$INSERT_KEY to catalog the records you have just put in the library. The second argu-
ment is the name of the module.

To replace an existing module, save the RFA of the module header returned by LBR$LOOKUP_KEY
in Step 1 in one variable and the new RFA returned by the first call to LBR$PUT_RECORD (Step 2)
in another variable. In Step 4, invoke LBR$REPLACE_KEY instead of LBR$INSERT_KEY, pass the
old RFA as the third argument, and the new RFA as the fourth argument.

Example 13.2. Inserting a Module into a Library Using VSI Pascal

PROGRAM insertmod(INPUT,OUTPUT);
 (*This program inserts a module into a library*)
TYPE
 Rfa_Ptr = ARRAY [0..1] OF INTEGER; (*Data type of RFA of module*)
VAR
 LBR$C_UPDATE, (*Constants for LBR$INI_CONTROL*)
 LBR$C_TYP_TXT, (*Defined in $LBRDEF macro*)
 LBR$_KEYNOTFND : [EXTERNAL] INTEGER;(*Error code for LBR$LOOKUP_KEY*)
 Lib_Name : VARYING [128] OF CHAR; (*Name of library receiving
 module*)
 Module_Name : VARYING [31] OF CHAR; (*Name of module to insert*)
 Text_Data_Record : VARYING [255] OF CHAR; (*Record in new module*)
 Textin : FILE OF VARYING [255] OF CHAR; (*File containing new module*)
 lib_index_ptr : UNSIGNED; (*Value returned in library init*)
 status : UNSIGNED; (*Return status for function
 calls*)
 txtrfa_ptr : Rfa_Ptr; (*For key lookup and insertion*)
 Key_Not_Found : BOOLEAN := FALSE; (*True if new mod not already in
 lib*)
 (*-*-*-*-Function Definitions-*-*-*-*)
 (*Function that returns library
 control index used by Librarian*)
FUNCTION LBR$INI_CONTROL (VAR library_index: UNSIGNED;
 func: UNSIGNED;
 typ: UNSIGNED;
 VAR namblk: ARRAY[l..u:INTEGER]
 OF INTEGER := %IMMED 0):
 INTEGER; EXTERN;
 (*Function that creates/opens
 library*)
FUNCTION LBR$OPEN (library_index: UNSIGNED;
 fns: [class_s]PACKED ARRAY[l..u:INTEGER] OF CHAR;
 create_options: ARRAY [l2..u2:INTEGER] OF INTEGER :=
 %IMMED 0;
 dns: [CLASS_S] PACKED ARRAY [l3..u3:INTEGER] OF CHAR
 := %IMMED 0;
 rlfna: ARRAY [l4..u4:INTEGER] OF INTEGER := %IMMED 0;

337

Chapter 13. Librarian (LBR) Routines

 rns: [CLASS_S] PACKED ARRAY [l5..u5:INTEGER] OF CHAR :=
 %IMMED 0;
 VAR rnslen: INTEGER := %IMMED 0):
 INTEGER; EXTERN;
 (*Function that finds a key in
 index*)
FUNCTION LBR$LOOKUP_KEY (library_index: UNSIGNED;
 key_name:[CLASS_S] PACKED ARRAY [l..u:INTEGER] OF
 CHAR;
 VAR txtrfa: Rfa_Ptr):
 INTEGER; EXTERN;
 (*Function that inserts key in
 index*)
FUNCTION LBR$INSERT_KEY (library_index: UNSIGNED;
 key_name:[CLASS_S] PACKED ARRAY [l..u:INTEGER] OF
 CHAR;
 txtrfa: Rfa_Ptr):
 INTEGER; EXTERN;
 (*Function that writes data
 records*)
FUNCTION LBR$PUT_RECORD (library_index: UNSIGNED; (*to
 modules*)
 textline:[CLASS_S] PACKED ARRAY [l..u:INTEGER] OF
 CHAR;
 txtrfa: Rfa_Ptr):
 INTEGER; EXTERN;
 (*Function that marks end of a
 module*)
FUNCTION LBR$PUT_END (library_index: UNSIGNED):
 INTEGER; EXTERN;
 (*Function that closes library*)
FUNCTION LBR$CLOSE (library_index: UNSIGNED):
 INTEGER; EXTERN;
BEGIN (* *************** DECLARATIONS COMPLETE *************************
 *************** MAIN PROGRAM BEGINS HERE ********************** *)
 (*Prompt for library name and
 module to insert*)
 WRITE('Library Name: '); READLN(Lib_Name);
 WRITE('Module Name: '); READLN(Module_Name);
 (*Initialize lib for update
 access*)
 status := LBR$INI_CONTROL (lib_index_ptr,
 IADDRESS(LBR$C_UPDATE), (*Update
 access*)
 IADDRESS(LBR$C_TYP_TXT)); (*Text
 library*)
 IF NOT ODD(status) THEN (*Check error status*)
 WRITELN('Initialization Failed')
 ELSE (*Initialization was successful*)
 BEGIN
 status := LBR$OPEN (lib_index_ptr, (*Open the library*)
 Lib_Name);
 IF NOT ODD(status) THEN (*Check error status*)
 WRITELN('Open Not Successful')
 ELSE (*Open was successful*)
 BEGIN (*Is module already in the library?
*)
 status := LBR$LOOKUP_KEY (lib_index_ptr,

338

Chapter 13. Librarian (LBR) Routines

 Module_Name,
 txtrfa_ptr);
 IF ODD(status) THEN (*Check status. Should not be
 odd*)
 WRITELN('Lookup key was successful.',
 'The module is already in the library.')
 ELSE (*Did lookup key fail because key not found?*)
 IF status = IADDRESS(LBR$_KEYNOTFND) THEN
 Key_Not_Found := TRUE
 END
 END;
 (******If LBR$LOOKUP_KEY failed because the key was not found
 (as expected), we can open the file containing the new module,
 and write the module's records to the library file*******)
 IF Key_Not_Found THEN
 BEGIN
 OPEN(Textin,Module_Name,old);
 RESET(Textin);
 WHILE NOT EOF(Textin) DO (*Repeat until end of
 file*)
 BEGIN
 READ(Textin,Text_Data_Record); (*Read record from
 external file*)
 status := LBR$PUT_RECORD (lib_index_ptr,
 (*Write*)
 Text_Data_Record, (*record
 to*)
 txtrfa_ptr);
 (*library*)
 IF NOT ODD(status) THEN
 WRITELN('Put Record Routine Not Successful')
 END; (*of WHILE statement*)
 IF ODD(status) THEN (*True if all the records have been
 successfully written into the library*)
 BEGIN
 status := LBR$PUT_END (lib_index_ptr); (*Write end of
 module record*)
 IF NOT ODD(status) THEN
 WRITELN('Put End Routine Not Successful')
 ELSE (*Insert key for new module*)
 BEGIN
 status := LBR$INSERT_KEY (lib_index_ptr,
 Module_Name,
 txtrfa_ptr);
 IF NOT ODD(status) THEN
 WRITELN('Insert Key Not Successful')
 END
 END
 END;
 status := LBR$CLOSE(lib_index_ptr);
 IF NOT ODD(status) THEN
 WRITELN('Close Not Successful')
END. (*of program insertmod*)

Each item in the following list corresponds to a number highlighted in Example 13.2:

Call LBR$INI_CONTROL, specifying that the function to be performed is update and that the
library type is text.

339

Chapter 13. Librarian (LBR) Routines

Call LBR$LOOKUP_KEY to see whether the module to be inserted is already in the library.
Call LBR$LOOKUP_KEY to see whether the lookup key failed because the key was not found.
(In this case, the status value is LBR$_KEYNOTFND.)
Read a record from the input file, then use LBR$PUT_RECORD to write the record to the li-
brary. When all the records have been written to the library, use LBR$PUT_END to write an
end-of-module record.
Use LBR$INSERT_KEY to insert a key for the module into the current index.

13.2.3. Extracting a Module
Example 13.3 illustrates the extraction of a library module from a VSI Pascal program. The program
is summarized in the following steps:

1. Call LBR$LOOKUP_KEY to locate the module. Specify the name of the module as the second ar-
gument. LBR$LOOKUP_KEY returns the RFA of the module as the third argument; do not alter
this value.

2. Call LBR$GET_RECORD once for each record in the module. Specify a character string to re-
ceive the extracted record as the second argument. LBR$GET_RECORD returns a status value of
RMS$_EOF after the last record in the module is extracted.

Example 13.3. Extracting a Module from a Library Using VSI Pascal

PROGRAM extractmod(INPUT,OUTPUT,Textout);
 (*This program extracts a module from a library*)
TYPE
 Rfa_Ptr = ARRAY [0..1] OF INTEGER; (*Data type of RFA of module*)
VAR
 LBR$C_UPDATE, (*Constants for LBR$INI_CONTROL*)
 LBR$C_TYP_TXT, (*Defined in $LBRDEF macro*)
 RMS$_EOF : [EXTERNAL] INTEGER; (*RMS return status; defined in
 $RMSDEF macro*)
 Lib_Name : VARYING [128] OF CHAR; (*Name of library receiving
 module*)
 Module_Name : VARYING [31] OF CHAR; (*Name of module to insert*)
 Extracted_File : VARYING [31] OF CHAR; (*Name of file to hold
 extracted module*)
 Outtext : PACKED ARRAY [1..255] OF CHAR; (*Extracted mod put
 here,*)
 Outtext2 : VARYING [255] OF CHAR; (* then moved to
 here*)
 i : INTEGER; (*For loop control*)
 Textout : FILE OF VARYING [255] OF CHAR; (*File containing
 extracted
 module*)
 nullstring : CHAR; (*nullstring, pos, and len used
 to*)
 pos, len : INTEGER; (*find string in extracted file
 recd*)
 lib_index_ptr : UNSIGNED; (*Value returned in library init*)
 status : UNSIGNED; (*Return status for function
 calls*)
 txtrfa_ptr : Rfa_Ptr; (*For key lookup and insertion*)
 (*-*-*-*-Function Definitions-*-*-*-*)
 (*Function that returns library

340

Chapter 13. Librarian (LBR) Routines

 control index used by Librarian*)
FUNCTION LBR$INI_CONTROL (VAR library_index: UNSIGNED;
 func: UNSIGNED;
 typ: UNSIGNED;
 VAR namblk: ARRAY[l..u:INTEGER]
 OF INTEGER := %IMMED 0):
 INTEGER; EXTERN;
 (*Function that creates/opens library*)
FUNCTION LBR$OPEN (library_index: UNSIGNED;
 fns: [class_s]PACKED ARRAY[l..u:INTEGER] OF CHAR;
 create_options: ARRAY [l2..u2:INTEGER] OF INTEGER :=
 %IMMED 0;
 dns: [CLASS_S] PACKED ARRAY [l3..u3:INTEGER] OF CHAR
 := %IMMED 0;
 rlfna: ARRAY [l4..u4:INTEGER] OF INTEGER := %IMMED 0;
 rns: [CLASS_S] PACKED ARRAY [l5..u5:INTEGER] OF CHAR :=
 %IMMED 0;
 VAR rnslen: INTEGER := %IMMED 0):
 INTEGER; EXTERN;
 (*Function that finds a key in an index*)
FUNCTION LBR$LOOKUP_KEY (library_index: UNSIGNED;
 key_name:[CLASS_S] PACKED ARRAY [l..u:INTEGER] OF
 CHAR;
 VAR txtrfa: Rfa_Ptr):
 INTEGER; EXTERN;
(*Function that retrieves records from modules*)
FUNCTION LBR$GET_RECORD (library_index: UNSIGNED;
 var textline:[CLASS_S] PACKED ARRAY [l..u:INTEGER]
 OF
 CHAR):
 INTEGER;
EXTERN;
 (*Function that closes library*)
FUNCTION LBR$CLOSE (library_index: UNSIGNED):
 INTEGER; EXTERN;
BEGIN (* *************** DECLARATIONS COMPLETE *************************
 *************** MAIN PROGRAM BEGINS HERE ********************** *)
 (* Get Library Name, Module To Extract, And File To Hold Extracted Module
 *)
 WRITE('Library Name: '); READLN(Lib_Name);
 WRITE('Module Name: '); READLN(Module_Name);
 WRITE('Extract Into File: '); READLN(Extracted_File);

 status := LBR$INI_CONTROL (lib_index_ptr,
 IADDRESS(LBR$C_UPDATE),
 IADDRESS(LBR$C_TYP_TXT));
 IF NOT ODD(status) THEN
 WRITELN('Initialization Failed')
 ELSE
 BEGIN
 status := LBR$OPEN (lib_index_ptr,
 Lib_Name);
 IF NOT ODD(status) THEN
 WRITELN('Open Not Successful')
 ELSE
 BEGIN
 status := LBR$LOOKUP_KEY (lib_index_ptr,
 Module_Name,

341

Chapter 13. Librarian (LBR) Routines

 txtrfa_ptr);
 IF NOT ODD(status) THEN
 WRITELN('Lookup Key Not Successful')
 ELSE
 BEGIN
 OPEN(Textout,Extracted_File,new);
 REWRITE(Textout)
 END
 END
 END;
 WHILE ODD(status) DO
 BEGIN
 nullstring := ''(0);
 FOR i := 1 TO 255 DO
 Outtext[i] := nullstring;
 status := LBR$GET_RECORD (lib_index_ptr,
 Outtext);
 IF NOT ODD(status) THEN
 BEGIN
 IF status = IADDRESS(RMS$_EOF) THEN
 WRITELN(' RMS end of file')
 END
 ELSE
 BEGIN
 pos := INDEX(Outtext, nullstring); (*find first null
 in Outtext*)
 len := pos - 1; (*length of Outtext to first
 null*)
 IF len >= 1 THEN
 BEGIN
 Outtext2 := SUBSTR(Outtext,1,LEN);
 WRITE(Textout,Outtext2)
 END
 END
 END; (*of WHILE*)
 status := LBR$CLOSE(lib_index_ptr);
 IF NOT ODD(status) THEN
 WRITELN('Close Not Successful')
END. (*of program extractmod*)

Each item in the following list corresponds to a number highlighted in Example 13.3:

Call LBR$INI_CONTROL, specifying that the function to be performed is update and that the
library type is text.
Call LBR$LOOKUP_KEY to find the key that points to the module you want to extract.
Open an output file to receive the extracted module.
Initialize the variable that is to receive the extracted records to null characters.
Call LBR$GET_RECORD to see if there are more records in the file (module). A failure indi-
cates that the end of the file has been reached.
Write the extracted record data to the output file. This record should consist only of the data up
to the first null character.

342

Chapter 13. Librarian (LBR) Routines

13.2.4. Deleting a Module
Example 13.4 illustrates the deletion of library module from a VSI Pascal program. The program is
summarized in the following steps:

1. Call LBR$LOOKUP_KEY, and specify the name of the module as the second argument. LBR
$LOOKUP_KEY returns the RFA of the module as the third argument; do not alter this value.

2. Call LBR$DELETE_KEY to delete the module key. Specify the name of the module as the second
argument.

3. Call LBR$DELETE_DATA to delete the module itself. Specify the RFA of the module obtained
in Step 1 as the second argument.

Example 13.4. Deleting a Module from a Library Using VSI Pascal

PROGRAM deletemod(INPUT,OUTPUT);
 (*This program deletes a module from a library*)
TYPE
 Rfa_Ptr = ARRAY [0..1] OF INTEGER; (*Data type of RFA of module*)
VAR
 LBR$C_UPDATE, (*Constants for LBR$INI_CONTROL*)
 LBR$C_TYP_TXT, (*Defined in $LBRDEF macro*)
 LBR$_KEYNOTFND : [EXTERNAL] INTEGER;(*Error code for LBR$LOOKUP_KEY*)
 Lib_Name : VARYING [128] OF CHAR; (*Name of library receiving
 module*)
 Module_Name : VARYING [31] OF CHAR; (*Name of module to insert*)
 Text_Data_Record : VARYING [255] OF CHAR; (*Record in new module*)
 Textin : FILE OF VARYING [255] OF CHAR; (*File containing new module*)
 lib_index_ptr : UNSIGNED; (*Value returned in library init*)
 status : UNSIGNED; (*Return status for function
 calls*)
 txtrfa_ptr : Rfa_Ptr; (*For key lookup and insertion*)
 Key_Not_Found : BOOLEAN := FALSE; (*True if new mod not already in
 lib*)
 (*-*-*-*-Function Definitions-*-*-*-*)
 (*Function that returns library
 control index used by Librarian*)
FUNCTION LBR$INI_CONTROL (VAR library_index: UNSIGNED;
 func: UNSIGNED;
 typ: UNSIGNED;
 VAR namblk: ARRAY[l..u:INTEGER]
 OF INTEGER := %IMMED 0):
 INTEGER; EXTERN;
 (*Function that creates/opens library*)
FUNCTION LBR$OPEN (library_index: UNSIGNED;
 fns: [class_s]PACKED ARRAY[l..u:INTEGER] OF CHAR;
 create_options: ARRAY [l2..u2:INTEGER] OF INTEGER :=
 %IMMED 0;
 dns: [CLASS_S] PACKED ARRAY [l3..u3:INTEGER] OF CHAR
 := %IMMED 0;
 rlfna: ARRAY [l4..u4:INTEGER] OF INTEGER := %IMMED 0;
 rns: [CLASS_S] PACKED ARRAY [l5..u5:INTEGER] OF CHAR :=
 %IMMED 0;
 VAR rnslen: INTEGER := %IMMED 0):
 INTEGER; EXTERN;
 (*Function that finds a key in index*)

343

Chapter 13. Librarian (LBR) Routines

FUNCTION LBR$LOOKUP_KEY (library_index: UNSIGNED;
 key_name:[CLASS_S] PACKED ARRAY [l..u:INTEGER] OF
 CHAR;
 VAR txtrfa: Rfa_Ptr):
 INTEGER; EXTERN;
 (*Function that removes a key from an
 index*)
FUNCTION LBR$DELETE_KEY (library_index: UNSIGNED;
 key_name:[CLASS_S] PACKED ARRAY [l..u:INTEGER] OF
 CHAR):
 INTEGER;
EXTERN;
(*Function that deletes all the records
 associated with a module*)
FUNCTION LBR$DELETE_DATA (library_index: UNSIGNED;
 txtrfa: Rfa_Ptr):
 INTEGER;
EXTERN;
 (*Function that closes library*)
FUNCTION LBR$CLOSE (library_index: UNSIGNED):
 INTEGER; EXTERN;

BEGIN (* *************** DECLARATIONS COMPLETE *************************
 *************** MAIN PROGRAM BEGINS HERE ********************** *)
 (* Get Library Name and Module to Delete
 *)
 WRITE('Library Name: '); READLN(Lib_Name);
 WRITE('Module Name: '); READLN(Module_Name);
 (*Initialize lib for update
 access*)
 status := LBR$INI_CONTROL (lib_index_ptr,
 IADDRESS(LBR$C_UPDATE), (*Update
 access*)
 IADDRESS(LBR$C_TYP_TXT)); (*Text
 library*)
 IF NOT ODD(status) THEN (*Check error status*)
 WRITELN('Initialization Failed')
 ELSE (*Initialization was successful*)
 BEGIN
 status := LBR$OPEN (lib_index_ptr, (*Open the library*)
 Lib_Name);
 IF NOT ODD(status) THEN (*Check error status*)
 WRITELN('Open Not Successful')
 ELSE (*Open was successful*)
 BEGIN (*Is module in the library?*)
 status := LBR$LOOKUP_KEY (lib_index_ptr,
 Module_Name,
 txtrfa_ptr);
 IF NOT ODD(status) THEN (*Check status*)
 WRITELN('Lookup Key Not Successful')
 END
 END;
 IF ODD(status) THEN (*Key was found; delete it*)
 BEGIN
 status := LBR$DELETE_KEY (lib_index_ptr,
 Module_Name);
 IF NOT ODD(status) THEN

344

Chapter 13. Librarian (LBR) Routines

 WRITELN('Delete Key Routine Not Successful')
 ELSE (*Delete key was successful*)
 BEGIN (*Now delete module's data
 records*)
 status := LBR$DELETE_DATA (lib_index_ptr,
 txtrfa_ptr);
 IF NOT ODD(status) THEN
 WRITELN('Delete Data Routine Not Successful')
 END
 END;
 status := LBR$CLOSE(lib_index_ptr); (*Close the library*)
 IF NOT ODD(status) THEN
 WRITELN('Close Not Successful');
END. (*of program deletemod*)

Each item in the following list corresponds to a number highlighted in Example 13.4:

Call LBR$INI_CONTROL, specifying that the function to be performed is update and the li-
brary type is text.
Call LBR$LOOKUP_KEY to find the key associated with the module you want to delete.
Call LBR$DELETE_KEY to delete the key associated with the module you want to delete.
If more than one key points to the module, you need to call LBR$LOOKUP_KEY and LBR
$DELETE_KEY for each key.
Call LBR$DELETE_DATA to delete the module (the module header and data) from the library.

13.2.5. Using Multiple Keys and Multiple Indexes
You can point to the same module with more than one key. The keys can be in the primary index (in-
dex 1) or alternate indexes (indexes 2 through 10). The best method is to reserve the primary index for
module names. In system-defined object libraries, index 2 contains the global symbols defined by the
various modules.

Example 13.5 illustrates the way that keys can be associated with modules.

Example 13.5. Associating Keys with Modules

SUBROUTINE ALIAS (INDEX)
! Catalogs modules by alias

INTEGER STATUS, ! Return status
 INDEX, ! Library index
 TXTRFA (2) ! RFA of module
CHARACTER*31 MODNAME, ! Name of module
 ALIASNAME ! Name of alias
INTEGER MODNAME_LEN ! Length of module name
INTEGER ALIASNAME_LEN ! Length of alias name
! VMS library procedures
INTEGER LBR$LOOKUP_KEY,
 LBR$SET_INDEX,
 LBR$INSERT_KEY,
 LIB$GET_INPUT,
 LIB$GET_VALUE
 LIB$LOCC
! Return codes
EXTERNAL LBR$_KEYNOTFND, ! Key not found
 LBR$_DUPKEY, ! Duplicate key

345

Chapter 13. Librarian (LBR) Routines

 RMS$_EOF, ! End of text in module
 DOLIB_NOMOD ! No such module
! Get module name from /ALIAS on command line
CALL CLI$GET_VALUE ('ALIAS', MODNAME)
! Calculate length of module name
MODNAME_LEN = LIB$LOCC (' ', MODNAME) - 1
! Look up module name in library index
STATUS = LBR$LOOKUP_KEY (INDEX,
 MODNAME (1:MODNAME_LEN),
 TXTRFA)
END IF
! Insert aliases if module exists
IF (STATUS) THEN
 ! Set to index 2
 STATUS = LBR$SET_INDEX (INDEX, 2)
 IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))
 ! Get alias name from /ALIAS on command line
 STATUS = CLI$GET_VALUE ('ALIAS', ALIASNAME)
 ! Insert aliases in index 2 until bad return status
 ! which indicates end of qualifier values
 DO WHILE (STATUS)
 ! Calculate length of alias name
 ALIASNAME_LEN = LIB$LOCC (' ', ALIASNAME) - 1
 ! Put alias name in index
 STATUS = LBR$INSERT_KEY (INDEX,
 ALIASNAME (1:ALIASNAME_LEN),
 TXTRFA)
 IF ((.NOT. STATUS) .AND.
 (STATUS .NE. %LOC (LBR$_DUPKEY)) THEN
 CALL LIB$SIGNAL (%VAL (STATUS))
 END IF
 ! Get another alias
 STATUS = CLI$GET_VALUE ('ALIAS', ALIASNAME)
 END DO

 ! Issue warning if module does not exist
ELSE IF (STATUS .EQ. %LOC (LBR$_KEYNOTFND)) THEN
 CALL LIB$SIGNAL (DOLIB_NOMOD,
 %VAL (1),
 MODNAME (1:MODNAME_LEN))
ELSE
 CALL LIB$SIGNAL (%VAL (STATUS))
END IF

! Exit
END

You can look up a module using any of the keys associated with it. The following code fragment
checks index 2 for a key if the lookup in the primary index fails:

STATUS = LBR$SET_INDEX (INDEX, 1)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))
STATUS = LBR$LOOKUP_KEY (INDEX,
 MODNAME (1:MODNAME_LEN),
 TXTRFA)
IF (STATUS .EQ. %LOC (LBR$_KEYNOTFND)) THEN
 STATUS = LBR$SET_INDEX (INDEX, 2)
 IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))

346

Chapter 13. Librarian (LBR) Routines

 STATUS = LBR$LOOKUP_KEY (INDEX,
 MODNAME (1:MODNAME_LEN),
 TXTRFA)
 IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))
END IF

There are two ways to identify the keys associated with a module:

• Use the LBR$LOOKUP_KEY routine to look up the module using one of the keys.

• Use LBR$SEARCH to search applicable indexes for the keys. LBR$SEARCH calls a user-writ-
ten routine each time it retrieves a key. The routine must be an integer function defined as external
that returns a success (odd number) or failure (even number) status. LBR$SEARCH stops process-
ing on a return status of failure.

The subroutine in Example 13.6 lists the names of keys in index 2 (the aliases) that point to a module
identified on the command line by the module's name in the primary index.

Example 13.6. Listing Keys Associated with a Module

 .
 .
 .
SUBROUTINE SHOWAL (INDEX)
! Lists aliases for a module

INTEGER STATUS, ! Return status
 INDEX, ! Library index
 TXTRFA (2) ! RFA for module text
CHARACTER*31 MODNAME ! Name of module
INTEGER MODNAME_LEN ! Length of module name
! VMS library procedures
INTEGER LBR$LOOKUP_KEY,
 LBR$SEARCH,
 LIB$LOCC
! Return codes
EXTERNAL LBR$_KEYNOTFND, ! Key not found
 DOLIB_NOMOD ! No such module
! Search routine
EXTERNAL SEARCH
INTEGER SEARCH
! Get module name and calculate length
CALL CLI$GET_VALUE ('SHOWALIAS', MODNAME)
MODNAME_LEN = LIB$LOCC (' ', MODNAME) - 1
! Look up module in index 1
 STATUS = LBR$LOOKUP_KEY (INDEX,
 MODNAME (1:MODNAME_LEN),
 TXTRFA)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))
! Search for alias names in index 2
 STATUS = LBR$SEARCH (INDEX,
 2,
 TXTRFA,
 SEARCH)

END
INTEGER FUNCTION SEARCH (ALIASNAME, RFA)
! Function called for each alias name pointing to MODNAME

347

Chapter 13. Librarian (LBR) Routines

! Displays the alias name
INTEGER STATUS_OK, ! Good return status
 RFA (2) ! RFA of module
PARAMETER (STATUS_OK = 1) ! Odd number
CHARACTER*(*) ALIASNAME ! Name of module
! Display module name
TYPE *, MODNAME

! Exit
SEARCH = STATUS_OK
END

13.2.6. Accessing Module Headers
You can store user information in the header of each module up to the total size of the header speci-
fied at library creation time in the CRE$L_UHDMAX option. The total size of each header in bytes is
the value of MHD$B_USRDAT plus the value assigned to the CRE$L_UHDMAX option. The value
of MHD$B_USRDAT is defined by the macro $MHDDEF; the default value is 16 bytes.

To put user data into a module header, first locate the module with LBR$LOOKUP_KEY; then
move the data to the module header by invoking LBR$SET_MODULE, specifying the first argu-
ment (index value returned by LBR$INI_CONTROL), the second argument (RFA returned by LBR
$LOOKUP_KEY), and the fifth argument (character string containing the user data).

To read user data from a module header, first locate the module with LBR$LOOKUP_KEY; then, re-
trieve the entire module header by invoking LBR$SET_MODULE, specifying the first, second, third
(character string to receive the contents of the module header), and fourth (length of the module head-
er) arguments. The user data starts at the byte offset defined by MHD$B_USRDAT. Convert this val-
ue to a character string subscript by adding 1.

Example 13.7 displays the user data portion of module headers on SYS$OUTPUT and applies updates
from SYS$INPUT.

Example 13.7. Displaying the Module Header

 .
 .
 .
SUBROUTINE MODHEAD (INDEX)
! Modifies module headers

INTEGER STATUS, ! Return status
 INDEX, ! Library index
 TXTRFA (2) ! RFA of module
CHARACTER*31 MODNAME ! Name of module
INTEGER MODNAME_LEN ! Length of module name
CHARACTER*80 HEADER ! Module header
INTEGER HEADER_LEN ! Length of module header
INTEGER USER_START ! Start of user data in header
CHARACTER*64 USERDATA ! User data part of header
INTEGER*2 USERDATA_LEN ! Length of user data
! VMS library procedures
INTEGER LBR$LOOKUP_KEY,
 LBR$SET_MODULE,
 LIB$GET_INPUT,
 LIB$PUT_OUTPUT,
 CLI$GET_VALUE,

348

Chapter 13. Librarian (LBR) Routines

 LIB$LOCC
! Offset to user data --- defined in $MHDDEF
EXTERNAL MHD$B_USRDAT
! Return codes
EXTERNAL LBR$_KEYNOTFND, ! Key not found
 DOLIB_NOMOD ! No such module
! Calculate start of user data in header
USER_START = %LOC (MHD$B_USRDAT) + 1
! Get module name from /MODHEAD on command line
STATUS = CLI$GET_VALUE ('MODHEAD', MODNAME)
! Get module headers until bad return status
! which indicates end of qualifier values
DO WHILE (STATUS)

 ! Calculate length of module name
 MODNAME_LEN = LIB$LOCC (' ', MODNAME) - 1
 ! Look up module name in library index
 STATUS = LBR$LOOKUP_KEY (INDEX,
 MODNAME (1:MODNAME_LEN),
 TXTRFA)

 ! Get header if module exists
 IF (STATUS) THEN
 STATUS = LBR$SET_MODULE (INDEX,
 TXTRFA,
 HEADER,
 HEADER_LEN)
 IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))
 ! Display header and solicit replacement
 STATUS = LIB$PUT_OUTPUT
 ('User data for module '//MODNAME (1:MODNAME_LEN)//':')
 IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))
 STATUS = LIB$PUT_OUTPUT
 (HEADER (USER_START:HEADER_LEN))
 IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))
 STATUS = LIB$PUT_OUTPUT
 ('Enter replacement text below or just hit return:')
 IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))
 STATUS = LIB$GET_INPUT (USERDATA,, USERDATA_LEN)
 IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))
 ! Replace user data
 IF (USERDATA_LEN .GT. 0) THEN
 STATUS = LBR$SET_MODULE (INDEX,
 TXTRFA,,,
 USERDATA (1:USERDATA_LEN))
 END IF

 ! Issue warning if module does not exist
 ELSE IF (STATUS .EQ. %LOC (LBR$_KEYNOTFND)) THEN
 CALL LIB$SIGNAL (DOLIB_NOMOD,
 %VAL (1),
 MODNAME (1:MODNAME_LEN))
 ELSE
 CALL LIB$SIGNAL (%VAL (STATUS))
 END IF

 ! Get another module name
 STATUS = CLI$GET_VALUE ('MODHEAD', MODNAME)

349

Chapter 13. Librarian (LBR) Routines

END DO

! Exit
END

13.2.7. Reading Library Headers
Call LBR$GET_HEADER to obtain general information concerning the library. Pass the value re-
turned by LBR$INI_CONTROL as the first argument. LBR$GET_HEADER returns the information
to the second argument, which must be an array of 128 longwords. The LHI symbols identify the sig-
nificant longwords of the array by their byte offsets into the array. Convert these values to subscripts
by dividing by 4 and adding 1.

Example 13.8 reads the library header and displays some information from it.

Example 13.8. Reading Library Headers

 .
 .
 .
SUBROUTINE TYPEINFO (INDEX)
! Types the type, major ID, and minor ID
! of a library to SYS$OUTPUT

INTEGER STATUS ! Return status
 INDEX, ! Library index
 HEADER (128), ! Structure for header information
 TYPE, ! Subscripts for header structure
 MAJOR_ID,
 MINOR_ID
CHARACTER*8 MAJOR_ID_TEXT, ! Display info in character format
 MINOR_ID_TEXT
! VMS library procedures
INTEGER LBR$GET_HEADER,
 LIB$PUT_OUTPUT
! Offsets for header --- defined in $LHIDEF
EXTERNAL LHI$L_TYPE,
 LHI$L_MAJORID,
 LHI$L_MINORID
! Library type values --- defined in $LBRDEF
EXTERNAL LBR$C_TYP_OBJ,
 LBR$C_TYP_MLB,
 LBR$C_TYP_HLP,
 LBR$C_TYP_TXT
! Get header information
STATUS = LBR$GET_HEADER (INDEX, HEADER)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))
! Calculate subscripts for header structure
TYPE = %LOC (LHI$L_TYPE) / 4 + 1
MAJOR_ID = %LOC (LHI$L_MAJORID) / 4 + 1
MINOR_ID = %LOC (LHI$L_MINORID) / 4 + 1
! Display library type
IF (HEADER (TYPE) .EQ. %LOC (LBR$C_TYP_OBJ)) THEN
 STATUS = LIB$PUT_OUTPUT ('Library type: object')
ELSE IF (HEADER (TYPE) .EQ. %LOC (LBR$C_TYP_MLB)) THEN
 STATUS = LIB$PUT_OUTPUT ('Library type: macro')
ELSE IF (HEADER (TYPE) .EQ. %LOC (LBR$C_TYP_HLP)) THEN

350

Chapter 13. Librarian (LBR) Routines

 STATUS = LIB$PUT_OUTPUT ('Library type: help')
ELSE IF (HEADER (TYPE) .EQ. %LOC (LBR$C_TYP_TXT)) THEN
 STATUS = LIB$PUT_OUTPUT ('Library type: text')
ELSE
 STATUS = LIB$PUT_OUTPUT ('Library type: unknown')
END IF
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))
! Convert and display major ID
WRITE (UNIT=MAJOR_ID_TEXT,
 FMT='(I)') HEADER (MAJOR_ID)
STATUS = LIB$PUT_OUTPUT ('Major ID: '//MAJOR_ID_TEXT)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))
! Convert and display minor ID
WRITE (UNIT=MINOR_ID_TEXT,
 FMT='(I)') HEADER (MINOR_ID)
STATUS = LIB$PUT_OUTPUT ('Minor ID: '//MINOR_ID_TEXT)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))

! Exit
END

13.2.8. Displaying Help Text
You can display text from a help library by calling the LBR$OUTPUT_HELP routine and specifying
the output routine, the keywords, and the name of the library. You must also specify the input routine
if the prompting mode flag is set or if the flags argument is omitted.

Note

If you specify subprograms in an argument list, they must be declared as external.

You can use the LIB$PUT_OUTPUT and LIB$GET_INPUT routines to specify the output routine
and the input routine. (If you use your own routines, make sure the argument lists are the same as for
LIB$PUT_OUTPUT and LIB$GET_INPUT.) Do not call LBR$INI_CONTROL and LBR$OPEN be-
fore calling LBR$OUTPUT_HELP.

Example 13.9 solicits keywords from SYS$INPUT and displays the text associated with those key-
words on SYS$OUTPUT, thus inhibiting the prompting facility.

Example 13.9. Displaying Text from a Help Library

PROGRAM GET_HELP

! Prints help text from a help library
CHARACTER*31 LIBSPEC ! Library name
CHARACTER*15 KEYWORD ! Keyword in help library
INTEGER*2 LIBSPEC_LEN, ! Length of name
 KEYWORD_LEN ! Length of keyword
INTEGER FLAGS, ! Help flags
 STATUS ! Return status
! VMS library procedures
INTEGER LBR$OUTPUT_HELP,
 LIB$GET_INPUT,
 LIB$PUT_OUTPUT
EXTERNAL LIB$GET_INPUT,
 LIB$PUT_OUTPUT
! Error codes

351

Chapter 13. Librarian (LBR) Routines

EXTERNAL RMS$_EOF, ! End-of-file
 LIB$_INPSTRTRU ! Input string truncated
! Flag values --- defined in $HLPDEF
EXTERNAL HLP$M_PROMPT,
 HLP$M_PROCESS,
 HLP$M_GROUP,
 HLP$M_SYSTEM,
 HLP$M_LIBLIST,
 HLP$M_HELP
! Get library name
STATUS = LIB$GET_INPUT (LIBSPEC,
 'Library: ',
 LIBSPEC_LEN)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))
IF (LIBSPEC_LEN .EQ. 0) THEN
 LIBSPEC = 'HELPLIB'
 LIBSPEC_LEN = 7
END IF
! Set flags for no prompting
FLAGS = %LOC (HLP$_PROCESS) +
 %LOC (HLP$_GROUP) +
 %LOC (HLP$_SYSTEM)

! Get first keyword
STATUS = LIB$GET_INPUT (KEYWORD,
 'Keyword or Ctrl/Z: ',
 KEYWORD_LEN)
IF ((.NOT. STATUS) .AND.
 (STATUS .NE. %LOC (LIB$_INPSTRTRU)) .AND.
 (STATUS .NE. %LOC (RMS$_EOF))) THEN
 CALL LIB$SIGNAL (%VAL (STATUS))
END IF
! Display text until end-of-file
DO WHILE (STATUS .NE. %LOC (RMS$_EOF))
 STATUS = LBR$OUTPUT_HELP (LIB$PUT_OUTPUT,,
 KEYWORD (1:KEYWORD_LEN),
 LIBSPEC (1:LIBSPEC_LEN),
 FLAGS,
 LIB$GET_INPUT)
 IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))
 ! Get another keyword
 STATUS = LIB$GET_INPUT (KEYWORD,
 'Keyword or Ctrl/Z: ',
 KEYWORD_LEN)
 IF ((.NOT. STATUS) .AND.
 (STATUS .NE. %LOC (LIB$_INPSTRTRU)) .AND.
 (STATUS .NE. %LOC (RMS$_EOF))) THEN
 CALL LIB$SIGNAL (%VAL (STATUS))
 END IF
END DO

! Exit
END

352

Chapter 13. Librarian (LBR) Routines

13.2.9. Listing and Processing Index Entries
You can process index entries an entry at a time by invoking LBR$GET_INDEX. The fourth argu-
ment specifies a match name for the entry or entries in the index to be processed: you can include the
asterisk (*) and percent (%) characters in the match name for generic processing. For example, MOD*
means all entries whose names begin with MOD; and MOD% means all entries whose names are four
characters and begin with MOD.

The third argument names a user-written routine that is executed once for each index entry specified
by the fourth argument. The routine must be a function declared as external that returns a success (odd
number) or failure (even number) status. LBR$GET_INDEX processing stops on a return status of
failure. Declare the first argument passed to the function as a passed-length character argument; this
argument contains the name of the index entry. Declare the second argument as an integer array of
two elements.

Example 13.10 obtains a match name from the command line and displays the names of the matching
entries from index 1 (the index containing the names of the modules).

Example 13.10. Displaying Index Entries

SUBROUTINE LIST (INDEX)
! Lists modules in the library

INTEGER STATUS, ! Return status
 INDEX, ! Library index
CHARACTER*31 MATCHNAME ! Name of module to list
INTEGER MATCHNAME_LEN ! Length of match name
! VMS library procedures
INTEGER address LBR$GET_INDEX,
 LIB$LOCC
! Match routine
INTEGER MATCH
EXTERNAL MATCH
! Get module name and calculate length
CALL CLI$GET_VALUE ('LIST', MATCHNAME)
MATCHNAME_LEN = LIB$LOCC (' ', MATCHNAME) - 1
! Call routine to display module names
STATUS = LBR$GET_INDEX (INDEX,
 1, ! Primary index
 MATCH,
 MATCHNAME (1:MATCHNAME_LEN))
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))

! Exit
END
INTEGER FUNCTION MATCH (MODNAME, RFA)
! Function called for each module matched by MATCHNAME
! Displays the module name
INTEGER STATUS_OK, ! Good return status
 RFA (2) ! RFA of module name in index
PARAMETER (STATUS_OK = 1) ! Odd value
CHARACTER*(*) MODNAME ! Name of module
! Display the name
TYPE *, MODNAME ! Display module name

! Exit

353

Chapter 13. Librarian (LBR) Routines

MATCH = STATUS_OK
END

13.3. LBR Routines
This section describes the individual LBR routines.

LBR$CLOSE
Close a Library — The LBR$CLOSE routine closes an open library.

Format
LBR$CLOSE library_index

Returns
OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. Most utility routines return a condition value in R0. Condition values that
this routine can return are listed under Condition Values Returned.

Argument
library_index

OpenVMS usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by reference

Library control index returned by the LBR$INI_CONTROL routine. The library_index argu-
ment is the address of the longword that contains the index.

Description
When you are finished working with a library, you should call LBR$CLOSE to close it. Upon suc-
cessful completion, LBR$CLOSE closes the open library and deallocates all of the memory used for
processing it.

Condition Values Returned
LBR$_ILLCTL

Specified library control index not valid.

LBR$_LIBNOTOPN

Specified library not open.

354

Chapter 13. Librarian (LBR) Routines

LBR$DELETE_DATA
Delete Module Data from the Library — The LBR$DELETE_DATA routine deletes module data
from the library.

Format
LBR$DELETE_DATA library_index, txtrfa [,flags]

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. Most utility routines return a condition value. Condition values that this
routine can return are listed under Condition Values Returned.

Arguments

library_index

OpenVMS usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by reference

Library control index returned by the LBR$INI_CONTROL routine. The library_index argu-
ment is the address of the longword that contains the index.

txtrfa

OpenVMS usage: vector_longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by reference

Record's file address (RFA) of the module header for the module you want to delete. The txtrfa
argument is the address of the 2-longword array that contains the RFA. You can obtain the RFA of a
module header by calling LBR$LOOKUP_KEY or LBR$PUT_RECORD.

flags

OpenVMS usage: mask_longword
type: longword (unsigned)

355

Chapter 13. Librarian (LBR) Routines

access: read only
mechanism: by value

The contents of the flag are ignored. The purpose of this argument is to indicate to this routine that the
application knows about the new index structure for ELF object and ELF shareable image libraries.

Description

To delete a library module, first call LBR$DELETE_KEY to delete all keys that point to it. If no li-
brary index keys are pointing to the module header, LBR$DELETE_DATA deletes the module header
and associated data records; otherwise, this routine returns the error LBR$_STILLKEYS.

Note that other library routines can reuse data blocks that contain no data.

Condition Values Returned

LBR$_ILLCTL

Specified library control index not valid.

LBR$_INVRFA

Specified RFA not valid.

LBR$_LIBNOTOPN

Specified library not open.

LBR$_STILLKEYS

Keys in other indexes still point to the module header. Therefore, the specified module was not
deleted.

LBR$DELETE_KEY
Delete a Key — The LBR$DELETE_KEY routine removes a key from the current library index.

Format
LBR$DELETE_KEY library_index, key_name[, txtrfa] [, flags]

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. Most utility routines return a condition value. Condition values that this
routine can return are listed under Condition Values Returned.

356

Chapter 13. Librarian (LBR) Routines

Arguments

library_index

OpenVMS usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by reference

Library control index returned by the LBR$INI_CONTROL routine. The library_index argu-
ment is the address of a longword that contains the index.

key_name

OpenVMS usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by reference

The key to be deleted from the library index. For libraries with binary keys, the key_name argument
is the address of an unsigned longword containing the key number.

For libraries with ASCII keys, the key_name argument is the address of the string descriptor point-
ing to the key with the following argument characteristics:

Argument Characteristics Entry
OpenVMS usage char_string
type character string
access read only
mechanism by descriptor

txtrfa

OpenVMS usage: vector_longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by reference

The txtrfa argument is the address of the 2-longword array that contains the record file address
(RFA). If present and if the flags argument is not present, the routine scans for all types of the key
for the specified txtrfa and delete those entries.

flags

OpenVMS usage: mask_longword
type: longword (unsigned)

357

Chapter 13. Librarian (LBR) Routines

access: read only
mechanism: by value

If present, this argument indicates that a particular type of the key or all types of the key is to be delet-
ed. The flags bits are as follows:

Flag Bits Description
LBR$M_SYM_WEAK = 0x1 UNIX-style weak symbol attribute
LBR$M_SYM_GROUP = 0x2 Group symbol attribute
LBR$M_SYM_ALL = 0x80000000 All symbols

If the txtrfa argument is not present or if its value is zero, the type indicated by flags is deleted.
If txtrfa specifies a nonzero value, the entry of the type indicated, with the txtrfa supplied, is
removed. Note that only one type or all types can be specified.

Description

If LBR$DELETE_KEY finds the key specified by key_name in the current index, it deletes the key.
Note that if you want to delete a library module, you must first use LBR$DELETE_KEY to delete all
the keys that point to it, then use LBR$DELETE_DATA to delete the module's header and associat-
ed data. You cannot call LBR$DELETE_KEY from within the user-supplied routine specified in LBR
$SEARCH or LBR$GET_INDEX.

Condition Values Returned

LBR$_ILLCTL

Specified library control index not valid.

LBR$_KEYNOTFND

Specified key not found.

LBR$_LIBNOTOPN

Specified library not open.

LBR$_UPDIRTRAV

Specified index update not valid in a user-supplied routine specified in LBR$SEARCH or LBR
$GET_INDEX.

LBR$FIND
Look Up a Module by Its RFA — The LBR$FIND routine sets the current internal read context for
the library to the library module specified.

Format
LBR$FIND library_index ,txtrfa

358

Chapter 13. Librarian (LBR) Routines

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. Most utility routines return a condition value in R0. Condition values that
this routine can return are listed under Condition Values Returned.

Arguments
library_index

OpenVMS usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by reference

Library control index returned by the LBR$INI_CONTROL routine. The library_index argu-
ment is the address of the longword that contains the index.

txtrfa

OpenVMS usage: vector_longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by reference

Record's file address (RFA) of the module header for the module you want to access. The txtrfa ar-
gument is the address of a 2-longword array containing the RFA. You can obtain the RFA of a module
header by calling LBR$LOOKUP_KEY or LBR$PUT_RECORD.

Description
Use the LBR$FIND routine to access a module that you had accessed earlier in your program. For ex-
ample, if you look up several keys with LBR$LOOKUP_KEY, you can save the RFAs returned by
LBR$LOOKUP_KEY and later use LBR$FIND to reaccess the modules. Thus, you do not have to
look up the module header's key every time you want to access the module. If the specified RFA is
valid, LBR$FIND initializes internal tables so you can read the associated data.

Condition Values Returned
LBR$_ILLCTL

Specified library control index not valid.

LBR$_INVRFA

Specified RFA not valid.

359

Chapter 13. Librarian (LBR) Routines

LBR$_LIBNOTOPN

Specified library not open.

LBR$FLUSH
Recover Virtual Memory — The LBR$FLUSH routine writes modified blocks back to the library file
and frees the virtual memory the blocks had been using.

Format
LBR$FLUSH library_index ,block_type

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. Most utility routines return a condition value in R0. Condition values that
this routine can return are listed under Condition Values Returned.

Arguments

library_index

OpenVMS usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by reference

Library control index returned by the LBR$INI_CONTROL routine. The library_index argu-
ment is the address of the longword that contains the index.

block_type

OpenVMS usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by value

Extent of the flush operation. The block_type argument contains the longword value that indi-
cates how the flush operation proceeds. If you specify LBR$C_FLUSHDATA, the data blocks are
flushed. If you specify LBR$C_FLUSHALL, first the data blocks and then the current library index
are flushed.

Each programming language provides an appropriate mechanism for accessing these symbols.

360

Chapter 13. Librarian (LBR) Routines

Description
LBR$FLUSH cannot be called from other LBR routines that reference cache addresses or by routines
called by LBR routines.

Condition Values Returned
LBR$_NORMAL

Operation completed successfully.

LBR$_BADPARAM

Error. A value passed to the LBR$FLUSH routine was either out of range or an illegal value.

LBR$_WRITERR

Error. An error occurred during the writing of the cached update blocks to the library file.

LBR$GET_HEADER
Retrieve Library Header Information — The LBR$GET_HEADER routine returns information from
the library's header to the caller.

Format
LBR$GET_HEADER library_index ,retary

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. Most utility routines return a condition value in R0. Condition values that
this routine can return are listed under Condition Values Returned.

Arguments
library_index

OpenVMS usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by reference

Library control index returned by the LBR$INI_CONTROL routine. The library_index argu-
ment is the address of the longword that contains the index.

retary

361

Chapter 13. Librarian (LBR) Routines

OpenVMS usage: vector_longword_unsigned
type: longword (unsigned)
access: write only
mechanism: by reference

Array of 128 longwords that receives the library header. The retary argument is the address of the
array that contains the header information. The information returned in the array is listed in the fol-
lowing table. Each programming language provides an appropriate mechanism for accessing this in-
formation.

Offset in Long-
words

Symbolic Name Contents

0 LHI$L_TYPE Library type (see LBR$OPEN for pos-
sible values)

1 LHI$L_NINDEX Number of indexes
2 LHI$L_MAJORID Library format major identification
3 LHI$L_MINORID Library format minor identification
4 LHI$T_LBRVER ASCIC version of Librarian
12 LHI$L_CREDAT Creation date/time
14 LHI$L_UPDTIM Date/time of last update
16 LHI$L_UPDHIS Virtual block number (VBN) of start of

update history
17 LHI$L_FREEVBN First logically deleted block
18 LHI$L_FREEBLK Number of deleted blocks
19 LHI$B_NEXTRFA Record file address (RFA) of end of li-

brary
21 LHI$L_NEXTVBN Next VBN to allocate at end of file
22 LHI$L_FREIDXBLK Number of free preallocated index

blocks
23 LHI$L_FREEIDX List head for preallocated index blocks
24 LHI$L_HIPREAL VBN of highest preallocated block
25 LHI$L_IDXBLKS Number of index blocks in use
26 LHI$L_IDXCNT Number of index entries (total)
27 LHI$L_MODCNT Number of entries in index 1 (module

names)
28 LHI$L_MHDUSZ Number of bytes of additional informa-

tion reserved in module header
29 LHI$L_MAXLUHREC Maximum number of library update

history records maintained
30 LHI$L_NUMLUHREC Number of library update history

records in history
31 LHI$L_LIBSTATUS Library status (false if there was an er-

ror closing the library)
32-128 Reserved by VSI

362

Chapter 13. Librarian (LBR) Routines

Description
On successful completion, LBR$GET_HEADER places the library header information into the array
of 128 longwords.

Note that the offset is the byte offset of the value into the header structure. You can convert the off-
set to a longword subscript by dividing the offset by 4 and adding 1 (assuming that subscripts in your
programming language begin with 1).

Condition Values Returned
LBR$_ILLCTL

Specified library control index not valid.

LBR$_LIBNOTOPN

Specified library not open.

LBR$GET_HELP
Retrieve Help Text — The LBR$GET_HELP routine retrieves help text from a help library, display-
ing it on SYS$OUTPUT or calling your routine for each record returned.

Format
LBR$GET_HELP library_index [,line_width] [,routine] [,data] [,key_1]
 [,key_2…,key_10]

Returns
OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. Most utility routines return a condition value in R0. Condition values that
this routine can return are listed under Condition Values Returned.

Arguments
library_index

OpenVMS usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by reference

Library control index returned by the LBR$INI_CONTROL routine. The library_index argu-
ment is the address of the longword that contains the index.

line_width

363

Chapter 13. Librarian (LBR) Routines

OpenVMS usage: longword_signed
type: longword (signed)
access: read only
mechanism: by reference

Width of the help text line. The line_width argument is the address of a longword containing the
width of the listing line. If you do not supply a line width or if you specify 0, the line width defaults to
80 characters per line.

routine

OpenVMS usage: procedure
type: procedure value
access: read only
mechanism: by reference

Routine called for each line of text you want output. The routine argument is the address of the
procedure value for this user-written routine.

If you do not supply a routine argument, LBR$GET_HELP calls the Run-Time Library procedure
LIB$PUT_OUTPUT to send the help text lines to the current output device (SYS$OUTPUT). Howev-
er, if you want SYS$OUTPUT for your program to be a disk file rather than the terminal, you should
supply a routine to output the text.

If the user-written routine returns an error status with low bit clear, the LBR$GET_HELP routine
passes this status to the caller. If the user-written routine returns a success status with low bit set, the
LBR$GET_HELP routine returns 1 to the caller.

The routine you specify is called with an argument list of four longwords:

1. The first argument is the address of a string descriptor for the output line.

2. The second argument is the address of an unsigned longword containing flag bits that describe the
contents of the text being passed. The possible flags are as follows:

HLP$M_NOHLPTXT Specified help text cannot be found.
HLP$M_KEYNAMLIN Text contains key names of the printed text.
HLP$M_OTHERINFO Text is part of the information provided on addi-

tional help available.

Each programming language provides an appropriate mechanism for accessing these flags. Note
that, if no flag bit is set, help text is passed.

3. The third argument is the address stipulated in the data argument specified in the call to LBR
$GET_HELP (or the address of a 0 constant if the data argument is zero or was omitted).

4. The fourth argument is a longword containing the address of the current key level.

The routine you specify must return with success or failure status. A failure status (low bit = 0) termi-
nates the current call to LBR$GET_HELP.

data

364

Chapter 13. Librarian (LBR) Routines

OpenVMS usage: longword_unsigned
type: longword (unsigned)
access: write only
mechanism: by reference

Data passed to the routine specified in the routine argument. The data argument is the address of
data for the routine. The address is passed to the routine specified in the routine argument. If you
omit this argument or specify it as zero, then the argument passed in your routine will be the address
of a zero constant.

key_1,key_2, …,key_10

OpenVMS usage: longword_signed
type: longword (signed)
access: read only
mechanism: by descriptor

Level of the help text to be output. Each key_1,key_2, …,key_10 argument is the address of a
descriptor pointing to the key for that level.

If the key_1 descriptor is 0 or if it is not present, LBR$GET_HELP assumes that the key_1 name is
HELP, and it ignores all the other keys. For key_2 through key_10, a descriptor address of 0, or a
length of 0, or a string address of 0 terminates the list.

The key argument may contain any of the following special character strings:

String Meaning
* Return all level 1 help text in the library.
KEY… Return all help text associated with the specified key and its subkeys (valid for

level 1 keys only).
*... Return all help text in the library.

Description
LBR$GET_HELP returns all help text in the same format as the output returned by the DCL com-
mand HELP; that is, it indents two spaces for every key level of text displayed. (Because of this for-
matting, you may want to make your help messages shorter than 80 characters, so they fit on one line
on terminal screens with the width set to 80.) If you do not want the help text indented to the appropri-
ate help level, you must supply your own routine to change the format.

Note that most application programs use LBR$OUTPUT_HELP instead of LBR$GET_HELP.

Condition Values Returned
LBR$_ILLCTL

Specified library control index not valid.

LBR$_LIBNOTOPN

Specified library not open.

365

Chapter 13. Librarian (LBR) Routines

LBR$_NOTHLPLIB

Specified library not a help library.

LBR$GET_HISTORY
Retrieve a Library Update History Record — The LBR$GET_HISTORY routine returns each library
update history record to a user-specified action routine.

Format
LBR$GET_HISTORY library_index ,action_routine

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. Most utility routines return a condition value in R0. Condition values that
this routine can return are listed under Condition Values Returned.

Arguments
library_index

OpenVMS usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by reference

Library control index returned by the LBR$INI_CONTROL routine. The library_index argu-
ment is the address of the longword that contains the index.

action_routine

OpenVMS usage: procedure
type: procedure value
access: modify
mechanism: by reference

User-supplied routine for processing library update history records. The action_routine argu-
ment is the address of the procedure value of this user-supplied routine. The routine is invoked once
for each update history record in the library. One argument is passed to the routine, namely, the ad-
dress of a descriptor pointing to a history record.

Description
This routine retrieves the library update history records written by the routine LBR$PUT_HISTORY.

366

Chapter 13. Librarian (LBR) Routines

Condition Values Returned
LBR$_NORMAL

Normal exit from the routine.

LBR$_EMPTYHIST

History empty. This is an informational code, not an error code.

LBR$_INTRNLERR

Internal Librarian routine error occurred.

LBR$_NOHISTORY

No update history. This is an informational code, not an error code.

LBR$GET_INDEX
Call a Routine for Selected Index Keys — The LBR$GET_INDEX routine calls a user-supplied rou-
tine for selected keys in an index.

Format
LBR$GET_INDEX library_index ,index_number ,routine_name [,match_desc] [,
 flags]

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. Most utility routines return a condition value. Condition values that this
routine can return are listed under Condition Values Returned.

Arguments
library_index

OpenVMS usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by reference

Library control index returned by the LBR$INI_CONTROL routine. The library_index argu-
ment is the address of the longword that contains the index.

index_number

367

Chapter 13. Librarian (LBR) Routines

OpenVMS usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by reference

Number of the library index. The index_number argument is the address of a longword containing
the index number. This is the index number associated with the keys you want to use as input to the
user-supplied routine.

routine_name

OpenVMS usage: procedure
type: procedure value
access: read only
mechanism: by reference

User-supplied routine called for each of the specified index keys. The routine_name argument is
the address of the procedure value for this user-supplied routine.

LBR$GET_INDEX passes two arguments to the routine on OpenVMS Alpha; and passes three argu-
ments to the routine on OpenVMS Integrity servers:

• A key name.

• For libraries with ASCII keys, the key_name argument is the address of a string descriptor
pointing to the key. Note that the string and the string descriptor passed to the routine are valid
only for the duration of that call. The string must be copied privately if you need it again for
more processing.

• For libraries with binary keys, the key_name argument is the address of an unsigned long-
word containing the key number.

• The record file address (RFA) of the module's header for this key name. The RFA argument is the
address of a 2-longword array that contains the RFA.

• The key's type whose bits are as follows:

Flag Bits Description
LBR$M_SYM_WEAK = 1 UNIX-style weak symbol attributes
LBR$M_SYM_GROUP = 2 Group symbol attribute

This parameter is passed only on OpenVMS Integrity servers.

The user routine must return a value to indicate success or failure. If the user routine returns a false
value (low bit = 0), LBR$GET_INDEX stops searching the index and returns the status value of the
user-specified routine to the calling program.

The routine cannot contain calls to either LBR$DELETE_KEY or LBR$INSERT_KEY.

match_desc

OpenVMS usage: char_string

368

Chapter 13. Librarian (LBR) Routines

type: character string
access: read only
mechanism: by descriptor

Key matching identifier. The match_desc argument is the address of a string descriptor pointing to
a string used to identify which keys result in calls to the user-supplied routine. Wildcard characters are
allowed in this string. If you omit this argument, the routine is called for every key in the index. The
match_desc argument is valid only for libraries that have ASCII keys.

flags

OpenVMS usage: mask_longword
type: longword (unsigned)
access: read only
mechanism: by value

If present and non-zero, this argument specifies the type, or all types, of the key provided. The flag
bits are:

Flag Bits Description
LBR$M_SYM_WEAK = 0x1 UNIX-style weak symbol attribute
LBR$M_SYM_GROUP = 0x2 Group symbol attribute
LBR$M_SYM_ALL = 0x80000000 All symbols

The user routine will be provided the key's type through an additional third parameter.

Description

LBR$GET_INDEX searches through the specified index for keys that match the match_desc argu-
ment. Each time it finds a match, it calls the user routine specified by the routine_name argument.
If you do not specify the match_desc argument, LBR$GET_INDEX calls the user routine for every
key in the index.

For example, if you call LBR$GET_INDEX on an object library with match_desc equal to TR*
and index_number set to 1 (module name table), then LBR$GET_ INDEX calls routine_name
for each module whose name begins with TR.

Condition Values Returned

LBR$_ILLCTL

Specified library control index not valid.

LBR$_ILLIDXNUM

Specified index number not valid.

LBR$_LIBNOTOPN

Specified library not open.

369

Chapter 13. Librarian (LBR) Routines

LBR$_NULIDX

Specified library empty.

LBR$GET_RECORD
Read a Data Record — The LBR$GET_RECORD routine returns the next data record in the module
associated with a specified key.

Format
LBR$GET_RECORD library_index [,inbufdes] [,outbufdes]

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. Most utility routines return a condition value in R0. Condition values that
this routine can return are listed under Condition Values Returned.

Arguments
library_index

OpenVMS usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by reference

Library control index returned by the LBR$INI_CONTROL routine. The library_index ar-
gument is the address of the longword that contains the index. The library must be open and LBR
$LOOKUP_KEY or LBR$FIND must have been called to find the key associated with the module
whose records you want to read.

inbufdes

OpenVMS usage: char_string
type: character string
access: write only
mechanism: by descriptor

User buffer to receive the record. The inbufdes argument is the address of a string descriptor that
points to the buffer that receives the record from LBR$GET_RECORD. This argument is required
when the Librarian subroutine record access is set to move mode (which is the default). This argument
is not used if the record access mode is set to locate mode. The Description section contains more in-
formation about the locate and move modes.

370

Chapter 13. Librarian (LBR) Routines

outbufdes

OpenVMS usage: char_string
type: character string
access: write only
mechanism: by descriptor

String descriptor that receives the actual length and address of the data for the record returned. The
outbufdes argument is the address of the string descriptor for the returned record. The length and
address fields of the string descriptor are filled in by the LBR$GET_RECORD routine. This parame-
ter must be specified when Librarian subroutine record access is set to locate mode. This parameter is
optional if record access mode is set to move mode. The Description section contains more informa-
tion about the locate and move modes.

Description
Before calling LBR$GET_RECORD, you must first call LBR$LOOKUP_KEY or LBR$FIND to set
the internal library read context to the record's file address (RFA) of the module header of the module
whose records you want to read.

LBR$GET_RECORD uses two record access modes: locate mode and move mode. Move mode is the
default. The LBR$SET_LOCATE and LBR$SET_MOVE subroutines set these modes. The record
access modes are mutually exclusive; that is, when one is set, the other is turned off. If move mode
is set, LBR$GET_RECORD copies the record to the user-specified buffer described by inbufdes.
If you have optionally specified the output buffer string descriptor, outbufdes, the Librarian fills
it with the actual length and address of the data. If locate mode is set, LBR$GET_RECORD returns
the record by way of an internal subroutine buffer, pointing the outbufdes descriptor to the internal
buffer. The second parameter, inbufdes, is not used when locate mode is set.

Condition Values Returned
LBR$_ILLCTL

Specified library control index not valid.

LBR$_LIBNOTOPN

Specified library not open.

LBR$_LKPNOTDON

Requested key lookup not done.

RMS$_EOF

Error. An attempt has been made to read past the logical end of the data in the module.

LBR$INI_CONTROL
Initialize a Library Control Structure — The LBR$INI_CONTROL routine initializes a control struc-
ture, called a library control index, to identify the library for use by other LBR routines.

371

Chapter 13. Librarian (LBR) Routines

Format
LBR$INI_CONTROL library_index ,func [,type] [,namblk]

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. Most utility routines return a condition value in R0. Condition values that
this routine can return are listed under Condition Values Returned.

Arguments

library_index

OpenVMS usage: longword_unsigned
type: longword (unsigned)
access: write only
mechanism: by reference

Library control index returned by the LBR$INI_CONTROL routine. The library_index argu-
ment is the address of a longword that is to receive the index.

func

OpenVMS usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by reference

Library function to be performed. The func argument is the address of the longword that contains
the library function. Valid functions are LBRC_CREATE, LBRC_READ, and LBR$C_UPDATE.
Each programming language provides an appropriate mechanism for accessing these symbols.

type

OpenVMS usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by reference

Library type. The type argument is the address of the longword containing the library type. Valid li-
brary types include the following:

• LBR$C_TYP_EOBJ (Alpha object)

372

Chapter 13. Librarian (LBR) Routines

• LBR$C_TYP_ESHSTB (Alpha shareable image)

• LBR$C_TYP_MLB (macro)

• LBR$C_TYP_HLP (help)

• LBR$C_TYP_TXT (text)

• LBR$C_TYP_UNK (unknown)

• LBR$C_TYP_NCS (NCS library)

• For user-developed libraries, a type in the range of LBR$C_TYP_USRLW through LBR
$C_TYP_USRHI.

namblk

OpenVMS usage: nam
type: longword (unsigned)
access: read only
mechanism: by reference

OpenVMS RMS name block (NAM). The namblk argument is the address of a variable-length da-
ta structure containing an RMS NAM block. The LBR$OPEN routine fills in the information in the
NAM block so it can be used later to open the library. If the NAM block has this file identification in
it from previous use, the LBR$OPEN routine uses the open-by-NAM block option. This argument is
optional and should be used if the library will be opened many times during a single run of the pro-
gram. For a detailed description of RMS NAM blocks, see the OpenVMS Record Management Ser-
vices Reference Manual.

Description

Except for the LBR$OUTPUT_HELP routine, you must call LBR$INI_CONTROL before calling any
other LBR routine. After you initialize the library control index, you must open the library or create a
new one using the LBR$OPEN routine. You can then call other LBR routines that you need. After you
finish working with a library, close it with the LBR$CLOSE routine.

LBR$INI_CONTROL initializes a library by filling the longword referenced by the library_in-
dex argument with the control index of the library. Upon completion of the call, the index can be
used to refer to the current library in all future routine calls. Therefore, your program must not alter
this value.

You can have up to 16 libraries open simultaneously in your program.

Condition Values Returned

LBR$_NORMAL

Library control index initialized successfully.

LBR$_ILLFUNC

Requested function not valid.

373

Chapter 13. Librarian (LBR) Routines

LBR$_ILLTYP

Specified library type not valid.

LBR$_TOOMNYLIB

Error. An attempt was made to allocate more than 16 control indexes.

LBR$INSERT_KEY
Insert a New Key — The LBR$INSERT_KEY routine inserts a new key in the current library index.

Format
LBR$INSERT_KEY library_index ,key_name ,txtrfa [, flags]

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. Most utility routines return a condition value. Condition values that this
routine can return are listed under Condition Values Returned.

Arguments
library_index

OpenVMS usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by reference

Library control index returned by the LBR$INI_CONTROL library routine. The library_index
argument is the address of the longword that contains the index.

key_name

OpenVMS usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by reference

Name of the new key you are inserting.

If the library uses binary keys, the key_name argument is the address of an unsigned longword con-
taining the value of the key.

374

Chapter 13. Librarian (LBR) Routines

If the library uses ASCII keys, the key_name argument is the address of a string descriptor of the
key with the following argument characteristics:

Argument Characteristics Entry
OpenVMS usage char_string
type character string
access read only
mechanism by descriptor

txtrfa

OpenVMS usage: vector_longword_unsigned
type: longword (unsigned)
access: modify
mechanism: by reference

The record file address (RFA) of the module associated with the new key you are inserting. The tx-
trfa argument is the address of a 2-longword array containing the RFA. You can use the RFA re-
turned by the first call to LBR$PUT_RECORD.

flags

OpenVMS usage: mask_longword
type: longword (unsigned)
access: read only
mechanism: by value

If present, specifies the key's type. The flag bits are as follows:

Flag Bits Description
LBR$M_SYM_WEAK = 0x1 UNIX-style weak symbol attribute
LBR$M_SYM_GROUP = 0x2 Group symbol attribute

If this argument is not present, the normal NonGroup-Global type is the assumed type.

Description
The LBR$INSERT_KEY routine inserts a new key in the current library index. You cannot call LBR
$INSERT_KEY within the user-supplied routine specified in LBR$SEARCH or LBR$GET_INDEX.

Condition Values Returned
LBR$_DUPKEY

Index already contains the specified key.

LBR$_ILLCTL

Specified library control index not valid.

375

Chapter 13. Librarian (LBR) Routines

LBR$_INVRFA

Specified RFA does not point to valid data.

LBR$_LIBNOTOPN

Specified library not open.

LBR$_UPDURTRAV

LBR$INSERT_KEY is called by the user-defined routine specified in LBR$SEARCH or LBR
$GET_INDEX.

LBR$LOOKUP_KEY
Look Up a Library Key — The LBR$LOOKUP_KEY routine looks up a key in the library's current
index and prepares to access the data in the module associated with the key.

Format
LBR$LOOKUP_KEY library_index ,key_name ,txtrfa [, flags]

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. Most utility routines return a condition value. Condition values that this
routine can return are listed under Condition Values Returned.

Arguments
library_index

OpenVMS usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by reference

Library control index returned by the LBR$INI_CONTROL routine. The library_index argu-
ment is the address of the longword that contains the index.

key_name

OpenVMS usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by reference

376

Chapter 13. Librarian (LBR) Routines

Name of the library key. If the library uses binary keys, the key_name argument is the address of the
unsigned longword value of the key.

If the library uses ASCII keys, the key_name argument is the address of a string descriptor for the
key with the following argument characteristics:

Argument Characteristics Entry
OpenVMS usage char_string
type character string
access read only
mechanism by descriptor

txtrfa

OpenVMS usage: vector_longword_unsigned
type: longword (unsigned)
access: write only
mechanism: by reference

The record file address (RFA) of the library module header. The txtrfa argument is the address of
the 2-longword array that receives the RFA of the module header.

flags

OpenVMS usage: mask_longword
type: longword (unsigned)
access: write only
mechanism: by reference

The flags argument, if present and not zero, receives the type of key returned. The flag bits are as
follows:

Flag Bits Description
LBR$SYM_WEAK = 0x1 UNIX-style weak symbol attribute
LBR$SYM_GROUP = 0x2 Group symbol attribute

The key returned is the highest precedent definition type present.

Description
If LBR$LOOKUP_KEY finds the specified key, it initializes internal tables so you can access the as-
sociated data.

This routine returns the RFA to the 2-longword array referenced by txtrfa.

Condition Values Returned
LBR$_ILLCTL

Specified library control index not valid.

377

Chapter 13. Librarian (LBR) Routines

LBR$_INVRFA

RFA obtained not valid.

LBR$_KEYNOTFND

Specified key not found.

LBR$_LIBNOTOPN

Specified library not open.

LBR$LOOKUP_TYPE
Searches index and returns key type for the module — The LBR$LOOK_TYPE routine searches the
index for the key from a particular module (RFA) and returns that key’s type for that module.

Format
LBR$LOOKUP_TYPE library_index, key_name, txtrfa, ret_types

Arguments
library_index

OpenVMS usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by reference

Library control index returned by the LBR$INI_CONTROL routine. The library_index argu-
ment is the address of the longword that contains the index.

key_name

OpenVMS usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by reference

The key_name argument is the address of the string descriptor pointing to the key with the following
argument characteristics:

Argument Characteristics Entry
OpenVMS usage char_string
type character string
access read only
mechanism by descriptor

txtrfa

378

Chapter 13. Librarian (LBR) Routines

OpenVMS usage: vector_longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by reference

The module’s record file address (RFA) of the library module header. The txtrfa argument is the
address of the 2-longword array that specifies the RFA of the module header.

ret_types

OpenVMS usage: mask_longword
type: longword (unsigned)
access: write only
mechanism: by reference

The address of a longword to receive the symbol types found for the specified module (txtrfa). The
return type bits are as follows:

LBR$M_SYM_NGG = 1
LBR$M_SYM_UXWK = 2
LBR$M_SYM_GG = 4
LBR$M_SYM_GUXWK = 8

Description
This routine searches the index for the key from a particular module (RFA) and returns that key’s type
for that module, if present. Otherwise, it returns LBR$_ KEYNOTFND.

LBR$MAP_MODULE
Maps a module into process P2 space (Integrity servers only) — The LBR$MAP_MODULE routine
maps a module into process P2 space.

Format
LBR$MAP_MODULE library_index, ret_va_addr, ret_mod_len, txtrfa

Arguments
library_index

OpenVMS usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by reference

Library control index returned by the LBR$INI_CONTROL library routine. The library_index
argument is the address of the longword that contains the index.

ret_va_addr

379

Chapter 13. Librarian (LBR) Routines

OpenVMS usage: address
type: quadword address
access: write only
mechanism: by 32-bit or 64-bit reference

The 32-bit or 64-bit virtual address of a naturally aligned quadword into which the routine returns the
virtual address at which the routine mapped the library module.

ret_mod_len

OpenVMS usage: byte_count
type: quadword (unsigned)
access: read only
mechanism: by reference

The address of a naturally aligned quadword into which the library routine returns the module length.

txtrfa

OpenVMS usage: vector_longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by reference

The module’s record file address (RFA) of the library module header. The txtrfa argument is the ad-
dress of the 2-longword array that specifies the RFA of the module header.

Description
This routine maps a module, with the given txtrfa, into process P2 memory space and returns the vir-
tual address where the module is mapped and the module size.

Unlike other LBR services that use RMS services, LBR$MAP_MODULE also uses system services.
Because of this, the secondary status for error returns is placed in LBR$$GL_SUBSTS. Use this sec-
ondary status to find additional status when an error is returned.

LBR$OPEN
Open or Create a Library — The LBR$OPEN routine opens an existing library or creates a new one.

Format
LBR$OPEN library_index [,fns] [,create_options] [,dns] [,rlfna] [,rns]
 [,rnslen]

Returns

OpenVMS usage: cond_value
type: longword (unsigned)

380

Chapter 13. Librarian (LBR) Routines

access: write only
mechanism: by value

Longword condition value. Most utility routines return a condition value in R0. Condition values that
this routine can return are listed under Condition Values Returned.

Arguments

library_index

OpenVMS usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by reference

Library control index returned by the LBR$INI_CONTROL routine. The library_index argu-
ment is the address of a longword containing the index.

fns

OpenVMS usage: char_string
type: character string
access: read only
mechanism: by descriptor

File specification of the library. The fns argument is the address of a string descriptor pointing to
the file specification. Unless the OpenVMS RMS NAM block address was previously supplied in the
LBR$INI_CONTROL routine and contained a file specification, this argument must be included. Oth-
erwise, the Librarian returns an error (LBR$_NOFILNAM).

create_options

OpenVMS usage: vector_longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by reference

Library characteristics. The create_options argument is the address of an array of 20 longwords
that define the characteristics of the library you are creating. If you are creating a library with LBR
$C_CREATE, you must include the create_options argument. The following table shows the
entries that the array must contain. Each programming language provides an appropriate mechanism
for accessing the listed symbols.

Offset in Long-
words

Symbolic Name Contents

CRE$L_TYPE Library type:0
LBR$C_TYP_UNK (0) Unknown/unspecified

381

Chapter 13. Librarian (LBR) Routines

Offset in Long-
words

Symbolic Name Contents

LBR$C_TYP_OBJ (1) VAX object
LBR$C_TYP_MLB (2) Macro
LBR$C_TYP_HLP (3) Help
LBR$C_TYP_TXT (4) Text
LBR$C_TYP_SHSTB (5) VAX shareable image
LBR$C_TYP_NCS (6) NCS
LBR$C_TYP_EOBJ (7) Alpha object
LBR$C_TYP_ESHSTB (8) Alpha shareable image
(9–127) Reserved by VSI
LBR$C_TYP_USRLW (128) User library types — low end of range
LBR$C_TYP_USRHI (255) User library types — high end of range

1 CRE$L_KEYLEN Maximum length of ASCII keys or, if
0, indicates 32-bit unsigned keys (bina-
ry keys)

2 CRE$L_ALLOC Initial library file allocation
3 CRE$L_IDXMAX Number of library indexes (maximum

of eight)
4 CRE$L_UHDMAX Number of additional bytes to reserve

in module header
5 CRE$L_ENTALL Number of index entries to preallocate
6 CRE$L_LUHMAX Maximum number of library update

history records to maintain
CRE$L_VERTYP Format of library to create:
CRE$C_VMSV2 VMS Version 2.0

7

CRE$C_VMSV3 VMS Version 3.0
CRE$L_IDXOPT Index key casing option:
CRE$C_HLPCASING Treat character case as it is for help li-

braries
CRE$C_OBJCASING Treat character case as it is for object li-

braries

8

CRE$C_MACTXTCAS Treat character case as it is for macro
and text libraries

9–19 Reserved by VSI

The input of uppercase and lowercase characters is treated differently for help, object, macro, and text
libraries. For details, see the VSI OpenVMS Command Definition, Librarian, and Message Utilities
Manual.

dns

OpenVMS usage: char_string

382

Chapter 13. Librarian (LBR) Routines

type: character string
access: read only
mechanism: by descriptor

Default file specification. The dns argument is the address of the string descriptor that points to the
default file specification. See the OpenVMS Record Management Services Reference Manual for de-
tails about how defaults are processed.

rlfna

OpenVMS usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by reference

Related file name. The rlfna argument is the address of an RMS NAM block pointing to the relat-
ed file name. You must specify rlfna for related file name processing to occur. If a related file name
is specified, only the file name, type, and version fields of the NAM block are used for related name
block processing. The device and directory fields are not used. See the OpenVMS Record Manage-
ment Services Reference Manual for details on processing related file names.

rns

OpenVMS usage: char_string
type: character string
access: write only
mechanism: by descriptor

Resultant file specification returned. The rns argument is the address of a string descriptor pointing
to a buffer that is to receive the resultant file specification string. If an error occurs during an attempt
to open the library, the expanded name string is returned instead.

rnslen

OpenVMS usage: longword_signed
type: longword (signed)
access: write only
mechanism: by reference

Length of the resultant or expanded file name. The rnslen argument is the address of a longword re-
ceiving the length of the resultant file specification string (or the length of the expanded name string if
there was an error in opening the library).

Description
You can call this routine only after you call LBR$INI_CONTROL and before you call any other LBR
routine except LBR$OUTPUT_HELP.

When the library is successfully opened, the LBR routine reads the library header into memory and
sets the default index to 1.

383

Chapter 13. Librarian (LBR) Routines

If the library cannot be opened because it is already open for a write operation, LBR$OPEN retries
the open operation every second for a maximum of 30 seconds before returning the RMS error, RMS
$_FLK, to the caller.

Condition Values Returned
LBR$_ERRCLOSE

Error. When the library was last modified while opened for write access, the write operation was
interrupted. This left the library in an inconsistent state.

LBR$_ILLCREOPT

Requested create options not valid or not supplied.

LBR$_ILLCTL

Specified library control index not valid.

LBR$_ILLFMT

Specified library format not valid.

LBR$_ILLFUNC

Specified library function not valid.

LBR$_LIBOPN

Specified library already open.

LBR$_NOFILNAM

Error. The fns argument was not supplied or the RMS NAM block was not filled in.

LBR$_OLDLIBRARY

Success. The specified library has been opened; the library was created with an old library format.

LBR$_OLDMISMCH

Requested library function conflicts with old library type specified.

LBR$_TYPMISMCH

Library type does not match the requested type.

LBR$OUTPUT_HELP
Output Help Messages — The LBR$OUTPUT_HELP routine outputs help text to a user-supplied
output routine. The text is obtained from an explicitly named help library or, optionally, from user-
specified default help libraries. An optional prompting mode is available that enables LBR$OUT-
PUT_HELP to interact with you and continue to provide help information after the initial help request
has been satisfied.

384

Chapter 13. Librarian (LBR) Routines

Format
LBR$OUTPUT_HELP output_routine [,output_width] [,line_desc] [,library_name]
 [,flags] [,input_routine]

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. Most utility routines return a condition value in R0. Condition values that
this routine can return are listed under Condition Values Returned.

Arguments
output_routine

OpenVMS usage: procedure
type: procedure value
access: write only
mechanism: by reference

Name of a routine that writes help text a line at a time. The output_routine argument is the
address of the procedure value of the routine to call. You should specify either the address of LIB
$PUT_OUTPUT or a routine of your own that has the same calling format as LIB$PUT_OUTPUT.

output_width

OpenVMS usage: longword_signed
type: longword (signed)
access: read only
mechanism: by reference

Width of the help-text line to be passed to the user-supplied output routine. The output_width ar-
gument is the address of a longword containing the width of the text line to be passed to the user-sup-
plied output routine. If you omit output_width or specify it as 0, the default output width is 80
characters per line.

line_desc

OpenVMS usage: char_string
type: character string
access: read only
mechanism: by descriptor

Contents of the help request line. The line_desc argument is the address of a string descriptor
pointing to a character string containing one or more help keys defining the help requested, for exam-

385

Chapter 13. Librarian (LBR) Routines

ple, the HELP command line minus the HELP command and HELP command qualifiers. The default
is a string descriptor for an empty string.

library_name

OpenVMS usage: char_string
type: character string
access: read only
mechanism: by descriptor

Name of the main library. The library_name argument is the address of a string descriptor point-
ing to the main library file specification string. The default is a null string, which means you should
use the default help libraries. If you omit the device and directory specifications, the default is SYS
$HELP. The default file type is .HLB.

flags

OpenVMS usage: mask_longword
type: longword (unsigned)
access: read only
mechanism: by reference

Flags specifying help output options. Each programming language provides an appropriate mecha-
nism for accessing these flags. The flags argument is the address of an unsigned longword that con-
tains the following flags, when set:

Flag Description
HLP$M_PROMPT Interactive help prompting is in effect.
HLP$M_PROCESS The process logical name table is searched for de-

fault help libraries.
HLP$M_GROUP The group logical name table is searched for

group default help libraries.
HLP$M_SYSTEM The system logical name table is searched for sys-

tem default help libraries.
HLP$M_LIBLIST The list of default libraries available is output

with the list of topics available.
HLP$M_HELP The list of topics available in a help library is pre-

ceded by the major portion of the text on help.

If you omit this longword, the default is for prompting and all default library searching to be enabled,
but no library list is generated and no help text precedes the list of topics.

input_routine

OpenVMS usage: procedure
type: procedure value
access: read only

386

Chapter 13. Librarian (LBR) Routines

mechanism: by reference

Routine used for prompting. The input_routine argument is the address of the procedure val-
ue of the prompting routine. You should specify either the address of LIB$GET_INPUT or a routine
of your own that has the same calling format as LIB$GET_INPUT. This argument must be supplied
when the HELP command is run in prompting mode (that is, HLP$M_PROMPT is set or defaulted).

Description
The LBR$OUTPUT_HELP routine provides a simple, one-call method to initiate an interactive help
session. Help library bookkeeping functions, such as LBR$INI_CONTROL and LBR$OPEN, are
handled internally. You should not call LBR$INI_CONTROL or LBR$OPEN before you issue a call
to LBR$OUTPUT_HELP.

LBR$OUTPUT_HELP accepts help keys in the same format as LBR$GET_HELP, with the following
qualifications:

• If the keyword HELP is supplied, help text on HELP is output, followed by a list of HELP
subtopics available.

If no help keys are provided or if the line_desc argument is 0, a list of topics available in the
root library is output.

• If the line_desc argument contains a list of help keys, then each key must be separated from its
predecessor by a slash (/) or by one or more spaces.

• The first key can specify a library to replace the main library as the root library (the first library
searched) in which LBR$OUTPUT_HELP searches for help. A key used for this purpose must
have the form <@filespec>, where filespec is subject to the same restrictions as the li-
brary_name argument. If the specified library is an enabled user-defined default library, then
filespec can be abbreviated as any unique substring of that default library's logical name transla-
tion.

In default library searches, you can define one or more default libraries for LBR$OUTPUT_HELP to
search for help information not contained in the root library. Do this by equating logical names (HLP
$LIBRARY, HLP$LIBRARY_1, …, HLP$LIBRARY_999) to the file specifications of the default
help libraries. You can define these logical names in the process, group, or system logical name table.

If default library searching is enabled by the flags argument, LBR$OUTPUT_HELP uses those
flags to determine which logical name tables are enabled and then automatically searches any user de-
fault libraries that have been defined in those logical name tables. The library search order proceeds
as follows: root library, main library (if specified and different from the root library), process libraries
(if enabled), group libraries (if enabled), system libraries (if enabled). If the requested help informa-
tion is not found in any of these libraries, LBR$OUTPUT_HELP returns to the root library and issues
a “help not found” message.

To enter an interactive help session (after your initial request for help has been satisfied), you must set
the HLP$M_PROMPT bit in the flags argument.

You can encounter four different types of prompt in an interactive help session. Each type represents a
different level in the hierarchy of help available to you.

1. If the root library is the main library and you are not currently examining HELP for a particular
topic, the prompt Topic? is output.

387

Chapter 13. Librarian (LBR) Routines

2. If the root library is a library other than the main library and if you are not currently examining
HELP for a particular topic, a prompt of the form @ <library-spec> Topic? is output.

3. If you are currently examining HELP for a particular topic (and subtopics), a prompt of the form
<keyword...>subtopic? is output.

4. A combination of 2 and 3.

When you encounter one of these prompt messages, you can respond in any one of several ways. Each
type of response and its effect on LBR$OUTPUT_HELP in each prompting situation is described in
the following table:

Response Action in the Current Prompt Environment 1

(1,2) Search all enabled libraries for these keys.keyword […]
(3,4) Search additional help for the current topic
(and subtopic) for these keys.
(1,2) Same as above, except that the root library
is the library specified by filespec. If the specified
library does not exist, treat @filespec as a normal
key.

@filespec [keyword[…]]

(3,4) Same as above; treat @filespec as a normal
key.
(1,2) Display a list of topics available in the root
library.

?

(3,4) Display a list of subtopics of the current top-
ic (and subtopics) for which help exists.
(1) Exit from LBR$OUTPUT_HELP.
(2) Change root library to main library.

Carriage Return

(3,4) Strip the last keyword from a list of keys
defining the current topic (and subtopic) environ-
ment.

Ctrl/Z (1,2,3,4) Exit from LBR$OUTPUT_HELP.
1Keyed to the prompt in the preceding list.

Condition Values Returned
LBR$_ILLINROU

Input routine improperly specified or omitted.

LBR$_ILLOUTROU

Output routine improperly specified or omitted.

LBR$_NOHLPLIS

Error. No default help libraries can be opened.

LBR$_TOOMNYARG

Error. Too many arguments were specified.

388

Chapter 13. Librarian (LBR) Routines

LBR$_USRINPERR

Error. An error status was returned by the user-supplied input routine.

LBR$PUT_END
Write an End-of-Module Record — The LBR$PUT_END routine marks the end of a sequence of
records written to a library by the LBR$PUT_RECORD routine.

Format
LBR$PUT_END library_index

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. Most utility routines return a condition value in R0. Condition values that
this routine can return are listed under Condition Values Returned.

Argument
library_index

OpenVMS usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by reference

Library control index returned by the LBR$INI_CONTROL routine. The library_index argu-
ment is the address of a longword containing the index.

Description
Call LBR$PUT_END after you write data records to the library with the LBR$PUT_RECORD rou-
tine. LBR$PUT_END terminates a module by attaching a 3-byte logical end-of-file record (hexadeci-
mal 77,00,77) to the data.

Condition Values Returned
LBR$_ILLCTL

Specified library control index not valid.

LBR$_LIBNOTOPN

Specified library not open.

389

Chapter 13. Librarian (LBR) Routines

LBR$PUT_HISTORY
Write an Update History Record — The LBR$PUT_HISTORY routine adds an update history record
to the end of the update history list.

Format
LBR$PUT_HISTORY library_index ,record_desc

Returns
OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. Most utility routines return a condition value in R0. Condition values that
this routine can return are listed under Condition Values Returned.

Arguments
library_index

OpenVMS usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by reference

Library control index returned by the LBR$INI_CONTROL routine. The library_index argu-
ment is the address of the longword that contains the index.

record_desc

OpenVMS usage: char_string
type: character string
access: read only
mechanism: by descriptor

Library history record. The record_desc argument is the address of a string descriptor pointing to
the record to be added to the library update history.

Description
LBR$PUT_HISTORY writes a new update history record. If the library already contains the maxi-
mum number of history records (as specified at creation time by CRE$L_LUHMAX; see LBR$OPEN
for details), the oldest history record is deleted before the new record is added.

Condition Values Returned
LBR$_NORMAL

Normal exit from the routine.

390

Chapter 13. Librarian (LBR) Routines

LBR$_INTRNLERR

Internal Librarian error.

LBR$_NOHISTORY

No update history. This is an informational code, not an error code.

LBR$_RECLNG

Record length greater than that specified by LBR$C_MAXRECSIZ. The record was not inserted
or truncated.

LBR$PUT_MODULE
Puts a module and module’s RFA from memory space into current library (Integrity servers only)
— The LBR$PUT_MODULE routine puts an entire module, with the module’s record file address
(RFA), from memory space into the current library.

Format
LBR$PUT_MODULE library_index, mod_addr, mod_len, txtrfa

Arguments
library_index

OpenVMS usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by reference

Library control index returned by the LBR$INI_CONTROL library routine. The library_index
argument is the address of the longword that contains the index.

mod_addr

OpenVMS usage: address
type: quadword address
access: read only
mechanism: by 32-bit or 64-bit reference

The address from which the Library service obtains the 64-bit address of where the module is mapped
in memory. The mod_addr argument is the 32- or 64-bit virtual address of a naturally aligned quad-
word containing the virtual address location of the module to write to the library.

mod_len

OpenVMS usage: byte_count
type: quadword (unsigned)
access: read only
mechanism: by 32- or 64-bit reference

391

Chapter 13. Librarian (LBR) Routines

The 64-bit virtual address of a naturally aligned quadword containing the length of the module that the
Library service is to write into the library.

txtrfa

OpenVMS usage: vector_longword_unsigned
type: longword (unsigned)
access: write only
mechanism: by reference

The module’s record file address (RFA) of the library module header. The txtrfa argument is the
address of the 2-longword array receiving the RFA of the newly created module header.

Description
The LBR$PUT_MODULE routine puts an entire module, with the module’s record file address
(RFA), from memory space into the current library. LBR$PUT_END is not required when you write
an entire module to the current library.

LBR$PUT_RECORD
Write a Data Record — The LBR$PUT_RECORD routine writes a data record beginning at the next
free location in the library.

Format
LBR$PUT_RECORD library_index ,bufdes ,txtrfa [, mod_size]

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only

Longword condition value. Most utility routines return a condition value. Condition values that this
routine can return are listed under Condition Values Returned.

Arguments
library_index

OpenVMS usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by reference

Library control index returned by the LBR$INI_CONTROL routine. The library_index argu-
ment is the address of the longword that contains the index.

bufdes

392

Chapter 13. Librarian (LBR) Routines

OpenVMS usage: char_string
type: character string
access: read only
mechanism: by descriptor

Record to be written to the library. The bufdes argument is the address of a string descriptor point-
ing to the buffer containing the output record. On Integrity servers and Alpha libraries, the symbolic
maximum record size is ELBR$_MAXRECSIZ.

txtrfa

OpenVMS usage: vector_longword_unsigned
type: longword (unsigned)
access: write only
mechanism: by reference

Record's file address (RFA) of the module header. The txtrfa argument is the address of a 2-
longword array receiving the RFA of the newly created module header upon the first call to LBR
$PUT_RECORD.

mod_size

OpenVMS usage: byte_count
type: longword (unsigned)
access: read only
mechanism: by value

The value from mod_size is read on the first call to this routine and ignored otherwise. The value
specifies the size of the module to be entered so that contiguous space is allocated within the library
for that module. This argument is ignored for non-ELF object libraries and for data-reduced ELF ob-
ject libraries. The LBR$PUT_END routine is still required to terminate the byte stream and close off
the module.

Description
If this is the first call to LBR$PUT_RECORD, this routine first writes a module header and returns
its RFA to the 2-longword array pointed to by txtrfa. LBR$PUT_RECORD then writes the sup-
plied data record to the library. On subsequent calls to LBR$PUT_RECORD, this routine writes the
data record beginning at the next free location in the library (after the previous record). The last record
written for the module should be followed by a call to LBR$PUT_END.

Condition Values Returned
LBR$_ILLCTL

Specified library control index not valid.

LBR$_LIBNOTOPN

Specified library not open.

393

Chapter 13. Librarian (LBR) Routines

LBR$REPLACE_KEY
Replace a Library Key — The LBR$REPLACE_KEY routine modifies or inserts a key into the li-
brary.

Format
LBR$REPLACE_KEY library_index ,key_name ,oldrfa ,newrfa [, flags]

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. Most utility routines return a condition value. Condition values that this
routine can return are listed under Condition Values Returned.

Arguments
library_index

OpenVMS usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by reference

Library control index returned by the LBR$INI_CONTROL routine. The library_index argu-
ment is the address of the longword that contains the index.

key_name

OpenVMS usage: char_string
type: character string
access: read only
mechanism: by descriptor

For libraries with ASCII keys, the key_name argument is the address of a string descriptor for the
key.

For libraries with binary keys, the key_name argument is the address of an unsigned longword value
for the key.

oldrfa

OpenVMS usage: vector_longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by reference

394

Chapter 13. Librarian (LBR) Routines

Old record file address (RFA). The oldrfa argument is the address of a 2-longword array containing
the original RFA (returned by LBR$LOOKUP_KEY) of the module header associated with the key
you are replacing.

newrfa

OpenVMS usage: vector_longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by reference

New RFA. The newrfa argument is the address of a 2-longword array containing the RFA (returned
by LBR$PUT_RECORD) of the module header associated with the new key.

flags

OpenVMS usage: mask_longword
type: longword (unsigned)
access: read only
mechanism: by reference

If present, the flags argument specifies the type of key being replaced. The flag bits are as follows:

Flag Bits Description
LBR$SYM_WEAK = 0x1 UNIX-style weak symbol attribute
LBR$SYM_GROUP = 0x2 Group symbol attribute

If this argument is not present, NonGroup-Global is the assumed type. In this case, all type lists are
searched and the entries removed. The new symbol is placed in the new NonGroup-Global definition
with newrfa as the defining module.

If this parameter is present, it represents the flags set for the type of symbol being replaced. The re-
placement is done in place without losing its position in the type list. If the symbol does not exist
when the call to this routine is made, the new definition is placed at the end of the type list for the
specified type.

Because there are now different symbol definition types, VSI advises using the LBR$DELETE_KEY
routine followed by the LBR$INSERT_KEY routine when the old key and new key differ in defini-
tion type.

Description
If LBR$REPLACE_KEY does not find the key in the current index, it calls the LBR$INSERT_KEY
routine to insert the key. If LBR$REPLACE_KEY does find the key, it modifies the key entry in the
index so that it points to the new module header.

Condition Values Returned
LBR$_ILLCTL

Specified library control index not valid.

395

Chapter 13. Librarian (LBR) Routines

LBR$_INVRFA

Specified RFA not valid.

LBR$_LIBNOTOPN

Specified library not open.

LBR$RET_RMSSTV
Return OpenVMS RMS Status Value — The LBR$RET_RMSSTV routine returns the status value of
the last OpenVMS RMS function performed by any LBR subroutine.

Format
LBR$RET_RMSSTV

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. Most utility routines return a condition value in R0. Condition values that
this routine can return are listed under Condition Values Returned.

Description
The LBR$RET_RMSSTV routine returns, as the status value, the status of the last RMS operation
performed by the Librarian. Each programming language provides an appropriate mechanism for ac-
cessing RMS status values.

Condition Values Returned
This routine returns any condition values returned by RMS routines.

LBR$SEARCH
Search an Index — The LBR$SEARCH routine finds index keys that point to specified data.

Format
LBR$SEARCH library_index ,index_number ,rfa_to_find ,routine_name [, flags]

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only

396

Chapter 13. Librarian (LBR) Routines

mechanism: by value

Longword condition value. Most utility routines return a condition value. Condition values that this
routine can return are listed under Condition Values Returned.

Arguments
library_index

OpenVMS usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by reference

Library control index returned by the LBR$INI_CONTROL routine. The library_index argu-
ment is the address of the longword that contains the index.

index_number

OpenVMS usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by reference

Library index number. The index_number argument is the address of a longword containing the
number of the index you want to search.

rfa_to_find

OpenVMS usage: vector_longword_unsigned
type: longword (unsigned)
access: write only
mechanism: by reference

Record file address (RFA) of the module whose keys you are searching for. The rfa_to_find
argument is the address of a 2-longword array containing the RFA (returned earlier by LBR
$LOOKUP_KEY or LBR$PUT_RECORD) of the module header.

routine_name

OpenVMS usage: procedure
type: procedure value
access: read only
mechanism: by reference

Name of a user-supplied routine to process the keys. The routine_name argument is the address of
the procedure value of a user-supplied routine to call for each key entry containing the RFA (in other
words, for each key that points to the same module header).

This user-supplied routine cannot contain any calls to LBR$DELETE_KEY or LBR$INSERT_KEY.

397

Chapter 13. Librarian (LBR) Routines

flags

OpenVMS usage: mask_longword
type: longword unsigned
access: read only
mechanism: by reference

If present and nonzero, the flags argument specifies the type, or all types, of the key provided. The
flag bits are as follows:

Flag Bits Description
LBR$M_SYM_WEAK = 0x1 UNIX-style weak symbol attribute
LBR$M_SYM_GROUP = 0x2 Group symbol attribute
LBR$M_SYM_ALL = 0x80000000 All symbols

The user routine is provided the symbol's type through an additional third parameter.

Description
The LBR$SEARCH routine searches the library index for symbols with the given RFA and calls the
supplied routine with those symbols.

Use LBR$SEARCH to find index keys that point to the same module header. Generally, in index
number 1 (the module name table), just one key points to any particular module; thus, you would
probably use this routine only to search library indexes where more than one key points to a module.
For example, you might call LBR$SEARCH to find all the symbols in the symbol index that are asso-
ciated with an object module in an object library.

If LBR$SEARCH finds an index key associated with the specified RFA, it calls a user-supplied rou-
tine with two arguments:

• The key argument, which is the address of either of the following items:

• A string descriptor for the key name (libraries with ASCII key names)

• An unsigned longword for the key value (libraries with binary keys)

• The RFA argument, which is the address of a 2-longword array containing the RFA of the module
header

• The key's type, whose flag bits are as follows:

Flag Bits Description
LBR$M_SYM_WEAK = 1 UNIX-style weak symbol attribute
LBR$M_SYM_GROUP = 2 Group symbol attribute

The user routine must return a value to indicate success or failure. If the specified user routine returns
a false value (low bit = 0), then the index search terminates.

Note that the key found by LBR$SEARCH is valid only during the call to the user-supplied routine. If
you want to use the key later, you must copy it.

398

Chapter 13. Librarian (LBR) Routines

Condition Values Returned
LBR$_ILLCTL

Specified library control index not valid.

LBR$_ILLIDXNUM

Specified library index number not valid.

LBR$_KEYNOTFND

Library routine did not find any keys with the specified RFA.

LBR$_LIBNOTOPN

Specified library not open.

LBR$SET_INDEX
Set the Current Index Number — The LBR$SET_INDEX routine sets the index number to use when
processing libraries that have more than one index.

Format
LBR$SET_INDEX library_index ,index_number

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. Most utility routines return a condition value in R0. Condition values that
this routine can return are listed under Condition Values Returned.

Arguments
library_index

OpenVMS usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by reference

Library control index returned by the LBR$INI_CONTROL routine. The library_index argu-
ment is the address of the longword that contains the index.

index_number

399

Chapter 13. Librarian (LBR) Routines

OpenVMS usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by reference

Index number you want to establish as the current index number. The index_number argument is
the address of the longword that contains the number of the index you want to establish as the current
index. Refer to Section 13.1.2.3.

Description
When you call LBR$INI_CONTROL, the Librarian sets the current library index to 1 (the module
name table, unless the library is a user-developed library). If you need to process another library in-
dex, you must use LBR$SET_INDEX to change the current library index.

Note that macro, help, and text libraries contain only one index; therefore, you do not need to call
LBR$SET_INDEX. Object libraries contain two indexes. If you want to access the global symbol ta-
ble, you must call the LBR$SET_INDEX routine to set the index number. User-developed libraries
can contain more than one index; therefore, you may need to call LBR$SET_INDEX to set the index
number.

Upon successful completion, LBR$SET_INDEX sets the current library index to the requested index
number. LBR routines number indexes starting with 1.

Condition Values Returned
LBR$_ILLCTL

Specified library control index not valid.

LBR$_ILLIDXNUM

Library index number specified not valid.

LBR$_LIBNOTOPN

Specified library not open.

LBR$SET_LOCATE
Set Record Access to Locate Mode — The LBR$SET_LOCATE routine sets the record access of
LBR subroutines to locate mode.

Format
LBR$SET_LOCATE library_index

Returns

OpenVMS usage: cond_value
type: longword (unsigned)

400

Chapter 13. Librarian (LBR) Routines

access: write only
mechanism: by value

Longword condition value. Most utility routines return a condition value in R0. Condition values that
this routine can return are listed under Condition Values Returned.

Argument
library_index

OpenVMS usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by reference

Library control index returned by the LBR$INI_CONTROL routine. The library_index argu-
ment is the address of the longword that contains the index.

Description
Librarian record access may be set to move mode (the default set by LBR$SET_MOVE) or locate
mode. The setting affects the operation of the LBR$GET_RECORD routine.

If move mode is set (the default), LBR$GET_RECORD copies the requested record to the specified
user buffer. If locate mode is set, the record is not copied. Instead, the outbufdes descriptor is set to
reference the internal LBR subroutine buffer that contains the record.

Condition Values Returned
LBR$_ILLCTL

Specified library control index not valid.

LBR$_LIBNOTOPN

Specified library not open.

LBR$SET_MODULE
Read or Update a Module Header — The LBR$SET_MODULE routine reads, and optionally updates,
the module header associated with a given record's file address (RFA).

Format
LBR$SET_MODULE library_index ,rfa [,bufdesc] [,buflen] [,updatedesc]

Returns

OpenVMS usage: cond_value
type: longword (unsigned)

401

Chapter 13. Librarian (LBR) Routines

access: write only
mechanism: by value

Longword condition value. Most utility routines return a condition value in R0. Condition values that
this routine can return are listed under Condition Values Returned.

Arguments
library_index

OpenVMS usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by reference

Library control index returned by the LBR$INI_CONTROL routine. The library_index argu-
ment is the address of the longword that contains the index.

rfa

OpenVMS usage: vector_longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by reference

Record's file address (RFA) associated with the module header. The rfa argument is the address of a
2-longword array containing the RFA returned by LBR$PUT_RECORD or LBR$LOOKUP_KEY.

bufdesc

OpenVMS usage: char_string
type: character string
access: write only
mechanism: by descriptor

Buffer that receives the module header. The bufdesc argument is the address of a string descrip-
tor pointing to the buffer that receives the module header. The buffer must be the size specified by
the symbol MHD$B_USRDAT plus the value of the CRE$L_UHDMAX create option. The MHD$
and CRE$ symbols are defined in the modules $MHDDEF and $CREDEF, which are stored in SYS
$LIBRARY:STARLET.MLB.

buflen

OpenVMS usage: longword_signed
type: longword (signed)
access: write only
mechanism: by reference

Length of the module header. The buflen argument is the address of a longword receiving the
length of the returned module header.

402

Chapter 13. Librarian (LBR) Routines

updatedesc

OpenVMS usage: char_string
type: character string
access: read only
mechanism: by descriptor

Additional information to be stored with the module header. The updatedesc argument is the ad-
dress of a string descriptor pointing to additional data that the Librarian stores with the module head-
er. If you include this argument, the Librarian updates the module header with the additional informa-
tion.

Description
If you specify bufdesc, the LBR routine returns the module header into the buffer. If you specify
buflen, the routine also returns the buffer's length. If you specify updatedesc, the routine up-
dates the header information.

You define the maximum length of the update information (by specifying a value for CRE$L_UHD-
MAX) when you create the library. The Librarian zero-fills the information if it is less than the maxi-
mum length or truncates it if it exceeds the maximum length.

Condition Values Returned
LBR$_HDRTRUNC

Buffer supplied to hold the module header was too small.

LBR$_ILLCTL

Specified library control index not valid.

LBR$_ILLOP

Error. The updatedesc argument was supplied and the library was a Version 1.0 library or the
library was opened only for read access.

LBR$_INVRFA

Specified RFA does not point to a valid module header.

LBR$_LIBNOTOPN

Specified library not open.

LBR$SET_MOVE
Set Record Access to Move Mode — The LBR$SET_MOVE routine sets the record access of LBR
subroutines to move mode.

Format
LBR$SET_MOVE library_index

403

Chapter 13. Librarian (LBR) Routines

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. Most utility routines return a condition value in R0. Condition values that
this routine can return are listed under Condition Values Returned.

Argument
library_index

OpenVMS usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by reference

Library control index returned by the LBR$INI_CONTROL routine. The library_index argu-
ment is the address of the longword that contains the index.

Description
Librarian record access may be set to move mode (the default, set by LBR$SET_MOVE) or locate
mode. The setting affects the operation of the LBR$GET_RECORD routine. If move mode is set,
LBR$GET_RECORD copies the requested record to the specified user buffer. For details, see the de-
scription of LBR$GET_RECORD.

Condition Values Returned
LBR$_ILLCTL

Specified library control index not valid.

LBR$_LIBNOTOPN

Specified library not open.

LBR$UNMAP_MODULE
Unmaps a module from process P2 space (Integrity servers only) — The LBR$UNMAP_MODULE
routine unmaps a module from process P2 space.

Format
LBR$PUT_MODULE library_index, txtrfa

Arguments
library_index

404

Chapter 13. Librarian (LBR) Routines

OpenVMS usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by reference

Library control index returned by the LBR$INI_CONTROL library routine. The library_index
argument is the address of the longword that contains the index.

txtrfa

OpenVMS usage: vector_longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by reference

The module’s record file address (RFA) of the library module header. The txtrfa argument is the
address of the 2-longword array that specifies the RFA of the module header.

Description
The LBR$UNMAP_MODULE routine unmaps the module, with the record file address in txtrfa,
from process P2 space. This action releases the resources used to map the module.

Unlike other LBR services that use RMS services, LBR$UNMAP_MODULE also uses system ser-
vices. Because of this, the secondary status for error returns is placed in LBR$GL_SUBSTS. Use this
to find further status when an error is returned.

405

Chapter 13. Librarian (LBR) Routines

406

Chapter 14. Lightweight Directory
Access Protocol (LDAP) Routines
14.1. Introduction
This chapter describes the C language application programming interface (API) to the Lightweight
Directory Access Protocol (LDAP). This API supports Version 3 of the LDAP API (LDAPv3), and
includes support for controls, information hiding, and thread safety. The LDAP API is available on
OpenVMS Alpha only.

The C LDAP API is designed to be powerful, yet simple to use. It defines compatible synchronous
and asynchronous interfaces to LDAP to support a wide variety of applications. This chapter gives a
brief overview of the LDAP model, and describes how the application program uses the API to obtain
LDAP information. The API calls are described in detail, followed by a section that provides some ex-
ample code demonstrating the use of the API.

14.1.1. Overview of the LDAP Model
LDAP is the lightweight directory access protocol, which is based on a client-server model. In this
model, a client makes a TCP connection to an LDAP server, over which it sends requests and receives
responses.

The LDAP information model is based on the entry, which contains information about some object
(for example, a person). Entries are composed of attributes, which have a type and one or more val-
ues. Each attribute has a syntax that determines what kinds of values are allowed in the attribute (for
example, ASCII characters or a jpeg photograph) and how those values behave during directory oper-
ations (for example, whether case is significant during comparisons).

Entries may be organized in a tree structure, usually based on political, geographical, or organization-
al boundaries. Each entry is uniquely named relative to its sibling entries by its relative distinguished
name (RDN) consisting of one or more distinguished attribute values from the entry. At most, one val-
ue from each attribute may be used in the RDN. For example, the entry for the person Babs Jensen
might be named with the Barbara Jensen value from the commonName attribute.

A globally unique name for an entry, called a distinguished name or DN, is constructed by concatenat-
ing the sequence of RDNs from the entry up to the root of the tree. For example, if Babs worked for
the University of Michigan, the DN of her U-M entry might be the following:

cn=Barbara Jensen, o=University of Michigan, c=US

Operations are provided to authenticate, search for and retrieve information, modify information, and
add and delete entries from the tree. The next sections give an overview of how the API is used and
provide detailed descriptions of the LDAP API calls that implement all of these functions.

14.1.2. Overview of LDAP API Use
An application generally uses the C LDAP API in four simple steps.

• Initialize an LDAP session with a primary LDAP server. The ldap_init() function returns a
handle to the session, allowing multiple connections to be open at once.

• Authenticate to the LDAP server. The ldap_bind() function supports a variety of authentica-
tion methods.

407

Chapter 14. Lightweight Directory Access Protocol (LDAP) Routines

• Perform some LDAP operations and obtain some results. The ldap_search() function re-
turns results that can be parsed by ldap_parse_result(), ldap_first_entry(), and
ldap_next_entry().

• Close the session. The ldap_unbind() function closes the connection.

Operations can be performed either synchronously or asynchronously. The names of the syn-
chronous functions end in _s. For example, a synchronous search can be completed by calling
ldap_search_s(). An asynchronous search can be initiated by calling ldap_search(). All
synchronous functions return an indication of the outcome of the operation (for example, the con-
stant LDAP_SUCCESS or some other error code). The asynchronous functions make available to the
caller the message id of the operation initiated. This id can be used in subsequent calls to ldap_re-
sult() to obtain the result(s) of the operation. An asynchronous operation can be abandoned by
calling ldap_abandon() or ldap_abandon_ext().

Results and errors are returned in an opaque structure called LDAPMessage. Functions are provided
to parse this structure, step through entries and attributes returned. Functions are also provided to in-
terpret errors. Later sections of this chapter describe these functions in more detail.

LDAPv3 servers may return referrals to other servers. By default, implementations of this API will at-
tempt to follow referrals automatically for the application. This behavior can be disabled globally (us-
ing the ldap_set_option() call) or on a per-request basis through the use of a server control.

As in the LDAPv3 protocol, all DNs and string values that are passed into or produced by the C
LDAP API are represented as UTF-8 characters. Conversion functions are described in Section 14.20.

For compatibility with existing applications, implementations of this API will, by default, use Version
2 of the LDAP protocol. Applications that intend to take advantage of LDAPv3 features will need to
use the ldap_set_option() call with a LDAP_OPT_PROTOCOL_VERSION switch set to Ver-
sion 3.

The file LDAP_EXAMPLE.C in SYS$EXAMPLES contains an example program that demonstrates
how to use the LDAP API on OpenVMS.

14.1.3. LDAP API Use on OpenVMS Systems
This release of the LDAP API provides support for client applications written in C or C++.

In order to use the LDAP API, a program must use an include statement of the form:

#include <ldap.h>

The LDAP.H header file includes prototypes and data structures for all of the functions that are avail-
able in the LDAP API.

The shareable image LDAP$SHR.EXE includes run-time support for LDAP applications. This share-
able image resides in SYS$LIBRARY and should be included in the library IMAGELIB.OLB, which
means that no special action is necessary to link or run your programs. For example:

 $ type myprog.c

 /* A not very useful program */
 #include <stdio.h>
 #include <ldap.h>
 void main(int argc, char *argv[])
 {
 LDAP *ld;

408

Chapter 14. Lightweight Directory Access Protocol (LDAP) Routines

 if (argc != 2) {
 printf("usage: %s <hostname>\n",argv[0]);
 return;
 }
 ld = ldap_init(argv[1],LDAP_PORT);
 if (ld != NULL) {
 printf("ldap_init returned 0x%p\n",ld);
 } else {
 printf("ldap_init failed\n");
 }
 }

 $ cc myprog
 $ link myprog
 $ myprog :== $mydisk:[mydir]myprog.exe
 $ myprog fred
 ldap_init returned 0xA6748
 $

14.1.4. 64-bit Addressing Support
This section describes the LDAP 64-bit addressing support.

14.1.4.1. Background
OpenVMS Alpha provides support for 64-bit virtual memory addressing. Applications that are built
using a suitable compiler may take advantage of the 64-bit virtual address space to map and access
large amounts of data.

The OpenVMS LDAP API supports both 32- and 64-bit client applications. In order to allow this, sep-
arate entry points are provided in the library for those functions that are sensitive to pointer size.

When a user module is compiled, the header file LDAP.H determines the pointer size in effect and us-
es the C preprocessor to map the function names into the appropriate library entry point. This map-
ping is transparent to the user application and is effected by setting the /POINTER_SIZE qualifier at
compilation time.

For LDAP API users, switching between different pointer sizes should need only a recompilation - no
code changes are necessary.

This means that programs using the specification for the C LDAP API, as described in the Internet
Engineering Task Force (IETF) documentation, can be built on OpenVMS with either 32-bit or 64-bit
pointer size, without having to change the source code.

14.1.4.2. Implementation
The OpenVMS LDAP library uses 64-bit pointers internally and is capable of dealing with data struc-
tures allocated by the caller from 64-bit address space.

Applications that use 32-bit pointers will use the 32-bit function entry points in the library. This
means they can pass arguments that are based on 32-bit pointers and can assume that any pointers re-
turned by the library will be 32-bit safe.

While the mapping performed by LDAP.H is designed to be transparent, there may be occasions
where it is useful (for example in debugging) to understand the consequences of having both 32- and
64-bit support in the same library.

409

Chapter 14. Lightweight Directory Access Protocol (LDAP) Routines

14.1.4.2.1. Library Symbol Names

The symbols exported by the LDAP$SHR OpenVMS run-time library differ from those specified in
the IETF C LDAP API specification.

The header file LDAP.H maps user references to LDAP API function names to the appropriate LDAP
$SHR symbol name. Therefore, any application wishing to use the OpenVMS LDAP API must in-
clude the version of LDAP.H that ships with OpenVMS.

All of the functions in the OpenVMS LDAP library are prefixed with the facility code "LDAP$".

For those functions where the caller's pointer size is significant, the name of the 64-bit entry point will
have a "_64" suffix, while the name of the 32-bit jacket will have a "_32" suffix. Functions that are
not sensitive to pointer size have no special suffix.

For example, the function ldap_modify() is sensitive to the caller's pointer size (because
one of its arguments is an array of pointers). Therefore, the library exports symbols for LDAP
$LDAP_MODIFY_64 and LDAP$LDAP_MODIFY_32. For the function ldap_simple_bind(),
which is not sensitive to the caller's pointer size, a single entry point, LDAP$LDAP_SIMPLE_BIND,
exists in the library.

Because OpenVMS imposes a 31-character limit on the length of symbol names, certain functions in
the library have names which are abbreviated versions of the public API name. For example, in the
case of the function ldap_parse_sasl_bind_result(), the library provides two entry points,
namely LDAP$LDAP_PRS_SASL_BIND_RES_32 and LDAP$LDAP_PRS_SASL_BIND_RES_64.

14.1.4.2.2. LDAP Data Structures

The LDAP API defines various data structures which are used to pass information to and from a client
application. Some of these structures are opaque; that is, their internal layout is not visible to a client
application. In such cases, the API may return a pointer to such a structure, but the only use of such a
pointer to a client application is as a parameter to subsequent library calls.

Some structures are public. Their contents are defined by the API, and client applications may allocate
and manipulate such structures or use them as parameters to LDAP functions.

All data structures used by the API are defined with "natural" alignment; that is, each member of a da-
ta structure will be aligned on an address boundary appropriate to its type.

Opaque Data Structures

The following data structures are opaque. Applications should not make any assumptions about the
contents or size of such data structures.

 typedef struct ldap
 LDAP;

 typedef struct ldapmsg
 LDAPMessage;

 typedef struct berelement
 BerElement;

Public Data Structures

The following data structures are described in the IETF documents relating to the LDAP API, and de-
finitions are provided for them in LDAP.H. Applications may allocate and manipulate such structures,
as well as use them in calls to the LDAP API.

410

Chapter 14. Lightweight Directory Access Protocol (LDAP) Routines

 typedef struct berval { .. }
 BerValue;

 typedef struct ldapapiinfo { .. }
 LDAPAPIInfo;

 typedef struct ldap_apifeature_info { .. }
 LDAPAPIFeatureInfo;

 typedef struct ldapcontrol { .. }
 LDAPControl;

 typedef struct ldapmod { .. }
 LDAPMod;

Note that the pointer size in effect at compilation time determines the layout of data structures, which
themselves contain pointer fields. Since all of the public data structures listed here contain one or
more pointers, their size and layout will differ depending on the pointer size.

For example, in the case of the structure berval, the API provides the following definition:

 struct berval {
 ber_len_t bv_len;
 char *bv_val;
 } BerValue;

(where ber_len_t is equivalent on OpenVMS to an unsigned 32-bit integer). For a module com-
piled using 32-bit pointer size, the layout of a BerValue at address A would look like this:

In the case of a 64-bit compilation, the layout would be:

The following code would therefore work correctly regardless of pointer size:

 #include <ldap.h>
 .
 .

411

Chapter 14. Lightweight Directory Access Protocol (LDAP) Routines

 .
 char *buff;
 BerValue val;
 .
 .
 .
 buff = (char *)malloc(255);
 .
 .
 .
 val.bv_len = 255;
 val.bv_val = buff;
 .
 .
 .

14.1.4.3. Mixing Pointer Sizes
Two modules that include LDAP.H can be compiled with different pointer sizes and linked togeth-
er. While each module may use the LDAP API on its own, it may not be possible for both modules to
share LDAP-related data.

None of the public LDAP data structures is directly compatible between 32- and 64-bit modules. For
example, a BerValue that has been allocated by a 32-bit module does not have the same layout as a
BerValue which a 64-bit module expects to see, and consequently cannot be exchanged between two
such modules without some sort of data conversion taking place.

Opaque data structures (such as LDAP *) have only a single structure definition inside the library, and
so pointers to such structures may be exchanged between 32- and 64-bit callers. Note that these struc-
tures are allocated only by the library itself, and, in the case of a 64-bit caller, these structures may be
allocated in 64-bit space. So while the LDAP handle returned to a 32-bit caller of ldap_init()
could safely be used by a 64-bit module, the reverse may not be true.

14.1.5. Multithreading Support
The OpenVMS LDAP API may be used by a multi-threaded application. Two of the functions in the
library, ldap_perror() and ldap_result2error(), are not thread-safe.

14.2. Common Data Structures and Memory
Handling
The following are definitions of some data structures that are common to several LDAP API func-
tions.

typedef struct ldap LDAP;

typedef struct berelement BerElement;

typedef struct ldapmsg LDAPMessage;

typedef struct berval {
 ber_len_t bv_len;
 char *bv_val;
} BerValue;

412

Chapter 14. Lightweight Directory Access Protocol (LDAP) Routines

struct timeval;

The LDAP structure is an opaque data type that represents an LDAP session. Typically, this cor-
responds to a connection to a single server, but it may encompass several server connections in
LDAPv3 referrals.

The LDAPMessage structure is an opaque data type that is used to return entry, reference, result, and
error information. An LDAPMessage structure may represent the beginning of a list or a chain of
messages that contain a series of entries, references, and result messages that are returned by LDAP
operations, such as search. LDAP API functions, such as ldap_parse_result() , that operate on message
chains which may contain more than one result message, always operate on the first result message in
the chain. See Section 14.17 for more information.

The BerElement structure is an opaque data type that is used to hold data and state information about
encoded data.

The berval structure is used to represent arbitrary binary data, and its fields have the following mean-
ings:

bv_len Length of data in bytes.
bv_val A pointer to the data itself.

The timeval structure is used to represent an interval of time, and its fields have the following mean-
ings:

tv_sec Seconds component of time interval.
tv_usec Microseconds component of time interval.

All memory that is allocated by a function in this C LDAP API and returned to the caller should be
disposed of by calling the appropriate free function provided by this API. The correct free function to
call is documented in each section of this chapter where a function that allocates memory is described.

Memory that is allocated outside of the C LDAP API must not be disposed of using a function provid-
ed by this API.

The following is a complete list of free functions that are used to dispose of allocated memory:

 ber_bvecfree()

 ber_bvfree()

 ber_free()

 ldap_control_free()

 ldap_controls_free()

 ldap_memfree()

 ldap_msgfree()

 ldap_value_free()

 ldap_value_free_len()

413

Chapter 14. Lightweight Directory Access Protocol (LDAP) Routines

14.3. LDAP Error Codes
Many of the LDAP API functions return LDAP error codes, some of which indicate local errors and
some of which may be returned by servers. All of the LDAP error codes returned will be positive inte-
gers; those between 0x00 and 0x50 are returned from the LDAP server, those above 0x50 are generat-
ed by the API itself. Supported error codes are as follows (hexadecimal values are given in parenthe-
ses after the constant):

 LDAP_SUCCESS (0x00)

 LDAP_OPERATIONS_ERROR (0x01)

 LDAP_PROTOCOL_ERROR (0x02)

 LDAP_TIMELIMIT_EXCEEDED (0x03)

 LDAP_SIZELIMIT_EXCEEDED (0x04)

 LDAP_COMPARE_FALSE (0x05)

 LDAP_COMPARE_TRUE (0x06)

 LDAP_STRONG_AUTH_NOT_SUPPORTED (0x07)

 LDAP_STRONG_AUTH_REQUIRED (0x08)

 LDAP_REFERRAL (0x0a) -- new in LDAPv3

 LDAP_ADMINLIMIT_EXCEEDED (0x0b) -- new in LDAPv3

 LDAP_UNAVAILABLE_CRITICAL_EXTENSION (0x0c) -- new in LDAPv3

 LDAP_CONFIDENTIALITY_REQUIRED (0x0d) -- new in LDAPv3

 LDAP_SASL_BIND_IN_PROGRESS (0x0e) -- new in LDAPv3

 LDAP_NO_SUCH_ATTRIBUTE (0x10)

 LDAP_UNDEFINED_TYPE (0x11)

 LDAP_INAPPROPRIATE_MATCHING (0x12)

 LDAP_CONSTRAINT_VIOLATION (0x13)

 LDAP_TYPE_OR_VALUE_EXISTS (0x14)

 LDAP_INVALID_SYNTAX (0x15)

 LDAP_NO_SUCH_OBJECT (0x20)

 LDAP_ALIAS_PROBLEM (0x21)

 LDAP_INVALID_DN_SYNTAX (0x22)

 LDAP_IS_LEAF (0x23) -- not used in LDAPv3

 LDAP_ALIAS_DEREF_PROBLEM (0x24)

414

Chapter 14. Lightweight Directory Access Protocol (LDAP) Routines

 LDAP_INAPPROPRIATE_AUTH (0x30)

 LDAP_INVALID_CREDENTIALS (0x31)

 LDAP_INSUFFICIENT_ACCESS (0x32)

 LDAP_BUSY (0x33)

 LDAP_UNAVAILABLE (0x34)

 LDAP_UNWILLING_TO_PERFORM (0x35)

 LDAP_LOOP_DETECT (0x36)

 LDAP_NAMING_VIOLATION (0x40)

 LDAP_OBJECT_CLASS_VIOLATION (0x41)

 LDAP_NOT_ALLOWED_ON_NONLEAF (0x42)

 LDAP_NOT_ALLOWED_ON_RDN (0x43)

 LDAP_ALREADY_EXISTS (0x44)

 LDAP_NO_OBJECT_CLASS_MODS (0x45)

 LDAP_RESULTS_TOO_LARGE (0x46) -- reserved for CLDA

 LDAP_AFFECTS_MULTIPLE_DSAS (0x47) -- new in LDAPv3

 LDAP_OTHER (0x50)

 LDAP_SERVER_DOWN (0x51)

 LDAP_LOCAL_ERROR (0x52)

 LDAP_ENCODING_ERROR (0x53)

 LDAP_DECODING_ERROR (0x54)

 LDAP_TIMEOUT (0x55)

 LDAP_AUTH_UNKNOWN (0x56)

 LDAP_FILTER_ERROR (0x57)

 LDAP_USER_CANCELLED (0x58)

 LDAP_PARAM_ERROR (0x59)

 LDAP_NO_MEMORY (0x5a)

 LDAP_CONNECT_ERROR (0x5b)

 LDAP_NOT_SUPPORTED (0x5c)

 LDAP_CONTROL_NOT_FOUND (0x5d)

415

Chapter 14. Lightweight Directory Access Protocol (LDAP) Routines

 LDAP_NO_RESULTS_RETURNED (0x5e)

 LDAP_MORE_RESULTS_TO_RETURN (0x5f)

 LDAP_CLIENT_LOOP (0x60)

 LDAP_REFERRAL_LIMIT_EXCEEDED (0x61)

14.4. Initializing an LDAP Session
The ldap_init() function initializes a session with an LDAP server. The server is not actually
contacted until an operation is performed that requires it, allowing various options to be set after ini-
tialization.

 LDAP *ldap_init(
 const char *hostname,
 int portno);

Use of the following function is deprecated.

 LDAP *ldap_open(
 const char *hostname,
 int portno);

Unlike ldap_init(), the ldap_open() function attempts to make a server connection before re-
turning to the caller. A more complete description can be found in RFC 1823.

Parameters are as follows:

hostname Contains a space-separated list of hostnames or dotted strings rep-
resenting the IP address of hosts running an LDAP server to con-
nect to. Each hostname in the list can include an optional port
number which is separated from the host itself with a colon (:)
character. The hosts are tried in the order listed, stopping with the
first one to which a successful connection is made. Note that only
ldap_open() attempts to make the connection before returning
to the caller. ldap_init() does not connect to the LDAP serv-
er.

portno Contains the TCP port number to connect to. The default
LDAP port of 389 can be obtained by supplying the constant
LDAP_PORT. If a host includes a port number, then this parameter
is ignored.

The ldap_init() and ldap_open() functions both return a session handle, a pointer to an
opaque structure that should be passed to subsequent calls pertaining to the session. These functions
return NULL if the session cannot be initialized, in which case the operating system error reporting
mechanism can be checked to see why the call failed.

Note that if you connect to an LDAP Version 2 server, one of the ldap_bind() calls must be completed
before other operations can be performed on the session. LDAPv3 does not require that a bind opera-
tion be completed before other operations can be performed.

The calling program can set various attributes of the session by calling the functions described in the
next section.

416

Chapter 14. Lightweight Directory Access Protocol (LDAP) Routines

14.5. LDAP Session Handle Options
The LDAP session handle returned by ldap_init() is a pointer to an opaque data type represent-
ing an LDAP session. Formerly, this data type was a structure exposed to the caller, and various fields
in the structure could be set to control aspects of the session, such as size and time limits on searches.

To insulate callers from inevitable changes to this structure, these aspects of the session are now ac-
cessed through a pair of accessor functions.

The ldap_get_option() function is used to access the current value of various session-wide pa-
rameters. The ldap_set_option() function is used to set the value of these parameters. Note that
some options are READ-ONLY and cannot be set; it is an error to call ldap_set_option() and
attempt to set a READ-ONLY option.

 int ldap_get_option(
 LDAP *ld,
 int option,
 void *outvalue
);

 int ldap_set_option(
 LDAP *ld,
 int option,
 const void *invalue
);

Parameters are as follows:

ld The session handle. If this is NULL, a set of global defaults is accessed. New
LDAP session handles created with ldap_init() or ldap_open() inherit
their characteristics from these global defaults.

option The name of the option being accessed or set. This parameter should be one of
the following constants, which have the indicated meanings. After the constant,
the actual hexadecimal value of the constant is listed in parentheses.
LDAP_OPT_DESC (0x01) Type for invalue parameter: not applic-

able (option is read-only). Type for out-
value parameter: int *

Description: The underlying socket de-
scriptor corresponding to the primary
LDAP connection. This option is read-
only and cannot be set.

LDAP_OPT_DEREF (0x02) Type for invalue parameter: int *Type
for outvalue parameter: int *

Description: Determines how alias-
es are handled during search. It can
have one of the following values:
LDAP_DEREF_NEVER (0x00),
LDAP_DEREF_SEARCHING (0x01),
LDAP_DEREF_FINDING (0x02), or
LDAP_DEREF_ALWAYS (0x03).
The LDAP_DEREF_SEARCHING
value means aliases should be derefer-

417

Chapter 14. Lightweight Directory Access Protocol (LDAP) Routines

enced during the search but not when
locating the base object of the search.
The LDAP_DEREF_FINDING value
means aliases should be dereferenced
when locating the base object but not
during the search.

LDAP_OPT_SIZELIMIT (0x03) Type for invalue parameter: int *Type
for outvalue parameter: int *

Description: A limit on the number of
entries to return from a search. A val-
ue of LDAP_NO_LIMIT (0) means no
limit.

LDAP_OPT_TIMELIMIT (0x04) Type for invalue parameter: int *Type
for outvalue parameter: int *

Description: A limit on the number of
seconds to spend on a search. A val-
ue of LDAP_NO_LIMIT (0) means no
limit.

LDAP_OPT_REFERRALS (0x08) Type for invalue parameter: int
(LDAP_OPT_ON or LDAP_OPT_OF-
F)Type for outvalue parameter: int *

Description: Determines whether the
LDAP library automatically follows
referrals returned by LDAP servers.
It can be set to one of the constants
LDAP_OPT_ON (1) or LDAP_OP-
T_OFF (0).

LDAP_OPT_RESTART (0x09) Type for invalue parameter: int
(LDAP_OPT_ON or LDAP_OPT_OF-
F)Type for outvalue parameter: int *

Description: Determines whether
LDAP I/O operations should auto-
matically be restarted if they abort
prematurely. It should be set to one
of the constants LDAP_OPT_ON or
LDAP_OPT_OFF. This option is use-
ful if an LDAP I/O operation is inter-
rupted prematurely, (for example, by a
timer going off) or other interrupt.

LDAP_OPT_PROTOCOL_VERSION
(0x11)

Type for invalue parameter: int *Type
for outvalue parameter: int *

Description: This option indicates the
version of the LDAP protocol used
when communicating with the prima-
ry LDAP server. It must be one of the
constants LDAP_VERSION2 (2) or

418

Chapter 14. Lightweight Directory Access Protocol (LDAP) Routines

LDAP_VERSION3 (3). If no version
is set, the default is LDAP_VERSION2
(2).

LDAP_OPT_SERVER_CONTROLS
(0x12)

Type for invalue parameter: LDAP-
Control **Type for outvalue parameter:
LDAPControl ***

Description: A default list of LDAP
server controls to be sent with each re-
quest. See Section 14.6 for more infor-
mation.

LDAP_OPT_CLIENT_CONTROLS
(0x13)

Type for invalue parameter: LDAP-
Control **Type for outvalue parameter:
LDAPControl ***

Description: A default list of client con-
trols that affect the LDAP session. See
Section 14.6 for more information.

LDAP_OPT_HOST_NAME (0x30) Type for invalue parameter: char *Type
for outvalue parameter: char **

Description: The host name (or list of
host) for the primary LDAP server.

LDAP_OPT_ERROR_NUMBER
(0x31)

Type for invalue parameter: int *Type
for outvalue parameter: int *

Description: The code of the most re-
cent LDAP error that occurred for this
session.

LDAP_OPT_ERROR_STRING (0x32) Type for invalue parameter: char *Type
for outvalue parameter: char **

Description: The message returned with
the most recent LDAP error that oc-
curred for this session.

outvalue The address of a place to put the value of the option. The actual type of this
parameter depends on the setting of the option parameter. For outvalues of
type char ** and LDAPControl **, a pointer to data that is associated with the
LDAP session ld is returned; callers should dispose of the memory by calling
ldap_memfree() or ldap_controls_free().

invalue A pointer to the value the option is to be given. The actual type of this parameter
depends on the setting of the option parameter. The constants LDAP_OPT_ON
and LDAP_OPT_OFF can be given for options that have on or off settings.
Both ldap_get_option() and ldap_set_option() return 0 if success-
ful and -1 if an error occurs.

14.6. Working with Controls
LDAPv3 operations can be extended through the use of controls. Controls may be sent to a server or
returned to the client with any LDAP message. These controls are referred to as server controls.

419

Chapter 14. Lightweight Directory Access Protocol (LDAP) Routines

The LDAP API also supports a client-side extension mechanism through the use of client controls.
These controls affect the behavior of the LDAP API only and are never sent to a server. A common
data structure is used to represent both types of controls:

 typedef struct ldapcontrol {
 char *ldctl_oid;
 struct berval ldctl_value;
 char ldctl_iscritical;
 } LDAPControl, *PLDAPControl;

The fields in the ldapcontrol structure have the following meanings:

ldctl_oid The control type, represented as a string.
ldctl_value The data associated with the control (if any). To specify a ze-

ro-length value, set ldctl_value.bv_len to zero and ldctl_value.b-
v_val to a zero-length string. To indicate that no data is associated
with the control, set ldctl_value.bv_val to NULL.

ldctl_iscritical Indicates whether the control is critical or not. If this field is non-
zero, the operation will only be carried out if the control is recog-
nized by the server and/or client.

Some LDAP API calls allocate an ldapcontrol structure or a NULL-terminated array of ldapcontrol
structures. The following functions can be used to dispose of a single control or an array of controls:

 void ldap_control_free(LDAPControl *ctrl);

 void ldap_controls_free(LDAPControl **ctrls);

A set of controls that affect the entire session can be set using the ldap_set_option() function.
A list of controls can also be passed directly to some LDAP API calls, such as ldap_search_ex-
t(), in which case any controls set for the session through the use of ldap_set_option() are
ignored. Control lists are represented as a NULL-terminated array of pointers to ldapcontrol struc-
tures.

Server controls are defined by LDAPv3 protocol extension documents; for example, a control has
been proposed to support paging of search results. No client controls are currently implemented in this
version of the API.

14.7. Authenticating to the Directory
The following functions are used to authenticate an LDAP client to an LDAP directory server.

The ldap_sasl_bind() and ldap_sasl_bind_s() functions can be used to do general and
extensible authentication over LDAP through the use of the Simple Authentication Security Layer.
The functions both take the DN to bind as, the method to use, as a dotted-string representation of an
OID identifying the method, and a struct berval holding the credentials. The special constant value
LDAP_SASL_SIMPLE (NULL) can be passed to request simple authentication, or the simplified
functions ldap_simple_bind() or ldap_simple_bind_s() can be used.

 int ldap_sasl_bind(
 LDAP *ld,
 const char *dn,
 const char *mechanism,

420

Chapter 14. Lightweight Directory Access Protocol (LDAP) Routines

 const struct berval *cred,
 LDAPControl **serverctrls,
 LDAPControl **clientctrls,
 int *msgidp
);

 int ldap_sasl_bind_s(
 LDAP *ld,
 const char *dn,
 const char *mechanism,
 const struct berval *cred,
 LDAPControl **serverctrls,
 LDAPControl **clientctrls,
 struct berval **servercredp
);

 int ldap_simple_bind(
 LDAP *ld,
 const char *dn,
 const char *passwd
);

 int ldap_simple_bind_s(
 LDAP *ld,
 const char *dn,
 const char *passwd
);

The use of the following functions is deprecated:

 int ldap_bind(LDAP *ld, char *dn, char *cred, int method);

 int ldap_bind_s(LDAP *ld, char *dn, char *cred, int method);

Parameters are as follows:

ld The session handle.
dn The name of the entry to bind as.
mechanism Either LDAP_SASL_SIMPLE (NULL) to get simple authentica-

tion, or a text string identifying the SASL method.
cred The credentials with which to authenticate. Arbitrary credentials

can be passed using this parameter. The format and content of the
credentials depends on the setting of the mechanism parameter.

passwd For ldap_simple_bind(), the password to compare to the en-
try's user Password attribute.

serverctrls List of LDAP server controls.
clientctrls List of client controls.
msgidp This result parameter will be set to the message id of the request if

the ldap_sasl_bind() call succeeds.
servercredp This result parameter will be filled in with the credentials passed

back by the server for mutual authentication, if given. An allocat-
ed berval structure is returned that should be disposed of by calling
ber_bvfree(). NULL may be passed to ignore this field.

421

Chapter 14. Lightweight Directory Access Protocol (LDAP) Routines

Additional parameters for the deprecated functions are not described. See the RFC 1823 documenta-
tion for more information.

The ldap_sasl_bind() function initiates an asynchronous bind operation and returns the con-
stant LDAP_SUCCESS if the request was successfully sent or another LDAP error code if not. See
Section 14.18 for more information about possible errors and how to interpret them. If success-
ful, ldap_sasl_bind() places the message id of the request in *msgidp. A subsequent call to
ldap_result() can be used to obtain the result of the bind.

The ldap_simple_bind() function initiates a simple asynchronous bind operation and returns
the message id of the operation initiated. A subsequent call to ldap_result() can be used to ob-
tain the result of the bind. In case of error, ldap_simple_bind() will return -1, setting the ses-
sion error parameters in the LDAP structure appropriately.

The synchronous ldap_sasl_bind_s() and ldap_simple_bind_s() functions both return
the result of the operation, either the constant LDAP_SUCCESS if the operation was successful, or
another LDAP error code if it was not. See Section 14.18 for more information about possible errors
and how to interpret them.

Note that if an LDAP Version 2 server is contacted, no other operations over the connection should be
attempted before a bind call has successfully completed.

Subsequent bind calls can be used to reauthenticate over the same connection, and multistep
SASL sequences can be accomplished through a sequence of calls to ldap_sasl_bind() or
ldap_sasl_bind_s().

14.8. Closing the Session
The following functions are used to unbind from the directory, close the connection, and dispose of
the session handle.

 int ldap_unbind(LDAP *ld);
 int ldap_unbind_s(LDAP *ld);

Parameter is as follows:

ld The session handle.

The ldap_unbind() and ldap_unbind_s() functions both work synchronously, unbinding
from the directory, closing the connection, and freeing up the ld structure before returning. There is
no server response to an unbind operation. The ldap_unbind() function returns LDAP_SUC-
CESS (or another LDAP error code if the request cannot be sent to the LDAP server). After a call to
ldap_unbind() or ldap_unbind_s(), the session handle ld is invalid and it is illegal to make
any further LDAP API calls using ld.

14.9. Searching
The following functions are used to search the LDAP directory, returning a requested set of attributes
for each entry matched. There are five variations.

 int ldap_search_ext(
 LDAP *ld,
 const char *base,
 int scope,
 const char *filter,

422

Chapter 14. Lightweight Directory Access Protocol (LDAP) Routines

 char **attrs,
 int attrsonly,
 LDAPControl **serverctrls,
 LDAPControl **clientctrls,
 struct timeval *timeout,
 int sizelimit,
 int *msgidp
);

 int ldap_search_ext_s(
 LDAP *ld,
 const char *base,
 int scope,
 const char *filter,
 char **attrs,
 int attrsonly,
 LDAPControl **serverctrls,
 LDAPControl **clientctrls,
 struct timeval *timeout,
 int sizelimit,
 LDAPMessage **res
);

 int ldap_search(
 LDAP *ld,
 const char *base,
 int scope,
 const char *filter,
 char **attrs,
 int attrsonly
);

 int ldap_search_s(
 LDAP *ld,
 const char *base,
 int scope,
 const char *filter,
 char **attrs,
 int attrsonly,
 LDAPMessage **res
);

 int ldap_search_st(
 LDAP *ld,
 char *base,
 int scope,
 char *filter,
 char **attrs,
 int attrsonly,
 struct timeval *timeout,
 LDAPMessage **res
);

Parameters are as follows:

ld The session handle.
base The dn of the entry at which to start the search.

423

Chapter 14. Lightweight Directory Access Protocol (LDAP) Routines

scope One of LDAP_SCOPE_BASE (0x00), LDAP_SCOPE_ONELEV-
EL (0x01), or LDAP_SCOPE_SUBTREE (0x02), indicating the
scope of the search.

filter A character string representing the search filter. The value NULL
can be passed to indicate that the filter (objectclass=*) that matches
all entries should be used.

attrs A NULL-terminated array of strings indicating which attributes
to return for each matching entry. Passing NULL for this parame-
ter causes all available user attributes to be retrieved. The special
constant string LDAP_NO_ATTRS (1.1) can be used as the on-
ly element in the array to indicate that no attribute types should
be returned by the server. The special constant string LDAP_AL-
L_USER_ATTRS (*), can be used in the attrs array along with the
names of some operational attributes to indicate that all user attrib-
utes plus the listed operational attributes should be returned.

attrsonly A boolean value that should be either zero if both attribute types
and values are to be returned or non-zero if only types are wanted.

timeout For the ldap_search_st() function, this specifies the local
search timeout value (if it is NULL, the timeout is infinite). For the
ldap_search_ext() and ldap_search_ext_s() func-
tions, this specifies both the local search timeout value and the op-
eration time limit that is sent to the server within the search re-
quest. For the ldap_search_ext() and ldap_search_ex-
t_s() functions, passing a NULL value for timeout causes the
global default timeout stored in the LDAP session handle to be
used (set using ldap_set_option() with the LDAP_OP-
T_TIMELIMIT parameter).

sizelimit For the ldap_search_ext() and ldap_search_ext_s()
calls, this is a limit on the number of entries to return from the
search. A value of LDAP_NO_LIMIT (0) means no limit.

res For the synchronous calls, this is a result parameter which will
contain the results of the search upon completion of the call.

serverctrls List of LDAP server controls.
clientctrls List of client controls.
msgidp This result parameter will be set to the message id of the request if

the ldap_search_ext() call succeeds.

There are three options in the session handle ld that potentially affect how the search is performed.
They are as follows:

LDAP_OPT_SIZELIMIT A limit on the number of entries to return from
the search. A value of LDAP_NO_LIMIT
(0) means no limit. Note that the value
from the session handle is ignored when
using the ldap_search_ext() or
ldap_search_ext_s() functions.

LDAP_OPT_TIMELIMIT A limit on the number of seconds to spend
on the search. A value of LDAP_NO_LIMIT
(0) means no limit. Note that the value

424

Chapter 14. Lightweight Directory Access Protocol (LDAP) Routines

from the session handle is ignored when
using the ldap_search_ext() or
ldap_search_ext_s() functions.

LDAP_OPT_DEREF One of LDAP_DEREF_NEVER(0x00),
LDAP_DEREF_SEARCHING(0x01),
LDAP_DEREF_FINDING (0x02), or
LDAP_DEREF_ALWAYS (0x03), specify-
ing how aliases should be handled during the
search. The LDAP_DEREF_SEARCHING val-
ue means aliases should be dereferenced during
the search but not when locating the base object
of the search. The LDAP_DEREF_FINDING val-
ue means aliases should be dereferenced when lo-
cating the base object but not during the search.

The ldap_search_ext() function initiates an asynchronous search operation and returns either
the constant LDAP_SUCCESS if the request was successfully sent or another LDAP error code if not.
See Section 14.18 for more information about possible errors and how to interpret them. If success-
ful, ldap_search_ext() places the message id of the request in *msgidp. A subsequent call to
ldap_result() can be used to obtain the results from the search. These results can be parsed us-
ing the result parsing functions described in Section 14.18.

Similar to ldap_search_ext(), the ldap_search() function initiates an asynchronous search
operation and returns the message id of the operation initiated. As for ldap_search_ext(), a
subsequent call to ldap_result() can be used to obtain the result of the search. In case of error,
ldap_search() will return -1, setting the session error parameters in the LDAP structure appropri-
ately.

The synchronous ldap_search_ext_s(), ldap_search_s(), and ldap_search_st()
functions all return the result of the operation, either the constant LDAP_SUCCESS if the opera-
tion was successful or another LDAP error code if it was not. See Section 14.18 for more informa-
tion about possible errors and how to interpret them. Entries returned from the search (if any) are
contained in the res parameter. This parameter is opaque to the caller. Entries, attributes, and values
should be extracted by calling the parsing functions. The results contained in res should be freed when
no longer in use by calling ldap_msgfree().

The ldap_search_ext() and ldap_search_ext_s() functions support LDAPv3 server
controls, client controls, and allow varying size and time limits to be easily specified for each search
operation. The ldap_search_st() function is identical to ldap_search_s() except that it
takes an additional parameter specifying a local timeout for the search. The local search timeout is
used to limit the amount of time the API implementation will wait for a search to complete. After the
local search timeout the search operation will return LDAP_TIMEOUT if the search result has not
been removed.

14.9.1. Reading and Listing the Children of an Entry
LDAP does not support a read operation directly. Instead, this operation is emulated by a search with
base set to the DN of the entry to read, scope set to LDAP_SCOPE_BASE, and filter set to "(object-
class=*)" or NULL. The attrs parameter contains the list of attributes to return.

LDAP does not support a list operation directly. Instead, this operation is emulated by a search with
base set to the DN of the entry to list, scope set to LDAP_SCOPE_ONELEVEL, and filter set to "(ob-
jectclass=*)" or NULL. The attrs parameter contains the list of attributes to return for each child entry.

425

Chapter 14. Lightweight Directory Access Protocol (LDAP) Routines

14.10. Comparing a Value Against an Entry
The following functions are used to compare a given attribute value assertion against an LDAP entry.
There are four variations.

 int ldap_compare_ext(
 LDAP *ld,
 const char *dn,
 const char *attr,
 const struct berval *bvalue
 LDAPControl **serverctrls,
 LDAPControl **clientctrls,
 int *msgidp
);

 int ldap_compare_ext_s(
 LDAP *ld,
 const char *dn,
 const char *attr,
 const struct berval *bvalue,
 LDAPControl **serverctrls,
 LDAPControl **clientctrls
);

 int ldap_compare(
 LDAP *ld,
 const char *dn,
 const char *attr,
 const char *value
);

 int ldap_compare_s(
 LDAP *ld,
 const char *dn,
 const char *attr,
 const char *value
);

Parameters are as follows:

ld The session handle.
dn The name of the entry to compare against.
attr The attribute to compare against.
bvalue The attribute value to compare against those found in the given en-

try. This parameter is used in the extended functions and is a point-
er to a struct berval so it is possible to compare binary values.

value A string attribute value to compare against, used by the
ldap_compare() and ldap_compare_s() functions. Use
ldap_compare_ext() or ldap_compare_ext_s() if you
need to compare binary values.

serverctrls List of LDAP server controls.

426

Chapter 14. Lightweight Directory Access Protocol (LDAP) Routines

clientctrls List of client controls.
msgidp This result parameter will be set to the message id of the request if

the ldap_compare_ext() call succeeds.

The ldap_compare_ext() function initiates an asynchronous compare operation and returns ei-
ther the constant LDAP_SUCCESS if the request was successfully sent, or another LDAP error code
if not. See Section 14.18 for more information about possible errors and how to interpret them. If suc-
cessful, ldap_compare_ext() places the message id of the request in *msgidp. A subsequent call
to ldap_result() can be used to obtain the result of the compare.

Similar to ldap_compare_ext(), the ldap_compare() function initiates an asynchro-
nous compare operation and returns the message id of the operation initiated. As for ldap_com-
pare_ext(), a subsequent call to ldap_result() can be used to obtain the result of the com-
pare. In case of error, ldap_compare() will return -1, setting the session error parameters in the
LDAP structure appropriately.

The synchronous ldap_compare_ext_s() and ldap_compare_s() functions both re-
turn the result of the operation, either the constants LDAP_COMPARE_TRUE or LDAP_COM-
PARE_FALSE if the operation was successful, or another LDAP error code if it was not. See Sec-
tion 14.18 for more information about possible errors and how to interpret them.

The ldap_compare_ext() and ldap_compare_ext_s() functions support LDAPv3 server
controls and client controls.

14.11. Modifying an Entry
The following functions are used to modify an existing LDAP entry. There are four variations.

 typedef struct ldapmod {
 int mod_op;
 char *mod_type;
 union {
 char **modv_strvals;
 struct berval **modv_bvals;
 } mod_vals;
 } LDAPMod;
 #define mod_values mod_vals.modv_strvals
 #define mod_bvalues mod_vals.modv_bvals

 int ldap_modify_ext(
 LDAP *ld,
 const char *dn,
 LDAPMod **mods,
 LDAPControl **serverctrls,
 LDAPControl **clientctrls,
 int *msgidp
);

 int ldap_modify_ext_s(
 LDAP *ld,
 const char *dn,
 LDAPMod **mods,
 LDAPControl **serverctrls,
 LDAPControl **clientctrls

427

Chapter 14. Lightweight Directory Access Protocol (LDAP) Routines

);

 int ldap_modify(
 LDAP *ld,
 const char *dn,
 LDAPMod **mods
);

 int ldap_modify_s(
 LDAP *ld,
 const char *dn,
 LDAPMod **mods
);

Parameters are as follows:

ld The session handle.
dn The name of the entry to modify.
mods A NULL-terminated array of modifications to make to the entry.
serverctrls List of LDAP server controls.
clientctrls List of client controls.
msgidp This result parameter will be set to the message id of the request if

the ldap_modify_ext() call succeeds.

The fields in the LDAPMod structure have the following meanings:

mod_op The modification operation to perform. It should be one of
LDAP_MOD_ADD(0x00), LDAP_MOD_DELETE (0x01), or
LDAP_MOD_REPLACE(0x02). This field also indicates the type
of values included in the mod_vals union. It is logically ORed with
LDAP_MOD_BVALUES (0x80) to select the mod_bvalues form.
Otherwise, the mod_values form is used.

mod_type The type of the attribute to modify.
mod_vals The values (if any) to add, delete, or replace. Only one of the

mod_values or mod_bvalues variants should be used, selected by
ORing the mod_op field with the constant LDAP_MOD_BVAL-
UES. The mod_values field is a NULL-terminated array of ze-
ro-terminated strings and mod_bvalues is a NULL- terminated ar-
ray of berval structures that can be used to pass binary values such
as images.

For LDAP_MOD_ADD modifications, the given values are added to the entry, creating the attribute if
necessary.

For LDAP_MOD_DELETE modifications, the given values are deleted from the entry, removing the
attribute if no values remain. If the entire attribute is to be deleted, the mod_vals field should be set to
NULL.

For LDAP_MOD_REPLACE modifications, the attribute will have the listed values after the modifi-
cation, having been created if necessary, or removed if the mod_vals field is NULL. All modifications
are performed in the order in which they are listed.

428

Chapter 14. Lightweight Directory Access Protocol (LDAP) Routines

The ldap_modify_ext() function initiates an asynchronous modify operation and returns the
constant LDAP_SUCCESS if the request was successfully sent, or another LDAP error code if not.
See Section 14.18 for more information about possible errors and how to interpret them. If success-
ful, ldap_modify_ext() places the message id of the request in *msgidp. A subsequent call to
ldap_result() can be used to obtain the result of the modify.

Similar to ldap_modify_ext(), the ldap_modify() function initiates an asynchronous mod-
ify operation and returns the message id of the operation initiated. As for ldap_modify_ext(), a
subsequent call to ldap_result() can be used to obtain the result of the modify. In case of error,
ldap_modify() will return -1, setting the session error parameters in the LDAP structure appropri-
ately.

The synchronous ldap_modify_ext_s() and ldap_modify_s() functions both return the re-
sult of the operation, either the constant LDAP_SUCCESS if the operation was successful, or another
LDAP error code if it was not.

See Section 14.18 for more information about possible errors and how to interpret them.

The ldap_modify_ext() and ldap_modify_ext_s() functions support LDAPv3 server
controls and client controls.

14.12. Modifying the Name of an Entry
In LDAP Version 2, the ldap_modrdn() and ldap_modrdn_s() functions were used to change
the name of an LDAP entry. They could only be used to change the least significant component
of a name (the RDN or relative distinguished name). LDAPv3 provides the Modify DN protocol
operation that allows more general name change access. The ldap_rename() and ldap_re-
name_s() functions are used to change the name of an entry, and the use of the ldap_modrdn()
and ldap_modrdn_s() functions is deprecated.

 int ldap_rename(
 LDAP *ld,
 const char *dn,
 const char *newrdn,
 const char *newparent,
 int deleteoldrdn,
 LDAPControl **serverctrls,
 LDAPControl **clientctrls,
 int *msgidp
);

 int ldap_rename_s(
 LDAP *ld,
 const char *dn,
 const char *newrdn,
 const char *newparent,
 int deleteoldrdn,
 LDAPControl **serverctrls,
 LDAPControl **clientctrls
);

Use of the following functions is deprecated.

 int ldap_modrdn(
 LDAP *ld,

429

Chapter 14. Lightweight Directory Access Protocol (LDAP) Routines

 char *dn,
 char *newrdn,
 int deleteoldrdn
);

 int ldap_modrdn_s(
 LDAP *ld,
 char *dn,
 char *newrdn,
 int deleteoldrdn
);

Parameters are as follows:

ld The session handle.
dn The name of the entry whose DN is to be changed.
newrdn The new RDN to give the entry.
newparent The new parent, or superior entry. If this parameter is NULL, on-

ly the RDN of the entry is changed. The root DN may be speci-
fied by passing a zero length string, "". The newparent parameter
should always be NULL when using Version 2 of the LDAP proto-
col; otherwise the server's behavior is undefined.

deleteoldrdn This parameter only has meaning on the rename functions if
newrdn is different than the old RDN. It is a boolean value. If it
is non-zero, it indicates that the old RDN value(s) should be re-
moved. If it is zero, it indicates that the old RDN value(s) should
be retained as non-distinguished values of the entry.

serverctrls List of LDAP server controls.
clientctrls List of client controls.
msgidp This result parameter will be set to the message id of the request if

the ldap_rename() call succeeds.

The ldap_rename() function initiates an asynchronous modify DN operation and returns the
constant LDAP_SUCCESS if the request was successfully sent, or another LDAP error code if not.
See Section 14.18 for more information about possible errors and how to interpret them. If success-
ful, ldap_rename() places the DN message id of the request in *msgidp. A subsequent call to
ldap_result() can be used to obtain the result of the rename.

The synchronous ldap_rename_s() returns the result of the operation, either the constant
LDAP_SUCCESS if the operation was successful, or another LDAP error code if it was not. See Sec-
tion 14.18 for more information about possible errors and how to interpret them.

The ldap_rename() and ldap_rename_s() functions both support LDAPv3 server controls
and client controls.

14.13. Adding an Entry
The following functions are used to add entries to the LDAP directory. There are four variations.

 int ldap_add_ext(

430

Chapter 14. Lightweight Directory Access Protocol (LDAP) Routines

 LDAP *ld,
 const char *dn,
 LDAPMod **attrs,
 LDAPControl **serverctrls,
 LDAPControl **clientctrls,
 int *msgidp
);

 int ldap_add_ext_s(
 LDAP *ld,
 const char *dn,
 LDAPMod **attrs,
 LDAPControl **serverctrls,
 LDAPControl **clientctrls
);

 int ldap_add(
 LDAP *ld,
 const char *dn,
 LDAPMod **attrs
);

 int ldap_add_s(
 LDAP *ld,
 const char *dn,
 LDAPMod **attrs
);

Parameters are as follows:

ld The session handle.
dn The name of the entry to add.
attrs The entry's attributes, specified using the LDAPMod structure de-

fined for ldap_modify(). The mod_type and mod_vals fields
should be filled in. The mod_op field is ignored unless ORed with
the constant LDAP_MOD_BVALUES, used to select the mod_b-
values case of the mod_vals union.

serverctrls List of LDAP server controls.
clientctrls List of client controls.
msgidp This result parameter will be set to the message id of the request if

the ldap_add_ext() call succeeds.

Note that the parent of the entry being added must already exist or the parent must be empty (that is,
equal to the root DN) for an add to succeed.

The ldap_add_ext() function initiates an asynchronous add operation and returns either the
constant LDAP_SUCCESS if the request was successfully sent or another LDAP error code if not.
See Section 14.18 for more information about possible errors and how to interpret them. If suc-
cessful, ldap_add_ext() places the message id of the request in *msgidp. A subsequent call to
ldap_result() can be used to obtain the result of the add.

Similar to ldap_add_ext() , the ldap_add() function initiates an asynchronous add operation
and returns the message id of the operation initiated. As for ldap_add_ext() , a subsequent call to

431

Chapter 14. Lightweight Directory Access Protocol (LDAP) Routines

ldap_result() can be used to obtain the result of the add. In case of error, ldap_add() will re-
turn -1, setting the session error parameters in the LDAP structure appropriately.

The synchronous ldap_add_ext_s() and ldap_add_s() functions both return the result of the
operation, either the constant LDAP_SUCCESS if the operation was successful, or another LDAP er-
ror code if it was not. See Section 14.18 for more information about possible errors and how to inter-
pret them.

The ldap_add_ext() and ldap_add_ext_s() functions support LDAPv3 server controls and
client controls.

14.14. Deleting an Entry
The following functions are used to delete a leaf entry from the LDAP directory. There are four varia-
tions.

 int ldap_delete_ext(
 LDAP *ld,
 const char *dn,
 LDAPControl **serverctrls,
 LDAPControl **clientctrls,
 int *msgidp
);

 int ldap_delete_ext_s(
 LDAP *ld,
 const char *dn,
 LDAPControl **serverctrls,
 LDAPControl **clientctrls
);

 int ldap_delete(
 LDAP *ld,
 const char *dn
);

 int ldap_delete_s(
 LDAP *ld,
 const char *dn
);

Parameters are as follows:

ld The session handle.
dn The name of the entry to delete.
serverctrls List of LDAP server controls.
clientctrls List of client controls.
msgidp This result parameter will be set to the message id of the request if

the ldap_delete_ext() call succeeds.

Note that the entry to delete must be a leaf entry (that is, it must have no children). Deletion of entire
subtrees in a single operation is not supported by LDAP.

432

Chapter 14. Lightweight Directory Access Protocol (LDAP) Routines

The ldap_delete_ext() function initiates an asynchronous delete operation and returns either
the constant LDAP_SUCCESS if the request was successfully sent or another LDAP error code if not.
See Section 14.18 for more information about possible errors and how to interpret them. If success-
ful, ldap_delete_ext() places the message id of the request in *msgidp. A subsequent call to
ldap_result() can be used to obtain the result of the delete.

Similar to ldap_delete_ext() , the ldap_delete() function initiates an asynchronous delete
operation and returns the message id of the operation initiated. As for ldap_delete_ext() , a
subsequent call to ldap_result() can be used to obtain the result of the delete. In case of error,
ldap_delete() will return -1, setting the session error parameters in the LDAP structure appropri-
ately.

The synchronous ldap_delete_ext_s() and ldap_delete_s() functions both return the re-
sult of the operation, either the constant LDAP_SUCCESS if the operation was successful or another
LDAP error code if it was not. See Section 14.18 for more information about possible errors and how
to interpret them.

The ldap_delete_ext() and ldap_delete_ext_s() functions support LDAPv3 server
controls and client controls.

14.15. Extended Operations
The ldap_extended_operation() and ldap_extended_operation_s() functions al-
low extended LDAP operations to be passed to the server, providing a general protocol extensibility
mechanism.

 int ldap_extended_operation(
 LDAP *ld,
 const char *requestoid,
 const struct berval *request data,
 LDAPControl **serverctrls,
 LDAPControl **clientctrls,
 int *msgidp
);

 int ldap_extended_operation_s(
 LDAP *ld,
 const char *requestoid,
 const struct berval *request data,
 LDAPControl **serverctrls,
 LDAPControl **clientctrls,
 char **retoidp,
 struct berval **retdatap
);

Parameters are as follows:

ld The session handle.
requestoid The dotted-OID text string naming the request.
requestdata The arbitrary data required by the operation (if NULL, no data is

sent to the server).
serverctrls List of LDAP server controls.

433

Chapter 14. Lightweight Directory Access Protocol (LDAP) Routines

clientctrls List of client controls.
msgidp This result parameter will be set to the message id of the request if

the ldap_extended_operation() call succeeds.
retoidp Pointer to a character string that will be set to an allocated, dotted-

OID text string returned by the server. This string should be dis-
posed of using the ldap_memfree() function. If no OID was
returned, *retoidp is set to NULL.

retdatap Pointer to a berval structure pointer that will be set to an allocated
copy of the data returned by the server. This struct berval should
be disposed of using ber_bvfree(). If no data is returned, *retdatap
is set to NULL.

The ldap_extended_operation() function initiates an asynchronous extended operation and
returns either the constant LDAP_SUCCESS if the request was successfully sent or another LDAP
error code if not. See Section 14.18 for more information about possible errors and how to interpret
them. If successful, ldap_extended_operation() places the message id of the request in *ms-
gidp. A subsequent call to ldap_result() can be used to obtain the result of the extended opera-
tion which can be passed to ldap_parse_extended_result() to obtain the OID and data contained in the
response.

The synchronous ldap_extended_operation_s() function returns the result of the operation,
either the constant LDAP_SUCCESS if the operation was successful or another LDAP error code if it
was not. See Section 14.18 for more information about possible errors and how to interpret them. The
retoid and retdata parameters are filled in with the OID and data from the response. If no OID or data
was returned, these parameters are set to NULL.

The ldap_extended_operation() and ldap_extended_operation_s() functions both
support LDAPv3 server controls and client controls.

14.16. Abandoning an Operation
The following calls are used to abandon an operation in progress:

 int ldap_abandon_ext(
 LDAP *ld,
 int msgid,
 LDAPControl **serverctrls,
 LDAPControl **clientctrls
);

 int ldap_abandon(
 LDAP *ld,
 int msgid
);

Parameters are as follows:

ld The session handle.
msgid The message id of the request to be abandoned.
serverctrls List of LDAP server controls.
clientctrls List of client controls.

434

Chapter 14. Lightweight Directory Access Protocol (LDAP) Routines

The ldap_abandon_ext() function abandons the operation with message id msgid and returns either the
constant LDAP_SUCCESS if the abandon was successful or another LDAP error code if not. See Sec-
tion 14.18 for more information about possible errors and how to interpret them.

The ldap_abandon() function is identical to ldap_abandon_ext() except that it does not accept client
or server controls and it returns zero if the abandon was successful, -1 otherwise and does not support
LDAPv3 server controls or client controls.

After a successful call to ldap_abandon() or ldap_abandon_ext() , results with the given message
id are never returned from a subsequent call to ldap_result() . There is no server response to
LDAP abandon operations.

14.17. Obtaining Results and Looking Inside
LDAP Messages
The ldap_result() function is used to obtain the result of a previous asynchronously initiated
operation. Note that depending on how it is called, ldap_result() may actually return a list or
"chain" of result messages. Once a chain of messages has been returned to the caller, it is no longer
tied in any caller-visible way to the LDAP request that produced it. Therefore, a chain of messages re-
turned by calling ldap_result() or by calling a synchronous search function will never be affect-
ed by subsequent LDAP API calls (except for ldap_msgfree() , which is used to dispose of a chain of
messages).

The ldap_msgfree() function frees the result messages (possibly an entire chain of messages) obtained
from a previous call to ldap_result() or from a call to a synchronous search function.

The ldap_msgtype() function returns the type of an LDAP message. The ldap_msgid() function re-
turns the message ID of an LDAP message.

 int ldap_result(
 LDAP *ld,
 int msgid,
 int all,
 struct timeval *timeout,
 LDAPMessage **res
);

 int ldap_msgfree(LDAPMessage *res);

 int ldap_msgtype(LDAPMessage *res);

 int ldap_msgid(LDAPMessage *res);

Parameters are as follows:

ld The session handle.
msgid The message id of the operation whose results are to be returned,

or the constant LDAP_RES_ANY (-1) if any result is desired.
all Specifies how many messages will be retrieved in a single call to

ldap_result() . This parameter only has meaning for search
results. Pass the constant LDAP_MSG_ONE (0x00) to retrieve
one message at a time. Pass LDAP_MSG_ALL (0x01) to request
that all results of a search be received before returning all results

435

Chapter 14. Lightweight Directory Access Protocol (LDAP) Routines

in a single chain. Pass LDAP_MSG_RECEIVED (0x02) to indi-
cate that all results retrieved so far should be returned in the result
chain.

timeout A timeout specifying how long to wait for results to be returned. A
NULL value causes ldap_result() to block until results are
available. A timeout value of zero seconds specifies a polling be-
havior.

res For ldap_result() , a result parameter that will contain the
result(s) of the operation. For ldap_msgfree() , the result chain to
be freed, obtained from a previous call to ldap_result() ,
ldap_search_s() , or ldap_search_st() .

Upon successful completion, ldap_result() returns the type of the first result returned in the res
parameter. This will be one of the following constants.

 LDAP_RES_BIND (0x61)

 LDAP_RES_SEARCH_ENTRY (0x64)

 LDAP_RES_SEARCH_REFERENCE (0x73) -- new in LDAPv3

 LDAP_RES_SEARCH_RESULT (0x65)

 LDAP_RES_MODIFY (0x67)

 LDAP_RES_ADD (0x69)

 LDAP_RES_DELETE (0x6B)

 LDAP_RES_MODDN (0x6D)

 LDAP_RES_COMPARE (0x6F)

 LDAP_RES_EXTENDED (0x78) -- new in LDAPv3

The ldap_result() function returns 0 if the timeout expired and -1 if an error occurs, in which
case the error parameters of the LDAP session handle will be set accordingly.

The ldap_msgfree() function frees the result structure pointed to by res and returns the type of the
message it freed.

The ldap_msgtype() function returns the type of the LDAP message it is passed as a parameter. The
type will be one of the types listed above, or -1 on error.

The ldap_msgid() function returns the message ID associated with the LDAP message passed as a pa-
rameter.

14.18. Handling Errors and Parsing Results
The following calls are used to extract information from results and handle errors returned by other
LDAP API functions. Note that ldap_parse_sasl_bind_result() and ldap_parse_extended_result() must
typically be used in addition to ldap_parse_result() to retrieve all the result information from SASL
bind and extended operations, respectively.

 int ldap_parse_result(

436

Chapter 14. Lightweight Directory Access Protocol (LDAP) Routines

 LDAP *ld,
 LDAPMessage *res,
 int *errcodep,
 char **matcheddnp,
 char **errmsgp,
 char ***referralsp,
 LDAPControl ***serverctrlsp,
 int freeit
);

 int ldap_parse_sasl_bind_result(
 LDAP *ld,
 LDAPMessage *res,
 struct berval **servercredp,
 int freeit
);

 int ldap_parse_extended_result(
 LDAP *ld,
 LDAPMessage *res,
 char **resultoidp,
 struct berval **resultdata,
 int freeit
);

 char *ldap_err2string(int err);

The use of the following functions is deprecated.

 int ldap_result2error(
 LDAP *ld,
 LDAPMessage *res,
 int freeit
);

 void ldap_perror(LDAP *ld, const char *msg);

Parameters are as follows:

ld The session handle.
res The result of an LDAP operation as returned by ldap_re-

sult() or one of the synchronous API operation calls.
errcodep This result parameter will be filled in with the LDAP error code

field from the LDAPMessage result. This is the indication from the
server of the outcome of the operation. NULL may be passed to ig-
nore this field.

matcheddnp In the case of a return of LDAP_NO_SUCH_OBJECT, this result
parameter will be filled in with a DN indicating how much of the
name in the request was recognized. NULL may be passed to ig-
nore this field. The matched DN string should be freed by calling
ldap_memfree() .

errmsgp This result parameter will be filled in with the contents of the error
message field from the LDAPMessage result. The error message
string should be freed by calling ldap_memfree() . NULL may
be passed to ignore this field.

437

Chapter 14. Lightweight Directory Access Protocol (LDAP) Routines

referralsp This result parameter will be filled in with the contents of the re-
ferrals field from the LDAPMessage result, indicating zero or
more alternate LDAP servers where the request should be retried.
The referrals array should be freed by calling ldap_value_free() .
NULL may be passed to ignore this field.

serverctrlsp This result parameter will be filled in with an allocated array of
controls copied out of the LDAPMessage result. The control array
should be freed by calling ldap_controls_free() .

freeit A boolean that determines whether or not the res parameter is dis-
posed of. Pass any non-zero value to have these functions free res
after extracting the requested information. This option is provided
as a convenience; you can also use ldap_msgfree() to free the re-
sult later. If freeit is non-zero, the entire chain of messages repre-
sented by res is disposed of.

servercredp For SASL bind results, this result parameter will be filled in with
the credentials passed back by the server for mutual authentication,
if given. An allocated berval structure is returned that should be
disposed of by calling ber_bvfree(). NULL may be passed to ig-
nore this field.

resultoidp For extended results, this result parameter will be filled in with
the dotted-OID text representation of the name of the extended
operation response. This string should be disposed of by calling
ldap_memfree() . NULL may be passed to ignore this field.

resultdatap For extended results, this result parameter will be filled in with a
pointer to a struct berval containing the data in the extended oper-
ation response. It should be disposed of by calling ber_bvfree().
NULL may be passed to ignore this field.

err For ldap_err2string() , an LDAP error code, as returned by
ldap_parse_result() or another LDAP API call.

Additional parameters for the deprecated functions are not described. See RFC 1823 for more infor-
mation.

All three of the ldap_parse_*_result() functions skip over messages of type
LDAP_RES_SEARCH_ENTRY and LDAP_RES_SEARCH_REFERENCE when looking for a re-
sult message to parse. They return either the constant LDAP_SUCCESS if the result was successfully
parsed or another LDAP error code if not. Note that the LDAP error code that indicates the outcome
of the operation performed by the server is placed in the errcodep ldap_parse_result() parameter. If
a chain of messages that contains more than one result message is passed to these functions, they al-
ways operate on the first result in the chain.

The ldap_err2string() function is used to convert a numeric LDAP error code, as returned by either
one of the three ldap_parse_*_result() functions or one of the synchronous API operation calls, into an
informative zero-terminated character string message describing the error. It returns a pointer to static
data.

14.18.1. Stepping Through a List of Results
The ldap_first_message() and ldap_next_message() functions are used to step through the list of mes-
sages in a result chain returned by ldap_result() . For search operations, the result chain may

438

Chapter 14. Lightweight Directory Access Protocol (LDAP) Routines

actually include referral messages, entry messages, and result messages. The ldap_count_messages()
function is used to count the number of messages returned. The ldap_msgtype() function can be used
to distinguish between the different message types.

 LDAPMessage *ldap_first_message(LDAP *ld, LDAPMessage *res);
 LDAPMessage *ldap_next_message (LDAP *ld, LDAPMesage *msg);
 int ldap_count_messages(LDAP *ld, LDAPMessage *res);

Parameters are as follows:

ld The session handle.
res The result chain, as obtained by a call to one of the synchronous

search functions or ldap_result() .
msg The message returned by a previous call to ldap_first_message() or

ldap_next_message() .

The ldap_first_message() and ldap_next_message() functions will return NULL when no more mes-
sages exist in the result set to be returned. NULL is also returned if an error occurs while stepping
through the entries, in which case the error parameters in the session handle ld will be set to indicate
the error.

The ldap_count_messages() function returns the number of messages contained in a chain of re-
sults. It can also be used to count the number of messages that remain in a chain if called with a mes-
sage, entry, or reference returned by ldap_first_message() , ldap_next_message() , ldap_first_entry() ,
ldap_next_entry() , ldap_first_reference() , ldap_next_reference() .

14.19. Parsing Search Results
The following calls are used to parse the entries and references returned by ldap_search() . These re-
sults are returned in an opaque structure that should only be accessed by calling the functions. Func-
tions are provided to step through the entries and references returned, step through the attributes of an
entry, retrieve the name of an entry, and retrieve the values associated with a given attribute in an en-
try.

14.19.1. Stepping Through a List of Entries
The ldap_first_entry() and ldap_next_entry() functions are used to step through and retrieve the list
of entries from a search result chain. The ldap_first_reference() and ldap_next_reference() functions
are used to step through and retrieve the list of continuation references from a search result chain. The
ldap_count_entries() function is used to count the number of entries returned. The ldap_count_refer-
ences() function is used to count the number of references returned.

 LDAPMessage *ldap_first_entry(LDAP *ld, LDAPMessage *res);

 LDAPMessage *ldap_next_entry(LDAP *ld, LDAPMessage *entry);

 LDAPMessage *ldap_first_reference(LDAP *ld, LDAPMessage *res);

 LDAPMessage *ldap_next_reference(LDAP *ld, LDAPMessage *ref);

 int ldap_count_entries(LDAP *ld, LDAPMessage *res);

439

Chapter 14. Lightweight Directory Access Protocol (LDAP) Routines

 int ldap_count_references(LDAP *ld, LDAPMessage *res);

Parameters are as follows:

ld The session handle.
res The search result, as obtained by a call to one of the synchronous

search functions or ldap_result() .
entry The entry returned by a previous call to ldap_first_entry() or

ldap_next_entry() .

The ldap_first_entry() and ldap_next_entry() functions will return NULL when no more entries or ref-
erences exist in the result set to be returned. NULL is also returned if an error occurs while stepping
through the entries, in which case the error parameters in the session handle ld will be set to indicate
the error.

The ldap_count_entries() function returns the number of entries contained in a chain of entries. It can
also be used to count the number of entries that remain in a chain if called with a message, entry or
reference returned by ldap_first_message() , ldap_next_message() , ldap_first_entry() , ldap_next_en-
try() , ldap_first_reference() , ldap_next_reference() .

The ldap_count_references() function returns the number of references contained in a chain of search
results. It can also be used to count the number of references that remain in a chain.

14.19.2. Stepping Through the Attributes of an Entry
The ldap_first_attribute() and ldap_next_attribute() calls are used to step through the list of attribute
types returned with an entry.

 char *ldap_first_attribute(
 LDAP *ld,
 LDAPMessage *entry,
 BerElement **ptr
);

 char *ldap_next_attribute(
 LDAP *ld,
 LDAPMessage *entry,
 BerElement *ptr
);

 void ldap_memfree(char *mem);

Parameters are as follows:

ld The session handle.
entry The entry whose attributes are to be stepped through, as returned

by ldap_first_entry() or ldap_next_entry() .
ptr In ldap_first_attribute() , the address of a pointer used internally

to keep track of the current position in the entry. In ldap_next_at-
tribute() , the pointer returned by a previous call to ldap_first_at-
tribute() .

440

Chapter 14. Lightweight Directory Access Protocol (LDAP) Routines

mem A pointer to memory allocated by the LDAP library, such as the at-
tribute type names returned by ldap_first_attribute() and ldap_nex-
t_attribute() , or the DN returned by ldap_get_dn() .

The ldap_first_attribute() and ldap_next_attribute() functions will return NULL when the end of the
attributes is reached, or if there is an error, in which case the error parameters in the session handle ld
will be set to indicate the error.

Both functions return a pointer to an allocated buffer containing the current attribute name. This
should be freed when no longer in use by calling ldap_memfree() .

The ldap_first_attribute() function will allocate and return in ptr a pointer to a BerElement used to
keep track of the current position. This pointer should be passed in subsequent calls to ldap_nex-
t_attribute() to step through the entry's attributes. After a set of calls to ldap_first_attribute() and
ldap_next_attribute() , if ptr is non-NULL, it should be freed by calling ber_free(ptr, 0) . Note that it
is very important to pass the second parameter as 0 (zero) in this call, since the buffer associated with
the BerElement does not point to separately allocated memory.

The attribute type names returned are suitable for passing in a call to ldap_get_values() to retrieve the
associated values.

14.19.3. Retrieving the Values of an Attribute
The ldap_get_values() and ldap_get_values_len() functions are used to retrieve the values of a given
attribute from an entry. The ldap_count_values() and ldap_count_values_len() functions are used to
count the returned values. The ldap_value_free() and ldap_value_free_len() functions are used to free
the values.

 char **ldap_get_values(
 LDAP *ld,
 LDAPMessage *entry,
 char *attr
);

 struct berval **ldap_get_values_len(
 LDAP *ld,
 LDAPMessage *entry,
 char *attr
);

 int ldap_count_values(char **vals)

 int ldap_count_values_len(struct berval **vals);

 void ldap_value_free(char **vals);

 void ldap_value_free_len(struct berval **vals);

Parameters are as follows:

ld The session handle.
entry The entry from which to retrieve values, as returned by

ldap_first_entry() or ldap_next_entry() .

441

Chapter 14. Lightweight Directory Access Protocol (LDAP) Routines

attr The attribute whose values are to be retrieved, as returned by
ldap_first_attribute() or ldap_next_attribute() , or a caller- supplied
string (for example, "mail").

vals The values returned by a previous call to ldap_get_values() or
ldap_get_values_len() .

Two forms of the various calls are provided. The first form is only suitable for use with non-binary
character string data. The second _len form is used with any kind of data.

The ldap_get_values() and ldap_get_values_len() functions return NULL if no values are found for at-
tr or if an error occurs.

The ldap_count_values() and ldap_count_values_len() functions return -1 if an error occurs such as
the vals parameter being invalid.

Note that the values returned are dynamically allocated and should be freed by calling either ldap_val-
ue_free() or ldap_value_free_len() when no longer in use.

14.19.4. Retrieving the Name of an Entry
The ldap_get_dn() function is used to retrieve the name of an entry. The ldap_explode_dn() and
ldap_explode_rdn() functions are used to break up a name into its component parts. The ldap_d-
n2ufn() function is used to convert the name into a more user-friendly format.

 char *ldap_get_dn(LDAP *ld, LDAPMessage *entry);

 char **ldap_explode_dn(const char *dn, int notypes);

 char **ldap_explode_rdn(const char *rdn, int notypes);

 char *ldap_dn2ufn(const char *dn);

Parameters are as follows:

ld The session handle.
entry The entry whose name is to be retrieved, as returned by

ldap_first_entry() or ldap_next_entry() .
dn The dn to explode, such as returned by ldap_get_dn() .
rdn The rdn to explode, such as returned in the components of the ar-

ray returned by ldap_explode_dn() .
notypes A boolean parameter, if non-zero indicating that the DN or RDN

components should have their type information stripped off (i.e.,
"cn=Babs" would become "Babs").

The ldap_get_dn() function will return NULL if there is some error parsing the dn, setting error para-
meters in the session handle ld to indicate the error. It returns a pointer to newly allocated space that
the caller should free by calling ldap_memfree() when it is no longer in use.

The ldap_explode_dn() function returns a NULL-terminated char * array containing the RDN com-
ponents of the DN supplied, with or without types as indicated by the notypes parameter. The compo-

442

Chapter 14. Lightweight Directory Access Protocol (LDAP) Routines

nents are returned in the order they appear in the dn. The array returned should be freed when it is no
longer in use by calling ldap_value_free() .

The ldap_explode_rdn() function returns a NULL-terminated char * array containing the compo-
nents of the RDN supplied, with or without types as indicated by the notypes parameter. The compo-
nents are returned in the order they appear in the rdn. The array returned should be freed when it is no
longer in use by calling ldap_value_free() .

The ldap_dn2ufn() function converts the DN into the user friendly format. The UFN returned is newly
allocated space that should be freed by a call to ldap_memfree() when no longer in use.

14.19.5. Retrieving Controls from an Entry
The ldap_get_entry_controls() function is used to extract LDAP controls from an entry.

 int ldap_get_entry_controls(
 LDAP *ld,
 LDAPMessage *entry,
 LDAPControl ***serverctrlsp
);

Parameters are as follows:

ld The session handle.
entry The entry to extract controls from, as returned by ldap_first_entry()

or ldap_next_entry() .
serverctrlsp This result parameter will be filled in with an allocated array of

controls copied out of entry. The control array should be freed by
calling ldap_controls_free() . If serverctrlsp is NULL, no controls
are returned.

The ldap_get_entry_controls() function returns an LDAP error code that indicates whether the refer-
ence could be successfully parsed (LDAP_SUCCESS if all goes well).

14.19.6. Parsing References
The ldap_parse_reference() function is used to extract referrals and controls from a SearchResultRef-
erence message.

 int ldap_parse_reference(
 LDAP *ld,
 LDAPMessage *ref,
 char ***referralsp,
 LDAPControl ***serverctrlsp,
 int freeit
);

Parameters are as follows:

ld The session handle.
ref The reference to parse, as returned by ldap_result() ,

ldap_first_reference() , or ldap_next_reference() .

443

Chapter 14. Lightweight Directory Access Protocol (LDAP) Routines

referralsp This result parameter will be filled in with an allocated array of
character strings. The elements of the array are the referrals (typ-
ically LDAP URLs) contained in ref. The array should be freed
when no longer in used by calling ldap_value_free() . If referralsp
is NULL, the referral URLs are not returned.

serverctrlsp This result parameter will be filled in with an allocated array of
controls copied out of ref. The control array should be freed by
calling ldap_controls_free() . If serverctrlsp is NULL, no controls
are returned.

freeit A boolean that determines whether or not the ref parameter is dis-
posed of. Pass any non-zero value to have these functions free ref
after extracting the requested information. This option is provided
as a convenience; you can also use ldap_msgfree() to free the re-
sult later.

The ldap_parse_reference() function returns an LDAP error code that indicates whether the reference
could be successfully parsed (LDAP_SUCCESS if all goes well).

14.20. Encoded ASN.1 Value Manipulation
This section describes functions that may be used to encode and decode BER-encoded ASN.1 values,
which are often used inside of control and extension values.

The following additional integral types are defined for use in manipulation of BER encoded ASN.1
values:

typedef unsigned long ber_tag_t; /* for BER tags */

typedef long ber_int_t; /* for BER ints, enums, and Booleans */

With the exceptions of two new functions, ber_flatten() and ber_init() , these functions are compatible
with the University of Michigan LDAP 3.3 implementation of BER.

 typedef struct berval {
 ber_len_t bv_len;
 char *bv_val;
 } BerValue;

A struct berval contains a sequence of bytes and an indication of its length. The bv_val is not null ter-
minated. A bv_len must always be a nonnegative number. Applications may allocate their own berval
structures.

 typedef struct berelement {
 /* opaque */
 } BerElement;

The BerElement structure contains not only a copy of the encoded value, but also state information
used in encoding or decoding. Applications cannot allocate their own BerElement structures. The
internal state is neither thread-specific nor locked, so two threads should not manipulate the same
BerElement value simultaneously.

A single BerElement value cannot be used for both encoding and decoding.

 void ber_bvfree(struct berval *bv);

444

Chapter 14. Lightweight Directory Access Protocol (LDAP) Routines

The ber_bvfree() function frees a berval returned from this API. Both the bv->bv_val string and the
berval itself are freed. Applications should not use ber_bvfree() with bervals which the application has
allocated.

 void ber_bvecfree (struct berval **bv);

The ber_bvecfree() function frees an array of bervals returned from this API. Each of the bervals in
the array are freed using ber_bvfree() , then the array itself is freed.

 struct berval *ber_bvdup (struct berval *bv);

The ber_bvdup() function returns a copy of a berval. The bv_val field in the returned berval points to
a different area of memory as the bv_val field in the argument berval. The null pointer is returned on
error (for example, out of memory).

 void ber_free (BerElement *ber, int fbuf);

The ber_free() function frees a BerElement which is returned from the API calls ber_alloc_t() or
ber_init() . Each BerElement must be freed by the caller. The second argument fbuf should always be
set to 1 to ensure that the internal buffer used by the BER functions is freed as well as the BerElement
container itself.

14.20.1. Encoding
The following is an example of encoding:

 BerElement *ber_alloc_t(int options);

The ber_alloc_t() function constructs and returns BerElement. The null pointer is returned on error.
The options field contains a bitwise-or of options which are to be used when generating the encoding
of this BerElement. One option is defined and must always be supplied:

 #define LBER_USE_DER 0x01

When this option is present, lengths will always be encoded in the minimum number of octets. Note
that this option does not cause values of sets and sequences to be rearranged in tag and byte order,
so these functions are not sufficient for generating DER output as defined in X.509 and X.680. If the
caller takes responsibility for ordering values of sets and sequences correctly, DER output as defined
in X.509 and X.680 can be produced.

Unrecognized option bits are ignored.

The BerElement returned by ber_alloc_t() is initially empty. Calls to ber_printf() will append bytes to
the end of the BerElement.

 int ber_printf(BerElement *ber, char *fmt, ...)

The ber_printf() function is used to encode a BER element in much the same way that sprintf() works.
One important difference, though, is that state information is kept in the BER argument so that multi-
ple calls can be made to ber_printf() to append to the end of the BER element. BER must be a pointer
to a BerElement returned by ber_alloc_t() . The ber_printf() function interprets and formats its argu-
ments according to the format string fmt . The ber_printf() function returns -1 if there is an error dur-
ing encoding and a positive number if successful. As with sprintf() , each character in fmt refers to an
argument to ber_printf() .

445

Chapter 14. Lightweight Directory Access Protocol (LDAP) Routines

The format string can contain the following format characters:

t Tag. The next argument is a ber_tag_t specifying the tag to override the next ele-
ment to be written to the ber. This works across calls. The value must contain the
tag class, constructed bit, and tag value. The tag value must fit in a single octet
(tag value is less than 32). For example, a tag of "[3]" for a constructed type is
0xA3.

b Boolean. The next argument is a ber_int_t , containing either 0 for FALSE or
0xff for TRUE. A boolean element is output. If this format character is not pre-
ceded by the 't' format modifier, the tag 0x01 is used for the element.

e Enumerated. The next argument is a ber_int_t , containing the enumerated val-
ue in the host's byte order. An enumerated element is output. If this format char-
acter is not preceded by the 't' format modifier, the tag 0x0A is used for the ele-
ment.

i Integer. The next argument is a ber_int_t , containing the integer in the host's
byte order. An integer element is output. If this format character is not preceded
by the 't' format modifier, the tag 0x02 is used for the element.

B Bitstring. The next two arguments are a char * pointer to the start of the bit-
string, followed by a ber_len_t containing the number of bits in the bitstring. A
bitstring element is output, in primitive form. If this format character is not pre-
ceded by the 't' format modifier, the tag 0x03 is used for the element.

n Null. No argument is required. An ASN.1 NULL element is output. If this for-
mat character is not preceded by the 't' format modifier, the tag 0x05 is used for
the element.

o Octet string. The next two arguments are a char *, followed by a ber_len_t with
the length of the string. The string may contain null bytes and need not by ze-
ro-terminated. An octet string element is output, in primitive form. If this format
character is not preceded by the 't' format modifier, the tag 0x04 is used for the
element.

s Octet string. The next argument is a char * pointing to a zero-terminated string.
An octet string element in primitive form is output, which does not include the
trailing '\0' byte. If this format character is not preceded by the 't' format modifi-
er, the tag 0x04 is used for the element.

v Several octet strings. The next argument is a char **, an array of char * pointers
to zero-terminated strings. The last element in the array must be a null pointer.
The octet strings do not include the leading SEQUENCE OF octet strings. The 't'
format modifier cannot be used with this format character.

V Several octet strings. A NULL-terminated array of struct berval *'s is supplied.
Note that a construct like '{V}' is required to get an actual SEQUENCE OF octet
strings. The 't' format modifier cannot be used with this format character.

{ Begin sequence. No argument is required. If this format character is not preced-
ed by the 't' format modifier, the tag 0x30 is used.

} End sequence. No argument is required. The 't' format modifier cannot be used
with this format character.

[Begin set. No argument is required. If this format character is not preceded by
the 't' format modifier, the tag 0x31 is used.

] End set. No argument is required. The 't' format modifier cannot be used with
this format character.

446

Chapter 14. Lightweight Directory Access Protocol (LDAP) Routines

Each use of a '{' format character must be matched by a '}' character, either later in the format string,
or in the format string of a subsequent call to ber_printf() for that BerElement. The same applies to the
'[' and ']'.

Sequences and sets nest, and implementations of this API must maintain internal state to be able to
properly calculate the lengths.

 int ber_flatten (BerElement *ber, struct berval **bvPtr);

The ber_flatten() function allocates a struct berval whose contents are a BER encoding taken from
the ber argument. The bvPtr pointer points to the returned berval, which must be freed using ber_b-
vfree() . This function returns 0 on success and -1 on error.

The ber_flatten() API call is not present in U-M LDAP 3.3.

The use of ber_flatten() on a BerElement in which all '{' and '}' format modifiers have not been prop-
erly matched is an error (that is, -1 will be returned by ber_flatten() if this situation is exists).

14.20.1.1. Encoding Example
The following is an example of encoding the following ASN.1 data type:

 Example1Request ::= SEQUENCE {
 s OCTET STRING, -- must be printable
 val1 INTEGER,
 val2 [0] INTEGER DEFAULT 0
 }

 int encode_example1(char *s,ber_int_t val1,ber_int_t val2,
 struct berval **bvPtr)

 {
 BerElement *ber;
 int rc;

 ber = ber_alloc_t(LBER_USE_DER);

 if (ber == NULL) return -1;

 if (ber_printf(ber,"{si",s,val1) == -1) {
 ber_free(ber,1);
 return -1;
 }

 if (val2 != 0) {
 if (ber_printf(ber,"ti",(ber_tag_t)0x80,val2) == -1) {
 ber_free(ber,1);
 return -1;
 }
 }

 if (ber_printf(ber,"}") == -1) {
 ber_free(ber,1);
 return -1;
 }

 rc = ber_flatten(ber,bvPtr);

447

Chapter 14. Lightweight Directory Access Protocol (LDAP) Routines

 ber_free(ber,1);
 return rc;
 }

14.20.2. Decoding
The following two symbols are available to applications.

 #define LBER_ERROR 0xffffffffL
 #define LBER_DEFAULT 0xffffffffL

 BerElement *ber_init (struct berval *bv);

The ber_init() function constructs a BerElement and returns a new BerElement containing a copy of
the data in the bv argument. The ber_init() function returns the null pointer on error.

 ber_tag_t ber_scanf (BerElement *ber, char *fmt, ...);

The ber_scanf() function is used to decode a BER element in much the same way that sscanf() works.
One important difference, though, is that some state information is kept with the ber argument so that
multiple calls can be made to ber_scanf() to sequentially read from the BER element. The ber argu-
ment must be a pointer to a BerElement returned by ber_init() . The ber_scanf() function interprets
function the bytes according to the format string fmt, and stores the results in its additional arguments.
The ber_scanf() function returns LBER_ERROR on error, and a different value on success.

The format string contains conversion specifications which are used to direct the interpretation of the
BER element. The format string can contain the following characters:

a Octet string. A char ** argument should be supplied. Memory is allocated,
filled with the contents of the octet string, null- terminated, and the pointer to
the string is stored in the argument. The returned value must be freed using
ldap_memfree() . The tag of the element must indicate the primitive form
(constructed strings are not supported) but is otherwise ignored and discarded
during the decoding. This format cannot be used with octet strings which could
contain null bytes.

O Octet string. A struct berval ** argument should be supplied, which upon return
points to a allocated struct berval containing the octet string and its length. The
ber_bvfree() function must be called to free the allocated memory. The tag of the
element must indicate the primitive form (constructed strings are not supported)
but is otherwise ignored during the decoding.

b Boolean. A pointer to a ber_int_t should be supplied. The value stored will be 0
for FALSE or nonzero for TRUE. The tag of the element must indicate the prim-
itive form but is otherwise ignored during the decoding.

e Enumerated value stored will be in host byte order. The tag of the element must
indicate the primitive form but is otherwise ignored during the decoding. The
ber_scanf() function will return an error if the enumerated value cannot be stored
in a ber_int_t .

i Integer. A pointer to a ber_int_t should be supplied. The value stored will be in
host byte order. The tag of the element must indicate the primitive form but is
otherwise ignored during the decoding. The ber_scanf() function will return an
error if the integer cannot be stored in a ber_int_t .

B Bitstring. A char ** argument should be supplied which will point to the allocat-
ed bits, followed by a ber_len_t * argument, which will point to the length (in

448

Chapter 14. Lightweight Directory Access Protocol (LDAP) Routines

bits) of the bit-string returned. The ldap_memfree() function must be called
to free the bit-string. The tag of the element must indicate the primitive form
(constructed bitstrings are not supported) but is otherwise ignored during the de-
coding.

n Null. No argument is required. The element is simply skipped if it is recognized
as a zero-length element. The tag is ignored.

v Several octet strings. A char *** argument should be supplied, which upon re-
turn points to a allocated null-terminated array of char *'s containing the octet
strings. NULL is stored if the sequence is empty. The ldap_memfree() func-
tion must be called to free each element of the array and the array itself. The tag
of the sequence and of the octet strings are ignored.

V Several octet strings (which could contain null bytes). A struct berval *** should
be supplied, which upon return points to a allocated null-terminated array of
struct berval *'s containing the octet strings and their lengths. NULL is stored if
the sequence is empty. The ber_bvecfree() function can be called to free the allo-
cated memory. The tag of the sequence and of the octet strings are ignored.

x Skip element. The next element is skipped. No argument is required.
{ Begin sequence. No argument is required. The initial sequence tag and length

are skipped.
} End sequence. No argument is required.
[Begin set. No argument is required. The initial set tag and length are skipped.
] End set. No argument is required.

 ber_tag_t ber_peek_tag (BerElement *ber, ber_len_t *lenPtr);

The ber_peek_tag() function returns the tag of the next element to be parsed in the BerElement argu-
ment. The length of this element is stored in the *lenPtr argument. LBER_DEFAULT is returned if
there is no further data to be read. The ber argument is not modified.

 ber_tag_t ber_skip_tag (BerElement *ber, ber_len_t *lenPtr);

The ber_skip_tag() function is similar to ber_peek_tag() , except that the state pointer in the BerEle-
ment argument is advanced past the first tag and length, and is pointed to the value part of the next el-
ement. This function should only be used with constructed types and situations when a BER encoding
is used as the value of an OCTET STRING. The length of the value is stored in *lenPtr.

 ber_tag_t ber_first_element(BerElement *ber,
 ber_len_t *lenPtr, char **opaquePtr);

 ber_tag_t ber_next_element (BerElement *ber,
 ber_len_t *lenPtr, char *opaque);

The ber_first_element() and ber_next_element() functions are used to traverse a SET, SET OF, SE-
QUENCE or SEQUENCE OF data value. The ber_first_element() function calls ber_skip_tag() ,
stores internal information in *lenPtr and *opaquePtr, and calls ber_peek_tag() for the first element
inside the constructed value. LBER_DEFAULT is returned if the constructed value is empty. The
ber_next_element() function positions the state at the start of the next element in the constructed type.
LBER_DEFAULT is returned if there are no further values.

The len and opaque values should not be used by applications other than as arguments to ber_next_el-
ement() , as shown in the following example.

449

Chapter 14. Lightweight Directory Access Protocol (LDAP) Routines

14.20.2.1. Decoding Example
The following is an example of decoding an ASN.1 data type:

 Example2Request ::= SEQUENCE {
 dn OCTET STRING, -- must be printable
 scope ENUMERATED { b (0), s (1), w (2) },
 ali ENUMERATED { n (0), s (1), f (2), a (3) },
 size INTEGER,
 time INTEGER,
 tonly BOOLEAN,
 attrs SEQUENCE OF OCTET STRING, -- must be printable
 [0] SEQUENCE OF SEQUENCE {
 type OCTET STRING -- must be printable,
 crit BOOLEAN DEFAULT FALSE,
 value OCTET STRING
 } OPTIONAL }

 #define TAG_CONTROL_LIST 0xA0U /* context specific cons 0 */

 int decode_example2(struct berval *bv)
{
 BerElement *ber;
 ber_len_t len;
 ber_tag_t res;
 ber_int_t scope, ali, size, time, tonly;
 char *dn = NULL, **attrs = NULL;
 int i,rc = 0;
 ber = ber_init(bv);
 if (ber == NULL) {
 fputs("ERROR ber_init failed\n", stderr);
 return -1;
 }

 res = ber_scanf(ber,"{aiiiib{v}",&dn,&scope,&ali,
 &size,&time,&tonly,&attrs);

 if (res == LBER_ERROR) {
 fputs("ERROR ber_scanf failed\n", stderr);
 ber_free(ber,1);
 return -1;
 }

 /* *** use dn */
 ldap_memfree(dn);

 for (i = 0; attrs != NULL && attrs[i] != NULL; i++) {
 /* *** use attrs[i] */
 ldap_memfree(attrs[i]);
 }
 ldap_memfree(attrs);

 if (ber_peek_tag(ber,&len) == TAG_CONTROL_LIST) {
 char *opaque;
 ber_tag_t tag;

 for (tag = ber_first_element(ber,&len,&opaque);
 tag != LBER_DEFAULT;

450

Chapter 14. Lightweight Directory Access Protocol (LDAP) Routines

 tag = ber_next_element (ber,&len,opaque)) {

 ber_len_t tlen;
 ber_tag_t ttag;
 char *type;
 ber_int_t crit;
 struct berval *value;

 if (ber_scanf(ber,"{a",&type) ==
 LBER_ERROR) {
 fputs("ERROR cannot parse type\n",
 stderr);
 break;
 }
 /* *** use type */
 ldap_memfree(type);

 ttag = ber_peek_tag(ber,&tlen);
 if (ttag == 0x01U) { /* boolean */
 if (ber_scanf(ber,"b",
 &crit) == LBER_ERROR)
{
 fputs("ERROR cannot parse crit
\n",
 stderr);
 rc = -1;
 break;
 }

 } else if (ttag == 0x04U) { /* octet string */
 crit = 0;
 } else {
 fputs("ERROR extra field in
 controls\n",
 stderr);
 break;
 }

 if (ber_scanf(ber,"O}",&value) == LBER_ERROR) {
 fputs("ERROR cannot parse value\n",
 stderr);
 rc = -1;
 break;
 }
 /* *** use value */
 ber_bvfree(value);
 }
 }

 if (rc == 0) { /* no errors so far */
 if (ber_scanf(ber,"}") == LBER_ERROR) {
 rc = -1;
 }
 }

 ber_free(ber,1);

451

Chapter 14. Lightweight Directory Access Protocol (LDAP) Routines

 return rc;

}

14.21. Using LDAP with VSI SSL for Open-
VMS
Secure Sockets Layer (SSL) is the open standard security protocol for the secure transfer of sensitive
information over the Internet.

You can establish VSI SSL for OpenVMS Alpha on an LDAP session if the server supports such ses-
sions. SSL uses X.509 public key technology to provide the following security functions:

• Integrity and confidentiality of the LDAP dialog

This is the most common use of VSI SSL. The bytes sent over the wire are encrypted.

• Authentication of the client

Some servers use SSL to authenticate the client and make access control decisions based on the
client identity. In this case, the client must have access to its private key and its certificate. The
client certificate subject is a DN.

• Authentication of the server

It might be important for the client to verify the identity of the server to which it is talking. In this
case, the client must have access to the appropriate certification authority (CA) public keys.

There are several versions of SSL: SSLv2 (2.0), SSLv3 (3.0), and TLSv1 (3.1). TLS is the latest In-
ternet standard. It does not require the use of RSA algorithms. Usually the client specifies the highest
version it supports, and the server negotiates downward, if necessary. The client library supports all
the versions listed here.

You can establish SSL over LDAP two different ways:

• LDAPS

This older, de facto standard uses a separate TCP/IP port (usually 636) specifically for SSL over
LDAP. In this case, the second parameter to the ldap_tls_start() function must be set to zero.

• StartTLS

This proposed Internet standard uses a regular LDAP port (usually 389) and requires the client to
request the use of SSL. In this case, the second parameter to the ldap_tls_start() function must be
set to 1.

14.21.1. VSI SSL Certificate Options
The following session-handle options are specific to SSL and can be set by the ldap_set_option()
function:

• LDAP_OPT_TLS_CERT_REQUIRED (0x7001) void *

Set to LDAP_OPT_ON if the client library requires a server certificate to be present the next time
the ldap_tls_start() function is called. The default value is LDAP_OPT_OFF; a server certificate is
not required.

452

Chapter 14. Lightweight Directory Access Protocol (LDAP) Routines

• LDAP_OPT_TLS_VERIFY_REQUIRED (0x7002) void *

Set to LDAP_OPT_ON if the client library requires that a server certificate path be validated the
next time the ldap_tls_start() function is called. The default value is LDAP_OPT_OFF; the server
certificate, if any, is not verified.

• LDAP_OPT_TLS_CERT_FILE (0x7003) char *

Set to the name of a file containing the client's certificate for use by the ldap_tls_start() function.

• LDAP_OPT_TLS_PKEY_FILE (0x7004) char *

Set to the name of a file containing the client's private key for use by the ldap_tls_start() function.

• LDAP_OPT_TLS_CA_FILE (0x7005) char *

Set to the name of a file containing CA public keys used for validation of the server by the
ldap_tls_start() function.

• LDAP_OPT_TLS_CA_PATH (0x7006) char *

Set to the name of a directory on disk containing CA public key files used for validation of the
server by the ldap_tls_start() function.

• LDAP_OPT_TLS_VERSION (0x7007) int *

Set to the desired SSL protocol version. This option takes one of the following values:

1: TLSv1 only
20: SSLv2 only
23: SSLv2 or SSLv3
30: SSLv3 only (default)
31: TLSv1 only

If LDAP_OPT_TLS_VERIFY_REQUIRED is set to ON, either the LDAP_OPT_TLS_CA_FILE or
the LDAP_OPT_TLS_CA_PATH option must be set.

If client authentication is required, both LDAP_OPT_TLS_CERT_FILE and LDAP_OPT_TLS_P-
KEY_FILE must be set.

14.21.2. Obtaining a Key Pair
In order for TLS to authenticate a client, the client must have a private key and a certificate. Obtain
these from either a Certification Authority or a self-sign program. A self-sign program is included in
the Open Source Security for OpenVMS product.

14.22. Sample LDAP API Code
The following is a sample of LDAP API code.

 #include <ldap.h>

 main()
 {
 LDAP *ld;
 LDAPMessage *res, *e;
 int i, rc;

453

Chapter 14. Lightweight Directory Access Protocol (LDAP) Routines

 char *a, *dn;
 BerElement *ptr;
 char **vals;

 /* open an LDAP session */
 if ((ld = ldap_init("dotted.host.name", ldap_PORT)) ==
 NULL)
 exit(1);

 /* authenticate as nobody */
 if ((rc = ldap_simple_bind_s(ld, NULL, NULL)) !=
 ldap_SUCCESS) {
 fprintf(stderr, "ldap_simple_bind_s: %s\n",
 ldap_err2string(rc));
 exit(1);
 }

 /* search for entries with cn of "Babs Jensen", return all attrs
 */
 if ((rc = ldap_search_s(ld, "o=University of Michigan, c=US",
 ldap_SCOPE_SUBTREE, "(cn=Babs Jensen)", NULL, 0, &res))
 != ldap_SUCCESS) {
 fprintf(stderr, "ldap_search_s: %s\n",
 ldap_err2string(rc));
 exit(1);
 }

 /* step through each entry returned */
 for (e = ldap_first_entry(ld, res); e != NULL;
 e = ldap_next_entry(ld, e)) {
 /* print its name */
 dn = ldap_get_dn(ld, e);
 printf("dn: %s\n", dn);
 ldap_memfree(dn);

 /* print each attribute */
 for (a = ldap_first_attribute(ld, e, &ptr); a !=
 NULL;
 a = ldap_next_attribute(ld, e, ptr)) {
 printf("attribute: %s\n", a);

 /* print each value */
 vals = ldap_get_values(ld, e, a);
 for (i = 0; vals[i] != NULL; i++) {
 printf("value: %s\n", vals[i]);
 }
 ldap_value_free(vals);
 ldap_memfree(a);
 }
 if (ptr != NULL) {

 ber_free(ptr, 0);
 }
 }

 /* free the search results */
 ldap_msgfree(res);

454

Chapter 14. Lightweight Directory Access Protocol (LDAP) Routines

 /* close and free connection resources */
 ldap_unbind(ld);
 }

455

Chapter 14. Lightweight Directory Access Protocol (LDAP) Routines

456

Chapter 15. LOGINOUT (LGI)
Routines
The information in this chapter is intended for programmers implementing the requirements of site se-
curity administrators or third-party security software producers.

This chapter differs from other parts of this book because it does not deal strictly with callable rou-
tines that are internal to the OpenVMS system. The LOGINOUT callout routines are designed by site
security administrators. The callback routines are invoked by the callout routines.

15.1. Introduction to LOGINOUT
The OpenVMS login security program (LOGINOUT.EXE) supports calls to site-specific routines
(LOGINOUT callout routines). These callout routines support custom login security programs such as
smart card programs, pocket authenticator programs, and other alternative identification and authen-
tication programs. The callout routines permit sites to combine portions of the LOGINOUT securi-
ty policy functions with site login security functions to establish a customized login security environ-
ment.

15.1.1. The LOGINOUT Process
The site security administrator provides LOGINOUT with the following:

• One or more shareable images comprised of modules that include callout routines

• A list of the shareable images

As login events occur, LOGINOUT invokes the applicable callout, thus enabling the site to replace or
augment each event using site-specific modifications.

The site may provide multiple callout images. The images are invoked in the order in which they are
declared to the system. Each image contains an independently developed set of policy routines.

Each callout routine may do one of the following:

• Enforce site-specific policy functions

• Defer to subsequent routines

• Use elements of the standard OpenVMS policy functions

Each callout routine may access LOGINOUT's internal state and callback routines using a vector of
entry points. The callback routines allow the callout routines to communicate with the user and to in-
corporate elements of the standard OpenVMS policy functions in a modular fashion.

15.1.2. Using LOGINOUT with External Authentication
The following sections describe LOGINOUT's interaction with the external authentication policy sup-
ported by OpenVMS. For more information about single sign-on and user authentication, see the VSI
OpenVMS Guide to System Security.

457

Chapter 15. LOGINOUT (LGI) Routines

Note

The use of LOGINOUT callouts disables external authentication, making only the standard Open-
VMS authentication policy available.

Overview of External Authentication
At sites using external authentication, all authentication decisions for users are actually made by the
LAN manager rather than OpenVMS; however, OpenVMS account restrictions and quota checks re-
main in effect.

To access the system, users must provide their LAN manager user ID and password at the login
prompt. If local password synchronization is required, one of the following messages is displayed in-
dicating the outcome of the synchronization attempt:

OpenVMS password has been synchronized with network password

Not able to synchronize OpenVMS password with network password

These messages can be suppressed on a per-user basis by setting the DISREPORT flag.

Specifying Local Authentication
The login command line supports the /LOCAL_PASSWORD qualifier. This qualifier indicates to
LOGINOUT that the user intends to override external authentication by using their OpenVMS user
name and password. This is considered a temporary means for logging in to the system when the ex-
ternal authentication service is unavailable. To use this qualifier, you must have SYSPRV privilege.

When a user has logged in locally, the following message is displayed:

Local logon successful; network logon service not used

Locally authenticated users are not subject to OpenVMS password policy, since the system manager
specified that these users are subject to external authentication policy only.

15.1.3. The LOGINOUT Data Flow
Figure 15.1 provides an overview of the data flow between LOGINOUT, the callout routines, and
site-specific shareable images that can include one or more callout modules.

Figure 15.1. LOGINOUT Callout Routines Data Flow

458

Chapter 15. LOGINOUT (LGI) Routines

15.2. LOGINOUT Callouts
This section introduces the callouts that LOGINOUT uses to interface with the site-specific callout
modules in the shareable images. The section also describes a set of callback routines that the callout
routines can use to invoke services provided within LOGINOUT.

15.2.1. LOGINOUT Callout Routines
LOGINOUT calls a different site-provided callout routine at each important step in its execution. Ta-
ble 15.1 briefly describes the LOGINOUT callouts. See Section 15.4 for detailed descriptions of these
routines.

Table 15.1. LOGINOUT Callouts

Callout Description
LGI$ICR_AUTHENTICATE Authenticates the user account at login
LGI$ICR_CHKRESTRICT Checks additional security restrictions
LGI$ICR_DECWINIT Prepares for interactive contact with DECwin-

dows users
LGI$ICR_FINISH Gives site-specific code final control of the login

process
LGI$ICR_IACT_START Prepares for interactive contact with users who

are not using the DECwindows interface
LGI$ICR_IDENTIFY Identifies the user at login
LGI$ICR_INIT Initializes context variable
LGI$ICR_JOBSTEP Indicates the start of each step in a batch job
LGI$ICR_LOGOUT Prepares for logout

15.2.2. LOGINOUT Callback Routines
The callback routines enable the site's callout routines to communicate interactively with the user or
to invoke other services provided by LOGINOUT. Table 15.2 briefly describes the LOGINOUT call-
back routines. See Section 15.5 for detailed descriptions of these routines.

Table 15.2. LOGINOUT Callback Routines

Routine Description
LGI$ICB_ACCTEXPIRED Checks for account expiration
LGI$ICB_AUTOLOGIN Verifies that standard rules for autologin apply
LGI$ICB_CHECK_PASS Checks the entered password against the user au-

thorization file (UAF) record
LGI$ICB_DISUSER Checks for DISUSER flag
LGI$ICB_GET_INPUT Enables interaction with the user
LGI$ICB_GET_SYSPWD Checks system password for character-cell inter-

active logins
LGI$ICB_MODALHOURS Checks for restrictions on access modes and ac-

cess hours

459

Chapter 15. LOGINOUT (LGI) Routines

Routine Description
LGI$ICB_PASSWORD Generates prompts, reads input, and optionally

validates input against system user authorization
file (SYSUAF.DAT)

LGI$ICB_PWDEXPIRED Checks for password expiration
LGI$ICB_USERPROMPT Prompts for and reads input for character-cell in-

teractive logins
LGI$ICB_USERPARSE Parses input buffer data for character-cell interac-

tive logins
LGI$ICB_VALIDATE Validates the user name and password against the

system user authorization file (SYSUAF.DAT)

15.3. Using Callout Routines
This section describes:

• The calling environment

• The callout routines and how they are organized and activated

• The callout routines interface

Section 15.3.5 contains a sample LOGINOUT program.

15.3.1. Calling Environment
The general form for invoking the callout routines is as follows:

return-status = routine (standard_arguments_vector, context,
 routine_specific_args)

The call elements include the following:

• Standard argument vector: contains pointers to LOGINOUT data structures and callback routines
for communicating with the user

• Context: a longword that the site-specific program may use to store a pointer to local context

• Routine-specific arguments: arguments directly related to the specific routine

The callout routine's return status must be one of the following:

Return Status Interpretation
SS$_NORMAL Access permitted; continue policy checks. Exe-

cute next policy image or OpenVMS policy func-
tion associated with this callout, if applicable.

LGI$_SKIPRELATED Access permitted; discontinue checks. Continue
with the login without further processing of login
policy functions associated with this callout, in-
cluding relevant OpenVMS policy functions built
into LOGINOUT.

460

Chapter 15. LOGINOUT (LGI) Routines

Return Status Interpretation
Other Disallow the login:

• Perform break-in detection and intrusion eva-
sion, if appropriate.

• Perform security audit.

• Allow additional login attempts up to sys-
tem-specified repeat limit, if appropriate.

Note

When a fatal error occurs, the policy module may terminate the login by signaling a severe error using
the BLISS built-in SIGNAL_STOP or by calling LIB$SIGNAL. (See the VSI OpenVMS RTL Library
(LIB$) Manual for a description of the LIB$SIGNAL routine.) LOGINOUT will do a security audit,
but it will not perform break-in detection or intrusion evasion.

Avoid using a severe error termination unless the LOGINOUT process state is in jeopardy. LOGI-
NOUT should terminate with a clean exit and a disallowed login whenever possible.

15.3.2. Callout Organization
A site may use several callout modules. For example, assume that the site is working with another
program that uses logins or the site involves logins for various devices or logins at various security
levels.

LOGINOUT invokes the callout routines using a vector of entry points rather than the routine name.
Each vector entry point corresponds to a policy function, and the first vector entry contains a count
of the entry points in the vector, thus making the vector extendable. Figure 15.2 shows how a callout
routine vector is organized.

Figure 15.2. Callout Organization

461

Chapter 15. LOGINOUT (LGI) Routines

Note that entry points may be accessed randomly. When a site-provided callout module does not pro-
vide a routine for a particular callout, the site must enter a 0 value as a placeholder into the corre-
sponding vector location.

Callout modules may modify the vector during execution so that following events invoke different
routines. For example, one of the initialization callout routines could modify the vector in anticipa-
tion of a following call to a different terminal or different job type, or it might zero the number of en-
try points to disable further calls to callout routines contained in the current callout module.

15.3.3. Activating the Callout Routines
A site activates the LOGINOUT callouts by identifying its callout images using the system execu-
tive-mode logical name LGI$LOGINOUT_CALLOUTS. The logical name may contain one value or
a list of values that identify the callout images using either the:

• File name of a module located in SYS$SHARE:*.EXE

• Name of an executive-mode system logical name representing a full file specification

Note

LOGINOUT is installed with privileges. Therefore, any image containing LOGINOUT callout rou-
tines must be installed.

If the identifying logical is a list of several images, the images are sequentially activated in the listed
order. If a specified image is not activated, the login fails.

To protect against intrusion, the site uses the system parameter LGI_CALLOUTS to specify the num-
ber of callout images. If this value is nonzero and the supplied number of callout images does not cor-
respond to the value, the login fails.

Sites that want to control their job creation process and authenticate each network login by imple-
menting LOGINOUT callouts must set the NET_CALLOUTS system parameter to 255. This ensures
that LOGINOUT is called for every network login - bypassing any existing server processes.

The default value of NET_CALLOUTS (0) could bypass the LOGINOUT callouts and allow NET
$ACP to perform its own proxy and login authentication. See the file SYS$SYSTEM:NETSERV-
ER.COM for an example of how NET$ACP performs its own authentication and management of
server processes.

Parameter values 1 to 254 are reserved by VSI for future use.

Note

Callouts are not invoked when LOGINOUT initiates the STARTUP process during system bootstrap.

For the logical name LGI$LOGINOUT_CALLOUTS, a clusterwide logical name cannot be used. The
number of names in the system logical name LGI$LOGINOUT_CALLOUTS must always match the
value of the system parameter LGI_CALLOUTS. LGI$LOGINOUT_CALLOUTS must be in the reg-
ular system logical name table and not in a clusterwide logical name table.

When applications that support LGI_CALLOUTS are starting and stopping, they manipulate LGI
$LOGINOUT_CALLOUTS as well as LGI_CALLOUTS. A clusterwide logical name would be

462

Chapter 15. LOGINOUT (LGI) Routines

incorrect since not all nodes in a cluster would have the same LGI_CALLOUTS at the same time.
Nodes where the values did not match would experience login and logout failures.

15.3.4. Callout Interface
Each image containing LOGINOUT callouts must define a universal symbol LGI$LOGI-
NOUT_CALLOUTS. This symbol represents a vector of longwords that points to the entry points for
the various callout routines, as shown in the following illustration:

The vector is headed by a longword count that delimits the number of callout routines supported by
the callout module. Unused vector entries are identified by a 0 value.

Each callout routine has access to a vector of LOGINOUT internal variables, including the address-
es of callback routines and other useful information. The vector entries are defined as offsets from the
beginning of the vector. The vector has the following format:

463

Chapter 15. LOGINOUT (LGI) Routines

Symbols of the form LGI$ICB_x are the addresses of the callback routines that the callout routines
use to communicate with the user (see Table 15.2). Other offsets are addresses of useful variable in-
formation internal to LOGINOUT. These are described in Table 15.3.

Table 15.3. Useful LOGINOUT Internal Variables

Symbols Definition
LGI$A_ICR_CREPRC_FLAGS PPD_CREPRC_FLAGS controls program flow

based on the major job types of PRC$V_BATCH,
PRCV_NETWRK, PRCV_INTER, and other
values such as PRC$V_NOPASSWORD (used
for interactive jobs created on logged-in termi-
nals).

464

Chapter 15. LOGINOUT (LGI) Routines

Symbols Definition
LGI$A_ICR_JOB_TYPE The job type from the JIB (byte). LOGINOUT

does the following:

• Retrieves the job type with a GETJPI during
initialization.

• Modifies it during execution. (Its value may
change between the LGI$ICR_INIT and later
callouts.)

• Writes it back into the JIB before exiting.

For interactive jobs, this flag indicates JIB
C_LOCAL, JIBC_REMOTE, or JIB
$C_DIALUP.

LGI$A_ICR_SUBPROCESS The subprocess flag (byte) indicates whether a
subprocess is being logged in.

LGI$A_ICR_TERMINAL_DEV The terminal device flag (byte).
LGI$A_ICR_TT_PHYDEVNAM A descriptor containing the terminal's physical

device name (null if input is not from a terminal).
LGI$A_ICR_TT_ACCPORNAM A descriptor containing the terminal's access

port name (null if input is not from a terminal or
is from a terminal without an associated access
port).

LGI$A_ICR_CLINAME A descriptor containing the command language
interpreter (CLI) name, parsed from the user
name qualifiers. Valid only for interactive jobs.

LGI$A_ICR_CLITABLES A descriptor containing the CLI tables, parsed
from the user name qualifiers. Valid only for in-
teractive jobs.

LGI$A_ICR_NCB A descriptor containing the network control
block. Valid only for network jobs.

LGI$A_ICR_LOGLINK A longword containing the local link number.
Valid only for network jobs and when doing a
SET HOST command from a DECnet-Plus re-
mote terminal.

LGI$A_ICR_REM_NODE_NAM A descriptor containing the remote node name
or a printable representation of its node number
if the name is not available. Valid only for net-
work jobs and when doing a SET HOST com-
mand from a DECnet-Plus remote terminal.

LGI$A_ICR_REM_ID A descriptor containing the remote ID. This may
be the user ID on the remote system if the source
operating system sends the user name. Otherwise,
it is as defined for the source system. Valid only
for network jobs and when doing a SET HOST
command from a DECnet-Plus remote terminal.

465

Chapter 15. LOGINOUT (LGI) Routines

Symbols Definition
LGI$A_ICR_UAF_RECORD Address of the LOGINOUT internal variable con-

taining the address of the user authorization file
(UAF) record. Note that because the record will
be written back to the UAF record, callout rou-
tines must not modify the contents of the UAF
record.

LGI$A_ICR_INPUT_RAB A RAB (record access block) that may be used to
communicate with an interactive user.

LGI$A_ICR_AUTOLOGIN A flag (byte) indicating whether an autologin is
being used for this interactive job.

LGI$A_ICR_USERNAME A descriptor for handling the user name.
LGI$A_ICR_PWD1 A descriptor for handling the primary password.
LGI$A_ICR_PWD2 A descriptor for handling the secondary pass-

word.
LGI$A_ICR_PWDCOUNT A longword containing the count of passwords

expected for this user. Valid only for interactive
jobs.

LGI$A_ICR_NETFLAGS A flag (word) containing authorization informa-
tion. Valid only for network jobs. The bits that
have been defined are:

• NET_PROXY: A proxy request.

• NET_PREAUTH: DECnet-Plus has preautho-
rized the login.

• NET_DEFAULT_USER: The session or ob-
ject database has a default user and no pass-
word checking is required.

• NET_PROXY_OK: The requested proxy has
been allowed by either LOGINOUT or the
site-provided callout routines.

15.3.5. Sample Program
The following C program illustrates the use of LOGINOUT callouts. The sample program changes the
user name and password prompts to "Who are you?" and "Prove it." The program also adds the mes-
sage "Goodbye." at logout.

#module LGI$CALLOUT_EXAMPLE "TOY LOGINOUT callout example"
/*
**++
** FACILITY:
**
** System help
**

** This program can be compiled with the following command
**

466

Chapter 15. LOGINOUT (LGI) Routines

** $ CC/STANDARD=VAXC/LIST/PREFIX_LIBRARY_ENTRIES=ALL LGI
$CALLOUT_EXAMPLE.C
**
** This program can be linked with the following example command procedure
**
** $ LINK/SHARE=LGI$CALLOUT_EXAMPLE SYS$INPUT/OPT
** LGI$CALLOUT_EXAMPLE.OBJ

** SYMBOL_VECTOR=(LGI$LOGINOUT_CALLOUTS=DATA)
**
** The following steps are used to install the program:
**
** $ DEFINE/SYSTEM/EXEC LGI$LOGINOUT_CALLOUTS LGI$CALLOUT_EXAMPLE
**
** If the program is not located in SYS$SHARE, define it as follows:
**
** $ DEFINE/SYSTEM/EXEC LGI$CALLOUT_EXAMPLE filespec
**
** [Remember that, without SYSNAM privilege, the /EXEC qualifier is
 ignored.]
**
** $ INSTALL ADD LGI$CALLOUT_EXAMPLE
** $ RUN SYS$SYSTEM:SYSGEN
** SYSGEN> USE ACTIVE
** SYSGEN> SET LGI_CALLOUTS 1
** SYSGEN> WRITE ACTIVE
**
** The value of LGI_CALLOUTS is the number of separate callout images
** (of which this example is one) that are to be invoked. If there is
** more than one image, the logical LGI$LOGINOUT_CALLOUTS must have a
** list of equivalence names, one for each separate callout image.
**
*/

/*
**
** INCLUDE FILES
**
*/

#include descrip
#include rms
#include stsdef
#include ssdef
#include prcdef

/* Declare structures for the callout vector and the callout arguments
 vector */

struct LGI$CALLOUT_VECTOR {
 long int LGI$L_ICR_ENTRY_COUNT;
 int (*LGI$ICR_INIT) ();
 int (*LGI$ICR_IACT_START) ();
 int (*LGI$ICR_DECWINIT) ();
 int (*LGI$ICR_IDENTIFY) ();
 int (*LGI$ICR_AUTHENTICATE) ();
 int (*LGI$ICR_CHKRESTRICT) ();
 int (*LGI$ICR_FINISH) ();

467

Chapter 15. LOGINOUT (LGI) Routines

 int (*LGI$ICR_LOGOUT) ();
 int (*LGI$ICR_JOBSTEP) ();
 };

struct LGI$ARG_VECTOR {
 int (*LGI$ICB_GET_INPUT) ();

 int (*reserved1) ();
 int (*reserved2) ();
 void (*LGI$ICB_GET_SYSPWD) ();
 int (*LGI$ICB_USERPROMPT) ();
 int (*LGI$ICB_USERPARSE) ();
 int (*LGI$ICB_AUTOLOGIN) ();
 int (*LGI$ICB_PASSWORD) ();
 int (*LGI$ICB_CHECK_PASS) ();
 int (*LGI$ICB_VALIDATE) ();
 void (*LGI$ICB_ACCTEXPIRED) ();
 void (*LGI$ICB_PWDEXPIRED) ();
 int (*LGI$ICB_DISUSER) ();
 void (*LGI$ICB_MODALHOURS) ();
 short *LGI$A_ICR_CREPRC_FLAGS;
 char *LGI$A_ICR_JOB_TYPE;
 char *LGI$A_ICR_SUBPROCESS;
 char *LGI$A_ICR_TERMINAL_DEV;
 struct dsc$descriptor_s *LGI$A_ICR_TT_PHYDEVNAM;
 struct dsc$descriptor_s *LGI$A_ICR_TT_ACCPORNAM;
 struct dsc$descriptor_s *LGI$A_ICR_CLINAME;
 struct dsc$descriptor_s *LGI$A_ICR_CLITABLES;
 struct dsc$descriptor_s *LGI$A_ICR_NCB;
 int *LGI$A_ICR_LOGLINK;
 struct dsc$descriptor_s *LGI$A_ICR_REM_NODE_NAM;
 struct dsc$descriptor_s *LGI$A_ICR_REM_ID;
 unsigned char *LGI$A_ICR_UAF_RECORD;
 struct RAB *LGI$A_ICR_INPUT_RAB;
 char *LGI$A_ICR_AUTOLOGIN;
 struct dsc$descriptor_s *LGI$A_ICR_USERNAME;
 struct dsc$descriptor_s *LGI$A_ICR_PWD1;
 struct dsc$descriptor_s *LGI$A_ICR_PWD2;
 int *LGI$A_ICR_PWDCOUNT;
 short int *LGI$A_ICR_NETFLAGS;
 };

globalvalue int LGI$_SKIPRELATED, /* callout's return status */
 LGI$_DISUSER,
 LGI$_INVPWD,
 LGI$_NOSUCHUSER,
 LGI$_NOTVALID,
 LGI$_INVINPUT,
 LGI$_CMDINPUT,
 LGI$_FILEACC;

static int callout_logout();
static int callout_decwinit();
static int callout_identify();
static int callout_authenticate();

globaldef struct LGI$CALLOUT_VECTOR LGI$LOGINOUT_CALLOUTS =

468

Chapter 15. LOGINOUT (LGI) Routines

 {
 9,
 0, /* init */
 0, /* iact_start */
 callout_decwinit, /* decwinit */
 callout_identify, /* identify */
 callout_authenticate, /* authenticate */
 0, /* chkrestrict */
 0, /* finish */
 callout_logout, /* logout */
 0, /* jobstep */
 };

/* DECwindows initialization */

static int callout_decwinit()
 {
 /* Disable any further calls */
 LGI$LOGINOUT_CALLOUTS.LGI$L_ICR_ENTRY_COUNT = 0;
 /* Return and do standard DECwindows processing */
 return (SS$_NORMAL);
 }

/* Identification */

static int callout_identify(struct LGI$ARG_VECTOR *arg_vector)
 {

 int status;
 $DESCRIPTOR(wru,"\r\nWho are you? ");

 /* This example deals only with interactive jobs */
 if (!(*arg_vector->LGI$A_ICR_CREPRC_FLAGS & PRC$M_INTER))
 return(SS$_NORMAL); /* Not interactive, do normal processing */
 if (*arg_vector->LGI$A_ICR_CREPRC_FLAGS & PRC$M_NOPASSWORD)
 return(SS$_NORMAL); /* Invoked as logged in, don't prompt */
 if (*arg_vector->LGI$A_ICR_SUBPROCESS != 0)
 return(SS$_NORMAL); /* Don't prompt on subprocesses */

 /* Check for autologin */

 if ($VMS_STATUS_SUCCESS(arg_vector->LGI$ICB_AUTOLOGIN()))
 return (LGI$_SKIPRELATED); /* Yes, it's an autologin */

 if (!$VMS_STATUS_SUCCESS(status = arg_vector->LGI
$ICB_USERPROMPT(&wru)))
 return (status); /* On error, return error status */

 /* Successful prompt and parse; skip OpenVMS policy */

 return(LGI$_SKIPRELATED);
 }

/* Authentication */

static int callout_authenticate(struct LGI$ARG_VECTOR *arg_vector)
 {

469

Chapter 15. LOGINOUT (LGI) Routines

 int status;
 $DESCRIPTOR(proveit,"\r\nProve it: ");

 /* This example deals only with interactive jobs */
 if (!(*arg_vector->LGI$A_ICR_CREPRC_FLAGS & PRC$M_INTER))
 return(SS$_NORMAL); /* Not interactive, do normal processing */
 if (*arg_vector->LGI$A_ICR_CREPRC_FLAGS & PRC$M_NOPASSWORD)
 return(SS$_NORMAL); /* Invoked as logged in, don't prompt */
 if (*arg_vector->LGI$A_ICR_SUBPROCESS != 0)
 return(SS$_NORMAL); /* Don't prompt on subprocesses */

 if (*arg_vector->LGI$A_ICR_PWDCOUNT != 0)
 /* This account has at least one password */
 if (!$VMS_STATUS_SUCCESS(status =
 arg_vector->LGI$ICB_PASSWORD(0,&proveit)))
 return (status); /* On error, return error status */

 if (*arg_vector->LGI$A_ICR_PWDCOUNT == 2)
 /* This account has two passwords */
 if (!$VMS_STATUS_SUCCESS(status =
 arg_vector->LGI$ICB_PASSWORD(1,&proveit)))
 return (status); /* On error, return error status */

 /* Successful prompt and password validation; skip OpenVMS policy */

 return(LGI$_SKIPRELATED);
 }

/* LOGOUT command */

static int callout_logout(username, procname, creprc_flags, write_fao)
 struct dsc$descriptor_s *username, *procname;
 short *creprc_flags;
 void (*write_fao) ();
 {
 char *Goodbye = " Goodbye."; /* This will become an
 ASCIC */
 if ((int) write_fao != 0) /* If output is
 permitted... */
 {
 Goodbye[0]=strlen(Goodbye)-1; /* Fill in ASCIC count */
 write_fao(Goodbye); /* and write it */
 }
 return(SS$_NORMAL);
 }

15.4. LOGINOUT Callout Routines
The following sections describe the individual callout routines. Each description includes the follow-
ing:

• The format of the call command

• The anticipated information returned by the called routine

• The arguments presented to the called routine

• A general description of the routine

470

Chapter 15. LOGINOUT (LGI) Routines

• Typical condition values that indicate the return status

• Associated OpenVMS policy function, that is, the standard LOGINOUT policy functions devel-
oped for OpenVMS compared with the site-provided policy functions

The Typical Condition Values and the Associated OpenVMS Policy Function headings are unique to
the LOGINOUT callout routines.

LGI$ICR_AUTHENTICATE
LGI$ICR_AUTHENTICATE — The LGI$ICR_AUTHENTICATE callout routine authenticates
passwords.

Format
LGI$ICR_AUTHENTICATE arg_vector, " context"

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Returns status indicating whether and how to proceed with the login.

Arguments
arg_vector

OpenVMS usage: vector
type: vector_longword_unsigned
access: modify
mechanism: by reference

Vector containing callbacks and login information.

context

OpenVMS usage: context
type: longword (unsigned)
access: modify
mechanism: by reference

Pointer to site's local context.

Description
All logins involving a password invoke the LGI$ICR_AUTHENTICATE callout routine. The routine
is not called for subprocesses, network jobs invoked by proxy logins, or logged-in DECterm sessions.

471

Chapter 15. LOGINOUT (LGI) Routines

The following pointers are used in password authentication:

• Longword LGI$A_ICR_PWDCOUNT points to a location that contains the number of OpenVMS
passwords for a particular account. Nonexistent accounts are assigned a password count of 1 to
avoid revealing them by the absence of a password prompt.

• For DECwindows logins only, longword LGI$A_ICR_PWD1 points to a location that contains the
user's primary password.

• For DECwindows logins only, longword LGI$A_ICR_PWD2 points to a location that contains the
user's secondary password, if applicable.

For all logins except DECwindows logins, the LGI$ICR_AUTHENTICATE callout routine may use
the following callback routine sequence:

• Call LGI$ICB_PASSWORD for standard password prompting with an optional nonstandard
prompt and the option of checking or just returning the password or other information obtained.

• Call LGI$ICB_GET_INPUT for completely customized prompting for each required piece of au-
thentication information.

For DECwindows logins, neither the LGI$ICB_PASSWORD callback routine nor the LGI
$ICB_GET_INPUT callback routine needs to be called. The user enters the password using the
DECwindows login dialog box before LOGINOUT issues the LGI$ICR_AUTHENTICATE callout.

For a complete description of the DECwindows flow of control, see the description of the LGI
$ICR_DECWINIT callout routine.

All logins involving a password may invoke the LGI$ICB_VALIDATE callback routine. This rou-
tine validates against SYSUAF.DAT passwords obtained by customized prompting using descrip-
tors for the user name and passwords. Optionally, the login may call the LGI$_ICB_CHECK_PASS
callback routine to validate passwords. For interactive jobs, the LGI$ICR_AUTHENTICATE rou-
tine should check the DISUSER flag using the LGI$ICB_DISUSER callback routine to preserve the
consistency of the invalid user behavior for disabled accounts. For other types of jobs, use the LGI
$ICR_CHKRESTRICT callout routine to check the DISUSER flag.

Note

LOGINOUT checks the DISUSER flag as part of the authentication process because, if it is checked
later, an intruder could determine that the correct user name and password had been entered and that
the account is disabled. This is deliberately hidden by keeping the user in the retry loop for a disabled
account.

If the DISUSER flag is checked with other access restrictions in the authorization portion, this causes
an immediate exit from LOGINOUT.

Break-in detection, intrusion evasion, and security auditing are done in the case of any failure return
from LGI$ICR_AUTHENTICATE.

If this routine returns LGI$_SKIPRELATED, the user is fully authenticated, and no further authen-
tication is done by either the site or OpenVMS. If this routine returns an error for an interactive job,
the system retries the identification and authentication portions of LOGINOUT. For character-cell ter-
minals, this consists of calling the LGI$ICR_IDENTIFY and LGI$ICR_AUTHENTICATE callout

472

Chapter 15. LOGINOUT (LGI) Routines

routines; for DECwindows terminals, this consists of calling the LGI$ICR_DECWINIT routine. The
number of retries is specified by the SYSGEN parameter LGI_RETRY_LIM.

Typical Condition Values
SS$_NORMAL

Access permitted; continue policy checks.

LGI$_SKIPRELATED

Access permitted; omit calls to the LGI$ICR_AUTHENTICATE callout routine in subsequent
images and calls to the associated OpenVMS policy function.

Other

Disallow the login; perform break-in detection, intrusion evasion, and security auditing. For in-
teractive logins, retry identification and authentication portions of LOGINOUT, up to the number
specified in the SYSGEN parameter LGI_RETRY_LIM.

Associated OpenVMS Policy Function
1

Perform standard password prompting and validation.

LGI$ICR_CHKRESTRICT
LGI$ICR_CHKRESTRICT — The LGI$ICR_CHKRESTRICT callout routine may be used to check
site-specific access restrictions that are not usually included in the OpenVMS login.

Format
LGI$ICR_CHKRESTRICT arg_vector ," context"

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Returns status indicating whether and how to proceed with the login.

Argument
arg_vector

OpenVMS usage: vector
type: vector_longword_unsigned
access: modify
mechanism: by reference

473

Chapter 15. LOGINOUT (LGI) Routines

Vector containing callbacks and login information.

context

OpenVMS usage: context
type: longword (unsigned)
access: modify
mechanism: by reference

Pointer to site's local context.

Description

All logins call this routine after the password is authenticated to allow the site to check other access
restrictions. The site may check its own access restrictions and any of the following OpenVMS access
restrictions:

Access Restriction Callback Routine Used to Check Restriction
Account expiration LGI$ICB_ACCTEXPIRED
Password expiration LGI$ICB_PWDEXPIRED
Account disabled LGI$ICB_DISUSER
Access modes and times LGI$ICB_MODALHOURS

Typical Condition Values

SS$_NORMAL

Access permitted; continue policy checks, including all of the normal OpenVMS policy functions
associated with the callback routines used to check restrictions.

LGI$_SKIPRELATED

Access permitted; omit calls to the LGI$ICR_CHKRESTRICT callout routine in subsequent im-
ages and calls to the associated OpenVMS policy functions.

Other

Disallow the login.

Associated OpenVMS Policy Functions

1

Check password expiration, check DISUSER flag, check account expiration, and check restric-
tions on access time.

LGI$ICR_DECWINIT
LGI$ICR_DECWINIT — The LGI$ICR_DECWINIT callout routine enables site-specific initializa-
tion functions for logins from the DECwindows session manager.

474

Chapter 15. LOGINOUT (LGI) Routines

Format
LGI$ICR_DECWINIT arg_vector ," context"

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Returns status indicating whether and how to proceed with the login.

Argument
arg_vector

OpenVMS usage: vector
type: vector_longword_unsigned
access: modify
mechanism: by reference

Vector containing site-specified callbacks and login information.

context

OpenVMS usage: context
type: longword (unsigned)
access: modify
mechanism: by reference

Pointer to site's local context.

Description
LOGINOUT invokes the LGI$ICR_DECWINIT callout routine at the start of a DECwindows session
login. This callout routine does not support a return status of LGI$_SKIPRELATED. Returning LGI
$_SKIPRELATED for this callout causes unpredictable results. Use the LGI$ICR_DECWINIT call-
out routine only to prepare other callout routines for a DECwindows login.

After issuing the LGI$ICR_DECWINIT callout, LOGINOUT performs the following tasks:

• Creates the DECwindows login dialog box and reads the user name and password entered by the
user

• Calls the LGI$ICR_IDENTIFY callout

• Obtains the user authorization file (UAF) record

If the UAF record specifies two passwords, the DECwindows login dialog box is amended to
prompt for the second password, and the listed tasks are repeated.

475

Chapter 15. LOGINOUT (LGI) Routines

• Issues the LGI$ICR_AUTHENTICATE callout

• If the LGI$ICR_AUTHENTICATE callout routine did not return LGI$_SKIPRELATED, vali-
dates the passwords against the UAF record

The LGI$ICR_IDENTIFY and LGI$ICR_AUTHENTICATE callouts may create additional DECwin-
dows dialog boxes to communicate with the user, but the initial dialog box must be created by LOGI-
NOUT.

Typical Condition Values
SS$_NORMAL

Access permitted; continue policy checks.

LGI$_SKIPRELATED

Not supported. Returning this status will cause unpredictable behavior.

Other

Disallow the login.

Associated OpenVMS Policy Function
1

Create dialog box, read user name and password, and call the identification and authentication
routines.

LGI$ICR_FINISH
LGI$ICR_FINISH — The LGI$ICR_FINISH callout routine permits the site program to take final lo-
cal action before exiting from LOGINOUT.

Format
LGI$ICR_FINISH arg_vector ," context ," user_cond_value"

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Returns status indicating whether and how to proceed with the login.

Argument
arg_vector

OpenVMS usage: vector

476

Chapter 15. LOGINOUT (LGI) Routines

type: vector_longword_unsigned
access: modify
mechanism: by reference

Vector containing callbacks and login information.

context

OpenVMS usage: context
type: longword (unsigned)
access: modify
mechanism: by reference

Pointer to site's local context.

user_cond_value

OpenVMS usage: cond_value
type: longword_unsigned
access: read only
mechanism: by value

SS$_NORMAL for successful login; otherwise, reason for failure.

Description
The site program calls this routine immediately before exiting to take any final local actions relative to
the login process. There is no OpenVMS login security policy associated with LGI$ICR_FINISH.

LGI$ICR_FINISH does not affect login completions because the login is audited before the routine is
invoked. The routine has no effect on error recovery when a login fails, and it cannot cause a success-
ful login to fail.

Typical site action may include the following:

• Override job quotas

• Stack CLI command procedures by examining and modifying the logicals PROC1 through
PROC9

Caution

For DECwindows session manager logins, be careful modifying the command procedure stack to
avoid adversely affecting the command file that invokes the session manager.

• Other postlogin processing

Typical Condition Values
LGI$_SKIPRELATED

Access permitted; omit calls to the LGI$ICR_FINISH callout routine in subsequent images.

477

Chapter 15. LOGINOUT (LGI) Routines

Associated OpenVMS Policy Functions
None.

LGI$ICR_IACT_START
LGI$ICR_IACT_START — The LGI$ICR_IACT_START callout routine may perform initialization
functions for logins from interactive character-cell terminals.

Format
LGI$ICR_IACT_START arg_vector ," context"

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Returns status indicating whether and how to proceed with the login.

Argument
arg_vector

OpenVMS usage: vector
type: vector_longword_unsigned
access: modify
mechanism: by reference

Vector containing callbacks and login information.

context

OpenVMS usage: context
type: longword (unsigned)
access: modify
mechanism: by reference

Pointer to site's local context.

Description
This routine makes the first contact for all interactive logins from other than DECwindows terminals
after opening the input and output files but before any other dialogue with the user.

At this point, the site should be preparing to augment or replace the OpenVMS system password rou-
tine. The callback routine LGI$ICB_GET_SYSPWD provides access to the system password routine.

478

Chapter 15. LOGINOUT (LGI) Routines

However, because LGI$ICB_GET_SYSPWD returns only on success, the site design should consider
what action to take in case LGI$ICB_GET_SYSPWD does not return control to LGI$ICR_IACT_S-
TART.

The LGI$ICR_IACT_START routine can use the LGI$ICB_GET_INPUT callback routine to:

• Get input from the user

• Use an OpenVMS RMS record access block (RAB) to establish appropriate terminal mode set-
tings

Typical Condition Values

SS$_NORMAL

Access permitted; continue OpenVMS system password routine.

LGI$_SKIPRELATED

Access permitted; omit calls to the LGI$ICR_IACT_START callout routine in subsequent images
and calls to the associated OpenVMS policy function.

Other

Exit quietly to preserve the illusion of an inactive line.

Associated OpenVMS Policy Function

Get the system password.

LGI$ICR_IDENTIFY
LGI$ICR_IDENTIFY — The LGI$ICR_IDENTIFY callout routine identifies the user from the user
name input.

Format

LGI$ICR_IDENTIFY arg_vector ," context"

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Returns status indicating whether and how to proceed with the login.

Argument

arg_vector

479

Chapter 15. LOGINOUT (LGI) Routines

OpenVMS usage: vector
type: vector_longword_unsigned
access: modify
mechanism: by reference

Vector containing callbacks and useful login information.

context

OpenVMS usage: context
type: longword (unsigned)
access: modify
mechanism: by reference

Pointer to site's local context.

Description

The LGI$ICR_IDENTIFY callout routine is invoked for all types of login procedures. If the site us-
es the standard OpenVMS DECwindows dialogue, the identification routine may be called more than
once for accounts with two passwords.

If you plan to replace the standard OpenVMS identification processing, consider the following:

• For logins from character-cell terminals, obtain the user name using one of the following:

• A dialogue with the user. The site can access OpenVMS user name processing to obtain the
standard prompt or a specialized prompt by invoking the LGI$ICB_USERPROMPT callback
routine. Alternatively, the site may invoke the LGI$ICB_GET_INPUT callback routine to
communicate with the user.

• Site-specific equipment, for example, a card reader or some other authentication device.

• Autologins. The site may do the identification portion of the standard OpenVMS autologin by
invoking the LGI$ICB_AUTOLOGIN callback routine.

• For logins from the DECwindows Session Manager, LOGINOUT invokes the callout mod-
ule's LGI$ICR_IDENTIFY callout routine after obtaining the user name and putting it in LGI
$A_ICR_USERNAME. The LGI$ICR_IDENTIFY callout routine can provide any additional
checking of the user name that may be required.

• For batch jobs, network jobs, logged-in DECterm sessions, and subprocesses, the site may use the
LGI$ICR_IDENTIFY routine to verify information without a user dialogue.

Calls to LGI$ICR_IDENTIFY are always followed by validation of the presence of the user name in
the system authorization file, unless the routine is invoked for a subprocess.

Typical Condition Values

SS$_NORMAL

Access permitted; continue policy checks.

480

Chapter 15. LOGINOUT (LGI) Routines

LGI$_SKIPRELATED

Access permitted; omit calls to the LGI$ICR_IDENTIFY callout routine in subsequent images
and calls to the associated OpenVMS policy function.

Other

Disallow the login.

Associated OpenVMS Policy Function
1

Perform standard OpenVMS user name prompting and parsing.

LGI$ICR_INIT
LGI$ICR_INIT — The LGI$ICR_INIT callout routine may perform any required initialization func-
tions.

Format
LGI$ICR_INIT arg_vector ," context"

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Returns status indicating whether and how to proceed with the login.

Argument
arg_vector

OpenVMS usage: vector
type: vector_longword_unsigned
access: modify
mechanism: by reference

Vector containing callbacks and login information.

context

OpenVMS usage: context
type: longword (unsigned)
access: modify
mechanism: by reference

481

Chapter 15. LOGINOUT (LGI) Routines

Pointer to site's local context.

Description
This routine is called for all job types before opening input and output files. If desired, the callout rou-
tine may initialize the context argument, which LOGINOUT subsequently passes to each callout rou-
tine with the address of local storage specific to the callout image.

Typical Condition Values
SS$_NORMAL

Access permitted; continue policy checks.

LGI$_SKIPRELATED

Access permitted; omit calls to the LGI$ICR_INIT callout routine in subsequent images.

Other

Disallow the login.

Associated OpenVMS Policy Functions
None.

LGI$ICR_JOBSTEP
LGI$ICR_JOBSTEP — The LGI$ICR_JOBSTEP callout routine signals the start of each batch job
step.

Format
LGI$ICR_JOBSTEP input_file_name ," context ," [write_fao"] "

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Not applicable.

Argument
input_file_name

OpenVMS usage: descriptor
type: character string
access: read
mechanism: by reference

482

Chapter 15. LOGINOUT (LGI) Routines

The name of the input file.

context

OpenVMS usage: context
type: longword (unsigned)
access: modify
mechanism: by reference

Pointer to site's local context.

write_fao (fao_string[,arg1[,arg2][,...]]])

OpenVMS usage: routine
type: procedure
access: read
mechanism: by reference

Address of a routine that may be called to format and display output. The routine has fao_string as
its first argument, followed by a variable number of arguments. (See the $FAO system directive in the
VSI OpenVMS System Services Reference Manual for more information.)

Description
The LGI$ICR_JOBSTEP routine alerts the site of each job step in a batch job. The routine is invoked
as LOGINOUT processes each job step. For the first job step, the LGI$ICR_JOBSTEP callout routine
is invoked immediately following the LGI$ICR_IDENTIFY callout routine. For all other job steps, it
is the only callout routine that is invoked.

The routine is provided with the input file name, but the input file is not open when the routine is
called. For the first job step, the LGI$ICR_INIT callout routine may provide the batch job step routine
with context. For other job steps, the context argument is a null.

For all job steps except the first, the output file is open, and the routine specified by the write_fao ar-
gument is available.

There is no OpenVMS policy associated with LGI$ICR_JOBSTEP.

Typical Condition Values
LGI$_SKIPRELATED or any error value

Access permitted; omit calls to the LGI$ICR_JOBSTEP callout routine in subsequent images.

Associated OpenVMS Policy Functions
None.

LGI$ICR_LOGOUT
LGI$ICR_LOGOUT — The LGI$ICR_LOGOUT callout routine permits the site callout images to re-
spond to the DCL command LOGOUT. This routine is not called if the calling process is deleted with

483

Chapter 15. LOGINOUT (LGI) Routines

STOP/PROCESS ($DELPRC). If the calling terminal is disconnected when logout occurs, this routine
must not produce output.

Format
LGI$ICR_LOGOUT username ," processname ," creprc_flags ," write_fao"

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Returns logout status from the site program.

Argument
username

OpenVMS usage: descriptor
type: character string
access: read
mechanism: by reference

User name.

processname

OpenVMS usage: descriptor
type: character string
access: read
mechanism: by reference

Process name.

creprc_flags

OpenVMS usage: mask_longword
type: longword_unsigned
access: read
mechanism: by reference

Process creation status flags.

write_fao (fao_string[,arg1[,arg2][,...]]])

OpenVMS usage: routine
type: procedure

484

Chapter 15. LOGINOUT (LGI) Routines

access: read
mechanism: by reference

Procedure for writing data. The value is 0 if output is not permitted.

Address of a routine that may be called to format and display output. The routine has fao_string as
its first argument, followed by a variable number of arguments. (See the $FAO system directive in the
VSI OpenVMS System Services Reference Manual for more information.)

Description
The LGI$ICR_LOGOUT routine is invoked after auditing is completed and immediately before LO-
GOUT prints the logout message. This routine cannot prevent the logout from finishing, but it may
prevent display of the standard logout message.

Typical Condition Values
LGI$_SKIPRELATED or any error value

Access permitted; omit calls to the LGI$ICR_LOGOUT callout routine in subsequent images.

Associated OpenVMS Policy Functions
None.

15.5. LOGINOUT Callback Routines
LOGINOUT callout routines use callback routines to interact with the user or to access other LOGI-
NOUT services. This section describes the individual callback routines. The description of each rou-
tine includes the following:

• The format of the call command

• The anticipated information returned by the called routine

• The arguments presented to the called routine

• A general description of the routine

• Condition values that indicate the return status of the routine, success or failure

LGI$ICB_ACCTEXPIRED
LGI$ICB_ACCTEXPIRED — The LGI$ICB_ACCTEXPIRED callback routine checks for account
expiration.

Format
LGI$ICB_ACCTEXPIRED

Returns
No value. Does not return on failure.

485

Chapter 15. LOGINOUT (LGI) Routines

Argument
None.

Description
The site can use this callback routine to determine if the specified account is expired. If the account is
expired, the LGI$ICB_ACCTEXPIRED callback routine:

• Writes its standard error message to the user terminal, if a terminal exists

• Does not return control to the caller

Condition Values Returned
None.

LGI$ICB_AUTOLOGIN
LGI$ICB_AUTOLOGIN — The site may use the LGI$ICB_AUTOLOGIN callback routine to deter-
mine whether the standard OpenVMS autologin functionality applies for this terminal.

Format
LGI$ICB_AUTOLOGIN

Returns

OpenVMS usage: value
type: longword (unsigned)
access: write only
mechanism: by value

True (logical 1) if autologin enabled; 0 otherwise.

Argument
None.

Description
If the standard OpenVMS autologin functionality applies, the callback routine returns the user name
to the site program using the standard argument vector so that the autologin process may continue.

The autologin determination is made before the site prompts for the user passwords. The callback rou-
tine is applicable only for interactive character-cell logins.

Note

Standard OpenVMS policy uses autologin only on directly connected or LAT connected character-cell
terminals. The LGI$ICB_AUTOLOGIN callback routine checks the automatic login file (ALF) SYS
$SYSTEM:SYSALF.DAT to make the determination.

486

Chapter 15. LOGINOUT (LGI) Routines

A DECwindows callout can include a method for doing a DECwindows autologin. In that case, the
callout routine should set the autologin flag to true before returning control to LOGINOUT.

Condition Values Returned

None.

LGI$ICB_CHECK_PASS
LGI$ICB_CHECK_PASS — The LGI$ICB_CHECK_PASS callback routine checks a password
against the user authorization file (UAF) record.

Format

LGI$ICB_CHECK_PASS password ," uaf_record ," pwd_number"

Returns

OpenVMS usage: value
type: longword (unsigned)
access: write only
mechanism: by value

The value 1 for a valid password. The value --4 for an invalid password.

Argument

password

OpenVMS usage: character string
type: string descriptor
access: read only
mechanism: by reference

User-supplied password to be validated.

uaf_record

OpenVMS usage: buffer
type: vector_byte (unsigned)
access: read only
mechanism: by reference

Address of buffer containing UAF record.

pwd_number

OpenVMS usage: value

487

Chapter 15. LOGINOUT (LGI) Routines

type: longword (unsigned)
access: read only
mechanism: by value

Password number, 0 (primary) or 1 (secondary).

Description
The site uses this callback routine to check the user-supplied password against the UAF record pro-
vided as the second argument. If the password is valid, the routine returns a 1 in R0; if the password is
invalid, the routine returns a --4 in R0.

Condition Values Returned
None.

LGI$ICB_DISUSER
LGI$ICB_DISUSER — The LGI$ICB_DISUSER callback routine checks the disabled user account
flag.

Format
LGI$ICB_DISUSER action"

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Condition value in R0.

Argument
action

OpenVMS usage: value
type: longword (unsigned)
access: read only
mechanism: by value

This argument can take two values:

If Value of Action Is... Then...
LGI$_DISUSER_STOP Do not return on error.
LGI$_DISUSER_RETURN Return LGI$_DISUSER or SS$_NORMAL.

488

Chapter 15. LOGINOUT (LGI) Routines

Description

The site can use this callback routine to establish the standard OpenVMS action if the DISUSER flag
is set.

Condition Values Returned

LGI$_DISUSER

SS$_NORMAL

LGI$ICB_GET_INPUT
LGI$ICB_GET_INPUT — The LGI$ICB_GET_INPUT callback routine enables interaction with the
user.

Format

LGI$ICB_GET_INPUT rab ," flags"

Returns

No value. Does not return on failure.

Argument

rab

OpenVMS usage: rab
type: longword (unsigned)
access: modify
mechanism: by reference

Data structure used to set up a read-with-prompt OpenVMS RMS operation. Normally you pass the
RAB address in LGI$A_ICR_INPUT_RAB.

flags

OpenVMS usage: mask_longword
type: longword (unsigned)
access: read only
mechanism: by reference

A data structure that determines the error response as follows:

Flags Value Response
0 Normal error message.

489

Chapter 15. LOGINOUT (LGI) Routines

Flags Value Response
1 LOGINOUT exits quietly.
2 Normal error message; however, the callback routine returns control to the caller

rather than exiting on timeout (timeout status is in RAB).

Description

The LGI$ICB_GET_INPUT callback routine invokes the LOGINOUT input routine to enable interac-
tion with character-cell terminal users. The read operation provides a timeout to ensure that the UAF
record does not remain locked if the user presses Ctrl/S.

Condition Values Returned

1

No return value. Examine status in RAB to determine the results of the read operation.

LGI$ICB_GET_SYSPWD
LGI$ICB_GET_SYSPWD — The LGI$ICB_GET_SYSPWD callback routine validates the system
password.

Format

LGI$ICB_GET_SYSPWD

Returns

No value. Does not return on failure.

Argument

None.

Description

This callback routine performs standard system password-checking for interactive logins on charac-
ter-cell terminals only.

If the system password is validated, this callback routine returns control to the caller. If the system
password is not validated, the LOGINOUT image exits, and the login is terminated.

Condition Values Returned

None.

LGI$ICB_MODALHOURS
LGI$ICB_MODALHOURS — The LGI$ICB_MODALHOURS callback routine checks for restric-
tions on access modes and access hours.

490

Chapter 15. LOGINOUT (LGI) Routines

Format
LGI$ICB_MODALHOURS

Returns
No value. Does not return on failure.

Argument
None.

Description
The site uses this callback routine to establish the access modes and access hours available to the user.
If the user is not authorized to access the system from this login class (batch, dialup, local, remote,
network) at this time (as specified in the UAF), the callback routine:

• Writes its standard error message to the user terminal, if there is a terminal

• Does not return control to the caller

Condition Values Returned
None.

LGI$ICB_PASSWORD
LGI$ICB_PASSWORD — The LGI$ICB_PASSWORD callback routine produces the specified pass-
word prompt and then processes the input.

Format
LGI$ICB_PASSWORD password_number ," prompt ," buffer"

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Condition value in R0.

Argument
password_number

OpenVMS usage: value
type: longword (unsigned)
access: read only

491

Chapter 15. LOGINOUT (LGI) Routines

mechanism: by value

A numeric value indicating which password to prompt for and what action to take on it:

Value Prompt for
0 Primary password and validate it
1 Secondary password and validate it
--1 Primary password but do not validate it
--2 Secondary password but do not validate it
--3 Arbitrary 32-character value returned to buffer specified in buffer

If the value is --3, you must specify the prompt argument and the buffer argument.

prompt

OpenVMS usage: character string
type: string descriptor
access: read only
mechanism: by reference

String that must begin with "cr,lf". If this argument is not supplied, the standard prompt is used.

buffer

OpenVMS usage: character string
type: string descriptor
access: modify
mechanism: by reference

Buffer having at least 32 bytes available to store password when password_number argument value
is --3.

Description
The site can use this callback routine to interactively prompt for passwords. The routine uses either
the standard OpenVMS password prompt or a prompt provided by the caller in the second argument.

The password is returned in one of the following locations, depending on the value of the pass-
word_number argument:

Value of Password_Number Argument Location
0 or --1 LGI$A_ICR_PWD1
1 or --2 LGI$A_ICR_PWD2
--3 buffer argument

Note

This routine will do overstriking, if necessary, to support echo local terminals. See the VSI OpenVMS
Programming Concepts Manual for more information about echo terminals.

492

Chapter 15. LOGINOUT (LGI) Routines

Condition Values Returned
SS$_NORMAL

Success.

LGI$_INVPWD

Password check failed.

LGI$_NOSUCHUSER

No UAF record found.

LGI$ICB_PWDEXPIRED
LGI$ICB_PWDEXPIRED — The LGI$ICB_PWDEXPIRED callback routine checks for password
expiration.

Format
LGI$ICB_PWDEXPIRED

Returns
No value. Does not return on failure.

Argument
None.

Description
Use this callback routine to determine whether the account password has expired. If the password is
expired, the callback routine:

• Writes its standard error message to the user terminal, if there is a terminal

• Does not return control to the caller

Condition Values Returned
None.

LGI$ICB_USERPARSE
LGI$ICB_USERPARSE — The LGI$ICB_USERPARSE callback routine parses the user name in-
put.

Format
LGI$ICB_USERPARSE input_buffer"

493

Chapter 15. LOGINOUT (LGI) Routines

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Condition value in R0.

Argument
input_buffer

OpenVMS usage: character string
type: string descriptor
access: read only
mechanism: by reference

The input buffer must contain the characters LOGIN in the first five character locations, followed by
an ASCII space character and then the user name and applicable site-specified qualifiers.

Description
The site can use this callback routine to parse input for interactive logins on character-cell and
DECwindows terminals.

Upon completion of this routine, the user name is accessible at the LGI$A_USERNAME entry in the
standard arguments vector.

Condition Values Returned
1

True (1) if successful; otherwise, any condition code returned by CLI$PARSE.

LGI$ICB_USERPROMPT
LGI$ICB_USERPROMPT — The LGI$ICB_USERPROMPT callback routine prompts for the user
name.

Format
LGI$ICB_USERPROMPT prompt"

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

494

Chapter 15. LOGINOUT (LGI) Routines

Condition value in R0.

Argument
prompt

OpenVMS usage: character string
type: string descriptor
access: read only
mechanism: by reference

A string that must begin with "cr,lf". For example, to produce the standard user name prompt, use
your language equivalent of the following BLISS value:

UPLIT(12,UPLIT BYTE(CR,LF,'Username: '))

Declare the string in C using the following statement:

$DESCRIPTOR(<variable_name>, "lrlnUsername:")

You then pass the descriptor using the variable name.

This routine also produces the standard user name prompt if you pass the value 0 for this argument.

Description
Use this callback routine to interactively prompt for the user name on a character-cell terminal. The
callback routine reads the response to the prompt and does standard DCL parsing for the user name
and any qualifiers provided. Upon completion of this routine, the user name is accessible at the LGI
$A_USERNAME entry in the standard arguments vector.

Condition Values Returned
SS$_NORMAL

Success.

LGI$_NOTVALID

Retry count exceeded for user input.

LGI$ICB_VALIDATE
LGI$ICB_VALIDATE — The LGI$ICB_VALIDATE callback routine validates the user name and
passwords against the system authorization file.

Format
LGI$ICB_VALIDATE username ," pwd1 ," pwd2"

Returns

OpenVMS usage: cond_value

495

Chapter 15. LOGINOUT (LGI) Routines

type: longword (unsigned)
access: write only
mechanism: by value

Condition value in R0.

Argument
username

OpenVMS usage: character string
type: string descriptor
access: read only
mechanism: by reference

User name.

pwd1

OpenVMS usage: character string
type: string descriptor
access: read only
mechanism: by reference

Primary password.

pwd2

OpenVMS usage: character string
type: string descriptor
access: read only
mechanism: by reference

Secondary password.

Description
The site can use this callback routine to validate the user name and the user's primary and secondary
passwords against the system authorization file (SYSUAF.DAT). The routine also:

• Updates the user authorization (UAF) record with information about login failures

• Performs security auditing

• Performs break-in detection and intrusion evasion

Condition Values Returned
1

Success, or an error indicating the reason for the failure.

496

Chapter 16. Mail Utility Routines
The callable interface of the Mail utility (MAIL) lets you send messages to users on your system or on
any other computer connected to your system with DECnet. This chapter describes how application
programs using callable MAIL routines can perform the following functions:

• Create and access mail files

• Access and manipulate a message or group of messages

• Create and send messages to a user or group of users

• Access and manipulate the user profile database

For information about the DCL interface to the Mail utility, see the OpenVMS User's Manual.

16.1. Messages
 Messages are files that contain information you want to send to other users. Messages having one or
two blocks are part of a mail file, while messages having more than two blocks are external sequential
files.

External files reside in the same directory as the mail file that points to them.

Structure of a Message
A message consists of header information and the bodypart. The message bodypart consists of text
records that contain information you want to send to another user.

Example 16.1 illustrates the format of a mail message.

Example 16.1. Standard Message Format

From: MYNODE::USER "The Celestial Navigator"
To: NODE::J_DOE
CC: USER
Subj: Perseids ...

Get ready. Tuesday of this week (August 12th), one
of the most abundant meteor showers of the year will occur.
The Perseids, also known as the St. Laurence's Tears, stream
across earth's orbit at 319.3 degrees. Radiant 3h4m +58 degrees.
Fine for photography with an average magnitude of 2.27.
There will be some fireballs, fainter white or yellow
meteors, and brighter green or orange or red ones. About one
third of the meteors, including all the brightest, leave
yellowish trains, which may be spectacular, up to 2
degrees wide and lasting up to 100 seconds. Brighter
meteors often end in flares or bursts.

The parts of a message are as follows:

• Header information

497

Chapter 16. Mail Utility Routines

From: field specifies the sender and an optional personal name string
To: field specifies the direct addressee
CC: field specifies the carbon copy addressee
Subj: field specifies the topic of the message

• Bodypart

First line of the bodypart
Last line of the bodypart

External Message Identification Number
In addition, the file name of an external message uses the following format:

MAIL$nnnnnnnnnnnnnnnn.MAI

where n …n is the external message identification number.

16.2. Folders
The Mail utility organizes messages by date and time received and, secondarily, by folder name. All
messages are associated with a folder name—either default folders or user-specified folders. The Mail
utility associates mail messages with one of three default mail folder names. Table 16.1 describes the
three default mail folders.

Table 16.1. Default Mail Folders

Folder Contents
NEWMAIL Newly received, unread messages
MAIL Messages that have been read and not deleted
WASTEBASKET Messages designated for deletion

You can also place messages in any user-defined mail folder and file.

16.3. Mail Files
A mail file is an indexed file that contains the following types of data:

• Header information for all messages

• Text of short messages

• Pointers to long messages

In addition, you can select messages from mail files as well as copy or move messages to or from mail
files.

Mail File Format
The indexed mail file format offers two advantages: use of folders and faster access time than sequen-
tial access. Indexed mail files use two keys to locate messages—a primary key denoting the date and
time received and a secondary key using the folder name.

498

Chapter 16. Mail Utility Routines

16.4. User Profile Database
The Mail utility maintains an indexed data file VMSMAIL_PROFILE.DATA that serves as a sys-
temwide database of user profile entries. A user profile entry is a record that contains data describing
a Mail user's default processing characteristics and whose primary key is the user name. Table 16.2
summarizes information contained in a user profile entry.

Table 16.2. User Profile Information

Field Function
Directory Default MAIL subdirectory
Form Default print form
Forwarding address Forwarding address
Personal name string User-specified character string included in the

message header
Queue name Default print queue name
Flags

Automatic purge

CC: prompt

Copy self forward

Copy self reply

Copy self send

Purging of the wastebasket folder on exiting

Carbon copy prompt

Copy to self when forwarding a message

Copy to self when replying to a message

Copy to self when sending a message

Signature file Text file that is automatically appended to the end
of the body of a mail message

Both the callable interface and the user interface access the user profile database to determine default
processing characteristics.

16.5. Mail Utility Processing Contexts
The Mail utility defines four discrete levels of processing, or contexts for manipulating mail files,
messages, folders, and the user profile database as shown in Table 16.3.

Table 16.3. Levels of Mail Utility Processing

Context Entity
Mail file Mail files and folders
Message Mail files, folders, and messages
Send Messages
User User profile database

Within each context, your application processes specific entities in certain ways using callable MAIL
routines as described in the sections that follow.

Initiating a MAIL Context

499

Chapter 16. Mail Utility Routines

You must explicitly begin and end each MAIL context. Each group of routines contains a pair of con-
text-initiating and terminating routines.

When you begin processing in any context, the Mail utility performs the following functions:

1. Allocates sufficient virtual memory to manage context information

2. Initializes context variables and internal structures

Terminating a MAIL Context
Terminating a MAIL processing context deallocates virtual memory. You must explicitly terminate
processing in any context by calling a context-terminating routine.

16.5.1. Callable Mail Utility Routines
There are four types of callable Mail utility routines, each corresponding to the context within which
they execute. A prefix identifies each functional group:

• MAIL$MAILFILE_

• MAIL$MESSAGE_

• MAIL$SEND_

• MAIL$USER_

Table 16.4 lists Mail utility routines according to context.

Table 16.4. Callable Mail Utility Routines

Context Routine
Mail file MAIL$MAILFILE_BEGIN

MAIL$MAILFILE_CLOSE

MAIL$MAILFILE_COMPRESS

MAIL$MAILFILE_END

MAIL$MAILFILE_INFO_FILE

MAIL$MAILFILE_MODIFY

MAIL$MAILFILE_OPEN

MAIL$MAILFILE_PURGE_WASTE
Message MAIL$MESSAGE_BEGIN

MAIL$MESSAGE_COPY

MAIL$MESSAGE_DELETE

MAIL$MESSAGE_END

MAIL$MESSAGE_GET

500

Chapter 16. Mail Utility Routines

Context Routine
MAIL$MESSAGE_INFO

MAIL$MESSAGE_MODIFY

MAIL$MESSAGE_SELECT
Send MAIL$SEND_ABORT

MAIL$SEND_ADD_ADDRESS

MAIL$SEND_ADD_ATTRIBUTE

MAIL$SEND_ADD_BODYPART

MAIL$SEND_BEGIN

MAIL$SEND_END

MAIL$SEND_MESSAGE
User MAIL$USER_BEGIN

MAIL$USER_DELETE_INFO

MAIL$USER_END

MAIL$USER_GET_INFO

MAIL$USER_SET_INFO

16.5.2. Single and Multiple Threads
Once you have successfully initiated MAIL processing in a context, you have created a thread. A
thread is a series of calls to MAIL routines that uses the same context information. Applications can
contain one or more threads.

Single Threads
For example, consider an application that begins mail file processing; opens, compresses, and closes
a mail file; and ends mail file context processing. This application executes a single thread of proce-
dures that reference the same context variable names and pass the same context information.

Multiple Threads
You can create up to 31 concurrent threads. Applications that contain more than one thread must
maintain unique context variables for each thread in order to pass thread-specific context information.

The Mail utility returns the condition value MAIL$_NOMORECTX when your process attempts to
exceed the maximum number of allowable threads.

16.6. Programming Considerations
The calling sequence for all MAIL routines consists of a status variable, an entry point name, and an
argument list. All arguments within the argument list are required. All callable MAIL routines use the
same arguments in their calling sequences as described in the following example:

501

Chapter 16. Mail Utility Routines

STATUS=MAIL$MAILFILE_BEGIN(CONTEXT, IN_ITEM_LIST, OUT_ITEM_LIST)

The variable status receives the condition value, and the argument context receives the context infor-
mation. The arguments in_item_list and out_item_list are input and output item lists that contain one
or more input or output item descriptors.

16.6.1. Condition Handling
At run time, a hardware- or software-related event can occur that determines whether or not the appli-
cation executes successfully. The Mail utility processes such an event, or condition in the following
ways:

• Signals the condition value

• Returns the error code

You can establish your own condition handler or allow the program to signal the default condition
handler.

Returning Condition Values
You can disable signaling for any call by specifying the item code MAIL$_NOSIGNAL as an item in
the input item list.

16.6.2. Item Lists and Item Descriptors
Your application passes data to callable MAIL routines and receives data from routines through data
structures called item lists defined in your program.

16.6.2.1. Structure of an Item Descriptor
An input or output item list is a data structure that consists of one or more input or output item de-
scriptors.

The following table summarizes the characteristics of item lists:

Item Descriptor Characteristics
Input Each descriptor points to a buffer or file from

which Mail reads data.
Output Each descriptor points to a buffer or file to which

Mail writes data.

An item descriptor is a data structure consisting of three longwords as described in Figure 16.1.

Figure 16.1. Item Descriptor

502

Chapter 16. Mail Utility Routines

Item descriptor fields are described as follows:

Field Function
Item code Specifies an action the routine is to perform.
Buffer length Specifies the length in bytes of an input or output buffer.
Buffer address Specifies the address of the input or output buffer.

Depends on the type of item code specified:
Item Code Use
Input Not used; specify 0.

Return length address

Output Address of a longword that re-
ceives the length of the result.

Note

You can specify item descriptors in any order within an item list.

Item Codes

The item code defines an action that the routine is to perform. Input and output item codes are speci-
fied in input and output item descriptors, respectively.

Boolean input and output item codes request an operation but do not pass data to the called routine.
For example, the item code MAIL$_USER_SET_CC_PROMPT sets the CC prompt flag enabling use
of CC: field text.

For a complete list of input and output item codes, see Tables 16.10 and 16.11.

16.6.2.2. Null Item Lists
Both the input and output item list arguments in the MAIL routine calling sequence are required.
However, there might be situations when you do not want to request an operation or no input or out-
put item codes are listed for the routine. In such cases, you must pass the value 0 in the function call.

16.6.2.3. Declaring Item Lists and Item Descriptors
Depending on the programming language you are using, refer to the appropriate language reference
manual for more information about declaring data structures and creating variables.

16.6.2.4. Terminating an Item List
Terminate an item list with a null item descriptor. Assign the value 0 to each field in the item descrip-
tor.

16.6.3. Action Routines
Certain callable MAIL routines allow you to specify an action routine. An action routine transfers
control to a user-written subroutine that performs specific tasks.

The mail file, message, and send contexts permit the use of action routines for specific reasons. Ta-
ble 16.5 summarizes the types of action routines and the contexts in which they are used.

503

Chapter 16. Mail Utility Routines

Table 16.5. Types of Action Routines

Context Routine Action Routine
Mail file MAIL$MAILFILE_INFO_FILE Provides information about folder

and mail files.
Message MAIL$MESSAGE_COPY Copies messages between files and

folders.
Send MAIL$SEND_MESSAGE Success and error results; sends a

text file to an existing address list.

The preceding table summarizes typical uses of action routines. However, an action routine can per-
form any task you specify. See the Guide to Creating OpenVMS Modular Procedures for more infor-
mation about action routines.

Mail File and Folder Action Routine Calling Sequence
The main portion of the application calls the action routine and passes values to it using parameters.
The calling sequence of a mail file or folder action routine is as follows:

entry-point-name(userdata,foldername)

The argument userdata is the address of a required longword that contains user-specified data, and
the argument foldername is the address of a descriptor of the foldername.

Send Action Routine Calling Sequence
The calling sequence of a send action routine is as follows:

entry-point-name(username,signal-array,userdata)

The argument username is the address of a descriptor of the user name to which the application suc-
cessfully sent a message; signal-array is the address of a signal array containing the success message;
userdata is the address of an optional longword that contains user-specified data.

16.7. Managing Mail Files
Using mail files involves opening and closing both default mail files and user-created mail files, dis-
playing folder names, and purging and compressing mail files. Table 16.6 summarizes each mail file
routine and its function.

Table 16.6. Mail File Routines

Routine Description
MAIL$MAILFILE_BEGIN Initiates mail file processing
MAIL$MAILFILE_CLOSE Closes a mail file
MAIL$MAILFILE_COMPRESS Compresses a mail file
MAIL$MAILFILE_END Terminates mail file processing
MAIL$MAILFILE_INFO_FILE Obtains information about the mail file
MAIL$MAILFILE_MODIFY Changes the wastebasket folder name and the de-

fault mail file name

504

Chapter 16. Mail Utility Routines

Routine Description
MAIL$MAILFILE_OPEN Opens a mail file
MAIL$MAILFILE_PURGE_WASTE Purges a mail file

Mail file context processing involves accessing and manipulating one or more mail files.

Initiating the Mail File Context
Your application must call MAIL$MAILFILE_BEGIN to perform mail file context processing.

When you call MAIL$MAILFILE_BEGIN successfully and begin processing in the mail file context,
you have created a thread. You must specify the same context variable name in routine calls within the
same thread.

Terminating the Mail File Context
Terminate processing in the mail file context calling MAIL routines in the following order:

1. Terminate message context processing (if applicable) using MAIL$MESSAGE_END.

2. Close the currently open mail file using MAIL$MAILFILE_CLOSE.

3. Terminate mail file context processing using MAIL$MAILFILE_END.

The following sections describe these actions in more detail.

16.7.1. Opening and Closing Mail Files
Before you perform any activities on existing messages, folders, and mail files, you must first open a
mail file. Whenever you open a mail file, you must do so explicitly using MAIL$MAILFILE_OPEN.
You can open only one mail file per mail file thread.

Note that each routine references the same context variable. An open mail file must be explicitly
closed with a call to MAIL$MAILFILE_CLOSE.

16.7.1.1. Using the Default Specification for Mail Files

To open a mail file, Mail must first locate it using either a default or a user-specified mail file specifi-
cation. A mail file specification consists of the following components: disk and directory, file name,
and file type.

If you use the default file specification, the Mail utility locates and opens the default mail file using
the following information:

Component Source
User's disk and directory Retrieved from the user authorization file (UAF)
MAIL subdirectory Retrieved from the user profile entry
Mail file name and type MAIL.MAI

16.7.1.2. Specifying an Alternate Mail File Specification

505

Chapter 16. Mail Utility Routines

You can use the default specification for mail files or specify all or part of an alternate mail file speci-
fication.

When to Specify an Alternate Mail File Specification

The following mail file routines accept alternate mail file specifications when you use the item codes
MAIL$_MAILFILE_DEFAULT_NAME or MAIL$_MAILFILE_NAME or both:

• MAIL$MAILFILE_COMPRESS

• MAIL$MAILFILE_INFO_FILE

• MAIL$MAILFILE_MODIFY

• MAIL$MAILFILE_OPEN

How the Mail Utility Creates an Alternate Mail File Specification

The Mail utility constructs an alternate mail file specification by using program-supplied mail file
specifications to modify the default specification for mail files in the following order of importance:

1. Program-supplied file specification (MAIL$_MAILFILE_NAME)

• Program-supplied disk and directory

• Program-supplied file name and type

2. Program-supplied default file specification (MAIL$_MAILFILE_DEFAULT_NAME)

• Program-supplied disk and directory

• Program-supplied file name and type

3. Default specification

If you are using MAIL$_MAILFILE_DEFAULT_NAME and you specify 0 as the buffer size and ad-
dress, the Mail utility uses the current device and directory.

The default specification for mail files applies unless overridden by your program-supplied mail file
specifications. Mail file specifications defined with MAIL$_MAILFILE_NAME override those de-
fined with MAIL$_MAILFILE_DEFAULT_NAME.

For example, an application can override the default specification $DISK0:[USER]MAIL.MAIL
by defining an alternate device type $DISK99: using MAIL$_MAILFILE_NAME. The result is
$DISK99:[USER]MAIL.MAI. The application can further modify the specification by defining a dif-
ferent mail file MYMAILFILE.MAI using MAIL$_MAILFILE_DEFAULT_NAME. The new mail
file specification is $DISK99:[USER]MYMAILFILE.MAI.

16.7.2. Displaying Folder Names
As the size of your mail files increases with messages and folders, you might want to display your
folder names. A user-written folder action routine lets you do this.

In the mail file context, MAIL$MAILFILE_INFO_FILE can be used to invoke a folder action routine
that displays folder names in a mail file. If you specify the item code MAIL$_MAILFILE_FOLD-

506

Chapter 16. Mail Utility Routines

ER_ROUTINE, MAIL$MAILFILE_INFO passes a descriptor of a folder name to the action routine
repeatedly until it encounters no more folder names and passes a null descriptor.

16.7.3. Purging Mail Files Using the Wastebasket Fold-
er
The Mail utility associates messages designated for deletion with a wastebasket folder. Purging mail
files of messages in the wastebasket folder that are designated for deletion is one way to conserve
disk space. You can also use the Mail utility to conserve disk space by reclaiming disk space and com-
pressing mail files, as described in the sections that follow.

Note that purging the wastebasket folder removes the messages from the wastebasket folder but might
not reclaim disk space.

16.7.3.1. Reclaiming Disk Space
Simply deleting the messages does not mean you will automatically reclaim the disk space. The Mail
utility uses a system-defined threshold of bytes designated for deletion to determine when to reclaim
disk space. When the total number of total bytes designated for deletion exceeds the threshold, the
Mail utility performs a reclaim operation.

You can override the deleted bytes threshold and request a reclaim operation using MAIL
$MAILFILE_PURGE_WASTE with the input item code MAIL$_MAILFILE_RECLAIM.

16.7.3.2. Compressing Mail Files
Compressing mail files is a way of conserving disk space. Mail file compression provides faster
access to the folders and messages within the mail file. When you call MAIL$MAILFILE_COM-
PRESS, Mail removes unused space within the specified mail file.

16.8. Message Context
Message context processing involves manipulating existing messages as well as creating and deleting
folders and mail files. Table 16.7 summarizes routines used in the message context.

Table 16.7. Message Routines

Routine Description
MAIL$MESSAGE_BEGIN Initiates message processing
MAIL$MESSAGE_COPY Copies messages
MAIL$MESSAGE_DELETE Deletes messages
MAIL$MESSAGE_END Terminates message processing
MAIL$MESSAGE_GET Retrieves a message
MAIL$MESSAGE_INFO Obtains information about a specified message
MAIL$MESSAGE_MODIFY Identifies a message as replied, new, or marked
MAIL$MESSAGE_SELECT Selects a message or messages from the currently

open mail file

Initiating the Message Context

507

Chapter 16. Mail Utility Routines

Message context processing can begin only after a mail file has been opened. Your application must
explicitly call MAIL$MESSAGE_BEGIN in order to execute message context processing.

The Mail utility passes mail file context information to the message context when you call MAIL
$MESSAGE_BEGIN with the input item code MAIL$_MESSAGE_FILE_CTX.

Terminating the Message Context
To terminate message-level processing for a specific thread, you must call MAIL$MESSAGE_END
to deallocate memory.

16.8.1. Selecting Messages
Applications select messages using MAIL$MESSAGE_SELECT to copy and move messages be-
tween folders as well as to read, modify, or delete messages. You must select messages before you can
use them. You must specify a folder name when you select messages.

You can select messages based on the following criteria: matching character strings, message arrival
date and time, and message characteristics.

Matching Character Strings

You can select a message or set of messages from a mail file by specifying one or more character sub-
strings that you want to match with a character substring in the header information of a message or
group of messages. You must specify the specific bodypart in the message header where the substring
is located.

• From: line

• To: line

• CC: line

• Subject: line

The Mail utility searches the specified folder for message headers that contain the matching character
substring. This method of selection is useful when you want to select and use messages from or to a
particular user that are associated with many folder names.

When you specify more than one character substring, the Mail utility performs a logical AND opera-
tion to find the messages that contain the correct substring.

Message Arrival Date and Time

You can also select a message or group of messages based on their arrival time, that is, when you re-
ceived them. Applications select messages according to two criteria as follows:

• Messages received before a specified date or time or both

• Messages received on or after a specified date or time or both

The Mail utility searches the mail file and selects messages whose primary key (date and time) match-
es the date and time specified in your application.

508

Chapter 16. Mail Utility Routines

Message Characteristics
You can select messages based on Mail system flag values that indicate the following message charac-
teristics:

• New

• Marked

• Replied

For example, you can select unread messages in order to display them or to display a message you
have marked.

16.8.2. Reading and Printing Messages
After a message is selected, an application iteratively retrieves the contents of the bodypart record
by record. The message can be retrieved using MAIL$MESSAGE_GET and can then be stored in a
buffer or file.

Displaying a Message
To display a message on the terminal screen, you should store the message in a buffer and use the host
programming language command that directs data to the screen.

Printing a Message
To print a message on a print queue on your system, you should write the message to an external file
and use the $SNDJBC system service to manage print jobs and define queue characteristics.

16.8.3. Modifying Messages
Message modification using MAIL$MESSAGE_MODIFY involves setting flags that identify a mes-
sage or group of messages as having certain characteristics. The following table summarizes bit off-
sets that modify flag settings:

Symbol Meaning
MAIL$V_replied Flagged as answered
MAIL$V_marked Flagged for display purposes

16.8.4. Copying and Moving Messages
You can copy messages between folders within a mail file or between folders in different mail files
using MAIL$MESSAGE_COPY. The Mail utility copies the message from the source folder to the
destination folder leaving the original message intact.

Similarly, you can move messages between folders within a mail file or between folders in different
mail files using MAIL$MESSAGE_COPY with the item code MAIL$_MESSAGE_DELETE. The
Mail utility moves a message by copying the message from the source folder to the destination folder.
You must specify a folder name.

When you move a message to another folder within the same mail file, you are changing the mes-
sage's secondary key—its folder name.

509

Chapter 16. Mail Utility Routines

16.8.4.1. Creating Folders
You can create a folder in a specified mail file whenever you attempt to copy or move a message to a
nonexistent folder. When you create a folder, you are assigning a previously nonexistent folder name
to a message as its secondary key.

Your application can include a user-written folder action routine that notifies you that the folder does
not exist and accepts input to create the folder.

16.8.4.2. Deleting Folders
You can delete a folder by moving all of the messages within the source folder to another folder in the
same mail file or to a folder in another mail file. In this case, the Mail utility associates messages that
are moved with a new folder name.

You can also delete a folder by deleting all of the messages in a folder. The Mail utility associates
messages designated for deletion with the wastebasket folder name.

In either case, the original folder name—the secondary key—no longer exists.

16.8.4.3. Creating Mail Files
Similarly, you can create a mail file whenever you attempt to copy or move a message to a nonexis-
tent mail file.

Your application can include a user-written mail file action routine that notifies you that the mail file
does not exist and accepts input to create the mail file.

Mail file creation involves creating the mail file and then copying or moving the message to the new
mail file. If the message is shorter than 3 blocks, the Mail utility stores the message in the mail file.
Otherwise, the Mail utility places a pointer to the message in the newly created mail file.

16.8.5. Deleting Messages
To delete a message, you need to know its message identification number. Applications can retrieve
the message identification number by specifying the item code MAIL$_MESSAGE_ID when select-
ing a message or group of messages with MAIL$MESSAGE_SELECT.

When you delete all messages with the same secondary key (folder name) using MAIL
$MESSAGE_DELETE and specifying the item code MAIL$_MESSAGE_ID, you have deleted the
folder.

16.9. Send Context
Send context processing involves creating and sending new and existing messages. Table 16.8 sum-
marizes send routines.

Table 16.8. Send Routines

Routine Description
MAIL$SEND_ABORT Aborts a send operation
MAIL$SEND_ADD_ADDRESS Adds an addressee to the address list
MAIL$SEND_ADD_ATTRIBUTE Constructs the message header

510

Chapter 16. Mail Utility Routines

Routine Description
MAIL$SEND_ADD_BODYPART Constructs the body of the message
MAIL$SEND_BEGIN Initiates send processing
MAIL$SEND_END Terminates send processing
MAIL$SEND_MESSAGE Sends a message

Initiating the Send Context
You can invoke the send context directly if you are creating a new message. Otherwise, to access an
existing message, you must open the mail file that contains the message, select the message, and re-
trieve it.

Terminating the Send Context
You must terminate the send context explicitly using MAIL$SEND_END.

16.9.1. Sending New Messages
You can send new or existing messages to yourself and other users.

16.9.1.1. Creating a Message
You create new messages using send context routines. If you want to create and send a new message,
you do not need to initiate any other context. As mentioned earlier, a message consists of two parts—
the message header and the message bodypart.

Constructing a message involves building each part of the message separately using the following rou-
tines:

• MAIL$SEND_ADD_ATTRIBUTE

• MAIL$SEND_ADD_BODYPART

16.9.1.1.1. Constructing the Message Header

Each field of the message header is a message attribute. You can specify one or more attributes for
inclusion in the message header using MAIL$SEND_ADD_ATTRIBUTE. During successive calls to
MAIL$SEND_ADD_ATTRIBUTE, an application specifies the specific message attribute to be con-
structed.

If you do not specify the From: or To: fields, the Mail utility provides this information from the ad-
dress list.

16.9.1.1.2. Constructing the Body of the Message

To construct a message, an application must specify a series of calls to MAIL$SEND_ADD_BODY-
PART to build a message from successive text records contained in a buffer or file.

If the body of the message is located in a file, you can build the bodypart with one call to MAIL
$SEND_ADD_BODYPART by specifying its file name.

511

Chapter 16. Mail Utility Routines

16.9.1.2. Creating an Address List
You must create an address list in order to send a message. The address list is a file or buffer of ad-
dressees to whom you want to send the message. Each entry in the address list is a valid user name on
your system or on another system connected to your system by DECnet.

Adding User Names to the Address List

User names are added one at a time to the address list using one or more calls to MAIL$SEND_AD-
D_ADDRESS.

User Name Types

There are two types of user names--- direct and carbon copy addressees. Direct and carbon copy ad-
dressees correspond to user names in the To: and CC: fields of the message header.

16.9.2. Sending Existing Messages
Sending an existing message involves many tasks as well as initiating the mail file context and mes-
sage context. The following table summarizes the tasks and routines involved in sending an existing
message:

Task Routine
Open a mail file. MAIL$MAILFILE_OPEN
Select the message. MAIL$MESSAGE_SELECT
Retrieve the message. MAIL$MESSAGE_GET
Construct the message.

Construct the message header.

Construct the message bodypart.

MAIL$SEND_ADD_ATTRIBUTE

MAIL$SEND_ADD_BODYPART

Create an address list. MAIL$SEND_ADD_ADDRESS
Send the message. MAIL$SEND_MESSAGE

16.9.3. Send Action Routines
Once you have created an address list and constructed a message, you can send the message using
MAIL$SEND_MESSAGE. Optional success and error action routines handle signaled success and er-
ror events in a synchronous manner.

For example, If DECnet returns messages indicating that it might not be possible to complete a send
operation to some users in your address list, a user-specified send action routine might prompt the
sender for permission to continue the send operation.

16.9.3.1. Success Action Routines
A success action routine performs a task upon successful completion of a send operation.

16.9.3.2. Error Handling Routines
An error action routine is a user-written error handler that signals error conditions during a send oper-
ation.

512

Chapter 16. Mail Utility Routines

16.9.3.3. Aborting a Send Operation
Under certain circumstances, you might want to terminate a send operation in progress using MAIL
$SEND_ABORT. In this instance, you can use an asynchronous system trap (AST) routine that con-
tains a call to MAIL$SEND_ABORT to abort the send operation whenever the user presses Ctrl/C.

16.10. User Profile Context
The user profile processing context functions as a system management tool for customizing the pro-
gramming and interactive mail environments. It lets individual users modify their default processing
characteristics.

The user profile database VMSMAIL_PROFILE.DATA contains information that application pro-
grams and the Mail utility use for processing in any context.

Table 16.9 summarizes the user context routines.

Table 16.9. User Profile Context Routines

Routine Description
MAIL$USER_BEGIN Initiates user profile context
MAIL$USER_DELETE_INFO Deletes a user profile entry
MAIL$USER_END Terminates user profile context
MAIL$USER_GET_INFO Retrieves information about a user from the user

profile
MAIL$USER_SET_INFO Adds or modifies a user profile entry

Initiating the User Context
You can invoke the user context directly.

Terminating the User Context
You must terminate the user context with MAIL$USER_END. Terminating the user context deallo-
cates virtual memory.

16.10.1. User Profile Entries
A user profile entry is a dynamic record. The Mail utility creates a user profile entry automatically for
the calling process if it does not exist. The callable and user interfaces of the Mail utility use the data
contained in the user profile entry. The user profile consists of fields as described in the sections that
follow.

MAIL Subdirectory
A MAIL subdirectory is the location—that is, the disk and directory specification—of your mail files.
When you define a MAIL subdirectory, you are creating a subdirectory in which the specified mail
file and associated external messages are to reside. For example:

$DISK5:[MAILUSER.COMMON.MAIL]

513

Chapter 16. Mail Utility Routines

The subdirectory [.common.mail] represents the MAIL subdirectory specification defined in the user
profile entry. This subdirectory contains the mail file (for example, MAIL.MAI) and any external
messages associated with the mail file. The disk and directory specification $DISK5:[MAILUSER] is
defined in the user authorization file (UAF).

Flags
User profile flags can be set to enable or disable automatic purging of deleted mail, automatic self-
copy when forwarding, replying, or sending messages, and use of the CC prompt.

Form
The form field of the user profile entry defines the default print form to be used by print batch jobs.
The string you specify as the default form must match a valid print form in use on your system.

Forwarding Address
A forwarding address lets you receive messages to your account on another system or to have your
messages sent to another user either on your system or another system. You must specify valid node
names and user names.

Personal Name
A personal name is a user-specified character string. For example, a personal name might include
your entire name and phone number. Any phrase beginning with alphabetic characters up to a maxi-
mum of 127 alphanumeric characters is valid. However, consecutive embedded spaces should not be
used.

Queue Name
The queue name field defines the default print queue on your system where your print jobs are sent.

16.10.1.1. Adding Entries to the User Profile Database
Ordinarily, the Mail utility creates a user profile entry for the calling process if one does not already
exist. A system management application might create entries for other users. When you specify the
item code MAIL$_USER_CREATE_IF using MAIL$USER_SET_INFO, the Mail utility creates a
user profile entry if it does not already exist.

16.10.1.2. Modifying or Deleting User Profile Entries
The calling process can modify, delete, or retrieve its own user profile entry without privileges.

The following table summarizes the privileges required to modify or delete user profile entries that do
not belong to the calling process:

Procedure Privilege Function
MAIL$USER_SET_INFO SYSPRV Modifies another user's profile

entry
MAIL$USER_GET_INFO SYSNAM or SYSPRV Retrieves information about an-

other user

16.11. Input Item Codes

514

Chapter 16. Mail Utility Routines

Input item codes direct the called routine to read data from a buffer or file and perform a task. Ta-
ble 16.10 summarizes input item codes.

Table 16.10. Input Item Codes

Item Code Function
Mail File Context
MAIL$_MAILFILE_DEFAULT_NAME Specifies the location (disk and directory) of the

default mail file MAIL.MAI.
MAIL$_MAILFILE_FOLDER_ROUTINE Displays folder names within a specified mail

file.
MAIL$_MAILFILE_FULL_CLOSE Requests that the wastebasket folder be purged

and that a convert/reclaim operation be per-
formed, if necessary.

MAIL$_MAILFILE_NAME Specifies the name of a mail file to be opened.
MAIL$_MAILFILE_RECLAIM Overrides the deleted bytes threshold and requests

a reclaim operation.
MAIL$_MAILFILE_USER_DATA Passes a longword of user context data to an ac-

tion routine.
MAIL$_MAILFILE_WASTEBASKET_NAME Specifies a new name for the wastebasket in a

specified mail file.
Message Context
MAIL$_MESSAGE_AUTO_NEWMAIL Places newly read messages in the Mail folder au-

tomatically.
MAIL$_MESSAGE_BACK Returns the first record of the preceding message.
MAIL$_MESSAGE_BEFORE Selects a message before a specified date.
MAIL$_MESSAGE_CC_SUBSTRING Specifies a character string that must match a

node or user name substring in the CC: field of
the specified message.

MAIL$_MESSAGE_CONTINUE Returns the next text record of the current mes-
sage.

MAIL$_MESSAGE_DEFAULT_NAME Specifies the default mail file specification.
MAIL$_MESSAGE_DELETE Deletes a message in the current folder after the

message has been copied to a new folder.
MAIL$_MESSAGE_FILE_ACTION Specifies a user-written routine that is called if a

mail file is to be created.
MAIL$_MESSAGE_FILE_CTX Specifies mail file context received from MAIL

$MAILFILE_BEGIN.
MAIL$_MESSAGE_FILENAME Specifies the name of a mail file to which the

message is to be moved.
MAIL$_MESSAGE_FOLDER_ACTION Specifies a user-written routine that is called if a

folder is to be created.
MAIL$_MESSAGE_FLAGS Specifies MAIL system flags to use when select-

ing messages.
MAIL$_MESSAGE_FLAGS_MBZ Specifies MAIL system flags that must be zero.

515

Chapter 16. Mail Utility Routines

Item Code Function
MAIL$_MESSAGE_FOLDER Specifies the name of the target folder for moving

messages.
MAIL$_MESSAGE_FROM_SUBSTRING Specifies a character string that must match a

node or user name substring in the From: field of
the specified message.

MAIL$_MESSAGE_ID Specifies the message identification number of
the message on which an operation is to be per-
formed.

MAIL$_MESSAGE_NEXT Returns the first record of the message following
the current message.

MAIL$_MESSAGE_SINCE Selects a message received on or after a specified
date.

MAIL$_MESSAGE_SUBJ_SUBSTRING Specifies a character string that must match a
node or user name substring in the Subject: field
of the specified message.

MAIL$_MESSAGE_TO_SUBSTRING Specifies a character string that must match a sub-
string in the To: field of the specified message.

MAIL$_MESSAGE_USER_DATA Specifies a longword to be passed to the folder
and mail file action routines.

Send Context
MAIL$_SEND_CC_LINE Specifies the CC: field text.
MAIL$_SEND_DEFAULT_NAME Specifies the default file specification of a text

file to be opened.
MAIL$_SEND_ERROR_ENTRY Specifies a user-written routine to process errors

that occur during a send operation.
MAIL$_SEND_FID Specifies the file identifier.
MAIL$_SEND_FILENAME Specifies the input file specification of a text file

to be opened.
MAIL$_SEND_FROM_LINE Specifies the From: field text.
MAIL$_SEND_PERS_NAME

MAIL$_SEND_NO_PERS_NAME

Specifies the personal name string.

Specifies that no personal string be used.
MAIL$_SEND_RECORD Specifies the descriptor of a text record to be

added to the body of a message.
MAIL$_SEND_SIGFILE Specifies a full OpenVMS file specification of the

signature file to be used in the message.
MAIL$_SEND_NO_SIGFILE Specifies that no signature file be used.
MAIL$_SEND_SUBJECT Specifies the Subject: field text.
MAIL$_SEND_SUCCESS_ENTRY Specifies a user-written routine to process suc-

cessfully completed events during a send opera-
tion.

MAIL$_SEND_TO_LINE Specifies the To: field text.

516

Chapter 16. Mail Utility Routines

Item Code Function
MAIL$_SEND_USER_DATA Specifies a longword passed to the send action

routines.
MAIL$_SEND_USERNAME Adds a specified user name to the address list.
MAIL$_SEND_USERNAME_TYPE Specifies the type of user name added to the ad-

dress list.
MAIL$_SEND_RECIP_FOLDER Specifies the descriptor of a recipients folder

name.
User Context
MAIL$_USER_CREATE_IF Creates a user profile entry.
MAIL$_USER_FIRST Returns information about the first user in the

user profile database.
MAIL$_USER_NEXT Returns information about the next user in the

user profile database.
MAIL$_USER_SET_AUTO_PURGE

MAIL$_USER_SET_NO_AUTO_PURGE

Sets the automatic purge flag.

Clears the automatic purge flag.
MAIL$_USER_SET_CC_PROMPT

MAIL$_USER_SET_NO_CC_PROMPT

Sets the CC prompt flag.

Clears the CC prompt flag.
MAIL$_USER_SET_COPY_FORWARD

MAIL$_USER_SET_NO_COPY_FORWARD

Sets the copy self forward flag.

Clears the copy self forward flag.
MAIL$_USER_SET_COPY_REPLY

MAIL$_USER_SET_NO_COPY_REPLY

Sets the copy self reply flag.

Clears the copy self reply flag.
MAIL$_USER_SET_COPY_SEND

MAIL$_USER_SET_NO_COPY_SEND

Sets the copy self send flag.

Clears the copy self send flag.
MAIL$_USER_SET_EDITOR

MAIL$_USER_SET_NO_EDITOR

Specifies the default editor.

Clears the default editor field.
MAIL$_USER_SET_FORM

MAIL$_USER_SET_NO_FORM

Specifies the default print form string.

Clears the default print form field.
MAIL$_USER_SET_FORWARDING

MAIL$_USER_SET_NO_FORWARDING

Specifies the forwarding address string.

Clears the forwarding address field.
MAIL$_USER_SET_NEW_MESSAGES Specifies the new messages count.
MAIL$_USER_SET_PERSONAL_NAME

MAIL$_USER_SET_NO_PERSONAL_NAME

Specifies the personal name string.

Clears the personal name field.
MAIL$_USER_SET_QUEUE

MAIL$_USER_SET_NO_QUEUE

Specifies the default print queue name string.

Clears the default print queue name field.
MAIL$_USER_SET_SIGFILE Specifies a signature file specification for the

specified user.

517

Chapter 16. Mail Utility Routines

Item Code Function
MAIL$_USER_SET_NO_SIGFILE Clears a signature file field for the specified user.
MAIL$_USER_SET_SUB_DIRECTORY

MAIL$_USER_SET_NO_SUB_DIRECTORY

Specifies a MAIL subdirectory.

Clears the MAIL subdirectory field.
MAIL$_USER_USERNAME Points to the user name string to specify the user

profile entry to be modified.

16.12. Output Item Codes
Output item codes direct the called routine to return data to a buffer or file which is then available for
use by the application. Table 16.11 summarizes output item codes.

Table 16.11. Output Item Codes

Item Code Function
Mail File Context
MAIL$_MAILFILE_INDEXED Determines whether the mail file format is in-

dexed.
MAIL$_MAILFILE_DIRECTORY Returns the mail file subdirectory specification to

the caller.
MAIL$_MAILFILE_RESULTSPEC Returns the result mail file specification.
MAIL$_MAILFILE_WASTEBASKET Returns the wastebasket folder name for the spec-

ified file.
MAIL$_MAILFILE_DELETED_BYTES Returns the number of deleted bytes in a specified

mail file.
MAIL$_MAILFILE_MESSAGES_DELETED Returns the number of deleted messages.
MAIL$_MAILFILE_DATA_RECLAIM Returns the number of data buckets reclaimed.
MAIL$_MAILFILE_DATA_SCAN Returns the number of data buckets scanned.
MAIL$_MAILFILE_INDEX_RECLAIM Returns the number of index buckets reclaimed.
MAIL$_MAILFILE_TOTAL_RECLAIM Returns the total number of bytes reclaimed.
Message Context
MAIL$_MESSAGE_BINARY_DATE Returns the date and time received as a binary

value.
MAIL$_MESSAGE_CC Returns the text in the CC: field of the current

message.
MAIL$_MESSAGE_CURRENT_ID Returns the message identification number of the

current message.
MAIL$_MESSAGE_DATE Returns the message creation date string.
MAIL$_MESSAGE_EXTID Returns the external message identification num-

ber of the current message.
MAIL$_MESSAGE_FILE_CREATED Returns the value of the mail file created flag.
MAIL$_MESSAGE_FOLDER_CREATED Returns the value of the folder created flag.
MAIL$_MESSAGE_FROM Returns the text in the From: field of the current

message.

518

Chapter 16. Mail Utility Routines

Item Code Function
MAIL$_MESSAGE_RECORD Returns a record from the current message.
MAIL$_MESSAGE_RECORD_TYPE Returns the record type.
MAIL$_MESSAGE_REPLY_PATH Returns the reply path.
MAIL$_MESSAGE_RESULTSPEC Returns the resultant mail file specification.
MAIL$_MESSAGE_RETURN_FLAGS Returns the MAIL system flag value of the cur-

rent message.
MAIL$_MESSAGE_SELECTED Returns the number of selected messages.
MAIL$_MESSAGE_SENDER Returns the name of the sender of the current

message.
MAIL$_MESSAGE_SIZE Returns the size in records of the current mes-

sage.
MAIL$_MESSAGE_SUBJECT Returns the text in the Subject: field of the speci-

fied message.
MAIL$_MESSAGE_TO Returns the text in the To: field of the specified

message.

Send Context
MAIL$_SEND_COPY_FORWARD Returns the value of the caller's copy forward

flag.
MAIL$_SEND_COPY_REPLY Returns the value of the caller's copy reply flag.
MAIL$_SEND_COPY_SEND Returns the value of the caller's copy send flag.
MAIL$_SEND_RESULTSPEC Returns the resultant file specification of the file

to be sent.
MAIL$_SEND_USER Returns the process owner's user name.
User Context
MAIL$_USER_AUTO_PURGE Returns the value of the automatic purge mail

flag.
MAIL$_USER_CAPTIVE Returns the value of the UAF captive flag.
MAIL$_USER_CC_PROMPT Returns the value of the CC prompt flag.
MAIL$_USER_COPY_FORWARD Returns the value of the copy self forward flag.
MAIL$_USER_COPY_REPLY Returns the value of the copy self reply flag.
MAIL$_USER_COPY_SEND Returns the value of the copy self send flag.
MAIL$_USER_EDITOR Returns the name of the default editor.
MAIL$_USER_FORM Returns the default print form string.
MAIL$_USER_FORWARDING Returns the forwarding address string.
MAIL$_USER_FULL_DIRECTORY Returns the complete directory path of the mail

file subdirectory.
MAIL$_USER_NEW_MESSAGES Returns the new message count.
MAIL$_USER_PERSONAL_NAME Returns the personal name string.
MAIL$_USER_QUEUE Returns the default queue name string.
MAIL$_USER_RETURN_USERNAME Returns the user name string.

519

Chapter 16. Mail Utility Routines

Item Code Function
MAIL$_USER_SIGFILE Returns the default signature file specification.
MAIL$_USER_SUB_DIRECTORY Returns the subdirectory specification.

16.13. Using the MAIL Routines: Examples
This section provides examples of using the MAIL routines in various programming scenarios includ-
ing the following:

• Example 16.2 is a C program that sends a Mail message to another user.

• Example 16.3 is a C program that displays a user's folders and returns how many messages are in
each folder.

• Example 16.4 is a C program that displays fields in the user's Mail profile.

Example 16.2. Sending a File

/* send_message.c */

#include <stdio>
#include <descrip>
#include <ssdef>
#include <maildef>
#include <nam>
#include <string>
#include <stdlib>
#include <iledef>
#include <mail$routines>

define __NEW_STARLET

typedef struct _ile3 ITMLST;

unsigned int *
 send_context = 0
 ;

ITMLST
 nulllist[] = { {0,0,0,0} };

int
 getline(char *line, int max)
{
 if (fgets(line, max, stdin) == NULL)
 return 0;
 else
 return strlen(line);
}

static int handler (void) {
 return SS$_CONTINUE;
}

int
 main (int argc, char *argv[])

520

Chapter 16. Mail Utility Routines

{
 char
 to_user[NAM$C_MAXRSS],
 subject_line[NAM$C_MAXRSS],
 file[NAM$C_MAXRSS],
 resultspec[NAM$C_MAXRSS]
 ;
 unsigned int status = SS$_NORMAL;

 unsigned short
 to_user_len = 0,
 file_len = 0,
 resultspeclen,
 subject_line_len = 0
 ;

(void)lib$establish (&handler);

 ITMLST
 address_itmlst[] = {
 {sizeof(to_user), MAIL$_SEND_USERNAME, to_user, &to_user_len},
 {0,0,0,0}},
 bodypart_itmlst[] = {
 {sizeof(file), MAIL$_SEND_FILENAME, file, &file_len},
 {0,0,0,0}},
 out_bodypart_itmlst[] = {
 {sizeof(resultspec), MAIL$_SEND_RESULTSPEC, resultspec,
 &resultspeclen},
 {0,0,0,0}},
 attribute_itmlst[] = {
 {sizeof(to_user), MAIL$_SEND_TO_LINE, to_user, &to_user_len},
 {sizeof(subject_line), MAIL$_SEND_SUBJECT, subject_line,
 &subject_line_len},
 {0,0,0,0}}
 ;

 status = mail$send_begin(&send_context, &nulllist, &nulllist);
 if (status != SS$_NORMAL)
 exit(status);

 /* Get the destination and add it to the message */
 printf("To: ");
 to_user[getline(to_user, NAM$C_MAXRSS) - 1] = '\0';

 address_itmlst[0].ile3$w_length = strlen(to_user);
 address_itmlst[0].ile3$ps_bufaddr = to_user;

 status = mail$send_add_address(&send_context, address_itmlst,
 &nulllist);

 if (status != SS$_NORMAL)
 return(status);

 /* Get the subject line and add it to the message header */
 printf("Subject: ");
 subject_line[getline(subject_line, NAM$C_MAXRSS) - 1] = '\0';

521

Chapter 16. Mail Utility Routines

 /* Displayed TO: line */
 attribute_itmlst[0].ile3$w_length = strlen(to_user);
 attribute_itmlst[0].ile3$ps_bufaddr = to_user;

 /* Subject: line */
 attribute_itmlst[1].ile3$w_length = strlen(subject_line);
 attribute_itmlst[1].ile3$ps_bufaddr = subject_line;

 status = mail$send_add_attribute(&send_context, attribute_itmlst,
 &nulllist);
 if (status != SS$_NORMAL)
 return(status);

 /* Get the file to send and add it to the bodypart of the message */
 printf("File: ");
 file[getline(file, NAM$C_MAXRSS) - 1] = '\0';

 bodypart_itmlst[0].ile3$w_length = strlen(file);
 bodypart_itmlst[0].ile3$ps_bufaddr = file;

 status = mail$send_add_bodypart(&send_context, bodypart_itmlst,
 out_bodypart_itmlst);
 if (status != SS$_NORMAL)
 return(status);

 resultspec[resultspeclen] = '\0';
 printf("Full file spec actually sent: [%s]\n", resultspec);

 /* Send the message */
 status = mail$send_message(&send_context, nulllist, nulllist);
 if (status != SS$_NORMAL)
 return(status);

 /* Done processing witht the SEND context */
 status = mail$send_end(&send_context, nulllist, nulllist);
 if (status != SS$_NORMAL)
 return(status);

 return (status);
}

Example 16.3 shows a C program that displays folders.

Example 16.3. Displaying Folders

/* show_folders.c */

#include <stdio>
#include <descrip>
#include <ctype>
#include <ssdef>
#include <maildef>
#include <string>
#include <stdlib>
#include <mail$routines>

typedef struct itmlst
{

522

Chapter 16. Mail Utility Routines

 short buffer_length;
 short item_code;
 long buffer_address;
 long return_length_address;
} ITMLST;

struct node
{
 struct node *next; /* Next folder name node */
 char *folder_name; /* Zero terminated folder name */
};
int
 folder_routine(struct node *list, struct dsc$descriptor *name)
{
 if (name->dsc$w_length)
 {
 while (list->next)
 list = list->next;

 list->next = malloc(sizeof(struct node));
 list = list->next;
 list->next = 0;
 list->folder_name = malloc(name->dsc$w_length + 1);
 strncpy(list->folder_name,name->dsc$a_pointer,name->dsc$w_length);
 list->folder_name[name->dsc$w_length] = '\0';

 }
 return(SS$_NORMAL);
}

main (int argc, char *argv[])
{
 struct node list = {0,0};

 int
 message_context = 0,
 file_context = 0,
 messages_selected = 0,
 total_folders = 0,
 total_messages = 0
 ;
 ITMLST
 nulllist[] = {{0,0,0,0}},
 message_in_itmlst[] = {
 {sizeof(file_context),MAIL$_MESSAGE_FILE_CTX,(long)&file_context,0},
 {0,0,0,0}},
 mailfile_info_itmlst[] = {
 {4,MAIL$_MAILFILE_FOLDER_ROUTINE,(long)folder_routine,0},
 {4,MAIL$_MAILFILE_USER_DATA,(long)&list,0},
 {0,0,0,0}},
 message_select_in_itmlst[] = {
 {0,MAIL$_MESSAGE_FOLDER,0,0},
 {0,0,0,0}},
 message_select_out_itmlst[] = {
 {sizeof(messages_selected),MAIL$_MESSAGE_SELECTED,
(long)&messages_selected,0},
 {0,0,0,0}};

523

Chapter 16. Mail Utility Routines

 if (mail$mailfile_begin(&file_context, nulllist, nulllist) == SS$_NORMAL)
 {
 if (mail$mailfile_open(&file_context, nulllist, nulllist) == SS
$_NORMAL) {
 if (mail$mailfile_info_file(&file_context,
 mailfile_info_itmlst,
 nulllist) == SS$_NORMAL) {
 if (mail$message_begin(&message_context,
 message_in_itmlst,
 nulllist) == SS$_NORMAL) {
 struct node *tmp = &list;

 while(tmp->next) {
 tmp = tmp->next;
 message_select_in_itmlst[0].buffer_address = (long)tmp->folder_name;
 message_select_in_itmlst[0].buffer_length = strlen(tmp->folder_name);
 if (mail$message_select(&message_context,
 message_select_in_itmlst,
 message_select_out_itmlst) == SS$_NORMAL) {
 printf("Folder %s has %d messages\n",
 tmp->folder_name, messages_selected);
 total_messages += messages_selected;
 total_folders++;
 }
 }
 printf("Total of %d messages in %d folders\n",total_messages,
 total_folders);
 }
 mail$message_end(&message_context, nulllist, nulllist);
 }
 mail$mailfile_close(&file_context, nulllist, nulllist);
 }
 mail$mailfile_end(&file_context, nulllist, nulllist);
 }
}

Example 16.4 shows a C program that displays user profile information.

Example 16.4. Displaying User Profile Information

/* show_profile.c */

#include <stdio>
#include <ssdef>
#include <jpidef>
#include <maildef>
#include <stsdef>
#include <ctype>
#include <nam>
#include <string>
#include <stdlib>
#include <starlet>
#include <mail$routines>

struct itmlst
{
 short buffer_length;
 short item_code;

524

Chapter 16. Mail Utility Routines

 long buffer_address;
 long return_length_address;
};

int
 user_context = 0
 ;

struct
 itmlst nulllist[] = { {0,0,0,0} };

int
 main (int argc, char *argv[])
{
 int

 userlen = 0,

 /* return length of strings */

 editor_len = 0,
 form_len = 0,
 forwarding_len = 0,
 full_directory_len = 0,
 personal_name_len = 0,
 queue_len = 0,

 /* Flags */

 auto_purge = 0,
 cc_prompt = 0,
 copy_forward = 0,
 copy_reply = 0,
 copy_send = 0
 ;

 char
 user[13],
 editor[NAM$C_MAXRSS],
 form[NAM$C_MAXRSS],
 forwarding[NAM$C_MAXRSS],
 full_directory[NAM$C_MAXRSS],
 personal_name[NAM$C_MAXRSS],
 queue[NAM$C_MAXRSS]
 ;

 short
 new_messages = 0
 ;

 struct itmlst
 jpi_list[] = {
 {sizeof(user) - 1, JPI$_USERNAME, (long)user, (long)&userlen},
 {0,0,0,0}},
 user_itmlst[] = {
 {0, MAIL$_USER_USERNAME, 0, 0},
 {0,0,0,0}},
 out_itmlst[] = {

525

Chapter 16. Mail Utility Routines

 /* Full directory spec */
 {sizeof(full_directory),MAIL$_USER_FULL_DIRECTORY,(long)full_directory,
(long)&full_directory_len},
 /* New message count */
 {sizeof(new_messages), MAIL$_USER_NEW_MESSAGES, (long)&new_messages,
 0},
 /* Forwarding field */
 {sizeof(forwarding), MAIL$_USER_FORWARDING, (long)forwarding,
 (long)&forwarding_len},
 /* Personal name field */
 {sizeof(personal_name), MAIL$_USER_PERSONAL_NAME, (long)personal_name,
 (long)&personal_name_len},
 /* Editor field */
 {sizeof(editor), MAIL$_USER_EDITOR, (long)editor, (long)&editor_len},
 /* CC prompting flag */
 {sizeof(cc_prompt), MAIL$_USER_CC_PROMPT, (long)&cc_prompt, 0},
 /* Copy send flag */
 {sizeof(copy_send), MAIL$_USER_COPY_SEND, (long)©_send, 0},
 /* Copy reply flag */
 {sizeof(copy_reply), MAIL$_USER_COPY_REPLY, (long)©_reply, 0},
 /* Copy forward flag */
 {sizeof(copy_forward), MAIL$_USER_COPY_FORWARD, (long)©_forward,
 0},
 /* Auto purge flag */
 {sizeof(auto_purge), MAIL$_USER_AUTO_PURGE, (long)&auto_purge, 0},
 /* Queue field */
 {sizeof(queue), MAIL$_USER_QUEUE, (long)queue, (long)&queue_len},
 /* Form field */
 {sizeof(form), MAIL$_USER_FORM, (long)form, (long)&form_len},

 {0,0,0,0}};
 int
 status = SS$_NORMAL
 ;

 /* Get a mail user context */
 status = MAIL$USER_BEGIN(&user_context,
 &nulllist,
 &nulllist);
 if (status != SS$_NORMAL)
 return(status);

 if (argc > 1) {
 strcpy(user,argv[1]);
 }
 else
 {
 sys$getjpiw(0,0,0,jpi_list,0,0,0);
 user[userlen] = '\0';
 };

 while(isspace(user[--userlen]))
 user[userlen] = '\0';

 user_itmlst[0].buffer_length = strlen(user);
 user_itmlst[0].buffer_address = (long)user;

 status = MAIL$USER_GET_INFO(&user_context, user_itmlst, out_itmlst);

526

Chapter 16. Mail Utility Routines

 if (status != SS$_NORMAL)
 return (status);

 /* Release the mail USER context */
 status = MAIL$USER_END(&user_context, &nulllist, &nulllist);
 if (status != SS$_NORMAL)
 return(status);

 /* display the information just gathered */

 full_directory[full_directory_len] = '\0';
 printf("Your mail file directory is %s.\n", full_directory);
 printf("You have %d new messages.\n", new_messages);

 forwarding[forwarding_len] = '\0';
 if (strlen(forwarding) == 0)
 printf("You have not set a forwarding address.\n");
 else
 printf("Your mail is being forwarded to %s.\n", forwarding);

 personal_name[personal_name_len] = '\0';
 printf("Your personal name is \"%s\"\n", personal_name);

 editor[editor_len] = '\0';
 if (strlen(editor) == 0)
 printf("You have not specified an editor.\n");
 else
 printf("Your editor is %s\n", editor);

 printf("CC prompting is %s.\n", (cc_prompt == TRUE) ? "disabled" :
 "enabled");

 printf("Automatic copy to yourself on");
 if (copy_send == TRUE)
 printf(" SEND");
 if (copy_reply == TRUE) {
 if (copy_send == TRUE)
 printf(",");
 printf(" REPLY");
 }
 if (copy_forward == TRUE) {
 if ((copy_reply == TRUE) || (copy_send == TRUE))
 printf(",");
 printf(" FORWARD");
 }
 if ((copy_reply == FALSE) && (copy_send == FALSE) && (copy_forward ==
 FALSE))
 printf(" Nothing");
 printf("\n");

 printf("Automatic deleted message purge is %s.\n", (auto_purge == TRUE) ?
 "disabled" : "enabled");

 queue[queue_len] = '\0';
 if (strlen(queue) == 0)
 printf("You have not specified a default queue.\n");
 else
 printf("Your default print queue is %s.\n", queue);

527

Chapter 16. Mail Utility Routines

 form[form_len] = '\0';
 if (strlen(form) == 0)
 printf("You have not specified a default print form.\n");
 else
 printf("Your default print form is %s.\n", form);
}

16.14. MAIL Routines
This section describes the individual MAIL routines. Input and output item list arguments use item de-
scriptor fields structured as shown in the following diagram:

Item Descriptor Fields
[buffer length"]

For input item lists, this word specifies the length (in bytes) of the buffer that supplies the information
needed by the routine to process the specified item code.

For output item lists, this word contains a user-supplied integer specifying the length (in bytes) of the
buffer in which the routine is to write the information.

The required length of the buffer depends on the item code specified in the item code field of the
item descriptor. If the value of buffer length is too small, the routine truncates the data.

[item code"]

For input item lists, a word containing a user-supplied symbolic code that specifies an option for the
Mail utility operation. For output item lists, a word containing a user-supplied symbolic code specify-
ing the item of information that the routine is to return. Each programming language provides an ap-
propriate mechanism for defining this information.

[buffer address"]

For input item lists, a longword containing the address of the buffer that supplies information to the
routine. For output item lists, a longword containing the user-supplied address of the buffer in which
the routine is to write the information.

[return length address"]

This field is not used for input item lists. For output item lists, this field contains a longword specify-
ing the user-supplied address of a longword in which the routine writes the actual length in bytes of
the information it returns.

MAIL$MAILFILE_BEGIN
Start Mail File Processing — Initiates mail file processing.

528

Chapter 16. Mail Utility Routines

Format
MAIL$MAILFILE_BEGIN context ,in_item_list ,out_item_list

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. All utility routines return a condition value in R0. Condition values that
can be returned by this routine are listed under Condition Values Returned.

Arguments
context

OpenVMS usage: context
type: longword (unsigned)
access: modify
mechanism: by reference

Mail file context information to be passed to other mail file routines. The context argument is the
address of a longword that contains mail file context information.

You should specify the value of this argument as 0 in the first of a sequence of calls to mail file rou-
tines. In the following calls, you should specify the mail file context value returned by this routine.

in_item_list

OpenVMS usage: itmlst_3
type: longword (unsigned)
access: read only
mechanism: by reference

Item list specifying options for the routine. The in_item_list argument is the address of a list of
item descriptors, each of which specifies an option and provides the information needed to perform
the operation.

The item list is terminated by a longword value of 0.

For this routine, there are no input item codes.

out_item_list

OpenVMS usage: itmlst_3
type: longword
access: write only
mechanism: by reference

529

Chapter 16. Mail Utility Routines

Item list specifying the information you want the routine to return. The out_item_list argument
is the address of a list of item descriptors, each of which describes an item of information. The list of
item descriptors is terminated by longword value of 0.

The only output item code for this routine is the MAIL$_MAILFILE_MAIL_DIRECTORY item
code. When you specify MAIL$_MAILFILE_MAIL_DIRECTORY, MAIL$MAILFILE_BEGIN re-
turns the mail directory specification to the caller. The buffer address field of the item descrip-
tor points to a buffer that receives a character string 0 to 255 characters long.

Specify a value from 0 to 255 in the buffer length field of the item descriptor.

MAIL$MAILFILE_BEGIN creates and initiates a mail file context for calls to other mail file rou-
tines.

Condition Values Returned
SS$_NORMAL

Normal successful completion.

MAIL$_INVITMCOD

The specified item code is invalid.

MAIL$_INVITMLEN

The specified item length is invalid.

MAIL$_MISREQITEM

The required item is missing.

SS$_ACCVIO

Access violation.

Any condition value returned by LIB$GET_VM, $GETJPIW, and $GETSYI.

MAIL$MAILFILE_CLOSE
Close the Current Mail File — Closes the currently open mail file.

Format
MAIL$MAILFILE_CLOSE context ,in_item_list ,out_item_list

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. All utility routines return a condition value in R0. Condition values that
can be returned by this routine are listed under Condition Values Returned.

530

Chapter 16. Mail Utility Routines

Arguments
context

OpenVMS usage: context
type: longword (unsigned)
access: modify
mechanism: by reference

Mail file context information to be passed to mail file routines. The context argument is the address
of a longword that contains mail file context information returned by MAIL$MAILFILE_BEGIN.

in_item_list

OpenVMS usage: itmlst_3
type: longword (unsigned)
access: read only
mechanism: by reference

Item list specifying options for the routine. The in_item_list argument is the address of a list of
item descriptors, each of which specifies an option and provides the information needed to perform
the operation.

The item list is terminated by longword value of 0.

Input Item Codes

[MAIL$_MAILFILE_FULL_CLOSE"]

The Boolean item code MAIL$_MAILFILE_FULL_CLOSE specifies that MAIL
$MAILFILE_CLOSE should purge the wastebasket folder when it closes the mail file. If the number
of bytes deleted by the purge operation exceeds a system-defined threshold, the Mail utility reclaims
the deleted space from the mail file.

Specify the value 0 in the buffer length and buffer address fields of the item descriptor.

The system-defined threshold is reserved by VSI.

out_item_list

OpenVMS usage: itmlst_3
type: longword
access: write only
mechanism: by reference

Item list specifying the information you want the routine to return. The out_item_list argument
is the address of a list of item descriptors, each of which describes an item of information. The list of
item descriptors is terminated by longword value of 0.

Output Item Codes

[MAIL$_MAILFILE_DATA_RECLAIM"]

531

Chapter 16. Mail Utility Routines

When you specify MAIL$_MAILFILE_DATA_RECLAIM, MAIL$MAILFILE_CLOSE returns the
number of data buckets reclaimed during the reclaim operation as a longword value.

[MAIL$_MAILFILE_DATA_SCAN"]

When you specify MAIL$_MAILFILE_DATA_SCAN, MAIL$MAILFILE_CLOSE returns the num-
ber of data buckets scanned during the reclaim operation as a longword value.

[MAIL$_MAILFILE_INDEX_RECLAIM"]

When you specify MAIL$_MAILFILE_INDEX_RECLAIM, MAIL$MAILFILE_CLOSE returns the
number of index buckets reclaimed during a reclaim operation as a longword value.

[MAIL$_MAILFILE_MESSAGES_DELETED"]

When you specify MAIL$_MAILFILE_MESSAGES_DELETED, MAIL$MAILFILE_CLOSE re-
turns the number of messages deleted as a longword value.

[MAIL$_MAILFILE_TOTAL_RECLAIM"]

When you specify MAIL$_MAILFILE_TOTAL_RECLAIM, MAIL$MAILFILE_CLOSE returns the
number of bytes reclaimed during a reclaim operation as a longword value.

Description

If you specify the input item code MAIL$_MAILFILE_FULL_CLOSE, this procedure purges the
wastebasket folder automatically before it closes the file. If the number of bytes deleted by this proce-
dure exceeds the deleted byte threshold, the system performs a convert/reclaim operation on the file.

Condition Values Returned

SS$_NORMAL

Normal successful completion.

MAIL$_INVITMCOD

The specified item code is invalid.

MAIL$_INVITMLEN

The specified item length is invalid.

MAIL$_MISREQITEM

The required item is missing.

MAIL$_NOFILEOPEN

No mail file is open.

SS$_ACCVIO

Access violation.

532

Chapter 16. Mail Utility Routines

MAIL$MAILFILE_COMPRESS
Compress Mail File — Compresses a mail file.

Format
MAIL$MAILFILE_COMPRESS context ,in_item_list ,out_item_list

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. All utility routines return a condition value in R0. Condition values that
can be returned by this routine are listed under Condition Values Returned.

Arguments
context

OpenVMS usage: context
type: longword (unsigned)
access: modify
mechanism: by reference

Mail file context information to be passed to various mail file routines. The context argu-
ment is the address of a longword that contains mail file context information returned by MAIL
$MAILFILE_BEGIN.

in_item_list

OpenVMS usage: itmlst_3
type: longword (unsigned)
access: read only
mechanism: by reference

Item list specifying options for the routine. The in_item_list argument is the address of a list of
item descriptors, each of which specifies an option and provides the information needed to perform
the operation.

The item list is terminated by longword value of 0.

Input Item Codes

[MAIL$_MAILFILE_DEFAULT_NAME"]

MAIL$_MAILFILE_DEFAULT_NAME specifies the default file specification the Mail utility
should use when opening a mail file. The buffer address field points to a character string 0 to
255 characters long that defines the default file specification.

533

Chapter 16. Mail Utility Routines

Specify a value from 0 to 255 in the buffer length field of the item descriptor.

If you specify the value 0 in buffer length field of the item descriptor, MAIL
$MAILFILE_COMPRESS uses the current default directory as the default mail file specification.

If you do not specify MAIL$_MAILFILE_DEFAULT_NAME, MAIL$MAILFILE_COMPRESS
creates the default mail file specification from the following sources:

• Disk and directory defined in the caller's user authorization file (UAF)

• Subdirectory defined in the Mail user profile

• Default file type of .MAI

[MAIL$_MAILFILE_FULL_CLOSE"]

The Boolean item code MAIL$_MAILFILE_FULL_CLOSE requests that the wastebasket folder be
purged and that convert and reclaim operations be performed, if necessary.

Specify the value 0 in the buffer length and buffer address fields of the item descriptor.

[MAIL$_MAILFILE_NAME"]

MAIL$_MAILFILE_NAME specifies the name of a mail file to be opened. The buffer that the
buffer address field points to contains a character string of 0 to 255 characters.

Specify a value from 0 to 255 in the buffer length field of the item descriptor.

If you do not specify MAIL$_MAILFILE_NAME, the default mail file name is MAIL.

out_item_list

OpenVMS usage: itmlst_3
type: longword
access: write only
mechanism: by reference

Item list specifying the information you want the routine to return. The out_item_list argument
is the address of a list of item descriptors, each of which describes an item of information. The list of
item descriptors is terminated by longword value of 0.

Output Item Code

[MAIL$_MAILFILE_RESULTSPEC"]

When you specify MAIL$_MAILFILE_RESULTSPEC, the Mail utility returns the resultant mail file
specification. The buffer address field of the item descriptor points to a buffer that receives a
character string 0 to 255 characters long.

Specify a value from 0 to 255 in the buffer length field of the item descriptor.

Description
If you do not specify an input file, the MAIL$MAILFILE_COMPRESS routine compresses the cur-
rently open Mail file. The MAIL$MAILFILE_COMPRESS routine signals informational messages
concerning the phase of the compression.

534

Chapter 16. Mail Utility Routines

Condition Values Returned

SS$_NORMAL

Normal successful completion.

MAIL$_INVITMCOD

The specified item code is invalid.

MAIL$_INVITMLEN

The specified item length is invalid.

MAIL$_MISREQITEM

The required item is missing.

MAIL$_NOTISAM

The message file is not an indexed file.

RMS$_FNF

The specified file cannot be found.

RMS$_SHR

The specified file is not shareable.

SS$_ACCVIO

Access violation.

SS$_IVDEVNAM

The specified device name is invalid.

Any condition value returned by LIB$FIND_IMAGE_SYMBOL, LIB$RENAME_FILE, $CREATE,
$OPEN, $PARSE, and $SEARCH.

MAIL$MAILFILE_END
End Mail File Processing — Terminates mail file processing.

Format
MAIL$MAILFILE_END context ,in_item_list ,out_item_list

Returns

OpenVMS usage: cond_value
type: longword (unsigned)

535

Chapter 16. Mail Utility Routines

access: write only
mechanism: by value

Longword condition value. All utility routines return a condition value in R0. Condition values that
can be returned by this routine are listed under Condition Values Returned.

Arguments

context

OpenVMS usage: context
type: longword (unsigned)
access: modify
mechanism: by reference

Mail file context information to be passed to mail file routines. The context argument is the address
of a longword that contains MAILFILE context information returned by MAIL$MAILFILE_BEGIN.

If mail file processing is terminated successfully, the Mail utility sets the value of the argument con-
text to 0.

in_item_list

OpenVMS usage: itmlst_3
type: longword (unsigned)
access: read only
mechanism: by reference

Item list specifying options for the routine. The in_item_list argument is the address of a list of
item descriptors, each of which specifies an option and provides the information needed to perform
the operation.

The item list is terminated by longword value of 0.

Input Item Codes

[MAIL$_MAILFILE_FULL_CLOSE"]

The Boolean item code MAIL$_MAILFILE_FULL_CLOSE requests that the wastebasket folder be
purged and that convert and reclaim operations be performed, if necessary.

Specify the value 0 in the buffer length and buffer address fields of the item descriptor.

out_item_list

OpenVMS usage: itmlst_3
type: longword
access: write only
mechanism: by reference

536

Chapter 16. Mail Utility Routines

Item list specifying the information you want the routine to return. The out_item_list argument
is the address of a list of item descriptors, each of which describes an item of information. The list of
item descriptors is terminated by longword value of 0.

Output Item Codes

None.

Description

The MAIL$MAILFILE_END routine deallocates the mail file context created by MAIL
$MAILFILE_BEGIN as well as any dynamic memory allocated by other mail file processing rou-
tines.

Condition Values Returned

SS$_NORMAL

Normal successful completion.

MAIL$_INVITMCOD

The specified item code is invalid.

MAIL$_INVITMLEN

The specified item length is invalid.

MAIL$_MISREQITEM

The required item is missing.

SS$_ACCVIO

Access violation.

Any condition value returned by LIB$FREE_VM.

MAIL$MAILFILE_INFO_FILE
Get Information About a Mail File — Obtains information about a specified mail file.

Format
MAIL$MAILFILE_INFO_FILE context ,in_item_list ,out_item_list

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

537

Chapter 16. Mail Utility Routines

Longword condition value. All utility routines return a condition value in R0. Condition values that
can be returned by this routine are listed under Condition Values Returned.

Arguments
context

OpenVMS usage: context
type: longword (unsigned)
access: modify
mechanism: by reference

Mail file context information to be passed to mail file routines. The context argument is the address
of a longword that contains mail file context information returned by MAIL$MAILFILE_BEGIN.

in_item_list

OpenVMS usage: itmlst_3
type: longword (unsigned)
access: read only
mechanism: by reference

Item list specifying options for the routine. The in_item_list argument is the address of a list of
item descriptors, each of which specifies an option and provides the information needed to perform
the operation.

The item list is terminated by longword value of 0.

Input Item Codes

[MAIL$_MAILFILE_DEFAULT_NAME"]

MAIL$_MAILFILE_DEFAULT_NAME specifies the default mail file specification MAIL
$MAILFILE_INFO_FILE should use when opening a mail file. The buffer address field of
the item descriptor points to a character string of 0 to 255 characters that defines the default mail file
specification.

Specify a value from 0 to 255 in the buffer length field of the item descriptor.

If you specify the value 0 in buffer length field of the item descriptor, MAIL$MAILFILE_IN-
FO_FILE uses the current default directory as the default mail file specification.

If you do not specify MAIL$_MAILFILE_DEFAULT_NAME, MAIL$MAILFILE_INFO_FILE cre-
ates the default mail file specification from the following sources:

• Disk and directory defined in the caller's user authorization file (UAF)

• Subdirectory defined in the Mail user profile

• Default file type of .MAI

[MAIL$_MAILFILE_FOLDER_ROUTINE"]

538

Chapter 16. Mail Utility Routines

MAIL$_MAILFILE_FOLDER_ROUTINE specifies an entry point longword address of a user-
written routine that MAIL$MAILFILE_INFO_FILE should use to display folder names. MAIL
$MAILFILE_INFO_FILE calls the user-written routine for each folder in the mail file.

[MAIL$_MAILFILE_NAME"]

MAIL$_MAILFILE_NAME specifies the name of the mail file to be opened. The buffer ad-
dress field points to a buffer that contains a character string 0 to 255 characters long.

Specify a value from 0 to 255 in the buffer length field of the item descriptor.

If you do not specify MAIL$_MAILFILE_NAME, the default mail file name is MAIL.

[MAIL$_MAILFILE_USER_DATA"]

MAIL$_MAILFILE_USER_DATA specifies a longword that MAIL$MAILFILE_INFO_FILE
should pass to the user-defined folder name action routine.

This item code is valid only when used with the item code MAIL$_MAILFILE_FOLD-
ER_ROUTINE.

out_item_list

OpenVMS usage: itmlst_3
type: longword
access: write only
mechanism: by reference

Item list specifying the information you want the routine to return. The out_item_list argument
is the address of a list of item descriptors, each of which describes an item of information. The list of
item descriptors is terminated by longword value of 0.

Output Item Codes

[MAIL$_MAILFILE_DELETED_BYTES"]

When you specify MAIL$_MAILFILE_DELETED_BYTES, MAIL$MAILFILE_INFO_FILE re-
turns the number of deleted bytes in a specified mail file as longword value.

[MAIL$_MAILFILE_RESULTSPEC"]

When you specify MAIL$_MAILFILE_RESULTSPEC, MAIL$MAILFILE_INFO_FILE returns
the resultant mail file specification. The buffer address field of the item descriptor points to a
buffer that receives a character string 0 to 255 characters long.

Specify a value from 0 to 255 in the buffer length field of the item descriptor.

[MAIL$_MAILFILE_WASTEBASKET"]

When you specify MAIL$_MAILFILE_WASTEBASKET, MAIL$MAILFILE_INFO_FILE returns
the name of the wastebasket folder of the specified mail file. The buffer address field of the
item descriptor points to a buffer that receives a character string 0 to 39 characters long.

Specify a value from 0 to 39 in the buffer length field of the item descriptor.

539

Chapter 16. Mail Utility Routines

Description
If you do not specify an input file, the MAIL$MAILFILE_INFO_FILE returns information about the
currently open mail file.

Folder Action Routines
If you use the item code MAIL$_MAILFILE_FOLDER_ROUTINE to specify a folder name routine,
MAIL$MAILFILE_INFO_FILE passes control to a user-specified routine. For example, the folder
action routine could display folder names. The user routine must return a 32-bit integer code. If the re-
turn code indicates success, the interaction between the user's routine and the callable routine can con-
tinue.

The folder action routine passes a pointer to the descriptor of a folder name as well as the user da-
ta longword. A descriptor of zero length indicates that the MAIL$MAILFILE_INFO_FILE routine
has displayed all folder names. If you do not specify the item code MAIL$_MAILFILE_FOLD-
ER_ROUTINE, MAIL$MAILFILE_INFO_FILE does not call any folder action routines.

Condition Values Returned
MAIL$_INVITMCOD

The specified item code is invalid.

MAIL$_INVITMLEN

The specified item length is invalid.

MAIL$_MISREQITEM

The required item is missing.

MAIL$_NOFILEOPEN

The mail file is not open.

MAIL$_NOTISAM

The message file is not an indexed file.

MAIL$_OPENIN

Mail cannot open the file as input.

SS$_ACCVIO

Access violation.

Any condition value returned by $CLOSE, $OPEN, $PARSE, and $SEARCH.

MAIL$MAILFILE_MODIFY
Modify Record of an Indexed File — Modifies the informational record of an indexed mail file, in-
cluding the mail file name, the default mail file name, and the wastebasket name.

540

Chapter 16. Mail Utility Routines

Format
MAIL$MAILFILE_MODIFY context ,in_item_list ,out_item_list

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. All utility routines return a condition value in R0. Condition values that
can be returned by this routine are listed under Condition Values Returned.

Arguments
context

OpenVMS usage: context
type: longword (unsigned)
access: modify
mechanism: by reference

Mail file context information to be passed to mail file routines. The context argument is the address
of a longword that contains mail file context information returned by MAIL$MAILFILE_BEGIN.

in_item_list

OpenVMS usage: itmlst_3
type: longword (unsigned)
access: read only
mechanism: by reference

Item list specifying options for the routine. The in_item_list argument is the address of a list of
item descriptors, each of which specifies an option and provides the information needed to perform
the operation.

The item list is terminated by longword value of 0.

Input Item Codes

[MAIL$_MAILFILE_DEFAULT_NAME"]

MAIL$_MAILFILE_DEFAULT_NAME specifies the default file specification that the Mail utility
should use when opening a mail file. The buffer address field points to a buffer that contains a
character string of 0 to 255 characters that defines the default mail file specification.

Specify a value from 0 to 255 in the buffer length field of the item descriptor.

If you specify the value 0 in the buffer length field of the item descriptor, MAIL
$MAILFILE_MODIFY uses the current default directory as the default mail file specification.

541

Chapter 16. Mail Utility Routines

If you do not specify MAIL$_MAILFILE_DEFAULT_NAME, MAIL$MAILFILE_MODIFY creates
the default mail file specification from the following sources:

• Disk and directory defined in the caller's user authorization file (UAF)

• Subdirectory defined in the Mail user profile

• Default file type of .MAI

[MAIL$_MAILFILE_NAME"]

MAIL$_MAILFILE_NAME specifies the name of the mail file that the Mail utility should open. The
buffer address field points to a buffer that contains a character string of 0 to 255 characters.

Specify a value from 0 to 255 in the buffer length field of the item descriptor.

If you do not specify MAIL$_MAILFILE_NAME, the default mail file name is MAIL.

[MAIL$_MAILFILE_WASTEBASKET_NAME"]

MAILFILE_WASTEBASKET_NAME specifies a new folder name for the wastebasket in the speci-
fied mail file. The buffer address field points to a buffer that contains a character string of 1 to
39 characters.

out_item_list

OpenVMS usage: itmlst_3
type: longword
access: write only
mechanism: by reference

Item list specifying the information you want the routine to return. The out_item_list argument
is the address of a list of item descriptors, each of which describes an item of information. The list of
item descriptors is terminated by longword value of 0.

Output Item Code

[MAIL$_MAILFILE_RESULTSPEC"]

When you specify MAIL$_MAILFILE_RESULTSPEC, the Mail utility returns the resultant mail file
specification. The buffer address field points to a buffer that receives a character string from 0
to 255 characters long.

Specify a value from 0 to 255 in the buffer length field of the item descriptor.

Description
If a mail file is not specified, the currently open mail file is used.

Condition Values Returned
MAIL$_ILLFOLNAM

The specified folder name is illegal.

542

Chapter 16. Mail Utility Routines

MAIL$_INVITMCOD

The specified item code is invalid.

MAIL$_INVITMLEN

The specified item length is invalid.

MAIL$_MISREQITEM

The required item is missing.

MAIL$_NOTISAM

The message file is not an indexed file.

MAIL$_OPENIN

Mail cannot open the file as input.

SS$_ACCVIO

Access violation.

Any condition value returned by $CLOSE, $FIND, $PUT, and $UPDATE.

MAIL$MAILFILE_OPEN
Open a Mail File for Processing — Opens a specified mail file for processing. You must use this rou-
tine to open a mail file before you can do either of the following: call any mail file routines to manipu-
late mail files; and call message routines to read messages from the specified mail file.

Format
MAIL$MAILFILE_OPEN context ,in_item_list ,out_item_list

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. All utility routines return a condition value in R0. Condition values that
can be returned by this routine are listed under Condition Values Returned.

Arguments
context

OpenVMS usage: context
type: longword (unsigned)
access: modify

543

Chapter 16. Mail Utility Routines

mechanism: by reference

Mail file context information to be passed to mail file routines. The context argument is the address
of a longword that contains mail file context information returned by MAIL$MAILFILE_BEGIN.

in_item_list

OpenVMS usage: itmlst_3
type: longword (unsigned)
access: read only
mechanism: by reference

Item list specifying options for the routine. The in_item_list argument is the address of a list of
item descriptors, each of which specifies an option and provides the information needed to perform
the operation.

The item list is terminated by longword value of 0.

Input Item Codes

[MAIL$_MAILFILE_DEFAULT_NAME"]

MAIL$_MAILFILE_DEFAULT_NAME specifies the default file specification MAIL
$MAILFILE_OPEN should use when opening a mail file. The buffer address field points to a
character string of 0 to 255 characters that defines the default file specification.

Specify a value from 0 to 255 in the buffer length field of the item descriptor.

If you specify the value 0 in the buffer length field of the item descriptor, MAIL
$MAILFILE_OPEN uses the current default directory as the default mail file specification.

If you do not specify MAIL$_MAILFILE_DEFAULT_NAME, MAIL$MAILFILE_OPEN creates
the default mail file specification from the following sources:

• Disk and directory defined in the caller's user authorization file (UAF)

• Subdirectory defined in the Mail user profile

• Default file type of .MAI

[MAIL$_MAILFILE_NAME"]

MAIL$_MAILFILE_NAME specifies the name of the mail file MAIL$MAILFILE_OPEN should
open. The buffer address field points to a buffer that contains a character string of 0 to 255
characters.

Specify a value from 0 to 255 in the buffer length field of the item descriptor.

If you do not MAIL$_MAILFILE_NAME, the default mail file name is MAIL.

out_item_list

OpenVMS usage: itmlst_3
type: longword
access: write only

544

Chapter 16. Mail Utility Routines

mechanism: by reference

Item list specifying the information you want the routine to return. The out_item_list argument
is the address of a list of item descriptors, each of which describes an item of information. The list of
item descriptors is terminated by longword value of 0.

Output Item Codes

[MAIL$_MAILFILE_DELETED_BYTES"]

When you specify MAIL$_MAILFILE_DELETED_BYTES, MAIL$MAILFILE_OPEN returns the
number of deleted bytes in the specified mail file as a longword value.

[MAIL$_MAILFILE_INDEXED"]

When you specify MAIL$_MAILFILE_INDEXED, MAIL$MAILFILE_OPEN returns a Boolean
TRUE when you open an indexed file. The buffer length field points to a longword that re-
ceives the Boolean value.

[MAIL$_MAILFILE_RESULTSPEC"]

When you specify MAIL$_MAILFILE_RESULTSPEC, MAIL$MAILFILE_OPEN returns the resul-
tant mail file specification. The buffer address field of the item descriptor points to a buffer that
receives a character string 0 to 255 characters long.

Specify a value from 0 to 255 in the buffer length field of the item descriptor.

[MAIL$_MAILFILE_WASTEBASKET"]

When you specify MAIL$_MAILFILE_WASTEBASKET, MAIL$MAILFILE_OPEN returns the
name of the wastebasket for the specified mail file. The buffer address field of the item descrip-
tor points to a buffer that receives a character string 0 to 255 characters long.

Specify a value from 0 to 255 in the buffer length field of the item descriptor.

Description
The default mail file specification is MAIL.MAI in the MAIL subdirectory.

Condition Values Returned
MAIL$_FILEOPEN

The mail file is already open.

MAIL$_INVITMCOD

The specified item code is invalid.

MAIL$_INVITMLEN

The specified item length is invalid.

MAIL$_MISREQITEM

The required item is missing.

545

Chapter 16. Mail Utility Routines

MAIL$_NOMSGS

No messages are available.

SS$_ACCVIO

Access violation.

Any condition value returned by LIB$GET_VM, $CONNECT, and $OPEN.

MAIL$MAILFILE_PURGE_WASTE
Delete Wastebasket Messages — Deletes messages contained in the wastebasket folder of the current-
ly open mail file.

Format
MAIL$MAILFILE_PURGE_WASTE context ,in_item_list ,out_item_list

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. All utility routines return a condition value in R0. Condition values that
can be returned by this routine are listed under Condition Values Returned.

Arguments
context

OpenVMS usage: context
type: longword (unsigned)
access: modify
mechanism: by reference

Mail file context information to be passed to other mail file routines. The context argument is the
address of a longword that contains mail file context information.

in_item_list

OpenVMS usage: itmlst_3
type: longword (unsigned)
access: read only
mechanism: by reference

Item list specifying options for the routine. The in_item_list argument is the address of a list of
item descriptors, each of which specifies an option and provides the information needed to perform
the operation.

546

Chapter 16. Mail Utility Routines

The item list is terminated by longword value of 0.

Input Item Codes

[MAIL$_MAILFILE_RECLAIM"]

The Boolean item code MAIL$_MAILFILE_RECLAIM specifies that MAIL
$MAILFILE_PURGE_WASTE purge the wastebasket folder and reclaim deleted space in the mail
file.

Specify the value 0 in the buffer length field of the item descriptor.

MAIL$_MAILFILE_RECLAIM explicitly requests a reclaim operation and overrides the deleted
byte's threshold regardless of the number of bytes deleted during a mail file purge operation.

out_item_list

OpenVMS usage: itmlst_3
type: longword
access: write only
mechanism: by reference

Item list specifying the information you want the routine to return. The out_item_list argument
is the address of a list of item descriptors, each of which describes an item of information. The list of
item descriptors is terminated by longword value of 0.

Output Item Codes

[MAIL$_MAILFILE_DATA_RECLAIM"]

When you specify MAIL$_MAILFILE_DATA_RECLAIM, MAIL$MAILFILE_PURGE_WASTE
returns the number of data buckets reclaimed during the reclaim operation as a longword value.

[MAIL$_MAILFILE_DATA_SCAN"]

When you specify MAIL$_MAILFILE_DATA_SCAN, MAIL$MAILFILE_PURGE_WASTE re-
turns the number of data buckets scanned during the reclaim operation as a longword value.

[MAIL$_MAILFILE_INDEX_RECLAIM"]

When you specify MAIL$_MAILFILE_INDEX_RECLAIM, the Mail utility returns the number of
index buckets reclaimed during a reclaim operation as a longword value.

[MAIL$_MAILFILE_DELETED_BYTES"]

When you specify MAIL$_MAILFILE_DELETED_BYTES, MAIL$MAILFILE_PURGE_WASTE
returns the number of bytes deleted from the mail file as a longword value.

[MAIL$_MAILFILE_MESSAGES_DELETED"]

When you specify MAIL$_MAILFILE_MESSAGES_DELETED, MAIL
$MAILFILE_PURGE_WASTE returns the number of deleted messages as a longword value.

[MAIL$_MAILFILE_TOTAL_RECLAIM"]

547

Chapter 16. Mail Utility Routines

When you specify MAIL$_MAILFILE_TOTAL_RECLAIM, MAIL$MAILFILE_PURGE_WASTE
returns the number of bytes reclaimed due to a reclaim operation as a longword value.

Description
If you specify the MAIL$_MAILFILE_RECLAIM item descriptor, all the bytes deleted from the mail
file by this routine are reclaimed.

Condition Values Returned
MAIL$_NORMAL

Normal successful completion.

MAIL$_INVITMCOD

The specified item code is invalid.

MAIL$_INVITMLEN

The specified item length is invalid.

MAIL$_MISREQITEM

The required item is missing.

MAIL$_NOFILEOPEN

No mail file is currently open.

MAIL$_NOTISAM

The message file is not an indexed file.

SS$_ACCVIO

Access violation.

MAIL$MESSAGE_BEGIN
Start Message Processing — Begins message processing. You must call this routine before calling any
other message routines.

Format
MAIL$MESSAGE_BEGIN context ,in_item_list ,out_item_list

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

548

Chapter 16. Mail Utility Routines

Longword condition value. All utility routines return a condition value in R0. Condition values that
can be returned by this routine are listed under Condition Values Returned.

Arguments
context

OpenVMS usage: context
type: longword (unsigned)
access: modify
mechanism: by reference

Message context information to be passed to various message routines. The context argument is the
address of a longword that contains message context information.

You should specify the value of this argument as 0 in the first of a sequence of calls to message rou-
tines. In the following calls, you should specify the message context value returned by this routine.

in_item_list

OpenVMS usage: itmlst_3
type: longword (unsigned)
access: read only
mechanism: by reference

Item list specifying options for the routine. The in_item_list argument is the address of a list of
item descriptors, each of which specifies an option and provides the information needed to perform
the operation.

The item list is terminated by longword value of 0.

Input Item Codes

[MAIL$_MESSAGE_FILE_CTX"]

MAIL$_MESSAGE_FILE_CTX specifies the mail file context received from MAIL
$MAILFILE_BEGIN to be passed to the message routines. The buffer address field of the item
descriptor points to a longword that contains mail file context information.

The item code MAIL$_MESSAGE_FILE_CTX is required.

out_item_list

OpenVMS usage: itmlst_3
type: longword
access: write only
mechanism: by reference

Item list specifying the information you want the routine to return. The out_item_list argument
is the address of a list of item descriptors, each of which describes an item of information. The list of
item descriptors is terminated by longword value of 0.

549

Chapter 16. Mail Utility Routines

Output Item Code

[MAIL$_MESSAGE_SELECTED"]

When you specify MAIL$_MESSAGE_SELECTED, MAIL$MESSAGE_BEGIN returns the number
of messages selected as a longword value.

Description
MAIL$MESSAGE_BEGIN creates and initializes a message context for subsequent calls to message
routines.

Condition Values Returned
MAIL$_ILLCTXADR

The context block address is illegal.

MAIL$_INVITMCOD

The specified item code is invalid.

MAIL$_INVITMLEN

The specified item length is invalid.

MAIL$_MISREQITEM

The required item is missing.

MAIL$_NOFILEOPEN

The mail file is not open.

MAIL$_WRONGCTX

The context block is incorrect.

MAIL$_WRONGFILE

The specified file is incorrect in this context.

SS$_ACCVIO

Access violation.

Any condition value returned by $GET and LIB$GET_VM.

MAIL$MESSAGE_COPY
Copy Messages to Another File or Folder — Copies messages between files or folders.

Format
MAIL$MESSAGE_COPY context ,in_item_list ,out_item_list

550

Chapter 16. Mail Utility Routines

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. All utility routines return a condition value in R0. Condition values that
can be returned by this routine are listed under Condition Values Returned.

Arguments
context

OpenVMS usage: context
type: longword (unsigned)
access: modify
mechanism: by reference

Message context information to be passed to message routines. The context argument
is the address of a longword that contains message context information returned by MAIL
$MESSAGE_BEGIN.

You should specify this argument as 0 in the first of a sequence of calls to message routines. In the
following calls, you should specify the message context value returned by the previous routine.

in_item_list

OpenVMS usage: itmlst_3
type: longword (unsigned)
access: read only
mechanism: by reference

Item list specifying options for the routine. The in_item_list argument is the address of a list of
item descriptors, each of which specifies an option and provides the information needed to perform
the operation.

The item list is terminated by longword value of 0.

Input Item Codes

[MAIL$_MESSAGE_BACK"]

When you specify the Boolean item code MAIL$_MESSAGE_BACK, MAIL$MESSAGE_COPY
copies the message preceding the current message.

Specify the value 0 in the buffer length and buffer address fields of the item descriptor.

Do not specify MAIL$_MESSAGE_BACK, MAIL$_MESSAGE_ID, and MAIL
$_MESSAGE_NEXT in the same call to MAIL$MESSAGE_COPY.

[MAIL$_MESSAGE_DEFAULT_NAME"]

551

Chapter 16. Mail Utility Routines

MAIL$_MESSAGE_DEFAULT_NAME specifies the default file specification of a mail file to open
in order to copy a message. The buffer address field of the item descriptor points to a buffer
that contains a character string 0 to 255 characters long.

Specify a value from 0 to 255 in the buffer length field of the item descriptor.

[MAIL$_MESSAGE_DELETE"]

When you specify the Boolean item code MAIL$_MESSAGE_DELETE, MAIL$MESSAGE_COPY
deletes the message in the current folder after the message has been copied to a destination folder.

Specify the value 0 in the buffer length and buffer address fields of the item descriptor.

Specify MAIL$_MESSAGE_DELETE to emulate the operation of MAIL MOVE or FILE command.

[MAIL$_MESSAGE_FILE_ACTION"]

MAIL$_MESSAGE_FILE_ACTION specifies the address of the mail file action routine called if a
mail file is to be created. Two parameters are passed as follows:

• User data longword

• Address of the descriptor of the file name to be created

The buffer address field of the item descriptor points to a longword that denotes a procedure
value.

[MAIL$_MESSAGE_FILENAME"]

MAIL$_MESSAGE_FILENAME specifies the name of the mail file to which the current message
will be moved. The buffer address field of the item descriptor points to a buffer that contains a
character string 0 to 255 characters long.

Specify a value from 0 to 255 in the buffer length field of the item descriptor.

[MAIL$_MESSAGE_FOLDER"]

MAIL$_MESSAGE_FOLDER specifies the name of the target folder for moving mail messages. The
buffer address field of the item descriptor points to a buffer that contains a character string 0 to
255 characters long.

Specify a value from 0 to 255 in the buffer length field of the item descriptor.

The item code MAIL$_MESSAGE_FOLDER is required.

[MAIL$_MESSAGE_FOLDER_ACTION"]

MAIL$_MESSAGE_FOLDER_ACTION specifies the entry point address of the folder action routine
called if a folder is to be created. Two parameters are passed as follows:

• User data longword

• Address of a descriptor of the folder name to be created.

The buffer address field of the item descriptor points to a longword that specifies a procedure
value.

[MAIL$_MESSAGE_ID"]

552

Chapter 16. Mail Utility Routines

MAIL$_MESSAGE_ID specifies the message identification number of the message on which the op-
eration is to be performed. The buffer address field of the item descriptor points to a longword
that contains the message identification number.

Do not specify MAIL$_MESSAGE_BACK, MAIL$_MESSAGE_ID, and MAIL
$_MESSAGE_NEXT in the same call to MAIL$MESSAGE_COPY.

[MAIL$_MESSAGE_NEXT"]

When you specify the Boolean item code MAIL$_MESSAGE_NEXT, the Mail utility copies the mes-
sage following the current message.

Specify the value 0 in the buffer length and buffer address fields of the item descriptor.

Do not specify MAIL$_MESSAGE_BACK, MAIL$_MESSAGE_ID, and MAIL
$_MESSAGE_NEXT in the same call to MAIL$MESSAGE_COPY.

[MAIL$_MESSAGE_USER_DATA"]

MAIL$_MESSAGE_USER_DATA specifies data passed to the folder action and mail file action rou-
tines. The buffer address field of the item descriptor points to a user data longword.

Specify MAIL$_MESSAGE_USER_DATA with the item codes MAIL$_MESSAGE_FILE_AC-
TION and MAIL$_MESSAGE_FOLDER_ACTION only.

out_item_list

OpenVMS usage: itmlst_3
type: longword
access: write only
mechanism: by reference

Item list specifying the information you want the routine to return. The out_item_list argument
is the address of a list of item descriptors, each of which describes an item of information. The list of
item descriptors is terminated by longword value of 0.

Output Item Codes

[MAIL$_MESSAGE_FILE_CREATED"]

When you specify the Boolean item code MAIL$_MESSAGE_FILE_CREATED, MAIL
$MESSAGE_COPY returns the value of the file created flag as longword value.

[MAIL$_MESSAGE_FOLDER_CREATED"]

When you specify the Boolean item code MAIL$_MESSAGE_FOLDER_CREATED, MAIL
$MESSAGE_COPY returns the value of the folder created flag as a longword value.

[MAIL$_MESSAGE_RESULTSPEC"]

When you specify MAIL$_MESSAGE_RESULTSPEC, MAIL$MESSAGE_COPY returns the mail
file resultant file specification. The buffer address field of the item descriptor points to a buffer
that receives a character string 0 to 255 characters long.

Specify a value from 0 to 255 in the buffer length field of the item descriptor.

553

Chapter 16. Mail Utility Routines

Description
If you do not specify a file name, the routine copies the message to another folder in the currently
open mail file. The target mail file must be an indexed file.

Condition Values Returned
SS$_NORMAL

Normal successful completion.

MAIL$_BADVALUE

The specified keyword value is invalid.

MAIL$_CONITMCOD

The specified item codes define conflicting operations.

MAIL$_DATIMUSED

The date and time is currently used in the specified file.

MAIL$_DELMSG

The message is deleted.

MAIL$_ILLCTXADR

The context block address is illegal.

MAIL$_INVITMCOD

The specified item code is invalid.

MAIL$_INVITMLEN

The specified item length is invalid.

MAIL$_MISREQITEM

The required item is missing.

MAIL$_MSGINFO

Informational records are successfully returned.

MAIL$_MSGTEXT

Text record is successfully returned.

MAIL$_NOFILEOPEN

The mail file is not open.

MAIL$_NOMOREREC

No more records can be found.

554

Chapter 16. Mail Utility Routines

MAIL$_NOTREADIN

The operation is invalid; you are not reading a message.

MAIL$_RECTOBIG

The record is too large for the MAIL buffer.

MAIL$_WRONGCTX

The context block is incorrect.

MAIL$_WRONGFILE

The specified file is incorrect in this context.

SS$_IVDEVNAM

The device name is invalid.

SS$_ACCVIO

Access violation.

Any condition value returned by $CONNECT, $CREATE, $OPEN, $WRITE, $READ, and $PUT.

MAIL$MESSAGE_DELETE
Delete Message From Current Folder — Deletes a specified message from the currently selected fold-
er.

Format
MAIL$MESSAGE_DELETE context ,in_item_list ,out_item_list

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. All utility routines return a condition value in R0. Condition values that
can be returned by this routine are listed under Condition Values Returned.

Arguments
context

OpenVMS usage: context
type: longword (unsigned)
access: modify
mechanism: by reference

555

Chapter 16. Mail Utility Routines

Message context information to be passed to message routines. The context argument is the ad-
dress of a longword that contains message context information.

in_item_list

OpenVMS usage: itmlst_3
type: longword (unsigned)
access: read only
mechanism: by reference

Item list specifying options for the routine. The in_item_list argument is the address of a list of
item descriptors, each of which specifies an option and provides the information needed to perform
the operation.

The item list is terminated by longword value of 0.

Input Item Codes

[MAIL$_MESSAGE_ID"]

MAIL$_MESSAGE_ID specifies the message identification number of the message on which the op-
eration is to be performed. The buffer address field points to a longword that contains the mes-
sage identification number.

The item code MAIL$_MESSAGE_ID is required.

out_item_list

OpenVMS usage: itmlst_3
type: longword
access: write only
mechanism: by reference

Item list specifying the information you want the routine to return. The out_item_list argument
is the address of a list of item descriptors, each of which describes an item of information. The list of
item descriptors is terminated by longword value of 0.

Output Item Codes

None.

Description
When you delete a message from a selected folder, it is moved to the wastebasket fold-
er. You cannot delete a message from the wastebasket folder. You must use the MAIL
$MAILFILE_PURGE_WASTE routine to empty the wastebasket folder.

Condition Values Returned
SS$_NORMAL

Normal successful completion.

556

Chapter 16. Mail Utility Routines

MAIL$_ILLCTXADR

The context block address is illegal.

MAIL$_INVITMCOD

The specified item code is invalid.

MAIL$_INVITMLEN

The specified item length is invalid.

MAIL$_MISREQITEM

The required item is missing.

MAIL$_NOFILEOPEN

The mail file is not open.

MAIL$_WRONGCTX

The context block is incorrect.

MAIL$_WRONGFILE

The specified file is incorrect in this context.

SS$_ACCVIO

Access violation.

MAIL$MESSAGE_END
End Message Processing — Ends message processing.

Format
MAIL$MESSAGE_END context ,in_item_list ,out_item_list

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. All utility routines return a condition value in R0. Condition values that
can be returned by this routine are listed under Condition Values Returned.

Arguments
context

557

Chapter 16. Mail Utility Routines

OpenVMS usage: context
type: longword (unsigned)
access: modify
mechanism: by reference

Message context information to be passed to message routines. The context argument
is the address of a longword that contains message context information returned by MAIL
$MESSAGE_BEGIN. If message processing ends successfully, the argument context is changed to
0.

in_item_list

OpenVMS usage: itmlst_3
type: longword (unsigned)
access: read only
mechanism: by reference

Item list specifying options for the routine. This routine does not use the in_item_list argument.

out_item_list

OpenVMS usage: itmlst_3
type: longword
access: write only
mechanism: by reference

Item list specifying the information you want the routine to return. This routine does not use the
out_item_list argument.

Description
The MAIL$MESSAGE_END routine deallocates the message context created by MAIL
$MESSAGE_BEGIN as well as any dynamic memory allocated by other message routines.

Condition Values Returned
MAIL$_INVITMCOD

The specified item code is invalid.

MAIL$_INVITMLEN

The specified item length is invalid.

MAIL$_MISREQITEM

The required item is missing.

SS$_ACCVIO

Access violation.

Any condition value returned by LIB$FREE_VM.

558

Chapter 16. Mail Utility Routines

MAIL$MESSAGE_GET
Get Message From a Set of Messages — Retrieves a message from the set of currently selected mes-
sages.

Format
MAIL$MESSAGE_GET context ,in_item_list ,out_item_list

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. All utility routines return a condition value in R0. Condition values that
can be returned by this routine are listed under Condition Values Returned.

Arguments
context

OpenVMS usage: context
type: longword (unsigned)
access: modify
mechanism: by reference

Message context information to be passed to message routines. The context argument
is the address of a longword that contains message context information returned by MAIL
$MESSAGE_BEGIN.

in_item_list

OpenVMS usage: itmlst_3
type: longword (unsigned)
access: read only
mechanism: by reference

Item list specifying options for the routine. The in_item_list argument is the address of a list of
item descriptors, each of which specifies an option and provides the information needed to perform
the operation.

The item list is terminated by longword value of 0.

Input Item Codes

[MAIL$_MESSAGE_AUTO_NEWMAIL"]

When you specify the Boolean item code MAIL$_MESSAGE_AUTO_NEWMAIL, MAIL
$MESSAGE_GET automatically places a new message in the mail folder as it is read. MAIL

559

Chapter 16. Mail Utility Routines

$_MESSAGE_AUTO_NEWMAIL is valid only when specified with the item code MAIL
$_MESSAGE_CONTINUE.

Specify the value 0 in the buffer length and buffer address fields of the item descriptor.

[MAIL$_MESSAGE_BACK"]

When you specify the Boolean item code MAIL$_MESSAGE_BACK, MAIL$MESSAGE_GET
reads the message identification number of a specified message to return the first record of the preced-
ing message.

Specify the value 0 in the buffer length and buffer address fields of the item descriptor.

Do not specify the item codes MAIL$_MESSAGE_BACK, MAIL$_MESSAGE_CON-
TINUE, MAIL$_MESSAGE_ID, and MAIL$_MESSAGE_NEXT in the same call to MAIL
$MESSAGE_GET.

[MAIL$_MESSAGE_CONTINUE"]

When you specify the Boolean item code MAIL$_MESSAGE_CONTINUE, MAIL
$MESSAGE_GET reads the message identification number of a specified message to return the next
text record of the current message.

Specify the value 0 in the buffer length and buffer address fields of the item descriptor.

Do not specify the item codes MAIL$_MESSAGE_BACK, MAIL$_MESSAGE_CON-
TINUE, MAIL$_MESSAGE_ID, and MAIL$_MESSAGE_NEXT in the same call to MAIL
$MESSAGE_GET.

[MAIL$_MESSAGE_ID"]

MAIL$_MESSAGE_ID specifies the message identification number of a message on which an opera-
tion is to be performed. The buffer address field of the item descriptor points to a longword that
contains the message identification number.

Do not specify the item codes MAIL$_MESSAGE_BACK, MAIL$_MESSAGE_CON-
TINUE, MAIL$_MESSAGE_ID, and MAIL$_MESSAGE_NEXT in the same call to MAIL
$MESSAGE_GET.

[MAIL$_MESSAGE_NEXT"]

When you specify the Boolean item code MAIL$_MESSAGE_NEXT, MAIL$MESSAGE_GET
reads the message identification number of a specified message to return the first record of the mes-
sage following the current message.

Specify the value 0 in the buffer length and buffer address fields of the item descriptor.

Do not specify the item codes MAIL$_MESSAGE_BACK, MAIL$_MESSAGE_CON-
TINUE, MAIL$_MESSAGE_ID, and MAIL$_MESSAGE_NEXT in the same call to MAIL
$MESSAGE_GET.

out_item_list

OpenVMS usage: itmlst_3
type: longword
access: write only

560

Chapter 16. Mail Utility Routines

mechanism: by reference

Item list specifying the information you want the routine to return. The out_item_list argument
is the address of a list of item descriptors, each of which describes an item of information. The list of
item descriptors is terminated by longword value of 0.

Output Item Codes

[MAIL$_MESSAGE_BINARY_DATE"]

When you specify MAIL$_MESSAGE_BINARY_DATE, MAIL$MESSAGE_GET returns the mes-
sage arrival date as a quadword binary value.

[MAIL$_MESSAGE_CC"]

When you specify MAIL$_MESSAGE_CC, MAIL$MESSAGE_GET returns the CC: field of the
current message. The buffer address field of the item descriptor points to a buffer that receives
a character string 0 to 998 characters long.

Specify a value from 0 to 998 in the buffer length field of the item descriptor.

[MAIL$_MESSAGE_CURRENT_ID"]

When you specify MAIL$_MESSAGE_CURRENT_ID, MAIL$MESSAGE_GET returns the mes-
sage identification number of the current message. The buffer address field of the item descrip-
tor points to a longword that receives the message identifier number.

[MAIL$_MESSAGE_DATE"]

When you specify MAIL$_MESSAGE_DATE, MAIL$MESSAGE_GET returns the message cre-
ation date string. The buffer address field of the item descriptor points to a buffer that receives
a character string 0 to 255 characters long.

Specify a value from 0 to 255 in the buffer length field of the item descriptor.

[MAIL$_MESSAGE_EXTID"]

MAIL$_MESSAGE_EXTID specifies the external message identification number of the current mes-
sage. The buffer address field of the item descriptor points to a buffer that contains a character
string 0 to 255 characters long.

[MAIL$_MESSAGE_FROM"]

When you specify MAIL$_MESSAGE_FROM, MAIL$MESSAGE_GET returns the From: field of
the specified message. The buffer address field of the item descriptor points to a buffer that re-
ceives a character string 0 to 998 characters long.

Specify a value from 0 to 998 in the buffer length field of the item descriptor.

[MAIL$_MESSAGE_RECORD"]

When you specify MAIL$_MESSAGE_RECORD, MAIL$MESSAGE_GET returns a record of the
message. The buffer address field of the item descriptor points to a buffer that receives a char-
acter string 0 to 998 characters long.

Specify a value from 0 to 998 in the buffer length field of the item descriptor.

561

Chapter 16. Mail Utility Routines

MAIL$_MESSAGE_RECORD is valid only when specified with the item code MAIL
$_MESSAGE_CONTINUE.

Do not specify MAIL$_MESSAGE_RECORD with the following item codes:

• MAIL$_MESSAGE_BACK

• MAIL$_MESSAGE_ID

• MAIL$_MESSAGE_NEXT

[MAIL$_MESSAGE_RECORD_TYPE"]

When you specify MAIL$_MESSAGE_RECORD_TYPE, MAIL$MESSAGE_GET returns the
record type. A record may be either header information (MAIL$_MESSAGE_HEADER) or text
(MAIL$_MESSAGE_TEXT). The buffer address field of the item descriptor points to a word
that receives the record type.

[MAIL$_MESSAGE_RETURN_FLAGS"]

When you specify MAIL$_MESSAGE_RETURN_FLAGS, MAIL$MESSAGE_GET returns the
Mail system flag for the current message as a 2-byte bit mask value.

[MAIL$_MESSAGE_SENDER"]

When you specify MAIL$_MESSAGE_SENDER, MAIL$MESSAGE_GET returns the name of the
sender of the current message. The buffer address field of the item descriptor points to a buffer
that receives a character string 0 to 998 characters long.

Specify a value from 0 to 998 in the buffer length field of the item descriptor.

[MAIL$_MESSAGE_SIZE"]

When you specify MAIL$_MESSAGE_SIZE, MAIL$MESSAGE_GET returns the size in records of
the current message as a longword value.

[MAIL$_MESSAGE_SUBJECT"]

When you specify MAIL$_MESSAGE_SUBJECT, MAIL$MESSAGE_GET returns the Subject:
field of the specified message. The buffer address field of the item descriptor points to a buffer
that receives a character string 0 to 998 characters long.

Specify a value from 0 to 998 in the buffer length field of the item descriptor.

[MAIL$_MESSAGE_TO"]

When you specify MAIL$_MESSAGE_TO, MAIL$MESSAGE_GET returns the To: field of the
specified message. The buffer address field of the item descriptor points to a buffer that re-
ceives a character string 0 to 998 characters long.

Specify a value from 0 to 998 in the buffer length field of the item descriptor.

Description
The first time the MAIL$MESSAGE_GET routine is called, the message information is returned for
the first requested message, and the status returned is MAIL$_MSGINFO. Subsequent calls to MAIL

562

Chapter 16. Mail Utility Routines

$MESSAGE_GET with the MAIL$_MESSAGE_CONTINUE item code return the message text
records with the status MAIL$_MSGTEXT, until no more records are left, when MAIL$_NOMOR-
EREC is returned.

Condition Values Returned
MAIL$_MSGINFO

Informational records are successfully returned.

MAIL$_MSGTEXT

Text record is successfully returned.

MAIL$_ILLCTXADR

The context block address is illegal.

MAIL$_INVITMCOD

The specified item code is invalid.

MAIL$_INVITMLEN

The specified item length is invalid.

MAIL$_MISREQITEM

The required item is missing.

MAIL$_NOFILEOPEN

The mail file is not open.

MAIL$_NOMOREREC

No more records can be found.

MAIL$_NOTREADIN

The operation is invalid; you are not reading a message.

MAIL$_RECTOBIG

The record is too large for the mail buffer.

MAIL$_WRONGCTX

The context block is incorrect.

MAIL$_WRONGFILE

The specified file is incorrect in this context.

SS$_ACCVIO

Access violation.

563

Chapter 16. Mail Utility Routines

Any condition value returned by $FIND and $UPDATE.

MAIL$MESSAGE_INFO
Get Information About a Message — Obtains information about a specified message contained in the
set of currently selected messages.

Format
MAIL$MESSAGE_INFO context ,in_item_list ,out_item_list

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. All utility routines return a condition value in R0. Condition values that
can be returned by this routine are listed under Condition Values Returned.

Arguments
context

OpenVMS usage: context
type: longword (unsigned)
access: modify
mechanism: by reference

Message context information to be passed to message routines. The context argument
is the address of a longword that contains message context information returned by MAIL
$MESSAGE_BEGIN.

in_item_list

OpenVMS usage: itmlst_3
type: longword (unsigned)
access: read only
mechanism: by reference

Item list specifying options for the routine. The in_item_list argument is the address of a list of
item descriptors, each of which specifies an option and provides the information needed to perform
the operation.

The item list is terminated by longword value of 0.

Input Item Codes

[MAIL$_MESSAGE_BACK"]

564

Chapter 16. Mail Utility Routines

When you specify Boolean item code MAIL$_MESSAGE_BACK, MAIL$MESSAGE_INFO reads
the identification number of the current message and returns the preceding message.

Specify the value 0 in the buffer length and buffer address fields of the item descriptor.

Do not specify MAIL$_MESSAGE_BACK, MAIL$_MESSAGE_ID, and MAIL
$_MESSAGE_NEXT in the same call to MAIL$MESSAGE_INFO.

[MAIL$_MESSAGE_ID"]

MAIL$_MESSAGE_ID specifies the message identification number of the message on which the op-
eration is to be performed. The buffer address field of the item descriptor points to a longword
that contains the message identification number.

Do not specify MAIL$_MESSAGE_BACK, MAIL$_MESSAGE_ID, and MAIL
$_MESSAGE_NEXT in the same call to MAIL$MESSAGE_INFO.

[MAIL$_MESSAGE_NEXT"]

When you specify the Boolean item code MAIL$_MESSAGE_NEXT, MAIL$MESSAGE_INFO
reads the message identification number of the current message and returns the message that follows
it.

Specify the value 0 in the buffer length and buffer address fields of the item descriptor.

Do not specify MAIL$_MESSAGE_BACK, MAIL$_MESSAGE_ID, and MAIL
$_MESSAGE_NEXT in the same call to MAIL$MESSAGE_INFO.

out_item_list

OpenVMS usage: itmlst_3
type: longword
access: write only
mechanism: by reference

Item list specifying the information you want the routine to return. The out_item_list argument
is the address of a list of item descriptors, each of which describes an item of information. The list of
item descriptors is terminated by longword value of 0.

Output Item Codes

[MAIL$_MESSAGE_BINARY_DATE"]

When you specify MAIL$_MESSAGE_BINARY_DATE, MAIL$MESSAGE_INFO returns the mes-
sage arrival date as a quadword binary value.

[MAIL$_MESSAGE_CC"]

When you specify MAIL$_MESSAGE_CC, MAIL$MESSAGE_INFO returns the CC: field of the
current message. The buffer address field of the item descriptor points to a buffer that receives
a character string 0 to 998 characters long.

Specify a value from 0 to 998 in the buffer length field of the item descriptor.

[MAIL$_MESSAGE_CURRENT_ID"]

565

Chapter 16. Mail Utility Routines

When you specify MAIL$_MESSAGE_ID, MAIL$MESSAGE_INFO returns the message identifica-
tion number of the current message. The buffer address field of the item descriptor points to a
longword that receives the message identification number of the current message.

[MAIL$_MESSAGE_DATE"]

When you specify MAIL$_MESSAGE_DATE, MAIL$MESSAGE_INFO returns the message cre-
ation date string. The buffer address field of the item descriptor points to a buffer that receives
a character string 0 to 255 characters long.

Specify a value from 0 to 255 in the buffer length field of the item descriptor.

[MAIL$_MESSAGE_EXTID"]

When you specify MAIL$_MESSAGE_EXTID, MAIL$MESSAGE_INFO returns the external iden-
tification number of the current message as a string. The buffer address field of the item de-
scriptor points to a buffer that receives a character string 0 to 255 characters long.

Specify a value from 0 to 255 in the buffer length field of the item descriptor.

[MAIL$_MESSAGE_FROM"]

When you specify MAIL$_MESSAGE_FROM, MAIL$MESSAGE_INFO returns the From: field of
the specified message. The buffer address field of the item descriptor points to a buffer that re-
ceives a character string 0 to 998 characters long.

Specify a value from 0 to 998 in the buffer length field of the item descriptor.

[MAIL$_MESSAGE_REPLY_PATH"]

When you specify MAIL$_MESSAGE_REPLY_PATH, MAIL$MESSAGE_INFO returns the reply
path of the specified message. The buffer address field of the item descriptor points to a buffer
that receives a character string 0 to 998 characters long.

Specify a value from 0 to 998 in the buffer length field of the item descriptor.

[MAIL$_MESSAGE_RETURN_FLAGS"]

When you specify MAIL$_MESSAGE_RETURN_FLAGS, MAIL$MESSAGE_INFO returns the
Mail system flag values for the current message as a 2-byte bit mask value.

[MAIL$_MESSAGE_SENDER"]

When you specify MAIL$_MESSAGE_SENDER, MAIL$MESSAGE_INFO returns the name of the
sender of the current message. The buffer address field of the item descriptor points to a buffer
that receives a character string 0 to 998 characters long.

Specify a value from 0 to 998 in the buffer length field of the item descriptor.

[MAIL$_MESSAGE_SIZE"]

When you specify MAIL$_MESSAGE_SIZE, MAIL$MESSAGE_INFO returns the size of the cur-
rent message in records as a longword value.

[MAIL$_MESSAGE_SUBJECT"]

566

Chapter 16. Mail Utility Routines

When you specify MAIL$_MESSAGE_SUBJECT, MAIL$MESSAGE_INFO returns the Subject:
field of the specified message. The buffer address field of the item descriptor points to a buffer
that receives a character string 0 to 998 characters long.

Specify a value from 0 to 998 in the buffer length field of the item descriptor.

[MAIL$_MESSAGE_TO"]

When you specify MAIL$_MESSAGE_TO, MAIL$MESSAGE_INFO returns the To: field of the
specified message. The buffer address field of the item descriptor points to a buffer that re-
ceives a character string 0 to 998 characters long.

Specify a value from 0 to 998 in the buffer length field of the item descriptor.

Description

MAIL$MESSAGE_INFO obtains information about a particular message. MAIL$MESSAGE_GET
retrieves a message from the set of currently selected messages.

The first call to MAIL$MESSAGE_GET passes control to MAIL$MESSAGE_INFO. Subsequent
calls that include the MAIL$_MESSAGE_CONTINUE item code return text records.

Condition Values Returned

MAIL$_CONITMCOD

The specified item codes define conflicting operations.

MAIL$_DELMSG

The message is deleted.

MAIL$_ILLCTXADR

The context block address is illegal.

MAIL$_INVITMCOD

The specified item code is invalid.

MAIL$_INVITMLEN

The specified item length is invalid.

MAIL$_MISREQITEM

The required item is missing.

MAIL$_NOFILEOPEN

The mail file is not open.

MAIL$_NOMOREMSG

No more messages.

567

Chapter 16. Mail Utility Routines

MAIL$_WRONGCTX

The context block is incorrect.

MAIL$_WRONGFILE

The specified file is incorrect in this context.

SS$_ACCVIO

Access violation.

Any condition value returned by LIB$GET_VM.

MAIL$MESSAGE_MODIFY
Modify Header Information — Modifies information in the message header.

Format
MAIL$MESSAGE_MODIFY context ,in_item_list ,out_item_list

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. All utility routines return a condition value in R0. Condition values that
can be returned by this routine are listed under Condition Values Returned.

Arguments
context

OpenVMS usage: context
type: longword (unsigned)
access: modify
mechanism: by reference

Message context information to be passed to message routines. The context argument
is the address of a longword that contains message context information returned by MAIL
$MESSAGE_BEGIN.

in_item_list

OpenVMS usage: itmlst_3
type: longword (unsigned)
access: read only

568

Chapter 16. Mail Utility Routines

mechanism: by reference

Item list specifying options for the routine. The in_item_list argument is the address of a list of
item descriptors, each of which specifies an option and provides the information needed to perform
the operation.

The item list is terminated by longword value of 0.

Input Item Codes

[MAIL$_MESSAGE_BACK"]

When you specify the Boolean item code MAIL$_MESSAGE_BACK, MAIL$MESSAGE_MODIFY
reads the identification number of the specified message in order to return the first record in the pre-
ceding message.

Specify the value 0 in the buffer length and buffer address fields of the item descriptor.

Do not specify the item codes MAIL$_MESSAGE_BACK, MAIL$_MESSAGE_ID, and MAIL
$_MESSAGE_NEXT in the same call to MAIL$MESSAGE_MODIFY.

[MAIL$_MESSAGE_FLAGS"]

MAIL$_MESSAGE_FLAGS specifies system flags for new mail. The buffer address field of
the item descriptor points to a word that contains bit mask offsets. The following offsets can be used
to modify the 2-byte bit mask:

• MAIL$V_replied

• MAIL$V_marked

[MAIL$_MESSAGE_ID"]

MAIL$_MESSAGE_ID specifies the message identification number of the message on which an op-
eration is to be performed. The buffer address field of the item descriptor points to a longword
that contains the message identification number.

Do not specify the item codes MAIL$_MESSAGE_BACK, MAIL$_MESSAGE_ID, and MAIL
$_MESSAGE_NEXT in the same call to MAIL$MESSAGE_MODIFY.

[MAIL$_MESSAGE_NEXT"]

When you specify the Boolean item code MAIL$_MESSAGE_NEXT, MAIL$MESSAGE_MODIFY
reads the message identification number of a message and returns the first record in the message fol-
lowing the current message.

Specify the value 0 in the buffer length and buffer address fields of the item descriptor.

Do not specify the item codes MAIL$_MESSAGE_BACK, MAIL$_MESSAGE_ID, and MAIL
$_MESSAGE_NEXT in the same call to MAIL$MESSAGE_MODIFY.

out_item_list

OpenVMS usage: itmlst_3
type: longword

569

Chapter 16. Mail Utility Routines

access: write only
mechanism: by reference

Item list specifying the information you want the routine to return. The out_item_list argument
is the address of a list of item descriptors, each of which describes an item of information. The list of
item descriptors is terminated by longword value of 0.

Output Item Code

[MAIL$_MESSAGE_CURRENT_ID"]

When you specify MAIL$_MESSAGE_CURRENT_ID, MAIL$MESSAGE_MODIFY returns the
message identification number of the current message. The buffer address field of the item de-
scriptor points to a longword that receives the message identification number.

Condition Values Returned
MAIL$_CONITMCOD

The specified item codes define conflicting operations.

MAIL$_DELMSG

The message is deleted.

MAIL$_ILLCTXADR

The context block address is illegal.

MAIL$_INVITMCOD

The specified item code is invalid.

MAIL$_INVITMLEN

The specified item length is invalid.

MAIL$_MISREQITEM

The required item is missing.

MAIL$_NOFILEOPEN

The mail file is not open.

MAIL$_NOMOREMSG

No more messages.

MAIL$_WRONGCTX

The context block is incorrect.

MAIL$_WRONGFILE

The specified file is incorrect in this context.

570

Chapter 16. Mail Utility Routines

SS$_ACCVIO

Access violation.

Any condition value returned by $FIND and $UPDATE.

MAIL$MESSAGE_SELECT
Select Message from Current Mail File — Selects a message or messages from the currently open
mail file. Before you attempt to read a message, you must select it.

Format
MAIL$MESSAGE_SELECT context ,in_item_list ,out_item_list

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. All utility routines return a condition value in R0. Condition values that
can be returned by this routine are listed under Condition Values Returned.

Arguments
context

OpenVMS usage: context
type: longword (unsigned)
access: modify
mechanism: by reference

Message context information to be passed to message routines. The context argument
is the address of a longword that contains message context information returned by MAIL
$MESSAGE_BEGIN.

in_item_list

OpenVMS usage: itmlst_3
type: longword (unsigned)
access: read only
mechanism: by reference

Item list specifying options for the routine. The in_item_list argument is the address of a list of
item descriptors, each of which specifies an option and provides the information needed to perform
the operation.

The item list is terminated by longword value of 0.

571

Chapter 16. Mail Utility Routines

Input Item Codes

[MAIL$_MESSAGE_BEFORE"]

When you specify MAIL$_MESSAGE_BEFORE, MAIL$MESSAGE_SELECT selects a message
received before a specified date and time. The buffer address field of the item descriptor points
to a buffer that contains a character string 0 to 255 characters long in absolute time.

Specify a value from 0 to 255 in the buffer length field of the item descriptor.

[MAIL$_MESSAGE_CC_SUBSTRING"]

MAIL$_MESSAGE_CC_SUBSTRING specifies a character string that must match a substring con-
tained in the CC: field of the specified message. If the strings match, the message is selected. The
buffer address field of the item descriptor points to a buffer that receives a character string 0 to
998 characters long.

Specify a value from 0 to 998 in the buffer length field of the item descriptor.

[MAIL$_MESSAGE_FLAGS"]

MAIL$_MESSAGE_FLAGS specifies bit masks that must be initialized to 1.

[MAIL$_MESSAGE_FLAGS_MBZ"]

MAIL$_MESSAGE_FLAGS_MBZ specifies Mail system flags that must be set to 0.

[MAIL$_MESSAGE_FOLDER"]

MAIL$_MESSAGE_FOLDER specifies the name of the folder that contains messages to be selected.

The buffer address field of the item descriptor points to a buffer that contains a character string
0 to 255 characters long.

Specify a value from 0 to 255 in the buffer length field of the item descriptor.

This item code is required.

[MAIL$_MESSAGE_FROM_SUBSTRING"]

MAIL$_MESSAGE_FROM_SUBSTRING specifies a user-specified character string that must match
the substring contained in the From: field of a specified message. If the strings match, the message is
selected.

The buffer address field of the item descriptor points to a buffer that receives a character string
0 to 998 characters long.

Specify a value from 0 to 998 in the buffer length field of the item descriptor.

[MAIL$_MESSAGE_SINCE"]

When you specify MAIL$_MESSAGE_SINCE, the Mail utility selects a message received on or after
a specified date and time.

The buffer address field of the item descriptor points to a buffer that contains a character string
0 to 255 characters long in absolute time.

Specify a value from 0 to 255 in the buffer length field of the item descriptor.

572

Chapter 16. Mail Utility Routines

[MAIL$_MESSAGE_TO_SUBSTRING"]

MAIL$_MESSAGE_TO_SUBSTRING specifies a user-specified character string that must match a
substring contained in the To: field of a specified message. If the strings match, the message is select-
ed.

The buffer address field of the item descriptor points to a buffer that contains a character string
0 to 998 characters long.

Specify a value from 0 to 998 in the buffer length field of the item descriptor.

[MAIL$_MESSAGE_SUBJ_SUBSTRING"]

MAIL$_MESSAGE_SUBJ_SUBSTRING specifies a user-specified character string that must match
a substring contained in the Subject: field of a specified message. If the strings match, the message is
selected.

The buffer address field of the item descriptor points to a buffer that contains a character string
0 to 998 characters long.

Specify a value from 0 to 998 in the buffer length field of the item descriptor.

out_item_list

OpenVMS usage: itmlst_3
type: longword
access: write only
mechanism: by reference

Item list specifying the information you want the routine to return. The out_item_list argument
is the address of a list of item descriptors, each of which describes an item of information. The list of
item descriptors is terminated by longword value of 0.

Output Item Code

[MAIL$_MESSAGE_SELECTED"]

When you specify MAIL$_MESSAGE_SELECTED, MAIL$MESSAGE_SELECT returns the num-
ber of selected messages as a longword value.

Description
MAIL$MESSAGE_SELECT deselects previously selected messages whether or not you request a
valid selection.

Condition Values Returned
MAIL$_ILLCTXADR

The context block address is illegal.

MAIL$_INVITMCOD

The specified item code is invalid.

573

Chapter 16. Mail Utility Routines

MAIL$_INVITMLEN

The specified item length is invalid.

MAIL$_INVQUAVAL

The specified qualifier is invalid

MAIL$_MISREQITEM

The required item is missing.

MAIL$_NOFILEOPEN

The mail file is not open.

MAIL$_NOTEXIST

The specified folder does not exist.

MAIL$_NOTISAM

The operation applies only to indexed files.

MAIL$_WRONGCTX

The context block is incorrect.

MAIL$_WRONGFILE

The specified file is incorrect in this context.

SS$_ACCVIO

Access violation.

Any condition value returned by LIB$GET_VM.

MAIL$SEND_ABORT
Cancel Send Operation — Cancels a currently executing send operation.

Format
MAIL$SEND_ABORT context ,in_item_list ,out_item_list

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. All utility routines return a condition value in R0. Condition values that
can be returned by this routine are listed under Condition Value Returned.

574

Chapter 16. Mail Utility Routines

Arguments
context

OpenVMS usage: context
type: longword (unsigned)
access: modify
mechanism: by reference

Send context information to be passed to send routines. The context argument is the address of a
longword that contains send context information returned by MAIL$SEND_BEGIN.

in_item_list

OpenVMS usage: itmlst_3
type: longword (unsigned)
access: read only
mechanism: by reference

Item list specifying options for the routine. This routine does not use the in_item_list argument.

out_item_list

OpenVMS usage: itmlst_3
type: longword
access: write only
mechanism: by reference

Item list specifying the information you want the routine to return. This routine does not use the
out_item_list argument.

Description
MAIL$SEND_ABORT is useful when, for example, the user presses Ctrl/C during the execution of
MAIL$SEND_MESSSAGE.

Condition Value Returned
SS$_NORMAL

Normal successful completion.

MAIL$SEND_ADD_ADDRESS
Add Address to List — Adds an address to the address list. If an address list does not exist, MAIL
$SEND_ADD_ADDRESS creates one.

Format
MAIL$SEND_ADD_ADDRESS context ,in_item_list ,out_item_list

575

Chapter 16. Mail Utility Routines

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. All utility routines return a condition value in R0. Condition values that
can be returned by this routine are listed under Condition Values Returned.

Arguments
context

OpenVMS usage: context
type: longword (unsigned)
access: modify
mechanism: by reference

Send context information to be passed to send routines. The context argument is the address of a
longword that contains send context information returned by MAIL$SEND_BEGIN.

in_item_list

OpenVMS usage: itmlst_3
type: longword (unsigned)
access: read only
mechanism: by reference

Item list specifying options for the routine. The in_item_list argument is the address of a list of
item descriptors, each of which specifies an option and provides the information needed to perform
the operation.

The item list is terminated by longword value of 0.

Input Item Codes

[MAIL$_SEND_USERNAME"]

MAIL$_SEND_USERNAME specifies that the Mail utility add a specified user name to the address
list. The buffer address field of the item descriptor points to a buffer that receives a character
string 0 to 255 characters long.

Specify a value from 0 to 255 in the buffer length field of the item descriptor.

The item code MAIL$_SEND_USERNAME is required.

[MAIL$_SEND_USERNAME_TYPE"]

MAIL$_SEND_USERNAME_TYPE specifies the type of user name added to the address list. The
buffer address field of the item descriptor points to a word that contains the user name type.

576

Chapter 16. Mail Utility Routines

There are two types of user names, as follows:

• User name specified as a To: address (default)

• User name specified as a CC: address

Note

Currently, the symbols MAIL$_TO and MAIL$_CC define user name types.

out_item_list

OpenVMS usage: itmlst_3
type: longword
access: write only
mechanism: by reference

Item list specifying the information you want the routine to return. The out_item_list argument
is the address of a list of item descriptors, each of which describes an item of information. The list of
item descriptors is terminated by longword value of 0.

Output Item Codes

None.

Description
If you do not specify a MAIL$_SEND_USERNAME_TYPE, MAIL$SEND_ADD_ADDRESS uses
MAIL$_TO. You can specify only one user name per call to MAIL$SEND_ADD_ADDRESS.

Condition Values Returned
MAIL$_INVITMCOD

The specified item code is invalid.

MAIL$_INVITMLEN

The specified item length is invalid.

MAIL$_MISREQITEM

The required item is missing.

SS$_ACCVIO

Access violation.

Any condition values returned by LIB$TPARSE.

MAIL$SEND_ADD_ATTRIBUTE
Add Attribute to the Current Message — Adds an attribute, such as Subject or To, to the message you
are currently constructing.

577

Chapter 16. Mail Utility Routines

Format
MAIL$SEND_ADD_ATTRIBUTE context ,in_item_list ,out_item_list

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. All utility routines return a condition value in R0. Condition values that
can be returned by this routine are listed under Condition Values Returned.

Arguments

context

OpenVMS usage: context
type: longword (unsigned)
access: modify
mechanism: by reference

Send context information to be passed to send routines. The context argument is the address of a
longword that contains send context information returned by MAIL$SEND_BEGIN.

You should specify this argument as 0 in the first of a sequence of calls to MAIL routines. In follow-
ing calls, you should specify the Send context value returned by the previous routine.

in_item_list

OpenVMS usage: itmlst_3
type: longword (unsigned)
access: read only
mechanism: by reference

Item list specifying options for the routine. The in_item_list argument is the address of a list of
item descriptors, each of which specifies an option and provides the information needed to perform
the operation.

The item list is terminated by longword value of 0.

Input Item Codes

[MAIL$_SEND_CC_LINE"]

MAIL$_SEND_CC_LINE specifies a descriptor of the CC: field text. The buffer address field
of the item descriptor points to a buffer that contains a character string 0 to 998 characters long.

Specify a value from 0 to 998 in the buffer length field of the item descriptor.

578

Chapter 16. Mail Utility Routines

[MAIL$_SEND_FROM_LINE"]

MAIL$_SEND_FROM_LINE specifies a descriptor of the From: field text of the message to be sent.
The buffer address field of the item descriptor points to a buffer that contains a character string
0 to 998 characters long.

Specify a value from 0 to 998 in the buffer length field of the item descriptor.

Calls to MAIL$SEND_ADD_ATTRIBUTE using this input item code must be made before any calls
to MAIL$SEND_ADD_ADDRESS.

The SYSPRV privilege is required to alter the From: of a message.

[MAIL$_SEND_SUBJECT"]

MAIL$_SEND_SUBJECT specifies a descriptor of the Subject: field text of a message to be sent. The
buffer address field of the item descriptor points to a buffer that contains a character string 0 to
998 characters long.

Specify a value from 0 to 998 in the buffer length field of the item descriptor.

[MAIL$_SEND_TO_LINE"]

MAIL$_SEND_TO_LINE specifies a descriptor of the To: field text of the message. The buffer
address field of the item descriptor points to a buffer that receives a character string 0 to 998 char-
acters long.

Specify a value from 0 to 998 in the buffer length field of the item descriptor.

out_item_list

OpenVMS usage: itmlst_3
type: longword
access: write only
mechanism: by reference

Item list specifying the information you want the routine to return. The out_item_list argument
is the address of a list of item descriptors, each of which describes an item of information. The list of
item descriptors is terminated by longword value of 0.

Output Item Codes

None.

Description

If you do not specify a To: line, the Mail utility supplies a To: line composed of user names on the To:
address list. If you do not specify a CC: line, the Mail utility supplies a CC: line composed of user
names on the CC: address list. In either of the above cases, commas separate the user names.

To add a message's From: field, you must have the SYSPRV privilege, and the Mail DECnet object
must have the SYSPRV privilege on OUTGOING CONNECT (users can set the DECnet object privi-
leges at their discretion).

579

Chapter 16. Mail Utility Routines

Condition Values Returned
SS$_NORMAL

Normal successful completion.

MAIL$_INVITMCOD

The specified item code is invalid.

MAIL$_INVITMLEN

The specified item length is invalid.

MAIL$_MISREQITEM

The required item is missing.

SS$_ACCVIO

Access violation.

MAIL$SEND_ADD_BODYPART
Build Message Body — Builds the body of a message.

Format
MAIL$SEND_ADD_BODYPART context ,in_item_list ,out_item_list

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. All utility routines return a condition value in R0. Condition values that
can be returned by this routine are listed under Condition Values Returned.

Arguments
context

OpenVMS usage: context
type: longword (unsigned)
access: modify
mechanism: by reference

Send context information to be passed to send routines. The context argument is the address of a
longword that contains send context information returned by MAIL$SEND_BEGIN.

580

Chapter 16. Mail Utility Routines

in_item_list

OpenVMS usage: itmlst_3
type: longword (unsigned)
access: read only
mechanism: by reference

Item list specifying options for the routine. The in_item_list argument is the address of a list of
item descriptors, each of which specifies an option and provides the information needed to perform
the operation.

The item list is terminated by longword value of 0.

See MAIL$SEND_BEGIN for a description of an input item descriptor.

Input Item Codes

[MAIL$_SEND_DEFAULT_NAME"]

MAIL$_SEND_DEFAULT_NAME specifies the default file specification of a text file to be opened.
The buffer address field of the item descriptor points to a buffer that contains a character string
0 to 255 characters long.

Specify a value from 0 to 255 in the buffer length field of the item descriptor.

[MAIL$_SEND_FID"]

MAIL$_SEND_FID specifies the file identifier of the text file to be opened. The buffer address
field of the item descriptor points to a buffer that contains the file identifier. To identify a file using
a file identifier, you must also specify the device identifier for the file. Specify the device identifier
using the MAIL$_SEND_DEFAULT_NAME item code. More information about using a file ID for
specifying files can be found in OpenVMS Record Management Services Reference Manual. Note that
the MAIL$_SEND_FID item code and the MAIL$_SEND_FILENAME item code are mutually ex-
clusive.

[MAIL$_SEND_FILENAME"]

MAIL$_SEND_FILENAME specifies the input file specification of the text file to be opened.
The buffer address field of the item descriptor points to a buffer that receives a character
string 0 to 255 characters long. Note that the MAIL$_SEND_FILENAME item code and the MAIL
$_SEND_FID item code are mutually exclusive.

Specify a value from 0 to 255 in the buffer length field of the item descriptor.

[MAIL$_SEND_RECORD"]

MAIL$_SEND_RECORD specifies a descriptor of a text record to be added to the body of the mes-
sage. The buffer address field of the item descriptor points to a buffer that receives a character
string 0 to 998 characters long.

Specify a value from 0 to 998 in the buffer length field of the item descriptor.

When creating a message, do not specify MAIL$_SEND_RECORD in the same call (or series of
calls) to MAIL$SEND_ADD_BODYPART with the following item codes:

581

Chapter 16. Mail Utility Routines

• MAIL$_SEND_FID

• MAIL$_SEND_FILENAME

Note

Do not use the MAIL$_SEND_RECORD item code with the MAIL$SEND_ADD_BODYPART rou-
tine called from a detached process. The routine creates a temporary file in SYS$SCRATCH that is in-
accessible to the detached process.

out_item_list

OpenVMS usage: itmlst_3
type: longword
access: write only
mechanism: by reference

Item list specifying the information you want the routine to return. The out_item_list argument
is the address of a list of item descriptors, each of which describes an item of information. The list of
item descriptors is terminated by longword value of 0.

Output Item Code

[MAIL$_SEND_RESULTSPEC"]

When you specify MAIL$_SEND_RESULTSPEC, MAIL$SEND_ADD_BODYPART returns the re-
sultant file specification identified with MAIL$_SEND_FILENAME. The buffer address field
of the item descriptor points to a buffer that receives a character string 0 to 255 characters long.

Specify a value from 0 to 255 in the buffer length field of the item descriptor.

Description
You can use MAIL$SEND_ADD_BODYPART to specify a file that contains the entire message or
to add a single record to a message. If the message is contained in a file, you call MAIL$SEND_AD-
D_BODYPART once, specifying the file name. If you want to add to the message record-by-record,
you can call MAIL$SEND_ADD_BODYPART repeatedly, specifying a different record each time
until you complete the message.

You cannot specify both a file name and a record for the same message. You can specify either MAIL
$_SEND_FILENAME or MAIL$_SEND_FID once, or you can specify MAIL$_SEND_RECORD
one or more times.

Condition Values Returned
SS$_NORMAL

Normal successful completion.

MAIL$_CONITMCOD

The specified item codes define conflicting operations.

582

Chapter 16. Mail Utility Routines

MAIL$_INVITMCOD

The specified item code is invalid.

MAIL$_INVITMLEN

The specified item length is invalid.

MAIL$_MISREQITEM

The required item is missing.

MAIL$_OPENIN

The required file is missing.

SS$_ACCVIO

Access violation.

MAIL$SEND_BEGIN
Start Sending Message — Initiates processing to send a message to the users on the address list. You
must call MAIL$SEND_BEGIN before you call any other send routine.

Format
MAIL$SEND_BEGIN context ,in_item_list ,out_item_list

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. All utility routines return a condition value in R0. Condition values that
can be returned by this routine are listed under Condition Values Returned.

Arguments

context

OpenVMS usage: context
type: longword (unsigned)
access: modify
mechanism: by reference

Send context information to be passed to other send routines. The context argument is the address
of a longword that contains send context information.

583

Chapter 16. Mail Utility Routines

You should specify the value of this argument as 0 in the first of a sequence of calls to send routines.
In subsequent calls, you should specify the send context value returned by this routine.

in_item_list

OpenVMS usage: itmlst_3
type: longword (unsigned)
access: read only
mechanism: by reference

Item list specifying options for the routine. The in_item_list argument is the address of a list of
item descriptors, each of which specifies an option and provides the information needed to perform
the operation.

The item list is terminated by longword value of 0.

Input Item Codes

[MAIL$_SEND_PERS_NAME MAIL$_SEND_NO_PERS_NAME"]

Note that you must specify only one of these item codes. An error is generated if you specify both
item codes. MAIL$_SEND_PERS_NAME specifies the personal name text to be used in the message
header. The buffer address field of the item descriptor points to a buffer that contains a charac-
ter string 0 to 127 characters long.

Specify a value from 0 to 127 in the buffer length field of the item descriptor.

The Boolean item code MAIL$_SEND_NO_PERS_NAME specifies that no personal name string be
used during message construction.

Specify the value 0 in the buffer length and buffer address fields of the item descriptor.

[MAIL$_SEND_SIGFILE MAIL$_SEND_NO_SIGFILE"]

Note that you must specify only one of these item codes. An error is generated if you specify both
item codes. MAIL$_SEND_SIGFILE specifies the full OpenVMS file specification of the signature
file to be used in the message. The default file specification used for a signature file is the user mail
directory specification and .SIG as the file type. The buffer address field of the item descriptor points
to a buffer that contains a character string 0 to 255 characters long.

Specify a value from 0 to 255 in the buffer length field of the item descriptor.

The Boolean item code MAIL$_SEND_NO_SIGFILE specifies that no signature file be used during
message construction.

Specify the value 0 in the buffer length and buffer address fields of the item descriptor.

out_item_list

OpenVMS usage: itmlst_3
type: longword
access: write only

584

Chapter 16. Mail Utility Routines

mechanism: by reference

Item list specifying the information you want the routine to return. The out_item_list argument
is the address of a list of item descriptors, each of which describes an item of information. The list of
item descriptors is terminated by longword value of 0.

Output Item Codes

[MAIL$_SEND_COPY_FORWARD"]

When you specify the Boolean item code MAIL$_SEND_COPY_FORWARD, MAIL
$SEND_BEGIN returns the value of the caller's copy forward flag as a longword value.

[MAIL$_SEND_COPY_SEND"]

When you specify the Boolean item code MAIL$_SEND_COPY_SEND, MAIL$SEND_BEGIN re-
turns the value of the caller's copy send flag as a longword value.

[MAIL$_SEND_COPY_REPLY"]

When you specify the Boolean item code MAIL$_SEND_COPY_REPLY, MAIL$SEND_BEGIN re-
turns the value of the caller's copy reply flag as a longword value.

[MAIL$_SEND_USER"]

When you specify MAIL$_SEND_USER, MAIL$SEND_BEGIN returns the process owner's user
name. The buffer address field of the item descriptor points to a buffer that receives a character
string 0 to 255 characters long.

Specify a value from 0 to 255 in the buffer length field of the item descriptor.

Description
MAIL$SEND_BEGIN creates and initializes a send context for subsequent calls to send routines.

Condition Values Returned
SS$_NORMAL

Normal successful completion.

MAIL$_CODERR

Internal system error.

MAIL$_CONITMCOD

The specified item codes perform conflicting operations.

MAIL$_ILLPERNAME

The specified personal name string is illegal.

MAIL$_INVITMCOD

The specified item code is invalid.

585

Chapter 16. Mail Utility Routines

MAIL$_INVITMLEN

The specified item length is invalid.

MAIL$_MISREQITEM

The required item is missing.

SS$_ACCVIO

Access violation.

Any condition values returned by $GETJPIW, LIB$FREE_VM, and LIB$GET_VM.

MAIL$SEND_END
End Sending Message — Terminates send processing.

Format
MAIL$SEND_END context ,in_item_list ,out_item_list

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. All utility routines return a condition value in R0. Condition values that
can be returned by this routine are listed under Condition Values Returned.

Arguments

context

OpenVMS usage: context
type: longword (unsigned)
access: modify
mechanism: by reference

Send context information to be passed to send routines. The context argument is the address of a
longword that contains send context information returned by MAIL$SEND_BEGIN.

If send processing is successfully terminated, the value of the context argument is changed to 0.

in_item_list

OpenVMS usage: itmlst_3
type: longword (unsigned)

586

Chapter 16. Mail Utility Routines

access: read only
mechanism: by reference

Item list specifying options for the routine. This routine does not use the in_item_list argument.

out_item_list

OpenVMS usage: itmlst_3
type: longword
access: write only
mechanism: by reference

Item list specifying the information you want the routine to return. This routine does not use the
out_item_list argument.

Description
The MAIL$SEND_END routine deallocates the send context as well as any dynamic memory allocat-
ed by previous send routine calls.

Condition Values Returned
SS$_NORMAL

Normal successful completion

MAIL$_INVITMCOD

The specified item code is invalid.

MAIL$_INVITMLEN

The specified item length is invalid.

MAIL$_MISREQITEM

The required item is missing.

SS$_ACCVIO

Access violation.

Any condition value returned by LIB$FREE_VM.

MAIL$SEND_MESSAGE
MAIL$SEND_MESSAGE — Begins the actual sending of the message after the message has been
constructed.

Format
MAIL$SEND_MESSAGE context ,in_item_list ,out_item_list

587

Chapter 16. Mail Utility Routines

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. All utility routines return a condition value in R0. Condition values that
can be returned by this routine are listed under Condition Values Returned.

Arguments
context

OpenVMS usage: context
type: longword (unsigned)
access: modify
mechanism: by reference

Send context information to be passed to send routines. The context argument is the address of a
longword that contains send context information returned by MAIL$SEND_BEGIN.

in_item_list

OpenVMS usage: itmlst_3
type: longword (unsigned)
access: read only
mechanism: by reference

Item list specifying options for the routine. The in_item_list argument is the address of a list of
item descriptors, each of which specifies an option and provides the information needed to perform
the operation.

The item list is terminated by longword value of 0.

Input Item Codes

[MAIL$_SEND_ERROR_ENTRY"]

MAIL$_SEND_ERROR_ENTRY specifies the longword address of an entry point to process errors
during a send operation. The descriptor of the recipient that failed, the address of the signal array, and
the user-specified data are passed as input to the routine. Refer to the VSI OpenVMS Programming
Concepts Manual for more information about the signal array and its use by condition-handling rou-
tines.

[MAIL$_SEND_RECIP_FOLDER"]

MAIL$_SEND_RECIP_FOLDER specifies the descriptor of a recipients folder name. If you do not
specify the MAIL$_SEND_RECIP_FOLDER item code, the mail will be sent to the default NEW-
MAIL folder. A valid folder name can be 1 to 39 characters in length.

[MAIL$_SEND_SUCCESS_ENTRY"]

588

Chapter 16. Mail Utility Routines

MAIL$_SEND_SUCCESS_ENTRY specifies the longword address of an entry point to process suc-
cesses during a send operation. The descriptor of the recipient that succeeded, the address of the signal
array, and the user-specified data are passed as input to the routine. Refer to the VSI OpenVMS Pro-
gramming Concepts Manual for more information about the signal array and its use by condition-han-
dling routines.

[MAIL$_SEND_USER_DATA"]

MAIL$_SEND_USER_DATA specifies a longword that MAIL$SEND_MESSAGE passes to the
SEND action routines.

out_item_list

OpenVMS usage: itmlst_3
type: longword
access: write only
mechanism: by reference

Item list specifying the information you want the routine to return. The out_item_list argument
is the address of a list of item descriptors, each of which describes an item of information. The list of
item descriptors is terminated by longword value of 0.

Output Item Codes

None.

Description
The MAIL$SEND_MESSAGE routine sends a message built with the MAIL$SEND_ADD_BODY-
PART routine to every user on the address list. If you have not used MAIL$SEND_ADD_BODY-
PART to construct a message, MAIL$SEND_MESSAGE sends only a message header.

If MAIL$SEND_MESSAGE encounters errors sending to an addressee, it calls the routine spec-
ified by MAIL$_SEND_ERROR_ENTRY. Otherwise, it calls the routine specified by MAIL
$_SEND_SUCCESS_ENTRY.

If either routine is not specified, MAIL$SEND_MESSAGE calls no other routines.

If you specify the MAIL$_SEND_RECIP_FOLDER item code, the mail is placed in the specified
folder. Otherwise, the mail is sent to the default NEWMAIL folder.

Condition Values Returned
MAIL$_INVITMCOD

The specified item code is invalid.

MAIL$_INVITMLEN

The specified item length is invalid.

MAIL$_MISREQITEM

The required item is missing.

589

Chapter 16. Mail Utility Routines

SS$_ACCVIO

Access violation.

Any condition value returned by $CONNECT.

MAIL$USER_BEGIN
Access the User Profile Database — Initiates access to the Mail common user database. You must call
MAIL$USER_BEGIN before you call any other user routines.

Format
MAIL$USER_BEGIN context ,in_item_list ,out_item_list

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. All utility routines return a condition value in R0. Condition values that
can be returned by this routine are listed under Condition Values Returned.

Arguments
context

OpenVMS usage: context
type: longword (unsigned)
access: modify
mechanism: by reference

User context information to be passed to other user routines. The context argument is the address
of a longword that contains user context information.

You should specify the value of this argument as 0 in the first of a sequence of calls to MAIL routines.
In following calls, you should specify the user context value returned by the previous routine.

in_item_list

OpenVMS usage: itmlst_3
type: longword (unsigned)
access: read only
mechanism: by reference

Item list specifying options for the routine. This routine does not use the in_item_list argument.

out_item_list

590

Chapter 16. Mail Utility Routines

OpenVMS usage: itmlst_3
type: longword
access: write only
mechanism: by reference

Item list specifying the information you want the routine to return. The out_item_list argument
is the address of a list of item descriptors, each of which describes an item of information. The list of
item descriptors is terminated by longword value of 0.

Output Item Codes

[MAIL$_USER_AUTO_PURGE"]

When you specify the Boolean item code MAIL$_USER_AUTO_PURGE, MAIL$USER_BEGIN re-
turns the value of the automatic purge mail flag as a longword value.

[MAIL$_USER_CAPTIVE"]

When you specify the Boolean item code MAIL$_USER_CAPTIVE, MAIL$USER_BEGIN returns
the value of the UAF CAPTIVE flag as a longword value.

[MAIL$_USER_CC_PROMPT"]

When you specify the Boolean item code MAIL$_USER_CC_PROMPT, MAIL$USER_BEGIN re-
turns the value of the cc prompt flag as a longword value.

[MAIL$_USER_COPY_FORWARD"]

When you specify the Boolean item code MAIL$_USER_COPY_FORWARD, MAIL
$USER_BEGIN returns the value of the copy self forward flag as a longword value.

[MAIL$_USER_COPY_REPLY"]

When you specify the Boolean item code MAIL$_USER_COPY_REPLY, MAIL$USER_BEGIN re-
turns the value of the copy self reply flag as a longword value.

[MAIL$_USER_COPY_SEND"]

When you specify the Boolean item code MAIL$_USER_COPY_SEND, MAIL$USER_BEGIN re-
turns the value of the copy self send flag as a longword value.

[MAIL$_USER_FORWARDING"]

When you specify MAIL$_USER_FORWARDING, MAIL$USER_BEGIN returns the forwarding
address string. The buffer address field of the item descriptor points to a buffer that receives a
character string 0 to 255 characters long.

Specify a value from 0 to 255 in the buffer length field of the item descriptor.

[MAIL$_USER_FORM"]

When you specify MAIL$_USER_FORM, MAIL$USER_BEGIN returns the default print form
string. The buffer address field of the item descriptor points to a buffer that receives a character
string 0 to 255 characters long.

591

Chapter 16. Mail Utility Routines

Specify a value from 0 to 255 in the buffer length field of the item descriptor.

[MAIL$_USER_FULL_DIRECTORY"]

When you specify MAIL$_USER_FULL_DIRECTORY, MAIL$USER_BEGIN returns complete di-
rectory path of the MAIL subdirectory. The buffer address field of the item descriptor points to
a buffer that receives a character string 0 to 255 characters long.

Specify a value from 0 to 255 in the buffer length field of the item descriptor.

[MAIL$_USER_NEW_MESSAGES"]

When you specify MAIL$_USER_NEW_MESSAGES, MAIL$USER_BEGIN returns the new mes-
sage count. The buffer address field of the item descriptor points to a word that receives the
new message count.

[MAIL$_USER_PERSONAL_NAME"]

When you specify MAIL$_USER_PERSONAL_NAME, MAIL$USER_BEGIN returns the person-
al name string. The buffer address field of the item descriptor points to a buffer that receives a
character string 0 to 127 characters long.

Specify a value from 0 to 127 in the buffer length field of the item descriptor.

[MAIL$_USER_QUEUE"]

When you specify MAIL$_USER_QUEUE, MAIL$USER_BEGIN returns the default print queue
name. The buffer address field of the item descriptor points to a buffer that receives a character
string 0 to 255 characters long.

Specify a value from 0 to 255 in the buffer length field of the item descriptor.

[MAIL$_USER_RETURN_USERNAME"]

When you specify MAIL$_USER_RETURN_USERNAME, MAIL$USER_BEGIN returns the user
name string. The buffer address field of the item descriptor points to a buffer that receives a
character string 0 to 255 characters long.

Specify a value from 0 to 255 in the buffer length field of the item descriptor.

[MAIL$_USER_SIGFILE"]

When you specify MAIL$_USER_SIGFILE, MAIL$USER_BEGIN returns the default signature file
specification. The buffer address field of the item descriptor points to a buffer that receives a
character string 0 to 255 characters long.

Specify a value from 0 to 255 in the buffer length field of the item descriptor.

[MAIL$_USER_SUB_DIRECTORY"]

When you specify MAIL$_USER_SUB_DIRECTORY, MAIL$USER_BEGIN returns the subdirec-
tory specification. The buffer address field of the item descriptor points to a buffer that receives
a character string 0 to 255 characters long.

Specify a value from 0 to 255 in the buffer length field of the item descriptor.

592

Chapter 16. Mail Utility Routines

Description
MAIL$USER_BEGIN creates and initializes a user database context for subsequent calls to other user
routines.

Condition Values Returned
SS$_NORMAL

Normal successful completion.

MAIL$_INVITMCOD

The specified item code is invalid.

MAIL$_INVITMLEN

The specified item length is invalid.

MAIL$_MISREQITEM

The required item is missing.

SS$_ACCVIO

Access violation.

MAIL$USER_DELETE_INFO
Delete Database Record — Removes a record from the user profile database.

Format
MAIL$USER_DELETE_INFO context ,in_item_list ,out_item_list

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. All utility routines return a condition value in R0. Condition values that
can be returned by this routine are listed under Condition Values Returned.

Arguments
context

OpenVMS usage: context
type: longword (unsigned)

593

Chapter 16. Mail Utility Routines

access: modify
mechanism: by reference

User context information to be passed to send routines. The context argument is the address of a
longword that contains user context information returned by MAIL$USER_BEGIN.

in_item_list

OpenVMS usage: itmlst_3
type: longword (unsigned)
access: read only
mechanism: by reference

Item list specifying options for the routine. The in_item_list argument is the address of a list of
item descriptors, each of which specifies an option and provides the information needed to perform
the operation.

The item list must include at least one device item descriptor. The item list is terminated by longword
value of 0.

Input Item Codes

[MAIL$_USER_USERNAME"]

MAIL$_USER_USERNAME specifies the record to be deleted from the user profile database. The
buffer address field of the item descriptor points to a buffer that contains the user name string
encoded in a character string 0 to 31 characters long.

Specify a value from 0 to 31 in the buffer length field of the item descriptor.

Setting bit 4 of DCL_CTLFLAGS, enables the user name string encoded in a character string 0 to 255
characters long.

Note

Once this bit is set, user name length is set to a maximum of 255 characters long. Even if this bit is
cleared, the behavior remains unchanged, that is, supports user name length of 255 characters long,
but there is no way to reset it to 31 characters long.

The item code MAIL$_USER_USERNAME is required.

out_item_list

OpenVMS usage: itmlst_3
type: longword
access: write only
mechanism: by reference

Item list specifying the information you want the routine to return. The out_item_list argument
is the address of a list of item descriptors, each of which describes an item of information. The list of
item descriptors is terminated by longword value of 0.

594

Chapter 16. Mail Utility Routines

Output Item Codes

None.

Description
To delete a record from the user profile database, you must have SYSPRV privilege.

Condition Values Returned
SS$_NORMAL

Normal successful completion.

MAIL$_INVITMCOD

The specified item code is invalid.

MAIL$_INVITMLEN

The specified item length is invalid.

MAIL$_MISREQITEM

The required item is missing.

MAIL$_NOSUCHUSR

The specified user name is not valid.

MAIL$_NOSYSPRV

The operation requires the SYSPRV privilege.

SS$_ACCVIO

Access violation.

MAIL$USER_END
End Access to the User Profile Database — Terminates access to the user profile database.

Format
MAIL$USER_END context ,in_item_list ,out_item_list

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

595

Chapter 16. Mail Utility Routines

Longword condition value. All utility routines return a condition value in R0. Condition values that
can be returned by this routine are listed under Condition Values Returned.

Arguments
context

OpenVMS usage: context
type: longword (unsigned)
access: modify
mechanism: by reference

User context information to be passed to user routines. The context argument is the address of a
longword that contains user context information.

If the Mail utility terminates access to the user profile database successfully, the value of the argument
context is changed to 0.

in_item_list

OpenVMS usage: itmlst_3
type: longword (unsigned)
access: read only
mechanism: by reference

Item list specifying options for the routine. This routine does not use the in_item_list argument.

out_item_list

OpenVMS usage: itmlst_3
type: longword
access: write only
mechanism: by reference

Item list specifying the information you want the routine to return. This routine does not use the
out_item_list argument.

Description
The MAIL$USER_END routine deallocates the user database context created by MAIL
$USER_BEGIN as well as all dynamic memory allocated by previous user routines.

Condition Values Returned
SS$_NORMAL

Normal successful completion.

MAIL$_INVITMCOD

The specified item code is invalid.

596

Chapter 16. Mail Utility Routines

MAIL$_INVITMLEN

The specified item length is invalid.

MAIL$_MISREQITEM

The required item is missing.

SS$_ACCVIO

Access violation.

Any condition value returned by LIB$FREE_VM.

MAIL$USER_GET_INFO
Get User Profile Information — Obtains information about a user from the user profile database.

Format
MAIL$USER_GET_INFO context ,in_item_list ,out_item_list

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. All utility routines return a condition value in R0. Condition values that
can be returned by this routine are listed under Condition Values Returned.

Arguments
context

OpenVMS usage: context
type: longword (unsigned)
access: modify
mechanism: by reference

User context information to be passed to user routines. The context argument is the address of a
longword that contains user context information returned by MAIL$USER_BEGIN.

in_item_list

OpenVMS usage: itmlst_3
type: longword (unsigned)
access: read only
mechanism: by reference

597

Chapter 16. Mail Utility Routines

Item list specifying options for the routine. The in_item_list argument is the address of a list of
item descriptors, each of which specifies an option and provides the information needed to perform
the operation.

The item list must include at least one device item descriptor. The item list is terminated by longword
value of 0.

Input Item Codes

[MAIL$_USER_FIRST"]

The Boolean item code MAIL$_USER_FIRST specifies that MAIL$USER_GET_INFO return infor-
mation in the user profile about the first entry in the user profile database.

Specify the value 0 in the buffer length and buffer address fields of the item descriptor.

Do not specify MAIL$_USER_FIRST, MAIL$_USER_NEXT or MAIL$_USER_USERNAME in
the same call to MAIL$USER_GET_INFO.

[MAIL$_USER_NEXT"]

The Boolean item code MAIL$_USER_NEXT specifies that MAIL$USER_GET_INFO return infor-
mation in the user profile about the next user.

Specify the value 0 in the buffer length and buffer address fields of the item descriptor.

Do not specify MAIL$_USER_FIRST, MAIL$_USER_NEXT or MAIL$_USER_USERNAME in
the same call to MAIL$USER_GET_INFO.

[MAIL$_USER_USERNAME"]

The item code MAIL$_USER_USERNAME points to the username string.

Specify the address of the username string in the buffer address field and specify the length of
the username string in the buffer length field of the item descriptor.

Do not specify MAIL$_USER_FIRST, MAIL$_USER_NEXT and MAIL$_USER_USERNAME in
the same call to MAIL$USER_GET_INFO.

out_item_list

OpenVMS usage: itmlst_3
type: longword
access: write only
mechanism: by reference

Item list specifying the information you want the routine to return. The out_item_list argument
is the address of a list of item descriptors, each of which describes an item of information. The list of
item descriptors is terminated by longword value of 0.

Output Item Codes

[MAIL$_USER_AUTO_PURGE"]

When you specify the Boolean item code MAIL$_USER_AUTO_PURGE, MAIL$USER_GET_IN-
FO returns the value of the automatic purge mail flag as a longword value.

598

Chapter 16. Mail Utility Routines

[MAIL$_USER_CC_PROMPT"]

When you specify the Boolean item code MAIL$_USER_CC_PROMPT, MAIL$USER_GET_INFO
returns the value of the cc prompt flag as a longword value.

[MAIL$_USER_COPY_FORWARD"]

When you specify the Boolean item code MAIL$_USER_COPY_FORWARD, MAIL
$USER_GET_INFO returns the value of the copy self forward mail flag as a longword value.

[MAIL$_USER_COPY_REPLY"]

When you specify the Boolean item code MAIL$_USER_COPY_REPLY, MAIL$USER_GET_IN-
FO returns the value of the copy self reply mail flag as a longword value.

[MAIL$_USER_COPY_SEND"]

When you specify the Boolean item code MAIL$_USER_COPY_SEND, MAIL$USER_GET_INFO
returns the value of the copy self send mail flag as a longword value.

[MAIL$_USER_EDITOR"]

When you specify MAIL$_USER_EDITOR, MAIL$USER_GET_INFO returns the name of the de-
fault editor. The buffer address field of the item descriptor points to a buffer that receives a
character string 0 to 255 characters long.

Specify a value from 0 to 255 in the buffer length field of the item descriptor.

[MAIL$_USER_FORWARDING"]

When you specify MAIL$_USER_FORWARDING, MAIL$USER_GET_INFO returns the forward-
ing address. The buffer address field of the item descriptor points to a buffer that receives a
character string 0 to 255 characters long.

Specify a value from 0 to 255 in the buffer length field of the item descriptor.

[MAIL$_USER_FORM"]

When you specify MAIL$_USER_FORM, MAIL$USER_GET_INFO returns the default print form
string. The buffer address field of the item descriptor points to a buffer that receives a character
string 0 to 255 characters long.

Specify a value from 0 to 255 in the buffer length field of the item descriptor.

[MAIL$_USER_FULL_DIRECTORY"]

When you specify MAIL$_USER_FULL_DIRECTORY, MAIL$USER_GET_INFO returns the com-
plete directory path of the MAIL subdirectory string. The buffer address field of the item de-
scriptor points to a buffer that receives a character string 0 to 255 characters long.

Specify a value from 0 to 255 in the buffer length field of the item descriptor.

[MAIL$_USER_NEW_MESSAGES"]

When you specify MAIL$_USER_NEW_MESSAGES, MAIL$USER_GET_INFO returns the new
messages count. The buffer address field of the item descriptor points to a word that receives
the new message count as a word value.

599

Chapter 16. Mail Utility Routines

[MAIL$_USER_PERSONAL_NAME"]

When you specify MAIL$_USER_PERSONAL_NAME, MAIL$USER_GET_INFO returns the per-
sonal name string. The buffer address field of the item descriptor points to a buffer that receives
a character string 0 to 127 characters long.

Specify a value from 0 to 127 in the buffer length field of the item descriptor.

[MAIL$_USER_QUEUE"]

When you specify MAIL$_USER_QUEUE, MAIL$USER_GET_INFO returns the default print
queue name string. The buffer address field of the item descriptor points to a buffer that re-
ceives a character string 0 to 255 characters long.

Specify a value from 0 to 255 in the buffer length field of the item descriptor.

[MAIL$_USER_RETURN_USERNAME"]

When you specify MAIL$_USER_RETURN_USERNAME, MAIL$USER_GET_INFO returns the
user name. The buffer address field of the item descriptor points to a buffer that receives a
character string 0 to 255 characters long.

Specify a value from 0 to 255 in the buffer length field of the item descriptor.

[MAIL$_USER_SIGFILE"]

When you specify MAIL$_USER_SIGFILE, MAIL$USER_GET_INFO returns the default signature
file specification. The buffer address field of the item descriptor points to a buffer that receives
a character string 0 to 255 characters long.

Specify a value from 0 to 255 in the buffer length field of the item descriptor.

[MAIL$_USER_SUB_DIRECTORY"]

When you specify MAIL$_USER_SUB_DIRECTORY, MAIL$USER_GET_INFO returns the MAIL
subdirectory specification string. The buffer address field of the item descriptor points to a
buffer that receives a character string 0 to 255 characters long.

Specify a value from 0 to 255 in the buffer length field of the item descriptor.

Description
The MAIL$USER_GET_INFO routine returns information about specified entries in the user profile
database. If you do not specify a user name, MAIL$USER_GET_INFO returns information about the
user name associated with the calling process. To obtain information about a user name other than that
associated with the calling process, you need the SYSNAM privilege.

Condition Values Returned
SS$_NORMAL

Normal successful completion.

MAIL$_CONITMCOD

The specified item codes perform conflicting operations.

600

Chapter 16. Mail Utility Routines

MAIL$_INVITMCOD

The specified item code is invalid.

MAIL$_INVITMLEN

The specified item length is invalid.

MAIL$_MISREQITEM

The required item is missing.

MAIL$_NOSUCHUSR

The specified user name is invalid.

MAIL$_NOSYSPRV

The specified operation requires the SYSPRV privilege.

SS$_ACCVIO

Access violation.

MAIL$USER_SET_INFO
Add User Profile Information — Adds or modifies a specified user record in the user profile database.

Format
MAIL$USER_SET_INFO context ,in_item_list ,out_item_list

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. All utility routines return a condition value in R0. Condition values that
can be returned by this routine are listed under Condition Values Returned.

Arguments
context

OpenVMS usage: context
type: longword (unsigned)
access: modify
mechanism: by reference

User context information to be passed to user routines. The context argument is the address of a
longword that contains user context information returned by MAIL$USER_BEGIN.

601

Chapter 16. Mail Utility Routines

in_item_list

OpenVMS usage: itmlst_3
type: longword (unsigned)
access: read only
mechanism: by reference

Item list specifying options for the routine. The in_item_list argument is the address of a list of
item descriptors, each of which specifies an option and provides the information needed to perform
the operation.

The item list must include at least one device item descriptor. The item list is terminated by longword
value of 0.

Input Item Codes

[MAIL$_USER_CREATE_IF"]

The Boolean item code MAIL$_USER_CREATE_IF specifies that MAIL$USER_SET_INFO should
create the record for the specified user if it does not already exist.

Specify the value 0 in the buffer length and buffer address fields of the item descriptor.

[MAIL$_USER_SET_AUTO_PURGE"]

The Boolean item codes MAIL$_USER_SET_AUTO_PURGE and MAIL$_USER_SET_NO_AU-
TO_PURGE set and clear the auto purge flag for the specified user.

Specify the value 0 in the buffer length and buffer address fields of the item descriptor.

[MAIL$_USER_SET_CC_PROMPT"]

The Boolean item codes MAIL$_USER_SET_CC_PROMPT and MAIL$_USER_SET_NO_C-
C_PROMPT set and clear the cc prompt flag for the specified user.

Specify the value 0 in the buffer length and buffer address fields of the item descriptor.

[MAIL$_USER_SET_COPY_FORWARD"]

The Boolean item codes MAIL$_USER_SET_COPY_FORWARD and MAIL
$_USER_SET_NO_COPY_FORWARD set and clear the copy self forward flag for the specified
user.

Specify the value 0 in the buffer length and buffer address fields of the item descriptor.

[MAIL$_USER_SET_COPY_REPLY"]

The Boolean item codes MAIL$_USER_SET_COPY_REPLY and MAIL
$_USER_SET_NO_COPY_REPLY set and clear the copy self reply flag for the specified user.

Specify the value 0 in the buffer length and buffer address fields of the item descriptor.

[MAIL$_USER_SET_COPY_SEND"]

The Boolean item codes MAIL$_USER_SET_COPY_SEND and MAIL
$_USER_SET_NO_COPY_SEND set and clear the copy self send flag for the specified user.

602

Chapter 16. Mail Utility Routines

Specify the value 0 in the buffer length and buffer address fields of the item descriptor.

[MAIL$_USER_SET_EDITOR"]

MAIL$_USER_SET_EDITOR specifies the name of a default editor to be used by the specified user.
The buffer address field of the item descriptor points to a buffer that contains a character string
0 to 255 characters long.

Specify a value from 0 to 255 in the buffer length field of the item descriptor.

The Boolean item code MAIL$_USER_SET_NO_EDITOR clears the default editor field for the spec-
ified user.

Specify the value 0 in the buffer length and buffer address fields of the item descriptor.

[MAIL$_USER_SET_FORM"]

MAIL$_USER_SET_FORM specifies the default print form string for the specified user. The
buffer address field of the item descriptor points to a buffer that contains a character string 0 to
255 characters long.

Specify a value from 0 to 255 in the buffer length field of the item descriptor.

The Boolean item code MAIL$_USER_SET_NO_FORM clears the default print form field for the
specified user.

Specify the value 0 in the buffer length and buffer address fields of the item descriptor.

[MAIL$_USER_SET_FORWARDING"]

MAIL$_USER_SET_FORWARDING specifies a forwarding address string for the specified user.
The buffer address field of the item descriptor points to a buffer that contains a character string
0 to 255 characters long.

Specify a value from 0 to 255 in the buffer length field of the item descriptor.

The Boolean item code MAIL$_USER_SET_NO_FORWARDING clears the forwarding address
field for the specified user.

Specify the value 0 in the buffer length and buffer address fields of the item descriptor.

[MAIL$_USER_SET_NEW_MESSAGES"]

MAIL$_USER_SET_NEW_MESSAGES specifies the new message count for the specified user. The
buffer address field of the item descriptor points to a word that contains the new number of
new messages.

[MAIL$_USER_SET_PERSONAL_NAME"]

MAIL$_USER_SET_PERSONAL_NAME specifies a personal name string for the specified user.
The buffer address field of the item descriptor points to a buffer that contains a character string
0 to 127 characters long.

Specify a value from 0 to 127 in the buffer length field of the item descriptor.

The Boolean item code MAIL$_USER_SET_NO_PERSONAL_NAME clears the personal field for
the specified user.

603

Chapter 16. Mail Utility Routines

Specify the value 0 in the buffer length and buffer address fields of the item descriptor.

[MAIL$_USER_SET_QUEUE"]

MAIL$_USER_SET_QUEUE specifies a default print queue name string for the specified user. The
buffer address field of the item descriptor points to a buffer that contains a character string 0 to
255 characters long.

Specify a value from 0 to 255 in the buffer length field of the item descriptor.

The Boolean item code MAIL$_USER_SET_NO_QUEUE clears the default print queue field for the
specified user.

Specify the value 0 in the buffer length and buffer address fields of the item descriptor.

[MAIL$_USER_SET_SIGFILE"]

MAIL$_USER_SET_SIGFILE specifies a signature file specification for the specified user. The
buffer address field of the item descriptor points to a buffer that contains a character string 0 to
255 characters long.

Specify a value from 0 to 255 in the buffer length field of the item descriptor.

The Boolean item code MAIL$_USER_SET_NO_SIGFILE clears the signature file field for the spec-
ified user.

Specify the value 0 in the buffer length and buffer address fields of the item descriptor.

[MAIL$_USER_SET_SUB_DIRECTORY"]

MAIL$_USER_SET_SUB_DIRECTORY specifies a MAIL subdirectory. The buffer address
field of the item descriptor points to a buffer that contains a character string 0 to 255 characters long.

Specify a value from 0 to 255 in the buffer length field of the item descriptor.

The Boolean item code MAIL$_USER_SET_NO_SUB_DIRECTORY disables the use of a MAIL
subdirectory for the specified user.

Specify the value 0 in the buffer length and buffer address fields of the item descriptor.

[MAIL$_USER_USERNAME"]

MAIL$_USER_USERNAME specifies the record to be modified in the user profile database and
points to the user name string. The buffer address field of the item descriptor points to a buffer
that contains a character string 0 to 31 characters long.

Specify a value from 0 to 31 in the buffer length field of the item descriptor.

Setting bit 4 of DCL_CTLFLAGS, enables the user name string encoded in a character string 0 to 255
characters long.

Note

Once this bit is set, user name length is set to a maximum of 255 characters long. Even if this bit is
cleared, the behavior remains unchanged, that is, supports user name length of 255 characters long,
but there is no way to reset it to 31 characters long.

604

Chapter 16. Mail Utility Routines

out_item_list

OpenVMS usage: itmlst_3
type: longword
access: write only
mechanism: by reference

Item list specifying the information you want the routine to return. The out_item_list argument
is the address of a list of item descriptors, each of which describes an item of information. The list of
item descriptors is terminated by longword value of 0.

Output Item Codes

None.

Description
The MAIL$USER_SET_INFO routine modifies specified records in the user profile database. If you
do not specify a user name, the routine modifies the user record associated with the calling process.

To modify any user record other than that associated with the calling process, you must have SYSPRV
privilege. However, if you want to add or modify only the forwarding address of another user, SYS-
NAM privilege is sufficient.

Condition Values Returned
SS$_NORMAL

Normal successful completion.

MAIL$_CONITMCOD

The specified item codes perform conflicting operations.

MAIL$_ILLCHAR

Unacceptable character in personal name. Utility returns three formatted ASCII output (FAO) ar-
guments including the illegal character, the length of the string, and the string address.

MAIL$_ILLPERNAM

Personal name formatted improperly. Returns an FAO argument containing the improperly for-
matted personal name.

MAIL$_ILLSUBDIR

Illegal subdirectory specification. Returns an FAO argument containing the subdirectory string.

MAIL$_INVITMCOD

The specified item code is invalid.

MAIL$_INVITMLEN

The specified item length is invalid.

605

Chapter 16. Mail Utility Routines

MAIL$_MISREQITEM

The required item is missing.

MAIL$_NAMTOOBIG

Specified name exceeds 255-character limit.

MAIL$_NOTSUBDIR

No such subdirectory. Returns an FAO argument containing the subdirectory string.

MAIL$_NOSUCHUSR

No such user. Returns the name of the unfound user.

MAIL$_NOSYSNAM

Caller needs SYSNAM privileges.

MAIL$_NOSYSPRV

Caller needs system privileges.

SS$_ACCVIO

Access violation.

606

Chapter 17. National Character Set
(NCS) Utility Routines
This chapter describes the National character set (NCS) utility routines. The NCS utility provides a
common facility for defining and accessing collating sequences and conversion functions. Collating
sequences are used to compare strings for sorting purposes. Conversion functions are used to derive
an altered form of an input string based on an appropriate conversion algorithm.

17.1. Introduction to NCS Routines
Using NCS, you can formulate collating sequences and conversion functions and register them in an
NCS library. The NCS routines provide a programming interface to NCS that lets you access the col-
lating sequences and conversion functions from an NCS library for doing string comparisons.

Typically, NCS collating sequences are selective subsets of the multinational character set. They are
used extensively in programming applications involving various national character sets. For example,
a program might use the Spanish collating sequence to assign appropriate collating weight to charac-
ters from the Spanish national character set. Another program might use the French collating sequence
to assign appropriate collating weight to characters in the French national character set.

In addition to providing program access to collating sequences and conversion functions in an NCS li-
brary, the NCS routines provide a means for saving definitions in a local file for subsequent use by the
comparison and conversion routines.

17.1.1. List of NCS Routines
 Table 17.1 lists the individual NCS routines.

Table 17.1. NCS Routines

Routine Description
NCS$COMPARE Compares two strings using a specified collating

sequence as comparison basis.
NCS$CONVERT Converts a string using the specified conversion

function.
NCS$END_CF Terminates the use of a conversion function by

the calling program.
NCS$END_CS Terminates the use of a collating sequence by the

calling program.
NCS$GET_CF Retrieves the definition of the named conversion

function from the NCS library.
NCS$GET_CS Retrieves the definition of the named collating se-

quence from the NCS library.
NCS$RESTORE_CF Permits the calling program to restore the defini-

tion of a “saved” conversion function from a data-
base or an OpenVMS RMS file.

607

Chapter 17. National Character Set (NCS) Utility Routines

Routine Description
NCS$RESTORE_CS Permits the calling program to restore the defini-

tion of a “saved” collating sequence from a data-
base or an RMS file.

NCS$SAVE_CF Provides the calling program with information
that permits the application to store the definition
of a conversion function in a local database or an
RMS file.

NCS$SAVE_CS Provides the calling program with information
that permits the application to store the definition
of a collating sequence in a local database or an
RMS file.

17.1.2. Sample Application Process
In a typical application, the program does the following:

1. Prepares a string for comparison.

2. Makes a call to the NCS$GET routine, specifying the appropriate collating sequence.

3. Makes one or more calls to the NCS$COMPARE routine, which does the actual comparison.

4. Terminates the comparison with a call to the NCS$END routine.

The program can also include the use of conversion functions in preparation for the comparison rou-
tines.

17.2. Using the NCS Utility Routines: Exam-
ples
This section includes two examples of how to use NCS utility routines in program applications:

Example 17.1 illustrates the use of NCS utility routines in a VSI Fortran for OpenVMS program.

Example 17.1. Using NCS Routines in a VSI Fortran for OpenVMS Program

 PROGRAM NCS_EXAMPLE

 CHARACTER*80 CSSTRING,STRING1,STRING2
 INTEGER*4 CSLENGTH,LENGTH1,LENGTH2,CSID,STATUS,RESULT
 INTEGER*4 NCSGET_CS,NCSCOMPARE,NCS$END_CS

 CHARACTER*1 CMP(3)

 CMP(1) = '<'
 CMP(2) = '='
 CMP(3) = '>'
C
C Read the name of the collating sequence..
C
 WRITE (6,30)

608

Chapter 17. National Character Set (NCS) Utility Routines

 READ (5,15,END=999) CSLENGTH,CSSTRING
30 FORMAT(' Collating Sequence: ')
C
C Get the collating sequence from the NCS library
C
 CSID = 0
 STATUS = NCS$GET_CS (CSID, CSSTRING(1:CSLENGTH))
 IF ((STATUS .AND. 1) .NE. 1) THEN
 CALL LIB$SIGNAL (%VAL(STATUS))
 ENDIF
C
C Read two strings to be compared according to the collating
 sequence
C
100 WRITE (6,10)
 READ (5,15,END=999) LENGTH1,STRING1
 WRITE (6,20)
 READ (5,15,END=999) LENGTH2,STRING2

 IF (LENGTH1 .EQ. 0 .AND. LENGTH2 .EQ. 0) THEN
 GOTO 200
 ENDIF

10 FORMAT(' String1: ')
20 FORMAT(' String2: ')
15 FORMAT (q,a80)
C
C Compare the strings
C
 result = ncs$compare (csid, string1(1:length1),
 string2(1:length2))
C
C Display the results of the comparison
C
 WRITE (6,40) STRING1(1:LENGTH1), CMP(RESULT+2), STRING2(1:LENGTH2)
40 FORMAT(' ',A,' ',A,' ',A)
 GOTO 100
C
C Come here if both inputs are blank -- we are done.
C Call NCS$END_CS to free any storage used to hold the CS.
C
200 STATUS = NCS$END_CS (CSID)
 IF ((STATUS .AND. 1) .NE. 1) THEN
 CALL LIB$SIGNAL (%VAL(STATUS))
 ENDIF
 CALL EXIT

999 CONTINUE
 END

Example 17.2 illustrates the use of NCS routines in a VSI C for OpenVMS VAX program.

Note

Each programming language provides an appropriate mechanism for defining symbols, status codes,
completion codes, and other relevant information.

609

Chapter 17. National Character Set (NCS) Utility Routines

Example 17.2. Using NCS Routines in a VSI C for OpenVMS VAX Program

/*
**
 ==
**
** NCS_EXAMPLE.C
**
** NCS conversion function example using the VAX C programming language
**
**
 ==
*/

/*
**
 --
** Header files
*/
include "sys$library:descrip.h" /* Descriptor macros */
include "sys$library:rms.h" /* RMS structure definitions */
include "sys$library:rmsdef.h" /* RMS completion codes */
include "sys$share:ssdef.h" /* System service completion */
 /* codes */
include "sys$library:stdio.h" /* Standard I/O definitions */
/*
**
 --
** Data definitions
*/
#define SIZE 1024 /* Maximum record size */

unsigned long int
 cfid, /* Address of conversion */
 /* function */
 expected_status, /* Expected return status */
 rms_status, /* RMS return status */
 status; /* Function return status */

unsigned short int
 return_length; /* Length of returned string in */
 /* bytes */

char
 file[NAM$C_MAXRSS], /* File name */
 inrec[SIZE], /* Input record */
 outrec[SIZE]; /* Output record */

$DESCRIPTOR(cfname_d,"EDT_VT2xx"); /* Conversion function name */
 /* descriptor */
$DESCRIPTOR(prompt_d,"_File: "); /* Prompt string descriptor */
$DESCRIPTOR(file_d,file); /* File name descriptor */
$DESCRIPTOR(inrec_d,inrec); /* Input record descriptor */
$DESCRIPTOR(outrec_d,outrec); /* Output record descriptor */

struct FAB infab; /* Input file access block */
struct RAB inrab; /* Input record access block */
/*

610

Chapter 17. National Character Set (NCS) Utility Routines

**
 --
** Function prototypes
*/
void status_check();
/*
**
 ==
*/
main ()
{
 /*
 **
 --
 ** Initialize RMS user structures for the file.
 */
 infab = cc$rms_fab; /* Initialize to default FAB */
 /* values */

 infab.fab$l_fna = file; /* Now supply our specific */
 /* values */
 infab.fab$b_fns = NAM$C_MAXRSS;

 inrab = cc$rms_rab; /* Initialize to default RAB */
 /* values */

 inrab.rab$l_fab = &infab; /* Now supply our specific */
 /* values */
 inrab.rab$l_ubf = inrec;
 inrab.rab$w_usz = SIZE;
 /*
 **
 --
 ** Get the EDT_VT2xx conversion function from the default NCS library
 */
 cfid = 0; /* Initialize ID */
 status = ncs$get_cf(&cfid,&cfname_d,0);
 status_check(status,SS$_NORMAL);
 /*
 **
 --
 ** Get the file to be converted and set the length of the returned
 file
 ** name
 */
 status = lib$get_input(&file_d,&prompt_d,&return_length);
 status_check(status,SS$_NORMAL);
 file_d.dsc$w_length = return_length;
 /*
 **
 --
 ** Open the input file to be converted and connect to the RAB
 */
 rms_status = sys$open(&infab,0,0);
 status_check(rms_status,RMS$_NORMAL);

 rms_status = sys$connect(&inrab,0,0);
 status_check(rms_status,RMS$_NORMAL);

611

Chapter 17. National Character Set (NCS) Utility Routines

 /*
 **
 --
 ** Read each record from the file, convert the input string to EDT
 ** fallback, and write the result to the output
 */
 while(TRUE)
 {
 /*
 ** --
 ** Read each record
 */
 rms_status = sys$get(&inrab,0,0);
 if (rms_status == RMS$_EOF) /* Reached end of file */
 break;
 else
 status_check(rms_status,RMS$_NORMAL); /* Read a record */
 /*
 ** --
 ** Call NCS$CONVERT to convert the input string to EDT fallback
 **
 ** e.g. Convert form feed to <FF>, escape to <ESC>, et cetera
 */
 inrec_d.dsc$w_length = inrab.rab$w_rsz;
 status = ncs$convert(&cfid,&inrec_d,&outrec_d,&return_length);
 status_check(status,SS$_NORMAL);
 outrec_d.dsc$w_length = return_length;
 /*
 ** --
 ** Write the result to the output, SYS$OUTPUT in this case
 */
 status = lib$put_output(&outrec_d);
 status_check(status,SS$_NORMAL);
 outrec_d.dsc$w_length = SIZE;
 }
 /*
 **
 --
 ** Close the input file.
 */
 rms_status = sys$close(&infab,0,0);
 status_check(rms_status,RMS$_NORMAL);
 /*
 **
 --
 ** Free any storage used to hold the conversion function.
 */
 status = ncs$end_cf(&cfid);
 status_check(status,SS$_NORMAL);

}

void status_check(status,expected_status)
/*
**
 ==
**

612

Chapter 17. National Character Set (NCS) Utility Routines

** Checks the function return status against the one expected, and exits
 upon
** error. Otherwise, return to the main program.
**
**
 ==
*/

{
 if (status != expected_status)
 sys$exit(status);
 else
 return;
}

17.3. NCS Routines
This section describes the NCS routines.

Note that several routines contain the heading Condition Value Signaled to indicate that the condition
value originates in another utility.

NCS$COMPARE
Compare Strings — The NCS$COMPARE routine compares two strings using a specified collating
sequence as a comparison basis.

Format
NCS$COMPARE cs_id ,string_1 ,string_2

Returns

OpenVMS usage: integer
type: longword integer (signed)
access: write only
mechanism: by value

Longword condition value. Most routines return a condition value in R0, but the NCS$COMPARE
routine uses R0 to return the result of the comparison, as shown in the following table:

Returned Value Comparison Result
- string_1 is less than string_2
0 string_1 is equal to string_2
1 string_1 is greater than string_2

The NCS$COMPARE routine uses the Signaling Mechanism to indicate completion status as de-
scribed under Condition Value Signaled.

Arguments
cs_id

613

Chapter 17. National Character Set (NCS) Utility Routines

OpenVMS usage: identifier
type: longword integer (unsigned)
access: read only
mechanism: by reference

Address of a longword that NCS uses to identify a collating sequence. The cs_id argument is re-
quired and can be obtained by a call to the NCS$GET_CS routine.

All calls to the NCS$COMPARE routine and the call to the NCS$END_CS routine that terminates the
comparison must pass this longword identifier. Upon completion, the NCS$END_CS routine releases
the memory used to store the collating sequence and sets the value of the longword identifier to 0.

string_1

OpenVMS usage: char_string
type: character string
access: read only
mechanism: by descriptor

Descriptor (length and address) of the first string.

string_2

OpenVMS usage: char_string
type: character string
access: read only
mechanism: by descriptor

Descriptor of the second string.

Description
The NCS$COMPARE routine compares two strings using the specified collating sequence as the
comparison basis. The routine indicates whether the value of the first string is greater than, less than,
or equal to the value of the second string.

Condition Value Signaled
STR$_ILLSTRCLA

Illegal string class. Severe error. The descriptor of string_1 or string_2, or both, contains a
class code not supported by the OpenVMS Calling Standard.

NCS$CONVERT
Convert String — The NCS$CONVERT routine converts a string using the specified conversion
function.

Format
NCS$CONVERT cf_id ,source ,dest [,ret_length] [,not_cvt]

614

Chapter 17. National Character Set (NCS) Utility Routines

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. Most utility routines return a condition value in R0. Condition values that
this routine can return are listed under Condition Values Returned.

Arguments
cf_id

OpenVMS usage: identifier
type: longword integer (unsigned)
access: read only
mechanism: byreference

Address of a longword that NCS uses to identify a conversion function. The cf_id argument is re-
quired and can be obtained by a call to the NCS$GET_CF routine.

All calls to the NCS$CONVERT routine and the call to the NCS$END_CF routine that terminates the
conversion must pass this longword identifier. Upon completion, the NCS$END_CF routine releases
the memory used to store the conversion function and sets the value of the longword identifier to 0.

source

OpenVMS usage: char_string
type: character string
access: read only
mechanism: by descriptor

Descriptor of source string.

dest

OpenVMS usage: char_string
type: character string
access: write only
mechanism: by descriptor

Descriptor of destination string.

ret_length

OpenVMS usage: word unsigned
type: word (unsigned)
access: write only

615

Chapter 17. National Character Set (NCS) Utility Routines

mechanism: by reference

Length of converted string.

not_cvt

OpenVMS usage: word unsigned
type: word (unsigned)
access: write only
mechanism: by reference

Number of characters in the source string that were not fully converted.

Description
Using the specified conversion function, the NCS$CONVERT routine converts the source string and
stores the result in the specified destination. Optionally, the calling program can request that the rou-
tine return the length of the converted string as well as the number of characters that were not fully
converted.

Condition Values Returned
SS$_NORMAL

Normal successful completion.

NCS$_NOT_CF

Name of identifier does not refer to a conversion function.

STR$_TRU

Successful completion. However, the resultant string was truncated because the storage allocation
for the destination string was inadequate.

Condition Values Signaled
LBR messages (prefaced by an NCS message) might signal errors detected while the process is ac-
cessing the NCS library.

Any value signaled by STR$COPY_DX or STR$ANALYZE_SDESC.

NCS$END_CF
End Conversion Function — The NCS$END_CF routine terminates a conversion function.

Format
NCS$END_CF cf_id

Returns

OpenVMS usage: cond_value

616

Chapter 17. National Character Set (NCS) Utility Routines

type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. Most utility routines return a condition value in R0. Condition values that
this routine can return are listed under Condition Values Returned.

Argument
cf_id

OpenVMS usage: identifier
type: longword integer (unsigned)
access: modify
mechanism: by reference

Address of a longword that NCS uses to store a nonzero value identifying a conversion function.

The cf_id argument is required.

Description
The NCS$END_CF routine indicates to NCS that the calling program no longer needs the conversion
function. NCS releases the memory space allocated for the conversion function and sets the value of
the longword identifier to 0.

Condition Values Returned
NCS$_NORMAL

Normal successful completion. The longword identifier value is set to 0.

NCS$_NOT_CF

Name of identifier does not refer to a conversion function.

NCS$END_CS
End Collating Sequence — The NCS$END_CS routine terminates a collating sequence.

Format
NCS$END_CS cs_id

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

617

Chapter 17. National Character Set (NCS) Utility Routines

Longword condition value. Most utility routines return a condition value in R0. Condition values that
this routine can return are listed under Condition Values Returned.

Argument
cs_id

OpenVMS usage: identifier
type: longword integer (unsigned)
access: modify
mechanism: by reference

Address of a longword that NCS uses to store a nonzero value identifying a collating sequence.

The cs_id argument is required.

Description
The NCS$END_CS routine indicates to NCS that the calling program no longer needs the collating
sequence. NCS releases the memory space allocated for the collating sequence and sets the value of
the longword identifier to 0.

Condition Values Returned
NCS$_NORMAL

Normal successful completion. The longword identifier value is set to 0.

NCS$_NOT_CS

Name of identifier does not refer to a collating sequence.

NCS$GET_CF
Get Conversion Function — The NCS$GET_CF routine retrieves the definition of the named conver-
sion function from the NCS library.

Format
NCS$GET_CF cf_id [,cfname] [,librar]

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. Most utility routines return a condition value in R0. Condition values that
this routine can return are listed under Condition Values Returned.

618

Chapter 17. National Character Set (NCS) Utility Routines

Arguments
cf_id

OpenVMS usage: identifier
type: longword integer (unsigned)
access: modify
mechanism: by reference

Address of a longword used by NCS to identify a conversion function. The calling program must
ensure that the longword contains 0 before invoking the NCS$GET_CF routine because the routine
stores a nonzero value in the longword. The nonzero value identifies the conversion function. All sub-
sequent calls to the NCS$CONVERT routine and the call to the NCS$END_CF routine to terminate
the conversion function pass the longword identifier. When it completes the conversion, the NCS
$END_CF routine releases the memory used to store the conversion function and sets the value of the
longword identifier to 0.

The conversion function identifier enhances modular programming and permits concurrent use of
multiple conversion functions within a program.

The calling program should not attempt to interpret the contents of the longword identifier.

The cf_id argument is required.

cfname

OpenVMS usage: char_string
type: character string
access: read only
mechanism: by descriptor

Name of the conversion function being retrieved.

librar

OpenVMS usage: char_string
type: character string
access: read only
mechanism: by descriptor

Name of the library where the conversion function is stored.

Description
The NCS$GET_CF routine extracts the named conversion function from the specified NCS library.

If the calling program omits the cfname argument, an “identity” conversion function padded with
NUL characters (hex 0) is provided. The identity conversion function effectively leaves each charac-
ter unchanged by converting each character to itself. For example, A becomes A, B becomes B, C be-
comes C, and so forth.

619

Chapter 17. National Character Set (NCS) Utility Routines

If the calling program omits the librar argument, NCS accesses the default NCS library.

Condition Values Returned
NCS$_DIAG

Operation completed with signaled diagnostics.

NCS$_NOT_CF

Name of identifier does not refer to a conversion function.

NCS$_NOT_FOUND

Name of identifier not found in the NCS library.

Condition Values Signaled
LBR messages (prefaced by an NCS message) might signal errors detected while the process is ac-
cessing the NCS library.

NCS$GET_CS
Get Collating Sequence — The NCS$GET_CS routine retrieves the definition of the named collating
sequence from the NCS library.

Format
NCS$GET_CS cs_id [,csname] [,librar]

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. Most utility routines return a condition value in R0. Condition values that
this routine can return are listed under Condition Values Returned.

Arguments
cs_id

OpenVMS usage: identifier
type: longword integer (unsigned)
access: modify
mechanism: by reference

Address of a longword that NCS uses to store a nonzero value identifying a collating sequence.
The calling program must ensure that the longword identifier contains 0 before invoking the NCS
$GET_CS routine.

620

Chapter 17. National Character Set (NCS) Utility Routines

All subsequent calls to the NCS$COMPARE routine and the call to the NCS$END_CS routine that
terminates the use of the collating sequence must pass this longword identifier. Upon completion of
the comparisons, the NCS$END_CS routine releases the memory used to store the collating sequence
and sets the value of the longword identifier to 0.

The collating sequence identifier enhances modular programming and permits concurrent use of mul-
tiple collating sequences within a program.

The calling program should not attempt to interpret the contents of the longword identifier.

The cs_id argument is required.

csname

OpenVMS usage: char_string
type: character string
access: read only
mechanism: by descriptor

Name of the collating sequence being retrieved.

librar

OpenVMS usage: char_string
type: character string
access: read only
mechanism: by descriptor

File specification of the library where the collating sequence is stored.

Description
The NCS$GET_CS routine extracts the named collating sequence from the specified NCS library. If
the calling program omits the csname argument, NCS creates a collating sequence that uses the “na-
tive” collating sequence as a basis for the comparisons. This collating sequence is padded with NUL
characters (hex 0).

If the calling program omits the librar argument, NCS accesses the default NCS library.

Condition Values Returned
NCS$_DIAG

Operation completed with signaled diagnostics.

NCS$_NOT_CS

Name of identifier does not refer to a collating sequence.

NCS$_NOT_FOUND

Name of identifier not found in the NCS library.

621

Chapter 17. National Character Set (NCS) Utility Routines

Condition Values Signaled
LBR messages (prefaced by an NCS message) might signal errors detected while the process is ac-
cessing the NCS library.

NCS$RESTORE_CF
Restore Conversion Function — The NCS$RESTORE_CF routine permits the calling program to re-
store the definition of a saved conversion function from a database or a file.

Format
NCS$RESTORE_CF cf_id [,length] [,address]

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. Most utility routines return a condition value in R0. The condition value
that this routine can return is listed under Condition Value Returned.

Arguments
cf_id

OpenVMS usage: identifier
type: longword integer (unsigned)
access: write only
mechanism: by reference

Address of a longword that NCS uses to identify a conversion function.

The cf_id argument is required.

length

OpenVMS usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by reference

Longword that the calling program uses to indicate the length of the conversion function being re-
stored.

address

OpenVMS usage: longword_unsigned

622

Chapter 17. National Character Set (NCS) Utility Routines

type: longword (unsigned)
access: read only
mechanism: by reference

Longword that the calling program uses as a pointer to the conversion function being restored.

Description
The NCS$RESTORE_CF routine, used in conjunction with the NCS$SAVE_CF routine, permits the
application program to keep a local copy of the conversion function. The NCS$SAVE_CF routine
obtains the length and location of the conversion function and returns it to the application program.
The application program subsequently provides this information to the NCS$RESTORE_CF routine,
which uses it to access the conversion function.

This routine also does some integrity checking on the conversion function as it is being processed.

Condition Value Returned
NCS$_NOT_CF

Name of identifier does not refer to a conversion function.

Condition Values Signaled
LBR messages (prefaced by an NCS message) might signal errors detected while the process is ac-
cessing the NCS library.

NCS$RESTORE_CS
Restore Collating Sequence — The NCS$RESTORE_CS routine permits the calling program to re-
store the definition of a “saved” collating sequence from a database or a file.

Format
NCS$RESTORE_CS cs_id [,length] [,address]

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. Most utility routines return a condition value in R0. The condition value
that this routine can return is listed under Condition Value Returned.

Arguments
cs_id

OpenVMS usage: identifier

623

Chapter 17. National Character Set (NCS) Utility Routines

type: longword integer (unsigned)
access: write only
mechanism: by reference

Address of a longword that NCS uses to identify a collating sequence.

The cs_id argument is required.

length

OpenVMS usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by reference

Longword that the calling program uses to indicate the length of the collating sequence being restored.

address

OpenVMS usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by reference

Longword that the calling program uses as a pointer to the collating sequence being restored.

Description
The NCS$RESTORE_CS routine, used in conjunction with the NCS$SAVE_CS routine, permits
the application program to keep a local copy of the collating sequence. The NCS$SAVE_CS routine
obtains the length and location of the collating sequence and returns it to the application program.
The application program subsequently provides this information to the NCS$RESTORE_CS routine,
which uses it to access the collating sequence.

This routine also does some integrity checking on the collating sequence as it is being processed.

Condition Value Returned
NCS$_NOT_CS

Name of identifier does not refer to a collating sequence.

Condition Values Signaled
LBR messages (prefaced by an NCS message) might signal errors detected while the process is ac-
cessing the NCS library.

NCS$SAVE_CF
Save Conversion Function — The NCS$SAVE_CF routine provides the calling program with infor-
mation that permits the application to store the definition of a conversion function in a local database
or a file rather than in the NCS library.

624

Chapter 17. National Character Set (NCS) Utility Routines

Format
NCS$SAVE_CF cf_id [,length] [,address]

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. Most utility routines return a condition value in R0. The condition value
that this routine can return is listed under Condition Value Returned.

Arguments
cf_id

OpenVMS usage: identifier
type: longword integer (unsigned)
access: read only
mechanism: by reference

Address of a longword that NCS uses to identify a conversion function.

The cf_id argument is required.

length

OpenVMS usage: longword_unsigned
type: longword (unsigned)
access: write only
mechanism: by reference

Longword used to store the length of the specified conversion function.

address

OpenVMS usage: longword_unsigned
type: longword (unsigned)
access: write only
mechanism: by reference

Longword used to store the address of the specified conversion function.

Description
The NCS$SAVE_CF routine, used in conjunction with the NCS$RESTORE_CF routine, permits the
application program to store a conversion function definition in a local file or in a database. When the

625

Chapter 17. National Character Set (NCS) Utility Routines

calling program specifies the conversion function identifier, NCS returns the location of the definition
and its length in bytes, permitting the calling program to store the definition locally, rather than in an
NCS library. Subsequently, the application supplies this information to the NCS$RESTORE_CF rou-
tine, which restores the conversion function to a form that can be used by the NCS$CONVERT rou-
tine.

This routine also does some integrity checking on the conversion function as it is being processed.

Condition Value Returned
NCS$_NOT_CF

Name of identifier does not refer to a conversion function.

Condition Values Signaled
LBR messages (prefaced by an NCS message) might signal errors detected while the process is ac-
cessing the NCS library.

NCS$SAVE_CS
Save Collating Sequence — The NCS$SAVE_CS routine provides the calling program with informa-
tion that permits the application program to store the definition of a collating sequence in a database
or a file rather than in the NCS library.

Format
NCS$SAVE_CS cs_id [,length] [,address]

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. Most utility routines return a condition value in R0. The condition value
that this routine can return is listed under Condition Value Returned.

Arguments
cs_id

OpenVMS usage: identifier
type: longword integer (unsigned)
access: read only
mechanism: by reference

Address of a longword that NCS uses to identify a collating sequence.

The cs_id argument is required.

626

Chapter 17. National Character Set (NCS) Utility Routines

length

OpenVMS usage: longword_unsigned
type: longword (unsigned)
access: write only
mechanism: by reference

Longword that NCS uses to indicate the length of the specified collating sequence to the calling pro-
gram.

address

OpenVMS usage: longword_unsigned
type: longword (unsigned)
access: write only
mechanism: by reference

Longword that NCS uses to indicate the address of the specified collating sequence to the calling pro-
gram.

Description
The NCS$SAVE_CS routine, used in conjunction with the NCS$RESTORE_CS routine, permits the
application program to store a collating sequence definition in a local file or in a database. When the
calling program specifies the collating sequence identifier, NCS returns the location of the definition
sequence and its length in bytes, permitting the calling program to store the definition locally, rather
than in a library. Subsequently, the application supplies this information to the NCS$RESTORE_CS
routine, which restores the collating sequence to a form that can be used by the NCS$COMPARE rou-
tine.

This routine also does some integrity checking on the collating sequence as it is being processed.

Condition Value Returned
NCS$_NOT_CS

Name of identifier does not refer to a collating sequence.

Condition Values Signaled
LBR messages (prefaced by an NCS message) might signal errors detected while the process is ac-
cessing the NCS library.

627

Chapter 17. National Character Set (NCS) Utility Routines

628

Chapter 18. Print Symbiont
Modification (PSM) Routines
The print symbiont modification (PSM) routines allow you to modify the behavior of the print sym-
biont supplied with the operating system.

18.1. Introduction to PSM Routines
The print symbiont processes data for output to standard line printers and printing terminals by per-
forming the following functions:

• Reading the data from disk

• Formatting the data

• Sending the data to the printing device

• Composing separation pages (flag, burst, and trailer pages) and inserting them into the data stream
for printing

Some of the reasons for modifying the print symbiont include the following:

• To include additional information on the separation pages (flag, burst, and trailer) or to format
them differently

• To filter and modify the data stream sent to the printer

• To change some of the ways that the symbiont controls the printing device

You might not always be able to modify the print symbiont to suit your needs. For example, you can-
not modify the:

• Symbiont's control logic or the sequence in which the symbiont calls routines

• Interface between the symbiont and the job controller

If you cannot modify the print symbiont to suit your needs, you can write your own symbiont. How-
ever, VSI recommends that you modify the print symbiont rather than write your own.

The rest of this chapter contains the following information about PSM routines:

• Section 18.2 contains an overview of the print symbiont and of symbionts in general. It explains
concepts such as “symbiont streams”; describes the relationship between a symbiont, a device dri-
ver, and the job controller; and gives an overview of the print symbiont's internal logic.

This section is recommended for those who want to either modify the print symbiont or write a
new symbiont.

• Section 18.3 details the procedure for modifying the print symbiont. It includes an overview of the
entire procedure, followed by a detailed description of each step.

• Section 18.4 contains an example of a simple modification to the print symbiont.

629

Chapter 18. Print Symbiont Modification (PSM) Routines

• Section 18.5 describes each PSM routine and the interface used by the routines you substitute for
the standard PSM routines.

18.2. Print Symbiont Overview
The operating system supplies two symbionts: a print symbiont, which is an output symbiont, and a
card reader, which is an input symbiont. An output symbiont receives tasks from the job controller,
whereas an input symbiont sends jobs to the job controller. The card reader symbiont cannot be modi-
fied. You can modify the print symbiont, described in this section, using PSM routines.

There are two types of output symbiont: device and server. A device symbiont processes data for out-
put to a device, for example, a printer. A server symbiont also processes data but not necessarily for
output to a device, for example, a symbiont that copies files across a network. The operating system
supplies no server symbionts.

18.2.1. Components of the Print Symbiont
The print symbiont includes the following major components:

• PSM routines that are used to modify the print symbiont

• Routines that implement input, format, and output services in the print symbiont

• Routines that implement the internal logic of the print symbiont

The print symbiont is implemented using the Symbiont Services facility. This facility provides com-
munication and control between the job controller and symbionts through a set of Symbiont/Job Con-
troller Interface routines (SMB routines), which are documented in Chapter 19.

All of these routines are contained in a shareable image with the file specification SYS$SHARE:SM-
BSRVSHR.EXE.

18.2.2. Creation of the Print Symbiont Process
The print symbiont is a device symbiont, receiving tasks from the job controller and processing them
for output to a printing device. In the operating system, the existence of a print symbiont process is
linked to the existence of at least one print execution queue that is started.

The job controller creates the print symbiont process by calling the $CREPRC system service; it does
this whenever either of the following conditions occurs:

• A print execution queue is started (from the stopped state) and no symbiont process is running the
image specified with the START/QUEUE command.

A print execution queue is started by means of the DCL command START/QUEUE. Use the /
PROCESSOR qualifier with the START/QUEUE command to specify the name of the symbiont
image that is to service an execution queue; if you omit /PROCESSOR, then the default symbiont
image is PRTSMB.

• Currently existing symbiont processes suited to a print execution queue cannot accept additional
devices; that is, the symbionts have no more available streams. In such a case, the job controller
creates another print symbiont process. The next section discusses symbiont streams.

The print symbiont process runs as a detached process.

630

Chapter 18. Print Symbiont Modification (PSM) Routines

18.2.3. Symbiont Streams
A stream is a logical link between a print execution queue and a printing device. When the queue is
started (by means of START/QUEUE), the job controller creates a stream linking the queue with a
symbiont process. Because each print execution queue has a single associated printing device (speci-
fied with the /ON= device qualifier in the INITIALIZE/QUEUE or START/QUEUE command), each
stream created by the job controller links a print execution queue, a symbiont process, and the queue's
associated printer.

A symbiont that can support multiple streams simultaneously (that is, multiple print execution queues
and multiple devices) is termed a multithreaded symbiont. The job controller enforces an upper limit
of 16 on the number of streams that any symbiont can service simultaneously.

Therefore, in the operating system environment, only one print symbiont process is needed as long as
the number of print execution queues (and associated printers) does not exceed 16. If there are more
than 16 print execution queues, the job controller creates another print symbiont process.

The print symbiont is, therefore, a multithreaded symbiont that can service as many as 16 queues and
devices, and you can modify it to service any number of queues and devices as long as the number is
less than or equal to 16.

A symbiont stream is “active” when a queue is started on that stream. The print symbiont maintains a
count of active streams. It increments this count each time a queue is started and decrements it when a
queue is stopped with the DCL command STOP/QUEUE/NEXT or STOP/QUEUE/RESET. When the
count falls to zero, the symbiont process exits. The symbiont does not decrement the count when the
queue is paused by STOP/QUEUE.

Figure 18.1 shows the relationship of generic print queues, execution print queues, the job controller,
the print symbiont, printer device drivers, and printers. The lines connecting the boxes denote streams.

Figure 18.1. Multithreaded Symbiont

18.2.4. Symbiont and Job Controller Functions
This section compares the roles of the symbiont and job controller in the execution of print requests.
You issue print requests using the PRINT command.

The job controller uses the information specified on the PRINT command line to determine the fol-
lowing:

631

Chapter 18. Print Symbiont Modification (PSM) Routines

• Which queue to place the job in (/QUEUE, /REMOTE, /LOWERCASE, and /DEVICE)

• How many copies to print (/COPIES and /JOB_COUNT)

• Scheduling constraints for the job (/PRIORITY, /AFTER, /HOLD, /FORM, /CHARAC-
TERISTICS, and /RESTART)

• How and whether to display the status of jobs and queues (/NOTIFY, /OPERATOR, and /IDEN-
TIFY)

The print symbiont, on the other hand, interprets the information supplied with the qualifiers that
specify this information:

• Whether to print file separation pages (/BURST, /FLAG, and /TRAILER)

• Information to include when printing the separation pages (/NAME and /NOTE)

• Which pages to print (/PAGES)

• How to format the print job (/FEED, /SPACE, and /PASSALL)

• How to set up the job (/SETUP)

The print symbiont, not the job controller, performs all necessary device-related functions. It com-
municates with the printing device driver. For example, when a print execution queue is started (by
means of START/QUEUE/ON= device) and the stream is established between the queue and the sym-
biont, the symbiont parses the device name specified by the /ON qualifier in the START/QUEUE
command, allocates the device, assigns a channel to it, obtains the device characteristics, and deter-
mines the device class. In versions of the operating system prior to Version 4.0, the job controller per-
formed these functions.

The print symbiont's output routine returns an error to the job controller if the device class is neither
printer nor terminal.

18.2.5. Print Symbiont Internal Logic
The job controller deals with units of work called jobs, while the print symbiont deals with units of
work called tasks. A print job can consist of several print tasks. Thus, in the processing of a print job,
the job controller's role is to divide a print job into one or more print tasks, which the symbiont can
process. The symbiont reports the completion of each task to the job controller, but the symbiont con-
tains no logic to determine that the print job as a whole is complete.

In the processing of a print task, the symbiont performs three basic functions: input, format, and out-
put. The symbiont performs these functions by calling routines to perform each function.

The following steps describe the action taken by the symbiont in processing a task:

1. The symbiont receives the print request from the job controller and stores it in a message buffer.

2. The symbiont searches its list of input routines and selects the first input routine that is applicable
to the print task.

3. The input routine returns a data record to the symbiont's input buffer or in a buffer supplied by the
input routine.

4. Data in the input buffer is moved to the symbiont's output buffer by the formatting routines, which
format it in the process.

632

Chapter 18. Print Symbiont Modification (PSM) Routines

5. Data in the output buffer is sent to the printing device by the output routine.

6. When an input routine completes execution, that is, when it has no more input data to process, the
symbiont selects another applicable input routine. Steps 3, 4, and 5 are repeated until all applicable
input routines have executed.

7. The symbiont informs the job controller that the task is complete.

Figure 18.2 illustrates the steps taken by the symbiont in the processing of a print task.

Figure 18.2. Symbiont Execution Sequence or Flow of Control

As Figure 18.2 shows, most of the input routines execute in a specified sequence. This sequence is de-
fined by the symbiont's main control routine. You cannot modify this main control routine; thus, you
cannot modify the sequence in which symbiont routines are called.

The input routines that do not execute in sequence are called “demand input routines.” These routines
are called whenever the service they provide is required and include the page header, page setup, and
library module input routines.

The symbiont can perform input, formatting, and output functions asynchronously; that is, the order
in which the symbiont calls the input, formatting, and output routines can vary. For example, the sym-
biont can call an input routine, which returns a record to the input buffer; it can then call the format
routine, which moves that record to the output buffer; and then it can call the output routine to move
that data to the printing device. This sequence results in the movement of a single data record from
disk to printing device.

On the other hand, the symbiont can call the input and formatting routines several times before calling
the output routine for a single buffer. The buffer can contain one or more formatted input records. In
some cases an output buffer might contain only a portion of an input record.

In this way the symbiont can store input records; then call the format routine, which moves one of
those records to the output buffer; and finally call the output routine, which moves that data to the
printing device. Note, however, that the formatting routine must be called once for each input record.

Similarly, the symbiont can store several formatted records before calling the output routine to move
them to the printing device.

633

Chapter 18. Print Symbiont Modification (PSM) Routines

The symbiont requires this flexibility in altering the sequence in which input, format, and output rou-
tines are called for reasons of efficiency (high rate of throughput) and adaptability to various system
parameters and system events.

The value specified with the call to PSM$PRINT determines the maximum size of the symbiont's out-
put buffer, which cannot be larger than the value of the system parameter MAXBUF. If the buffer is
very small, the symbiont might need to call its output routine one or more times for each record for-
matted. If the buffer is large, the symbiont stores several formatted records before calling the output
routine to move them to the printing device.

18.3. Symbiont Modification Procedure
To modify the print symbiont, perform the following steps. These steps are described in more detail in
the sections that follow.

1. Determine the modification needed. The modification might involve changing the way the sym-
biont performs a certain function, or it might involve adding a new function.

2. Determine where to make the modification. This involves selecting a function and determining
where that function is performed within the symbiont's execution sequence. You specify a function
by calling the PSM$REPLACE routine and specifying the code that identifies the function.

Some codes correspond to symbiont-supplied routines. When you specify one of these codes, you
replace that routine with your routine. Other codes do not correspond to symbiont-supplied rou-
tines. When you specify one of these codes, you add your routine to the set of routines the sym-
biont executes. Table 18.1 lists these codes.

3. Write the routine. Because the symbiont calls your routine, your routine must have one of three
call interfaces, depending on whether it is an input, format, or output routine. See the descriptions
of the USER-INPUT-ROUTINE, USER-FORMAT-ROUTINE, and USER-OUTPUT-ROUTINE
routines, which follow the descriptions of the PSM routines.

4. Write the symbiont-initialization routine. This routine executes when the symbiont is first activat-
ed by the job controller. It initializes the symbiont's internal database; specifies, by calling PSM
$REPLACE, the routines you have supplied; activates the symbiont by calling PSM$PRINT; and
performs any necessary cleanup operations when PSM$PRINT completes.

5. Construct the modified symbiont. This involves compiling your routines, then linking them.

6. Integrate the modified symbiont with the system. This involves placing the executable image in
SYS$SYSTEM, identifying the symbiont image to the job controller, and debugging the sym-
biont.

As mentioned previously, you identify each routine you write for the symbiont by calling the PSM
$REPLACE routine. The code argument for this routine specifies the point within the symbiont's ex-
ecution sequence at which you want your routine to execute. You should know which code you will
use to identify your routine before you begin to write the routine. Section 18.3.6 provides more infor-
mation about these codes.

18.3.1. Guidelines and Restrictions
The following guidelines and restrictions apply to the writing of any symbiont routine:

• Do not use the process-permanent files identified by the logical names SYS$INPUT, SYS$OUT-
PUT, SYS$ERROR, and SYS$COMMAND.

634

Chapter 18. Print Symbiont Modification (PSM) Routines

• The symbiont code should be linked against SMBSRVSHR.EXE in order to define the following
status codes:

• PSM$_FLUSH

• PSM$_FUNNOTSUP

• PSM$_PENDING

• PSM$_SUSPEND

• PSM$_EOF

• PSM$_BUFFEROVF

• PSM$_NEWPAGE

• PSM$_ESCAPE

• PSM$_INVVMSOSC

• PSM$_MODNOTFND

• PSM$_NOFILEID

• PSM$_OSCTOOLON

• PSM$_TOOMANYLEV

• PSM$_INVITMCOD

• PSM$_LATSYM

• Do not use the system services $HIBER and $WAKE.

• The job completion (PSM$K_JOB_COMPLETION) and output (PSM$K_OUTPUT) routines are
not replaceable when using the LAT protocol option.

• Use the following two OpenVMS Run-Time Library routines for allocation and deallocation of
memory: LIB$GET_VM and LIB$FREE_VM.

• Minimize the amount of time that your routine spends executing at AST level. The job controller
sends messages to the symbiont by means of user-mode ASTs; the symbiont cannot receive these
ASTs while your user routine is executing at AST level.

• The symbiont can call your routines at either AST level or non-AST level.

• If your routine returns any error-condition value (low bit clear), the symbiont aborts the current
task and notifies the job controller. Note that, by default, an error-condition value returned dur-
ing the processing of a task causes the job controller to abort the entire job. However, this default
behavior can be overridden. See the description of the /RETAIN qualifier of the DCL commands
START/QUEUE, INITIALIZE/QUEUE, and SET QUEUE in the VSI OpenVMS DCL Dictionary.

The symbiont stores the first error-condition value (low bit clear) returned during the processing
of a task. The symbiont's file-errors routine, an input routine (code PSM$K_FILE_ERRORS),
places the message text associated with this condition value in the symbiont's input stream. The
symbiont prints this text at the end of the listing, immediately before the trailer pages.

635

Chapter 18. Print Symbiont Modification (PSM) Routines

The symbiont sends this error-condition value to the job controller; the job controller then stores
this condition value with the job record in the job controller's queue file. The job controller also
writes this condition value in the accounting record for the job.

If you choose to return a condition value when an error occurs, you should choose one from the
system message file. This lets system programs access the message text associated with the condi-
tion value. Specifically, the Accounting and SHOW/QUEUE utilities and the job controller will be
able to translate the condition value to its corresponding message text and to display this message
text as appropriate.

This guideline applies to input, input-filter, and output-filter routines, and to the symbiont's use of
dynamic string descriptors in these routines.

The simplest way for an input routine to pass the data record to the symbiont is for it to use a Run-
Time Library string-handling routine (for example, STR$COPY_R). These routines use dynamic
string descriptors to point to the record they have handled and to copy that record from your input
buffer to the symbiont-supplied buffer specified in the funcdesc argument.

By default, the symbiont initializes a dynamic string descriptor that your input routine can use to
describe the data record it returns. Specifically, the symbiont initializes the DSC$B_DTYPE field
of the string descriptor with the value DSC$K_DTYPE_T (which indicates that the data to which
the descriptor points is a string of characters) and initializes the DSC$B_CLASS field with the
value DSC$K_CLASS_D (which indicates that the descriptor is dynamic).

Alternatively, the input routine can pass a data record to the symbiont by providing its own buffer
and passing a static string descriptor that describes the buffer. To do this, you must redefine the
fields of the descriptor to which the funcdesc argument points, as follows:

1. Initialize the field DSC$B_CLASS with the value DSC$K_CLASS_S (which indicates that
the descriptor points to a scalar value or a fixed-length string).

2. Initialize the field DSC$A_POINTER with the address of the buffer that contains the data
record.

3. Initialize the field DSC$W_LENGTH with the length, in bytes, of the data record.

Each time the symbiont calls the routine to read some data, the symbiont reinitializes the descrip-
tor to make it a dynamic descriptor. Consequently, if you want to use the descriptor as a static de-
scriptor, your input routine must initialize the descriptor each time it is called to perform a reading
operation.

Input-filter routines and output-filter routines return a data record to the symbiont by means of the
func_desc_2 argument. The symbiont initializes a descriptor for this argument the same way it
does for descriptors used by the input routine. Thus, the guidelines described for the input routine
apply to the input-filter routine and output-filter routine.

18.3.2. Writing an Input Routine
This section provides an overview of the logic used in the print symbiont's main input routine, and it
discusses the way in which the print symbiont handles carriage-control effectors.

The print symbiont calls your input routine, supplying it with arguments. Your routine must return ar-
guments and condition values to the print symbiont. For this reason, your input routine must use the
interface described in the description of the USER-INPUT-ROUTINE.

636

Chapter 18. Print Symbiont Modification (PSM) Routines

When the print symbiont calls your routine, it specifies a particular request in the func argument.
Each function has a corresponding code.

Your routine must provide the functions identified by the codes PSMK_OPEN, PSMK_READ, and
PSM$K_CLOSE. Your routine need not respond to the other function codes, but it can if you want it
to. If your routine does not provide a function that the symbiont requests, it must return the condition
value PSM$_FUNNOTSUP to the symbiont.

The description of the func argument of the USER-INPUT-ROUTINE describes the codes that the
symbiont can send to an input routine.

See Section 18.3.5 for additional information about other function codes used in the user-written input
routine.

For each task that the symbiont processes, it calls some input routines only once, and some more than
once; it always calls some routines and calls others only when needed.

Table 18.1 lists the codes that you can specify when you call the PSM$REPLACE routine to identi-
fy your input routine to the symbiont. The description of the PSM$REPLACE routine describes these
routines.

18.3.2.1. Internal Logic of the Symbiont's Main Input Routine
The internal logic of the symbiont's main input routine, as described in this section, is subject to
change without notice. This logic is summarized here. This summary is not intended as a tutorial on
the writing of a symbiont's main input routine, although it does provide insight into such a task.

A main input routine is one that the symbiont calls to read data from the file that is to be printed. A
main input routine must perform three sets of tasks: one set when the symbiont calls the routine with
an OPEN request, one set when the symbiont calls with a READ request, and one set when the sym-
biont calls with a CLOSE request.

The following table lists the codes that identify each of these three requests and describes the tasks
that the symbiont's main input routine performs for each request:

Code Action Taken by the Input Routine
An OPEN request. When the main input routine receives this re-
quest code, it does the following:

1. Opens the input file.

2. Stores information about the input file.

3. Returns the type of carriage control used in the input file. If
this routine cannot open the file, it returns an error.

PSM$K_OPEN

Note that the print symbiont's main input routine performs these
tasks when it receives the PSM$K_START_TASK function code,
rather than the PSM$K_OPEN function code.

This atypical behavior occurs because some of the information
stored by the main input routine must be available for other input
routines that execute before the main input routine. For example,
information about file attributes and record formats is needed by
the symbiont's separation-page routines, which print flag and burst
pages.

637

Chapter 18. Print Symbiont Modification (PSM) Routines

Code Action Taken by the Input Routine
Consequently, if you supply your own main input routine, some
of the information about the file being printed that appears on the
standard separation pages is not available, and the symbiont prints
a message on the separation page stating so.

The symbiont receives the file-identification number from the job
controller in the SMBMSG$K_FILE_IDENTIFICATION item
of the requesting message and uses this value rather than the file
specification to open the main input file.

PSM$K_READ A READ request. When the main input routine receives this re-
quest, it returns the next record from the file. In addition, when the
carriage control used by the data file is PSM$K_CC_PRINT, the
main input routine returns the associated record header.

PSM$K_CLOSE A CLOSE request. When the main input routine receives this re-
quest, it closes the input file.

18.3.2.2. Symbiont Processing of Carriage Control
Each input record can be thought of as consisting of three parts: leading carriage control, data, and
trailing carriage control. Taken together, these three parts are called the composite data record.

Leading and trailing carriage control are determined by the type of carriage control used in the file
and explicit carriage-control information returned with each record. For embedded carriage control,
however, leading and trailing carriage control is always null.

The type of carriage control returned by the main input routine on the PSM$K_OPEN request code
determines, for that invocation of the input routine, how the symbiont applies carriage control to each
record that the main input routine returns on the PSM$K_READ request code.

Note that, for all four carriage control types, the first character returned on the first PSM$K_READ
call to an input routine receives special processing. If that character is a line feed or a form feed and if
the symbiont is currently at line 1, column 1 of the current page, then the symbiont discards that line
feed or form feed.

The Four Types of Carriage Control

The following table briefly describes each type of carriage control and how the symbiont's main input
routine processes it. For a detailed explanation of each type of carriage control, refer to the description
of the FAB$B_RAT field of the FAB block in the OpenVMS Record Management Services Reference
Manual.

Type of Carriage Control Symbiont Processing
Embedded Leading and trailing carriage control are embedded in the data por-

tion of the input record. Therefore, the symbiont supplies no spe-
cial carriage control processing; it assumes that leading and trailing
carriage control are null.

Fortran The first byte of each data record contains a Fortran carriage-con-
trol character. This character specifies both the leading and trailing
carriage control for the data record. The symbiont extracts the first
byte of each data record and interprets that byte as a Fortran car-
riage-control character. If the data record is empty, the symbiont

638

Chapter 18. Print Symbiont Modification (PSM) Routines

Type of Carriage Control Symbiont Processing
generates a leading carriage control of line feed and a trailing car-
riage control of carriage return.

PRN Each data record contains a 2-byte header that contains the car-
riage-control specifier. The first byte specifies the carriage control
to apply before printing the data portion of the record. The second
byte specifies the carriage control to apply after printing the data
portion. The abbreviation PRN stands for print-file format.

Unlike other types of carriage control, PRN carriage control infor-
mation is returned through the funcarg argument of the main
input routine; this occurs with the PSM$K_READ request. The
funcarg argument specifies a longword; your routine writes the
2-byte PRN carriage control specifier into the first two bytes of
this longword.

Implied The symbiont provides a leading line feed and a trailing carriage
return. But if the data record consists of a single form feed, the
symbiont sets to null the leading and trailing carriage control for
that record, and the leading carriage control for the record that fol-
lows it.

18.3.3. Writing a Format Routine
To write a format routine, follow the modification procedure described in Section 18.3. Do not replace
the symbiont's main format routine. Instead, modify its action by writing input and output filter rou-
tines. These execute immediately before and after the main format routine, respectively. The main
formatting routine uses an undocumented and nonpublic interface; you cannot replace the main for-
matting routine. The DCL command PRINT/PASSALL bypasses the main format routine of the print
symbiont.

See Section 18.3.5 for additional information about other function codes used in the user-written for-
matting routine.

18.3.3.1. Internal Logic of the Symbiont's Main Format Routine
The main format routine contains all the logic necessary to convert composite data records to a data
stream for output. Actions taken by the format routine include the following:

• Tracking the current column and line

• Implementing the special processing of the first character of the first record

• Implementing the alignment data mask specified by the DCL command START/QUEUE/
ALIGN=MASK

• Handling margins as specified by the forms definition

• Initiating processing of page headers when specified by the DCL command PRINT/HEADER

• Expanding leading and trailing carriage control

• Handling line overflow

• Handling page overflow

639

Chapter 18. Print Symbiont Modification (PSM) Routines

• Expanding tab characters to spaces for some devices

• Handling escape sequences

• Accumulating accounting information

• Implementing double-spacing when specified by the DCL command PRINT/SPACE

• Implementing automatic page ejection when specified by the DCL command PRINT/FEED

The symbiont's main format routine uses a special rule when processing the first character of the
first composite data record returned by an input routine. (A composite data record is the input data
record and a longword that contains carriage-control information for the input data record.) This rule
is that if the first character is a vertical format effector (form feed or line feed) and if the symbiont has
processed no printable characters on the current page (that is, the current position is column 1, line 1),
then that vertical format effector is discarded.

18.3.4. Writing an Output Routine
To write an output routine, follow the modification procedure described in Section 18.3.

The print symbiont calls your output routine. Input arguments are supplied by the print symbiont; out-
put arguments and status values are returned by your routine to the print symbiont. For this reason,
your output routine must have the call interface that is described in the USER-OUTPUT-ROUTINE
routine.

When the print symbiont calls your routine, it specifies in one of the input arguments—the func ar-
gument—the reason for the call. Each reason has a corresponding function code.

There are several function codes that the print symbiont can supply when it calls your output routine.
Your routine must contain the logic to respond to the following function codes: PSM$K_OPEN, PSM
K_WRITE, PSMK_WRITE_NOFORMAT, and PSM$K_CLOSE.

It is not required that your output routine contain the logic to respond to the other function codes, but
you can provide this logic if you want to.

A complete list and description of all relevant function codes for output routines is provided in the de-
scription of the func argument of the USER-OUTPUT-ROUTINE routine.

See Section 18.3.5 for additional information about other function codes.

18.3.4.1. Internal Logic of the Symbiont's Main Output Routine
When the symbiont calls the main output routine with the PSM$K_OPEN function code, the main
output routine takes the following steps:

1. Allocates the print device

2. Assigns a channel to the device

3. Obtains the device characteristics

4. Returns the device-status longword in the funcarg argument (for more information, see the de-
scription of the SMBMSG$K_DEVICE_STATUS message item in Chapter 19)

5. Returns an error if the device is not a terminal or a printer

640

Chapter 18. Print Symbiont Modification (PSM) Routines

When this routine receives a PSM$K_WRITE service request code, it sends the contents of the sym-
biont output buffer to the device for printing.

When this routine receives a PSM$K_WRITE_NOFORMAT service request code, it sends the con-
tents of the symbiont output buffer to the device for printing and suppresses device drive formatting as
appropriate for the device in use.

When this routine receives a PSM$K_CANCEL service request code, it requests the device driver to
cancel any outstanding output operations.

When this routine receives a PSM$K_CLOSE service request code, it deassigns the channel to the de-
vice and deallocates the device.

18.3.5. Other Function Codes
A status PSM$_PENDING might not be returned whenever the symbiont notifies user-written input,
output, and format routines using the following message function codes:

Function Code Description
PSM$K_START_STREAM Job controller sends a message to the symbiont to

start a queue
PSM$K_START_TASK Symbiont parses a message from job controller

directing it to start a queue
PSM$K_PAUSE_TASK Job controller sends a message to the symbiont to

suspend processing of the current task
PSM$K_STOP_STREAM Job controller sends a message to the symbiont to

stop the queue
PSM$K_STOP_TASK Job controller sends a message to the symbiont to

stop the task
PSM$K_RESUME_TASK Job controller sends a message to the symbiont to

resume processing of the current task
PSM$K_RESET_STREAM Same as PSM$K_STOP_STREAM

18.3.6. Writing a Symbiont Initialization Routine
Writing a symbiont initialization routine involves writing a program that calls the following:

1. PSM$REPLACE once for each routine (input, output, or format) that you have written. PSM$RE-
PLACE identifies your routines to the symbiont.

2. PSM$PRINT exactly once after you have identified all your service routines using PSM$RE-
PLACE.

Table 18.1 lists all routine codes that you can specify in the PSM$REPLACE routine. Choosing the
correct routine code is important because the code specifies when the symbiont will call your routine.
The functions of these routines are described further in the description of the PSM$REPLACE rou-
tine.

For those input routines that execute in a predefined sequence, the second column contains a number
showing the order in which that input routine is called relative to the other input routines for a single
file job. If the routine does not execute in a predefined sequence, the second column contains the char-
acter x.

641

Chapter 18. Print Symbiont Modification (PSM) Routines

Column three specifies whether the routine is an input, format, or output routine; this information di-
rects you to the section describing how to write a routine of that type.

Column four specifies whether there is a symbiont-supplied routine corresponding to that routine
code. The codes for the input-filter and output-filter routines, which have no corresponding routines in
the symbiont, allow you to specify new routines for inclusion in the symbiont.

Table 18.1. Routine Codes for Specification to PSM$REPLACE

Routine Code Se-
quence

Function Supplied

PSM$K_JOB_SETUP 1 Input Yes
PSM$K_FORM_SETUP 2 Input Yes
PSM$K_JOB_FLAG 3 Input Yes
PSM$K_JOB_BURST 4 Input Yes
PSM$K_FILE_SETUP 5 Input Yes
PSM$K_FILE_FLAG 6 Input Yes
PSM$K_FILE_BURST 7 Input Yes
PSM$K_FILE_SETUP_2 8 Input Yes
PSM$K_MAIN_INPUT 9 Input Yes
PSM$K_FILE_INFORMATION 10 Input Yes
PSM$K_FILE_ERRORS 11 Input Yes
PSM$K_FILE_TRAILER 12 Input Yes
PSM$K_JOB_RESET 13 Input Yes
PSM$K_JOB_TRAILER 14 Input Yes
PSM$K_JOB_COMPLETION 1 15 Input Yes
PSM$K_PAGE_SETUP x Input Yes
PSM$K_PAGE_HEADER x Input Yes
PSM$K_LIBRARY_INPUT x Input Yes
PSM$K_INPUT_FILTER x Formatting No
PSM$K_MAIN_FORMAT x Formatting Yes
PSM$K_OUTPUT_FILTER x Formatting No
PSM$K_OUTPUT 1 x Output Yes

1The job completion (PSM$K_JOB_COMPLETION) and output (PSM$K_OUTPUT) routines are not replaceable when using the LAT pro-
tocol option.

18.3.7. Integrating a Modified Symbiont
To integrate your user routine and the symbiont initialization routine, perform the following steps;
note that the sequence of steps described here assumes that you will be debugging the modified sym-
biont:

1. Compile or assemble the user routine and the symbiont initialization routine into an object mod-
ule.

2. Enter the following DCL command:

642

Chapter 18. Print Symbiont Modification (PSM) Routines

$ LINK/DEBUG your-symbiont

The file name your-symbiont is the object module built in Step 1. Symbols necessary for this
link operation are located in the shareable images SYS$SHARE:SMBSRVSHR.EXE and SYS
$LIBRARY:IMAGELIB.EXE. The linker automatically searches these shareable images and ex-
tracts the necessary information.

3. Place the resulting executable symbiont image in SYS$SYSTEM.

4. Locate two unallocated terminals: one at which to issue DCL commands and one at which to de-
bug the symbiont image.

5. Log in on one of the terminals under UIC [1,4], which is the system manager's account. This ter-
minal is the one at which you enter DCL commands. Do not log in at the other terminal.

6. Enter the following DCL command:

$ SET TERMINAL/NODISCONNECT/PERMANENT _TTcu:

The variable _TTcu: is the physical terminal name of the terminal at which you want to debug
(the terminal at which you are not logged in). You must specify the underscore (_) and colon (:)
characters.

7. Enter the following DCL commands:

$ DEFINE/GROUP DBG$INPUT _TTcu:
$ DEFINE/GROUP DBG$OUTPUT _TTcu:

The variable _TTcu: specifies the physical terminal name of the terminal at which you will be
debugging. Note that other users having a UIC with group number 1 should not use the debugger
at the same time.

8. Initialize the queue by entering the following DCL command:

$ INITIALIZE/QUEUE/PROCESSOR= your-symbiont /ON= printer_name

The symbiont image specified by the file name your-symbiont must reside in SYS$SYSTEM.
Note too that the /PROCESSOR qualifier accepts only a file name; the device, directory, and file
type default to SYS$SYSTEM:.EXE.

The /ON qualifier specifies the device that will be served by the symbiont while you debug the
symbiont.

9. Enter the following DCL command to execute the modified symbiont routine:

$ PRINT/HEADER/QUEUE=queue-id

Enter the following DCL command to start the queue and invoke the debugger:

$ START/QUEUE queue-name

10. After you debug your symbiont, relink the symbiont by entering the following DCL command:

$ LINK/NOTRACEBACK/NODEBUG your-symbiont

11. Deassign the logical names DBG$INPUT and DBG$OUTPUT so that they will not interfere with
other users in UIC group 1.

643

Chapter 18. Print Symbiont Modification (PSM) Routines

18.4. Using the PSM Routines: An Example
Example 18.1 shows how to use PSM routines to supply a page header routine in a VAX MACRO
program.

Example 18.1. Using PSM Routines to Supply a Page Header Routine in a VAX
MACRO Program

 .TITLE EXAMPLE - Example user modified symbiont
 .IDENT 'V03-000'

;++
; THIS PROGRAM SUPPLIES A USER WRITTEN PAGE HEADER
; ROUTINE TO THE STANDARD SYMBIONT. THE PAGE HEADER
; INCLUDES THE SUBMITTER'S ACCOUNT NAME AND USER NAME,
; THE FULL FILE SPECIFICATION, AND THE PAGE NUMBER.
; THE HEADER LINE IS UNDERLINED BY A ROW OF DASHES
; PRINTED ON A SECOND HEADER LINE.
;--
 .LIBRARY /SYS$LIBRARY:LIB.MLB/
;
; System definitions
;
 $PSMDEF ; Symbiont definitions
 $SMBDEF ; Message item definitions
 $DSCDEF ; Descriptor definitions

;
; Define argument offsets for user supplied services called by symbiont
;
 CONTEXT = 04 ; symbiont context
 WORK_AREA = 08 ; user context
 FUNC = 12 ; function code
 FUNC_DESC = 16 ; function dependent
 descriptor
 FUNC_ARG = 20 ; function dependent
 argument

;
; Macro to create dynamic descriptors
;
 .MACRO D_DESC
 .WORD 0 ; DSC$W_LENGTH = 0
 .BYTE DSC$K_DTYPE_T ; DSC$B_DTYPE = STRING
 .BYTE DSC$K_CLASS_D ; DSC$B_CLASS = DYNAMIC
 .LONG 0 ; DSC$A_POINTER = 0
 .ENDM

;
; Storage for page header information
;
 FILE: D_DESC ; file name descriptor
 USER: D_DESC ; user name descriptor
 ACCOUNT: D_DESC ; account name descriptor

 PAGE: .LONG 0 ; page number
 LINE: .LONG 0 ; line number

644

Chapter 18. Print Symbiont Modification (PSM) Routines

;
; FAO control string and work buffer. Header format:
; "[account,name] filename Page 9999"
;
 FAO_Ctrl: .ASCID /!71<[!AS, !AS] !AS!>Page 9999/
 FAO_Ctrl_2: .ASCID /!4UL/
 FAO_DESC: .LONG 80 ; work buffer descriptor
 .ADDRESS FAO_BUFF
 FAO_BUFF: .BLKB 80 ; work buffer
;
; Own storage for values passed by reference
;
 CODE: .LONG 0 ; service or item code
 STREAMS: .LONG 1 ; number of simultaneous
 streams
 BUFSIZ: .LONG 2048 ; output buffer size
 LINSIZ: .WORD 81 ; line size for underlines

;
; Main routine -- invoked at image startup
;
START: .WORD 0 ; save nothing because this routine uses only R0
 and R1

;
; Supply private page header routine
;
 MOVZBL #PSM$K_PAGE_HEADER,CODE ; set the service code
 PUSHAL HEADER ; address of modified
 routine
 PUSHAL CODE ; address of service code
 CALLS #2,G^PSM$REPLACE ; replace the routine
 BLBC R0,10$; exit if any errors

;
; Transfer control to the standard symbiont
;
 PUSHAL BUFSIZ ; address of output buffer
 size
 PUSHAL STREAMS ; address of number of
 streams
 CALLS #2,G^PSM$PRINT ; invoke standard symbiont
10$: RET

;
; Page header routine
;
HEADER: .WORD 0 ; save nothing

;
; Check function code
;
 CMPL #PSM$K_START_TASK,@FUNC(AP) ; new task?
 BEQL 20$; branch if so

645

Chapter 18. Print Symbiont Modification (PSM) Routines

 CMPL #PSM$K_READ,@FUNC(AP) ; READ function?
 BNEQ 15$
 BRW 50$; branch if so
15$: CMPL #PSM$K_OPEN, @FUNC(AP) ; OPEN function?
 BNEQ 16$
 BRW 66$; branch if so
16$: MOVL #PSM$_FUNNOTSUP,R0 ; unsupported function
 RET ; return to symbiont
;
; Starting a new file
;
20$:
 CLRL PAGE ; reset the page number
 MOVZBL #2,LINE ; and the line number

;
; Get the account name
;
 MOVZBL #SMBMSG$K_ACCOUNT_NAME,CODE ; set item code
 PUSHAL ACCOUNT ; address of descriptor
 PUSHAL CODE ; address of item code
 PUSHAL @CONTEXT(AP) ; address of symbiont ctx
 value
 CALLS #3,G^PSM$READ_ITEM_DX ; read it
 BLBC R0,40$; branch if any errors

;
; Get the file name
;
 MOVZBL #SMBMSG$K_FILE_SPECIFICATION,CODE ; set item code
 PUSHAL FILE ; address of descriptor
 PUSHAL CODE ; address of item code
 PUSHAL @CONTEXT(AP) ; address of symbiont ctx
 value
 CALLS #3,G^PSM$READ_ITEM_DX ; read it
 BLBC R0,40$; branch if any errors

;
; Get the user name
;
 MOVZBL #SMBMSG$K_USER_NAME,CODE ; set item code
 PUSHAL USER ; address of descriptor
 PUSHAL CODE ; address of item code
 PUSHAL @CONTEXT(AP) ; address of symbiont ctx
 value
 CALLS #3,G^PSM$READ_ITEM_DX ; read it
 BLBC R0,40$; branch if any errors

;
; Set up the static header information that is constant for the task
;
 $FAO_S CTRSTR = FAO_Ctrl, - ; FAO control string desc
 OUTBUF = FAO_DESC, - ; output buffer descriptor
 P1 = #ACCOUNT, - ; account name descriptor
 P2 = #USER, - ; user name descriptor
 P3 = #FILE ; file name descriptor
 BLBC R0,40$; branch if any errors
 MOVL #PSM$_FUNNOTSUP,R0 ; unsupported function

646

Chapter 18. Print Symbiont Modification (PSM) Routines

40$: RET ; return usupported status
 or error
;
; Read a page header
;
50$:
 DECL LINE ; decrement the line
 number
 BEQL 60$; branch if second read
 BLSS 70$; branch if third read

;
; Insert the page number into the header
;
 INCL PAGE ; increment the page
 number
 MOVAB FAO_BUFF+76,FAO_DESC+4 ; point to page number
 buffer
 $FAO_S CTRSTR = FAO_Ctrl_2, - ; FAO control string desc
 OUTBUF = FAO_DESC, - ; output buffer descriptor
 P1 = PAGE ; page number
 MOVAB FAO_BUFF,FAO_DESC+4 ; point to work buffer
 BLBC R0,55$; return if error

;
; Copy the line to the symbiont's buffer
;
 PUSHAB FAO_DESC ; work buffer descriptor
 PUSHL FUNC_DESC(AP) ; symbiont descriptor
 CALLS #2,G^STR$COPY_DX ; copy to symbiont buffer
55$: RET ; return success or any
 error

;
; Second line -- underline header
;
60$:
 PUSHL FUNC_DESC(AP) ; symbiont descriptor
 PUSHAL LINSIZ ; number of bytes to
 reserve
 CALLS #2,G^STR$GET1_DX ; reserve the space
 BLBC R0,67$; exit if error
 MOVL FUNC_DESC(AP),R1 ; get address of
 descriptor
 MOVL 4(R1),R1 ; get address of buffer
 MOVAB 80(R1),R0 ; set up transfer limit
65$: MOVB #^A/-/,(R1)+ ; fill with dashes
 CMPL R0,R1 ; reached limit?
 BGTRU 65$; branch if not
 MOVB #10,(R1)+ ; extra line feed
66$: MOVZBL #SS$_NORMAL,R0 ; set success
67$: RET ; return

;
; Done with this page header
;
70$:
 MOVL #PSM$_EOF,R0 ; return end of input

647

Chapter 18. Print Symbiont Modification (PSM) Routines

 MOVZBL #2,LINE ; reset line counter
 RET ; return

 .END START

18.5. PSM Routines
This section describes the individual PSM routines.

PSM$PRINT
Invoke OpenVMS-Supplied Print Symbiont — The PSM$PRINT routine invokes the OpenVMS-sup-
plied print symbiont. PSM$PRINT must be called exactly once after all user service routines have
been specified using PSM$REPLACE.

Format
PSM$PRINT [streams] [,bufsiz] [,worksiz] [,maxqios] [,options]

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. Most utility routines return a condition value in R0. Condition values that
this routine can return are listed under Condition Values Returned.

Arguments
streams

OpenVMS usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by reference

Maximum number of streams that the symbiont is to support. The streams argument is the address
of a longword containing this number, which must be in the range of 1 to 16. If you do not speci-
fy streams, a default value of 1 is used. Thus, by default, a user-modified symbiont supports one
stream, which is to say that it is a single-threaded symbiont.

A stream (or thread) is a logical link between a print execution queue and a printing device. When a
symbiont process can accept simultaneous links to more than one queue, that is, when it can service
multiple queues simultaneously, the symbiont is said to be multithreaded.

bufsiz

648

Chapter 18. Print Symbiont Modification (PSM) Routines

OpenVMS usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by reference

Maximum buffer size in bytes that the print symbiont is to use for output operations. The bufsiz ar-
gument is the address of a longword containing the specified number of bytes.

The print symbiont actually uses a buffer size that is the smaller of: (1) the value specified by buf-
siz or (2) the system parameter MAXBUF. If you do not specify bufsiz, the print symbiont uses
the value of MAXBUF.

The print symbiont uses this size limit only for output operations. Output operations involve the plac-
ing of processed or formatted pages into a buffer that will be passed to the output routine.

The print symbiont uses the value specified by bufsiz only as an upper limit; most buffers that it
writes will be smaller than this value.

worksiz

OpenVMS usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by reference

Size in bytes of a work area to be allocated for the use of user routines. The worksiz argument is the
address of a longword containing this size in bytes. If you do not specify worksiz, no work area is
allocated.

A separate area of the specified size is allocated for each active symbiont stream.

maxqios

OpenVMS usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by reference

Specifies the maximum number of outstanding $QIOs that a print symbiont stream using the LAT
protocol may generate. Set symbiont process quotas large enough to handle the maximum number of
QIOs multiplied by the number of streams, using a number between 2 and 32. For normal printing ca-
pabilities, the suggested quota is 10; for high-speed printing, use a larger number.

options

OpenVMS usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by reference

649

Chapter 18. Print Symbiont Modification (PSM) Routines

Longword bit vector that specifies the LAT protocol option using the PSM$M_LAT_PROTOCOL
symbolic value. Note that using the LAT_PROTOCOL option carries the following restrictions:

• Replacement of the output and job completion routines will be overridden

• Output device must be a LAT device

Description
The PSM$PRINT routine must be called exactly once after all user routines have been specified to the
print symbiont. Each user routine is specified to the symbiont in a call to the PSM$REPLACE routine.

The PSM$PRINT routine allows you to specify whether the print symbiont is to be single-threaded or
multithreaded, and if multithreaded, how many streams or threads it can have. In addition, this routine
allows you to control the maximum size of the output buffer.

Condition Values Returned
SS$_NORMAL

Normal successful completion.

This routine also returns any condition values returned by the $SETPRV, $GETSYI, $PURG-
WS, and $DCLAST system services, as well as any condition values returned by the SMB
$INITIALIZE routine documented in Chapter 19.

PSM$READ_ITEM_DX
PSM$READ_ITEM_DX — The PSM$READ_ITEM_DX routine obtains the value of message items
that are sent by the job controller and stored by the symbiont.

Format
PSM$READ_ITEM_DX request_id ," item ," buffer"

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. Most utility routines return a condition value in R0. Condition values that
this routine can return are listed under Condition Values Returned.

Argument
request_id

OpenVMS usage: address
type: longword (unsigned)
access: read only

650

Chapter 18. Print Symbiont Modification (PSM) Routines

mechanism: by reference

Request identifier supplied by the symbiont to the user routine currently calling PSM
$READ_ITEM_DX. The symbiont always supplies a request identifier when it calls a user routine
with a service request. The request_id argument is the address of a longword containing this request
identifier value.

Your user routine must copy the request identifier value that the symbiont supplies (in the re-
quest_id argument) when it calls your user routine. Then, when your user routine calls PSM
$READ_ITEM_DX, it must supply (in the request_id argument) the address of the request identifier
value that it copied.

item

OpenVMS usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by reference

Item code that identifies the message item that PSM$READ_ITEM_DX is to return. The item argu-
ment is the address of a longword that specifies the item's code.

For a complete list and description of each item code, refer to the documentation of the item argument
in the SMB$READ_MESSAGE_ITEM routine in Chapter 19.

buffer

OpenVMS usage: char_string
type: character string
access: write only
mechanism: by descriptor

Buffer into which PSM$READ_ITEM_DX returns the specified informational item. The buffer argu-
ment is the address of a descriptor pointing to this buffer.

The PSM$READ_ITEM_DX routine returns the specified informational item by copying that item to
the buffer using one of the STR$COPY_xx routines documented in the OpenVMS RTL String Manip-
ulation (STR$) Manual.

Description
The PSM$READ_ITEM_DX routine obtains the value of message items that are sent by the
job controller and stored by the symbiont. Use PSM$READ_ITEM_DX to obtain informa-
tion about the task currently being processed, for example, the name of the file being printed
(SMBMSG$K_FILE_SPECIFICATION) or the name of the user who submitted the job (SMB-
MSG$K_USER_NAME).

Condition Values Returned
SS$_NORMAL

Normal successful completion.

651

Chapter 18. Print Symbiont Modification (PSM) Routines

PSM$_INVITMCOD

Invalid item code specified in the item argument.

This routine also returns any condition values returned by any of the STR$COPY_xx routines docu-
mented in the OpenVMS RTL String Manipulation (STR$) Manual.

PSM$REPLACE
Declare User Service Routine — The PSM$REPLACE routine substitutes a user service routine for
a symbiont routine or adds a user service routine to the set of symbiont routines. You must call PSM
$REPLACE once for each routine that you replace or add.

Format
PSM$REPLACE code ,routine

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. Most utility routines return a condition value in R0. The condition value
that this routine can return is listed under Condition Value Returned.

Arguments
code

OpenVMS usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by reference

Routine code that identifies the symbiont routine to be replaced by a user service routine. The code
argument is the address of a longword containing the routine code.

Some routine codes identify routines that are supplied with the symbiont; when you specify such a
routine code, you replace the symbiont-supplied routine with your service routine.

Two routine codes identify routines that are not supplied with the symbiont; when you specify such a
routine code, your service routine is added to the set of symbiont routines.

Table 18.1 lists each routine code in the order in which it is called within the symbiont execution
stream; this table also specifies whether a routine code identifies an input, formatting, or output rou-
tine and whether the routine is supplied with the symbiont.

Each programming language provides an appropriate mechanism for defining these routine codes. The
following pages list each routine code in alphabetical order; the description of each code includes the
following information about its corresponding routine:

652

Chapter 18. Print Symbiont Modification (PSM) Routines

• Whether the routine is supplied by the symbiont

• Whether the routine is an input, formatting, or output routine

• Under what conditions the routine is called

• What task the routine performs

Routine Codes
[PSM$K_FILE_BURST"]

This code identifies a symbiont-supplied input routine; it is called whenever a file burst page is re-
quested. This routine obtains information about the job, formats the file burst page, and returns the
contents of the page to the input buffer. A file burst page follows a file flag page and precedes the con-
tents of the file.

[PSM$K_FILE_ERRORS"]

This code identifies a symbiont-supplied input routine; it is called when errors have occurred during
the job. This routine places the error message text in the input buffer.

[PSM$K_FILE_FLAG"]

This code identifies a symbiont-supplied input routine; it is called whenever a file flag page is request-
ed. This routine obtains information about the job, formats the file flag page, and returns the contents
of the page to the input buffer. A flag page follows the job burst page (if any) and precedes the file
burst page (if any). It contains such information as the file specification of the file and the name of the
user issuing the print request.

[PSM$K_FILE_INFORMATION"]

This code identifies a symbiont-supplied input routine; it is called when the file information item has
been specified by the job controller. This routine expands the file information item to text and returns
it to the input buffer.

[PSM$K_FILE_SETUP"]

This code identifies a symbiont-supplied input routine; it is always called. This routine queues any
specified file-setup modules for insertion in the input stream when the PSM$K_FILE_SETUP routine
closes.

[PSM$K_FILE_SETUP_2"]

This code identifies a symbiont-supplied input routine; it is always called. This routine returns a form
feed to ensure that printing of the file begins at the top of the page. This routine is called just before
the main input routine.

[PSM$K_FILE_TRAILER"]

This code identifies a symbiont-supplied input routine; it is called whenever a file trailer page is re-
quested. This routine obtains information about the job, formats the file trailer page, and returns the
contents of the page to the input buffer. A trailer page follows the last page of the file contents.

[PSM$K_MAIN_FORMAT"]

653

Chapter 18. Print Symbiont Modification (PSM) Routines

This code identifies the symbiont-supplied formatting routine; it is always called. This routine per-
forms numerous formatting functions. You cannot replace this routine.

[PSM$K_FORM_SETUP"]

This code identifies a symbiont-supplied input routine; it is always called. This routine queues any
specified form-setup modules for insertion in the input stream when the PSM$K_FORM_SETUP rou-
tine closes.

[PSM$K_INPUT_FILTER"]

This code identifies a format routine that is not supplied by the symbiont. If the routine is supplied
by the user, it is always called immediately prior to the symbiont-supplied formatting routine (routine
code PSM$K_MAIN_FORMAT). An input-filter service routine is useful for modifying input data
records and their carriage control before they are formatted by the symbiont.

[PSM$K_JOB_BURST"]

This code identifies a symbiont-supplied input routine; it is called whenever a job burst page is re-
quested. This routine obtains information about the job, formats the job burst page, and returns the
contents of the page to the input buffer. A job burst page follows the job flag page and precedes the
file flag page (if any) of the first file in the job. It is similar to a file burst page except that it appears
only once per job and only at the beginning of the job.

[PSM$K_JOB_COMPLETION"]

This code identifies a symbiont-supplied input routine that returns a form feed, which causes any out-
put stored by the device to be printed. The routine is always called. It cannot be replaced when using
the LAT protocol option.

[PSM$K_JOB_FLAG"]

This code identifies a symbiont-supplied input routine; it is called whenever a job flag page is request-
ed. This routine obtains information about the job, formats the job flag page, and returns the contents
of the page to the input buffer. A job flag page is similar to a file flag page except that it appears only
once per job, preceding the job burst page (if any).

[PSM$K_JOB_RESET"]

This code identifies a symbiont-supplied input routine; it is always called. This routine queues any
specified job-reset modules for insertion in the input stream when the PSM$K_JOB_RESET routine
closes.

[PSM$K_JOB_SETUP"]

This code identifies a symbiont-supplied input routine; it is always called. This routine checks to see
if this is the first job to be printed on the device, and if so, it issues a form feed and then performs a
job reset. See the description of the PSM$K_JOB_RESET routine for information about job reset.

[PSM$K_JOB_TRAILER"]

This code identifies a symbiont-supplied input routine; it is called whenever a job trailer page is re-
quested. This routine obtains information about the job, formats the job trailer page, and returns the
contents of the page to the input buffer. A job trailer page is similar to a file trailer page except that it
appears only once per job, as the last page in the job.

[PSM$K_MAIN_INPUT"]

654

Chapter 18. Print Symbiont Modification (PSM) Routines

This code identifies a symbiont-supplied input routine; it is always called. This routine opens the file
to be printed, returns input records to the input buffer, and closes the file.

[PSM$K_LIBRARY_INPUT"]

This code identifies a symbiont-supplied input routine; it is called when an input routine closes and
when modules have been requested for insertion in the input stream. This routine returns the contents
of the specified modules, one record per call. You cannot replace this routine.

[PSM$K_OUTPUT_FILTER"]

This code identifies a formatting routine that is not supplied by the symbiont. If the routine is supplied
by the user, it is always called. This routine executes prior to the symbiont output routine (routine
code PSM$K_OUTPUT). An output-filter service routine is useful for modifying output data buffers
before they are passed to the output routine.

At the point where the output-filter routine executes within the symbiont execution stream, the in-
put data is no longer in record format; instead, the data exists as a stream of characters. The carriage
control, for example, is embedded in the data stream. Thus, the output buffer might contain what was
once a complete record, part of a record, or several records.

[PSM$K_PAGE_HEADER"]

This code identifies a symbiont-supplied input routine; it is called once at the beginning of each page
if page headers are requested. This routine returns to the input buffer one or more lines containing in-
formation about the file being printed and the current page number. This routine is called only while
the main input routine is open.

[PSM$K_PAGE_SETUP"]

This code identifies a symbiont-supplied routine; it is called at the beginning of each page if page-set-
up modules were specified. This routine queues any specified page-setup modules for insertion in the
input stream when the PSM$K_PAGE_SETUP routine closes. This routine is called only while the
main input routine is open.

[PSM$K_OUTPUT"]

This code identifies the symbiont-supplied output routine that writes the contents of the output buffer
to the printing device, together with many other functions. This routine is always called. It cannot be
replaced when using the LAT protocol option.

Routine
OpenVMS usage: procedure
type: procedure value
access: read only
mechanism: by reference

User service routine that is to replace a symbiont routine or to be included. The routine argument
is the address of the user routine entry point.

Description
The PSM$REPLACE routine must be called each time a user service routine replaces a symbiont rou-
tine or is added to a set of symbiont routines.

655

Chapter 18. Print Symbiont Modification (PSM) Routines

The code argument specifies the symbiont routine to be replaced. The routine codes that can be spec-
ified in the code argument are of two types: those that identify existing print symbiont routines and
those that do not. All the routine codes are similar, however, in the sense that each supplies a location
within the print symbiont execution stream where your routine can execute.

By selecting a routine code that identifies an existing symbiont routine, you effectively disable that
symbiont routine. The service routine that you specify might or might not perform the function that
the disabled symbiont routine performs. If it does not, the net effect of the replacement is to eliminate
that function from the list of functions performed by the print symbiont. Exactly what your service
routine does is up to you.

By selecting a routine code that does not identify an existing symbiont routine (those that identify the
input-filter and output-filter routines), your service routine has a chance to execute at the location sig-
nified by the routine code. Because the service routine you specify to execute at this location does not
replace another symbiont routine, your service routine is an addition to the set of symbiont routines.

As mentioned, each routine code identifies a location in the symbiont execution stream, whether or
not it identifies a symbiont routine. Table 18.1 lists each routine code in the order in which the loca-
tion it identifies is reached within the symbiont execution stream.

Condition Value Returned

SS$_NORMAL

Normal successful completion.

PSM$REPORT
Report Completion Status — The PSM$REPORT routine reports to the print symbiont the comple-
tion status of an asynchronous operation initiated by a user routine. Such a user routine must return
the completion status PSM$_PENDING. PSM$REPORT must be called exactly once for each time a
user routine returns the status PSM$_PENDING.

Format
PSM$REPORT request_id [,status]

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. Most utility routines return a condition value in R0. The condition value
that this routine can return is listed under Condition Value Returned.

Arguments

request_id

656

Chapter 18. Print Symbiont Modification (PSM) Routines

OpenVMS usage: address
type: longword (unsigned)
access: read only
mechanism: by reference

Request identifier supplied by the symbiont to the user routine at the time the symbiont called the user
routine with the service request. The user routine must return the completion status PSM$_PENDING
on the call for this service request. The request_id argument is the address of a longword contain-
ing the request identifier value.

The symbiont calls the user routine with a request code that specifies the function that the symbiont
expects the user routine to perform. In the call, the symbiont also supplies a request identifier, which
serves to identify the request. If the user routine initiates an asynchronous operation, a mechanism is
required for notifying the symbiont that the asynchronous operation has completed and for providing
the completion status of the operation.

The PSM$REPORT routine conveys the above two pieces of information. In addition, PSM$RE-
PORT returns to the symbiont (in the request_id argument) the same request identifier value as
that supplied by the symbiont to the user routine that initiated the operation. In this way, the symbiont
synchronizes the completion status of an asynchronous operation with that invocation of the user rou-
tine that initiated the operation.

Any user routine that initiates an asynchronous operation must, therefore, copy the request identifier
value that the symbiont supplies (in the request_id argument) when it calls the user routine. The
user routine will later need to supply this value to PSM$REPORT.

In addition, when the user routine returns, which it does before the asynchronous operation has com-
pleted, the user routine must return the status PSM$_PENDING.

status

OpenVMS usage: cond_value
type: longword (unsigned)
access: read only
mechanism: by reference

Completion status of the asynchronous operation that has completed. The status argument is the
address of a longword containing this completion status. The status argument is optional; if it is
not specified, the symbiont assumes the completion status SS$_NORMAL.

The user routine that initiates the asynchronous operation must test for the completion of the operation
and must supply the operation's completion status as the status argument to the PSM$REPORT
routine. The Description section describes this procedure in greater detail.

If the completion status specified by status has the low bit clear, the symbiont aborts the task.

Description
An asynchronous operation is an operation that, once initiated, executes “off to the side” and need not
be completed before other operations can begin to execute. Asynchronous operations are common in
symbiont applications because a symbiont, if it is multithreaded, must handle concurrent I/O opera-
tions.

657

Chapter 18. Print Symbiont Modification (PSM) Routines

One example of a user routine that performs an asynchronous operation is an output routine that calls
the $QIO system service to write a record to the printing device. When the user output routine com-
pletes execution, the I/O request queued by $QIO might not have completed. In order to synchro-
nize this I/O request, that is, to associate the I/O request with the service request that initiated it, you
should use the following mechanism:

1. In making the call to $QIO, specify the astadr and iosb arguments. The astadr argument
specifies an AST routine to execute when the queued output request has completed, and the iosb
argument specifies an I/O status block to receive the completion status of the I/O operation. Step 3
describes some functions that your AST routine will need to do.

2. Have the user output routine return the status PSM$_PENDING.

3. Write the AST routine to perform the following functions:

a. Copy the completion status word from the I/O status block to a longword location that you
will specify as the status argument in the call to PSM$REPORT.

b. Call PSM$REPORT. Specify as the request_id argument the request identifier that was
supplied by the print symbiont in the original call to the user output routine.

Condition Value Returned

SS$_NORMAL

Normal successful completion.

USER-FORMAT-ROUTINE
Invoke User-Written Format Routine — The user-written USER-FORMAT-ROUTINE performs for-
mat operations. The symbiont's control logic routine calls your format routine at one of two possible
points within the symbiont's execution stream. You select this point by specifying one of two routine
codes when you call the PSM$REPLACE routine. A user format routine can be an input filter rou-
tine (routine code PSM$K_INPUT_FILTER) or an output filter routine (routine code PSM$K_OUT-
PUT_FILTER). The main format routine (routine code PSM$K_MAIN_FORMAT) cannot be re-
placed. A user format routine must use the call interface described here.

Format
USER-FORMAT-ROUTINE
 request_id ,work_area ,func ,func_desc_1 ,func_arg_1 ,func_desc_2 ,func_arg_2

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. Most utility routines return a condition value in R0. Condition values that
this routine can return are listed under Condition Values Returned.

658

Chapter 18. Print Symbiont Modification (PSM) Routines

Arguments

request_id

OpenVMS usage: address
type: longword (unsigned)
access: read only
mechanism: by reference

Request identifier supplied by the symbiont when it calls your format routine. The request_id ar-
gument is the address of a longword containing this request identifier value.

work_area

OpenVMS usage: address
type: longword (unsigned)
access: write only
mechanism: by reference

Work area supplied by the symbiont for the use of your format routine. The symbiont supplies the ad-
dress of this area when it calls your routine. The work_area argument is a longword containing the
address of the work area. The work area is a section of memory that your format routine can use for
buffering and other internal operations.

The size of the work area allocated is specified by the work_size argument in the PSM$PRINT
routine. If you do not specify work_size in the call to PSM$PRINT, no work area is allocated.

In a multithreaded symbiont, a separate work area is allocated for each thread. This work area is
shared by all user routines. The work area is initialized to zero when the symbiont is first started.

func

OpenVMS usage: function_code
type: longword (unsigned)
access: read only
mechanism: by reference

Function code specifying the service that the symbiont expects your format routine to perform. The
func argument is the address of a longword into which the symbiont writes this function code.

The function code specifies the reason the symbiont is calling your format routine or, in other words,
the service that the symbiont expects your routine to perform at this time.

The PSM$K_FORMAT function code is the only one to which your format routine must respond.
When the symbiont calls your format routine with this function code, your routine must move a record
from the input buffer to the output buffer.

The symbiont can call your format routine with other function codes. Your routine should return the
status PSM$_FUNNOTSUP (function not supported) when it is called with any of the following func-
tion codes or with any undocumented function code. When the status PSM$_FUNNOTSUP is re-

659

Chapter 18. Print Symbiont Modification (PSM) Routines

turned, the symbiont performs its normal action as if no format routine were supplied. To suppress the
symbiont's normal action, you should return SS$_NORMAL.

PSM$K_START_STREAM PSM$K_STOP_STREAM
PSM$K_START_TASK PSM$K_PAUSE_TASK
PSM$K_RESUME_TASK PSM$K_STOP_TASK
PSM$K_RESET_STREAM

These function codes correspond to message items , which are discussed in more detail in Sec-
tion 18.3.5, sent by the job controller to the symbiont.

Other function codes correspond to internal symbiont mechanisms that are not part of the public inter-
face to the print symbiont.

Your format routine should return the status PSM$_FUNNOTSUP or SS$_NORMAL when it is
called with a message function code or with a private function code.

func_desc_1

OpenVMS usage: char_string
type: character string
access: read only
mechanism: by descriptor

Descriptor supplying an input record to be processed by the format routine. The func_desc_1 ar-
gument is the address of a string descriptor. By using this argument, the symbiont supplies the input
record that your format routine is to process. Because this descriptor can be of any valid string type,
your format routine should use the Run-Time Library string routines to analyze this descriptor and to
manipulate the input record.

func_arg_1

OpenVMS usage: vector_byte_unsigned
type: byte (unsigned)
access: read only
mechanism: by reference

Carriage control for the input record supplied by func_desc_1. The func_arg_1 argument is the
address of a 4-byte vector that specifies the carriage control for the input record. The following dia-
gram depicts the format of this 4-byte vector:

Bytes 0 and 1 describe the leading carriage control to apply to the input data record; bytes 2 and 3 de-
scribe the trailing carriage control.

660

Chapter 18. Print Symbiont Modification (PSM) Routines

Byte 0 is a number specifying the number of times the carriage control specifier in byte 1 is to be re-
peated preceding the input data record. Byte 2 is a number specifying the number of times the carriage
control specifier in byte 3 is to be repeated following the input data record.

For values of the carriage control specifier from 1 to 255, the specifier is the ASCII character to be
used as carriage control. Value 0 represents the ASCII “newline” sequence. Newline consists of a car-
riage return followed by a linefeed.

The func_arg_1 argument is not used if your format routine is an output filter routine (routine code
PSM$K_OUTPUT_FILTER). See the Description section for more information.

func_desc_2

OpenVMS usage: char_string
type: character string
access: write only
mechanism: by reference

Descriptor of a buffer to which your format routine writes the formatted output record. The
func_desc_2 argument is the address of a string descriptor.

Your format routine must return the formatted data record by using the func_desc_2 argument.

Your format routine should use the Run-Time Library string routines to write into the buffer specified
by this descriptor.

func_arg_2

OpenVMS usage: vector_byte_unsigned
type: byte (unsigned)
access: write only
mechanism: by reference

Carriage control for the output record returned in func_desc_2. The func_arg_2 argument is
the address of a 4-byte vector that specifies the carriage control for the output record. See the descrip-
tion of func_arg_1 for the contents and format of this 4-byte vector.

If you do not process the carriage-control information supplied in func_arg_1, then you should
copy that value into func_arg_2. Otherwise, the carriage-control information will be lost.

The func_arg_2 argument is not used if your format routine is an output filter routine (routine code
PSM$K_OUTPUT_FILTER). See the Description section help topic for more information.

Description
When used, the func_arg_1 argument describes carriage-control information for the input data
record, and the func_arg_2 argument describes carriage-control information for the output data
record.

The input data record is passed to the format routine (input filter or output filter) for processing, and
the output data record is returned by the format routine (input filter or output filter).

One of the tasks performed by the main format routine (routine code PSM$K_MAIN_FORMAT) is
that of embedding the carriage-control information (specified by func_arg_1) into the data record

661

Chapter 18. Print Symbiont Modification (PSM) Routines

(specified by func_desc_1). Thus, the output data (specified by func_desc_2) contains embed-
ded carriage control and is thus no longer in record format; it is, therefore, properly referred to as an
output data stream rather than an output data record.

Similarly, the output filter routine (routine code PSM$K_OUTPUT_FILTER), which executes after
the main format routine, uses neither the func_arg_1 nor func_arg_2 argument; the data it re-
ceives (via func_desc_1) and the data it returns (via func_desc_2) are data streams, not data
records.

However, the input filter routine (routine code PSM$K_INPUT_FILTER), which executes before the
main format routine, uses both func_arg_1 and func_arg_2. This is so because the main format
routine has not yet executed, and so the carriage control information has not yet been embedded in the
data record.

Condition Values Returned
SS$_NORMAL

Successful completion. The user format routine has completed the function that the symbiont re-
quested.

PSM$_FUNNOTSUP

Function not supported. The user format routine does not support or does not recognize the func-
tion code supplied by the symbiont. To ensure future compatibility, your format routine should re-
turn this status for any unrecognized status codes.

This routine also returns any error condition values that you have coded your format routine to return.
Refer to Section 18.3.1 for more information about error condition values.

USER-INPUT-ROUTINE
Invoke User-Written Input Routine — The user-written USER-INPUT-ROUTINE performs input op-
erations. The symbiont calls your routine at a specified point in its execution stream; you specify this
point using the PSM$REPLACE routine.

Format
USER-INPUT-ROUTINE request_id ,work_area ,func ,funcdesc ,funcarg

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. Most utility routines return a condition value in R0. Condition values that
this routine can return are listed under Condition Values Returned.

Arguments
request_id

662

Chapter 18. Print Symbiont Modification (PSM) Routines

OpenVMS usage: address
type: longword (unsigned)
access: read only
mechanism: by reference

Request identifier value supplied by the symbiont when it calls your input routine. The request_id
argument is the address of a longword containing this request identifier value.

If your input routine initiates an asynchronous operation (for example, a call to the $QIO system ser-
vice), your input routine must copy the request identifier value specified by request_id because
this value must later be passed to the PSM$REPORT routine. See the description of the PSM$RE-
PORT routine for more information.

work_area

OpenVMS usage: address
type: longword (unsigned)
access: write only
mechanism: by reference

Work area supplied by the symbiont for the use of your input routine. The symbiont supplies the ad-
dress of this area when it calls your routine. The work_area argument is a longword into which the
symbiont writes the address of the work area. The work area is a section of memory that your input
routine can use for buffering and for other internal operations.

The size of the work area allocated is specified by the work_size argument in the PSM$PRINT
routine. If you do not specify work_size in the call to PSM$PRINT, no work area is allocated.

In a multithreaded symbiont, a separate work area is allocated for each thread. This work area is
shared by all user routines. The work area is initialized to zero when the symbiont is first started.

func

OpenVMS usage: function_code
type: longword (unsigned)
access: read only
mechanism: by reference

Function code supplied by the symbiont when it calls your input routine. The func argument is the
address of a longword containing this code.

The function code specifies the reason the symbiont is calling your input routine or, in other words,
the function that the symbiont expects your routine to perform at this time.

Most function codes require or allow additional information to be passed in the call by means of the
funcdesc and funcarg arguments. The description of each input function code, therefore, in-
cludes a description of how these two arguments are used with that function code.

Following is a list of all the function codes that the symbiont can specify when it calls your input rou-
tine (function codes applicable only to format and output routines are explained in the descriptions of

663

Chapter 18. Print Symbiont Modification (PSM) Routines

the USER-FORMAT-ROUTINE and USER-OUTPUT-ROUTINE, respectively); all function codes
are defined by the $PSMDEF macro.

Function Codes for Input Routines

[PSM$K_CLOSE"]

When the symbiont calls your routine with this function code, your routine must terminate processing
by releasing any resources it might have allocated.

The symbiont calls your routine with PSM$K_CLOSE when (1) your routine returns from a PSM
$K_READ function call with the status PSM$_EOF (end of input) or with any error condition, or (2)
the symbiont receives a task-abortion request from the job controller.

In any event, the symbiont always calls your input routine with PSM$K_CLOSE if your routine re-
turns successfully from a PSM$K_OPEN function call. This guaranteed behavior ensures that any re-
sources your routine might have allocated on the OPEN will be released on the CLOSE.

[PSM$K_GET_KEY"]

Typically, the use of both the PSM$K_GET_KEY and PSMK$K_POSITION_TO_KEY function
codes is appropriate only for a main input routine (routine code PSM$K_MAIN_INPUT).

When the symbiont calls your routine with this function code, your routine can do one of two things:
(1) return PSM$_FUNNOTSUP (function not supported) or (2) return an input marker string to the
symbiont.

If your routine returns PSM$_FUNNOTSUP to this function code, then your routine must al-
so return PSM$_FUNNOTSUP if the symbiont subsequently calls your routine with the PSM
$K_POSITION_TO_KEY function code. By returning PSM$_FUNNOTSUP, your routine is choos-
ing not to respond to the symbiont request.

If your routine chooses to respond to the PSM$K_GET_KEY function code, your routine must return
an input marker string to the symbiont; this input marker string identifies the input record that your in-
put routine most recently returned to the symbiont. Subsequently, when the symbiont calls your input
routine with the PSM$K_POSITION_TO_KEY function code, the symbiont passes your input routine
one of the input marker strings that your input routine has returned on a previous PSM$K_GET_KEY
function call. Using this marker string, your input routine must position itself so that, on the next PSM
$K_READ call from the symbiont, your input routine will return (or reread) the input record identi-
fied by the marker string.

Coding your input routine to respond to PSM$K_GET_KEY and PSM$K_POSITION_TO_KEY al-
lows the modified symbiont to perform the file-positioning functions specified by the DCL commands
START/QUEUE/FORWARD, START/QUEUE/ALIGN, START/QUEUE/TOP_OF_FILE, START/
QUEUE/SEARCH, and START/QUEUE/BACKWARD. These file positioning functions also depend
on the job controller's checkpointing capability for print jobs.

Note that your input routine might be called with a marker string that was originally returned in a dif-
ferent process context from the current one. This can occur because marker strings are sometimes
stored in the queue-data file across system shutdowns or different invocations of your symbiont.

The funcdesc argument specifies the address of a string descriptor. Your routine must return the
marker string by way of this argument. VSI recommends that you use one of the Run-Time Library
string routines to copy the marker string to the descriptor.

664

Chapter 18. Print Symbiont Modification (PSM) Routines

The symbiont periodically calls your input routine with the PSM$K_GET_KEY function code when
the symbiont wants to save a marker to a particular input record.

[PSM$K_OPEN"]

When the symbiont calls your routine with this function code, your routine should prepare for input
operations by performing such tasks as allocating necessary resources, initializing storage areas, open-
ing an input file, and so on. Typically, the next time the symbiont calls your input routine, the sym-
biont will specify the PSM$K_READ function code. Note, however, that under some circumstances
the symbiont might follow an OPEN call immediately with a CLOSE call.

The funcdesc argument points to the name of the file to be opened. Your routine can use this file
specification or the file identification to open the file.

The funcarg argument specifies the address of a longword. Your input routine must return, in this
longword, the carriage control type that is to be applied to the input records that your input routine
will provide.

The symbiont formatting routine requires this information to determine where to apply leading and
trailing carriage control characters to the input records that your input routine will provide.

The $PSMDEF macro defines the following four carriage control types:

Carriage Control Type Description
PSM$K_CC_IMPLIED Implied carriage control. For this type, the sym-

biont inserts a leading line feed (LF) and trailing
carriage return (CR) in each input record. This is
the default carriage control type; it is used if your
routine does not supply a carriage control type in
the funcarg argument in response to the PSM
$K_OPEN function call.

PSM$K_CC_FORTRAN Fortran carriage control. For this type, the sym-
biont extracts the first byte of each input record
and interprets the byte as a Fortran carriage con-
trol character, which it then applies to the input
record.

PSM$K_CC_PRINT PRN carriage control. For this type, the sym-
biont generates carriage control from a 2-byte
record header that your input routine supplies,
with each READ call, in the funcarg argument.
The funcarg argument specifies the address of
a longword to receive this 2-byte header record,
which appears only in PRN print files.

PSM$K_CC_INTERNAL Embedded carriage control. For this type, the
symbiont supplies no carriage control to input
records. Carriage control is assumed to be embed-
ded in the input records.

[PSM$K_POSITION_TO_KEY"]

When the symbiont calls your routine with this function code, your routine must locate the point in the
input stream designated by the marker string that your routine returned to the symbiont on the PSM
$K_GET_KEY function call.

665

Chapter 18. Print Symbiont Modification (PSM) Routines

The next time the symbiont calls your routine, the symbiont specifies the PSM$K_READ function
call, expecting to receive the next sequential input record. After rereading this record, subsequent
READ calls proceed from this new position of the file. This is not a one-time rereading of a single
record but a repositioning of the file. The symbiont calls your routine with this function code when the
job controller receives a request to resume printing at a particular page.

Refer to the description of the PSM$K_GET_KEY for more information.

[PSM$K_READ"]

When the symbiont calls your routine with this function code, your routine must return an input
record. The symbiont repeatedly calls your input routine with the PSM$K_READ function code until:
(1) your routine indicates end of input by returning the status PSM$_EOF, (2) your routine or anoth-
er routine returns an error status, or (3) the symbiont receives an asynchronous task-abortion request
from the job controller.

The funcdesc argument specifies the address of a string descriptor. Your routine must return the in-
put record by using this argument. VSI recommends that you use one of the Run-Time Library string
routines to copy the input record to the descriptor.

The funcarg argument specifies the address of a longword. This argument is used only if the car-
riage control type returned by your input routine on the PSM$K_OPEN function call was PSM$K_C-
C_PRINT. In this case, your input routine must supply, in the funcarg argument, the 2-byte record
header found at the beginning of each input record.

[PSM$K_REWIND"]

When the symbiont calls your routine with this function code, your routine must do one of two things:
(1) return PSM$_FUNNOTSUP (function not supported) or (2) locate the point in the input stream
designated as the beginning of the file.

If your routine returns PSM$_FUNNOTSUP to this function code, then the symbiont subsequently
calls your input routine with a PSM$K_CLOSE function call followed by a PSM$K_OPEN function
call. By returning PSM$_FUNNOTSUP, your routine is choosing not to support the repositioning of
the input service to the beginning of the file. The symbiont, therefore, performs the desired function
by closing and then reopening the input routine.

You cannot use the funcdesc and the funcarg arguments with this function code.

This function call allows the modified symbiont to perform the file-positioning functions specified
by the DCL commands START/QUEUE/TOP_OF_FILE, START/QUEUE/FORWARD, START/
QUEUE/BACKWARD, START/QUEUE/SEARCH, and START/QUEUE/ALIGN. This is a required
repositioning of the file.

[Other Input Function Codes"]

The symbiont can call your input routine with other function codes. Your routine must return the sta-
tus PSM$_FUNNOTSUP (function not supported) when it is called with any of the following func-
tion codes or with any undocumented function code. When the status PSM$_FUNNOTSUP is re-
turned, the symbiont performs its normal action as if no input routine were supplied. To suppress the
symbiont's normal action, you should return SS$_NORMAL.

PSM$K_START_STREAM PSM$K_STOP_STREAM
PSM$K_START_TASK PSM$K_PAUSE_TASK

666

Chapter 18. Print Symbiont Modification (PSM) Routines

PSM$K_RESUME_TASK PSM$K_STOP_TASK
PSM$K_RESET_STREAM

These function codes correspond to message items, which are discussed in detail in Section 18.3.5,
sent by the job controller to the symbiont.

Other function codes correspond to internal symbiont mechanisms that are not part of the public inter-
face to the print symbiont.

Your input routine should return the status PSM$_FUNNOTSUP or SS$_NORMAL when it is called
with a message function code or with a private function code.

Routines

funcdesc

OpenVMS usage: char_string
type: character string
access: read only
mechanism: by descriptor

Function descriptor supplying information related to the function specified by the func argument.
The funcdesc argument is the address of this descriptor.

The contents of the function descriptor can vary for each function. Refer to the description of each
function code to determine the contents of the function descriptor. In some cases, the function descrip-
tor is not used at all.

funcarg

OpenVMS usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by reference

Function argument supplying information related to the function specified by the func argument.
The funcarg argument is the address of a longword containing this function argument. This argu-
ment can be an input or an output argument, depending on the function request, but is usually used as
an output argument.

Condition Values Returned
SS$_NORMAL

Successful completion. The user input routine has completed the function that the symbiont re-
quested.

PSM$_FLUSH

Flush output stream. The user input routine can return this status only when called with the PSM
$K_READ function code. When this status is returned to the symbiont, the symbiont stops calling

667

Chapter 18. Print Symbiont Modification (PSM) Routines

the input routine with the PSM$K_READ function code until all outstanding format and output
operations have completed.

PSM$_FUNNOTSUP

Function not supported. The user input routine does not support or does not recognize the function
code supplied by the symbiont. To ensure future compatibility, your input routine should return
this status for any unrecognized status codes.

PSM$_PENDING

Requested function accepted but not completed. Your input routine can return this status only with
the PSM$K_READ function call. Further, if your routine returns PSM$_PENDING, your rou-
tine must eventually signal completion via the PSM$REPORT routine. Refer to the description
of the PSM$REPORT routine for more information about asynchronous operations and the PSM
$_PENDING condition value.

This routine also returns any error condition values that you have coded your format routine to return.
Refer to Section 18.3.1 for more information about error condition values.

USER-OUTPUT-ROUTINE
Invoke User-Written Output Routine — The user-written USER-OUTPUT-ROUTINE performs out-
put operations. You supply a user output routine by calling the PSM$REPLACE routine with the rou-
tine code PSM$K_OUTPUT.

Format
USER-OUTPUT-ROUTINE request_id ,work_area ,func ,funcdesc ,funcarg

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. Most utility routines return a condition value in R0. Condition values that
this routine can return are listed under Condition Values Returned.

Arguments
request_id

OpenVMS usage: address
type: longword (unsigned)
access: read only
mechanism: by reference

Request identifier value supplied by the symbiont when it calls your output routine. The re-
quest_id argument is the address of a longword containing this value.

668

Chapter 18. Print Symbiont Modification (PSM) Routines

If your output routine initiates an asynchronous operation (for example, a call to the $QIO system ser-
vice), you must save the request_id argument because you will need to store the request identifier
value for later use with the PSM$REPORT routine. See the description of the PSM$REPORT routine
for more information.

work_area

OpenVMS usage: address
type: longword (unsigned)
access: write only
mechanism: by reference

Work area supplied by the symbiont for the use of your format routine. The symbiont supplies the ad-
dress of this area when it calls your routine. The work_area argument is a longword containing the
address of the work area. The work area is a section of memory that your format routine can use for
buffering and other internal operations.

The size of the work area allocated is specified by the work_size argument in the PSM$PRINT
routine. If you do not specify work_size in the call to PSM$PRINT, no work area is allocated.

In a multithreaded symbiont, a separate work area is allocated for each thread. This work area is
shared by all user routines. The work area is initialized to zero when the symbiont is first started.

func

OpenVMS usage: function_code
type: longword (unsigned)
access: read only
mechanism: by reference

Function code supplied by the symbiont when it calls your output routine. The func argument is the
address of a longword containing this code.

The function code specifies the reason the symbiont is calling your output routine or, in other words,
the function that the symbiont expects your routine to perform at this time.

Most function codes require or allow additional information to be passed in the call via the funcde-
sc and funcarg arguments. The description of each output function code, therefore, includes a de-
scription of how these two arguments are used for that function code.

The following list describes all the function codes that the symbiont might supply when it calls your
output routine (function codes applicable only to input and formatting routines are explained in the
descriptions of the user input routine and user formatting routine, respectively). Each programming
language provides an appropriate mechanism for defining these function codes.

Function Codes for Output Routines
[PSM$K_OPEN"]

When the symbiont calls your output routine with this function code, your routine should prepare to
move data to the device by performing such tasks as allocating the device, assigning a channel to the
device, and so on. The next time the symbiont calls your output routine, the symbiont specifies one of
the WRITE function codes (PSM$K_WRITE or PSM$K_WRITE_NOFORMAT).

669

Chapter 18. Print Symbiont Modification (PSM) Routines

The symbiont calls your output routine with the PSM$K_OPEN function code when the symbiont re-
ceives the SMBMSG$K_START_STREAM message from the job controller.

If your output routine returns an error condition value (low bit clear) to the PSM$K_OPEN function
call, the job controller stops processing on the stream and reports the error to whomever entered the
DCL command START/QUEUE.

The funcdesc argument is the address of a descriptor that identifies the name of the device to which
the output routine is to write. This device name is established by the DCL command INITIALIZE/
QUEUE/ON= device.

The funcarg argument is the address of a longword into which the user output routine returns the
device status longword. Your output routine sets bits in the device status longword to indicate to the
job controller whether the device falls into one of the following categories:

• Can print lowercase letters

• Is a terminal

• Is connected to the CPU by means of a modem (remote)

If your output routine does not set any of these bits in the device status longword, the job controller
assumes, by default, that the device is a line printer that prints only uppercase letters.

[PSM$K_WRITE"]

When the symbiont calls your routine with this function code, your routine must write data to the de-
vice. The symbiont supplies the data to be written in the funcdesc argument. VSI recommends that
you use one of the Run-Time Library string routines to access the data in the buffer described by the
funcdesc argument.

[PSM$K_WRITE_NOFORMAT"]

When the symbiont calls your routine with this function code, your routine must write data to the de-
vice and must indicate to the device driver that the data is not to be formatted.

The symbiont calls your routine with this function code when: (1) the print request specifies the
PASSALL option or (2) data is introduced by the ANSI DCS (device control string) escape sequence.

The symbiont supplies the data to be written in the funcdesc argument. VSI recommends that you
use one of the Run-Time Library string routines to move the data from the descriptor to the device.

The output routine of the symbiont informs the device driver not to format the data in the following
way:

• When the device is a line printer, the symbiont's output routine specifies the IO$_WRITEPBLK
function code when it calls the $QIO system service.

• When the device is a terminal, the symbiont's output routine specifies the IO$M_NOFORMAT
function modifier when it calls the $QIO system serivce.

[PSM$K_CANCEL"]

When the symbiont calls your routine with this function code, your routine must abort any outstanding
asynchronous I/O requests.

670

Chapter 18. Print Symbiont Modification (PSM) Routines

The output routine supplied by the symbiont aborts outstanding I/O requests by calling the $CANCEL
system service with the IO$_CANCEL function code.

If your output routine returned the condition value PSM$_PENDING to one or more previous write
requests that are still outstanding (that is, PSM$REPORT has not yet been called to report comple-
tion), then your output routine must call PSM$REPORT one time for each outstanding write request
that is canceled with this call. That is, canceling an asynchronous write request does not relieve the
user output routine of the requirement to call PSM$REPORT once for each asynchronous write re-
quest.

You cannot use the funcdesc and funcarg arguments with this function code.

[PSM$K_CLOSE"]

When the symbiont calls your routine with this function code, your output routine must terminate pro-
cessing and release any resources it allocated (for example, channels assigned to the device).

You cannot use the funcdesc and funcarg arguments with this function code.

[Other Output Function Codes"]

The symbiont can call your output routine with other function codes. Your routine should return the
status PSM$_FUNNOTSUP (function not supported) when it is called with any of the following func-
tion codes or with any undocumented function code. When the status PSM$_FUNNOTSUP is re-
turned, the symbiont performs its normal action as if no output routine were supplied. To suppress the
symbiont's normal action, you should return SS$_NORMAL.

PSM$K_START_STREAM PSM$K_STOP_STREAM
PSM$K_START_TASK PSM$K_PAUSE_TASK
PSM$K_RESUME_TASK PSM$K_STOP_TASK
PSM$K_RESET_STREAM

These function codes correspond to message items, which are discussed in more detail in Sec-
tion 19.1.6, sent by the job controller to the symbiont.

Other function codes correspond to internal symbiont mechanisms that are not part of the public inter-
face to the print symbiont.

Your output routine should return the status PSM$_FUNNOTSUP or SS$_NORMAL when it is
called with a message function code or with a private function code.

Routines
funcdesc

OpenVMS usage: char_string
type: character string
access: read only
mechanism: by descriptor

Function descriptor supplying information related to the function specified by the func argument.
The funcdesc argument is the address of this descriptor.

671

Chapter 18. Print Symbiont Modification (PSM) Routines

The contents of the function descriptor can vary for each function. Refer to the description of each
function code to determine the contents of the function descriptor. In some cases, the function descrip-
tor is not used at all.

funcarg

OpenVMS usage: user_arg
type: longword (unsigned)
access: read only
mechanism: by reference

Function argument supplying information related to the function specified by the func argument.
The funcarg argument is the address of a longword containing this function argument.

The contents of the function argument can vary for each function. Refer to the description of each
function code to determine the contents of the function argument. In some cases, the function argu-
ment is not used.

Condition Values Returned
SS$_NORMAL

Normal successful completion. The user output routine has completed the function that the sym-
biont requested.

PSM$_FUNNOTSUP

Function not supported. The user output routine does not support or does not recognize the func-
tion code supplied by the symbiont. To ensure future compatibility, your output routine should re-
turn this status for any unrecognized status codes.

PSM$_PENDING

Requested function accepted but not completed. Your output routine can return this status only
with PSM$K_WRITE and PSM$K_WRITE_NOFORMAT function calls. Further, if your routine
returns PSM$_PENDING, your routine must eventually signal completion by way of the PSM
$REPORT routine. Refer to the description of the PSM$REPORT routine for more information
about asynchronous write operations and the PSM$_PENDING condition value.

This routine also returns any error condition values that you have coded your output routine to return.
Refer to Section 18.3.1 for more information about error condition values.

672

Chapter 19. Symbiont/Job Controller
Interface (SMB) Routines
The Symbiont/Job Controller Interface (SMB) routines provide the interface between the job con-
troller and symbiont processes. A user-written symbiont must use these routines to communicate with
the job controller.

19.1. Introduction to SMB Routines
Always use the SMB interface routines or the $SNDJBC or $GETQUI system services to communi-
cate with the job controller. You need not and should not attempt to communicate directly with the job
controller.

To write your own symbiont, you need to understand how symbionts work and, in particular, how the
standard print symbiont behaves.

19.1.1. Types of Symbiont
There are two types of symbiont:

• Device symbiont, either an input symbiont or an output symbiont. An input symbiont is one that
transfers data from a slow device to a fast device, for example, from a card reader to a disk. A
card-reader symbiont is an input symbiont. An output symbiont is one that transfers data from a
fast device to a slow device, for example, from a disk to a printer or terminal. A print symbiont is
an output symbiont.

• Server symbiont, a symbiont that processes or transfers data but is not associated with a particular
device; one example is a symbiont that transfers files across a network.

The operating system does not supply any server symbionts.

19.1.2. Symbionts Supplied with the Operating System
The operating system supplies two symbionts:

• SYS$SYSTEM:PRTSMB.EXE (PRTSMB for short), an output symbiont for use with printers and
printing terminals

PRTSMB performs such functions as inserting flag, burst, and trailer pages into the output stream;
reading and formatting input files; and writing formatted pages to the printing device.

You can modify PRTSMB using the Print Symbiont Modification (PSM) routines.

• SYS$SYSTEM:INPSMB.EXE (INPSMB for short), an input symbiont for use with card readers

This symbiont handles the transferring of data from a card reader to a disk file. You cannot modify
INPSMB, nor can you write an input symbiont using the SMB routines.

673

Chapter 19. Symbiont/Job Controller Interface (SMB) Routines

19.1.3. Symbiont Behavior in the OpenVMS Environ-
ment
In the OpenVMS environment, a symbiont is a process under the control of the job controller that
transfers or processes data.

Figure 19.1 depicts the components that take part in the handling of user requests that involve sym-
bionts. This figure shows two symbionts: (1) the print symbiont supplied by the operating system,
PRTSMB, and (2) a user-written symbiont, GRAPHICS.EXE, which services a graphics plotter. The
numbers in the figure correspond to the numbers in the list that follows.

This list does not reflect the activities that must be performed by the hypothetical, user-written sym-
biont, GRAPHICS.EXE. This symbiont is represented in the figure to illustrate the correspondence
between a user-written symbiont and the print symbiont supplied by the operating system.

Although SMB routines can be used for a different kind of symbiont, many of their arguments and as-
sociated symbols have names related to the print symbiont. The print symbiont is presented here as an
example of a typical symbiont and illustrates points that are generally true for symbionts.

Figure 19.1. Symbionts in the OpenVMS Environment

1

You request a printing job with the DCL command PRINT. DCL calls the $SNDJBC system ser-
vice, passing the name of the file to be printed to the job controller, along with any other informa-
tion specified by qualifiers for the PRINT command.

674

Chapter 19. Symbiont/Job Controller Interface (SMB) Routines

2

The job controller places the print request in the appropriate queue and assigns the request a job
number.

3

The job controller breaks the print job into a number of tasks (for example, printing three copies
of the same file is three separate tasks). The job controller makes a separate request to the sym-
biont for each task.

Each request that the job controller makes consists of a message. Each message consists of a code
that indicates what the symbiont is to do and a number of items of information that the symbiont
needs to carry out the task (the name of the file, the name of the user, and so on).

4

PRTSMB interprets the information it receives from the job controller.

5

PRTSMB locates and opens the file it is to print by using the file-identification number the job
controller specified in the start-task message.

6

PRTSMB sends the data from the file to the printer's driver.

7

The device driver sends the data to the printer.

19.1.4. Writing a Symbiont
Writing your own symbiont permits you to use the queuing mechanisms and control functions of the
job controller. You might want to do this if you need a symbiont for a device that cannot be served by
PRTSMB (or a modified form of PRTSMB) or if you need a server symbiont. The interface between
the job controller and the symbiont permits the symbiont you write to use the many features of the job
controller.

For example, when you use the DCL command PRINT, the job controller sends a message to the print
symbiont telling it to print the file. However, when a user-written symbiont receives the same mes-
sage (caused by entering a PRINT command), it might interpret it to mean something quite different.
A robot symbiont, for example, might interpret the message as a command for movement and the file
specification (specified with the PRINT command) might be a file describing the directions in which
the robot is to move.

Note

Modifying PRTSMB is easier than writing your own symbiont; choose this option if possible. The
Print Symbiont Modification (PSM) routines describe how to modify PRTSMB to suit your needs.

19.1.5. Guidelines for Writing a Symbiont
Although you can write a symbiont to use the queuing mechanisms and other features of the job con-
troller in whatever way you want, you must follow these guidelines to ensure that your symbiont
works correctly:

675

Chapter 19. Symbiont/Job Controller Interface (SMB) Routines

• The symbiont must not use any of the process-permanent channels, which are assigned to the fol-
lowing logical names:

• SYS$INPUT

• SYS$OUTPUT

• SYS$ERROR

• SYS$COMMAND

• The symbiont must allocate and deallocate memory using the Run-Time Library (RTL) routines
LIB$GET_VM and LIB$FREE_VM.

• To be compatible with future releases of the operating system, you should write the symbiont
to ignore unknown message-item codes and unknown message-request codes. (See the SMB
$READ_ITEM_MESSAGE routine.)

• The symbiont must communicate with the job controller by using the SMB routines, the $SND-
JBC system service, and the $GETQUI system service.

• The symbiont should not perform lengthy operations within the context of an AST routine. The
symbiont can only receive messages from the job controller when it is not executing within the
context of an AST routine.

• The symbiont code should be linked against SMBSRVSHR.EXE in order to define the SMB rou-
tine address and the following status codes:

• SMB$_INVSTMNBR

• SMB$_INVSTRLEV

• SMB$_NOMOREITEMS

• To assign a symbiont to a queue after it is compiled and linked, the executable image of the sym-
biont must reside in SYS$SYSTEM, and you must enter either of the following commands:

INITIALIZE/QUEUE/PROCESSOR=symbiont_filename
START/QUEUE/PROCESSOR=symbiont_filename

You should specify only the file name in the command. The disk and directory default to SYS
$SYSTEM, and all fields except the file name are ignored.

• To help debug symbionts, you should define the logical names DBG$INPUT and DBG$OUTPUT
in the LNM$GROUP_000001 logical name table to point to your debugging terminal.

19.1.6. The Symbiont/Job Controller Interface Routines
The five SMB routines form a public interface to the job controller. The job controller delivers re-
quests to symbionts by means of this interface, and the symbionts communicate their responses to
those requests through this interface. A user-written symbiont uses the following routines to exchange
messages with the job controller:

Routine Description
SMB$INITIALIZE Initializes the SMB facility's internal database, es-

tablishes the interface to the job controller, and
defines whether:

676

Chapter 19. Symbiont/Job Controller Interface (SMB) Routines

Routine Description
• Messages from the job controller are to be

delivered to the symbiont synchronously or
asynchronously with respect to execution of
the symbiont.

• The symbiont is to be single-threaded or mul-
tithreaded; these concepts are described in the
sections that follow.

SMB$CHECK_FOR_MESSAGE Checks to see if a message from the job controller
to the symbiont has arrived (used with synchro-
nous symbionts)

SMB$READ_MESSAGE Reads the job controller's message into a buffer
SMB$READ_MESSAGE_ITEM Returns one item of information from the job con-

troller's message (which can have several infor-
mational items)

SMB$SEND_TO_JOBCTL Sends a message from the symbiont to the job
controller

The following sections discuss how to use the SMB routines when writing your symbiont.

19.1.7. Choosing the Symbiont Environment
The first SMB routine that a symbiont must call is the SMB$INITIALIZE routine. In addition to allo-
cating and initializing the SMB facility's internal database, it offers you two options for your symbiont
environment: (1) synchronous or asynchonous delivery of messages from the job controller, and (2)
single streaming or multistreaming the symbiont.

19.1.7.1. Synchronous Versus Asynchronous Delivery of Re-
quests
When you initialize your symbiont/job controller interface, the symbiont has the option of accepting
requests from the job controller synchronously or asynchronously.

Synchronous Environment

The address of an AST routine is an optional argument to the SMB$INITIALIZE routine; if it is not
specified, the symbiont receives messages from the job controller synchronously. A symbiont that
receives messages synchronously must call SMB$CHECK_FOR_MESSAGE periodically during
the processing of tasks in order to ensure the timely delivery of STOP_TASK, PAUSE_TASK, and
RESET_STREAM requests.

SMB$CHECK_FOR_MESSAGE checks to see if a message from the job controller is waiting. If
a message is waiting, SMB$CHECK_FOR_MESSAGE returns a success code. The caller of SMB
$CHECK_FOR_MESSAGE can then call SMB$READ_MESSAGE to read the message and take the
appropriate action.

If no message is waiting, SMB$CHECK_FOR_MESSAGE returns a zero in R0. The caller of SMB
$CHECK_FOR_MESSAGE can continue to process the task at hand.

Figure 19.2 is a flowchart for a synchronous, single-threaded symbiont. The flowchart does not
show all the details of the logic the symbiont needs and does not show how the symbiont handles
PAUSE_TASK, RESUME_TASK, or RESET_STREAM requests.

677

Chapter 19. Symbiont/Job Controller Interface (SMB) Routines

Figure 19.2. Flowchart for a Single-Threaded, Synchronous Symbiont

Asynchronous Environment

To receive messages asynchronously, a symbiont specifies a message-handling AST routine as the
second argument to the SMB$INITIALIZE routine. In this scheme, whenever the job controller sends
messages to the symbiont, the AST routine is called.

The AST routine is called with no arguments and returns no value. You have the option of having the
AST routine read the message within the context of its execution or of having the AST routine wake a
suspended process to read the message outside the context of the execution of the AST routine.

Be aware that an AST can be delivered only while the symbiont is not executing within the context of
an AST routine. Thus, in order to ensure delivery of messages from the job controller, the symbiont
should not perform lengthy operations at the AST level.

This is particularly important to the execution of STOP_TASK, PAUSE_TASK, and
RESET_STREAM requests. If a STOP_TASK request cannot be delivered during the processing of a
task, for example, it is useless.

678

Chapter 19. Symbiont/Job Controller Interface (SMB) Routines

One technique that ensures delivery of STOP and PAUSE requests in an asynchronous environment is
to have the AST routine set a flag if it reads a PAUSE_TASK, STOP_TASK, or a RESET_STREAM
request and to have the symbiont's main routine periodically check the flag.

Figure 19.3 and Figure 19.4 show flowcharts for a single-threaded, asynchronous symbiont. The fig-
ures do not show many details that your symbiont might include, such as a call to the $QIO system
service.

Note that the broken lines in Figure 19.3 that connect the calls to $HIBER with the AST routine's calls
to $WAKE show that the next action to take place is the call to $WAKE. They do not accurately rep-
resent the flow of control within the symbiont but represent the action of the job controller in causing
the AST routine to execute.

679

Chapter 19. Symbiont/Job Controller Interface (SMB) Routines

Figure 19.3. Flowchart for a Single-Threaded, Asynchronous Symbiont (MAIN Routine)

680

Chapter 19. Symbiont/Job Controller Interface (SMB) Routines

Figure 19.4. Flowchart for a Single-Threaded, Asynchronous Symbiont (AST Routine)

681

Chapter 19. Symbiont/Job Controller Interface (SMB) Routines

19.1.7.2. Single-Streaming Versus Multistreaming
A single-stream (or thread) is a logical link between a queue and a symbiont process. When a sym-
biont process is linked to more than one queue and serves those queues simultaneously, it is called a
multithreaded symbiont.

The argument to the SMB$READ_MESSAGE routine provides a way for a multithreaded symbiont
to keep track of the stream referred to by a request. Writing your own multithreaded symbiont, how-
ever, can be a complex undertaking.

19.1.8. Reading Job Controller Requests
The seven general functions that the job controller can request of the symbiont are as follows:

• SMBMSG$K_START_STREAM

• SMBMSG$K_STOP_STREAM

• SMBMSG$K_START_TASK

• SMBMSG$K_PAUSE_TASK

• SMBMSG$K_RESUME_TASK

• SMBMSG$K_STOP_TASK

• SMBMSG$K_RESET_STREAM

The job controller passes these requests to the symbiont in a structure that contains: (1) a code that
identifies the requested function and (2) optional items of information that the symbiont might need to
perform the requested function.

By calling SMB$READ_MESSAGE, the symbiont reads the function code and writes the associat-
ed items of information, if any, into a buffer. The symbiont then parses the message items stored in
the buffer by calling the SMB$READ_MESSAGE_ITEM routine. SMB$READ_MESSAGE_ITEM
reads one message item each time it is called.

Each message item consists of a code that identifies the type of information the item contains, and the
information itself. For example, the SMBMSG$K_JOB_NAME code tells the symbiont that the item
contains a string, which is the name of a job.

The number of message items in a request message varies with each type of request. Therefore, to en-
sure that all message items are read, SMB$READ_MESSAGE_ITEM must be called repeatedly for
each request. SMB$READ_MESSAGE_ITEM returns status SMB$_NOMOREITEMS after it has
read the last message item in a given request.

Typically, a symbiont checks the code of a message item against a case table and stores the message
string in an appropriate variable until all the message items are read and the processing of the request
can begin.

See the description of the SMB$READ_MESSAGE_ITEM routine for a table that shows the message
items that make up each type of request.

19.1.9. Processing Job Controller Requests
After a request is read, it must be processed. The way a request is processed depends on the type of re-
quest. The following section lists, for each request that the job controller sends to the print symbiont,

682

Chapter 19. Symbiont/Job Controller Interface (SMB) Routines

the actions that the standard symbiont (PRTSMB) takes when the message is received. These actions
are oriented toward print symbionts in particular but can serve as a guideline for other kinds of sym-
bionts as well.

The symbiont you write can respond to requests in a similar way or in a different way appropriate to
the function of your symbiont. VSI suggests that your routines follow the guidelines described in this
document. (Note that the behavior of the standard symbiont is subject to change without notice in fu-
ture versions of the operating system.)

SMBMSG$K_START_STREAM
• Reset all stream-specific information that might have been altered by previous START_STREAM

requests on this stream (for multithreaded symbionts).

• Read and store the message items associated with the request.

• Allocate the device specified by the SMBMSG$K_DEVICE_NAME item.

• Assign a channel to the device.

• Obtain the device characteristics.

• If the device is neither a terminal nor a printer, then abort processing and return an error to the job
controller by means of the SMB$SEND_TO_JOBCTL routine. Note that, even though an error
has occurred, the stream is still considered started. The job controller detects the error and sends a
STOP_STREAM request to the symbiont.

• Set temporary device characteristics suited to the way the symbiont will use the device.

• For remote devices (devices connected to the system by means of a modem), establish an AST to
report loss of the carrier signal.

• Report to the job controller that the request has been completed and that the stream is started, by
specifying SMBMSG$K_START_STREAM in the call to SMB$SEND_TO_JOBCTL.

SMBMSG$K_START_TASK
• Reset all task-specific information that might have been altered by previous START_TASK re-

quests on this stream number.

• Read and store the message items associated with the request.

• Open the main input file.

• Report to the job controller that the task has been started by specifying SMBMSG$K_S-
TART_TASK in the call to the SMB$SEND_TO_JOBCTL routine.

• Begin processing the task.

• When the task is complete, notify the job controller by specifying SMBMSG$K_TASK_COM-
PLETE in the call to the SMB$SEND_TO_JOBCTL routine.

SMBMSG$K_PAUSE_TASK
• Read and store the message items associated with the request.

• Set a flag that will cause the main processing routine to pause at the beginning of the next output
page.

683

Chapter 19. Symbiont/Job Controller Interface (SMB) Routines

• When the main routine pauses, notify the job controller by specifying SMB-
MSG$K_PAUSE_TASK in the call to the SMB$SEND_TO_JOBCTL routine.

SMBMSG$K_RESUME_TASK
• Read and store the message items associated with the request.

• Perform any positioning functions specified by the message items.

• Clear the flag that causes the main input routine to pause, and resume processing the task.

• Notify the job controller that the task has been resumed by specifying SMB-
MSG$K_RESUME_TASK in the call to the SMB$SEND_TO_JOBCTL routine.

SMBMSG$K_STOP_TASK
• Read and store the message items associated with the request.

• If processing of the current task has paused, then resume it.

• Cancel any outstanding I/O operations.

• Close the input file.

• If the job controller specified, in the START_TASK message, that a trailer page should be printed
when the task is stopped or if it specified that the device should be reset when the task is stopped,
then perform those functions.

• Notify the job controller that the task has been stopped abnormally by specifying SMBMSG$K_S-
TOP_TASK and by specifying an error vector in the call to SMB$SEND_TO_JOBCTL.
PRTSMB specifies the value passed by the job controller in the SMBMSG$K_S-
TOP_CONDITION item as the error condition in the error vector.

SMBMSG$K_STOP_STREAM
• Read and store the message items associated with the request.

• Release any stream-specific resources: (1) deassign the channel to the device, and (2) deallocate
the device.

• Notify the job controller that the stream has been stopped by specifying SMBMSG$K_S-
TOP_STREAM in the call to SMB$SEND_TO_JOBCTL.

• If this is a single-threaded symbiont or if this is a multithreaded symbiont but all other streams are
currently stopped, then call the $EXIT system service with the condition code SS$_NORMAL.

SMBMSG$K_RESET_STREAM
• Read and store the message items associated with the request.

• Abort any task in progress – you do not need to notify the job controller that the task has been
aborted, but you may do so if you want.

• If the job controller specified, in the START_TASK message, that a trailer page should be printed
when the task is stopped or if it specified that the device should be reset when the task is stopped,
then suppress those functions.

684

Chapter 19. Symbiont/Job Controller Interface (SMB) Routines

The job controller sends the symbiont a RESET_STREAM request to regain control of a queue
or a device that has failed to respond to a STOP_TASK request. The RESET_STREAM request
should avoid any further I/O activity if possible. The printer might be disabled, for example, and
requests for output on that device will never be completed.

• Continue as if this were a STOP_STREAM request.

Note

A STOP_STREAM request and a RESET_STREAM request each stop the queue; but a
RESET_STREAM request is an emergency stop and is used, for example, when the device has failed.
A RESET_STREAM request should prevent any further I/O activity because the printer might not be
able to complete it.

19.1.10. Responding to Job Controller Requests
The symbiont uses the SMB$SEND_TO_JOBCTL routine to send messages to the job controller.

Most messages that the symbiont sends to the job controller are responses to requests made by the job
controller. Such messages inform the job controller that the request has been completed successful-
ly or unsuccessfully. The function code that the symbiont returns to the controller in the call to SMB
$SEND_TO_JOBCTL indicates what request has been completed.

For example, if the job controller sends a START_TASK request using the SMBMSG$K_S-
TART_TASK code, the symbiont responds by calling SMB$SEND_TO_JOBCTL using SMB-
MSG$K_START_TASK as the request argument to indicate that task processing has begun. Until
the symbiont responds, the DCL command SHOW QUEUE indicates that the queue is starting.

The responses to some requests use additional arguments to send more information than just the re-
quest code. See the SMB$SEND_TO_JOBCTL routine for a table showing the additional arguments
allowed in response to each request.

In addition to sending messages in response to requests, the symbiont can send other messages to the
job controller. In these messages the symbiont sends either the SMBMSG$K_TASK_COMPLETE
code, indicating that it has completed a task, or SMBMSG$K_TASK_STATUS, indicating that the
message contains information on the status of a task.

Note that, when a START_TASK request is delivered, the symbiont responds with a SMB
$SEND_TO_JOBCTL message with the SMBMSG$K_START_TASK code. This response means
the task has been started. It does not mean the task has been completed. When the symbiont completes
the task, it calls SMB$SEND_TO_JOBCTL with the SMBMSG$K_TASK_COMPLETE code.

19.2. SMB Routines
This section describes the individual SMB routines.

SMB$CHECK_FOR_MESSAGE
Check for Message from Job Controller — The SMB$CHECK_FOR_MESSAGE routine determines
whether a message sent from the job controller to the symbiont is waiting to be read.

685

Chapter 19. Symbiont/Job Controller Interface (SMB) Routines

Format
SMB$CHECK_FOR_MESSAGE

Returns
OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. Most utility routines return a condition value in R0. Condition values that
this routine can return are listed under Condition Values Returned.

Description
When your symbiont calls the SMB$INITIALIZE routine to initialize the interface between
the symbiont and the job controller, you can choose to have requests from the job controller
delivered by means of an AST. If you choose not to use ASTs, your symbiont must call SMB
$CHECK_FOR_MESSAGE during the processing of tasks in order to see if a message from the job
controller is waiting to be read. If a message is waiting, SMB$CHECK_FOR_MESSAGE returns a
success code; if not, it returns a zero.

If a message is waiting, the symbiont should call SMB$READ_MESSAGE to read it to deter-
mine if immediate action should be taken (as in the case of STOP_TASK, RESET_STREAM or
PAUSE_TASK).

If a message is not waiting, SMB$CHECK_MESSAGE returns a zero. If this condition is detected,
the symbiont should continue processing the request at hand.

Condition Values Returned
SS$_NORMAL

One or more messages waiting.

0

No messages waiting.

SMB$INITIALIZE
Initialize User-Written Symbiont — The SMB$INITIALIZE routine initializes the user-written sym-
biont and the interface between the symbiont and the job controller. It allocates and initializes the in-
ternal databases of the interface and sets up the mechanism that is to wake up the symbiont when a
message is received.

Format
SMB$INITIALIZE structure_level [,ast_routine] [,streams]

Returns
OpenVMS usage: cond_value

686

Chapter 19. Symbiont/Job Controller Interface (SMB) Routines

type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. Most utility routines return a condition value in R0. Condition values that
this routine can return are listed under Condition Values Returned.

Arguments
structure_level

OpenVMS usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by reference

Version of the symbiont/job controller interface. The structure_level argument is the address
of a longword containing the version of the symbiont/job controller interface used when the symbiont
was compiled. Always place the value of the symbol SMBMSG$K_STRUCTURE_LEVEL in the
longword addressed by this argument. Each programming language provides an appropriate mecha-
nism for defining symbols.

ast_routine

OpenVMS usage: ast_procedure
type: procedure value
access: read only
mechanism: by reference

Message-handling routine called at AST level. The ast_routine argument is the address of the en-
try point of the message-handling routine to be called at AST level when the symbiont receives a mes-
sage from the job controller. The AST routine is called with no parameters and returns no value. If an
AST routine is specified, the routine is called once each time the symbiont receives a message from
the job controller.

The AST routine typically reads the message and determines if immediate action must be taken. Be
aware that an AST can be delivered only while the symbiont is operating at non-AST level. Thus, to
ensure delivery of messages from the job controller, the symbiont should not perform lengthy opera-
tions at AST level.

If you do not specify the ast_routine argument, the symbiont must call the SMB
$CHECK_FOR_MESSAGE routine to check for waiting messages.

streams

OpenVMS usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by reference

687

Chapter 19. Symbiont/Job Controller Interface (SMB) Routines

Maximum number of streams the symbiont is to support. The streams argument is the address of
a longword containing the number of streams that the symbiont is to support. The number must be in
the range of 1 to 32.

If you do not specify this argument, a default value of 1 is used. Thus, by default, a symbiont supports
one stream. Such a symbiont is called a single-threaded symbiont.

A stream (or thread) is a logical link between a queue and a symbiont. When a symbiont is linked to
more than one queue, and serves those queues simultaneously, it is called a multithreaded symbiont.

Description
Your symbiont must call SMB$INITIALIZE before calling any other SMB routines. It calls SMB
$INITIALIZE in order to do the following:

• Allocate and initialize the SMB facility's internal database.

• Establish the interface between the job controller and the symbiont.

• Determine the threading scheme of the symbiont.

• Set up the mechanism to wake your symbiont when a message is received.

After the symbiont calls SMB$INITIALIZE, it can communicate with the job controller using the oth-
er SMB routines.

Condition Values Returned
SS$_NORMAL

Normal successful completion.

SMB$_INVSTRLEV

Invalid structure level.

This routine also returns any codes returned by $ASSIGN and LIB$GET_VM.

SMB$READ_MESSAGE
Obtain Message Sent by Job Controller — The SMB$READ_MESSAGE routine copies a message
that the job controller has sent into the caller's specified buffer.

Format
SMB$READ_MESSAGE stream ,buffer ,request

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

688

Chapter 19. Symbiont/Job Controller Interface (SMB) Routines

Longword condition value. Most utility routines return a condition value in R0. Condition values that
this routine can return are listed under Condition Values Returned.

Arguments
stream

OpenVMS usage: longword_unsigned
type: longword (unsigned)
access: write only
mechanism: by reference

Stream number specifying the stream to which the message refers. The stream argument is the ad-
dress of a longword into which the job controller writes the number of the stream referred to by the
message. In single-threaded symbionts, the stream number is always 0.

buffer

OpenVMS usage: char_string
type: character string
access: write only
mechanism: by descriptor

Address of the descriptor that points to the buffer into which the job controller writes the message.
SMB$READ_MESSAGE uses the Run-Time Library string-handling (STR$) routines to copy the
message into the buffer you supply. The buffer should be specified by a dynamic string descriptor.

request

OpenVMS usage: identifier
type: longword (unsigned)
access: write only
mechanism: by reference

Code that identifies the request. The request argument is the address of a longword into which
SMB$READ_MESSAGE writes the code that identifies the request.

There are seven request codes. Each code is interpreted as a message by the symbiont. The codes and
their descriptions follow:

SMBMSG$K_START_STREAM Initiates processing on an inactive symbiont
stream. The job controller sends this message
when a START/QUEUE or an INITIALIZE/
QUEUE/START command is issued on a stopped
queue.

SMBMSG$K_STOP_STREAM Stops processing on a started queue. The job con-
troller sends this message when a STOP/QUEUE/
NEXT command is issued, after the symbiont
completes any currently active task.

SMBMSG$K_RESET_STREAM Aborts all processing on a started stream and re-
queues the current job. The job controller sends

689

Chapter 19. Symbiont/Job Controller Interface (SMB) Routines

this message when a STOP/QUEUE/RESET
command is issued.

SMBMSG$K_START_TASK Requests that the symbiont begin processing a
task. The job controller sends this message when
a file is pending on an idle, started queue.

SMBMSG$K_STOP_TASK Requests that the symbiont abort the process-
ing of a task. The job controller sends this mes-
sage when a STOP/QUEUE/ABORT or STOP/
QUEUE/REQUEUE command is issued. The
item SMBMSG$K_STOP_CONDITION identi-
fies whether this is an abort or a requeue request.

SMBMSG$K_PAUSE_TASK Requests that the symbiont pause in the process-
ing of a task but retain the resources necessary
to continue. The job controller sends this mes-
sage when a STOP/QUEUE command is issued
without the /ABORT, /ENTRY, /REQUEUE, or /
NEXT qualifier for a queue that is currently print-
ing a job.

SMBMSG$K_RESUME_TASK Requests that the symbiont continue processing a
task that has been stopped with a PAUSE_TASK
request. This message is sent when a START/
QUEUE command is issued for a queue served by
a symbiont that has paused in processing the cur-
rent task.

Description

Your symbiont calls SMB$READ_MESSAGE to read a message that the job controller has sent to the
symbiont.

Each message from the job controller consists of a code identifying the function the symbiont is to
perform and a number of message items. There are seven codes. Message items are pieces of informa-
tion that the symbiont needs to carry out the requested function.

For example, when you enter the DCL command PRINT, the job controller sends a message contain-
ing a START_TASK code and a message item containing the specification of the file to be printed.

SMB$READ_MESSAGE writes the code into a longword (specified by the request argument) and
writes the accompanying message items, if any, into a buffer (specified by the buffer argument).

See the description of the SMB$READ_MESSAGE_ITEM routine for information about processing
the individual message items.

Condition Values Returned

SS$_NORMAL

Normal successful completion.

LIB$_INVARG

Routine completed unsuccessfully because of an invalid argument.

690

Chapter 19. Symbiont/Job Controller Interface (SMB) Routines

This routine also returns any of the condition codes returned by the Run-Time Library string-handling
(STR$) routines.

SMB$READ_MESSAGE_ITEM
Parse Next Item from Message Buffer — The SMB$READ_MESSAGE_ITEM routine reads a buffer
that was filled in by the SMB$READ_MESSAGE routine, parses one message item from the buffer,
writes the item's code into a longword, and writes the item into a buffer.

Format
SMB$READ_MESSAGE_ITEM message ,context ,item_code ,buffer [,size]

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. Most utility routines return a condition value in R0. Condition values that
this routine can return are listed under Condition Values Returned.

Arguments
message

OpenVMS usage: char_string
type: character string
access: read only
mechanism: by descriptor

Message items that SMB$READ_MESSAGE_ITEM is to read. The message argument is the ad-
dress of a descriptor of a buffer. The buffer is the one that contains the message items that SMB
$READ_MESSAGE_ITEM is to read. The buffer specified here must be the same as that specified
with the call to the SMB$READ_MESSAGE routine, which fills the buffer with the contents of the
message.

context

OpenVMS usage: context
type: longword (unsigned)
access: modify
mechanism: by reference

Value initialized to 0 specifying the first message item in the buffer to be read. The context
argument is the address of a longword that the SMB$READ_MESSAGE_ITEM routine uses
to determine the next message item to be returned. When this value is 0, it indicates that SMB
$READ_MESSAGE_ITEM is to return the first message item.

691

Chapter 19. Symbiont/Job Controller Interface (SMB) Routines

The SMB$READ_MESSAGE_ITEM routine updates this value each time it reads a message item.
SMB$READ_MESSAGE_ITEM sets the value to 0 when it has returned all the message items in the
buffer.

item_code

OpenVMS usage: smb_item
type: longword (unsigned)
access: write only
mechanism: by reference

Item code specified in the message item that identifies its type. The item_code argument is the ad-
dress of a longword into which SMB$READ_MESSAGE_ITEM writes the code that identifies which
item it is returning.

The codes that identify message items are defined at the end of the Description section for this rou-
tine.

buffer

OpenVMS usage: char_string
type: character string
access: write only
mechanism: by descriptor

Message item. The buffer argument is the address of a descriptor of a buffer. The buffer is the
one in which the SMB$READ_MESSAGE_ITEM routine is to place the message item data. SMB
$READ_MESSAGE_ITEM uses the Run-Time Library string-handling (STR$) routines to copy the
message item data into the buffer.

size

OpenVMS usage: word_unsigned
type: word (unsigned)
access: write only
mechanism: by reference

Size of the message item. The size argument is the address of a word in which the SMB
$READ_MESSAGE_ITEM is to place the size, in bytes, of the item's data.

Description
The job controller can request seven functions from the symbiont. They are identified by the follow-
ing codes:

SMBMSG$K_START_STREAM SMBMSG$K_STOP_STREAM
SMBMSG$K_START_TASK SMBMSG$K_PAUSE_TASK
SMBMSG$K_RESUME_TASK SMBMSG$K_STOP_TASK
SMBMSG$K_RESET_STREAM

The job controller passes the symbiont a request containing a code and, optionally, a number of mes-
sage items containing information the symbiont might need to perform the function. The code spec-

692

Chapter 19. Symbiont/Job Controller Interface (SMB) Routines

ifies what function the request is for, and the message items contain information that the symbiont
needs to carry out the function.

By calling SMB$READ_MESSAGE, the symbiont reads the request and writes the message items in-
to the specified buffer. The symbiont then obtains the individual message items by calling the SMB
$READ_MESSAGE_ITEM routine.

Each message item consists of a code that identifies the information the item represents, and the item
itself. For example, the SMB$K_JOB_NAME code tells the symbiont that the item specifies a job's
name.

The number of items in a request varies with each type of request. Therefore, you must call SMB
$READ_MESSAGE_ITEM repeatedly for each request to ensure that all message items are read.
Each time SMB$READ_MESSAGE_ITEM reads a message item, it updates the value in the long-
word specified by the context argument. SMB$READ_MESSAGE_ITEM returns the code SMB
$_NOMOREITEMS after it has read the last message item.

The following table shows the message items that can be delivered with each request:

Request Message Item
SMBMSG$K_ACCOUNT_NAME
SMBMSG$K_AFTER_TIME
SMBMSG$K_BOTTOM_MARGIN
SMBMSG$K_CHARACTERISTICS
SMBMSG$K_CHECKPOINT_DATA
SMBMSG$K_ENTRY_NUMBER
SMBMSG$K_FILE_COPIES
SMBMSG$K_FILE_COUNT
SMBMSG$K_FILE_IDENTIFICATION
SMBMSG$K_FILE_SETUP_MODULES
SMBMSG$K_FILE_SPECIFICATION
SMBMSG$K_FIRST_PAGE
SMBMSG$K_FORM_LENGTH
SMBMSG$K_FORM_NAME
SMBMSG$K_FORM_SETUP_MODULES
SMBMSG$K_FORM_WIDTH
SMBMSG$K_JOB_COPIES
SMBMSG$K_JOB_COUNT
SMBMSG$K_JOB_NAME
SMBMSG$K_JOB_RESET_MODULES
SMBMSG$K_LAST_PAGE
SMBMSG$K_LEFT_MARGIN
SMBMSG$K_MESSAGE_VECTOR
SMBMSG$K_NOTE

SMBMSG$K_START_TASK

SMBMSG$K_PAGE_SETUP_MODULES

693

Chapter 19. Symbiont/Job Controller Interface (SMB) Routines

Request Message Item
SMBMSG$K_PARAMETER_1

#
SMBMSG$K_PARAMETER_8
SMBMSG$K_PRINT_CONTROL
SMBMSG$K_SEPARATION_CONTROL
SMBMSG$K_REQUEST_CONTROL
SMBMSG$K_PRIORITY
SMBMSG$K_QUEUE
SMBMSG$K_RIGHT_MARGIN
SMBMSG$K_TIME_QUEUED
SMBMSG$K_TOP_MARGIN
SMBMSG$K_UIC
SMBMSG$K_USER_NAME

SMBMSG$K_STOP_TASK SMBMSG$K_STOP_CONDITION
SMBMSG$K_PAUSE_TASK None

SMBMSG$K_ALIGNMENT_PAGES
SMBMSG$K_RELATIVE_PAGE
SMBMSG$K_REQUEST_CONTROL

SMBMSG$K_RESUME_TASK

SMBMSG$K_SEARCH_STRING
SMBMSG$K_DEVICE_NAME
SMBMSG$K_EXECUTOR_QUEUE
SMBMSG$K_JOB_RESET_MODULES

SMBMSG$K_START_STREAM

SMBMSG$K_LIBRARY_SPECIFICATION
SMBMSG$K_STOP_STREAM None
SMBMSG$K_RESET_STREAM None

The following list describes each item code. For each code, the list describes the contents of the mes-
sage item identified by the code and whether the code identifies an item sent from the job controller to
the symbiont or from the symbiont to the job controller.

Many of the codes described are specifically oriented toward print symbionts. The symbiont you im-
plement, which might not print files or serve an output device, need not recognize all these codes. In
addition, it need not respond in the same way as the print symbiont to the codes it recognizes. The de-
scriptions in the list describe how the standard print symbiont (PRTSMB.EXE) processes these items.

Note

Because new codes might be added in the future, you should write your symbiont so that it ignores
codes it does not recognize.

Codes for Message Items

[SMBMSG$K_ACCOUNT_NAME"]

694

Chapter 19. Symbiont/Job Controller Interface (SMB) Routines

This code identifies a string containing the name of the account to be charged for the job, that is, the
account of the process that submitted the print job.

[SMBMSG$K_AFTER_TIME"]

This code identifies a 64-bit, absolute-time value specifying the system time after which the job con-
troller can process this job.

[SMBMSG$K_ALIGNMENT_PAGES"]

This code identifies a longword specifying the number of alignment pages that the symbiont is to
print.

[SMBMSG$K_BOTTOM_MARGIN"]

This code identifies a longword containing the number of lines to be left blank at the bottom of a
page.

The symbiont inserts a form feed character into the output stream if it determines that all of the fol-
lowing conditions are true:

• The number of lines left at the bottom of the page is equal to the value in SMBMSG$K_BOT-
TOM_MARGIN.

• Sending more data to the printer to be output on this page would cause characters to be printed
within this bottom margin of the page.

• The /FEED qualifier was specified with the PRINT command that caused the symbiont to perform
this task.

(Line feed, form feed, carriage-return, and vertical-tab characters in the output stream are collectively
known as embedded carriage control.)

[SMBMSG$K_CHARACTERISTICS"]

This code identifies a 16-byte structure specifying characteristics of the job. A detailed description of
the format of this structure is contained in the description of the QUI$_CHARACTERISTICS code in
the $GETQUI system service in the VSI OpenVMS System Services Reference Manual.

[SMBMSG$K_DEVICE_NAME"]

This code identifies a string that is the name of the device to which the symbiont is to send data. The
symbiont interprets this information. The name need not be the name of a physical device, and the
symbiont can interpret this string as something other than the name of a device.

[SMBMSG$K_ENTRY_NUMBER"]

This code identifies a longword containing the number that the job controller assigned to the job.

[SMBMSG$K_EXECUTOR_QUEUE"]

This code identifies a string that is the name of the queue on which the symbiont stream is to be start-
ed.

[SMBMSG$K_FILE_COPIES"]

695

Chapter 19. Symbiont/Job Controller Interface (SMB) Routines

This code identifies a longword containing the number of copies of the file that were requested.

[SMBMSG$K_FILE_COUNT"]

This code identifies a longword that specifies, out of the number of copies requested for this job
(SMBMSG$K_FILE_COPIES), the number of the copy of the file currently printing.

[SMBMSG$K_FILE_IDENTIFICATION"]

This code identifies a 28-byte structure identifying the file to be processed. This structure consists of
the following three file-identification fields in the OpenVMS RMS NAM block:

1. The 16-byte NAM$T_DVI field

2. The 6-byte NAM$W_FID field

3. The 6-byte NAM$W_DID field

These fields occur consecutively in the NAM block in the order listed.

[SMBMSG$K_FILE_SETUP_MODULES"]

This code identifies a string specifying the names (separated by commas) of one or more text modules
that the symbiont should copy from the library into the output stream before processing the file.

[SMBMSG$K_FILE_SPECIFICATION"]

This code identifies a string specifying the name of the file that the symbiont is to process. This file
name is formatted as a standard RMS file specification.

[SMBMSG$K_FIRST_PAGE"]

This code identifies a longword containing the number of the page at which the symbiont should be-
gin printing. The job controller sends this item to the symbiont. When not specified, the symbiont be-
gins processing at page 1.

[SMBMSG$K_FORM_LENGTH"]

This code identifies a longword value specifying the length (in lines) of the physical form (the paper).

[SMBMSG$K_FORM_NAME"]

This code identifies a string specifying the name of the form.

[SMBMSG$K_FORM_SETUP_MODULES"]

This code identifies a string consisting of the names (separated by commas) of one or more modules
that the symbiont should copy from the device-control library before processing the file.

[SMBMSG$K_FORM_WIDTH"]

This code identifies a longword specifying the width (in characters) of the print area on the physical
form (the paper).

[SMBMSG$K_JOB_COPIES"]

This code identifies a longword specifying the requested number of copies of the job.

696

Chapter 19. Symbiont/Job Controller Interface (SMB) Routines

[SMBMSG$K_JOB_COUNT"]

This code identifies a longword specifying, out of the number of copies requested (SMB-
MSG$K_JOB_COPIES), the number of the copy of the job currently printing.

[SMBMSG$K_JOB_NAME"]

This code identifies a string specifying the name of the job.

[SMBMSG$K_JOB_RESET_MODULES"]

This code identifies a string specifying a list of one or more module names (separated by commas)
that the symbiont should copy from the device-control library after processing the task. These mod-
ules can be used to reset programmable devices to a known state.

[SMBMSG$K_LAST_PAGE"]

This code identifies a longword specifying the number of the last page that the symbiont is to print.
When not specified, the symbiont attempts to print all the pages in the file.

[SMBMSG$K_LEFT_MARGIN"]

This code identifies a longword specifying the number of spaces to be inserted at the beginning of
each line.

[SMBMSG$K_LIBRARY_SPECIFICATION"]

This code identifies a string specifying the name of the device-control library.

[SMBMSG$K_MESSAGE_VECTOR"]

This code identifies a vector of longword condition codes, each of which contains information about
the job to be printed.

When LOGINOUT cannot open a log file for a batch job, a code in the message vector specifies the
reason for the failure. The job controller does not send the SMBMSG$K_FILE_IDENTIFICATION
item if it has detected such a failure but instead sends the message vector, which the symbiont prints,
along with a message stating that there is no file to print.

[SMBMSG$K_NOTE"]

This code identifies a user-supplied string that the symbiont is to print on the job flag page and on the
file flag page.

[SMBMSG$K_PAGE_SETUP_MODULES"]

This code identifies a string consisting of the names (separated by commas) of one or more modules
that the symbiont should copy from the device-control library before printing each page.

[SMBMSG$K_PARAMETER_1 through SMBMSG$K_PARAMETER_8"]

Each of these eight codes identifies a user-supplied string. Both the semantics and syntax of each
string are determined by the user-defined symbiont. The OpenVMS-supplied symbiont makes no use
of these eight items.

[SMBMSG$K_PRINT_CONTROL"]

697

Chapter 19. Symbiont/Job Controller Interface (SMB) Routines

This code identifies a longword bit vector, each bit of which supplies information that the symbiont is
to use in controlling the printing of the file.

Symbol Description
SMBMSG$V_DOUBLE_SPACE The symbiont uses a double-spaced format; it

skips a line after each line it prints.
SMBMSG$V_NO_INITIAL_FF The symbiont suppresses the initial form feed if

this bit is turned on.
SMBMSG$V_NORECORD_BLOCKING The symbiont performs single record output, issu-

ing a single output record for each input record.
SMBMSG$V_PAGE_HEADER The symbiont prints a page header at the top of

each page.
SMBMSG$V_PAGINATE The symbiont inserts a form feed character when

it detects an attempt to print in the bottom margin
of the current form.

SMBMSG$V_PASSALL The symbiont prints the file without formatting
and bypasses all formatting normally performed.
Furthermore, the symbiont outputs the file with-
out formatting, by causing the output QIO to sup-
press formatting by the driver.

SMBMSG$V_RECORD_BLOCKING The symbiont performs record blocking, buffer-
ing output to the device.

SMBMSG$V_SEQUENCED This bit is reserved by VSI.
SMBMSG$V_SHEET_FEED The symbiont pauses the queue after each page it

prints.
SMBMSG$V_TRUNCATE The symbiont truncates input lines that exceed the

right margin of the current form.
SMBMSG$V_WRAP The symbiont wraps input lines that exceed the

right margin, printing the additional characters on
a new line.

[SMBMSG$K_PRIORITY"]

This code identifies a longword specifying the priority this job has in the queue in which it is entered.

[SMBMSG$K_QUEUE"]

This code identifies a string specifying the name of the queue in which this job is entered. When
generic queues are used, this item specifies the name of the generic queue, and the SMBMSG$K_EX-
ECUTOR item specifies the name of the device queue or the server queue.

[SMBMSG$K_RELATIVE_PAGE"]

This code identifies a signed, longword value specifying the number of pages that the symbiont is to
move forward (positive value) or backward (negative value) from the current position in the file.

[SMBMSG$K_REQUEST_CONTROL"]

This code identifies a longword bit vector, each bit of which specifies information that the symbiont is
to use in processing the request that the job controller is making.

698

Chapter 19. Symbiont/Job Controller Interface (SMB) Routines

Symbol Description
SMBMSG$V_ALIGNMENT_MASK The symbiont is to replace all alphabetic charac-

ters with the letter X, and all numeric characters
with the number 9. Other characters (punctuation,
carriage control, and so on) are left unchanged.
This bit is ordinarily specified in connection with
the SMBMSG$K_ALIGNMENT_PAGES item.

SMBMSG$V_PAUSE_COMPLETE The symbiont is to pause when it completes the
current request.

SMBMSG$V_RESTARTING Indicates that this job was previously interrupted
and requeued, and is now restarting.

SMBMSG$V_TOP_OF_FILE The symbiont is to rewind the input file before it
resumes printing.

[SMBMSG$K_RIGHT_MARGIN"]

This code identifies a longword specifying the number of character positions to be left empty at the
end of each line. When the right margin is exceeded, the symbiont truncates the line, wraps the line,
or continues processing, depending on the settings of the WRAP and TRUNCATE bits in the SMB-
MSG$K_PRINT_CONTROL item.

[SMBMSG$K_SEARCH_STRING"]

This code identifies a string containing the value specified in the START/QUEUE/SEARCH com-
mand. This string identifies the page at which to restart the current printing task on a paused queue.

[SMBMSG$K_SEPARATION_CONTROL"]

This code identifies a longword bit vector, each bit of which specifies an operation that the symbiont
is to perform between jobs or between files within a job. The $SMBDEF macro defines the following
symbols for each bit:

Symbol Description
SMBMSG$V_FILE_BURST The symbiont is to print a file burst page.
SMBMSG$V_FILE_FLAG The symbiont is to print a file flag page.
SMBMSG$V_FILE_TRAILER The symbiont is to print a file trailer page.
SMBMSG$V_FILE_TRAILER_ABORT The symbiont is to print a file trailer page when a

task completes abnormally.
SMBMSG$V_FIRST_FILE_OF_JOB The current file is the first file of

the job. When specified with SMB-
MSG$V_LAST_FILE_OF_JOB, the current job
contains a single file.

SMBMSG$V_JOB_FLAG The symbiont is to print a job flag page.
SMBMSG$V_JOB_BURST The symbiont is to print a job burst page.
SMBMSG$V_JOB_RESET The symbiont is to execute a job reset sequence

when the task completes.
SMBMSG$V_JOB_RESET_ABORT The symbiont is to execute a job reset sequence

when a task completes abnormally.

699

Chapter 19. Symbiont/Job Controller Interface (SMB) Routines

Symbol Description
SMBMSG$V_JOB_TRAILER The symbiont is to print a job trailer page.
SMBMSG$V_JOB_TRAILER_ABORT The symbiont is to print a job trailer page when a

task completes abnormally.
SMBMSG$V_LAST_FILE_OF_JOB The current file is the last file of

the job. When specified with SMB-
MSG$V_FIRST_FILE_OF_JOB, the current job
contains a single job.

[SMBMSG$K_STOP_CONDITION"]

This code identifies a longword containing a condition specifying the reason the job controller issued
a STOP_TASK request.

[SMBMSG$K_TIME_QUEUED"]

This code identifies a quadword specifying the time the file was entered into the queue. The time is
expressed as 64-bit, absolute time.

[SMBMSG$K_TOP_MARGIN"]

This code identifies a longword specifying the number of lines that the symbiont is to leave blank at
the top of each page. PRTSMB inserts line feeds into the output stream after every form feed until the
margin is cleared.

[SMBMSG$K_UIC"]

This code identifies a longword specifying the user identification code (UIC) of the user who submit-
ted the job.

[SMBMSG$K_USER_NAME"]

This code identifies a string specifying the name of the user who submitted the job.

Condition Values Returned

SS$_NORMAL

Normal successful completion.

SMB$_NOMOREITEMS

End of item list reached.

This routine also returns any condition code returned by the Run-Time Library string-handling (STR
$) routines.

SMB$SEND_TO_JOBCTL
Send Message to Job Controller — The SMB$SEND_TO_JOBCTL routine is used by your symbiont
to send messages to the job controller. Three types of messages can be sent: request-completion mes-
sages, task-completion messages, and task-status messages.

700

Chapter 19. Symbiont/Job Controller Interface (SMB) Routines

Format
SMB$SEND_TO_JOBCTL stream [,request] [,accounting] [,checkpoint]
 [,device_status] [,error]

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. Most utility routines return a condition value in R0. Condition values that
this routine can return are listed under Condition Values Returned.

Arguments

stream

OpenVMS usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by reference

Stream number specifying the stream to which the message refers. The stream argument is the ad-
dress of a longword containing the number of the stream to which the message refers.

request

OpenVMS usage: identifier
type: longword (unsigned)
access: read only
mechanism: by reference

Request code identifying the request being completed. The request argument is the address of a
longword containing the code that identifies the request that has been completed.

The code usually corresponds to the code the job controller passed to the symbiont by means of a call
to SMB$READ_MESSAGE. But the symbiont can also initiate task-completion and task-status mes-
sages that are not in response to a request. (See the Description section.)

accounting

OpenVMS usage: char_string
type: character string
access: read only
mechanism: by descriptor

701

Chapter 19. Symbiont/Job Controller Interface (SMB) Routines

Accounting information about a task. The accounting argument is the address of a descriptor
pointing to the accounting information about a task. Note that this structure is passed by descriptor
and not by reference.

The job controller accumulates task statistics into a job-accounting record, which it writes to the ac-
counting file when the job is completed.

The following diagram depicts the contents of the 16-byte structure:

checkpoint

OpenVMS usage: char_string
type: character string
access: read only
mechanism: by descriptor

Checkpoint data about the currently executing task. The checkpoint argument is the address of
the descriptor that points to checkpointing information that relates to the status of a task. When the
symbiont sends this information to the job controller, the job controller saves it in the queue data-
base. When a restart-from-checkpoint request is executed for the queue, the job controller retrieves
the checkpointing information from the queue database and sends it to the symbiont in the SMB-
MSG$K_CHECKPOINT_DATA item that accompanies a SMBMSG$K_START_TASK request.

Print symbionts can use the checkpointing information to reposition the input file to the point corre-
sponding to the page being output when the last checkpoint was taken. Other symbionts might use
checkpoint information to specify restart information for partially completed tasks.

Note

Because each checkpoint causes information to be written into the job controller's queue database,
taking a checkpoint incurs significant overhead. Use caution in regard to the size and frequency of
checkpoints. When determining how often to checkpoint, weigh processor and file-system overhead
against the convenience of restarting.

device_status

OpenVMS usage: longword_unsigned
type: longword (unsigned)

702

Chapter 19. Symbiont/Job Controller Interface (SMB) Routines

access: read only
mechanism: by reference

Status of the device served by the symbiont. The device_status argument is the address of a
longword passed to the job controller, which contains the status of the device to which the symbiont is
connected.

This longword contains a longword bit vector, each bit of which specifies device-status information.
Each programming language provides an appropriate mechanism for defining these device-status bits.
The following table describes each bit:

Device Status Bit Description
SMBMSG$V_LOWERCASE The device to which the symbiont is connected

supports lowercase characters.
SMBMSG$V_PAUSE_TASK The symbiont sends this message to inform the

job controller that the symbiont has paused on its
own initiative.

SMBMSG$V_REMOTE The device is connected to the symbiont by
means of a modem.

SMBMSG$V_SERVER The symbiont is not connected to a device.
SMBMSG$V_STALLED Symbiont processing is temporarily stalled.
SMBMSG$V_STOP_STREAM The symbiont requests that the job controller stop

the queue.
SMBMSG$V_TERMINAL The symbiont is connected to a terminal.
SMBMSG$V_UNAVAILABLE The device to which the symbiont is connected is

not available.

error

OpenVMS usage: vector_longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by reference

Condition codes returned by the requested task. The error argument is the address of a vector of
longword condition codes. The first longword contains the number of longwords following it.

If the low bit of the first condition code is clear, the job controller aborts further processing of the job.
Output of any remaining files, copies of files, or copies of the job is canceled. In addition, the job con-
troller saves up to three condition values in the queue database. The first condition value is includ-
ed in the job-accounting record that is written to the system's accounting file (SYS$MANAGER:AC-
COUNTNG.DAT).

Description
The symbiont uses the SMB$SEND_TO_JOBCTL routine to send messages to the job controller.

Most messages the symbiont sends to the job controller are responses to requests made by the job con-
troller. These responses inform the job controller that the request has been completed, either success-

703

Chapter 19. Symbiont/Job Controller Interface (SMB) Routines

fully or with an error. When the symbiont sends the message, it usually indicates that the request has
been completed.

In such messages, the request argument corresponds to the function code of the request that has
been completed. Thus, if the job controller sends a request using the SMBMSG$K_START_TASK
code, the symbiont responds by sending a SMB$SEND_TO_JOBCTL message using SMB-
MSG$K_START_TASK as the request argument.

The responses to some requests use additional arguments to send more information in addition to the
request code. The following table shows which additional arguments are allowed in response to each
different request:

* - (This is usually the value specified in the SMBMSG$K_STOP_CONDITION item * – (This is
usually the value specified in the SMBMSG$K_STOP_CONDITION item * – This is usually the val-
ue specified in the SMBMSG$K_STOP_CONDITION item that was sent by the job controller with
the SMBMSG$K_STOP_TASK request.

Request Arguments
request
device_status

SMBMSG$K_START_STREAM

error
SMBMSG$K_STOP_STREAM request
SMBMSG$K_RESET_STREAM request
SMBMSG$K_START_TASK request
SMBMSG$K_PAUSE_TASK request
SMBMSG$K_RESUME_TASK request

requestSMBMSG$K_STOP_TASK
error 1

1This is usually the value specified in the SMBMSG$K_STOP_CONDITION item that was sent by the job controller with the SMB-
MSG$K_STOP_TASK request.

In addition to responding to requests from the job controller, the symbiont can send other messages to
the job controller. If the symbiont sends a message that is not a response to a request, it uses either the
SMBMSG$K_TASK_COMPLETE or SMBMSG$K_TASK_STATUS code. Following are the addi-
tional arguments that you can use with the messages identified by these codes:

Code Arguments
request
accounting

SMBMSG$K_TASK_COMPLETE

error
request
checkpoint

SMBMSG$K_TASK_STATUS

device_status

The symbiont uses the SMBMSG$K_TASK_STATUS message to update the job controller on the
status of a task during the processing of that task. The checkpoint information passed to the job con-
troller with this message permits the job controller to restart an interrupted task from an appropriate
point. The device-status information permits the symbiont to report changes in device's status (device
stalled, for example).

704

Chapter 19. Symbiont/Job Controller Interface (SMB) Routines

The symbiont can use the SMBMSG$K_TASK_STATUS message to request that the job controller
send a stop-stream request. It does this by setting the stop-stream bit in the device-status argu-
ment.

The symbiont can also use the SMBMSG$K_TASK_STATUS message to notify the job controller
that the symbiont has paused in processing a task. It does so by setting the pause-task bit in the de-
vice-status argument.

The symbiont uses the SMBMSG$K_TASK_COMPLETE message to signal the completion of a
task. Note that, when the symbiont receives a START_TASK request, it responds by sending a SMB
$SEND_TO_JOBCTL message with SMBSMG$K_START_TASK as the request argument. This
response means that the symbiont has started the task; it does not mean the task has been completed.
When the symbiont has completed a task, it sends a SMB$SEND_TO_JOBCTL message with SMB-
MSG$K_TASK_COMPLETE as the request argument.

Optionally, the symbiont can specify accounting information when sending a task-completion mes-
sage. The accounting statistics accumulate to give a total for the job when the job is completed.

Also, if the symbiont is aborting the task because of a symbiont-detected error, you can specify up to
three condition values in the error argument. Aborting a task causes the remainder of the job to be
aborted.

Condition Values Returned
SS$_NORMAL

Normal successful completion.

This routine also returns any condition value returned by the $QIO system service and the LIB
$GET_VM routine.

705

Chapter 19. Symbiont/Job Controller Interface (SMB) Routines

706

Chapter 20. Sort/Merge (SOR)
Routines
The Sort/Merge (SOR) routines allow you to integrate a sort or merge operation into a program appli-
cation. Using these callable routines, you can process records, sort or merge them, and then process
them again.

20.1. High-Performance Sort/Merge (Alpha
Only)
You can also choose the high-performance Sort/Merge utility. This utility takes advantage of the Al-
pha architecture to provide better performance for most sort and merge operations.

In addition, the high-performance Sort/Merge utility can increase performance by using threads to
take advantage of multiple processors on an SMP configured system. Refer to Section 20.1.2 for fur-
ther information about using threads.

The high-performance Sort/Merge utility supports a subset of the SOR routines. Any differences be-
tween the high-performance Sort/Merge utility and Sort/Merge utility (SORT/MERGE) are noted
within this chapter.

Note

Memory allocation differences may limit the high-performance Sort/Merge utility's ability to per-
form the same number of concurrent sort operations as the Sort/Merge utility can perform in the same
amount of virtual memory.

If this situation occurs, you can either increase the amount of virtual memory that is available to the
process, or reduce the working set extent. For information on using system parameters to change the
amount of virtual memory or reduce the working set extent, refer to the OpenVMS System Manage-
ment Utilities Reference Manual.

Use the SORTSHR logical name to select the high-performance Sort/Merge utility. Define SORTSHR
to point to the high-performance sort executable in SYS$LIBRARY as follows:

$ define sortshr sys$library:hypersort.exe

To return to SORT/MERGE, deassign SORTSHR. The Sort/Merge utility is the default if SORTSHR
is not defined.

20.1.1. High-Performance SOR Routine Behavior
The behavior of the SOR routines for the high-performance Sort/Merge utility is the same as for
SORT/MERGE except as shown in Table 20.1.

If you attempt to use an unsupported capability, the high-performance Sort/Merge utility generates an
error. The high-performance Sort/Merge utility adds the following condition value to those listed for
SORT/MERGE:

SOR$_NYI Attempt to use a feature that is not yet imple-
mented.

707

Chapter 20. Sort/Merge (SOR) Routines

Table 20.1. High-Performance Sort/Merge: Differences in SOR$ Routine Behavior

Feature High-Performance Sort/Merge Behavior
Work files Permissible values of the SOR$BEGIN_SORT work_files ar-

gument range from 1 through 255. By default, the high-perfor-
mance Sort/Merge utility creates two temporary work files.

Input file size If you do not specify an input file size in the SOR$BEGIN_SORT
file_alloc argument, the high-performance Sort/Merge utility
determines a default based on the size of the input file, or if input
is not from files, on available memory.

Specification files The SOR$SPEC_FILE routine is not supported. (Implementation
of this feature is deferred to a future OpenVMS Alpha release.)

Key data types DSCK_DTYPE_O, DSCK_DTYPE_OU, DSC$K_DTYPE_H,
and DSC$K_DTYPE_NZ are not valid key data types in the SOR
$BEGIN_MERGE or SOR$BEGIN_SORT key_buffer argu-
ment. (Implementation of this feature is deferred to a future Open-
VMS Alpha release.)

Key data types not normally
supported by SORT/MERGE

The SOR$DTYPE routine is not supported. (Implementation of
this feature is deferred to a future OpenVMS Alpha release.) Da-
ta types that would otherwise be specified using SOR$DTYPE in-
clude extended data types and the National Character Set (NCS)
collating sequences.

Internal sorting processes Only the record sort process is supported. You can specify the
SOR$BEGIN_SORT routine sort_process argument as SOR
$GK_RECORD or omit the argument. The SOR$GK_TAG, SOR
$GK_ADDRESS, and SOR$GK_INDEX values are not supported
for the sort_process argument. (Implementation of this fea-
ture is deferred to a future OpenVMS Alpha release.)

Statistical summary information The following statistics are currently supported:

Records read/input (SOR$K_REC_INP)
Records sorted (SOR$K_REC_SOR)
Records output (SOR$K_REC_OUT)
Input record length (SOR$K_LRL_INP)

The following statistics are currently unavailable:

Internal length
Output record length
Sort tree size
Number of initial runs
Maximum merge order
Number of merge passes
Work file allocation

Full implementation of this feature is deferred to a future Open-
VMS Alpha release.

User-supplied action routines The following user-supplied action routines are not supported for
either SOR$BEGIN_MERGE or SOR$BEGIN_SORT. (Imple-
mentation of this feature is deferred to a future OpenVMS Alpha
release.) You must provide a placeholder comma (,) in the argu-

708

Chapter 20. Sort/Merge (SOR) Routines

Feature High-Performance Sort/Merge Behavior
ment list if other arguments follow the customary position of the
user_compare or user_equal argument.
user_compare Compares records to determine

their sort or merge order.
user_equal Resolves the sort or merge or-

der when records have duplicate
keys.

20.1.2. Using Threads with High-Performance Sort/
Merge
The high-performance Sort/Merge utility can take advantage of multiple processors on an SMP con-
figured system by using threads to gain additional performance. Threads use is optimized under the
following conditions:

• the SYSGEN parameter MULTITHREAD is set to the number of CPUs on the system

• the base image of the application using the high-performance Sort/Merge utility is linked with
the /THREADS_ENABLE qualifier

When linking an executable image that uses the high-performance Sort/Merge utility, the executable
should be linked with the /THREADS_ENABLE linker qualifier. Either /THREADS_ENABLE or /
THREADS_ENABLE=(MULTIPLE_KERNEL_THREADS,UPCALLS) qualifiers may be used. (Re-
fer to the Guide to DECthreads manual in the OpenVMS documentation set for more information on
this linker qualifier.)

The high-performance Sort/Merge utility will not utilize multiple processors, and therefore won't run
at peak performance, if the /THREADS_ENABLE linker qualifier is omitted, explicitly disabled (by
the /NOTHREADS_ENABLED), or partially enabled (by the /THREADS_ENABLE=UPCALLS or /
THREADS_ENABLE=MULTIPLE_KERNEL_THREADS). However, the high-performance Sort/
Merge utility will still run and produce correct results.

20.2. Introduction to SOR Routines
The following SOR routines are available for use in a sort or merge operation:

Routine Description
SOR$BEGIN_MERGE Sets up key arguments and performs the merge.

This is the only routine unique to MERGE.
SOR$BEGIN_SORT Initializes the sort operation by passing key infor-

mation and sort options. This is the only routine
unique to SORT.

SOR$DTYPE Defines a key data-type that is not normally sup-
ported by SORT/MERGE. (This feature is not
currently supported by the high-performance
Sort/Merge utility.)

SOR$END_SORT Performs cleanup functions, such as closing files
and releasing memory.

709

Chapter 20. Sort/Merge (SOR) Routines

Routine Description
SOR$PASS_FILES Passes names of input and output files to SORT

or MERGE must be repeated for each input file.
SOR$RELEASE_REC Passes one input record to SORT or MERGE

must be called once for each record.
SOR$RETURN_REC Returns one sorted or merged record to a program

must be called once for each record.
SOR$SORT_MERGE Sorts the records.
SOR$SPEC_FILE Passes a specification file or specification text. A

call to this routine must precede all other calls to
the SOR routines. (This feature is not currently
supported by the high-performance Sort/Merge
utility.)

SOR$STAT Returns a statistic about the sort or merge oper-
ation. (This feature is partially supported by the
high-performance Sort/Merge utility.)

You can call these SOR routines from any language that supports the OpenVMS calling standard.
Note that the application program should declare referenced constants and return status symbols as ex-
ternal symbols these symbols will be resolved upon linking with the utility shareable image.

After being called, each of these routines performs its function and returns control to a program. It al-
so returns a 32-bit condition code value indicating success or error, which a program can test to deter-
mine success or failure conditions.

20.2.1. Arguments to SOR Routines
For a sort operation, the arguments to the SOR routines provide SORT with file specifications, key
information, and instructions about the sorting process. For a merge operation, the arguments to the
SOR routines provide MERGE with the number of input files, input and output file specifications,
record information, key information, and input routine information. To perform sort or merge oper-
ations, you must pass key information (key_buffer argument) to either the SOR$BEGIN_SORT
or SOR$BEGIN_MERGE routine. The key_buffer argument is passed as an array of words. The
first word of the array contains the number of keys to be used in the sort or merge. Each block of four
words that follows describes one key (multiple keys are listed in order of their priority):

• The first word of each block describes the key data type.

• The second word determines the sort or merge order (0 for ascending, 1 for descending).

• The third word describes the relative offset of the key (beginning at position 0).

• The fourth word describes the length of the key in bytes.

There are both mandatory and optional arguments. The mandatory arguments appear first in the ar-
gument list. You must specify all arguments in the order in which they are positioned in the argu-
ment list, separating each with a comma. Pass a zero by value to specify any optional arguments that
you are omitting from within the list. You can end the argument list any time after specifying all the
mandatory and desired optional arguments.

710

Chapter 20. Sort/Merge (SOR) Routines

20.2.2. Interfaces to SOR Routines
You can submit data to the SOR routines as complete files or as single records. When your program
submits one or more files to SORT or MERGE, which then creates one sorted or merged output file,
you are using the file interface. When your program submits records one at a time and then receives
the ordered records one at a time, you are using the record interface.

You can combine the file interface with the record interface by submitting files on input and receiving
the ordered records on output or by releasing records on input and writing the ordered records to a file
on output. Combining the two interfaces provides greater flexibility. If you use the record interface
on input, you can process the records before they are sorted; if you use the record interface on output,
you can process the records after they are sorted.

The SOR routines used and the order in which they are called depend on the type of interface used in
a sorting or merging operation. The following sections detail the calling sequence for each of the in-
terfaces.

20.2.2.1. Sort Operation Using File Interface

For a sort operation using the file interface, pass the input and output file specifications to SORT
by calling SOR$PASS_FILES. You must call SOR$PASS_FILES for each input file specification.
Pass the output file specification in the first call. If no input files are specified before the call to SOR
$BEGIN_SORT, the record interface is used for input; if no output file is specified, the record inter-
face is used for output.

Next, call SOR$BEGIN_SORT to pass instructions about keys and sort options. At this point, you
must indicate whether you want to use your own key comparison routine. (This feature is not cur-
rently supported by the high-performance Sort/Merge utility.) SORT automatically generates a key
comparison routine that is efficient for key data types; however, you might want to provide your own
comparison routine to handle special sorting requirements. (For example, you might want names be-
ginning with “Mc” and “Mac” to be placed together.) If you use your own key comparison routine,
you must pass its address with the user_compare argument.

Call SOR$SORT_MERGE to execute the sort and direct the sorted records to the output file. Final-
ly, call SOR$END_SORT to end the sort and release resources. The SOR$END_SORT routine can
be called at any time to abort a sort or to merge and release all resources allocated to the sort or merge
process.

20.2.2.2. Sort Operation Using Record Interface

For a sort operation using the record interface, first call SOR$BEGIN_SORT. As in the file inter-
face, this routine sets up work areas and passes arguments that define keys and sort options. Note that,
if you use the record interface, you must use a record-sorting process (not a tag, address, or index
process).

Next, call SOR$RELEASE_REC to release a record to SORT. Call SOR$RELEASE_REC once for
each record to be released. After all records have been passed to SORT, call SOR$SORT_MERGE to
perform the sorting.

After the sort has been performed, call SOR$RETURN_REC to return a record from the sort op-
eration. Call this routine once for each record to be returned. Finally, call the last routine, SOR
$END_SORT, to complete the sort operation and release resources.

711

Chapter 20. Sort/Merge (SOR) Routines

20.2.2.3. Merge Operation Using File Interface
For a merge operation using the file interface, pass the input and output file specifications to MERGE
by calling SOR$PASS_FILES. You can merge up to 10 input files. (The high-performance Sort/Merge
utility allows you to merge up to 12 input files.) by calling SOR$PASS_FILES once for each file. Pass
the file specification for the merged output file in the first call. If no input files are specified before the
call to SOR$BEGIN_MERGE, the record interface is used for input; if no output file is specified, the
record interface is used for output.

Next, to execute the merge, call SOR$BEGIN_MERGE to pass key information and merge options.
At this point, you must indicate whether you want to use your own key comparison routine tailored to
your data. (This feature is not currently supported by the high-performance Sort/Merge utility.) Final-
ly, call SOR$END_SORT to release resources.

20.2.2.4. Merge Operation Using Record Interface
For a merge operation using the record interface, first call SOR$BEGIN_MERGE. As in the file in-
terface, this routine passes arguments that define keys and merge options. It also issues the first call to
the input routine, which you must create, to begin releasing records to the merge.

Next, call SOR$RETURN_REC to return the merged records to your program. You must call this rou-
tine once for each record to be returned. SOR$RETURN_REC continues to call the input routine.
MERGE, unlike SORT, does not need to hold all the records before it can begin returning them in the
desired order. Releasing, merging, and returning records all take place in this phase of the merge.

Finally, after all the records have been returned, call the last routine, SOR$END_SORT, to clean up
and release resources.

20.2.3. Reentrancy
The SOR routines are reentrant; that is, a number of sort or merge operations can be active at the same
time. Thus, a program does not need to finish one sort or merge operation before beginning another.
For example, reentrancy lets you perform multiple sorts on a file such as a mailing list and to create
several output files, one with the records sorted by name, another sorted by state, another sorted by zip
code, and so on.

The context argument, which can optionally be passed with any of the SOR routines, distinguish-
es among multiple sort or merge operations. When using multiple sort or merge operations, the con-
text argument is required. On the first call, the context longword must be zero. It is then set (by
SORT/MERGE) to a value identifying the sort or merge operation. Additional calls to the same sort or
merge operation must pass the same context longword. The SOR$END_SORT routine clears the con-
text longword.

20.3. Using the SOR Routines: Examples
This section provides examples of using the SOR routines for various operations including the follow-
ing:

• Example 20.1 is a VSI Fortran program that demonstrates a merge operation using a record inter-
face.

• Example 20.2 is a VSI Fortran program that demonstrates a sort operation using a file interface on
input and a record interface on output.

• Example 20.3 is a VSI Pascal program that demonstrates a merge operation using a file interface.

712

Chapter 20. Sort/Merge (SOR) Routines

• Example 20.4 is a VSI Pascal program that demonstrates a sort operation using a record interface.

• Example 20.5 is a VSI C program that demonstrates a sort operation using the STABLE option
and two text keys.

Example 20.1. Using SOR Routines to Perform a Merge Using Record Interface in a
VSI Fortran Program

 Fortran Program
C...
C... This program demonstrates the Fortran calling sequences
C... for the merge record interface.
C...
C
C THE INPUT FILES ARE LISTED BELOW.
C
C INFILE1.DAT
C
C 1 BBBBBBBBBB REST OF DATA IN RECORD..........................END OF
 RECORD
C 2 UUUUUUUUUU REST OF DATA IN RECORD..........................END OF
 RECORD
C
C INFILE2.DAT
C
C 1 AAAAAAAAAA REST OF DATA IN RECORD..........................END OF
 RECORD
C 2 TTTTTTTTTT REST OF DATA IN RECORD..........................END OF
 RECORD
C
C INFILE3.DAT
C
C 1 TTTTTTTTTT REST OF DATA IN RECORD..........................END OF
 RECORD
C 2 BBBBBBBBBB REST OF DATA IN RECORD..........................END OF
 RECORD
C
C FOROUT.DAT
C
C 1 AAAAAAAAAA REST OF DATA IN RECORD..........................END OF
 RECORD
C 1 BBBBBBBBBB REST OF DATA IN RECORD..........................END OF
 RECORD
C 1 TTTTTTTTTT REST OF DATA IN RECORD..........................END OF
 RECORD
C 2 BBBBBBBBBB REST OF DATA IN RECORD..........................END OF
 RECORD
C 2 TTTTTTTTTT REST OF DATA IN RECORD..........................END OF
 RECORD
C 2 UUUUUUUUUU REST OF DATA IN RECORD..........................END OF
 RECORD
C
C
C...
C
C

 IMPLICIT INTEGER (A-Z)

713

Chapter 20. Sort/Merge (SOR) Routines

 CHARACTER*80 REC ! A record.

 EXTERNAL READ_REC ! Routine to read a record.
 EXTERNAL KOMPAR ! Routine to compare records.
 EXTERNAL SS$_ENDOFFILE ! System end-of-file value

 INTEGER*4 SOR$BEGIN_MERGE ! SORT/MERGE function names
 INTEGER*4 SOR$RETURN_REC
 INTEGER*4 SOR$END_SORT
 INTEGER*4 ISTAT ! storage for SORT/MERGE function
 value
 INTEGER*4 LENGTH ! length of the returned record
 INTEGER*2 LRL ! Longest Record Length (LRL)

 LOGICAL*1 ORDER ! #files to merge (merge order)

 DATA ORDER,LRL/3,80/ ! Order of the merge=3,LRL=80
C...
C... First open all the input files.
C...
 OPEN (UNIT=10, FILE='INFILE1.DAT',TYPE='OLD',READONLY,
 * FORM='FORMATTED')
 OPEN (UNIT=11, FILE='INFILE2.DAT',TYPE='OLD',READONLY,
 * FORM='FORMATTED')
 OPEN (UNIT=12, FILE='INFILE3.DAT',TYPE='OLD',READONLY,
 * FORM='FORMATTED')
C
C... Open the output file.
C
 OPEN (UNIT=8, FILE='TEMP.TMP', TYPE='NEW')
C...
C... Initialize the merge. Pass the merge order, the largest
C... record length, the compare routine address, and the
C... input routine address.
C...
 ISTAT = SOR$BEGIN_MERGE (,LRL,,ORDER,
 * KOMPAR,,READ_REC)
 IF (.NOT. ISTAT) GOTO 10 ! Check for error.

C...
C... Now loop getting merged records. SOR$RETURN_REC will
C... call READ_REC when it needs input.
C...
5 ISTAT = SOR$RETURN_REC (REC, LENGTH)
 IF (ISTAT .EQ. %LOC(SS$_ENDOFFILE)) GO TO 30 ! Check for end of
 file.
 IF (.NOT. ISTAT) GO TO 10 ! Check for error.

 WRITE(8,200) REC ! Output the record.
200 FORMAT(' ',A)
 GOTO 5 ! And loop back.
C...
C... Now tell SORT that we are all done.
C...

30 ISTAT = SOR$END_SORT()
 IF (.NOT. ISTAT) GOTO 10 ! Check for error.

714

Chapter 20. Sort/Merge (SOR) Routines

 CALL EXIT

C...
C... Here if an error occurred. Write out the error status
C... and exit.
C...
10 WRITE(8,201)ISTAT
201 FORMAT(' ?ERROR CODE', I20)
 CALL EXIT
 END

 FUNCTION READ_REC (RECX, FILE, SIZE)
C...
C... This routine reads a record from one of the input files
C... for merging. It will be called by SOR$BEGIN_MERGE and by
C... SOR$RETURN_REC.
C... Parameters:
C...
C... RECX.wcp.ds character buffer to hold the record after
C... it is read in.
C...
C... FILE.rl.r indicates which file the record is
C... to be read from. 1 specifies the
C... first file, 2 specifies the second
C... etc.
C...
C... LENGTH.wl.r is the actual number of bytes in
C... the record. This is set by READ_REC.
C...
 IMPLICIT INTEGER (A-Z)

 PARAMETER MAXFIL=10 ! Max number of files.

 EXTERNAL SS$_ENDOFFILE ! End of file status code.
 EXTERNAL SS$_NORMAL ! Success status code.

 LOGICAL*1 FILTAB(MAXFIL)
 CHARACTER*(80) RECX ! MAX LRL =80

 DATA FILTAB/10,11,12,13,14,15,16,17,18,19/ ! Table of I/O unit
 numbers.

 READ_REC = %LOC(SS$_ENDOFFILE) ! Give end of file return
 IF (FILE .LT. 1 .OR. FILE .GT. MAXFIL) RETURN ! if illegal
 call.

 READ (FILTAB(FILE), 100, ERR=75, END=50) RECX ! Read the record.
100 FORMAT(A)

 READ_REC = %LOC(SS$_NORMAL) ! Return success code.
 SIZE = LEN (RECX) ! Return size of record.
 RETURN

C... Here if end of file.
50 READ_REC = %LOC(SS$_ENDOFFILE) ! Return "end of file"
 code.
 RETURN

715

Chapter 20. Sort/Merge (SOR) Routines

C... Here if error while reading
75 READ_REC = 0
 SIZE = 0
 RETURN
 END

 FUNCTION KOMPAR (REC1,REC2)
C...
C... This routine compares two records. It returns -1
C... if the first record is smaller than the second,
C... 0 if the records are equal, and 1 if the first record
C... is larger than the second.
C...
 PARAMETER KEYSIZ=10

 IMPLICIT INTEGER (A-Z)

 LOGICAL*1 REC1(KEYSIZ),REC2(KEYSIZ)

 DO 20 I=1,KEYSIZ
 KOMPAR = REC1(I) - REC2(I)
 IF (KOMPAR .NE. 0) GOTO 50
20 CONTINUE

 RETURN

50 KOMPAR = ISIGN (1, KOMPAR)
 RETURN
 END

Example 20.2 is a VSI Fortran program that demonstrates a sort operation using a file interface on in-
put and a record interface on output.

Example 20.2. Using SOR Routines to Sort Using Mixed Interface in a VSI Fortran
Program

Program

 PROGRAM CALLSORT
C
C
C This is a sample Fortran program that calls the SOR
C routines using the file interface for input and the
C record interface for output. This program requests
C a record sort of the file 'R010SQ.DAT' and writes
C the records to SYS$OUTPUT. The key is an 80-byte
C character ascending key starting in position 1 of
C each record.
C
C A short version of the input and output files follows:
C
C Input file R010SQ.DAT
C 1 BBBBBBBBBB REST OF DATA IN RECORD..........................END OF
 RECORD
C 2 UUUUUUUUUU REST OF DATA IN RECORD..........................END OF
 RECORD

716

Chapter 20. Sort/Merge (SOR) Routines

C 1 AAAAAAAAAA REST OF DATA IN RECORD..........................END OF
 RECORD
C 2 TTTTTTTTTT REST OF DATA IN RECORD..........................END OF
 RECORD
C 1 TTTTTTTTTT REST OF DATA IN RECORD..........................END OF
 RECORD
C 2 BBBBBBBBBB REST OF DATA IN RECORD..........................END OF
 RECORD
C 1 QQQQQQQQQQ REST OF DATA IN RECORD..........................END OF
 RECORD
C 2 AAAAAAAAAA REST OF DATA IN RECORD..........................END OF
 RECORD
C 1 UUUUUUUUUU REST OF DATA IN RECORD..........................END OF
 RECORD
C 2 QQQQQQQQQQ REST OF DATA IN RECORD..........................END OF
 RECORD
C
C Output file SYS$OUTPUT
C
C 1 AAAAAAAAAA REST OF DATA IN RECORD.........................END OF
 RECORD
C 1 BBBBBBBBBB REST OF DATA IN RECORD.........................END OF
 RECORD
C 1 QQQQQQQQQQ REST OF DATA IN RECORD.........................END OF
 RECORD
C 1 TTTTTTTTTT REST OF DATA IN RECORD.........................END OF
 RECORD
C 1 UUUUUUUUUU REST OF DATA IN RECORD.........................END OF
 RECORD
C 2 AAAAAAAAAA REST OF DATA IN RECORD.........................END OF
 RECORD
C 2 BBBBBBBBBB REST OF DATA IN RECORD.........................END OF
 RECORD
C 2 QQQQQQQQQQ REST OF DATA IN RECORD.........................END OF
 RECORD
C 2 TTTTTTTTTT REST OF DATA IN RECORD.........................END OF
 RECORD
C 2 UUUUUUUUUU REST OF DATA IN RECORD.........................END OF
 RECORD
C
C--
C
C Define external functions and data.
C
 CHARACTER*80 RECBUF
 CHARACTER*10 INPUTNAME !Input file name
 INTEGER*2 KEYBUF(5) !Key definition buffer
 INTEGER*4 SOR$PASS_FILES !SORT function names
 INTEGER*4 SOR$BEGIN_SORT
 INTEGER*4 SOR$SORT_MERGE
 INTEGER*4 SOR$RETURN_REC
 INTEGER*4 SOR$END_SORT
 INTEGER*4 ISTATUS !Storage for SORT function value
 EXTERNAL SS$_ENDOFFILE
 EXTERNAL DSC$K_DTYPE_T
 EXTERNAL SOR$GK_RECORD
 INTEGER*4 SRTTYPE

717

Chapter 20. Sort/Merge (SOR) Routines

C
C Initialize data -- first the file names, then the key buffer for
C one 80-byte character key starting in position 1, 3 work files,
C and a record sort process.
C
 DATA INPUTNAME/'R010SQ.DAT'/
 KEYBUF(1) = 1
 KEYBUF(2) = %LOC(DSC$K_DTYPE_T)
 KEYBUF(3) = 0
 KEYBUF(4) = 0
 KEYBUF(5) = 80
 SRTTYPE = %LOC(SOR$GK_RECORD)

C
C Call the SORT -- each call is a function.
C
C
C Pass SORT the file names.
C
 ISTATUS = SOR$PASS_FILES(INPUTNAME)
 IF (.NOT. ISTATUS) GOTO 10
C
C Initialize the work areas and keys.
C
 ISTATUS = SOR$BEGIN_SORT(KEYBUF,,,,,,SRTTYPE,%REF(3))
 IF (.NOT. ISTATUS) GOTO 10
C
C Sort the records.
C
 ISTATUS = SOR$SORT_MERGE()
 IF (.NOT. ISTATUS) GOTO 10
C
C Now retrieve the individual records and display them.
C
5 ISTATUS = SOR$RETURN_REC(RECBUF)
 IF (.NOT. ISTATUS) GOTO 6
 ISTATUS = LIB$PUT_OUTPUT(RECBUF)
 GOTO 5
6 IF (ISTATUS .EQ. %LOC(SS$_ENDOFFILE)) GOTO 7
 GOTO 10
C
C Clean up the work areas and files.
C
7 ISTATUS = SOR$END_SORT()
 IF (.NOT. ISTATUS) GOTO 10
 STOP 'SORT SUCCESSFUL'
10 STOP 'SORT UNSUCCESSFUL'
 END

Example 20.3 is a VSI Pascal program that demonstrates a merge operation using a file interface.

Example 20.3. Using SOR Routines to Merge Three Input Files in a VSI Pascal Program

Program

(* This program merges three input files, (IN_FILE.DAT,
 IN_FILE2.DAT IN_FILE3.DAT), and creates one merged output file. *)

718

Chapter 20. Sort/Merge (SOR) Routines

program mergerecs(output, in_file1, in_file2, in_file3, out_file);

CONST
 SS$_NORMAL = 1;
 SS$_ENDOFFILE = %X870;
 SOR$GK_RECORD = 1;
 SOR$M_STABLE = 1;
 SOR$M_SEQ_CHECK = 4;
 SOR$M_SIGNAL = 8;
 DSC$K_DTYPE_T = 14;

TYPE
 $UBYTE = [BYTE] 0..255;
 $UWORD = [WORD] 0..65535;

const
 num_of_keys = 1;
 merge_order = 3;
 lrl = 131;

 ascending = 0;
 descending = 1;

type
 key_buffer_block=
 packed record
 key_type: $uword;
 key_order: $uword;
 key_offset: $uword;
 key_length: $uword;
 end;

 key_buffer_type=
 packed record
 key_count: $uword;
 blocks: packed array[1..num_of_keys] of key_buffer_block;
 end;

 record_buffer = packed array[1..lrl] of char;

 record_buffer_descr =
 packed record
 length: $uword;
 dummy: $uword;
 addr: ^record_buffer;
 end;

var
 in_file1,
 in_file2,
 in_file3,
 out_file: text;
 key_buffer: key_buffer_type;
 rec_buffer: record_buffer;
 rec_length: $uword;

719

Chapter 20. Sort/Merge (SOR) Routines

 status: integer;
 i: integer;

function sor$begin_merge(
 var buffer: key_buffer_type;
 lrl: $uword;
 mrg_options: integer;
 merge_order: $ubyte;
 %immed cmp_rtn: integer := 0;
 %immed eql_rtn: integer := 0;
 %immed [unbound] function
 read_record(
 var rec: record_buffer_descr;
 var filenumber: integer;
 var recordsize: $uword): integer
): integer; extern;

function sor$return_rec(
 %stdescr rec: record_buffer;
 var rec_size: $uword
): integer; extern;

function sor$end_sort: integer; extern;

procedure sys$exit(%immed status : integer); extern;

function read_record(
 var rec: record_buffer_descr;
 var filenumber: integer;
 var recordsize: $uword
): integer;

procedure readone(var filename: text);
begin
recordsize := 0;
if eof(filename)
then
 read_record := ss$_endoffile
else
 begin
 while not eoln(filename) and (recordsize < rec.length) do
 begin
 recordsize := recordsize + 1;
 read(filename,rec.addr^[recordsize]);
 end;
 readln(filename);
 end;
end;

begin
read_record := ss$_normal;
case filenumber of
 1: readone(in_file1);
 2: readone(in_file2);
 3: readone(in_file3);
 otherwise
 read_record := ss$_endoffile;
 end;

720

Chapter 20. Sort/Merge (SOR) Routines

end;

procedure initfiles;
begin
open(in_file1, 'infile1.dat', old);
open(in_file2, 'infile2.dat', old);
open(in_file3, 'infile3.dat', old);
open(out_file, 'temp.tmp');
reset(in_file1);
reset(in_file2);
reset(in_file3);
rewrite(out_file);
end;

procedure error(status : integer);
begin
writeln('merge unsuccessful. status=%x', status:8 hex);
sys$exit(status);
end;
begin

with key_buffer do
 begin
 key_count := 1;
 with blocks[1] do
 begin
 key_type := dsc$k_dtype_t;
 key_order := ascending;
 key_offset := 0;
 key_length := 5;
 end;
 end;

initfiles;

status := sor$begin_merge(key_buffer, lrl,
 sor$m_seq_check + sor$m_signal,
 merge_order, 0, 0, read_record);

repeat
 begin
 rec_length := 0;
 status := sor$return_rec(rec_buffer, rec_length);
 if odd(status)
 then
 begin
 for i := 1 to rec_length do write(out_file, rec_buffer[i]);
 writeln(out_file);
 end;
 end
until not odd(status);

if status <> ss$_endoffile then error(status);

status := sor$end_sort;
if not odd(status) then error(status);

writeln('merge successful.');

721

Chapter 20. Sort/Merge (SOR) Routines

end.

Example 20.4 is a VSI Pascal program that demonstrates a sort operation using a record interface.

Example 20.4. Using SOR Routines to Sort Records from Two Input Files in a VSI
Pascal Program

Pascal Program

PROGRAM FILETORECORDSORT (OUTPUT,SORTOUT);

(* This program calls SOR routines to read and sort records from
 two input files, (PASINPUT1.DAT and PASINPUT2.DAT) and to return
 sorted records to this program to be written to the output file,
 (TEMP.TMP). *)

(* Declarations for external status codes, and data structures, such
 as the types $UBYTE (an unsigned byte) and $UWORD (an unsigned
 word). *)

CONST
 SS$_NORMAL = 1;
 SS$_ENDOFFILE = %X870;
 SOR$GK_RECORD = 1;
 SOR$M_STABLE = 1;
 SOR$M_SEQ_CHECK = 4;
 SOR$M_SIGNAL = 8;
 DSC$K_DTYPE_T = 14;

TYPE
 $UBYTE = [BYTE] 0..255;
 $UWORD = [WORD] 0..65535;

CONST
 Numberofkeys = 1 ; (* Number of keys for this sort *)
 LRL = 131 ; (* Longest Record Length for output records *)

(* Key orders *)

 Ascending = 0 ;
 Descending = 1 ;

TYPE
 Keybufferblock= packed record
 Keytype : $UWORD ;
 Keyorder : $UWORD ;
 Keyoffset : $UWORD ;
 Keylength : $UWORD
 end ;

(* The keybuffer. Note that the field buffer is a one-component array in
 this program. This type definition would allow a multikeyed sort. *)

 Keybuffer= packed record
 Numkeys : $UWORD ;
 Blocks : packed array[1..Numberofkeys] OF Keybufferblock

722

Chapter 20. Sort/Merge (SOR) Routines

 end ;

(* The record buffer. This buffer will be used to hold the returned
 records from SORT. *)

 Recordbuffer = packed array[1..LRL] of char ;

(* Name type for input and output files. A necessary fudge for %stdescr
 mechanism. *)

 nametype= packed array[1..13] of char ;

VAR
 Sortout : text ; (* the output file *)
 Buffer : Keybuffer ; (* the actual keybuffer *)
 Sortoptions : integer ; (* flag for sorting options *)
 Sorttype : $UBYTE ; (* sorting process *)
 Numworkfiles : $UBYTE ; (* number of work files *)
 Status : integer ; (* function return status code *)
 Rec : Recordbuffer ; (* a record buffer *)
 Recordlength : $UWORD ; (* the returned record length *)
 Inputname: nametype ; (* input file name *)
 i : integer ; (* loop control variable *)

(* function and procedure declarations *)

(* Declarations of SORT functions *)
(* Note that the following SORT routine declarations
 do not use all of the possible routine parameters. *)
(* The parameters used MUST have all preceding parameters specified,
 however. *)

FUNCTION SOR$PASS_FILES
 (%STDESCR Inname : nametype)
 : INTEGER ; EXTERN ;

FUNCTION SOR$BEGIN_SORT(
 VAR Buffer : Keybuffer ;
 Lrlen : $UWORD ;
 VAR Sortoptions : INTEGER ;
 %IMMED Filesize : INTEGER ;
 %IMMED Usercompare : INTEGER ;
 %IMMED Userequal : INTEGER ;
 VAR Sorttype : $UBYTE ;
 VAR Numworkfiles : $UBYTE)
 : INTEGER ; EXTERN ;

FUNCTION SOR$SORT_MERGE
 : INTEGER ; EXTERN ;

FUNCTION SOR$RETURN_REC(
 %STDESCR Rec : Recordbuffer ;
 VAR Recordsize : $UWORD)
 : INTEGER ; EXTERN ;

723

Chapter 20. Sort/Merge (SOR) Routines

FUNCTION SOR$END_SORT
 : INTEGER ; EXTERN ;

(* End of the SORT function declarations *)

(* The CHECKSTATUS routine checks the return status for errors. *)
(* If there is an error, write an error message and exit via sys$exit *)
PROCEDURE CHECKSTATUS(var status : integer) ;

 procedure sys$exit(status : integer) ; extern ;

begin (* begin checkstatus *)
 if odd(status) then
 begin
 writeln(' SORT unsuccessful. Error status = ', status:8 hex) ;
 SYS$EXIT(status) ;
 end ;
end ; (* end checkstatus *)

(* end function and routine declarations *)

BEGIN (* begin the main routine *)

(* Initialize data for one 8-byte character key, starting at record
 offset 0, 3 work files, and the record sorting process *)

Inputname := 'PASINPUT1.DAT' ;
WITH Buffer DO
 BEGIN
 Numkeys := 1;
 WITH Blocks[1] DO
 BEGIN
 Keytype := DSC$K_DTYPE_T ; (* Use OpenVMS descriptor data
 types to
 define SORT data types. *)
 Keyorder := Ascending ;
 Keyoffset := 0 ;
 Keylength := 8 ;
 END;
 END;

Sorttype := SOR$GK_RECORD ; (* Use the global SORT constant to
 define the sort process. *)
Sortoptions := SOR$M_STABLE ; (* Use the global SORT constant to
 define the stable sort option.
 *)
Numworkfiles := 3 ;

(* call the sort routines as a series of functions *)

(* pass the first filename to SORT *)
Status := SOR$PASS_FILES(Inputname) ;

(* Check status for error. *)
CHECKSTATUS(Status) ;

724

Chapter 20. Sort/Merge (SOR) Routines

(* pass the second filename to SORT *)
Inputname := 'PASINPUT2.DAT' ;

Status := SOR$PASS_FILES(Inputname) ;

(* Check status for error. *)
CHECKSTATUS(Status) ;

(* initialize work areas and keys *)
Status := SOR$BEGIN_SORT(Buffer, 0, Sortoptions, 0, 0, 0,
 Sorttype, Numworkfiles) ;

(* Check status for error. *)
CHECKSTATUS(Status) ;

(* sort the records *)
Status := SOR$SORT_MERGE ;

(* Check status for error. *)
CHECKSTATUS(Status) ;

(* Ready output file for writing returned records from SORT. *)
OPEN(SORTOUT, 'TEMP.TMP') ;
REWRITE(SORTOUT) ;

(* Now get the sorted records from SORT. *)
Recordlength := 0 ;
REPEAT
 Status := SOR$RETURN_REC(Rec, Recordlength) ;

 if odd(Status)
 then (* if successful, write record to output file. *)
 begin
 for i := 1 to Recordlength do
 write(sortout, Rec[i]) ; (* write each character *)
 writeln (sortout) ; (* end output line *)
 end;
UNTIL not odd(Status) ;

(* If there was just no more data to be returned (eof) continue, otherwise
 exit with an error. *)
if Status <> SS$_ENDOFFILE then
 CHECKSTATUS(Status) ;

(* The sort has been successful to this point. *)

(* Close the output file *)
CLOSE(sortout) ;

(* clean up work areas and files *)
Status := SOR$END_SORT ;

(* Check status for error. *)
CHECKSTATUS(Status);

WRITELN ('SORT SUCCESSFUL') ;

725

Chapter 20. Sort/Merge (SOR) Routines

END.

Example 20.5 is a VSI C program that demonstrates a sort operation using the STABLE option and
two test keys.

Example 20.5. Using SOR Routines to Sort Records Using the STABLE Option and Two
Text Keys in a VSI C Program

/*

C Program Example

This program demonstrates the use of the STABLE option
with 2 ascending text keys to sort a file of names.
The names are sorted by the first 6 characters of the last
name and the first 6 characters of the first name.
The contents of the input file and resulting output file
are listed below. The associated C program code listing follows.

...

Input file: example.in

JONES DAVID
WARNER LIZZY
SMITTS JAMES
SMITH RANDY
BROWN TONY
GRANT JOSEPH
BROWN JAMES
JONES DAVID
BAKER PAMELA
SMART SHERYL
RUSSO JOSEPH
JONES DONALD
BROWN GORDON

...

Output file: example.out

BAKER PAMELA
BROWN GORDON
BROWN JAMES
BROWN TONY
GRANT JOSEPH
JONES DAVID
JONES DAVID
JONES DONALD
RUSSO JOSEPH
SMART SHERYL
SMITH RANDY
SMITTS JAMES
WARNER LIZZY

...
*/
/*

726

Chapter 20. Sort/Merge (SOR) Routines

**===
**
** EXAMPLE.C code:
**
** Abstract: Example of using sort with the STABLE option and
** 2 text keys (both ascending).
**
**
** Input file: example.in
** Output file: example.out
**
**===
*/
/* ---
** Include files:
*/
include <stdlib.h>
include <stdio.h>
include <string.h>
include <descrip.h>
include <ssdef.h>
include <sor$routines.h>

/* --
** Local macro definitions:
*/
define MAX_REC_LEN 150
define MAX_NUM_KEYS 10

/* --
** Local structure definitions.
*/

/* Define the description for each key. */
typedef struct {
 unsigned short type; /* Data type of key */
 unsigned short order; /* Order of key */
 unsigned short offset; /* Offset of key */
 unsigned short len; /* Length of key */
 } key_info;

struct {
 unsigned short num; /* number of keys */
 key_info key[MAX_NUM_KEYS];
} key_buffer;

/* ---
** External literals.
*/
globalvalue
 int
 SOR$M_STABLE;

/* ---
** Main entry point.
*/
main (int argc, char *argv[])

727

Chapter 20. Sort/Merge (SOR) Routines

{
 int i;
 unsigned int options; /* Sort options */
 unsigned int num_records_in;
 unsigned int num_records_out;
 unsigned int lrl; /* longest record length */
 unsigned short size; /* record size from return_rec
 */
 unsigned int status;
 unsigned long int return_status;
 FILE *infile; /* input file */
 FILE *outfile; /* output file */
 char record [MAX_REC_LEN];
 $DESCRIPTOR (record_desc, record);

 lrl = sizeof(record);
 key_buffer.num = 2;
 key_buffer.key[0].type = DSC$K_DTYPE_T;
 key_buffer.key[0].order = 0; /* ascending */
 key_buffer.key[0].offset = 0;
 key_buffer.key[0].len = 6;

 key_buffer.key[1].type = DSC$K_DTYPE_T;
 key_buffer.key[1].order = 0; /* ascending */
 key_buffer.key[1].offset = 7;
 key_buffer.key[1].len = 6;

 /* Open input and output files. */

 if (argc != 3)
 {
 printf("Usage: example inputfile outputfile\n");
 exit(-1);
 }

 infile = fopen(argv[1], "r");
 if (infile == (FILE *) NULL)
 {
 printf("Can't open input file %s\n",argv[1]);
 exit(-1);
 }

 outfile = fopen(argv[2], "w");
 if (outfile == (FILE *) NULL)
 {
 printf("Can't create output file %s\n",argv[2]);
 exit(-1);
 }

 /* Specify options. Initialize the sort and check for errors. */

 options = SOR$M_STABLE;
 return_status = SOR$BEGIN_SORT(&key_buffer, &lrl, &options,
 0,0,0,0,0,0);
 if (return_status != SS$_NORMAL)
 {
 printf ("Status from SOR$BEGIN_SORT: 0x%x\n", return_status);
 exit(return_status);

728

Chapter 20. Sort/Merge (SOR) Routines

 }

 /* Within a loop, get all the records from the input file. */
 /* Exit if an error occurs. */

 num_records_in = 0;
 while (fgets(record, lrl, infile) != NULL)
 {
 record_desc.dsc$w_length = strlen(record)-1;
 num_records_in++;
 return_status = SOR$RELEASE_REC(&record_desc,0);
 if (return_status != SS$_NORMAL)
 {
 printf ("Status from SOR$RELEASE_REC: 0x%x\n",
 return_status);
 exit(return_status);
 }
 }

 /* Sort all of the input records. */
 /* Exit if an error occurs. */

 return_status = SOR$SORT_MERGE(0);
 if (return_status != SS$_NORMAL)
 {
 printf ("Status from SOR$SORT_MERGE: 0x%x\n", return_status);
 exit(return_status);
 }

 /* Within a loop, write the sorted records to the output file. */
 /* Exit if an error occurs, other than end-of-file. */

 record_desc.dsc$w_length = lrl;
 num_records_out = 0;
 do
 {
 return_status = SOR$RETURN_REC(&record_desc,&size,0);
 if (return_status == SS$_NORMAL)
 {
 num_records_out++;
 status = fprintf (outfile,"%.*s\n", size, record);
 if (status < 0)
 {
 printf ("Error writing to output file, status = %d\n",
 status);
 exit(status);
 }
 }
 else
 if (return_status != SS$_ENDOFFILE)
 {
 printf ("Status from SOR$RETURN_REC: 0x%x\n",
 return_status);
 exit(return_status);
 };

 } while (return_status != SS$_ENDOFFILE);

729

Chapter 20. Sort/Merge (SOR) Routines

 /* Sanity check - assure number of input and output records match. */

 if (num_records_out != num_records_in)
 {
 printf("Number of records out is not correct. # in = %d, # out = %d
\n",
 num_records_out, num_records_in);
 exit(status);
 }

 /* Successful completion. Close input and output files. End program.
 */

 return_status = SOR$END_SORT(0);
 if (return_status != SS$_NORMAL)
 {
 printf ("Status from SOR$END_SORT: 0x%x\n", return_status);
 exit(return_status);
 }

 fclose (infile);
 fclose (outfile);
 }

20.4. SOR Routines
This section describes the individual SOR routines.

SOR$BEGIN_MERGE
Initialize a Merge Operation — The SOR$BEGIN_MERGE routine initializes the merge operation by
opening the input and output files and by providing the number of input files, the key specifications,
and the merge options.

Format
SOR$BEGIN_MERGE
[key-buffer] [,lrl] [,options] [,merge_order] [,user_compare] [,user_equal]
 [,user_input] [,context]

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. Most Sort/Merge utility routines return a condition value in R0. Condition
values that this routine can return are listed under Condition Values Returned.

730

Chapter 20. Sort/Merge (SOR) Routines

Arguments
key_buffer

OpenVMS usage: vector_word_unsigned
type: word (unsigned)
access: read only
mechanism: by reference

Array of words describing the keys on which you plan to merge. The key_buffer argument is the
address of an array containing the key descriptions.

The first word of this array contains the number of keys described (up to 255). Following the first
word, each key is described (in order of priority) in blocks of four words. The four words specify the
key's data type, order, offset, and length, respectively.

The first word of the block specifies the key's data type. The following data types are accepted:

DSC$K_DTYPE_Z Unspecified (uninfluenced by collating sequence)
DSC$K_DTYPE_B Byte integer (signed)
DSC$K_DTYPE_BU Byte (unsigned)
DSC$K_DTYPE_W Word integer (signed)
DSC$K_DTYPE_WU Word (unsigned)
DSC$K_DTYPE_L Longword integer (signed)
DSC$K_DTYPE_LU Longword (unsigned)
DSC$K_DTYPE_Q Quadword integer (signed)
DSC$K_DTYPE_QU Quadword (unsigned)
DSC$K_DTYPE_O dag Octaword integer (signed)
DSC$K_DTYPE_OU dag Octaword (unsigned)
DSC$K_DTYPE_F Single-precision floating
DSC$K_DTYPE_D Double-precision floating
DSC$K_DTYPE_G G-format floating
DSC$K_DTYPE_H dag H-format floating
DSC$K_DTYPE_FS DDAG IEEE single-precision S floating
DSC$K_DTYPE_FT DDAG IEEE double-precision T floating
DSC$K_DTYPE_T Text (may be influenced by collating sequence)
DSC$K_DTYPE_NU Numeric string, unsigned
DSC$K_DTYPE_NL Numeric string, left separate sign
DSC$K_DTYPE_NLO Numeric string, left overpunched sign
DSC$K_DTYPE_NR Numeric string, right separate sign
DSC$K_DTYPE_NRO Numeric string, right overpunched sign
DSC$K_DTYPE_NZ dag Numeric string, zoned sign
DSC$K_DTYPE_P Packed decimal string

dagData type is not currently supported by the high-performance Sort/Merge utility.

731

Chapter 20. Sort/Merge (SOR) Routines

DDAGData type is Alpha specific.

The VSI OpenVMS Programming Concepts Manual manual describes each of these data types.

The second word of the block specifies the key order: 0 for ascending order, 1 for descending order.
The third word of the block specifies the relative offset of the key in the record. (Note that the first
byte in the record is at position 0.) The fourth word of the block specifies the key length in bytes (in
digits for packed decimal—DSC$K_DTYPE_P).

If you do not specify the key_buffer argument, you must pass either a key comparison routine or
use a specification file to define the key.

lrl

OpenVMS usage: word_unsigned
type: word (unsigned)
access: read only
mechanism: by reference

Length of the longest record that will be released for merging. The lrl (longest record length) argu-
ment is the address of a word containing the length. If the input file is on a disk, this argument is not
required. It is required when you use the record interface. For Vertical Format Control (VFC) records,
this length must include the length of the fixed-length portion of the record.

options

OpenVMS usage: mask_longword
type: longword (unsigned)
access: read only
mechanism: by reference

Flags that identify merge options. The options argument is the address of a longword bit mask
whose settings determine the merge options selected.

The following table lists and describes the bit mask values available:

Flag Description
SOR$M_STABLE Keeps records with equal keys in the same order

as they appeared on input.
SOR$M_EBCDIC Orders ASCII character keys according to

EBCDIC collating sequence. No translation takes
place.

SOR$M_MULTI Orders character keys according to the multina-
tional collating sequence, which collates the inter-
national character set.

SOR$M_NOSIGNAL Returns a status code instead of signaling errors.
SOR$M_NODUPS Omits records with duplicate keys. You cannot

use this option if you specify your own equal-key
routine.

SOR$M_SEQ_CHECK Requests an “out of order” error return if an in-
put file is not already in sequence. By default,

732

Chapter 20. Sort/Merge (SOR) Routines

Flag Description
this check is not done. You must request sequence
checking if you specify an equal-key routine.

All other bits in the longword are reserved and must be zero.

merge_order

OpenVMS usage: byte_unsigned
type: byte (unsigned)
access: read only
mechanism: by reference

Number of input streams to be merged. The merge_order argument is the address of a byte con-
taining the number of files (1 through 10) to be merged. (The high-performance Sort/Merge utility al-
lows you to specify 1 through 12 files.) When you use the record interface on input, this argument is
required.

user_compare

OpenVMS usage: procedure
type: procedure value
access: function call
mechanism: by reference

Routine that compares records to determine their merge order. (This routine is not currently support-
ed by the high-performance Sort/Merge utility.) The user_compare argument is the address of the
procedure value for this user-written routine. If you do not specify the key_buffer argument or if
you define key information in a specification file, this argument is required.

MERGE calls the comparison routine with five reference arguments—ADRS1, ADRS2, LENG1,
LENG2, CNTX—corresponding to the addresses of the two records to be compared, the lengths of
these two records, and the context longword.

The comparison routine must return a 32-bit integer value:

• –1 if the first record collates before the second

• 0 if the records collate as equal

• 1 if the first record collates after the second

user_equal

OpenVMS usage: procedure
type: procedure value
access: function call
mechanism: by reference

Routine that resolves the merge order when records have duplicate keys. (This routine is not current-
ly supported by the high-performance Sort/Merge utility.) The user_equal argument is the address

733

Chapter 20. Sort/Merge (SOR) Routines

of the procedure value for this user-written routine. If you specify SOR$M_STABLE or SOR$M_N-
ODUPS in the options argument, do not use this argument.

MERGE calls the duplicate key routine with five reference arguments—ADRS1, ADRS2, LENG1,
LENG2, CNTX—corresponding to the addresses of the two records that compare equally, the lengths
of the two records that compare equally, and the context longword.

The routine must return one of the following 32-bit condition codes:

Code Description
SOR$_DELETE1 Delete the first record from the merge.
SOR$_DELETE2 Delete the second record from the merge.
SOR$_DELBOTH Delete both records from the merge.
SS$_NORMAL Keep both records in the merge.

Any other failure value causes the error to be signaled or returned. Any other success value causes an
undefined result.

user_input

OpenVMS usage: procedure
type: procedure value
access: function call
mechanism: by reference

Routine that releases records to the merge operation. The user_input argument is the address of
the procedure value for this user-written routine. SOR$BEGIN_MERGE and SOR$RETURN_REC
call this routine until all records have been passed.

This input routine must read (or construct) a record, place it in a record buffer, store its length in an
output argument, and then return control to MERGE.

The input routine must accept the following four arguments:

• A descriptor of the buffer where the routine must place the record

• A longword, passed by reference, containing the stream number from which to input a record (the
first file is 1, the second 2, and so on)

• A word, passed by reference, where the routine must return the actual length of the record

• The context longword, passed by reference

The input routine must also return one of the following status values:

• SS$_NORMAL or any other success status causes the merge operation to continue.

• SS$_ENDOFFILE indicates that no more records are in the file. The contents of the buffer are ig-
nored.

• Any other error status terminates the merge operation and passes the status value back to the caller
of SOR$BEGIN_MERGE or SOR$RETURN_REC.

context

734

Chapter 20. Sort/Merge (SOR) Routines

OpenVMS usage: context
type: longword (unsigned)
access: modify
mechanism: by reference

Value that distinguishes between multiple, concurrent SORT/MERGE operations. The context ar-
gument is the address of a longword containing the context value. When your program makes its first
call to a SORT/MERGE routine for a particular sort or merge operation, the context longword must
equal zero. SORT/MERGE then stores a value in the longword to identify the operation just initiated.
When you make subsequent routine calls for the same operation, you must pass the context value that
was supplied by SORT/MERGE.

Description
The SOR$BEGIN_MERGE routine initializes the merge process by passing arguments that provide
the number of input streams, the key specifications, and any merge options.

You must define the key by passing either the key buffer address argument or your own comparison
routine address. (You can also define the key in a specification file and call the SOR$SPEC_FILE
routine.)

The SOR$BEGIN_MERGE routine initializes the merge process in the file, record, and mixed inter-
faces. For record interface on input, you must also pass the merge order, the input routine address, and
the longest record length. For files not on disk, you must pass the longest record length.

Some of the following condition values are used with different severities, depending on whether
SORT/MERGE can recover. Thus, you should use LIB$MATCH_COND if you want to check for a
specific status.

Condition Values Returned
SS$_NORMAL

Success.

SOR$_BADDTYPE

Invalid or unsupported CDD data type.

SOR$_BADLENOFF

Length and offset must be multiples of 8 bits.

SOR$_BADLOGIC

Internal logic error detected.

SOR$_BADOCCURS

Invalid OCCURS clause.

SOR$_BADOVRLAY

Invalid overlay structure.

735

Chapter 20. Sort/Merge (SOR) Routines

SOR$_BADPROTCL

Node is an invalid CDD object.

SOR$_BAD_KEY

Invalid key specification.

SOR$_BAD_LRL

Record length n greater than specified longest record length.

SOR$_BAD_MERGE

Number of input files must be between 0 and 10. (For the high-performance Sort/Merge utility,
the maximum number is 12.)

SOR$_BAD_ORDER

Merge input is out of order.

SOR$_BAD_SRL

Record length n is too short to contain keys.

SOR$_BAD_TYPE

Invalid sort process specified.

SOR$_CDDERROR

CDD error at node name.

SOR$_CLOSEIN

Error closing file as input.

SOR$_CLOSEOUT

Error closing file.

SOR$_COL_CHAR

Invalid character definition.

SOR$_COL_CMPLX

Collating sequence is too complex.

SOR$_COL_PAD

Invalid pad character.

SOR$_COL_THREE

Cannot define 3-byte collating values.

736

Chapter 20. Sort/Merge (SOR) Routines

SOR$_ENDDIAGS

Completed with diagnostics.

SOR$_ILLBASE

Nondecimal base is invalid.

SOR$_ILLLITERL

Record containing symbolic literals is unsupported.

SOR$_ILLSCALE

Nonzero scale invalid for floating-point data item.

SOR$_INCDIGITS

Number of digits is not consistent with the type or length of item.

SOR$_INCNODATA

Include specification references no data, at line n.

SOR$_INCNOKEY

Include specification references no keys, at line n.

SOR$_IND_OVR

Indexed output file must already exist.

SOR$_KEYAMBINC

Key specification is ambiguous or inconsistent.

SOR$_KEYED

Mismatch between SORT/MERGE keys and primary file key.

SOR$_KEY_LEN

Invalid key length, key number n, length n.

SOR$_LRL_MISS

Longest record length must be specified.

SOR$_MISLENOFF

Length and offset required.

SOR$_MISS_PARAM

A required subroutine argument is missing.

SOR$_MULTIDIM

Invalid multidimensional OCCURS.

737

Chapter 20. Sort/Merge (SOR) Routines

SOR$_NODUPEXC

Equal-key routine and no-duplicates option cannot both be specified.

SOR$_NOTRECORD

Node name is a name, not a record definition.

SOR$_NUM_KEY

Too many keys specified.

SOR$_NYI

Not yet implemented.

SOR$_OPENIN

Error opening file as input.

SOR$_OPENOUT

Error opening file as output.

SOR$_READERR

Error reading file.

SOR$_RTNERROR

Unexpected error status from user-written routine.

SOR$_SIGNCOMPQ

Absolute Date and Time data type represented in 1-second units.

SOR$_SORT_ON

Sort or merge routines called in incorrect order.

SOR$_SPCIVC

Invalid collating sequence specification at line n.

SOR$_SPCIVD

Invalid data type at line n.

SOR$_SPCIVF

Invalid field specification at line n.

SOR$_SPCIVI

Invalid include or omit specification at line n.

SOR$_SPCIVK

Invalid key or data specification at line n.

738

Chapter 20. Sort/Merge (SOR) Routines

SOR$_SPCIVP

Invalid sort process at line n.

SOR$_SPCIVS

Invalid specification at line n.

SOR$_SPCIVX

Invalid condition specification at line n.

SOR$_SPCMIS

Invalid merge specification at line n.

SOR$_SPCOVR

Overridden specification at line n.

SOR$_SPCSIS

Invalid sort specification at line n.

SOR$_SRTIWA

Insufficient space. The specification file is too complex.

SOR$_STABLEEX

Equal-key routine and stable option cannot both be specified.

SOR$_SYSERROR

System service error.

SOR$_UNDOPTION

Undefined option flag was set.

SOR$_UNSUPLEVL

Unsupported core level for record name.

SOR$_WRITEERR

Error writing file.

SOR$BEGIN_SORT
Begin a Sort Operation — The SOR$BEGIN_SORT routine initializes a sort operation by opening in-
put and output files and by passing the key information and any sort options.

Format
SOR$BEGIN_SORT [key_buffer] [,lrl] [,options] [,file_alloc] [,user_compare]
 [,user_equal] [,sort_process] [,work_files] [,context]

739

Chapter 20. Sort/Merge (SOR) Routines

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. Most utility routines return a condition value in R0. Condition values that
this routine can return are listed under Condition Values Returned.

Arguments
key_buffer

OpenVMS usage: vector_word_unsigned
type: word (unsigned)
access: read only
mechanism: by reference

Array of words describing the keys on which you plan to sort. The key_buffer argument is the ad-
dress of an array containing the key descriptions.

The first word of this array contains the number of keys described (up to 255). Following the first
word, each key is described (in order of priority) in blocks of four words. The four words specify the
key's data type, order, offset, and length, respectively.

The first word of the block specifies the data type of the key. The following data types are accepted:

DSC$K_DTYPE_Z Unspecified (uninfluenced by collating sequence)
DSC$K_DTYPE_B Byte integer (signed)
DSC$K_DTYPE_BU Byte (unsigned)
DSC$K_DTYPE_W Word integer (signed)
DSC$K_DTYPE_WU Word (unsigned)
DSC$K_DTYPE_L Longword integer (signed)
DSC$K_DTYPE_LU Longword (unsigned)
DSC$K_DTYPE_Q Quadword integer (signed)
DSC$K_DTYPE_QU Quadword (unsigned)
DSC$K_DTYPE_O dag Octaword integer (signed)
DSC$K_DTYPE_OU dag Octaword (unsigned)
DSC$K_DTYPE_F Single-precision floating
DSC$K_DTYPE_D Double-precision floating
DSC$K_DTYPE_G G-format floating
DSC$K_DTYPE_H dag H-format floating
DSC$K_DTYPE_FS DDAG IEEE single-precision S floating
DSC$K_DTYPE_FT DDAG IEEE double-precision T floating
DSC$K_DTYPE_T Text (may be influenced by collating sequence)

740

Chapter 20. Sort/Merge (SOR) Routines

DSC$K_DTYPE_NU Numeric string, unsigned
DSC$K_DTYPE_NL Numeric string, left separate sign
DSC$K_DTYPE_NLO Numeric string, left overpunched sign
DSC$K_DTYPE_NR Numeric string, right separate sign
DSC$K_DTYPE_NRO Numeric string, right overpunched sign
DSC$K_DTYPE_NZ dag Numeric string, zoned sign
DSC$K_DTYPE_P Packed decimal string

dagData type is not currently supported by the high-performance Sort/Merge utility.
DDAGData type is Alpha specific.

The VSI OpenVMS Programming Concepts Manual describes each of these data types.

The second word of the block specifies the key order: 0 for ascending order, 1 for descending order.
The third word of the block specifies the relative offset of the key in the record. Note that the first
byte in the record is at position 0. The fourth word of the block specifies the key length in bytes (in
digits for packed decimal—DSC$K_DTYPE_P).

The key_buffer argument specifies the address of the key buffer in the data area. If you do not
specify this argument, you must either pass a key comparison routine or use a specification file to de-
fine the key.

lrl

OpenVMS usage: word_unsigned
type: word (unsigned)
access: read only
mechanism: by reference

Length of the longest record that will be released for sorting. The lrl argument is the address of a
word containing the length. This argument is not required if the input files are on disk but is required
when you use the record interface. For VFC records, this length must include the length of the fixed-
length portion of the record.

options

OpenVMS usage: mask_longword
type: longword (unsigned)
access: read only
mechanism: by reference

Flags that identify sort options. The options argument is the address of a longword bit mask whose
settings determine the merge options selected. The following table lists and describes the bit mask val-
ues available.

Flags Description
SOR$M_STABLE Keeps records with equal keys in the same order

in which they appeared on input. With multiple
input files that have records that collate as equal,
records from the first input file are placed before
the records from the second input file, and so on.

741

Chapter 20. Sort/Merge (SOR) Routines

Flags Description
SOR$M_EBCDIC Orders ASCII character keys according to

EBCDIC collating sequence. No translation takes
place.

SOR$M_MULTI Orders character keys according to the multina-
tional collating sequence, which collates the inter-
national character set.

SOR$M_NOSIGNAL Returns a status code instead of signaling errors.
SOR$M_NODUPS Omits records with duplicate keys. You cannot

use this option if you specify your own equal-key
routine.

All other bits in the longword are reserved and must be zero.

file_alloc

OpenVMS usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by reference

Input file size in blocks. The file_alloc argument is the address of a longword containing the size
of the input file. This argument is optional because, by default, SORT uses the allocation of the in-
put files. If you are using the record interface, or if the input files are not on disk, the default is 1000
blocks.(The high-performance Sort/Merge utility determines the default based on the size of the input
file, or if input is not from files, on available memory.) When you specify the input size with this ar-
gument, it overrides the default size.

This optional argument is useful when you are using the record interface and you have a good idea of
the total input size. You can use this argument to improve the efficiency of the sort by adjusting the
amount of resources the sort process allocates to match the input size.

user_compare

OpenVMS usage: procedure
type: procedure value
access: function call
mechanism: by reference

User-written routine that compares records to determine their sort order. (This argument is not cur-
rently supported by the high-performance Sort/Merge utility.) The user_compare argument is the
address of the procedure value for this user-written routine. If you do not specify the key_buffer
argument or if you define key information in a specification file, this argument is required.

SORT/MERGE calls the comparison routine with five reference arguments—ADRS1, ADRS2,
LENG1, LENG2, CNTX—corresponding to the addresses of the two records to be compared, the
lengths of these two records, and the context longword. The LENG1 and LENG2 arguments are ad-
dresses that point to 16-bit word structures that contain the length information.

The comparison routine must return a 32-bit integer value:

742

Chapter 20. Sort/Merge (SOR) Routines

• –1 if the first record collates before the second

• 0 if the records collate as equal

• 1 if the first record collates after the second

user_equal

OpenVMS usage: procedure
type: procedure value
access: function call
mechanism: by reference

User-written routine that resolves the sort order when records have duplicate keys. (This argument is
not currently supported by the high-performance Sort/Merge utility.) The user_equal argument is
the address of the procedure value for this user-written routine. If you specify SOR$M_STABLE or
SOR$M_NODUPS in the options argument, do not use this argument.

SORT/MERGE calls the duplicate key routine with five reference arguments—ADRS1, ADRS2,
LENG1, LENG2, CNTX—corresponding to the addresses of the two records that compare equal-
ly, the lengths of the two records that compare equally, and the context longword. The LENG1 and
LENG2 arguments are addresses that point to 16-bit word structures that contain the length informa-
tion.

The routine must return one of the following 32-bit integer condition codes:

Code Description
SOR$_DELETE1 Delete the first record from the sort.
SOR$_DELETE2 Delete the second record from the sort.
SOR$_DELBOTH Delete both records from the sort.
SS$_NORMAL Keep both records in the sort.

Any other failure value causes the error to be signaled or returned. Any other success value causes an
undefined result.

sort_process

OpenVMS usage: byte_unsigned
type: byte (unsigned)
access: read only
mechanism: by reference

Code indicating the type of sort process. The sort_process argument is the address of a byte
whose value indicates whether the sort type is record, tag, index, or address. (The high-performance
Sort/Merge utility supports only the record process. Implementation of the tag, address, and index
processes is deferred to a future OpenVMS Alpha release.) The default is record. If you select the
record interface on input, you can use only a record sort process.

To specify a byte containing the value for the type of sort process you want, enter one of the follow-
ing:

• SOR$GK_RECORD (record sort)

743

Chapter 20. Sort/Merge (SOR) Routines

• SOR$GK_TAG (tag sort)

• SOR$GK_ADDRESS (address sort)

• SOR$GK_INDEX (index sort)

work_files

OpenVMS usage: byte_unsigned
type: byte (unsigned)
access: read only
mechanism: by reference

Number of work files to be used in the sorting process. The work_files argument is the address
of a byte containing the number of work files; permissible values for SORT range from 0 through 10.
(For the high-performance Sort/Merge utility, you can specify from 1 through 255 work files. The de-
fault is 2.)

By default, SORT creates two temporary work files when it needs them and determines their size from
the size of your input files. By increasing the number of work files, you can reduce their individual
size so that each fits into less disk space. You can also assign each of them to different disk-structured
devices (highly recommended).

context

OpenVMS usage: context
type: longword (unsigned)
access: write only
mechanism: by reference

Value that distinguishes between multiple, concurrent SORT/MERGE operations. The context ar-
gument is the address of a longword containing the context value. When your program makes its first
call to a SORT/MERGE routine for a particular sort or merge operation, the context longword must
equal zero. SORT/MERGE then stores a value in the longword to identify the operation just initiated.
When you make subsequent routine calls for the same operation, you must pass the context value sup-
plied by SORT/MERGE.

Description
The SOR$BEGIN_SORT routine initializes the sort process by setting up sort work areas and pro-
vides key specification and sort options.

Specify the key information with the key_buffer argument, with the user_compare argument,
or in a specification file. If no key information is specified, the default (character for the entire record)
is used.

You must use the SOR$BEGIN_SORT routine to initialize the sort process for the file, record, and
mixed interfaces. For record interface on input, you must use the lrl (longest record length) argu-
ment.

Some of the following condition values are used with different severities, depending on whether
SORT/MERGE can recover. Thus, if you want to check for a specific status, you should use LIB
$MATCH_COND.

744

Chapter 20. Sort/Merge (SOR) Routines

Condition Values Returned
SS$_NORMAL

Normal successful completion.

SOR$_BADLOGIC

Internal logic error detected.

SOR$_BAD_KEY

Invalid key specification.

SOR$_BAD_LRL

Record length n greater than specified longest record length.

SOR$_BAD_MERGE

Number of work files must be between 0 and 10. (For the high-performance Sort/Merge utility,
the maximum number is 255.)

SOR$_BAD_TYPE

Invalid sort process specified.

SOR$_ENDDIAGS

Completed with diagnostics.

SOR$_INSVIRMEM

Insufficient virtual memory.

SOR$_KEYAMBINC

Key specification is ambiguous or inconsistent.

SOR$_KEY_LEN

Invalid key length, key number n, length n.

SOR$_LRL_MISS

Longest record length must be specified.

SOR$_NODUPEXC

Equal-key routine and no-duplicates option cannot both be specified.

SOR$_NUM_KEY

Too many keys specified.

SOR$_NYI

Not yet implemented.

745

Chapter 20. Sort/Merge (SOR) Routines

SOR$_RTNERROR

Unexpected error status from user-written routine.

SOR$_SORT_ON

Sort or merge routine called in incorrect order.

SOR$_STABLEEXC

Equal-key routine and stable option cannot both be specified.

SOR$_SYSERROR

System service error.

SOR$_UNDOPTION

Undefined option flag was set.

SOR$DTYPE
Define Data Type — The SOR$DTYPE routine defines a key data type that is not normally supported
by SORT/MERGE. (This routine is not currently supported by the high-performance Sort/Merge utili-
ty.) This routine returns a key data type code that can be used in the key_buffer argument to SOR
$BEGIN_SORT or SOR$BEGIN_MERGE to describe special key data types (such as extended data
types and National character set (NCS) collating sequences).

Format
SOR$DTYPE [context] ,dtype_code ,usage ,p1

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. Most utility routines return a condition value in R0. Condition values that
this routine can return are listed under Condition Values Returned.

Arguments

context

OpenVMS usage: context
type: longword (unsigned)
access: modify
mechanism: by reference

746

Chapter 20. Sort/Merge (SOR) Routines

Value that distinguishes between multiple, concurrent SORT/MERGE operations. The context ar-
gument is the address of a longword containing the context value. When your program makes its first
call to a SORT/MERGE routine for a particular sort or merge operation, the context longword must
equal zero. SORT/MERGE then stores a value in the longword to identify the operation just initiated.
When you make subsequent routine calls for the same operation, you must pass the context value sup-
plied by SORT/MERGE.

dtype_code

OpenVMS usage: word_unsigned
type: word (unsigned)
access: write only
mechanism: by reference

Returned key data type code. The dtype_code argument is the address of a word into which SORT/
MERGE writes the key data type code that can be used in the key_buffer argument to SOR
$BEGIN_SORT or SOR$BEGIN_MERGE.

usage

OpenVMS usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by reference

Address of a longword containing a code that indicates the interpretation of the p1 argument. The fol-
lowing table lists and describes the valid usage codes:

Flag Description
SOR$K_ROUTINE The p1 argument should be interpreted as the

address of the procedure value of a routine that
SORT/MERGE will call to compare keys de-
scribed by the dtype_code returned by the call
to SOR$DTYPE.

SOR$K_NCS_TABLE The p1 argument should be interpreted as the
address of a collating sequence identification
returned by a call to NCS$GET_CS. SORT/
MERGE will use this collating sequence to com-
pare keys described by the dtype_code re-
turned by the call to SOR$DTYPE.

If SOR$K_ROUTINE is returned, SORT/MERGE will call this routine with five reference argu-
ments—ADRS1, ADRS2, LENG1, LENG2, CNTX—corresponding to the addresses of the two keys
to be compared, the lengths of the two keys, and the context longword.

The comparison routine must return a 32-bit integer value:

• –1 if the first key collates before the second

• 0 if the keys collate as equal

• +1 if the first key collates after the second

747

Chapter 20. Sort/Merge (SOR) Routines

p1

OpenVMS usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by reference

Address of the procedure value of a routine or the address of a collating sequence identification, de-
pending on the usage argument.

Description
Call SOR$DTYPE to define a key data type not normally supported by SORT/MERGE.

If your SORT/MERGE application needs to compare dates (for example) that are stored in text
form and that is the only key in the records, then use the user_compare argument to SOR
$BEGIN_SORT or SOR$BEGIN_MERGE. However, if the records contain several keys besides the
dates in text form, it may be easier to call SOR$DTYPE to allocate a key data type code that can then
be used in the key_buffer argument to SOR$BEGIN_SORT or SOR$BEGIN_MERGE.

If your SORT/MERGE application has a string key that should be collated by a collating sequence de-
fined by the NCS utility, the NCS$GET_CS routine can be used to fetch the collating sequence de-
finition, and SOR$DTYPE can be called to allocate a key data type code for the collating sequence.
This key data type code can then be used to describe keys that should be compared by this collating
sequence.

Condition Values Returned
SS$_NORMAL

Normal successful completion.

SOR$_NYI

Not yet implemented.

SOR$_SORT_ON

Sort or merge routine called in incorrect order.

SOR$END_SORT
End a Sort Operation — The SOR$END_SORT routine performs cleanup functions, such as closing
files and releasing memory.

Format
SOR$END_SORT [context]

Returns

OpenVMS usage: cond_value

748

Chapter 20. Sort/Merge (SOR) Routines

type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. Most utility routines return a condition value in R0. Condition values that
this routine can return are listed under Condition Values Returned.

Argument
context

OpenVMS usage: context
type: longword
access: write only
mechanism: by reference

Value that distinguishes between multiple, concurrent SORT/MERGE operations. The context ar-
gument is the address of a longword containing the context value. When your program makes its first
call to a SORT/MERGE routine for a particular sort or merge operation, the context longword must
equal zero. SORT/MERGE then stores a value in the longword to identify the operation just initiated.
When you make subsequent routine calls for the same operation, you must pass the context value sup-
plied by SORT/MERGE.

Description
The SOR$END_SORT routine ends a sort or merge operation, either at the end of a successful process
or between calls because of an error. If an error status is returned, you must call SOR$END_SORT to
release all allocated resources. In addition, this routine can be called at any time to close files and re-
lease memory.

The value of the optional context argument is cleared when the SOR$END_SORT routine completes
its operation.

Some of the following condition values are used with different severities, depending on whether
SORT/MERGE can recover. Thus, if you want to check for a specific status, you should use LIB
$MATCH_COND.

Condition Values Returned
SS$_NORMAL

Normal successful completion.

SOR$_CLOSEIN

Error closing file as input.

SOR$_CLOSEOUT

Error closing file as output.

SOR$_ENDDIAGS

Completed with diagnostics.

749

Chapter 20. Sort/Merge (SOR) Routines

SOR$_END_SORT

SORT/MERGE terminated, context = context.

SOR$_SYSERROR

System service error.

SOR$PASS_FILES
Pass File Name — The SOR$PASS_FILES routine passes the names of input and output files and out-
put file characteristics to SORT or MERGE.

Format
SOR$PASS_FILES [inp_desc] [,out_desc] [,org] [,rfm] [,bks] [,bls] [,mrs]
 [,alq] [,fop] [,fsz] [,context]

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. Most utility routines return a condition value in R0. Condition values that
this routine can return are listed under Condition Values Returned.

Arguments
inp_desc

OpenVMS usage: char_string
type: character-coded text string
access: read only
mechanism: by descriptor

Input file specification. The inp_desc argument is the address of a descriptor pointing to the file
specification. In the file interface, you must call SOR$PASS_FILES to pass SORT the input file spec-
ifications. For multiple input files, call SOR$PASS_FILES once for each input file, passing one input
file specification descriptor each time.

In the mixed interface, if you are using the record interface on input, pass only the output file specifi-
cation; do not pass any input file specifications. If you are using the record interface on output, pass
only the input file specifications; do not pass an output file specification or any of the optional output
file arguments.

out_desc

OpenVMS usage: char_string

750

Chapter 20. Sort/Merge (SOR) Routines

type: character-coded text string
access: read only
mechanism: by descriptor

Output file specification. The out_desc argument is the address of a descriptor pointing to the file
specification. In the file interface, when you call SOR$PASS_FILES, you must pass the output file
specification. Specify the output file specification and characteristics only once, as part of the first
call, as in the following:

Call SOR$PASS_FILES(Input1,Output)
Call SOR$PASS_FILES(Input2)
Call SOR$PASS_FILES(Input3)

In the mixed interface, if you are using the record interface on input, pass only the output file specifi-
cation; do not pass any input file specifications. If you are using the record interface on output, pass
only the input file specifications; do not pass an output file specification or any of the optional output
file arguments.

org

OpenVMS usage: byte_unsigned
type: byte (unsigned)
access: read only
mechanism: by reference

File organization of the output file, if different from the input file. The org argument is the address of
a byte whose value specifies the organization of the output file; permissible values include the follow-
ing:

FAB$C_SEQ
FAB$C_REL
FAB$C_IDX

For the record interface on input, the default value is sequential. For the file interface, the default val-
ue is the file organization of the first input file for record or tag sort and sequential for address and in-
dex sort.

For more information about OpenVMS RMS file organizations, see the OpenVMS Record Manage-
ment Services Reference Manual.

rfm

OpenVMS usage: byte_unsigned
type: byte (unsigned)
access: read only
mechanism: by reference

Record format of the output file, if different from the input file. The rfm argument is the address of a
byte whose value specifies the record format of the output file; permissible values include the follow-
ing:

FAB$C_FIX
FAB$C_VAR

751

Chapter 20. Sort/Merge (SOR) Routines

FAB$C_VFC

For the record interface on input, the default value is variable. For the file interface, the default value
is the record format of the first input file for record or tag sort and fixed format for address or index
sort. For the mixed interface with record interface on input, the default value is variable format.

For more information about OpenVMS RMS record formats, see the OpenVMS Record Management
Services Reference Manual.

bks

OpenVMS usage: byte_unsigned
type: byte (unsigned)
access: read only
mechanism: by reference

Bucket size of the output file, if different from the first input file. The bks argument is the address of
a byte containing this size. Use this argument with relative and indexed-sequential files only. If the
bucket size of the output file is to differ from that of the first input file, specify a byte to indicate the
bucket size. Acceptable values are from 1 to 32. If you do not pass this argument—and the output file
organization is the same as that of the first input file—the bucket size defaults to the value of the first
input file. If the file organizations differ or if the record interface is used on input, the default value is
1 block.

bls

OpenVMS usage: word_unsigned
type: word (unsigned)
access: read only
mechanism: by reference

Block size of a magnetic tape output file. The bls argument is the address of a word containing this
size. Use this argument with magnetic tapes only. Permissible values range from 20 to 65,532. How-
ever, to ensure compatibility with non-VSI systems, ANSI standards require that the block size be less
than or equal to 2048.

The block size defaults to the block size of the input file magnetic tape. If the input file is not on mag-
netic tape, the output file block size defaults to the size used when the magnetic tape was mounted.

mrs

OpenVMS usage: word_unsigned
type: word (unsigned)
access: read only
mechanism: by reference

Maximum record size for the output file. The mrs argument is the address of a word specifying this
size. Following are acceptable values for each type of file:

File Organization Acceptable Value
Sequential 0 to 32,767

752

Chapter 20. Sort/Merge (SOR) Routines

File Organization Acceptable Value
Relative 0 to 16,383
Indexed sequential 0 to 16,362

If you omit this argument or if you specify a value of 0, SORT does not check maximum record size.

If you do not specify this argument, the default is based on the output file organization and format, un-
less the organization is relative or the format is fixed. The longest output record length is based on the
longest calculated input record length, the type of sort, and the record format.

alq

OpenVMS usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by reference

Number of preallocated output file blocks. The alq argument is the address of a longword specify-
ing the number of blocks you want to preallocate to the output file. Acceptable values range from 1 to
4,294,967,295.

Pass this argument if you know your output file allocation will be larger or smaller than that of your
input files. The default value is the total allocation of all the input files. If the allocation cannot be ob-
tained for any of the input files or if the record interface is used on input, the file allocation defaults to
1000 blocks.

fop

OpenVMS usage: mask_longword
type: longword (unsigned)
access: read only
mechanism: by reference

File-handling options. The fop argument is the address of a longword whose bit settings determine
the options selected. For a list of valid file-handling options, see the description of the FAB$L_FOP
field in the OpenVMS Record Management Services Reference Manual. By default, only the DFW
(deferred write) option is set. If your output file is indexed, you should set the CIF (create if) option.

fsz

OpenVMS usage: byte_unsigned
type: byte (unsigned)
access: read only
mechanism: by reference

Size of the fixed portion of VFC records. The fsz argument is the address of a byte containing this
size. If you do not pass this argument, the default is the size of the fixed portion of the first input file.
If you specify the VFC size as 0, RMS defaults the value to 2 bytes.

context

753

Chapter 20. Sort/Merge (SOR) Routines

OpenVMS usage: context
type: longword (unsigned)
access: write only
mechanism: by reference

Value that distinguishes between multiple concurrent SORT/MERGE operations. The context ar-
gument is the address of a longword containing the context value. When your program makes its first
call to a SORT/MERGE routine for a particular sort or merge operation, the context longword must
equal zero. SORT/MERGE then stores a value in the longword to identify the operation just initiated.
When you make subsequent routine calls for the same operation, you must pass the context value sup-
plied by SORT/MERGE.

Description
The SOR$PASS_FILES routine passes input and output file specifications to SORT. The SOR
$PASS_FILES routine must be repeated for multiple input files. The output file name string and char-
acteristics should be specified only in the first call to SOR$PASS_FILES.

This routine also accepts optional arguments that specify characteristics for the output file. By default,
the output file characteristics are the same as the first input file; specified output file characteristics
are used to change these defaults.

Some of the following condition values are used with different severities, depending on whether
SORT/MERGE can recover. Thus, if you want to check for a specific status, you should use LIB
$MATCH_COND.

Condition Values Returned
SS$_NORMAL

Normal successful completion.

SOR$_DUP_OUTPUT

Output file has already been specified.

SOR$_ENDDIAGS

Completed with diagnostics.

SOR$_INP_FILES

Too many input files specified.

SOR$_NYI

Not yet implemented.

SOR$_SORT_ON

Sort or merge routine called in incorrect order.

SOR$_SYSERROR

System service error.

754

Chapter 20. Sort/Merge (SOR) Routines

SOR$RELEASE_REC
Pass One Record to Sort — The SOR$RELEASE_REC routine is used with the record interface to
pass one input record to SORT or MERGE.

Format
SOR$RELEASE_REC desc [,context]

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. Most utility routines return a condition value in R0. Condition values that
this routine can return are listed under Condition Values Returned.

Arguments
desc

OpenVMS usage: char_string
type: character-coded text string
access: read only
mechanism: by descriptor

Input record buffer. The desc argument is the address of a descriptor pointing to the buffer contain-
ing the record to be sorted. If you use the record interface, this argument is required.

context

OpenVMS usage: context
type: longword
access: modify
mechanism: by reference

Value that distinguishes between multiple, concurrent SORT/MERGE operations. The context ar-
gument is the address of a longword containing the context value. When your program makes its first
call to a SORT/MERGE routine for a particular sort or merge operation, the context longword must
equal zero. SORT/MERGE then stores a value in the longword to identify the operation just initiated.
When you make subsequent routine calls for the same operation, you must pass the context value sup-
plied by SORT/MERGE.

Description
Call SOR$RELEASE_REC to pass records to SORT or MERGE with the record interface. SOR$RE-
LEASE_REC must be called once for each record to be sorted.

755

Chapter 20. Sort/Merge (SOR) Routines

Some of the following condition values are used with different severities, depending on whether
SORT/MERGE can recover. Thus, if you want to check for a specific status, you should use LIB
$MATCH_COND.

Condition Values Returned
SS$_NORMAL

Normal successful completion.

SOR$_BADLOGIC

Internal logic error detected.

SOR$_BAD_LRL

Record length n greater than longest specified record length.

SOR$_BAD_SRL

Record length n too short to contain keys.

SOR$_ENDDIAGS

Completed with diagnostics.

SOR$_EXTEND

Unable to extend work file for needed space.

SOR$_MISS_PARAM

The desc argument is missing.

SOR$_NO_WRK

Work files required; cannot do sort in memory as requested.

SOR$_OPENOUT

Error opening file as output.

SOR$_OPERFAIL

Error requesting operator service.

SOR$_READERR

Error reading file.

SOR$_REQ_ALT

Specify alternate name file (or nothing to try again).

SOR$_RTNERROR

Unexpected error status from user-written routine.

756

Chapter 20. Sort/Merge (SOR) Routines

SOR$_SORT_ON

Sort or merge routines called in incorrect order.

SOR$_SYSERROR

System service error.

SOR$_USE_ALT

Using alternate file name.

SOR$_WORK_DEV

Work file name must be on random access local device.

SOR$RETURN_REC
Return One Sorted Record — The SOR$RETURN_REC routine is used with the record interface to
return one sorted or merged record to a program.

Format
SOR$RETURN_REC desc [,length] [,context]

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. Most utility routines return a condition value in R0. Condition values that
this routine can return are listed under Condition Values Returned.

Arguments
desc

OpenVMS usage: char_string
type: character-coded text string
access: write only
mechanism: by descriptor

Output record buffer. The desc argument is the address of a descriptor pointing to the buffer that re-
ceives the sorted or merged record.

length

OpenVMS usage: word_unsigned
type: word (unsigned)

757

Chapter 20. Sort/Merge (SOR) Routines

access: write only
mechanism: by reference

Length of the output record. The length argument is the address of a word receiving the length of
the record returned from SORT/MERGE.

context

OpenVMS usage: context
type: longword (unsigned)
access: modify
mechanism: by reference

Value that distinguishes between multiple, concurrent SORT/MERGE operations. The context ar-
gument is the address of a longword containing the context value. When your program makes its first
call to a SORT/MERGE routine for a particular sort or merge operation, the context longword must
equal zero. SORT/MERGE then stores a value in the longword to identify the operation just initiated.
When you make subsequent routine calls for the same operation, you must pass the context value sup-
plied by SORT/MERGE.

Description
Call the SOR$RETURN_REC routine to release the sorted or merged records to a program. Call this
routine once for each record to be returned.

SOR$RETURN_REC places the record into a record buffer that you set up in the program's data area.
After SORT has successfully returned all the records to the program, it returns the status code SS
$_ENDOFFILE, which indicates that there are no more records to return.

Some of the following condition values are used with different severities, depending on whether
SORT/MERGE can recover. Thus, if you want to check for a specific status, you should use LIB
$MATCH_COND.

Condition Values Returned
SS$_NORMAL

Normal successful completion.

SOR$_BADLOGIC

Internal logic error detected.

SOR$_ENDDIAGS

Completed with diagnostics.

SOR$_EXTEND

Unable to extend work file for needed space.

SOR$_MISS_PARAM

A required subroutine argument is missing.

758

Chapter 20. Sort/Merge (SOR) Routines

SOR$_OPERFAIL

Error requesting operator service.

SOR$_READERR

Error reading file.

SOR$_REQ_ALT

Specify alternate name file (or specify nothing to simply try again).

SOR$_RTNERROR

Unexpected error status from user-written routine.

SOR$_SORT_ON

Sort or merge routines called in incorrect order.

SOR$_SYSERROR

System service error.

SOR$_USE_ALT

Using alternate file name.

SOR$_WORK_DEV

Work file name must be on random access local device.

SOR$SORT_MERGE
Sort — The SOR$SORT_MERGE routine sorts the input records.

Format
SOR$SORT_MERGE [context]

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. Most utility routines return a condition value in R0. Condition values that
this routine can return are listed under Condition Values Returned.

Argument
context

759

Chapter 20. Sort/Merge (SOR) Routines

OpenVMS usage: context
type: longword (unsigned)
access: modify
mechanism: by reference

Value that distinguishes between multiple, concurrent SORT/MERGE operations. The context ar-
gument is the address of a longword containing the context value. When your program makes its first
call to a SORT/MERGE routine for a particular sort or merge operation, the context longword must
equal zero. SORT/MERGE then stores a value in the longword to identify the operation just initiated.
When you make subsequent routine calls for the same operation, you must pass the context value sup-
plied by SORT/MERGE.

Description

After you have passed either the file names or the records to SORT, call the SOR$SORT_MERGE
routine to sort the records. For file interface on input, the input files are opened and the records are re-
leased to the sort. For the record interface on input, the record must have already been released (by
calls to SOR$RELEASE_REC). For file interface on output, the output records are reformatted and
directed to the output file. For the record interface on output, SOR$RETURN_REC must be called to
get the sorted records.

Some of the return values are used with different severities depending on whether SORT/MERGE can
recover. Thus, if you want to check for a specific status, you should use LIB$MATCH_COND.

Condition Values Returned

SS$_NORMAL

Normal successful completion.

SOR$_BADDTYPE

Invalid or unsupported CDD data type.

SOR$_BADLENOFF

Length and offset must be multiples of 8 bits.

SOR$_BADLOGIC

Internal logic error detected.

SOR$_BADOCCURS

Invalid OCCURS clause.

SOR$_BADOVRLAY

Invalid overlay structure.

SOR$_BADPROTCL

Node is an invalid CDD object.

760

Chapter 20. Sort/Merge (SOR) Routines

SOR$_BAD_LRL

Record length n greater than longest specified record length.

SOR$_BAD_TYPE

Invalid sort process specified.

SOR$_CDDERROR

CDD error at node name.

SOR$_CLOSEIN

Error closing file as input.

SOR$_CLOSEOUT

Error closing file as output.

SOR$_COL_CHAR

Invalid character definition.

SOR$_COL_CMPLX

Collating sequence is too complex.

SOR$_COL_PAD

Invalid pad character.

SOR$_COL_THREE

Cannot define 3-byte collating values.

SOR$_ENDDIAGS

Completed with diagnostics.

SOR$_EXTEND

Unable to extend work file for needed space.

SOR$_ILLBASE

Nondecimal base is invalid.

SOR$_ILLLITERL

Record containing symbolic literals is unsupported.

SOR$_ILLSCALE

Nonzero scale invalid for floating-point data item.

SOR$_INCDIGITS

Number of digits is inconsistent with the type or length of item.

761

Chapter 20. Sort/Merge (SOR) Routines

SOR$_INCNODATA

Include specification references no data keyword, at line n.

SOR$_INCNOKEY

Include specification references no keys keyword, at line n.

SOR$_IND_OVR

Indexed output file must already exist.

SOR$_KEYED

Mismatch between SORT/MERGE keys and primary file key.

SOR$_LRL_MISS

Longest record length must be specified.

SOR$_MISLENOFF

Length and offset required.

SOR$_MULTIDIM

Invalid multidimensional OCCURS.

SOR$_NOTRECORD

Node name is a name, not a record definition.

SOR$_NO_WRK

Work files required, cannot do sort in memory as requested.

SOR$_OPENIN

Error opening file as input.

SOR$_OPENOUT

Error opening file as output.

SOR$_OPERFAIL

Error requesting operator service.

SOR$_READERR

Error reading file.

SOR$_REQ_ALT

Specify alternate name file (or nothing to try again).

SOR$_RTNERROR

Unexpected error status from user-written routine.

762

Chapter 20. Sort/Merge (SOR) Routines

SOR$_SIGNCOMPQ

Absolute Date and Time data type represented in 1-second units.

SOR$_SORT_ON

Sort or merge routines called in incorrect order.

SOR$_SPCIVC

Invalid collating sequence specification, at line n.

SOR$_SPCIVD

Invalid data type, at line n.

SOR$_SPCIVF

Invalid field specification, at line n.

SOR$_SPCIVI

Invalid include or omit specification, at line n.

SOR$_SPCIVK

Invalid key or data specification, at line n.

SOR$_SPCIVP

Invalid sort process, at line n.

SOR$_SPCIVS

Invalid specification, at line n.

SOR$_SPCIVX

Invalid condition specification, at line n.

SOR$_SPCMIS

Invalid merge specification, at line n.

SOR$_SPCOVR

Overridden specification, at line n.

SOR$_SPCSIS

Invalid sort specification, at line n.

SOR$_SRTIWA

Insufficient space. Specification file is too complex.

SOR$_SYSERROR

System service error.

763

Chapter 20. Sort/Merge (SOR) Routines

SOR$_UNSUPLEVL

Unsupported core level for record name.

SOR$_USE_ALT

Using alternate file name.

SOR$_WORK_DEV

Work file name must be on random access local device.

SOR$_WRITEERR

Error writing file.

SOR$SPEC_FILE
Pass a Specification File Name — The SOR$SPEC_FILE routine is used to pass a specification file or
specification text to a sort or merge operation. (This routine is not currently supported by the high-per-
formance Sort/Merge utility.)

Format
SOR$SPEC_FILE [spec_file] [,spec_buffer] [,context]

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. Most utility routines return a condition value in R0. Condition values that
this routine can return are listed under Condition Values Returned.

Arguments
spec_file

OpenVMS usage: char_string
type: character-coded text string
access: read-only
mechanism: by descriptor

Specification file name. The spec_file argument is the address of a descriptor pointing to the
name of a file that contains the text of the options requested for the sort or merge. The specification
file name string and the specification file buffer arguments are mutually exclusive.

spec_buffer

OpenVMS usage: char_string

764

Chapter 20. Sort/Merge (SOR) Routines

type: character-coded text string
access: read-only
mechanism: by descriptor

Specification text buffer. The spec_buffer argument is the address of a descriptor pointing to a
buffer containing specification text. This text has the same format as the text within the specification
file. The specification file name string and the specification file buffer arguments are mutually exclu-
sive.

context

OpenVMS usage: context
type: longword (unsigned)
access: modify
mechanism: by reference

Value that distinguishes between multiple, concurrent SORT/MERGE operations. The context ar-
gument is the address of a longword containing the context value. When your program makes its first
call to a SORT/MERGE routine for a particular sort or merge operation, the context longword must
equal zero. SORT/MERGE then stores a value in the longword to identify the operation just initiated.
When you make subsequent routine calls for the same operation, you must pass the context value sup-
plied by SORT/MERGE.

Description
Call SOR$SPEC_FILE to pass a specification file name or a buffer with specification text to a sort or
merge operation. Through the use of a specification file, you can selectively omit or include particular
records from the sort or merge operation and specify the reformatting of the output records. (See the
Sort Utility in the OpenVMS User's Manual for a complete description of specification files.)

If you call the SOR$SPEC_FILE routine, you must do so before you call any other routines. You must
pass either the spec_file or spec_buffer argument, but not both.

Some of the return condition values are used with different severities, depending on whether
SORT/MERGE can recover. Thus, if you want to check for a specific status, you should use LIB
$MATCH_COND.

Condition Values Returned
SOR$_ENDDIAGS

Completed with diagnostics.

SOR$_NYI

Not yet implemented.

SOR$_SORT_ON

Sort or merge routine called in incorrect order.

SOR$_SYSERROR

System service error.

765

Chapter 20. Sort/Merge (SOR) Routines

SOR$STAT
Obtain a Statistic — The SOR$STAT routine returns one statistic about the sort or merge operation to
the user program.

Format
SOR$STAT code ,result [,context]

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. Most utility routines return a condition value in R0. Condition values that
this routine can return are listed under Condition Values Returned.

Arguments
code

OpenVMS usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by reference

SORT/MERGE statistic code. The code argument is the address of a longword containing the code
that identifies the statistic you want returned in the result argument. The following table describes
the values that are accepted.

Note: The high-performance Sort/Merge utility currently supports only the following subset of these
values: SORK_REC_INP, SORK_REC_SOR, SORK_REC_OUT, SORK_LRL_INP.

Code Description
SOR$K_IDENT Address of ASCII string for version number
SOR$K_REC_INP Number of records input
SOR$K_REC_SOR Records sorted
SOR$K_REC_OUT Records output
SOR$K_LRL_INP Longest record length (LRL) for input
SOR$K_LRL_INT Internal LRL
SOR$K_LRL_OUT LRL for output
SOR$K_NODES Nodes in sort tree
SOR$K_INI_RUNS Initial dispersion runs
SOR$K_MRG_ORDER Maximum merge order

766

Chapter 20. Sort/Merge (SOR) Routines

Code Description
SOR$K_MRG_PASSES Number of merge passes
SOR$K_WRK_ALQ Work file allocation
SOR$K_MBC_INP Multiblock count for input
SOR$K_MBC_OUT Multiblock count for output
SOR$K_MBF_INP Multibuffer count for input
SOR$K_MBF_OUT Multibuffer count for output

Note that performance statistics (such as direct I/O, buffered I/O, and elapsed and CPU times) are not
available because user-written routines may affect those values. However, they are available if you
call LIB$GETJPI.

result

OpenVMS usage: longword_unsigned
type: longword (unsigned)
access: write only
mechanism: by reference

SORT/MERGE statistic value. The result argument is the address of a longword into which SORT/
MERGE writes the value of the statistic identified by the code argument.

context

OpenVMS usage: context
type: longword (unsigned)
access: modify
mechanism: by reference

Value that distinguishes between multiple, concurrent SORT/MERGE operations. The context ar-
gument is the address of a longword containing the context value. When your program makes its first
call to a SORT/MERGE routine for a particular sort or merge operation, the context longword must
equal zero. SORT/MERGE then stores a value in the longword to identify the operation just initiated.
When you make subsequent routine calls for the same operation, you must pass the context value sup-
plied by SORT/MERGE.

Description
The SOR$STAT routine returns one statistic about the sort or merge operation to your program. You
can call the SOR$STAT routine at any time while the sort or merge is active.

Some of the following condition values are used with different severities, depending on whether
SORT/MERGE can recover. Thus, if you want to check for a specific status, you should use LIB
$MATCH_COND.

Condition Values Returned
SOR$_ENDDIAGS

Completed with diagnostics.

767

Chapter 20. Sort/Merge (SOR) Routines

SOR$_MISS_PARAM

A required subroutine argument is missing.

SOR$_NYI

Functionality is not yet implemented.

SOR$_SYSERROR

System service error.

768

Chapter 21. Traceback Facility (TBK)
Routines
The Traceback facility for VSI OpenVMS Integrity server and Alpha systems is a debugging tool
that provides information (symbolizations) about call stack PCs. In normal operation, when a process
suffers a fatal unhandled exception, the operating system launches Traceback which sends to SYS
$OUTPUT the complete call stack at the time of the exception. Applications can also directly use the
Traceback facility to sequentially generate information for an individual call stack PC. In this case, the
Traceback simply returns information to the caller, not to SYS$OUTPUT. This chapter describes this
direct Traceback interface.

21.1. Introduction to TBK Routines
On Integrity server systems, the Traceback facility can be invoked at any time by using the TBK
$I64_SYMBOLIZE routine. This routine uses a single data structure for its inputs and outputs. It can
be called from User, Supervisor, or Executive mode.

Similarly, on Alpha systems, the Traceback facility can be invoked at any time using the TBK$AL-
PHA_SYMBOLIZE routine. This routine uses a single data structure for its inputs and outputs and it
can be called from USER, SUPERVISOR, or EXCECUTIVE mode.

Section 21.2 provides sample programs showing how to use the TBK routines. Section 21.3 is a refer-
ence section that provides details about the TBK routines.

21.2. Using TBK Routines---Example
This section provides an example program containing three small subroutines to illustrate using the
TBK$I64_SYMBOLIZE routine. The example program runs a test to exercise the Integrity servers
librtl call stack walking routines, the TRACE API, sys$unwind, and sys$unwind_go-
to_64. It is presented in three parts with callout information that describes the processing:

• Part 1 of the example defines the necessary call stack walking headers, TRACE API headers, local
subroutines, and a subroutine exception handler (see Section 21.2.1).

• Part 2 issues librtl call stack walking calls for each of three subroutines, defines a pointer to
a call stack walk invocation context block, defines storage for the return TRACE symbolizations
and information, and defines storage and initializes the TRACE API parameter block (see Sec-
tion 21.2.2).

Part 3 allocates and initializes the invocation context block and obtains the context handler's cur-
rent context. Subroutine subc signals into a frame-based handler, subc_handler which walks
the stack, calls TBK$I64_SYMBOLIZE to symbolize each frame's PC, and then prints out the
symbolizations (see Section 21.2.3).

21.2.1. TBK$I64_SYMBOLIZE Example---Part 1
The first part of the example defines the necessary call stack walking headers, TRACE API headers,
local subroutines, and a subroutine exception handler.

Example 21.1. TBK$I64_SYMBOLIZE Example---Part 1

$ run/nodebug unwind4

769

Chapter 21. Traceback Facility (TBK) Routines

In subc_handler, ch_cnt = 1
Call stack:
image module routine line PC
UNWIND4 UNWIND4 subc_handler 27271
 0000000000030650
DECC$SHR C$SHELL_HANDLER decc$$shell_handler 5566
 FFFFF80208613E50
DECC$SHR C$SHELL_HANDLER decc$$shell_handler 0
 FFFFFFFF803EC680
DECC$SHR C$SHELL_HANDLER decc$$shell_handler 0
 FFFFFFFF803E00B0
UNWIND4 UNWIND4 subc 27409
 00000000000310A0
UNWIND4 UNWIND4 subb 27200
 0000000000030300
UNWIND4 UNWIND4 suba 27187
 0000000000030200
UNWIND4 UNWIND4 main 27175
 0000000000030140
UNWIND4 UNWIND4 __main 27171
 00000000000300E0
UNWIND4 UNWIND4 __main 0
 FFFFFFFF80B72C80

Continue (versus exit)? [Y/N]:

 /*
 * NOTE: to compile include "/define=(__NEW_STARLET)".
 */

#include <stdio.h> (1)
#include <stdarg.h>
#include <starlet.h>
#include <stddef.h>
#include <ssdef.h>
#include <descrip.h>

/* librtl headers for call stack walking
 */

#include <lib$routines.h> (2)
#include <libicb.h>

/* trace headers for trace api
 */

#include <tbkdef.h> (3)
#include <tbk$routines.h>

/* some local subroutines
 */

void suba (void); (4)
void subb (void);
void subc (void);

770

Chapter 21. Traceback Facility (TBK) Routines

/* a subroutine exception handler
 */

int subc_handler (unsigned long int *sigarg, unsigned long int *mecharg);
 (5)
unsigned long int a_cnt, b_cnt, c_cnt, ch_cnt;
unsigned __int64 a_invo_handle, b_invo_handle, c_invo_handle;
int status;

int main ()
 {
 suba ();

 return 1;
 }

void suba ()
 {

1. This program runs a test to exercise the Integrity server librtl call stack walking routines, the
TRACE API, sys$unwind, and sys$unwind_goto_64.

2. The necessary librtl call stack walking headers. LIBICB defines the invocation context block.
LIB$ROUTINES defines the call stack walk function prototypes.

3. The necessary TRACE API header files. TBKDEF defines the TRACE_API call parameter. TBK
$ROUTINES defines the TRACE API function prototype.

4. This code defines the local subroutines suba, subb, and subc.

5. This code defines a subroutine exception handler.

21.2.2. TBK$I64_SYMBOLIZE Example---Part 2
The second part of the example issues librtl call stack walking calls for each of three subroutines,
defines a pointer to a call stack walk invocation context block, defines storage for the return TRACE
symbolizations and information, and defines storage and initializes the TRACE API parameter block.

Example 21.2. TBK$I64_SYMBOLIZE Example---Part 2

 /* Get routine a's invocation context handle, used in subc_handler
 */
 status = lib$i64_get_curr_invo_handle (&a_invo_handle);

 a_cnt++;
 subb ();

 a_cnt++;
 subb ();
 }

 void subb ()
 {

 /* Get routine b's invocation context handle, used in subc_handler
 */
 status = lib$i64_get_curr_invo_handle (&b_invo_handle);

771

Chapter 21. Traceback Facility (TBK) Routines

 b_cnt++;
 subc ();

 b_cnt++;
 subc ();

 b_cnt++;
 subc ();
 }

void subc ()
 {
 lib$establish (subc_handler);

 /* Get routine c's invocation context handle, used in subc_handler
 */
 status = lib$i64_get_curr_invo_handle (&c_invo_handle);

 /* Signal into subc_handler
 */
 c_cnt++;
 lib$signal (c_cnt);

 c_cnt++;
 lib$signal (c_cnt);
 }

int subc_handler (unsigned long int *sigarg, unsigned long int *mecharg)
 {
 int status, tbk_status=0, callstack_depth = 0;
 unsigned int depth;
 /* local pointer for the call stack walk invocation context block
 */
 INVO_CONTEXT_BLK *myICB;

 /* local storage for image, module, routine names, line number, and
 image
 * and module base addresses returned by the trace api
 */
 static char image [128], module [128], routine [128], inquire_continue
 [128];
 static struct dsc$descriptor_vs image_dsc = {125, DSC$K_DTYPE_VT, DSC
$K_CLASS_VS, &image[0]};
 static struct dsc$descriptor_vs module_dsc = {125, DSC$K_DTYPE_VT, DSC
$K_CLASS_VS, &module[0]};
 static struct dsc$descriptor_vs routine_dsc = {125, DSC$K_DTYPE_VT, DSC
$K_CLASS_VS, &routine[0]};
 unsigned int list_line;
 unsigned __int64 image_base_addr;
 unsigned __int64 module_base_addr;

 /* Local storage and setup for the trace api parameter block
 */
 unsigned __int64 symbolize_flags={0};
 TBK_API_PARAM params = {
 TBK$K_LENGTH, /* trace api parameter block length */

772

Chapter 21. Traceback Facility (TBK) Routines

 0, /* trace api parameter block type, MBZ */
 TBK$K_VERSION, /* trace api parameter block length, MBZ
 */
 0, /* reserved, MBZ */
 0, /* pc, input */
 0, /* fp, input, not used for Integrity servers */
 0, /* filename desc, output, not used here */
 0, /* library module desc, output, not used here */
 0, /* record number, output, not used here */
 (struct _descriptor *)&image_dsc, /* image
 descriptor, output */
 (struct _descriptor *)&module_dsc, /* module
 descriptor, output */
 (struct _descriptor *)&routine_dsc, /*
 routine_descriptor, output */
 &list_line, /* compiler listing line number, output */
 0, /* relative pc, output, not used here */
 &image_base_addr, /* image base address, output */
 &module_base_addr, /* module base address, output */
 0, /* malloc routine, input */
 0, /* free routine, input */
 &symbolize_flags, /* symbolize flags, input */
 0, /* reserved */
 0, /* reserved */
 0}; /* reserved */

 if (*(sigarg+1) == SS$_UNWIND)
 return SS$_CONTINUE;
 else
 ch_cnt++;

 printf ("\nIn subc_handler, ch_cnt = %d\n", ch_cnt);
 printf ("Call stack: \n");

 status = 1;

A librtl call stack walk call to get the suba subroutine's invocation context handle used in
subc_handler.
A librtl call stack walk call to get the subb subroutine's invocation context handle used in
subc_handler.
A librtl call stack walk call to get the subc subroutine's invocation context handle used in
subc_handler.
A pointer is defined to a call stack walk invocation context block.
Storage is defined for the return TRACE symbolizations and information, which includes local
storage for image, module, routine names, line number, and image and module base addresses
returned by the TRACE API.
Local storage is defined for the TRACE API parameter block, which is initialized.

21.2.3. TBK$I64_SYMBOLIZE Example---Part 3
The third part of the example allocates and initializes the invocation context block and obtains the
context handler's current context. Subroutine subc signals into a frame-based handler (subc_han-
dler), which walks the stack, calls TBK$I64_SYMBOLIZE to symbolize each frame's PC, and
prints out the symbolizations.

773

Chapter 21. Traceback Facility (TBK) Routines

Example 21.3. TBK$I64_SYMBOLIZE Example---Part 3

 /* Walk the call stack top to bottom, symbolize each frame's PC, and
 * print out the symbolizations.
 *
 * First, create the invocation context block and get my
 (subc_handler's)
 * current context.
 */
 myICB = (INVO_CONTEXT_BLK *) lib$i64_create_invo_context ();
 lib$i64_get_curr_invo_context (myICB);

 printf ("image module routine line PC
\n");

 while (!(myICB->libicb$v_bottom_of_stack) &&
 ((status & 1) != 0))
 {
 /* Use the PC from the call stack invocation context block.
 */
 params.tbk$q_faulting_pc = (unsigned __int64) myICB->libicb
$ih_pc;

 /* Call trace to do the symbolizations.
 */
 tbk_status = tbk$i64_symbolize (¶ms);

 /* And print out results
 */
 image [*((short *) image) + 2] = 0;
 module [*((short *) module) + 2] = 0;
 routine [*((short *) routine) + 2] = 0;
 /* Print out the tbk$i64_symbolize info (with formating
 * to align columns).
 */
 if (*((short *) module) > 8)
 {
 if (*((short *) routine) > 8)
 {
 printf ("%s %s %s %ld %16.16LX\n",
 &image [2],
 &module [2],
 &routine [2],
 list_line,
 (unsigned __int64) myICB->libicb$ih_pc);
 }
 else
 {
 printf ("%s %s %s %ld %16.16LX\n",
 &image [2],
 &module [2],
 &routine [2],
 list_line,
 (unsigned __int64) myICB->libicb$ih_pc);
 }
 }
 else
 {

774

Chapter 21. Traceback Facility (TBK) Routines

 if (*((short *) routine) > 8)
 {
 printf ("%s %s %s %ld %16.16LX\n",
 &image [2],
 &module [2],
 &routine [2],
 list_line,
 (unsigned __int64) myICB->libicb$ih_pc);
 }
 else
 {
 printf ("%s %s %s %ld %16.16LX
\n",
 &image [2],
 &module [2],
 &routine [2],
 list_line,
 (unsigned __int64) myICB->libicb$ih_pc);
 }
 }
 /* Get the previous call frame.
 */
 status = lib$i64_get_prev_invo_context (myICB);
 callstack_depth++;
 }

 /* Terminate the call stack walk and free up the memory that it used.
 */
 lib$i64_prev_invo_end (myICB);
 lib$i64_free_invo_context (myICB);

 /* Set up to unwind if we continue execution.
 */
 switch (ch_cnt)
 {
 /* first, some sys$unwinds
 */
 case 1 :
 status = sys$unwind (0, 0);
 break;
 case 2 :
 depth = 0;
 status = sys$unwind (&depth, 0);
 break;
 case 3 :
 depth = 1;
 status = sys$unwind (&depth, 0);
 break;
 case 4 :
 depth = 2;
 status = sys$unwind (&depth, 0);
 break;

 /* now, some sys$goto_unwinds
 */
 case 5 :
 status = sys$goto_unwind_64 (&c_invo_handle, 0, 0, 0);

775

Chapter 21. Traceback Facility (TBK) Routines

 break;
 case 6 :
 status = sys$goto_unwind_64 (&b_invo_handle, 0, 0, 0);
 break;
 case 7 :
 status = sys$goto_unwind_64 (&a_invo_handle, 0, 0, 0);
 break;

 default :
 break;
 }

 /* Continue (after unwinding) or exit? Let the user decide.
 */
 printf ("\nContinue (versus exit)? [Y/N]: ");
 gets (inquire_continue);

 if ((inquire_continue [0] == 'Y') || (inquire_continue [0] == 'y'))
 return SS$_CONTINUE;
 else
 sys$exit (1);
 }

To prepare for walking the call stack, the invocation context block is allocated and initialized,
and the context handler's (subc_handler) current context is obtained.
The call stack is walked from the current context, subc_handler, to the bottom of the stack.
The essential call stack PC value is provided. On Integrity server systems, all the symbolization
is based on a call stack frame's PC value.
A call is made to the TRACE symbolize routine, TBK$I64_SYMBOLIZE, for the call frame's
PC. This is the call to the TRACE API. The information is then printed out.
The previous call frame context is obtained.
Cleanup is performed and memory used by the call stack walk is deallocated.
Unwind is set up to continue program execution.

21.3. TBK Routines
This section describes the TBK routines. The TBK$I64_SYMBOLIZE routine is for use on Integrity
server systems and the TBK$ALPHA_SYMBOLIZE routine is for use on Alpha systems.

TBK$I64_SYMBOLIZE
TBK$I64_SYMBOLIZE — The TBK$I64_SYMBOLIZE routine attempts to symbolize a PC, re-
turning as much symbolic representation for that location as was requested. For information about the
TBK symbolize routine for Alpha systems, see the information for TBK$ALPHA_SYMBOLIZE later
in TBK$ALPHA_SYMBOLIZE.

Format
TBK$I64_SYMBOLIZE parameter_block"

Returns

OpenVMS usage: cond_value
type: longword (unsigned)

776

Chapter 21. Traceback Facility (TBK) Routines

access: write only
mechanism: by value

Longword condition value. Most utility routines return a condition value. Condition values that this
routine can return are listed under Condition Values Returned.

Argument
parmeter_block

OpenVMS usage: TBK_API_PARAM
type: structure
access: modify
mechanism: by reference

Table 21.1 shows the values for TBK_API_PARAM (defined in TBKDEF).

Table 21.1. Values for TBK_API_PARAM

Field Size Description
TBK$W_LENGTH Word Input by value, structure length, must

be TBK$K_LENGTH
TBK$B_TYPE Byte Input, MBZ
TBK$B_VERSION Byte Input by value, must be TBK

$K_VERSION
TBK$L_RESERVEDA Longword Reserved for future use, MBZ
TBK$Q_FAULTING_PC Quadword Input by value, call stack frame PC
TBK$PQ_FILENAME_DESC 64-bit pointer Optional output by reference (Integri-

ty servers only), pointer (if not request-
ed, MBZ) to a fixed-length string text
descriptor. The descriptor must be set
up with preallocated adequate buffer
space. The descriptor is filled with the
image file name. This can be a dynam-
ic descriptor (rather than fixed-length),
but only if the caller is in user mode.

TBK$PQ_LIBRARY_MOD-
ULE_DESC

64-bit pointer Optional output, pointer (if not request-
ed, MBZ) to a fixed-length string text
descriptor. The descriptor must be set
up with pre-allocated adequate buffer
space. The descriptor is filled in with
library module name if the image file-
name (see previous field) is a text li-
brary file. This can be a dynamic de-
scriptor (rather than fixed length) but
only if the caller is in user mode.

TBK$PQ_RECORD_NUMBER 64-bit pointer Optional output, pointer (if not request-
ed, MBZ) to a longword to be filled
with the relevant image file record
number.

777

Chapter 21. Traceback Facility (TBK) Routines

Field Size Description
TBK$PQ_IMAGE_DESC 64-bit pointer Optional output, pointer (if not request-

ed, MBZ) to a fixed-length string text
descriptor. The descriptor must be set
up with preallocated adequate buffer
space. The descriptor is filled in with
the image name. This can be a dynam-
ic descriptor (rather than fixed length),
but only if the caller is in user mode.

TBK$PQ_MODULE_DESC 64-bit pointer Optional output, pointer (if not request-
ed, MBZ) to a fixed-length string text
descriptor. The descriptor must be set
up with preallocated adequate buffer
space. The descriptor is filled in with
the module name.

TBK$PQ_ROUTINE_DESC 64-bit pointer Optional output, pointer (if not request-
ed, MBZ) to a fixed-length string text
descriptor. The descriptor must be set
up with preallocated adequate buffer
space. The descriptor is filled in with
the routine name.

TBK$PQ_LISTING_LINENO 64-bit pointer Optional output, pointer (if not request-
ed, MBZ) to longword to be filled in
with the line number (as show in the
modules LIS file).

TBK$PQ_REL_PC 64-bit pointer Optional output, pointer (if not request-
ed, MBZ) to quadword to be filled in
with the relative PC. This can be an im-
age or module relative PC.

TBK$PQ_ MALLOC_RTN 64-bit pointer Optional input, pointer (if not supplied,
MBZ) address to a user-supplied mal-
loc routine. Must be supplied when
called from supervisor or executive
mode (kernel mode is not supported).

TBK$PQ_ FREE_RTN 64-bit pointer Optional input, pointer (if not supplied,
MBZ) address to a user-supplied free
routine. Must be supplied when called
from supervisor or executive mode
(kernel mode not supported).

TBK$PQ_SYMBOLIZE_FLAGS 64-bit pointer Optional input and output, pointer (if
not supplied, MBZ) to TBK_SYM-
BOLIZE_FLAGS (quadword, see be-
low). Used to control symbolization op-
tions and to return additional status.

TBK$Q_RESERVED0 Quadword Reserved for future use, MBZ.
TBK$Q_RESERVED1 Quadword Reserved for future use, MBZ.
TBK$Q_RESERVED2 Quadword Reserved for future use, MBZ.

778

Chapter 21. Traceback Facility (TBK) Routines

Field Size Description
TBK$V_EXCEPTION_IS_FAULT 0 Adjusts the PC value used for symbol-

ization for target frames that suffered a
fault exception.

All remaining bits Reserved, Must be initialized to zero.

Description
The TBK$I64_SYMBOLIZE routine attempts to symbolize a PC, that is, given a PC, this routine re-
turns as much of the symbolic representation for that location that has been requested: image name,
file name, module name, routine name, listing line number, file record number, and so on.

The degree of symbolization depends upon the images symbolic information. For best results, com-
pile the images source modules with either traceback (the default) or debug information (/DEBUG)
and link the image with either traceback (/TRACE) or debug (/DEBUG) information. If no symbolic
information records exists within the image for the PC, then only partial symbolization is possible.

TBK$I64_SYMBOLIZE can be called by programs in user, supervisor, or executive mode. Calls from
kernel mode are not allowed; calls when IPL is nonzero are not allowed.

Callers in supervisor or executive mode must supply routines that perform the equivalent of malloc
and free operations that are legal for the given mode. (The C Run Time Library malloc and free rou-
tines are only supported in user mode.) Pointers to these user-written replacement routines are speci-
fied in the TBK$PQ_MALLOC_RTN and TBK$PQ_FREE_RTN fields.

Condition Values Returned
SS$_KERNELINV

This API does not support kernel mode calls.

SS$_BADPARAM

Incorrect TBK_API_PARAM length, type, or version.

SS$_INSFMEM

Unable to allocate needed memory.

SS$_NORMAL

Successful completion.

SS$_ACCVIO

Unable to read from the TBK_API_PARAM block.

Other conditions indicate TRACE failures such as failure status from sys$crmpsc_file_64 on
an Integrity servers system.

TBK$ALPHA_SYMBOLIZE
TBK$ALPHA_SYMBOLIZE — The TBK$ALPHA_SYMBOLIZE routine attempts to symbolize a
call stack PC, returning as much symbolic representation for that location as was requested. For in-
formation about the TBK symbolize routine for Integrity server systems, see the information for TBK
$I64_SYMBOLIZE earlier in TBK$I64_SYMBOLIZE.

779

Chapter 21. Traceback Facility (TBK) Routines

Format
TBK$ALPHA_SYMBOLIZE parameter_block"

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. Most utility routines return a condition value. Condition values that this
routine can return are listed under Condition Values Returned.

Argument
parmeter_block

OpenVMS usage: TBK_API_PARAM
type: structure
access: modify
mechanism: by reference

Table 21.2 shows the values for TBK_API_PARAM (defined in TBKDEF).

Table 21.2. Values for TBK_API_PARAM on Alpha

Field Size Description
TBK$W_LENGTH Word Input by value, structure length, must

be TBK$K_LENGTH
TBK$B_TYPE Byte Input, MBZ
TBK$B_VERSION Byte Input by value, must be TBK

$K_VERSION
TBK$L_RESERVEDA Longword Reserved for future use, MBZ
TBK$Q_FAULTING_PC Quadword Input by value, call stack frame PC
TBK$Q_FAULTING_FP Quadword Input by value, call stack Frame Pointer
TBK$PQ_IMAGE_DESC 64-bit pointer Optional output, pointer (if not request-

ed, MBZ) to a fixed-length string text
descriptor. The descriptor must be set
up with preallocated adequate buffer
space. The descriptor is filled in with
the image name. This can be a dynamic
descriptor (rather than fixed length) but
only if the caller is in user mode.

TBK$PQ_MODULE_DESC 64-bit pointer Optional output, pointer (if not request-
ed, MBZ) to a fixed-length string text
descriptor. The descriptor must be set
up with preallocated adequate buffer

780

Chapter 21. Traceback Facility (TBK) Routines

Field Size Description
space. The descriptor is filled in with
the module name.

TBK$PQ_ROUTINE_DESC 64-bit pointer Optional output, pointer (if not request-
ed, MBZ) to a fixed-length string text
descriptor. The descriptor must be set
up with preallocated adequate buffer
space. The descriptor is filled in with
the routine name.

TBK$PQ_LISTING_LINENO 64-bit pointer Optional output, pointer (if not request-
ed, MBZ) to longword to be filled in
with the line number (as show in the
modules LIS file).

TBK$PQ_REL_PC 64-bit pointer Optional output, pointer (if not request-
ed, MBZ) to quadword to be filled in
with the relative PC. This may be an
image or module relative PC.

TBK$PQ_IMAGE_BASE_ADDR 64-bit pointer Optional output, pointer (if not request-
ed, MBZ) to quadword to be filled in
with the image base address.

TBK$PQ_MODULE_BASE_ADDR 64-bit pointer Optional output pointer (if not request-
ed, MBZ) to quadword to be filled in
with the module base address.

TBK$PQ_MALLOC_RTN 64-bit pointer Optional input, pointer (if not supplied,
MBZ) address to a user-supplied mal-
loc routine. Must be supplied when
called from supervisor or executive
mode (kernel mode is not supported).

TBK$PQ_FREE_RTN 64-bit pointer Optional input, pointer (if not supplied,
MBZ) address to a user-supplied free
routine. Must be supplied when called
from supervisor or executive mode
(kernel mode not supported).

TBK$PQ_SYMBOLIZE_FLAGS 64-bit pointer Optional input and output, pointer (if
not supplied, MBZ) to TBK_SYM-
BOLIZE_FLAGS (quadword, see be-
low). Used to control symbolization op-
tions and to return additional status.

TBK$Q_RESERVED0 Quadword Reserved for future use, MBZ.
TBK$Q_RESERVED1 Quadword Reserved for future use, MBZ.
TBK$Q_RESERVED2 Quadword Reserved for future use, MBZ.
TBK$V_EXCEPTION_IS_FAULT 0 Adjusts the PC value used for symbol-

ization for target frames that suffered a
fault exception.

All remaining bits Reserved. Must be initialized to zero.

781

Chapter 21. Traceback Facility (TBK) Routines

Description
The TBK$ALPHA_SYMBOLIZE routine attempts to symbolize a PC. That is, given a PC and a
frame pointer, this routine returns as much of the symbolic representation for that location that has
been requested: image name, file name, module name, routine name, listing line number, file record
number, and so on. This must be a PC in an active call stack frame.

The degree of symbolization depends on the images symbolic information. For best results, compile
the image source modules with either traceback (the default) or debug information (/DEBUG), and
link the image with either traceback (/TRACE) or debug (/DEBUG) information. If no symbolic in-
formation records exists within the image for the PC, then only partial symbolization is possible.

The TBK$ALPHA_SYMBOLIZE routine can be called by programs in user, supervisor, or executive
mode. Calls from kernel mode are not allowed; calls when IPL is nonzero are not allowed.

Callers in supervisor or executive mode must supply routines that perform the equivalent of malloc
and free operations that are legal for the given mode. (The C Run Time Library malloc and free rou-
tines are only supported in user mode.) Pointers to these user-written replacement routines are speci-
fied in the TBK$PQ_MALLOC_RTN and TBK$PQ_FREE_RTN fields.

Condition Values Returned
SS$_KERNELINV

This API does not support kernel mode calls.

SS$_BADPARAM

Incorrect TBK_API_PARAM length, type, or version.

SS$_INSFMEM

Unable to allocate needed memory.

SS$_NORMAL

Successful completion.

SS$_ACCVIO

Unable to read from the TBK_API_PARAM block.

782

	Utility Routines Manual
	Table of Contents
	Preface
	1. About VSI
	2. Intended Audience
	3. Document Structure
	4. Related Documents
	5. VSI Encourages Your Comments
	6. Conventions

	Chapter 1. Introduction to Utility Routines
	Chapter 2. Access Control List (ACL) Editor Routine
	2.1. Introduction to the ACL Editor Routine
	2.2. Using the ACL Editor Routine: An Example
	2.3. ACL Editor Routine
	ACLEDIT$EDIT—Edit Access Control List

	Chapter 3. Backup (BACKUP) Routine
	3.1. Introduction to the Backup API
	3.2. Using the Backup API: An Example
	3.3. Backup API
	BACKUP$START

	Chapter 4. Command Language Interface (CLI) Routines
	4.1. Introduction to CLI Routines
	4.2. Using the CLI Routines: An Example
	4.3. CLI Routines
	CLI$DCL_PARSE
	CLI$DISPATCH
	CLI$GET_VALUE
	CLI$PRESENT

	Chapter 5. Common File Qualifier Routines
	5.1. Introduction to the Common File Qualifier Routines
	5.2. Using the Common File Qualifier Routines
	5.2.1. Calling UTIL$CQUAL_FILE_PARSE
	5.2.1.1. Specifying Times
	5.2.1.2. Specifying Exclude Pattern Strings

	5.2.2. Calling UTIL$CQUAL_FILE_MATCH
	5.2.2.1. Specifying Prompts
	5.2.2.2. Ignoring Qualifiers

	5.2.3. Calling UTIL$CQUAL_FILE_END
	5.2.4. Calling UTIL$CQUAL_CONFIRM_ACT
	5.2.5. Creating a Command Language Definition File

	5.3. UTIL$CQUAL Routines
	UTIL$CQUAL_FILE_PARSE
	UTIL$CQUAL_FILE_MATCH
	UTIL$CQUAL_FILE_END
	UTIL$CQUAL_CONFIRM_ACT

	Chapter 6. Convert (CONVERT) Routines
	6.1. Introduction to CONVERT Routines
	6.2. Using the CONVERT Routines: Examples
	6.3. CONVERT Routines
	CONV$CONVERT
	CONV$PASS_FILES
	CONV$PASS_OPTIONS
	CONV$RECLAIM

	Chapter 7. Data Compression/Expansion (DCX) Routines
	7.1. Introduction to DCX Routines
	7.1.1. Compression Routines
	7.1.2. Expansion Routines

	7.2. Using the DCX Routines: Examples
	7.3. DCX Routines
	DCX$ANALYZE_DATA
	DCX$ANALYZE_DONE
	DCX$ANALYZE_INIT
	DCX$COMPRESS_DATA
	DCX$COMPRESS_DONE
	DCX$COMPRESS_INIT
	DCX$EXPAND_DATA
	DCX$EXPAND_DONE
	DCX$EXPAND_INIT
	DCX$MAKE_MAP

	Chapter 8. DEC Text Processing Utility (DECTPU) Routines
	8.1. Introduction to DECTPU Routines
	8.1.1. Interfaces to Callable DECTPU
	8.1.1.1. Simplified Callable Interface
	8.1.1.2. Full Callable Interface

	8.1.2. The DECTPU Shareable Image
	8.1.3. Passing Parameters to Callable DECTPU Routines
	8.1.4. Error Handling
	8.1.5. Return Values

	8.2. Simplified Callable Interface
	8.3. Full Callable Interface
	8.3.1. Main Callable DECTPU Utility Routines
	8.3.2. Other DECTPU Utility Routines
	8.3.3. User-Written Routines

	8.4. Using the DECTPU Routines: Examples
	8.5. Creating and Calling a USER Routine
	8.5.1. The CALL_USER Code
	8.5.2. Linking the CALL_USER Image

	8.6. Accessing the USER Routine from DECTPU
	8.7. DECTPU Routines
	TPU$CLEANUP
	TPU$CLIPARSE
	TPU$CLOSE_TERMINAL
	TPU$CONTROL
	TPU$EDIT
	TPU$EXECUTE_COMMAND
	TPU$EXECUTE_INIFILE
	TPU$FILEIO
	TPU$FILE_PARSE
	TPU$FILE_SEARCH
	TPU$HANDLER
	TPU$INITIALIZE
	TPU$MESSAGE
	TPU$PARSEINFO
	TPU$SIGNAL
	TPU$SPECIFY_ASYNC_ACTION
	TPU$TPU
	TPU$TRIGGER_ASYNC_ACTION
	FILEIO
	FILE_PARSE
	FILE_SEARCH
	HANDLER
	INITIALIZE
	USER

	Chapter 9. DECdts Portable Applications Programming Interface
	9.1. DECdts Time Representation
	9.1.1. Absolute Time Representation
	9.1.2. Relative Time Representation

	9.2. Time Structures
	9.2.1. The utc Structure
	9.2.2. The tm Structure
	9.2.3. The timespec Structure
	9.2.4. The reltimespec Structure
	9.2.5. The OpenVMS Time Structure

	9.3. DECdts API Header Files
	9.4. Linking Programs with the DECdts API
	9.5. DECdts API Routine Functions
	utc_abstime
	utc_addtime
	utc_anytime
	utc_anyzone
	utc_ascanytime
	utc_ascgmtime
	utc_asclocaltime
	utc_ascreltime
	utc_binreltime
	utc_bintime
	utc_boundtime
	utc_cmpintervaltime
	utc_cmpmidtime
	utc_gettime
	utc_getusertime
	utc_gmtime
	utc_gmtzone
	utc_localtime
	utc_localzone
	utc_mkanytime
	utc_mkascreltime
	utc_mkasctime
	utc_mkbinreltime
	utc_mkbintime
	utc_mkgmtime
	utc_mklocaltime
	utc_mkreltime
	utc_mkvmsanytime
	utc_mkvmsgmtime
	utc_mkvmslocaltime
	utc_mulftime
	utc_multime
	utc_pointtime
	utc_reltime
	utc_spantime
	utc_subtime
	utc_vmsanytime
	utc_vmsgmtime
	utc_vmslocaltime

	9.6. Example Using the DECdts API Routines

	Chapter 10. EDT Routines
	10.1. Introduction to EDT Routines
	10.2. Using the EDT Routines: An Example
	10.3. EDT Routines
	EDT$EDIT
	FILEIO
	WORKIO
	XLATE

	Chapter 11. Encryption (ENCRYPT) Routines
	11.1. Introduction to Encryption Routines
	11.2. Encrypt AES Features
	11.2.1. ENCRYPT-AES Key, Flag Mask, and Value

	11.3. How the Routines Work
	11.3.1. Encryption Keys
	11.3.1.1. Deleting AES Keys
	11.3.1.2. DES Key and Data Semantics

	11.3.2. File Encryption and Decryption

	11.4. Maintaining Keys
	11.5. Operations on Files
	11.6. Operations on Records and Blocks
	11.7. Routine Descriptions
	11.7.1. Specifying Arguments
	11.7.2. Bitmasks
	11.7.3. Error Handling
	ENCRYPT$DECRYPT
	ENCRYPT$DECRYPT_ONE_RECORD
	ENCRYPT$DEFINE_KEY
	ENCRYPT$DELETE_KEY
	ENCRYPT$ENCRYPT
	ENCRYPT$ENCRYPT_FILE
	ENCRYPT$ENCRYPT_ONE_RECORD
	ENCRYPT$FINI
	ENCRYPT$GENERATE_KEY
	ENCRYPT$INIT
	ENCRYPT$STATISTICS

	Chapter 12. File Definition Language (FDL) Routines
	12.1. Introduction to FDL Routines
	12.2. Using the FDL Routines: Examples
	12.3. FDL Routines
	FDL$CREATE
	FDL$GENERATE
	FDL$PARSE
	FDL$RELEASE

	Chapter 13. Librarian (LBR) Routines
	13.1. Introduction to LBR Routines
	13.1.1. Types of Libraries
	13.1.2. Structure of Libraries
	13.1.2.1. Library Headers
	13.1.2.2. Modules
	13.1.2.3. Indexes and Keys

	13.1.3. Summary of LBR Routines

	13.2. Using the LBR Routines: Examples
	13.2.1. Creating, Opening, and Closing a Text Library
	13.2.2. Inserting a Module
	13.2.3. Extracting a Module
	13.2.4. Deleting a Module
	13.2.5. Using Multiple Keys and Multiple Indexes
	13.2.6. Accessing Module Headers
	13.2.7. Reading Library Headers
	13.2.8. Displaying Help Text
	13.2.9. Listing and Processing Index Entries

	13.3. LBR Routines
	LBR$CLOSE
	LBR$DELETE_DATA
	LBR$DELETE_KEY
	LBR$FIND
	LBR$FLUSH
	LBR$GET_HEADER
	LBR$GET_HELP
	LBR$GET_HISTORY
	LBR$GET_INDEX
	LBR$GET_RECORD
	LBR$INI_CONTROL
	LBR$INSERT_KEY
	LBR$LOOKUP_KEY
	LBR$LOOKUP_TYPE
	LBR$MAP_MODULE
	LBR$OPEN
	LBR$OUTPUT_HELP
	LBR$PUT_END
	LBR$PUT_HISTORY
	LBR$PUT_MODULE
	LBR$PUT_RECORD
	LBR$REPLACE_KEY
	LBR$RET_RMSSTV
	LBR$SEARCH
	LBR$SET_INDEX
	LBR$SET_LOCATE
	LBR$SET_MODULE
	LBR$SET_MOVE
	LBR$UNMAP_MODULE

	Chapter 14. Lightweight Directory Access Protocol (LDAP) Routines
	14.1. Introduction
	14.1.1. Overview of the LDAP Model
	14.1.2. Overview of LDAP API Use
	14.1.3. LDAP API Use on OpenVMS Systems
	14.1.4. 64-bit Addressing Support
	14.1.4.1. Background
	14.1.4.2. Implementation
	14.1.4.2.1. Library Symbol Names
	14.1.4.2.2. LDAP Data Structures

	14.1.4.3. Mixing Pointer Sizes

	14.1.5. Multithreading Support

	14.2. Common Data Structures and Memory Handling
	14.3. LDAP Error Codes
	14.4. Initializing an LDAP Session
	14.5. LDAP Session Handle Options
	14.6. Working with Controls
	14.7. Authenticating to the Directory
	14.8. Closing the Session
	14.9. Searching
	14.9.1. Reading and Listing the Children of an Entry

	14.10. Comparing a Value Against an Entry
	14.11. Modifying an Entry
	14.12. Modifying the Name of an Entry
	14.13. Adding an Entry
	14.14. Deleting an Entry
	14.15. Extended Operations
	14.16. Abandoning an Operation
	14.17. Obtaining Results and Looking Inside LDAP Messages
	14.18. Handling Errors and Parsing Results
	14.18.1. Stepping Through a List of Results

	14.19. Parsing Search Results
	14.19.1. Stepping Through a List of Entries
	14.19.2. Stepping Through the Attributes of an Entry
	14.19.3. Retrieving the Values of an Attribute
	14.19.4. Retrieving the Name of an Entry
	14.19.5. Retrieving Controls from an Entry
	14.19.6. Parsing References

	14.20. Encoded ASN.1 Value Manipulation
	14.20.1. Encoding
	14.20.1.1. Encoding Example

	14.20.2. Decoding
	14.20.2.1. Decoding Example

	14.21. Using LDAP with VSI SSL for OpenVMS
	14.21.1. VSI SSL Certificate Options
	14.21.2. Obtaining a Key Pair

	14.22. Sample LDAP API Code

	Chapter 15. LOGINOUT (LGI) Routines
	15.1. Introduction to LOGINOUT
	15.1.1. The LOGINOUT Process
	15.1.2. Using LOGINOUT with External Authentication
	15.1.3. The LOGINOUT Data Flow

	15.2. LOGINOUT Callouts
	15.2.1. LOGINOUT Callout Routines
	15.2.2. LOGINOUT Callback Routines

	15.3. Using Callout Routines
	15.3.1. Calling Environment
	15.3.2. Callout Organization
	15.3.3. Activating the Callout Routines
	15.3.4. Callout Interface
	15.3.5. Sample Program

	15.4. LOGINOUT Callout Routines
	LGI$ICR_AUTHENTICATE
	LGI$ICR_CHKRESTRICT
	LGI$ICR_DECWINIT
	LGI$ICR_FINISH
	LGI$ICR_IACT_START
	LGI$ICR_IDENTIFY
	LGI$ICR_INIT
	LGI$ICR_JOBSTEP
	LGI$ICR_LOGOUT

	15.5. LOGINOUT Callback Routines
	LGI$ICB_ACCTEXPIRED
	LGI$ICB_AUTOLOGIN
	LGI$ICB_CHECK_PASS
	LGI$ICB_DISUSER
	LGI$ICB_GET_INPUT
	LGI$ICB_GET_SYSPWD
	LGI$ICB_MODALHOURS
	LGI$ICB_PASSWORD
	LGI$ICB_PWDEXPIRED
	LGI$ICB_USERPARSE
	LGI$ICB_USERPROMPT
	LGI$ICB_VALIDATE

	Chapter 16. Mail Utility Routines
	16.1. Messages
	16.2. Folders
	16.3. Mail Files
	16.4. User Profile Database
	16.5. Mail Utility Processing Contexts
	16.5.1. Callable Mail Utility Routines
	16.5.2. Single and Multiple Threads

	16.6. Programming Considerations
	16.6.1. Condition Handling
	16.6.2. Item Lists and Item Descriptors
	16.6.2.1. Structure of an Item Descriptor
	16.6.2.2. Null Item Lists
	16.6.2.3. Declaring Item Lists and Item Descriptors
	16.6.2.4. Terminating an Item List

	16.6.3. Action Routines

	16.7. Managing Mail Files
	16.7.1. Opening and Closing Mail Files
	16.7.1.1. Using the Default Specification for Mail Files
	16.7.1.2. Specifying an Alternate Mail File Specification

	16.7.2. Displaying Folder Names
	16.7.3. Purging Mail Files Using the Wastebasket Folder
	16.7.3.1. Reclaiming Disk Space
	16.7.3.2. Compressing Mail Files

	16.8. Message Context
	16.8.1. Selecting Messages
	16.8.2. Reading and Printing Messages
	16.8.3. Modifying Messages
	16.8.4. Copying and Moving Messages
	16.8.4.1. Creating Folders
	16.8.4.2. Deleting Folders
	16.8.4.3. Creating Mail Files

	16.8.5. Deleting Messages

	16.9. Send Context
	16.9.1. Sending New Messages
	16.9.1.1. Creating a Message
	16.9.1.1.1. Constructing the Message Header
	16.9.1.1.2. Constructing the Body of the Message

	16.9.1.2. Creating an Address List

	16.9.2. Sending Existing Messages
	16.9.3. Send Action Routines
	16.9.3.1. Success Action Routines
	16.9.3.2. Error Handling Routines
	16.9.3.3. Aborting a Send Operation

	16.10. User Profile Context
	16.10.1. User Profile Entries
	16.10.1.1. Adding Entries to the User Profile Database
	16.10.1.2. Modifying or Deleting User Profile Entries

	16.11. Input Item Codes
	16.12. Output Item Codes
	16.13. Using the MAIL Routines: Examples
	16.14. MAIL Routines
	MAIL$MAILFILE_BEGIN
	MAIL$MAILFILE_CLOSE
	MAIL$MAILFILE_COMPRESS
	MAIL$MAILFILE_END
	MAIL$MAILFILE_INFO_FILE
	MAIL$MAILFILE_MODIFY
	MAIL$MAILFILE_OPEN
	MAIL$MAILFILE_PURGE_WASTE
	MAIL$MESSAGE_BEGIN
	MAIL$MESSAGE_COPY
	MAIL$MESSAGE_DELETE
	MAIL$MESSAGE_END
	MAIL$MESSAGE_GET
	MAIL$MESSAGE_INFO
	MAIL$MESSAGE_MODIFY
	MAIL$MESSAGE_SELECT
	MAIL$SEND_ABORT
	MAIL$SEND_ADD_ADDRESS
	MAIL$SEND_ADD_ATTRIBUTE
	MAIL$SEND_ADD_BODYPART
	MAIL$SEND_BEGIN
	MAIL$SEND_END
	MAIL$SEND_MESSAGE
	MAIL$USER_BEGIN
	MAIL$USER_DELETE_INFO
	MAIL$USER_END
	MAIL$USER_GET_INFO
	MAIL$USER_SET_INFO

	Chapter 17. National Character Set (NCS) Utility Routines
	17.1. Introduction to NCS Routines
	17.1.1. List of NCS Routines
	17.1.2. Sample Application Process

	17.2. Using the NCS Utility Routines: Examples
	17.3. NCS Routines
	NCS$COMPARE
	NCS$CONVERT
	NCS$END_CF
	NCS$END_CS
	NCS$GET_CF
	NCS$GET_CS
	NCS$RESTORE_CF
	NCS$RESTORE_CS
	NCS$SAVE_CF
	NCS$SAVE_CS

	Chapter 18. Print Symbiont Modification (PSM) Routines
	18.1. Introduction to PSM Routines
	18.2. Print Symbiont Overview
	18.2.1. Components of the Print Symbiont
	18.2.2. Creation of the Print Symbiont Process
	18.2.3. Symbiont Streams
	18.2.4. Symbiont and Job Controller Functions
	18.2.5. Print Symbiont Internal Logic

	18.3. Symbiont Modification Procedure
	18.3.1. Guidelines and Restrictions
	18.3.2. Writing an Input Routine
	18.3.2.1. Internal Logic of the Symbiont's Main Input Routine
	18.3.2.2. Symbiont Processing of Carriage Control

	18.3.3. Writing a Format Routine
	18.3.3.1. Internal Logic of the Symbiont's Main Format Routine

	18.3.4. Writing an Output Routine
	18.3.4.1. Internal Logic of the Symbiont's Main Output Routine

	18.3.5. Other Function Codes
	18.3.6. Writing a Symbiont Initialization Routine
	18.3.7. Integrating a Modified Symbiont

	18.4. Using the PSM Routines: An Example
	18.5. PSM Routines
	PSM$PRINT
	PSM$READ_ITEM_DX
	PSM$REPLACE
	PSM$REPORT
	USER-FORMAT-ROUTINE
	USER-INPUT-ROUTINE
	USER-OUTPUT-ROUTINE

	Chapter 19. Symbiont/Job Controller Interface (SMB) Routines
	19.1. Introduction to SMB Routines
	19.1.1. Types of Symbiont
	19.1.2. Symbionts Supplied with the Operating System
	19.1.3. Symbiont Behavior in the OpenVMS Environment
	19.1.4. Writing a Symbiont
	19.1.5. Guidelines for Writing a Symbiont
	19.1.6. The Symbiont/Job Controller Interface Routines
	19.1.7. Choosing the Symbiont Environment
	19.1.7.1. Synchronous Versus Asynchronous Delivery of Requests
	19.1.7.2. Single-Streaming Versus Multistreaming

	19.1.8. Reading Job Controller Requests
	19.1.9. Processing Job Controller Requests
	19.1.10. Responding to Job Controller Requests

	19.2. SMB Routines
	SMB$CHECK_FOR_MESSAGE
	SMB$INITIALIZE
	SMB$READ_MESSAGE
	SMB$READ_MESSAGE_ITEM
	SMB$SEND_TO_JOBCTL

	Chapter 20. Sort/Merge (SOR) Routines
	20.1. High-Performance Sort/Merge (Alpha Only)
	20.1.1. High-Performance SOR Routine Behavior
	20.1.2. Using Threads with High-Performance Sort/Merge

	20.2. Introduction to SOR Routines
	20.2.1. Arguments to SOR Routines
	20.2.2. Interfaces to SOR Routines
	20.2.2.1. Sort Operation Using File Interface
	20.2.2.2. Sort Operation Using Record Interface
	20.2.2.3. Merge Operation Using File Interface
	20.2.2.4. Merge Operation Using Record Interface

	20.2.3. Reentrancy

	20.3. Using the SOR Routines: Examples
	20.4. SOR Routines
	SOR$BEGIN_MERGE
	SOR$BEGIN_SORT
	SOR$DTYPE
	SOR$END_SORT
	SOR$PASS_FILES
	SOR$RELEASE_REC
	SOR$RETURN_REC
	SOR$SORT_MERGE
	SOR$SPEC_FILE
	SOR$STAT

	Chapter 21. Traceback Facility (TBK) Routines
	21.1. Introduction to TBK Routines
	21.2. Using TBK Routines---Example
	21.2.1. TBK$I64_SYMBOLIZE Example---Part 1
	21.2.2. TBK$I64_SYMBOLIZE Example---Part 2
	21.2.3. TBK$I64_SYMBOLIZE Example---Part 3

	21.3. TBK Routines
	TBK$I64_SYMBOLIZE
	TBK$ALPHA_SYMBOLIZE

