

DO-DVTNFR-00A VMS Software Inc. 580 Main Street, Bolton, MA 01740

1

VSI OpenVMS

VSI TCP/IP Version 10.6
Release Notes

August 2019

This document describes features and release notes for VSI TCP/IP for OpenVMS Version 10.6.

DO-DVTNFR-00A VMS Software Inc. 580 Main Street, Bolton, MA 01740

2

Preface .. 4

1. Intended Audience ... 4

2. Document Structure ... 4

3. VSI TCP/IP V10.6 Documentation.. 4

Chapter 1: Prerequisites ... 5

Chapter 2: New Features, Improvements, and Behavior .. 6

New Features ... 6

1. New MultiNet Configuration File Converter Added to VSI TCP/IP ... 6

2. Updated Programs in IP$EXAMPLES .. 6

3. Updated BIND 9 support ... 6

4. SSH Port Forwarding and OpenVMS Captive Users .. 6

5. New Key Exchange Algorithms Added to SSH .. 6

6. VSI TCP/IP SNMP Supports Interrogation of MIBs ... 7

VSI TCP/IP V10.5 Problems Fixed ... 8

1. IP SHOW/REMOTE May Result in Forced Exit .. 8

2. Node Hangs When Booting into a Cluster ... 8

3. VSI T4 INET Collection Call Fails with VSI TCP/IP ... 8

4. VSI TDC (The Data Collector) INET Collection Fails with VSI TCP/IP ... 8

5. VSI TCP/IP and TCP/IP Services Compatibility Fixed ... 9

VSI TCP/IP and TCP/IP Services Compatibility and Differences in Behavior ... 9

Chapter 3: Deprecated Commands and Services ... 12

1. Interfaces No Longer Supported ...12

2. Commands No Longer Supported ..12

3. Commands and Services Not Present in VSI TCP/IP V10.5 or V10.6. ..12

4. MAIL Facilities (SMTP, POP, IMAP) Lack Modern Capabilities ...12

Chapter 4: Future Features .. 13

1. Clusters Over IP Not Recommended ..13

2. Issues with Jumbo Frames ..13

3. Satellite Cluster Nodes Cannot Be Booted ...13

Chapter 5: Current VSI TCP/IP V10.6 Issues .. 14

1. NFSMOUNT with /TRANSPORT=TCP Results in Some UDP Packets ...14

2. NFSDISMOUNT /LOG Qualifier Not Functioning Correctly ...14

3. Branding ...14

4. DHCLIENT Use and Network Topologies ...14

5. IP CONFIG/NFS SHOW MOUNT Does Not Show Client Host Mounts ..14

6. Changing the LPD Spool Directory ..15

7. Network DCL Commands May No Longer Function...15

8. SSH Configuration Must Be Performed From SYSTEM Account ...15

9. SSH Connections Are Not Logged When SSHD.log Files Reach Maximum Version Number15

10. SSH UNIX-style Options Not Available ..16

11. NTPTRACE Not Supported ...16

Chapter 6: Layered Products and Tools Release Notes ... 17

DO-DVTNFR-00A VMS Software Inc. 580 Main Street, Bolton, MA 01740

3

1. Common Internet File System (CIFS) ..17

2. Other Networking Products ..17

3. TCP/IP Services Fails to Start After Installation of VSI TCP/IP V10.5 or V10.618

4. VSI DCE Compatibility with VSI TCP/IP V10.5 or V10.6 ...18

5. VSI WBEM Services (WBEMCIM) Installation Requirement ..18

Chapter 7: Documentation Errata ... 19

1. Corrected SERVER-CONFIG Commands ...19

2. Corrected DOMAIN Commands Syntax ..19

3. Corrected Command Syntax in Copying SSH2 Template File To The Target SSH2 Subdirectory19

4. BOOTP “to” Option Values Swapped ..20

5. DHCP Filename Corrected ...20

6. Cluster Alias Logical Name Corrected ...20

7. IP FONT MKFONTDIR Command Syntax Corrected ..20

8. Queue Groups Configuration Corrected ...20

9. Customer Zone Files Privileges Corrected ...20

10. SMTP ADD GATEWAY Command Description Corrected ...21

11. NFS Version 2 Commands Inadvertently Included ..21

12. Corrected SSH and SSH2 Directory Specifications..21

Chapter 8: Using the $QIO System Service .. 22

$QIO Format ...22

$QIO Arguments ..23

$QIO Function-Independent Arguments ..23

I/O Status Block ..24

$QIO Function-Dependent Arguments ...24

Passing Arguments by Descriptor ...25

Specifying an Input Parameter List...26

Specifying a Socket Name ..30

Specifying a Buffer List ..31

$QIO Interface ..34

Socket Options ..57

DO-DVTNFR-00A VMS Software Inc. 580 Main Street, Bolton, MA 01740

4

Preface

1. Intended Audience

This document is intended for all users of VSI TCP/IP V10.5 or V10.6. Read this document, as well as

those in the following list, before you install this product on your VSI OpenVMS system:

• VSI TCP/IP Version 10.6 Installation, Upgrade, and Quick Start Guide

• VSI TCP/IP for OpenVMS User’s Guide

• VSI TCP/IP for OpenVMS Software Product Description (SPD)

2. Document Structure

This document contains the following chapters:

• Prerequisites: Products and configuration conditions required by VSI TCP/IP V10.6.

• New Features, Improvements, and Behaviors: New features and improvements added to VSI TCP/IP

Version 10.6.

• Deprecated Commands and Services: A listing of items removed or deprecated in VSI TCP/IP V10.6

• Future Features: A list of features planned for future versions of VSI TCP/IP

• VSI TCP/IP V10.6 Issues: Release notes introduced in the current release. A subheading for

each release note indicates the version of origin (for example, Version 10.5).

• Layered Products and Tools Release Notes: Release notes connected to VSI TCP/IP layered products

and tools.

• Documentation Errata: Errors inadvertently included in the TCP/IP V10.5 documentation.

• Using the $QIO System Service: This chapter describes how to use the $QIO system service and its data

structures with VSI TCP/IP. This information is included in the VSI TCP/IP Programmer Reference

Manual.

3. VSI TCP/IP V10.6 Documentation

The complete set of VSI TCP/IP V10.6 documentation is available on the web at:

http://www.vmssoftware.com/documents_list.html.

In the main window, navigate to VSI OpenVMS Compilers and Layered Products Documentation and

then scroll to the VSI TCP/IP Version 10.6 section. The following documents are available in PDF

format:

VSI TCP/IP Version 10.6 Release Notes

VSI TCP/IP V10.6 Installation, Upgrade, and Quick Start Guide

VSI TCP/IP User's Guide

VSI TCP/IP Administrator's Guide: Volume I

VSI TCP/IP Administrator's Guide: Volume II

VSI TCP/IP Administrator's Reference

VSI TCP/IP Messages, Logicals, & DECnet Applications

VSI TCP/IP Programmer's Reference

VSI TCP/IP Version 10.6 Cover Letter

VSI TCP/IP Version 10.6 Software Product Description

http://www.vmssoftware.com/documents_list.html

DO-DVTNFR-00A VMS Software Inc. 580 Main Street, Bolton, MA 01740

5

Chapter 1: Prerequisites
Please note the following prerequisites for VSI TCP/IP Version 10.5 or V10.6:

1. For VSI TCP/IP V10.6, you can perform a fresh installation, or you can upgrade from VSI TCP/IP

V10.5.

2. You can run VSI TCP/IP on VSI OpenVMS Integrity Version 8.4-2L1 or higher.

3. VSI TCP/IP requires the use of ODS-5 system disks. If you attempt an installation on a system disk

that is not ODS-5, you will see a message similar to the following:

 VSI TCP/IP requires installation on an ODS-5 system disk.

The disk on which you are installing, 1DGA150:, is not an ODS-5

disk.

4. VSI TCP/IP V10.6 requires the installation of an OpenVMS patch kit, VMS842L1I_CLUCONFIG-

V0100.PCSI$COMPRESSED, which is distributed in the same directory as the VSI TCP/IP V10.6 kit.

If this patch kit is not installed first, or at the same time as VSI TCP/IP, the VSI TCP/IP V10.5 or

V10.6 installation will fail.

DO-DVTNFR-00A VMS Software Inc. 580 Main Street, Bolton, MA 01740

6

Chapter 2: New Features, Improvements, and Behavior
This chapter contains the following information about VSI TCP/IP V10.6 including:

• New features

• Improvements and fixes that have been added to VSI TCP/IP V10.6 since VSI TCP/IP V10.5

• Compatibility and differences between VSI TCP/IP 10.6 and HPE TCP/IP Services

New Features

1. New MultiNet Configuration File Converter Added to VSI TCP/IP

If you have MultiNet installed on your system, you can import your existing MultiNet configuration files to

be used by VSI TCP/IP. The conversion can be run during the installation procedure.

See the VSI TCP/IP Version 10.6 Installation, Upgrade, and Quick Start Guide, Chapter 2 for detailed

information about the configuration file conversion process.

2. Updated Programs in IP$EXAMPLES

The IP$EXAMPLES directory contains updated programs that demonstrate aspects of network

programming that you may find helpful. Please read the SOCKET-README.TXT file in the

IP$EXAMPLES: directory for a complete list and instructions for how to use these programs.

3. Updated BIND 9 support

VSI TCPIP V10.6 has been updated to the following BIND 9 version: 9.11.8. BIND 9.11.8 contains CVE

fixes. Further information on the contents of BIND 9.11.8 may be found at:

https://ftp.isc.org/isc/bind9/9.11.8/RELEASE-NOTES-bind-9.11.8.html

4. SSH Port Forwarding and OpenVMS Captive Users

SSH implements a user group, known internally by SSH, which designates the users of captive accounts.

This group, IP$SSH_CAPTIVE_USERS, gives the system administrator a method by which to specify

captive users in various aspects of SSH configuration without requiring definition and management of

OpenVMS rights identifiers. Additionally, the supplied SSH configuration template,

SSHD2_CONFIG.TEMPLATE, disables port forwarding for captive users by default.

To enable the SSH port forwarding feature for captive users, remove the line

“DenyTcpForwardingForGroups” from the SSHD2_CONFIG.CONF, which can be found in

SYS$SPECIFIC:[IP.CONFIG.SSH2].

5. New Key Exchange Algorithms Added to SSH

VSI TCP/IP V10.6 contains new Key Exchange algorithms. The following KEX algorithms are now

supported:

diffie-hellman-group14-sha256

diffie-hellman-group-exchange-sha1

diffie-hellman-group-exchange-sha256

https://ftp.isc.org/isc/bind9/9.11.8/RELEASE-NOTES-bind-9.11.8.html

DO-DVTNFR-00A VMS Software Inc. 580 Main Street, Bolton, MA 01740

7

6. VSI TCP/IP SNMP Supports Interrogation of MIBs

In VSI TCP/IP V10.6, SNMP supports integration of the following MIBs. Support for additional MIBs will

be added in a future release of VSI TCP/IP.

Supported MIBs for V10.6:

iso.org.dod.internet.mgmt.mib_2.system

iso.org.dod.internet.mgmt.mib_2.system.sysDescr

iso.org.dod.internet.mgmt.mib_2.system.sysOID

iso.org.dod.internet.mgmt.mib_2.system.sysUpTime

iso.org.dod.internet.mgmt.mib_2.system.sysContact

iso.org.dod.internet.mgmt.mib_2.system.sysName

iso.org.dod.internet.mgmt.mib_2.system.sysLocation

iso.org.dod.internet.mgmt.mib_2.system.sysServices

iso.org.dod.internet.mgmt.mib_2.system.sysORLastChange

iso.org.dod.internet.mgmt.mib_2.system.sysORTable

iso.org.dod.internet.mgmt.mib_2.system.sysORTable.sysOREntry

iso.org.dod.internet.mgmt.mib_2.system.sysORTable.sysOREntry.sysORIndex

iso.org.dod.internet.mgmt.mib_2.system.sysORTable.sysOREntry.sysORID

iso.org.dod.internet.mgmt.mib_2.system.sysORTable.sysOREntry.sysORDescr

iso.org.dod.internet.mgmt.mib_2.system.sysORTable.sysOREntry.sysORUpTime

iso.org.dod.internet.mgmt.mib_2.interfaces

iso.org.dod.internet.mgmt.mib_2.interfaces.ifNumber

iso.org.dod.internet.mgmt.mib_2.interfaces.ifTable

iso.org.dod.internet.mgmt.mib_2.interfaces.ifTable.ifEntry

iso.org.dod.internet.mgmt.mib_2.interfaces.ifTable.ifEntry.ifIndex

iso.org.dod.internet.mgmt.mib_2.interfaces.ifTable.ifEntry.ifDescr

iso.org.dod.internet.mgmt.mib_2.interfaces.ifTable.ifEntry.ifType

iso.org.dod.internet.mgmt.mib_2.interfaces.ifTable.ifEntry.ifMtu

iso.org.dod.internet.mgmt.mib_2.interfaces.ifTable.ifEntry.ifSpeed

iso.org.dod.internet.mgmt.mib_2.interfaces.ifTable.ifEntry.ifPhysAddress

iso.org.dod.internet.mgmt.mib_2.interfaces.ifTable.ifEntry.ifAdminStatus

iso.org.dod.internet.mgmt.mib_2.interfaces.ifTable.ifEntry.ifOperStatus

iso.org.dod.internet.mgmt.mib_2.interfaces.ifTable.ifEntry.ifLastChange

iso.org.dod.internet.mgmt.mib_2.interfaces.ifTable.ifEntry.ifInOctets

iso.org.dod.internet.mgmt.mib_2.interfaces.ifTable.ifEntry.ifInUcastPkts

iso.org.dod.internet.mgmt.mib_2.interfaces.ifTable.ifEntry.ifInNUcastPkts

iso.org.dod.internet.mgmt.mib_2.interfaces.ifTable.ifEntry.ifInDiscards

iso.org.dod.internet.mgmt.mib_2.interfaces.ifTable.ifEntry.ifInErrors

iso.org.dod.internet.mgmt.mib_2.interfaces.ifTable.ifEntry.ifInUnknownProtos

iso.org.dod.internet.mgmt.mib_2.interfaces.ifTable.ifEntry.ifOutOctets

iso.org.dod.internet.mgmt.mib_2.interfaces.ifTable.ifEntry.ifOutUcastPkts

iso.org.dod.internet.mgmt.mib_2.interfaces.ifTable.ifEntry.ifOutNUcastPkts

iso.org.dod.internet.mgmt.mib_2.interfaces.ifTable.ifEntry.ifOutDiscards

iso.org.dod.internet.mgmt.mib_2.interfaces.ifTable.ifEntry.ifOutErrors

DO-DVTNFR-00A VMS Software Inc. 580 Main Street, Bolton, MA 01740

8

iso.org.dod.internet.mgmt.mib_2.interfaces.ifTable.ifEntry.ifOutQLen

iso.org.dod.internet.mgmt.mib_2.interfaces.ifTable.ifEntry.ifSpecific

iso.org.dod.internet.mgmt.mib_2.at

iso.org.dod.internet.mgmt.mib_2.at.atable

iso.org.dod.internet.mgmt.mib_2.at.atable.atEntry

iso.org.dod.internet.mgmt.mib_2.at.atable.atEntry.atlFIndex

iso.org.dod.internet.mgmt.mib_2.at.atable.atEntry.atPhysAddress

iso.org.dod.internet.mgmt.mib_2.at.atable.atEntry.atNetAddress

iso.org.dod.internet.mgmt.mib_2.ip

iso.org.dod.internet.mgmt.mib_2.icmp

iso.org.dod.internet.mgmt.mib_2.tcp

iso.org.dod.internet.mgmt.mib_2.udp

iso.org.dod.internet.mgmt.mib_2.snmp

VSI TCP/IP V10.5 Problems Fixed

This section lists problems that were originally documented in the VSI TCP/IP Version 10.5 Release Notes.

These problems have been fixed in VSI TCP/IP Version 10.6.

1. IP SHOW/REMOTE May Result in Forced Exit

When the target host specified by an IP SHOW/REMOTE command is not reachable, or the connection is

refused because the target does not have the NETSTAT service enabled, a forced exit will occur indicating

an improperly handled condition.

This problem has been fixed in VSI TCP/IP Version 10.6.

2. Node Hangs When Booting into a Cluster

Removal or installation of TCP/IP Services can result in the deletion of some IPCI files, causing a node to

hang when it attempts to boot into a cluster. Please see the note “Other Networking Products” in the

Layered Products and Tools Release Notes section for information on how you can restore the IPCI

configuration information.

This problem has been fixed in VSI TCP/IP Version 10.6.

3. VSI T4 INET Collection Call Fails with VSI TCP/IP

The VSI T4 tool’s INET collection fails when used with VSI TCP/IP V10.5. As a result, Internet data is

not collected. This will be addressed in a future update to VSI T4.

This problem has been fixed in VSI TCP/IP Version 10.6.

4. VSI TDC (The Data Collector) INET Collection Fails with VSI TCP/IP

The Data Collector (TDC) INET collection fails when used with VSI TCP/IP V10.5. As a result, Internet

data is not collected. This will be addressed in a future update to VSI TDC.

This problem has been fixed in VSI TCP/IP Version 10.6.

DO-DVTNFR-00A VMS Software Inc. 580 Main Street, Bolton, MA 01740

9

5. VSI TCP/IP and TCP/IP Services Compatibility Fixed

The following compatibility issues have been resolved in VSI TCP/IP V10.6.

1. The socket option SO_SHARE is implemented in VSI TCP/IP V10.6.

2. The TCP/IP Services TELNET API is implemented in VSI TCP/IP V10.6.

For existing compatibility and differences, see the following section.

VSI TCP/IP and TCP/IP Services Compatibility and Differences in Behavior

Compatibility

VSI is investigating compatibility issues between the current TCP/IP Services network stack offering and

VSI’s TCP/IP V10.6. We encourage customers to provide feedback on the impact of the issues noted below

and notify us of any others that are encountered. Please return feedback by sending email to VSI at

support@vmssoftware.com.

1. The API if_indexname(), which retrieves information about the network interfaces configured in

the system, does not include lo0 in the list of interfaces it returns.

2. When features are available via both the standard socket interface and QIO, VSI recommends

use of the standard socket interface. For example, use of $QIO in VSI TCP/IP V10.5, or V10.6

might result in status return values that indicate failure; these values may not match the values

returned by TCP/IP Services.

3. An HPE TCP/IP Services FTP client issuing a get of an index file from a VSI TCP/IP FTP server

hangs. This is due to HPE TCP/IP Services FTP client and VSI TCP/IP FTP server identifying

each other as VMS through the command SITE VMS. To work around this issue, enter the

following command prior to issuing the get command:

FTP> disable vms

Differences in Behavior

VSI has observed the following differences in behavior between VSI TCP/IP and TCP/IP Services:

1. COPY/FTP Exhibits Incorrect Behavior When Remote Files are Copied Using

Wildcard File Specification.

When you use COPY/FTP to copy files from systems running TCP/IP Services and use

a wildcard in the source file specification, the output files on the local system will have

exactly the same version number as the file on the remote system. Here is an example of

a command that results in incorrect behavior:

copy/ftp node"user password"::login.*;* [] ...

If files with the same name exist on the local system, the output files might have lower

version numbers than the files on the local system, or they could collide with the

existing file version(s).

2. COPY/FTP of Remote File to Wildcard Local File Specification Fails.

When you use COPY/FTP to copy a remote file to a local destination and use a wildcard

file specification for the output file, the copy will fail. Here is an example of a command

that will fail:

copy/ftp node"user password"::login.com *

To work around this issue, specify the target directory without the wildcard file

specification, as shown in this example:

copy/ftp node"user password"::login.com []

mailto:support@vmssoftware.com

DO-DVTNFR-00A VMS Software Inc. 580 Main Street, Bolton, MA 01740

10

3. COPY/FTP May Change File Attributes When Copying Between VSI TCP/IP V10.5

or V10.6 and TCP/IP Services.

When copying files between systems running VSI TCP/IP V10.5 or V10.6 and those

running HPE TCP/IP Services, the following file attributes may change: file

organization, record attributes, and record format. To work around this issue, use FTP

directly, rather than COPY/FTP, and transfer a backup save set containing the files in

image mode.

4. COPY/FTP Source File Search List Logical Interaction.

When using COPY/FTP from a system running VSI TCP/IP, more than one file will be

copied if the source file specification references a search list logical (like

SYS$SYSROOT) and copies of the desired file exist in more than one place in the search

list.

5. COPY/FTP Syntax Restriction

COPY/FTP improperly handles several forms of directory specifications, such as

unmerged rooted directory specifications and directory specifications delimited by angle

brackets < >. These are shown in the following examples:

COPY/FTP [ROOT.][DIRECTORY]FOO.TXT host”username password”::

COPY/FTP <DIRECTORY>FOO.TXT hostname”username password”::

To work around the issue in the first example, remove the characters .][from the

directory specification. In the second example, replace the angle brackets < > with

brackets [].

6. COPY/FTP Wildcard Input Files Are Copied to The Output Default Directory.

When a wildcard (*) is used to specify the input files to the command COPY/FTP, the

specified destination directory is ignored and the files are copied to the default directory

instead. In the case of a local destination, this will be the current default directory for the

user. In the case of a remote destination, this will be the login default for the target user

account (unless changed by login.com on the target host).

7. SCP Command Failures Observed Between Networking Stacks

The following failures have been observed when using the SCP command between TCP/IP

Services V5.7 and VSI TCP/IP V10.5 or V10.6. These failures will be addressed in a future

release.

1. The TCP/IP Services V5.7 SCP command fails when attempting to transfer files to a VSI

TCP/IP V10.5 or V10.6 server if the remote filename uses OpenVMS syntax.

VSI TCP/IP V10.5 and V10.6 do not recognize TCP/IP Services V5.7 as an OpenVMS

TCP/IP implementation. As a result, you must issue the SCP command using UNIX-style

syntax for the remote file. OpenVMS syntax in remote filenames can be used when the

server and the client both run VSI TCP/IP.

DO-DVTNFR-00A VMS Software Inc. 580 Main Street, Bolton, MA 01740

11

2. The VSI TCP/IP SCP command fails to transfer remote files if the filename includes

wildcards.

To successfully transfer files using SCP, surround the parts of the filename that are not

wildcards and periods in double quotes. In the case of ODS2 files, the filename must be

uppercase.

Here are examples of commands that fail:

$ scp "system@blade1"::*.pl []

$ scp "system@blade1"::*.PL []

Here are examples of commands that succeed:

$ scp "system@blade1"::*."PL" []

$ scp "system@blade1"::”D”*."PL" []

DO-DVTNFR-00A VMS Software Inc. 580 Main Street, Bolton, MA 01740

12

Chapter 3: Deprecated Commands and Services
This chapter lists commands and services that VSI has determined are either obsolete or are not used by

modern TCP/IP stacks.

1. Interfaces No Longer Supported

VSI TCP/IP no longer supports Novell's EXOS programming interface. Additionally, VSI TCP/IP no

longer supports configuring Ethernet interfaces with Novell raw IEEE 802.3, IEEE 802.2 LLC and IEEE

802.2 SNAP Ethernet frames.

2. Commands No Longer Supported

VSI TCP/IP no longer supports the IP LPRM command.

If the print job is still on your local system, you should use the VMS command DELETE /ENTRY to delete

the job.

3. Commands and Services Not Present in VSI TCP/IP V10.5 or V10.6.

VSI TCP/IP V10.5 and V10.6 do not include the following commands and services found in MultiNet.

• Commands not present: DECODE, KERBEROS, MENU, RDATE

• Service names changed from those in MultiNet: NFS (in MultiNet, it was NFS3)

• Services not present: BOOTP, BWNFS, EKLOGIN, KADMIN, KLOGIN, KSHELL, NFS2,

PCNFS, POP2, REMIND, TFTP

Note: BOOTP and TFTP will be added in a future release of VSI TCP/IP.

4. MAIL Facilities (SMTP, POP, IMAP) Lack Modern Capabilities

Mail support contained in VSI TCP/IP V10.5 lacks the security, virtualization, and spam avoidance features

found in modern mail systems. If you require a production quality mail solution with VSI TCP/IP, we

recommend that you use PMDF, a complete and up-to-date messaging product available from Process

Software. PMDF is a high performance standards-based Internet product suite that has been tested on

VSI TCP/IP V10.5 and V10.6.

DO-DVTNFR-00A VMS Software Inc. 580 Main Street, Bolton, MA 01740

13

Chapter 4: Future Features
VSI understands that there are important network stack features that need to be carefully implemented and

fully tested before those features are deployed in critical customer environments. The following network

stack features are not present in the VSI TCPIP V10.6 release.

These features will be added in a future release. Please contact VSI Support at if you have specific

requirements for these features:

1. Clusters Over IP Not Recommended

VSI has observed problems in a cluster when SCS communications occur over the TCP/IP stack. This

configuration is commonly known as OpenVMS Clusters over IP. Currently, VSI does not recommend

using Clusters over IP with VSI TCP/IP in a production environment.

2. Issues with Jumbo Frames

VSI has encountered issues with jumbo frames enabled and recommends against enabling jumbo frames on

any VSI TCP/IP V10.5 or V10.6 interfaces.

3. Satellite Cluster Nodes Cannot Be Booted

It is not possible to boot satellite cluster nodes from a system running VSI TCP/IP V10.5 or V10.6 because

the BOOTP and TFTP services are not supported in these versions. This will be corrected in a future

release of VSI TCP/IP.

DO-DVTNFR-00A VMS Software Inc. 580 Main Street, Bolton, MA 01740

14

Chapter 5: Current VSI TCP/IP V10.6 Issues

Current issues and release notes pertaining to both VSI TCP/IP Versions 10.5 and 10.6. A

subheading for each release note indicates the version of origin (for example, Version 10.5).

Refer to Chapter 2 for issues that VSI Engineering has fixed in Version 10.6.

1. NFSMOUNT with /TRANSPORT=TCP Results in Some UDP Packets

Version 10.6

Using tcpdump to monitor NFSMOUNT activity, the following has been observed:

10:45:23.80 16.1.1.203.601 > 16.1.1.133.111: udp 88

10:45:23.80 16.1.1.133.111 > 16.1.1.203.601: udp 28 (DF)

10:45:23.80 16.1.1.203.601 > 16.1.1.133.20048: udp 84

10:45:23.81 16.1.1.133.20048 > 16.1.1.203.601: udp 28 (DF)

However, the rest of NFS activity afterwards is done using TCP protocol.

This is due to limitations on MOUNT services on VSI TCP/IP only supporting UDP. In order to

successfully mount remote shares, remote NFS server must allow UDP mounts.

2. NFSDISMOUNT /LOG Qualifier Not Functioning Correctly

Version 10.6

The /LOG qualifier cannot be used with the NFSDISMOUNT command. Issuing this command generates

the following system message:

$ NFSDISMOUNT NFS3: /LOG

%DCL-W-IVQUAL, unrecognized qualifier - check validity, spelling,

and placement\LOG\

 This will be corrected in a future release of VSI TCP/IP.

3. Branding

Version 10.5

Copyright notices have been modified from Process Software’s MultiNet to VSI TCP/IP. However, text

that appears in some help files, display screens, or other areas may still say MultiNet. These will be updated

in a future release of VSI TCP/IP.

4. DHCLIENT Use and Network Topologies

Version 10.5

DHCLIENT provides centralized assignment and management of IP addresses in conjunction with simple

network topologies. However, VSI has observed problems with topologies that require definition of static

routes that are outside of routes that can be supplied by DHCP. Customers with such use cases should

contact VSI support at Support@vmssoftware.com for possible workarounds.

5. IP CONFIG/NFS SHOW MOUNT Does Not Show Client Host Mounts

Version 10.5

The SHOW MOUNT command of the NFS configuration utility does not work, producing no output

regardless of the state of any NFS clients mounting exports on the local server.

mailto:Support@vmssoftware.com

DO-DVTNFR-00A VMS Software Inc. 580 Main Street, Bolton, MA 01740

15

6. Changing the LPD Spool Directory

Version 10.5

By default, LPD print jobs (and SMTP mail messages) on the OpenVMS system are stored in the directory

IP$COMMON_ROOT:[IP.SPOOL]. You can change the directory with the

NET-CONFIG SET SPOOL- DIRECTORY command by entering:

$ IP CONFIGURE

NET-CONFIG>SET SPOOL-DIRECTORY DISK$TEMP:[IP]

You must redefine the logical that points to the spooling area unless you reboot the system after modifying

the VSI TCP/IP configuration by entering:

$ DEFINE/SYSTEM/EXEC IP$SPOOL DISK$TEMP:[IP]

Make sure the directory protections are set to SYSTEM:RWED, OWNER:RWED, GROUP:RE, and

WORLD:RE.

7. Network DCL Commands May No Longer Function

Version 10.5

Removal or installation of TCP/IP Services can result in the deletion of some network DCL commands.

Please see the note “Other Networking Products” in the Layered Products and Tools Release Notes section

for information on how you can restore the commands to your system.

8. SSH Configuration Must Be Performed From SYSTEM Account

Version 10.5

VSI recommends that you configure SSH from the SYSTEM account only. Non-system accounts do not

configure SSH correctly.

9. SSH Connections Are Not Logged When SSHD.log Files Reach Maximum Version Number

Version 10.5

When the SSHD.LOG file version reaches the maximum number of 32767, new log files are not generated.

SSH connections still function, however, VSI recommends that you rename the SSHD.LOG to fix the

problem.

You can change the log file name by defining the logical name IP$SSH_LOG_FILE with one or more of

the following tokens:

%D date in yyyymmdd format

%N system SCS node name

%C value of childcount

For example, defining the following logical name:

$ DEFINE /SYSTEM IP$SSH_LOG_FILE "SSH_%N_%D"

results in the following SSH log file names:

IP$LOG:SSH_MYNODE_20190513.LOG

VSI also recommends that files be removed regularly to allow space for new file creation.

DO-DVTNFR-00A VMS Software Inc. 580 Main Street, Bolton, MA 01740

16

10. SSH UNIX-style Options Not Available

Version 10.5

SSH does not offer the Unix-style options -h and -v, which display help and version information

respectively. Use the /HELP and /VERSION qualifiers instead.

$ SSH /HELP

$ SSH /VERSION

11. NTPTRACE Not Supported

Version 10.5

VSI TCP/IP does not support NTPTRACE. VSI recommends that you use NTPQ instead. NTPQ is fully

documented in the VSI TCP/IP Administrator's Guide: Volume I, Using NTPQ and will produce similar but

not exactly the same results as NTPTRACE.

DO-DVTNFR-00A VMS Software Inc. 580 Main Street, Bolton, MA 01740

17

Chapter 6: Layered Products and Tools Release Notes
This section contains release notes for layered products and tools that interact with VSI TCP/IP.

1. Common Internet File System (CIFS)

The currently released version of VSI CIFS does not recognize VSI TCP/IP V10.5 or V10.6 as a supported

network stack. In order to run VSI CIFS with VSI TCP/IP V10.5 or V10.6, you must update the CIFS

startup procedures. Download the kit VSI-I64VMS-SAMBA-V0102-ECO1C-2.ZIPEXE using SFTP

(required) from this location:

SFTP Server: vsiftp.vmssoftware.com (104.207.199.163)

Username: OPENKITS

Password: VSI#14kits

Directory: i64opensource

Filename: VSI-I64VMS-SAMBA-V0102-ECO1C-2.ZIPEXE

Unpack the kit on an OpenVMS host using the following command:

$ RUN VSI-I64VMS-SAMBA-V0102-ECO1C-2.ZIPEXE

The kit VSI-I64VMS-SAMBA-V0102-ECO1C-2.ZIPEXE contains VSI-I64VMS-SAMBA-

V0102-ECO1C-2.RELEASE_NOTES (containing installation instructions) and the new CIFS startup

files that recognize VSI TCP/IP V10.5 or V10.6.

Note:

• If you previously installed CIFS patch PS2_14, you may apply

VSI-I64VMS-SAMBA-V0102-ECO1C-2.ZIPEXE on top of PS2_14.

• If you have not yet installed CIFS patch PS2_14 but intend to do so, install PS2_14 before

installing VSI-I64VMS-SAMBA-V0102-ECO1C-2.ZIPEXE.

2. Other Networking Products

The network state and environment used by OpenVMS has several components that may overlap if

multiple network products are installed on your system. After installing VSI TCP/IP V10.5 or V10.6,

removing or installing another network product can render certain portions of the VSI TCP/IP network

environment unusable. For example, removing or installing the TCP/IP Services product or Process

Software's MultiNet product can result in these symptoms:

• Network commands in DCL may no longer function: Various network commands that are

shared between products may be deleted or changed within the DCLTABLES on the system.

These commands include: FINGER, FTP, RCP, RLOGIN, RPCGEN, RSHELL, SCP2, SFTP2,

SSH, SSH2, and TELNET.

• Configuration information for Clusters over IP via IPCI may be deleted: If you use IPCI to

enable clustering over IP for your VMScluster, the cluster's network configuration can be lost

when another product is installed or deleted. As a result, the node will be unable to boot into the

cluster since it cannot find the other cluster members via IP.

To avoid these symptoms, VSI provides a procedure to restore the VSI TCP/IP state that is overlapped and

potentially removed. After installing or removing another network product, use the following command to

restore the environment so that it will continue to use VSI TCP/IP:

$ @SYS$MANAGER:IP$FIX_VSI_TCPIP

This will restore the VSI TCP/IP network commands and IPCI configuration information. VSI strongly

recommends that you invoke this procedure immediately after installing or removing another network

product if you want to continue using VSI TCP/IP.

http://vsiftp.vmssoftware.com/

DO-DVTNFR-00A VMS Software Inc. 580 Main Street, Bolton, MA 01740

18

Note: Failure to run this procedure can result in a boot hang at some later time if you use IPCI for

clustering over IP.

3. TCP/IP Services Fails to Start After Installation of VSI TCP/IP V10.5 or V10.6

If you try to start TCP/IP Services by running TCPIP$STARTUP after you have installed VSI TCP/IP

V10.5 or V10.6, you will see the following error message:

$ @SYS$STARTUP:TCPIP$STARTUP

%TCPIP-E-STARTFAIL, failed to start TCP/IP Services

-TCPIP-E-NOLICENSE, license check failed

To resume use of TCP/IP Services after you have installed VSI TCP/IP V10.5 or V10.6, run the procedure

@SYS$MANAGER:IP$SET_STACK to switch stacks. You must also use IP$STARTUP at boot time

instead of using TCPIP$STARTUP. For additional information, see the VSI TCP/IP for OpenVMS

Installation, Upgrade, and Quick Start Guide.

4. VSI DCE Compatibility with VSI TCP/IP V10.5 or V10.6

In order to run VSI DCE with VSI TCP/IP V10.5 or V10.6, you must acquire VSI DCE Version 3.2D.

Previous versions of VSI DCE V3.2 do not recognize VSI TCP/IP V10.5 or V10.6 as a valid network

stack.

To request the kit, VSI direct support customers should send email to Support@vmssoftware.com and

reference their VSI support contract number in the email. HPE support customers should access the HPE

support site or contact their HPE support representative to request the kit.

5. VSI WBEM Services (WBEMCIM) Installation Requirement

Installation of VSI WBEM Services (WBEMCIM) V3.0-C180108 or later for VSI OpenVMS Integrity

Servers is required for compatibility with VSI TCP/IP V10.5 or V10.6. VSI highly recommends that you

install the WBEMCIM kit prior to installing VSI TCP/IP V10.5 or V10.6.

If WBEM Services V3.0-C180108 is not installed, the following messages are displayed by the WBEM

services configuration, startup, and shutdown procedures.

LCKHVN>> @sys$startup:wbem_services$startup

%SYSTEM-F-ABORT, abort

%RUN-S-PROC_ID, identification of created process is 23800460

%SYSTEM-F-ABORT, abort

%WBEMCIM-I-SERVERWAIT, Waiting for CIMServer to start. 180 seconds

remaining...

%SYSTEM-F-ABORT, abort

%WBEMCIM-I-SERVERWAIT, Waiting for CIMServer to start. 170 seconds

remaining...

VSI direct support customers can send email to L1-support@vmssoftware.com to obtain access to the kit.

Please reference your VSI support contract number in the email. HPE direct support customers should

access the kit via the HPE support site.

mailto:Support@vmssoftware.com
mailto:L1-support@vmssoftware.com

DO-DVTNFR-00A VMS Software Inc. 580 Main Street, Bolton, MA 01740

19

Chapter 7: Documentation Errata
The following release notes pertain to errors inadvertently included in the VSI TCP/IP V10.5

documentation.

1. Corrected SERVER-CONFIG Commands

Version 10.6

In VSI TCP/IP Administrator's Guide: Volume I, Table 2.10 SERVER-CONFIG Commands, the following

commands have been corrected:

Incorrect Command Correct Command
SET RECEIVE-BUFFER-SIZE SET RECEIVE-BUFFER-SPACE

SET SEND-BUFFER-SIZE SET SEND-BUFFER-SPACE

2. Corrected DOMAIN Commands Syntax

Version 10.6

In VSI TCP/IP Administrator's Guide: Volume I, the syntax of the following commands has been corrected:

Incorrect Syntax Correct Syntax

$ IP NETCONTROL DOMAIN RELOAD $ IP NETCONTROL DOMAINNAME RELOAD

$ IP NETCONTROL DOMAIN RESTART $ IP NETCONTROL DOMAINNAME RESTART

SERVER-CONFIG>ENABLE DNS SERVER-CONFIG>ENABLE DOMAINNAME

3. Corrected Command Syntax in Copying SSH2 Template File To The Target SSH2 Subdirectory

Version 10.6

In the VSI TCP/IP Administrator's Guide: Volume II, Starting the SSH Server for the First Time section, the

following commands related to copying the SSH2 template file to the target SSH2 subdirectory syntax have

been corrected:

Command Syntax

Copy Incorrect:

COPY IP$:SSHD_CONFIG.TEMPLATE IP$:SSHD_CONFIG.;

Correct:

$ copy

ip$specific_root:[ip.ssh2]sshd2_config.template-

_$ ip$specific_root:[ip.ssh2]sshd2_config

IP$SYSTARTUP Incorrect:

$ IP$SYSTARTUP.COM RESTART

Correct:

$ @IP$:IP$SYSTARTUP.COM RESTART

SHOW SYSTEM Incorrect:

$ SHOW=SYSTEM/PROCESS="IP$SSH_SERVER"

Correct:

$ SHOW SYSTEM/PROCESS="IP$SSH_SERVER"

SET FILE Incorrect:

$ set file /version_limit=X

IP$ROOT:[IP.SSH]SSHD.LOG

DO-DVTNFR-00A VMS Software Inc. 580 Main Street, Bolton, MA 01740

20

4. BOOTP “to” Option Values Swapped

Version 10.6

In VSI TCP/IP Administrator's Guide: Volume II, Table 9.2: BOOTP “to” Option Values have been

corrected.

The corrected values are:

Value Time Offset DST Time Offset

CET/CET-DST 3600 7200

MET/MET-DST 3600 7200

5. DHCP Filename Corrected

Version 10.6

In VSI TCP/IP Administrator's Guide: Volume II, Section 9.8 Checking the DHCP Configuration, the

DHCP configuration file name has been corrected. The corrected value is dhcpd4.exe. Calling DHCPD

with an invalid parameter attempts to start the DHCPD server in this process.

6. Cluster Alias Logical Name Corrected

Version 10.6

In the VSI TCP/IP Administrator's Guide: Volume I, Section 2.2.10.15. Configuring OpenVMScluster

Aliasing, the alias logical name has been corrected.

The corrected value is ip$ip_cluster_aliases.

7. IP FONT MKFONTDIR Command Syntax Corrected

Version 10.6

In the VSI TCP/IP Administrator’s Reference Guide, Chapter 1 DCL Command Reference, the IP FONT

MKFONTDIR command syntax has been corrected.

The corrected value is IP FONT MKFONTDIR [directory_name].

8. Queue Groups Configuration Corrected

Version 10.6

In the VSI TCP/IP Administrator's Guide: Volume I, Section 4.3.11.5 Configuring Queue Groups, the

conditions of implementation of the modified configurations have been corrected.

The modified configuration takes effect after restarting SMTP.

9. Customer Zone Files Privileges Corrected

Version 10.6

In the VSI TCP/IP Administrator's Guide: Volume I, Table 1.4: Zone Statements, the zone file command

has been corrected to show W:RE privileges with the following syntax:

file filename (RWED,RWED,RE,RE)

Correct:

$ set file/version=X ip$log:sshd.log

DO-DVTNFR-00A VMS Software Inc. 580 Main Street, Bolton, MA 01740

21

10. SMTP ADD GATEWAY Command Description Corrected

Version 10.6

In the VSI TCP/IP Administrator's Guide: Volume I, Section 4.3.11.12 Configuring Mail Gateways and VSI

TCP/IP Administrator’s Reference Guide, Chapter 3 MAIL-CONFIG Command Reference, the ADD

GATEWAY command description has been corrected.

In VSI TCP/IP, only one gateway definition is allowed per domain. Preference numbers are not allowed.

11. NFS Version 2 Commands Inadvertently Included

Version 10.5

The VSI TCP/IP V10.5 documentation inadvertently included NFS Version 2 commands and documents

obsolete functionality not included in the current product. The following qualifiers are not supported:

DEFAULT

FID_CACHE_SIZE

INTERFACE

LABEL=(PORT|READ_SIZE|WRITE_SIZE)

LOCKING

PAGEFILE

PORT

READ_SIZE

RELOAD

SEMANTICS

SOFT

SYNTAX=(NFSMOUNT_RELOAD|NFSMOUNT_DECWINDOWS)

UNIQUE_FILENO

VALUE=(DEFAULT=DECWINDOWS|LIST|REQUIRED|TYPE=[DEFAULT=n|

 LOCKING_TYPES|SEMANTICS_TYPES])

WRITE_SIZE

WSEXTENT

WSQUOTA

12. Corrected SSH and SSH2 Directory Specifications

Version 10.5

The following SSH and SSH2 directory citations have been corrected in the VSI OpenVMS TCP/IP

Administrator's Guide: Volume II.

In Sections 15.6 and 15.8, the correct SSH directory is IP$SPECIFIC:[IP.SSH].

In Section 15.14 SSH Logicals, the following text has been changed:

SSH_DIR

Points to the directory where the SSH1 configuration, master server log file, and hostkey files are

kept. Normally, this is IP$SPECIFIC_ROOT:[CONFIG]. It is defined in START_SSH.COM.

In Section 15.15.5.1. HostSpecificConfig Notes:

SSH_DIR:SSHD2_CONFIG has been corrected to SSH2_DIR:SSHD2_CONFIG

DO-DVTNFR-00A VMS Software Inc. 580 Main Street, Bolton, MA 01740

22

Chapter 8: Using the $QIO System Service
Note: When features are available via both the standard socket interface and QIO$, VSI recommends use

of the standard socket interface. For example, use of $QIO in VSI TCP/IP V10.5 or V10.6 might

result in status return values that indicate failure. These values may not match the values returned by

TCP/IP Services.

This chapter describes how to use the $QIO system service and its data structures with VSI TCP/IP. After

you create a network pseudodevice (BG:) and assign a channel to it, use the $QIO system. This information

will be included in the VSI TCP/IP Programmer Reference Manual in a future release of the

documentation.

$QIO System Service Variations

The two variations of the $QIO system service are:

• Queue I/O Request ($QIO) — Completes asynchronously. It returns to the caller immediately after

queuing the I/O request, without waiting for the I/O operation to complete.

• Queue I/O Request and Wait ($QIOW) — Completes synchronously. It returns to the caller after

the I/O operation completes. The only difference between the $QIO and $QIOW calling sequences is

the service name. The system service arguments are the same.

$QIO Format

The $QIO calling sequence has the following format:

SYS$QIO [efn],chan,func,[iosb],[astadr],[astprm],[p1],[p2],[p3],[p4],

[p5],[p6]

The following table describes each argument.

$QIO Arguments

Argument Description

astadr AST (asynchronous system trap) service routine

astprm AST parameter to be passed

chan I/O channel

efn Event flag number

func Network pseudodevice function code and/or function modifier

iosb I/O status block

p1, p2, p3, p4, p5, p6 Function-specific I/O request parameters

 Symbol Definition Files

The following table lists the symbol definition files for the $QIO arguments p1 through p6. Use the

standard mechanism for the programming language you are using to include the appropriate symbol

definition files in your program.

Network Symbol Definition Files

File Name File Name

TCPIP$INETDEF.H C

TCPIP$INETDEF.FOR Fortran

TCPIP$INETDEF.PAS PASCAL

TCPIP$INETDEF.MAR MACRO-32

TCPIP$INETDEF.R32 BLISS-32

TCPIP$INETDEF.ADA Ada

DO-DVTNFR-00A VMS Software Inc. 580 Main Street, Bolton, MA 01740

23

TCPIP$INETDEF.BAS BASIC

$QIO Functions

The following table lists the $QIO function codes commonly used in a network application.

Note: The IO$_SETMODE and IO$_SETCHAR function codes are identical. All references to the

IO _SETMODE function code, its arguments, options, function modifiers, and condition values

returned also apply to the IO$_SETCHAR function code, which is not explicitly described in this

manual.

The IO$_SENSEMODE and IO$_SENSECHAR function codes are identical. All references to the

IO$_SENSEMODE function code, its arguments, options, function modifiers, and condition values

returned also apply to the IO$_SENSECHAR function code, which is not explicitly described in this

manual.

Table 8.1 $QIO Function Codes

$QIO Function Codes Description

$QIO(IO$_SETMODE)

$QIO(IO$_SETCHAR)

Creates the socket by setting the internet domain, protocol (socket) type,

and protocol of the socket.

Binds a name (local address and port) to the socket.

Defines a network pseudodevice as a listener on a TCP/IP server.

Specifies socket options.

$QIO(IO$_ACCESS) Initiates a connection request from a client to a remote host using TCP.

Specifies the peer where you can send datagrams.

Accepts a connection request from a TCP/IP client when used with the

IO$M_ACCEPT function modifier.

$QIO(IO$_WRITEVBLK) Writes data (virtual block) from the local host to the remote host for

stream sockets, datagrams, and raw IP.

$QIO(IO$_READVBLK) Reads data (virtual block) from the remote host to the local host for

stream sockets, datagrams, and raw IP.

$QIO(IO$_DEACCESS) Disconnects the link established between two communication agents

through an IO$_DEACCESS function.

Shuts down the communication link when used with the

IO$M_SHUTDOWN function modifier. You can shut down the receive

or transmit portion of the link, or both.

$QIO(IO$_SENSECHAR)

$QIO(IO$_SENSEMODE)

Obtains socket information.

$QIO Arguments

You pass two types of arguments with the $QIO system service: function-independent arguments and

function-dependent arguments. The following sections provide information about $QIO system service

arguments.

$QIO Function-Independent Arguments

The following table describes the $QIO function-independent arguments.

Table 8.2 $QIO Function-Independent Arguments

Argument Description

astadr Address of the asynchronous system trap (AST) routine to be executed when the I/O

operation is completed.

astprm A quadword (Alpha) containing the value to be passed to the AST routine.

DO-DVTNFR-00A VMS Software Inc. 580 Main Street, Bolton, MA 01740

24

chan A longword value that contains the number of the I/O channel. The $QIO system service

uses only the low-order word.

efn A longword value of the event flag number that the $QIO system service sets when the

I/O operation completes. The $QIO system service uses only the low-order byte.

func A longword value that specifies the network pseudodevice function code and function

modifiers that specify the operation to be performed.

Function modifiers affect the operation of a specified function code. In MACRO-32, you

use the exclamation point (!) to logically OR the function code and its modifier. In

Compaq C, you use the vertical bar (|). This manual uses the vertical bar (|) in text.

iosb The I/O status block that receives the final status message for the I/O operation.

The iosb argument is the address of the quadword I/O status block. (For the format of the

I/O status block, see Section 5.2.

I/O Status Block

The system returns the status of a $QIO operation in the I/O status block (IOSB) supplied as an argument to

the $QIO call. In the case of a successful IO$_READVBLK or IO$_WRITEVBLK operation, the second

word of the I/O status block contains the number of bytes transferred during the operation (see Figure 8.1).

Figure 8.1 I/O Status Block for a Successful READ or WRITE Operation

With an unsuccessful IO$_READVBLK or IO$_WRITEVBLK operation, in most cases, the system

returns a UNIX error code in the second word of the I/O status block.

For C programs, the OpenVMS completion codes are defined in the SSDEF.H header file. The UNIX error

codes are defined in the ERRNO.H header file and in the TCPIP$INETDEF.H header file. For other

language variants, see Error! Reference source not found..

$QIO Function-Dependent Arguments

Arguments p1, p2, p3, p4, p5, and p6 to the $QIO system service are used to pass function-dependent

arguments. Table 8.3 lists arguments p1 through p6 for the $QIO system service and indicates whether the

parameter is passed by value, by reference, or by descriptor.

Table 8.3 $QIO Function-Dependent Arguments

$QIO p1 p2 p3 p4 p5 p6

IO$_ACCESS Not used Not used Remote

socket

name1

Not used Not used Not used

IO$_ACCESS |

IO$M_ACCEPT

Not used Not used Remote

socket

name2

Channel

number3

Not used Not used

1 By item_list_2 descriptor.

2 By item_list_3 descriptor.

3 By reference.

DO-DVTNFR-00A VMS Software Inc. 580 Main Street, Bolton, MA 01740

25

IO$_ACPCONTROL Subfunction

code4

Input

parameter4

Buffer

length3

Buffer4 Not used Not used

IO$_DEACCESS Not used Not used Not

used

Not used Not used Not used

IO$_DEACCESS |

IO$M_SHUTDOWN

Not used Not used Not

used

Shutdown

flags5

Not used Not used

IO$_READVBLK Buffer3 Buffer

size5

Remote

socket

name2

Flags5 Not used Output

buffer list4

IO$_READVBLK |

IO$M_INTERRUPT

Buffer3 Buffer

size5

Not

used

Not used Not used Not used

IO$_WRITEVBLK Buffer3 Buffer

size5

Remote

socket

name1

Flags5 Input

buffer

list2

Not used

IO$_WRITEVBLK |

IO$M_INTERRUPT

Buffer3 Buffer

size5

Not

used

Not used Not used Not used

IO$_SETMODE Socket

char3

Not used Local

socket

name

Backlog

limit5

Input

parameter

list1

Not used

IO$_SETMODE |

IO$_OUTBAND

AST

procedure3

User

argument5

Access

mode5

Not used Not used Not used

IO$_SETMODE |

IO$_READATTN

AST

procedure3

User

argument5

Access

mode5

Not used Not used Not used

IO$_SETMODE |

IO$WRTATTN

AST

procedure3

User

argument5

Access

mode5

Not used Not used Not used

IO$_SENSEMODE Not used Not used Local

socket

name2

Remote

socket

name2

Not used Output

parameter

list1

Passing Arguments by Descriptor

In addition to OpenVMS argument descriptors, I/O functions specific to TCP/IP Services also pass

arguments by using item_list_2 and item_list_3 argument descriptors. The format of these argument

descriptors is unique to TCP/IP Services, and they supplement argument descriptors defined in the

OpenVMS Calling Standard.

Use of an item_list_2 or item_list_3 argument descriptor is indicated when the argument’s passing

mechanism is specified as an item_list_2 descriptor or an item_list_3 descriptor.

The item_list_2 argument descriptors describe the size, data type, and starting address of a service

parameter.

An item_list_2 argument descriptor contains three fields, as depicted in the following diagram:

The first field is a word containing the length (in bytes) of the parameter being described. The second field

is a word containing a symbolic code specifying the data type of the parameter. The third field is a

longword containing the starting address of the parameter.

4 By descriptor.
5 By value.

DO-DVTNFR-00A VMS Software Inc. 580 Main Street, Bolton, MA 01740

26

The item_list_3 argument descriptors describe the size, data type, and address of a buffer in which a service

writes parameter information returned from a get operation. An item_list_3 argument descriptor contains

four fields, as depicted in the following diagram:

The first field is a word containing the length (in bytes) of the buffer in which a service writes information.

The length of the buffer needed depends on the data type specified in the type field. If the value of buffer

length is too small, the service truncates the data. The second field is a word containing a symbolic code

specifying the type of information that a service is to return. The third field is a longword containing the

address of the buffer in which a service writes the information. The fourth field is a longword containing

the address of a longword in which a service writes the length (in bytes) of the information it actually

returned.

Note: When a parameter specified as a descriptor is described as ‘‘read-only’’, the descriptor itself is only

read, and TCP/IP Services does not modify the memory described. However, system service

postprocessing requires that the described memory must be both readable and writable.

Specifying an Input Parameter List

Use the p5 argument with the IO$_SETMODE function to specify input parameter lists. The p5 argument

specifies the address of a item_list_2 descriptor that points to and identifies the type of input parameter list.

To initialize an item_list_2 descriptor, you need to:

1. Set the descriptor’s type field to one of the following symbolic codes to specify the type of

input parameter list:

Symbolic Name Input Parameter List Type

TCPIP$C_SOCKOPT Socket options

TCPIP$C_TCPOPT TCP protocol options

TCPIP$C_IPOPT IP protocol options

TCPIP$C_IOCTL I/O control commands

2. Set the descriptor’s length field to specify the length of the input parameter list.

3. Set the descriptor’s address field to specify the starting address of the input parameter list.

The following figure illustrates how the p5 argument specifies an input parameter list.

DO-DVTNFR-00A VMS Software Inc. 580 Main Street, Bolton, MA 01740

27

Figure 8.2 Specifying an Input Parameter List

As the name implies, input parameter lists consist of one or more contiguous item_list_2 or ioctl_comm

structures. The length of a input parameter list is determined solely from the length field of its associated

argument descriptor. Input parameter lists are never terminated by a longword containing a zero.

Each item_list_2 structure that appears in an input parameter list describes an individual parameter or item

to set. Such items include socket or protocol options as identified by the item’s type field. To initialize an

item_list_2 descriptor, you need to:

1. Set the item’s type field to one of the symbolic codes in Section 5.7.

2. Set the item’s length field to specify the length of the item.

3. Set the item’s address field to specify the starting address of its data.

The following figure illustrates how to specify setting socket options.

Figure 8.3 Setting Socket Options

Each ioctl_comm structure appearing in an input parameter list contains an I/O control command the

IOCTL request code (as defined by $SIOCDEF) and its associated IOCTL structure address.

The following figure illustrates how to specify (set) I/O control (IOCTL) commands.

DO-DVTNFR-00A VMS Software Inc. 580 Main Street, Bolton, MA 01740

28

Figure 8.4 Setting IOCTL Parameters

Specifying an Output Parameter List

Use the p6 argument with the IO$_SENSEMODE function to specify output parameter lists. The p6

argument specifies the address of an item_list_2 descriptor that points to and identifies the type of output

parameter list.

To initialize an item_list_2 descriptor, you need to:

1. Set the descriptor’s type field to one of the following symbolic codes to specify the type of

output parameter list:

Symbolic Name Output Parameter List Type

TCPIP$C_SOCKOPT Socket options

TCPIP$C_TCPOPT TCP protocol options

TCPIP$C_IPOPT IP protocol options

TCPIP$C_IOCTL I/O control commands

2. Set the descriptor's length field to specify the length of the output parameter list.

3. Set the descriptor's address field to specify the starting address of the output parameter list.

The following figure illustrates how the p6 argument specifies an output parameter list:

DO-DVTNFR-00A VMS Software Inc. 580 Main Street, Bolton, MA 01740

29

Figure 8.5 Specifying an Output Parameter List

As the name implies, output parameter lists consist of one or more contiguous item_list_3 or ioctl_comm

structures. The length of an output parameter list is determined solely from the length field of its associated

argument descriptor. Output parameter lists are never terminated by a longword containing a zero.

Each item_list_3 structure that appears in an output parameter list describes an individual parameter or item

to return. Such items include socket or protocol options as identified by the item's type field.

To initialize an item_list_3 structure, you need to:

1. Set the item's type field to one of symbolic codes found in Section 5.7.

2. Set the item's buffer length field to specify the length of its buffer.

3. Set the item's buffer address field to specify the starting address of its buffer.

4. Set the item's returned length address field to specify the address of a longword to receive the

length in bytes of the information actually returned for this item.

The following figure illustrates how to specify getting socket options.

DO-DVTNFR-00A VMS Software Inc. 580 Main Street, Bolton, MA 01740

30

Figure 8.6 Getting Socket Options

Each ioctl_comm structure appearing in a output parameter list contains an I/O control command the

IOCTL request code (as defined by $SIOCDEF) and its associated IOCTL structure address.

The following figure illustrates how to specify (get) I/O control (IOCTL) commands.

Figure 8.7 Getting IOCTL Parameters

Specifying a Socket Name

Use the p3 or p4 argument with the IO$_ACCESS, IO$_READVBLK, IO$_SENSEMODE,

IO$_SETMODE, and IO$_WRITEVBLK functions to specify a socket name. The p3 and p4 arguments

specify the address of an item_list_2 or item_list_3 descriptor that points to a socket name structure. The

socket name structure contains address domain, port number, and host internet address.

DO-DVTNFR-00A VMS Software Inc. 580 Main Street, Bolton, MA 01740

31

Note: Port numbers 1 to 1023 require a system UIC or a UIC with SYSPRV and BYPASS privileges when

assigned. If you specify zero when binding a socket name, the system assigns an available port.

Use an item_list_2 argument descriptor with the IO$_ACCESS, IO$_WRITEVBLK, and IO$_SETMODE

functions to specify (set) a socket name. The descriptor's parameter type is TCPIP$C_SOCK_NAME.

Use an item_list_3 argument descriptor with the IO$_ACCESS|IO$M_ACCEPT, IO$_READVBLK, and

IO$_SENSEMODE functions to specify (get) a socket name. The descriptor's parameter type is

TCPIP$C_SOCK_NAME.

With BSD Version 4.4, specify socket names as illustrated in the following figure:

Figure 8.8 Specifying a Socket Name

Specifying a Buffer List

Use the p5 argument with the IO$_WRITEVBLK function to specify input buffer lists. The p5 argument

specifies the address of a 32- or 64-bit fixed-length descriptor (on Alpha systems) pointing to an input

buffer list.

Use the p6 argument with the IO$_READVBLK function to specify output buffer lists. The p6 argument

specifies the address of a 32- or 64-bit fixed-length descriptor (on Alpha systems) pointing to an output

buffer list.

To initialize the p5 or p6 argument descriptor, you need to:

1. Set the descriptor's data-type code (the DTYPE field) to DSC$K_DTYPE_DSC to specify a

buffer list containing one or more descriptors defining the length and starting address of user

buffers.

2. Set the descriptor's class code (the CLASS field) to DSC$K_CLASS_S.

3. Set the descriptor's length field to specify the length of the buffer list.

DO-DVTNFR-00A VMS Software Inc. 580 Main Street, Bolton, MA 01740

32

4. Set the descriptor's MBO field to 1 and the MBMO field to all 1s if this is a 64-bit argument

descriptor.

The following figure illustrates how to specify a buffer list:

DO-DVTNFR-00A VMS Software Inc. 580 Main Street, Bolton, MA 01740

33

Figure 8.9 Specifying a Buffer List

Buffer lists, as the name implies, consist of one or more contiguous 32- or 64-bit fixed-length descriptors

(on Alpha systems).

Each 32- or 64-bit descriptor that appears in a buffer list describes one user buffer. Initialize each descriptor

by setting its data type, class, length, and address fields as appropriate for 32- and 64-bit descriptors.

For more information about using 32-bit and 64-bit descriptors, refer to the OpenVMS Calling Standard.

DO-DVTNFR-00A VMS Software Inc. 580 Main Street, Bolton, MA 01740

34

$QIO Interface

The $QIO interface allows programmers to use more sophisticated programming techniques than available

with the socket library. Using the $QIO interface, you can perform fully asynchronous I/O to the network

and receive Asynchronous System Traps (ASTs) when out-of-band data arrives (similar to the UNIX

SIGURG signal). In general, there is a one-to-one mapping between the socket library functions and $QIO

calls.

The $QIO interface returns an OpenVMS error code in the first word of the Input/Output Status Block

(IOSB). If the low bit of the OpenVMS error code is clear, an error has been returned by the network.

The OpenVMS error code is generated from the UNIX errno code by multiplying the UNIX code by 8

(eight) and logical ORing it with 0x8000.

You can mix and match the socket library function and the $QIO calls. For example, you can use socket()

and connect() to establish a connection, then use IO$_SEND and IO$_RECEIVE to send and receive data

on it.

Note: If more than one $QIO operation is pending on a socket at any one time, there is no guarantee that

the $QIO calls will complete in the order they are queued. In particular, if more than one read or

write operation is pending at any one time, the data may be interleaved. You do not need to use

multiple read or write operations concurrently on the same socket to increase performance because

of the network buffering.

The function codes for the VSI TCP/IP-specific $QIO functions are defined in the include file
SYS$SYSDEVICE:[VMS$COMMON.IP.EXAMPLES.VMS directory]

IP_root:[IP.include.vms]inetiodef.h.

If the compile time constant USE_BSD44_ENTRIES is defined, then the BSD 4.4 variant of the
IO$_ACCEPT, IO$_BIND, IO$_CONNECT, IO$_GETPEERNAME, IO$_GETSOCKNAME,

IO$_RECEIVE, IO$_SEND is selected.

The following are the interface functions:

IO$_ACCEPT IO$_SEND

IO$_ACCEPT_WAIT IO$_SENSEMODE

IO$_BIND IO$_SENSEMODE | IO$M_CTRL

IO$_CONNECT IO$_SETCHAR

IO$_GETPEERNAME IO$_SETMODE | IO$M_ATTNAST

IO$_GETSOCKNAME IO$_SETSOCKOPT

IO$_GETSOCKOPT IO$_SHUTDOWN

IO$_IOCTL IO$_SOCKET

IO$_LISTEN SYS$CANCEL

IO$_RECEIVE (IO$_READVBLK) SYS$DASSGN

IO$_SELECT

DO-DVTNFR-00A VMS Software Inc. 580 Main Street, Bolton, MA 01740

35

IO$_ACCEPT

IO$_ACCEPT — Extracts the first connection from the queue of pending connections on a socket, creates

a new socket with the same properties as the original socket, and associates an OpenVMS channel to the

new socket. IO$_ACCEPT is equivalent to the accept() socket library function. Normally, instead of

calling IO$_ACCEPT to wait for a connection to become available, IO$_ACCEPT_WAIT is used. This

allows your process to wait for the connection without holding the extra network channel and tying up

system resources. When the IO$_ACCEPT_WAIT completes, it indicates that a connection is available.

IO$_ACCEPT is then called to accept it.

Format

Status = SYS$QIOW(Efn, New_VMS_Channel, IO$_ACCEPT, IOSB, AstAdr, AstPrm, Address,

AddrLen, VMS_Channel, 0, 0, 0);

Arguments

New_VMS_Channel

OpenVMS Usage: channel

type: word (signed)

access: read only

mechanism: by value

An OpenVMS channel to a newly-created INET device. Create this channel by using SYS$ASSIGN to

assign a fresh channel to INET0: before issuing the IO$_ACCEPT call. The accepted connection is

accessed using this channel.

VMS_Channel

OpenVMS Usage: channel

type: word (signed)

access: read only

mechanism: by value

The OpenVMS channel to the INET: device on which the IO$_LISTEN call was performed. After

accepting the connection, this device remains available to accept new connections.

Address

OpenVMS Usage: special_structure

type: structure defined below

access: write only

mechanism: by reference

An optional pointer to a structure that, following the completion of the IO$_ACCEPT call, contains the

address of the socket that made the connection. This structure is defined as follows:

struct {

unsigned long Length;

struct sockaddr Address;

};

AddrLen

OpenVMS Usage: word_unsigned

type: word (unsigned)

access: read only

mechanism: by value

The length of the buffer pointed to by the Address argument, in bytes. It must be at least 20 bytes.

DO-DVTNFR-00A VMS Software Inc. 580 Main Street, Bolton, MA 01740

36

IO$_ACCEPT_WAIT

IO$_ACCEPT_WAIT — Used to wait for an incoming connection without accepting it. This allows your

process to wait for the connection without holding the extra network channel and tying up system

resources. When the IO$_ACCEPT_WAIT call completes, it indicates that a connection is available.

IO$_ACCEPT is then called to accept it. The IO$_ACCEPT_WAIT call takes no function-specific

parameters.

Format

Status = SYS$QIOW(Efn, VMS_Channel, IO$_ACCEPT_WAIT, IOSB, AstAdr, AstPrm, 0, 0, 0, 0, 0, 0);

Arguments

VMS_Channel

OpenVMS Usage: channel

type: word (signed)

access: read only

mechanism: by value

The OpenVMS channel to the INET: device on which the IO$_LISTEN call was performed.

IO$_BIND

IO$_BIND — Assigns an address to an unnamed socket. When a socket is created with IO$_SOCKET, it

exists in a name space (address family) but has no assigned address. IO$_BIND requests that the address be

assigned to the socket. IO$_BIND is equivalent to the bind() socket library function.

Format

Status = SYS$QIOW(Efn, VMS_Channel, IO$_BIND, IOSB, AstAdr, AstPrm, Name, NameLen, 0, 0, 0,

0);

Arguments

VMS_Channel

OpenVMS Usage: channel

type: word (signed)

access: read only

mechanism: by value

A channel to the socket.

Name

OpenVMS Usage: socket_address

type: struct sockaddr

access: read only

mechanism: by reference

The address to which the socket should be bound. The exact format of the Address argument is determined

by the domain in which the socket was created.

NameLen

OpenVMS Usage: socket_address_length

type: longword (unsigned)

access: read only

mechanism: by value

The length of the Name argument, in bytes.

IO$_CONNECT

DO-DVTNFR-00A VMS Software Inc. 580 Main Street, Bolton, MA 01740

37

IO$_CONNECT — When used on a SOCK_STREAM socket, this function attempts to make a

connection to another socket. When used on a SOCK_DGRAM socket, this function permanently specifies

the peer to which datagrams are sent to and received from. The peer socket is specified by name, which is

an address in the communications domain of the socket. Each communications domain interprets the name

parameter in its own way. IO$_CONNECT is equivalent to the connect() socket library function. If the

address of the local socket has not yet been specified with IO$_BIND, the local address is also set to an

unused port number when IO$_CONNECT is called.

Format

Status = SYS$QIOW(Efn, VMS_Channel, IO$_CONNECT, IOSB, AstAdr, AstPrm, Name, Name-Len, 0,

0, 0, 0);

Arguments

VMS_Channel

OpenVMS Usage: channel

type: word (signed)

access: read only

mechanism: by value

A channel to the socket.

Name

OpenVMS Usage: socket_address

type: struct sockaddr

access: read only

mechanism: by reference

The address of the peer to which the socket should be connected. The exact format of

the Address argument is determined by the domain in which the socket was created.

NameLen

OpenVMS Usage: socket_address_length

type: longword (unsigned)

access: read only

mechanism: by value

The length of the Name argument, in bytes.

IO$_GETPEERNAME

IO$_GETPEERNAME — Returns the name of the peer connected to the specified socket. It is equivalent

to the getpeername() socket library function.

Format

Status = SYS$QIOW(Efn, VMS_Channel, IO$_GETPEERNAME, IOSB, AstAdr, AstPrm, Address,

AddrLen, 0, 0, 0, 0);

Arguments

VMS_Channel

OpenVMS Usage: channel

type: word (signed)

access: read only

mechanism: by value

A channel to the socket.

Address

DO-DVTNFR-00A VMS Software Inc. 580 Main Street, Bolton, MA 01740

38

OpenVMS Usage: socket_address

type: struct sockaddr

access: write only

mechanism: by reference

A result parameter filled in with the address of the peer, as known to the communications layer. The exact

format of the Address argument is determined by the domain in which the communication is occurring.

AddrLen

OpenVMS Usage: socket_address_length

type: longword (unsigned)

access: modify

mechanism: by reference

On entry, contains the length of the space pointed to by Address, in bytes. On return, it contains the actual

length, in bytes, of the address returned.

IO$_GETSOCKNAME

IO$_GETSOCKNAME — Returns the current name of the specified socket. Equivalent to the

getsockname() socket library function.

Format

Status = SYS$QIOW(Efn, VMS_Channel, IO$_GETSOCKNAME, IOSB, AstAdr, AstPrm, Address,

AddrLen, 0, 0, 0, 0);

Arguments

VMS_Channel

OpenVMS Usage: channel

type: word (signed)

access: read only

mechanism: by value

A channel to the socket.

Address

OpenVMS Usage: socket_address

type: struct sockaddr

access: write only

mechanism: by reference

A result parameter filled in with the address of the local socket, as known to the communications layer. The

exact format of the Address argument is determined by the domain in which the communication is

occurring.

AddrLen

OpenVMS Usage: socket_address_length

type: longword (unsigned)

access: modify

mechanism: by reference

On entry, contains the length of the space pointed to by Address, in bytes. On return, it contains the actual

length, in bytes, of the address returned.

IO$_GETSOCKOPT

IO$_GETSOCKOPT — Retrieves options associated with a socket. It is equivalent to the getsockopt()

library routine. Options can exist at multiple protocol levels; however, they are always present at the

uppermost socket level. When manipulating socket options, you must specify the level at which the option

DO-DVTNFR-00A VMS Software Inc. 580 Main Street, Bolton, MA 01740

39

resides and the name of the option. To manipulate options at the socket level, specify level as

SOL_SOCKET. To manipulate options at any other level, specify the protocol number of the appropriate

protocol controlling the option. For example, to indicate that an option is to be interpreted by the TCP

protocol, set Level to the protocol number of TCP, as determined by calling getprotobyname(). OptName

and any specified options are passed without modification to the appropriate protocol module for

interpretation. The include file IP_root:[IP.include.sys]socket.h contains definitions for

socket-level options. Options at other protocol levels vary in format and name. For more information on

what socket options may be retrieved with IO$_GETSOCKOPT, see setsockopt().

Format

Status = SYS$QIOW(Efn, VMS_Channel, IO$_GETSOCKOPT, IOSB, AstAdr, AstPrm, Level, Opt-

Name, OptVal, OptLen, 0, 0);

Arguments

VMS_Channel

OpenVMS Usage: channel

type: word (signed)

access: read only

mechanism: by value

A channel to the socket.

Level

OpenVMS Usage: option_level

type: longword (unsigned)

access: read only

mechanism: by value

The protocol level at which the option will be manipulated. Specify Level as SOL_SOCKET or a protocol

number as returned by getprotoent().

OptName

OpenVMS Usage: option_name

type: longword (unsigned)

access: read only

mechanism: by value

The option that is to be manipulated.

OptVal

OpenVMS Usage: dependent on OptName

type: byte buffer

access: write only

mechanism: by reference

A pointer to a buffer that is to receive the current value of the option. The format of this buffer is dependent

on the option requested.

OptLen

OpenVMS Usage: option_length

type: longword (unsigned)

access: modify

mechanism: by reference

On entry, contains the length of the space pointed to by OptVal, in bytes. On return, it contains the actual

length, in bytes, of the option returned.

IO$_IOCTL

DO-DVTNFR-00A VMS Software Inc. 580 Main Street, Bolton, MA 01740

40

IO$_IOCTL — Performs a variety of functions on the network; in particular, it manipulates socket

characteristics, routing tables, ARP tables, and interface characteristics. The IO$_IOCTL call is equivalent

to the socket_ioctl() library routine. A IO$_IOCTL request has encoded in it whether the argument is an

input or output parameter, and the size of the argument, in bytes. Macro and define statements used in

specifying an IO$_IOCTL request are located in the file IP_root:[IP.include. sys]ioctl.h.

Format

Status = SYS$QIOW(Efn, VMS_Channel, IO$_IOCTL, IOSB, AstAdr, AstPrm, Request, ArgP, 0, 0, 0, 0);

Arguments

VMS_Channel

OpenVMS Usage: channel

type: word (signed)

access: read only

mechanism: by value

A channel to the socket.

Request

OpenVMS Usage: ioctl_request

type: longword (unsigned)

access: read only

mechanism: by value

Which IO$_IOCTL function to perform. The available IO$_IOCTL functions are documented in

the socket_ioctl sections.

ArgP

OpenVMS Usage: arbitrary

type: byte buffer

access: read, write, or modify depending on Request

mechanism: by reference

A pointer to a buffer whose format and function is dependent on the Request specified.

IO$_LISTEN

IO$_LISTEN — Specifies the number of incoming connections that may be queued while waiting to be

accepted. This backlog must be specified before accepting a connection on a socket. The IO$_LISTEN

function applies only to sockets of type SOCK_STREAM. The IO$_LISTEN call is equivalent to the

listen() socket library function.

Format

Status = SYS$QIOW(Efn, VMS_Channel, IO$_LISTEN, IOSB, AstAdr, AstPrm, BackLog, 0, 0, 0, 0, 0);

Arguments

VMS_Channel

OpenVMS Usage: channel

type: word (signed)

access: read only

mechanism: by value

A channel to the socket.

Backlog

OpenVMS Usage: connection_backlog

type: longword (unsigned)

DO-DVTNFR-00A VMS Software Inc. 580 Main Street, Bolton, MA 01740

41

access: read only

mechanism: by value

Defines the maximum length of the queue of pending connections. If a connection request arrives when the

queue is full, the request is ignored. The backlog queue length is limited to 5.

IO$_RECEIVE (IO$_READVBLK)

IO$_RECEIVE — Receives messages from a socket. This call is equivalent to the recvfrom(), recv(), and

socket_read() socket library functions. The length of the message received is returned in the second and

third word of the I/O Status Block (IOSB). A count of 0 indicates an end-of-file condition; that is, the

connection has been closed. If a message is too long to fit in the supplied buffer and the socket is type

SOCK_DGRAM, excess bytes are discarded. If no messages are available at the socket, the

IO$_RECEIVE call waits for a message to arrive, unless the socket is nonblocking (see socket_ioctl()).

Format

Status = SYS$QIOW(Efn, VMS_Channel, IO$_RECEIVE, IOSB, AstAdr, AstPrm, Buffer, Size, Flags,

From, FromLen, 0);

Arguments

VMS_Channel

OpenVMS Usage: channel

type: word (signed)

access: read only

mechanism: by value

A channel to the socket.

Buffer

OpenVMS Usage: arbitrary

type: byte buffer

access: write only

mechanism: by reference

The address of a buffer in which to place the data read.

Size

OpenVMS Usage: longword_unsigned

type: longword (unsigned)

access: read only

mechanism: by value

The length of the buffer specified by Buffer. The actual number of bytes read is returned in the Status.

Flags

OpenVMS Usage: mask_longword

type: longword (unsigned)

access: read only

mechanism: by value

Control information that affects the IO$_RECEIVE call. The Flags argument is formed by ORing one or

more of the following values:

#define MSG_OOB 0x1 /* process out-of-band data */

#define MSG_PEEK 0x2 /* peek at incoming message */

The MSG_OOB flag causes IO$_RECEIVE to read any out-of-band data that has arrived on the socket.

The MSG_PEEK flag causes IO$_RECEIVE to read the data present in the socket without removing the

data. This allows the caller to view the data, but leaves it in the socket for future IO$_RECEIVE calls.

DO-DVTNFR-00A VMS Software Inc. 580 Main Street, Bolton, MA 01740

42

From

OpenVMS Usage: special_structure

type: structure defined below

access: write only

mechanism: by reference

An optional pointer to a structure that, following the completion of the IO$_RECEIVE, contains the

address of the socket that sent the packet. This structure is defined as follows:

struct {

unsigned short Length;

struct sockaddr Address;

};

FromLen

OpenVMS Usage: word_unsigned

type: word (unsigned)

access: read only

mechanism: by value

The length of the buffer pointed to by the From argument, in bytes. It must be at least 18 bytes.

IO$_SELECT

IO$_SELECT — Examines the specified channel to see if it is ready for reading, ready for writing, or has

an exception condition pending (the presence of out-of-band data is an exception condition). The UNIX

select() system call can be emulated by posting multiple IO$_SELECT calls on different channels.

IO$_SELECT is only useful for channels assigned to the INET: device. It cannot be used for any other

VMS I/O device.

Format

Status = SYS$QIOW(Efn, VMS_Channel, IO$_SELECT, IOSB, AstAdr, AstPrm, Modes, 0, 0, 0, 0, 0);

Arguments

VMS_Channel

OpenVMS Usage: channel

type: word (signed)

access: read only

mechanism: by value

A channel to the socket.

Modes

OpenVMS Usage: mask_longword

type: longword (unsigned)

access: Modify

mechanism: by reference

On input, the Modes argument is a bit mask of one or more of the following values:

#define SELECT_DONTWAIT (1<<0)

#define SELECT_READABLE (1<<1)

#define SELECT_WRITEABLE (1<<2)

#define SELECT_EXCEPTION (1<<3)

If the SELECT_DONTWAIT bit is set, the IO$_SELECT call will complete immediately, whether or not

the socket is ready for any I/O operations. If this bit is not set, the IO$_SELECT call will wait until the

socket is ready to perform one of the requested operations.

DO-DVTNFR-00A VMS Software Inc. 580 Main Street, Bolton, MA 01740

43

If the SELECT_READABLE bit is set, the IO$_SELECT call will check if the socket is ready for reading

or a connection has been received and is ready to be accepted.

If the SELECT_WRITEABLE bit is set, the IO$_SELECT call will check if the socket is ready for writing

or a connection request has been completed.

If the SELECT_EXCEPTION bit is set, the IO$_SELECT call will check if the socket has out-of band

data ready to read.

On output, the Modes argument is a bit mask that indicates which operations the socket is ready to

perform. If the SELECT_DONTWAIT operation was specified, the Modes value may be zero; if

SELECT_DONTWAIT is not specified, then one or more of the SELECT_READABLE,

SELECT_WRITABLE, or SELECT_EXCEPTION bits will be set.

IO$_SEND

IO$_SEND — Transmits a message to another socket. It is equivalent to the sendto(), send(), and

socket_write() socket library functions. If no message space is available at the socket to hold the message

to be transmitted, IO$_SEND blocks unless the socket has been placed in non-blocking I/O mode via

IO$_IOCTL. If the message is too long to pass through the underlying protocol in a single unit, the error

EMSGSIZE is returned and the message is not transmitted.

Format

Status = SYS$QIOW(Efn, VMS_Channel, IO$_SEND, IOSB, AstAdr, AstPrm, Buffer, Size, Flags, To,

ToLen, 0);

Arguments

VMS_Channel

OpenVMS Usage: channel

type: word (signed)

access: read only

mechanism: by value

A channel to the socket.

Buffer

Buffer

OpenVMS Usage: arbitrary

type: byte buffer

access: read only

mechanism: by reference

The address of a buffer containing the data to send.

Size

OpenVMS Usage: longword_unsigned

type: longword (unsigned)

access: read only

mechanism: by value

The length of the buffer specified by Buffer.

Flags

OpenVMS Usage: mask_longword

type: longword (unsigned)

access: read only

mechanism: by value

Control information that affects the IO$_SEND call. The Flags argument can be zero or the following:

DO-DVTNFR-00A VMS Software Inc. 580 Main Street, Bolton, MA 01740

44

#define MSG_OOB 0x1 /* process out-of-band data */

The MSG_OOB flag causes IO$_SEND to send out-of-band data on sockets that support this operation

(such as SOCK_STREAM.

To

OpenVMS Usage: socket_address

type: struct sockaddr

access: read only

mechanism: by reference

An optional pointer to the address to which the packet should be transmitted. The exact format of the

Address argument is determined by the domain in which the communication is occurring.

ToLen

OpenVMS Usage: socket_address_length

type: longword (unsigned)

access: read only

mechanism: by value

An optional argument that contains the length of the address pointed to by the To argument.

IO$_SENSEMODE

IO$_SENSEMODE — Reads the active connections status and returns status information for all of the

active and listening connections.

Format

Status = SYS$QIO(efn, chan, IO$_SENSEMODE, iosb, astadr, astprm, buffer, address, conn_type, 0, 0, 0)

Arguments

p1=buffer

OpenVMS Usage: vector_byte_unsigned

type: byte (unsigned)

access: write only

mechanism: by reference

Optional address of the 8-byte device characteristics buffer. Data returned is: the device class (DC$_SCOM)

in the first byte, the device type (0) in the second byte, and the default buffer size, which is the maximum

datagram size, in the high-order word of the first longword. IO$_SENSEMODE returns the second

longword as 0.

p2=address

OpenVMS Usage: vector_word_unsigned

type: word (unsigned)

access: write only

mechanism: by descriptor

Address of the descriptor for the buffer to receive the status information on the active connections.

P3=value

OpenVMS Usage: Longword_unsigned

type: Longword (unsigned)

access: Read only

mechanism: by value

0 to get information about TCP connections, non-zero to get information about UDP connections.

Figure 8.10 shows the 22 bytes of information returned for each connection.

DO-DVTNFR-00A VMS Software Inc. 580 Main Street, Bolton, MA 01740

45

Protocol type Word value is 4 for INETDRIVER stream sockets, and 5 for BGDRIVER

stream sockets.

Unit number Word value is the INETDRIVER, or BGDRIVER device unit number for

the connection.

Receive queue Word value is the number of bytes received from the peer waiting to be

delivered to the user through the IO$_READVBLK function.

Send queue Word value is the number of bytes waiting to be transmitted to or to be

acknowledged by the peer.

Local internet address Longword value is the local internet address (or 0 if the connection is not

open and no local internet address was specified for the connection).

Local port number Word value is the local port number.

Peer internet address Longword value is the peer's internet address (or 0 if the connection is not

open and no peer internet address was specified for the connection).

Peer port number Word value is the peer's port number, or 0 if the connection is not open

and you did not specify a peer port number for the connection.

TCP state Word value is the Transmission Control Protocol connection state mask.

See Table 8.4 for the mask value definitions.

Figure 8.10 Connection Status Information

Status

SS$_BUFFEROVF Buffer too small for all connections

Truncated buffer returned

SS$_DEVINACT Device not active

Contact system manager for why VSI TCP/IP (or INETDRIVER) not

started

SS$_NORMAL Success

Status information returned

The byte count for the status information buffer is returned in the high-order word of the first longword of

the I/O status block. This may be less than the bytes requested. See Figure 5.2 for more information.

The size in bytes of each connection's record (22 bytes) is returned in the low-order word of the second

longword of the I/O status block.

The total number of active connections is returned in the high-order word of the second longword of the

I/O status block. This can be greater than the number of reported connections if the buffer is full.

DO-DVTNFR-00A VMS Software Inc. 580 Main Street, Bolton, MA 01740

46

Figure 8.11 I/O Status Block

Table 8.4 TCP State Mask Values

Mask Value State Mask Value State Mask Value State

1 LISTEN 16 FIN-WAIT-1 256 LAST-ACK

2 SYN-SENT 32 FIN-WAIT-2 512 TIME-WAIT

4 SYN-RECEIVED 64 CLOSE-WAIT 1024 CLOSED

8 ESTABLISHED 128 CLOSING

IO$_SENSEMODE | IO$M_CTRL

Description

The byte count for the characteristics buffer is returned in the high-order word of the first longword

of the I/O status block. This may be less than the bytes requested. The number of bytes in the receive

queue is returned in the low-order word of the second longword in the I/O status block. The number

of bytes in the read queue is returned in the high-order word of the second longword in the I/O status

block.

Figure 8.12 shows the I/O Status Block.

SS$_BUFFEROVF Buffer too small for all characteristics. Truncated characteristics buffer is

returned.

SS$_DEVINACT Device not active. Contact system manager for why VSI TCP/IP (or

TCPDRIVER) not started

SS$_NORMAL Success. Characteristics returned

Figure 8.12 I/O Status Block

Note: You can use the SYS$GETDVI system service to obtain the local port number, peer port number,

and peer internet address. The DEVDEPEND field stores the local port number (low-order word)

and peer port number (high-order word). The DEVDEPEND2 field stores the peer internet address.

Performs the following functions:

• Reads network device information

• Reads the routing table

DO-DVTNFR-00A VMS Software Inc. 580 Main Street, Bolton, MA 01740

47

• Reads the ARP information

• Reads the IP SNMP information

• Reads the ICMP SNMP information

• Reads the TCP SNMP information

• Reads the UDP SNMP information

Format

Status = SYS$QIO(efn, chan, IO$_SENSEMODE | IO$M_CTRL, iosb, astadr, astprm, buffer, address,

function, line-id, 0, 0)

Arguments

p1=buffer

OpenVMS Usage: vector_byte_unsigned

type: byte (unsigned)

access: write only

mechanism: by reference

Optional address of the 8-byte device characteristics buffer. The data returned is the device class

(DC$_SCOM) in the first byte, the device type (0) in the second byte, and the default buffer size (0) in the

high-order word of the first longword. The second longword is returned as 0.

p2=address

OpenVMS Usage: vector_word_unsigned

type: Word (unsigned)

access: write only

mechanism: by descriptor

Address of the descriptor for the buffer to receive the information. The format of the buffer depends on the

information requested. Each buffer format is described separately in the section that follows.

If bit 12 (mask 4096) is set in the parameter identifier (PID), the PID is followed by a counted string.

If bit 12 is clear, the PID is followed by a longword value. While VSI TCP/IP currently never returns a

counted string for a parameter, this may change in the future.

p3=function

OpenVMS Usage: Longword-unsigned

type: Longword (unsigned)

access: read only

mechanism: by value

Code that designates the function.

The function codes are shown in the Table 8.5.

Table 8.5 P3 Function Codes

Code Function

1 P1 of the QIO is not used

2 VMS descriptor of the space in which to put the return information

3 10

4 Not used

5 Not used

6 Not used

7 Read UDP SNMP counters

8 Read routing table

10 Read interface throughput information

DO-DVTNFR-00A VMS Software Inc. 580 Main Street, Bolton, MA 01740

48

p4=line-id

OpenVMS Usage: Longword-unsigned

type: Longword (unsigned)

access: read only

mechanism: by value

Specify this argument only if you are reading a network device's ARP table function.

Reading Network Device Information

Use IO$_SENSEMODE | IO$M_CTRL with p3=1 to read network device information. The information

returned in the buffer (specified by p2=address can consist of multiple records. Each record consists of nine

longwords, and one record is returned for each device.

When you read network device information, the data in each record is returned in the order presented

below. All are longword values.

1 Line id (see the description of the line-id argument)

2 Line's local internet address

3 Line's internet address network mask

4 Line's maximum transmission unit (MTU) in the low-order word, and the line flags in the high-

order word

5 Number of packets transmitted (includes ARP packets for Ethernet lines)

6 Number of transmit errors

7 Number of packets received (includes ARP and trailer packets for Ethernet lines)

8 Number of receive errors

9 Number of received packets discarded due to insufficient buffer space

Reading the Routing Table

Use IO$_SENSEMODE | IO$M_CTRL with p3=8 to read the routing table. The information returned in

the buffer (specified by p2=address) can consist of multiple records. Each record consists of five

longwords, and one record is returned for each table entry.

The p3=8 function returns full routing information and is a superset of p3=2, which was retained for

backwards compatibility with existing programs. p3=2 and p3=8 return the same table of routing entries, in

the following order, except that p3=2 does not return items 7 and 8 (address mask and Path MTU):

1 Destination

internet address.

Destination host or network to which the datagram is bound. Returned as a

longword value.

2 Gateway

internet address.

Internet address to which the datagram for this route is transmitted. Returned as

a longword value.

3 Flags. Routing table entry's flag bits. Returned as a word value:

Mask 1, name GATEWAY, if set, the route is to a gateway (the datagram is

sent to the gateway internet address). If clear, the route is a direct route.

Mask 2, name HOST, if set, the route is for a host. If clear, the route is for a

network.

Mask 4, name DYNAMIC, if set, the route was created by a received ICMP

redirect message.

Mask 8, name AUTOMATIC, if set, this route was added by IP_RAPD process

and will be modified or remoted by that process as appropriate.

Mask 16, name LOCKED, if set, the route cannot be changed by an ICMP

redirect message.

Mask 32, name INTERFACE, if set, the route is for a network interface.

DO-DVTNFR-00A VMS Software Inc. 580 Main Street, Bolton, MA 01740

49

Mask 64, name DELETED, if set, the route is marked for deletion (it is deleted

when the reference count reaches 0).

Mask 128, name POSSDOWN, if set, the route is marked as possibly down.

4 Reference count. Number of connections currently using the route. Returned as a word value.

5 Use count. Number of times the route has been used for outgoing traffic. Returned as a

longword value.

6 Line ID. Line identification for the network device used to transmit the datagram to the

destination. See the description of the line-id argument later in this section for

the line ID codes. Table 8.6 shows the line identification values.

7 Address mask. Address mask for the destination address. Returned as a longword value.

8 Path MTU. Path maximum transmission unit. Returned as a longword value.

Table 8.6 Line ID Values

Line ID Line ID Value Line ID Line ID Value Line ID Line ID Value

LO-0 ^X00000001 DN-n ^X00nn0241 PD-n ^X00nn0042

PSI-n ^X00nn0006 PPP-n ^X00nn0341

SL-n ^X00nn0141 SE-n ^X00nn0402

Note:

The I/O status block (iosb) returns routing table entry size information for the p3=8 function to

assist in diagnosing buffer overflow situations. See the Status section for details.

Reading Interface Throughput Information

Use IO$_SENSEMODE | IO$M_CTRL with p3=10 to read network device information. The information

returned in the buffer (specified by p2=descriptor) can consist of multiple records. Each record consists of

nine longwords, and one record is returned for each device.

When you read network device information, the data in each record is returned in the order presented

below. All are longword values.

Table 8.7 QIO Parameters

Code Function

1 P1 of the QIO is not used

2 is a VMS descriptor of the space to put the return information

3 10

4 Not used

5 Not used

6 Not used

The returned data is in the following format (all values are integers):

1 Line ID

2 Average Out Bytes (for the last 6 seconds)

3 Average In Bytes

4 Average Out Packets

5 Average In Packets

Reading the ARP Table Function

Use IO$_SENSEMODE | IO$M_CTRL with function=3 to read a network device's ARP table function.

The information returned in the buffer (specified by p2=address) depends on the line id specified in line-id.

DO-DVTNFR-00A VMS Software Inc. 580 Main Street, Bolton, MA 01740

50

The line-id argument is the line id and is a longword value. The least significant byte of the line id is the

major device type code. The next byte is the device type subcode. The next byte is the controller unit

number. The most significant byte is ignored.

The information returned in the buffer can consist of multiple records. Each record consists of 12 bytes, and

one record is returned for each ARP table entry.

When reading a table function, the data in each record is returned in the following order:

1. Internet address. Returned as a longword value.

2. Physical address. Returned as a 6 byte value.

3. Flags. Returned as a word value. The ARP table entry’s flag bits are shown in Table 8.8.

Table 8.8 ARP Table Entry Flag Bits

Mask Name Description

1 PERMANENT If set, the entry can only be removed by a NETCU REMOVE ARP

command and if RARP is enabled, the local host responds if a RARP

request is received for this address. If clear, the entry can be removed if not

used within a short period.

2 PUBLISH If set, the local host responds to ARP requests for the internet address (this

bit is usually only set for the local hosts's entry). If clear, the local host does

not respond to received ARP requests for this address.

4 LOCKED If set, the physical address cannot be changed by received ARP

requests/replies.

4096 LASTUSED If set, last reference to entry was a use rather than an update.

8192 CONFNEED If set, confirmation needed on next use.

16384 CONFPEND If set, confirmation pending.

32768 RESOLVED If set, the physical address is valid.

Status

SS$_BADPARAM Code specified in function argument invalid.
SS$_BUFFEROVF Buffer too small for all information

Truncated buffer returned.
SS$_DEVINACT Device not active

Contact your system manager to determine why VSI TCP/IP was not started.
SS$_NORMAL Success

Requested information returned.
SS$_NOSUCHDEV Line identification specified in arp argument does not exist.

The byte count for the information or counters buffer is returned in the high-order word of the first

longword of the I/O status block. This can be less than the bytes requested.

• For the p3=2 routing table function, in the second longword of the I/O status block, bit 0 is

always set, bit 1 is set if the forwarding capability is enabled, and bit 2 is set if ARP replies for

non-local internet addresses are enabled.

• For the p3=8 routing table function, the IOSB contains the following:

Status Code SS$_NORMAL or SS$_BUFFEROVF

Transfer Byte Count Number of bytes of returned information

Entry Size Number of bytes in each entry

Number of Entries Number of entries in the routing table

DO-DVTNFR-00A VMS Software Inc. 580 Main Street, Bolton, MA 01740

51

If the status is SS$_BUFFEROVF, you can determine the number of routing entries actually returned by

calculating (Transfer Byte Count) DIV (Entry Size) and comparing that with the Number of Entries value.

Be sure to check the Entry Size in the IO status block.

Reading the IP SNMP Counters Function

Use IO$_SENSEMODE | IO$M_CTRL with function=4 to read the IP SNMP counters.

The data returned is an array of longwords in the following format:

• Indicates whether or not this entity is acting as an IP router.

• The default value inserted in the IP header's time-to-live field.

• The total number of input datagrams received.

• The number of input datagrams discarded due to errors in their IP headers.

• The number of input datagrams discarded because the IP address in their IP header's destination

field was not a valid address to be received at this entity.

• The number of IP datagrams for which this entity was not their final destination, and for which

forwarding to another entity was required.

• The number of datagrams received but discarded because of an unknown or unsupported

protocol.

• The number of input datagrams received but discarded for reasons other than errors.

• The total number of input datagrams successfully delivered to IP user protocols, including

ICMP.

• The total number of IP datagrams that local IP user protocols (including ICMP) supplied to IP in

request for transmission.

• The number of output IP datagrams that were discarded for reasons other than errors.

• The number of IP datagrams discarded because no route could be found to transmit them to their

destination.

• The maximum number of seconds that received fragments are held while they are awaiting

reassembly at this entity.

• The number of IP fragments received that needed to be reassembled at this entity.

• The number of IP datagrams successfully reassembled.

• The number of failures detected by the IP reassembly algorithm.

• The number of IP datagrams that have been successfully fragmented at this entity.

• The number of IP datagrams that have been discarded at this entity because they could not be

fragmented.

• The number of IP datagrams that have been created as a result of fragmentation at this entity.

Reading the ICMP SNMP Counters Function

Use IO$_SENSEMODE | IO$M_CTRL with function=5 to read the ICMP SNMP counters.

The data returned is an array of longwords in the following format:

• The total number of ICMP messages received.

• The number of ICMP messages received but determined as having ICMP-specific errors.

• The number of ICMP Destination Unreachable messages received.

• The number of ICMP Time Exceeded messages received.

• The number of ICMP Parameter Problem messages received.

• The number of ICMP Source Quench messages received.

• The number of ICMP Redirect messages received.

• The number of ICMP Echo (request) messages received.

• The number of ICMP Echo reply messages received.

• The number of ICMP Timestamp (request) messages received.

• The number of ICMP Timestamp Reply messages received.

• The number of ICMP Address Mask Request messages received.

• The number of ICMP Address Mask Reply messages received.

• The total number of ICMP messages that this entity attempted to send.

• The number of ICMP messages that this entity did not send because of ICMP-related problems.

DO-DVTNFR-00A VMS Software Inc. 580 Main Street, Bolton, MA 01740

52

• The number of ICMP Destination Unreachable messages sent.

• The number of ICMP Time Exceeded messages sent.

• The number of ICMP Parameter Problem messages sent.

• The number of ICMP Source Quench messages sent.

• The number of ICMP Redirect messages sent.

• The number of ICMP Echo (request) messages sent.

• The number of ICMP Echo reply messages sent.

• The number of ICMP Timestamp (request) messages sent.

• The number of ICMP Timestamp Reply messages sent.

• The number of ICMP Address Mask Request messages sent.

• The number of ICMP Address Mask Reply messages sent.

Reading the TCP SNMP Counters Function

Use IO$_SENSEMODE | IO$M_CTRL with function=6 to read TCP SNMP counters.

The data returned is an array of longwords in the following format:

• The algorithm used to determine the timeout value for retransmitting unacknowledged octets.

• The minimum value (measured in milliseconds) permitted by a TCP implementation for the

retransmission timeout.

• The maximum value (measured in milliseconds) permitted by a TCP implementation for the

retransmission timeout.

• The limit on the total number of TCP connections supported.

• The number of times TCP connections have made a transition to the SYN-SENT state from the

CLOSED state.

• The number of times TCP connections have made a direct transition to the SYN-REVD state

from the LISTEN state.

• The number of failed connection attempts.

• The number of resets that have occurred.

• The number of TCP connections having a current state of either ESTABLISHED or CLOSE-

WAIT.

• The total number of segments received.

• The total number of segments sent.

• The total number of segments retransmitted.

Reading the UDP SNMP Counters Function

Use IO$_SENSEMODE | IO$M_CTRL with function=7 to read the UDP SNMP counters.

The data returned is an array of longwords in the following format:

• The total number of IDP datagrams delivered to UDP users.

• The total number of received UDP datagrams for which there was not an application at the

destination port.

• The number of received UDP datagrams that could not be delivered for reasons other than the

lack of an application at the destination port.

• The total number of UDP datagrams sent from this entity.

IO$_SETCHAR

IO$_SETCHAR — Sets special characteristics that control the operation of the INET: device, rather than

the socket attached to it. These operations are normally used by only the IP_SERVER process to hand off

a connection to a process that it creates to handle the connection.

Format

Status = SYS$QIOW(Efn, VMS_Channel, IO$_SETCHAR, IOSB, AstAdr, AstPrm, Flags, 0, 0, 0, 0, 0);

Arguments

DO-DVTNFR-00A VMS Software Inc. 580 Main Street, Bolton, MA 01740

53

VMS_Channel

OpenVMS Usage: channel

type: word (signed)

access: read only

mechanism: by value

A channel to the socket.

Flags

OpenVMS Usage: mask_longword

type: longword (unsigned)

access: read only

mechanism: by reference

A bit mask of one or more of the following values. If IO$_SETCHAR is not called, all options are set to

OFF.

#define SETCHAR_PERMANENT (1<<0)

#define SETCHAR_SHAREABLE (1<<1)

#define SETCHAR_HANDOFF (1<<2)

If the SETCHAR_PERMANENT bit is set when the last channel to the socket device is deassigned using

the SYS$DASSGN system service, the socket is not closed and the socket device is not deleted.

Normally, the last deassign closes the socket. If this bit has been set, it must be explicitly cleared before the

socket can be deleted.

If the SETCHAR_SHAREABLE bit is set, the socket becomes a shareable device and any process can

assign a channel to it.

If the SETCHAR_HANDOFF bit is set, the socket is not closed and the socket device is not deleted when

the last channel to the socket device is deassigned. After this occurs, the socket reverts to a normal socket,

and if a new channel is assigned and deassigned, the socket is closed. The SETCHAR_HANDOFF bit is a

safer version of the SETCHAR_PERMANENT bit because it allows a single hand-off to another process

without the risk of a socket getting permanently stuck on your system.

IO$_SETMODE|IO$M_ATTNAST

IO$_SETMODE|IO$M_ATTNAST — Enables an AST to be delivered to your process when outof-band

data arrives on a socket. This is similar to the UNIX 4.3BSD SIGURG signal being delivered. You cannot

enable the delivery of the AST through the socket library functions. After the AST is delivered, you must

explicitly reenable it using this call if you want the AST to be delivered when future out-of-band data

arrives.

Format

Status = SYS$QIOW(Efn, VMS_Channel, IO$_SETMODE|IO$M_ATTNAST, IOSB, AstAdr, Ast-Prm,

Routine, Parameter, 0, 0, 0, 0);

Arguments

Routine

OpenVMS Usage: ast_procedure

type: procedure entry mask

access: call without stack unwinding

mechanism: by reference

The address of the AST routine to call when out-of-band data arrives on the socket. To disable AST

delivery, set Routine to 0.

Parameter

OpenVMS Usage: user_arg

DO-DVTNFR-00A VMS Software Inc. 580 Main Street, Bolton, MA 01740

54

type: longword (unsigned)

access: read only

mechanism: by value

The argument with which to call the AST routine.

IO$_SETSOCKOPT

IO$_SETSOCKOPT — Manipulates options associated with a socket. It is equivalent to the setsockopt()

socket library function. Options may exist at multiple protocol levels; however, they are always present at

the uppermost socket level. When manipulating socket options, you must specify the level at which the

option resides and the name of the option. To manipulate options at the socket level, specify Level as

SOL_SOCKET. To manipulate options at any other level, specify the protocol number of the appropriate

protocol controlling the option. For example, to indicate that an option is to be interpreted by the TCP

protocol, set Level to the protocol number of TCP; see getprotobyname().

OptName and any specified options are passed without modification to the appropriate protocol module

for interpretation. The include file IP_root:[IP.include.sys]socket.h contains definitions for

socket-level options. Options at other protocol levels vary in format and name.

Format

Status = SYS$QIOW(Efn, VMS_Channel, IO$_SETSOCKOPT, IOSB, AstAdr, AstPrm, Level, Opt-

Name, OptVal, OptLen, 0, 0);

Arguments

VMS_Channel

OpenVMS Usage: channel

type: word (signed)

access: read only

mechanism: by value

A channel to the socket.

Level

OpenVMS Usage: option_level

type: longword (unsigned)

access: read only

mechanism: by value

The protocol level at which the option will be manipulated. Specify Level as SOL_SOCKET, or a

protocol number as returned by getprotobyname().

OptName

OpenVMS Usage: option_name

type: longword (unsigned)

access: read only

mechanism: by value

The option that is to be manipulated. For a description of each of the valid options for

IO$_SETSOCKOPT, see the socket option sections.

OptVal

OpenVMS Usage: dependent on OptName

type: byte buffer

access: read only

mechanism: by reference

A pointer to a buffer that contains the new value of the option. The format of this buffer depends on the

option requested.

DO-DVTNFR-00A VMS Software Inc. 580 Main Street, Bolton, MA 01740

55

OptLen

OpenVMS Usage: option_length

type: longword (unsigned)

access: read only

mechanism: by value

The length of the buffer pointed to by OptVal.

IO$_SHUTDOWN

IO$_SHUTDOWN — Shuts down all or part of a full-duplex connection on the socket associated with

VMS_Channel. This function is usually used to signal an end-of-file to the peer without closing the socket

itself, which would prevent further data from being received. It is equivalent to the shutdown() socket

library function.

Format

Status = SYS$QIOW(Efn, VMS_Channel, IO$_SHUTDOWN, IOSB, AstAdr, AstPrm, How, 0, 0, 0, 0, 0);

Arguments

VMS_Channel

OpenVMS Usage: channel

type: word (signed)

access: read only

mechanism: by value

A channel to the socket.

How

OpenVMS Usage: longword_unsigned

type: longword (unsigned)

access: read only

mechanism: by value

Controls which part of the full-duplex connection to shut down, as follows: if How is 0, further receive

operations are disallowed; if How is 1, further send operations are disallowed; if How is 2, further send and

receive operations are disallowed.

IO$_SOCKET

IO$_SOCKET — Creates an end point for communication and returns an OpenVMS channel that

describes the end point. It is equivalent to the socket() socket library function. Before issuing the

IO$_SOCKET call, an OpenVMS channel must first be assigned to the INET0: device to get a new

channel to the network.

Format

Status = SYS$QIOW(Efn, VMS_Channel, IO$_SOCKET, IOSB, AstAdr, AstPrm, Address_Family, Type,

Protocol, 0, 0, 0);

Arguments

Address_Family

OpenVMS Usage: address_family

type: longword (unsigned)

access: read only

mechanism: by value

An address family with which addresses specified in later operations using the socket will be interpreted.

DO-DVTNFR-00A VMS Software Inc. 580 Main Street, Bolton, MA 01740

56

The following formats are currently supported; they are defined in the include file

IP_root:[IP.include.sys]socket.h:

AF_INET Internet (TCP/IP) addresses

AF_PUP Xerox PUP addresses

AF_CHAOS CHAOSnet addresses

Type

OpenVMS Usage: socket_type

type: longword (unsigned)

access: read only

mechanism: by value

The semantics of communication using the created socket. The following types are currently defined:

SOCK_STREAM SOCK_DGRAM SOCK_RAW

A SOCK_STREAM socket provides a sequenced, reliable, two-way connection-oriented byte stream with

an out-of-band data transmission mechanism.

A SOCK_DGRAM socket supports communication by connectionless, unreliable messages of a fixed

(typically small) maximum length.

SOCK_RAW sockets provide access to internal network interfaces. The type SOCK_RAW is available

only to users with SYSPRV privilege.

The Type argument, together with the Address_Family argument, specifies the protocol to be used.

For example, a socket created with AF_INET and SOCK_STREAM is a TCP socket, and a socket created

with AF_INET and SOCK_DGRAM is a UDP socket.

Protocol

OpenVMS Usage: protocol_number

type: longword (unsigned)

access: read only

mechanism: by value

A protocol to be used with the socket. Normally, only a single protocol exists to support a particular socket

type using a given address format. However, many protocols may exist, in which case a particular protocol

must be specified by Protocol. The protocol number to use depends on the communication domain in

which communication will take place. For TCP and UDP sockets, the protocol number MUST be specified

as 0. For SOCK_RAW sockets, the protocol number should be the value returned by getprotobyname().

SYS$CANCEL

SYS$CANCEL — Cancels any I/O IOSB status of SS$_CANCEL. Outstanding I/O operations are

automatically cancelled at image exit. For more information on SYS$CANCEL, see the OpenVMS System

Services Reference Manual.

Format

Status = SYS$CANCEL(VMS_Channel);

SYS$DASSGN

SYS$DASSGN — Equivalent to the socket_close() function. When you deassign a channel, any

outstanding I/O is completed with an IOSB status of SS$_CANCEL. Deassigning a channel closes the

network connection. I/O channels are automatically deassigned at image exit. For more information on

SYS$DASSGN, see the OpenVMS System Services Reference Manual.

Format

Status = SYS$DASSGN(VMS_Channel);

DO-DVTNFR-00A VMS Software Inc. 580 Main Street, Bolton, MA 01740

57

Socket Options

This section describes the socket options that you can set with the Sockets API setsockopt() function and

the $QIO system service IO$_SETMODE and IO$_SETCHAR I/O function codes. You can query the

value of these socket options using the Sockets API getstockopt() function or the $QIO system service

IO$_SENSEMODE or IO$_SENSECHAR I/O function code.

The following tables list:

• Socket Options

• TCP Protocol Options

• IP Protocol Options

• IPv6 Socket Options

The following table lists the socket options that are set at the SOL_SOCKET level and their Sockets API

and system service symbol names.

Table 8.9 Socket Options

Sockets API Symbol System Service Symbol Description

SO_BROADCAST TCPIP$C_BROADCAST Permits the sending of broadcast

messages. Takes an integer parameter

and requires a system user

identification code (UIC) or SYSPRV,

BYPASS, or OPER privilege. Optional

for a connectionless datagram.

SO_DONTROUTE TCPIP$C_DONTROUTE Indicates that outgoing messages

should bypass the standard routing

facilities. Instead, the messages are

directed to the appropriate network

interface according to the network

portion of the destination address.

SO_ERROR TCPIP$C_ERROR Obtains the socket error status and

clears the error on the socket.

SO_FULL_DUPLEX_CLOS

E

TCPIP$C_FULL_DUPLEX_

CLOSE

When set before a close operation, the

receive and transmit sides of the

communications are closed.

SO_KEEPALIVE TCPIP$C_KEEPALIVE Keeps connections active. Enables the

periodic transmission of keepalive

probes to the remote system. If the

remote system fails to respond to the

keepalive probes, the connection is

broken. If the SO_KEEPALIVE option

is enabled, the values of

TCP_KEEPCNT, TCP_KEEPINTVL

and TCP_KEEPIDLE affect TCP

behavior on the socket.

SO_LINGER TCPIP$C_LINGER Lingers on a close() function if data is

present. Controls the action taken when

unsent messages queue on a socket and

a close() function is performed. Uses a

lingerstructure parameter defined in

SOCKET.H to specify the state of the

option and the linger interval.

If SO_LINGER is specified, the system

blocks the process during the close()

function until it can transmit the data or

DO-DVTNFR-00A VMS Software Inc. 580 Main Street, Bolton, MA 01740

58

until the time expires. If the option is

not specified and aclose() function is

issued, the system allows the process to

resume as soon as possible.

SO_OOBINLINE TCPIP$C_OOBINLINE When this option is set, out-of-band

data is placed in the normal input

queue. When SO_OOBINLINE is set,

the MSG_OOB flag to the receive

functions cannot be used to read the

out-of-band data. A value of 0 disables

the option, and a nonzero value enables

the option.

SO_RCVBUF TCPIP$C_RCVBUF Sets the receive buffer size, in bytes.

Takes an integer parameter and

requires a system UIC or SYSPRV,

BYPASS, or OPER privilege.

SO_RCVTIMEO TCPIP$C_RCVTIMEO For VSI use only. Sets the timeout

value for a recv() operation. The

argument to the two sockopt functions

is a pointer to a timeval structure

containing an integer value specified in

seconds.

SO_REUSEADDR TCPIP$C_REUSEADDR Specifies that the rules used in

validating addresses supplied by a

bind() function should allow reuse of

local addresses. A value of 0 disables

the option, and a non-zero value

enables the option. The

SO_REUSEPORT option is

automatically set when an application

sets SO_REUSEADDR

SO_REUSEPORT TCPIP$C_REUSEPORT Allows more than one process to

receive UDP datagrams destined for the

same port. The bind() call that binds a

process to the port must be preceded by

a setsockopt() call specifying this

option. SO_REUSEPORT is

automatically set when an application

sets the SO_REUSEADDR option.

SO_SHARE TCPIP$C_SHARE Allows multiple processes to share the

socket.

SO_SNDBUF TCPIP$C_SNDBUF Sets the send buffer size in bytes.

Takes an integer parameter and

requires a system UIC or SYSPRV,

BYPASS, or OPER privilege. Optional

for a connectionless datagram.

SO_SNDLOWAT TCPIP$C_SNDLOWAT Sets the low-water mark for a send()

operation. The send low-water mark is

the amount of space that must exist in

the socket send buffer for select() to

return writeable. Takes an integer value

specified in bytes.

SO_SNDTIMEO TCPIP$C_SNDTIMEO For VSI use only. Sets the timeout

value for a send() operation. The

DO-DVTNFR-00A VMS Software Inc. 580 Main Street, Bolton, MA 01740

59

argument to the two sockopt()

functions is a pointer to a timeval

structure containing an integer value

specified in seconds.

SO_TYPE TCPIP$C_TYPE Obtains the socket type.

SO_USELOOPBACK TCPIP$C_USELOOPBACK For VSI use only. This option applies

only to sockets in the routing domain

(AF_ROUTE), When you enable this

option, the socket receives a copy of

everything sent on the socket.

The following table lists the TCP protocol options that are set at the IPPROTO_TCP level and their Sockets

API and system service symbol names.

Table 8.10 TCP Protocol Options

Sockets API Symbol System Service Symbol Description

TCP_KEEPCNT TCPIP$C_TCP_KEEPCNT When the SO_KEEPALIVE option is

enabled, TCP sends a keepalive probe to

the remote system of a connection that

has been idle for a period of time. If the

remote system does not respond to the

keepalive probe, TCP retransmits a

keepalive probe for a certain number of

times before a connection is considered

to be broken. The TCP_KEEPCNT

option specifies the maximum number of

keepalive probes to be sent. The value of

TCP_KEEPCNT is an integer value

between 1 and n, where n is the value of

the systemwide tcp_keepcnt parameter.

The default value for for the systemwide

parameter, tcp_keepcnt , is

To display the values of the systemwide

parameters, enter the following

command at the system prompt:

$ sysconfig -q inet

The default value for TCP_KEEPCNT is

8.

TCP_KEEPIDLE TCPIP$C_TCP_KEEPIDLE When the SO_KEEPALIVE option is

enabled, TCP sends a keepalive probe to

the remote system of a connection that

has been idle for a period of time. If the

remote system does not respond to the

keepalive probe, TCP retransmits a

keepalive probe for a certain number of

times before a connection is considered

to be broken. TCP_KEEPIDLE specifies

the number of seconds before TCP will

send the initial keepalive probe. The

default value for TCP_KEEPIDLE is an

integer value between 1 and n,

where n is the value for the systemwide

parameter tcp_keepidle . The default

DO-DVTNFR-00A VMS Software Inc. 580 Main Street, Bolton, MA 01740

60

value for tcp_keepidle , specified in half-

second units, is 150 (75 seconds).

To display the values of the systemwide

parameters, enter the following

command at the system prompt:

$ sysconfig -q inet

The default value for TCP_KEEPIDLE

is 75 seconds.

TCP_KEEPINIT TCPIP$C_TCP_KEEPINIT If a TCP connection cannot be

established within a period of time, TCP

will time out the connection attempt. The

default timeout value for this initial

connection establishment is 75 seconds.

The TCP_KEEPINIT option specifies

the number of seconds to wait before the

connection attempt times out. For

passive connections, the

TCP_KEEPINIT option value is

inherited from the listening socket. The

value of TCP_KEEPINIT is an integer

between 1 and n, where n is the value

for the systemwide parameter

tcp_keepinit . The default value of the

systemwide parameter tcp_keepinit ,

specified in half-second units, is 150 (75

seconds).

To display the values of the systemwide

parameters, enter the following

command at the system prompt:

$ sysconfig -q inet

The TCP_KEEPINIT option does not

require the SO_KEEPALIVE option to

be enabled.

TCP_KEEPINTVL TCPIP$C_TCP_KEEPINTVL When the SO_KEEPALIVE option is

enabled, TCP sends a keepalive probe to

the remote system on a connection that

has been idle for a period of time. If the

remote system does not respond to a

keepalive probe, TCP retransmits the

keepalive probe after a period of time.

The default value for this retransmit

interval is 75 seconds. The

TCP_KEEPINTVL option specifies the

number of seconds to wait before

retransmitting a keepalive probe. The

value of the TCP_KEEPINTVL option is

an integer between 1 and n, where n is

the value of the systemwide parameter

tcp_keepintvl which is specified in half-

second units. The default value for the

DO-DVTNFR-00A VMS Software Inc. 580 Main Street, Bolton, MA 01740

61

systemwide parameter tcp_keepintvl is

150 (75 seconds).

To display the values of the systemwide

parameters, enter the following

command at the system prompt:

$ sysconfig -q inet

TCP_NODELAY TCPIP$C_TCP_NODELAY Specifies that the send() operation not be

delayed to merge packets.

Under most circumstances, TCP sends

data when it is presented. When

outstanding data has not yet been

acknowledged, TCP gathers small

amounts of the data into a single packet

and sends it when an acknowledgment is

received. This functionality can cause

significant delays for some clients that

do not expect replies (such as

windowing systems that send a stream of

events from the mouse). The

TCP_NODELAY disables the Nagle

algorithm, which reduces the number of

small packets on a wide area network.

TCP_MAXSEG TCPIP$C_TCP_MAXSEG Sets the maximum transmission unit

(MTU) of a TCP segment to a specified

integer value from 1 to 65535. The

default is 576 bytes. Can only be set

before a listen() or connect() operation

on the socket. For passive connections,

the value is obtained from the listening

socket.

Note that TCP does not use an MTU

value that is less than 32 or greater than

the local network's MTU. Setting the

option to zero results in the default

behavior.

TCP_NODELACK TCPIP$C_TCP_NODELACK When specified, disables the algorithm

that gathers outstanding data that has not

been acknowledged and sends it in a

single packet when acknowledgment is

received. Takes an integer value.

The following TCP protocol options are obsolete but provided for backward compatibility:

TCP_DROP_IDLE TCPIP$C_TCP_DROP_IDLE When the TCP_KEEPALIVE option is

enabled, the TCP_DROP_IDLE option

specifies the time interval after which a

connection is dropped. The value of

TCP_DROP_IDLE is an integer

specified in seconds. The default value is

600 seconds.

When the TCP_DROP_IDLE option is

set, the value of the TCP_KEEPCNT

DO-DVTNFR-00A VMS Software Inc. 580 Main Street, Bolton, MA 01740

62

option is calculated as the value of

TCP_DROP_IDLE divided by the value

of TCP_KEEPINTVL.

A call to getsockopt() function

specifying the TCP_DROP_IDLE option

returns the result of multiplying the

values of TCP_KEEPCNT and

TCP_KEEPINTVL.

TCP_PROBE_IDLE TCPIP$C_TCP_PROBE_IDLE When the TCP_KEEPALIVE option is

enabled, the TCP_PROBE_IDLE option

specifies the time interval between the

keepalive probes and for the connections

establishing the timeout. The default

value for TCP_PROBE_IDLE is 75

seconds. The value of

TCP_PROBE_IDLE is an integer

specified in seconds.

When this option is set,

TCP_KEEPINTVL, TCP_KEEPIDLE

and TCP_KEEPINIT are set to the value

specified for TCP_PROBE_IDLE.

A call to the getsockopt() function

specifying the TCP_PROBE_IDLE

option returns the value of

TCP_KEEPINTVL.

The following table lists options that are set at the IPPROTO_IP level and their Sockets API and system

service symbol names.

Table 8.11 Protocol Options

Sockets API Symbol System Service Symbol Description

IP_ADD_MEMBERSHIP TCPIP$C_IP_ADD_

MEMBERSHIP
Adds the host to the membership of a

multicast group.

A host must become a member of a

multicast group before it can receive

datagrams sent to the group.

Membership is associated with a single

interface; programs running on

multihomed hosts may need to join the

same group on more than one interface.

Up to IP_MAX_MEMBERSHIPS

(currently 20) memberships may be

added on a single socket.

IP_DROP

_MEMBERSHIP

TCPIP$

C_IP_DROP_MEMBERSHIP

Removes the host from the membership

of a multicast group.

IP_HDRINCL TCPIP$C_IP_HDRINCL If specified for a raw IP socket, you

must build the IP header for all

datagrams sent on the raw socket.

IP_MULTICAST_IF TCPIP$C_IP_MULTICAST_IF Specifies the interface for outgoing

multicast datagrams sent on this socket.

The interface is specified as an in_addr

structure.

DO-DVTNFR-00A VMS Software Inc. 580 Main Street, Bolton, MA 01740

63

IP_MULTICAST_LOOP TCPIP$C_IP_MULTICAST_

LOOP

Disables loopback of local delivery. If a

multicast datagram is sent to a group

which the sending host is a member, a

copy of the datagram is looped back by

the IP layer for local delivery (the

default). To disable the loopback

delivery, specify a value of 0.

IP_MULTICAST_TTL TCPIP$C_IP_MULTICAST_

TTL
Specifies the time-to-live (TTL) value

for outgoing multicast datagrams. Takes

an integer value between 0 and 255:

Value Action

0 Restricts distribution to

applications running on the

local host.

1 Forwards the multicast

datagram to hosts on the local

subnet.

2 -

255

With a multicast router

attached to the sending host's

network, forwards multicast

datagrams beyond the local

subnet. Multicast routers

forward the datagram to known

networks that have hosts

belonging to the specified

multicast group. The TTL

value is decremented by each

multicast router in the path.

When the TTL value is

decremented to zero, the

datagram is no longer

forwarded.

IP_OPTIONS TCPIP$C_IP_OPTIONS Provides IP options to be transmitted in

the IP header of each outgoing packet.

IP_RECVDSTADDR TCPIP$C_IP_

RECVDSTADDR

Enables a SOCK_DGRAM socket to

receive the destination IP address for a

UDP datagram.

IP_RECVOPTS TCPIP$C_IP_RECVOPTS Enables a SOCK_DGRAM socket to

receive IP options.

IP_TTL TCPIP$C_IP_TTL Time to live (TTL) for a datagram.

IP_TOS TCPIP$C_IP_TOS Type of service (1-byte value).

The following table describes the socket options supporting IPv6. The IPv6 socket options do not have

system service symbols.

Table 8.12 IPv6 Socket Options

Option Description

IPV6_RECVPKTINFO Source and destination IPv6 address, and sending and receiving

interface.

IPV6_RECVHOPLIMIT Hop limit.

IPV6_RECVRTHDR Routing header.

IPV6_RECVHOPOPTS Hop-by-hop options.

IPV6_RECVDSTOPTS Destination options.

DO-DVTNFR-00A VMS Software Inc. 580 Main Street, Bolton, MA 01740

64

IPV6_CHECKSUM For raw IPv6 sockets other than ICMPv6 raw sockets, causes the

kernel to compute and store checksum for output and to verify the

received checksum on input. Discards the packet if the checksum is

in error.

IPV6_ICMP6_FILTER Fetches and stores the filter associated with the ICMPv6 raw socket

using the getsockopt() function and setsockopt() functions.

IPV6_UNICAST_HOPS Sets the hop limit for all subsequent unicast packets sent on a socket.

You can also use this option with the getsockopt() function to

determine the current hop limit for a socket.

IPV6_MULTICAST_ IF Sets the interface to use for outgoing multicast packets.

IPV6_MULTICAST_HOPS Sets the hop limit for outgoing multicast packets.

IPV6_MULTICAST_LOOP Controls whether to deliver outgoing multicast packets back to the

local application.

IPV6_JOIN_GROUP Joins a multicast group on the specified interface

IPV6_LEAVE_GROUP Leaves a multicast group on the specified interface.

DO-DVTNFR-00A VMS Software Inc. 580 Main Street, Bolton, MA 01740

65

Copyright © 2019 VMS Software, Inc., Bolton Massachusetts, USA

Legal Notice

Confidential computer software. Valid license from VSI required for possession, use or copying. Consistent with FAR

12.211 and 12.212, Commercial Computer Software, Computer Software Documentation, and Technical Data for

Commercial Items are licensed to the U.S. Government under vendor's standard commercial license.

The information contained herein is subject to change without notice. The only warranties for VSI products and

services are set forth in the express warranty statements accompanying such products and services. Nothing herein

should be construed as constituting an additional warranty. VSI shall not be liable for technical or editorial errors or

omissions contained herein.

HPE and HPE Integrity are trademarks or registered trademarks of Hewlett Packard Enterprise.

Intel, Itanium and IA64 are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United

States and other countries.

Kerberos is a trademark of the Massachusetts Institute of Technology.

