I II VMS Software

VSI OpenVMS

VSI TCPI/IP Services for OpenVMS
SNMP Programming and Reference

Document Number: DO-SNMPPR-01A
Publication Date: September 2021
Revision Update Information: This is a new manual.

Operating System and Version: VS| OpenVMS Integrity Version 8.4-2
VS| OpenVMS Alpha Version 8.4-2L1

Software Version: VS| TCP/IP Services Version 5.7

VMS Software, Inc. (VSI)
Burlington, Massachusetts, USA

VSI TCP/IP Services for OpenVMS SNMP Programming and Reference

I I I VMS Software

Copyright © 2021 VMS Software, Inc. (VSl), Burlington, Massachusetts, USA

L egal Notice

Confidential computer software. Valid license from VSl required for possession, use or copying. Consistent with FAR 12.211 and 12.212,
Commercial Computer Software, Computer Software Documentation, and Technical Datafor Commercial Items are licensed to the U.S.
Government under vendor's standard commercial license.

Theinformation contained herein is subject to change without notice. The only warranties for VS| products and services are set forth in the
express warranty statements accompanying such products and services. Nothing herein should be construed as constituting an additional
warranty. VSI shall not be liable for technical or editorial errors or omissions contained herein.

HPE, HPE Integrity, HPE Alpha, and HPE Proliant are trademarks or registered trademarks of Hewlett Packard Enterprise.

Intel, Itanium and | A-64 are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States and other
countries.

UNIX isaregistered trademark of The Open Group.

VSI TCP/IP Services for OpenVMS SNMP Programming and Reference

Preface v
Lo ADOUL VST e ettt e e e ettt e e e e e e v

2. Intended AUGIEIICE ...coeeiiiiiiiiiiiiiiee ettt e e ettt e e e e e e v

3. DOCUMENT STIUCTUIEeuuiiiiiiiiiiiiiii e \%

4. Related DOCUMEIES ..ooeeiiiiiiiiiiiiiee ittt e e e et e e e e e e e vi

5. VSI Encourages YOur COMMENTScceviiiiiiiiiiiiiiiiiiiiiiiiiiiiitiiieiieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeaeeeees vii

6. COMVEITIONS ..eiieiiiiiiieee e e ettt e e ettt e e e e e ettt et e e e e e e ettt et e eeeeeaaabbtbteeeeeeeeaaaas vii
Chapter 1. Overview 1
L.1. SNMP ATCHITECIUIE ...eeiiiiiiiiiiiiiiiiiie ittt ettt e e e e e e e e e e e e 1

1.2. Request Handlingcoooiiiiiiiiiiiiiiii 2

1.3. TCP/IP Services Components for SNMP ..o, 4

1.4. Writing an eSNMP Subagentooooouiiiiiiiiiiiiii e 5

1.5. The @SNIMP API ..ottt e e e 6
1.5.1. The SNMP ULIILIESeertieiiiiiiiiiiiiiieeiiiiicce ettt e e 7

1.6. The MIB COMPILETevviiiiiiiiiiiiiiiiiiiiee et e e e e e e 7

1.7, SNMP VETSIONS ...eeetiiiiiiieeiiiiiite ettt ettt e e e e ettt e e e e e s ettt e e e eeeeeaaes 8
1.7.1. Using Existing (SNMP Version 1) MIB Modulescccevveeeiiiiiiiiiiiiiccieeinnn. 8

1.8. For More INfOrmationocceuuiiiiieiiiiiiiiiiiie ettt e e 9
Chapter 2. MIBs Provided with TCP/IP ServicCescoeevveensenssenssnensnnssaesssnesssessasessncses 11
2.1. Overview of the Host Resources MIBcccccooiiiiiiiiiiiiiiiiiiie e 11
2.1.1. Defining Host Resources MIB Implemented Objectscc..eeeeeeeeiininiiiieeeeen. 11

2.1.2. Restrictions to Host Resources MIBccoooiiiiiiiiiiiiiiiiieicceee, 13

2.2, 0Verview of MIB Icoiiiiiiiiiiiiiii e 16
2.2.1. MIB II Implemented GTOUPSceeeeeeeiiiiiiiiiiiieeeeniiiiiieeeee e e e e rriiiiieeeeee e e 16

2.2.2. Restrictions to MIB II Implementationccoeeeeeeeiiiiiiiiiieieeeeeeeeeeeeeeeeeeeen, 16

Chapter 3. Creating a Subagent Using the eSNMP APIcueevvrruennvnnsnensnnssnensanennne 19
3.1. Creating @ MIB SPecifiCatiOncccceeiiiiiiiiiiiiiieiiiiiiiiiee ettt e e 19

3.2. The Structure of Management Informationcccccooviniiiiiiiiiiiiinn e 19
3.2.1. Assigning Object Identification Codescccuuveieeiiiiiiiiiiiiiiiiiieeiiiiiieeeeeeenn 19

3.2.2. MIB SUDEIEES ...eevvviiiieeeiiiiiiiitee ettt et e ettt e e e e e s 20

3.3. Creating a MIB Source Fileoooouiiiiiiiiiiiiiieee e 22
3.3.1. Writing the ASN.T Input Fileccooiiiiiiiiiiiiiiiie e 22

3.3.2. Processing the Input File with the MIB Compilerccccvviiiiiiiiinniiiicnn, 23

3.4. Including the Routines and Building the Subagentcccccceiiiniiiiiiiii, 29

3.5. Including Extension Subagents in the Startup and Shutdown Procedures 30
Chapter 4. Using the SNMP Utilities 33
4.1. Using the MIB BIOWSETcoooiuiiiiiiiiiiiiiiiiiiicee e 33
4.1.1. MIB Browser Parameterscccooiiiiiiiiiiiiiiiiiiiiiii 33

4.1.2. MIB BrOWSET FIa@Suuuuuiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiieeieeeeaeeeeeseseeeeeeeeeennees 34

4.1.3. MIB Browser Data TYPES ...ccceeuuimiiiiiiiiiiiiiiiiieee ettt 37

4.1.4. Command Examples for Snmp requestccceeeeriniiiiiiieieeninniiiiiieeeee e 38

4.2. Using the Trap Sender and Trap Receiver Programsccccccoviiiiiiiiiieiinnnniiieenneen. 41
4.2.1. Entering Commands for the Trap Sender Programccccuveveiiiiiinnnniiicennn.n. 41

4.2.2. Entering Commands for the Trap Receiver Programcccocccvviiiiiiiiiinnnnnnne. 45

Chapter 5. eSNIMP API ROULINES ...ccovvvuerieiiirniicsisnerecsssnsecssssssssssssssssesssssssssssssssssssssssssss 47
5.1, Interface ROULINESccoovueiiiiiii it e e 47

5.2. Method ROULINES ...ueeeiiiiiiieeeiiieiie ettt e e e e e e 60

5.3. Processing * set ROULNEScccoeeeieiiiiiiiiiiieieeeeeeeeeeeeeee e 64

5.4. Method Routine Applications Programmingcooeeeeeeieiiieiiiiieieieieeeeeeeeeeeeeee e, 66

iii

VSI TCP/IP Services for OpenVMS SNMP Programming and Reference

5.5. Value RePresentationcceeeeeeiiiiiiiiiiiieeeeeieiiiiieiseeeeeeeeraieisseeeeeeeeasssennnaaeeeeeeesssennnns 67
5.6. SUPPOTt ROULINES ...coiiviiiiiiiiiieeeiiiiiiiiee e et e e e e ettt e e e e e e e e eaasaeaeeeeeeeeasssennnaeens 68
Chapter 6. Troubleshooting eSNMP Problems 93
6.1. Modifying the Subagent Error LImitccooviiiiiiiiieeiiiiiiiiiiie e e 93
6.2. Modifying the Subagent TIMEOULovieeeiiiiiiiiiiiiee e e e e e e e eeeaaeeeanns 93
0.3, LOZ FILES ...niiiiiiiiiciee e e et e e e e ettt e e e e e e e aatb e aaaaeaaraaaans 94

Preface

The VSI TCP/IP Services for OpenVMS product is the VSI implementation of the TCP/IP networking

protocol suite and internet services for OpenVMS Alpha and OpenVMS VAX systems.

A layered software product, TCP/IP Services provides a comprehensive suite of functions and
applications that support industry-standard protocols for heterogeneous network communications and
resource sharing.

This manual describes the features of the Simple Network Management Protocol (SNMP) provided
with TCP/IP Services. It also describes the extensible SNMP (eSNMP) application programming

interface (API)and development environment.

See the VSI TCP/IP Services for OpenVMS Installation and Configuration manual for information
about installing, configuring, and starting this product.

1. About VSI

VMS Software, Inc. (VSI) is an independent software company licensed by Hewlett Packard
Enterprise to develop and support the OpenVMS operating system.

VSI seeks to continue the legendary development prowess and customer-first priorities that are so

closely associated with the OpenVMS operating system and its original author, Digital Equipment
Corporation.

2. Intended Audience

This manual is for experienced OpenVMS and UNIX system managers and assumes a working
knowledge of TCP/IP networking, TCP/IP terminology, and some familiarity with the TCP/IP
Services product.

3. Document Structure

This manual contains the following chapters:

* Chapter 1 describes the implementation of eSNMP provided with TCP/IP Services.

» Chapter 2 describes the groups and objects implemented with the Host Resources MIB and MIB 11

that are provided with the eSNMP software.

* Chapter 3 describes how to use the eSNMP API to create a MIB subagent to manage entities or
applications.

e Chapter 4 describes the trap sender, trap receiver,and MIB browser utilities provided with TCP/IP
Services.

* Chapter 5 provides reference information about the eSSNMP API routines.

* Chapter 6 describes some troubleshooting aids provided with TCP/IP Services.

Preface

4. Related Documents

The table below lists the documents available with this version of TCP/IP Services.

Table 1. TCP/IP Services Documentation

Manual

Contents

VSI TCP/IP Services for OpenVMS Concepts and
Planning

This manual provides conceptual information
about TCP/IP networking on OpenVMS
systems,including general planning issues to
consider before configuring your system to use
the TCP/IP Services software.

This manual also describes the manuals in the
documentation set,and provides a glossary of
terms and acronyms for the TCP/IP Services
software product.

VSI TCP/IP Services for OpenVMS Installation
and Configuration

This manual explains how to install and configure
the TCP/IP Services product.

VSI TCP/IP Services for OpenVMS User's Guide

This manual describes how to use the applications
available with TCP/IP Services such as remote
file operations, email, TELNET, TN3270, and
network printing.

VSI TCP/IP Services for OpenVMS Management

This manual describes how to configure and
manage the TCP/IP Services product.

VSI TCP/IP Services for OpenVMS Management
Command Reference

This manual describes the TCP/IP Services
management commands.

VSI TCP/IP Services for OpenVMS ONC RPC
Programming

This manual presents an overview of high-level
programming using open network computing
remote procedure calls (ONC RPC). This manual
also describes the RPC programming interface
and how to use the RPCGEN protocol compiler to
create applications.

VSI TCP/IP Services for OpenVMS Sockets API

and System Services Programming

This manual describes how to use the Sockets
API and OpenVMS system services to develop
network applications.

VSI TCP/IP Services for OpenVMS SNMP
Programming and Reference

This manual describes the Simple Network
Management Protocol (SNMP) and the SNMP
application programming interface (eSNMP).

It describes the subagents provided with TCP/

IP Services, utilities provided for managing
subagents, and how to build your own subagents.

VSI TCP/IP Services for OpenVMS Guide to IPv6

This manual describes the IPv6 environment, the
roles of systems in this environment, the types
and function of the different IPv6addresses, and
how to configure TCP/IP Services to access the
IPv6 network.

For a comprehensive overview of the TCP/IP protocol suite, refer to the book Internetworking with
TCP/IP:Principles, Protocols, and Architecture, by Douglas Comer.

vi

Preface

5. VSI Encourages Your Comments

You may send comments or suggestions regarding this manual or any VSI document by sending
electronic mail to the following Internet address: <doci nf o@nssof t war e. con®. Users who
have OpenVMS support contracts through VSI can contact <suppor t @ nssof t war e. con® for
help with this product.

6. Conventions

The following conventions may be used in this manual:

Convention

Meaning

Ctrl/ x

A sequence such as Ctrl/ x indicates that you must hold down the key labeled
Ctrl while you press another key or a pointing device button.

PF1x

A sequence such as PF1 x indicates that you must first press and release the key
labeled PF1 and then press and release another key or a pointing device button.

Return

In examples, a key name enclosed in a box indicates that you press a key on the
keyboard. (In text, a key name is not enclosed in a box.)

A horizontal ellipsis in examples indicates one of the following possibilities:
* Additional optional arguments in a statement have been omitted.
* The preceding item or items can be repeated one or more times.

* Additional parameters, values, or other information can be entered.

A vertical ellipsis indicates the omission of items from a code example or
command format; the items are omitted because they are not important to the
topic being discussed.

O

In command format descriptions, parentheses indicate that you must enclose the
options in parentheses if you choose more than one.

[]

In command format descriptions, brackets indicate optional choices. You can
choose one or more items or no items. Do not type the brackets on the command
line. However, you must include the brackets in the syntax for OpenVMS
directory specifications and for a substring specification in an assignment
statement.

[1]

In command format descriptions, vertical bars separate choices within brackets
or braces. Within brackets, the choices are options; within braces, at least one
choice is required. Do not type the vertical bars on the command line.

1

In command format descriptions, braces indicate required choices; you must
choose at least one of the items listed. Do not type the braces on the command
line.

bold text

This typeface represents the introduction of a new term. It also represents the
name of an argument, an attribute, or a reason.

italic text

Italic text indicates important information, complete titles of manuals, or
variables. Variables include information that varies in system output (Internal
error number), in command lines (/PRODUCER= name), and in command
parameters in text (where dd represents the predefined code for the device type).

vii

Preface

Convention Meaning

UPPERCASE Uppercase text indicates a command, the name of a routine, the name of a file,

TEXT or the abbreviation for a system privilege.

Monospace Monospace type indicates code examples and interactive screen displays.

type
In the C programming language, monospace type in text identifies the following
elements: keywords, the names of independently compiled external functions
and files, syntax summaries, and references to variables or identifiers introduced
in an example.

- A hyphen at the end of a command format description, command line, or code
line indicates that the command or statement continues on the following line.

numbers All numbers in text are assumed to be decimal unless otherwise noted.

Nondecimal radixes—binary, octal, or hexadecimal—are explicitly indicated.

Other conventions are:

¢ All numbers are decimal unless otherwise noted.

¢ All Ethernet addresses are hexadecimal.

viii

Chapter 1. Overview

The Simple Network Management Protocol (SNMP) is the de facto industry standard for managing
TCP/IP networks. The protocol defines the role of a network management station (NMS) and the
SNMP agent. SNMP allows remote users on an NMS to monitor and manage network entities such as
hosts, routers, X terminals, and terminal servers.

TCP/IP Services provides support for SNMP Version 2, using the Extensible Simple Network
Management Protocol (eSNMP) architecture, under which a single master agent can support any
number of subagents. The TCP/IP Services implementation of eSSNMP includes a master agent, two
subagents, an application programming interface (API), tools used to build additional subagents,
startup and shutdown procedures, and text-based configuration files.

This chapter provides an overview of the VSI OpenVMS implementation of eSNMP. Topics include:
* eSNMP master agent and subagent architecture (Section 1.1)

* The procedure for handling SNMP requests (Section 1.2)

* The components of the TCP/IP Services software kit that implement SNMP (Section 1.3)

* The files useful in developing your own subagent (Section 1.4)

* The eSNMP API (Section 1.5)

» The management information base (MIB) compiler (Section 1.6)

» The impact of running SNMP Version 1 subagents against the SNMP Version 2 implementation
provided with TCP/IP Services (Section 1.7)

* Sources of additional information about implementing subagents (Section 1.8)

1.1. SNMP Architecture

Figure 1.1 illustrates the SNMP architecture.

Figure 1.1. SNMP Architecture

Master Agent Subagent 1 Subagent2 |e e] Subagentn
eSNMP API
SNMP/ASN.1
Library AgentX (TCP/IP V5.1)

TCP/IP Kernel

OpenVMS

The SNMP environment consists of the following elements:

Chapter 1. Overview

* The master agent, a process that runs on the host and handles SNMP requests from clients over the
standard SNMP well-known port 161.

* One or more subagents, each of which provides access to the MIB data specified in client requests.
In the TCP/IP Services implementation, the master agent contains two resident subagents, one that
handles a subset of MIB 1II variables, and another that handles the Host Resources MIB. These
MIBs are described in Chapter 2.

e The SNMP ASN.1 library, used by the master agent to interpret ASN.1 messages.

» The eSNMP API, the application programming interface that provides routines for programming
your own subagents. This API runs on the AgentX routines, which are internal to the SNMP
architecture.

e The TCP/IP kernel running on the OpenVMS operating system.

The master agent and subagents communicate by means of the AgentX protocol, which is based
on RFC 2741.

For information about configuring and managing the SNMP service, refer to the VSI TCP/IP Services
for OpenVMS Management guide.

1.2. Request Handling

The eSNMP software manages network communication by having the master agent listen for requests
and then passes the requests to the appropriate subagent.

Figure 1.2 illustrates communication between the master agent and subagents.

Figure 1.2. eSSNMP Data Flow

NMS1 Host 1
Client / Subagent 1
Y. . /
705
o . Master Agent Sl
s e 161 |
N Network \ .
NMS2 v Subagent n
Client “ow. Host2
S e
Trap *.| Master Agent : :f Subagent 1
client
Legend

Flow of trap notification

ffffffff Flow of get/set request

Flow of "are_you_there" message

The process of communication for a request is illustrated with dashed lines and includes the following
steps:

Chapter 1. Overview

1. The network management station (NMS) (sometimes called the client), originates SNMP requests
to obtain and set information.

Note

The client component is not provided with TCP/IP Services.

To provide access to MIBs and to test SNMP communication, TCP/IP Services provides the following
utilities:

* MIB browser
e Trap sender
* Trap receiver

These utilities are described in Chapter 4.

The network management station sends an SNMP request to the master agent running on the host,
using port 161. An SNMP request is made using one of the following commands:

o Cet

e Get Next

e CetBul k

« Set
Note

TCP/IP Services does not support the standard SNMP | nf or mcommand.

The request specifies the object identifier (OID) of the data to be accessed. For information about
formatting get and set requests, refer to Section 5.2. Request formats are specified in RFC
1905.

2. The master agent sends the request to the subagent that registered the subtree containing the OID.

The subagent receives communications from the master agent over the socket that was assigned
when the subagent registered the subtree.

3. The appropriate subagent processes the request.

4. The subagent sends the response message to the master agent using the port that was assigned
when the subagent registered the MIB.

When they are idle, subagents periodically send a message to port 705 to ensure that the master agent
is still running. In Figure 1.2, subagent 1 is sending the esnnp_ar e_you_t her e message.

A trap is generated by the subagent and sent to the client. In Figure 1.2, subagent # is generating a
trap for the trap client on NMS 2.

The trap and esnnp_ar e_you_t her e routines are described in Section 5.1.

Chapter 1. Overview

1.3. TCP/IP Services Components for SNMP

Table 1.1 lists the components of SNMP and the command procedures for managing SNMP that are

supplied with TCP/IP Services.

Table 1.1. SNMP Component Files

File Location Function
TCPIPSESNMP_SERVER.EXE |SYS$SYSTEM Master agent image.
TCPIP$SOS MIBS.EXE SYS$SYSTEM MIB II subagent image.
TCPIPSHR MIB.EXE SYSSSYSTEM Host Resources MIB subagent
image.
TCPIP§SNMP REQUEST.EXE |SYS$SYSTEM Simple MIB browser.
TCPIPSSNMP_TRAPSND.EXE |SYS$SYSTEM Utility for sending trap
messages.
TCPIP$SNMP _TRAPRCV.EXE |SYS$SYSTEM Utility for receiving trap
messages.
TCPIPSESNMP_SHR.EXE SYS$SSHARE Image file containing eSNMP
application programming
interface (API) routines.
TCPIP$SNMP STARTUP.COM |SYS$STARTUP Command procedure that
installs master and subagent
images and runs TCPIP
$SNMP_RUN.COM.
TCPIP SYSS$SSTARTUP Command procedure
$SNMP_SYSTARTUP.COM initiated by TCPIP
$SNMP_STARTUP.COM.
Provided for site-specific
customizations, such as
parameter settings.
TCPIP$SNMP RUN.COM TCPIP$SYSTEM Command procedure that starts
the master agent and subagents.
TCPIP SYSSSTARTUP Command procedure that stops
$SNMP SHUTDOWN.COM the master agent and subagents.
TCPIP SYSSSTARTUP Command procedure
$SNMP_SYSHUTDOWN.COM initiated by TCPIP

$SNMP_SHUTDOWN.COM.
Provided for site-specific
customization, such as parameter
settings.

TCPIPSEXTENSION MIB

_STARTUP.COM

SYS$SYSDEVICE:[TCPIP
$SSNMP]

Command procedure

invoked by TCPIP
$SNMP_SYSTARTUP.COM to
start custom subagents.

Chapter 1. Overview

_MIB_RUN.COM

File Location Function
TCPIPSEXTENSION MIB SYS$SYSDEVICE:[TCPIP
$SNMP]
_SHUTDOWN.COM
Command procedure
invoked by TCPIP
$SNMP_SYSHUTDOWN.COM
to stop custom subagents.
TCPIPSEXTENSION SYS$SYSDEVICE:[TCPIP
$SNMP]

Command procedure

invoked by TCPIP
$SNMP_SYSTARTUP.COM
when the service is enabled and
starts detached processes to run
subagents.

1.4. Writing an eSNMP Subagent

Table 1.2 lists the files that are available to help you develop MIBs and subagents. Except where
noted, the files are located in the directory pointed to by TCPIPSSNMP_EXAMPLES.

Table 1.2. Files for Building a Subagent

File Description

ESNMP.H Header file used to create a subagent. Located in
TCPIPSESNMP.

GAWK.EXE Interpreter for MIB converter.

MIB-CONVERTER. AWK

A UNIX based awk shell script that takes a MIB
definition in ASN.1 notation and converts it to
an MY file.

RFCI1213.MY MIB 1I definitions.

RFCI1231.MY IEEE 802.5 Token Ring MIB definitions.

RFC1285.MY FDDI MIB definitions.

RFC1442.MY SNMP Version 2 Structure of Management
Information (SMI) definitions.

SNMP-SMI.MY SNMP Version 2 SMI definitions from RFC 1902
(replaces RFC 1442).

SNMP-TC.MY SNMP Version 2 SMI definitions from RFC 1903
(replaces RFC 1443).

V2-TC.MY SNMP Version 2 SMI definitions from RFC 1903

(superset of those in SNMP-TC.MY).

TCPIP$BUILD CHESS.COM

Command file that builds the sample chess
subagent.

TCPIPSCHESS _SUBAGENT.OPT

Options file for use in building the sample chess
subagent.

Chapter 1. Overview

File Description

* Cand *.H Source code for chess example. Contains detailed
documentation that explains how the code
functions.

TCPIPSCHESS SUBAGENT.EXE Functioning chess example image.

TCPIPSESNMP.OLB Object library file containing routines used

to create a subagent. Located in the directory
pointed to by TCPIP§SNMP.

TCPIPSESNMP_SHR.EXE Shareable image containing routines used to
create a subagent. Located in the directory
pointed to by SYS$SHARE.

UCXS$ESNMP_SHR.EXE Copy of TCPIPSESNMP_SHR.EXE, provided

for compatibility with existing customer
subagents linked under TCP/IP Services V4.
x. Located in the directory pointed to by SYS

$SHARE.
TCPIPSMIBCOMP.EXE Images associated with the MIB compiler.
Located in SYS$SSYSTEM.
TCPIP$SMOSY.EXE
TCPIP$SNMPILEXE

For information about building a subagent on an OpenVMS system, see Chapter 3.

1.5. The eSNMP API

The TCP/IP Services implementation of the eSNMP architecture includes an API that provides
programmers with many eSNMP routines they would otherwise have to develop themselves.

The eSNMP API includes interface routines, method routines, and support routines.

Interface routines handle the basic subagent operations, such as:

Subagent initialization and termination
Registration

Polling of the master agent

Trap sending

UNIX system time conversion

Adding and removing subagent capabilities registered with the master agent

The support routines allow the subagent to manipulate the data in the response to the request, and
include the following:

L]

Basic protocol data unit (PDU) handling

Authentication handling

Chapter 1. Overview

e Octet string handling

* Variable binding (VARBI ND) handling

* Object identifier (OID) handling

* Buffer handling

Chapter 5 describes the API routines in more detail.

To create a subagent, the programmer must provide modules to implement the method routines, as
described in Chapter 3.

1.5.1. The SNMP Utilities

To provide quick access to information in the MIBs, and to test SNMP operation, TCP/IP Services
provides the following utilities:

« TCPIPSSNMP REQUEST.EXE, a MIB browser that allows you to retrieve and update objects
from the MIBs.

* TCPIPSSNMP_TRPSND.EXE, a trap sender that generates traps (messages that require no
response).

* TCPIP$SNMP_TRPRCV.EXE, a trap receiver (or “listener”) that is used to detect trap messages.

For information about using the SNMP utilities, see Chapter 4.

1.6. The MIB Compiler

The MIB compiler processes the statements in an ASN.1 file and generates modules that are used

by the developer to create subagent routines. For every ASN.1 input file that is processed using the
MIB compiler, two output files, a subtree_ TBL.H file and a subtree_ TBL.C file, are generated, where
subtree is the name from the original MIB definition file (for example, chess). The output files are
described in more detail in Chapter 3.

The subtree TBL.H file is a header file that contains the following:

* A declaration of the subtree structure

* Index definitions for each MIB variable in the subtree

* Enumeration definitions for MIB variables with enumerated values
» MIB group data structure definitions

e Method routine function prototypes

The subtree_ TBL.C file is an object file that contains the following:

* An array of integers representing the OIDs for each MIB variable

* An array of OBJECT structures

* An initialized SUBTREE structure

Chapter 1. Overview

1.7. SNMP Versions

The extensible SNMP software supports SNMP Version 2, based on RFCs 1901 through 1908,
including:

The SNMP Version 2 structure of management information for SNMP Version 2 (SMI Version 2)
and textual conventions.

The eSNMP library API (SNMP Version 2), variable binding exceptions, and error codes.

SNMP Version 1 and SNMP Version 2 requests. Both versions are handled by the master agent.
SNMP Version 2 specific information from the subagent is mapped, when necessary, to SNMP
Version 1 adherent data (according to RFC 2089). For example, if a management application
makes a request using SNMP Version 1 PDUs, the master agent replies using SNMP Version

1 PDUs, mapping any SNMP Version 2 SMI items received from subagents. In most cases,
subagents created with a previous version of the eSSNMP API do not require any code changes
and do not have to be recompiled. The circumstances under which recoding or recompiling are
required are described in Section 1.7.1.

1.7.1. Using Existing (SNMP Version 1) MIB Modules

Existing SNMP Version 1 MIB subagent executable files should be compatible with the current
SNMP Version 2 master agent without the need to recompile and relink, with the following
exceptions:

Any program that relies on TCP/IP Services Version 4.1 or 4.2 kernel data structures or access
functions may run but may not return valid data. Such programs should be rewritten.

Programs linked against UCX$SACCESS_SHR.EXE, UCXS$IPC SHR.EXE, or other older
shareable images (except for UCX$ESNMP_SHR.EXE, which is described in the next list item)
may not run even when relinked. You may need to either rewrite or both rewrite and recompile
such programs. Note that the Chess example image (UCX$CHESS SUBAGENT.EXE) has been
updated and renamed TCPIPSCHESS SUBAGENT.EXE.

For programs linked against certain versions of UCX$ESNMP SHR.EXE:

* Images associated with the following versions of TCP/IP Services will run correctly without
the need to relink them:

Version 4.1 ECO 9 and later
Version 4.2 ECO 1 and later

The installation of TCP/IP Services provides a backward-compatible version of UCX
SESNMP_SHR.EXE in the SYS$SHARE directory. Do not delete this image.

If you have problems running images linked against an older version of UCX
SESNMP_SHR.EXE, verify that the version in SYS$SHARE is the latest by entering the
following DCL command:

$ DI RECTORY/ DATE SYS$SHARE: * $ESNMP_SHR. EXE

The creation dates of the files with the prefix TCPIP$ and UCXS$ should be within a few
seconds of each other, and only one version of each file should exist. Make sure both images
include the file protection W:RE.

Chapter 1. Overview

* You should relink and perhaps recompile images associated with ECOs for Version 4.1 or 4.2
other than those discussed in the previous list item.

Images linked against object library (.OLB) files may not need to be relinked, although you can relink
them against the shareable images in this version of the product to decrease the image size. Relinking
against the shareable image allows you to take advantage of updated versions of the eSSNMP API
without the need to relink. Some images linked against the current version of TCP/IP Services may
run under Versions 4.1 and 4.2, but this backward compatibility is not supported and may not work in
future versions of TCP/IP Services.

If an existing subagent does not execute properly, relink it against this version of TCP/IP Services to
produce a working image. Some subagents (such as the OpenVMS Server MIB) require a minimum
version of OpenVMS as well as a minimum version of TCP/IP Services.

1.8. For More Information

This manual provides the OpenVMS information required for implementing eSNMP subagents and
ensuring their proper operation in that environment.

For information about prototypes and definitions for the routines in the eSSNMP API, see the TCPIP
$SNMP:ESNMP.H file.

Table 1.2 lists files that contain additional comments and documentation.

Chapter 1. Overview

10

Chapter 2. MIBs Provided with TCP/IP
Services

This chapter describes how MIBs are implemented on OpenVMS. The MIBs provided with TCP/IP
Services are:

* The Host Resources MIB, which manages operating system objects (Section 2.1)

» MIB II, which manages TCP/IP kernel objects (Section 2.2)

2.1. Overview of the Host Resources MIB

The Host Resources MIB defines a uniform set of objects useful for the management of host
computers. The Host Resources MIB, described by RFC 1514, defines objects that are common across
many computer system architectures. The TCP/IP Services implementation of SNMP includes many
of these defined objects. In addition, some objects in MIB II provide host management functionality.

2.1.1. Defining Host Resources MIB Implemented
Objects

This section defines each of the implemented eSNMP objects. Table 2.1 provides a general RFC
description and a specific OpenVMS description for each implemented object.

Table 2.1. Host Resources MIB Objects

Object Name RFC Description OpenVMS Description
hrSystemUptime The amount of time since this | Time since system boot (in
host was last initialized. hundredths of a second).
hrSystemDate The host's notion of the local Date and time character string
date and time of day. with Coordinated Universal
Time (UTC) information if
available.
hrSystemIntialLoadDevice Index of the hrDeviceEntry Index of SYS$SYSDEVICE in

for configured initial operating |the device table.
system load.

hrSystemlIntialLoadParameters |Parameters supplied to the load |A string of boot parameters from
device when requesting initial |the console (Alpha only).
operating system configuration.

hrSystemNumUsers Number of user sessions for Number of processes that
which the host is storing state are neither owned by another
information. process nor running detached.

hrSystemProcesses Number of process contexts Number of processes listed
currently loaded or running on |using the SHOW SYSTEM
the system. command.

hrSystemMaxProcesses Maximum number of process SYSGEN parameter

contexts the system can support, | MAXPROCESSCNT.
or 0 if not applicable.

Chapter 2. MIBs Provided with TCP/IP Services

Object Name RFC Description OpenVMS Description
hrMemorySize The amount of physical main The amount of physical main
memory contained in the host. |memory contained in the host.
hrStoragelndex A unique value for each logical |Index of entry in
storage area contained in the hrStorageTable.
host.
hrStorageType The type of storage represented |A numeric representation of the
by this entry. device class and type displayed
by the SHOW DEVICE/FULL
command.
hrStorageDescr A description of the type and Character string device type
instance of the storage described |displayed by the SHOW
by this entry. DEVICE/FULL command.
hrStorageAllocationUnits The size of the data objects Always 512 (the size of an
allocated from this pool (in OpenVMS disk block).

bytes).

hrStorageSize The size of storage in this entry |The total number of blocks on a
in hrStorageAllocationUnits. device displayed by the SHOW
DEVICE/FULL command.
hrStorageUsed The allocated amount The total number of used
of storage in this entry blocks on a device displayed
inhrStorageAllocationUnits. by the SHOW DEVICE/FULL
command.
hrDevicelndex A unique value for each host or |Index of entry in hrDeviceTable.
device constant between agent
reinitialization.
hrDeviceType An indication of the type of In object identifier format, a
device. Some of these devices |numeric representation of the
have corresponding entries in device class and type displayed
other tables. by the SHOW DEVICE/FULL
command.
hrDeviceDesc A text description of the device, |Character string of the device
including manufacturer and type displayed by the SHOW
version number (service, DEVICE/FULL command.
optional).
hrDeviceStatus The current operational state of |A numeric indication of the
the device. status of the device.
hrDeviceErrors The number of errors The number of errors indicated
detected on the device. The by the SHOW DEVICE
recommended initial value is command. This value is
ZEro. initialized to zero when the
device is recognized by the
system instead of when the
master agent is initialized.
hrProcessorFrwID The product ID of the firmware |An object identifier that

associated with the processor.

corresponds to the console or
PALcode version (Alpha only).

12

Chapter 2. MIBs Provided with TCP/IP Services

Object Name RFC Description OpenVMS Description
hrNetworkIfIndex The value of the if Index that The value of the index in the
corresponds to this network interface table in the standard
device. MIB that corresponds to this
network device.
hrDiskStorageAccess Indicates whether the storage This value is set to 2 if the
device is read/write or read only. |device is read only; otherwise,
itis set to 1. (The SHOW
DEVICE/FULL command
displays “software write-
locked.”)
hrDiskStorageMedia Indicates the storage device Indicates device type.

media type.

hrDiskStorageRemovable

Indicates whether the disk can
be removed from the drive.

Indicates whether the disk can
be removed from the drive.

hrDiskStorageCapacity

The total size of this long-term
storage device.

Half of the value for total
blocks displayed by the SHOW

DEVICE/FULL command.
hrSWRunIndex A unique value for each Process ID.
software product running on the
host.
hrSWRunPath A description of the location Fully qualified name of
where this software was loaded. |executable image.
hrSWRunStatus The status of the software that is | The values and the associated
running. status of each are:
* 1 indicates that the current
process is running (CUR)
* 2 indicates that the process is
computable (COM)
* 3 indicates that you cannot
run the process.
hrSWRunPerfCPU The number (in hundredths of | Process elapsed CPU time (in
a second) of the total system's | hundredths of a second).
CPU resources consumed by this
process.
hrSWRunPerfMem The total amount of real system |Process current working set (in

memory allocated to this
process.

kilobytes).

2.1.2. Restrictions to Host Resources MIB

SNMP requests are not implemented for the following Host Resources MIB objects:

hrPartitionTabl ehr Printer Tabl ehr SW nst al | edhr SW nst al | edTabl e

SNMP set requests are not implemented for the following Host Resources MIB objects:

hr FSLast Ful | BackupDat e

Chapter 2. MIBs Provided with TCP/IP Services

hr FSLast Parti al BackupDat e
hr St or ageSi ze

hr SWRunSt at us

hr Syst enDat e

hr System ni ti al LoadDevi ce

hr Syst em ni ti al LoadPar anet ers

Note

For objects that are not implemented, the Host Resources MIB returns a NoSuchQbj ect error
status.

TCP/IP Services supports the objects in the Host Resources MIB as follows:

* The hr Devi ceTabl e includes all the devices known to the OpenVMS host except those with
the following characteristics:

* Off line

* Remote

* UCB marked delete-on-zero-reference-count

* Mailbox device

* Device with remote terminal (DEVSM_RTT characteristic)
* Template terminal-class device

* LAT device (begins with LT)

* Virtual terminal device (begins with _VT)

* Pseudoterminal device (begins with FT)

Data items in the hr Devi ceTabl e group have the following restrictions:
* hrDevi cel Dis always null OID (0.0).

* hrDevi ceErrors is coded as follows:

Code Condition

warning (3) Error logging is in progress (OpenVMS UCB
value UCBSM_ERLOGIP).

running (2) Software is valid and no error logging is
in progress (OpenVMS UCB value UCB
$M_VALID).

unknown (1) Any other OpenVMS status.

The hr Devi ceTabl e now includes template devices (for example, DNFSO for NFS and DADO
for virtual devices).

14 For network devices, only the template devices (those with unit number 0) are displayed.

Chapter 2. MIBs Provided with TCP/IP Services

hr FSMount Poi nt (1.3.6.1.2.1.25.3.8.1.2) is DNFS s. The device may change between restarts
or after a dismount/mount procedure.

In the hr FSTabl e group, if no file systems are mounted through NFS or no information is
accessible,a" no such i nstance" status is returned for a get request. Browsers respond
differently to this message. For example, TCPIPSSNMP_REQUEST.EXE responds with no output
and returns directly to the DCL prompt.

After an NFS mount, the following information is returned in response to a Get request. The data
items implemented for OpenVMS (refer to RFC 1514) are:

« hr FSI ndex.

* hr FSMount Poi nt is the local DNFS device name.

* hr FSRenot eMount Poi nt is the remote file system.
* hr FSType is implemented as:

* OID 1.3.6.1.2.1.25.3.9.1, for OpenVMS if the file system is not a UNIX style container
file system.

* hr FSNFS, OID 1.3.6.1.2.1.25.3.9.14, if the file system is a TCP/IP Services container file
system or a UNIX host.

* hr FSAccess, as defined in RFC 1514.
* hr FSBoot abl e is always HRM_FALSE (integer 2).
* hr FSSt or agel ndex is always 0.

» hrFSLast Ful | BackupDat e is unknown time. This entry is encoded according to RFC
1514 as a hexadecimal value 00-00-01-01-00-00-00-00 (January 1, 0000).

* hrFSLast Parti al BackupDat e is unknown time. This information is not available for
OpenVMS systems. Instead, hexadecimal value 00-00-01-01-00-00-00-00 (January 1, 0000)
applies.

hr Processor Frw D (OID prefix 1.3.6.1.2.1.25.3.3.1.1) is not implemented on OpenVMS
VAX. On this type of system, it returns standard null OID (0.0). For example:

1.3.6.1.2.1.25.3.3.1.1.1 = 0.0

For OpenVMS Alpha (firmware version 5.56-7), the response is shown in the following example:

1.3.6.1.2.1.25.3.3.1.1.1 = 1.3.6.1.2.1.25.3.3.1.1.1.5.56. 7
Data items in the hr Di skSt or age table have the following restrictions:
» hr Di skSt or ageMedi ais always “unknown” (2).

* hrDi skSt or ageRenovebl e is always “false” (2). Note the incorrect spelling of
“removable” in hr Di skSt or ageRenovebl e (from RFC 1514).

hr St or ageType always contains the value of hr St or ageFi xedDi sk (1.3.6.1.2.1.25.2.1.4).

15

Chapter 2. MIBs Provided with TCP/IP Services

2.2. Overview of MIB Il

The Standard MIB (MIB 1) described in RFC 1213 defines a set of objects useful for managing TCP/
IP Internet entities. MIB II supports network monitoring and managing from the Transport layer
down to the Physical layer of the TCP/IP internet stack. This MIB also provides information on how
connections are established and how packets are routed through the Internet. For more information
about MIB architecture, see Section 3.2.

2.2.1. MIB Il Implemented Groups

A group is a subdivision of a MIB that defines a subtree. SNMP as implemented by TCP/IP Services
supports the following groups:

+ system (1)
« interfaces (2)

* Internet Protocol (4)

- 1CWP (5)
. TCP (6)
- UDP (7)
- SNWP (11)

In the SNMP group (1.3.6.1.2.1.11), data elements with the status noted as obsolete in RFC 1907
are not implemented.

Note

The TCP/IP Services implementation of SNMP does not support the following defined MIB II groups:
+ at (address translation) group

+ EGP (External Gateway Protocol) group

e transm ssi on group

2.2.2. Restrictions to MIB Il Implementation

SNMP requests are not implemented for the following MIB 11 objects:

i pRouteMetricl - ipRouteMetric5tcpMaxConn

SNMP set requests are not implemented for the following MIB II group objects:

i pDefaul t TTL

i pRout eAge

i pRout eDest

i pRout el f 1 ndex

i pRout eMaski pRout eNext Hop

16

Chapter 2. MIBs Provided with TCP/IP Services

i pRout eType
The TCP/IP Services implementation of SNMP includes the following MIB 1I objects:
* sysObj ect | Dis returned in the following format:

1.3.6.1.2.1.1.2.0 = 1.3.6.1.4.1.36.2.15.13.22.1

where 1.3.6.1.4.1.36.2.15.13.22.1 corresponds to:

i so.org.dod.internet.private.enterprises. dec. ema. SysObj ect | ds. DEC
OpenVMS. eSNWP

* The sysORTabl e elements are under OID prefix 1.3.6.1.2.1.1.9.1. See RFC 1907 for details.

When both the TCPIP$OS MIBS and TCPIPSHR MIB subagents are running, a get request on
the sysORTabl e is as follows. Except where noted, the OIDs conform to RFC 1907.

1.3.6.1.2.1.1.9.1.2.1 = 1.3.6.1.4.1.36.15.3.3. 1. 1
1.3.6.1.2.1.1.9.1.2.2 = 1.3.6.1.4.1.36.15.3.3.1. 2
1.3.6.1.2.1.1.9.1.3.1 = Base o/s agent (OS_MBS) capabilities
1.3.6.1.2.1.1.9.1.3.2 = Base o/s agent (HR_ MB) capabilities
1.3.6.1.2.1.1.9.1.4.1 =31 =0d 0:0:0

1.3.6.1.2.1.1.9.1.4.2 =36 =0d 0:0:0

This example is from the MIB browser (TCPIPSSNMP_REQUEST.EXE).

» Under certain conditions, a subagent makes a duplicate entry in SysORTabl e when it restarts.
For example:

1.3.6.1.2.1.1.9.1.2.1 =1.3.6.1.4.1.36.15.3.3.1. 1
1.3.6.1.2.1.1.9.1.2.2 =1.3.6.1.4.1.36.15.3.3.1.2
1.3.6.1.2.1.1.9.1.2.1 = Base o/s agent (OS_ MBS) capabilities
1.3.6.1.2.1.1.9.1.2.2 = Base o/s agent (OS_ M BS) capabilities
1.3.6.1.2.1.1.9.1.4.1 = 3256 = 0 d 0:0:32
1.3.6.1.2.1.1.9.1.4.2 = 3256 = 0 d 0:0:32

In this example, the TCPIPSOS_MIBS subagent made two entries with different ID

numbers (OIDs with the prefix 1.3.6.1.2.1.1.9.1.2) that may show different SysORUpTi e
(1.3.6.1.2.1.1.9.1.4). The snnp_r equest program translates the value received (in hundredths
of a second) to the following, dropping any fractions of seconds:

d n hh: mm ss

In this format, »n represents the number of days, 4/ represents the number of hours, mm represents
the number of minutes, and ss represents the number of seconds.

The HR MIB subagent has not yet successfully started and registered its capabilities. If it starts,
its entries in this example would use the next available index number.

* On systems running versions of the operating system prior to OpenVMS 7.1-2, counters for the
MIB 11 f Tabl e do not wrap back to 9 after reaching the maximum value (2 32 —1), as defined
in RFC 1155. Instead, they behave like the gauge type and remain at the maximum value until
cleared by an external event, such as a system reboot. The following counters are affected:

i flnDi scardsiflnErrors
i f1 nNUcast Pkt s
i flnCctets

Chapter 2. MIBs Provided with TCP/IP Services

i flnUcast Pkts

i f1 nUnknownPr ot os
ifQutErrors

i f Qut NUcast Pkt s

i fQutCctets

i f Qut Ucast Pkt s

Note that for SNMP Version 2, these counters are data type Counter32. The following i f Tabl e
members are always -1 for OpenVMS:

i f Qut Di scar ds (Counter32)
i f Qut QLen (Gauge32)

18

Chapter 3. Creating a Subagent Using
the eSNMP API

This chapter describes how to use the eSSNMP API to create a MIB subagent that manages entities or
applications. Topics included in this chapter are:

* Creating a MIB specification (Section 3.1)

* The structure of management information (Section 3.2)

» Creating a MIB source file (Section 3.3)

* Including the routines and building the subagent (Section 3.4)

* Including your subagents in startup and shutdown procedures (Section 3.5)

Note

To use this eSNMP API to create a subagent, you must have a C compiler running in your
development environment.

3.1. Creating a MIB Specification

The creation of a management information base (MIB) begins with data gathering. During this phase,
the developer identifies the information to manage, based on the entities that the network manager
needs to examine and manipulate. Each resource that a MIB manages is represented by an object.
After gathering the data, the developer uses Abstract Syntax Notation 1 (ASN.1) to specify the objects
in the MIB.

3.2. The Structure of Management
Information

The structure of management information (SMI), which is specified in RFCs 1155 and 1902,
describes the general framework within which a MIB can be defined and constructed. The SMI
framework identifies the data types that can be used in the MIB and how resources within the MIB are
represented and named.

SMI avoids complex data types to simplify the task of implementation and to enhance interoperability.
To provide a standard representation of management information, the SMI specifies standard
techniques for the following:

* Defining the structure of a particular MIB
* Defining individual objects, including the syntax and value of each object

* Encoding object values

3.2.1. Assigning Object Identification Codes

Each object in a MIB is associated with an identifier of the ASN.1 type, called an object identifier
(OID). OIDs are unique integers that follow a hierarchical naming convention.

Chapter 3. Creating a Subagent Using the eSNMP API

Each OID has two parts:

* A preassigned portion that is always represented on the SMI tree as 1.3.6.1 or iso (1), org (3), dod
(6), Internet (1).

* A developer-assigned portion for the private development of MIBs.

Note

Your organization may require you to register all newly assigned OIDs.

In addition to an OID, you should also assign a name to each object to help with human interpretation.

3.2.2. MIB Subtrees

Understanding MIB subtrees is crucial to understanding the eSNMP API and how your subagent will
work.

Note

This manual assumes that you understand the OID naming structure used in SNMP. If not, refer to
RFC 1902: Structure of Management Information for Version 2 of the Simple Network Management
Protocol (SNMP Version 2).

The information in SNMP is structured hierarchically like an inverted tree. Each node has a name and
a number. Each node can also be identified by an OID, which is a concatenation of the subidentifiers
(non-negative numbers). These numbers are on the path from the root node down to that node in the
tree. In this hierarchy, data is associated only with leaf nodes. (A leaf node represents a MIB variable
that can have an instance and an associated value.)

An OID must be at least two subidentifiers and at most 128 subidentifiers in length. The subidentifier
ranges are:

* Subidentifier 1 values range from 0 to 2, inclusive.
* Subidentifier 2 values range from 0 to 39, inclusive.
* The remaining subidentifier values can be any non-negative number.

Figure 3.1 illustrates the SMI hierarchical tree arrangement as specified in RFCs 1155 and 1902.

20

Chapter 3. Creating a Subagent Using the eSNMP API

Figure 3.1. MIB II in SMI Tree Structure

internet (1)

mgmt (2)

mib2 (1)

. ip(4)
—1__icmp(s)

— 1op (6)
] udp (7)

—1__ ewr(@

— transmission (10)

—' snmp (11)

<| experimental (3)|

private (4}

enterprises (1)

For example, the chess MIB provided with the sample code in the [TCPIPSEXAMPLES.SNMP]
directory has an element with the name “chess.” The OID for the element chess is
1.3.6.1.4.1.36.2.15.2.99, which is derived from its position in the hierarchy of the tree:

i so(1)
org(3)
dod(6)
i nternet (1)
private(4)
enterprise(l)
digital (36)
enma(2)
sysobj ect s(15)
decosf (2)
chess(99)

Any node in the MIB hierarchy can define a MIB subtree. All elements in the subtree have an OID
that starts with the OID of the subtree base. For example, if you define chess to be a MIB subtree
base, the elements with the same prefix as the chess OID are all in the MIB subtree:

chess 1.3.6.1.4.1.36.2.15.2.99
chessProduct | D 1.3.6.1.4.1.36.2.15.2.99.1
chessMaxGanes 1.3.6.1.4.1.36.2.15.2.99.2
chessNunfzanes 1.3.6.1.4.1.36.2.15.2.99.3
ganeTabl e 1.3.6.1.4.1.36.2.15.2.99. 4
ganeEntry 1.3.6.1.4.1.36.2.15.2.99.4.1
ganel ndex 1.3.6.1.4.1.36.2.15.2.99.4.1.1
ganmeDescr 1.3.6.1.4.1.36.2.15.2.99.4.1.2
ganmeNumvbves 1.3.6.1.4.1.36.2.15.2.99.4.1.3
ganeSt at us 1.3.6.1.4.1.36.2.15.2.99.4.1. 4
noveTabl e 1.3.6.1.4.1.36.2.15.2.99.5

Chapter 3. Creating a Subagent Using the eSNMP API

noveEntry 1.3.6.1.4.1.36.2.15.2.99.5.1
novel ndex 1.3.6.1.4.1.36.2.15.2.99.5.1.1
noveByWii te 1.3.6.1.4.1.36.2.15.2.99.5.1.2
noveByBl ack 1.3.6.1.4.1.36.2.15.2.99.5.1.3
noveSt at us 1.3.6.1.4.1.36.2.15.2.99.5.1.4
chessTraps 1.3.6.1.4.1.36.2.15.2.99.6
noveTr ap 1.3.6.1.4.1.36.2.15.2.99.6.1

The base of this MIB subtree is registered with the master agent to tell it that this subagent handles all
requests related to the elements in the subtree.

The master agent expects a subagent to handle all objects subordinate to the registered MIB subtree.
This principle guides your choice of MIB subtrees. For example, registering a subtree of chess is
reasonable because it is realistic to assume that the subagent could handle all requests for elements in
this subtree. Registering an entire application-specific MIB usually makes sense because the particular
application expects to handle all objects defined in the application-specific MIB.

However, registering a subtree of SNMP (under MIB II) would be a mistake, because it is unlikely
that the subagent is prepared to handle every defined MIB object subordinate to SNMP (packet
counts, errors, trapping, and so on).

A subagent can register as many MIB subtrees as it wants. It can register OIDs that overlap with other
registrations by itself or with other subagents; however, it cannot register the same OID more than
once. Subagents can register and unregister MIB subtrees at any time after communication with the
master agent is established.

Normally, it is the nonleaf nodes that are registered as a subtree with the master agent. However, leaf
nodes, or even specific instances, can be registered as a subtree.

The master agent delivers requests to the subagent that has the MIB subtree with the longest prefix
and the highest priority.

3.3. Creating a MIB Source File

Creating the MIB source file requires the following four-step process:

1. Write the ASN.1 input files, as described in Section 3.3.1.

2. Process the input files with the MIB compiler, as described in Section 3.3.2.
3. Compile and link the routines, as described in Section 3.4.

4. Include the subagent, as described in Section 3.5.

3.3.1. Writing the ASN.1 Input File

After you have assigned names and OIDs to all of the objects in the MIB, create an ASN.1 source file
using ASCII statements.

Note

Providing information about ASN.1 syntax and programming is beyond the scope of this guide. For
more information about ASN.1 programming, refer to one or more of the documents on this subject
provided by the International Organization for Standardization (ISO).

22

Chapter 3. Creating a Subagent Using the eSNMP API

Instead of creating ASN.1 files yourself, you can create .MY files from existing ASCII files (for
example, from RFCs) by using the MIB-converter facility provided with TCP/IP Services. This
facility uses a UNIX awk script, which runs on OpenVMS as well as on appropriately configured
UNIX systems. For details about the facility, see the MIB-CONVERTER.AWK file, which is located
in the [.SNMP] subdirectory of TCPIPSEXAMPLES. Standard .MY files are also provided for your
convenience.

The custom MIB definition files have the default extension .MY.

3.3.2. Processing the Input File with the MIB Compiler

Process your ASN.1 source files with the MIB compiler using the DCL command MIBCOMP.

Note

If you are familiar with processing on UNIX systems, you can use the UNIX utilities Snnpi and
nosy. See Section 3.3.2.1 for more information.

The compilation process produces two template C programming modules that are used in building the
executable subagent code. When you run the compiler, specify all the ASN.1 source files for a given
subagent. Whenever any of these source files are updated, you must repeat the compilation process.

The syntax for the MIBCOMP command is as follows:

M BCOVP M B-source-file "subtree" [/PREFI X=prefix-nane] [/PRI NT_TREE] [/
SNVPV2]

The parameters and qualifiers for the MIBCOMP command are as follows:

Parameter or Qualifier Definition

MIB-source-file A comma-separated list of MIB definition files.
The standard extension is .MY, but you can
specify any valid OpenVMS file name. You must
specify the full filename.

subtree The text name for the root of your MIB
definitions. This parameter must be enclosed in
quotation marks. This name is used in generating
names for template C modules and also for the
names of the files themselves: subtree tbl.c and
subtree tbl.h.

/PREFIX= prefix-name The MIB compiler attaches the prefix-namestring
to the beginning of all generated names.

/PRINT TREE Displays the entire MIB subtree.

/SNMPV2 Specifies the use of SNMP Version 2 parsing
rules.

The following is an example of processing the chess example files using the /PRINT TREE qualifier:

$ M BCOWP RFC1442. W, CHESS M B. MY "chess" /PRI NT_TREE
Processi ng RFC1442. MY
Processi ng CHESS M B. My
Dunp of objects in |exical order
— This file created by program'snnpi -p'
ccitt 0

23

Chapter 3. Creating a Subagent Using the eSNMP API

i so
i nt ernet
directory
mgnt
experi nment al
private
enterprises
dec
ena
sysobj ecti ds
decosf
chess
chessProduct | D
read-only
chessMaxGanes
read-only
chessNunGanes
read-only
ganeTabl e
gameEntry
i ndexes: gamel ndex
ganel ndex
1.3.6.1.4.1.36.2.15.2.99.4.1.1
| NTEGER read-wite
ganmeDescr
1.3.6.1.4.1.36.2.15.2.99.4.1.2
Di spl ayString read-write
gameNum\bves
1.3.6.1.4.1.36.2.15.2.99.4.1.3
| NTEGER read-wite
gameSt at us
1.3.6.1.4.1.36.2.15.2.99.4.1. 4

oj ectI D
| NTEGER

I NTEGER

| NTEGER read-wite
enum conpl ete
enum under way
enum delete
noveTabl e
moveEntry
i ndexes: ganel ndex novel ndex
novel ndex

1.3.6.1.4.1.36.2.15.2.99.5.1.1
| NTEGER read-wite
noveByWi t e
1.3.6.1.4.1.36.2.15.2.99.5.1.2
Di spl ayString read-write
range: 0 to 255
noveByBl ack
1.3.6.1.4.1.36.2.15.2.99.5.1.3
Di spl ayString read-write
range: 0 to 255
noveSt at us
1.3.6.1.4.1.36.2.15.2.99.5.1.4

| NTEGER read-wite
enum ok
enum del ete
security
snnpV2

snnmpDonai ns

i
w
%
i
B

=
w
o
=

=
w
o
=

==
ww
oo
==
Ll
==

PREPERRERERERRPRERERERER
WWwwwwowowwwowoww
S R S S
PEPEREREREERERRPRERERER

BARARARARRONE

PR RPRRRR

o
W wow
oo o
o
o o0

[

range:

36

36.
36.
36.
36.
. 36.

. 36.

. 36.

. 36.
. 36.

N

Oto

WWWwN -

oo
NN
ol
;oo
NN
© ©
© o
oo

[

NENESENEN

15
15.
15.

. 15.

15.

. 15.

. 15.
. 15.

255

NN

N

.99
. 99.

. 99.

. 99.

. 99.
. 99.

24

Chapter 3. Creating a Subagent Using the eSNMP API

snnpPr oxys 1.3.6.1.6.2
snmpModul es 1.3.6.1.6.3
joint_iso_ccitt 2

11 objects witten to chess_tbl.c
11 objects witten to chess_tbl.h

3.3.2.1. UNIX Utilities Supplied with TCP/IP Services

For compatibility with UNIX, the nosy and snnpi utilities are provided with TCP/IP Services for
generating the C language code that defines the object tables. These UNIX utilities are supported on
OpenVMS for compatibility with UNIX-developed procedures. For information about using these
utilities, refer to the VSI UNIX Network Programmer's Guide.

3.3.2.2. Object Tables

The MIBCOMP command is used to generate the C language code that defines the object tables from
the MIBs. The object tables are defined in the emitted files subtree_ TBL.H and subtree_ TBL.C,
which are compiled into your subagent.

These modules are created by the MIBCOMP command or the UNIX utilities. VSI recommends that
you do not edit them. If the MIBs change or if a future version of the SNMP development utilities
requires your object tables to be rebuilt, it is easier to rebuild and recompile the files if you did not
edit them.

3.3.2.3. The subtree_TBL.H Output File

The subtree_TBL.H file contains the following sections:

1. A declaration of the subtree structure

2. Index definitions for each MIB variable in the subtree

3. Enumeration definitions for MIB variables with enumerated values
4. MIB group data structure definitions

5. Method routine function prototypes

The following sections describe each section of the subtree. TBL.H file.
1. Declaration Section

The first section of the subtree TBL.H file is a declaration of the subtree structure. The subtree is
automatically initialized by code in the subtree TBL.C file. A pointer to this structure is passed to the
esnnp_r egi st er routine to register a subtree with the master agent. All access to the object table
for this subtree is through this pointer. The declaration has the following form:

extern SUBTREE subtree_subtree;
2. Index Definitions Section

The second section of the subtree TBL.H file contains index definitions for each MIB variable in the
subtree of the form:

#define | _m b-variable nnn

25

Chapter 3. Creating a Subagent Using the eSNMP API

These values are unique for each MIB variable in a subtree and are the index into the object table for
this MIB variable. These values are also generally used to differentiate between variables that are
implemented in the same method routine so they can be used in a switch operation.

3. Enumeration Definitions Section

The third section of the subtree TBL.H file contains enumeration definitions for those integer MIB
variables that are defined with enumerated values, as follows:

#define D_m b-variabl e_enunerati on- nane val ue

These definitions are useful because they describe the value that enumerated integer MIB variables
may take on. For example:

/* enunerations for gameEntry group */

#def i ne D ganmeSt at us_conpl ete 1
#def i ne D ganesSt at us_under way 2
#defi ne D ganmeSt at us_del ete 3

4. MIB Group Data Structure Definitions Section

The fourth section of the subtree_ TBL.H file contains data structure definitions of the following form:

t ypedef structxxx {
type nm b-vari abl e;

char nm b-vari abl e_nmark;

} mb-group_type

The MIB compiler generates one of these data structures for each MIB group in the subtree. Each
structure definition contains a field representing each MIB variable in the group. In addition to the
MIB variable fields, the structure includes a 1-byte mib-variable-mark field for each variable. You can
use these for maintaining status of a MIB variable. For example, the following is the group structure
for the chess MIB:

typedef struct _chess_type {
O D ches;
i nt chessMaxGanes;
i nt chessNuntanes;
char chessProduct| D nark;
char chessMaxGanes_nmark;
char chessNuntzanes_rmark;
} chess_type;

Although MIB group structures are provided for your use, you are not required to use them. You can
use the structure that works best with your method routines.

5. Method Routine Prototypes Section

The fifth section of the subtree TBL.H file describes the method routine prototypes. Each MIB
group within the subtree has a method routine prototype defined. A MIB group is a collection of MIB
variables that are leaf nodes and that share a common parent node.

26

Chapter 3. Creating a Subagent Using the eSNMP API

There is always a function prototype for the method routine that handles the Get , Get Next , and
CGet Bul k operations. If the group contains any writable variables, there is also a function prototype
for the method routine that handles Set operations. Pointers to these routines appear in the subtree's
object table which is initialized in the subtree. TBL.C module. You must write method routines for
each prototype that is defined, as follows:

extern int mb-group get(VETHOD *net hod);
extern int mb-group set(VETHOD *net hod);

For example:

extern int chess_get (METHOD *rmet hod)

extern int chess_set (METHOD *rmet hod);

3.3.2.4. The subtree_TBL.C Output Files

The subtree_ TBL.C file contains the following sections:

1. An array of integers representing the OIDs for each MIB variable

2. An array of OBJECT structures

3. Aninitialized SUBTREE structure

4. Routines for allocating and freeing the mi b_gr oup_t ype

The following sections describe each section of the subtree TBL.C file.
1. Array of Integers Section

The first section of the subtree TBL.C file is an array of integers used to represent the OID of each
MIB variable in the subtree. For example:

static unsigned int elens[] = {
1, 3, 6, 1, 4, 1, 36, 2, 15, 2, 99, /* chess */
1, 3, 6, 1, 4, 1, 36, 2, 15, 2, 99, 1, 0, /* chessProductlD */

1, 3, 6, 1, 4, 1, 36, 2, 15, 2, 99, 5 1, 4, 0, /* noveStatus */
b

The first line represents the root of the tree; the other lines represent specific variables. The latter
groups are all terminated by a zero, a programming convenience in internal implementations of API
routines.

2. Array of OBJECT Structures Section

The second section of the subtree_ TBL.C file is an array of OBJECT structures. Each MIB variable
within the subtree has one OBJECT. The chess example produces the following:

static OBJECT objects[] = {
{I _chessProduct!|D , {12, &elens[11]}, ESNWP_TYPE (bjectld
, chess get, NULL},

An OBJECT structure represents a MIB variable and has the following fields:

27

Chapter 3. Creating a Subagent Using the eSNMP API

* obj ect i ndex — The constant I mib-variable from the subtree TBL.H file, which identifies
this variable (in the chess example, | _chessPr oduct | D)

* 0i d — The variable's OID (points to a part of el ens[]).

This variable is of type OID, which is a structure containing two elements: the number of elements
in the OID and a pointer to the correct starting place in the array of elements (el ens[] in the
chess example).

In the chess example, oi dis designated by { 12, &el enmens[11]}. This indicates that:

* The OID has 12 integers separated by dots in the ASCII text representation
("1.3.6.1.4.1.36.2.15.2.99.2")

* The integer with index 11 in the array el ens[] is the first element.
* type — The variable's eSNMP data type.

+ get f unc — The address of the method routine to call for Get requests (null if no routine
exists).

» set func — The address of the method routine to call for Set requests (null if no routine
exists).

The master agent does not access object tables or MIB variables directly. It only maintains a registry
of subtrees. When a request for a particular MIB variable arrives, it is processed as shown in the
following steps (where the MIB variable is m b_var and the subtree is subt r ee_1):

1. The master agent finds Subt r ee_1 as the authoritative region for the m b_var in the register
of subtrees. The authoritative region is determined as the registered MIB subtree that has the
longest prefix and the highest priority.

2. The master agent sends a message to the subagent that registered subt r ee_1.
3. The subagent consults its list of registered subtrees and locates subt ree_1.
It searches the object table of subt r ee_1 and locates the following:
* mb_var (for Get and Set routines)
» The first object lexicographically after mi b_var (for Next or Bul k routines)

4. The appropriate method routine is called. If the method routine completes successfully, the data
is returned to the master agent. If the method routine fails when doing a Get or Set , an error is
returned. If the method routine fails when doing a Get Next , the code keeps trying subsequent
objects in the object table of subt r ee_1 until either a method routine returns successfully or the
table is exhausted. In either case, a response is returned.

5. If the master agent detects that Subt r ee_1 could not return data on a Next routine, it
recursively tries the subtree lexicographically after subt r ee_1 until a subagent returns a value
or the registry of subtrees is exhausted.

3. Initialized Subtree Structure Section

The third section of the subtree_ TBL.C file is the SUBTREE structure itself. A pointer to this
structure is passed to the eSNMP library routine esnnp_r egi st er to register the subtree. It is

28

Chapter 3. Creating a Subagent Using the eSNMP API

through this pointer that the library routines find the object structures. The following is an example of
the chess subtree structure:

SUBTREE chess_subtree = { "chess", "1.3.6.1.4.1.36.2.15.2.99",
{ 11, &elens[0] }, objects, | _noveStatus};

The following table describes the elements of the SUBTREE structure, the definition of each element
in the header file (subtree. TBL.H)), and the element in the chess example:

Description Header File Example
Representation
The name of the subtree's base element. |namne "chess"
The ASCII string representation of the |dot s "1.3.6.1.4.1.36.2.15. 2. 99"

subtree's OID. This is what actually
gets registered.

The OID structure for the base node oid 11, &elens[0] }
of the subtree. This points back to the
array of integers.

A pointer to the array of objects in object _oid obj ects
the object table. It is indexed by the
| _xxXxxdefinitions found in the
subtree_TBL.H file.

The index of the last object in the | ast | _noveSt at us
object TBL file. This is used to
determine when the end of the table has
been reached.

4. Routines Section

The final section of the subtree_ TBL.C file. Contains short routines for allocating and freeing the
m b_group_t ype. These are provided as a convenience and are not a required part of the API.

3.4. Including the Routines and Building the
Subagent

The MIB compiler does not generate code for implementing the method routines for your subagent.
This includes code for processing get , set , and other SNMP requests as well as for generating traps.
You must write this code yourself. See the CHESS MIB.C module for an example.

To produce executable subagent code, follow these steps:

1. Compile the C modules generated by the MIB compiler, along with your implementation code.
Use a command in the following format (derived from the sample provided for building the chess
example in TCPIP$BUILD CHESS.COM):

$ CC /1 NCLUDE=TCPI P$SNVP / PREFI X=ALL / STANDARD=VAX CHESS METHOD. C, -
$ CHESS M B.C, CHESS TBL.C

Depending on the version of the C compiler you are using, you might see warnings that you can
ignore. Portions of these warnings are as follows:

%CC-1-SI GNEDKNOWN I n this declaration, DEC C recogni zes the ANSI|

29

Chapter 3. Creating a Subagent Using the eSNMP API

keyword "signed". This differs fromthe VAX C
behavi or.

YUCC-1-INTRINSICINT In this statement, the return type for intrinsic
"strlen" is being changed from"size_ t" to "int".

Link the object modules using a command and options in the following format (derived from the
chess example):

$ LI NK SYS$I NPUT/ OPTI ONS
CHESS_METHOD. CBJ

CHESS_M B. 0BJ

CHESS_TBL. 0BJ

SYS$SHARE: TCPI P$ESNVP_SHR. EXE/ SHARE

To link with the eSNMP object library, enter the following command:

$ LI NK SYS$I NPUT/ OPTI ONS
CHESS_METHOD. CBJ

CHESS_M B. 0BJ

CHESS_TBL. 0BJ

TCPI P$SNIVP: TCPI PSESNWVP. OLB/ LI BRARY
TCPI P$LI BRARY: TCPI P$LI B. OLB/ LI BRARY

Alternatively, you can link your subagent with the eSNMP API shareable image (TCPIP
$SESNMP_SHR.EXE). The resulting executable image is smaller and can be run without relinking
against any future versions of the shareable image. To link the example object with the shareable
image, enter the following command:

$ LI NK SYS$I NPUT/ OPTI ONS
CHESS_METHOD. CBJ

CHESS_M B. 0BJ

CHESS_TBL. 0BJ

SYS$SHARE: TCPI PSESNVP_SHR. EXE/ SHARE

3.5. Including Extension Subagents in the
Startup and Shutdown Procedures

You can add your custom subagents to the SNMP startup and shutdown procedures by editing the
following files:

File Name Edit Required

TCPIPSEXTENSION MIB STARTUP.COM Edit the example lines to include an INSTALL

CREATE command for custom images that
need to be installed, possibly with privileges.
Remove extra example lines, and adjust the
GOTO statement.

TCPIPSEXTENSION MIB RUN.COM Edit the example lines to include a RUN

command for custom images. Remove extra
example lines, and adjust the GOTO statement.

TCPIPSEXTENSION MIB SHUTDOWN.COM |Edit the example lines to:

* Include symbols for the detached processes
that are running custom images. Use the

30

Chapter 3. Creating a Subagent Using the eSNMP API

File Name

Edit Required

same process names specified in TCPIP
$EXTENSION MIB RUN.COM.

* Modify the [F and THEN statements to
include the new symbols.

* Include an INSTALL DELETE
command for images installed in TCPIP
SEXTENSION MIB STARTUP.COM.

* Remove extra example lines, and adjust the
GOTO statement.

31

Chapter 3. Creating a Subagent Using the eSNMP API

32

Chapter 4. Using the SNMP Utilities

TCP/IP Services includes the following programs, which are useful for testing applications and for
analyzing SNMP problems:

* TCPIP$SNMP_REQUEST (MIB browser) (Section 4.1)
* TCPIP$SNMP_TRPSND (trap sender) (Section 4.2)
* TCPIP$SNMP_TRPRCYV (trap receiver) (Section 4.2)

These programs can be invoked by commands that are defined by the SYS$STARTUP:TCPIP
$DEFINE_ COMMANDS.COM command procedure.

This chapter describes how to use the supplied SNMP utilities.

4.1. Using the MIB Browser

TCP/IP Services provides the snnp_r equest MIB browser that acts as a simple client to handle
single SNMP requests for reading and writing to a MIB. The browser sends SNMP Version 1 and
SNMP Version 2 request PDUs to an agent and displays the agent's response.

To run the MIB browser, follow these steps:

1. Define a foreign command for the program:
$ snnp_request == "$SYSESYSTEM TCPI P$SNMP_REQUEST"

Alternatively, you can run the SYSSMANAGER:TCPIPSDEFINE COMMANDS.COM
procedure to define all the foreign commands available with TCP/IP Services.

2. Enter the command using the following format.

snnmp_request agent "conmunity" request _type [flags] variable [data-type
val ue]

Section 4.1.1 describes the parameters. Section 4.1.2 describes the flags.
4.1.1. MIB Browser Parameters
Table 4.1 describes the Snnp_r equest parameters.

Table 4.1. snmp_request Command Parameters

Parameter Function
agent The host name or IP address (in dot notation) of the managed node
to query.

If you specify 0, 0.0.0.0., 127.0.0.1, or “localhost, "the server on
the browser's host is queried.

"communi ty" The community string to be used in the query. This parameter

is case sensitive. Typically, agents are configured to permit

read access to the community string "public". For accurate
interpretation, be sure to enclose the name in quotation marks (" ").

33

Chapter 4. Using the SNMP Utilities

Parameter Function

Note that if you do not use quotation marks, the name is changed
to lowercase.

request -type PDU type to send. Can be one of the following SNMP requests:
Cet Sends a Get-Request PDU.
Cet Next Sends a GetNext-Request PDU.
CGet Bul k Sends a GetBulk-Request PDU
(SNMP Version 2 only).
Set Sends a Set-Request PDU.
vari abl e An object identifier (OID) in ASN.1 notation that is associated

with an object in a MIB. For example:

$ snnp_request hostl "public" getnext -d
1.3.6.1.6.3.1.1.6

dat a-type Data type of the value. This parameter can be specified for
Set requests. The data types are described in Section 4.1.3.

val ue The value to which to set the contents of the OID. This parameter
is used for set requests.

For Set requests, you can specify more than one group of the following:
« vari abl e- name

+ data-type

+ value

For other requests, you can specify more than one variable name, except when you specify the - | or
- t flag; these flags are valid only with a Get Next or Get Bul k request, for which only one OID is
permitted.

4.1.2. MIB Browser Flags

Flags are specified in UNIX format.

Because flags and data types are case sensitive, you should always enter them in the case that is
specified. If a letter or value is specified as uppercase, you must enclose it in quotation marks. In
general, if you use uppercase letters where lowercase is specified, the results are unpredictable.
For example, the flag" - v2C" functions correctly but the flag " - V2¢" does not, because the flag
character (V) must be lowercase.

If you do not specify a flag, or if you specify an invalid flag, a usage message is displayed. You must
place the flags after the r equest - t ype parameter.

Table 4.2 describes the flags for the snnp_r equest command.

Table 4.2. Flags for the snmp_request Command

Flag Description

-d Specifies hexadecimal dump mode. Before displaying a return
value, displays a hexadecimal dump of SNMP packets sent and
received. For example:

34

Chapter 4. Using the SNMP Utilities

Flag

Description

$ snnp_request hostl "public" getnext -d -v 2c
1.3.6.1.6.3.1.1.6

Sent :
30290201 01040670 75626C69 63A11C02
0)..... public...
047BE9C1 BD020100 02010030 OE300C06
{......... 0.0..
082B0601 06030101 060500 B
Recei ved:

30820033 02010104 06707562 6C6963A2

0..3..... public.
2602047B E9C1BD02 01000201 00308200 &..
{... 0.

16308200 12060A2B 06010603 01010601 .00
00020478 D917FC X
1.3.6.1.6.3.1.1.6.1.0 = 2027493372

-i max_i gnores

Specifies the number of times the MIB browser listens for a

reply packet to a request if it receives an invalid packet (caused

by an invalid packet identifier, version, or SNMP version and
command combination). Specify a positive integer for the value
(max_ignores). If you specify a negative value, it will be converted
to an unsigned positive integer. If you specify 0, no retries are
attempted.

If, after an invalid reply packet is received, a valid reply packet is
received, the ignore counter is reset to the value of max_ignores.

If a timeout occurs after an invalid packet is received, the packet is
resent, the resend counter is decremented, and the ignore counter is
reset to the value of max_ignores.

You cannot use the - i flag when you perform a query with the - |
or - t flags to automatically increment the input OID and continue
querying a server after a general SNMP error has occurred, as may
happen with a faulty server. In this case, the query is terminated
even though the end of the MIB selection has not been reached.
You must manually increment the input OID to skip the error and
continue with the query.

Specifies loop mode. Note that this flag is the letter 1, not the
number 1.

Valid only if r equest - t ype is Get Next or Get Bul k (where
flag n is set to 0, and flag mis set to a number greater than 0).

Causes the master agent to traverse all the MIBs registered with
the master agent, starting at the first OID after the one specified in
the command. (Note that you can specify only one var i abl e-
name[OID].) Responses are received one at a time, and for each

35

Chapter 4. Using the SNMP Utilities

Flag

Description

one, the OID returned by the master agent is used in a subsequent
request. Corresponds to the behavior of standard mi bwal k
programs.

The MIB browser reads and displays responses, and issues
requests until the master agent has no more data, times out, or you
press Ctrl/Y or Ctrl/C.

If specified with the Get Bul k request, the - n and - mflags and

associated values are ignored, and the behavior is identical to that
of Get Next .

When the last OID handled by the master agent is reached, you
receive a response similar to the following for a query on OID
1.3.6.1.6.3.1.1.6.1 using SNMP Version 1:

1.3.6.1.6.3.1.1.6.1.0 = 693056825
- no such name - returned for variable 1

For a query using SNMP Version 2, the example response is:

693056825
- end of mb view -

1.3.6.1.6.3.1.1.6.1.0
1.3.6.1.6.3.1.1.6.1.0
These examples assume that:

* OID 1.3.6.1.6.3.1.1.6.1.0 is the last OID supported on the
target host.

* The target host is running an SNMP Version 2 agent.

The statement end of m b vi ewrefers to OIDs for all MIBs
registered with the master agent.

-m max_repetitions

Specifies the number of repetitions requested for repeating
variables. Applies only to the Get Bul k and Get Next requests.

Note that the resulting display can be confusing because the
results for the repeater OIDs are interleaved. That is, the OIDs are
displayed in alternate progression for faster memory throughput.
If you specify Get Bul k without specifying both the - mand - n
flags, the results are unpredictable.

-n non_repeaters

Specifies the number of variables for which no repetition is
requested. Applies only to the Get Bul k request. If you specify
Get Bul k without specifying both the - mand - n flags, the results
are unpredictable.

-p port

Specifies the port where the request is to be sent. If not specified,
the request is sent to well-known SNMP port 161.

-r max_retries

Specifies the number of times the MIB browser resends a request
packet if it times out before receiving a reply. Specify a positive
integer for the value (max_retries). If you specify a negative value,
it will be converted to an unsigned positive integer. If you specify
0, no retries are tried.

36

Chapter 4. Using the SNMP Utilities

Flag

Description

If, after a timeout and a resend, a reply packet is received, the
resend counter is reset. After another timeout, the specified number
of max_retries is sent.

-s sleep_interval

Specifies the number of seconds between iterations of sending a
request (for the - r flag) and listening for a reply (for the - i) flag.
The default is 1 second. This flag is ignored if neither the - r flag
nor the - i flag are specified.

The - s flag is useful for specifying a time to wait between
resends, which might be necessary when a server agent is starting

up.

Specifies tree mode. Valid only if r equest - t ype is Get Next
or Cet Bul k (where flag n is set to 0 and flag mis set to a number
greater than 0).

Similar to the - | flag. Directs the agent to perform a MIB walk for
the subtree with the var i abl e_nane as its root. The program
reads and prints responses and issues requests until the agent has
no more data for the specified subtree, times out, or is interrupted
by a user.

-V version

Specifies the SNMP version to use for sending the PDU. The
versions are: 2C or 1 (default). Not case sensitive. You can specify
the flag without a space (- v2C and - v1).

Ifrequest _t ype is get bul k, the version defaults to SNMP
Version 2. If you specify - v 2C to send a message to an SNMP
Version 1 agent or subagent, it is unlikely to respond.

-W max_wait

Specifies the maximum seconds the Snnp_r equest program
waits for a reply before timing out. Cannot be 0. The default is 3.

The-i,-r,and-s flags apply to individual queries. If you specify the - | or -t flags also, the
values for the - i , - r, and - s flags are applied to each iteration.

4.1.3. MIB Browser Data Types

The snnp_r equest and snip_t r apsnd commands support the data types listed in Table 4.3.
These values apply to Set requests only.

Table 4.3. Data Types for the snmp_request and snmp_trapsnd Commands

Data Type Value
Counter -C
Counter64 ! -1
Display string -D
Gauge -0
Integer -1

IP address -a
NULL -N

37

Chapter 4. Using the SNMP Utilities

Data Type Value
Object identifier -d
Octet -0
Opaque string -q
Time ticks -t

'For support of trap sender program (TCPIPSSNMP_TRAPSND.EXE) only. Properly defined, MIB variables of type Counter64 are not
writable.

Note

Except for - | (Counter64), the data types are case sensitive. To preserve uppercase for display strings
and NULL, enclose the value in double quotation marks. For example, “--D” or “--N”.

On OpenVMS Alpha systems, you must specify the value of the - | data type as a 64-bit integer. For
example:

$ snnp_trapsnd O.
1.

nmynode 6 33 100 -h nynode -v2c -
~$1.3.6.1.2.1. 0

0
4.0 "|I"™ 1311768467294899695

On OpenVMS VAX systems, you must specify the value of the - | data type as a 16-digit
hexadecimal value. For example:

$ snnp_trapsnd 0.0 nynode 6 33 100 -h nynode -v2c -
~$1.3.6.1.2.1.1.4.0 "I" 0x1234567890ABCDEF

Note that alphabetic characters are not case sensitive when used with the - | data type.

For more information about the data types, see RFCs 1155 and 1902.

4.1.4. Command Examples for snmp_request

This section presents several examples of using the snnp_r equest utility. In the following
snnp_r equest command examples:

* The valid host name is mar | ey. dec. com
e The" publ i c" community is type Read, address 0.0.0.0.

* The"address_|ist" community is type Read and Write, with write access for the host on
which the snnp_r equest program is running.

» Thel ocat i on has been specified as shown in the following command:

TCPI P> SET CONFI GURATI ON SNWP -
_TCPI P> / LOCATI ON=(FI RST="Fal con Buil di ng", SECOND="Los Angel es, CA")

* The command responses have been edited for readability.

Examples

1. The following example shows how to retrieve the value of the MIB Il variable sysDescr . 0
(1.3.6.1.2.1.1. 1. 0). The request is successful because the OID (var i abl e_nane)
provided in the command line exists and is readable. This OID is returned by the subagent code
that resides in the master agent.

$ snnp_request marley.dec.com"public" get 1.3.6.1.2.1.1.1.0

38

Chapter 4. Using the SNMP Utilities

1.3.6.1.2.1.1.1.0 = marl ey. dec. com Al phaServer 2100 4/200 OpenVNMS
V7.1 Digital TCP/IP Services for OpenVMs

The following example shows how to retrieve two MIB Il variables. This example is identical
to the previous example, except that two OID values are input and two returned: instance 1 of
i f Descr and hr Syst empt i me. Note that the first value comes from the MIB II subagent
(TCPIP$OS_MIBS) and the second comes from the Host Resources MIB subagent (TCPIP
$HR MIB).

$ snnp_request marley.dec.com"public" get 1.3.6.1.2.1.2.2.1.2.1 -
~$1.3.6.1.2.1.25.1.1.0

1.3.6.1.2.1.2.2.1.2.1 = LOIP Interface: LOD, QpenVMs Adapter: <none>,
Loopback Port
1.3.6.1.2.1.25.1.1.0 = 6024942 = 0 d 16:44:9

The following example shows how to retrieve the next MIB 1II variable. This is similar to the
command in example 1, except that a Get Next request is issued and sysQbj ect | D. O
(1.3.6.1.2.1.1.2.0) is returned.

$ snnp_request marley.dec.com"public" getnext 1.3.6.1.2.1.1.1.0
1.3.6.1.2.1.1.2.0 = 1.3.6.1.4.1.36.2.15.13.7.1

The following example shows how to use the SNMP Version 2 Get Bul k request to retrieve the
MIB II variables sysUpTi ne. 0 (1.3.6.1.2.1.1.1.0) and sysDescr. 0 (1.3.6.1.2.1.1.2.0), and
for the first three interfaces, the values of i f Descr (OIDs with the prefix1.3.6.1.2.1.2.2.1.2) and
i f Type (OIDs with the prefix 1.3.6.1.2.1.2.2.1.3).

$ snnp_request marley.dec.com "public" getbulk -n 2 -m3 -

_$.1.2.1.1.11.3.6.1.2.1.1.2 -

_$.1.2.1.2.2.1.11.3.6.1.2.1.2.2.1.2 1.3.6.1.2.1.2.2.1.3

War ni ng: using version SNWPv2 for getbul k command.

1.3.6.1.2.1.1.1.0 = narl ey. dec. com Al phaStati on 255/ 300
QpenVMS V7.1 Digital TCP/IP Services for QpenVMS

1.3.6.1.2.1.1.2.0 = 1.3.6.1.4.1.36.2.15.13.7.1

1.3.6.1.2.1.2.2.1.1.1 =1

1.3.6.1.2.1.2.2.1.2.1 = LOIP Interface: LOD, OpenVMs Adapter: <none>,
Loopback Port1.3.6.1.2.1.2.2.1.3.1 = 24

1.3.6.1.2.1.2.2.1.1.3 = 3

1.3.6.1.2.1.2.2.1.2.3 = VE | P Interface: WEO, OpenVNS Adapter: EWAO:,
PCl bus Ethernet Adapter

1.3.6.1.2.1.2.2.1.3.3 = 6

1.3.6.1.2.1.2.2.1.1.4 = 4

1.3.6.1.2.1.2.2.1.2.4 = W |IP Interface: W0, OpenVNMsS Adapter: FWAO:,
DEFPA PCl bus FDDI Adapter

1.3.6.1.2.1.2.2.1.3.4 = 15

The following example shows how to use the Get Next request with the - | (loop) flag to retrieve
all OIDs starting at the first instance after the OID input and finishing at the end of the MIB view.
Note that if an SNMP Version 2 agent is the server, the results using get bul k are identical (in
general, SNMP Version 1 agents do not support get bul k requests).

$ snnp_request marley.dec.com "public" getnext -1 1.3.6.1.2.1.1.1.0
1.3.6.1.2.1.1.2.0 = 1.3.6.1.4.1.36.2.15.13.7.1

39

Chapter 4. Using the SNMP Utilities

1.3.6.1.2.1.1.3.0 = 1280260 = 0 d 3:33:22
1.3.6.1.2.1.1.4.0 = Sam Spade

1.3.6.1.2.1.1.5.0 = narl ey. dec. com

1.3.6.1.2.1.1.6.0 = Falcon Building Los Angeles, CA
1.3.6.1.2.1.1.7.0 = 721.3.6.1.2.1.1.8.0 =0 =04d 0:0:0
1.3.6.1.2.1.25.5.1.1. 2. 294 = 560
1.3.6.1.2.1.25.5.1.1.2.295 = 472

1.3.6.1.6.3.1.1.6.1.0 = 1296505215

- no such nane - returned for variable 1

The following example uses the same command as in example 5, but it specifies the - t flag
instead of the - | flag. Only OIDs with the prefix matching the input OID are returned. Note that
as with other get next request examples, the value for the input OID is not returned. If an SNMP
Version 2 agent is the server, the results using get bul k are identical.

$ snnp_request marley.dec.com "public" getnext -t 1.3.6.1.2.1.1

1.3.6.1.2.1.1.2.0 = 1.3.6.1.4.1.36.2.15.13.7.1
1.3.6.1.2.1.1.3.0 = 1302232 = 0 d 3:37:2
1.3.6.1.2.1.1.4.0 = Sam Spadel.3.6.1.2.1.1.5.0 = narl ey. dec. com
1.3.6.1.2.1.1.6.0 = Falcon Building Los Angel es, CA
1.3.6.1.2.1.1.7.0 = 721.3.6.1.2.1.1.8.0 =0 =0d 0:0:0
1.3.6.1.2.1.1.9.1.2.1 = 1.3.6.1.4. 1. 36. 153311
1.3.6.1.2.1.1.9.1.2.2 =1.3.6.1.4.1.36.15.3.3.1. 2
1.3.6.1.2.1.1.9.1.3.1 = Base o/s agent (OS_ MBS) capabilities
1.3.6.1.2.1.1.9.1.3.2 = Base o/s agent (HR_ M B) capabilities
1.3.6.1.2.1.1.9.1.4.1 =0=04d 0:0:0
1.3.6.1.2.1.1.9.1.4.2 =0=0d 0:0:0

The following example shows how to send a Set request. The request succeeds because the
command line specifies the correct type for the variable, and all the conditions for enabling Set
requests are met on the server.

$ snnmp_request marl ey.dec.com "address_|ist" -
_$set 1.3.6.1.2.1.1.4.0 "D' "R chard Bl ai ne"
1.3.6.1.2.1.1.4.0 = Richard Bl ai ne

The following example shows how to display the contents of packets that are sent and received.
Note that only the SNMP-specific portion of the UDP packets is displayed.

$ snnp_request marley.dec.com"public" get -d 1.3.6.1.2.1.1.4.0
Sent :

3082002D 02010004 06707562 6C6963A0 0..-..... publi c.
2002047B E9C1BD02 01000201 00308200 T 0..
10308200 0C06082B 06010201 01040005 O oo
00

Recei ved:

3082003B 02010004 06707562 6C6963A2 0..;..... publi c.
2E02047B E9C1BD02 01000201 00308200 T 0..
1E308200 1A06082B 06010201 01040004 O oo
OE526963 68617264 20426C61 696E65 . Ri chard Bl ai ne

40

Chapter 4. Using the SNMP Utilities

1.3.6.1.2.1.1.4.0 = Richard Bl ai ne

4.2. Using the Trap Sender and Trap Receiver
Programs

TCP/IP Services provides the following programs that allow you to set up a simple client on your
system to send and receive trap messages:

* snnp_trapsnd (TCPIPSSNMP TRAPSND.EXE)

Sends SNMP Version 1 and SNMP Version 2 trap messages. Use only for testing or to send
significant state changes that occur on the managed node.

* snnp_t raprcv (TCPIPSSNMP_TRAPRCV.EXE)
Listens for SNMP trap messages and displays any it receives.

By default, these programs use UDP port 162. However, you can specify another port with the - p flag
or set up an SNMP-trap service that specifies the port you want to use. Note, however, that the use of
UDP port 162 is coded into standard MIBs.

Both programs support the use of the UDP (default) and TCP transports. However, the standard TCP/
IP subagents and the Chess example use UDP only. Therefore, if you specify the - t cp flag when
you enter the snnp_t r apr cv command, the program uses TCP to process traps only from the trap
sender program or from a user application written to use TCP.

The following sections explain how to enter commands for both programs. Because flags and data
types are case sensitive, you should always enter them in the case that is specified. If a letter or value
is specified as uppercase, you must enclose it in quotation marks. In general, if you use uppercase
letters where lowercase is specified, the results are unpredictable. For example, flag " - v2C"
functions correctly but flag " - V2¢" does not, because the flag character (V) must be lowercase.

The trap receiver does not use the trap communities specified using the TCPIPSCONFIG.COM
command procedure or any configuration file. You set the trap communities using the trap sender
program. Use the c flag to specify the community name, and the - h flag to set the host name. For
more information about using these flags, see Section 4.2.1.2.

4.2.1. Entering Commands for the Trap Sender
Program

The trap sender program lets you send SNMP Version 1and SNMP Version 2 trap messages. You
should use this program only when you want to test the client or when significant state changes occur
on the managed node.

The trap sender program encodes an SNMP Version 1 trap PDU (see RFCs 1155, 1156, 1157, and
1215) or an SNMP Version 2 trap PDU (see RFCs 1905 and 1908) into an SNMP message and sends
it to the specified hosts. You use parameters and flags to specify the data fields in the trap PDU.

Traps are uniquely identified in the PDU, as follows:
* SNMP Version 1 is identified by a combination of parameters.

* SNMP Version 2 is identified by the value of snnpTr apOl D.

41

Chapter 4. Using the SNMP Utilities

To run the trap sender program, do the following:

1.

Define a foreign command for the program:

$ snmp_trapsnd == "$SYSSSYSTEM TCPI P$SNVP_TRAPSND"

Alternatively, you can run the SYSSMANAGER:TCPIPSDEFINE COMMANDS.COM
procedure to define all the foreign commands available with TCP/IP Services.

Enter a command using the following format:

snnp_trapsnd enterprise agent generic-trap specific-trap tineticks
[-v version] [-c community] [-d] [-h host] [-p port] [-tcp]
[variabl e_name [data-type val ue]]

4.2.1.1. Trap Sender Parameters

Table 4.4 describes the snnp_t r apsnd parameters. Each parameter is required, but you can specify
Zero, as appropriate.

Table 4.4. Parameters for the snmp_trapsnd Command

Parameter Description

enterprise For SNMP Version 1, specifies the enterprise object identifier

(OID) on whose behalf the trap is being sent. For example,
1.3.6.1.4.1.1. If you specify 0 or 0.0, the null OID (0.0) is sent.
Make sure that any OID you specify conforms to the OID rules.

For SNMP Version 2, when specified with the - v2c flag,
represents the value of snnpTr apO D. 0.

agent For SNMP Version 1 traps. Specifies the host name or IP address

of the entity on whose behalf the trap is being generated.

The value for the agent field is that of the primary interface for
the host on which the master agent (TCPIPSESNMP_SERVER)
is running. You can obtain this address using the following DCL
command:

$ SHOW LOG CAL TCPI P$I NET_HOSTADDR

You can specify the name | ocal , which is the same as specifying
0, 0.0, 0.0.0, or 0.0.0.0. In these cases, the address 0.0.0.0 is sent as
the agent address in the SNMP Version 1 trap PDU.

To obtain the value of the local host, enter the following TCP/IP
management command:

TCPI P> SHOW CONFI GURATI ON COMMUNI CATI ON

If the information is not in address format, enter the following
command:

TCPI P> SHOW HOST/ LOCAL

If the - v2c flag is specified, this parameter is ignored.

42

Chapter 4. Using the SNMP Utilities

Parameter

Description

generic-trap

For SNMP Version 1, specifies the generic trap identifier in the
form of a number. Must be one of the following values:

SNMP Version 1 Value Object

col dSt art

war nt ar t

| i nkDown

i nkUp

aut henti cati onFail ure

egpNei ghbor Loss

ol bW O |FL,| O

enterpriseSpecific

For SNMP Version 2, when the - v2c flag is specified, this
parameter must contain a valid OID or 0 as the value of
snnpTrapd D.

specific-trap

For SNMP Version 1, specifies the enterprise-specific trap number.
A numeric value greater than 0 must be present but is ignored if
the - v2c flag is present or if generi c-t r ap is a value other
than 6 (ent er pri seSpeci fi c).

timeticks

Specifies the timestamp value associated with the generation of the
trap message. The timestamp value is the current time in units of
TIMETICKS (1/100 of a second) since the sending SNMP entity
started. A value of 0 causes snnp_t r apsnd to send the time in
hundredths of a second since the operating system was last booted.

vari abl e_nane
type val ue

dat a-

Specifies a list of MIB variables to be included in the trap
message. For a list of supported values, including a value for the
Count er 64 data type, see Table 4.3.

4.2.1.2. Trap Sender Flags

Table 4.5 describes the snnp_t r apsnd flags.

Table 4.5. Flags for the snmp_trapsnd Command

Flag

Description

-Cc community

Specifies a community string to be used when
sending the trap. The default is public.

-d

Displays a hexadecimal dump of the encoded
packet.

-h host

Specifies the host name or I[P address (in ASN.1
dot notation format) of the destination host

to receive the trap message. The default is
| ocal host (127.0.0.1).

-p port

Specifies a port number on the destination host
where the message is to be sent. The default is
UDP 162.

-tcp

Specifies that the TCP transport be used instead
of the default UDP transport. If a connection

43

Chapter 4. Using the SNMP Utilities

Flag Description
cannot be established, the program displays
the warning connect - : connection
ref used.

-V version Specifies the SNMP version to use for sending

the PDU. The valid versions are 2C or 1
(default). You can specify the flag and value
without including a space (for example, - v2C
and - v1).

4.2.1.3. Trap Sender Examples

In the following snnp_t r apsnd command examples:

The first line is the snnp_t r apsnd command.

The remainder is the display received when running the trap receiver program (Snnp_t r apr cv)
without flags included.

The following example generates a trap that originated on the | ocal host (specified by the
agent parameter) using the default SNMP version (SNMP Version 1). The - h host parameter
is not specified, so the trap will be sent to the local host.

$ snnp_trapsnd 0.0 local 0 0 O
Message received from127.0.0.1
SNWPv1- Tr ap- PDU:

comunity - 7075626C 6963 public
enterprise - 0.0

agent address - 0.0.0.0

trap type - Cold Start (0)

timeticks - 51938978

The following example generates the same trap as in example 1, except that it specifies the use of
SNMP Version 2.

$ snnp_trapsnd 0.0 local 00 0 "-v2c"

Message received from127.0.0.1

SNWPv2- Tr ap- PDU: community - 7075626C 6963
public

sysUpTime.0 - 51938968 = 6 d 0:16: 29
snnpTrapO D.0 - 0.0

The following example sends values to the node mynode with the community name speci al .

$ snnp_trapsnd 1.2.3 narley.dec.com6 33 100 -c special -h mynode
Message recei ved from 16. 20. 208. 68

SNVPv 1- Tr ap- PDU:
conmunity - 73706563 69616¢C speci al

enterprise - 1.2.3

44

Chapter 4. Using the SNMP Utilities

agent address - 6.20.208.53

trap type - Enterprise-specific (6)
enterprise-specific value - (33)
timeticks - 100

4.2.2. Entering Commands for the Trap Receiver
Program

The trap receiver program lets you listen for, receive, and display SNMP trap messages. Until
interrupted, the program continues to listen on the specified port.

If you enter commands using the default port number or another privileged port number, you must run
the program from a privileged account.

To run the trap receiver program, do the following:

1. Define a foreign command for the program:
$ snnp_traprcv == "$SYSSSYSTEM TCPI PSSNVP_TRAPRCV"

Alternatively, you can run SYSSMANAGER:TCPIPSDEFINE_ COMMANDS.COM to define all
the foreign commands available with TCP/IP Services.

2. Enter a command using the following format:
snmp_traprcv [-d] [-tcp] [-p port]
4.2.2.1. Trap Receiver Flags

Table 4.6 describes the snnp_t r apr cv flags.

Table 4.6. snmp_traprcv Command Flags

Flag Description

-d Displays a hexadecimal and formatted dump of
the received packet.

-p port Specifies the port number on the local host on
which to listen for trap messages. The default is
162.

-tcp Listens on the TCP port instead of the UDP

(default) port. Reads only a single PDU on an
established connection, which is similar to the
behavior using UDP.

4.2.2.2. Setting Up an SNMP Trap Service

To set up an SNMP trap service for use with the trap receiver program, enter a management command
in the following format:

SET SERVI CE SNWP- TRAP / PROTOCOL=UDP / USER_NAME=TCPI P$SNMWP
/ PROCESS_NAME=TCPI P$SNMP- TRAP / FI LE=TCPI PSSYSTEM TCPI P$SNVP- TRAP. COM

In this command, port 170 is used as an alternative for port 162, and traps that are received on port
162 are ignored.

45

Chapter 4. Using the SNMP Utilities

If you omit the /PROTOCOL qualifier or you use /PROTOCOL=TCEP, the service uses the TCP
transport. In this case, when you enter a command to run the trap receiver program, you must include
the - t cp flag.

With the SNMP trap service in place, the trap receiver program queries the service for the port number
instead of using the default port 162. If you specify a privileged port number (less than 1024) with

the /PORT qualifier, make sure you install the trap receiver program with privileges, or run the
program from an account that has SYSPRYV privilege. Note that the port number must be greater than
Zero.

4.2.2.3. Trap Receiver Examples

1. The following example requests trap information on a system that does not have traps configured
and does not have SYSPRYV privilege or sufficient privilege.

$ snnp_traprcv
No snnp-trap service entry, using default port 162.
bind - : perm ssion denied

2. The example, supplied from a non-privileged account, requests trap information in hexadecimal
dump format on port 1026.

$ snnp_traprcv -d -p 1026

Message received from127.0.0.1

3082002A 02010004 06707562 6C6963A4 0..*..... public.
1D060547 81ADADO1 40040000 00000201 ... M@......
00020100 4304032D AED23082 0000C.-..0...

SNWVPv 1- Tr ap- PDU:
conmunity - 7075626C 6963 public

enterprise - 0.0

agent address - 0.0.0.0
trap type - Cold Start (0)
tinmeticks - 53325522

46

Chapter 5. eSNMP API Routines

This chapter provides reference information about the following types of application programming
interface (API) routines in the eSNMP developer's kit:

* Interface routines (Section 5.1)
¢ Method routines (Section 5.2)

» Support routines (Section 5.6)

5.1. Interface Routines

The interface routines are for developers writing the portion of the application programming interface
(API) that handles the connection between the agent and the subagent. The interface routines are listed

Table 5.1 and described in the following pages.

Table 5.1. Interface Routines

Routine

Function

esnnp_init

Initializes the subagent and initiates
communication with the master agent.

esnnp_regi st er

Requests local registration of a MIB subtree.

esnnp_unr egi ster

Cancels local registration of a MIB subtree.

esnnp_regi ster2

Requests cluster registration of a MIB subtree.

esnnp_unr egi ster2

Cancels cluster registration of a MIB subtree.

esnnmp_capabilities

Adds a subagent's capabilities to the master
agent's SysORTabl e.

esnnp_uncapabilities

Removes a subagent's capabilities from the
master agent's SysORTabl e.

esnnp_pol |

Processes a pending request from the master
agent.

esnnp_are_you_t here

Requests a report from the master agent to
indicate it is up and running.

esnnp_trap

Sends a trap message to the master agent.

esnnp_term

Sends a close message to the master agent.

esnnp_sysupti e

Converts UNIX system time into a value with the
same time base as SysUpTi ne.

esnmp_init

esnmp_init — Initializes the Extensible SNMP (eSNMP) subagent and initiates communication with

the master agent.

Syntax

int esnnp_init (int *socket,

char *subagent identifier) ;

47

Chapter 5. eSNMP API Routines

Arguments

socket

The address of the integer that receives the socket descriptor used by eSNMP.
subagent_identifier

The address of a null-terminated string that uniquely identifies this subagent (usually a program
name).

Description

Call this routine during program initialization or to restart the eSNMP protocol. If you are restarting,
the esnnp_i ni t routine clears all registrations so each subtree must be registered again.

You should attempt to create a unique subagent identifier, perhaps using the program name ar gv[0]
and additional descriptive text. The master agent does not open communications with a subagent
whose subagent identifier is already in use.

This routine does not block waiting for a response from the master agent. After calling the
esnnp_i ni t routine, call the esnnp_r egi st er routine for each subtree that is to be handled by
the subagent.

Return Values

ESNMP_LIB NO CONNECTION Could not initialize or communicate with the
master agent. Try again after a delay.

ESNMP_LIB OK The esnnp_i ni t routine has completed
successfully.

ESNMP LIB NOTOK Could not allocate memory for the subagent.

Example

#i ncl ude <esnnp_h>
i nt socket;
status = esnnp_i nit(&socket, "gated");

esnmp_register

esnmp_register — Requests local registration of a single MIB subtree. This indicates to the master
agent that the subagent instantiates MIB variables within the registered MIB subtree.

Syntax

int esnnp_register (subtree *subtree, int timeout, int priority);
Arguments

subtree

A pointer to a subtree structure corresponding to the subtree to be handled. The code emitted by the
MIB compiler files (subtree_ TBL.C and subtree_ TBL.H) externally declare and initialize the subtree
structures. Refer to Chapter 3 for more information about these files.

48

Chapter 5. eSNMP API Routines

Note

All memory pointed to by the subtree fields must have permanent storage since it is referenced by
| i besnnp for the duration of the program. You should use the data declarations emitted by the
MIBCOMP program.

timeout

The number of seconds the master agent should wait for responses when requesting data in this
subtree. This value must be between 0 (zero) and 300. If the value is 0, the default timeout is 3
seconds.

VSI recommends that you use the default. For information about modifying the default subagent
timeout value, refer to Section 6.2.

priority

The registration priority. The priority argument allows you to coordinate cooperating subagents to
handle different configurations. The range is 1 to 255.

The entry with the largest number has the highest priority. The subagent that registers a subtree with
the highest priority over a range of object identifiers gets all requests for that range of O Ds.

Subtrees registered with the same priority are considered duplicate, and the registration is rejected by
the master agent.

Description

Call the initialization routine esnnp_i ni t prior to calling the esnnp_r egi st er . Call the
esnnp_r egi st er function for each subtree structure corresponding to each subtree to be handled.
At any time, subtrees can be unregistered by calling esnnp_unr egi st er and then be reregistered
by calling the esnnp_r egi st er.

When restarting the eSNMP protocol by calling esnnp_i ni t, all registrations are cleared. All
subtrees must be reregistered.

A subtree is identified by the base MIB name and the corresponding O D number of the node that is
the parent of all MIB variables contained in the subtree. For example: The MIB Il t ¢p subtree has
an O Dof 1. 3. 6. 1. 2. 1. 6. All elements subordinate to this have the same first seven digits and
are included in the subtree's object table. The subtree can also be a single MIB object (a leaf node) or
even a specific instance.

By registering a subtree, the subagent indicates that it will process eSNMP requests for all MIB
variables (or O Ds) within that subtree's range. Therefore, a subagent should register the most fully
qualified (longest) subtree that still contains its instrumented MIB variables.

The master agent does not permit a subagent to register the same subtree more than once. However,
subagents can register subtrees with ranges that overlap the O Dranges of subtrees previously
registered, and subagents can also register subtrees registered by other subagents.

For example, TCP/IP Services supports MIB II. In the eSSNMP environment, the 0S_m bs subagent
registers the MIB 1II subtree i p (OID 1.3.6.1.2.1.4).

TCP/IP Services also provides the gat ed subagent, which registers the i pRout eEnt r y MIB
subtree (OID1.3.6.1.2.1.4.21.1).

49

Chapter 5. eSNMP API Routines

These MIBs are registered at priority 1. Any subagent that registers at a higher priority (greater than
1) overrides these registrations.

A request for | pRout el f | ndex (OID1.3.5.1.2.1.4.21.1.2) is passed to the gat ed subagent.
Requests for other i p variables, such as i pNet ToMedi al f | ndex (OID 1.3.5.1.2.1.4.22.1.1)

are passed to the 0S_ i bs subagent. If the gat ed subagent terminates or unregisters the

i pRout eEnt ry subtree, subsequent requests for i pRout el f | ndex will go to the 0s_ni bs
subagent. This occurs because the i p subtree, which includes all i pRout eEnt r y variables, is now
the authoritative region of requests for i pRout el f | ndex.

Return Values

SNMP_LIB OK The esnnp_r egi st er routine has completed
successfully.
ESNMP_LIB BAD REG The esnnp_i ni t routine has not been called,

the timeout parameter is invalid, or the subtree
has already been queued for registration.

ESNMP _LIB LOST CONNECTION The subagent has lost communications with the
master agent.

Note that the return value indicates only the initiation of the request. The actual status returned in
the master agent's response will be returned in a subsequent call to the esnnp_pol | routine in the
st at e field.

Example

#i ncl ude <esnnp. h>

#defi ne RESPONSE_TI MEQUT 0 /* use the default tine set
i n OPEN nmessage */

#defi ne REA STRATION PRIORITY 10 /* priority at which subtrees
will register */

int status;
extern SUBTREE i pRout eEntry_ subtree;
status = esnnp_register(& pRouteEntry subtree,
RESPONSE_TI MEQUT,
REQ STRATI ON PRIORI TY);
if (status !'= ESNWP_LIB OK) {

printf ("Could not queue the 'ipRouteEntry' \n");
printf ("subtree for registration\n");

esnmp_unregister

esnmp_unregister — Cancels registration of a MIB subtree previously registered with the master
agent.

Syntax

int esnnp_unregi ster (SUBTREE *subtree) ;

50

Chapter 5. eSNMP API Routines

Arguments
subtree
A pointer to a subtree structure corresponding to the subtree to be handled. The code emitted by the

MIB compiler files (subtree_ TBL.C and subtree_ TBL.H) externally declare and initialize the subtree
structures. Refer to Chapter 3 for more information about these files.

Description
This routine can be called by the application code to tell the eSSNMP subagent not to process requests

for variables in this MIB subtree anymore. You can later reregister a MIB subtree, if needed, by
calling the esnnp_r egi st er routine.

Return Values

SNMP LIB OK The esnnp_unr egi st er routine has
completed successfully.

ESNMP_LIB BAD REG The MIB subtree was not registered.

ESNMP_LIB LOST _CONNECTION The request to unregister the MIB subtree could
not be sent. You should restart the protocol.

Example

#i ncl ude <esnnp. h>
int status

ext ern SUBTREE i pRout eEntry_subtree;
status = esnnp_unregi ster (& pRouteEntry _subtree);

switch (status) {

case ESNWP_LI B K
printf ("The esnnp_unregi ster routine conpleted successfully.\n");
br eak;

case ESNVP_LI B_BAD REG
printf ("The M B subtree was not registered.\n");

case ESNVP_LI B_LOST_CONNECTI ON:
printf ("%%%\n", "The request to unregister the ",
"M B subtree could not be sent. ",
"You should restart the protocol.\n");

br eak;

esnmp_register2

esnmp_register2 — Requests registration of a single MIB subtree. This indicates to the master
agent that the subagent instantiates MIB variables within the registered MIB subtree. The
esnnp_r egi st er 2 routine offers extensions to the esnnp_r egi st er routine.

51

Chapter 5. eSNMP API Routines

Syntax

int esnnp_register2 (ESNVP_REG *reqg) ;

Arguments

reg

A pointer to an ESNMP_REG structure that contains the following fields:

Field Name

Description

subtree

A pointer to a subtree structure corresponding to the MIB subtree
to be handled. The subtree structures are externally declared

and initialized in the code emitted by the MIBCOMP command
(subtree_TBL.C and subtree TBL.H, where subtree is the name
of the MIB subtree). This code is taken directly from the MIB
document.

All memory pointed to by this field must have permanent storage
since it is referenced by | i besnnp for the duration of the
program. You should use the data declarations emitted by the
MIBCOMP command.

priority

The registration priority. The entry with the largest number has
the highest priority. The range is 1 to 255. The subagent that has
registered a MIB subtree with the highest priority over a range of
object identifiers gets all requests for that range of OIDs.

MIB subtrees that are registered with the same priority are
considered duplicates, and the registration is rejected by the master
agent.

The priority field is a mechanism for cooperating subagents to
handle different configurations.

timeout

The number of seconds the master agent should wait for responses
when requesting data in this MIB subtree. This value must be
between zero and 300. If the value is zero, the default timeout (3
seconds) is used. You should use the default. For information about
modifying the default timeout value, refer to Section 6.2.

range subid

An integer value that, when nonzero, together with the

range _upper_bound field specifies a range instead of one of the
MIB subtree's OID subidentifiers. The range subid field specifies
the OID subidentifier modified by the range upper bound field.

range upper bound

An integer value that, with a nonzero range subid field, specifies a
range instead of one of the MIB subtree's OID subidentifiers. The
range_upper_bound field provides the upper bound of the range
and the range_subid field provides the lower bound of the range,
which is the MIB subtree's OID subidentifier.

options

An integer value that, when set to

ESNMP REG OPT CLUSTER, indicates that the registration is
valid clusterwide. When the value is set to zero, it indicates that
the registration is valid for the local node.

52

Chapter 5. eSNMP API Routines

Field Name Description

state One of the following integer values that provides the caller with
asynchronous updates of the state of registration of this MIB
subtree. After the return of the esnnp_pol | routine, the caller
can inspect this parameter.

ESNMP REG STATE The registration is currently
held locally while waiting for
_PENDING connection to the master agent.

ESNMP_REG STATE SENT |The registration was sent to the
master agent.

ESNMP REG STATE DONE |The registration was
successfully acknowledged by
the master agent.

ESNMP _REG_STATE The registration was rejected by
the master agent because it was a

_REGDUP duplicate.

ESNMP_REG STATE The master agent does not

support cluster registrations.
_REGNOCLU

ESNMP _REG STATE REJ The master agent rejected the
registration for other reasons.

reserved This field is reserved for exclusive use by the eSNMP library. The
caller should not modify it.

Description

The initialization routine (esnnp_i ni t) must be called prior to calling the esnnp_r egi st er 2
routine. The esnnp_r egi st er 2 function must be called for each subtree structure corresponding
to each MIB subtree that it will be handling. At any time, MIB subtrees can be unregistered by calling
esnnp_unr egi st er 2 and then can be reregistered by calling esnnp_r egi st er 2.

When restarting the eSNMP protocol by calling esnnp_i ni t , all MIB subtree registrations are
cleared. All MIB subtrees must be reregistered.

A MIB subtree is identified by the base MIB variable name and its corresponding OID. This tuple
represents the parent of all MIB variables that are contained in the MIB subtree; for example, the MIB
II't cp subtree has an OID of 1.3.6.1.2.1.6. All elements subordinate to this (those that have the same
first 7 identifiers) are included in the subtree's object table. A MIB subtree can also be a single MIB
object (a leaf node) or even a specific instance.

By registering a MIB subtree, the subagent indicates that it will process SNMP requests for all MIB
variables (or OIDs) within that MIB subtree's region. Therefore, a subagent should register the most
fully qualified (longest) MIB subtree that still contains its instrumented MIB variables.

A subagent using the esnnp_r egi st er 2 routine can register the same MIB subtree for the local
node and for a cluster. To register the MIB subtree for both, you must call the esnnp_r egi st er 2
routine twice: once with the ESNMP_REG _OPT CLUSTER bit set in the options field and once
with the ESNMP_REG_OPT_CLUSTER bit clear in the options field. Alternatively, you can
register a MIB subtree for the cluster only or for the local node only, by setting or clearing the
ESNMP REG OPT CLUSTER bit, respectively, in the options field.

53

Chapter 5. eSNMP API Routines

A subagent can also register MIB subtrees that overlap the OID range of MIB subtrees that it
previously registered or the OID ranges of MIB subtrees registered by other subagents.

For example, consider the two subagents 0S_m bs and gat ed. The 0s_ i bs subagent

registers the i p MIB subtree (1.3.6.1.2.1.4), and the gat ed subagent registers the

i pRout eEnt r y MIB subtree (1.3.6.1.2.1.4.21.1). Both of these registrations are made with the
ESNMP REG OPT CLUSTER bit set in the options field. Requests for i p MIB variables within

i pRout eEntry,suchasi pRout el fl ndex (1.3.6.1.2.1.4.21.1.2), are passed to the gat ed
subagent. Requests for other i p variables, such as i pNet ToMedi al f | ndex (1.3.6.1.2.1.4.22.1.1),
are passed to the 0S_ i bs subagent. If the gat ed subagent terminates or unregisters the

i pRout eEnt r y MIB subtree, subsequent requests for i pRout el f | ndex go to the 0s_ni bs
subagent. This occurs because the i p MIB subtree, which includes all i pRout eEnt r y MIB
variables, is now the authoritative region of requests for i pRout el f | ndex.

Return Values

SNMP_LIB OK The esnnp_r egi st er 2 routine has completed
successfully.
ESNMP_LIB BAD REG The esnnp_i ni t routine has not been called,

the t | meout parameter is invalid, a registration
slot is not available, or this MIB subtree has
already been queued for registration. A message
is also in the log file.

ESNMP LIB LOST CONNECTION The subagent lost communication with the master
agent.

Note that the return value indicates only the initiation of the request. The actual status returned in
the master agent's response will be returned in a subsequent call to the esnnmp_pol | routine in the
st at e field.

Example

#i ncl ude <esnnp. h>

#def i ne RESPONSE_TI MEQUT 0 /* use the default tine set
i n OPEN nessage */

#define REG STRATION PRICRITY 10 /* priority at which subtrees
will register */

i nt status;
extern SUBTREE i pRout eEntry_subtree;

status = esnnp_register(& pRouteEntry_subtree,
RESPONSE_TI MEQUT,
REG STRATI ON_PRIORITY);
if (status !'= ESNMP_LIB_OK) {
printf ("Could not queue the 'ipRouteEntry' \n");
printf ("subtree for registration\n");

54

Chapter 5. eSNMP API Routines

esnmp_unregister2
esnmp_unregister2 — Cancels registration of a MIB subtree previously established with the master

agent. Use this routine only when the MIB subtree was registered using the esnnp_r egi st er 2
routine.

Syntax

int esnnp_unregister2 (ESNMP_REG *reg) ;
Arguments

reg

A pointer to the ESNMP_REG structure that was used when the esnp_r egi st er 2 routine was
called.

Description
This routine can be called by the application code to tell the eSSNMP subagent to no longer process

requests for variables in this MIB subtree. You can later reregister a MIB subtree, if needed, by calling
the esnnp_r egi st er 2 routine.

Return Values

ESNMP_LIB OK The routine completed successfully.

ESNMP LIB BAD REG The MIB subtree was not registered.

ESNMP _LIB LOST CONNECTION The request to unregister the MIB subtree could
not be sent. You should restart the protocol.

Example

#i ncl ude <esnnp. h>
int status

extern ESNVMP_REG esnnp_reg for _ip2egp;
status = esnnp_unregi ster2(&esnnp_reg for _ip2egp);

swi tch(status) {
case ESNVP_LI B K:
printf("The esnnp_unregister2 routine conpleted successfully.\n");
br eak;

case ESNVP_LI B _BAD REG
printf("The MB subtree was not registered.\n");
br eak;

case ESNVP_LI B_LOST_CONNECTI ON:
printf("%%%\n", "The request to unregister the ",
"M B subtree could not be sent. ",
"You should restart the protocol.\n");
br eak;

55

Chapter 5. eSNMP API Routines

esnmp_capabilities

esnmp_capabilities — Adds a subagent's capabilities to the master agent's SysORTabl e. The
sysCORTabl e is a conceptual table that contains an agent's object resources, and is described in RFC
1907.

Syntax

void esnnp_capabilities (O D *agent_cap_id,
char *agent cap_descr)

Arguments
agent cap_id

A pointer to an object identifier that represents an authoritative agent capabilities identifier. This value
is used for the sysORI D object in the sysORTabl e for the managed node.

agent_cap_descr

A pointer to a null-terminated character string describing agent _cap_i d. This value is used for the
sysORDescr object in the sysORTabl e for the managed node.

Description

This routine is called at any point after initializing eSSNMP by a call to the esnnp_i ni t routine.

esnmp_uncapabilities

esnmp_uncapabilities — Removes a subagent's capabilities from the master agent's SysORTabl e.
Syntax

voi d esnnp_uncapabilities (O D *agent_cap_id)

Arguments

agent cap_id

A pointer to an object identifier that represents an authoritative agent capabilities identifier. This value
is used for the sysORI D object in the sysORTabl e for the managed node.

Description

This routine is called if a subagent alters its capabilities dynamically. When a logical connection for a
subagent is closed, the master agent automatically removes the related entries in SysORTabl e.

esnmp_poll

esnmp_poll — Processes a pending message that was sent by the master agent.

Syntax

int esnnp_poll ()

56

Chapter 5. eSNMP API Routines

Description

This routine is called after the sel ect () call has indicated data is ready on the eSNMP socket.
(This socket was returned from the call to the esnnp_i ni t routine.)

If a received message indicates a problem, an entry is made to the SNMP log file and an error status is
returned.

If the received message is a request for SNMP data, the object table is checked and the appropriate
method routines are called, as defined by the developer of the subagent.

Return Values

ESNMP_LIB_OK The esnnp_pol | routine completed
successfully.

ESNMP LIB BAD REG The master agent failed in a previous registration
attempt. See the log file.

ESNMP LIB DUPLICATE A duplicate subagent identifier has already been
received by the master agent.

ESNMP LIB NO CONNECTION The master agent's OPEN request failed. Restart
the connection after a delay. See the log file.

ESNMP_LIB CLOSE A CLOSE message was received.

ESNMP _LIB NOTOK An eSNMP protocol error occurred and the
packet was discarded.

ESNMP_LIB LOST_CONNECTION Communication with the master agent was lost.
Restart the connection.

esnmp_are_you_there

esnmp_are you there — Requests the master agent to report immediately that it is up and
functioning.

Syntax

int esnnp_are_you there () ;

Description

The esnnp_ar e_you_t her e routine does not block waiting for a response. The routine is
intended to cause the master agent to reply immediately. The response should be processed by calling

the esnnp_pol | routine.

If a response is not received within the timeout period, the application code should restart the eSNMP
protocol by calling the esnnp_i ni t routine. No timers are maintained by the eSNMP library.

Return Values

ESNMP_LIB OK The request was sent.

ESNMP_LIB LOST _CONNECTION The request cannot be sent because the master
agent is down.

57

Chapter 5. eSNMP API Routines

esnmp_trap
esnmp_trap — Sends a trap message to the master agent.
Syntax
int esnnp_trap (int *generic_trap,
int specific_trap,
char *enterprise,
varbind *vb) 2 ;
Arguments
generic_trap
A generic trap code. Set this argument value to 0 (zero) for SNMPv2 traps.
specific_trap
A specific trap code. Set this argument value to 0 (zero) for SNMPv2 traps.

enterprise

An enterprise O D string in dot notation. Set to the object identifier defined by the NOTIFICATION-
TYPE macro in the defining MIB specification. This value is passed as the value of SnmpTrapOID.0
in the SNMPv2-Trap-PDU.

vb

A VARBIND list of data (a null pointer indicates no data).

Description

This function can be called any time. If the master agent is not running, traps are queued and sent
when communication is possible.

The trap message is actually sent to the master agent after it responds to the esnnp_i ni t routine.
This occurs with every API call and for most esnnp_r egi st er routines. The quickest process
to send traps to the master agent is to call the esnnp_i nit, esnnp_pol | ,andesnnp_trap
routines.

The master agent formats the trap into an SNMP trap message and sends it to management stations
based on its current configuration.

The master agent does not respond to the content of the trap. However, the master agent does return a
value that indicates whether the trap was received successfully.

Return Values

ESNMP_LIB OK The routine has completed successfully.

ESNMP_LIB_LOST _CONNECTION Could not send the trap message to master agent.

ESNMP_LIB NOTOK Something failed and the message could not be
generated.

58

Chapter 5. eSNMP API Routines

esnmp_term

esnmp_term — Sends a close message to the master agent and shuts down the subagent.
Syntax

void esnnp_term (void) ;

Description

Subagents must call this routine when terminating so that the master agent can update its MIB registry
quickly and so that resources used by eSNMP on behalf of the subagent can be released.

Return Values

ESNMP_LIB OK The esnnp_t er mroutine always returns
ESNMP_LIB_OK, even if the packet could not
be sent.

esnmp_sysuptime

esnmp_sysuptime — Converts UNIX system time obtained from get t i meof day into a value with
the same time base as sysUpTi ne.

Syntax

unsi gned int esnnp_sysuptine (struct tineval *tinestanp) ;
Argument

timestamp

A pointer to st ruct ti meval , which contains a value obtained from the get t i meof day system
call. The structure is defined in i ncl ude/ sys/ti ne. h.

A null pointer means return the current SysUpTi ne.

Description

This routine provides a mechanism to convert UNIX timestamps into eSNMP Ti meTi cks. The
function returns the value that SysUpTi me held when the passed timestamp was NOW.

This routine can be used as a Ti meTi cks data type (the time since the eSSNMP master agent
started) in hundredths of a second. The time base is obtained from the master agent in response to
esnnp_i ni t, so calls to this function before that time will not be accurate.

Return Values

0 An error occurred because a get t i meof day
function failed. Otherwise, t i mest anp contains
the time in hundredths of a second since the
master agent started.

59

Chapter 5. eSNMP API Routines

Example

#i ncl ude <sys/tine. h>

#i ncl ude <esnnp. h>
struct tineval tinestanp;

getti meof day(&t i mestanp, NULL);

o_integer(vb, object, esnnp_sysuptinme(&tinestanp));

5.2. Method Routines

SNMP requests may contain many encoded MIB variables. The | i bsnnp code executing in a
subagent matches each Var i abl eBi ndi ng with an object table entry. The object table's method
routine is then called. Therefore, a method routine is called to service a single MIB variable. Since a
single method routine can handle a number of MIB variables, the same method routine may be called
several times during a single SNMP request.

The method routine calling interface contains the following functions:
+ * get —respondto Get, Get Next , and Get Bul k requests

* * gset —respond to Set requests

*_get Routine

* get Routine — The * _get routine is a method routine for the specified MIB item, which is typically
a MIB group (for example, Syst emin MIB II) or a table entry (for example, i f Ent ry in MIB II).

Syntax
int mb-group_get (METHOD *net hod)
Arguments

method

A pointer to a METHOD structure that contains the following fields:

Field Name Description

action One of ESNMP_ACT GET,
ESNMP_ACT GETNEXT, or
ESNMP_ACT GETBULK.

serial_num An integer number that is unique to this SNMP
request. Each method routine called while
servicing a single SNMP request receives the
same value of serial num. New SNMP requests
are indicated by a new value of serial num.

repeat_cnt Used for Get Bul k only. This value indicates
the current iteration number of a repeating
VARBIND. This number increments from1 to

60

Chapter 5. eSNMP API Routines

Field Name Description

max_repetitions and is 0 (zero) for non repeating
VARBIND structures.

max_repetitions The maximum number of repetitions to perform.
Used for Get Bul k only. This will be 0 (zero)
for non-repeating VARBIND structures. You can
optimize subsequent processing by knowing the
maximum number repeat calls will be made.

varbind A pointer to the VARBIND structure for which
you must fill in the OID and data fields. Upon
entry of the method routine, the method-
>varbind->name field is the OID that was
requested.

Upon exit of the method routine, the method-
>varbind field contains the requested data, and
the method->varbind->name field is updated to
reflect the actual instance OID for the returned
VARBIND structure.

The support routines (0_i nt eger,o_stri ng,
0_o0i d,and 0_oct et) are generally used

to load data. The libsnmp i nst ance2oi d
routine is used to update the OID in the method-
>varbind->name field.

object A pointer to the object table entry for the MIB
variable being referenced. The method->object-
>object_index field is this object's unique index
within the object table (useful when one method
routine services many objects).

The method->object->oid field is the OID
defined for this object in the MIB. The instance
requested is derived by comparing this OID with
the OID in the request found in the method-
>varbind->name field. The oi d2i nst ance
function is useful for this.

Description

These types of routines call whatever routine is specified for Get operations in the object table
identified by the registered subtree.

This function is pointed to by some number of elements of the subagent object table. When a request
arrives for an object, its method routine is called. The * _get method routine is called in response to a
Cet request.

Return Values

ESNMP_MTHD_noError The routine completed successfully.
ESNMP_MTHD_noSuchObject The requested object cannot be returned or does
not exist.

61

Chapter 5. eSNMP API Routines

ESNMP_MTHD_noSuchlnstance The requested instance of an object cannot be
returned or does not exist.

ESNMP MTHD genErr A general processing error.

* set Routine

* set Routine — The * _set method routine for a specified MIB item, which is typically a MIB
group (for example, Syst emin MIB II) or a table entry (for example, i f Ent ry in MIB II).

Syntax

int mb-group_set (METHOD *net hod)
Arguments

method

A pointer to a METHOD structure that contains the following fields:

Field Name Description

action One of ESNMP_ACT SET, ESNMP_ACT_UNDO, or
ESNMP_ACT_CLEANUP.

serial_num An integer number that is unique to this SNMP request. Each

method routine called while servicing a single SNMP request
receives the same value as serial num. New SNMP requests are
indicated by a new value of serial num.

varbind A pointer to the VARBIND structure that contains the MIB
variable's supplied data value and name (OID). The instance
information has already been extracted from the OID and placed in
the method->row->instance field.

object A pointer to the object table entry for the MIB variable being
referenced. The method->object->object-index field is this object's
unique index within the object table (useful when one method
routine services many objects).

The method->object->oid field is the OID defined for this object
in the MIB.

flags A read-only integer bitmask set by the | i besnnp routine. If set,
the ESNMP_FIRST IN ROW bit indicates that this call is the first
object to be set in the row. If set, the ESNMP LAST IN ROW bit
indicates that this call is the last object to be set in the row. Only
METHOD structures with the ESNMP_LAST IN ROW bit set
are passed to the method routines for commit, undo, and cleanup
phases.

row A pointer to a ROW_CONTEXT structure (defined in the
ESNMP.H header file). All Set requests to the method routine
that refer to the same group and that have the same instance
number will be presented with the same row structure. The method
routines can accumulate information in the row structures during
Set requests for use during the commit and undo phases. The

62

Chapter 5. eSNMP API Routines

Field Name Description

accumulated data can be released by the method routines during
the cleanup phase.

The ROW_CONTEXT structure contains the following fields:

instance An address of an array
containing the instance OID

for this conceptual row. The

| i besnnp routine builds this
array by subtracting the object
OID from the requested variable
binding OID.

instance_len The size of the method->row-
>instance field.

context A pointer to be used privately by
the method routine to reference
data needed for processing this
request.

save A pointer to be used privately by
the method routine to reference
data needed for undoing this
request.

State An integer to be used privately
by the method routine for
holding any state information it
requires.

Description

The | i besnnp routines call whatever routine is specified for Set operations in the object table
identified by the registered subtree.

This function is pointed to by some number of elements of the subagent object table. When a request
arrives for an object, its method routine is called. The * _set method routine is called in response to a
Set request.

Return Values

ESNMP_ MTHD noError The routine completed successfully.

ESNMP MTHD notWritable The requested object cannot be set or was not
implemented.

ESNMP_MTHD_wrongType The data type for the requested value is the wrong
type.

ESNMP MTHD wronglength The requested value is the wrong length.

ESNMP MTHD wrongEncoding The requested value is represented incorrectly.

ESNMP MTHD wrongValue The requested value is out of range.

ESNMP_MTHD_noCreation The requested instance can never be created.

ESNMP_MTHD _inconsistentName The requested instance cannot currently be
created.

63

Chapter 5. eSNMP API Routines

ESNMP_ MTHD _inconsistentValue The requested value is not consistent.
ESNMP_ MTHD resourceUnavailable A failure due to some resource constraint.
ESNMP_MTHD_genErr A general processing error.
ESNMP_MTHD_commitFailed The commit phase failed.

ESNMP MTHD_undoFailed The undo phase failed.

5.3. Processing *_set Routines

This following is the sequence of operations performed for * _set routines:

L.

Every variable binding is parsed and its object is located in the object table. A METHOD structure
is created for each VARBIND structure. These METHOD structures point to a ROW_CONTEXT
structure, which is useful for handling these phases. Objects in the same conceptual row all point
to the same ROW_CONTEXT structure. This determination is made by checking the following:

* The referenced objects are in the same MIB group.
* The VARBIND structures have the same instance OIDs.

Each ROW_CONTEXT structure is loaded with the instance information for that conceptual row.
The ROW_CONTEXT structure context and save fields are set to NULL, and the state field is set
to ESNMP_SET UNKNOWN structure.

The method routine for each object is called and is passed its METHOD structure with an action
code of ESNMP_ACT _ SET.

If all method routines return success, a single method routine (the last one called for the row) is
called for each row, with method->action equal to ESNMP_ACT_COMMIT.

If any row reports failure, all rows that were successfully committed are told to undo the phase.
This is accomplished by calling a single method routine for each row (the same one that was
called for the commit phase), with a method->action equal to ESNMP_ACT UNDO.

Each row is released. The same single method routine for each row is called with a method-
>action equal to ESNMP_ACT CLEANUP. This occurs for every row, regardless of the results of
previous processing.

The action codes are processed as follows:

ESNMP_ACT SET

Each object's method routine is called during the SET phase, until all objects are processed or a
method routine returns an error status value. (This is the only phase during which each object's
method routine is called.) For variable bindings in the same conceptual row, method->row points
to a common ROW_CONTEXT.

The method->flags bitmask has the ESNMP_LAST IN ROW bit set, if this is the last object
being called for this ROW_CONTEXT. This enables you to do a final consistency check, because
you have seen every variable binding for this conceptual row.

The method routine's job in this phase is to determine whether the Set request will work, to
return the correct SNMP error code if it does not, and to prepare any context data it needs to
actually perform the Set request during the COMMIT phase.

64

Chapter 5. eSNMP API Routines

The method->row->context field is private to the method routine; | i besnnp does not use it. A
typical use is to store the address of an emitted structure that has been loaded with the data from
the VARBIND for the conceptual row.

ESNMP ACT COMMIT

Even though several variable bindings may be in a conceptual row, only the last one in order of
the Set request is processed. Of all the method routines that point to a common row, only the last
method routine is called.

This method routine must have available to it all necessary data and context to perform the
operation. It must also save a snapshot of current data or whatever it needs to undo the Set
operation, if required. The method->row->save field is intended to hold a pointer to whatever
data is needed to accomplish this. A typical use is to store the address of a structure that has
been loaded with the current data for the conceptual row. The structure is one that has been
automatically generated by the MIBCOMP command.

The method->row->save field is also private to the method routine; | i besnnp does not use it.

If this operation succeeds, return ESNVP_MIHD_noEr r or ; otherwise, return a value of
ESNMP_MTHD_conti t Fai | ed.

If any errors were returned during the COMMIT phase, | i besnnp enters the UNDO phase; if
not, it enters the CLEANUP phase.

Note

If the Set request spans multiple subagents and another subagent fails, the UNDO phase may occur
even if the Set operation is successful

ESNMP_ACT _UNDO

For each conceptual row that was successfully committed, the same method routine is called with
method->action equal to ESNMP_ACT UNDO. The ROW_CONTEXT structures that have not
yet been called for the COMMIT phase are not called for the UNDO phase; they are called for
CLEANUP phase.

The method routine should attempt to restore conditions to what they were before it executed the
COMMIT phase. (This is typically done using the data pointed to by the method->row->save
field.)

If successful, return ESNMP_MTHD noError; otherwise, return ESNMP_MTHD undoFail.
ESNMP_ACT _CLEANUP

Regardless of what else has happened, at this point each ROW_CONTEXT participates in cleanup
phase. The same method routine that was called for in the COMMIT phase is called with method-
>action equal to ESNMP_ACT CLEANUP.

This indicates the end of processing for the set request. The method routine should perform
whatever cleanup is required; for instance, freeing dynamic memory that might have been
allocated and stored in method->row->context and method->row->save fields, and so on.

The function return status value is ignored for the CLEANUP phase.

65

Chapter 5. eSNMP API Routines

5.4. Method Routine Applications
Programming

You must write the code for the method routines declared in the subtree TBL.H file. Each method
routine has one argument, which is a pointer to the METHOD structure, as follows:

int mb_group_get(

METHOD *rmet hod int mib_group_set(

METHOD *net hod) ;
The Get method routines are used to perform Get , Get Next , and Get Bul k operations.
The Get method routines perform the following tasks:

» Extract the instance portion of the requested OID. You can do this manually by comparing the
method->object->oid field (the object's base OID) to the method-> varbind->name field (the
requested OID). You can use the 0i d2i nst ance support routine to do this.

* Determine the instance validity. The instance OID can be null or any length, depending on
what was requested and how your object was selected. You may be able to reject the request
immediately by checking on the instance OID.

» Extract the data. Based on the instance OID and method->action field, determine what data, if
any, is to be returned.

* Load the response OID back into the method routine's VARBIND structure. Set the method-
>varbind field with the OID of the actual MIB variable instance you are returning. This is usually
accomplished by loading an array of integers with the instance OID you wish to return and calling
the i nst ance2A D support routine.

* Load the response data back into the method routine's VARBIND structure.

Use one of the support routines with the corresponding datatype to load the method->varbind field
with the data to return:

+ o_integer
e o_string
« o_octet

e 0. o0id

These routines make a copy of the data you specify. The | i besnnp function manages any
memory associated with copied data. The method routine must manage the original data's
memory.

The routine does any necessary conversions to the type defined in the object table for the MIB
variable and copies the converted data into the method->varbind field. See Section 5.5 for
information on data value representation.

¢ Return the correct status value, as follows:

ESNMP_MTHD noError The routine completed successfully or no errors
were found.

66

Chapter 5. eSNMP API Routines

ESNMP_MTHD_noSuchlnstance There is no such instance of the requested object.

ESNMP_ MTHD_ noSuchObject No such object exists.

ESNMP_MTHD _ genErr An error occurred and the routine did not
complete successfully.

5.5. Value Representation

The values in a VARBIND structure for each data type are represented as follows. (Refer to the
ESNMP.H file for a definition of the OCT and OID structures.)

ESNMP_TYPE Integer32 (varbind->value.s! field)

This is a 32-bit signed integer. Use the 0_i nt eger routine to insert an integer value into the
VARBIND structure. Note that the prototype for the value argument is unsigned long; therefore,
you may need to cast this to a signed integer.

ESNMP TYPE DisplayString, ESNMP_TYPE Opaque
ESNMP_TYPE OctetString (varbind->value.oct field)

This is an octet string. It is contained in the VARBIND structure as an OCT structure that contains
a length and a pointer to a dynamically allocated character array.

The displaystring is different only in that the character array can be interpreted as ASCII text, but
the octetstring can be anything. If the octetstring contains bits or a bit string, the OCT structure
contains the following:

* A length equal to the number of bytes needed to contain the value that is ((g#y-bits - 1)/8 + 1)

* A pointer to a buffer containing the bits of the bitstring in the form bbbbb..bb, where the bb
octets represent the bitstring itself, bit 0 comes first, and so on. Any unused bits in the last
octet are set to zero.

Use the 0_st r i ng support routine to insert a value into the VARBIND structure, which is a
buffer and a length. New space is allocated and the buffer is copied into the new space.

Use the 0_oct et routine to insert a value into the VARBIND structure, which is a pointer to an
OCT structure. New space is allocated and the buffer pointed to by the OCT structure is copied.

ESNMP_TYPE Objectld (varbind->value.oid and the varbind->name fields)

This is an object identifier. It is contained in the VARBIND structure as an OID structure that
contains the number of elements and a pointer to a dynamically allocated array of unsigned
integers, one for each element.

The varbind->name field is used to hold the object identifier and the instance information that
identifies the MIB variable. Use the O D21 nst ance function to extract the instance elements
from an incoming OID on a request. Use the i nst ance2o0i d function to combine the instance
elements with the MIB variable's base OID to set the VARBIND structure's name field when
building a response.

Use the 0_oi d function to insert an object identifier into the VARBIND structure when the OID
value to be returned as data is in the form of a pointer to an OID structure.

67

Chapter 5. eSNMP API Routines

Use the 0_st r i ng function to insert an OID into the VARBIND structure when the OID value to
be returned as data is in the form of a pointer to an ASCII string containing the OID in dot format;
for example: 1.3.6.1.2.1.3.1.1.2.0.

« ESNMP_TYPE NULL

This is the NULL, or empty, type. This is used to indicate that there is no value. The length is zero
and the value in the VARBIND structure is zero filled.

The incoming VARBIND structures on a Get , Get Next , and Get Bul k will have this data type.
A method routine should never return this value. An incoming Set request never has this value in
a VARBIND structure.

« ESNMP _TYPE IpAddress (varbind->value.oct field)

This is an IP address. It is contained in the VARBIND structure in an OCT structure that has a
length of 4 and a pointer to a dynamically allocated buffer containing the 4 bytes of the IP address
in network byte order.

Use the 0_i nt eger function to insert an IP address into the VARBIND structure when the value
is an unsigned integer in network byte order.

Use the 0_st ri ng function to insert an IP address into the VARBIND structure when the value
is a byte array (in network byte order). Use a length of 4.

* ESNMP TYPE Integer32
ESNMP_TYPE Counter32
ESNMP TYPE <Gauge32 (varbind->value.ul field)

The 32-bit counter and 32-bit gauge data types are stored in the VARBIND structure as an
unsigned integer.

Use the 0_i nt eger function to insert an unsigned value into the VARBIND structure.

* ESNMP TYPE TimeTicks (varbind->value.ul field)
The 32-bitt i met i cks type values are stored in the VARBIND structure as an unsigned integer.
Use the 0_i nt eger function to insert an unsigned value into the VARBIND structure.

* ESNMP TYPE Counter64 (varbind->value.ul64 field)

The 64-bit counter is stored in a VARBIND structure as an unsigned longword, which, on an
OpenVMS Alpha system, has a 64-bit value.

Use the 0_i nt eger function to insert an unsigned longword (64 bits) into the VARBIND
structure.

5.6. Support Routines

The support routines are provided as a convenience for developers writing method routines that
handle specific MIB elements. The following support routines are provided:

68

Chapter 5. eSNMP API Routines

Routine Function

o_i nt eger Loads an integer value.
0_octet Loads an octet value.

o oid Loads an OID value.
o_string Loads a string value.

o_counter64

Loads a Counter64 variable into the var bi nd.

str2oid

Converts a string OID to dot notation.

sprintoid

Converts an OID into a string.

i nst ance2oi d

Creates a full OID for a value.

oi d2i nst ance

Extracts an instance and loads an array.

inst2ip Returns an IP address for an OID.
cnp_oid Compares two OIDs.

cnp_oi d_prefix Compares an OID's prefix.

clone_oid Makes a copy of an OID.

free_oid Frees a buffer.

cl one_buf Duplicates a buffer.

menoct Converts a string to an OCt structure.
cnp_oct Compares two octets.

cl one_oct Makes a copy of an oCt structure.
free_oct Frees a buffer attached to an oct structure.

free_varbind_date

Frees the fields in the VARBI ND structure.

set _debug | eve

Sets the logging level.

i s_debug_Il eve

Tests the logging level.

ESNVP_LOG

Directs log messages.

print_varbi nd

Displays the var bi nd and its structure.

set_select limt

Sets the error limit for SNMP client requests.

__set_prognane

Sets the program name to be displayed in log
messages.

__restore_prognane

Resets the program name back to the previous
name.

__parse_prognanme

Parses the application file name to determine the
program name.

esnnp_cl eanup

Closes a socket that is used by a subagent for
communicating with the master agent.

o_integer

o_integer — Loads an integer value into the VARBIND structure with the appropriate type. This

function does not allocate the VARBIND structure.

69

Chapter 5. eSNMP API Routines

Syntax

int o_integer (VARBIND *vb,
OBJECT *obj,

unsi gned | ong val ue);

Arguments

vb

A pointer to the VARBIND structure that is supposed to receive the data.

obj

A pointer to the OBJECT structure for the MIB variable associated with the O Din the VARBIND

structure.

value

The value to be inserted into the VARBIND structure.

The real type as defined in the object structure must be one of the following; otherwise, an error is

returned.

ESNMP TYPE Integer32

32-bit integer

ESNMP_TYPE_Counter32

32-bit counter (unsigned)

ESNMP_TYPE_ Gauge32

32-bit gauge (unsigned)

ESNMP_TYPE_ TimeTicks

32-bit timeticks (unsigned)

ESNMP_TYPE_Ulnteger32

32-bit integer (unsigned)

ESNMP_TYPE_Counter64

64-bit counter (unsigned)

ESNMP_TYPE_IpAddress

Implicit octet string (4)

Note

If the real type is | pAddr ess, then eSNMP assumes that the 4-byte integer is in network byte order

and packages it into an octet string.

Return Values

ESNMP_MTHD_ noError

The routine completed successfully.

ESNMP MTHD genErr

An error has occurred.

Example

#i ncl ude <esnnp. h>

#include "ip_thl.h" <-- for
VARBI ND *vb
OBJECT *obj ect
i pNet ToMedi aEntry_type *dat a;

i pNet ToMedi aEntry_type definition
nmet hod- >var bi nd;
net hod- >obj ect ;

assune buffer and structure nenber assignnents occur here

70

Chapter 5. eSNMP API Routines

switch(arg) {
case | _atlflndex:
return o_integer(vb, object, data->i pNet ToMedi al f I ndex);

o_octet

o_octet — Loads an octet value into the VARBIND structure with the appropriate type. This function

does not allocate the VARBIND structure.

Syntax
int o_octet (VARBIND *vb,

OBJECT *obj,
unsi gned | ong val ue);

Arguments
vb
A pointer to the VARBIND structure that is supposed to receive the data.

If the original value in the vb field is not null, this routine attempts to free it. So if you dynamically
allocate memory or issue the mal | oc command to allocate your own VARBIND structure, fill the
structure with zeros before using it.

obj

A pointer to the OBJECT structure for the MIB variable associated with the OID in the VARBIND
structure.

value
The value to be inserted into the VARBIND structure.

The real type as defined in the object structure must be one of the following; otherwise, an error is
returned.

ESNMP_TYPE OCTET _STRING Octet string (ASN.1)

ESNMP TYPE IpAddress Implicit octet string (4) (in octet form, network
byte order)

ESNMP_TYPE DisplayString DisplayString (textual convention)

ESNMP_TYPE Opaque Implicit octet string

Return Values

ESNMP MTHD_noError The routine completed successfully.
ESNMP_MTHD_genErr An error occurred.
Example

#i ncl ude <esnnp. h>

71

Chapter 5. eSNMP API Routines

#include "ip_tbl.h" <-- for ipNetToMedi aEntry_type definition
VARBI ND *vb net hod- >var bi nd;

OBJECT *obj ect nmet hod- >obj ect ;

i pNet ToMedi aEntry_type *dat a;

assune buffer and structure nenber assignnents occur here
switch(arg) {

case | _at PhysAddress:
return o_octet(vb, object, &data->i pNet ToMedi aPhysAddress);

o_oid

o_oid — Loads an O D value into the VARBIND structure with the appropriate type. This function
does not allocate the VARBIND structure.

Syntax

int o_oid (VARBIND *vb,
OBJECT *obj,
QD *oid);

Arguments

vb

A pointer to the VARBIND structure that is supposed to receive the data.

If the original value in the VARBIND structure is not null, this routine attempts to free it. So if you
dynamically allocate memory or issue the mal | oc command to allocate your own VARBIND
structure, fill the structure with zeros before using it.

obj

A pointer to the OBJECT structure for the MIB variable associated with the O D in the VARBIND
structure.

oid

The value to be inserted into the VARBIND structure as data. For more information about OID length
and values, see Chapter 3.

The real type as defined in the object structure must be ESNMP_TYPE OBJECT IDENTIFIER.

Return Values

ESNMP_MTHD noError The routine completed successfully.
ESNMP_MTHD_genErr An error occurred.
Example

#i ncl ude <esnnp. h>
#include "ip_tbhl.h" <-- for ipNetToMedi aEntry type definition
VARBI ND *vb = net hod- >var bi nd;

72

Chapter 5. eSNMP API Routines

OBJECT *obj ect = net hod- >obj ect ;
i pNet ToMedi aEntry_type *dat a;

assune buffer and structure nenber assignnents occur here
switch(arg) {

case | _at(bjectlD:
return o_oid(vb, object, &data->i pNet ToMedi aCbj ect|D);

o_string

o_string — Loads a string value into the VARBIND structure with the appropriate type. This function

does not allocate the VARBIND structure.

Syntax

int o_string (VARBIND *vb,
OBJECT *obj,
unsi gned character *ptr,
int len);

Arguments
vb
A pointer to the VARBIND structure that is supposed to receive the data.

If the original value in the VARBIND structure is not null, this routine attempts to free it. So if you
dynamically allocate memory or issue the mal | 0o¢ command to allocate your own VARBIND
structure, fill the structure with zeros before using it.

obj

A pointer to the OBJECT structure for the MIB variable associated with the O D in the VARBIND
structure.

ptr

The pointer to the buffer containing data to be inserted into the VARBIND structure as data.
len

The length of the data in buffer pointed to by ptr.

The real type as defined in the object structure must be one of the following; otherwise, an error is
returned.

ESNMP _TYPE OCTET_STRING Octet string (ASN.1)

ESNMP_TYPE IpAddress Implicit octet string (4) (in octet form, network
byte order)

ESNMP_TYPE_ DisplayString DisplayString (textual convention)

ESNMP TYPE NsapAddress Implicit octet string

ESNMP TYPE Opaque Implicit octet string

73

Chapter 5. eSNMP API Routines

ESNMP TYPE OBJECT IDENTIFIER Object identifier (ASN.1) (in dot notation, for
example: 1.3.4.6.3)

Return Values

ESNMP MTHD_noError The routine completed successfully.
ESNMP_MTHD_genErr An error occurred.
Example

#i ncl ude <esnnp. h>
#include "ip_tbl.h" <-- for ipNetToMedi aEntry type definition
VARBI ND *vb = net hod- >var bi nd;
OBJECT *obj ect = nmet hod- >obj ect ;
i pNet ToMedi aEntry type *data

assune buffer and structure nenber assignnents occur here
switch(arg) {

case | _at PhysAddress:

return o_string(vb, object, data->i pNet ToMedi aPhysAddress. ptr,
dat a- >i pNet ToMedi aPhysAddr ess. | en);

o_counter64

o_counter64 — Loads a counter64 value into the VARBIND structure.

Syntax

int o_counter64 (VARBIND *vb,
OBJECT *obj,
ui nt 64 value); (for Al pha)
ui nt 64_vax value ; (for VAX))

Arguments

vb

A pointer to the VARBIND structure that is supposed to receive the data.
obj

A pointer to the OBJECT structure for the MIB variable associated with the OID in the VARBIND
structure.

value
The 8-byte value to be inserted into the VARBIND structure, passed as an array of two integers.

The real type as defined in the object structure must be ESNMP_TYPE Counter64. Otherwise, an
error is returned.

Example

See the example for the 0_i nt eger routine.

74

Chapter 5. eSNMP API Routines

Return Values

ESNMP_ MTHD noError No error was generated.
ESNMP MTHD genErr An error was generated.

str2oid

str20id — Converts a null-terminated string O D in dot notation to an O D structure. The st r 20i d
routine does not allocate an O D structure.

Syntax

oid *str2oid (oid *oid,
char *s);

Arguments

oid

The value to be inserted as data into the VARBIND structure. For more information about OID length
and values, see Chapter 3.

S

A null string or empty string returns an OID structure that has one element of zero.

Description

The routine dynamically allocates the buffer and inserts its pointer into the O D structure passed in the
call. The caller must explicitly free this buffer. The O D can have a maximum of 128 elements.

Return Values

null An error occurred. Otherwise, the pointer to the
QA Dstructure (its first argument) is returned.

Example

i ncl ude <esnnp. h>

A D abc;

if (stroid (&bc, "1.2.5.4.3.6") == NULL
DPRI NTF((WARNI NG, "It did not work...\n");

sprintoid

sprintoid — Converts an O D into a null-terminated string.

Syntax
char *sprintoid (char *buffer, oid *oid);
Description

An O Dcan have up to 128 elements. A full-sized O D can require a large buffer.

75

Chapter 5. eSNMP API Routines

Return Values

The return value points to its first argument.

Example
#i ncl ude <esnnp. h>
#def i ne SOVETHI NG BI G 1024
A D abc;
char buffer[SOVETH NG Bl G ;
assune abc gets initialized with sone val ue

printf("dots=%\n", sprintoid(buffer, &abc));

instance2oid

instance20id — Copies the object's base OID and appends a copy of the instance array to make a
complete OID for a value. This routine does not allocate an OID structure. It only allocates the array
containing the elements.

Syntax

oid instance2oid (oid *new,
obj ect *obj,
unsi gned int *instance,
int *len);

Arguments

new

A pointer to the OID that is to receive the new OID value.

obj

A pointer to the object table entry for the MIB variable being obtained. The first part of the new OID
is the OID from this MIB object table entry.

instance

A pointer to an array of i NSt ance values. These values are appended to the base OID obtained from
the MIB object table entry to construct the new OID.

len

The number of elements in the i NSt ance array.

Description

The instance array may be created by 0i d2i nst ance or constructed from key values as a result of a
Get Next command (see Chapter 1).

This routine dynamically allocates the buffer and inserts its pointer into the OID structure passed in
the call. The caller must explicitly free the buffer.

76

Chapter 5. eSNMP API Routines

You should point to the OID structure receiving the new values and then call the i nst ance20i d
routine. Previous values in the OID structure are freed (that is, f r ee_oi d is called first), and then
the new values are dynamically allocated and inserted. Be sure the initial value of the new OID is all
zeros. If you do not want the initial value freed, make sure the new OID structure is all zeros.

Return Values

null An error occurred. Otherwise, the pointer to the
OID structure (new) is returned.

Example

#i ncl ude <esnnp. h>

VARBI ND *vb; <-- filled in

OBJECT *object; <-- filled in

unsi gned int instance[6];

-- Construct the outgoing OD in a GETNEXT --
-- Instance is NN1.A A A A where A's are | P address --
i nstance[0] = dat a- >i pNet ToMedi al f | ndex;

i nstance[1] = 1;
for (i =0; i < 4; i++) {

i nstance[i +2] =((unsi gned char *)(&dat a->i pNet ToMedi aNet Address))[i];
}

i nst ance2oi d(& b->nane, object, instance, 6);

oid2instance

oid2instance — Extracts the instance values from an OID structure and copies them to the specified
array of integers. The routine then returns the number of elements in the array.

Syntax
i nt oid2i nstance (oid *oid,
obj ect *obj,
unsi gned int *instance,
int *max_len);
Arguments
oid
A pointer to an incoming OID containing an instance or part of an instance.
obj
A pointer to the object table entry for the MIB variable.
instance
A pointer to an array of unsigned integers where the index is placed.

max_len

The number of elements in the i nst ance array.

Chapter 5. eSNMP API Routines

Description

The instance values are the elements of an OID beyond those that identify the MIB variable. These
elements identify a specific instance of a MIB value.

If there are more elements in the OID structure than specified by the max_| en parameter, the
function copies the number of elements specified by max_| en only and returns the total number of
elements that would have been copied had there been space.

Return Values

Less than zero An error occurred. This is not returned if the
object was obtained by looking at this OID.

Zero No instance elements.

Greater than zero The returned value indicates the number of
elements in the index. This could be larger than
the max_| en parameter.

Example

#i ncl ude <esnnp. h>

ab *incom ng = &net hod- >var bi nd- >nane;
OBJECT *obj ect = net hod- >obj ect;
i nt i nst Lengt h;

unsi gned int instance[6];

-- in a GET operation --
-- Expected Instance is N 1. A A A A where A's are |P address --
i nstLengt h = oi d2i nstance(i ncom ng, object, instance, 6);
if (instLength !'= 6)
return ESNVP_MIHD noSuchl nst ance;

The N will be ini nst ance[0] and the IP address will be ini nst ance[2] ,i nst ance[3],
i nstance[4],andi nstance[5] .

inst2ip

inst2ip — Returns an IP address derived from an OID instance.

Syntax

int inst2ip (unsigned int *instance,
int *length,
unsi gned int *ipaddr,
i nt *exact,

int *carry);
Arguments

instance

A pointer to an array of unsi gned i nt containing the instance numbers returned by the
oi d2i nst ance routine to be converted to an IP address.

78

Chapter 5. eSNMP API Routines

The range for elements is between zero and 255. Using the EXACT mode, the routine returns 1 if
an element is out of range. Using the NEXT mode, a value greater than 255 causes that element to
overflow. In this case, the value is set to 0 and the next most significant element is incremented;
therefore, it returns a lexically equivalent value of the next possible ipaddr.

length

The number of elements in the instance array. Instances beyond the fourth are ignored. If the length is
less than four, the missing values are assumed to be zero. A negative length results in an ipaddr value
of zero. For an exact match (such as Get), there must be exactly four elements.

ipAddr

A pointer indicating where to return the IP address value. This routine is in network byte order (the
most significant element is first).

exact
Can either be TRUE or FALSE.

TRUE means do an EXACT match. If any element is greater than 255 or if there are not exactly four
elements, a value of 1 is returned. The carry argument is ignored.

FALSE means do a NEXT match. That is, the lexically next IP address is returned, if the carry value
is set and the length is at least four. If there are fewer than four elements, this function assumes the
missing values are zero. If any one element contains a value greater than 255, the value is zeroed and
the next most significant element is incremented. Returns a 1 (one) only when there is a carry from
the most significant (the first) value.

carry

Adds to the IP address on a NEXT match. If you are trying to determine the next possible IP address,
pass in a one. Otherwise, pass in a zero. A length of less than 4 cancels the carry.

Description
Use the EXACT mode for evaluating an instance for Get and Set operations. For Get Next and

Get Bul k operations, use the NEXT mode. When using NEXT mode, this routine assumes that the
search for data will be performed using greater than or equal to matches.

Return Values

Carry value is 0 The routine completed successfully.

Carry value is 1 For EXACT match, an error occurred. For NEXT
match, there was a carry. If there was a carry, the
returned ipaddr is 0.

Examples

1. The following example converts an instance to an [P address for a Get operation, which is an
EXACT match.

#i ncl ude <esnnp. h>

79

Chapter 5. eSNMP API Routines

ab *incom ng
OBJECT *obj ect

i nt instLength;

unsi gned int instance[6];
unsi gned int ip_addr;

i nt i face;

&nmet hod- >var bi nd- >nane;
net hod- >obj ect ;

-- The instance is N.1. A A A A where the A's are the |IP address--
i nstLength = oi d2i nstance(i ncom ng, object, instance, 6);
if (instLength == 6 && !inst2i p(& nstance[2], 4, & p_addr, TRUE, 0)) {
iface = (int) instance[O];
}
el se
return ESNMP_MIHD noSuchl nst ance;

The following example shows a Get Next operation in which there is only one key or in which
the ipaddr value is the least significant part of the key. This is a NEXT match; therefore, a value
of 1 is passed back for the carry value.

#i ncl ude <esnnp. h>
ab *i ncom ng
OBJECT *obj ect

i nt instLength;

unsi gned int instance[6];
unsi gned int ip_addr;

i nt i face;

&met hod- >var bi nd- >nane;
nmet hod- >obj ect ;

-- The instance is N.1. A A A A where the A's are the IP address--

i nstLength = oi d2i nstance(i ncom ng, object, instance, 6);

iface = (instLength < 1) ? 0 :(int) instance[0];

iface += inst2ip(& nstance[2], instLength - 2, & p_addr, FALSE, 1);

In the following example, the search key consists of multiple parts. If you are doing a Get Next
operation, you must find the next possible value for the search key, so that you can perform a
cascaded greater-than or equal-to search.

The search key consists of a number and two ipaddr values. These are represented in the instance
part of the OID as n.A.A.A.A.B.B.B.B, where:

* nis asingle value integer.
* The A.A.A.A portion makes up one IP address.
* The B.B.B.B portion makes up a second IP address.

If all elements are given, the total length of the search key is 9. In this case, you perform the
operation as follows:

* Convert the least significant part of the key (that is, the B.B.B.B portion), by calling the
i NSt 2i p routine, passing it a 1for the carry and (length - 5) for the length.

» If the conversion of the B.B.B.B portion generates a carry (that is, returns 1), you pass it to the
next most significant part of the key.

» Convert the A.A.A.A portion by calling the i NSt 2i p routine, passing it (length - 1) for the
length and the carry returned from the conversion of the B.B.B.B portion.

80

Chapter 5. eSNMP API Routines

* The most significant element # is a number; therefore, add the carry from the A.A.A.A
conversion to the number. If the result overflows, then the search key is not valid.

#i ncl ude <esnnp. h>
ab *i ncom ng
OBJECT *obj ect

i nt instLength;

unsi gned int instance[9];
unsi gned int ip_addrA,
unsi gned int ip_addrB;

i nt i face;

i nt carry;

&nmet hod- >var bi nd- >nane;
nmet hod- >obj ect ;

-- The instance is NA AAABBBB--

i nstLength = oi d2i nstance(i ncom ng, object, instance, 9);

iface = (instLength < 1) ? 0 :(int) instance[O0];

carry i nst 2i p(& nstance[1], instLength - 1, & p_addrB, FALSE, 1);
carry i nst 2i p(& nstance[5], instLength - 5, & p_addrA, FALSE, carry);
i face += carry;

if (iface > carry) {

-- a carry caused an overflow in the nost significant el enent
return ESNMP_MIHD noSuchl nst ance;

}

cmp_oid

cmp_oid — Compares two OID structures.

Syntax

int cnp_oid (oid *q, oid *p);

Description

This routine does an element-by-element comparison, from the most significant element (element

0) to the least significant element. If all other elements are equal, the OID with the least number of
elements is considered less.

Return Values

-1 The O D qis less than O D p.

0 The O D qisin O D p.

1 The O D q is greater than O D p.
cmp_oid_prefix

cmp_oid_prefix — Compares an OID against a prefix.

Syntax

int cnp_oid_prefix (oid *q, oid *prefix);

81

Chapter 5. eSNMP API Routines

Description

A prefix could be the OID on an object in the object table. The elements beyond the prefix are the
instance information.

This routine does an element-by-element comparison, from the most significant element (element 0)
to the least significant element. If all elements of the prefix OID match exactly with corresponding
elements of the O D q structure, it is considered an even match if the O D (structure contains
additional elements. The O D q structure is considered greater than the prefix if the first
nonmatching element is larger. It is considered smaller if the first nonmatching element is less.

Return Values

-1 The OID is less than the prefix.

0 The OID is in prefix.

1 The OID is greater than the prefix.
Example

#i ncl ude <esnnp. h>

ab *q;

OBJECT *obj ect;

if (cnp_oid_prefix(g, &object->o0id) == 0)
printf("matches prefix\n");

clone_oid

clone_oid — Makes a copy of the OID. This routine does not allocate an OID structure.

Syntax

oid clone oid (oid *new, oid *oid);

Arguments

new

A pointer to the OID structure that is to receive the copy.

oid

A pointer to the OID structure where the data is to be obtained.

Description

This routine dynamically allocates the buffer and inserts its pointer into the OID structure received.
The caller must explicitly free this buffer.

Point to the OID structure that is to receive the new OID values and call this routine. Any previous
value in the new OID structure is freed (using the f r ee_oi d routine) and the new values are
dynamically allocated and inserted. To preserve an existing OID structure, initialize the new OID
structure with zeros.

82

Chapter 5. eSNMP API Routines

If the old OID structure is null or contains a null pointer to its element buffer, a new OID of [0.0] is
generated.

Return Values

Null An error or the pointer to the OID is returned.

Example

#i ncl ude <esnnp. h>
A D oidl
A D oi dz;

assune oi dl gets assigned a val ue
menset (&oi d2, 0, sizeof (AD));
if (clone_oid(&oid2, &oidl) == NULL)

DPRI NTF((WARNING, "It did not work\n"));

free oid

free oid — Frees the OID structure's buffer. This routine does not deallocate the OID structure itself;
it deallocates the elements buffer attached to the structure.

Syntax
void free_ oid (oid *oid);
Description

This routine frees the buffer pointed to by the OID->elements field and zeros the field and the
NELEM structure.

Example

i ncl ude <esnnp. h>
O D oid;

assume oi d was assigned a value (perhaps with clone_oid()
and we are now finished with it.

free_oi d(&oid);

clone_buf

clone buf — Duplicates a buffer in a dynamically allocated space.
Syntax

char clone_buf (char *str, int *len);

Arguments

str

83

Chapter 5. eSNMP API Routines

A pointer to the buffer to be duplicated.
len

The number of bytes to be copied.
Description
One extra byte is always allocated at the end and is filled with zeros. If the length is less than zero, the

duplicate buffer length is set to zero. A buffer pointer is always returned, unless there is a mal | oc
error.

Return Values

Null A mal | oc error. Otherwise, the pointer to
the allocated buffer that contains a copy of the
original buffer is returned.

Example

#i ncl ude <esnnp. h>

char *str = "sonething nice";

char *copy;

copy = clone_buf(str, strlen(str));

memz2oct

mem?2oct — Converts a string (a buffer and length) to an oct structure with the new buffer's address
and length.

Syntax

oct *menRoct (oct *new, char *buffer, int *len);
Argument

new

A pointer to the OCt structure receiving the data.

buffer

Pointer to the buffer to be converted.

len

Length of buffer to be converted.

Description

The menoct routine dynamically allocates the buffer and inserts its pointer into the Oct structure.
The caller must explicitly free this buffer.

84

Chapter 5. eSNMP API Routines

This routine does not allocate an oct structure and does not free data previously pointed to in the
oct structure before making the assignment.

Return Values

Null An error occurred. Otherwise, the pointer to the
oct structure (the first argument) is returned.

Example
#i ncl ude <esnnp. h>
char buffer;
int len;
OCT abc;
...buffer and len are initialized to sonething...
nmenset (&bc, 0, sizeof (OCT));
i f (menmRoct (&abc, buffer, [en) == NULL)
DPRI NTF((WARNING, "It did not work...\n"));
cmp_oct

cmp_oct — Compares two octet strings.
Syntax

int cnp_oct (oct *octl, oct *oct2);
Arguments

octl

Pointer to the first octet string.

oct2

Pointer to the second octet string.
Description
The two octet strings are compared byte-by-byte to determine the length of the shortest octet string. If

all bytes are equal, the lengths are compared. An octet with a null pointer is considered the same as a
zero-length octet.

Return Values

-1 The string pointed to by the first oct is less than
the second.

0 The string pointed to by the first oct is equal to
the second.

1 The string pointed to by the first oct is greater
than the second.

85

Chapter 5. eSNMP API Routines

Example

#i ncl ude <esnnp. h>
OCT abc, efg;

...abc and efg are initialized to sonething...
if (cnp_oct(&abc, &efg) > 0)
DPRI NTF((WARNI NG, "octet abc is larger than efg...\n"));

clone_oct

clone_oct — Makes a copy of the data in an oct structure. This routine does not allocate an oct
structure; it allocates the buffer pointed to by the oct structure.

Syntax

oct clone_oct (oct *new, oct *old);
Arguments

new

A pointer to the oct structure receiving the data.
old

A pointer to the oct structure where the data is to be obtained.

Description

The cl one_oct routine dynamically allocates the buffer, copies the data, and updates the oct
structure with the buffer's address and length. The caller must free this buffer.

The previous value of the buffer on the new oct structure is freed prior to the new buffer being
allocated. If you do not want the old value freed, initialize the new oct structure before cloning.

Return Values

Null An error occurred. Otherwise, the pointer to the
oct structure (the first argument) is returned.

Example

#i ncl ude <esnnp. h>
OCT octet1;
OCT octet 2;

assune octetl gets assigned a val ue
nenset (&octet2, 0, sizeof (OCT));

if (clone_oct(&octet2, &octetl) == NULL)
DPRI NTF((WARNING, "It did not work\n"));

86

Chapter 5. eSNMP API Routines

free_oct

free_oct — Frees the buffer attached to an oct structure. This routine does not deallocate the oct
structure; it deallocates the buffer to which the oct structure points.

Syntax

void free_oct (oct *oct);

Description

This routine frees the dynamically allocated buffer to which the oct structure points, and zeros the
pointer and length on the oct structure. If the oCct structure is already null, this routine does nothing.

If the buffer attached to the oct structure is already null, this routine sets the length field of the oct
structure to zero.

Example

#i ncl ude <esnnp. h>
OCT octet;

assune octet was assigned a value (perhaps with nmenRoct ()
and we are now finished with it.

free_oct (&octet);

free_varbind_data

free_varbind data — Frees the dynamically allocated fields in the VARBIND structure. However, this
routine does not deallocate the VARBIND structure itself; it deallocates the name and data buffers to
which the VARBIND structure points.

Syntax

void free_varbind data (varbind *vb);

Description

This routine performs a f r ee_oi d (vb->name) operation. If indicated by the vb->type field, it then
frees the vb->value data using either the f r ee_oct or the f r ee_oi d routine.

Example

#i ncl ude <esnnp. h>
VARBI ND *vb;

vb = (VARBI ND*) mal | oc(si zeof (VARBI ND)) ;
cl one_oi d(&b->nane, oid);
cl one_oct (&vb->val ue. oct, data);

sone processing that uses vb occurs here

free_varbi nd_data(vb);

87

Chapter 5. eSNMP API Routines

free(vb);

set_debug_level

set_debug_level — Sets the logging level, which dictates what log messages are generated. The
program or module calls the routine during program initialization in response to run-time options.

Syntax

voi d set _debug level (int stat, unsigned integer null);

Arguments
stat

The logging level. The following values can be set individually or in combination:

Level Meaning

ERROR Used when a bad error occurred; requires a
restart.

WARNING Used when a packet cannot be handled; also
implies ERROR. This is the default.

TRACE Used when tracing all packets; also implies
ERROR and WARNING.

null

This parameter is not used by OpenVMS. It is supplied for compatibility with UNIX.

Description
The logging level will be ERROR, WARNING, or TRACE.

If you specify TRACE, all three types of errors are generated. If you specify ERROR, only error
messages are generated. If you specify WARNING, both error and warning messages are generated.

To specify logging levels for the messages in your subagent, use the ESNMP_LOG routine.

Example
#i ncl ude <esnnp. h>
if (stremp("-t", argv[1] {
set _debug_ | evel (TRACE, NULL);

} else {
set _debug_| evel (WARNI NG, NULL);
}

is_debug_level

is_debug_level — Tests the logging level to see whether the specified logging level is set.

88

Chapter 5. eSNMP API Routines

Additional Information

You can test the logging levels as follows:

Level Meaning

ERROR Used when a bad error occurs, requiring restart.

WARNING Used when a packet cannot be handled; this also
implies ERROR.

TRACE Used when tracing all packets; this also implies
ERROR and WARNING.

Syntax

int is_debug_level (int type);

Return Values

TRUE The requested level is set and the ESNMP_LOG
will generate output, or output will go to the
specified destination.

FALSE The logging level is not set.

Example

#i ncl ude <esnnp. h>

if (is_debug_ | evel (TRACE))
dunp_packet ()

ESNMP_LOG

ESNMP_LOG — This is an error declaration C macro defined in the ESNMP.H header file. It gathers
the information that it can obtain and sends it to the log.

Syntax

ESNMP_LOG (level, formt, ...);

Description

The esnnp_| og routine is called using the ESNMP_LOG macro, which uses the helper routine
esnnp_| ogs to format part of the text. Do not use these functions without the ESNMP_LOG
macro. For example:

#define ESNWP_LOF I evel, x) if (is_debug |level(level)) { \
esnnp_l og(level, esnnp_logs x, _ LINE , _ FILE);}

Where:
* xisatext string; for example, a pri nt f statement.

» level is one of the following:

89

Chapter 5. eSNMP API Routines

ERROR Declares an error condition.
WARNING Declares a warning.
TRACE Puts a message in the log file if trace is active.

For more information about configuration options for logging and tracing, refer to the V'SI TCP/IP
Services for OpenVMS Management guide.

Example

#i ncl ude <esnnp. h>
ESNMP_LOGE ERROR, ("Cannot open file %\n", file));

__print_varbind

__print_varbind — Displays the VARBIND and its contents. This routine is used for debugging
purposes. To use this routine, you must set the debug level to TRACE. Output is sent to the specified
file.

Syntax

__print_varbind (VARBIND *vb, int indent);
Arguments

vb

The pointer to the VARBIND structure to be displayed. If the vb pointer is NULL, no output is
generated.

indent

The number of bytes of white space to place before each line of output.

set_select_limit

set_select limit — Sets the eSNMP select error limit. For more information, see Section 6.1.
Syntax

set_select _limt (char *prognane);

Arguments

progname

The subagent name. This argument is valid with DPI versions only. With AgentX, the argument is
NULL because subagents do not get names.

Return Values

ESNMP_ MTHD noError No error was generated.

90

Chapter 5. eSNMP API Routines

‘ESNMP_MTHD_genErr An error was generated.

__set_progname

__set_progname — Specifies the program name that will be displayed in log messages. This routine
should be called from the main during program initialization. It needs to be called only once.

Syntax
__set_prognanme (char *prog);
Arguments

prog

The program name as taken from ar gv[0] , or some other identification for entity-calling logging
routines.

Example

#i ncl ude "esnnp. h"
__set_prognane(argv[0]);

restore_progname
__restore_progname — Restores the program name from the second application of the set. This

routine should be called only after the __set _pr ognamne routine has been called. You can use this
to restore the most recent program name only.

Syntax

__restore_prognanme ();

Example

#i ncl ude "esnnp. h"
__restore_progname();

__parse_progname

__parse_progname — Parses the full file specification to extract only the file name and file extension.
Syntax

__parse_prognane (file-specification);

Arguments

file-specification

The full file specification for the subagent.

91

Chapter 5. eSNMP API Routines

Example

#i ncl ude "esnnp. h"
static char Prognane[100];
sprintf (Prognane, "%% 8X', _ parse_prognane(prog), getpid());

esnmp_cleanup

esnmp_cleanup — Closes open sockets that are used by the subagent for communicating with the
master agent.

Syntax
esnnp_cl eanup ();

Example

#i ncl ude "esnnp. h"
int rc = ESNVP_LIB ;
rc = esnnp_cl eanup();

Return Values

ESNMP_LIB NOTOK There was no socket.

ESNMP LIB OK Success.

92

Chapter 6. Troubleshooting eSNMP
Problems

The eSNMP modules provided with TCP/IP Services include troubleshooting features that are useful
in controlling the way your subagent works.

This chapter describes:

* How to modify the subagent error limit (Section 6.1)

* How to modify the default subagent timeout value (Section 6.2)
* Log files (Section 6.3)

For additional information about troubleshooting SNMP problems, see the VST TCP/IP Services for
OpenVMS Management guide.

6.1. Modifying the Subagent Error Limit

In certain circumstances, some subagent programs might enter a loop where a sel ect () call
repeatedly returns a -1 error value. (Note that standard SNMP subagents and the Chess example
provided in TCPIPSEXAMPLES should not exhibit this behavior.)

You can define the logical name TCPIPSSNMP_ SELECT ERROR _LIMIT to modify the number of
times a -1 error value can be returned from a sel ect () call.

The valid TCPIPSSNMP_SELECT ERROR_LIMIT values range from 1 to less than 2 321 (default
100). When defining the error limit, remember:

* Do not use commas when defining the number.
» Ifyou defined the limit as 0, no limit is set.
e A defined value greater than or equal to 4000000000 triggers warning messages.

For example, to define TCPIPSSNMP_SELECT ERROR_LIMIT to limit the number of times a -1
error value is returned to 1, 000, enter the following command:

$ DEFI NE/ SYSTEM TCPI P$SNVP_SELECT_ERROR LI M T 1000

6.2. Modifying the Subagent Timeout

You can define the logical name TCPIPSESNMP DEFAULT TIMEOUT to modify the default time
allowed (3 seconds) before timeout occurs because of the lack of response by the subagent to the
master agent. The ability to define the timeout is especially useful for slower systems and systems
with heavy network traffic. The logical name is translated at startup time.

The TCPIPSESNMP_DEFAULT TIMEOUT value is from 0 to 60 seconds. (You should use 0 only
for testing purposes, such as simulating problems on a heavily loaded host or network.) If the value
you specify contains non-numeric digits or is outside the allowed range, the default value of 3 seconds
is used.

93

Chapter 6. Troubleshooting eSNMP Problems

For example, to define TCPIPSESNMP_DEFAULT TIMEOUT to time out after 6 seconds of
inactivity between the master agent and subagents, enter the following command:

$ DEFI NE/ SYSTEM TCPI PSESNVP_DEFAULT_TI MEQUT 6

When a subagent registers with the master agent, it can specify a value that overrides the value you set
with logical name TCPIPSESNMP DEFAULT TIMEOUT. The standard MIB II and Host Resources

MIB subagents use the default value of 3 seconds. Refer to the description of the esnnp_r egi st er

routine for more information.

6.3. Log Files

All output redirected from SYSSOUTPUT for the SNMP agent process is logged to *.LOG files in
the SYSS$SYSDEVICE:[TCPIP$SNMP] directory. Output redirected from SYSSERROR is logged to
* ERR files in the same directory.

Output redirected from SYSSOUTPUT for the agent process is logged to the following files:
* TCPIPSESNMP.LOG (for the master agent)

* TCPIP$OS MIBS.LOG (for the MIB 1)

* TCPIPSHR MIB.LOG (for the Host Resources MIB)

Output redirected from SYS$ERROR is logged to the following files:

* TCPIPSESNMP.ERR (for the master agent)

* TCPIP$SOS_MIBS.ERR (for the MIB II)

* TCPIP$HR MIB.ERR (for the Host Resources MIB)

Data is flushed to the log files when the corresponding process terminates. Each invocation of the
TCPIP$SNMP_RUN.COM procedure purges these files, retaining at least the last seven versions (the
exact number depends on the value of the CLUSTER NODES system parameter).

The log files are located in the SYS$SYSDEVICE:[TCPIPSSNMP] directory along with the TCPIP
$SNMP_CONF.DAT file, which is a text representation of the SNMP configuration data generated by
the master agent during startup.

The contents of the SNMP log files are written to SYS$SSYSDEVICE:[TCPIP$SNMP] when the
process stops or when you stop it (for example, by entering the STOP/ID= xxx command). After a
process restarts, it creates a new version of the files. If a process executes without errors, *.ERR files
might not be created.

Writing to SYS$SOUTPUT and SYS$SERROR from custom subagents is controlled by qualifiers on
the RUN command in the TCPIPSEXTENSION MIB RUN.COM procedure. See Chapter 3 for
information about including extension subagent commands in the startup procedure.

Custom subagents that do not write to SYSSOUTPUT and SYSSERROR might not produce a .LOG
or .ERR file.

TCP/IP Services does not support writing log files to locations other than the SYS$SYSDEVICE:
[TCPIP$SNMP] directory.

94

Chapter 6. Troubleshooting eSNMP Problems

The log files contain startup and event information and additional messages, depending on the logging
level specified for an agent. The SNMP logging facility uses three logging levels:

* TRACE (logs trace, warning, and error messages)
* WARNING (logs warning and error messages)
« ERROR

For the master agent and standard subagents, the logging level is WARNING. Log files for these
processes include messages for WARNING and ERROR events. The chess example does not have

a default log level. Therefore, no log messages appear. To specify a default log level for custom
subagents, you can use the standard API call set _debug_| evel (see Chapter 5 for more
information). Because the chess example subagent does not use a default, messages are captured only
if you specify tracing. For information about getting trace logs, refer to the VST TCP/IP Services for
OpenVMS Management guide.

95

Chapter 6. Troubleshooting eSNMP Problems

96

	VSI TCP/IP Services for OpenVMS SNMP Programming and Reference
	Table of Contents
	Preface
	1. About VSI
	2. Intended Audience
	3. Document Structure
	4. Related Documents
	5. VSI Encourages Your Comments
	6. Conventions

	Chapter 1. Overview
	1.1. SNMP Architecture
	1.2. Request Handling
	1.3. TCP/IP Services Components for SNMP
	1.4. Writing an eSNMP Subagent
	1.5. The eSNMP API
	1.5.1. The SNMP Utilities

	1.6. The MIB Compiler
	1.7. SNMP Versions
	1.7.1. Using Existing (SNMP Version 1) MIB Modules

	1.8. For More Information

	Chapter 2. MIBs Provided with TCP/IP Services
	2.1. Overview of the Host Resources MIB
	2.1.1. Defining Host Resources MIB Implemented Objects
	2.1.2. Restrictions to Host Resources MIB

	2.2. Overview of MIB II
	2.2.1. MIB II Implemented Groups
	2.2.2. Restrictions to MIB II Implementation

	Chapter 3. Creating a Subagent Using the eSNMP API
	3.1. Creating a MIB Specification
	3.2. The Structure of Management Information
	3.2.1. Assigning Object Identification Codes
	3.2.2. MIB Subtrees

	3.3. Creating a MIB Source File
	3.3.1. Writing the ASN.1 Input File
	3.3.2. Processing the Input File with the MIB Compiler
	3.3.2.1. UNIX Utilities Supplied with TCP/IP Services
	3.3.2.2. Object Tables
	3.3.2.3. The subtree_TBL.H Output File
	3.3.2.4. The subtree_TBL.C Output Files

	3.4. Including the Routines and Building the Subagent
	3.5. Including Extension Subagents in the Startup and Shutdown Procedures

	Chapter 4. Using the SNMP Utilities
	4.1. Using the MIB Browser
	4.1.1. MIB Browser Parameters
	4.1.2. MIB Browser Flags
	4.1.3. MIB Browser Data Types
	4.1.4. Command Examples for snmp_request

	4.2. Using the Trap Sender and Trap Receiver Programs
	4.2.1. Entering Commands for the Trap Sender Program
	4.2.1.1. Trap Sender Parameters
	4.2.1.2. Trap Sender Flags
	4.2.1.3. Trap Sender Examples

	4.2.2. Entering Commands for the Trap Receiver Program
	4.2.2.1. Trap Receiver Flags
	4.2.2.2. Setting Up an SNMP Trap Service
	4.2.2.3. Trap Receiver Examples

	Chapter 5. eSNMP API Routines
	5.1. Interface Routines
	esnmp_init
	esnmp_register
	esnmp_unregister
	esnmp_register2
	esnmp_unregister2
	esnmp_capabilities
	esnmp_uncapabilities
	esnmp_poll
	esnmp_are_you_there
	esnmp_trap
	esnmp_term
	esnmp_sysuptime

	5.2. Method Routines
	*_get Routine
	*_set Routine

	5.3. Processing *_set Routines
	5.4. Method Routine Applications Programming
	5.5. Value Representation
	5.6. Support Routines
	o_integer
	o_octet
	o_oid
	o_string
	o_counter64
	str2oid
	sprintoid
	instance2oid
	oid2instance
	inst2ip
	cmp_oid
	cmp_oid_prefix
	clone_oid
	free_oid
	clone_buf
	mem2oct
	cmp_oct
	clone_oct
	free_oct
	free_varbind_data
	set_debug_level
	is_debug_level
	ESNMP_LOG
	__print_varbind
	set_select_limit
	__set_progname
	__restore_progname
	__parse_progname
	esnmp_cleanup

	Chapter 6. Troubleshooting eSNMP Problems
	6.1. Modifying the Subagent Error Limit
	6.2. Modifying the Subagent Timeout
	6.3. Log Files

