I II VMS Software

VSI TCP/IP Services for OpenVMS
Sockets APl and System Services
Programming

Document Number: DO-TCPAPI-01A
Publication Date: November 2020
Revision Update Information: This is a new manual.

Operating System and Version: VS| OpenVMS Integrity servers Version 8.4-2L1
VS| OpenVMS Alpha Version 8.4-2L1

Software Version: VS| TCP/IP Services Version 5.7

VMS Software, Inc. (VSI)
Burlington, Massachusetts, USA

VSI TCP/IP Services for OpenVMS Sockets APl and System Services
Programming

I I I VMS Software

Copyright © 2021 VMS Software, Inc. (VSl), Burlington, Massachusetts, USA

L egal Notice

Confidential computer software. Valid license from VSl required for possession, use or copying. Consistent with FAR 12.211 and 12.212,
Commercial Computer Software, Computer Software Documentation, and Technical Datafor Commercial Items are licensed to the U.S.
Government under vendor's standard commercial license.

Theinformation contained herein is subject to change without notice. The only warranties for VS| products and services are set forth in the
express warranty statements accompanying such products and services. Nothing herein should be construed as constituting an additional
warranty. VS| shall not beliable for technical or editorial errors or omissions contained herein.

HPE, HPE Integrity, HPE Alpha, and HPE Proliant are trademarks or registered trademarks of Hewlett Packard Enterprise.

Intel, Itanium and | A-64 are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States and other
countries.

The VS| OpenVMS documentation set is available on DVD.

VS| TCP/IP Services for OpenVMS Sockets APl and System Services Programming

PrEface cooueeneiniiensnenieensnensnensnenssnnsssnsssnssssnsssssssssesssessasssssssssssssssssssssssssssssssssssassssassssssssssssassse vii
Lo ADOUL VST i vii
2. Intended AUIENCEoeviiiiiiiiiiiiiiiiiiiiieie ettt ettt et ee e e e eeeeeeeeeeeeeeeeeeeeereeeeeeees vii
3. DOCUMENT STIUCTUIE ...eeiiiiiiiiiiiieee ettt e e e e e e e ettt e e e e eeeeeeaenaaans vii
i N et B D Jo T LTS 111 T viii
5. VSI Encourages YOur COMMENTScceeerrririiiiiiiiiiiiiieiieiieeeiee. X
6. How to Order Additional Documentationeeeveeeiirieeeeuieeeeeeieeeeeeeeeeeeereeeeeeereeeeenes X
7. Typographical CONVENTIONScceiiiuuiiiiiiiieeiiiiiiiitee e e e ettt e e e ettt ee e e e s eiieeeeeees ix

Chapter 1. Application Programming Interfacescccevveevsueersvnnsunnssnensuecssnnssannsncssaeeans 1
1.1, BSD SOCKELS ... 1
1.2. OpenVMS SYSTEIM SEIVICES ..eeeeeiiiiiuiiiiiieteeeeeiiiiiitteeeeeeeeritit ettt eeeessaiiibbeeeeeeeesaaaiiaeees 1
1.3. Application Development Filesuuuiiiiiiiiiiiiiiiiiiiiiiiiiiiieiiiieieeeeeeeeeeenaeeeenenerenenenene. 2

1.3.1. Definition Filesuuuuuuuiiiiiiiiiiiiiiiiiiiiiiiiii e eaeeeeeeeeeeeeee 2
| T B3 o) ¢ o L= PP 4
1.3.3. Programming EXAmPIEScuuuuuiuuuuiiueiiiiiiiiiieiiiieeeseeeeeeeeesesereseseseseeeneeeneeeeenes 4
1.4. Compiling and Linking C Language Programsccccccoovmriiiiiieiiiininniiiiiceeeee e 4
1.4.1. Compiling and Linking Programs Using BSD Version 4.4cccccccovnvuiniieneeen. 5
1.4.2. C Compilation Warningsccoomruuiiiiieieeiiiiiiiiiieeeeeee st ee e e e e s eiiiereeeeee e e 5
1.5. Using 64-Bit Addresses (Alpha and 164 Only)ccoviiiiiiiiiiiiieceeeeee 5

Chapter 2. Writing Network Applications 7

2.1. The Client/Server Communication PrOCESSooveuuiiiiiiieiiiiiiiiiiiiiieie e 7
2.1.1. Using the TCP Protocolccooiiiiiiiiiiiieiiiiiiiiiiee ettt 7
2.1.2. Using the UDP Protocolc..ouiiiiiiiiiiiiiiiiceeee e 10

2.2. Creating @ SOCKEL ...ccoiiiiiiiiiiiiiiit ettt e et e e e e 12
2.2.1. Creating Sockets (SOCkets APIL) ...ccoooeiiieieieieieeeeeeeeeeeee e 12
2.2.2. Creating Sockets (SyStem SeIVICES)cccovrruuriiiiiieieriiiiiiiiiiieeeeeenriiieeeeeeee e 13

2.3. Binding a Socket (Optional for CHENtS)cccceermiiiiiiiieiieeiiiiiiiiiiieee e e e 15
2.3.1. Binding a Socket (Sockets API)cooviiiiiiiiiiiiiiiiiiiiiiiiiiiiieeeeeeeeeeeeeeeeeeeeee e 16
2.3.2. Binding a Socket (SyStem SEIVICES)uveeeeeeeiiiiimiiiiiieeeeniiiiiieeeeeeeeseiiiieeeeeees 17

2.4. Making a Socket a Listener (TCP Protocol)cuuueiiiiiiiiiiiiiiiiiiiiiiiiieeiiiieeeeeeeveeenenes 20
2.4.1. Setting a Socket to Listen (Sockets API)oooeviiiiiiiiiiiiii, 20
2.4.2. Setting a Socket to Listen (System SErviCes)ccovvrrurrrrieieeerinniiiiiieeeeeennnnaans 21

2.5. Initiating a Connection (TCP Protocol)coooveiiiiiiiiiiiiieeeeeeee e, 25
2.5.1. Initiating a Connection (SOckets API)uuuuiiiiiiiiiiiiiiiiiiiiiiiiriiiieveveverenevenenenes 25
2.5.2. Initiating a Connection (SyStem SEIVICES) ...cccceerrrrmrririeeeeeeiiiiiiiiieeeeeeesraiiieeeees 26

2.6. Accepting a Connection (TCP Protocol)cccceiiiiiiiiiiiiiiiiiiiiieeeeeeeeeee e, 30
2.6.1. Accepting a Connection (Sockets API)coooviiiiiiiiiiiiiiiiiicieec e, 30
2.6.2. Accepting a Connection (System ServiCes)uuveeeeeeriiiiiiiiiiieeeeiiiiiiieeeeeeennn 32

2.7. Getting SOCKEt OPLIONSeveiiiiiiiiiiiiiiiiete ettt ettt e e et e e e e e 37
2.7.1. Getting Socket Information (Sockets API)uuvuuiiviiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiinnns 37
2.7.2. Getting Socket Information (System SErviCes)cccuvvvereeeeeriiiiiiiiiieeieeeenineee 39

2.8. Setting SOCKET OPIONSuvviiiiiiiiiiiiiiiiiee e ettt e e e e et ee e e e e e e 44
2.8.1. Setting Socket Options (Sockets API)oooovmiiiiiiiiiiiiiiieeee e, 45
2.8.2. Setting Socket Options (SyStem SEIVICES) ...cceeerrrirurririieieeeiiiiiiiiiieeeeee e 47

R T T4 11 Ve B - 53
2.9.1. Reading Data (Sockets API)cooviiiiiiiiiiiiiiiiiiiiiiiiiiieiiieeeeeeeeeeeeeeeeeeee e 53
2.9.2. Reading Data (SyStem ServiCes)ccccuvurieiieeiiiiiiiiiiiiieeee e 55

2.10. Receiving IP Multicast Datagramsccovviiiiiiiiiiiiiiiiiieeeeeeeeeeeeee e 59

2.11. Reading Out-of-Band Data (TCP Protocol)cccvviiiiiiiiiiiiiiiiiiiiiiiiiiiiiiieieceieeeeeeeeee, 60
2.11.1. Reading OOB Data (Sockets API)uuuuiiiiuiiiiiiiiiiiiiiiiiiiiiiiiiieeieeineeeeeeneeenenes 61
2.11.2. Reading OOB Data (SyStem SEIVICES)cceeeerrmnrimririereeeeniiiiiiieeeeeeesaniineeeees 61

iii

VS| TCP/IP Services for OpenVMS Sockets APl and System Services Programming

2.12. Peeking at QuUeued MESSAZESccvvvvviiieeeeieiiiiiiiieeeeeeeeriirieeeeeeeeeeaaraeaaeeeaeeeesseennnns 62
2.12.1. Peeking at Data (Sockets API)oooeiiiiiiiiiiiiii e 62
2.12.2. Peeking at Data (SyStem SEIVICES)ccvvrvuiieeeeriiiiiiiiiiieeeeereeeriiiiieeeeeeeeeesrnennnns 66

B B T 5 13Vl D T v U UUUPPRURRN 66
2.13.1. Writing Data (SOCKEtS API)uuuiiiiiiiiiiiiiiiie e 66
2.13.2. Writing Data (SyStem SEIVICES)cevvvrrrriiieeeeiiiiiiiiiiieeeeeeeeeriiienreeeeeeeerrreeeeeens 68

2.14. Writing OOB Data (TCP Protocol)cccoiiiiiiiiiiiieeieiiiiiiciee e 75
2.14.1. Writing OOB Data (Sockets API)cooviuiiiiiiiiiiiiiiiiie e 75
2.14.2. Writing OOB Data (SyStem SEIVICES)eeeevrerririiieeeeeeeeriiiiiireeeeeeereririenaaeeeens 76

2.15. Sending Datagrams (UDP Protocol)uuueiiiiiiiiiiiiiiiiiiee e 77
2.15.1. Sending Datagrams (SYStem SEIVICES)uuvreeeerirreiiiiiiieeeeereeerriiiineeeeeeerernreennns 77
2.15.2. Sending Broadcast Datagrams (Sockets API)covvveiiiiiiiiiiiiiiiiiie e, 77
2.15.3. Sending Broadcast Datagrams (SysStem ServiCes)ccceeeeerrvrrrreiieeeeeeerervrennnnnnss 77
2.15.4. Sending Multicast Datagramscc.eeeeveiiiiiiiiiieeeerieeiiiieieeeeeeeeerriiinaeeeeeeeennnes 77

2.16. Using the Berkeley Internet Name Domain Serviceveeeeeeeeeieiiiiiiiiineeneeeeevieennn. 79
2.16.1. BIND Lookups (SOCKEtS API)uuuiiieeiiiiiiiiiiiii et e e e 79
2.16.2. BIND Lookups (SYStem SEIVICES)cevvvruuiereeerrrriiiiiiiieeeeereeeririinaeeeeeaeeeesnens 81

2.17. Closing and Deleting @ SOCKEtuuuiiiiiiiiiiiiiiiiiie e e 85
2.17.1. Closing and Deleting (Sockets API)uueiieiiiiiiiiiiiiiie e 85
2.17.2. Closing and Deleting (SyStem SEIviCes)ceuvvrerireeeeriiiiiiiiiieeeeeeeeeiiiieneeeeenns 86

2.18. Shutting DOWN SOCKELSvuueeiieiiiiiiiiiiiiie e e et e e e e e eea e e e e e e eeeaseeenns 88
2.18.1. Shutting Down a Socket (Sockets API)ccoovviiviiiiiiiiiiiiiiiiciee e 88
2.18.2. Shutting Down a Socket (System ServiCes)ceerererrriririreiiieeeeerereriiiiineeeenn 89

2.19. Canceling /O OPEIatiONSccceeeeeieeiiiieiiieeeeeieiiiiieiaeeeeeeeertrteaaaeeeereessreenaaaeeereesssnenns 92

Chapter 3. Using the Sockets API 93

3.1, INEEINEt PIOTOCOLS ...tviiiiiiiiiiiiiiiiiiiiiiit ettt eeeeeee 93
311, TCP SOCKELS ...vtvetuiuiiiiiiiiiiiiiiiiiiiiiitttettte ettt 93
3 1.2, UDP SOCKELS ..eetiiiiiiiiiiiiiiiiiiiiiititiieeteee ettt ettt et e et e et e e et e e e eeaees 94

320 SHTUCTUIES ..o ee ettt e aaaaaaens 94
3.2.1. addrinfOo STUCTUIEevtieiiiiiiiiiiiiiiieiiieiee ettt ettt eaebebebeeeeeeeeeeeeenene 96
3.2.2. cMSGNAL STIUCKUIE ..vvviinieeiiiiiiiiiie e e e e et e e e e e e e eea bt e e e eeeeeeassennnns 96
3.2.3. hoStent SEIUCHUIEcoeeeiiiieiiee e 96
3.2.4. 1N addr STIUCLUIE ..eevviveiiieeeeeiiiiiiiiee e e e e e e ettt ee e e e e e e e e eaateeeeeeeeeearsaan e eeeeeeesssennns 97
3.2.5.in6_addr Structure (IPVO)coovviiiiiiiii e e e e e enaaes 97
3.2.6. 1OVEC SHIUCKUIE .oeiiiiiiiiiiiiiiieii ettt 98
3.2.7. INGET STIUCTUIE ...eevvviiiiieeeeeieiiiiieies e e e e e ettt e e e e e e eeeaateeeeeeeeeesssannnaaeeeseesesssnnns 98
3.2.8. MSEIAL SIUCKIUIE ...uuvniiiiiiiiiiiiie e e e e e e e e e e e eaaa s 98
3.2.9. netent SIUCHUIE ...oeeiiiiiiiiiiiie e 100
3.2.10. Protoent SIUCTUIEccvviiiiiiieeeeeeiiiiiiiie e e e e e e eetiieeeeeeeeeeerraeeeeeeeeeeasssnnnnnnns 100
3.2.11. Servent SIUCHUIEccoeeviiiiiiiiiiiei e 100
3.2.12. sockaddr StrUCTUIEccoeiiiiiiiiiiiiii 101
3.2.13. sockaddr in SEIUCLUIEuuiiieiiiiiiiiiiiiee e e e e e e e eeevaaa s 102
3.2.14. sockaddr in6 Structure (IPVO)ccoceeiiiiiiiiiiiiiiie e 102
3.2.15. tIMEVAl SHUCTUIEuutiiiiiiiiiiiiiiiiiitiiiiii ittt 103

3.3 Header Files oo 104

3.4. Constants and Address Variables (IPVO)c.coooiiiiiiiiiiiiiieiiiiiiceee e 104

3.5. Interface Identification (IPVO)ccoiiiiiiiiiiiie it eeeeeeens 104
3.5.1. Sending IPv6 Multicast Datagramseeereeeeriiiiiiiiiiieeeeeeeeeiiiiieneeeeeaeenns 105
3.5.2. Receiving IPv6 Multicast Datagramscceeevveviviiiiieeeeeiiiiiiiiieeeeeeeeeevvieeenn 106
3.5.3. Address Translation and Conversion FUnctionscoooeeeeieiiiiiiiiiiiiiiieeeeee, 107
3.5.4. Address-Testing IMACIOSeeeeeiiiiiiiiiiieeeeeeiiiiiiiiseeeeeeeervrisseeeeeeeeassaeaaeeaaaaes 108

3.6. Advanced API (IPVO) ..ocoooiieiiiiiiiie ettt e e e e e e e 108

VS| TCP/IP Services for OpenVMS Sockets APl and System Services Programming

3.6.1. Using IPVO6 RaW SOCKELSovuueiiiiiiiiiiiiiiiie et
3.7. Calling a Socket Function from an AST Statecceeeieeeiiiiiiiiiiiiiee e,
3.8. Using 64-Bit Buffer Addresses (Alpha and 164 Only)coovvviiiiiiiieeiiiiiiiiccieee e
3.9. Standard I/O FUNCHONScceviiiiiiiiiiiiiiiiiiiiiiiiiiiieeee ettt
3.10. Guidelines for Compiling and Linking IPv6 Applicationsccceeeeeeeveeiiiiiiinineeennnns
3.11. Compatibility with the OpenVMS C Run-Time Librarycccccvvvvieieeeeieeeeiiinnnnn.
3.12. Error Checking: ermmo ValUEScooieiiiiiiiiiiiiiieieecccceee e
312,10 €ITNO VAIUES e
3.12.2. Relationship Between errno and h €rmmoceeeeeeiiiiiiiiiiiiiineeecceece e,

Chapter 4. Sockets API Referencecoiieeveicicnicssnncsssnncsssnncsssencssssnsssssscssssssssssssssnses

4.1. Summary of Socket FUNCHONSuuuiiiiiiiiiiiiiiiiee e
4.2, Socket API FUNCHONScovvuiiieiiiiiiiiiiiiiie e e ee ettt e e e e e e e eeevttee e e e e e eeeeaabeaeeeeeeeeeassennns

Chapter 5. Using the $SQIO System ServiCecccceervrcssrercsssercssnrcsssnrssssssssssssssssssssssess

5.1. $QIO System Service VArIAtIONSeeeerurreeeiiiuiieeeriiireeesiieeeeesieeeessnesneeessseneeeean
5.2, SQIO FOIMAL .couiiiiiiiiiiee ettt e e e e ettt e e e e e e e e e et b a e e e e e e e e e s eeaataraeeaeeeas
5.2.1. Symbol Definition Filesiiiiiiiiiiiiiiiiiiiii e e e
5.3. QIO FUNCHONS ..eoiiuiiiiiiiiiiiie e ettt e e et e ettt e et e et e e eeaae e e e e et e e e e eeataeeeeeeaaaeeeaans
5.4, SQIO ATZUIMENES ...eevviieiiereirteeitieeeiteeeeiteeeeteeeetaeessseeesseeessseeessseeessseesssseesnsseessseeans
5.4.1. $QIO Function-Independent ArgUmENtsc.ceeeeruveeeeriiieeeeniiieeeeniieeeeenenns
5.4.2. /O Status BlOCKouuiiiiiiiiiiiiiiiiiiiiiiiiieeeee ettt
5.4.3. $QIO Function-Dependent ATZUMENLSeeerruvrreeeiiiiieeeeiiiieeeeiieeeeesineeeeanes
5.5. Passing Arguments DY DESCIIPLOLuuuueiiiiiiiiiiiiiiieeeeeeeeiiiiee e e e e e e e e e eeeaaa s
5.5.1. Specifying an Input Parameter Listccoeeeeiiiiiiiiiiiiniieeiiieeiee e,
5.5.2. Specifying an Output Parameter LiStcooovviiiiiiieiiiiiiiiiiiiiee e,
5.5.3. Specifying a Socket NAMEccceeeiiiiiiiiiiiiiieeciceci e
5.5.4. Specifying a Buffer Listouuiiiiiiiiiiiiiiiiii e

Chapter 6. OpenVMS System Services Reference

6.1. System Service DESCIIPLIONSouvuuiiieeeeiiiiiiiiiiiieeeeeeeeieiier e e eeeeeearrreeeeeeeeeearennnns
6.2. Network Pseudodevice Driver I/O FUNCLIONScoivuniiiiniiiieiiie e
6.3. Network Pseudodevice Driver I/O Function Codescouovevieiiiiniiiiiiiiiieiieeieeeenn,
6.4. TELNET Port Driver I/O Function Codescovivueiiiiiiiiiieiieeiiieeeeeeeeeeee e

6.4.1. Interface DefINItIONcouviivuniiiiiiie e

6.4.2. Passing Parameters to the TELNET Port DIiverccoovvvviviiineeeeiriieiiinnnnn.
6.5. TELNET Port Driver I/O Function Codescoviiuuiiiiiiiiiiieiiieeiiieeeeeeeeeeeeee e
6.6. Buffered Reading and Writing of Item LiStsc.oviiiieiiiiiiiiiiiiiiee e
6.7. TELNET Port Driver I/O Function Codescoeivuuiiiiiiiiiiiiiiieeiieeeeeeeeeeeee e

Appendix A. SOCKet OPLIONSccueeiveeiseiiseeiseiisnnseissnenssensssecssessssesssessssnsssessssssssasssssssssses
Appendix B. IOCTL Requests

Appendix C. Data TYPES ..cccveerecirvnricssssaniecsssnsiesssssssess

C.1. OpenVMS Data TYPESevvururururureiiiiiiiiieiiiettieteteieeeieteeeeeeeseeeseseeeseneeeeeeeeeneeeeeeenenenene
C.2. C and C++ Implementationscceeeeiiiiiiiiieieeeeriiiiiiiieee e e e ettt e e e e e s eiiiieeeeeeeas

Appendix D. Error Codesiicninneiccsissnnicsssssnsecsssssssess

Appendix E. Porting Applications to IPV0iieiineiiieensiissensecssnensnecsnenssecsssecnne

E.1. Using AF INETO SOCKELScovvuuiieeeeiiiiiiiiiiieeeeeeeeiiieeee e e e e e eevtre e e e e e e eeeavseenaeeeaaaeens
E.2. NAME CRANEES ..vvuuunieeiiiiiiiiiiiiiieeee e ettt e e e e e ettt eeeeeeeeeaaaataseeeeaeesssssenaaeeaeeesssenns
E.3. Structure CRANEZESccoiviiiiiiiiieeeeee et e e e e eeeett e e e e e e e e e aabateaaeeeeeeeeassaeaaeeaaaaeeees
E.3.1. in_ addr StrUCHUIEeiiiiiiieiiei e e e e e e e
E.3.2. sockaddr STrUCTUIEcooviiiiiiiiiiiiiiiii

VS| TCP/IP Services for OpenVMS Sockets APl and System Services Programming

E.3.3. sockaddr in StrUuCHUIEuuueiiiiiiiiiiiiiiiie e e e e e e e e evaaeeanes 322
E.3.4. hoSteNnt STIUCTUIEceiiiiiiiiiiiiiiiiiiiiiiiiiiiiietiteteeee ettt ettt e e e e e e e 322
E.4. FUNCHON CRANEES ...vvvuiieieiiiiiiiiiiiie e ee e ee ettt e e e e e ettt e e e e e e eeeaaseaeeeeeeeessssnnnaaaeaaeanes 323
E.4.1. gethostbyaddr() FUNCHONcoovuiiiiiiiiiiiiiiciee e 323
E.4.2. gethostbyname() FUNCtionccoooeeiiiiiiiiiiiiiii e 323
E.4.3. inet_aton() FUNCLIONcooiiiiiiiiiiiiiii e e eeeeaas 324
E.4.4. inet ntoa() FUNCLIONuuuiiiiiiiiiiiiiiiiei et e e eeeaees 324
E.4.5. inet addr() FUNCHONcooviiiiiiiiieiiiiiicie e e e e e 324
E.5. Other Application CRANEESuuuiieeeeiiiiiiiiiiie e e e ee et e e e e e e et e e e e e eeeeeasaaeeeeaaaans 324
E.5.1. Comparing IP AddIeSSESuuvuuiieeeiiiiiiiiiiiieeeeeeeeeiviiieeeeeeeeeeerreeseeeeeeeeeraanenns 325
E.5.2. Comparing an IP Address to the Wildcard Addresscccoeeeeeeiiiiiiiiiiiineennnnes 325
E.5.3. Using int Data Types to Hold IP Addressescouvveeeeieeriiveeiiiiiiineeeeeeeenieeens 325
E.5.4. Using Functions that Return IP Addressesceeereieiiiiiiiiiiiiieeeeeeeeeiiiceeeen, 326
E.5.5. Changing Socket OPtiOnSeeeeeeiiiiiiiiiiiieeeeeeeeeiiiiieeeeeeeeeeevreeeeeeeeeeeersaeenns 326
E.6. Sample Client/Server PrOZIamscoeeeeiiiiiiiiiiiee e eeeeeiiieeee e e e e eeevvi e e e e e e e evaraaa e 326
E.6.1. Programs Using AF INET SOCKELScccceeiviiiiiiiiiieeeiiiiiiiiieie e 326
E.6.2. Programs Using AF INET6 SOCKEtSouvvuiiiiieiiiiiiiiiiiiiie e 332
E.6.3. Sample Program OULPULovueiiiieeiiiiiiiiiiieee e e e e e e e eeevvaee e e e e eeeeaaaeeens 338

vi

Preface
III VMS Software

The TCP/IP Services product is the VSI implementation of the TCP/IP networking protocol suite and
internet services for OpenVMS Alpha, OpenVMS 164, and OpenVMS VAX systems.

A layered software product, TCP/IP Services provides a comprehensive suite of functions and
applications that support industry-standard protocols for heterogeneous network communications and

resource sharing.

This manual describes how to use TCP/IP Services to develop network applications using Berkeley
Sockets or OpenVMS system services.

1. About VSI

VMS Software, Inc. (VSI) is an independent software company licensed by Hewlett Packard
Enterprise to develop and support the OpenVMS operating system.

VSI seeks to continue the legendary development prowess and customer-first priorities that are so

closely associated with the OpenVMS operating system and its original author, Digital Equipment
Corporation.

2. Intended Audience

This manual is intended for experienced programmers who want to write network application
programs that run in the TCP/IP Services environment. Readers should be familiar with the C
programming language, TCP/IP protocols, and networking concepts.

3. Document Structure

This manual contains the following chapters and appendixes:
* Chapter 1 describes the application programming interfaces that TCP/IP Services supports.

* Chapter 2 describes the typical function calls for developing network applications using the TCP
and UDP protocols.

* Chapter 3 discusses information to consider when writing portable network applications using the
Sockets API for [Pv4 and IPv6.

e Chapter 4 contains Sockets API reference information.

* Chapter 5 describes how to use $QIO system services and data structures to write network
applications using OpenVMS system services.

* Chapter 6 contains OpenVMS system services and I/O function reference information pertinent
to TCP/IP Services. This information supplements the OpenVMS system services programming

information contained in the VST OpenVMS System Services Reference manual.

* Appendix A lists socket options supported by both programming interfaces.

vii

Preface

e Appendix B lists IOCTL requests.

* Appendix C describes TCP/IP Services data types.

* Appendix D lists Sockets API error codes and equivalent OpenVMS system services status codes.

» Appendix E describes how to modify a network application so that it can operate in an IPv6

networking environment.

4. Related Documentation

Table 1 lists the documents available with this version of TCP/IP Services.

Table 1. TCP/IP Services Documentation

Manual

Contents

VSI TCP/IP Services for OpenVMS Concepts and
Planning

This manual provides conceptual information
about TCP/IP networking on OpenVMS systems,
including general planning issues to consider
before configuring your system to use the TCP/IP
Services software.

This manual also describes the manuals in the
TCP/IP Services documentation set and provides
a glossary of terms and acronyms for the TCP/IP
Services software product.

VSI TCP/IP Services for OpenVMS Release Notes

The release notes provide version-specific
information that supersedes the information in
the documentation set. The features, restrictions,
and corrections in this version of the software are
described in the release notes. Always read the
release notes before installing the software.

VSI TCP/IP Services for OpenVMS Installation
and Configuration

This manual explains how to install and configure
the TCP/IP Services product.

VSI TCP/IP Services for OpenVMS User's Guide

This manual describes how to use the applications
available with TCP/IP Services such as remote
file operations, email, TELNET, TN3270, and
network printing. This manual explains how to
use these services to communicate with systems
on private internets or on the worldwide Internet.

VSI TCP/IP Services for OpenVMS Management

This manual describes how to configure and
manage the TCP/IP Services product.

Use this manual with the VST TCP/IP Services
for OpenVMS Management Command Reference
manual.

VSI TCP/IP Services for OpenVMS Management
Command Reference

This manual describes the TCP/IP Services
management commands.

Use this manual with the VST TCP/IP Services for
OpenVMS Management manual.

viii

Preface

Manual

Contents

VSI TCP/IP Services for OpenVMS Management
Command Quick Reference Card

This reference card lists the TCP/IP management
commands by component and describes the
purpose of each command.

VSI TCP/IP Services for OpenVMS UNIX
Command Equivalents Reference Card

This reference card contains information about
commonly performed network management tasks
and their corresponding TCP/IP management and
UNIX command formats.

VSI TCP/IP Services for OpenVMS ONC RPC
Programming

This manual presents an overview of high-level
programming using open network computing
remote procedure calls (ONC RPC). This manual
also describes the RPC programming interface
and how to use the RPCGEN protocol compiler to
create applications.

VSI TCP/IP Services for OpenVMS Sockets API

and System Services Programming

This manual describes how to use the Berkeley
Sockets API and OpenVMS system services to
develop network applications.

VSI TCP/IP Services for OpenVMS SNMP
Programming and Reference

This manual describes the Simple Network
Management Protocol (SNMP) and the SNMP
application programming interface (eSNMP).

It describes the subagents provided with TCP/

IP Services, utilities provided for managing
subagents, and how to build your own subagents.

VSI TCP/IP Services for OpenVMS Tuning and
Troubleshooting

This manual provides information about how to
isolate the causes of network problems and how
to tune the TCP/IP Services software for the best
performance.

VSI TCP/IP Services for OpenVMS Guide to SSH

This manual describes how to configure, set
up, use, and manage the SSH for OpenVMS
software.

VSI TCP/IP Services for OpenVMS Guide to IPv6

This manual describes the IPv6 environment, the
roles of systems in this environment, the types
and function of the different IPv6 addresses, and
how to configure TCP/IP Services to access the
IPv6 network.

5. VS| Encourages Your Comments

You may send comments or suggestions regarding this manual or any VSI document by sending
electronic mail to the following Internet address: <doci nf o@nssof t war e. conp.

6. How to Order Additional Documentation

For information about how to order additional documentation, email the VSI OpenVMS information

account: <i nf o@nssof t war e. conp.

7. Typographical Conventions

The name TCP/IP Services means any of the following:

ix

Preface

* TCP/IP Services Alph
e TCP/IP Services 164
e« TCP/IP Services VAX

The following convention
fictitious.

a

s are used in this manual. In addition, please note that all [P addresses are

Ctrl/x

A sequence such as Ctrl/x indicates that you must hold down the key
labeled Ctrl while you press another key or a pointing device button.

PF1 x

A sequence such as PF1 x indicates that you must first press and release the
key labeled PF1, then press and release another key or a pointing device
button.

In examples, a horizontal ellipsis indicates one of the following
possibilities:

* Additional optional arguments in a statement have been omitted.
* The preceding item or items can be repeated one or more times.

* Additional parameters, values, or other information can be entered.

A vertical ellipsis indicates the omission of items from a code example or
command format; the items are omitted because they are not important to
the topic being discussed.

0

In format descriptions, parentheses indicate that, if you choose more than
one option, you must enclose the choices in parentheses.

(1

In format descriptions, brackets indicate that whatever is enclosed within
the brackets is optional; you can select none, one, or all of the choices.
(Brackets are not, however, optional in the syntax of a directory name

in a file specification or in the syntax of a substring specification in an
assignment statement.)

U

In format descriptions, braces surround a required choice of options; you
must choose one of the options listed.

red ink

Red ink indicates information that you must enter from the keyboard or a
screen object that you must choose or click on.

For online versions of the book, user input is shown in bold.

boldface text

Boldface text represents the introduction of a new term or the name of an
argument, an attribute, or a reason.

Boldface text is also used to show user input in online versions of the book.

italic text

Italic text represents information that can vary in system messages (for
example, Internal error number).

UPPERCASE TEXT

Uppercase letters indicate that you must enter a command (for example,
enter OPEN/READ), or they indicate the name of a routine, the name of
a file, the name of a file protection code, or the abbreviation for a system
privilege.

Hyphens in coding examples indicate that additional arguments to the
request are provided on the line that follows.

Preface

numbers

Unless otherwise noted, all numbers in the text are assumed to be decimal.
Nondecimal radixes—binary, octal, or hexadecimal—are explicitly
indicated.

Xi

Preface

xii

Chapter 1. Application Programming
Interfaces

The application programming interfaces available with TCP/IP Services allow programmers to write
network applications that are independent of the underlying communication facilities. This means
that the system can support communications networks that use different sets of protocols, naming
conventions, and hardware platforms.

The TCP/IP Services product supports two network communication application programming
interfaces (APIs):

» Berkeley Software Distribution (BSD) Sockets

* OpenVMS system services

1.1. BSD Sockets

The Sockets application programming interface (API) supports only the C programming language.
The benefits of using this API include:

e Ease of use.

* Portability — you can create common code for use on UNIX, OpenVMS, and many other
platforms.

* 64-bit addressing capability on OpenVMS Alpha and OpenVMS 164 systems.

See Chapter 4 for a detailed description of Sockets API functions.

1.2. OpenVMS System Services

Each step in the Sockets communications process has a corresponding OpenVMS system service
routine. The benefits of using OpenVMS system services include:

* Improved application performance

* 64-bit addressing capability on OpenVMS Alpha and OpenVMS 164 systems
e Finer granularity of control

» Easier asynchronous programming

* Support for the following programming languages:

*+ MACRO-32
« BLISS-32

* Ada

+ BASIC

« C

. C++

Chapter 1. Application Programming Interfaces

¢« COBOL
¢ Fortran
¢ Pascal

See Chapter 6 for a detailed description of OpenVMS system service calls.

1.3. Application Development Files

TCP/IP Services provides definition files and function libraries for use in developing network
applications, and programming example files to assist in learning how to develop network

applications.

1.3.1. Definition Files

Table 1.1 lists the definition files that are included with TCP/IP Services in the SYSSLIBRARY

directory. Specific languages may also supply additional files that define structures related to network

programming. Check the documentation for the language you are using.

Table 1.1. Network Definition Files

File Description
TCPIPSINETDEF.ADA Ada definition file
TCPIPSINETDEF.BAS BASIC definition file
TCPIPSINETDEF.FOR Fortran definition file
TCPIPSINETDEF.H C and C++ definition file
TCPIPSINETDEF.MAR MACRO-32 definition file
TCPIPSINETDEF.PAS Pascal definition file
TCPIPSINETDEF.PLI PL/I definition file
TCPIPSINETDEF.R32 BLISS-32 definition file

TCP/IP Services provides header files, data types, and support functions to facilitate OpenVMS
system services programming. The header files provide definitions for constants. Table 1.2 lists the

header files.

Table 1.2. C Language Definition Files

Header File Description

Common Industry Standard

IN.H Internet system. Constants, functions, and
structures

INET.H Network address information

NETDB.H Network database library information

SIGNAL.H UNIX style signal value definitions

SOCKET.H BSD Sockets API

TCP/IP Services Related

Chapter 1. Application Programming Interfaces

Header File Description

BITYPES.H Basic integral types

IF.H Structures providing a basic transport mechanism
IF_ARPH Structures for the Address Resolution Protocol
IF_ TYPES.H IANA types

IN.H Internet protocol family

IN6.H Internet V6 protocol family

IN6. MACHTYPES.H Machine-specific internet V6 protocol family
INET.H Internet access

IOCTL.H I/O controls for special files

IP.H Definitions for IPv4

IP6.H Definitions for IPv6

NAMESER.H Definition for maximum domain name size
NETDB.H Network database library information
RESOLV.H Resolver configuration file

SOCKET.H TCP/IP socket definitions

STROPTS.H Streams interface definitions

TCP.H TCP descriptions

_ DECC_INCLUDE PROLOGUE.H

TCP/IP Services internal transliterations for IPv6
functions (directed to TCPIPSLIB.OLB)

OpenVMS Related

DESCRIP.H OpenVMS descriptor

IOCTL.H /O control

IODEF.H 1/0 function codes

LIBSFUNCTIONS.H Run-time library function signatures

SSDEF.H System service status codes

STARLET.H System service calls

TCPIPSINETDEF.H TCP/IP network constants, functions, and
structures

Standard UNIX

STDIO.H Standard UNIX I/O functions

STDLIB.H Standard UNIX library functions

STRING.H String-handling functions

The header files NAMESER.H and RESOLV.H contain transliterations that intercept calls made
to name server and resolver API functions and redirect them to TCPIPSLIB.OLB. To use an
implementation of these functions other than the one provided by TCP/IP Services, define the

following symbols:

* For the name server API routines, use TCPIP._ NO NS TRANSLITERATIONS.

* For the resolver API routines, use TCPIP._ NO RES TRANSLITERATIONS.

Chapter 1. Application Programming Interfaces

1.3.2. Libraries

Table 1.3 lists the function libraries included with TCP/IP Services.

Table 1.3. Sockets API Libraries

File Location Description

TCPIPSIPC_SHR.EXE SYSSLIBRARY Sockets API Run-Time Library

TCPIPSLIB.OLB TCPIPSLIBRARY BSD Version 4.4 Sockets object
library

1.3.3. Programming Exampl

es

Table 1.4 and Table 1.5 summarize the programming examples included with TCP/IP Services in the
TCPIPSEXAMPLES directory. Most of these examples consist of a client and a corresponding server.

Table 1.4. TCP Programming Examples

File

Description

TCPIPSTCP_SERVER SOCK.C

TCPIP$TCP CLIENT SOCK.C

Example TCP client and server using the Sockets
APL

TCPIPSTCP_SERVER SOCK_AUXS.C

Example TCP server using the Sockets API that
accepts connections from the auxiliary server.

TCPIPSTCP_SERVER QIO.C

TCPIPSTCP_CLIENT QIO.C

Example TCP client and server using QIO system
services.

TCPIPSTCP_SERVER QIO _AUXS.C

Example TCP server using QIO system services
that accepts connections from the auxiliary server.

TCPIPSTCP CLIENT QIO.MAR

TCPIP$TCP_SERVER QIO.MAR

Example TCP client and server using QIO system
services and the MACRO-32 programming
language.

Table 1.5. UDP Programming Examples

File

Description

TCPIPSUDP_SERVER SOCK.C

TCPIPSUDP_CLIENT SOCK.C

Example UDP client and server using the Sockets
APIL.

TCPIPSUDP_SERVER QIO.C

TCPIP$SUDP CLIENT QIO.C

Example UDP client and server using QIO
system services.

TCPIPSUDP _CLIENT QIO.MAR

TCPIPSUDP_SERVER QIO.MAR

Example UDP client and server using
QIO system services and the MACRO-32
programming language.

1.4. Compiling and Linking C Language

Programs

To compile and link a C program called MAIN.C, enter the following commands:

Chapter 1. Application Programming Interfaces

$ CC MAIN.C

$ LINK MAIN. OBJ

1.4.1. Compiling and Linking Programs Using BSD
Version 4.4

To compile and link MAIN.C using BSD Version 4.4, enter the following commands:

$ CC/ DEFI NE=(_SOCKADDR _LEN) MAIN. C
$ LI NK MAIN. OBJ

Instead of using the /DEFINE=(_ SOCKADDR _LEN) option to the compile command, you can
change your code to include the following #DEFINE preprocessor directive:

#define _SOCKADDR LEN 1

This statement must appear before you include any of the following header files:

#i ncl ude <in. h>
#i ncl ude <net db. h>
#i ncl ude <i net. h>

1.4.2. C Compilation Warnings

Certain parameters to the TCP/IP Services Sockets API functions require typecasting to avoid C
compilation warnings. Typecasting is required because of parameter prototyping, which the C header
(filename.H) files have in order to comply with ANSI standards.

1.5. Using 64-Bit Addresses (Alpha and 164
Only)

For applications that run on OpenVMS Alpha and 164 systems, input and output (I/O) operations can
be performed directly to and from the P2 or S2 addressable space by means of the 64-bit friendly
$QIO and $QIOW system services.

To write data to a remote host, use the $SQIO(I0O$_WRITEVBLK) function with either the p1 (input
buffer) or p5 (input buffer list) parameter. The address you specify for the parameter can be a 64-bit
value.

To read data from a remote host, use the $QIO(I0$ READVBLK) function with either the p1 (output
buffer) or p6 (output buffer list) parameter. The address you specify for the parameter can be a 64-bit
value.

MACRO-32 does not provide 64-bit macros for system services. For more information about
MACRO-32 programming support and for 64-bit addressing in general, see the OpenVMS Alpha
Guide to 64-Bit Addressing and VLM Features.

For more information about using the $QIO and $QIOW system services for 64-bit addressing, see
Chapter 5 and Chapter 6.

Chapter 1. Application Programming Interfaces

Chapter 2. Writing Network
Applications

You can use either the Sockets API or OpenVMS system services to write TCP/IP applications that
run on your corporate network. These applications consist of a series of system calls that perform
tasks, such as creating a socket, performing host and IP address lookups, accepting and closing
connections, and setting socket options. These system calls are direct entry points that client and
server processes use to obtain services from the TCP/IP kernel software. System calls look and
behave exactly like other procedural calls in that they take arguments and return one or more results,
including a status value. These arguments can contain values or pointers to objects in the application
program.

This chapter describes the communication process followed by client and server applications. This
process reflects the sequence of system calls within the client and server programs (see Tables 2.1

through 2.4). The chapter also includes Sockets API and OpenVMS system services examples for

each step in the communication process.

2.1. The Client/Server Communication
Process

The most commonly used paradigm in constructing distributed applications is the client/server model.
The requester, known as the client, sends a request to a server and waits for a response. The server is
an application-level program that offers a service that can be reached over the network. Servers accept
requests that arrive over the network, perform their service, and return the result to the client.

A network connection also has a mode of communication: either connection-oriented or
connectionless. When writing network applications, the developer uses the mode of communication
required by the application-level service. If the application-level service uses the connection-
oriented mode of communication, the developer uses the Transmission Control Protocol (TCP). If the
application-level service uses the connectionless mode of communication, then the developer uses the
the User Datagram Protocol (UDP). The following sections describe how to use TCP and UDP.

2.1.1. Using the TCP Protocol

Figure 2.1 shows the communication process for a TCP client/server application.

Chapter 2. Writing Network Applications

v

Figure 2.1. Client/Server Communication Process Using TCP

Create socket
Tor listener
A
Create socket
T
L Cliert start
Bind socket Y
¥ Craate socket
T
Define listenear Y
T
= Bind socket
¥
Azcept connection T
raquest {wait for ¥
connaction request ™ o
from cliant)
. - Establish connection Send
v o connection raquast
T
Recaive y
davies infarmation
- Jdma request Write data
¥ /
Fiesd data
and process T
the recuest
. = Fiead data
L o
data reply
Wirlte data I ‘ b
! Dielate socket
X
T
Delele socket]
Cligrt gnd
i |
Delate
listener socket

VIM-OETOA-AI

In this figure:

1. Server issues a call to create a listening socket.

2. Server and client create a socket.

3. Server and client bind socket. (This step is optional for a client.)

4. Server converts an unconnected socket into a passive socket (LISTEN state).

5. Server issues an accept () and process blocks waiting for a connection request.
6. Client sends a connection request.

7. Server accepts the connection; a new socket is created for communication with this client.

Chapter 2. Writing Network Applications

8. Server receives device information from the local host.

9. Data exchange takes place.

10. Client and server delete the socket.

11. Server deletes the listener socket when the service to the client is terminated.

For server applications that use the TCP protocol, Table 2.1 identifies the typical communication
tasks, the applicable Sockets API function, and the equivalent OpenVMS system service.

Table 2.1. TCP Server Tasks and Related Functions

Task Sockets API Function OpenVMS System Services
Create a socket socket () $ASSIGN
$QIO(I0$_SETMODE)'
Bind socket name bi nd() $QIO(I0$_SETMODE)!
Define listener socket listen() $QIO(I0$_SETMODE)!
Accept connection request accept () $QIO(I0$ ACCESSI|IO
$M_ACCEPT)
Exchange data read() $QIO(I0$ READVBLK)
recv()
recvnsg()
wite() $QIO(I0$_WRITEVBLK)
send()
sendnsg()
Shut down the socket (optional) [shut down() $QIO(I0$ _DEACCESSI|IO
$M_SHUTDOWN)
Close and delete the socket cl ose() $QIO(I0$ DEACCESS)
$DASSGN

!The $QIO system service calls for creating a socket, binding a socket name, and defining a network pseudo device as a listener are listed as
three separate calls in this table. You can perform all three steps with one $QIO(10$_SETMODE) call.

For a client application using the TCP protocol, Table 2.2 shows the tasks in the communication
process, the applicable Sockets API functions, and the equivalent OpenVMS system services.

Table 2.2. TCP Client Tasks and Related Functions

Task Sockets API Function OpenVMS System Services
Create a socket socket() $ASSIGN
$QIO(10$_SETMODE)'
Bind socket name bi nd() $QIO(I0$_SETMODE)'
Connect to server connect () $QIO(I0$_ACCESS)
Exchange data read() $QIO(10$ READVBLK)
recv()

Chapter 2. Writing Network Applications

Task Sockets API Function OpenVMS System Services
recvnsg()
wite() $QIO(I0$_WRITEVBLK)
send()
sendnsg()
Shut down the socket (optional) |shut down() $QIO(I0$ DEACCESSI|IO
$M_SHUTDOWN)
Close and delete the socket cl ose() $QIO(I0$ DEACCESS)
$DASSGN

'The $QIO system service calls for creating a socket and binding a socket name are listed as two separate calls in this table. You can perform
both steps with one $QIO(I0$_SETMODE) call.

2.1.2. Using the UDP Protocol

Figure 2.2 shows the steps in the communication process for a client/server application using the UDP
protocol.

Figure 2.2. UDP Socket Communication Process

c“ent e

Create sacket Creste socket
Eind sacket Eind zocket
—)
Fead data a ks request .
and process request irite data
Wit data, data epl Fresadl dt
Delete socket Drelate socket
SRHIST1A-AL

In this figure:

1. Server and client create a socket.

2. Server and client bind the socket name. (This step is optional for a client.)
3. Data exchange takes place.

4. Server and client delete the socket.

10

Chapter 2. Writing Network Applications

For server applications using the UDP protocol, Table 2.3 identifies the tasks in the communication
process, the Sockets API functions, and the equivalent OpenVMS system services.

Table 2.3. UDP Server Tasks and Related Functions

Task Sockets API Function OpenVMS System Service
Create a socket socket () $ASSIGN
$QIO(10$_SETMODE)'
Bind socket name bi nd() $QIO(10$_SETMODE)!
Exchange data read() $QIO(10$_READVBLK)
recv()
recvfrom()
recvnsg()
wite() $QIO(10$_WRITEVBLK)
send()
sendt o()
sendnsg()
Shut down the socket (optional) |shut down() $QIO(I0$ DEACCESSI|IO
$M_SHUTDOWN)
Close and delete the socket cl ose() $QIO(I0$ _DEACCESS)
$DASSGN

'The $QIO0 system service calls for creating a socket and binding a socket name are listed as two separate calls in this table. You can perform
both steps with one $QIO(JO$_SETMODE) call.

For client applications using the UDP protocol, Table 2.4 describes the tasks in the communication
process, the Sockets API function, and the equivalent OpenVMS system service.

Table 2.4. UDP Client Tasks and Related Functions

Task Sockets API Function OpenVMS System Service
Create a socket socket () $ASSIGN
$QIO(10$_SETMODE)!

Bind socket name (optional) bi nd() $QIO(I0$_SETMODE)!
Specify a destination address for |[connect () $QIO(I0$_ACCESS)
outgoing datagrams
Exchange data read() $QIO(I0$ READVBLK)

recv()

recvfrom()

recvnsg()

write() $QIO(I0$_WRITEVBLK)

Chapter 2. Writing Network Applications

Task Sockets API Function OpenVMS System Service
send()
sendt o()
sendnsg()
Shut down the socket (optional) [shut down() $QIO(10$_DEACCESS]
keep>(10$M_SHUTDOWN))
Close and delete the socket cl ose() $QIO(I0$ DEACCESS)
$DASSGN

!The $QIO system service calls for creating a socket and binding a socket name are listed as two separate calls in this table. You can perform
both of these steps with one $QIO(I0$_SETMODE) call.

2.2. Creating a Socket

For network communication to take place between two processes, each process requires an end point
to establish a communication link between the two processes. This end point, called a socket, sends
messages to and receives messages from the socket associated with the process at the other end of the
communication link.

Sockets are created by issuing a call to the socket () Sockets API function or by the SASSIGN and
$QIO (I0$_SETMODE) system service, specifying an address family, a protocol family, and a socket

type.

If the socket creation is successful, the operation returns a small positive integer value called a socket
descriptor, or sockfd. From this point on, the application program uses the socket descriptor to
reference the newly created socket.

In the TCP/IP Services implementation, this socket is also referred to as a device socket. A device
socket is the pairing of an OpenVMS network device and a BSD-style socket. A device socket is
either implicitly created by the Sockets API, or explicitly created using OpenVMS system services.
The socket () function calls the $QIO system services to create the socket.

For information about creating a socket using the Sockets API, see Section 2.2.1. For information
about explicitly creating a device socket, see Section 2.2.2.

To display information about a device socket, use the TCP/IP management command SHOW
DEVICE SOCKET.

TCP/IP operations are performed as 1/O functions of the network device. The logical name for the
network device is TCPIP$SDEVICE.

2.2.1. Creating Sockets (Sockets API)

When using the Sockets API, create the socket with a call to the socket () function. Example 2.1
shows how to create a TCP socket using the Sockets API.

Example 2.1. Creating a Socket (Sockets API)

#i ncl ude <socket. h> /* define BSD socket api */
#i ncl ude <stdio. h> /* define standard i/o functions */
#i nclude <stdlib. h> /* define standard |library functions */

12

Chapter 2. Writing Network Applications

int main(void)

{
i nt sockfd;
/*
* create a socket
*/
(1]
if ((sockfd = socket(AF_INET, SOCK STREAM 0)) < 0)
{
perror("Failed to create socket"”);
exit(EXI T_FAILURE);
}
exit(EXI T_SUCCESS);
}

This example shows how to use the socket () function to create a socket.
©® This line creates the socket with the following arguments:

o AF_I NET specifies the IPv4 address family.

» SOCK_STREAMSspecifies that the socket type is stream (TCP).

* 0 specifies that the protocol type is IPPROTO_TCP (default).

2.2.2. Creating Sockets (System Services)

When you use OpenVMS system services, you make two calls to create the socket:
» $ASSIGN to assign a channel to the network device
* $QIO or $QIOW to create the socket

The Queue I/0 Request ($QIO) service completes asynchronously. It returns to the caller
immediately after queuing the I/O request, without waiting for the I/O operation to complete.

For synchronous completion, use the Queue I/O Request and Wait ($QIOW) service. The $QIOW
service is identical to the $QIO service, except the SQIOW returns to the caller after the I/0
operation completes.

When you make the $QIO or $QIOW call, use either the [0$ SETMODE or the I0O$ SETCHAR I/
O service. You generally create, bind, and set up sockets to listen with one $QIO call. For network
software, the IO$ SETMODE and I0$ _SETCHAR services perform in an identical manner.
However, you must have LOG_IO privilege to successfully use the I0$ SETMODE 1/O service
modifier.

When a channel is assigned to the TCPIPSDEVICE template network device, TCP/IP Services creates
a new pseudodevice with a unique unit number and returns a channel number to use in subsequent
operation requests with that device.

When the auxiliary server creates your application server process in response to incoming network
traffic for a service with the LI STEN flag, it creates a device socket for your application server
process. For your application to receive the device socket, assign a channel to SYSSNET (the logical
name of a network pseudodevice) and perform an appropriate $QIO(I0$_SETMODE) function. For a
discussion of the auxiliary server, see the VSI TCP/IP Services for OpenVMS Management manual.

Chapter 2. Writing Network Applications

Example 2.2 shows how to create a TCP socket using OpenVMS system services.

Example 2.2. Creating a Socket (System Services)

#i ncl ude <descrip. h> /* define OpenVMS descriptors */
#i ncl ude <ef ndef. h> /* define ' EFNSC_ENF' event flag */
#i ncl ude <i odef. h> /* define i/o function codes */
#i ncl ude <ssdef. h> /* define system service status codes */
#i nclude <starlet.h> /* define systemservice calls */
#i ncl ude <stdio. h> /* define standard i/o functions */
#i ncl ude <stdlib. h> /* define standard library functions */
#i ncl ude <stsdef. h> /* define condition value fields */
#i ncl ude <tcpi p$i net def. h> /* define tcp/ip network constants, */

/* structures, and functions */

struct iosb

{ /* ilo status bl ock */
unsi gned short st atus; /* ilo completion status */
unsi gned short bytcnt; /* bytes transferred if read/wite */
void *details; /* address of buffer or paraneter */
b
struct sockchar

{ /* socket characteristics */
unsi gned short prot; /* protocol */
unsi gned char type; /[* type */
unsi gned char af; /* address format */
b

int main(void)

{
struct iosb iosb; /* ilo status bl ock */
unsi gned int status; /* system service return status */
unsi gned short channel; /* network device i/o channel */
©® struct sockchar sockchar; /* socket characteristics buffer */
$DESCRI PTOR(i net _devi ce, /* string descriptor with | ogical */
"TCPIP$DEVICE: "); [/* name of network pseudodevice */
/*
* initialize socket characteristics
*/
(2
sockchar. prot = TCPI P$C TCP
sockchar.type = TCPI P$C_STREAM
sockchar . af = TCPI P$C_AF_I NET
/*
* assign i/o channel to network device
*/
(3
status = sys$assi gn(& net_device, /* device nane */
&channel , /* i/0o channel */
0, /* access node */
0 /* not used */

)

14

Chapter 2. Writing Network Applications

if (!(status & STS$M SUCCESS))
{

printf("Failed to assign i/o channel\n");
exit(status);

}
/*
* create a socket
*/
(4
status = sys$qgi om{ EFN$C_ENF, /* event flag */
channel , /* i/o channel */
| O5_SETMODE, /* ilo function code */
&i osb, /* ilo status bl ock */
0, /* ast service routine */
0, /* ast paraneter */
&sockchar, /* pl - socket characteristics */
0, /* p2 */
0, /* p3 */
0, [* p4 */
0, /* p5 */
0 /* p6 */
)
if (status & STS$M SUCCESS)
status = iosb. status;
if (!'(status & STS$M SUCCESS))
{
printf("Failed to create socket\n");
exit(status);
}
exit(EXI T_SUCCESS);
}

This example shows how to use the $ASSIGN and $QIOW system services to:

©® Define asockchar structure to contain the characteristics of the type of socket.

® Initialize the sockchar structure with the address family, protocol family and type of socket.

® Assign a channel to a network device using a string descriptor with the logical name of the
network pseudodevice and a structure to receive the I/O channel.

O Create the socket with a call to SYS$QIOW specifying the [0$ SETMODE modifier to supply
the channel and the socket characteristics.

2.3. Binding a Socket (Optional for Clients)

Binding a socket associates an [P address (that is, a 32-bit IPv4 address and a 16-bit TCP or UDP port
number) with a socket. To bind a socket, specify an IP address and a port number for the socket.

With the TCP protocol, you can specify an IP address, a port number, both an IP address and port
number, or neither.

If the application is using the UDP protocol and needs to receive incoming multicast or broadcast
datagrams destined for a specific UDP port, see Section 2.10 for information about specifying the
SO REUSEPORT option when binding the socket.

Chapter 2. Writing Network Applications

For an example of binding a socket using the Sockets API, see Section 2.3.1. For an example of
binding a socket using the OpenVMS system services, see Section 2.3.2.

2.3.1. Binding a Socket (Sockets API)

Example 2.3 shows an example of a TCP application using the bi nd() function to bind a structure.

Note

The process must have SYSPRV, BYPASS, or OPER privilege to bind port numbers 1 to 1023.

Example 2.3. Binding a Socket (Sockets API)

#i ncl ude <in. h> /* define internet related constants, */

/* functions, and structures */
#i ncl ude <socket. h> /* define BSD socket api */
#i ncl ude <stdi o. h> /* define standard i/o functions */
#i ncl ude <stdlib. h> /* define standard |ibrary functions */
#i ncl ude <string. h> /* define string handling functions */
#defi ne PORTNUM 12345 /* server port nunber */

int main(void)

{

i nt sockfd;
struct sockaddr i n addr;

/*
* initialize socket address structure
*/

menset (&ddr, 0, sizeof(addr));

addr.sin_famly = AF_I NET;
addr. si n_port = htons(PORTNUM);
addr. sin_addr.s_addr = | NADDR_ANY;
/*
* create a socket
*/

if ((sockfd = socket(AF_I NET, SOCK STREAM 0)) < 0)
{
perror("Failed to create socket");
exit(EXI T_FAILURE);

}

/*
* bind i p address and port nunber to socket
*/

if (bind(sockfd,® (struct sockaddr *) &addr,® sizeof(addr)®) < 0)
{

perror("Failed to bind socket");
exit(EXIT_FAILURE);

}

16

Chapter 2. Writing Network Applications

exit(EXIT_SUCCESS);
}

In this example, the bi nd() function includes the following arguments:

® sockf d specifies the socket descriptor previously created with a call to the socket ()
function.

® addr specifies the address of the sockaddr _i n structure that assigns a name to the socket.

® sizeof (addr) specifies the size of the sockaddr _i n structure.

2.3.2. Binding a Socket (System Services)

Use the IO$ SETMODE or I0$_SETCHAR service of the $QIO system service to bind a socket.

Note

The process must have SYSPRV, BYPASS, or OPER privileges to bind port numbers 1 to 1023.

Example 2.4 shows how to bind a sockets using OpenVMS system services.

Example 2.4. Binding a Socket (System Services)

#i ncl ude <descrip. h> /* define OpenVMS descriptors */
#i ncl ude <efndef. h> /* define 'EFNSC_ENF event fl ag */
#i ncl ude <in. h> /* define internet related constants, */
/* functions, and structures */
#i ncl ude <i odef. h> /* define i/o function codes */
#i ncl ude <ssdef. h> /* define systemservice status codes */
#i nclude <starlet.h> /* define systemservice calls */
#i ncl ude <stdio. h> /* define standard i/o functions */
#i nclude <stdlib. h> /* define standard |ibrary functions */
#i ncl ude <string. h> /* define string handling functions */
#i ncl ude <stsdef. h> /* define condition value fields */
#i ncl ude <t cpi p$i net def. h> /* define tcp/ip network constants, */
/* structures, and functions */
#def i ne PORTNUM 12345 /* server port nunber */
struct iosb
{ /* ilo status bl ock */
unsi gned short st atus; /* ilo conpletion status */
unsi gned short bytcnt; /* bytes transferred if read/wite */
void *details; /* address of buffer or paraneter */
b
struct item st_2
{ /* itemlist 2 descriptor/elenent */
unsi gned short | ength; /* length */
unsi gned short type; /* parameter type */
voi d *address; /* address of itemlist */
b
struct sockchar
{ /* socket characteristics */
unsi gned short prot; /* protocol */

Chapter 2. Writing Network Applications

unsi gned char type;
unsi gned char af;

b

mai n(void)

struct iosb iosb;
unsi gned int status;
unsi gned short channel
struct sockchar sockchar;
struct sockaddr _in addr;
struct item st _2 addr_item st;
$DESCRI PTOR(i net _devi ce,
“TCPI P$DEVI CE: ");

/*

* initialize socket characteristics

*/

sockchar . pr ot
sockchar. type
sockchar . af

TCPI P$C_TCP;
TCPI P$C_STREAM

/*

TCPI P$C_AF_| NET;

/[* type

addr ess format

i/o status bl ock

system servi ce return status
network device i/0 channe
socket characteristics buffer
socket address structure
socket address itemli st
string descriptor with |ogica
nane of network pseudodevice

* initialize socket address itemlist descriptor

*/

addr _item st.l ength
addr _item st.type
addr _item st. address

&addr ;

/*

si zeof (addr);
TCPI P$C_SOCK_NANME

* initialize socket address structure

*/

menset (&addr, 0, sizeof(addr));

TCPI P$C_AF_| NET;

ht ons(PORTNUM) ;
TCPI P$C_| NADDR_ANY!

addr.sin_famly
addr. si n_port
addr. si n_addr.s_addr

/*

* assign i/o channel to network device

*/

status = sys$assi gn(& net_device,

&channel
0,
0

)

if (!(status & STS$M SUCCESS))

{

/* device nane
/* i/o channel
/* access node
/* not used

printf("Failed to assign i/o channel\n");

exit(status);

}

/*

*/
*/

*/
*/
*/
*/
*/
*/
*/
*/

*/
*/
*/
*/

18

Chapter 2. Writing Network Applications

* create a socket

*/
(2
status = sys$qgi om{ EFN$C_ENF, /* event flag */
channel , /* i/o channel */
| G5 SETMODE, /* i/o function code */
&i osb, /* ilo status bl ock */
0, /* ast service routine */
0, /* ast paraneter */
&sockchar, /* pl - socket characteristics */
0, /* p2 */
0, /* p3 */
Ol /* p4 */
0, /* p5 */
0 /* p6 */
)
if (status & STS$M SUCCESS)
status = iosb. status;
if (!'(status & STS$M SUCCESS))
{
printf("Failed to create socket\n");
exit(status);
}
/*
* bind ip address and port nunber to socket
*/
(3
status = sys$qgi om{ EFN$C_ENF, /* event flag */
channel , /* i/0o channel */
| G5 SETMODE, /* ilo function code */
& osb, /* i/o status bl ock */
0, /* ast service routine */
o, /* ast paraneter */
0, /* pl */
0, /* p2 */
&addr _itenl st, /* p3 - local socket nane */
Ol /* p4 */
0, /* p5 */
0 /* p6 */
)
if (status & STS$M SUCCESS)
status = iosb. status;
if (!(status & STS$M SUCCESS))
{
printf("Failed to bind socket\n");
exit(status);
}
exit(EXI T_SUCCESS);
}

This example shows how to use OpenVMS system services to:

Chapter 2. Writing Network Applications

Assign a network device.

Bind a socket. The p1 argument specifies the socket characteristics.

Bind the IP address and the port number to the socket. The p3 argument specifies the socket
name.

2.4. Making a Socket a Listener (TCP
Protocol)

00

Only server programs that use the TCP protocol need to set a socket to be a listener. This allows the
program to receive incoming connection requests. As a connection-oriented protocol, TCP requires a
connection; UDP, a connectionless protocol, does not.

Thel i sten() function:

* Converts the unconnected socket into a passive socket.
* Changes the state of the socket to LISTEN.

* Remains open for the life of the server.

» Tells the kernel to accept incoming connections directed to this socket.

2.4.1. Setting a Socket to Listen (Sockets API)

Example 2.5 shows how a TCP server uses the | i st en() function to set a socket to listen for
connection requests and to specify the number of incoming requests that can wait to be queued for
processing.

Example 2.5. Setting a Socket to Listen (Sockets API)

#i ncl ude <in. h> /* define internet related constants, */

/* functions, and structures */
#i ncl ude <socket. h> /* define BSD socket api */
#i ncl ude <stdio. h> /* define standard i/o functions */
#i ncl ude <stdlib. h> /* define standard |ibrary functions */
#i ncl ude <string. h> /* define string handling functions */
#def i ne BACKLOG 1 /* server backl og */
#def i ne PORTNUM 12345 /* server port nunber */

int main(void)

{

i nt sockfd;
struct sockaddr in addr;

/*
* initialize socket address structure
*/

nenset (&ddr, 0, sizeof(addr));

addr.sin _famly = AF_I NET;
addr. si n_port = htons(PORTNUM);
addr.sin_addr.s_addr = | NADDR_ANY;

20

Chapter 2. Writing Network Applications

}

/*
* create a socket
*/

if ((sockfd = socket (AF_I NET, SOCK_STREAM 0)) < 0)
{
perror("Failed to create socket");
exit(EXI T_FAILURE);

}

/*
* bind ip address and port nunber to socket
*/

if (bind(sockfd, (struct sockaddr *) &addr, sizeof(addr)) < 0)
{

perror("Failed to bind socket");
exit(EXI T_FAILURE);

}
/*
* set socket as a listen socket
*/
if (listen(sockfd, © BACKLOG®) < 0)
{

perror("Failed to set socket passive");
exit(EXI T_FAILURE);

}
exit (EXI T_SUCCESS):

In this example of al i st en() function:

(1]
(2]

sockf d is the socket descriptor previously defined by a call to the socket () function.
BACKL OG specifies that only one pending connection can be queued at any given time.

The maximum number of connections is specified by the system configuration variable
somaxconn. The default value for somaxconn is 1024. Refer to the VSI TCP/IP Services for
OpenVMS Tuning and Troubleshooting manual for how to display and change the somaxconn
value dynamically.

2.4.2. Setting a Socket to Listen (System Services)

Example 2.6 shows how to use the I0O$ _SETMODE service to set the socket to listen for connection
requests.

Example 2.6. Setting a Socket to Listen (System Services)

#i
#i
#i

#i
#i
#i
#i
#i
#i

ncl ude <descri p. h> /* define OpenVMs descriptors */
ncl ude <ef ndef. h> /* define 'EFNSC_ENF event fl ag */
ncl ude <in. h> /* define internet related constants, */

/* functions, and structures */
ncl ude <i odef. h> /* define i/o function codes */
ncl ude <ssdef. h> /* define systemservice status codes */
ncl ude <starlet. h> /* define systemservice calls */
ncl ude <stdio. h> /* define standard i/o functions */
ncl ude <stdlib. h> /* define standard |library functions */
ncl ude <string. h> /* define string handling functions */

21

Chapter 2. Writing Network Applications

#i ncl ude <stsdef. h> /* define condition value fields
#i ncl ude <tcpi p$i net def. h> /* define tcp/ip network constants,
/* structures, and functions

#def i ne BACKLOG 1 /* server backl og
#def i ne PORTNUM 12345 /* server port number
struct iosb
{ /* ilo status bl ock
unsi gned short st atus; /* ilo completion status
unsi gned short bytcnt; /* bytes transferred if read/wite
void *details; /* address of buffer or paraneter
b
struct itemst_2
{ [* itemlist 2 descriptor/el enent
unsi gned short | ength; /* length
unsi gned short type; /* parameter type
voi d *address; /* address of itemli st
b
struct sockchar
{ /* socket characteristics
unsi gned short prot; /* protoco
unsi gned char type; /[* type
unsi gned char af; /* address format
b

int main(void)

{

struct iosb iosb; /* ilo status bl ock

unsi gned int status; /* system service return status
unsi gned short channel; /* network device i/o channe
struct sockchar sockchar; /* socket characteristics buffer
struct sockaddr _in addr; /* socket address structure
struct item st _2 addr_item st; /* socket address itemli st
$DESCRI PTOR(i net _devi ce, /* string descriptor with | ogica

"TCPIP$DEVICE: "); [/* name of network pseudodevice

/*

* initialize socket characteristics

*/

sockchar . pr ot
sockchar. type
sockchar . af

TCPI P$C_TCP;
TCPI P$C_STREAM
TCPI P$C_AF_| NET;

/*
* initialize socket address itemlist descriptor
*/

addr _item st.l ength
addr _item st.type
addr _item st. address

si zeof (addr);
TCPI P$C_SOCK_NANME
&addr ;

/*

*/
*/
*/

*/
*/

*/
*/
*/
*/

*/
*/
*/
*/

*/
*/
*/
*/

*/
*/
*/
*/
*/
*/
*/
*/

22

Chapter 2. Writing Network Applications

* initialize socket address structure
*/

menset (&addr, 0, sizeof(addr));
addr.sin_famly TCPI P$C_AF_| NET;
addr. si n_port ht ons(PORTNUM) ;
addr. si n_addr.s_addr TCPI P$C_| NADDR_ANY

/*
* assign i/o channel to network device
*/
status = sys$assi gn(& net_devi ce, /* device name
&channel , /* i/o channel
0, /* access node
0 /* not used
)
if (!(status & STS$M SUCCESS))
{
printf("Failed to assign i/o channel\n");
exit(status);
}
/*
* create a socket
*/
status = sys$qgi om{ EFN$C_ENF, /* event flag
channel , /* i/o channel
| G5 SETMODE, /* ilo function code
& osb, /* i/o status bl ock
0, /* ast service routine
0, /* ast paraneter
&sockchar, /* pl - socket characteristics
0, /* p2
0, /* p3
0, /* p4
0, /* p5
0 /* p6
)
if (status & STS$M SUCCESS)
status = iosb. status;

if (!(status & STS$M SUCCESS))
{

printf("Failed to create socket\n");
exit(status);

}
/*
* bind ip address and port nunber to socket
*/
status = sys$qgi om{ EFN$C_ENF, /* event flag
channel , /* i/0o channel
| G5 SETMODE, /* ilo function code
& osb, /* i/o status bl ock

*/
*/
*/
*/

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

*/
*/
*/
*/

23

Chapter 2. Writing Network Applications

(3]

}

This example shows how to use three separate $QIO calls with the I0O$ SETMODE service to:

(1
(2
(3

poooo

coo

)

if (status & STS$M SUCCESS)
status = iosb. status;

if

{

printf("Failed to bind socket\n");

I (status & STS$M SUCCESS))

exit(status);

}
/*
* set socket as a listen socket
*/

status = sys$qgi om{ EFN$C_ENF,
channel ,
| G5 SETMODE,
& osb,
Ol
Ol
Ol
Ol
Ol
BACKLOG,
Ol
0

)
if (status & STS$M SUCCESS)
status = iosb. status;
if (!(status & STS$M SUCCESS))

{

printf("Failed to set socket

exit(status);

}

exit(EXI T_SUCCESS):

Create a socket, by specifying parameter p1.

Bind a socket, by specifying parameter p3.

Set the socket to passive (set listen on the socket) by specifying a value for parameter p4.

ddr _itenl st,

/*
/*
/*
/*
/*
/*
/*
/*

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

ast service routine
ast paraneter

pl
p2
p3 -
p4
p5
p6

| ocal socket nane

event flag

i /o channel

i/o function code
i/o status bl ock
ast service routine
ast paraneter

pl
p2
p3
p4 -
p5
p6

connecti on backl og

passive\n");

Alternatively, you can perform all three operations with one $QIO call.

*/
*/
*/
*/
*/
*/
*/
*/

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

24

Chapter 2. Writing Network Applications

2.5. Initiating a Connection (TCP Protocol)

A TCP client establishes a connection with a TCP server by issuing the connect () function. The

connect () function initiates a three-way handshake between the client and the server.

2.5.1. Initiating a Connection (Sockets API)

To initiate a connection to a TCP server, use the connect () function. Example 2.7 shows a TCP

client the connect () function to initiate a connection to a TCP server.

Example 2.7. Initiating a Connection (Sockets API)

#i

#i
#i
#i
#i
#i
#i

ncl ude <in. h>

ncl ude <inet. h>

ncl ude <netdb. h>
ncl ude <socket. h>
ncl ude <stdio. h>
ncl ude <stdlib. h>
ncl ude <string. h>

#defi ne BUFSZ 1024
#def i ne PORTNUM 12345

/* define internet
/* functions,

/* defi
/* defi
/* defi
/* defi
/* defi
/* defi

/*
/*

voi d get_servaddr(void *addrptr)

{

char buf [BUFSI Z] ;
struct in_addr val;
struct hostent *host;

while (TRUE)
{

printf("Enter renmote host: ");

if (fgets(buf, sizeof(buf),

{

printf("Failed to read user

exit(EXI T_FAILURE);

&val , sizeof (struct

ne
ne
ne
ne
ne
ne

rel ated constants,
and structures

net work address info

networ k dat abase library info

BSD socket ap

standard i/o functions

standard library functions
string handling functions

user input buffer size
server port nunber

st din)

== NULL)

i nput\n");

}
buf[strlen(buf)-1] = O;
val . s_addr = inet_addr(buf);
if (val.s_addr !'= | NADDR _NONE)
{
mencpy(addrptr,
br eak;
}
if ((host = gethostbynanme(buf)))
{
nmencpy(addrptr, host->h_addr,
br eak;
}

si zeof (struct

in_addr));

in_addr));

*/
*/
*/
*/
*/
*/
*/
*/

*/
*/

25

Chapter 2. Writing Network Applications

int main(void)

{
i nt sockfd;
struct sockaddr i n addr;
/*
* initialize socket address structure
*/
menset (&addr, 0, sizeof(addr));
addr.sin_famly = AF_I NET;
addr. si n_port = htons(PORTNUM);
get _servaddr(&addr.sin_addr);
/*
* create a socket
*/
(1]
if ((sockfd = socket(AF_I NET, SOCK STREAM 0)) < 0)
{
perror("Failed to create socket”);
exit(EXI T_FAILURE);
}
/*
* connect to specified host and port numnber
*/
printf("lInitiated connection to host: %, port: %d\n",
i net _ntoa(addr.sin_addr), ntohs(addr.sin_port)
)
(2]
if (connect(sockfd, (struct sockaddr *) &addr, sizeof(addr)) < 0)
{
perror("Failed to connect to server");
exit(EXI T_FAILURE);
}
exit(EXI T_SUCCESS);
}

This example shows how to:

® Create a socket of type SOCK_STREAM
® Initiate a connection on the socket.

2.5.2. Initiating a Connection (System Services)

To initiate a connection to a TCP server, use the $QIO system service with the IO$ ACCESS
service and the p3 argument. The p3 argument of the IO$ ACCESS service is the address of an
i tem_|i st _2 descriptor that points to the remote socket name.

Example 2.8 shows a TCP client using the IO _$ACCESS service to initiate a connection.

26

Chapter 2. Writing Network Applications

Example 2.8. Initiating a Connection (System Services)

#i
#i
#i

#i
#i
#i
#i
#i
#i
#i
#i
#i
#i

ncl ude <descrip.h
ncl ude <ef ndef. h>
ncl ude <in. h>

ncl ude <inet. h>

ncl ude <i odef. h>
ncl ude <netdb. h>
ncl ude <ssdef. h>
nclude <starlet.h
ncl ude <stdio. h>
ncl ude <stdlib. h>
ncl ude <string. h>
ncl ude <stsdef. h>

ncl ude <tcpi p$i net def. h>

#defi ne BUFSZ
#def i ne PORTNUM

struct iosb

{

unsi gned short
unsi gned short
voi d *details;

}s

struct item st _2

{

unsi gned short
unsi gned short
voi d *address;

}s

struct sockchar

{

unsi gned short
unsi gned char t
unsi gned char a

}s

>

>

1024
12345

st at us;
byt cnt;

| engt h;
type;

prot;

ype;
f;

/* define OpenVMS descriptors

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

/*

voi d get_servaddr(void *addrptr)

{

char buf [BUFSI Z] ;

struct in_addr
struct hostent

while (TRUE)

{
printf("En

if (fgets(
{

printf("Failed to read user

val ;
*host ;

ter renote host:

buf, sizeof (buf),

def i
def i

ne ' EFNSC ENF' event flag
ne internet related constants,

functions, and structures

defi
defi
defi
defi
defi
defi
defi
defi
defi
defi

ne network address info

ne i/o function codes

ne network database library info
ne system service status codes
ne systemservice calls

ne standard i/o functions

ne standard library functions

ne string handling functions

ne condition value fields

ne tcp/ip network constants,

structures, and functions

/*
/*

/*
/*
/*
/*

/*
/*
/*
/*

/*
/*
/*
/*

")

user input buffer size
server port nunber

i/o status bl ock

i/o conpletion status

bytes transferred if read/wite
address of buffer or paraneter

itemlist 2 descriptor/el enment
| ength

paraneter type

address of itemlist

socket characteristics
pr ot ocol

type

addr ess fornat

stdin) == NULL)

i nput\n");

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

*/

*/
*/

*/
*/
*/
*/

*/
*/
*/
*/

*/
*/
*/
*/

27

Chapter 2. Writing Network Applications

exit(EXIT_FAILURE);
}

buf [strl en(buf)-1] = O;

val . s_addr = inet_addr(buf);
if (val.s_addr != | NADDR_NONE)
{
mencpy(addrptr, &val, sizeof(struct in_addr));
br eak;
}
if ((host = gethostbyname(buf)))
{
mencpy(addrptr, host->h_addr, sizeof(struct in_addr));
br eak;
}

int main(void)

{
struct iosb iosb; /* i/o status bl ock
unsi gned int status; /* system service return status
unsi gned short channel; /* network device i/o channe

struct sockchar sockchar; /*
struct sockaddr _in addr; /*
struct item st _2 addr_item st; /*
$DESCRI PTOR(i net _devi ce, /*

"TCPI P$DEVI CE: "); [*
/*

* initialize socket characteristics

*/

sockchar . pr ot
sockchar. type
sockchar . af

TCPI P$C_TCP;
TCPI P$C_STREAM
TCPI P$C_AF_| NET;

/*
* initialize socket
*/

addr _item st.l ength
addr _item st.type

si zeof (addr

socket characteristics buffer
socket address structure
socket address itemli st
string descriptor with |ogica
nane of network pseudodevice

address itemlist descriptor

)

TCPI P$C_SOCK_NAME

addr _item st. address &addr ;

/*

* initialize socket address structure
*/

menset (&addr, 0, sizeof(addr));
addr.sin_famly = TCPI P$C_AF_| NET;
addr. si n_port = htons(PORTNUM);
get _servaddr(&addr.sin_addr);

*/
*/
*/
*/
*/
*/
*/
*/

28

Chapter 2. Writing Network Applications

/*
* assign i/o channel to network device
*/
status = sys$assi gn(& net_devi ce, /* device name
&channel , /* i/o channel
0, /* access node
0 /* not used
)
if (!'(status & STS$M SUCCESS))
{
printf("Failed to assign i/o channel\n");
exit(status);
}
/*
* create a socket
*/
status = sys$qgi om{ EFN$C_ENF, /* event flag
channel , /* i/o channel
| O5_SETMODE, /* ilo function code
& osbh, /* i/o status bl ock
0, /* ast service routine
0, /* ast paraneter
&sockchar, /* pl - socket characteristics
o, /* p2
o, /* p3
o, [* p4
o, /* p5
0 /* p6
)
if (status & STS$M SUCCESS)
status = iosb. st atus;

if (!(status & STS$M SUCCESS))
{

printf("Failed to create socket\n");
exit(status);

}
/*
* connect to specified host and port nunber
*/

printf("Initiated connection to host: %, port: %\ n",
i net_ntoa(addr.sin_addr), ntohs(addr.sin_port)

)

status = sys$qgi om{ EFN$C_ENF, /* event flag
channel , /* i/0o channel
| O5_ACCESS, /* ilo function code
&i osb, /* ilo status bl ock
o, /* ast service routine
o, /* ast paraneter
0, /* pl
0, /* p2

*/
*/
*/
*/

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

*/
*/
*/
*/
*/
*/
*/
*/

29

Chapter 2. Writing Network Applications

&addr _item st, /* p3 - renote socket nane */
0, /* p4 */
0, /* p5 */
0 /* p6 */
)
if (status & STS$M SUCCESS)
status = iosh. stat us;

if (!(status & STS$M SUCCESS))
{

printf("Failed to connect to server\n");
exit(status);

}

exit(EXIT_SUCCESS);
}

This example shows how to:

® Create a socket using the [O$ SETMODE service.
® Initiate a connection using the I0$ ACCESS service.

2.6. Accepting a Connection (TCP Protocol)

A TCP server program must be able to accept incoming connection requests from client programs.
The accept () function:

* Returns the next completed connection from the completed connection queue.

* Returns a new socket descriptor that is connected with the client, called the connected socket.
There is one connected socket for each client connected to the server. The connected socket
remains until the server is finished serving the client.

2.6.1. Accepting a Connection (Sockets API)
Example 2.9 shows how to use the accept () function.

Example 2.9. Accepting a Connection (Sockets API)

#i ncl ude <in. h> /* define internet related constants, */

/* functions, and structures */
#i ncl ude <inet. h> /* define network address info */
#i ncl ude <netdb. h> /* define network database library info */
#i ncl ude <socket. h> /* define BSD socket api */
#i ncl ude <stdio. h> /* define standard i/o functions */
#i nclude <stdlib. h> /* define standard |library functions */
#i ncl ude <string. h> /* define string handling functions */
#def i ne SERV_BACKLOG 1 /* server backl og */
#def i ne SERV_PORTNUM 12345 /* server port nunber */

int main(void)

{

i nt conn_sockfd; /* connection socket descriptor */

30

Chapter 2. Writing Network Applications

int listen_sockfd; /* listen socket descriptor
unsi gned int cli_addrlen; /* returned length of client socket
/* address structure

struct sockaddr _in cli_addr; /* client socket address structure
struct sockaddr _in serv_addr; /* server socket address structure
/*

* initialize client's socket address structure

*/

menset (&cli_addr, 0, sizeof(cli_addr));

/*

* initialize server's socket address structure
*/

menset (&serv_addr, O, sizeof(serv_addr));

serv_addr.sin_famly = AF_I NET
serv_addr. si n_port = htons(SERV_PORTNUM) ;
serv_addr.sin_addr.s_addr = | NADDR_ANY;
/*
* create a listen socket
*/

if ((listen_sockfd = socket(AF_I NET, SOCK STREAM 0)) < 0)
{
perror("Failed to create socket");
exit(EXI T_FAILURE);

}

/*
* bind server's ip address and port nunber to |isten socket
*/

if (bind(listen_sockfd,
(struct sockaddr *) &serv_addr, sizeof(serv_addr)) < 0)

{

perror("Failed to bind socket");
exit(EXI T_FAILURE);

}
/*
* set socket as a listen socket
*/

if (listen(listen_sockfd, SERV_BACKLOG < 0)
{
perror("Failed to set socket passive");
exit(EXI T_FAILURE);

}
/*
* accept connection froma client
*/

printf("Waiting for a client connection on port: %l\n",

*/

*/
*/
*/
*/

31

Chapter 2. Writing Network Applications

nt ohs(serv_addr. sin_port)

);

cli_addrlen = sizeof(cli_addr);

conn_sockfd = accept(|isten_sockfd, (1]
(struct sockaddr *) &cli_addr, @
&cli _addrl en (3]
)
if (conn_sockfd < 0)

{

perror("Failed to accept client connection");
exit(EXIT_FAILURE);

}

printf("Accepted connection fromhost: %, port: %l\n",
inet_ntoa(cli_addr.sin_addr), ntohs(cli_addr.sin _port)

);

exit(EXI T_SUCCESS):
}

In this example of an accept () function:

® |isten_sockfd isthe socket descriptor returned by the previous call to the socket ()
function. This socket is bound to an address with the bi nd() function. The | i st en()
function changes the socket state from CLOSED to LISTEN (converts the unconnected socket to
a passive socket).

® cli _addr receives the protocol address of the client.

® cli_addrl en is a value/result parameter that initially contains the size of the cl i _addr
structure. On return of the accept () function, the cl i _addr structure contains the actual
length, in bytes, of the socket address structure returned by the kernel for the connected socket.

2.6.2. Accepting a Connection (System Services)

To accept a connection request:
1. Use the $ASSIGN system service to create a channel for the new connection.
2. Use the $QIO system service using the [IO$ ACCESS service with the IO$M_ACCEPT modifier.

The p4 argument specifies the address of a word written with the channel number of the new
connection. If p3 specifies a valid output buffer, the $QIO service returns the remote socket name.

Note

Specifying the IO$ ACCESS service is mandatory for TCP/IP. The IO$ ACCESS service uses the p4
argument only with the IO$M_ACCEPT modifier.

Example 2.10 shows a TCP server using the I0O$ ACCESS service with the IOSM_ACCEPT modifier
to accept incoming connection requests.

Example 2.10. Accepting a Connection (System Services)

#i ncl ude <descrip. h> /* define QpenVMS descriptors */
#i ncl ude <ef ndef. h> /* define ' EFNSC_ENF event fl ag */

32

Chapter 2. Writing Network Applications

#i ncl ude <in. h> /*

/*
#i ncl ude <inet. h> /*
#i ncl ude <i odef. h> /*
#i ncl ude <net db. h> /*
#i ncl ude <ssdef. h> /*
#include <starlet. h> /*
#i ncl ude <stdi o. h> /*
#incl ude <stdlib. h> /*
#i ncl ude <string. h> /*
#i ncl ude <stsdef. h> /*
#i ncl ude <tcpi p$i netdef. h> /*

/*

#defi ne SERV_BACKLOG 1

#def i ne SERV_PORTNUM 12345
struct iosb
{
unsi gned short st atus;
unsi gned short bytcnt;
voi d *details;
b
struct item st_2
{
unsi gned short | ength;
unsi gned short type;
voi d *address;
b
struct item st_3
{
unsi gned short | ength;
unsi gned short type;
voi d *address;
unsigned int *retlen

b

struct sockchar

{

unsi gned short prot;
unsi gned char type;
unsi gned char af;

b
mai n(void)

struct iosb iosb;
unsi gned int status;

unsi gned short conn_channel

unsi gned short
struct sockchar

i sten_channel
i sten_sockchar;

defi

functi ons,

defi
defi
defi
defi
defi
defi
defi
defi
defi
defi

structures,

/*
/*

/*
/*
/*
/*

/*
/*
/*
/*

/*
/*
/*
/*
/*

/*
/*
/*
/*

/*
/*

/*

/*
/*

ne internet related constants,
and structures

net wor k address info

i/o function codes

net wor k dat abase library info
system servi ce status codes
system service calls
standard i/o functions
standard library functions
string handling functions
condition value fields

tcp/ip network constants,

ne
ne
ne
ne
ne
ne
ne
ne
ne
ne

and functions

server
server

backl og
port nunber

i/o status bl ock

i/o completion status
bytes transferred if
address of buffer or

read/ wite
par anet er

itemlist 2 descriptor/elenment
| ength

paraneter type

address of itemli st

itemlist 3 descriptor/elenment
| ength

paraneter type

address of itemli st

address of returned | ength
socket characteristics

pr ot ocol

type

address format

i/o status bl ock
system service return status
connect inet device i/o channe

listen inet device i/o channe
| i sten socket characteristics

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

*/

*/
*/

*/
*/
*/
*/

*/
*/
*/
*/

*/
*/
*/
*/
*/

*/
*/
*/
*/

*/
*/

*/

*/
*/

33

Chapter 2. Writing Network Applications

unsi gned int cli_addrlen; /* returned length of client socket
/* address structure
struct sockaddr _in cli_addr; /* client socket address structure
struct itemst _3 cli _iteml st; /* client socket address itemli st
struct sockaddr _in serv_addr; /* server socket address structure
struct item st _2 serv_itemst; /* server socket address itemli st
$DESCRI PTOR(i net _devi ce, /* string descriptor with | ogica
“"TCPIP$DEVICE: "); [/* name of network pseudodevice

/*

* initialize socket characteristics

*/

l'i sten_sockchar. prot = TCPI P$C_TCP;
i sten_sockchar.type = TCPI P$C_STREAM
| i sten_sockchar. af = TCPI P$C_AF_| NET;

/*
* initialize client's itemlist descriptor
*/
menset (&cli_item st, 0, sizeof(cli_itemst));
cli_itemst.length = sizeof(cli_addr);
cli_itenl st.address = &cli _addr;
cli _itemst.retlen = &cli_addrlen
/*
* initialize client's socket address structure
*/

menset (&cli_addr, 0, sizeof(cli_addr));

/*
* initialize server's itemlist descriptor
*/

serv_itemst.length = sizeof(serv_addr);
serv_itemn st.type = TCPI P$C_SOCK_NANME

serv_iten st. address &serv_addr

/*
* initialize server's socket address structure
*/

menset (&serv_addr, O, sizeof(serv_addr));
serv_addr.sin_fanmly TCPI P$C_AF | NET
serv_addr. si n_port ht ons(SERV_PORTNUM) ;
serv_addr. si n_addr.s_addr TCPI P$C_| NADDR_ANY

/*
* assign i/o channels to network device
*/
status = sys$assi gn(& net_devi ce, /* device name */

& isten_channel, /* i/o channel */

Chapter 2. Writing Network Applications

0,
0
)

if (status & STS$M SUCCESS)

status =

if
{

/*
/*

sys$assi gn(& net_devi ce,

&conn_channel

0,
0
)

I (status & STS$M SUCCESS))

access node
not used

/* device nane
/* i/o channel
/* access node
/* not used

printf("Failed to assign i/o channel (s)\n");

exit(status);

}

/*
* create a |listen
*/

status = sys$qi o

)

socket

EFN$SC _ENF,

i sten_channel

| G5 SETMODE,

& osbh,

0,

0,

&l i sten_sockchar

cocoooo

if (status & STS$M SUCCESS)

status =

if(
{

i osb. st at us;

I (status & STS$M SUCCESS))

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

event flag

i /o channel

i/o function code
i/o status bl ock
ast service routine
ast paraneter

pl -
p2
p3
p4
p5
p6

printf("Failed to create socket\n");

exit(status);

}

/*

* bind server's ip address and port

*/

status = sys$gi ow

EFN$C_ENF,

| i sten_channel
| O6_SETMODE

& osb,

0,

0,

0,

0

&serv_itenl st
Ol

nurmber to |isten socket
/* event flag

/* i/0o channel

/* i/o function code
/* ilo status bl ock

/* ast service routine
/* ast paraneter

/* pl

/* p2

/* p3 - local socket nane
/* p4

*/
*/

*/
*/
*/
*/

socket characteristics

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

35

Chapter 2. Writing Network Applications

0, /* p5
0 /* p6
)
if (status & STS$M SUCCESS)
status = iosb. status;

if (!(status & STS$M SUCCESS))

{
printf("Failed to bind socket\n");

exit(status);

}
/*
* set socket as a |isten socket
*/
status = sys$qgi om{ EFN$C_ENF, /* event flag
i sten_channel, /* i/0o channe
| O5_SETMODE, /* ilo function code
& osb, /* i/o status bl ock
0, /* ast service routine
0, /* ast paraneter
0, /* pl
0, /* p2
0, /* p3
SERV_BACKLOG, /* p4 - connection backl og
0, /* p5
0 /* p6
)
if (status & STS$M SUCCESS)
status = i osb. status;

if (!(status & STS$M SUCCESS))
{

printf("Failed to set socket passive\n");
exit(status);

}
/*
* accept connection froma client
*/

printf("Waiting for a client connection on port: %l\n",
nt ohs(serv_addr. sin_port)

);

status = sys$qgi om{ EFN$C_ENF, /* event flag
i sten_channel, /* ilo channe
| O_ACCESS| | G5M_ACCEPT,
/* i/o function code

&i osb, /* ilo status bl ock

o, /* ast service routine

o, /* ast paraneter

0, /* pl

0, /* p2

&cli _item st, /* p3 - renpte socket nane

*/
*/

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

*/
*/

*/
*/
*/
*/
*/
*/
*/

36

Chapter 2. Writing Network Applications

}

if (status & STS$M SUCCESS)

if

&conn_channel

0,
0
)

status = iosb. status;

I (status & STS$M SUCCESS))

{

/* p4 - i/o channel for new
/* connection

/* p5

/* p6

printf("Failed to accept client connection\n");

exit(status);

}

printf("Accepted connection fromhost: %, port: %\ n",

exit

);

(EXI T_SUCCESS);

This example show how to:

(1
(2
(3
(4

Obtaining socket information is useful if your program has management functions, or if you have a

inet_ntoa(cli_addr.sin_addr), ntohs(cli_addr.sin_port)

Create a socket using the IO$M_SETMODE service.
Bind the socket using the IO$M_SETMODE service, specifying parameter p3.

Set the socket to passive mode using the IO$M_SETMODE service, specifying parameter p4.

Accept an incoming connection using the 10§ ACCESS|IO$ ACCEPT service.

2.7. Getting Socket Options

complex program that uses multiple connections you need to track.

2.7.1. Getting Socket Information (Sockets API)

You can use any of the following Sockets API functions to get socket information:

get peer nane()

get socknane()

get sockopt ()

*/
*/
*/
*/

Example 2.11 shows a TCP server using the get peer name() function to get the remote IP address

and port number associated with a socket.

Example 2.11. Getting Socket Information (Sockets API)

#i

#i
#i
#i
#i
#i
#i

ncl ude

ncl ude
ncl ude
ncl ude
ncl ude
ncl ude
ncl ude

<in. h>

<inet.h>
<net db. h>
<socket . h>
<stdi o. h>
<stdlib. h>
<string. h>

/* define internet rel ated constants,
functions, and structures

/*
/*
/*
/*
/*
/*
/*

defi
defi
defi
defi
defi
defi

ne network address info

ne network database library info
ne BSD socket ap

ne standard i/o functions

ne standard library functions

ne string handling functions

*/
*/
*/
*/
*/
*/
*/
*/

37

Chapter 2. Writing Network Applications

#defi ne SERV_BACKLOG 1
#defi ne SERV_PORTNUM 12345

i nt

{

mai n(void)

i nt conn_sockfd;
int |isten_sockfd;

unsigned int cli_addrlen

/* server backl og
/* server port number

/* connection socket descri ptor
/* listen socket descriptor

/* returned length of client socket
/* address structure

struct sockaddr _in cli_addr; /* client socket address structure
struct sockaddr _in serv_addr; /* server socket address structure
/*

* initialize server's socket address structure

*/

menset (&serv_addr, O, sizeof(serv_addr));

serv_addr.sin_famly
serv_addr. si n_port
serv_addr. si n_addr.s_addr

/*
* create a |isten socket
*/

AF_| NET;
ht ons(SERV_PORTNUM) ;
| NADDR_ANY;

if ((listen_sockfd = socket(AF_I NET, SOCK STREAM 0)) < 0)

{

perror("Failed to create socket"”);

exit(EXIT_FAILURE);

}
/*

* bind server's ip address and port nunber to |isten socket

*/

if (bind(listen_sockfd,

(struct sockaddr *) &serv_addr, sizeof(serv_addr)) < 0)

{

perror("Failed to bind socket");

exit(EXIT_FAILURE);
}

/*

* set socket as a listen socket

*/

if (listen(listen_sockfd,

{

SERV_BACKLOG) < 0)

perror("Failed to set socket passive");

exit(EXIT_FAILURE);
}

/*

* accept connection froma client

*/

*/
*/

*/
*/

*/
*/
*/
*/

38

Chapter 2. Writing Network Applications

printf("Waiting for a client connection on port: %l\n",
nt ohs(serv_addr. sin_port)

);

conn_sockfd = accept(listen_sockfd, (struct sockaddr *) 0, 0);

if (conn_sockfd < 0)
{
perror("Failed to accept client connection");
exit(EXI T_FAILURE);

}
/*
* log client connection request
*/

cli_addrlen = sizeof(cli_addr);
menset (&cli_addr, 0, sizeof(cli_addr));

if (getpeername(conn_sockfd O,
(struct sockaddr *) &cli_addr, ® &cli _addrlen ©) <
0)
{

perror("Failed to get client name");
exit(EXIT_FAILURE);

}

printf("Accepted connection fromhost: %, port: %l\n",
inet_ntoa(cli_addr.sin_addr), ntohs(cli_addr.sin port) @

);

exit (EXI T_SUCCESS);
}

This example obtains the remote IP address and port number using the get peer name() function
and then prints the information.

©® conn_sockf d is the socket descriptor returned by the previous call to the accept ()
function.

® cli _addr isthe address structure for the connected socket.

® cli_addrl en is the length of the address structure for the connected socket.

O Theprintf statement accesses the information stored in the address structure for the
connected socket and displays the client's I[P address and port number. The i net _nt oa() and
the nt ohs() functions are used to convert the IP address and port number from network byte
order to host byte order.

2.7.2. Getting Socket Information (System Services)

To obtain information about the parts of a socket, use the $QIO system service with the 10
$ SENSEMODE function.

Example 2.12 shows a TCP service using the I0$ SENSEMODE function to get a client's IP address
and port number.

Example 2.12. Getting Socket Information (System Services)

#i ncl ude <descrip. h> /* define OpenVMs descriptors */

39

Chapter 2. Writing Network Applications

#i ncl ude <efndef. h>
#i ncl ude <in. h> /*
/*
#i ncl ude <inet. h> /*
#i ncl ude <i odef. h> /*
#i ncl ude <net db. h> /*
#i ncl ude <ssdef. h> /*
#include <starlet. h> /*
#i ncl ude <stdi o. h> /*
#i ncl ude <stdlib. h> /*
#i ncl ude <string. h> /*
#i ncl ude <stsdef. h> /*
#i ncl ude <tcpi p$i netdef. h> /*
/*

#defi ne SERV_BACKLOG 1

#def i ne SERV_PORTNUM 12345
struct iosb
{
unsi gned short st atus;
unsi gned short bytcnt;
voi d *details;
b
struct item st_2
{
unsi gned short | ength;
unsi gned short type;
voi d *address;
b
struct item st_3
{
unsi gned short | ength;
unsi gned short type;
voi d *address;
unsigned int *retlen

b

struct sockchar

{

unsi gned short prot;
unsi gned char type;
unsi gned char af;

b
mai n(void)

struct iosb iosb;
unsi gned int status;

unsi gned short conn_channel

unsi gned short |isten_channel

/* define ' EFNSC ENF'

defi

functi ons,

defi
defi
defi
defi
defi
defi
defi
defi
defi
defi

structures,

/*
/*

/*
/*
/*
/*

/*
/*
/*
/*

/*
/*
/*
/*
/*

/*
/*
/*
/*

/*
/*

/*

/*

event flag
ne internet related constants,
and structures

net wor k address info

i/o function codes

net wor k dat abase library info
system servi ce status codes
system service calls

standard i/o functions
standard library functions
string handling functions
condition value fields

tcp/ip network constants,

and functions

ne
ne
ne
ne
ne
ne
ne
ne
ne
ne

server
server

backl og
port nunber

i/o status bl ock

i/o completion status
bytes transferred if
address of buffer or

read/ wite
par anet er

itemlist 2 descriptor/elenment
| ength

paraneter type

address of itemlist

itemlist 3 descriptor/elenment
| ength

paraneter type

address of itemli st

address of returned | ength
socket characteristics

pr ot ocol

type

addr ess format

i/o status bl ock
system service return status
connect inet device i/o channe

listen inet device i/o channe

*/
*/

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

*/
*/

*/
*/
*/
*/

*/
*/
*/
*/

*/
*/
*/
*/
*/

*/
*/
*/
*/

*/
*/

*/

40

Chapter 2. Writing Network Applications

struct sockchar |isten_sockchar; /* listen socket characteristics */
unsi gned int cli_addrlen; /* returned length of client socket */
/* address structure */
struct sockaddr _in cli_addr; /* client socket address structure */
struct itemst _3 cli _iteml st; /* client socket address itemlist */
struct sockaddr _in serv_addr; /* server socket address structure */
struct item st _2 serv_itemst; /* server socket address itemlist */
$DESCRI PTOR(i net _devi ce, /* string descriptor with | ogical */
“"TCPIP$DEVICE: "); [/* name of network pseudodevice */
/*
* initialize socket characteristics
*/

i sten_sockchar. prot
i sten_sockchar.type
i sten_sockchar. af

TCPI P$C_TCP;
TCPI P$C_STREAM
TCPI P$C_AF_| NET;

/*
* initialize client's itemlist descriptor
*/

cli_item st.length
cli_item st.type

sizeof (cli_addr);
TCPI P$C_SOCK_NAME

cli_itenl st.address &cl i _addr

cli _itenmst.retlen &cl i _addrl en

/*

* initialize server's itemlist descriptor
*/

serv_itemst.length = sizeof(serv_addr);
serv_itemn st.type = TCPI P$C_SOCK_NAME

serv_iten st. address &serv_addr

/*

* initialize server's socket address structure
*/

menset (&serv_addr, O, sizeof(serv_addr));
serv_addr.sin_fanmly TCPI P$C_AF | NET
serv_addr. si n_port ht ons(SERV_PORTNUM) ;
serv_addr. si n_addr.s_addr TCPI P$C_| NADDR_ANY

/*
* assign i/o channels to network device
*/
status = sys$assi gn(& net_devi ce, /* device name */
& i sten_channel, /* i/0o channel */
0, /* access node */
0 /* not used */

)

if (status & STS$M SUCCESS)

41

Chapter 2. Writing Network Applications

status =

if
{

sys$assi gn(& net_devi ce,

&conn_channel

0,
0
)

I (status & STS$M SUCCESS))

/*
/*
/*
/*

devi ce nane
i /o channel
access node
not

used

printf("Failed to assign i/o channel (s)\n");

exit(status);

}

/*
* create a |listen
*/

status = sys$qi oM

)

socket

EFN$SC _ENF,

i sten_channel

| G5 SETMODE

& osbh,

0,

0,

&l i sten_sockchar

cocoooo

if (status & STS$M SUCCESS)

status =

if
{

i osb. st at us;

I (status & STS$M SUCCESS))

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

event flag

i/o

channel

i/o function code
i/o status bl ock
ast service routine

ast
pl -
p2
p3
p4
p5
p6

printf("Failed to create socket\n");

exit(status);

}

* bind server's ip address and port

/*

*/

status = sys$qi oM
)

EFN$C_ENF,

i sten_channel
| O8_SETMODE
&i osb,

0,

0,

0,

0,
&serv_itemnl st
0,

0,

0

if (status & STS$M SUCCESS)

nunber

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

par anet er
socket characteristics

to listen socket

event flag

i/o

channel

i/o function code
i/o status bl ock
ast service routine

ast
pl
p2
p3 -
p4
p5
p6

par anmet er

| ocal socket nane

*/
*/
*/
*/

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

42

Chapter 2. Writing Network Applications

status = iosb. status;

if (!(status & STS$M SUCCESS))

{
printf("Failed to bind socket\n");

exit(status);

}
/*
* set socket as a listen socket
*/
status = sys$gi om{ EFN$SC_ENF, /* event flag
i sten_channel, /* i/0o channe
| O6_SETMODE, /* ilo function code
&i osb, /* ilo status bl ock
0, /* ast service routine
0, /* ast paraneter
0, /* pl
0, /* p2
0, /* p3
SERV_BACKLOG, /* p4 - connection backl og
0, /* p5
0 /* p6
)
if (status & STS$M SUCCESS)
status = iosb. status;

if (!(status & STS$M SUCCESS))
{

printf("Failed to set socket passive\n");
exit(status);

}
/*
* accept connection froma client
*/

printf("Waiting for a client connection on port: %l\n",
nt ohs(serv_addr. sin_port)

);

status = sys$gi om{(EFNSC_ENF, /* event flag

i sten_channel, /* i/0o channe

| O6_ACCESS| | G8M_ACCEPT,
/* ilo function code

&i osb, /* ilo status bl ock

0, /* ast service routine

0, /* ast paraneter

0, /* pl

0, /* p2

0, /* p3

&conn_channel , /* p4 - i/o channel for new
/* connection

0, /* p5

0 /* p6

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

*/
*/

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

43

Chapter 2. Writing Network Applications

if (status & STS$M SUCCESS)
status = iosb. status;

if (!(status & STS$M SUCCESS))
{

printf("Failed to accept client connection\n");

exit(status);

}
/*
* log client connection request
*/

menset (&cli_addr, 0, sizeof(cli_addr));

(1
status = sys$qgi om{ EFN$C_ENF, /* event flag
conn_channel , /* i/0o channe
| O6_SENSEMODE, /* ilo function code
&i osb, /* ilo status bl ock
0, /* ast service routine
0, /* ast paraneter
0, /* pl
0, /* p2
0, /* p3
&cli _item st, /* p4 - peer socket name
0, /* p5
0 /* p6
)
if (status & STS$M SUCCESS)
status = iosb. status;
if (!'(status & STS$M SUCCESS))
{
printf("Failed to get client name\n");
exit(status);
}
printf("Accepted connection fromhost: %, port: %\ n",
i net_ntoa(cli_addr.sin_addr), ntohs(cli_addr.sin_port)
)
exit(EXI T_SUCCESS);
}

This example show how to use the $QIOW system service to obtain remote port information.

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

©® The IO§ SENSEMODE service returns the port number and IP address in the structure defined

by p4.

2.8. Setting Socket Options

To set binary socket options and socket options that return a value, use the set sockopt () Sockets

API function or the IO$ SETMODE system service.

44

Chapter 2. Writing Network Applications

2.8.1. Setting Socket Options (Sockets API)

Example 2.13 shows a TCP server using the set sockopt () function to set the SO REUSEADDR
option.

Example 2.13. Setting Socket Options (Sockets API)

#i ncl ude <in. h> /* define internet related constants, */

/* functions, and structures */
#i ncl ude <inet. h> /* define network address info */
#i ncl ude <netdb. h> /* define network database library info */
#i ncl ude <socket. h> /* define BSD socket api */
#i ncl ude <stdio. h> /* define standard i/o functions */
#i nclude <stdlib. h> /* define standard |ibrary functions */
#i ncl ude <string. h> /* define string handling functions */
#def i ne SERV_BACKLOG 1 /* server backl og */
#def i ne SERV_PORTNUM 12345 /* server port nunber */

int main(void)

{
int optval = 1; /* SO REUSEADDR s option value (on) */
i nt conn_sockfd; /* connection socket descriptor */
int listen_sockfd; /* listen socket descriptor */
unsigned int cli_addrlen; /* returned length of client socket */
/* address structure */

struct sockaddr _in cli_addr; /* client socket address structure */
struct sockaddr _in serv_addr; /* server socket address structure */
/*

* initialize server's socket address structure

*/

nenset (&serv_addr, 0, sizeof(serv_addr));

serv_addr.sin _famly = AF_I NET

serv_addr. sin_port = htons(SERV_PORTNUM) ;
serv_addr.sin_addr.s_addr = | NADDR_ANY;
/*

* create a |isten socket

*/

if ((listen_sockfd = socket(AF_I NET, SOCK STREAM 0)) < 0)
{

perror("Failed to create socket");
exit(EXIT_FAILURE);

}
/*
* bind server's ip address and port nunber to |isten socket
*/

if (setsockopt(listen_sockfd, @

45

Chapter 2. Writing Network Applications

SCL_SCCKET @, SO REUSEADDR ©, &optval O,
{

perror("Failed to set socket option");
exit(EXI T_FAILURE);

}

if (bind(listen_sockfd,

si zeof (optval) ©) < 0)

(struct sockaddr *) &serv_addr, sizeof(serv_addr)) < 0)

{

perror("Failed to bind socket");
exit(EXI T_FAILURE);

}
/*
* set socket as a listen socket
*/

if (listen(listen_sockfd, SERV_BACKLOG < 0)
{
perror("Failed to set socket passive");
exit(EXI T_FAILURE);

}
/*
* accept connection froma client
*/

printf("Waiting for a client connection on port: %l\n",

nt ohs(serv_addr. sin_port)

);

conn_sockfd = accept(listen_sockfd, (struct sockaddr *) 0, 0);

if (conn_sockfd < 0)

{

perror("Failed to accept client connection");

exit(EXI T_FAILURE);

}
/*
* log client connection request
*/

cli_addrlen = sizeof(cli_addr);
menset (&l i _addr, 0, sizeof(cli_addr));

if (getpeername(conn_sockfd,
(struct sockaddr *) &cli _addr
{
perror("Failed to get client name");
exit(EXI T_FAILURE);

}

&cli _addrlen) < 0)

printf("Accepted connection fromhost: %, port: %l\n",

i net_ntoa(cli_addr.sin_addr), ntohs(cl

);

exit(EXI T_SUCCESS):

_addr.sin_port)

46

Chapter 2. Writing Network Applications

}

This example uses the set sockopt () function to allow local addresses to be reused.

©® |isten_sockf d refers to an open socket descriptor returned by the previous call to the

socket () function.

® SOL_SOCKET specifies that the options will be modified at socket level.

® SO _REUSEADDR s the socket option to be set. In this case, the socket option allows reuse of

local addresses.

O optval isthe value to set for the option. In this case, the value is 1, which enables the option.
© sizeof (optval) is the size of the option value.

Calls to set sockopt () specifying unsupported options return an error code of ENOPROTOOPT.

2.8.2. Setting Socket Options (System Services)

Example 2.14 shows how to set socket options using system services.

Example 2.14. Setting Socket Options (System Services)

#i ncl ude
#i ncl ude
#i ncl ude

<descri p. h>
<ef ndef . h>
<in.h>

<inet.h>

<i odef . h>

<net db. h>
<ssdef . h>
<starlet.h>
<stdi o. h>
<stdlib. h>
<string. h>

<st sdef. h>

<t cpi p$i net def . h>

#i ncl ude
#i ncl ude
#i ncl ude
#i ncl ude
#i ncl ude
#i ncl ude
#i ncl ude
#i ncl ude
#i ncl ude
#i ncl ude

#def i ne SERV_BACKLOG 1

#def i ne SERV_PORTNUM 12345
struct iosb
{
unsi gned short st atus;
unsi gned short bytcnt;
voi d *details;
b
struct item st_2
{
unsi gned short | ength;
unsi gned short type;
voi d *address;
b
struct item st_3
{
unsi gned short | ength;
unsi gned short type;

/* define OpenVMS descriptors

/* define ' EFNSC ENF

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

def i

functi ons,

defi
defi
defi
defi
defi
defi
defi
defi
defi
defi

structures,

/*
/*

/*
/*
/*
/*

/*
/*
/*
/*

/*
/*
/*

event flag

rel ated constants,
and structures

ne network address info

ne i/o function codes

ne network database library info
ne system service status codes
ne systemservice calls

ne standard i/o functions

ne standard library functions
ne string handling functions
ne condition value fields

ne tcp/ip network constants,
and functions

ne i nternet

server
server

backl og
port nunber

i/o status bl ock

i/o conpletion status
bytes transferred if
address of buffer or

read/ wite
par anet er

itemlist 2 descriptor/el enment
| ength

paraneter type

address of itemlist

itemlist 3 descriptor/el enment
| ength
paraneter type

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

*/
*/

*/
*/
*/
*/

*/
*/
*/
*/

*/
*/
*/

47

Chapter 2. Writing Network Applications

*/

*/

voi d *address; /*
unsigned int *retlen; /*
b
struct sockchar
{ I
unsi gned short prot; /*
unsi gned char type; /*
unsi gned char af; /*
b
mai n(void)
int optval = 1; /*
struct iosb iosb; /*
unsi gned int status; /*
unsi gned short conn_channel; /*
unsi gned short |isten_channel; /*
struct sockchar |isten_sockchar; /*
unsi gned int cli_addrlen; /*
/*
struct sockaddr _in cli_addr; /*
struct itemst _3 cli _item st; /*
struct sockaddr _in serv_addr; /*
struct item st _2 serv_itemst; /*
struct item st_2 sockopt_item st;
struct itenm st _2 reuseaddr _iteml st;
$DESCRI PTOR(i net _devi ce, /*
"TCPI P$DEVICE: "); [*
/*

* initialize socket characteristics

*/

l'i sten_sockchar. prot = TCPI P$C_TCP;

i sten_sockchar.type
i sten_sockchar. af

address of itemli st */
address of returned | ength */
socket characteristics */
pr ot ocol */
type */
address format */
reuseaddr option val ue (on) */
i/o status bl ock */
system service return status */

connect inet device i/o channel */

listen inet device i/o channel */
| i sten socket characteristics */

returned length of client socket */
address structure */
client socket address structure */
client socket address itemlist */

server socket address structure */
server socket address itemlist */

/* server socket option itemlist
/* reuseaddr option itemli st

string descriptor with |ogical */
nane of network pseudodevice */

TCPI P$C_STREAM
TCPI P$C_AF_| NET;

/*

* initialize reuseaddr's itemlist el enent
*/

reuseaddr _itenml st.length = sizeof(

reuseaddr _itenl st.type
reuseaddr _itenl st. address = &optval;

/*

optval);

= TCPI P$C_REUSEADDR

* initialize setsockopt's itemlist descriptor

48

Chapter 2. Writing Network Applications

*/

sockopt _item st.length
sockopt _item st.type
sockopt _itenl st. address

si zeof (reuseaddr _item st)
TCPI P$C_SOCKOPT
&r euseaddr _itenl st;

/*
* initialize client's itemlist descriptor
*/

cli_item st.length
cli_item st.type

sizeof (cli_addr);
TCPI P$C_SOCK_NAME

cli_itenl st.address &cl i _addr

cli _itenmst.retlen &cl i _addrl en

/*

* initialize server's itemlist descriptor
*/

serv_item st.length
serv_item st.type

si zeof (serv_addr);
TCPI P$C_SOCK_NAME

serv_iten st. address &serv_addr

/*

* initialize server's socket address structure
*/

menset (&serv_addr, O, sizeof(serv_addr));
serv_addr.sin_fanmly TCPI P$C_AF | NET
serv_addr. si n_port ht ons(SERV_PORTNUM) ;
serv_addr. si n_addr.s_addr TCPI P$C_| NADDR_ANY

/*
* assign i/o channels to network device
*/
status = sys$assi gn(& net_devi ce, /* device name */
& i sten_channel, /* i/0o channel */
0, /* access node */
0 /* not used */
);
if (status & STS$M SUCCESS)
status = sys$assign(& net_device, [/* device nanme */
&conn_channel, /* i/o channel */
0, /* access node */
0 /* not used */
);
if (!'(status & STS$M SUCCESS))
{
printf("Failed to assign i/o channel (s)\n");
exit(status);
}
/*
* create a |listen socket
*/

49

Chapter 2. Writing Network Applications

status = sys$qgi om{ EFNSC _ENF
I i sten_channel
| O8_SETMODE
& osb,
0,
0,
&l i sten_sockchar

cocoooo

)

if (status & STS$M SUCCESS)
status = iosb. status;

if (!(status & STS$M SUCCESS))
{

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

event flag

i /o channel

i/o function code
i/o status bl ock
ast service routine
ast paraneter

pl - socket characteristics
p2

p3

p4

p5

p6

printf("Failed to create socket\n");

exit(status);

}

/*
* bind server's ip address and port
*/

status = sys$qgi om{ EFNSC ENF
i sten_channel
| O8_SETMODE
&i osb,

coooo

Ol
O &sockopt _itemn st,
0

)

if (status & STS$M SUCCESS)
status = iosb. status;

if (!(status & STS$M SUCCESS))
{

nunber to |isten socket

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

event flag

i /o channel

i/o function code
i/o status bl ock
ast service routine
ast paraneter

pl

p2

p3

p4

/* p5 - socket options

/*

p6

printf("Failed to set socket option\n");

exit(status);

}

status = sys$qgi om{ EFN$C_ENF,
i sten_channel
| O8_SETMODE,
&i osb,
0,
0,
0,

/*
/*
/*
/*
/*
/*
/*

event flag

i /o channel

i/o function code
i/o status bl ock
ast service routine
ast paraneter

pl

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

*/
*/
*/
*/
*/
*/
*/

50

Chapter 2. Writing Network Applications

0, /* p2
&serv_iten st, /* p3 - local socket nane
0, /* p4
0, /* p5
0 /* p6
)
if (status & STS$M SUCCESS)
status = iosh. stat us;

if (!(status & STS$M SUCCESS))

{
printf("Failed to bind socket\n");

exit(status);

}
/*
* set socket as a listen socket
*/
status = sys$gi om{ EFN$SC_ENF, /* event flag
i sten_channel, /* i/0o channe
| O6_SETMODE, /* ilo function code
&i osb, /* ilo status bl ock
0, /* ast service routine
0, /* ast paraneter
0, /* pl
0, /* p2
0, /* p3
SERV_BACKLOG, /* p4 - connection backl og
0, /* p5
0 /* p6
)
if (status & STS$M SUCCESS)
status = iosb. status;

if (!(status & STS$M SUCCESS))
{

printf("Failed to set socket passive\n");
exit(status);

}
/*
* accept connection froma client
*/

printf("Waiting for a client connection on port: %l\n",
nt ohs(serv_addr. sin_port)

)
status = sys$gi om{ EFNSC_ENF, /* event flag
i sten_channel, /* i/0o channe
| O8_ACCESS| | O8M_ACCEPT,
/* i/o function code
& osbh, /* i/o status bl ock
0, /* ast service routine

0, [*

ast paraneter

*/
*/
*/
*/
*/

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

*/

*/
*/

*/
*/
*/
*/

51

Chapter 2. Writing Network Applications

}

0, /* pl
0, /* p2
0, /* p3
&conn_channel , /* p4 - i/o channel for new
/* connection
0, /* p5
0 /* p6
)
if (status & STS$M SUCCESS)
status = iosb. status;

if (!(status & STS$M SUCCESS))
{

printf("Failed to accept client connection\n");
exit(status);

}
/*
* log client connection request
*/

menset (&cli_addr, O, sizeof(cli_addr));

status = sys$gi om{ EFNSC_ENF, /* event flag
conn_channel , /* i/0o channe
| O6_ SENSEMODE, /* ilo function code
&i osb, /* ilo status bl ock
0, /* ast service routine
0, /* ast paraneter
0, /* pl
0, /* p2
0, /* p3
&cli _item st, /* p4 - peer socket name
0, /* p5
0 /* p6

);
if (status & STS$M SUCCESS)
status = iosb. status;

if (!(status & STS$M SUCCESS))
{

printf("Failed to get client name\n");
exit(status);

}

printf("Accepted connection fromhost: %, port: %l\n",
inet_ntoa(cli_addr.sin_addr), ntohs(cli_addr.sin_port)

);

exit(EXIT_SUCCESS);

This example sets socket options using the IO$SETMODE function.

(1

The p5 parameter sets the socket options as specified in sockopt i tem st.

*/
*/
*/
*/
*/
*/
*/

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

52

Chapter 2. Writing Network Applications

2.9. Reading Data

TCP/IP Services allows the application to read data after it performs the following operations:
* Create a socket
* Bind a socket name to the socket

¢ Establish a connection

2.9.1. Reading Data (Sockets API)

Example 2.15 shows a TCP client using the r ecv() function to read data.

Example 2.15. Reading Data (Sockets API)

#i ncl ude <in. h> /* define internet related constants, */

/* functions, and structures */
#i ncl ude <inet. h> /* define network address info */
#i ncl ude <netdb. h> /* define network database library info */
#i ncl ude <socket. h> /* define BSD socket api */
#i ncl ude <stdio. h> /* define standard i/o functions */
#i nclude <stdlib. h> /* define standard |ibrary functions */
#i ncl ude <string. h> /* define string handling functions */
#def i ne BUFSZ 1024 /* user input buffer size */
#def i ne PORTNUM 12345 /* server port nunber */

voi d get _servaddr(void *addrptr)

{
char buf [BUFSI Z] ;

struct in_addr val;
struct hostent *host;

while (TRUE)
{

printf("Enter renmote host: ");

if (fgets(buf, sizeof(buf), stdin) == NULL)
{

printf("Failed to read user input\n");
exit(EXIT_FAILURE);
}

buf[strlen(buf)-1] = O;

val .s_addr = inet_addr(buf);
if (val.s_addr !'= | NADDR_NONE)
{
mencpy(addrptr, &val, sizeof(struct in_addr));
br eak;
}

if ((host = gethostbyname(buf)))

53

Chapter 2. Writing Network Applications

i nt

{

{

mencpy(addrptr, host->h_addr, sizeof(struct in_addr)
br eak;

}

mai n(void)

char buf[512];
i nt nbytes, sockfd;
struct sockaddr _in addr;

/*
* initialize socket address structure
*/

menset (&addr, 0, sizeof(addr));
addr.sin_famly = AF_I NET;

addr. si n_port = htons(PORTNUM);
get _servaddr(&addr.sin_addr);

/*
* create a socket
*/

if ((sockfd = socket(AF_INET, SOCK STREAM 0)) < 0)
{
perror("Failed to create socket"”);
exit(EXI T_FAILURE);

}
/*
* connect to specified host and port numnber
*/

printf("lInitiated connection to host: %, port: %d\n",
i net _ntoa(addr.sin_addr), ntohs(addr.sin_port)

);

if (connect(sockfd, (struct sockaddr *) &addr, sizeof (addr))
{

perror("Failed to connect to server");
exit(EXI T_FAILURE);

}
/*
* read data from connection
*/

nbytes = recv(sockfd,® buf,® sizeof(buf),® 0 @);
if (nbytes < 0)
{
perror("Failed to read data from connection");
exit(EXI T_FAILURE);

}

<0)

54

Chapter 2. Writing Network Applications

}

buf [nbytes] = 0;

printf("Data received:

exit(EXIT_SUCCESS);

s\ n",

buf);

This example reads data from a connection using the r ecv() function.

(1
(2
(3
(4

sockf d is the socket descriptor previously defined by a call to the connect () function.
buf points to the receive buffer where the data is placed.

si zeof (buf) is the size of the receive buffer.
0 indicates that out-of-band data is not being received.

2.9.2. Reading Data (System Services)

The $QIO I0$ READVBLK function transfers data received from the internet host (and kept in
system dynamic memory) into the address space of the user's process. After the read operation
completes, the data in system dynamic memory is discarded.

Example 2.16 shows a TCP client using the I0$ READVBLK function to read data into a single I/O
buffer.

Example 2.16. Reading Data (System Services)

#i
#i
#i

#i
#i
#i
#i
#i
#i
#i
#i
#i
#i

ncl ude
ncl ude
ncl ude

ncl ude
ncl ude
ncl ude
ncl ude
ncl ude
ncl ude
ncl ude
ncl ude
ncl ude
ncl ude

<descri p. h>
<ef ndef . h>
<in.h>

<inet.h>

<i odef . h>

<net db. h>
<ssdef . h>
<starlet.h>
<stdi o. h>
<stdlib. h>
<string. h>

<st sdef. h>

<t cpi p$i net def . h>

#defi ne BUFSZ 1024
*
/
#def i ne PORTNUM 12345
*
/

struct

struct

{

i osb

unsi gned short st atus;
unsi gned short bytcnt;

voi d

}s

{

*det ai | s;

item st 2

unsi gned short | ength;
unsi gned short type;

/* define OpenVMS descriptors

define ' EFNSC ENF' event flag
define internet related constants,
functions, and structures

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

defi
defi
defi
defi
defi
defi
defi
defi
defi
defi

ne
ne
ne
ne
ne
ne
ne
ne
ne
ne

net work address info

i/o function codes

networ k database library info
system servi ce status codes
system service calls

standard i/o functions
standard library functions
string handling functions
condi tion value fields

tcp/ip network constants,

structures, and functions

/* user input buffer size

/* server port nunber

/*
/*
/*
/*

/*
/*
/*

i/o status bl ock

i/o conpletion status

bytes transferred if read/wite
address of buffer or paraneter

itemlist 2 descriptor/el enment
| ength
paraneter type

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

*/
*/
*/
*/

*/
*/
*/

55

Chapter 2. Writing Network Applications

voi d *address; /* address of itemlist */
b
struct sockchar
{ /* socket characteristics */
unsi gned short prot; /* protocol */
unsi gned char type; /[* type */
unsi gned char af; /* address format */
b

voi d get_servaddr(void *addrptr)

{
char buf [BUFSI Z] ;
struct in_addr val;
struct hostent *host;
while (TRUE)
{
printf("Enter renmote host: ");
if (fgets(buf, sizeof(buf), stdin) == NULL)
{
printf("Failed to read user input\n");
exit(EXI T_FAILURE);
}
buf [strl en(buf)-1] = O;
val .s_addr = inet_addr(buf);
if (val.s_addr != | NADDR_NONE)
{
mencpy(addrptr, &val, sizeof(struct in_addr));
br eak;
}
if ((host = gethostbyname(buf)))
{
mencpy(addrptr, host->h_addr, sizeof(struct in_addr));
br eak;
}
}
}

int main(void)

{
char buf[512]; /* data buffer */
int buflen = sizeof (buf); /* length of data buffer */
struct iosb iosb; /* ilo status bl ock */
unsi gned int status; /* system service return status */
unsi gned short channel; /* network device i/o channel */
struct sockchar sockchar; /* socket characteristics buffer */
struct sockaddr _in addr; /* socket address structure */
struct item st _2 addr_item st; /* socket address itemli st */
$DESCRI PTOR(i net _devi ce, /* string descriptor with | ogical */

56

Chapter 2. Writing Network Applications

"TCPIP$DEVICE: "); [/* name of network pseudodevice

/*
* initialize socket characteristics
*/

sockchar . pr ot
sockchar. type
sockchar . af

TCPI P$C_TCP;
TCPI P$C_STREAM
TCPI P$C_AF_| NET;

/*
* initialize socket address itemlist descriptor
*/

addr _item st.l ength
addr _item st.type

si zeof (addr);
TCPI P$C_SOCK_NANME

addr _item st. address &addr ;

/*

* initialize socket address structure
*/

menset (&addr, 0, sizeof(addr));
addr.sin_famly = TCPI P$C_AF_| NET;
addr. si n_port = htons(PORTNUM);
get _servaddr(&addr.sin_addr);

/*
* assign i/o channel to network device
*/
status = sys$assi gn(& net_devi ce, /* device name
&channel , /* i/o channel
0, /* access node
0 /* not used
)
if (!(status & STS$M SUCCESS))
{
printf("Failed to assign i/o channel\n");
exit(status);
}
/*
* create a socket
*/
status = sys$gi om{(EFNSC_ENF, /* event flag
channel , /* i/lo channel
| G5 SETMODE, /* i/o function code
&i osb, /* ilo status bl ock
0, /* ast service routine
0, /* ast paraneter
&sockchar, /* pl - socket characteristics
0, /* p2
0, /* p3
0, /* p4
0, /* p5

*/

*/
*/
*/
*/

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

57

Chapter 2. Writing Network Applications

0
)
if (status & STS$M SUCCESS)
status = iosb. status;

if (!(status & STS$M SUCCESS))
{

/* p6

printf("Failed to create socket\n");

exit(status);

}

/*

* connect to specified host and port nunber

*/

printf("lInitiated connection to host: %, port: %d\n",

);

status = sys$qgi om{ EFNSC ENF
channel
| O5_ACCESS,
& osbh,
0,
0,
0,
0,
&addr _iteml st,
0,
0,
0
)

if (status & STS$M SUCCESS)
status = iosb. status;

if (!(status & STS$M SUCCESS))
{

i net _ntoa(addr.sin_addr), ntohs(addr.sin_port)

/* event flag

/* i/0o channel

/* i/o function code
/* i/o status bl ock

/* ast service routine
/* ast paraneter

/* pl

/[* p2

/* p3 - renote socket nane
/* p4

/* p5

/* p6

printf("Failed to connect to server\n");

exit(status);

}

/*
* read data from connection
*/

status = sys$qgi om{ EFNSC ENF

channel

| G5 READVBLK
& osbh,

0,

0,

o buf ,

buf | en,

0,

0,

0,

/* event flag

/* i/0o channel

/* i/o function code
/* i/o status bl ock
/* ast service routine
/* ast paraneter

/* pl - buffer address
/* p2 - buffer length
/* p3

/* p4

/* p5

*/

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

Chapter 2. Writing Network Applications

}

(2] 0 /* p6 */
)
if (status & STS$M SUCCESS)
status = iosb. status;

if (!(status & STS$M SUCCESS))
{

printf("Failed to read data from connection\n");
exit(status);

}

buf [i osb. bytcnt] = 0;
printf("Data received: %\n", buf);

exit (EXI T_SUCCESS):

This example reads data from a connection using the I0$ READVLK service. The data can be
written to a single buffer, as shown here, or a list of buffers.

(2]

This example specifies the address of the return buffer in p1, and the length of the return buffer
in p2.

To specify a list of read buffers, omit the p1 and p2 arguments, and pass the list of buffers as the
p6 parameter. See Section 5.5.2 for more information.

2.10. Receiving IP Multicast Datagrams

Before a host can receive (read) I[P multicast datagrams destined for a particular multicast group other
thanal | hosts group, the application must direct the host it is running on to become a member
of that multicast group.

To join a group or drop membership from a group, specify the following options. Make sure you
include the IN.H header file.

To join a multicast group, specify the appropriate option:
+ IP_ADD _MEMBERSHIP (Sockets API)
« TCPIPSC IP._ ADD MEMBERSHIP (system services)

For example:

struct ip_nreq nreq;

if (setsockopt(sock, |PPROTO |IP, |IP_ADD MEMBERSHI P, & nreq,
sizeof (nreq)) == -1)
perror("setsockopt");

The nT eq variable has the following structure:

struct ip_meq {

struct in_addr (inr_multiaddr); /* IP nmulticast address of
group */

struct in_addr (inr_interface); /* local |IP address of
interface */

};

59

Chapter 2. Writing Network Applications

In this structure, i Nt _i nt er f ace can be specified as INADDR_ANY, which allows an
application to choose the default multicast interface.

Each multicast group membership is associated with a particular interface, and multiple interfaces
can join the same group. Alternatively, specifying one of the host's local addresses allows

an application to select a particular, multicast-capable interface. The maximum number of
memberships that can be added on a single socket is subject to the [P MAX MEMBERSHIPS
value, which is defined in the IN.H header file.

If multiple sockets request that a host join a multicast group, the host remains a member of that
multicast group until the last of those sockets is closed.

* To drop membership from a multicast group, specify the appropriate option to the
set sockopt () function:

« TP DROP_MEMBERSHIP (Sockets APT)
* TCPIP$SC IP._ DROP MEMBERSHIP (system services)

For example:

struct ip_nreq nreq;

if (setsockopt(sock, |PPROTO |P, |P_DROP_MEMBERSH P, &nreq,
sizeof (nreq))== -1)

perror ("setsockopt");

The nr eq variable contains the same structure values used for adding membership.

To receive multicast datagrams sent to a specific UDP port, the receiving socket must have been
bound to that port using the $QIO(I0$_SETMODE) system service function or the bi nd() Sockets
API function. More than one process can receive UDP datagrams destined for the same port if the
function is preceded by a set sockopt () function that specifies the SO REUSEPORT option. For
a complete list of the socket options, see Appendix A.

For example:

int setreuse = 1,

i f (setsockopt(sock, SOL_SOCKET, SO REUSEPORT, &setreuse,
si zeof (setreuse)) == -1)

perror("setsockopt");

When the SO_REUSEPORT option is set, every incoming multicast or broadcast UDP datagram
destined for the shared port is delivered to all sockets bound to that port.

Delivery of IP multicast datagrams to SOCK RAW sockets is determined by the protocol type of the
destination.

2.11. Reading Out-of-Band Data (TCP
Protocol)

Only stream-type (TCP/IP) sockets can receive out-of-band (OOB) data. Upon receiving a TCP/IP
OOB character, TCP/IP Services stores a pointer in the received stream to the character that precedes
the OOB character.

60

Chapter 2. Writing Network Applications

A read operation with a user buffer size larger than the size of the received stream up to the OOB
character completes by returning to the user the received stream up to, but not including, the OOB
character.

Poll the socket to determine whether additional read operations are needed before getting all the
characters from the stream that precedes the OOB character.

2.11.1. Reading OOB Data (Sockets API)

You can use the r ecv() socket function with the MSG_OOB flag set to receive out-of-band data
regardless of how many of the preceding characters in the stream you have received.

Example 2.17 shows a TCP server using the r ecv() function to receive out-of-band data.

Example 2.17. Reading OOB Data (Sockets API)

retval = recv(sock_3,® nessage, ® si zeof (message), OMSG OOB); @
if (retval == -1)
{

perror ("receive");
cl eanup(2, sock 2, sock 3);

}

el se
printf (" %\n", message);

This example reads data uses the f | ags argument to the r ecv() function to specify OOB data.

©® sock_3 specifies that OOB data is received from socket 2.
® nessage points to the read buffer where the data is placed.
® sizeof (message) indicates the size of the read buffer.
O fl ag, when set to MSG OOB, indicates that OOB data is being received in the specified buffer.

2.11.2. Reading OOB Data (System Services)

To receive OOB data from a remote process, use the [0$ READVBLK function with the IO
$M_INTERRUPT modifier.

To poll the socket, use a $QIO command with the I0O$ SENSEMODE function and the TCPIP
$C _IOCTL subfunction that specifies the SIOCATMARK operation.

If the SIOCATMARK returns a value of 0, use additional read QIOs to read more data before reading
the OOB character. If the SIOCATMARK returns a value of 1, the next read QIO returns the OOB
character.

These functions are useful if a socket has the OOBINLINE socket option set. The OOB character
is read with the characters in the stream (I0$ READVBLK) but is not read before the preceding

characters. To determine whether or not the first character in the user buffer on the next read is an
OOB, poll the socket.

To get a received OOB character for a socket with the socket option OOBINLINE clear, use one of
the following functions:

« $QIO with the function [0$_READVBLK|IO$M_INTERRUPT
+ 10$ READVBLK with the p4 parameter TCPIP$C_MSG_OOB flag set

Example 2.18 shows how to use the IO$M_INTERRUPT modifier to read out-of-band data.

61

Chapter 2. Writing Network Applications

Example 2.18. Reading OOB Data (System Services)

/*

** Attenpt to receive the OOB data fromthe client.

** Use the function code of | O _READVBLK, passing the address of the
** jinput buffer to P1, and the OOB code, TCPIP$C MSG OOB, to P4.

** \WWe support the sending and receiving of a one byte of OOB data.
*/

sysSrvSts = sys$qgi ow(O, /* efn.v | O */

| CChanClient, /* chan.v */

| O6_READVBLK, /* func.v */

& osb, /* iosb.r | O */

0, O, /* astadr, astprm UNUSED */

(1] &O0BBuf f /* pl.r 10 buffer */
MaxBuf f, /* p2.v 10 buffer size */

0, /* p3 UNUSED */

(2] TCPI P$C_MSG OOB, /* p4.v 1O options flag */
0, 0 /* p5, p6 UNUSED */

)

* Validate the system service. */

if(((sysSrvSts &1) !=1) || /
) '=1)) [/* Validate the 10 status. */

((iosb.cond value & 1
{
cl eanup(I OChanCient);
cl eanup(| OChannel);
errorExit(sysSrvSts, iosb.cond value);

}
el se
if(iosb.count == 0)
printf(" FAI LED to receive the nmessage, no connection.
\n"),
el se
printf(" SUCCEEDED in receiving '%'\n", OOBBuff);

This example reads OOB data using the I0O$ READVBLK service to specify:

©® The read buffer in parameter p1 and the length of the receive buffer in parameter p2.
® OOB data, specifying the TCPIP$C_MSG OOB flag in parameter p4.

2.12. Peeking at Queued Messages

You can use a read operation to look at data in a socket receive queue without removing the data from
the buffer. This is called peeking.

2.12.1. Peeking at Data (Sockets API)

Use the MSG_PEEK flag with the r ecv() function to peek at data in the socket receive queue.

Example 2.19 shows a TCP server using the r ecv() function with the MSG_PEEK flag to peek at
received data.

Example 2.19. Peeking at Data (Sockets API)

#i ncl ude <in. h> /* define internet related constants, */

/* functions, and structures */
#i ncl ude <i net. h> /* define network address info */
#i ncl ude <netdb. h> /* define network database library info */

62

Chapter 2. Writing Network Applications

ne BSD socket ap

ne standard i/o functions

ne standard library functions
ne string handling functions
ne unix i/o

user input buffer size
server backl og
server port nunber

user input buffer
connection socket descriptor
listen socket descriptor

SO REUSEADDR' S option val ue (on)

returned length of client socket
address structure

client socket address structure
server socket address structure

ht ons(SERV_PORTNUM) ;

if ((listen_sockfd = socket(AF_I NET, SOCK STREAM 0)) < 0)

SCL_SCCKET, SO _REUSEADDR, &optval,

")

nunber to |isten socket

#i ncl ude <socket. h> [* def
#i ncl ude <stdio. h> [* def
#i nclude <stdlib. h> [* def
#i ncl ude <string. h> [* def
#i ncl ude <uni xi o. h> [* def
#defi ne BUFSZ 128 /*
#defi ne SERV_BACKLOG 1 /*
#defi ne SERV_PORTNUM 1234 /*
int main(void)
{
char buf [BUFSI Z] ; /*
i nt conn_sockfd; /*
int |isten_sockfd; /*
int optval = 1; /*
unsi gned int cli_addrlen; /*

/*
struct sockaddr _in cli_addr; /*
struct sockaddr _in serv_addr; /*

/*
* initialize client's socket address structure
*/
menset (&cli_addr, 0, sizeof(cli_addr));
/*
* initialize server's socket address structure
*/
menset (&serv_addr, O, sizeof(serv_addr));
serv_addr.sin_famly = AF_I NET
serv_addr. si n_port =
serv_addr.sin_addr.s_addr = | NADDR_ANY;
/*
* create a listen socket
*/
{
perror("Failed to create socket
exit(EXI T_FAILURE);
}
/*
* bind server's ip address and port
*/
if (setsockopt(listen_sockfd,
0)

si zeof (optval)) <

*/
*/
*/
*/
*/

*/
*/
*/

*/
*/
*/

*/

*/
*/
*/
*/

63

Chapter 2. Writing Network Applications

perror("Failed to set socket option");
exit(EXI T_FAILURE);

}

if (bind(listen_sockfd,
(struct sockaddr *) &serv_addr, sizeof(serv_addr)) < 0)

{

perror("Failed to bind socket");
exit(EXI T_FAILURE);

}
/*
* set socket as a listen socket
*/

if (listen(listen_sockfd, SERV_BACKLOG < 0)
{
perror("Failed to set socket passive");
exit(EXI T_FAILURE);

}
/*
* accept connection froma client
*/

printf("Waiting for a client connection on port: %l\n",
nt ohs(serv_addr. sin_port)

);

cli_addrlen si zeof (cli_addr);

conn_sockfd accept (|isten_sockfd,
(struct sockaddr *) &cli _addr
&cl i _addrl en
);
if (conn_sockfd < 0)
{

perror("Failed to accept client connection");
exit(EXI T_FAILURE);

}
/*
* ask client to pick a character
*/

sprintf(buf, "Please pick a character:\r\n");

if (send(conn_sockfd, buf, strlen(buf), 0) != strlen(buf))
{

perror("Failed to wite data to connection");
exit(EXI T_FAILURE);

}
/*
* peek at client's reply
*/
if (recv(conn_sockfd @, buf @& 1 © NMGPEEK @) !=1)

64

Chapter 2. Writing Network Applications

}

{

perror("Failed to read data from connection");
exit(EXI T_FAILURE);

}
sprintf(buf, "Before receiving, | see you picked '%"' .\r\n", buf[0]);

if (send(conn_sockfd, buf, strlen(buf), 0) != strlen(buf))
{

perror("Failed to wite data to connection");
exit(EXI T_FAILURE);

}
/*
* now, read client's reply
*/
if (recv(conn_sockfd, buf, 1, 0) !'=1)
{

perror("Failed to read data from connection");
exit(EXI T_FAILURE);

}

sprintf(buf, "Sure enough, | received "% .\r\n", buf[0]);

if (send(conn_sockfd, buf, strlen(buf), 0) != strlen(buf))
{

perror("Failed to wite data to connection");
exit(EXI T_FAILURE);

}

/*
* cl ose sockets
*/

if (close(conn_sockfd) < 0)

{

perror("Failed to cl ose socket");
exit(EXI T_FAILURE);

}

if (close(listen_sockfd) < 0)

{

perror("Failed to cl ose socket");
exit(EXI T_FAILURE);

}

exit(EXIT_SUCCESS);

The r ecv() function receives data from a connected socket and places it in a buffer, as follows:

000

conn_sockf d is the socket descriptor created as a result of a call to the accept () function.
buf points to the buffer into which received data is placed.

1 indicates the size of the buffer.

M5G_PEEK is the flag that specifies the character entered is looked at without removing it from
the buffer.

65

Chapter 2. Writing Network Applications

2.12.2. Peeking at Data (System Services)

To peek at data that is next in the socket receive queue, use the [0$ READVBLK function of the

$QIO system service and use the TCPIPSC_MSG_PEEK flag. This allows you to use multiple read

operations on the same data. The code is similar to the example shown in Section 2.11.2.

2.13. Writing Data

For programs that use TCP, data writing occurs after a client program initiates a connection and after
the server program accepts the connection. When using UDP, you also have the option of establishing
a default peer address with a specific socket, but this is not required for data transfer.

2.13.1. Writing Data (Sockets API)

Example 2.20 shows a TCP server using the send() function to transmit data.

Example 2.20. Writing Data (Sockets API)

#i

#i
#i
#i
#i
#i
#i

ncl ude

ncl ude
ncl ude
ncl ude
ncl ude
ncl ude
ncl ude

<in. h>

<inet.h>
<net db. h>
<socket . h>
<stdi o. h>
<stdlib. h>
<string. h>

#def i ne SERV_BACKLOG 1
#def i ne SERV_PORTNUM 12345

i nt

{

mai n(void)

int optval = 1;

i nt conn_sockfd;

i nt

i sten_sockfd;

unsigned int cli_addrlen

struct sockaddr _in cli_addr
struct sockaddr in serv_addr

char

/*

* initialize server's socket

*/

buf[] = "Hello, world!'";

/* define internet rel ated constants,
functions, and structures

/*
/*
/*
/*
/*
/*
/*

defi
defi
defi
defi
defi
defi

/*
/*

/*

/*
/*

/*
/*
/*
/*

/*

ne network address info

ne network database library info
ne BSD socket ap

ne standard i/o functions

ne standard library functions

ne string handling functions

server backl og
server port nunber

SO REUSEADDR' s option val ue (on)

connection socket descriptor
listen socket descriptor

returned length of client socket
address structure

client socket address structure
server socket address structure

dat a buffer

address structure

nenset (&serv_addr, 0, sizeof(serv_addr));

serv_
serv_
serv_

/*

addr.sin _famly
addr. si n_port
addr . sin_addr.s_addr

AF_I NET;
ht ons(SERV_PORTNUM) ;
| NADDR_ANY;

*/
*/
*/
*/
*/
*/
*/
*/

*/
*/

*/

*/
*/

*/
*/
*/
*/

*/

66

Chapter 2. Writing Network Applications

0)

* create a |isten socket
*/

if ((listen_sockfd = socket(AF_I NET, SOCK STREAM 0)) < 0)
{

perror("Failed to create socket");
exit(EXI T_FAILURE);

}
/*
* bind server's ip address and port nunber to |isten socket
*/

if (setsockopt(listen_sockfd,
SOL_SOCKET, SO REUSEADDR, &optval, sizeof(optval)) <

{
perror("Failed to set socket option");
exit(EXI T_FAILURE);
}
if (bind(listen_sockfd,
(struct sockaddr *) &serv_addr, sizeof(serv_addr)) < 0)
{
perror("Failed to bind socket");
exit(EXI T_FAILURE);
}
/*
* set socket as a |listen socket
*/
if (listen(listen_sockfd, SERV_BACKLOG < 0)
{
perror("Failed to set socket passive");
exit(EXI T_FAILURE);
}
/*
* accept connection froma client
*/
printf("Waiting for a client connection on port: %l\n",
nt ohs(serv_addr. si n_port)
);
conn_sockfd = accept(listen_sockfd, (struct sockaddr *) 0, 0);
if (conn_sockfd < 0)
{
perror("Failed to accept client connection");
exit(EXI T_FAILURE);
}
/*
* log client connection request

*/

cli_addrlen = sizeof(cli_addr);

67

Chapter 2. Writing Network Applications

menset (&cli_addr, 0, sizeof(cli_addr));

if (getpeername(conn_sockfd,
(struct sockaddr *) &cli_addr, &cli_addrlen) < 0)
{
perror("Failed to get client name");
exit(EXI T_FAILURE);

}

printf("Accepted connection fromhost: %, port: %\ n",
inet_ntoa(cli_addr.sin_addr), ntohs(cli_addr.sin_port)

),
/*
* wite data to connection
*/

if (send(conn_sockfd, @ buf, @ sizeof(buf),® 0 @ < 0)
{

perror("Failed to wite data to connection");
exit(EXI T_FAILURE);

}

printf("Data sent: %\n", buf);

exit (EXI T_SUCCESS):
}

In this example, the send() function include the following arguments:

® conn_sockf d specifies the connected socket that is to receive the data.
® buf is the address of the send buffer where the data to be sent is placed.
® sizeof (buf) indicates the size of the send buffer.

O fl ag, when set to 0, indicates that OOB data is not being sent.

2.13.2. Writing Data (System Services)

The I0$ WRITEVBLK function of the $QIO system service copies data from the address space of
the user's process to system dynamic memory and then transfers the data to an internet host or port.

Example 2.21 shows a TCP server using the I0$ WRITEVBLK function to transmit a single data
buffer.

Example 2.21. Writing Data (System Services)

#i ncl ude <descrip. h> /* define OpenVMS descriptors */
#i ncl ude <efndef. h> /* define 'EFNSC_ENF event fl ag */
#i ncl ude <in. h> /* define internet related constants, */

/* functions, and structures */
#i ncl ude <inet. h> /* define network address info */
#i ncl ude <i odef. h> /* define i/o function codes */
#i ncl ude <netdb. h> /* define network database library info */
#i ncl ude <ssdef. h> /* define systemservice status codes */
#i nclude <starlet.h> /* define systemservice calls */
#i ncl ude <stdio. h> /* define standard i/o functions */
#i nclude <stdlib. h> /* define standard |ibrary functions */
#i ncl ude <string. h> /* define string handling functions */
#i ncl ude <stsdef. h> /* define condition value fields */

68

Chapter 2. Writing Network Applications

#i ncl ude <tcpi p$i netdef. h>

#defi ne SERV_BACKLOG 1

#def i ne SERV_PORTNUM 12345
struct iosb
{
unsi gned short st atus;
unsi gned short bytcnt;
voi d *details;
b
struct itemst_2
{
unsi gned short | ength;
unsi gned short type;
voi d *address;
b
struct item st_3
{
unsi gned short | ength;
unsi gned short type;
voi d *address;
unsigned int *retlen

b

struct sockchar

{

unsi gned short prot;
unsi gned char type;
unsi gned char af;

b
mai n(void)
int optval = 1;

struct iosb iosb;
unsi gned int status;

unsi gned short conn_channel

i sten_channel
i sten_sockchar;

unsi gned short
struct sockchar

unsigned int cli_addrlen

struct sockaddr _in cli_addr
struct itemst _3 cli _itemlst;

struct sockaddr _in serv_addr
struct item st _2 serv_itemst;

/*
/*

/*
/*
/*
/*

/*
/*
/*
/*

/*
/*
/*
/*
/*

/*
/*
/*
/*

/*

/*
/*

/*

/*
/*

/*
/*
/*
/*

/*
/*

/* define tcp/ip network constants,
[* structures,

and functions

server
server

backl og
port nunber

i/o status bl ock

i/o conmpletion status
bytes transferred if
address of buffer or

read/ wite
par anet er

itemlist 2 descriptor/elenment

| ength

paraneter type

address of itemlist

itemlist 3 descriptor/elenment

| ength

paraneter type

address of itemlist
address of returned | ength
socket characteristics

pr ot ocol

type
addr ess format

reuseaddr option val ue (on)

i/o status bl ock
system service return status
connect inet device i/o channe

listen inet device i/o channe
| i sten socket characteristics

returned length of client socket
address structure

client socket address structure
client socket address itemli st

address structure
address itemli st

socket
socket

server
server

*/
*/

*/
*/

*/
*/
*/
*/

*/
*/
*/
*/

*/
*/
*/
*/
*/

*/
*/
*/
*/

*/

*/
*/

*/

*/
*/

*/
*/
*/
*/

*/
*/

69

Chapter 2. Writing Network Applications

*/

*/

struct item st_2 sockopt_item st; /* server socket option itemlist

struct item st_2 reuseaddr_itenm st; /* reuseaddr option itemli st

char buf[] = "Hello, world!"; /* data buffer
int buflen = sizeof(buf); /* length of data buffer
$DESCRI PTOR(i net _devi ce, /* string descriptor with | ogica
“"TCPIP$DEVICE: "); [/* name of network pseudodevice
/*
* initialize socket characteristics
*/

i sten_sockchar. prot
i sten_sockchar.type
i sten_sockchar. af

TCPI P$C_TCP;
TCPI P$C_STREAM
TCPI P$C_AF_| NET;

/*
* initialize reuseaddr's itemlist el enent
*/

reuseaddr _item st.length = sizeof(optval);
reuseaddr _itemrl st.type = TCPI P$C_REUSEADDR

reuseaddr _itenl st. address &opt val ;

/*

* initialize setsockopt's itemlist descriptor
*/

sockopt _item st.length
sockopt _item st.type
sockopt _itenl st. address

si zeof (reuseaddr _item st)
TCPI P$C_SOCKOPT
&r euseaddr _itenl st;

/*
* initialize client's itemlist descriptor
*/

cli_itemst.length
cli_item st.type

sizeof (cli_addr);
TCPI P$C_SOCK_NAME

cli_itenl st.address &cl i _addr

cli _itenmst.retlen &cl i _addrl en

/*

* initialize server's itemlist descriptor
*/

serv_item st.length
serv_item st.type

si zeof (serv_addr);
TCPI P$C_SOCK_NAME

serv_itenl st. address &serv_addr

/*

* initialize server's socket address structure
*/

menset (&serv_addr, O, sizeof(serv_addr));
serv_addr.sin_fanmly = TCPI P$C_AF | NET

*/
*/

*/
*/

70

Chapter 2. Writing Network Applications

serv_addr. si n_port
serv_addr. si n_addr.s_addr

ht ons(SERV_PORTNUM) ;
TCPI P$C_| NADDR_ANY;

/*
* assign i/o channels to network device
*/
status = sys$assi gn(& net_devi ce, /* device name
& i sten_channel, /* i/0o channe
0, /* access node
0 /* not used

)

if (status & STS$M SUCCESS)
status = sys$assign(& net_device, [/* device nanme
&conn_channel, /* i/o channe

0, |/ * access node
0 /* not used
)
if (!(status & STS$M SUCCESS))

{

printf("Failed to assign i/o channel (s)\n");
exit(status);

}
/*
* create a listen socket
*/
status = sys$gi om{ EFNSC_ENF, /* event flag
i sten_channel, /* i/0o channe
| O6_SETMODE, /* ilo function code
&i osb, /* ilo status bl ock
0, /* ast service routine
0, /* ast paraneter
&l i sten_sockchar, /* pl - socket characteristics
0, /* p2
0, /* p3
0, /* p4
0, /* p5
0 /* p6
);
if (status & STS$M SUCCESS)
status = iosb. status;

if (!(status & STS$M SUCCESS))
{

printf("Failed to create socket\n");
exit(status);

}

/*
* bind server's ip address and port nunber to |isten socket
*/

status = sys$gi om{ EFN$SC_ENF, /* event flag

*/
*/
*/
*/

*/
*/
*/
*/

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

*/

71

Chapter 2. Writing Network Applications

~

i sten_channel, /*
| O6_SETMODE, /*
&i osb, /*
/*
/*
/*
/*
/*
/*
ockopt _item st, /*
/*

opoooooo

if (status & STS$M SUCCESS)

status =

if
{

i osb. st at us;

I (status & STS$M SUCCESS))

i /o channel

i/o function code
i/o status bl ock
ast service routine
ast paraneter

pl

p2

p3

p4

p5 - socket options
p6

printf("Failed to set socket option\n");
exit(status);

}

st at us

sys$qgi owm(EFNSC_ENF, /*
i sten_channel, /*
| O8_SETMODE, /*
&i osb, /*
0, /*
0, /*
0, /*
0, /*
&serv_itemnl st, /*
0, /*
0, /*
0 /*
)

if (status & STS$M SUCCESS)

status =

if
{

printf("Failed to bind socket\n");

i osb. st at us;

exit(status);

}

/*

I (status & STS$M SUCCESS))

* set socket as a listen socket

*/

st at us

sys$qgi owm(EFNSC_ENF, /*

i sten_channel, /*
| O8_SETMODE, /*
&i osb, /*
/*
/*
/*
/*
/*

coooo

event flag

i /o channel

i/o function code
i/o status bl ock
ast service routine
ast paraneter

pl
p2
p3 -
p4
p5
p6

| ocal socket

event flag

i /o channel

i/o function code
i/o status bl ock
ast service routine
ast paraneter

pl

p2

p3

nane

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

*/
*/
*/
*/
*/
*/
*/
*/
*/

72

Chapter 2. Writing Network Applications

SERV_BACKLOG, /* p4 - connection backl og
0, /* p5
0 /* p6
)
if (status & STS$M SUCCESS)
status = iosh. stat us;

if (!(status & STS$M SUCCESS))
{

printf("Failed to set socket passive\n");
exit(status);

}
/*
* accept connection froma client
*/

printf("Waiting for a client connection on port: %l\n",
nt ohs(serv_addr. sin_port)

)
status = sys$qgi om{ EFN$C_ENF, /* event flag
i sten_channel, /* i/0o channe
| O6_ACCESS| | G8M_ACCEPT,
/* ilo function code
&i osb, /* ilo status bl ock
0, /* ast service routine
0, /* ast paraneter
0, /* pl
0, /[* p2
0, /* p3
&conn_channel , /* p4 - i/o channel for new
/* connection
0, /* p5
0 /* p6
)
if (status & STS$M SUCCESS)
status = iosb. status;

if (!(status & STS$M SUCCESS))
{

printf("Failed to accept client connection\n");
exit(status);

}
/*
* log client connection request
*/

menset (&l i _addr, 0, sizeof(cli_addr));

status = sys$qgi om{ EFN$C_ENF, /* event flag
conn_channel , /* i/0o channe
| O6_SENSEMODE, /* ilo function code
&i osb, /* ilo status bl ock
0, /* ast service routine

*/
*/
*/

*/
*/

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

*/
*/
*/
*/
*/

73

Chapter 2. Writing Network Applications

}

0, /* ast paraneter

0, /* pl

0, /* p2

0, /* p3

&cli _item st, /* p4 - peer socket name
0, /* p5

0 /* p6

)
if (status & STS$M SUCCESS)
status = iosbh. stat us;

if (!(status & STS$M SUCCESS))
{

printf("Failed to get client name\n");
exit(status);

}

printf("Accepted connection fromhost: %, port: %\ n",
inet_ntoa(cli_addr.sin_addr), ntohs(cli_addr.sin_port)

)
/*
* wite data to connection
*/
status = sys$gi om{ EFNSC_ENF, /* event flag
conn_channel , /* i/0o channe
| G5_WRI TEVBLK, /* i/o function code
&i osb, /* ilo status bl ock
0, /* ast service routine
0, /* ast paraneter
(2] buf, /* pl - buffer address
buf | en, /* p2 - buffer length
0, /* p3
0, /* p4
© 0, /* p5
o 0 /* p6
)
if (status & STS$M SUCCESS)
status = iosb. status;

if (!(status & STS$M SUCCESS))
{

printf("Failed to wite data to connection\n");
exit(status);

}

printf("Data sent: %\n", buf);

exit (EXI T_SUCCESS);

This example uses OpenVMS system services to transmit a single buffer of data.

*/
*/
*/
*/
*/
*/
*/

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

The $QIO0$ ACCESS|IO$M_ACCEPT) function establishes the connection with the client.

74

Chapter 2. Writing Network Applications

® The IOSWRITEVBLK function specifies the address of the return buffer in p1, and the length of
the return buffer in p2.

® You can also specify a list of write buffers by omitting the p1 and p2 parameters and instead
passing the list of buffers as the p5 parameter.

O When writing a list of buffers, the p5 parameter is used; when reading a list, the p6 parameter is
used. For information about specifying input parameter lists, see Section 5.5.1.

2.14. Writing OOB Data (TCP Protocol)

If your application uses TCP, you can send out-of-band (OOB) data to a remote process. At the remote
process, the message is delivered to the user through either the data receive or the OBB data receive
mechanism. You can write only 1 byte of OOB data at a time.

2.14.1. Writing OOB Data (Sockets API)

To send OOB data to a remote process, use the MSG_OOB flag with the send() , sendnsg(), and
sendt o() functions.

Example 2.22 shows a TCP server using the MSG_OOB flag with the send() routine.

Example 2.22. Writing OOB Data (Sockets API)

/* This program accepts a connection on TCP port 1234, sends the string,
"Hello, world!", waits two seconds, sends an urgent BEL (*"GQ, waits
anot her two seconds, repeats the Hell o nessage, and term nates. */

#i ncl ude <types. h>
#i ncl ude <in. h>

#i ncl ude <socket. h>
#i ncl ude <uni xi o. h>

#defi ne PORTNUM 123
mai n() {

struct sockaddr in |claddr;
int r, s, one = 1;

char *message = "Hello, world!\r\n",
*oob_message = "\007";
nenset ()

I claddr.sin famly = AF_I NET;

| cl addr.sin_addr.s_addr = | NADDR_ANY;

| cl addr.sin_port = htons(PORTNUM ;

if ((s = socket(AF_I NET, SOCK STREAM 0)) < 0) perror("socket");

if (setsockopt (s, SOL_SOCKET, SO REUSEADDR, &one, sizeof(one)))
perror ("setsockopt");

if (bind(s, & claddr, sizeof(lcladdr))) perror("bind");

if (listen(s, 1)) perror("listen");

if ((r = accept(s, 0, 0)) < 0) perror("accept");

if (send(r, nmessage, strlen(nessage), 0) != strlen(nmessage))
perror("send");
sl eep(2);

if (send(r,® oob _nessage,® strlen(oob _nessage), ® MSG OB Q) ! =
strl en(oob_nessage)) perror("send");

sl eep(2);

if (send(r, nmessage, strlen(nessage), 0) != strlen(nmessage))

75

Chapter 2. Writing Network Applications

}

perror("send");
sl eep(2);
if (close(r)) perror("close");
if (close(s)) perror("close");

The send() routine is used to send OOB data to a remote socket, as follows:

(2]
(3]

o

I specifies the remote socket descriptor connected to the local socket as a result of a call to the
socket () routine.

oob_message is the buffer containing the OOB data.

strl en(oob_nessage) specifies the length, in bytes, of the buffer containing the out-of-
band data.

M5G_QOOB is the flag that indicates the data will be sent out of band.

2.14.2. Writing OOB Data (System Services)

To send out-of-band data to a remote process, use the [0$§ WRITEVBLK function with the 10
$M_INTERRUPT modifier. Example 2.23 shows a TCP server using the TCPIP$C_MSG_OOB flag.

Example 2.23. Writing OOB Data (System Services)

/*
* %
* %
* %
* %

* %

*/

*/

\n"

Attenpt to send Qut O Band data to a previously established network
connection. Use the function code of | O_WRI TEVBLK, passing the address
of the buffer to P1, and the OOB code, TCPI P$C MSG OOB, to P4.

ooBBuUff = 7;
sysSrvSts = sys$qgi ow(O, /[* efn.v | O */
| CChannel , /* chan.v */
O | 5 _WRI TEVBLK, /* func.v */
&i osb, /[* iosb.r | O */
0, O, /* astadr, astprm UNUSED */
0 &OOBBuff, /* pl.r 10 buffer */
1, /* p2.v 10 buffer size */
0, /* p3 UNUSED */
® TCPIP$C MSG OOB, [/* p4.v IO options flag */
0, O /* p5, p6 UNUSED */
)
if(((sysSrvSts &1) !=1) || /* Validate the system service status.
((iosb.cond value &1) !'=1)) /* Validate the IO status. */
{

cl eanup(| OChannel);
errorExit(sysSrvSts, iosb.cond value);

}
el se
if(iosb.count == 0)
printf(" FAI LED to send the OOB nessage, no connecti on.
)
el se
printf(" SUCCEEDED i n sending the OOB nessage.\n");

This example writes the data that is in the buffer.

76

Chapter 2. Writing Network Applications

® Use the IO$ WRITEVBLK function to send OOB data.
® Specify the buffer address of the OOB data in p1 and the length of the buffer in p2.
® Specify the TCPIP$C_MSG_OOB flag to indicate the type of data, in p4.

2.15. Sending Datagrams (UDP Protocol)

An application that uses UDP can send a datagram to a remote host, send broadcast datagrams to
multiple remote hosts, or send multicast datagrams to members of a group.

With broadcasting, you send datagrams in one operation to multiple remote hosts on the specified
subnetwork. With multicasting, you send datagrams in one operation to all hosts that are members of
a particular group. The member hosts can be located on the local network or on remote networks, as
long as the routers are configured to support multicasting.

2.15.1. Sending Datagrams (System Services)

You can use either of the following methods to send datagrams:

* To send datagrams from the local host to one remote host, use the $QIO system service with the
I0$ ACCESS modifier. This allows you to specify the remote socket name once, and then to use
the IO$ WRITEVBLK routine to send each datagram without specifying the socket name again.

» To send datagrams from the local host to several remote hosts, use the $QIO system service with
the IO$ WRITEVBLK routine, and specify the remote socket name in the p3 argument field.

2.15.2. Sending Broadcast Datagrams (Sockets API)

You can broadcast datagrams by calling the sendt o() function.

2.15.3. Sending Broadcast Datagrams (System
Services)

To broadcast datagrams, use a $QIO system service command with the I0$ WRITEVBLK routine.

Before issuing broadcast messages, the application must issue the I0$ SETMODE function. This sets
the broadcast option in the socket. The process must have SYSPRV, BYPASS, or OPER privilege to
issue broadcast messages. However, the system manager can disable privilege checking by using the
management command SET PROTOCOL UDP /BROADCAST. For more information, refer to the
VSI TCP/IP Services for OpenVMS Management Command Reference guide.

2.15.4. Sending Multicast Datagrams

To send IP multicast datagrams, specify the IP destination address in the range of 224.0.0.0 to
239.255.255.255 using the I0$ WRITEVBLK routine or the sendt o() Sockets API function.
Make sure you include the IN.H header file.

The system maps the specified IP destination address to the appropriate Ethernet or FDDI multicast
address before it transmits the datagram.

You can control multicast options by specifying the following arguments to the set sockopt ()
Sockets API, or the IO$SETMODE system service.

* Time to Live (TTL)

77

Chapter 2. Writing Network Applications

IP. MULTICAST TTL (Sockets API)
TCPIP$SC IP_ MULTICAST TTL (OpenVMS system services)

Specifies the distance the multicast datagrame will travel as an integer value between 0 and 255.

Value Result

0

Restricts distribution to applications running on the local host.

1

Forwards the multicast datagram to hosts on the local subnet.

1 —255 | With a multicast router attached to the sending host's network, forwards multicast

datagrams beyond the local subnet.

Multicast routers forward the datagram to known networks that have hosts belonging to
the specified multicast group. The TTL value is decremented by each multicast router in
the path. When the TTL value reaches 0, the datagram is no longer forwarded.

For example:

u _char ttl;
ttl=2;

i f (setsockopt(sock, IPPROTO IP, |IP_MJLTICAST TTL, &ttl,
sizeof (ttl)) == -1)
perror ("setsockopt");
Multicast interface
IP. MULTICAST IF (Sockets API)
TCPIP$C MULTICAST IF (OpenVMS system services)

Specifies a network interface other than that specified by the route in the kernel routing table.

Unless the application specifies that an alternate network interface is associated with the socket,
the datagram addressed to an IP multicast destination is transmitted from the default network
interface. The default interface is determined by the interface associated with the default route in
the kernel routing table or by the interface associated with an explicit route, if one exists.

For example:

int sock;
struct in_addr ifaddress;

char *if _to use = "16.141.64. 251";

i faddress.s_addr = inet_addr(if_to_use);
i f (setsockopt(sock, IPPROTO IP, IP_MILTICAST IF, & faddress,

si zeof (i faddress)) == -1)

78

Chapter 2. Writing Network Applications

perror ("error from setsockopt |IP_MILTICAST IF");
el se
printf ("new interface set for sending nulticast datagranms\n");
* Disable loopback
IP. MULTICAST LOOP (Sockets API)
TCPIPSC_MULTICAST LOOP (OpenVMS system services)

If a multicast datagram is sent to a group of which the sending host is a member, a copy of the
datagram is looped back by the IP layer for local delivery (default). To disable loopback delivery,
specify the loop value as 0.

For example:
u_char | oop=0;
i f (setsockopt(sock, |PPROTO |P, |IP_MILTICAST LOOP, &l oop
si zeof (1 oop)) == -1)
perror("setsockopt");

To enable loopback delivery, specify a | oop value of 1. For improved performance, VSI
recommends that you disable loopback unless the host must receive copies of the datagrams.

For a complete list of socket options, see Appendix A.

2.16. Using the Berkeley Internet Name
Domain Service

The Berkeley Internet Name Domain (BIND) service is a host name and address lookup service for
the Internet. If BIND is enabled on your system, you can make a call to the BIND resolver to obtain
host names and addresses.

Typically, you make a call to the BIND resolver either before you bind a socket or before you make a
connection to a socket. You can also use this service to translate either the local or remote host name
to an address before making a connection.

2.16.1. BIND Lookups (Sockets API)

If the BIND resolver is enabled on your system and the host name is not found in the local database,
you can use either of the following functions to search the BIND database:

+ get host byaddr () gets a host record from the local host or BIND database when given the
host address.

+ gethost bynane() gets a host record from the local host or BIND database when given the
host name.

The host record contains both name and address information.

Example 2.24 shows how to use the get host nanme(), get host bynane(), and
get host byaddr () functions to find a local host name and address.

79

Chapter 2. Writing Network Applications

Example 2.24. BIND Lookup (Sockets API)

#i ncl ude <in. h> /* define internet related constants, */

/* functions, and structures */
#i ncl ude <inet. h> /* define network address info */
#i ncl ude <netdb. h> /* define network database library info */
#i ncl ude <stdio. h> /* define standard i/o functions */
#i ncl ude <stdlib. h> /* define standard library functions */

int main(void)

{
char host[1024];

struct in_addr addr;
struct hostent *hptr;

/*
* get nanme of |ocal host
*/
if ((gethostnane(host, sizeof(host))) <0) O
{

perror("Failed to get host's |local nanme");
exit(EXIT_FAILURE);

}

printf("Local hostname: %\n", host);

/*
* | ookup | ocal host record by name
*/

if (!'(hptr = gethostbynanme(host))) (2
{

perror("Failed to find record for local host");
exit(EXIT_FAILURE);

}

addr.s_addr = *(int *) hptr->h_addr
printf("Oficial hostnane: % address: %\n",
hptr->h_nane, inet_ntoa(addr));

/*
* | ookup | ocal host record by address
*/

hptr = gethost byaddr(&addr.s_addr, sizeof(addr.s_addr), AF INET); ©
if ('hptr)
{

perror("Failed to find record for local host");
exit(EXIT_FAILURE);

}

printf("Back-transl ated hostnane: %\n", hptr->h_nane);

exit(EXI T_SUCCESS);
}

In this example, the following functions and arguments were used to find a local host name and
address:

80

Chapter 2. Writing Network Applications

get host name() gets the local host name.
host is the address of the buffer that receives the host name.

si zeof (host) is the size of the buffer that receives the host name.
get host byname() looks for the host record that has the specified name.

On successful return of the get host byname() function, hpt r receives the address of a
host ent structure containing the host name, alias names, host address type, length of address
(4 or 16), and an array of IPv4 addresses of the host being sought get host byaddr () looks
for the host record that has the specified address.

addr . s_addr specifies the address of the host being sought. It points to a series of bytes in

network order, not to an ASCII string.

si zeof (addr. s_addr) specifies the number of bytes in the address to which the first
argument points.

AF_| NET points to the IPv4 Internet address family.

2.16.2. BIND Lookups (System Services)

If BIND is enabled on your system, the [0O§ ACPCONTROL system service searches the BIND
database for the host name if it does not find the name in the local host database.

Example 2.25 shows how to use OpenVMS system services to find a host name and address.

Example 2.25. BIND Lookup (System Services)

#i ncl ude <descrip. h> /* define OpenVMS descriptors */
#i ncl ude <ef ndef. h> /* define ' EFNSC_ENF' event flag */
#i ncl ude <in. h> /* define internet related constants, */
/* functions, and structures */
#i ncl ude <inet. h> /* define network address info */
#i ncl ude <i odef. h> /* define i/o function codes */
#i ncl ude <netdb. h> /* define network database library info */
#i ncl ude <ssdef. h> /* define system service status codes */
#i nclude <starlet.h> /* define systemservice calls */
#i ncl ude <stdio. h> /* define standard i/o functions */
#i nclude <stdlib. h> /* define standard library functions */
#i ncl ude <string. h> /* define string handling functions */
#i ncl ude <stsdef. h> /* define condition value fields */
#i ncl ude <tcpi p$i net def. h> /* define tcp/ip network constants, */
[* structures, and functions */
struct iosb
{ /* ilo status bl ock */
unsi gned short st atus; /* ilo completion status */
unsi gned short bytcnt; /* bytes transferred if read/wite */
void *details; /* address of buffer or paraneter */
b
struct acpfunc
{ /* acp subfunction */
unsi gned char code; /* subfunction code */
unsi gned char type; /* call code */
unsi gned short reserved; /* reserved (nust be zero) */

81

Chapter 2. Writing Network Applications

b

int main(void)

{
char host[1024];
char hostent[2048];
struct in_addr addr;
struct hostent *hptr;
struct iosb iosb; /* ilo status bl ock */
unsi gned int status; /* system service return status */
unsi gned short channel; /* network device i/o channel */
O struct acpfunc func_byaddr = /* acp get hostbyaddr function code
*/

{ | NETACP_FUNC$C_GETHOSTBYADDR, | NETACP$C HOSTENT_OFFSET, 0 };

struct acpfunc func_bynane = /* acp gethostbynane function code */
{ 1 NETACP_FUNC$C_GETHOSTBYNAME, | NETACP$C HOSTENT_OFFSET, 0 };

struct dsc$descriptor pl_dsc = /* acp function descriptor */
{ 0, DSC$K_CLASS S, DSC$K DTYPE_T, 0 };

struct dsc$descriptor p2_dsc = [/* acp p2 argunment descriptor */
{ 0, DSC$K_CLASS S, DSC$K DTYPE_T, O };

struct dsc$descriptor p4d_dsc = [/* acp p4 argunent descriptor */
{ 0, DSC$K_CLASS S, DSC$K DTYPE_T, O };

$DESCRI PTOR(i net _devi ce, /* string descriptor with | ogical */
"TCPIP$DEVICE: "); [/* name of network pseudodevice */
/*
* get nane of |ocal host
*/

if ((gethostnane(host, sizeof(host))) < 0)
{

perror("Failed to get host's |local nanme");
exit(EXI T_FAILURE);

}

printf("Local hostname: %\n", host);

/*
* assign i/o channel to network device
*/
status = sys$assi gn(& net_device, /* device nane */
&channel , /* i/o channel */
0, /* access node */
0 /* not used */
)
if (!'(status & STS$M SUCCESS))

{

printf("Failed to assign i/o channel\n");

82

Chapter 2. Writing Network Applications

exit(status);

}
/*
* | ookup | ocal host record by nane
*/
® pl_dsc.dsc$w length = sizeof (func_bynane);

*/

pl_dsc.dsc$a_pointer = (char *) &func_bynane;

p2_dsc. dsc$w_| engt h
p2_dsc. dsc$a_poi nt er

strlen(
host ;

p4_dsc. dsc$w_| engt h
p4_dsc. dsc$a_poi nt er

host ent ;

status = sys$qgi om{ EFN$C_ENF,
channel

| Ob_ACPCONTRCL, /*

& osb,
0,

0,
&p1l_dsc,
&p2_dsc,

&p4_dsc. dsc$w length,/* p3 - return |l ength address
&p4 _dsc, /* p4 - output buffer
0, /* p5
0 /* p6
)
if (status & STS$M SUCCESS)
status = iosb. status;
if (!'(status & STS$M SUCCESS))
{
printf("Failed to find record for |ocal host\n");

exit(status);

}

hptr = (struct hostent
hptr->h_nane += (unsigned int)

host);

si zeof (hostent);

/* event flag

/* i/0o channel

i/o function code
/* ilo status bl ock

/* ast service routine

/* ast paraneter
/* pl - acp subfunction code
/* p2 - hostnanme to | ookup

*) hostent;

hptr;

*(char **) &hptr->h_addr list += (unsigned int) hptr;

*(char **) hptr->h_addr _|i st

addr.s_addr = *(int
printf("Official hostnane: %
hptr->h_nane,

/*
* | ookup | ocal
*/

host record by

pl_dsc.dsc$w_| ength
pl_dsc. dsc$a_poi nter

p2_dsc. dsc$w_| engt h
p2_dsc. dsc$a_poi nt er

strlen(

*) hptr->h_

+= (unsigned int) hptr;

addr ;

address: %\ n",

i net_ntoa(addr));

addr ess

si zeof (func_byaddr);
(char *) &func_byaddr;

i net_ntoa(addr));

i net_ntoa(addr);

addr ess

*/
*/
*/
*/
*/
*/
*/
*/

*/
*/
*/

83

Chapter 2. Writing Network Applications

p4_dsc. dsc$w_| engt h si zeof (hostent);

p4_dsc. dsc$a_poi nt er host ent ;
(4
status = sys$qgi om{ EFN$C_ENF, /* event flag
channel , /* i/o channel
| G5 ACPCONTRQOL, /* ilo function code
&i osb, /* ilo status bl ock
0, /* ast service routine
0, /* ast paraneter
&p1l_dsc, /* pl - acp subfunction code
&p2_dsc, /* p2 - ip address to | ookup
&p4_dsc. dsc$w I ength,/* p3 - return length address
*/
&p4_dsc, /* p4 - output buffer address
0, /* p5
0 /* p6
)
if (status & STS$M SUCCESS)
status = iosb. status;
if (!'(status & STS$M SUCCESS))
{
printf("Failed to find record for |ocal host\n");
exit(status);
}
hptr = (struct hostent *) hostent;
hptr->h_nane += (unsigned int) hptr;
printf("Back-transl ated hostnane: %\n", hptr->h_nane);
/*
* deassign i/o channel to network device
*/
status = sys$dassgn(channel);
if (!'(status & STS$M SUCCESS))
{
printf("Failed to deassign i/o channel\n");
exit(status);
}
exit(EXI T_SUCCESS);
}

This example looks up nodes by either host name or IP address.

Structure setup for [0 ACPCONTROL parameter p1.

Address and size of buffer to receive network information.

The first call to the IO$_ACPCONTROL service specifies the host name in argument p2.
The second call to the I0O$ ACPCONTROL service specifies the IP address in argument p2.

000

*/
*/
*/
*/
*/
*/
*/
*/

*/
*/
*/

84

Chapter 2. Writing Network Applications

2.17. Closing and Deleting a Socket

Closing a socket means that the program can no longer transmit data. Depending on how you close the
socket, the program can receive data until the peer program also closes the socket.

When a remote system closes a socket, notification is not immediate, and another thread can
erroneously attempt to use the socket.

If you send data to a closed socket, you might not receive an appropriate error message. Set the TCPIP
$FULL DUPLEX CLOSE socket option if you want to have your application notified of an error
when it sends data on a socket that has already been closed by the peer.

When you delete a socket, all pending messages queued for transmission are sent to the receiving
socket before closing the connection.

2.17.1. Closing and Deleting (Sockets API)

Example 2.26 shows a TCP application using the cl ose() function to close and delete a socket.

Example 2.26. Closing and Deleting a Socket (Sockets API)

#i ncl ude <socket. h> /* define BSD socket api */
#i ncl ude <stdio. h> /* define standard i/o functions */
#i ncl ude <stdlib. h> /* define standard library functions */
#i ncl ude <uni xi o. h> /* define unix i/o */

int main(void)

{

i nt sockfd;

/*
* create a socket
*/

if ((sockfd = socket(AF_I NET, SOCK_STREAM 0)) < 0)
{

perror("Failed to create socket");
exit(EXIT_FAILURE);

}

/*
* cl ose socket
*/

if (close(sockfd) <0) ©
{

perror("Failed to close socket");
exit(EXIT_FAILURE);

}

exit(EXI T_SUCCESS);
}

This example creates and closes a socket.

85

Chapter 2. Writing Network Applications

(1

The sockf d argument for the ¢l ose() function closes the socket and deletes the socket

descriptor previously defined by the socket ()

function.

2.17.2. Closing and Deleting (System Services)

Example 2.27 shows a TCP application using $QIO system services to close and delete a socket.

Example 2.27. Closing and Deleting a Socket (System Services)

#i
#i
#i
#i
#i
#i
#i
#i
#i

st

st

ncl ude <descri p. h> /* def
ncl ude <ef ndef. h> [* def
ncl ude <i odef. h> [* def
ncl ude <ssdef. h> [* def
ncl ude <starlet.h> [* def
ncl ude <stdio. h> [* def
ncl ude <stdlib. h> [* def
ncl ude <stsdef. h> [* def
ncl ude <tcpi p$i net def. h> /* def
/* stru
ruct iosb
{ 1*
unsi gned short status; /*
unsi gned short bytcnt; /*
void *details; /*
}s

ruct sockchar

{ *
unsi gned short prot; /*
unsi gned char type; /*
unsi gned char af; /*
s

int main(void)

struct iosb iosbh; /*
unsi gned int status; /*
unsi gned short channel; /*
struct sockchar sockchar; /*
$DESCRI PTOR(i net _devi ce, /*

"TCPI P$DEVICE: "); [*

/*
* initialize socket characteristics
*/

sockchar . pr ot
sockchar.type
sockchar . af

TCPI P$C_TCP;
TCPI P$C_STREAM
TCPI P$C_AF_| NET;

/*
* assign i/o channel to network dev
*/

ne QpenVMS descriptors

ne ' EFNSC ENF' event flag

ne i/o function codes

ne system service status codes
ne systemservice calls

ne standard i/o functions

ne standard library functions
ne condition value fields

ne tcp/ip network constants,
ctures, and functions

i/o status bl ock

i/o conpletion status

bytes transferred if read/wite
address of buffer or paraneter

socket characteristics
pr ot ocol

type

addr ess fornat

i/o status bl ock

system service return status
networ k device i/ o channe
socket characteristics buffer
string descriptor with |ogica
nane of network pseudodevice

ice

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

*/
*/
*/
*/

*/
*/
*/
*/

*/
*/
*/
*/
*/
*/

86

Chapter 2. Writing Network Applications

status = sys$assi gn(& net_devi ce,

&channel
0,
0

)

if (!(status & STS$M SUCCESS))

{

/*
/*
/*
/*

devi ce nane
i /o channel
access node
not used

printf("Failed to assign i/o channel\n");

exit(status);

}
/*
* create a socket
*/
status = sys$qgi om{ EFNSC ENF
channel
| G5 SETMODE
& osbh,
0,
0,
&sockchar,
0,
0,
0,
0,
0
)
if (status & STS$M SUCCESS)
status = iosb. st atus;

if (!(status & STS$M SUCCESS))

{

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

event flag

i /o channel

i/o function code
i/o status bl ock
ast service routine
ast paraneter

pl - socket characteristics
p2

p3

p4

p5

p6

printf("Failed to create socket\n");

exit(status);

}

/*
* ¢l ose socket
*/

status = sys$qgi om{ EFN$C_ENF,
channel

| O6_DEACCESS,

& osb,

00000000

~—

if (status & STS$M SUCCESS)

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

event flag

i /o channel

i/o function code
i/o status bl ock
ast service routine
ast paraneter

pl

p2

p3

p4

p5

p6

*/
*/
*/
*/

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

87

Chapter 2. Writing Network Applications

status = iosb. status;

if (!(status & STS$M SUCCESS))
{

printf("Failed to cl ose socket\n");
exit(status);

}
/*
* deassign i/o channel to network device
*/

® status = sys$dassgn(channel);

if (!(status & STS$M SUCCESS))
{

printf("Failed to deassign i/o channel\n");
exit(status);

}

exit (EXI T_SUCCESS):
}

This example closes the socket using the [I0O§ DEACCESS service and deletes it with the $DASSGN
service.

©® The I0$ DEACCESS service stops transmitting data and closes the socket.
® The $DASSGN service deletes the network device and deassigns the I/O channel previously
acquired with the $ASSIGN service.

2.18. Shutting Down Sockets

You can shut down a socket before closing and deleting it. The shutdown operation allows you to
shut down communication one process at a time. This maintains unidirectional rather than the normal
bidirectional connections, allowing you to shut down communications on receive or transmit data
queues, or both. For example, if you no longer want to transmit data but want to continue receiving
data, shut down the transmit side of the socket connection and keep open the receive side.

2.18.1. Shutting Down a Socket (Sockets API)

Example 2.28 shows a TCP application using the shut down() function.

Example 2.28. Shutting Down a Socket (Sockets API)

#i ncl ude <socket. h> /* define BSD socket api */
#i ncl ude <stdio. h> /* define standard i/o functions */
#i nclude <stdlib. h> /* define standard |ibrary functions */
#i ncl ude <uni xi 0. h> /* define unix i/o */

int main(void)

{

i nt sockfd;

/*
* create a socket

88

Chapter 2. Writing Network Applications

*/

if ((sockfd = socket (AF_I NET, SOCK_STREAM 0)) < 0)
{
perror("Failed to create socket");
exit(EXI T_FAILURE);

}
/*
* shut down a socket
*/

O if (shutdown(sockfd, 2) <0)
{

perror("Failed to shutdown socket connections");
exit(EXI T_FAILURE);

}

/*
* cl ose socket
*/
(2)
if (close(sockfd) < 0)
{

perror("Failed to cl ose socket");
exit(EXIT_FAILURE);

}

exit(EXI T_SUCCESS):
}

This example shows how to use the shut down() function to shut down a socket.

® The shut down() function calls the socket descriptor (SOCKf d). The corresponding values
are:

* 0 - Closes the receive socket queue.
e 1 - Shuts down the socket.

* 2 — Closes both the transmit and receive socket queues.
® Thecl ose() function then closes the socket and deletes the socket descriptor.

2.18.2. Shutting Down a Socket (System Services)
Example 2.29 shows a TCP server using the [0$ DEACCESS function with the 10
$M_SHUTDOWN function modifier to shut down all communications. In this example, no data is

received or transmitted and all queued data is discarded.

Example 2.29. Shutting Down a Socket (System Services)

#i ncl ude <descrip. h> /* define OpenVMS descriptors

#i ncl ude <ef ndef. h> /* define ' EFNSC ENF' event fl ag

#i ncl ude <i odef. h> /* define i/o function codes

#i ncl ude <ssdef. h> /* define systemservice status codes
#i nclude <starlet.h> /* define systemservice calls

#i ncl ude <stdio. h> /* define standard i/o functions

*/
*/
*/
*/
*/
*/

89

Chapter 2. Writing Network Applications

#i ncl ude <stdlib. h> /*
#i ncl ude <stsdef. h> /*
#i ncl ude <tcpi p$i netdef. h> /*

/*

struct iosb
{
unsi gned short st atus;
unsi gned short bytcnt;
voi d *details;

b

struct sockchar
{
unsi gned short prot;
unsi gned char type;
unsi gned char af;

b

int main(void)

struct iosb iosb;
unsi gned int status;
unsi gned short channel
struct sockchar sockchar;
$DESCRI PTOR(i net _devi ce,
“TCPI P$DEVI CE: ");

/*

define standard library functions
define condition value fields
define tcp/ip network constants,
structures, and functions

/* i/o status bl ock

/* ilo completion status

/* bytes transferred if read/wite
/* address of buffer or paraneter

/* socket characteristics
/* protocol

/[* type

/* address format

/* ilo status bl ock

/* system service return status
/* network device i/o channe

/* socket characteristics buffer
/* string descriptor with | ogical
/* nane of network pseudodevice

* initialize socket characteristics

*/

sockchar . pr ot
sockchar. type
sockchar . af

TCPI P$C_TCP;
TCPI P$C_STREAM
TCPI P$C_AF_| NET;

/*
* assign i/o channel to network device
*/
status = sys$assi gn(& net_devi ce, /* device name
&channel , /* i1/0o channel
0, /* access npde
0 /* not used

)

if (!(status & STS$M SUCCESS))

{

printf("Failed to assign i/o channel\n");

exit(status);

}
/*
* create a socket
*/

*/
*/
*/
*/

*/
*/
*/
*/

*/
*/
*/
*/

*/
*/
*/
*/
*/
*/

*/
*/
*/
*/

90

Chapter 2. Writing Network Applications

status = sys$gi om{ EFNSC_ENF, /* event flag
channel , /* i/o channel
| O6_SETMODE, /* ilo function code
&i osb, /* ilo status bl ock
0, /* ast service routine
0, /* ast paraneter
&sockchar, /* pl - socket characteristics
0, /* p2
0, /* p3
0, /* p4
0, /* p5
0 /* p6

)
if (status & STS$M SUCCESS)
status = iosb. status;

if (!(status & STS$M SUCCESS))
{

printf("Failed to create socket\n");
exit(status);

}

/*

* shut down a socket

*/

status = sys$gi om{ EFN$SC_ENF, /* event flag
channel , /* i/o channel

(1] | O8_DEACCESS| | G6M_SHUTDOWN,
/* i/o function code
& osbh, /* i/o status bl ock
0, /* ast service routine
0, /* ast paraneter
o, /* pl
o, /* p2
o, /* p3
® TCPIP$C DSC ALL, /* p4 - discard all packets
o, /* p5
0 /* p6
)
if (status & STS$M SUCCESS)
status = i osb. status;

if (!(status & STS$M SUCCESS))
{

printf("Failed to shutdown socket connections\n");
exit(status);

}
/*
* cl ose socket
*/
status = sys$qgi om{ EFN$C_ENF, /* event flag
channel , /* i/o channel
| G5 DEACCESS, /* ilo function code

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

*/
*/

*/
*/
*/
*/
*/
*/
*/

*/

*/
*/

*/
*/
*/

91

Chapter 2. Writing Network Applications

& osbh, /* i/o status bl ock */
0, /* ast service routine */
0, /* ast paraneter */
o, /* pl */
o, /* p2 */
o, /* p3 */
o, [* p4 */
o, /* p5 */
0 /* p6 */
)
if (status & STS$M SUCCESS)
status = i osb. st at us;

if (!(status & STS$M SUCCESS))
{

printf("Failed to cl ose socket\n");
exit(status);

}
/*
* deassign i/o channel to network device
*/

status = sys$dassgn(channel);

if (!(status & STS$M SUCCESS))
{

printf("Failed to deassign i/o channel\n");
exit(status);

}

exit(EXIT_SUCCESS);
}

This example shuts down a socket without completing pending 1/O operations.

©® To shut down a socket, use the I0O$ DEACCESS service with the IO$M_SHUTDOWN
modifier. This shuts down all or part of the full-duplex connection on the socket.
® In p4, the TCPIPSC DSC ALL flag specifies that pending I/O operations be discarded.

After the IO§ DEACCESS service completes, messages can no longer be transmitted or received on
the socket.

2.19. Canceling I/O Operations

The $CANCEL system service cancels pending I/O requests on a specific channel Or socket. This
includes all I/0O requests queued and in progress.

There is no Sockets API function for this operation; the Sockets API library functions are
synchronous.

92

Chapter 3. Using the Sockets API

This chapter describes how to use the Sockets API functions.

3.1. Internet Protocols

The IP (Internet Protocol) family is a collection of protocols on the Transport layer that use the
Internet address format. The two basic Internet protocols are:

* TCP (Transmission Control Protocol)
* UDP (User Datagram Protocol)

The TCP/IP protocol suite has been extended beyond the basic 32-bit addressing capabilities of
[Pv4. With the new IPv6 protocol, the address size is increased to 128 bits. The basic syntax of
socket functions remains the same, with extensions to the basic sockets API and advanced sockets
application programming interfaces.

The following sections describe the basic TCP and UDP protocols, including the extensions provided
for IPv6.

3.1.1. TCP Sockets

TCP provides reliable, flow-controlled, two-way transmission of data. A byte-stream protocol used
to support the SOCK_STREAMabstraction, TCP uses standard IP address formats and provides a per-
host collection of port addresses. Thus, each address consists of an internet address specifying the
host and network, with a specific TCP port on the host identifying the peer entity.

Sockets using TCP are either active or passive, as described in Table 3.1.

Table 3.1. TCP Socket Types

Socket Description
Type
Active Initiates connections to passive sockets. By default, TCP sockets are active.

Active sockets use the connect () function to initiate connections.

Passive Listens for connection requests from active sockets. To create a passive socket, use the
bi nd() function and then the | i st en() function.

Passive sockets use the accept () function to accept incoming connections.

If the server is running on a multihomed system, you can specify wildeard addressing.
Wildcard addressing allows a single server to provide service to clients on multiple
networks. (See Section 3.1.1.1.)

3.1.1.1. Wildcard Addressing

When a server is running on a host that has more than one network interface installed, you can use
wildcard addressing to configure it to accept incoming connections on all the interfaces.

The wildcard address is the any-interface choice. You specify this address by setting the IP address in
the socket address structure to | NADDR_ANY (for IPv4) or i n6addr _any (for IPv6) before calling
the bi nd() function.

93

Chapter 3. Using the Sockets API

To create a socket that listens to all hosts on any network interface, perform these steps:
1. Bind the IP address (I NADDR_ANY or i n6addr _any). See Section 2.3.
2. Specify the TCP port.

If you do not specify the port, the system assigns a unique port, starting at port number 49152.
Once connected, the socket's address is fixed by the peer entity's location.

The address assigned to the socket is the address associated with the network interface through which
packets from the peer are being transmitted and received. This address corresponds to the peer entity's
network.

TCP supports the setting of socket options with the set sockopt () function and the checking of
current option settings with the get sockopt () function. Under most circumstances, TCP sends
data when it is presented. When outstanding data has not been acknowledged, TCP gathers small
amounts of output and sends it in a single packet when an acknowledgment is received.

Note

For some clients, such as Microsoft Windows systems, which send a stream of mouse events that
receive no replies, this packetization can cause significant delays. TCP/IP Services provides the
TCP_NGODELAY option (defined in the TCP.H header file) to manage this problem. Refer to Table A.2
for more information about setting this option. Note that this solution may cause an increase in
network traffic.

3.1.2. UDP Sockets

UDRP is a protocol that supports the SOCK DGRAMabstraction for the internet protocol family.
UDP sockets are connectionless and are normally used with the sendt o() andr ecvfrom()
functions. You can also use the connect () function to establish the destination address for future
datagrams; then you use the read() ,write(),send(),orrecv() function to transmit or
receive datagrams.

UDP address formats are identical to those used by TCP. In particular, UDP provides a port identifier
in addition to the normal internet address format. Note that the UDP port space is separate from the
TCP port space (for example, a UDP port cannot be connected to a TCP port). Also, you can send
broadcast packets (assuming the underlying network supports broadcasting) by using a reserved
broadcast address. This address is network-interface dependent. The SO_BROADCAST option must be
set on the socket, and the process must have SYSPRV, BYPASS, or OPER privilege for broadcasting
to succeed.

3.2. Structures

This section describes, in alphabetical order, the structures you supply as arguments to the various
Sockets API functions. Table 3.2 lists these structures.

Table 3.2. Structures for Sockets API

Structure Description

addrinfo This structure describes the type of socket, the
address family, and the protocol.

94

Chapter 3. Using the Sockets API

Structure

Description

cnsghdr

This structure describes ancillary data objects
transferred by the sendnsg() andr ecvnsg()
functions.

host ent

This structure holds a canonical host name, alias
names, a host address type, the length of the
address, and a pointer to a list of host addresses.
This structure is a parameter value for host name
and address lookup functions.

i n_addr

This structure holds a 32-bit IPv4 address stored
in network byte order.

i n6_addr

This structure holds a 128-bit IPv6 address stored
in network byte order as an array of sixteen 8-bit
elements.

i ovec

This structure holds the beginning address and
length of an I/O buffer.

I'i nger

This structure holds option information for the
cl ose function.

nmsghdr

This structure holds the protocol address, the size
of the protocol address, a scatter-and-gather array,
the number of elements in the scatter-and-gather
array, ancillary data, the length of the ancillary
data, and returned flags. The structure is a
parameter of the r ecvieg() and sendnsg()
functions.

net ent

This structure holds a network name, a list of
aliases associated with the network, and the
network number.

pr ot oent

This structure describes a protocol.

servent

This structure describes a network service.

sockaddr

The socket functions use this generic socket
address structure to function with any of the
supported protocol families.

sockaddr _in

This IPv4 socket address structure holds the
length of the structure, the address family, either
a TCP or a UDP port number, and a 32-bit

IPv4 address stored in network byte order. The
structure has a fixed length of 16 bytes.

sockaddr i n6

This IPv6 socket address structure holds the
length of the structure, the address family, the
transport layer port number, a priority and flow
label, and a 128-bit IPv6 address. The structure
has a fixed length of 28 bytes.

ti meval

This structure holds a time interval specified in
seconds and microseconds.

95

Chapter 3. Using the Sockets API

3.2.1. addrinfo Structure

The addr i nf o structure is defined in the NETDB.H header file, and consists of the following
components:

struct addrinfo {

i nt ai _flags; /* input flags */
i nt ai_famly; /* protofam |y for socket */
i nt ai _socktype; /* socket type */
i nt ai _protocol; /* protocol for socket */
size_t ai _addrl en; /* length of socket-address */
char *ai _canonname; [/* service |ocation canonical name */
struct sockaddr *ai _addr; /* socket -address for socket */
struct addrinfo *ai_next; /* pointer to next in list */

b
3.2.2. cmsghdr Structure

The cnsghdr structure describes ancillary data objects transferred by the sendnsg and r ecviisg
functions.

The nmsg_cont r ol member of the meghdr data structure points to the ancillary data that are
contained in a cnsghdr structure. Typically, only one data object is passed in a cnsghdr structure.
However, the IPv6 advanced sockets API enables the sendnsg and r ecvinsg functions to pass
multiple objects. For information about using raw IPv6 sockets, see Section 3.6.1.

The data structure is defined in the SOCKET.H header file.

The cnsghdr data structure consists of the following components

struct cnsghdr {

socklen_t cnsg_| en; /* #bytes, including this header */
int cnsg_|evel; /* originating protocol */
int cnsg_type; /* protocol -specific type */
/* foll owed by unsigned char cnsg data[]; */

}s
3.2.3. hostent Structure

The host ent structure, defined in the NETDB.H header file, holds a host name, a list of aliases
associated with the network, and the network's number as specified in an internet address from the
hosts database.

The host ent structure definition is as follows:

struct hostent {

char *h_nane; /* official name of host */
char **h_aliases; /* alias |ist */
i nt h_addrtype; /* host address type */
i nt h_| engt h; /* length of address */
char **h addr list; /* list of addresses from nane server */

1
#define h_addr h_addr list[0] /* address, for backward conpatibility */

The host ent structure members are as follows:

96

Chapter 3. Using the Sockets API

* h_nanme is a pointer to a null-terminated character string that is the official (canonical) name of
the host.

* h_al i ases is a pointer to an array of pointers to alias names for the host.
* h_addrt ype is the type of host address being returned (AF_INET or AF_INETS6).
* h_l engt h is the length, in bytes, of the address. (For IPv4, this value is 4 bytes.)

* h_addr _li st isa pointer to an array of pointers to the network addresses for the host. Each
host address is represented by a series of bytes in network order. The list is terminated with a null
pointer value.

h_addr is the first address in the h_addr _| i st.

3.2.4. in_addr Structure

The i n_addr structure, defined in the IN.H header file, holds an IPv4 address. The address format
can be any of the supported internet address notation formats.

The i n_addr structure definition is as follows:

struct in_addr {

uni on {

struct { u char s _bl,s b2,s b3,s b4; } S un_b;

struct { u_short s_wl,s_wW2; } S un_w,

u_long S addr;
} S un;
#define s_addr S un. S addr /* can be used for nobst tcp & ip code */
#define s_host S un.S un _b.s b2 /* host on inp */
#def i ne s_net S un.S un_b.s bl /* network */
#define s_inp Sun.S un_w.s_ w2 /* inp */
#define s_inpno S un.S un b.s b4 /* inp # */
#define s _|h S un.S un_b.s b3 /* logical host */

1
3.2.5. in6_addr Structure (IPv6)

The i n6_addr structure, defined in the IN6.H header file, holds an IPv6 address. The address
format can be any of the supported internet address notation formats. The address is stored in network
byte order as an array of sixteen 8-bit elements.

The i n6_addr structure definition is as follows:

struct in6_addr {
u_int8 t s6_addr[16]
}

A wildcard address, defined in network byte order, has the following forms:
* A global variable, i n6addr _any, thatisani n6_addr structure.

* A symbolic constant, INGADDR_ANY INIT, that can be used to initialize an i n6_addr
structure only when it is declared.

A loopback address, defined in network byte order, has the following forms:

97

Chapter 3. Using the Sockets API

* A global variable, i n6addr _| oopback, thatis ani n6_addr structure.

* A symbolic constant, INGADDR LOOPBACK INIT, that can be used to initialize an i n6_addr
structure only when it is declared.

3.2.6. iovec Structure

The i ovec structure holds one scatter-and-gather buffer. Multiple scatter-and-gather buffer
descriptors are stored as an array of i ovec elements.

The i ovec structure definition is defined in the SOCKET.H header file.

The i ovec structure definition is as follows:

struct iovec {
char *iov_base;
int iov_len;

}

The i ovec structure members are as follows:

* i ov_base is apointer to a buffer.

* i 0ov_I| en contains the size of the buffer to which i ov_base points.

3.2.7. linger Structure

The | i nger structure, defined in the SOCKET.H header file, specifies the setting or resetting of the

socket option for the time interval that the socket lingers for data. The | i nger structure is supported
only by connection-based (SOCK_STREAM) sockets.

The | i nger structure definition is as follows:

struct linger {
i nt | _onoff; /* option on/off */
i nt I _linger; /* linger tine */
b
The | i nger structure members are as follows:
« | _onoff=1setslinger;l _onoff=0resets|inger.
* | _li nger isthe number of seconds to linger. (The default is 120 seconds, or 2 minutes.)

3.2.8. msghdr Structure

The nsghdr structure specifies the buffer parameter for the r ecvinsg and sendnsg 1/0 functions.
The structure allows you to specify an array of scatter and gather buffers. The r ecvineg function
scatters the data to several user receive buffers, and the sendnsg function gathers data from several
user transmit buffers before being transmitted.

The SOCKET.H header file defines the following structures for BSD Versions 4.3 and 4.4:
» onsghdr structure (BSD Version 4.3)

* meghdr structure (32- and 64-bit) (BSD Version 4.4)

98

Chapter 3. Using the Sockets API

3.2.8.1. BSD Version 4.3

The onsghdr structure definition for use with BSD Version 4.3 is as follows:

struct onsghdr {

}s

char *nBQ_nane; /* protocol address */
i nt nsg_nanel en; /* size of address */
struct iovec *nsg_iov; /* scatter/gather array */
i nt nsg_iovl en; /* nunber of elenents in nmsg_iov */
char *nsg_accrights; /* access rights sent/received */
i nt nsg_accrightslen; /* length of access rights buffer */

The onsghdr structure members are as follows:

L]

nmsg_nane is the address of the destination socket if the socket is not connected. If no address is

required, you can set this field to null.

nsg_nanel en is the length of the nsg_nane field.

Msg_i oV is an array of I/O buffer pointers of the i ovec structure form. See Section 3.2.6 for a

description of the i ovec structure.
neg_i ovl en is the number of buffers in the meg_i oV array.
neg_accri ght s points to a buffer containing access rights sent with the message.

neg_accri ght sl en is the length of the n6g_accr i ght s buffer.

3.2.8.2. BSD Version 4.4

The msghdr structure definition for use with BSD Version 4.4 is as follows:

struct msghdr {

b

voi d *nMsg_nane; /* protocol address */
i nt nmsg_nanel en; /* size of address */
struct iovec *nsg_iov; /* scatter/gather array */
i nt nmsg_i ovl en; /* nunber of elenents in nsg_iov */
voi d *msg_control; /* ancillary data; nust be aligned
for a cmsghdr structure */
i nt msg_controllen; /* length of ancillary data buffer */
i nt msg_f I ags; /* flags on received nessage */

The nsghdr structure members are as follows:

e g_nane is the address of the destination socket if the socket is not connected. If no address is

required, you can set this field to null.
nsg_nanel en is the length of the n8g_nane field.

NeQ_i OV is an array of I/O buffer pointers of the i ovec structure form. See Section 3.2.6 for a
description of the i ovec structure.

neg_i ovl en is the number of buffers in the meg_i ov array.

neg_control specifies the location of the optional ancillary data or control information.

99

Chapter 3. Using the Sockets API

* meg_control | en is the size of the ancillary data in the msg_cont r ol buffer.

+ meg_f I ags, used only with the r ecveg function, is the value used by the kernel to drive its
receive processing.

3.2.9. netent Structure

The net ent structure, defined in the NETDB.H header file, holds a network name, a list of aliases
associated with the network, and the network's number specified as an internet address from the
network database.

The net ent structure definition is as follows:

struct netent ({

char *Nn_nare; /* official name of net */
char **n_aliases; /* alias |ist */
i nt n_addrtype; /* net address type */
| ong n_net; /* net nunber */

I

The net ent structure members are as follows:

* n_name is the official network name.

* n_al i ases is a null-terminated list of pointers to alternate names for the network.

* n_addrtype is the type of the network number returned (AF_INET or AF_INET6).

* n_net is the network number returned in host byte order.

3.2.10. protoent Structure

The pr ot oent structure, defined in the NETDB.H header file, holds the description of the protocol
from the protocols table.

A protocol is described by the pr ot oent structure, as follows:

struct protoent {

char *p_narne; /* official name of protocol */
char **p_al i ases; /* alias |ist */
| ong p_proto; /* protocol nunber */

s

The members of this structure are:

p_nanme The official name of the protocol.
p_ali ases A zero-terminated list of alternate names for the protocol.
p_proto The protocol number.

3.2.11. servent Structure

The ser vent structure, defined in the NETDB.H header file, specifies or obtains a service name,
a list of aliases associated with the service, and the service's number specified as an Internet address

100

Chapter 3. Using the Sockets API

from the services database. An entry in the services database is created with the following TCP/IP
management command:

SET SERVI CE service

For more information, refer to the V'SI TCP/IP Services for OpenVMS Management Command
Reference guide.

A service mapping is described by the ser vent structure, as follows:

struct servent ({

char *s_nane; /* official service name */
char **s aliases; /* alias list */
int s_port; [* port nunmber, network byte order */
char *s_proto; /* protocol to use */

b

The ser vent structure members are as follows:

* S_nane is the official name of the service.

» s_al i ases is a null-terminated list of pointers to alternate names for the service.
* S_port is the port number at which the service resides in network byte order.

* S_pr ot o is the name of the protocol to use with the service.

The get ser vbyname() function maps service names to a Ser vent structure by specifying a
service name and, optionally, a qualifying protocol.

3.2.12. sockaddr Structure

The sockaddr structure, defined in the SOCKET.H header file, holds a general address family.
The SOCKET.H header file defines the following structures for BSD Versions 4.3 and 4.4:
« osockaddr structure (BSD Version 4.3)

» sockaddr structure (BSD Version 4.4)

3.2.12.1. BSD Version 4.3

The osockaddr structure definition for use with BSD Version 4.3 is as follows:
struct osockaddr ({

u_short sa_famly; /* address famly */
char sa_dat a[14] ; /* up to 14 bytes of direct address */

i
The osockaddr structure members are as follows:
+ sa_fam |y isthe address family or domain in which the socket was created.

* sa_dat a is the data string of up to 14 bytes of direct address.

3.2.12.2. BSD Version 4.4

The sockaddr structure definition for use with BSD Version 4.4 is as follows:

101

Chapter 3. Using the Sockets API

struct sockaddr {

u_char sa_len; /* total length */
u_char sa_famly; /* address famly */
char sa_dat a[14] ; /* up to 14 bytes of direct address */

b

The sockaddr structure members are as follows:

* sa_l enis the length of the structure.

» sa_fam |y isthe address family or domain in which the socket was created.

* sa_dat a is the data string of up to 14 bytes of direct address.

3.2.13. sockaddr_in Structure

The sockaddr _i n structure, defined in the IN.H header file, specifies an internet address family.

The sockaddr _i n structure definition is as follows:

struct sockaddr _in {

short sin_famly; /* address famly */
u_short sin_port; /* port number */
struct in_addr sin_addr; /* internet address */
char sin_zero[8]; /* 8-byte field of all zeroes */

b

The sockaddr _i n structure members are as follows:

e sin_fam |y isthe address family (AF_INET or AF_INET6).
* sin_port is the port number in network order.

* sin_addr is the internet address in network order.

* sin_zer o is an 8-byte field containing all zeros.

3.2.14. sockaddr_in6 Structure (IPv6)

The sockaddr _i n6 structure, defined in the IN6.H header file, defines an IPv6 socket address.

The IN6.H file defines the following structures depending on the setting of the _ SOCKADDR_LEN
compilation symbol:

» sockaddr _i n6 for BSD Version 4.3 (described in Section 3.2.14.1).

» sockaddr _i n6 for BSD Version 4.4 (described in Section 3.2.14.2).

3.2.14.1. BSD Version 4.3

If an application does not define the _SOCKADDR_LEN compilation symbol, the compiler generates
the following BSD Version 4.3 structure:

struct sockaddr in6 {
sa famly t sin6_famly; /* AF_I NET6 */

102

Chapter 3. Using the Sockets API

in_port _t sin6_port; /* Transport |ayer port # */
uint32_t sin6_fl ow nf o; /* 1Pv6 flow information */
struct in6_addr sin6_addr; /* 1 Pv6 address */
uint32_t si n6_scope_i d; /* set of interfaces for a scope */

i

The sockaddr _i n6 structure members are as follows:

* sin6_fam |y is the address family (AF_INET®6).

e sin6_port isthe transport layer port number stored in network byte order.

* sin6_fl ow nf o is the priority and flow label stored in network byte order.

* Sin6_addr is the internet address stored in network byte order.

* sin6_scope_i disa32-bit integer identifying a set of interfaces appropriate for the scope of

the address specified by the si n6_addr field. For a link scope, Si n6_scope_i d specifies an
interface index. For a site scope, Si N6_scope_i d specifies a site identifier.

3.2.14.2. BSD Version 4.4

If an application defines the _ SOCKADDR_LEN compilation symbol, the compiler generates the
following BSD Version 4.4 structure.

struct sockaddr i n6 {
define SIN6_LEN

uint8_t sin6_I en; /* length of this struct */
sa famly_t sin6_famly; /* AF_I NET6 */
in_port _t si n6_port; /* Transport | ayer port # */
uint 32_t sin6_fl ow nf o; /* 1Pv6 flow information */
struct in6_addr sin6_addr; /* 1 Pv6 address */
uint 32_t si n6_scope_i d; /* set of interfaces for a scope */

b

The sockaddr _i n6 structure members are as follows:

» sin6_I en is the length of this structure (28 bytes).

« sin6_famly isthe address family (AF_INET®6).

* sin6_port is the transport layer port number stored in network byte order.

* sin6_fl ow nf o is the priority and flow label stored in network byte order.

* sin6_addr isthe internet address stored in network byte order.

* sin6_scope_idisa 32-bit integer identifying a set of interfaces appropriate for the scope of

the address specified by the si n6_addr field. For a link scope, Si n6_scope_i d specifies an
interface index. For a site scope, Si n6_scope_i d specifies a site identifier.

3.2.15. timeval Structure

The ti meval structure, defined in the SOCKET.H header file, specifies time intervals. The
ti meval structure definition is as follows:

103

Chapter 3. Using the Sockets API

struct tinmeval {
| ong tv_sec;
| ong tv_usec;
b
Theti meval structure members are as follows:

e tv_sec specifies the number of seconds to wait.

* tv_usec specifies the number of microseconds to wait.

3.3. Header Files

You can include header files on a OpenVMS system using any one of the following preprocessor
directive statements:

#i ncl ude types
#i ncl ude <types. h>
#i ncl ude <sys/types. h>

The #i ncl ude types form of the #i ncl ude preprocessor directive is possible on OpenVMS
systems because all header files are located in a text library in the SYSSLIBRARY directory. On
UNIX systems, you must specify header files (and subdirectories that locate a header file) within
angle brackets (< >) or quotation marks (" ") .

For example, to include the header file TYPES.H on a UNIX system, use the following form of the
#i ncl ude directive:

#i ncl ude <sys/types. h>

3.4. Constants and Address Variables (IPv6)

Table 3.3 lists the constants and address variables available for use with the IPv6 structures.

Table 3.3. Constants and Address Variables (IPv6)

Entry Description

in6addr_any The wildcard address in network byte order for
the structure i n6_addr .

IN6ADDR_ANY INIT A symbolic constant used to initialize an
i n6_addr structure when it is declared.

inbaddr_loopback A loopback address defined in network byte
order.

IN6ADDR LOOPBACK INIT A symbolic constant used to initialize an

i n6_addr structure when it is declared.

3.5. Interface Identification (IPv6)

When TCP/IP Services initializes an interface, it assigns an integer known as an interface index
to identify the interface. This interface identification is used to determine the interface on which a
datagram is sent or received, or on which a multicast group is joined.

104

Chapter 3. Using the Sockets API

Table 3.4 lists the functions related to handling the interface identification.

Table 3.4. Interface Identification Functions

Function Description

i f _namet oi ndex() Maps an interface name to its corresponding
index.

i f _i ndext onane() Maps an interface index to its corresponding
name.

i f _namei ndex() Returns an array of all interface names and
indexes.

i f _freenanei ndex() Frees dynamic memory allocated by
i f _namei ndex() to the array of interface
names and indexes.

3.5.1. Sending IPv6 Multicast Datagrams

To send IPv6 multicast datagrams, an application indicates the multicast group to send to by
specifying an IPv6 multicast address in a sendt o() function. The system maps the specified IPv6
destination address to the appropriate Ethernet or FDDI multicast address prior to transmitting the
datagram.

An application can explicitly control multicast options with arguments to the set sockopt ()
function. The following options can be set by an application using the set sockopt () function:

Hop limit (IPV6_ MULTICAST HOPS)

The IPV6_ MULTICAST HOPS option to the set sockopt () function allows an application to
specify a value between 0 and 255 for the hop limit field.

Multicast datagrams with a hop limit value of 0 restrict distribution of the multicast datagram

to applications running on the local host. Multicast datagrams with a hop limit value of 1 are
forwarded only to hosts on the local link. If a multicast datagram has a hop limit value greater
than 1 and a multicast router is attached to the sending host's network, multicast datagrams can
be forwarded beyond the local link. Multicast routers forward the datagram to known networks
that have hosts belonging to the specified multicast group. The hop limit value is decremented by
each multicast router in the path. When the hop limit value is decremented to 0, the datagram is
not forwarded further.

The following example shows how to use the IPV6 MULTICAST HOPS option to the
set sockopt () function:

u_char hops;
hops=2;

i f (setsockopt(sock, |IPPROTO |IPV6, |PV6_MITI CAST_HOPS, &hops,
si zeof (hops)) < 0)
perror ("setsockopt: |PV6_MJITI CAST HOPS error");
Multicast interface (IPV6_ MULTICAST IF)

A datagram addressed to an IPv6 multicast address is transmitted from the default network
interface unless the application specifies that an alternate network interface is associated with the

105

Chapter 3. Using the Sockets API

socket. The default interface is determined by the interface associated with the default route in
the kernel routing table or by the interface associated with an explicit route, if one exists. Using
the IPV6. MULTICAST IF option to the set sockopt () function, an application can specify a
network interface other than that specified by the route in the kernel routing table.

The following example shows how to use the IPV6_ MULTICAST _IF option to the
set sockopt () function to specify an interface other than the default:

uint if_index = 1;

i f (setsockopt(sock, |PPROTO |PV6, |PV6_MITICAST_IF, & f_index,
sizeof (i f_index)) < 0)
perror ("setsockopt: IPV6_MILTICAST IF error");
el se
printf ("new interface set for sending nulticast
dat agrans\n");

The if_index parameter specifies the interface index of the desired interface, or specifies 0 to
select a default interface. You can use the i f _nanet oi ndex() function to find the interface
index.

» Disabling loopback of local delivery IPV6_ MULTICAST _LOOP)

If a multicast datagram is sent to a group that has the sending node as a member, a

copy of the datagram is, by default, looped back by the IP layer for local delivery. The

IPV6. MULTICAST LOOP option to the set sockopt () function allows an application to
disable this loopback delivery.

The following example shows how to use the IPV6 MULTICAST LOOP option to the
set sockopt () function:

u_char | oop=0;

if (setsockopt(sock, |PPROTO |PV6, |PV6_MILTI CAST LOOP, &l oop,
si zeof (1 oop)) < 0)
perror("setsockopt: |PV6_MJILTI CAST LOOP error");

If the value of loop is 0, loopback is disabled; if the value of loop is 1, loopback is enabled. For
performance reasons, you should disable the default by setting loop to 0, unless applications on
the same host must receive copies of the datagrams.

3.5.2. Receiving IPv6 Multicast Datagrams

Before a node can receive IPv6 multicast datagrams destined for a particular multicast group other
than the All Nodes group, an application must direct the node to become a member of that multicast

group.

This section describes how an application can direct a node to add itself to and remove itself from a
multicast group.

An application can direct the node it is running on to join a multicast group by using the
IPV6_JOIN GROUP option to the set sockopt () function:

struct ipv6_nreq inT6;

106

Chapter 3. Using the Sockets API

inr6.ipvenr _interface = if_index;

i f (setsockopt(sock, IPPROTO |IPV6, |1PV6_JO N _GROUP,
(char *)& nr6, sizeof(inr6)) < 0)
perror("setsockopt: IPV6_JO N GROUP error");

The imr6 parameter has the following structure:

structipvé_nreq {
struct in6_addr ipvénr_nultiaddr; /* IP nulticast address of group */
unsi gned int ipvem interface; /* local interface index */

b

Each multicast group membership is associated with a particular interface. It is possible to join the
same group on multiple interfaces. The ipvémr_interface variable can be specified with a value of

0, which allows an application to choose the default multicast interface. Alternatively, specifying

one of the host's local interfaces allows an application to select a particular multicast-capable
interface. The maximum number of memberships that can be added on a single socket is subject to the
IPV6. MAX MEMBERSHIPS value, which is defined in the IN6.H header file.

To drop membership from a particular multicast group, use the IPV6_ LEAVE _GROUP option to the
set sockopt function:

struct ipv6e_nreq inr6;

if (setsockopt(sock, |PPROTO |PV6, |PV6_LEAVE GROUP, & nr6,
sizeof (inr6)) < 0)
perror("setsockopt: |PV6_LEAVE GROUP error");

The imr6 parameter contains the same structure values used for adding membership.

If multiple sockets request that a node join a particular multicast group, the node remains a member of
that multicast group until the last of those sockets is closed.

To receive multicast datagrams sent to a specific UDP port, the receiving socket must be bound to
that port using the bi nd() function. More than one process can receive UDP datagrams destined for
the same port if the bi nd() function is preceded by a set sockopt () function that specifies the
SO_REUSEPORT option.

Delivery of IP multicast datagrams to SOCK_RAW sockets is determined by the protocol type of the
destination.

3.5.3. Address Translation and Conversion Functions

The following functions are available for node name to address translation:

Function Description
get host bynane() Returns IPv4 addresses.
get addri nfo() Protocol-independent function for mapping

names to addresses.

freeaddri nfo() Returns addr i nf o() structures and dynamic
storage to the system.

The following functions are available for address to node name translation:

107

Chapter 3. Using the Sockets API

Function

Description

get host byaddr ()

Returns a node name for an IPv4 address.

get nanei nf o()

Protocol-independent function for mapping
addresses to names.

freeaddrinfo()

Returns addr i nf o() structures and dynamic
storage to the system.

The following address conversion functions convert both IPv4 and IPv6 addresses.

Function Description

i net _pton() Converts an address in its standard text
presentation form to its numeric binary form, in
network byte order.

i net _ntop() Converts a numeric address to a text string

suitable for presentation.

3.5.4. Address-Testing Macros

Table 3.5 lists the currently defined address-testing macros and the return value for a valid test. To use

these macros, include the IN.H file in your application.

Table 3.5. Summary of Address-Testing Macros

Macro

Return

IN6 IS ADDR UNSPECIFIED

True, if specified type.

IN6 IS ADDR_LOOPBACK

True, if specified type.

IN6_IS_ ADDR_MULTICAST

True, if specified type.

IN6_IS ADDR_LINKLOCAL

True, if specified type.

IN6_IS_ ADDR_SITELOCAL

True, if specified type.

IN6 IS ADDR_V4MAPPED

True, if specified type.

IN6_IS_ADDR_V4COMPAT

True, if specified type.

IN6_IS ADDR_MC_NODELOCAL

True, if specified scope.

IN6_IS_ ADDR_MC_LINKLOCAL

True, if specified scope.

IN6 IS ADDR_MC_SITELOCAL

True, if specified scope.

IN6_IS ADDR_MC ORGLOCAL

True, if specified scope.

IN6_IS ADDR_MC_GLOBAL

True, if specified scope.

IN6_ARE_ADDR_EQUAL

True, if addresses are equal.

3.6. Advanced API (IPv6)

The advanced API provides support for advanced applications that may need knowledge of IPv6
headers. These applications commonly use raw sockets to access [IPv6 or ICMPv6 header fields. The

advanced interface provides the following:

» Support for portable interfaces for applications that use raw sockets under IPv6.

108

Chapter 3. Using the Sockets API

¢ Functions to access router headers.

* Functions to access option headers.

3.6.1. Using IPv6 Raw Sockets

Raw sockets are used in both [Pv4 and IPv6 to bypass the TCP and UDP transport layers.

Table 3.6 describes the principal differences between IPv4 and IPv6 raw sockets.

Table 3.6. Differences Between IPv4 and IPv6 Raw Sockets

1Pv4 IPv6
Use Access ICMPv4, IGMPv4, and |Access ICMPv6 and to read
to read and write [Pv4 datagrams|and write [Pv6 datagrams that
that contain a protocol field the |contain a Next Header field the
kernel does not recognize. kernel does not recognize.
Byte order Not specified. Network byte order for all data
sent and received.
Send and receive complete Yes No. Uses ancillary data objects
packets to transfer extension headers and
hop limit information.

For output, applications can modify all fields, except for the flow label field, by using ancillary data or
socket options, or both.

For input, applications can access all fields, except for the flow label, version number, and Next
Header fields, and all extension headers by using ancillary data.

For IPv6 raw sockets other than ICMPv6 raw sockets, the application must set the | PV6_ CHECKSUM
socket option. For example:

int offset = 2;
set sockopt (fd, |PPROTO I PV6,
perror ("setsockopt:

| PV6_CHECKSUM &of f set,
| PV6_CHECKSUM error")

si zeof (of fset));

This enables the kernel to compute and store a checksum for output and to verify the checksum on
input. This relieves the application from having to perform source address selection on all outgoing
packets. This socket option is disabled by default. You can explicitly disable this option by setting the
offset variable to -1.

Using IPv6 raw sockets, an application can access the following information:

* ICMPv6 messages

* [Pv6 header

* Routing header

» IPv6 options headers: hop-by-hop options header and destination options header

The following sections describe how to access this information.

3.6.1.1. Accessing ICMPv6 Messages

109

Chapter 3. Using the Sockets API

An ICMPv6 raw socket is a socket that is created by calling the socket () function with the
PF_I NET6, SOCK_RAW and | PPROTO_| CMPV6 arguments.

The kernel calculates and inserts the ICMPv6 checksum for all outbound ICMPv6 packets and verifies
the checksum for all received packets. If the received checksum is incorrect, the packet is discarded.

Because ICMPvV6 is a superset of ICMPv4, an ICMPv6 raw socket can receive many more messages
than an ICMPv4 raw socket. By default, when you create an ICMPv6 raw socket, it passes all
ICMPv6 message types to an application. An application, however, does not need access to all
messages. An application can specify the ICMPv6 message types it wants passed by creating an
ICMPvo filter.

The ICMPV6 filter has a datatype of st ruct i cnp6_filter.Usegetsockopt () to retrieve
the current filter and set sockopt () to store the filter. For example, to enable filtering of ICMPv6
messages, use the | CMP6_F| LTER option, as follows:

struct icnp6 filter nyfilter;
setsockopt (fd, |IPPROTO |ICWV6, |PV6 FILTER, &(nyfilter), (sizeof)
(myfilter));
perror("setsockopt: IPV6 FILTER error")
The value of myfilter is an ICMPv6 message type between 0 and 255.

Table 3.7 describes the ICMPv6 filter macros.

Table 3.7. ICMPv6 Filtering Macros

Macro Description

| CMP6_FI LTER _SETPASSALL Passes all ICMPv6 messages to an application.

| CMP6_FI LTER _SETBLOCKALL Blocks all ICMPv6 messages from being passed
to an application.

| CMP6_FI LTER_SETPASS Passes ICMPv6 messages of a specified type to
an application.

| CMP6_FI LTER_SETBLOCK Blocks ICMPv6 messages of a specified type
from being passed to an application.

| CMP6_FI LTER_W LLPASS Returns true, if specified message type is passed
to application.

| CMP6_FI LTER_W LLBLOCK Returns true, if the specified message type is
blocked from being passed to an application.

To clear an installed filter, call set sockopt () for the | CMP_FI LTER option with a zero-length
filter.

The kernel does not perform any validity checks on message type, message content, or packet
structure. The application is responsible for checking them.

3.6.1.2. Accessing the IPv6 Header

When using IPv6 raw sockets, applications must be able to receive the IPv6 header content. To
receive this optional information, use the set sockopt () function with the appropriate socket
option.

110

Chapter 3. Using the Sockets API

Table 3.8 describes the socket options for receiving optional information.

Table 3.8. Optional Information and Socket Options

Optional Information Socket Option cmsg_type

Source and destination IPv6 | PV6_RECVPKTI NFO | PV6_PKTI NFO
address, and sending and

receiving interface

Hop limit | PV6_RECVHOPLIM T | PV6_HOPLIM T
Routing header | PV6_ RECVRTHDR | PV6_RTHDR
Hop-by-hop options | PV6_RECVHOPOPTS | PV6_HOPOPTS
Destination options | PV6_RECVDSTOPTS | PV6_DSTOPTS

The r ecvnsg() function returns the received data as one or more ancillary data objects in a
cneghdr data structure.

To determine the value of a socket option, use the get sockopt () function with the corresponding
option. If the | PV6_ RECVPKTI| NFOoption is not set, the function returns an i n6_pkt i nf o data
structure with i pi 6_addr settoi n6addr _any andi pi 6_addr set to zero. For other options,
the function returns an opt i on_| en value of zero if there is no option value.

An application can receive the following IPv6 header information as ancillary data from incoming
packets:

* Destination IPv6 address
¢ Interface index
* Hop limit

The IPv6 address and interface index are contained in ai N6_pkt i nf 0 data structure that is received
as ancillary data with the r ecvnsg() function. The i n6_pkt i nf o data structure is defined in
IN.H. The tasks associated with the IPv6 header are:

* Receiving an IPv6 address

If the | PV6_RECVPKTI NFOoption is enabled, the r ecvmsg() function returns a

i n6_pkt i nf o data structure as ancillary data. The i pi 6_addr member contains the
destination IPv6 address from the received packet. For TCP sockets, the destination address is the
local address of the connection.

* Receiving an interface

If the | PV6_RECVPKTI NFOoption is enabled, the r ecvimsg() function returns a
i n6_pkt i nf o data structure as ancillary data. The i pi 6_i f i ndex member contains the
interface index of the interface that received the packet.

* Receiving a hop limit

If the | PV6_RECVHOPLI M T option is enabled, the r ecvimsg() function returns a cnsghdr
data structure as ancillary data. The cnmsg_t ype member is | PV6_HOPLI M T and the
cneg_dat a[] member contains the first byte of the integer hop limit.

3.6.1.3. Accessing the IPv6 Routing Header

111

Chapter 3. Using the Sockets API

The advanced Sockets API enables you to access the [Pv6 routing header. The routing header is
an [Pv6 extension header that enables an application to perform source routing. The type 0 routing
header supports up to 127 intermediate nodes, or 128 hops.

Table 3.9 describes the sockets calls that an application uses to build and examine routing headers.

Table 3.9. Socket Calls for Routing Header Name Description

Function Description

inet6_rth_space() Returns the number of bytes required for a
routing header.

inet6_rth_init() Initializes buffer data for a routing header.

inet6_rth_add() Adds one address to a routing header.

inet6_rth reverse() Reverses the order of fields in a routing header.

inet6_rth_segnments() Returns the number of segments, or addresses, in
a routing header.

i net6_rth_getaddr() Fetches one address from a routing header.

The tasks associated with the routing header are:
* Receiving a routing header

To receive a routing header, an application calls set sockopt () with the | PV6_RECVRTHDR
option enabled.

For each received routing header, the kernel passes one ancillary data object in a cnsghdr
structure with the cnmsg_t ype member set to | PV6_RTHDR. An application processes a

routing header by callingi net 6_rth_reverse(),inet6_rth_segnents(),and
inet6_rth_getaddr().

* Sending a routing header

To send a routing header, an application specifies the header either as ancillary data in a call to
sendnsg() or by calling set sockopt (). An application can remove a sticky routing header

by calling set sockopt () for the | PV6_RTHDR option and specifying an option length of zero.

When using ancillary data, the application sets the cnsg_| evel member to | PPROTO_| PV6
and the cnsg_t ype member to | PV6_RTHDR. Use the i net 6_rt h_space(),
inet6_rth_init(),andi net6_rth_add() functions to build the routing header.

When an application specifies a routing header, the destination address specified in a call to the
connect (), sendto(), orsendnsg() function is the final destination of the datagram.
Therefore, the routing header contains the addresses of all intermediate nodes.

The order of extension headers is static; therefore, an application can specify only one outgoing
routing header.

3.6.1.4. Accessing the IPv6 Options Headers

The advanced Sockets API enables applications to access the following IPv6 options headers:

* Hop-by-hop header

112

Chapter 3. Using the Sockets API

A single hop-by-hop options header can contain a variable number of hop-by-hop options. Each
option is encoded with a type, length, and value (TLV). The application uses sticky options or
ancillary data to communicate this information with the kernel.

Destination header

One or more destination options headers can contain a variable number of destination options.

A destination options header appearing before a routing header is processed by the first and
subsequent destinations specified in the routing header. A destination option appearing after the
routing header is processed only by the final destination. Each option is encoded with a type,
length, and value (TLV). The application uses sticky options or ancillary data to communicate this
information with the kernel.

For additional information about the alignment requirements of the headers and ordering of the
extensions headers, see RFC 2460.

Table 3.10 lists the sockets calls that an application uses to build and examine hop-by-hop and
destination headers.

Table 3.10. Socket Calls for Options Headers

Function Description

inet6_opt _init() Initializes buffer data for options.

i net 6_opt _append() Adds an option to the options header.

i net6_opt _finish() Finishes adding options to the options header.

i net 6_opt _set _val () Adds one component of the option content to the
options header.

i net6_opt _next () Extracts the next option from the options header.

i net6_opt find() Extracts an option of a specified type from the
options header.

i net 6_opt _get _val () Retrieves one component of the option content
from the options header.

The tasks associated with the options headers are:

Receiving hop-by-hop options

To receive a hop-by-hop options header, an application calls set sockopt () with the
| PV6__RECVHOPOPTS option enabled.

When using ancillary data, the kernel passes a hop-by-hop options header to the application
and sets the cnsg_| evel member to | PPROTO_| PV6 and the cnsg_t ype member to
| PV6_HOPOPTS.

An application retrieves these options by callingi net 6_opt _next (),i net 6_opt _fi nd(),
andi net 6_opt _get _val ().

Sending hop-by-hop options

To send a hop-by-hop options header, an application specifies the header either as ancillary data in
a call to sendnsg() or by calling set sockopt () An application can remove a sticky hop-by-

113

Chapter 3. Using the Sockets API

hop options header by calling set sockopt () for the | PV6_HOPOPTS option and specifying
an option length of zero (0).

When using ancillary data, all hop-by-hop options are specified by a single ancillary data
object. The application sets cnsg_| evel member to | PPROTO_| PV6 and the cnsg_t ype
member to | PV6_HOPOPTS. Use thei net 6_opt _init(),inet6_opt_append(),
inet6_opt _finish(),andi net6_opt_set_val () calls to build the option header.

» Receiving destination options

To receive a destination options header, an application calls set sockopt () with the

| PV6_RECVDSTOPTS option enabled. The kernel passes each destination option to the
application as one ancillary data object and sets the cnsg_| evel member to | PPROTO | PV6
and the cnsg_t ype member to | PV6_DSTOPTS.

An application processes these options by calling i net 6_opt _next (),
inet6_opt_find(),andi net6_opt_get _val ().

* Sending destination options

To send a destination options header, an application specifies the header either as ancillary data in
a call to sendnsg() or by calling set sockopt ().

An application can remove a sticky hop-by-hop options header by calling set sockopt () for
either the | PV6_RTHDRDSTOPTS or the | PV6_DSTOPTS option and specifying a option length
of zero (0).

The API assumes that the extension headers are in order. Only one set of destination options can
precede a routing header and only one set of destination options can follow a routing header.

Each set can contain one or more options, but each set is considered a single extension header.

When using ancillary data, the application passes a destination options header to the kernel in one
of the following ways:

» For destination options that precede a routing header, the application sets the cnsg_| evel
member to | PPROTO _| PV6 and the cnsg_t ype member to | PV6_ RTHDRDSTOPTS. Any
set sockopt () or ancillary data is ignored unless the application explicitly specifies its own
routing header.

* For destination options that follow a routing header or when no routing header is specified,
the application sets the cnsg_| evel member to | PPROTO | PV6 and the cnsg_t ype
member to | PV6_DSTOPTS.

An application builds these options by callingi net 6_opt _init(),
i net 6_opt _append(),inet6_opt _finish(),andi net6_opt_set_val ().

3.7. Calling a Socket Function from an AST
State

Calls to various Sockets API functions return information in a static area. The OpenVMS environment
allows an asynchronous system trap (AST) function to interrupt a Sockets API function during its
execution. In addition, the ASTs of more privileged modes can interrupt ASTs of less privileged
modes. Therefore, be careful when calling a Sockets API function from an AST state while a similar

114

Chapter 3. Using the Sockets API

Sockets API function is being called from either a non-AST state or a less-privileged access mode.
You can use the SYS$SSETAST system service to enable and disable the reception of AST requests.

The Sockets API functions that use a static area are:
+ get host byaddr ()

+ get host bynane()

+ getnet byaddr ()

+ getnet byname()

* getservbynane()

* getservbyport ()

* get protobynane()

* get prot obynumber ()

Caution

Because these Sockets API functions access files to retrieve information, you should not call these
functions from either the KERNEL or the EXEC mode when the ASTs are disabled.

3.8. Using 64-Bit Buffer Addresses (Alpha
and 164 Only)

The following functions accept both 32-bit and 64-bit addresses:

+ send()

« recv()

. sendto()
*+ sendnmsg()

+ recvfrom)

recvnsg()

To accept 64-bit addresses, the program must have the INITIAL POINTER SIZE compiler option
set to 64.

The sendnsg() andr ecvneg() functions accept a pointer to the msghdr structure, which can be
specified for either 32-bit or 64-bit addresses, as described in Section 3.2.8.

3.9. Standard I/O Functions

You cannot use standard I/O functions with the Sockets API. Specifically, the f dopen() function
does not support sockets.

115

Chapter 3. Using the Sockets API

3.10. Guidelines for Compiling and Linking
IPv6 Applications

To compile an IPv6 application that includes a file specification preceded by " pat h/ ", you need to
set up the environment as described in this section.

For example, if the application includes the following:
#i ncl ude <path/file.h>

Set up the environment using the following commands:

$ DEFI NE DECC$SYSTEM | NCLUDE TCPI P$SEXAMPLES:
$ DEFI NE ARPA TCPI P$EXAMPLES:

$ DEFI NE NET TCPI PSEXAMPLES:

$ DEFI NE NETI NET TCPI P$EXAMPLES:

$ DEFI NE SYS TCPI PSEXAMPLES:

If you are using any of the advanced APIs, you should:

* Add/INCLUDE DIRECTORY=TCPIPSEXAMPLES: to the COMPILE command line. This
allows the compiler to use the updated header files that exist in the TCPIPSEXAMPLES directory.
Otherwise, the compiler will use the header files from the OpenVMS C Run-Time Library.

* Add TCPIPSLIBRARY:TCPIPSLIB/LIBRARY to the LINK command line. This allows the linker
to resolve references to functions from TCPIPSLIB.OLB provided by TCP/IP Services.

See Section E.6 for examples of the COMPILE and LINK command lines.

3.11. Compatibility with the OpenVMS C Run-
Time Library

To maintain compatibility with the VSI C Run-Time Library for OpenVMS Version 4.0, use the
predefined macro DECC_ V4 SOURCE, as shown in the format of the socket functions listed in
Chapter 4. For more information about using macros, refer to the VSI C Run-Time Library Reference
Manual for OpenVMS Systems.

3.12. Error Checking: errno Values

Most Sockets API functions return a value that indicates whether the function was successful or
unsuccessful. A return value of zero (0) indicates success, and a value of —1 indicates the function was
unsuccessful.

If the function is not successful, it stores an additional value in the external variable er r no. The
value stored in er r no is valid only when the function is not successful. The error codes are defined
in the ERRNO.H header file.

All return codes and error values are of type i nt eger unless otherwise noted.

The er r no values can be translated to a message similar to those found on UNIX systems by using
the perror () function. The perror () function writes a message on the standard error stream that
describes the current setting of the external variable er r no. The error message includes a character
string containing the name of the function that caused the error followed by a colon (:), a blank space,
the system message string, and a newline character.

116

Chapter 3. Using the Sockets API

3.12.1. errno values

Table 3.11 lists the possible er r no values.

Table 3.11. errno Values

Error Description
EADDRINUSE Address already in use.

Each address can be used only once.
EADDRNOTAVAIL Cannot assign requested address.

Normally, these values result from an attempt
to create a socket with an address not on this
machine.

EAFNOSUPPORT Address family not supported by protocol family.

An address incompatible with the requested
protocol was used.

EALREADY Operation already in progress.

An operation was attempted on a nonblocking
object that already had an operation in progress.

ECONNABORTED Software caused connection abort.

Indicates that the software caused a connection
abort because there is no space on the socket's
queue and the socket cannot receive further
connections.

A connection abort occurred internal to your host
machine.

ECONNREFUSED Connection refused.

No connection could be made because the target
machine actively refused it. This usually results
from trying to connect to a service that is inactive
on a remote host.

ECONNRESET Connection reset by peer.

A connection was forcibly closed by a peer.
This usually results from the peer executing a
shut down() call.

EDESTADDRREQ Destination address required.
A required address was omitted from an operation
on a socket.

EHOSTDOWN Host is down.

A socket operation failed because the destination
host was down.

117

Chapter 3. Using the Sockets API

Error

Description

EHOSTUNREACH

No route to host.

A socket operation to an unreachable host was
attempted.

EINPROGRESS

Operation now in progress.

An operation that takes a long time to complete,
such as connect (), was attempted on a
nonblocking object.

EISCONN

Socket is already connected.

A connect () request was made on a socket
that was already connected, or a sendt o()

or sendnsg() request on a connected socket
specified a destination other than the connected

party.

A path name lookup involved more than eight
symbolic links.

EMSGSIZE

Message too long.

A message sent on a socket was larger than the
internal message buffer.

ENETDOWN

Network is down.

A socket operation encountered a dead network.

ENETRESET

Network dropped connection on reset.

The host you were connected to failed and
rebooted.

ENETUNREACH

Network is unreachable.

A socket operation to an unreachable network
was attempted.

ENOBUFS

No buffer space available.

An operation on a socket or pipe was not
performed because the system lacked sufficient
buffer space.

ENOPROTOOPT

Protocol not available.

An invalid option was specified in a
get sockopt () orset sockopt () call.

ENOTSOCK

Socket operation on a nonsocket.

ENTOTCONN

Socket is not connected.

Request to send or receive data was not allowed
because the socket is not connected.

EOPNOTSUPP

Operation not supported.

118

Chapter 3. Using the Sockets API

Error Description

For example, trying to accept a connection on a
datagram socket.

EPFNOSUPPORT Protocol family not supported.

The protocol family was not configured into the
system or no implementation for it exists.

EPROTONOSUPPORT Protocol not supported.

The protocol was not configured into the system
or no implementation for it exists.

EPROTOTYPE Protocol wrong type for socket.

A protocol was specified that does not support
the semantics of the socket type requested. For
example you cannot use the ARPA Internet UDP
protocol with type SOCK_STREAM

ESHUTDOWN Cannot send after socket shutdown.

A request to send data was not allowed because
the socket had already been shut down with a
previous shut down() call.

ESOCKTNOSUPPORT Socket type not supported.

Support for the socket type was not configured
into the system or no implementation for it exists.

ETIMEDOUT Connection timed out.

A connect () request failed because the
connected party did not respond properly after a
period of time. (The timeout period is dependent
on the communication protocol.)

EVMSERR OpenVMS error code is nontranslatable.

3.12.2. Relationship Between errno and h_errno

A function failure sets either h_er r no or er r no, depending on which is appropriate for the failing
condition.

The following example shows how to handle errors from the get host bynane() function.

#i ncl ude <errno. h>
#i ncl ude <stdi o. h>
#i ncl ude <net db. h>

mai n()

{
static char hostnane[256];
struct hostent *hostentptr;

errno = 0O;

h_errno 0;

119

Chapter 3. Using the Sockets API

if ((hostentptr = gethostbyname("hndy")) == NULL) {
printf("unknown host nane errno is: %d h_errno is: %\ n",
errno, h_errn (1]
perror (" p_get host byname");
herror ("h_get host bynane") ;

}

errno = O;

h_errno = 0;

if ((hostentptr = gethostbynane(0)) == NULL) {
printf("illegal host nane errno is: %d h_errno is: %\ n",

errno, h_errn (2]

perror ("p_get host bynanme");
herror ("h_get host bynanme");

}

}

This example handles two types of errors from the get host bynane() function.

® The host name parameter hndy does not represent a known host. In this case,
get host bynane() sets h_errno to HOST NOT FOUND, but does not set er r no.

The call to per r or in this example would output:
p_get host bynane: Error O

The call to her r or in this example would print a message describing the failure:

h_get host byname: Unknown
® The host name parameter is 0 (zero), an invalid argument. In this case, get host byname()
sets er r no to EINVAL, but does not set h_er r no.

A call to per r or would print a message describing the failure:
p_get host bynane: Invalid

A call to her r or would print:

h_get host byname: Error O

120

Chapter 4. Sockets APl Reference

This chapter describes the Sockets API functions.

4.1. Summary of Socket Functions

This chapter describes the Sockets API functions that are listed in Table 4.1.

Table 4.1. Sockets API Functions

Function Description

accept () Accepts a connection on a passive socket.

bi nd() Binds a name to a socket.

cl ose() Closes a connection and deletes a socket descriptor.
connect () Initiates a connection on a socket.

decc$get _sdc()

Returns the socket device's OpenVMS 1/0 channel associated with a
socket descriptor (for use with the VSI C Run-Time Library).

decc$socket _fd()

Returns the socket descriptor associated with a Socket Device
Channel (SDC).

endhost ent ()

Closes the hosts database file.

endnet ent ()

Closes the network database file.

endprotent ()

Resets the index for the protocols table.

endservent ()

Closes the network services database file.

freeaddrinfo()

Returns addr i nf o structures and dynamic storage to the system.

freehostent ()

Deprecated function. Replace with f r eeaddri nf o() .

gai _strerror()

Describes an error value for the get addr i nf o() and
get nanei nf o() functions.

get addri nfo()

Protocol-independent function for mapping names to addresses.

get host addr ()

Returns the standard host address for the processor.

get host byaddr ()

Searches the hosts database for a host record with a given [Pv4
address.

get host bynane()

Searches the hosts database for a host record with a given name or
alias.

get host bynane_r ()

The reentrant version of get host byname() .

get hostent ()

Retrieves an entry from the hosts database file.

get host nane()

Returns the fully qualified name of the local host.

geti pnodebyaddr ()

Deprecated function. Replace with get addr i nf o() .

geti pnodebynane()

Deprecated function. Replace with get namei nf o() .

get nanei nf o()

Protocol-independent function for mapping addresses to names.

get net byaddr ()

Searches the network database for a network record with a given
address.

get net bynane()

Searches the network database for a network record with a given name
or alias.

121

Chapter 4. Sockets API Reference

Function

Description

getnetent ()

Gets a network file entry from the networks database file.

getservent ()

Retrieves an entry from the services database file.

get peer nane()

Returns the name of the connected peer.

get pr ot obynane()

Searches the protocols database until a matching protocol name is
found or until end of file is encountered.

get pr ot obynunber ()

Searches the protocols database until a matching protocol number is
found or until end of file is encountered.

get pr ot oent ()

Gets a protocol database entry from the network services database.

get ser vbynane()

Gets information on the named service from the network services
database.

get servbyport ()

Gets information on the named port from the network services
database.

get socknane()

Returns the name associated with a socket.

get sockopt ()

Returns the options set on a socket.

herror ()

Writes a message to standard error explaining h_err or .

host al i as()

Searches for host aliases associated with a name.

hsterror()

Returns an error message string.

ht onl ()

Converts longwords from host byte order to network byte order.

ht ons()

Converts short integers from host byte order to network byte order.

i f_freenanei ndex()

Frees dynamic memory allocated by i f _nanmei ndex() to the array
of interface names and indexes.

i f _i ndext onane()

Maps an interface index to its corresponding name.

i f _nanei ndex()

Returns an array of all interface names and indexes.

i f _nanet oi ndex()

Maps an interface name to its corresponding index.

net 6_opt _append()

Returns the length of an IPv6 extension header with a new option and
appends the option.

net 6_opt _find()

Finds a specific option in an extension header.

net 6_opt _fi nish()

Returns the total length of an IPv6 extension header, including
padding, and initializes the option.

net 6_opt _get _val ()

Extracts data items from the data portion of an IPv6 option.

net6 _opt _init()

Returns the length of an IPv6 extension header with no options and
initializes the header.

net 6_opt _next ()

Parses received option extension headers.

net 6_opt _set _val ()

Adds one component of the option content to the options header.

net6_rth_add()

Adds an IPv6 address to the routing header under construction.

net6 rth_getaddr()

Retrieves an address for an index from an IPv6 routing header.

net6 rth_init()

Initializes an IPv6 routing header.

net6_rth_reverse()

Reverses the order of addresses in an IPv6 routing header.

net6_rth_segnments()

Returns the number of segments (addresses) in an IPv6 routing header.

net6_rth_space()

Returns the number of bytes required for an [Pv6 routing header.

122

Chapter 4. Sockets API Reference

Function Description
i net _addr () Deprecated function. Replace with i net _at on().
i net _aton() Converts a string to an IP address stored in a structure. Replaces the

i net _addr () function.

net _| naof ()

Returns the local network address portion of an IP address.

net makeaddr ()

Returns an IP address, given a network address and a local address on
that network.

net _net of ()

Returns the IP network address portion of an IP address.

net _networ k()

Converts a null-terminated text string representing an IP address into a
network address in local host format.

i net _ntoa() Converts an IP address into an ASCII (null-terminated) string.

i net _ntop() Converts a numeric address into a text string suitable for presentation.

i net _pton() Converts an address in its standard text presentation form into its
numeric binary form, in network byte order.

ioctl () Controls devices. Used for setting sockets for nonblocking 1/0.

listen() Converts an unconnected socket into a passive (listen) socket and
indicates that the TCP/IP kernel should accept incoming requests
directed to the socket.

nt ohl () Converts longwords from network byte order into host byte order.

nt ohs() Converts short integers from network byte order into host byte order.

pol I () Monitors conditions on multiple file descriptors.

read() Reads bytes from a file or socket and places them into a user-defined
buffer.

recv() Receives bytes from a connected socket and places them into a user-
defined buffer.

recvfrom) Receives bytes for a socket from any source.

recvisg() Receives bytes on a socket and places them into scattered buffers.

sel ect () Allows the polling or checking of a group of sockets for I/O activity.

send() Sends bytes through a socket to a connected peer.

sendnsg() Sends gathered bytes through a socket to any other socket.

sendt o() Sends bytes through a socket to any other socket.

set hostent ()

Opens the hosts database file.

setnetent ()

Opens the networks database file.

setprotent ()

Sets the state of the protocols table.

setservent ()

Opens the services database file.

set sockopt ()

Sets options on a socket.

shut down()

Shuts down all or part of a bidirectional connection on a socket.

socket ()

Creates an endpoint for communication by returning a socket
descriptor.

socket pai r ()

Creates a pair of connected sockets.

wite()

Writes bytes from a user-defined buffer to a file or socket.

123

Chapter 4. Sockets API Reference

Function Description

vaxc$get _sdc() Not supported. Replace with decc$get _sdc() .

4.2. Socket APl Functions

This section describes functions that comprise the Sockets API and that are supported by TCP/IP
Services.

accept()

accept() — Accepts a connection on a passive socket. The $QIO equivalent is the I0O$ ACCESS
system service with the IOSM_ACCEPT modifier.

Format

#i ncl ude <types. h>

#i ncl ude <socket. h>

int accept (int s, struct sockaddr *addr, int *addrlen);

(_DECC_V4_SOURCE)

int accept (int s, struct sockaddr *addr, size_t *addrlen);
(not _DECC V4 SOURCE)

Arguments

S

A socket descriptor returned by socket (), subsequently bound to an address with bi nd(),
which is listening for connections afteral i st en().

addr

A result argument filled in with the address of the connecting entity, as known to the TCP/IP
kernel. The exact format of the structure to which the address parameter points is determined by
the address family. Specify either the IPv4 address family (AF_INET) or the IPv6 address family
(AF_INETS6).

addrlen

A value/result argument. It should initially contain the size of the structure pointed to by addr. On
return it will contain the actual length, in bytes, of the sockaddr structure that has been filled in
by the TCP/IP kernel. See Section 3.2.12 for a description of the sockaddr structure.

Description

This function completes the first connection on the queue of pending connections, creates a new
socket with the same properties as s, and allocates and returns a new descriptor for the socket. If

no pending connections are present on the queue and the socket is not marked as nonblocking,
accept () blocks the caller until a connection request is present. If the socket is marked
nonblocking by using a set sockopt () call and no pending connections are present on the queue,
accept () returns an error. You cannot use the accepted socket to accept subsequent connections.
The original socket s remains open (listening) for other connection requests. This call is used with
connection-based socket types (SOCK_STREAM).

124

Chapter 4. Sockets API Reference

You can sel ect a socket for the purposes of performing an accept by selecting it for a read.

Related Functions

See also bi nd(),connect(),listen(),sel ect(),andsocket().

Return Values

X

A positive integer that is a descriptor for the accepted socket.

Error; er r no is set to indicate the error.

Errors
EBADF
The socket descriptor is invalid.
ECONNABORTED
A connection has been aborted.
EFAULT
The addr argument is not in a writable part of the user address space.
EINTR
The accept () function was interrupted by a signal before a valid connection arrived.
EINVAL
The socket is not accepting connections.
EMFILE
There are too many open file descriptors.
ENFILE
The maximum number of file descriptors in the system is already open.
ENETDOWN
TCP/IP Services was not started.
ENOBUFS
The system has insufficient resources to complete the call.
ENOMEM

The system was unable to allocate kernel memory.

125

Chapter 4. Sockets API Reference

ENOTSOCK
The socket descriptor is invalid.
EOPNOTSUPP
The reference socket is not of type SOCK_STREAM
EPROTO
A protocol error occurred.
EWOULDBLOCK

The socket is marked nonblocking, and no connections are present to be accepted.

bind()

bind() — Binds a name to a socket. The $QIO equivalent is the [0$ SETMODE system service with
the p3 argument.

Format
#i ncl ude <types. h>
#i ncl ude <socket. h>
int bind(int s, struct sockaddr *nane, int namelen);
(_DECC_V4_SOURCE)
int bind(int s, const struct sockaddr *name, size_t nanel en);
(not _DECC_V4_SOURCE)
Arguments
s
A socket descriptor created with the socket () functi on.

name

Address of a structure used to assign a name to the socket in the format specific to the family
(AF_INET or AF_INET6) socket address. See Section 3.2.12 for a description of the sockaddr
structure.

namelen

The size, in bytes, of the structure pointed to by name.
Description
This function assigns a port number and IP address to an unnamed socket. When a socket is created

with the socket () function, it exists in a name space (address family) but has no name assigned.
The bi nd() function requests that a name be assigned to the socket.

Related Functions

See also connect (), get socknane(),listen(),andsocket ().

126

Chapter 4. Sockets API Reference

Return Values

0
Successful completion.
-1
Error; er r no is set to indicate the error.
Errors
EACCESS
The requested address is protected, and the current user has inadequate permission to access it.
EADDRINUSE
The specified internet address and ports are already in use.
EADDRNOTAVAIL
The specified address is not available from the local machine.
EAFNOSUPPORT
The specified address is invalid for the address family of the specified socket.
EBADF
The socket descriptor is invalid.
EDESTADDRREQ
The address argument is a null pointer.
EFAULT
The name argument is not a valid part of the user address space.
EINVAL
The socket is already bound to an address and the protocol does not support binding to a new
address, the socket has been shut down, or the length or the namelen argument is invalid for the
address family.
EISCONN
The socket is already connected.
EISDIR
The address argument is a null pointer.
ENOBUFS

The system has insufficient resources to complete the call.

127

Chapter 4. Sockets API Reference

ENOTSOCK
The socket descriptor is invalid.
EOPNOTSUPP

The socket type of the specified socket does not support binding to an address.

close()

close() — Closes a connection and deletes a socket descriptor. The $QIO equivalent is the SDASSGN
system service.

Format

#i ncl ude <uni xi 0. h>
int close (s);

Argument
s

A socket descriptor.
Description

This function deletes a descriptor from the per-process object reference table. Associated TCP
connections close first.

If a call to connect () fails for a socket in connection mode, applications should use cl ose() to
deallocate the socket and descriptor.

Related Functions

See also accept (),socket (),andwrite().
Return Values

0

Successful completion.

Error; er r no is set to indicate the error.

Errors
EBADF

The socket descriptor is invalid.
EINTR

The cl ose() function was interrupted by a signal that was caught.

128

Chapter 4. Sockets API Reference

connect()

connect() — Initiates a connection on a socket. The $QIO equivalent is the IO$ ACCESS system
service.

Format

#i nclude <types. h>

#i ncl ude <socket. h>

int connect (int s, struct sockaddr *nane, int nanelen); (_DECC V4 SOURCE)
int connect (int s, const struct sockaddr *name, size_t nanel en);

(not _DECC V4 SOURCE)

Arguments
s

A socket descriptor created with socket () .
name

The address of a structure that specifies the name of the remote socket in the format specific to the
address family (AF_INET or AF_INET6).

namelen

The size, in bytes, of the structure pointed to by name.

Description

This function initiates a connection on a socket.

If s is a socket descriptor of type SOCK _DGRAM then this call permanently specifies the peer where
the data is sent. If's is of type SOCK_STREAM then this call attempts to make a connection to the
specified socket.

If a call to connect () fails for a connection-mode socket, applications should use cl ose() to

deallocate the socket and descriptor. If attempting to reinitiate the connection, applications should
create a new socket.

Related Functions

See also accept (), sel ect (), socket (), get socknane(), and shut down().

Return Values

Successful completion.

Error; er r no is set to indicate the error.

129

Chapter 4. Sockets API Reference

Errors
EADDRINUSE

Configuration problem. There are insufficient ports available for the attempted connection. The
i net subsystem attribute i pport _userr eser ved should be increased.

EADDRNOTAVAIL

The specified address is not available from the local machine.
EAFNOSUPPORT

The addresses in the specified address family cannot be used with this socket.
EALREADY

A connection request is already in progress for the specified socket.
EBADF

The socket descriptor is invalid.
ECONNREFUSED

The attempt to connect was rejected.
EFAULT

The name argument is not a valid part of the user address space.
EHOSTUNREACH

The specified host is not reachable.
EINPROGRESS

O NONBLOCK is set for the file descriptor for the socket, and the connection cannot be
immediately established; the connection will be established asynchronously.

EINTR

The connect () function was interrupted by a signal while waiting for the connection to be
established. Once established, the connection may continue asynchronously.

EINVAL

The value of the namelen argument is invalid for the specified address family, or the
sa_fam | y member in the socket address structure is invalid for the protocol.

EISCONN
The socket is already connected.
ELOOP

Too many symbolic links were encountered in translating the file specification in the address.

130

Chapter 4. Sockets API Reference

ENETDOWN

The local network connection is not operational.
ENETUNREACH

No route to the network or host is present.
ENOBUFS

The system has insufficient resources to complete the call.
ENOTSOCK

The socket descriptor is invalid.
EOPNOTSUPP

The socket is listening and cannot be connected.
EPROTOTYPE

The specified address has a different type than the socket bound to the specified peer address.
ETIMEDOUT

The connection request timed out without establishing a connection.
EWOULDBLOCK

The socket is nonblocking, and the connection cannot be completed immediately. It is possible to
use the sel ect () function to select the socket for writing.

decc$get_sdc()

decc$get sde() — Returns the socket device's OpenVMS I/0O channel (SDC) associated with a socket
descriptor.

Format

#i ncl ude <socket. h>
short int decc$get_sdc (int s);

Argument

S

A socket descriptor.

Description

This function returns the SDC associated with a socket. Normally, socket descriptors are used either
as file descriptors or with one of the functions that takes an explicit socket descriptor as its argument.
Sockets are implemented using TCP/IP device sockets. This function returns the SDC used by a given
socket descriptor so you can directly access the TCP/IP facilities by means of $QIO system services.

131

Chapter 4. Sockets API Reference

Return Values
0

Indicates that s is not an open socket descriptor.

The SDC number.

decc$socket_fd

decc$socket fd — Returns the socket descriptor associated with a Socket Device Channel (SDC) for
direct use with the VSI C Run-Time Library.

Format

#i ncl ude <socket. h>
int decc$socket _fd (int channel);

Argument
channel

A valid SDC.
Description

This function associates a valid socket channel with an VSI C Run-Time Library file descriptor, and
returns the file descriptor. The file descriptor can then be used with any VSI C Run-Time Library
function that takes a file descriptor or socket descriptor as an input parameter.

Return Values

X

The socket descriptor.

Indicates an error; the socket descriptor cannot be allocated.

endhostent()

endhostent() — Closes hosts database file.

Format

#i ncl ude <netdb. h>
voi d endhostent (void);

Description

This function closes the hosts database file (TCPIPSETC:IPNODES.DAT), previously opened with a
get host byaddr (), get hostent (), or get host bynane() function call.

132

Chapter 4. Sockets API Reference

If the most recent set host ent () function call is executed with a nonzero stay_open parameter,
the endhost ent () function does not close the hosts database file. You cannot close the hosts
database file until you make a call to exi t () . A second call to set host ent () is issued with

a stay _open parameter equal to 0 (zero). This ensures that a subsequent endhost ent () call
succeeds.

Related Functions

See also get host byaddr (), get host ent (), and get host byname() .

endnetent()

endnetent() — Closes the networks database file.

Format

#i ncl ude <netdb. h>
voi d endnetent (void);

Description
This function closes the networks database file (TCPIP$SYSTEM:NETWORKS.DAT), previously

opened with the get net ent (), set net ent (), get net byaddr (), or get net byname()
function.

Related Functions

See also get net ent (), get net byaddr (), get net bynane(),and set netent ().

endprotoent()

endprotoent() — Resets the index for the protocols table.

Format

#i ncl ude <netdb. h>
voi d endprotoent (void);

Description

This function resets the index for the protocols table previously accessed with a get pr ot oent (),
get pr ot obynane(), or get pr ot obynunber () function call.

Related Functions

See also get pr ot obynane(), get pr ot oent (), and get pr ot obynunber ().

endservent()

endservent() — Closes the services database file.

133

Chapter 4. Sockets API Reference

Format

#i ncl ude <netdb. h>
voi d endservent (void);

Description

This function closes the services database file (TCPIPSETC:SERVICES.DAT), previously opened
with the get servent (), get servbynane(), orget servbyport () function.

Related Functions

See also get servent (), get servbyname(), and get servbyport ().

freeaddrinfo()
freeaddrinfo() — Frees system resources used by an address information structure.

Format

#i ncl ude <netdb. h>
void freeaddrinfo (struct addrinfo *ai);

Arguments
ai

Points to an addr i nf o structure to be freed. The NETDB.H header file defines the addr i nf o
structure.

Description

This function frees an addr i nf o0 structure and any dynamic storage pointed to by the structure. The
process continues until the function encounters a NULL ai _next pointer.

gai_strerror()
gai_strerror() — Provides a descriptive text string that corresponds to an EAI xxx error value.

Format

#i ncl ude <netdb. h>
const char *gai _strerror (int ecode);

Arguments
ecode

The ecode argument is one of the EAI xxx values defined for the get addr i nf o() and
get nanei nf o() functions.

The values for ecode are:

134

Chapter 4. Sockets API Reference

EAI AGAIN The name could not be resolved at this time. Future attempts may succeed.

EAI BADFLAGS The flags parameter had an invalid value.

EAI FAIL A nonrecoverable error occurred when attempting to resolve the name.

EAI FAMILY The address family was not recognized.

EAI MEMORY There was a memory allocation failure when trying to allocate storage for
the return value.

EAI NONAME The name does not resolve for the supplied parameters. Neither nodename
nor servname were supplied. At least one of these must be supplied.

EAI SERVICE The service passed was not recognized for the specified socket type.

EAI SOCKTYPE The intended socket type was not recognized.

EAI SYSTEM A system error occurred; the error code can be found in er r no.

Description

This function returns a descriptive text string that corresponds to an EAI xxx error value. The return
value points to a string that describes the error. If the argument is not one of the EAI xxx values, the
function returns a pointer to a string whose contents indicate an unknown error.

For a complete list of error codes, see Appendix D.

Return Values

Text string

Failure

getaddrinfo()

getaddrinfo() — Takes a service location (nodename) or a service name (servname), or both, and
returns a pointer to a linked list of one or more structures of type addr i nf o.

Format

#i ncl ude <socket. h>

#i ncl ude <netdb. h>

int getaddrinfo (const char *nodenane, const char *servnane,
const struct addrinfo *hints, struct addrinfo **res);

Arguments

nodename

Points to a network node name, alias, or numeric host address (for example, an IPv4 dotted-
decimal address or an IPv6 hexadecimal address). An [Pv6 nonglobal address with an intended
scope zone may also be specified. This is a null-terminated string or NULL. NULL means the
service location is local to the caller. The nodename and servname arguments must not both be
NULL.

135

Chapter 4. Sockets API Reference

s€rvname

Points to a network service name or port number. This is a null-terminated string or NULL;
NULL returns network-level addresses for the specified nodename. The nodename and
servname arguments must not both be NULL.

hints

Points to an addr i nf o structure that contains information about the type of socket, address
family, or protocol the caller supports. The NETDB.H header file defines the addr i nf o
structure. If hints is a null pointer, the behavior is the same as if addr i nf 0 contained the value
0 for the ai _f | ags, ai _sockt ype and ai _pr ot ocol members and AF_ UNSPEC for the
ai _fam | y member.

res

Points to a linked list of one or more addr i nf o structures.

Description

This function takes a service location (nodename) or a service name (servname), or both, and
returns a pointer to a linked list of one or more structures of type addr i nf 0. Its members
specify data obtained from the local hosts database TCPIPSETC:IPNODES.DAT file, the local
TCPIPSHOSTS.DAT file, or one of the files distributed by DNS/BIND.

The NETDB.H header file defines the addr i nf o structure.

If the hints argument is non-NULL, all addr i nf o structure members other than the following
members must be zero or a NULL pointer:

« ai_flags

Controls the processing behavior of get addr i nf o() . See Table 4.2 for a complete description
of the flags.

« ai_famly
Specifies to return addresses for use with a specific protocol family.

» Ifyou specify a value of AF_ UNSPEC, get addr i nf o() returns addresses for any protocol
family that can be used with nodename or servname.

+ Ifthe value is not AF_UNSPEC and ai _pr ot ocol is not zero, get addr i nf o() returns
addresses for use only with the specified protocol family and protocol.

» If'the application handles only IPv4, set this member of the hints structure to PF_INET.
« ai _socktype

Specifies a socket type for the given service. If you specify a value of 0, you will accept any
socket type. This resolves the service name for all socket types and returns all successful results.

e ai_protoco

Specifies a network protocol. If you specify a value of 0, you will accept any protocol. If the
application handles only TCP, set this member to IPPROTO_TCP.

Table 4.2 describes the values for ai _f | ags members.

136

Chapter 4. Sockets API Reference

Table 4.2. ai_flags Member Values

Flag Value

Description

Al VAMAPPED

Ifai _fam |y is AF_INET, the flag is ignored.

Ifai _fam |y is AF_INET6, get addri nf o() searches for
AAAA records.

The lookup sequence is:

1.

Local hosts database

2. TCPIPSETC:IPNODES.DAT

3. BIND database

The lookup for a particular type of record, for example an AAAA
record, will be performed in each database before moving on to
perform a lookup for the next type of record.

If AAAA records are found, returns IPv6 addresses; no search for
A records is performed.

If no AAAA records are found, searches for A records.
If A records found, returns IPv4-mapped IPv6 addresses.

If no A records found, returns a NULL pointer.

Al ALL|AI_V4AMAPPED

Ifai _fam |y is AF_INET, the flag is ignored.

Iftheai _fam |y is AF INET6, get addri nf o() searches for
AAAA records.

The lookup sequence is:

1.

Local hosts database

2. TCPIPSETC:IPNODES.DAT

3. BIND database

The lookup for a particular type of record, for example an AAAA
record, will be performed in each database before moving on to
perform a lookup for the next type of record.

If AAAA records are found, IPv6 addresses will be included with
the returned addresses.

If A records are found, returns IPv4-mapped IPv6 addresses and
also any IPv6 addresses that were found with the AAAA record
search.

If no A records found, returns a NULL pointer.

Al CANONNAME

If the nodename argument is not NULL, the function searches for the
specified node's canonical name.

137

Chapter 4. Sockets API Reference

Flag Value Description

Upon successful completion, the ai _canonnamnme member of the
first addr i nf o structure in the linked list points to a null-terminated
string containing the canonical name of the specified node name.

If the nodename argument is an address literal, the
ai _cannonnane member will refer to the nodename argument that
has been converted to its numeric binary form, in network byte order.

If the canonical name is not available, the ai _canonnamnme member
refers to the nodename argument or to a string with the same
contents.

The ai _f | ags field contents are undefined.

Al NUMERICHOST A non-NULL node name string must be a numeric host address string.

Resolution of the service name is not performed.

Al NUMERICSERV A non-NULL service name string must be a numeric port string.

Resolution of the service name is not performed.

Al PASSIVE Returns a socket address structure that your application can use in a
call to bi nd() .

If the nodename parameter is a NULL pointer, the IP address portion
of the socket address structure is set to INADDR_ ANY (for an [Pv4
address) or INGADDR_ANY INIT (for an IPv6 address).

If not set, returns a socket address structure that your application can
use to call connect () (for a connection-oriented protocol) or either
connect (), sendt o(),orsendnsg() (foraconnectionless
protocol). If the nodename argument is a NULL pointer, the IP
address portion of the socket address structure is set to the loopback
address.

Al ADDRCONFIG Used in combination with other flags, modifies the search based on
the source address or addresses configured on the system.

You can use the flags in any combination to achieve finer control of the translation process. Many
applications use the combination of the Al ADDRCONFIG and AI VAMAPPED flags to control
their search.

» Ifthe value of ai _f ami |y is AF INET, and an IPv4 source address is configured on the system,
get addri nf o() searches for A records only. If found, get addr i nf o() returns IPv4
addresses. If not, get addr i nf o() returns a NULL pointer.

» Ifthe value of ai _fami |y is AF INET6 and an IPv6 source address is configured on the
system, get addr i nf o() searches for AAAA records. If found, get addr i nf o() returns
IPv6 addresses. If not, and if an IPv4 address is configured on the system, get addr i nf o()
searches for A records. If found, get addr i nf o() returns IPv4-mapped IPv6 addresses. If not,
get addri nf o() returns a NULL pointer.

These flags are defined in the NETDB.H header file.

138

Chapter 4. Sockets API Reference

addrinfo Structure Processing

Upon successful return, get addr i nf o() returns a pointer to a linked list of one or more

addr i nf o structures. The application can process each addr i nf 0 structure in the list by following
the ai _next pointer until a NULL pointer is encountered. In each returned addr i nf o structure,
theai _fam |y, ai _socktype,andai _prot ocol members are the corresponding arguments
for a call to the socket () function. The ai _addr member points to a filled-in socket address
structure whose length is specified by the ai _addr | en member.

Return Values
0

Indicates success

Indicates an error

Errors
EAI AGAIN

The name could not be resolved at this time. Future attempts may succeed.
EAI BADFLAGS

The flags parameter had an invalid value.
EAI FAIL

A nonrecoverable error occurred when attempting to resolve the name.
EAI FAMILY

The address family was not recognized.
EAI MEMORY

There was a memory allocation failure when trying to allocate storage for the return value.
EAI NONAME

The name does not resolve for the supplied parameters. Neither nodename nor servname were
supplied. At least one of these must be supplied.

EAI SERVICE

The service passed was not recognized for the specified socket type.
EAI SOCKTYPE

The intended socket type was not recognized.
EAL SYSTEM

A system error occurred; the error code can be found in er r no.

139

Chapter 4. Sockets API Reference

gethostaddr
gethostaddr — Returns the standard host address for the processor.

Format

#i ncl ude <socket. h>
i nt gethostaddr (char *addr);

Argument
addr

A pointer to the buffer in which the standard host address for the current processor is returned.

Description

This function returns the standard host address for the current processor. The returned address is null-
terminated. The addr parameter must point to at least 16 bytes of free space.

Host addresses are limited to 16 characters.

Return Values
0

Indicates success.

Indicates that an error has occurred and is further specified in the global er r no.

gethostbyaddr()

gethostbyaddr() — Searches the hosts database that is referenced by the TCPIPSHOST logical name
for a host record with a given [Pv4 address. If the host record is not found there, the function may
also invoke the BIND resolver to query the appropriate name server. The $QIO equivalent is the
10$_ACPCONTROL function with the INETACP_FUNCS$C_GETHOSTBYADDR subfunction
code.

Format

#i ncl ude <netdb. h>
struct hostent *gethostbyaddr (const void *addr, size t len, int type);

Arguments
addr

A pointer to a series of bytes in network order specifying the address of the host sought.
len

The number of bytes in the address pointed to by the addr argument.

140

Chapter 4. Sockets API Reference

type
The type of address format being sought (AF_INET).
Description

This function finds the first host record with the specified address in the hosts database or using DNS/
BIND.

The get host byaddr () function uses a common static area for its return values. This means that
subsequent calls to this function overwrite previously returned host entries. You must make a copy of
the host entry if you want to save it.

Return Values

A pointer to an object having the host ent structure. See Section 3.2.3 for a description of the
host ent structure.

NULL

Indicates an error; er r no is set to one of the following values.

Errors
ENETDOWN
TCP/IP Services was not started.
HOST_NOT_FOUND
Host is unknown.
NO_DATA

The server recognized the request and the name, but no address is available for the name. Another
type of name server request may be successful.

NO_RECOVERY
An unexpected server failure occurred. This is a nonrecoverable error.
TRY_ AGAIN

A transient error occurred; for example, the server did not respond. A retry may be successful.

gethostbyname()

gethostbyname() — Searches the hosts database that is referenced by the TCPIPSHOST logical name
for a host record with the specified name or alias. If the host record is not found, this function may
also invoke the BIND resolver to query the appropriate name server for the information. The $QIO
equivalent is the I0O§ ACPCONTROL function with the INETACP_FUNC$C GETHOSTBYNAME
subfunction code.

141

Chapter 4. Sockets API Reference

Format

#i ncl ude <netdb. h>
struct hostent *gethostbynane (char *nane);

Argument

name

A pointer to a null-terminated character string containing the name or an alias of the host being
sought.

Description

This function finds the first host with the specified name or alias in the hosts database, or using DNS/
BIND.

The get host bynane() function uses a common static area for its return values. This means that
subsequent calls to this function overwrite previously returned host entries. You must make a copy of
the host entry if you want to save it.

Note

Modules that include calls to get host bynane or get host bynanme_r must be compiled with the
C switch /PREFIX=ALL.

Return Values

A pointer to an object having the host ent structure. See Section 3.2.3 for a description of the
host ent structure.

NULL

Indicates an error. er r no is set to one of the following values.

Errors
ENETDOWN
TCP/IP Services was not started.
HOST NOT _FOUND
Host is unknown.
NO_DATA

The server recognized the request and the name, but no address is available for the name. Another
type of name server request may be successful.

NO_RECOVERY

An unexpected server failure occurred. This is a nonrecoverable error.

142

Chapter 4. Sockets API Reference

TRY AGAIN

A transient error occurred; for example, the server did not respond. A retry may be successful.

gethostbyname _r()

gethostbyname () — Searches the hosts database that is referenced by the TCPIP$SHOST logical
name for a host record with the specified name or alias (reentrant). If the host record is not found, this
function may also invoke the BIND resolver to query the appropriate name server for the information.

Format
#i ncl ude <net db. h>

i nt gethostbynane_r(const char *nanme, struct hostent *ret, char *buffer,
size_t buflen, struct hostent **result, int *h_errnop);

Arguments
name
The name or alias of the host which entry you want to find.
ret
The storage area to hold the retrieved host entry.
buffer

A pointer to a temporary buffer that the function can use during the operation to store the data
associated with the host entry.

buflen

The length of the temporary buffer.
result

A pointer to a St ruct host ent where the function can store the host entry.
h_errnop

A pointer to a location where the function can store an error number if an error occurs.
Description

The get host byname_r () function is the reentrant version of get host byname() . The caller
supplies a host ent structure ret which will be filled in on success, and a temporary buffer buffer of
size buflen.

On success, result will point to the host ent structure. In case of an error or if no host is found,
result will be NULL. The function returns 0 on success and a nonzero error number on failure.

Note

Modules that include calls to get host bynane or get host bynanme_r must be compiled with the
C switch /PREFIX=ALL.

143

Chapter 4. Sockets API Reference

Return Values
0

Successful completion.
nonzero

On error, the function returns an error number. The global variable h_er r no is not modified, but
the address of a variable in which to store error numbers is passed in h_er r nop.

Errors
ENETDOWN
TCP/IP Services was not started.
ERANGE
The buffer is too small. The call should be retried with a larger buffer.
HOST _NOT_FOUND
Host is unknown.
NO_DATA

The server recognized the request and the name, but no address is available for the name. Another
type of name server request may be successful.

NO_RECOVERY
An unexpected server failure occurred. This is a nonrecoverable error.
TRY_ AGAIN

A transient error occurred; for example, the server did not respond. A retry may be successful.

gethostent()

gethostent() — Retrieves an entry from the hosts database file.

Format

#i ncl ude <netdb. h>
struct hostent *gethostent (void);

Description

The get host ent () function reads the next entry of the hosts database file
(TCPIPSETC:IPNODES.DAT).

See the NETDB.H header file for a description of the host ent structure.

The get host ent () function uses a common static area for its return values. Therefore, subsequent
calls to get host ent () overwrite any existing host entry. You must make a copy of the host entry,
if you wish to save it.

144

Chapter 4. Sockets API Reference

Return Values
X

A pointer to an object having the host ent structure. See Section 3.2.3 for a description of the
host ent structure.

NULL

Indicates an error; €r r no is set to one of the following values.

Errors
ENETDOWN
TCP/IP Services was not started.
HOST NOT FOUND
Host is unknown.
NO_DATA

The server recognized the request and the name, but no address is available for the name. Another
type of name server request may be successful.

NO RECOVERY
An unexpected server failure occurred. This is a nonrecoverable error.
TRY AGAIN

A transient error occurred; for example, the server did not respond. A retry may be successful.

gethostname()

gethostname() — Returns the fully-qualified name of the local host.

Format
#i ncl ude <types. h>
#i ncl ude <socket. h>

i nt gethostnane (char *nane, int nanelen); (_DECC V4 SOURCE)
i nt gethostnane (char *nane, size_t nanel en); (not_DECC V4 SOURCE)

Arguments
name

The address of a buffer where the name should be returned. The returned name is null terminated
unless sufficient space is not provided.

namelen

The size of the buffer pointed to by name.

145

Chapter 4. Sockets API Reference

Description

This function returns the translation of the logical names TCPIPSINET HOST and
TCPIPSINET DOMAIN when used with the TCP/IP Services software.

Return Values
0

Indicates successful completion.

Indicates an error occurred. The value of er r no indicates the error.

Errors

EFAULT

The buffer described by name and namelen is not a valid, writable part of the user address space.

getnameinfo()

getnameinfo() — Maps addresses to names in a protocol-independent way.

Format
#i ncl ude <socket. h>
#i ncl ude <net db. h>

i nt getnaneinfo (const struct sockaddr *sa, size_t salen, char *node,
size_t nodel en, char *service, size_t servicelen, int flags);

Arguments
sa

Points either to a sockaddr _i n structure (for IPv4) or to a sockaddr _i n6 structure (for
IPv6) that holds the IP address and port number.

salen
Specifies the length of either the sockaddr _i n structure or the sockaddr _i n6 structure.
node

Points to a buffer in which to receive the null-terminated network node name or alias
corresponding to the address contained in the sa. A NULL pointer instructs get namei nf o() to
not return a node name. The node argument and service argument must not both be zero.

nodelen

Specifies the length of the node buffer. A value of zero instructs get namei nf o() to not return
a node name.

146

Chapter 4. Sockets API Reference

service

Points to a buffer in which to receive the null-terminated network service name associated with
the port number contained in sa. A NULL pointer instructs get namei nf o() to not return a
service name. The node argument and service argument must not both be 0.

servicelen

Specifies the length of the service buffer. A value of zero instructs get nanmei nf o() to not

return a service name.

flags

Specifies changes to the default actions of get nanei nf o() . By default, get nanei nf o()
searches for the fully-qualified domain name of the node in the hosts database and returns it. See
Table 4.3 for a list of flags and their meanings.

Description

This function looks up an

IP address and port number in a sockaddr structure specified by sa and

returns node name and service name text strings in the buffers pointed to by the node and service

arguments, respectively.

If the node name is not found, get namei nf o() returns the numeric form of the node address,
regardless of the value of the flags argument. If the service name is not found, get namei nf o()
returns the numeric form of the service address (port number) regardless of the value of the flags

argument.

The application must provide buffers large enough to hold the fully-qualified domain name and the
service name, including the terminating null characters.

Table 4.3 describes the flag bits and, if set, their meanings. The flags are defined in the NETDB.H

header file.

Table 4.3. get nanei nf o() Flags

Flag Value

Description

NI DGRAM

Specifies that the service is a datagram service (SOCK_DGRAM). The
default assumes a stream service (SOCK_STREAM). This is required for
the few ports (512-514) that have different services for UDP and TCP.

NI NAMEREQD

Returns an error if the host name cannot be located in the hosts database.

NI NOFQDN

Searches the hosts database and returns the node name portion of the fully-
qualified domain name for local hosts.

NI_NUMERICHOST!

Returns the numeric form of the host's address instead of its name.
Resolution of the host name is not performed.

NI_NUMERICSERV!

Returns the numeric form (port number) of the service address instead of its
name. The host name is not resolved.

'The two NI NUMERIC* flags are
Return Values

0

Indicates success.

required to support the -n flag that many commands provide.

147

Chapter 4. Sockets API Reference

Indicates an error occurred. The value of er r no indicates the error.

Errors
EAI AGAIN

The name could not be resolved at this time. Future attempts may succeed.
EAI BADFLAGS

The flags argument had an invalid value.
EAI FAIL

A nonrecoverable error occurred when attempting to resolve the name.
EAI FAMILY

The address family was not recognized.
EAI_ MEMORY

There was a memory allocation failure when trying to allocate storage for the return value.
EAI NONAME

The name does not resolve for the supplied parameters. Neither the node name nor the service
name were supplied. At least one of these must be supplied.

EAL SYSTEM

A system error occurred; the error code can be found in er r no.

getnetbyaddr()

getnetbyaddr() — Searches the network database that is referenced by the TCPIPSNETWORK logical
name for a network record with the specified address. If the network record is not found, this function
may invoke the BIND resolver to search TCPIPSSYSTEM:NETWORKS.DAT. The $QIO equivalent
is the I0O$_ACPCONTROL function with the INETACP_FUNCS$C GETNETBYADDR subfunction
code.

Format

#i ncl ude <netdb. h>
struct netent *getnetbyaddr (long net, int type) ;

Arguments
net

The network number, in host byte order, of the networks database entry required.
type

The type of network being sought (AF_INET or AF_INETS6).

148

Chapter 4. Sockets API Reference

Description

This function finds the first network record in the networks database with the given address.

The get net byaddr () and get net byname() functions use a common static area for their return
values. Subsequent calls to any of these functions overwrite any previously returned network entry.
You must make a copy of the network entry if you want to save it.

Return Values

X
A pointer to an object having the net ent structure. See Section 3.2.9 for a description of the
net ent structure.

NULL
Indicates end of file or an error.

Errors

EINVAL
The net argument is invalid.

ESRCH

The search failed.

getnetbyname()

getnetbyname() — Searches the networks database for a network record with a specified name

or alias. If the network record is not found, this function may invoke the BIND resolver to search
TCPIP$SYSTEM:NETWORKS.DAT. The $QIO equivalent is the I0$ ACPCONTROL function
with the INETACP_FUNCS$C GETNETBYNAME subfunction code.

Format

#i ncl ude <netdb. h>
struct netent *getnetbynane (char *nane);

Argument
name

A pointer to a null-terminated character string containing either the network name or an alias for
the network name.

Description
This function finds the first network record in the networks database with the given name or alias.

The get net byaddr () and get net byname() functions use a common static area for their return
values. Subsequent calls to any of these functions overwrite previously returned network entries. You
must make a copy of the network entry if you want to save it.

149

Chapter 4. Sockets API Reference

Return Values
NULL

Indicates end of file or an error.

A pointer to an object having the net ent structure. See Section 3.2.9 for a description of the
net ent structure.

Errors
EFAULT
The buffer described by name is not a valid, writable part of the user address space.
EINVAL
The name argument is invalid.
ESRCH

The search failed.

getnetent()
getnetent() — Retrieves an entry from the networks database file.

Format

#i ncl ude <netdb. h>
struct netent *getnetnet (void);

Description

This function opens and sequentially reads the networks database file
(TCPIP$SYSTEM:NETWORKS.DAT) to retrieve network information.

Returns a pointer to a net ent structure that contains the equivalent fields for a network description
line in the networks database file. The net ent structure is defined in the NETDB.H header file.

The networks database file remains open after a call by the get ser vent () function. Use the
endnet ent () function to close the networks database file. Use the set net ent () function to
open the networks database file and reset the file marker to the beginning of the file.

The get net ent () function uses a common static area for its return values, so subsequent calls to

this function overwrite any existing network entry. To save the network entry, you must make a copy
of it.

Related Functions

See also set net ent and endnet ent .

150

Chapter 4. Sockets API Reference

Return Values

X
A pointer to a net ent structure.
0
Indicates an error or end of file.
getpeername()

getpeername() — Returns the name of the connected peer. The $QIO equivalent is the
10$_SENSEMODE function with the p4 argument.

Format
#i ncl ude <types. h>
#i ncl ude <socket. h>
int getpeernane (int s, struct sockaddr*name, int *nanelen);
(_DECC_V4_SOURCE)
int getpeernane (int s, struct sockaddr*nane, size_t *nanelen);
(not _DECC_V4_SOURCE)
Arguments
s
A socket descriptor created using socket ().
name
A pointer to a buffer where the peer name is to be returned.

namelen

An address of an integer that specifies the size of the name buffer. On return, it is modified to
reflect the actual length, in bytes, of the name returned.

Description

This function returns the name of the peer connected to the specified socket descriptor.
Related Functions

See also bi nd(), socket (), and get socknane() .

Return Values
0

Successful completion.

Error; er r no is set to indicate the error.

151

Chapter 4. Sockets API Reference

Errors
EBADF
The descriptor is invalid.
EFAULT
The name argument is not a valid part of the user address space.
EINVAL
The socket has been shut down.
ENOBUFS
The system has insufficient resources to complete the call.
ENOTCONN
The socket is not connected.
ENOTSOCK
The socket descriptor is invalid.
EOPNOTSUPP

The operation is not supported for the socket protocol.

getprotobyname()

getprotobyname() — Searches the protocols table until a matching protocol name is found or until the
end of the table is encountered.

Format

#i ncl ude <netdb. h>
struct protoent *getprotobynanme (char *nane);

Argument
name

A pointer to a string containing the desired protocol name.
Description

This function returns a pointer to a pr ot oent structure containing data from the protocols table. For
information about the pr ot oent structure, refer to Section 3.2.10.

All information is contained in a static area, so it must be copied to be saved.

Related Functions

See also get pr ot oent () and get pr ot obynunber ().

152

Chapter 4. Sockets API Reference

Return Values

NULL

Indicates the end of the table or an error.

A pointer to a pr ot oent structure.

getprotobynumber()

getprotobynumber() — Searches the protocols table until a matching protocol number is found or until
the end of the table is encountered.

Format

#i ncl ude <netdb. h>
struct protoent *getprotobynunmber (int *proto);

Argument
proto

A pointer to a string containing the desired protocol number.
Description

This function returns a pointer to a pr ot oent structure containing the data from the protocols table.
For information about the pr ot oent structure, refer to Section 3.2.10.

All information is contained in a static area, so it must be copied to be saved.
Related Functions
See also get pr ot oent () and get pr ot obynane() .

Return Values
NULL

Indicates end of table or an error.

A pointer to a pr ot oent structure.

getprotoent()

getprotoent() — Reads the next entry from the protocols table.

Format

#i ncl ude <net db. h>

153

Chapter 4. Sockets API Reference

struct protoent *getprotoent();

Description

This function returns a pointer to a pr ot oent structure containing the data from the protocols table.
For information about the pr ot oent structure, refer to Section 3.2.10.

The get pr ot oent () function keeps an index to the table, allowing successive calls to be used to
search the entire table.

All information is contained in a static area, so it must be copied to be saved.

Related Functions
See also get pr ot obynane() and get pr ot obynunber ().

Return Values
NULL

Indicates the end of the table or an error.

A pointer to a pr ot oent structure.

getservbyname()

getservbyname() — Gets information on the specified service from the services database that is
referenced by the TCPIPSSERVICE logical name. If not found there, this function may invoke the
BIND resolver to search TCPIPSETC:SERVICES.DAT.

Format

#i ncl ude <netdb. h>
struct servent *getservbynane (char *name, char *proto);

Arguments
name

A pointer to a string containing the name of the service about which information is required.
proto

A pointer to a string containing the name of the protocol (TCP or UDP) for which to search.

Description

This function searches the services database until a matching service name is found or the end of file
is encountered. If a protocol name is also supplied, searches must also match the protocol.

This function returns a pointer to a Ser vent structure containing the data from the network services
database. For information about the ser vent structure, refer to Section 3.2.11.

154

Chapter 4. Sockets API Reference

All information is contained in a static area, so it must be copied to be saved.

Related Functions

See also get ser vbyport ().

Return Values
NULL

Indicates end of file or an error.

A pointer to a Ser vent structure.

getservbyport()
getservbyport() — Gets information on the specified port from the services database that is referenced

by the TCPIPSSERVICE logical name. If the specified port is not found, this function may invoke the
BIND resolver to search TCPIPSETC:SERVICES.DAT.

Format

#i ncl ude <netdb. h>
struct servent *getservbyport (int port, char *proto);

Arguments
port

The port number for which to search. This port number should be specified in network byte order.
You can use the ht ons() function to convert the port number to network byte order.

proto

A pointer to a string containing the name of the protocol (TCP or UDP) for which to search.

Description

This function searches the services database until a matching port is found, or until end of file is
encountered. If a protocol name is also supplied, searches must also match the protocol.

This function returns a pointer to a Ser vent structure containing the broken-out fields of the
requested line in the network services database. For information about the ser vent structure, refer

to Section 3.2.11.

All information is contained in a static area, so it must be copied to be saved.

Related Functions

See also get ser vbyname() .

155

Chapter 4. Sockets API Reference

Return Values
NULL

Indicates end of file or an error.

A pointer to a ser vent structure.

Errors
EPERM

Not owner. Indicates that the wrong port number was specified.

getservent()
getservent() — Retrieves an entry from the services database file.

Format

#i ncl ude <netdb. h>
struct servent *getservent (void);

Description
This function reads the next line of the services database file (TCPIPSETC:SERVICES.DAT).

An application program can use the get ser vent () function to retrieve information about a service
(such as the protocol or the ports it uses) from the services database.

The get servent () function returns a Ser vent structure that contains information from the
services database file. See Section 3.2.11 for a description of the Ser vent structure. The ser vent
structure is defined in the NETDB.H header file.

The ASCII text services database file remains open after a call by the get ser vent () function. Use
the endser vent () function to close the services database file. Use the set ser vent () function

to open the services database file and reset the file marker to the beginning of the file.

The get ser vent function uses a common static area for its return values, so subsequent calls to this
function overwrite any existing service entry. To save the services entry, you must make a copy of it.

Related Functions

See also set ser vent and endser vent .

Return Values

A pointer to a Ser vent structure.

156

Chapter 4. Sockets API Reference

NULL

Indicates an error or end of file.

getsockname()

getsockname() — Returns the name associated with a socket. The $QIO equivalent is the
10$ SENSEMODE function with the p3 argument.

Format

#i ncl ude <types. h>

#i ncl ude <socket. h>

i nt getsockname (int s, struct sockaddr *nane, int *nanel en);

(_DECC_V4_SOURCE)

i nt getsockname (int s, struct sockaddr *nane, size_t *nanelen);
(not _DECC_V4_SOURCE)

Arguments

N

A socket descriptor created with the socket () function and bound to the socket name with the
bi nd() function.

name
A pointer to the buffer in which get socknane() should return the socket name.
namelen

A pointer to an integer containing the size of the buffer pointed to by name. On return, the integer
indicates the actual size, in bytes, of the name returned.

Description

This function returns the current name for the specified socket descriptor. The name is in a format
specific to the address family assigned to the socket (AF_INET, or AF_INET6 with BSD 4.4 when
_SOCKADDR_LEN is defined).

The bi nd() function, not the get socknamne() function, makes the association of the name to the
socket.

Related Functions
See also bi nd() and socket ().

Return Values
0

Successful completion.

Error; er r no is set to indicate the error.

157

Chapter 4. Sockets API Reference

Errors
EBADF

The descriptor is invalid.
EFAULT

The name argument is not a valid part of the user address space.
ENOBUFS

The system has insufficient resources to complete the call.
ENOTSOCK

The socket descriptor is invalid.
EOPNOTSUPP

The operation is not supported for this socket's protocol.

getsockopt()

getsockopt() — Returns the options set on a socket. The $QIO equivalent is the I0§ SENSEMODE
function.

Format

#i ncl ude <types. h>
#i ncl ude <socket. h>

int getsockopt (int s, int level, int optname, char *optval,
int *optlen); (_DECC V4 SOURCE)
int getsockopt (int s, int level, int optnanme, void *optval,

size_t *optlen); (not_ DECC V4 SOURCE)
Arguments
s

A socket descriptor created by the socket () function.

level

The protocol level for which the socket options are desired. It can have one of the following

values:

SOL_SOCKET Get the options at the socket level.

p Any protocol number. Get the options for protocol level specified by p. The
IPPROTO values are defined in the IN.H header file (for IPv4), or the IN6.H
header file (for IPv6).

optname

Interpreted by the protocol specified in the level. Options at each protocol level are documented
with the protocol.

158

Chapter 4. Sockets API Reference

For descriptions of the supported socket level options, see the description of set sockopt () in
this chapter.

optval

Points to a buffer in which the value of the specified option should be placed by
get sockopt ().

optlen

Points to an integer containing the size of the buffer pointed to by optval. On return, the integer is
modified to indicate the actual size of the option value returned.

Description

This function gets information on socket options. See the appropriate protocol for information about
available options at each protocol level.

Return Values

0
Successful completion.
-1
Error; er r no is set to indicate the error.
Errors
EACCES
The calling process does not have appropriate permissions.
EBADF
The socket descriptor is invalid.
EDOM
The send and receive timeout values are too large to fit in the timeout fields of the socket
structure.
EFAULT
The address pointed to by the optval argument is not in a valid (writable) part of the process
space, or the optlen argument is not in a valid part of the process address space.
EINVAL
The optval or optlen argument is invalid; or the socket is shut down.
ENOBUFS

The system has insufficient resources to complete the call.

159

Chapter 4. Sockets API Reference

ENOTSOCK

The socket descriptor is invalid.
ENOPROTOOPT

The option is unknown or the protocol is unsupported.
EOPNOTSUPP

The operation is not supported by the socket protocol.
ENOPROTOOPT

The option is unknown.
ENOTSOCK

The socket descriptor is invalid.

herror()
herror() — Writes a message to standard error explaining h_err or .

Format

#i ncl ude <netdb. h>
void herror (const char *string);

Argument
string

A user-printable string.
Description

This function maps the error number in the external variable h_er r no to a locale-dependent error
message.

hostalias()

hostalias() — Searches for host aliases associated with a name.
Format

#i ncl ude <resolv. h>

char *hostalias (const char *name);
Argument

name

Points to the name of the host that you want to retrieve aliases from.

160

Chapter 4. Sockets API Reference

Description

This function searches for the alias associated with the name argument. The HOSTALI ASES logical
name can be used to define the name of a file that lists the host aliases, in the form:

host alias

Return Values

The host alias.
NULL

Indicates an error.

hstrerror()

hstrerror() — Returns an error message string.

Format

#i ncl ude <string. h>
char *hstrerror (int errnum;

Arguments
errnum
An error number specifying a value of h_er r no.
Description
This function maps the error number specified by the errnum argument to a location-dependent error

message string and returns a pointer to the string. The string pointed to by the return value cannot be
modified by the program, but could be overwritten by subsequent calls to this function.

Return Values

A pointer to the generated message string.

On error, er r no might be set, but no return value is reserved to indicate an error.

Errors

Ifthe hstrerror () function fails, er r no is set to EINVAL, indicating the value of the errnum
argument is an invalid error number.

161

Chapter 4. Sockets API Reference

htonl()

htonl() — Converts longwords from host byte order to network byte order.

Format

#i ncl ude <in. h>
unsigned I ong int htonl (unsigned |long int hostlong);

Argument

hostlong

A longword in host byte order (OpenVMS systems).

Description
This function converts 32-bit unsigned integers from host byte order to network byte order.

Data bytes transmitted over the network are expected to be in network byte order. Some hosts, like
OpenVMS, have an internal data representation format that is different from the network byte order;
this is called the host byte order. Network byte order places the byte with the most significant bits at
lower addresses, but OpenVMS host byte order places the most significant bits at the highest address.

This function can be used to convert IP addresses from host byte order to network byte order.

Note

The 64-bit return from OpenVMS Alpha and 164 systems has zero-extended bits in the high 32 bits of
RO.

Return Value

A longword in network byte order.

htons()

htons() — Converts short integers from host byte order to network byte order.

Format

#i ncl ude <in. h>
unsi gned short int htons (unsigned short int hostshort);

Argument
hostshort

A short integer in host byte order (OpenVMS systems). All short integers on OpenVMS systems
are in host byte order unless otherwise specified.

162

Chapter 4. Sockets API Reference

Description
This function converts 16-bit unsigned integers from host byte order to network byte order.

Data bytes transmitted over the network are expected to be in network byte order. Some hosts, like
OpenVMS, have an internal data representation format that is different from the network byte order;
this is called the host byte order. Network byte order places the byte with the most significant bits at
lower addresses, but OpenVMS host byte order places the most significant bits at the highest address.

This function is most often used with ports returned by the get ser vent () function. To convert
port numbers from OpenVMS host byte order to network byte order, use the ht ons() function.

Note

The 64-bit return from OpenVMS Alpha and 164 systems has zero-extended bits in the high 32 bits of
RO.

Return Value

X

A short integer in network byte order. Integers in network byte order cannot be used for arithmetic
computation on OpenVMS systems.

if_freenameindex()

if freenameindex() — Frees dynamic memory allocated by i f _namei ndex() to the array of
interface names and indexes

Format

#i nclude <if.h>
voi d if_freenamnei ndex
(struct if_naneindex *ptr);

Arguments
ptr

Points to an array of structures returned by the i f _nanei ndex() function.
Description

Thei f _freenamei ndex() function frees dynamic memory allocated to the array of interface
names and indexes that the i f _nanei ndex() function returned.

if_indextoname()

if indextoname() — Maps an interface index to its corresponding name.

Format

#i nclude <if. h>

163

Chapter 4. Sockets API Reference

char *if_indextoname (unsigned int ifindex, char *ifnane);

Arguments
ifindex
The interface index.

ifhame

Points to a buffer that is IF'NAMSIZ bytes in length. IFNAMSIZ is defined in the IF.H header
file.) If an interface name is found, it is returned in the buffer.

Description

This function maps an interface index to its corresponding name.

Return Values
Interface name

If interface name is found, it is returned to the buffer.
NULL

If no interface name corresponds to the specified index, the function returns NULL and sets
er r no to ENXIO.

Errors
ENXIO

No interface name corresponds to the specified index.
System error

A system error.

if_nameindex()

if nameindex() — Returns an array of all interface names and indexes.

Format

#include <if.h>
struct if_naneindex *if_nanei ndex (void);

Description

This function dynamically allocates memory for an array of i f _namei ndex structures, one
structure for each interface. A structure with an i f _i ndex value of 0 and a NULL i f _nane value
indicates the end of the array.

The following i f _nanei ndex structure must also be defined by including the IF.H header file prior
to the call toi f _namei ndex():

164

Chapter 4. Sockets API Reference

struct if_nanei ndex ({
unsi gned i nt i f_index;
char *i f _nane;

b

To free the memory allocated by this function, use the i f _f r eenamei ndex() function. If an error
occurs, the function returns a NULL pointer and sets er r no to an appropriate value.

Return Values
NULL

Indicates an error; €r r no is set to an appropriate value.

if_nametoindex()
if nametoindex() — Maps an interface name to its corresponding index.

Format

#include <if.h>
unsi gned int if_nanetoi ndex (const char *ifname);

Arguments
ifname

Points to a buffer that contains the interface name.
Description

This function maps an interface name to its corresponding interface index number.

Return Values
0 (zero)

Interface does not exist.

Upon successful conversion, the i f _namet oi ndex() function returns an interface index
number.

inet6_opt_append()

inet6_opt_append() — Returns the length of an IPv6 extension header with a new option and appends
the option.

Format

#i ncl ude <in6. h>

165

Chapter 4. Sockets API Reference

int inet6_opt_append (void *extbuf, size t extlen, int offset,
uint8 t type, size_t len, uint_t align, void **databufp);

Arguments

extbuf

Points to a buffer that contains an extension header. This is either a valid pointer or a NULL
pointer.

extlen

Specifies the length of the extension header to initialize. Valid values are 0 if extbuf equals 0, a
value returned by i net 6_opt _fi ni sh(), or any number that is a multiple of 8.

offset

Specifies the length of the existing extension header. Obtain this value from a prior call to
inet6_opt_init() ori net6_opt _append().

type
Specifies the type of option. Specify a value from 2 to 255, inclusive, excluding 194.
len

Specifies the length of the option data, excluding the option type and option length fields. Specify
a value from 0 to 255, inclusive.

align
Specifies the alignment of the option. Specify one of the following values: 1, 2, 4, or 8.
databufp

Points to a buffer that contains the option data.

Description

This function, when called with extbuf as a NULL pointer and extlen as 0, returns the updated
number of bytes in an extension header.

If you specify extbuf as a valid pointer and valid extlen and align arguments, the function returns the
same information as in the previous case, but also inserts the pad option, initializes the type and len
fields, and returns a pointer to the location for the option content.

After you call i net 6_opt _append() , you can then use the data buffer directly or call
i net 6_opt _set _val () to specify the option contents.

Return Values

Upon successful completion, the i net 6_opt _append() function returns the updated number
of bytes in an extension header.

166

Chapter 4. Sockets API Reference

Failure

Errors
EBADF
The socket descriptor is invalid.
ECONNABORTED
A connection has been aborted.
EFAULT
The addr argument is not in a writable part of the user address space.
EINTR
The accept () function was interrupted by a signal before a valid connection arrived.
EINVAL
The socket is not accepting connections.
EMFILE
There are too many open file descriptors.
ENFILE
The maximum number of file descriptors in the system is already open.
ENETDOWN
TCP/IP Services was not started.
ENOBUFS
The system has insufficient resources to complete the call.
ENOMEM
The system was unable to allocate kernel memory.
ENOTSOCK
The socket descriptor is invalid.
EOPNOTSUPP
The reference socket is not of type SOCK_STREAM
EPROTO

A protocol error occurred.

167

Chapter 4. Sockets API Reference

EWOULDBLOCK

The socket is marked nonblocking, and no connections are present to be accepted.

inet6_opt_find()

inet6_opt_find() — Finds a specific option in an extension header.
Format

#i ncl ude <in6. h>

int inet6 _opt find (void *extbuf, size t extlen, int offset, uint8 t type,
size t *lenp, void **databufp);

Arguments
extbuf

Points to a buffer that contains an extension header.
extlen

Specifies the length, in bytes, of the extension header.
offset

Specifies the location in the extension header of an option. Valid values are either 0 (zero) for
the first option or the length returned from a previous call to either i net 6_opt _next () or
inet6_opt find().

type

Specifies the type of option to find.
lenp

Points to the length of the option found.
databufp

Points to the option data.

Description

This function searches a received option extension header for an option specified by type. If it
finds the specified option, it returns the option length and a pointer to the option data. It also returns
an offset to the next option, which you can specify in the offset argument to subsequent calls to

i net 6_opt _next () in order to search for additional occurrences of the same option type.

Return Values

Upon successful completion, the i net 6_opt _fi nd() function returns an offset from which
you can begin the next search in the data buffer.

168

Chapter 4. Sockets API Reference

Failure

inet6_opt_finish()

inet6_opt_finish() — Returns the total length of an [Pv6 extension header, including padding, and
initializes the option.

Format

#i ncl ude <in6. h>
int inet6_opt_finish (void *extbuf, size_t extlen, int offset);

Arguments

extbuf

Points to a buffer that contains an extension header. This is either a valid pointer or a NULL
pointer.

extlen

Specifies the length of the extension header to finish initializing. A valid value is any number
greater than or equal to 0.

offset

Specifies the length of the existing extension header. Obtain this value from a prior call to
inet6 _opt _init() ori net6_opt _append().

Description

This function, when called with extbuf as a NULL pointer and extlen as 0, returns the total number of
bytes in an extension header, including final padding.

If you specify extbuf as a valid pointer and a valid extlen argument, the function returns the same
information as in the previous case, increments the buffer pointer, and verifies that the buffer is large
enough to hold the header.

Return Values
X

Upon successful completion, the i net 6_opt _fi ni sh() function returns the total number of
bytes in an extension header, including padding.

Failure

inet6_opt_get_val()

inet6_opt_get val() — Extracts data items from the data portion of an [Pv6 option.

169

Chapter 4. Sockets API Reference

Format

#i ncl ude <i n6. h>
int inet6_opt_get val (void *databuf, size t offset,

void *val, int vallen);
Arguments
databuf

Points to a buffer that contains an extension header. This is a pointer returned by a call to
inet6_opt _find() ori net6_opt _next ().

offset

Specifies the location in the data portion of the option from which to extract the data. You can
access the first byte after the option type and length by specifying the offset of 0.

val
Points to a destination for the extracted data.
vallen

Specifies the length of the data, in bytes, to be extracted.
Description
This function copies data items from data buffer databuf beginning at offset to the location val. In
addition, it returns the offset for the next data field to assist you in extracting option content that has

multiple fields.

Make sure that each field is aligned on its natural boundaries.

Return Values

Upon successful completion, the i net 6_opt _get val () function returns the offset for the
next field in the data buffer.

Failure

inet6_opt_init()

inet6_opt_init() — Returns the length of an [Pv6 extension header with no options and initializes the
header.

Format

#i ncl ude <in6. h>

170

Chapter 4. Sockets API Reference

int inet6_opt_init (void *extbuf, size t extlen);
Arguments

extbuf

Points to a buffer that contains an extension header. This is either a valid pointer or a NULL
pointer.

extlen

Specifies the length of the extension header to initialize. Valid values are 0 and any number that is
a multiple of 8.

Description

This function, when called with extbuf as a NULL pointer and extlen as 0, returns the number of
bytes in an extension header that has no options.

If you specify extbuf as a valid pointer and extlen as a number that is a multiple of 8, the function

returns the same information as in the previous case, initializes the extension header, and sets the
length field.

Return Values

Upon successful completion, the i net 6_opt _i ni t () function returns the number of bytes in
an extension header with no options.

Failure

inet6_opt_next()
inet6_opt_next() — Parses received option extension headers.

Format

#i ncl ude <in6. h>
int inet6_opt_next (void *extbuf, size t extlen, int offset,
uint8 t *typep, size_ t *lenp, void **databufp);

Arguments
extbuf

Points to a buffer that contains an extension header.
extlen

Specifies the length, in bytes, of the extension header.

171

Chapter 4. Sockets API Reference

offset
Specifies the location in the extension header of an option. Valid values are either 0 for the
first option or the length returned from a previous call to either i net 6_opt _next () or
inet6_opt find().

typep
Points to the type of the option found.

lenp
Points to the length of the option found.

databufp

Points to the option data.

Description
This function parses a received option extension header and returns the next option. In addition, it
returns an offset to the next option that you specify in the offset parameter to subsequent calls to

i net6_opt _next ().

This function does not return any PAD1 or PADN options.

Return Values

Upon successful completion, the i net 6_opt _next () function returns the offset for the next
option in the data buffer.

Failure

inet6_opt_set_val()

inet6_opt_set _val() — Adds one component of the option content to the options header.
Format

#i ncl ude <in6. h>

int inet6_opt_set_val (void *databuf, size_t offset,
void *val int vallen);

Arguments

databuf

Points to a buffer that contains an extension header. This is a pointer returned by a call to
i net6_opt _append().

172

Chapter 4. Sockets API Reference

offset

Specifies the location in the data portion of the option into which to insert the data. You can
access the first byte after the option type and length by specifying the offset of 0 (zero).

val
Points to the data to be inserted.
vallen

Specifies the length of the data, in bytes, to be inserted.

Description

This function copies data items at the location val into a data buffer databuf beginning at offset.
In addition, it returns the offset for the next data field to assist you in composing content that has
multiple fields.

Make sure that each field is aligned on its natural boundaries.
Return Values

X

Upon successful completion, the i net 6_opt _set _val () function returns the offset for the
next field in the data buffer.

Failure

inet6_rth_add()
inet6_rth_add() — Adds an IPv6 address to the routing header under construction.

Format

#i ncl ude <in6. h>
int inet6_rth_add (void *bp, const struct in6_addr *addr);

Arguments
bp

Points to a buffer that is to contain an IPv6 routing header.
addr

Points to an IPv6 address to add to the routing header.
Description

This function adds an IPv6 address to the end of the routing header under construction. The address
pointed to by addr cannot be an [Pv6 V4-mapped address or an IPv6 multicast address.

173

Chapter 4. Sockets API Reference

The function increments the i p6r 0_segl ef t member inthei p6_rt hdr0 structure. The
i p6_rt hdr O structure is defined in the IP6.H header file.

Only routing header type 0 is supported.

Return Values
Upon successful completion, the i net 6_rt h_add() function returns 0 (zero).

Failure

inet6_rth_getaddr()

inet6_rth _getaddr() — Retrieves an address for an index from an IPv6 routing header.

Format

#i ncl ude <in6. h>
struct in6_addr *inet6_rth_getaddr (const void *bp, int index);

Arguments
bp

Points to a buffer that contains an IPv6 routing header.
index

Specifies a value that identifies a position in a routing header for a specific address. Valid values
range from O to the return value fromi net 6_rth_segnent s() minus 1.

Description

This function uses a specified index value and retrieves a pointer to an address in a routing header
specified by bp. Call i net 6_rt h_segnent s() before calling this function in order to determine
the number of segments (addresses) in the routing header.

Return Values

X
Upon successful completion, the i net 6_rt h_get addr () function returns a pointer to an
address.

NULL pointer
Failure

inet6_rth_init()

inet6_rth_init() — Initializes an IPv6 routing header buffer.

174

Chapter 4. Sockets API Reference

Format

#i ncl ude <in6. h>
void *inet6 rth_init (void *bp, int bp_len, int type, int segnents);

Arguments
bp
Points to a buffer that is to contain an IPv6 routing header.
bp_len
Specifies the length, in bytes, of the buffer.
type

Specifies the type of routing header. The valid value is | PV6_RTHDR_TYPE_O for IPv6 routing
header type 0.

segments

Specifies the number of segments or addresses that are to be included in the routing header. The
valid value is from 0 to 127, inclusive.

Description

This function initializes a buffer and buffer data for an [Pv6 routing header. The function sets the

i p6r0_segl eft,i p6r0_nxt,andi p6r0_reserved membersinthei p6_rt hdr O structure
to zero. In addition, it sets the i p6r O_t ype member to type and sets the i p6r O_| en member
based on the segments argument. The i p6_r t hdr O structure is defined in the IP6.H header file.

The application must allocate the buffer. Use the i net 6_rt h_space() function to determine the
buffer size.

Use the returned pointer as the first argument to the i net 6_rt h_add() function.

Return Values

X
Upon successful completion, thei net 6_rt h_i ni t () function returns a pointer to the buffer
that is to contain the routing header.

NULL pointer
Failure. If the type is not supported, the bp is a null, or the number of bp_len is invalid.

inet6_rth_reverse()

inet6_rth_reverse() — Reverses the order of addresses in an [Pv6 routing header.

Format

#i ncl ude <in6. h>
int inet6 _rth reverse (const void *in, void *out);

175

Chapter 4. Sockets API Reference

Arguments
in

Points to a buffer that contains an IPv6 routing header.
out

Points to a buffer that is to contain the routing header with the reversed addresses. This parameter
can point to the same buffer specified by the in parameter.

Description

This function reads an [Pv6 routing header and writes a new routing header, reversing the order of
addresses in the new header. The in and out parameters can point to the same buffer.

The function sets the i p6r 0_segl ef t member in the i p6_rt hdr O structure to the number of
segments (addresses) in the new header.

The i p6_rt hdr O structure is defined in the IP6.H header file.
Return Values
0 (zero)

Success

Failure

inet6_rth_segments()
inet6_rth segments() — Returns the number of segments (addresses) in an [Pv6 routing header.

Format

#i ncl ude <in6. h>
int inet6_rth_segments (const void *bp);

Arguments
bp

Points to a buffer that contains an IPv6 routing header.
Description

This function returns the number of segments (or addresses) in an IPv6 routing header.

Return Values

X

Upon successful completion, thei net 6_rt h_segment s() function returns the number of
segments, 0 (zero) or greater than 0.

176

Chapter 4. Sockets API Reference

Failure

inet6_rth_space()

inet6_rth_space() — Returns the number of bytes required for an IPv6 routing header.

Format

#i ncl ude <in6. h>
size_t inet6_rth_space (int type, int segnents);

Arguments

type

Specifies the type of routing header. The valid value is | PV6_RTHDR_TYPE_O for IPv6 routing
header type 0.

segments

Specifies the number of segments or addresses that are to be included in the routing header. The
valid value is from 0 to 127, inclusive.

Description

This function determines the amount of space, in bytes, required for a routing header. Although the
function returns the amount of space required, it does not allocate buffer space. This enables the
application to allocate a larger buffer.

If the application uses ancillary data, it must pass the returned length to CM5G_LEN() to determine
the amount of memory required for the ancillary data object, including the cmsghdr structure.

Note

If an application wants to send other ancillary data objects, it must specify them to sendnsg() asa
single nsg_cont r ol buffer.

Return Values

X
Upon successful completion, the i net 6_rt h_space() function returns the length, in bytes, of
the routing header and the specified number of segments.

0 (zero)

Failure, if the type is not supported or the number of segments is invalid for the type of routing
header.

inet_aton()

inet_aton() — Converts an I[P address in the standard dotted-decimal format to its numeric binary
form, in network byte order. Replaces the i net _addr () function.

177

Chapter 4. Sockets API Reference

Format

#i ncl ude <inet. h>
int inet_aton (const char *cp, struct in_addr *in);

Argument

cp

A pointer to a null-terminated character string containing an internet address in the standard
internet dotted-decimal format.

in
A pointer to a buffer that is to contain the numeric internet address in network byte order.
Description

This function returns a numeric internet address in network byte order that represents the internet
address supplied in standard dotted-decimal format as its argument.

Internet addresses specified with the dotted-decimal format take one of the following forms:

.c.d
. C

Lo
O T T

When four parts are specified, each is interpreted as a byte of data and assigned, from left to right,
to the 4 bytes of an internet address. Note that when an internet address is viewed as a 32-bit integer
quantity on an OpenVMS system, the bytes appear in binary as d. c. b. a. That is, OpenVMS bytes
are ordered from least significant to most significant.

When only one part is given, the value is stored directly in the network address without any byte
rearrangement.

All numbers supplied as parts in a dotted-decimal address can be decimal, octal, or hexadecimal, as
specified in the C language. (That is, a leading 0x or 0X implies hexadecimal; a leading 0 implies
octal; otherwise, the number is interpreted as decimal.)

Note

The 64-bit return from OpenVMS Alpha and 164 systems has zero-extended bits in the high 32 bits of
RO.

Return Value
1

Indicates success.

Indicates failure.

178

Chapter 4. Sockets API Reference

inet_Inaof()
inet_Inaof() — Returns the local network address portion of an IP address.

Format

#i ncl ude <in. h>
#i ncl ude <inet. h>
int inet_|Inaof (struct in_addr in);

Argument
in

An IP address.
Description

This function returns the local network address portion of a full IP address.

Note

The 64-bit return from OpenVMS Alpha and 164 systems has zero-extended bits in the high 32 bits of

RO.

Return Value

X

The local network address portion of an IP address, in host byte order.

inet_makeaddr()

inet_makeaddr() — Returns an IP address based on a particular local address and a network.

Format

#i ncl ude <in. h>
#i ncl ude <inet. h>
struct in_addr inet_makeaddr (int net, int |na);

Arguments
net

An IP network address in host byte order.
Ina

A local network address on network net in host byte order.

Description

This function combines the net and Ina arguments into a single IP address.

179

Chapter 4. Sockets API Reference

Note

The 64-bit return from OpenVMS Alpha and 164 systems has zero-extended bits in the high 32 bits of
RO.

Return Value

An IP address in network byte order.

inet_netof()
inet_netof() — Returns the internet network address portion of an IP address.

Format

#i ncl ude <in. h>
#i ncl ude <inet. h>
int inet_netof (struct in_addr in);

Argument
in

An IP address.
Description

This function returns the internet network address (NET) portion of a full IP address.

Note

The 64-bit return from OpenVMS Alpha and 164 systems has zero-extended bits in the high 32 bits of
RO.

Return Value

The internet network portion of an IP address, in host byte order.

inet_network()

inet_network() — Converts a null-terminated text string representing an [P address into a network
address in local host format.

Format

#i ncl ude <in. h>
#i ncl ude <inet. h>

180

Chapter 4. Sockets API Reference

int inet_network (const char *cp);
Argument

cp

A pointer to an ASCII (null-terminated) character string containing a network address in the
dotted-decimal format.

Description

This function returns an internet network address as a local host integer value when an ASCII string
representing the address in the internet standard dotted-decimal format is given as its argument.

Note

The 64-bit return from OpenVMS Alpha and 164 systems has zero-extended bits in the high 32 bits of
RO.

Return Values
-1

Indicates that ¢p does not point to a proper internet network address.

An internet network address, in local host order.

inet_ntoa()

inet_ntoa() — Converts an IP address into a text string representing the address in the standard
internet dotted-decimal format.

Format
#i ncl ude <in. h>

#i ncl ude <inet. h>
char *inet _ntoa (struct in_addr in);

Argument
in

An IP address in network byte order.
Description

This function converts an IP address into an ASCII (null-terminated) string that represents the address
in standard internet dotted-decimal format.

The string is returned in a static buffer that is overwritten by subsequent calls to i net _nt oa() . If
you want to save the text string, you should copy it.

181

Chapter 4. Sockets API Reference

Return Value

X

A pointer to a string containing the [P address in dotted-decimal format.

inet_ntop()

inet_ntop() — Converts a numeric address to a text string suitable for presentation.

Format

#i ncl ude <inet. h>
const char *inet _ntop (int af, const void *src, char *dst, size t size);

Arguments
af

Specifies the address family. Valid values are AF_INET for an [Pv4 address and AF_INET6 for
an IPv6 address.

src

Points to a buffer that contains the numeric IP address.
dst

Points to a buffer that is to contain the text string.
size

Specifies the size of the buffer pointed to by the dst parameter. For IPv4 addresses, the
minimum buffer size is 16 bytes. For [Pv6 addresses, the minimum buffer size is 46 bytes.
INET_ADDRSTRLEN constants are defined in the IN.H header file. INET6_ ADDRSTRLEN
constants are defined in IN6.H.

Description

This function converts a numeric [P address value to a text string.

Return Values

Pointer to the buffer containing the text string
Success

Pointer to the buffer containing NULL

Failure

inet_pton()

inet_pton() — Converts an address in its standard text presentation form into its numeric binary form,
in network byte order.

182

Chapter 4. Sockets API Reference

Format

#i ncl ude <inet. h>
int inet_pton (int af, const char *src, void *dst);

Arguments
af

Specifies the address family. Valid values are AF_INET for an IPv4 address and AF_INET6 for
an IPv6 address.

src
Points to the address text string to be converted.
dst

Points to a buffer that is to contain the numeric address.

Description
This function converts a text string to a numeric value in network byte order.

» Ifthe af parameter is AF_INET, the function accepts a string in the standard IPv4 dotted-decimal
format:

ddd. ddd. ddd. ddd
In this format, ddd is a one- to three-digit decimal number between 0 and 255.
o Ifthe af parameter is AF_INET6, the function accepts a string in the following format:
XD XD XX XD XXX
In this format, x is the hexadecimal value of a 16-bit piece of the address.

[Pv6 addresses can contain long strings of zero (0) bits. To make it easier to write these addresses,
you can use double-colon characters (::) one time in an address to represent 1 or more 16-bit
groups of zeros.

* For mixed IPv4 and IPv6 environments, the following format is also accepted:

X: X: X: X: X: X: ddd. ddd. ddd. ddd

In this format, x is the hexadecimal value of a 16-bit piece of the address, and ddd is a one- to
three-digit decimal value between 0 and 255 that represents the [Pv4 address.

The calling application is responsible for ensuring that the buffer referred to by the dst parameter
is large enough to hold the numeric address. AF _INET addresses require 4 bytes and AF_INET6
addresses require 16 bytes.

Return Values
1

Indicates success.

183

Chapter 4. Sockets API Reference

Indicates that the input string is neither a valid IPv4 dotted-decimal string nor a valid [Pv6 address

string.

Indicates a failure. er r no is set to the following value.

Errors
EAFNOSUPPORT

The address family specified in the af parameter is unknown.

ioctl()

ioctl() — Controls I/O requests to obtain network information.

Format

#i ncl ude <ioctl.h>
int ioctl (int s, int request, ... /* arg */);

Argument
s
Specifies the socket descriptor of the requested network device.

request

Specifies the type of i oct | command to be performed on the device. The request types are

grouped as follows:

* Socket operations

» File operations

* Interface operations

* ARP cache operations

* Routing table operations

Refer to Appendix B for a complete list of supported | OCTL commands.

arg

Specifies arguments for this request. The type of arg is dependent on the specifici oct | ()

request and device to which the i oct | () call is targeted.

Description

This function performs a variety of device-specific functions. The request and arg arguments are
passed to the file designated by the s argument and then interpreted by the device driver. The basic /O
functions are performed through the r ead() and w it e() functions.

184

Chapter 4. Sockets API Reference

[I3PVe2]

Encoded inani oct | () request is whether the argument is an “in” argument or an “out” argument,
and the size of the arg argument in bytes. The macros and definitions used to specify ani oct | ()
request are located in the IOCTL.H header file.

Return Values
-1

Error; er r no is set to indicate the error.
Errors
EBADF

The s argument is not a valid socket descriptor.
EINTR

A signal was caught during the i oct | () operation.
If an underlying device driver detects an error, e€r r N0 might be set to one of the following values:
EINVAL

Either the request or the arg argument is not valid.
ENOTTY

Reserved for VSI use. The s argument is not associated with a network device, or the specified
request does not apply to the specific network device.

ENXIO

The request and arg arguments are valid for this device driver, but the service requested cannot
be performed on the device.

listen()

listen() — Converts an unconnected socket into a passive socket and indicates that the TCP/IP
kernel should accept incoming connection requests directed to the socket. The $QIO equivalent is
the I0O$_SETMODE service.

Format
int listen (int s, int backlog);
Arguments
s
A socket descriptor of type SOCK_STREAMCcreated using the socket () functi on.
backlog

The maximum number of pending connections that can be queued on the socket at any given time.
The maximum number of pending connections can be set by specifying the value of the socket

185

Chapter 4. Sockets API Reference

subsystem attribute somaxconn. (Refer to the VSI TCP/IP Services for OpenVMS Tuning and
Troubleshooting guide for more information.) The default value for the maximum number of
pending connections is 1024.

Description

This function creates a queue for pending connection requests on socket s with a maximum size equal
to the value of backlog. Connections can then be accepted with the accept () function.

If a connection request arrives with the queue full (that is, more connections pending than specified
by the backlog argument), the request is ignored so that TCP retries can succeed. If the backlog has

not cleared by the time TCP times out, the connect () function fails with an er r no indication of
ETI MEDOUT.

Related Functions

See also accept (), connect (), and socket ().

Return Values
0

Successful completion.

Error; er r no is set to indicate the error.

Errors
EBADF

The socket descriptor is invalid.
EDESTADDRREQ

The socket is not bound to a local address, and the protocol does not support listening on an
unbound socket.

EINVAL

The socket is already connected, or the socket is shut down.
ENOBUFS

The system has insufficient resources to complete the call.
ENOTSOCK

The socket descriptor is invalid.
EOPNOTSUPP

The referenced socket is not of a type that supports the operation | i st en() .

186

Chapter 4. Sockets API Reference

ntohl()

ntohl() — Converts longwords from network byte order to host byte order.

Format

#i ncl ude <in. h>
unsi gned | ong ntohl (unsigned |ong netlong);

Argument

netlong

A longword in network byte order. Integers in network byte order cannot be used for arithmetic
computation on OpenVMS systems.

Description

This function converts 32-bit unsigned integers from network byte order to host byte order.

Data bytes transmitted over the network are expected to be in network byte order. Some hosts, like
OpenVMS, have an internal data representation format that is different from the network byte order;
this is called the host byte order. Network byte order places the byte with the most significant bits at
lower addresses, but OpenVMS host byte order places the most significant bits at the highest address.

This function can be used to convert IP addresses from network byte order to host byte order.

Return Value

A longword in host byte order.

ntohs()

ntohs() — Converts short integers from network byte order to host byte order.

Format

#i ncl ude <in. h>
unsi gned short ntohs (unsigned short netshort);

Argument

netshort

A short integer in network byte order. Integers in network byte order cannot be used for arithmetic
computation on OpenVMS systems.

Description

This function converts 16-bit unsigned integers from network byte order to host byte order.

187

Chapter 4. Sockets API Reference

Data bytes transmitted over the network are expected to be in network byte order. Some hosts, like
OpenVMS, have an internal data representation format that is different from the network byte order;
this is called the host byte order. Network byte order places the byte with the most significant bits at
lower addresses, but OpenVMS host byte order places the most significant bits at the highest address.

This function can be used to convert port numbers returned by get ser vent () from network byte
order to host byte order.

Return Value
X

A short integer in host byte order (OpenVMS systems).

poll()

poll() — Monitors conditions on multiple file descriptors.

Format

#i ncl ude <poll. h>
int poll (struct pollfd fds[], nfds_t nfds, int tineout);

Arguments

fds

An array of pol | f d structures, one for each file descriptor of interest. Each pol | f d structure
includes the following members:

int fd The file descriptor

int events The requested conditions

int revents |The reported conditions

nfds
The number of pol | f d structures in the f ds array.
timeout

The maximum length of time (in milliseconds) to wait for one of the specified events to occur.

Description

This function provides applications with a mechanism for multiplexing input/output over a set of

file descriptors. For each member of the array pointed to by fds, pol | () examines the given file
descriptor for the events specified in event s. The number of pol | f d structures in the fds array is
specified by nfds. The pol | () function identifies those file descriptors on which an application can
read or write data, or on which certain events have occurred.

The fds argument specifies the file descriptors to be examined and the events of interest for each
file descriptor. It is a pointer to an array with one member for each open file descriptor of interest.
The array's members are pol | f d structures within which f d specifies an open file descriptor, and

188

Chapter 4. Sockets API Reference

event s and r event s are bitmasks constructed by OR-ing a combination of the following event
flags:

« POLLIN

Normal data may be received without blocking.
* POLLRDNORM

Same as POLLIN.
« POLLRDBAND

Out-of-band data may be received without blocking.

¢ POLLPRI
Same as POLLRDBAND
« POLLOUT

Normal data may be written without blocking.
+ POLLWRNORM
Same as POLLOUT.
* POLLWRBAND
Out-of-band data may be written without blocking.

If the value of f d is less than 0, event s is ignored and r event s is set to 0 in that entry on return
from pol | (). Ineach pol | f d structure, pol | () clears the r event s member except that where
the application requested a report on a condition by setting one of the bits of event s listed above,
pol | () sets the corresponding bit in r event s if the requested condition is true.

If none of the defined events have occurred on any selected file descriptor, pol | () waits at least
timeout milliseconds for an event to occur on any of the selected file descriptors. If the value of
timeout is 0, pol | () returns immediately. If the value of timeout is -1, pol | () blocks until a
specified event occurs or until the call is interrupted.

The pol | () function is not affected by the O NONBLOCK flag.

On OpenVMS, the pol | () function supports sockets only.

Note

VSI recommends using the sel ect () function for optimal performance. The pol | () function is
provided to ease the porting of existing applications from other platforms.

Return Values

positive value

Upon successful completion, the total number of file descriptors selected (that is, file descriptors
for which the r event s member is nonzero).

189

Chapter 4. Sockets API Reference

0
Successful completion. The call timed out and no file descriptors were selected.
-1
The pol | () function failed. The er r no is set to indicate the error.
Errors
EAGAIN
The allocation of internal data structures failed but a subsequent request may succeed.
EINTR

A signal was caught during the pol | () function.

read()
read() — Reads data from a socket or file. The $QIO equivalent is the [0O$ READVBLK function.

Format

#i ncl ude <uni xi 0. h>
int read(int d, void *buffer, int nbytes);

Arguments
d

A descriptor that must refer to a socket or file currently opened for reading.
buffer

The address of a user-provided buffer in which the input data is placed.
nbytes

The maximum number of bytes allowed in the read operation.
Description

This function reads bytes from a socket or file and places them in a user-defined buffer.

If the end of file is not reached, the r ead() function returns nbytes. If the end of file occurs during
the r ead() function, it returns the number of bytes read.

Upon successful completion, r ead() returns the number of bytes actually read and placed in the
buffer.

Related Functions

See also socket ().

190

Chapter 4. Sockets API Reference

Return Values

The number of bytes read and placed in the buffer.

Peer has closed the connection.

Error; er r no is set to indicate the error.

Errors
EBADF

The socket descriptor is invalid.
ECONNRESET

A connection was forcibly closed by a peer.
EFAULT

The data was specified to be received into a nonexistent or protected part of the process address
space.

EINTR

A signal interrupted the r ead() function before any data was available.
EINVAL

The MSG_OOB flag is set and no out-of-band data is available.
ENOBUFS

The system has insufficient resources to complete the call.
ENOMEM

The system did not have sufficient memory to fulfill the request.
ENOTCONN

A receive is attempted on a connection-oriented socket that is not connected.
ENOTSOCK

The socket descriptor is invalid.
EOPNOTSUPP

The specified flags are not supported for this socket type or protocol.

191

Chapter 4. Sockets API Reference

EWOULDBLOCK

The socket is marked nonblocking, and no data is waiting to be received.

recv()

recv() — Receives bytes from a connected socket and places them into a user-provided buffer. The
$QIO equivalent is the I0$_READVBLK function.

Format
#i ncl ude <types. h>
#i ncl ude <socket. h>
int recv (int s, char *buf, int len, int flags); (_DECC V4 SOURCE)
size t recv (int s, void *buf, ssize t len, int flags);
(not _DECC V4 SOURCE)
Arguments
s
A socket descriptor created as the result of a call to accept () or connect ().
buf
A pointer to a user-provided buffer into which received data will be placed.
len
The size of the buffer pointed to by buf.
flags

A bit mask that can contain one or more of the following flags. The mask is built by using a
logical OR operation on the appropriate values.

Flag Description

MSG_OOB Allows you to receive out-of-band data.

If out-of-band data is available, it is read first. If no out-of-band data is
available, the MSG_OOB flag is ignored.

Use the send() , sendnsg(), and sendt o() functions to send out-of-band
data.

MSG_PEEK Allows you to examine data in the receive buffer without removing it from the
system's buffers.

Description

This function receives data from a connected socket. To receive data on an unconnected socket, use
therecvfron() orrecvnsg() functions. The received data is placed in the buffer buf.

Data is sent by the socket's peer using the send, sendnmsg(),sendt o(),orwite() functions.

192

Chapter 4. Sockets API Reference

Use the sel ect () function to determine when more data arrives.
If no data is available at the socket, the r ecv () call waits for data to arrive, unless the socket is

nonblocking. If the socket is nonblocking, a -1 is returned with the external variable er r no set to
EVWOUL DBL OCK.

Related Functions

See also r ead(), send(), sendnsg(),sendto(),and socket ().

Return Values

X
The number of bytes received and placed in buf.
0
Peer has closed its send side of the connection.
-1
Error; er r no is set to indicate the error.
Errors
EBADF
The socket descriptor is invalid.
ECONNRESET
A connection was forcibly closed by a peer.
EFAULT
The data was specified to be received into a nonexistent or protected part of the process address
space.
EINTR
A signal interrupted the r ecv() function before any data was available.
EINVAL
The MSG_OOB flag is set and no out-of-band data is available.
ENOBUFS
The system has insufficient resources to complete the call.
ENOMEM

The system did not have sufficient memory to fulfill the request.

193

Chapter 4. Sockets API Reference

ENOTCONN

A receive is attempted on a connection-oriented socket that is not connected.
ENOTSOCK

The socket descriptor is invalid.
EOPNOTSUPP

The specified flags are not supported for this socket type or protocol.
EWOULDBLOCK

The socket is marked nonblocking, and no data is waiting to be received.

recvfrom()

recvirom() — Receives bytes for a socket from any source.

Format

#i ncl ude <types. h>

#i ncl ude <socket. h>

int recvfrom(int s, char *buf, int len, int flags, struct sockaddr *from
int *fromen) ; (_DECC V4 SOURCE)

ssize t recvfrom(int s, void *buf, size t len, int flags,

struct sockaddr *from size t *fromen) ; (not_ DECC V4 SOURCE)

Arguments
S

A socket descriptor created with the socket () function and bound to a name using the bi nd()
function or as a result of the accept () function.

buf

A pointer to a buffer into which received data is placed.
len

The size of the buffer pointed to by buf.
flags

A bit mask that can contain one or more of the following flags. The mask is built by using a
logical OR operation on the appropriate values.

Flag Description
MSG _OOB Allows you to receive out-of-band data. If out-of-band data is available, it is
read first.

If no out-of-band data is available, the MSG_OOB flag is ignored. To send out-
of-band data, use the send() , sendnsg(), and sendt o() functions.

194

Chapter 4. Sockets API Reference

Flag Description

MSG_PEEK Allows you to examine the data that is next in line to be received without
actually removing it from the system's buffers.

from

A buffer that the r ecvf rom() function uses to place the address of the sender who sent the
data.

If from is non-null, the address is returned. If from is null, the address is not returned.
fromlen

Points to an integer containing the size of the buffer pointed to by from. On return, the integer is
modified to contain the actual length of the socket address structure returned.

Description

This function allows a named, unconnected socket to receive data. The data is placed in the buffer
pointed to by buf, and the address of the sender of the data is placed in the buffer pointed to by from
if from is non-null. The structure that from points to is assumed to be as large as the sockaddr
structure. See Section 3.2.12 for a description of the sockaddr structure.

To receive bytes from any source, the socket does not need to be connected.

You can use the sel ect () function to determine if data is available.

If no data is available at the socket, the r ecvf r on() call waits for data to arrive, unless the socket

is nonblocking. If the socket is nonblocking, a -1 is returned with the external variable er r no set to
EVWOUL DBL OCK.

Related Functions

See also read(),send(),sendnsg(),sendto(),and socket ().

Return Values

The number of bytes of data received and placed in buf.

Successful completion.

Error; er r no is set to indicate the error.

Errors
EBADF

The socket descriptor is invalid.

195

Chapter 4. Sockets API Reference

ECONNRESET
A connection was forcibly closed by a peer.
EFAULT

A valid message buffer was not specified. Nonexistent or protected address space is specified for
the message buffer.

EINTR

A signal interrupted the r ecvf r on() function before any data was available.
EINVAL

The MSG_OOB flag is set, and no out-of-band data is available.
ENOBUFS

The system has insufficient resources to complete the call.
ENOMEM

The system did not have sufficient memory to fulfill the request.
ENOTCONN

A receive is attempted on a connection-oriented socket that is not connected.
ENOTSOCK

The socket descriptor is invalid.
EOPNOTSUPP

The specified flags are not supported for this socket type.
ETIMEDOUT

The connection timed out when trying to establish a connection or when a transmission timed out
on an active connection.

EWOULDBLOCK

The NBIO (nonblocking) flag is set for the socket descriptor and the process delayed during the
write operation.

recvmsg()

recvmsg() — Receives bytes on a socket and places them into scattered buffers.

Format

#i ncl ude <types. h>
#i ncl ude <socket. h>
int recvneg (int s, struct nsghdr nsg, int flags); (BSD Version 4.4)

196

Chapter 4. Sockets API Reference

int recvmsg (int s, struct onsghdr nmsg, int flags); (BSD Version 4.3)

Arguments
s

A socket descriptor created with the socket () function.
msg

A pointer to a meghdr structure for receiving the data. See Section 3.2.8 for a description of the
nsghdr structure.

flags

A bit mask that can contain one or more of the following flags. The mask is built by using a
logical OR operation on the appropriate values.

Flag Description
MSG _OOB Allows you to receive out-of-band data.

If out-of-band data is available, it is read first. If no out-of-band data is
available, the MSG_OOB flag is ignored. Use send() , sendnsg(), and
sendt o() functions to send out-of-band data.

MSG PEEK Allows you to peek at the data that is next in line to be received without actually
removing it from the system's buffers.

Description

You can use this function with any socket, whether or not it is in a connected state. It receives data
sent by a call to sendnsg(), send(), or sendt o() . The message is scattered into several user
buffers if such buffers are specified.

To receive data, the socket does not need to be connected to another socket.

When the i oveci ovcnt array specifies more than one buffer, the input data is scattered into
i ovent buffers as specified by the members of the i ovec array:

iovO, iovl, ..., ioviovcnt

When a message is received, it is split among the buffers by filling the first buffer in the list, then the
second, and so on, until either all of the buffers are full or there is no more data to be placed in the
buffers.

You can use the sel ect () function to determine when more data arrives.

Related Functions

See also read(),send(), and socket ().

Return Values

X

The number of bytes returned in the msg_i ov buffers.

197

Chapter 4. Sockets API Reference

0
Successful completion.
-1
Error; er r no is set to indicate the error.
Errors
EBADF
The socket descriptor is invalid.
ECONNRESET
A connection was forcibly closed by a peer.
EFAULT
The message argument is not in a readable or writable part of user address space.
EINTR
This function was interrupted by a signal before any data was available.
The MSG_OOB flag is set, and no out-of-band data is available. The value of the nsg_i ovl en
member of the nsghdr structure is less than or equal to zero or is greater than | OV_MAX))
ENOBUFS
The system has insufficient resources to complete the call.
ENOMEM
The system did not have sufficient memory to fulfill the request.
ENOTCONN
A receive is attempted on a connection-oriented socket that is not connected.
ENOTSOCK
The socket descriptor is invalid.
EOPNOTSUPP
The specified flags are not supported for this socket type.
EWOULDBLOCK
The socket is marked nonblocking, and no data is ready to be received.
select()

select() — Allows you to poll or check a group of sockets for I/O activity. This function indicates
which sockets are ready to be read or written, or which sockets have an exception pending.

198

Chapter 4. Sockets API Reference

Format

#i nclude <tine. h>

int select (int nfds, int *readfds, int *witefds, int *execptfds,
struct tinmeval *timeout); (_DECC V4_SOURCE)

int select (int nfds, fd_set *readfds, fd_set *witefds, int *execptfds,
struct tineval *timeout); (not_DECC V4_SOURCE)

Arguments

nfds

The number of open objects that may be ready for reading or writing or that have exceptions
pending. The nfds argument is normally limited to FD_SETSI ZE, which is defined in the
SOCKET.H header file. Note that a single process can have a maximum of 65535 simultaneous
channels (including sockets) on OpenVMS Alpha and 164 systems, and a maximum of 2047 on
OpenVMS VAX systems.

readfds

A pointer to an array of bits, organized as integers, that should be examined for read readiness.
If bit n of the longword is set, socket descriptor # is checked to see whether it is ready to be read.
All bits set in the bit mask must correspond to the file descriptors of sockets. The sel ect ()
function cannot be used on normal files.

On return, the array to which readfds points contains a bit mask of the sockets that are ready for
reading. Only bits that were set on entry to the sel ect () function can be set on exit.

writefds

A pointer to an array of bits, organized as integers, that should be examined for write readiness. If
bit n of the longword is set, socket descriptor 7 is checked to see whether it is ready to be written
to. All bits set in the bit mask must correspond to socket descriptors.

On return, the array to which writefds points contains a bit mask of the sockets that are ready for
writing. Only bits that were set on entry to the sel ect () function are set on exit.

exceptfds

A pointer to an array of bits, organized as integers, that is examined for exceptions. If bit # of the
longword is set, socket descriptor # is checked to see whether it has any pending exceptions. All
bits set in the bit mask must correspond to the file descriptors of sockets.

On return, the array exceptfds pointer contains a bit mask of the sockets that have exceptions
pending. Only bits that were set on entry to the sel ect () function can be set on exit.

timeout

The length of time that the sel ect () function should examine the sockets before returning. If
one of the sockets specified in the readfds, writefds, and exceptfds bit masks is ready for 1/O, the
sel ect () function returns before the timeout period expires.

The timeout argument points to a t i meval structure. See Section 3.2.15 for a description of the
ti meval structure.

199

Chapter 4. Sockets API Reference

Description

This function determines the I/O status of the sockets specified in the various mask arguments.
It returns when a socket is ready to be read or written, when the timeout period expires, or when
exceptions occur. If timeout is a non-null pointer, it specifies a maximum interval to wait for the
selection to complete.

If the timeout argument is null, the sel ect () function blocks indefinitely until a selected event
occurs. To effect a poll, the value for timeout should be non-null, and should point to a zero-value
structure.

If a process is blocked on a sel ect () function while waiting for input for a socket and the sending
process closes the socket, then the sel ect () function notes this as an event and unblocks the
process. The descriptors are always modified on return if the sel ect () function returns because of
the timeout.

Note

When the socket option SO_OOBI NLI NE is set on the device socket, the sel ect () function on
both read and exception events returns the socket mask that is set on both the read and the exception
mask. Otherwise, only the exception mask is set.

Related Functions

See also accept (), connect (), read(),recv(),recvfron(),recvinsg(),send(),
sendnsg(),sendto(),andwite().

Return Values

The number of sockets ready for I/O or pending exceptions. This value matches the number of
returned bits that are set in all output masks.

The sel ect () function timed out before any socket became ready for 1/0.

Error; er r no is set to indicate the error.

Errors
EBADF
One or more of the I/O descriptor sets specified an invalid file descriptor.
EINTR
A signal was delivered before the time limit specified by the timeout argument expired and

before any of the selected events occurred. The time limit specified by the timeout argument is
invalid.

200

Chapter 4. Sockets API Reference

The nfds argument is less than zero, or greater than or equal to FD_SETSI ZE.)
EAGAIN

Allocation of internal data structures failed. A later call to the sel ect () function may complete
successfully.

ENETDOWN
TCP/IP Services was not started.
ENOTSOCK

The socket descriptor is invalid.

send()

send() — Sends bytes through a socket to its connected peer. The $QIO equivalent is the
10§ WRITEVBLK function.

Format

#i ncl ude <types. h>

#i ncl ude <socket. h>

int send (int s, char *neg, int len, int flags); (_DECC V4_ SOURCE)
ssize_t send (int s, const void *nsg, size_t len, int flags);

(not _DECC _V4_SOURCE)

Arguments

S

A socket descriptor created with the socket () function that was connected to another socket
using the accept () orconnect () function.

msg
A pointer to a buffer containing the data to be sent.
len
The length, in bytes, of the data pointed to by msg.
flags

Can be either 0 or MSG_OOB. If it is MSG_OOB, the data is sent out of band. Data can be
received before other pending data on the receiving socket if the receiver also specifies M5G_0OOB
in the flag argument of its r ecv() orrecvfron() call

Description
This function sends data to a connected peer.

You can use this function only on connected sockets. To send data on an unconnected socket, use the
sendnsg() orsendt o() function. The send() function passes data along to its connected peer,
which can receive the data by using the r ecv() orr ead() function.

201

Chapter 4. Sockets API Reference

Normally the send() function blocks if there is no space for the incoming data in the buffer. It waits
until the buffer space becomes available. If the socket is set to nonblocking and there is no space for
the data, the send() function fails with the EWNOUL DBLOCK error.

If the message is too large to be sent in one piece, and the socket type is SOCK _DGRAM which
requires that messages be sent in one piece, send() fails with the EMSGSI ZE error.

If the address specified is an INADDR BROADCAST address, then the SO BROADCAST socket
option must have been set and the process must have SYSPRV or BYPASS privilege for the 1/O
operation to succeed.

A success return from the send() does not guarantee that the data has been received by the peer. All
errors (except EWOUL DBL OCK) are detected locally. To determine when it is possible to send more
data, use the sel ect () function.

Related Functions

See alsoread(),recv(),recvnsg(),recvfron(),getsockopt (),andsocket ().

Return Values

n

The number of bytes sent. This value normally equals len.
-1

Error; er r no is set to indicate the error.
Errors
EBADF

The socket descriptor is invalid.
ECONNRESET

A connection was forcibly closed by a peer.
EDESTADDRREQ

The socket is not connection-oriented, and no peer address is set.
EFAULT

The message argument is not in a readable or writable part of the user address space.
EINTR

A signal interrupted the send() before any data was transmitted.
EMSGSIZE

The message is too large to be sent all at once, as the socket requires.
ENETDOWN

The local network connection is not operational.

202

Chapter 4. Sockets API Reference

ENETUNREACH

The destination network is unreachable.
ENOBUFS

The system has insufficient resources to complete the call.
ENOTCONN

The socket is not connected or has not had the peer prespecified.
ENOTSOCK

The socket descriptor is invalid.
EOPNOTSUPP

The socket argument is associated with a socket that does not support one or more of the values
set in flags.

EWOULDBLOCK

The socket is marked nonblocking, and no space is available for the send() function.

sendmsg()

sendmsg() — Sends gathered bytes through a socket to any other socket.

Format
#i ncl ude <types. h>
#i ncl ude <socket. h>

int sendnsg (int s, struct nsghdr *nsg, int flags); (BSD Version 4.4)
int sendnsg (int s, struct onsghdr *nsg, int flags); (BSD Version 4.3)

Arguments
s

A socket descriptor created with the socket () function.
msg

A pointer to a neghdr structure containing the message to be sent. See Section 3.2.8 for a
description of the msghdr structure.

The msg_i ov field of the meghdr structure is used as a series of buffers from which data is read
in order until msg_i ovl en bytes have been obtained.

flags

Can be either 0 or M5G_QOOB. If it is equal to M5G_QOOB, the data is sent out of band. Data can
be received before other pending data on the receiving socket if the receiver specifies a flag of
M5G_OCB.

203

Chapter 4. Sockets API Reference

Description

This function sends the data in a meghdr structure to any other socket.

You can use this function on any socket to send data to any named socket. The data in the nsg_i ov
field of the msghdr structure is sent to the socket whose address is specified in the nsg_nane field
of the structure. The receiving socket gets the data using the r ead(),recv(),recvfrom),or
recvisg() function. When the i ovec array specifies more than one buffer, the data is gathered
from all specified buffers before being sent. See Section 3.2.6 for a description of the i ovec
structure.

Normally the sendnsg() function blocks if there is no space for the incoming data in the buffer. It
waits until the buffer space becomes available. If the socket is set to nonblocking and there is no space
for the data, the sendnsg() function fails with the EWOUL DBLOCK error.

If the message is too large to be sent in one piece, and the socket type is SOCK_DGRAM which
requires that messages be sent in one piece, sendnsg() fails with the EMSGSI ZE error.

If the address specified is an INADDR BROADCAST address, the SO BROADCAST socket option
must be set and the process must have OPER, SYSPRYV, or BYPASS privilege for the I/O operation to
succeed.

A success return from sendnsg() does not guarantee that the data has been received by the peer.

All errors (except EWOULDBLOCK) are detected locally. To determine when it is possible to send
more data, use the sel ect () function.

Related Functions

See alsoread(),recv(),recvfron(),recvnsg(),socket (), and get sockopt ().

Return Values

n
The number of bytes sent.
-1
Error; er r no is set to indicate the error.
Errors
ENOTSOCK
The socket descriptor is invalid.
EFAULT
An invalid user space address is specified for an argument.
EMSGSIZE

The socket requires that messages be sent atomically, but the size of the message to be sent makes
this impossible.

204

Chapter 4. Sockets API Reference

EWOULDBLOCK

Blocks if the system does not have enough space for buffering the user data.

sendto()

sendto() — Sends bytes through a socket to any other socket. The $QIO equivalent is the
I0$ WRITEVBLK function.

Format

#i ncl ude <types. h>

#i ncl ude <socket. h>

int sendto (int s, char *msg, int len, int flags,
struct sockaddr *to, int tolen); (_DECC V4 SOURCE)

ssize t sendto (int s, const void *nsg, size t len, int flags,
const struct sockaddr *to, size_t tolen); (not_ DECC V4 SOURCE)

Arguments
s

A socket descriptor created with the socket () function.
msg

A pointer to a buffer containing the data to be sent.
len

The length of the data pointed to by the msg argument.
flags

Can be either 0 or MSG_QOB. If it is MSG_QOB, the data is sent out of band. Data can be received
before other pending data on the receiving socket if the receiver specifies MSG_OOB in the flag
argument of its r ecv() ,recvfrom() orrecvneg() call.

to
Points to the address structure of the socket to which the data is to be sent.
tolen

The length of the address pointed to by the to argument.

Description

This function can be used on sockets to send data to named sockets. The data in the msg buffer is sent
to the socket whose address is specified in the to argument, and the address of socket s is provided to
the receiving socket. The receiving socket gets the data using the r ead() ,recv(),recvfron(),
orrecvnseg() function.

Normally the sendt o() function blocks if there is no space for the incoming data in the buffer. It
waits until the buffer space becomes available. If the socket is set to nonblocking and there is no space
for the data, the sendt o() function fails with the EWOUL DBLOCK error.

205

Chapter 4. Sockets API Reference

If the message is too large to be sent in one piece, and the socket type is SOCK _DGRAM which
requires that messages be sent in one piece, sendt o() fails with the EMSGSI ZE error.

If the address specified is a INADDR BROADCAST address, then the SO BROADCAST socket
option must have been set and the process must have SYSPRV or BYPASS privilege for the /O
operation to succeed.

A success return from the sendt o() does not guarantee that the data has been received by the peer.
All errors (except EWOULDBLCOCK) are detected locally. To determine when it is possible to send
more data, use the sel ect () function.

Related Functions

See alsoread(),recv(),recvfron(),recvnsg(),socket (), and get sockopt ().

Return Values

n
The number of bytes sent. This value normally equals len.
-1
Error; er r no is set to indicate the error.
Errors
EAFNOSUPPORT
Addresses in the specified address family cannot be used with this socket.
EBADF
The socket descriptor is invalid.
ECONNRESET
A connection was forcibly closed by a peer.
EDESTADDRREQ
You did not specify a destination address for the connectionless socket and no peer address is set.
EFAULT
An invalid user space address is specified for an argument.
EHOSTUNREACH
The destination host is unreachable.
EINTR
A signal interrupted sendt o() before any data was transmitted.
EINVAL

The tolen argument is not a valid size for the specified address family.

206

Chapter 4. Sockets API Reference

EISCONN

The connection-oriented socket for which a destination address was specified is already
connected.

EMSGSIZE

The message is too large to be sent all at once, as the socket requires.
ENETDOWN

The local network connection is not operational.
ENETUNREACH

The destination network is unreachable.
ENOBUFS

The system has insufficient resources to complete the call.
ENOMEM

The system did not have sufficient memory to fulfill the request.
ENOTCONN

The socket is connection-oriented but is not connected.
ENOTSOCK

The socket descriptor is invalid.
EOPNOTSUPP

The socket argument is associated with a socket that does not support one or more of the values
set in flags.

EPIPE

The socket is shut down for writing or is connection oriented, and the peer is closed or shut down
for reading. In the latter case, if the socket is of type SOCK_STREAM the SI GPl PE signal is
generated to the calling process.

EWOULDBLOCK

The socket is marked nonblocking, and no space is available for the sendt o() function.

sethostent()

sethostent() — Opens the hosts database file.

Format

#i ncl ude <netdb. h>
voi d sethostent (int stay open);

207

Chapter 4. Sockets API Reference

Argument
stay open

Specifies a value used to indicate when to close the hosts database file
(TCPIPSETC:IPNODES.DAT):

* A value of 0 closes the hosts database file after each call to the get host byname(),
get host byaddr (), or get host ent () function.

* A nonzero value keeps the hosts database file open after each call.
Description
This function opens the hosts database file and resets the file marker to the beginning of the file.

Passing a nonzero value to the stay_open argument keeps the connection open until the
endhost ent () orexi t () function is called.

Related Functions

See also endhost ent () .

setnetent()
setnetent() — Opens the networks database file.

Format

#i ncl ude <netdb. h>
void setnetent (int stay_open);

Argument
stay open

Specifies a value used to indicate when to close the networks database file
(TCPIP$SYSTEM:NETWORKS.DAT):

* A value of 0 closes the networks database file after each call to the get net ent () function.

* A nonzero value keeps the networks database file open after each call.

Description

This function opens the networks database file and resets the file marker to the beginning of the file.

Passing a nonzero stay_open argument keeps the connection open until you call the endnet ent ()

orexit() function.

Related Functions

See also endnet ent (), getnetent (),andexit().

208

Chapter 4. Sockets API Reference

setprotoent()
setprotoent() — Sets the state of the protocols table.

Format

#i ncl ude <netdb. h>
voi d setprotoent (int stay_open);

Argument

stay open
Specifies a value used to indicate when to reset the protocols table index:
* A value of 0 resets the protocols table index after each call to the get pr ot oent function.
* A nonzero value does not reset the protocols table index after each call.

Description

This function sets the index marker to the beginning of the protocols table.

Passing a nonzero stay_open argument will allow the index to advance until you call the
endpr ot oent () orexit () function.

Related Functions

See also endpr ot oent (), exit(),and get prot oent ().

Return Values

1

Indicates success.
0

Indicates an error; unable to access the protocols table.
setservent()

setservent() — Opens the services database file.

Format

#i ncl ude <netdb. h>
voi d setservent (int stay_open);

Argument
stay open

Specifies a value used to indicate when to close the services database file
(TCPIPSETC:SERVICES.DAT):

209

Chapter 4. Sockets API Reference

* A value of 0 closes the services database file after each call to the set ser vent () function.

* A nonzero value keeps the services database file open after each call to set servent ().
Description

This function opens the services database file and resets the file marker to the beginning of the file.

Passing a nonzero stay _open argument keeps the connection open until you call the endser vent ()
function or the exi t () function.

Related Functions

See also endservent (),exit(),andget servent ().

setsockopt()

setsockopt() — Sets options on a socket. The $QIO equivalent is the I0O$_SETMODE function.

Format

#i ncl ude <types. h>
#i ncl ude <socket. h>

int setsockopt (int s, int level, int optname, char *optval,
int optlen); (_DECC V4 SOURCE)
int setsockopt (int s, int level, int optname, const void *optval,

size_t optlen); (not_DECC V4_SOURCE)
Arguments
s

A socket descriptor created by the socket () function.
level

The protocol level for which the socket options are to be modified. It can have one of the
following values:

SOL_SOCKET Set the options at the socket level.

P Any protocol number. Set the options for protocol level p. For IPv4, see the
IN.H header file for the IPPROTO values. For IPv6, see the IN6.H header file
for the IPPROTO_IPV6 values.

optname

Interpreted by the protocol specified in level. Options at each protocol level are documented with
the protocol.

Refer to:
» Table A.1 for a list of socket options

» Table A.2 for a list of TCP options

210

Chapter 4. Sockets API Reference

* Table A.3 for a list of IP options
optval
Points to a buffer containing the arguments of the specified option.

All socket-level options other than SO_LI NGER should be nonzero if the option is to be enabled,
or zero if it is to be disabled.

SO LI NGERuses a | i nger structure argument defined in the SOCKET.H header file. This
structure specifies the desired state of the option and the linger interval. The option value for the
SO _LI NGER command is the address of a | i nger structure. See Section 3.2.7 for a description
ofthe | i nger structure.

If the socket is type SOCK _STREAM which promises the reliable delivery of data, and | _onof f
is nonzero, the system blocks the process on the ¢l ose() attempt until it is able to transmit the
data or until it decides it is unable to deliver the information. A timeout period, called the linger
interval, is specified in| _I i nger .

If 1 _onof f is setto zero and a cl ose() is issued, the system processes the close in a manner
that allows the process to continue as soon as possible.

optlen

An integer specifying the size of the buffer pointed to by optval.

Description

This function manipulates options associated with a socket. Options can exist at multiple protocol
levels. They are always present at the uppermost socket level.

When manipulating socket options, specify the level at which the option resides and the name of
the option. To manipulate options at the socket level, specify the value of level as SOL_SOCKET.
To manipulate options at any other level, supply the protocol number of the appropriate protocol
controlling the option. For example, to indicate that an option is to be interpreted by TCP, set the
value for the level argument to the protocol number (IPPROTO_TCP) of TCP.

For IPv4, see the IN.H header file for the various IPPROTO values. For IPv6, see the IN6.H header
file for the various IPPROTO_IPV6 values.

Return Values
0

Successful completion.

Error; er r no is set to indicate the error.

Errors
EACCES

The calling process does not have appropriate permissions.

211

Chapter 4. Sockets API Reference

EBADF
The descriptor is invalid.
EDOM

The send and receive timeout values are too large to fit in the timeout fields of the socket
structure.

EINVAL
The optlen argument is invalid.
EISCONN

The socket is already connected; the specified option cannot be set when the socket is in the
connected state.

EFAULT

The optval argument is not in a readable part of the user address space.
ENOBUFS

The system had insufficient resources to complete the call.
ENOPROTOOPT

The option is unknown.
ENOTSOCK

The socket descriptor is invalid.
EFAULT

The optname argument is invalid.

shutdown()

shutdown() — Shuts down all or part of a bidirectional connection on a socket. This function does not
allow further receives or sends, or both. The $QIO equivalent is the I0O$ DEACCESS function with
the IO$M_SHUTDOWN function modifier.

Format

#i ncl ude <socket. h>
int shutdown (int s, int how;

Arguments
S

A socket descriptor that is in a connected state as a result of a previous call to either connect ()
oraccept ().

212

Chapter 4. Sockets API Reference

how

How the socket is to be shut down. Use one of the following values:

0 Do not allow further calls to r ecv() on the socket.

1 Do not allow further calls to send() on the socket.

2 Do not allow further calls to both send() andrecv().
Description

This function allows communications on a socket to be shut down one direction at a time rather
than all at once. You can use the shut down() function to shut down one direction in a full-duplex
(bidirectional) connection.

Related Functions

See also connect () and socket ().

Return Values
0

Successful completion.

Error; er r no is set to indicate the error.

Errors
EBADF
The socket descriptor is invalid.
EINVAL
The how argument is invalid.
ENOBUFS
The system has insufficient resources to complete the call.
ENOTCONN
The specified socket is not connected.
ENOTSOCK

The socket descriptor is invalid.

socket()

socket() — Creates an endpoint for communication by returning a special kind of file descriptor called
a socket descriptor, which is associated with a TCP/IP Services socket device channel. The $QIO
equivalent is the IO$ SETMODE function.

213

Chapter 4. Sockets API Reference

Format
#i ncl ude <types. h>

#i ncl ude <socket. h>
int socket (int af, int type, int protocol);

Arguments
af

The address family used in later references to the socket. Addresses specified in subsequent
operations using the socket are interpreted according to this family. Use one of the following:

* AF_I NET for the IPv4 address family
* AF_I NET6 for the I[Pv6 address family
+ TCPI P$C_AUXS

For a network application server with the LI STEN flag enabled, you specify the TCPI P
$C_AUXS address family to obtain the connected device socket created by the auxiliary server
in response to incoming network traffic.

type
The socket types are:

* SOCK STREAM — Provides sequenced, reliable, two-way, connection-based byte streams
with an available out-of-band data transmission mechanism.

* SOCK DGRAM — Provides datagram transmissions. A datagram is a connectionless,
unreliable data transmission mechanism.

*+ SOCK RAW — Provides access to internal network interfaces. Available only to users with
the SYSPRYV privilege.

protocol

The protocol to be used with the socket. Normally, only a single protocol exists to support a
particular socket type using a given address format. However, if many protocols exist, a particular
protocol must be specified with this argument. Use the protocol number that is specific to the
address family.

Description

This function provides the primary mechanism for creating sockets. The type and protocol of the
socket affect the way the socket behaves and how it can be used.

The operation of sockets is controlled by socket-level options, which are defined in the SOCKET.H
header file and described in the set sockopt () function section of this chapter.

Use the set sockopt () and get sockopt () functions to set and get options. Options take an
integer argument that should be nonzero if the option is to be enabled or zero if it is to be disabled.
SO _LINGER uses al i nger structure argument (see Section 3.2.7).

214

Chapter 4. Sockets API Reference

Related Functions
See also accept (), bi nd(), connect (), get socknane(), get sockopt (),

socketpair(),listen(),read(),recv(),recvfrom),recvnsg(),select(),
send(),sendnsg(),sendt o(),shutdown(),andwite().

Return Values

X
A file descriptor that refers to the socket descriptor.
-1
Error; er r no is set to indicate the error.
Errors
EACCES
The process does not have sufficient privileges.
EAFNOSUPPORT
The specified address family is not supported in this version of the system.
EMFILE
The per-process descriptor table is full.
ENETDOWN
TCP/IP Services was not started.
ENFILE
No more file descriptors are available for the system.
ENOBUFS
The system has insufficient resources to complete the call.
ENOMEM
The system was unable to allocate kernel memory to increase the process descriptor table.
EPERM
The process is attempting to open a raw socket and does not have SYSTEM privilege.
EPROTONOSUPPORT
The socket in the specified address family is not supported.
EPROTOTYPE

The socket type is not supported by the protocol.

215

Chapter 4. Sockets API Reference

ESOCKTNOSUPPORT

The specified socket type is not supported in this address family.

socketpair()

socketpair() — Creates a pair of connected sockets.

Format

#i ncl ude <sys/socket. h>

int socketpair (int domain, int type, int protocol, int socket_vector[2]);
Arguments

af

The address family in which the sockets are to be created. Use one of the following:
* AF_I NET for the [Pv4 address family
* AF_I NETG6 for the IPv6 address family

* TCPI P$C_AUXS or a network application server with the LI STEN flag enabled. Specify
the TCPI P$C_AUXS address family to obtain the connected device socket created by the
auxiliary server in response to incoming network traffic.

type

Specifies the type of sockets to be created. The socket types are:

* SOCK STREAM — Provides sequenced, reliable, two-way, connection-based byte streams
with an available out-of-band data transmission mechanism.

* SOCK DGRAM — Supports datagrams (connectionless, unreliable data transmission
mechanism).

* SOCK SEQPACKET — Provides sequenced, reliable, bidirectional, connection-mode
transmission paths for records. A record can be sent using one or more output operations and
received using one or more input operations, but a single operation never transfers part of
more than one record.

Use the MSG_EOR flag to determine the record boundaries.

protocol

The protocol to be used with the socket. Normally, only a single protocol exists to support a
particular socket type using a given address format. However, if many protocols exist, a particular
protocol must be specified with this argument. Use the protocol number that is specific to the
address family.

If the protocol argument is 0, the function uses the default protocol for the specified socket type.

If the protocol argument is non-zero, the function uses the default protocol for the address family.

216

Chapter 4. Sockets API Reference

socket vector

A 2-integer array to hold the file descriptors of the created socket pair.

Description

This function creates an unbound pair of connected sockets in a specified address family, of a
specified type, under the protocol optionally specified by the protocol argument. The two sockets
will be identical. The file descriptors used in referencing the created sockets are returned in
socket vector[0] and socket vector[1].

Appropriate privileges are required to use the socket pai r () function or to create some sockets.

Related Functions

See also socket ().

Return Values

0

Successful completion
-1

Error; er r no is set to indicate the error.
Errors
EACCES

The process does not have sufficient privileges.
EAFNOSUPPORT

The specified address family is not supported in this version of the system.
EMFILE

The per-process descriptor table is full.
ENETDOWN

TCP/IP Services was not started.
ENFILE

No more file descriptors are available for the system.
ENOBUFS

The system has insufficient resources to complete the call.
ENOMEM

The system was unable to allocate kernel memory to increase the process descriptor table.

217

Chapter 4. Sockets API Reference

EPERM
The process is attempting to open a raw socket and does not have SYSTEM privilege.
EPROTONOSUPPORT
The socket in the specified address family is not supported.
EPROTOTYPE
The socket type is not supported by the protocol.
ESOCKTNOSUPPORT

The specified socket type is not supported in this address family.

write()

write() — Writes bytes from a buffer to a file or socket. The $QIO equivalent is the
I0$ WRITEVBLK function.

Format

#i ncl ude <uni xi o. h>
int wite(int d, void *buffer, int nbytes);

Arguments
d

A descriptor that refers to a socket or file.
buffer

The address of a buffer from which the output data is to be taken.
nbytes

The maximum number of bytes involved in the write operation.
Description

This function attempts to write a buffer of data to a socket or file.

Related Functions

See also socket ().

Return Values

X

The number of bytes written to the socket or file.

Error; er r no is set to indicate the error.

218

Chapter 4. Sockets API Reference

Errors
EPIPE

The socket is shut down for writing or is connection oriented, and the peer is closed or shut down
for reading. In the latter case, if the socket is of type SOCK_STREAM the S| GPI PE signal is
generated to the calling process.

EWOULDBLOCK

The NBI O(nonblocking) flag is set for the socket descriptor, and the process is delayed during the
write operation.

EINVAL
The nbytes argument is a negative value.
EAGAIN
The O_NONBLOCK flag is set on this file, and the process is delayed in the write operation.
EBADF
The d argument does not specify a valid file descriptor that is open for writing.
EINTR

Awrite() function on a pipe is interrupted by a signal, and no bytes have been transferred
through the pipe.

EINVAL
On of the following errors occurred:

* The STREAM or multiplexer referenced by d is linked (directly or indirectly) downstream
from a multiplexer.

» The file position pointer associated with the d argument was a negative value.
EPERM

An attempt was made to write to a socket of type SOCK_STREAMthat is not connected to a peer
socket.

An attempt was made to write to a pipe that has only one end open.

An attempt was made to write to a pipe or FI FOthat is not opened for reading by any process. A
S| GPI PE signal is sent to the process.)

ERANGE

An attempt was made to write to a STREAMsocket where the value of nbytes is outside the
specified minimum and maximum range, and the minimum value is nonzero.

219

Chapter 4. Sockets API Reference

220

Chapter 5. Using the $QIO System
Service

This chapter describes how to use the $QIO system service and its data structures with TCP/IP
Services.

After you create a network pseudodevice (BG:) and assign a channel to it, use the $QIO system
service for I/O operations.

5.1. $QIO System Service Variations

The two variations of the $QIO system service are:

* Queue I/O Request ($QI0) — Completes asynchronously. It returns to the caller immediately after
queuing the I/O request, without waiting for the I/O operation to complete.

* Queue I/O Request and Wait (§QIOW) — Completes synchronously. It returns to the caller after
the I/O operation completes.

The only difference between the $QIO and $QIOW calling sequences is the service name. The system
service arguments are the same.

5.2. $QIO Format

The $QIO calling sequence has the following format:

SYS$Q O [efn], chan, func, [iosb), [astadr], [astprm], [p1], [p2], [p3], [p4], (P51, [P6]

Table 5.1 describes each argument.

Table 5.1. $QIO Arguments

Argument Description

astadr AST (asynchronous system trap) service routine

astprm AST parameter to be passed

chan I/O channel

efn Event flag number

func Network pseudodevice function code and/or
function modifier

iosb /O status block

pl, p2, p3, p4, p5S, p6 Function-specific I/O request parameters

5.2.1. Symbol Definition Files

Table 5.2 lists the symbol definition files for the $QIO arguments p1 through p6. Use the standard
mechanism for the programming language you are using to include the appropriate symbol definition
files in your program.

221

Chapter 5. Using the $QIO System Service

Table 5.2. Network Symbol Definition Files

File Name Language
TCPIPSINETDEF.H C
TCPIPSINETDEF.FOR VAX Fortran
TCPIPSINETDEF.PAS VAX PASCAL
TCPIPSINETDEF.MAR MACRO-32
TCPIPSINETDEF.PLI VAX PL/1
TCPIPSINETDEF.R32 BLISS-32
TCPIPSINETDEF.ADA VAX Ada
TCPIPSINETDEF.BAS VAX BASIC

5.3. $QIO Functions

Table 5.3 lists the $QIO function codes commonly used in a network application.

Note

The I0$_SETMODE and I0$ _SETCHAR function codes are identical. All references to the 10
$ SETMODE function code, its arguments, options, function modifiers, and condition values returned
also apply to the IO$_SETCHAR function code, which is not explicitly described in this manual.

The I0$_SENSEMODE and I0O§ SENSECHAR function codes are identical. All references to the
10$_SENSEMODE function code, its arguments, options, function modifiers, and condition values
returned also apply to the I0O$ SENSECHAR function code, which is not explicitly described in this
manual.

Table 5.3. $QIO Function Codes

Function Description

$QIO(I0S$_SETMODE) Creates the socket by setting the internet domain,
protocol (socket) type, and protocol of the socket.

$QIO(0$ _SETCHAR)
Binds a name (local address and port) to the
socket.

Defines a network pseudodevice as a listener on a
TCP/IP server.

Specifies socket options.

$QIO(I0S_ACCESS) Initiates a connection request from a client to a
remote host using TCP.

Specifies the peer where you can send datagrams.

Accepts a connection request from a TCP/IP
client when used with the IO$M_ACCEPT
function modifier.

222

Chapter 5. Using the $QIO System Service

Function

Description

$QIO(I0$_WRITEVBLK)

Writes data (virtual block) from the local host to
the remote host for stream sockets, datagrams,
and raw IP.

$QIO(I0$_READVBLK)

Reads data (virtual block) from the remote host to
the local host for stream sockets, datagrams, and
raw IP.

$QIO(I0$_DEACCESS)

Disconnects the link established between
two communication agents through an 10
$ DEACCESS function.

Shuts down the communication link when used
with the IOSM_SHUTDOWN function modifier.
You can shut down the receive or transmit portion
of the link, or both.

$QIO(I0$_SENSECHAR)

$QIO(I0$_SENSEMODE)

Obtains socket information.

5.4. $QIO Arguments

You pass two types of arguments with the $QIO system service: function-independent arguments
and function-dependent arguments. The following sections provide information about $QIO system

service arguments.

5.4.1. $QIO Function-Independent Arguments

Table 5.4 describes the $QIO function-independent arguments.

Table 5.4. $QIO Function-Independent Arguments

Argument Description

astadr Address of the asynchronous system trap (AST) routine to
be executed when the 1/0 operation is completed.

astprm A quadword (Alpha and 164) or longword (VAX)
containing the value to be passed to the AST routine.

chan A longword value that contains the number of the I/O
channel. The $QIO system service uses only the low-order
word.

efn A longword value of the event flag number that the $QIO
system service sets when the I/O operation completes. The
$QIO system service uses only the low-order byte.

func A longword value that specifies the network pseudodevice

function code and function modifiers that specify the
operation to be performed.

Function modifiers affect the operation of a specified
function code. In MACRO-32, you use the exclamation
point (1) to logically OR the function code and its modifier.

223

Chapter 5. Using the $QIO System Service

Argument Description

In C, you use the vertical bar (|). This manual uses the
vertical bar (|) in text.

iosb The 1/0 status block that receives the final status message
for the I/O operation. The iosb argument is the address of
the quadword I/O status block. (For the format of the I/O

status block, see Section 5.4.2.)

5.4.2. 1/0O Status Block

The system returns the status of a $QIO operation in the I/O status block (IOSB) supplied as an
argument to the $QIO call. In the case of a successful [0$ READVBLK or I0$ WRITEVBLK
operation, the second word of the I/O status block contains the number of bytes transferred during the
operation (see Figure 5.1).

Figure 5.1. I/0 Status Block for a Successful READ or WRITE Operation

READMRITE
3 16 15 0

Transfer sze |O|:en\fnl18 cempletion status code

Buffer ackdiess

WH-01424-A]

With an unsuccessful I0§ READVBLK or I0O$ WRITEVBLK operation, in most cases, the system
returns a UNIX error code in the second word of the 1/O status block.

For C programs, the OpenVMS completion codes are defined in the SSDEF.H header file. The UNIX
error codes are defined in the ERRNO.H header file and in the TCPIPSINETDEF.H header file. For
other language variants, see Table 5.2.

5.4.3. $QIO0 Function-Dependent Arguments

Arguments p1, p2, p3, p4, p5, and p6 to the $QIO system service are used to pass function-dependent
arguments. Table 5.5 lists arguments p1 through p6 for the $QIO system service and indicates
whether the parameter is passed by value, by reference, or by descriptor.

Table 5.5. $QIO Function-Dependent Arguments

$QIO pl p2 p3 p4 pS poé
10$_ACCESS Not used |Not used |Remote |Notused |Notused |Notused
socket
name *

I0$ ACCESS |IO$M_ACCEPT |Notused |Notused |[Remote |Channel |Notused |Not used

socket number 2
5

name
10$_ACPCONTROL Sub Input Buffer |Buffer® |Notused |Notused
function |parameter|length 2
code *
I0$ DEACCESS Not used |Not used |Not used |Not used |Not used |Not used
I0$ DEACCESS |10 Not used |Not used |Not used |Shutdown|Not used |Not used
$M_SHUTDOWN flags !

224

Chapter 5. Using the $QIO System Service

$QIO pl p2 p3 p4 p5 pé
10§ READVBLK Buffer > |Buffer |Remote Flags I |Not used Output
size ! socket buffer list
name ° 3
I0$ READVBLK | IO Buffer > |Buffer |Notused |Notused |Notused |Not used
$M_INTERRUPT size !
10$ WRITEVBLK Buffer > |Buffer |Remote |Flags' |Input |Notused
size ! socket buffer list
name * 3
10§ WRITEVBLK |10 Buffer> |Buffer |Notused |Notused [Notused |Notused
$M_INTERRUPT size !
10§ SETMODE Socket |Notused |Local Backlog |Input Not used
char 2 socket limit ! parameter
name * list #
I0$ SETMODE | I0$ OUTBAND |AST User Access |Notused |Notused |Not used
procedure|argument |mode !
2 1
10$ SETMODE | IO AST User Access |Notused |Notused |Not used
$ READATTN procedure|argument |mode !
2 1
10$_SETMODE | IOSWRTATTN |AST User Access |Notused |Notused |Not used
procedure|argument |mode !
2 1
I0$_SENSEMODE Not used |Not used |Local Remote |Notused |Output
socket socket parameter
name° |name’ list #

4By item_list 2 descriptor.
3By item_list 3 descriptor.
sz reference.

3 By descriptor.

lBy value.

5.5. Passing Arguments by Descriptor

In addition to OpenVMS argument descriptors, 1/O functions specific to TCP/IP Services also pass
arguments by usingi tem | i st_2 andi tem | i st _3 argument descriptors. The format of these
argument descriptors is unique to TCP/IP Services, and they supplement argument descriptors defined

in the OpenVMS Calling Standard.

Useofanitemlist_2oritemlist_3 argument descriptor is indicated when the argument's
passing mechanism is specified as anit em | i st _2 descriptororani t em | i st _3 descriptor. To
determine an argument's passing mechanism, refer to the argument's description in Chapter 6.

Theitem | i st_2 argument descriptors describe the size, data type, and starting address of a
service parameter. Ani t em | i st _2 argument descriptor contains three fields, as depicted in the

following diagram:

a1 16 15 0

Type | Length
Address

WRA-0E5EA-A

225

Chapter 5. Using the $QIO System Service

The first field is a word containing the length (in bytes) of the parameter being described. The second
field is a word containing a symbolic code specifying the data type of the parameter. The third field is
a longword containing the starting address of the parameter.

Theitem | i st _3 argument descriptors describe the size, data type, and address of a buffer in
which a service writes parameter information returned from a get operation. Ani tem | i st_3

argument descriptor contains four fields, as depicted in the following diagram:

31 16 15 0

Type | Buffer length
Buffer address

Return length address

WAAH0SSA-A]

The first field is a word containing the length (in bytes) of the buffer in which a service writes
information. The length of the buffer needed depends on the data type specified in the type field.

If the value of buffer length is too small, the service truncates the data. The second field is a word
containing a symbolic code specifying the type of information that a service is to return. The third
field is a longword containing the address of the buffer in which a service writes the information. The
fourth field is a longword containing the address of a longword in which a service writes the length (in
bytes) of the information it actually returned.

Note

When a parameter specified as a descriptor is described as “read-only”, the descriptor itself is
only read, and TCP/IP Services does not modify the memory described. However, system service
postprocessing requires that the described memory must be both readable and writable.

5.5.1. Specifying an Input Parameter List

Use the p5 argument with the IO$ SETMODE function to specify input parameter lists. The p5
argument specifies the address of ai t em | i st _2 descriptor that points to and identifies the type of
input parameter list.

To initialize ani t em | i st _2 descriptor, you need to:

1. Set the descriptor's type field to one of the following symbolic codes to specify the type of input
parameter list:

Symbolic Name Input Parameter List Type
TCPIP$C _SOCKOPT Socket options
TCPIPSC_TCPOPT TCP protocol options
TCPIP$C IPOPT IP protocol options
TCPIP$C IOCTL I/O control commands

2. Set the descriptor's length field to specify the length of the input parameter list.
3. Set the descriptor's address field to specify the starting address of the input parameter list.

Figure 5.2 illustrates how the p5 argument specifies an input parameter list.

226

Chapter 5. Using the $QIO System Service

Figure 5.2. Specifying an Input Parameter List

p5 = address
T
il 16 15 1]
31 1615 0 Parameter list type Langth
i
Parameter type ‘ Length = Parameter list address
8 byles itlem 1 itemn_list_2 descriptor
i Parameter address
—~— —_—
—~ ™
[
Parameter type ‘ Length
8 byles itern n
1 Parameter address
input_parameter_list
V01 34A-AL

As the name implies, input parameter lists consist of one or more contiguous i t em | i st _2 or
i oct| _conmmstructures. The length of a input parameter list is determined solely from the length
field of its associated argument descriptor. Input parameter lists are never terminated by a longword
containing a zero.
Eachitem | i st _2 structure that appears in an input parameter list describes an individual
parameter or item to set. Such items include socket or protocol options as identified by the item's type
field.
To initialize ani t em | i st _2 descriptor, you need to:
1. Set the item's type field to one of the symbolic codes found in the following tables:

Table A.1: Socket Options

Table A.2: TCP Protocol Options

Table A.3: IP Protocol Options
2. Set the item's length field to specify the length of the item.
3. Set the item's address field to specify the starting address of its data.

Figure 5.3 illustrates how to specify setting socket options.

Figure 5.3. Setting Socket Options

nh
1 16 15 J
21 16 15 0 TCRIPSS SOOKOPT Length
I -
Option name | Option length " Parametar list addrass
8 byles item 1 item_lisl_2 descriptor

Opfion address

-, N -
o -

L4

Option name | Option length

em

Option address.

input_parameter_list
VM-01384-81

Eachi oct | _conmstructure appearing in an input parameter list contains an I/O control command
—the IOCTL request code (as defined by $SIOCDEF) and its associated [OCTL structure address.
Figure 5.4 illustrates how to specify (set) I/O control (IOCTL) commands.

227

Chapter 5. Using the $QIO System Service

Figure 5.4. Setting IOCTL Parameters

p5
3 16 15 n]
a1 0 TCPIPSC_IOCTL Length

I0CTL command Parameler lisl address

iterm_list_2 descriptor
I0CTL structure address

31

IOCTL command

IOCTL struciure address

input_parameter_list

WM-01F3A-A1

5.5.2. Specifying an Output Parameter List

Use the p6 argument with the I0$§ SENSEMODE function to specify output parameter lists. The p6
argument specifies the address of ani t em | i st _2 descriptor that points to and identifies the type
of output parameter list.

To initialize ani t em | i st _2 descriptor, you need to:

1. Set the descriptor's type field to one of the following symbolic codes to specify the type of output
parameter list:

Symbolic Name Output Parameter List Type
TCPIP$C_SOCKOPT Socket options

TCPIPSC TCPOPT TCP protocol options
TCPIPSC IPOPT IP protocol options

TCPIPSC IOCTL I/O control commands

2. Set the descriptor's length field to specify the length of the output parameter list.
3. Set the descriptor's address field to specify the starting address of the output parameter list.

Figure 5.5 illustrates how the p6 argument specifies an output parameter list.

Figure 5.5. Specifying an Output Parameter List

pE —
1 16 15 1]
31 16 15 0 Parameter ist type| Length]
i -
Parameler type Buffer length | Parameter list address
ftam 1 item_list_2 descriptor
12 bytes Bufter address
v Return length address
ot -
! lParameter type | Bufter length
12 bytes Buffer addrass
item i
L Return length address
output_parameter_list
WM-01354-A1

228

Chapter 5. Using the $QIO System Service

As the name implies, output parameter lists consist of one or more contiguousi tem | i st_3or

i oct| _conmstructures. The length of an output parameter list is determined solely from the length
field of its associated argument descriptor. Output parameter lists are never terminated by a longword
containing a zero.

Eachitem | i st _3 structure that appears in an output parameter list describes an individual

parameter or item to return. Such items include socket or protocol options as identified by the item's
type field.

To initialize ani t em | i st _3 structure, you need to:

1. Set the item's type field to one of symbolic codes found in the following tables:

Table A.1: Socket Options

Table A.2: TCP Protocol Options
Table A.3: IP Protocol Options

2. Set the item's buffer length field to specify the length of its buffer.
3. Set the item's buffer address field to specify the starting address of its buffer.

4. Set the item's returned length address field to specify the address of a longword to receive the

length in bytes of the information actually returned for this item.

Figure 5.6 illustrates how to specify getting socket options.

Figure 5.6. Getting Socket Options

)

16 15

i

Oplion name Option length

12 bytes

Cption address

Option return length address

-
_—

L
L]

Option name Option length

12 bytes

Option address

T

Oiption return length address

output_parameter_list

itern 1

item

31

16 15

TCPIPSC_SOCKOPT Length

&

Parameter list address

item_list_2 descriptor

W01 40440

Eachi oct | _commstructure appearing in a output parameter list contains an I/O control command —
the IOCTL request code (as defined by $SI OCDEF) and its associated IOCTL structure address. For
more information about IOCTL requests, see Appendix B.

Figure 5.7 illustrates how to specify (get) I/O control (IOCTL) commands.

229

Chapter 5. Using the $QIO System Service

Figure 5.7. Getting IOCTL Parameters

pE
N 16 15 1]
a9 o TCRIPEC_IOCTL Length

Parameter list address

I0CTL command

8 bytes . . .
([
IGCTL structure address item._list_2 descriptor

L4
I
L s

IDCTL command

IOCTL structure address

output_parameter_list
WM-01d14-A]

5.5.3. Specifying a Socket Name

Use the p3 or p4 argument with the I0O$ ACCESS, I0$ READVBLK, I0$ SENSEMODE, 10

§ SETMODE, and I0$ WRITEVBLK functions to specify a socket name. The p3 and p4 arguments
specify the address of ani tem | i st _2 ori tem | i st _3 descriptor that points to a socket name

structure. The socket name structure contains (among other things), the address domain, port number,
and host internet address.

Note

Port numbers 1 to 1023 require SYSPRV and BYPASS privileges when assigned. If you specify 0
when binding a socket name, the system assigns an available port.

Useanitem | i st _2 argument descriptor with the I0O$ ACCESS, 10§ WRITEVBLK, and 10
$ SETMODE functions to specify (set) a socket name. The descriptor's parameter type is TCPIP
$C SOCK NAME.

Useanitem | i st_3 argument descriptor with the IO§ ACCESS |[IO$M_ACCEPT, 10
$ READVBLK, and IO$ SENSEMODE functions to specify (get) a socket name. The descriptor's
parameter type is TCPIP$C_SOCK _NAME.

With BSD Version 4.3, specify [Pv4 socket names as illustrated in Figure 5.8.

230

Chapter 5. Using the $QIO System Service

Figure 5.8. Specifying IPv4 Socket Names (BSD Version 4.3)

p3—
3 16 15 0
a9 1616 a TCRIFSC_EOCK. MAKE Length =
1 Port numbser | Address family [Address
|Pyé address item_lisi_2 descrplor
16 bytes
| Unusad
{must be 0}
v
lpvd sockel name
pd—
1 16 15
31 1615 o TP 1P _S00K_NAME Length u
4 | Portnumber | Address family | Buffer address
Return length address
1Pv4 addrass -
16 bytes ilam_lisl 3 descriplor
Unusged
[{rust ba 0)] T
¥ - Return length
IPv4 socket_name
lengword
W01 364- A1

With BSD Version 4.4, specify IPv4 socket names as illustrated in Figure 5.9.

Figure 5.9. Specifying IPv4 Socket Names (BSD Version 4.4)

p3
< 16 15 [}
at 16 15 BT 1] TCPIPSC_SOGK_NAME Length -—
Address | Szeof |g Addrass
4 Port number family | sirusiure
item_list_2 descriptor
IPv4 addrass
16 bytes
| Unused
' {mwst be O}
IPv4 sockel_name
pd [
< 16 15 [}
31 16 15 BT 0 TCPIPSC SOCK HAME | Length =
i Part nurmber *‘gf_‘l:'::! 515[5;”‘3:9 e Bufter address.
Return length address
IPv4 address T
16 bytes item_list_3 descriptor
| Unused |
(must be 0} T
r - Return length
IPv4 sackel_name
langword
VM-0137A-Al

Specify IPv6 socket names as illustrated in Figure 5.10.

231

Chapter 5. Using the $QIO System Service

Figure 5.10. Specifying IPv6 Socket Names (BSD Version 4.4)

pI—
el 16 15]
. 3 16 15 87 0 TEPIRSC_SOCK_NAME Length -
Portnumber | Address | Sizeof | Address
family structure
Flow information item_list_2 descriptor
28 .~ £
tes m o~
by IPv6 address
Scope
* P
IPvE sockal_name
pd
31 16 15
. | 16 15 a7 D_\ T-f}PIPS-C_S-OZ",‘K_NAME| Length
Port number | Address | Sizeol . Buffer address
family structure
Return length address
Flow information ¥
a8 item_list_3 descriptor
L L
tes -
by |PvE address [
¥
- Return length
Scope id
v P longword
IPvis sockel_name
VhA-1 124 8-Al

Note that the first byte in the socket name is the length field. To accommodate this field, use the IO
$M_EXTEND function modifier for all I/O functions that take a socket name as an output argument
(I0$_ACCESS |[IOSM_ACCEPT, I0$§ READVBLK, and I0$ SENSEMODE). Always use a buffer
large enough to accept IPv6 socket names when you use the IOSM_EXTEND function modifier.

5.5.4. Specifying a Buffer List

Use the p5 argument with the I0O$ WRITEVBLK function to specify input buffer lists. The p5
argument specifies the address of a 32- or 64-bit fixed-length descriptor (on Alpha and 164 systems)
or a 32-bit fixed-length descriptor (on VAX systems) pointing to an input buffer list.

Use the p6 argument with the I0O$ READVBLK function to specify output buffer lists. The p6
argument specifies the address of a 32- or 64-bit fixed-length descriptor (on Alpha and 164 systems)
or a 32-bit fixed-length descriptor (on VAX systems) pointing to an output buffer list.

To initialize a p5 or p6 argument descriptor, you need to:

1. Set the descriptor's data-type code (the DTYPE field) to DSC$K _DTYPE DSC to specify a buffer
list containing one or more descriptors defining the length and starting address of user buffers.

2. Set the descriptor's class code (the CLASS field) to DSC$K _CLASS S.
3. Set the descriptor's length field to specify the length of the buffer list.

4. Set the descriptor's MBO field to 1 and the MBMO field to all 1s if this is a 64-bit argument
descriptor.

Figure 5.11 illustrates how to specify a buffer list.

232

Chapter 5. Using the $QIO System Service

Figure 5.11. Specifying a Buffer List

P&
a1 24 23 1615 Dj
CLASS (=1)|DTYPE [=24) Length

Buffer list address

31 2423 1615 0
CLASS ‘DTYPE | Buffer length

buffer 1 a0 pit descriptor
} Buffer address

. -
-

LA

=
-

i CLASS‘DTYPE| Buffer length

8 bytes buffar n
1. Buffer address
buffer_list jusing 32-bit descriptors)
P58
k| 24 23 1615 D—‘
CLASS (=1) DTYPF_|=24,1| MBO (=1) -
MBMO (= -1)
Length
31 2423 1615 0
CLASS [DTYPE | MBO (=1) Buffer list address
MEMO (= -1)
B4-bit descriptor
24 bytes [Buffer length — buffer 1
{ Buffer address

11
L4
J
e

‘ CLASS |DTYPE | MBO (=1)

MBMO (= -1)
24 bytes [— Buffer length —| buffer n
{ — Buffer address —

buffer_list (using &4-bit descriptors)
WM-0SE0A-AI

Buffer lists, as the name implies, consist of one or more contiguous 32- or 64-bit fixed-length
descriptors (on Alpha and 164 systems) or 32-bit fixed-length descriptors (on VAX systems).

Each 32- or 64-bit descriptor that appears in a buffer list describes one user buffer. Initialize each
descriptor by setting its data type, class, length, and address fields as appropriate for 32- and 64-bit
descriptors.

For more information about using 32-bit and 64-bit descriptors, refer to the OpenVMS Calling
Standard.

233

Chapter 5. Using the $QIO System Service

234

Chapter 6. OpenVMS System Services

Reference

This chapter provides detailed information about the OpenVMS system services for writing network
applications. The chapter also describes the network pseudodevice driver and TELNET port driver I/O

functions used with the $QIO system service.

The descriptions of the system services and 1/O function codes are targeted specifically for network
application programmers. For a general description of these system services and 1/O function codes,
see the VSI OpenVMS System Services Reference manuals.

Table 6.1 lists the equivalent Sockets API function for each system service and $QIO I/O function
code in this chapter. See Chapter 4 for descriptions of the Sockets API functions.

Table 6.1. OpenVMS System Service and Equivalent Sockets API Function

OpenVMS System Service

Sockets API Function or Description

$ASSIGN socket ()
$CANCEL cl ose()
$DASSGN cl ose()
$QIO

Network Pseudodevice I/O Function Codes:

I0$ ACCESS connect ()
I0$ ACCESS[IO$SM_ACCEPT accept ()

10$_ ACPCONTROL

get host bynane(), get host byaddr (),
get net bynane(), get net byaddr ()

10$_DEACCESS

cl ose()

10$_DEACCESS|IOSM_SHUTDOWN

shut down()

I0$§ READVBLK

read(),recv(),recvfrom),recvisg()

10$_SENSEMODE

get sockopt (),ioctl (),
get peer nane(), get sockname()

10$_SENSECHAR

get sockopt (),ioctl (),
get peer nane(), get sockname()

10§ SETMODE

socket (),bind(),listen(),
set sockopt (),ioctl ()

10$ SETCHAR

socket (),bind(),listen(),
set sockopt (),ioctl ()

10§ WRITEVBLK

send(),sendto(),sendnsg(),wite()

TELNET Port Driver I/O Function Codes:

10$ TTY PORT

I0$M_TN STARTUP

Binds a socket to a TELNET terminal device.

IO$SM_TN SHUTDOWN

Breaks a previously bound socket terminal
connection.

10$_TTY PORT BUFIO

235

Chapter 6. OpenVMS System Services Reference

OpenVMS System Service Sockets API Function or Description
IO$SM_TN_SENSEMODE Reads parameters associated with the device.
IO$SM_TN_SETMODE Writes parameters associated with the device.

6.1. System Service Descriptions

This section describes the OpenVMS system services used to write network applications.

Detailed information about each argument is listed for each I/O function. The following format is used
to describe each argument:

argument-name

OpenVMS usage: OpenVMS data type

type: argument data type

access: argument access

mechanism: argument passing mechanism

The purpose of the OpenVMS usage entry is to facilitate the coding of source-language data type
declarations in application programs. Ordinarily, the standard data type is sufficient to describe the
type of data passed by an argument. However, within the OpenVMS operating system environment,
many system routines contain arguments whose conceptual nature or complexity requires additional
explanation.

To determine the correct syntax of the data type you are using, refer to the appropriate language
implementation table in Appendix C.

Note that the OpenVMS usage entry is not a traditional data type (such as the standard data types of
byte, word, longword, and so on). It is significant only within the context of the OpenVMS operating
system and is intended solely to expedite data declarations within application programs.

Assign I/O Channel

Assign I/O Channel — Provides a calling process with an I/O channel, thereby allowing the calling
process to perform I/O operations on the network pseudodevice. On Alpha and 164 systems, this
service accepts 64-bit addresses.

Format

SYS$ASSI GN devham chan, [acnode], [nmbxnam, [flags]

C Prototype

int sys$assign(void *devnham unsigned short int *chan, unsigned int acnode,
void *nmbxnam...);

Returns

OpenVMS usage: cond value
type: longword (unsigned)

236

Chapter 6. OpenVMS System Services Reference

access: write only

mechanism: by value

Longword condition value. All system services return (by immediate value) a condition value in RO.
Condition values that can be returned by this service are listed under Condition Values Returned.

Arguments

devnam

OpenVMS usage: device name

type: character-coded text string
access: read only
mechanism: (Alpha and 164) by 32- or 64-bit descriptor-fixed-length string descriptor

(VAX) by 32-bit descriptor-fixed-length string descriptor
Name of the device to which $SASSIGN is to assign a channel. The devnam argument is the address

of a character string descriptor pointing to the network pseudodevice name string (either TCPIP
$DEVICE: or SYS$NET:).

chan

OpenVMS usage: channel

type: word (unsigned)
access: write only
mechanism: (Alpha and 164) by 32- or 64-bit reference

(VAX) by 32-bit reference

Number of the channel that is assigned. The chan argument is the address of a word into which
$ASSIGN writes the channel number.

acmode

OpenVMS usage: access_mode

type: longword (unsigned)
access: read only
mechanism: by value

Access mode to be associated with the channel. I/O operations on the channel can be performed only
from equal or more privileged access modes. The SPSLDEF macro defines the following symbols for
the four access modes:

Symbol Access Mode Numeric Value
PSL$C KERNEL Kernel 0
PSL$C EXEC Executive 1
PSL$C SUPER Supervisor 2

237

Chapter 6. OpenVMS System Services Reference

Symbol Access Mode Numeric Value
PSL$C USER User 3
mbxnam

OpenVMS usage: device name

type: character-coded text string
access: read only
mechanism: (Alpha and 164) by 32-bit or 64-bit descriptor-fixed-length string descriptor

(VAX) by 32-bit descriptor-fixed-length string descriptor
This argument is not used.
flags

OpenVMS usage: mask longword

type: longword (unsigned)
access: read only
mechanism: by value

An optional device-specific argument. The flags argument is a longword bit mask. For more
information about the applicability of the flags argument for a particular device, refer to the OpenVMS
1/0 User's Reference Manual.

Description

The $ASSIGN system service establishes a path to a device but does not check whether the calling
process has the capability to do I/O operations to the device. The device drivers may apply privilege
and protection restrictions. The calling process must have NETMBX privilege to assign a channel.

System dynamic memory is required for the target device, and the I/O byte limit quota from the
process buffer is used.

When a channel is assigned to the TCPIP$DEVICE: network pseudodevice, the network software
creates a new device called BGn, where # is a unique unit number. The corresponding channel number
is used in any subsequent operation requests for that device.

When the auxiliary server creates a process for a service with the LISTEN flag set, the server creates
a device socket. In order for your application to receive the device socket, assign a channel to SYS
$NET, which is the logical name of a network pseudodevice, and perform an appropriate $QIO(10

$ SETMODE) operation.

Channels remain assigned either until they are explicitly deassigned with the Deassign I/O Channel
($DASSGN) service or, if they are user-mode channels, until the image that assigned the channel
exits.

Condition Values Returned
SS$ NORMAL

The service completed successfully.

238

Chapter 6. OpenVMS System Services Reference

SS$_ACCVIO

The caller cannot read the device string or string descriptor, or the caller cannot write the channel
number.

SS$ DEVALLOC

The device is allocated to another process.
SS$ DEVLSTFULL

The system maximum number of BG: device units has been reached.
SS$ EXQUOTA

The process has exceeded its buffered I/0 byte limit (BIOLM) quota.
SS$ IVDEVNAM

No device name was specified, the logical name translation failed, or the device name string
contains invalid characters.

SS$ IVLOGNAM
The device name string has a length of zero or has more than 63 characters.
SS$ NOIOCHAN
No I/O channel is available for assignment.
SS$ NOPRIV
The specified channel is not assigned or was assigned from a more privileged access mode.
SS$ NOSUCHDEV

The specified device does not exist.

Cancel I/0 on Channel
Cancel I/O on Channel — Cancels all pending I/O requests on a specified channel.
Related Functions

The equivalent Sockets API function is cl ose() .

Format

SYS$CANCEL chan

C Prototype

i nt sys$cancel (unsi gned short int chan);
Returns

OpenVMS usage: cond value

239

Chapter 6. OpenVMS System Services Reference

type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. All system services return (by immediate value) a condition value in RO.
Condition values that can be returned by this service are listed under Condition Values Returned.

Arguments

chan

OpenVMS usage: channel

type: word (unsigned)
access: read only
mechanism: by value

I/O channel on which I/O is to be canceled. The chan argument is a word containing the channel
number.

Description

To cancel I/O on a channel, the access mode of the calling process must be equal to or more privileged
than the access mode of the process that made the original channel assignment.

The $CANCEL service requires system dynamic memory and uses the process's buffered I/O limit
(BIOLM) quota.

When a request currently in progress is canceled, the driver is notified immediately. Actual
cancellation may or may not occur immediately, depending on the logical state of the driver. When
cancellation does occur, the action taken for I/O in progress is similar to that taken for queued
requests. For example:

» The specified event flag is set.

» The first word of the I/O status block, if specified, is set to SS§ CANCEL if the I/O request is
queued, or to SS$ ABORT if the I/O operation is in progress.

» If the asynchronous system trap (AST) is specified, it is queued.

For proper synchronization between this service and the actual canceling of I/O requests to take place,
the issuing process must wait for the I/O process to complete normally. Note that the I/O has been
canceled. Outstanding I/O requests are canceled automatically at image exit.

Condition Values Returned
SS$_NORMAL

The service completed successfully.
SS$ ABORT

A physical line went down during a network connect operation.

240

Chapter 6. OpenVMS System Services Reference

SS$ CANCEL

The 1/0 operation was canceled by executing a SCANCEL system service.
SS$ EXQUOTA

The process has exceeded its buffered I/0 limit (BIOLM) quota.
SS$_INSFMEM

Insufficient system dynamic memory to cancel the 1/O.
SS$ IVCHAN

An invalid channel was specified (that is, a channel number of 0 or a number larger than the
number of channels available).

SS$_NOPRIV

The specified channel is not assigned or was assigned from a more privileged access mode.

Deassign I/O Channel

Deassign I/0 Channel — Deassigns (releases) an I/O channel previously acquired using the Assign I/
O Channel ($ASSIGN) service.

Related Functions
The equivalent Sockets API function is cl ose() .

Format

SYS$DASSGN chan

C Prototype

i nt sys$dassgn(unsi gned short int chan);
Returns

OpenVMS usage: cond value

type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. All system services return (by immediate value) a condition value in RO.
Condition values that can be returned by this service are listed under Condition Values Returned.

Arguments
chan

OpenVMS usage: channel

241

Chapter 6. OpenVMS System Services Reference

type: word (unsigned)
access: read only
mechanism: by value

Number of the I/O channel to be deassigned. The chan argument is a word containing this number.

Description

After all communication is completed, use the SDASSGN system service to free an 1/0 channel.
A $DASSGN operation executed on a channel associated with a network pseudodevice does the
following:

* Ends all pending operations to send or receive data at $QIO level (SCANCEL system service).

» Clears the port associated with the channel. When executing the SDASSGN system service for
TCP sockets, the socket remains until the connection is closed on both the local and remote sides.

* Ends all communications with the network pseudodevice that the I/O channel identifies.

» Frees the channel associated with the network pseudodevice. An I/O channel can be deassigned
only from an access mode equal to or more privileged than the access mode from which the
original channel assignment was made.

I/O channels assigned from user mode are automatically deassigned at image exit.

Note

Even after a SDASSGN has been issued, a TCP socket may remain until the TCP close timeout
interval expires. The default and maximum timeout interval is either 10 minutes if the peer host is not
responding or 30 seconds after acknowledging the socket close. Although the TCP socket is open, you
cannot make a reference to that socket after issuing a SDASSGN.

Condition Values Returned
SS$ NORMAL

The service completed successfully.
SS$ IVCHAN

An invalid channel number was specified (that is, a channel number of zero or a number larger
than the number of channels available).

SS$_NOPRIV

The specified channel is not assigned or is assigned from a more privileged access mode.

Queue I/0 Request

Queue I/0 Request — Queues an I/O request to a channel associated with a network pseudodevice.
The $QIO service is completed asynchronously; that is, it returns to the caller immediately after
queuing the I/O request, without waiting for the I/O operation to be completed. For synchronous

242

Chapter 6. OpenVMS System Services Reference

completion, use the Queue I/O Request and Wait (SQIOW) service. The $QIOW service is identical
to the $QIO service, except the SQIOW returns to the caller after the I/O operation has completed. On
Alpha and 164 systems, this service accepts 64-bit addresses.

Format

SYS$Q O [efn], chan,func, [iosb],[astadr],[astprm, [pl],[p2],[p3],][p4],
[pS5], [p6]

C Prototype

int sys$qio(unsigned int efn, unsigned short int chan, unsigned int func,

struct _iosb *iosb, void (*astadr)(__unknown_parans), _ int64 astprm void
*pl, __int64 p2, __int64 p3, __int64 p4, __int64 p5 _ int64 p6);
Returns

OpenVMS usage: cond value

type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. All system services return (by immediate value) a condition value in RO.
Condition values that can be returned by this service are listed under Condition Values Returned.

Arguments

efn

OpenVMS usage: ef number

type: longword (unsigned)
access: read only
mechanism: by value

Event flag that $QIO sets when the I/O operation completes. The efn argument is a longword value
containing the number of the event flag; however, $QIO uses only the low-order byte.

If efn is not specified, event flag 0 is set.
The specified event flag is set if the service terminates without queuing an I/O request.

chan

OpenVMS usage: channel

type: word (unsigned)
access: read only
mechanism: by value

I/0 channel that is assigned to the device to which the request is directed. The chan argument is a
word value containing the number of the I/O channel.

243

Chapter 6. OpenVMS System Services Reference

func

OpenVMS usage: function _code

type: longword (unsigned)
access: read only
mechanism: by value

Function codes and function modifiers specifying the operation to be performed. The func argument
is a longword containing the function code.

For information about the network pseudodevice and TELNET device function codes and modifiers,
see Section 6.2 and Section 6.4.

iosb

OpenVMS usage: io_status block

type: quadword (unsigned)
access: write only
mechanism: (Alpha and 164) by 32-bit reference or 64-bit reference

(VAX) by 32-bit reference

I/0 status block to receive the final completion status of the I/O operation. The iosb is the address
of the quadword I/O status block. See Figure 5.1 for a description of the general structure of the I/O
status block.

When the $QIO begins executing, it clears the event flag. The $QIO also clears the quadword 1/0
status block if the iosb argument is specified.

Although the iosb argument is optional, VSI strongly recommends that you specify it, for the
following reasons:

» Ifyou are using an event flag to signal the completion of the service, you can test the I/O status
block for a condition value to be sure that the event flag was not set by an event other than service
completion.

* Ifyou are using the $SYNCH service to synchronize completion of the service, the I/O status
block is a required argument for SSYNCH.

* The condition value returned in RO and the condition value returned in the I/O status block
provide information about different aspects of the call to the $QIO service. The condition value
returned in RO provides information about the success or failure of the service call itself; the
condition values returned in the I/O status block give information on the success or failure of
the service operation. Therefore, to determine the success or failure of the $QIO call, check the
condition values returned in both the RO and the 1/O status block.

astadr

OpenVMS usage: ast_procedure

type: procedure value
access: call without stack unwinding
mechanism: (Alpha and 164) by 32- or 64-bit reference

244

Chapter 6. OpenVMS System Services Reference

(VAX) by 32-bit reference

AST service routine to be executed when the I/O completes. The astadr argument is the address of
the AST routine.

The AST routine executes at the access mode of the caller of $QIO.

astprm

OpenVMS usage: user arg

type: quadword unsigned (Alpha and 164); longword unsigned (VAX)
access: read only
mechanism: (Alpha and 164) by 32- or 64-bit value

(VAX) by 32-bit value
AST parameter to be passed to the AST service routine. On Alpha and 164 systems, the astprm
argument is a quadword value containing the AST parameter. On VAX systems, the astprm argument
is a longword value containing the AST parameter.

p1 to p6

OpenVMS usage: varying_arg

type: quadword unsigned (Alpha and 164); longword unsigned (VAX)

access: read only

mechanism: (Alpha and 164) by 32- or 64-bit reference or by 64-bit value depending on the 1/
O function

(VAX) by 32-bit reference or by 32-bit value depending on the I/O function

Optional device- and function-specific I/O request arguments. The parameter values contained in
these arguments vary according to the function for which they are used. See Table 6.2 for descriptions
of the network pseudodevice driver I/O function codes; see Table 6.7 through Table 6.10 for related
TELNET device driver I/O function codes.

Description

The Queue I/O Request service operates only on assigned I/O channels and only from access modes
that are equal to or more privileged than the access mode from which the original channel assignment
was made.

For TCP/IP Services, $QIO uses the following system resources:
* The process's AST limit (ASTLM) quota, if an AST service routine is specified.

* System dynamic memory, which is required to queue the I/O request. System dynamic memory
requirements are protocol specific.

* Additional memory, on a device-dependent basis.
For $QIO, completion can be synchronized as follows:

* By specifying the astadr argument to have an AST routine execute when the I/O is completed.

245

Chapter 6. OpenVMS System Services Reference

* By calling the $SYNCH synchronize service to await completion of the I/O operation. (If you
want your I/O operation to complete synchronously, use the $QIOW system service instead.)

Condition Values Returned

Each function used with $QIO has its own error codes. See the error codes listed under the individual
descriptions of the I/O function code in the remainder of this chapter.

6.2. Network Pseudodevice Driver I/O

Functions

The network pseudodevice allows physical, logical, and virtual I/O functions. The physical and
logical I/O functions are used only with the IP layer. Table 6.2 lists the basic I/O functions and their
modifiers. The sections that follow describe in greater detail the operation of these I/O functions.

Table 6.2. Network Pseudodevice Driver I/O Functions

Function Code and Arguments

Function Modifier

Description

10$_ACCESS p3,p4

I0$SM_ACCEPT

I0$SM_EXTEND

Opens a connection.

I0$SM_SHUTDOWN

I0$M_NOW
I0$_ACPCONTROL pl, p2, Performs an ACP (ancillary
p3, p4 control process) operation.
10§ DEACCESS p4 I0$M_NOW Aborts or closes a connection.

10$ READVBLK
p1,p2,p3,p4,p6

I0$SM_EXTEND

IO$SM_INTERRUPT

Reads a virtual block.

I0$M_LOCKBUF

I0$M_PURGE

Controls the buffer operations.

10§ _SENSEMODE p2,

Reads the network pseudodevice

I0O$SM_READATTN

I0$SM_WRTATTN

p3,p4,p6 characteristics.

I0$ SENSECHAR p2, Reads the network pseudodevice
p3,p4,p6 characteristics.

10§ SETMODE pl, p2, I0$SM_OUTBAND Sets the network pseudodevice
p3,p4.p5 characteristics for subsequent

operations.

10$_SETCHAR pl, p2,
p3,p4,pS

I0$SM_OUTBAND
IO$SM_READATTN

IO$SM_WRTEATTN

Sets the network pseudodevice
characteristics for subsequent
operations.

10$ WRITEVBLK
pl,p2,p3,p4,pS

IO$SM_INTERRUPT

Writes a virtual block.

246

Chapter 6. OpenVMS System Services Reference

Table 5.2 lists the file names of the symbol definition files. These files specify $QIO arguments
(p1,p2....p6) for applications written in the corresponding programming languages. You must invoke
the symbol definition by using the appropriate statement in your application.

6.3. Network Pseudodevice Driver I/O
Function Codes

lI0$_ACCESS

10$_ACCESS — When using a connection-oriented protocol, such as TCP, the I0$ ACCESS
function initiates a connection and specifies a remote port number and IP address. When using a
connectionless protocol, such as UDP, the I0O$ ACCESS function sets the remote port number and
IP address. For TCP, a connection request times out at a specified interval (75 seconds is the default).
This interval can be changed by setting the inet subsystem parameter t cp_keepi ni t . The program
can also set a specific timeout interval for a socket that it has created, as described in Table A.2.

If a connection fails, you must deallocate the socket and then create a new socket before trying to
reconnect.

Related Functions

The equivalent Sockets API function is connect () .
Arguments

p3

OpenVMS usage: socket name

type: vector byte (unsigned)
access: read only
mechanism: byitem|ist_2 descriptor

The remote port number and IP address of the host to connect. The p3 argument is the address of
ani tem_|i st _2 descriptor that points to the socket address structure containing the remote port
number and IP address.

Function Modifiers
I0$M_NOW

Regardless of a $QIO or $QIOW, if the system detects a condition that would cause the operation
to block, the system completes the I/O operation and returns the SS$ SUSPENDED status code.

Condition Values Returned
SS$ NORMAL

The service completed successfully.
SS$ BADPARAM

Programming error that occurred for one of the following reasons:

247

Chapter 6. OpenVMS System Services Reference

* $QIO system service was specified without a socket.

* AnlIO$_ACCESS function was specified without the address of a remote socket name (p3
was null).

SS$ BUGCHECK

Inconsistent state. Report the problem to your VSI support representative.

SS$_CANCEL

The 1/0 operation was canceled by a SCANCEL system service.

SS$ CONNECFAIL

The connection to a network object timed out or failed.

SS$ DEVINTACT

The network driver was not started.

SS$ DEVNOTMOUNT

The network driver is loaded, but the INETACP is not currently available for use.

SS$_ DUPLNAM

A network configuration error. No ports were available for new connections.

SS$ EXQUOTA

The process has exceeded a process quota.

SS$ FILALRACC

The specified socket name is already in use by one of the following:

* On araw socket, the remote IP address was already specified on a previous I0$ ACCESS
call.

* On a datagram, the remote IP address was already specified on a previous I0$ ACCESS call.

* On a stream socket, the IO$ ACCESS function targeted a stream socket that was already
connected.

SS$ ILLCNTRFUNC

Illegal function.

SS$ INSFMEM

Insufficient system dynamic memory to complete the service.

SS$_IVADDR

The specified IP address was not found, or an invalid port number and IP address combination
was specified with the IO$ ACCESS function. Port 0 is not allowed with the I0$ ACCESS
function.

248

Chapter 6. OpenVMS System Services Reference

SS$ IVBUFLEN
The size of the socket name structure specified with the I0$ ACCESS function was invalid.
SS$ LINKABORT
The remote socket closed the connection.
SS$ NOLICENSE
The TCP/IP Services license is not present.
SS$ PROTOCOL

A network protocol error occurred. The address family specified in the socket address structure is
not supported.

SS$ REJECT
The network connection is rejected for one of the following reasons:
* An attempt was made to connect to a remote socket that is already connected.
* An error was encountered while establishing the connection
» The peer socket refused the connection request or is closing the connection.
SS$ SHUT
The local or remote node is no longer accepting connections.
SS$ SUSPENDED
The system detected a condition that might cause the operation to block.
SS$ TIMEOUT
A TCP connection timed out before the connection could be established.
SS$ UNREACHABLE

The remote node is currently unreachable.

I0$_ACCESS|IO$M_ACCEPT

I0$_ACCESSIO$SM_ACCEPT — This function is used with a connection-based protocol, such as
TCP, to accept a new connection on a passive socket. This function completes the first connection on
the queue of pending connections.

Related Functions

The equivalent Sockets API function is accept ().

Arguments

p3

249

Chapter 6. OpenVMS System Services Reference

OpenVMS usage: socket name

type: vector byte (unsigned)
access: read only
mechanism: byitem.|i st _3 descriptor

The remote port number and IP address of a new connection. The p3 argument is the address of an
i tem | i st _3 descriptor that points to the socket address structure into which the remote port
number and IP address of the new connection is written.

p4

OpenVMS usage: channel

type: word (unsigned)
access: write only
mechanism: by reference

The I/O channel number assigned to a new connection. The p4 argument is the address of a word into
which the new connection's channel number is written.

Function Modifiers

I0$SM_EXTEND

Allows the usage of BSD Version 4.4 formatted socket address structures. Use this modifier to
operate in the [Pv6 environment.

I0$M_NOW

Regardless of a $QIO or $QIOW, if the system detects a condition that would cause the operation
to block, the system completes the 1/O operation and returns the SS$ SUSPENDED status code.

Condition Values Returned

SS$ NORMAL
The service completed successfully.

SS$ BADPARAM
Programming error that occurred for one of the following reasons:
* $QIO system service was specified without a socket.

+ AIOS$ ACCESS|IO$SM_ACCEPT function was specified without the address of the channel
for the new connection (p4 was null or invalid).

SS$ BUGCHECK
Inconsistent state. Report the problem to your VSI support representative.
SS$§_CANCEL

The 1/0 operation was canceled by a SCANCEL system service.

250

Chapter 6. OpenVMS System Services Reference

SS$ DEVINTACT
The network driver was not started.
SS$ DEVNOTMOUNT
The network driver is loaded, but the INETACP is not currently available for use.
SS$ EXQUOTA
The process has exceeded a process quota.
SS$_FILALRACC
The specified socket name is already in use by one of the following:

* On araw socket, the remote IP address was already specified on a previous I0$ ACCESS
call.

* On a datagram, the remote IP address was already specified on a previous [0$ ACCESS call.

* On a stream socket, the IO$ ACCESS function targeted a stream socket that was already
connected.

SS$ ILLCNTRFUNC

Illegal function.
SS$ INSFMEM

Insufficient system dynamic memory to complete the service.
SS$ IVADDR

The specified IP address was not found, or an invalid port number and IP address combination
was specified with the IO$ ACCESS function. Port 0 is not allowed with the I0§ ACCESS
function.

SS$ IVBUFLEN
The size of the socket name structure specified with the I0$ ACCESS function was invalid.
SS$ LINKABORT
The remote socket closed the connection.
SS$ NOLICENSE
The TCP/IP Services license is not present.
SS$ PROTOCOL

A network protocol error occurred. The address family specified in the socket address structure is
not supported.

The network connection is rejected for one of the following reasons:

* An attempt was made to connect to a remote socket that is already connected.

251

Chapter 6. OpenVMS System Services Reference

* An error was encountered while establishing the connection
* The peer socket refused the connection request or is closing the connection.)
SS$ SHUT
The local or remote node is no longer accepting connections.
SS$ SUSPENDED
The system detected a condition that might cause the operation to block.
SS$ TIMEOUT
A TCP connection timed out before the connection could be established.
SS$ UNREACHABLE

The remote node is currently unreachable.

I0$_ACPCONTROL

10§ _ACPCONTROL — The I0$ ACPCONTROL function accesses the network ACP to retrieve
information from the host and the network database files.

Related Functions

The equivalent Sockets API functions are get host byaddr (), get host bynane(),
get net byaddr (), and get net byname() .

Arguments
pl

OpenVMS usage: subfunction code

type: longword (unsigned)
access: read only
mechanism: by descriptor-fixed-length descriptor

A longword identifying the network ACP operation to perform. The p1 argument is the address of a
descriptor pointing to this longword.

To specify the network ACP operation to perform, select a subfunction code from Table 6.3 and a call
code from Table 6.4.

Table 6.3 defines subfunction codes for network ACP operations.

Table 6.3. Subfunction Codes

Subfunction Code Description

INETACP_FUNCS$SC _GETHOSTBYADDR Get the host name of the specified IP address
from the hosts database.’

252

Chapter 6. OpenVMS System Services Reference

Subfunction Code Description

INETACP_FUNCS$C_GETHOSTBYNAME Get the IP address of the specified host from the
hosts database.!

INETACP_FUNCS$C _GETNETBYADDR Get the network name of the specified IP address
from the network database.
INETACP_FUNCS$SC GETNETBYNAME Get the IP address of the specified network from

the network database.

"You can limit the maximum amount of time spent obtaining host names and addresses by entering the command TCPIP SET
NAME_SERVICE/TIMEOUT=1/RETRY=1

Table 6.4 defines call codes for network ACP operations.

Table 6.4. Call Codes
Call Code Description
INETACP$C ALIASES Returns the list of alias names associated with the

specified host or network from the internet hosts
or network database.

INETACP$C_TRANS Returns the IP address associated with the
specified host or network as a 32-bit value in
network byte order.

INETACPC$C HOSTENT OFFSET Returns full host information in a modified
host ent structure. In the modified structure,
pointers are replaced with offsets from the
beginning of the structure.

INETACP$C NETENT OFFSET Returns full network information in a modified
net ent structure. In the modified structure,

pointers are replaced with offsets from the
beginning of the structure.

10$_ACPCONTROL searches the local hosts database for the host's name. If a matching host name
is not found in the local hosts database, [0$ ACPCONTROL then searches the BIND database if the
BIND resolver is enabled.

p2

OpenVMS usage: char_string

type: character-coded text string
access: read only
mechanism: by descriptor-fixed-length string descriptor

Input string for the network ACP operation containing one of the following: host IP address, host
name, network IP address, or network name. The p2 argument is the address of a string descriptor
pointing to the input string. The input string must be in an area of memory that is capable of being
read and written to.

Al IP addresses are specified in dotted-decimal notation.
p3

OpenVMS usage: word unsigned

253

Chapter 6. OpenVMS System Services Reference

type: word (unsigned)
access: write only
mechanism: by reference

Length in bytes of the output buffer returned by I0$§ ACPCONTROL. The p3 argument is the
address of a word in which the length of the output buffer is written.

p4

OpenVMS usage: buffer

type: vector byte (unsigned)
access: write only
mechanism: by descriptor-fixed-length descriptor

Bufter into which I0§ ACPCONTROL writes its output data. The p4 argument is the address of a
descriptor pointing to the output buffer.

The format of the data returned in the output buffer is dictated by the call code specified by the p1
argument.

» Strings returned by 10§ ACPCONTROL with a call code of INETACP$C ALIASES consist
of one of the following: host IP address, host name, network IP address, or network name. All
IP addresses are formatted using dotted-decimal notation. Alias names are separated by a null
character (0). The length of the returned string includes all null characters that separate alias
names.

+ [P addresses returned by I0$ ACPCONTROL with a call code of INETACP$SC TRANS are 32-
bit values in network byte order.

+ Allhost ent and net ent structures returned by I0$ ACPCONTROL with a call code of
INETACPSC HOSTENT OFFSET or INETACPSC NETENT OFFSET are modified; pointers
are replaced with offsets from the beginning of the structure.

Condition Values Returned
SS$ NORMAL

The service completed successfully
SS$ ABORT

An error was detected while performing an ACP function.
SS$ BADPARAM

Programming or internal error. A bad parameter (name or address) was specified in the call.
SS$ BUFFEROVF

Programming error. There was not enough space for returning all alias names in the call.
SS$ ENDOFFILE

The information requested is not in the database.

254

Chapter 6. OpenVMS System Services Reference

SS$ ILLCNTRFUNC
Illegal function.
SS$ NOPRIV
The privilege level was insufficient for the execution of an ACP function.
SS$ RESULTOVF
The ACP overflowed the buffer in returning a parameter.
SS$ SHUT

The local or remote node is no longer accepting connections.

I0$_DEACCESS

10$_DEACCESS — The I0$ DEACCESS function closes a connection and deletes a socket. Any
pending messages queued for transmission are sent before tearing down the connection. When used
with the IOSM_SHUTDOWN function modifier, the I0O$ DEACCESS function shuts down all or
part of a bidirectional connection on a socket. Use the p4 argument to specify the disposition of
pending 1/O operations on the socket. You can specify a wait time or time-to-linger socket parameter
(TCPIPSC_LINGER option) for transmission completion before disconnecting the connection. Use
the IO§ SETMODE function to set and clear the TCPIPSC LINGER option. If you set the TCPIP
$C_LINGER option, a $QIO call that uses the IO§_DEACCESS function allows data queued to the
socket to arrive at the destination. The system is blocked until data arrives at the remote socket. The
socket data structure remains open for the duration of the TCP idle time interval. If you do not set the
TCPIPSC_LINGER option (option is set to 0), a $QIO call that uses the I0$_DEACCESS function
discards any data queued to the socket and deallocates the socket data structure. For compatibility
with UNIX, TCP/IP Services forces a time to linger of 2 minutes on TCP stream sockets.

Related Functions

The equivalent Sockets API functions are ¢l ose() and shut down() .
Arguments
p4

OpenVMS usage: mask longword

type: longword (unsigned)
access: read only
mechanism: by value

Longword of shutdown flags to specify the disposition of pending I/O operations on the socket. The
p4 argument is used only with the IOSM_SHUTDOWN function modifier. The following table lists
available shutdown flags.

Shutdown Flag Description

TCPIP$C DSC RCV Discards messages from the receive queue and
disallows further receiving. Pending messages

255

Chapter 6. OpenVMS System Services Reference

Shutdown Flag Description
in the receive queue for this connection are
discarded.

TCPIP$C DSC SND Discards messages from the send queue and

disallows sending new messages. Pending
messages in the transmit queue for this
connection are discarded.

TCPIP$C DSC ALL Discards all messages and disallows both
sending and receiving. All pending messages are
discarded.

Specifying this flag has the same effect as
issuing a SCANCEL QIO followed by an 10
$ DEACCESS QIO without specifying any flags.

Function Modifiers
I0$M_SHUTDOWN

Causes all or part of a full-duplex connection on a socket to be shut down.
I0$M_NOW

Regardless of a $QIO or $QIOW, if the system detects a condition that would cause the operation
to block, the system completes the I/O operation and returns the SS§ SUSPENDED status code.

Condition Values Returned
SS$ NORMAL
The service completed successfully.
SS$ BADPARAM
The I0$_DEACCESS operation failed to specify a socket.
SS$ CANCEL
The 1/O operation was canceled by a SCANCEL system service.
SS$ DEVINTACT
The network driver was not started.
SS$ DEVNOTMOUNT
The network driver is loaded, but the INETACP is not currently available for use.
SS$ NOLINKS
The specified socket was not connected.
SS$_SHUT

The local or remote node is no longer accepting connections.

256

Chapter 6. OpenVMS System Services Reference

SS$ SUSPENDED

The system detected a condition that might cause the operation to block.

10$_READVBLK

I0$ READVBLK — The I0$ READVBLK function transfers data received from an internet

host to the specified user buffers. Use both p1 and p2 arguments to specify a single user buffer.

Use the p6 argument to specify multiple buffers. For connection-oriented protocols, such as TCP,
data is buffered in system space as a stream of bytes. The I0$ READVBLK function completes
when one of the following occurs: there is no more data buffered in system space for this socket;
there is no more available space in the user buffer. Data that is buffered in system space but did

not fit in the user buffer is available to the user in subsequent $QIOs. For connectionless protocols,
datagram and raw socket data is buffered in system space as a chain of records. The user buffer
specified with a IO$ READVBLK function is filled with data that is buffered in one record. Each IO
$ READVBLK reads data from one record. The I0§ READVBLK function completes when one of
the following occurs: all data from a record is transferred to the user buffer; there is no more available
space in the user buffer, any data remaining in the current record that did not fit in the user buffer

is discarded, a subsequent $QIO reads data from the next record buffered in system space. Use the
TCP/IP management command SHOW DEVICE SOCKET/FULL to display counters related to read
operations.

Related Functions

The equivalent Sockets API functions are r ead(),recv(),recvfrom(),andrecvnsg().
Arguments

pl

OpenVMS usage: buffer

type: vector byte (unsigned)
access: read only
mechanism: (Alpha and 164) by 64-bit reference

The address of the buffer to receive the incoming data. The length of this buffer is specified by the p2
argument.

p2

OpenVMS usage: buffer length

type:
access: quadword unsigned (Alpha and 164); longword unsigned (VAX)
mechanism: read only

OpenVMS usage (Alpha and 164) by 64-bit value

(VAX) by 32-bit value

The length (in bytes) of the buffer available to hold the incoming data. The address of this buffer is
specified by the p1 argument.

257

Chapter 6. OpenVMS System Services Reference

p3

OpenVMS usage: socket name

type: vector byte (unsigned)
access: read only
mechanism: byitem|ist_3 descriptor

The remote port number and IP address of the source of the datagram or raw IP message (not TCP).
The p3 argument is the address of ani t em | i st _3 descriptor that points to the socket address
structure into which the remote port number and IP address of the message source is written.

p4

OpenVMS usage: mask longword

type: longword (unsigned)
access: read only
mechanism: by value

Longword of flags to specify attributes for the read operations. Table 6.5 lists the available read flags.

Table 6.5. Read Flags

Read Flag Description

TCPIP$C _MSG_OOB Reads an out-of-band byte.

TCPIP$C MSG PEEK Reads a message but leaves the message in the
queue.

TCPIP$SC MSG NBIO Does not block the I/O operation if the
receive queue is empty (similar to using 1O
$M_NOWAIT).

TCPIP$C MSG PURGE Flushes data from the queue (similar to using IO
$M_PURGE).

TCPIPSC_MSG BLOCKALL Blocks the completion of the operation until the
buffer is filled completely or until the connection
is closed (similar to using [O$M_LOCKBUF).

po6

OpenVMS usage: buffer list

type: vector byte (unsigned)
access: read only
mechanism: (Alpha and 164) by 32- or 64-bit descriptor-fixed-length descriptor

(VAX) by 32-bit descriptor-fixed-length descriptor

Output buffer list describing one or more buffers to hold the incoming data. The p6 argument is
the 32- or 64-bit address (on Alpha and 164 systems) or the 32-bit address (on VAX systems) of a
descriptor that points to a output buffer list. Buffers are filled in the order specified by the output
buffer list. The transfer-length value returned in the I/O status block is the total number of bytes
transferred to all buffers.

258

Chapter 6. OpenVMS System Services Reference

If you use the p1 and p2 arguments, do not use the p6 argument; they are mutually exclusive.

Function Modifiers
10$_ READVBLK
Specifies the format of the socket address structure to return when used with the p3 argument.

When specified, a BSD Version 4.4 formatted socket address structure is returned that identifies
the source of the received UDP datagram or raw IP message.

To operate in an IPv6 environment, you must set the IO$M_EXTEND modifier.
IO$M_INTERRUPT

Reads an out-of-band (OOB) message. This has the same effect as specifying the TCPIP
$C _MSG_OOB flag in the p4 argument.

On receiving an OOB character, TCP/IP stores the pointer in the received stream with the
character that precedes the OOB character.

A read operation with a user-buffer size larger than the size of the received stream up to the OOB
character completes and returns to the user the received stream up to, but not including, the OOB
character.

To determine whether the socket must issue more read $QIOs before getting all the characters
from the stream preceding an OOB character, poll the socket. To do this, issue a $QIO with
the $I0_SENSEMODE function, and the TCPIP$SC IOCTL subfunction that specifies the
SIOCATMARK command. The SIOCATMARK values are as follows:

* 0= Issue more read $QIOs to read more data before reading the OOB.
* 1 =The next read $QIO will return the OOB character.

Polling a socket is particularly useful when the OOBINLINE socket option is set. When the
OOBINLINE is set, TCP/IP reads the OOB character with the characters in the stream (IO

$ READVBLK), but not before reading the preceding characters. Use this polling mechanism to
determine whether the first character in the user buffer on the next read is an OOB character.

On a socket without the OOBINLINE option set, a received OOB character will always be read
by issuing a $QIO with either the I0$_ READVBLK|IO$SM_INTERRUPT or I0$_ READVBLK
and the TCPIP$C _MSG_OOB flag set. This can occur regardless of how many preceding
characters in the stream have been returned to the user.)

I0$SM_LOCKBUF

Blocks the completion of the 1/O operation until the user buffer is completely filled or until the
connection is closed. This is particularly useful when you want to minimize the number of $QIO
service calls issued to read a data stream of a set size. This function modifier supports only stream
protocols.

I0O$SM_NOWAIT

Regardless of a $QIO or $QIOW, if the system detects a condition that would cause the operation
to block, the system completes the I/O operation and returns the SS$ SUSPENDED status code.

259

Chapter 6. OpenVMS System Services Reference

I0$M_PURGE

Flushes data from the socket receive queue (discards data). If the user buffer is larger than the
amount of data in the queue, all data is flushed.

Condition Values Returned
SS$_NORMAL

The service completed successfully.
SS$ ABORT

Programming error, INET management error, or hardware error. The execution of the I/O was
aborted.

SS$ ACCVIO
Access to an invalid memory location or buffer occurred.
SS$ BADPARAM
One of the following methods was used to specify a $QIO function with an invalid parameter:

* An I/O function executed without specifying a device socket. First issue a $QIO with the 10
$ SETMODE function and the proper parameters to create the device socket.

+ AnIO$ READVBLK function that does not specify a correct buffer address (p1 or p6 is
null).

* AnlIO$ READVBLK function specified an invalid vectored buffer (p6 is an invalid
descriptor).

* The socket has the OOBINLINE option set, or there is no OOB character in the socket's OOB
queue because the character was either already read or never received. This condition happens
only if you use the IO$M INTERRUPT modifier or set the TCPIPSC_MSG_OOB flag with
10$ READVBLK.

SS$ CANCEL
The I/O operation was canceled by a SCANCEL system service.
SS$ DEVINTACT
The network driver was not started.
SS$ DEVNOTMOUNT
The network driver is loaded, but the INETACP is not currently available for use.
SS$ INSFMEM

INET management or programming error. There is not enough buffer space for allocation. The
INET software needs more buffer space. You should set a higher quota for the dynamic buffer
space, or shut down and restart TCP/IP Services with a larger static buffer space.

Programming error occurred for one of the following reasons:

260

Chapter 6. OpenVMS System Services Reference

¢ The size of the buffer for an I/O function is insufficient.

+ AnIO$ READVBLK specified a correct buffer address (p1 valid), but does not specify a
buffer length (p2 is null).)

SS$ LINKDISCON
A virtual circuit (TCP/IP) was closed at the initiative of the peer.

SS$ NOLINKS

Programming error. Read attempt on unconnected TCP socket.
SS$_SHUT

The network is being shut down.
SS$_SUSPENDED

The operation is blocked for one of the following reasons:

* No messages were received, so the receive operation cannot complete. The socket is marked
as nonblocking.

* The socket has the OOBINLINE option clear, and the OOB character has already been read.

SS$ TIMEOUT

This applies to a socket that has KEEPALIVE set. The connection was idle for longer than the
timeout interval (10 minutes is the default). For more information, see Table A.2.

SS$ UNREACHABLE

Communication status. The remote host or network is unreachable.

I0$_SENSEMODE/IO$_SENSECHAR

I0$_SENSEMODE/IO$ SENSECHAR — The I0$ SENSEMODE and 10§ _SENSECHAR
functions return one or more parameters (characteristics) pertaining to the network driver. Socket
names (local and remote peer) are returned by using I0O$ SENSEMODE's p3 and p4 arguments.
Other parameters such as socket and protocol options, are specified in an output parameter list using
the I0§ SENSEMODE p6 argument. [0$ SENSEMODE p3 and p4 arguments can be used with the
p6 argument in a single $QIO system service to return socket names as well as socket and protocol
options. I0O$ _SENSEMODE processes arguments in this order: p3, p4, p6. [f I0$ SENSEMODE
detects an error, the I/O status block (IOSB) contains the error and argument address or the value that
was at fault. Refer to individual argument descriptions for details about specifying the type and format
of output parameters.

Arguments

p3

OpenVMS usage: socket name
type: vector byte (unsigned)

access: read only

261

Chapter 6. OpenVMS System Services Reference

mechanism: byitem.|ist_3 descriptor

The port number and IP address of the local name associated with the socket. The p3 argument is the
address of ani t em | i st _3 descriptor that points to the socket address structure into which the
local name is written.

The equivalent Sockets API function is get socknane() .
p4

OpenVMS usage: socket name

type: vector byte (unsigned)
access: read only
mechanism: byitem|ist_3 descriptor

The port number and IP address of the remote name associated with the socket's peer. The p4
argument is the address of ani t em | i st _3 descriptor that points to the socket address structure
into which the peer name is written.

The equivalent Sockets API function is get peer nanme() .
po6

OpenVMS usage: output parameter list

type: vector byte (unsigned)
access: read only
mechanism: byitem.|ist_2 descriptor

Output parameter list describing one or more parameters to return. The p6 argument is the address of
anitem|ist_2 descriptor that points to and identifies the type of output parameter list.

The equivalent Sockets API functions are get sockopt () andi octl ().
Function Modifiers

I0$M_EXTEND

Specifies the format of the socket address structure to return when used with the p3 or p4
arguments.

When specified, a BSD Version 4.4 formatted socket address structure is returned.
Specify the IO$M_EXTEND modifier to operate in an IPv6 environment.)
Condition Values Returned
SS$ NORMAL
The service completed successfully.
SS$ ACCVIO

The service cannot access a buffer specified by one or more arguments.

262

Chapter 6. OpenVMS System Services Reference

SS$ BADPARAM
Programming error occurred for one of the following reasons:
+ $QIO system service was specified without a socket.
* Error occurred processing a socket or protocol option.
SS$ DEVINTACT
The network driver was not started.
SS$ DEVNOTMOUNT
The network driver is loaded, but the INETACP is not currently available for use.
SS$ ILLCNTRFUNC
Programming error. The operation is unsupported for one of the following reasons:

* Aninvalid I0O$ SENSEMODE function for the interface was specified. The interface does not
have an IOCTL routine.

* AnIO$ SENSEMODE function that requires a socket was specified, but the device did not
have one. Create a socket and then issue the function.

* An unsupported operation was performed on at least one of the following protocols: raw IP,
datagram, or stream sockets.

SS$ INSFMEM

Insufficient system dynamic memory to complete the service.
SS$ IVBUFLEN

The size of a socket option buffer specified with the I0$ SENSEMODE function was invalid.
SS$ NOSUCHDEV

Programming error or INET management error. An INET address is not in the Address Resolution
Protocol (ARP) table. An attempt to show or delete an ARP table entry failed.

SS$ NOLINKS

The specified socket was not connected.
SS$ NOOPER

Programming error. An attempt to get ARP information occurred without OPER privilege.
SS$ PROTOCOL

A network protocol error occurred. The address family specified in the socket address structure is
not supported.

SS$_SHUT

The local or remote node is no longer accepting connections.

263

Chapter 6. OpenVMS System Services Reference

SS$ UNREACHABLE

The remote node is currently unreachable.

I0$_SETMODE/I0O$_SETCHAR

10§ SETMODE/IO$ SETCHAR — The I0$ SETMODE and I0$ SETCHAR functions set one or
more parameters (characteristics) pertaining to the network driver. Sockets are created using the IO

$ SETMODE p1 argument. Names are assigned to sockets using the [0O$ SETMODE p3 argument.
Active sockets are converted to passive sockets using the [0$ SETMODE p4 argument. Other
parameters, such as socket and protocol options, are specified in an input parameter list using the 10
$§ SETMODE p5 argument. The IO§ SETMODE pl1, p3, and p4 arguments can be used with the p5
argument in a single $QIO system service to set socket names as well as socket and protocol options.
10$_SETMODE processes arguments in this order: p1, p3, p4, p5. If [0O$ _SETMODE detects an
error, the I/O status block (IOSB) contains the error and argument address or the value that was at
fault. Refer to individual argument descriptions for details about specifying the type and format of
input parameters.

Arguments

pl

OpenVMS usage: socket characteristics

type: longword (unsigned)
access: read only
mechanism: by reference

Longword specifying the protocol, socket type, and address family of a new socket. The p1 argument
is the address of the longword containing the socket characteristics.

The newly created socket is marked privileged if the image that creates a socket runs in a process that
has BYPASS, OPER, or SYSPRYV privilege.

The following table shows protocol codes:

Protocol Description
TCPIP$C _TCP TCP/IP protocol
TCPIP$SC UDP UDP/IP protocol
TCPIP$SC RAW_IP IP protocol

Table 6.6 lists the socket types.

Table 6.6. Socket Types

Socket Type Description

TCPIP$SC STREAM Permits bidirectional, reliable, sequenced,
and unduplicated data flow without record
boundaries.

TCPIP$C_DGRAM Permits bidirectional data flow with record
boundaries. No provisions for sequencing,
reliability, or unduplicated messages.

264

Chapter 6. OpenVMS System Services Reference

Socket Type Description

TCPIPSC _RAW Permits access to the IP layer; used to develop
new protocols that are layered upon the IP layer.

The following table shows address family codes:

Address Family Description

TCPIPSC _AF INET IPv4 Internet domain (default).

TCPIP$C_AF INET6 IPv6 Internet domain.

TCPIPSC AUXS Accept hand-off of a socket already created and

initialized by the auxiliary server.

The equivalent Sockets API function is socket ().
p3

OpenVMS usage: socket name

type: vector byte (unsigned)
access: read only
mechanism: byitem|ist_2 descriptor

The local name (that is, port number and IP address) to assign to the socket. The p3 argument is the
address of ani t em_| i st _2 descriptor that points to the socket address structure containing the
local name.

The equivalent Sockets API function is bi nd() .
p4

OpenVMS usage: connection_backlog

type: byte (unsigned)
access: read only
mechanism: by value

Maximum limit of outstanding connection requests for a socket that is connection oriented. If more
connection requests are received than are specified, the additional requests are ignored so that TCP
retries can succeed.

The equivalent Sockets API functionis| i sten().
p5

OpenVMS usage: input parameter list

type: vector byte (unsigned)
access: read only
mechanism: byitem.|ist_2 descriptor

Input parameter list describing one or more parameters to set. The p5 argument is the address of an
i tem | i st_2 descriptor that points to and identifies the type of input parameter list.

The equivalent Sockets API functions are set sockopt () andi octl ().

265

Chapter 6. OpenVMS System Services Reference

Condition Values Returned
SS$ NORMAL
The service completed successfully.
SS$ ACCVIO
The service cannot access a buffer specified by one or more arguments.
SS$ BADPARAM
Programming error that occurred for one of the following reasons:
* $QIO system service was specified without a socket.
* Error occurred processing a socket or protocol option.
SS$ DEVINTACT
The network driver was not started.
SS$ DEVNOTMOUNT
The network driver is loaded, but the INETACP is not currently available for use.
SS$ DUPLNAM

Programming error. The port being bound is already in use. An attempt to bind the socket to an
address and port failed.

SS$_FILALRACC

Programming error. The IP address is already in use. An attempt to bind the socket to an address
and port failed.

SS$ ILLCNTRFUNC

Programming error. An attempt to perform an I0$_SETMODE function required a socket, but the
device did not have one. Create a socket before issuing the function.

SS$_IVADDR

Programming error. The IP address you specified using the [0$ SETMODE function was not
placed into the system. This resulted in an invalid port number or IP address combination. The IP
address was invalid for one of the following reasons:

* An attempt was made to exceed the limit of allowable permanent entries in the ARP table.

* An attempt was made to bind a raw [P socket when there are no interfaces defined in the
system.

* An attempt was made to bind a raw IP socket to a null Internet address.
SS$ INSFMEM

Insufficient system dynamic memory to complete the service.

266

Chapter 6. OpenVMS System Services Reference

SS$ IVBUFLEN

The size of a socket option buffer specified with the [O$ _SETMODE function was invalid.
SS$ NOLICENSE

Programming or system management error. A TCP/IP Services license is not present.
SS$ NOOPER

Programming or INET management error. An attempt to was made to execute an I/O function that
needs the OPER privilege.

SS$ NOPRIV

Programming or INET management error. There are not enough privileges for the attempted
operation for one of the following reasons:

* An attempt was made to broadcast an IP datagram on a process without SYSPRV, BYPASS,
or OPER privilege.

* An attempt was made to use a reserved port number lower than 1024.
* An attempt was made to access a process that requires SYSPRV or BYPASS privilege.

* An attempt was made to use raw IP on a privileged socket that requires the SYSPRV or
BYPASS privilege.

SS$ NOSUCHDEV

Programming error or INET management error. An attempt was made to show or delete an ARP
table entry failed because the IP address is not found.

SS$ NOSUCHNODE

Programming error or INET management error. An attempt was made to delete a route from the
routing table failed because the entry was not found.

SS$§_PROTOCOL

Programming error. A specified protocol or address family caused an error for one of the
following reasons:

* Aninvalid protocol type was specified at socket creation.
* An unsupported protocol was specified.
* The address family is unsupported for one of the following reasons:

* Anunsupported address family was specified. Instead, specify the address family (TCPIP
$C_AF INET, TCPIP$SC AF INET6, or TCPIPSC UNSPEC).

* Anunsupported address family for the local IP address was specified. Instead, specify the
address family (TCPIP$C_AF INET or TCPIPSC _AF INET6).

* Anunsupported address family for the IP address of the routing module was specified.
Instead, specify the address family (TCPIPSC_AF INET or TCPIP$C AF INET6).

267

Chapter 6. OpenVMS System Services Reference

SS$ SHUT

The local or remote node is no longer accepting connections.

10$_SETMODE|IO$M_OUTBAND

I0$_SETMODE[IO$SM_OUTBAND — The I0$ SETMODE|IO$M_OUTBAND function/modifier
combination requests that the asynchronous system trap (AST) for an out-of-band (OOB) character

be delivered to the requesting process. This is to be done only when an OOB character is received on
the socket and there is no waiting read request. The socket must be a TCP (stream) socket. The Enable
OOB character AST function allows an Attention AST to be delivered to the requesting process only
once. After the AST occurs, the function must explicitly reenable AST delivery before a new AST can
be delivered. This function is subject to AST quotas.

Arguments
pl

OpenVMS usage: ast_procedure

type: procedure value
access: call without stack unwinding
mechanism: by reference

To enable the AST, the p1 argument is the address of the OOB character AST routine. To disable the
AST, p1 equals 0.

p2

OpenVMS usage: user_arg

type: longword (unsigned)
access: read only
mechanism: by value

AST parameter to be delivered to the AST routine specified by the p1 argument.
p3

OpenVMS usage: access_mode

type: longword (unsigned)
access: read only
mechanism: by value

Access mode to deliver the AST.

Condition Values Returned
SS$ NORMAL

The service completed successfully.

268

Chapter 6. OpenVMS System Services Reference

SS$_ABORT
Programming, INET management, or hardware error.
SS$§_ACCVIO
Programming error. An attempt to access an invalid memory location or buffer occurred.

Programming error. A $QIO service with an invalid parameter occurred for one of the following
reasons:

* An attempt was made to execute an I0O§ SETMODE function (all functions except socket
creation) without specifying a device socket. Instead, create a device socket by issuing a $QIO
with the IO$_SETMODE function and correct parameters.

* A socket option was specified incorrectly.)
SS$ DEVACTIVE

INET management error. An attempt to change the static parameters occurred. If new parameters
are needed, restart TCP/IP Services.

SS$ DEVINTACT

The network driver was not started.
SS$ DEVNOTMOUNT

The network driver is loaded but the INET ACP is not currently available for use.
SS$ DUPLNAM

Programming error. An attempt to bind a port that is already in use occurred. An attempt to bind
the socket to an address and port failed.

SS$_FILALRACC

Programming error. IP address is already in use. An attempt to bind the socket to an address and
port failed.

SS$_INSFMEM
Programming or system management error: Not enough resources to allocate new socket.
Programming error. Operation is not supported because of one of the following reasons:

* Invalid I0O$ SETMODE (IOCTL) function was used for the interface. The interface does not
have an IOCTL routine.

* An attempt was made to perform an I0$ SETMODE (IOCTL) function that required a
socket, but the device did not have one. Create a socket and issue the IOCTL function.)

SS$_IVADDR

The specified IP address was not found, or an invalid port number and IP address combination
was specified. Port 0 is not allowed with this function.

269

Chapter 6. OpenVMS System Services Reference

SS$ IVBUFLEN

Programming error. The socket option buffer has an invalid size.
SS$ NOLICENSE

Programming or system management error. The TCP/IP Services license is not present.
SS$ NOOPER

Programming or INET management error. An attempt was made to execute an I/O function that
needs the OPER privilege.

SS$ NOPRIV

Programming or INET management error. Not enough privileges for the attempted operation for
one of the following reasons:

* Broadcasting an IP datagram was denied because the process does not have SYSPRYV,
BYPASS, or OPER privilege.

* An attempt was made to use a reserved port number lower than 1024.
* An operation accesses only processes that have SYSPRV or BYPASS privilege.

* Raw IP protocol can be used only on privileged sockets. The process must have a SYSPRV or
BYPASS privilege.

SS$ NOSUCHDEV

Programming error or INET management error. An INET address is not in the ARP table. An
attempt to show or delete an ARP table entry failed.

SS$ NOSUCHNODE

Programming or INET management error. An attempt to delete a route from the routing table
failed because a route entry was not found.

SS$§_PROTOCOL
Programming error. The specified protocol type is not supported.
SS$_SHUT

The local or remote node is no longer accepting connections.

I0$_SETMODE|IO$SM_READATTN

I10$_SETMODE[IO$SM_READATTN — The I0$ SETMODE|IO$M_READATTN function/modifier
combination requests that an Attention AST be delivered to the requesting process when a data packet
is received on the socket and there is no waiting read request.

Description

The Enable Read Attention AST function enables an Attention AST to be delivered to the requesting
process only once. After the AST occurs, the function must explicitly reenable AST delivery before
the AST can occur again. The function is subject to AST quotas.

270

Chapter 6. OpenVMS System Services Reference

Consider the following when using IOSM_READATTN:

» There is a one-to-one correspondence between the number of times you enable an Attention AST
and the number of times the AST is delivered. For each enabled AST, one AST is delivered. If you
enable an Attention AST several times, several ASTs are delivered for one event when an event
occurs.

* If an out-of-band (OOB) Attention AST is enabled, the OOB AST is delivered, regardless of the
following:

* Anenabled Read Attention AST
* The TCPIP$C OOBINLINE socket option
* A READ $QIO waiting for completion on the socket

If the TCPIP$SC_OOBINLINE option is set, then a waiting READ $QIO is completed and the OOB
character is returned in the data stream.

* Ifboth an OOB AST and a Read Attention AST are enabled, only the OOB AST is delivered
when an OOB character is received.

» IfaRead Attention AST is enabled and the TCPIP$SC OOBINLINE socket option is set, a waiting
READ $QIO completes and the OOB character is returned in the data stream.

» IfaRead Attention AST is enabled and the TCPIP$C OOBINLINE socket option is not set
(clear), the Read Attention AST is delivered when an OOB character is received, regardless of
whether a READ $QIO is waiting for completion. In this case, the OOB character is not returned
in the data stream. Therefore, if the OOB character is the only character received, the READ
$QIO does not complete.

Arguments
pl

OpenVMS usage: ast_procedure

type: procedure value
access: call without stack unwinding
mechanism: by reference

To enable the AST, the p1 argument is the address of the Read Attention AST routine. To disable the
AST, set p1 to 0.

p2

OpenVMS usage: user arg

type: longword (unsigned)
access: read only
mechanism: by value

AST parameter to be delivered to the AST routine.

p3

271

Chapter 6. OpenVMS System Services Reference

OpenVMS usage: access _mode

type: longword (unsigned)
access: read only
mechanism: by value

Access mode in which the AST is delivered.

Condition Values Returned

SS$_ABORT

Programming, INET management, or hardware error. The route entry already exists, so the
attempt to add a route entry using the IO$ _SETMODE function failed.

SS$§ _ACCVIO
Programming error. An attempt to access an invalid memory location or buffer occurred.
SS$ BADPARAM

Programming error. The parameter specified for a $QIO function was invalid for one of the
following reasons:

* An attempt to execute the [0$ SETMODE functions without specifying a device socket
occurred. Instead, create a device socket by issuing a $QIO with the I0O$ SETMODE function
and the proper parameters.

* A socket option was specified incorrectly.
SS$_DEVACTIVE

INET management error. An attempt to change a static parameter was unsuccessful. If you need
new parameters, restart TCP/IP Services.

SS$ DEVINTACT

The network driver was not started.
SS$ DEVNOTMOUNT

The network driver is loaded but the INET ACP is not currently available for use.
SS$ DUPLNAM

Programming error. An attempt to bind a port already in use occurred so the operation to bind the
socket to the address and port failed.

SS$_FILALRACC

Programming error. An attempt to bind the socket to an address that is already in use occurred and
the operation failed.

SS$_INSFMEM

Programming or system management error. The system does not have enough resources to
allocate new socket.

272

Chapter 6. OpenVMS System Services Reference

SS$ ILLCNTRFUNC

Programming error. Operation is not supported.

Invalid I0$ SETMODE (IOCTL) function was used for the interface. The interface does not
have an IOCTL routine.

An attempt was made to perform an [0§ SETMODE (IOCTL) function that required a
socket, but the device did not have one. Create a socket and issue the IOCTL function.

SS$_IVADDR

Programming error. The specified IP address is not in the system, and an invalid port number or
an invalid IP address combination was specified with an IO$ _SETMODE function (a bind).

L]

An attempt to bind the address failed because the IP address is not in the system, Port 0 and IP
address 0 are not allowed, or Port 0 is not allowed when using an I0§ ACCESS function.

An attempt was made to make a permanent entry in the ARP table failed because of lack of
space. Too many permanent entries.

An attempt was made to bind an IP socket (raw IP) when there are no interfaces defined in the
system.

An attempt was made to bind an IP socket (raw IP) to a null INET address.

SS$ IVBUFLEN

Programming error. The socket option buffer has an invalid size.

SS$ NOLICENSE

Programming or system management error. The TCP/IP Services license is not present.

SS$ NOOPER

Programming or INET management error. An attempt was made to execute an I/O function that
needs the OPER privilege.

SS$_NOPRIV

Programming or INET management error. Not enough privileges for the attempted operation.

Broadcasting an IP datagram was denied because the process does not have SYSPRYV,
BYPASS, or OPER privilege.

An attempt was made to use a reserved port number lower than 1024.
An operation accesses only processes that have SYSPRV or BYPASS privilege.

Raw IP protocol can be used only on privileged sockets. The process must have a SYSPRV or
BYPASS privilege.

SS$ NOSUCHDEV

Programming error or INET management error. An Internet address is not in the ARP table. An
attempt to show or delete an ARP table entry failed.

273

Chapter 6. OpenVMS System Services Reference

3S$ NOSUCHNODE

Programming error or INET management error. An attempt to delete a route from the routing
table failed because a route entry was not found.

SS$ PROTOCOL
Programming error. The specified protocol type is not supported.
SS$ SHUT

The local or remote node is no longer accepting connections.

|I0$_SETMODE|IO$M_WRTATTN

10$ SETMODE|IO$M_WRTATTN — The I0$ SETMODE|IO$SM_WRTATTN function/modifier
combination (IO$M_WRTATTN is Enable Write Attention AST) requests that an Attention AST be
delivered to the requesting process when a data packet can be queued to the socket. For TCP sockets,
this occurs when space becomes available in the TCP transmit queue. The Enable Write Attention
AST function enables an Attention AST to be delivered to the requesting process only once. After
the AST occurs, the function must explicitly reenable AST delivery before the AST can occur again.
The function is subject to AST quotas. There is a one-to-one correspondence between the number of
times you enable an Attention AST and the number of times the AST is delivered. For example, for
each enabled AST, one AST is delivered. If you enable an Attention AST several times, several ASTs
are delivered for one event when the event occurs. You can use the TCP/IP management command
SHOW DEVICE SOCKET to display information about the socket's characteristics, options, and
state.

Arguments

pl

OpenVMS usage: ast_procedure

type: procedure value
access: call without stack unwinding
mechanism: by reference

To enable the AST, the p1 argument is the address of the Write Attention AST routine. To disable the
AST, plis set to 0.

p2

OpenVMS usage: user_arg

type: longword (unsigned)
access: read only
mechanism: by value

AST parameter to be delivered to the AST routine.
p3

OpenVMS usage: access_mode

274

Chapter 6. OpenVMS System Services Reference

type: longword (unsigned)
access: read only
mechanism: by value

Access mode in which the AST is delivered.

Condition Values Returned
SS$ ABORT

Programming error, INET management error, or hardware error. The route specified with the 10
$ SETMODE function already exists. Therefore, the operation failed.

SS$§_ACCVIO
Programming error. An attempt to access an invalid memory location or buffer occurred.
SS$ BADPARAM

Programming error. The parameter specified for the $QIO I/O function was invalid for one of the
following reasons:

* An attempt was made to execute the IO$ SETMODE functions without specifying a device
socket. Instead, create a device socket by issuing a $QIO with the I0$ SETMODE function
and the proper parameters.

* A socket option was specified incorrectly.
SS$ DEVACTIVE

INET management error. You attempted to change the static parameters. If you need new
parameters, restart TCP/IP Services.

SS$ DEVINTACT

The network driver was not started.
SS$ DEVNOTMOUNT

The network driver is loaded but the INET ACP is not currently available for use.
SS$ DUPLNAM

Programming error. Port that is being bound is already in use. An attempt to bind the socket to an
address and port failed.

SS$ _FILALRACC

Programming error. Because the IP address is already in use, an attempt to bind the socket to an
address and port failed.

SS$ INSFMEM

Programming or system management error. There are not enough resources to allocate a new
socket.

275

Chapter 6. OpenVMS System Services Reference

SS$ ILLCNTRFUNC

Programming error. An attempt was made to execute an IO§ SETMODE function that required a
socket, but the device did not have one. Instead, create a socket and issue the function.

SS$ IVADDR

Programming error. An invalid port number and IP address combination was specified with the IO
$ SETMODE bind function. This caused the operation to fail for one of the following reasons:

* Anillegal combination of Port 0 and IP address 0 was specified.

* An attempt was made to make a permanent entry in the ARP table and the operation failed
because of lack of space. There are too many permanent entries.

* An attempt was made to bind a raw IP socket when there were no interfaces defined in the
system.

* An attempt was made to bind a raw IP socket to a null IP address.
SS$ IVBUFLEN

Programming error. An invalid size was specified for the socket option buffer.
SS$ NOLICENSE

Programming or system management error. The TCP/IP Services license is not present.
SS$_NOOPER

Programming or INET management error. An attempt was made to execute an I/O function that
needs the OPER privilege.

SS$_NOPRIV
Programming or INET management error. The operation failed for one of the following reasons:

* An attempt was made to broadcast an IP datagram for a process without having SYSPRY,
BYPASS, or OPER privilege.

* An attempt was made to use a reserved port number lower than 1024.
* An attempt was made to access a process without having SYSPRV or BYPASS privilege.

* An attempt was made to use raw [P on a socket that is not a privileged socket. To do this, the
process must have SYSPRV or BYPASS privilege.

3S$ NOSUCHDEV

Programming error or INET management error. An attempt was made to show or delete an entry
in the ARP table. However, because the IP address was not in the ARP table, the operation failed.

SS$ NOSUCHNODE

Programming error or INET management error. An attempt was made to delete a route from
the routing information table (RIT). However, because the route was not found in the RIT, the
operation failed.

276

Chapter 6. OpenVMS System Services Reference

SS$ PROTOCOL
Programming error. The specified protocol is not supported.
SS$§_SHUT

The local or remote node is no longer accepting connections.

10$_WRITEVBLK

10§ WRITEVBLK — The I0$ WRITEVBLK function transmits data from the specified user
buffers to an Internet host. Use both p1 and p2 arguments to specify a single user buffer. Use the p5
argument to specify multiple buffers. For connection-oriented protocols, such as TCP, if the socket
transmit buffer is full, the I0O§ WRITEVBLK function is blocked until the socket transmit buffer has
room for the user data. For connectionless-oriented protocols, such as UDP and raw IP, the user data is
transmitted in one datagram. If the user data is greater than the socket's transmit quota, the error code
(SS$ TOOMUCHDATA) is returned.

Related Functions

The equivalent Sockets API functions are send(), sendt o(),sendnsg(),andwite().
Arguments
pl

OpenVMS usage: buffer

type: vector byte (unsigned)
access: read only
mechanism: (Alpha and 164) by 32- or 64-bit reference

(VAX) by 32-bit reference

The address of the buffer containing the data to be transmitted. The length of this buffer is specified
by the p2 argument.

p2

OpenVMS usage: buffer length

type: quadword unsigned (Alpha and 164); longword unsigned (VAX)
access: read only
mechanism: (Alpha and 164) by 64-bit value

(VAX) by 32-bit value

The length (in bytes) of the buffer containing data to be transmitted. The address of this buffer is
specified by the p1 argument.

p3

OpenVMS usage: socket name

277

Chapter 6. OpenVMS System Services Reference

type: vector byte (unsigned)
access: read only
mechanism: byitem.|ist_2 descriptor

The remote port number and IP address of the message destination. The p3 argument is the address
ofanitem | i st_2 descriptor pointing to the socket address structure containing the remote port
number and IP address.

p4

OpenVMS usage: mask longword

type: longword (unsigned)
access: read only
mechanism: by value

Longword of flags to specify attributes for this write operation. The following table lists the available
write flags:

Write Flag Description

TCPIP$C _MSG _OOB Writes an out-of-band (OOB) byte.
TCPIP$C_MSG DONTROUTE Sends message directly without routing.
TCPIP$SC_MSG_NBIO Completes the I/O operation and returns an error

if a condition arises that would cause the I/O
operation to be blocked. (Similar to using 10

$M_NOWAIT.)
pS
OpenVMS usage: buffer list
type: vector byte (unsigned)
access: read only
mechanism: (Alpha and 164) by 32- or 64-bit descriptor-fixed-length descriptor

(VAX) by 32-bit descriptor-fixed-length descriptor

Input buffer list describing one or more buffers containing the data to be transmitted. The p5 argument
is the address of a descriptor pointing to a input buffer list. Buffers are transmitted in the order
specified by the input buffer list. The transfer-length value returned in the I/O status block is the total
number of bytes transferred from all buffers.

If you use the p1 and p2 arguments, do not use the p5 argument; they are mutually exclusive.

Function Modifiers

I0$SM_EXTEND

Allows the use of extended modifiers with BSD Version 4.4. Valid only for datagram sockets
(UDP or raw IP); ignored for TCP.

278

Chapter 6. OpenVMS System Services Reference

I0O$M_INTERRUPT
Sends an OOB message.
I0$SM_NOWAIT

Regardless of a $QIO or $QIOW, if the system detects a condition that would cause the operation
to block, the system completes the I/O operation and returns the SS§ SUSPENDED status code.
When using this function modified, always check the message length in the IOSB to ensure that
all data is transferred. IO$_WRITEVBLK returns a success status even if data is only partially
transferred.

Condition Values Returned
SS$ ABORT

Programming error, INET management error, or hardware error. The execution of the I/O was
aborted.

SS$ ACCVIO

Programming error. An attempt was made to access an invalid memory location or buffer.
SS$ BADPARAM

Programming error. An I/O operation was specified using an invalid parameter.

* An attempt was made to execute an I0§ WRITEVBLK function without specifying a device
socket. First create a device socket by issuing an I0$ SETMODE function and the proper
arguments.

* An attempt was made to issue an I[0O$ WRITEVBLK function that did not specify a correct
buffer address (p1 or pS is null).

* An attempt was made to issue an [0$§ WRITEVBLK that specifies an invalid vectored buffer
(p5 specifies an invalid address descriptor).

SS$ CANCEL
The I/O operation was canceled by the SCANCEL system service.
SS$ DEVINTACT
The network driver was not started.
SS$ DEVNOTMOUNT
The network driver is loaded, but the INETACP is not currently available for use.
SS$ EXQUOTA

Returned when process resource mode wait is disabled. There is no Internet request packet (IRP)
available for completing the request. Increase the buffered I/O quota.

SS$_FILALRACC

Programming error.

279

Chapter 6. OpenVMS System Services Reference

* P address is already in use. An attempt was made to bind the socket to an address but the port
failed.

* [P protocol (raw socket). An attempt was made to specify a remote socket address with an 10
$ WRITEVBLK function, while an IP address was already specified with an [O$_ACCESS
function.

* UDP/IP protocol. An attempt was made to specify a remote socket address with an 10
$ WRITEVBLK function, while an IP address was already specified with the I0$ ACCESS
function.

SS$ ILLCNTRFUNC

Programming error. Unsupported operation on the protocol (UDP or TCP).
SS$ INSFMEM

Insufficient system dynamic memory to complete the operation.
SS$ IVADDR

Programming error. The specified IP address is not in the system, and an invalid port number or
an [P address combination was specified with an [0$ WRITEVBLK operation.

» An attempt to bind the socket failed because the INET address is not in the system, Port 0 and
IP address 0 are not allowed, or Port 0 is not allowed with an I0$ WRITEVBLK function.

* An attempt to get an interface IP address, broadcast mask, or network mask failed.

* A send request was made on a datagram-oriented protocol, but the destination address is
unknown or not specified.

SS$ IVBUFLEN
Programming error.
¢ The size of the buffer for an I/O function is insufficient.

* An attempt was made to issue an I0$§ WRITEVBLK function that specifies a correct buffer
address (p1 valid) but does not specify a buffer length (p2 is null).

SS$ LINKDISCON

Notification. Connection completion return code. The virtual circuit (TCP/IP) was closed at the
initiative of the peer. The application must stop sending data and must either shut down or close
the socket.

SS$§_PROTOCOL

Programming error. The address family of the remote address specified with an 10
$ WRITEVBLK function is not supported (UDP or TCP). The address family should be either
the TCPIPSC_AF INET or the TCPIPSC_AF INET6 address family.

SS$ NOLINKS

Programming error. The socket was not connected (TCP), or an INET port and address were not
specified with an I0$ ACCESS (UDP).

280

Chapter 6. OpenVMS System Services Reference

* AnlIO$ WRITEVBLK with no remote INET socket address was issued on a socket that was
not the object of an IO$_ACCESS function (raw IP).

* AnIO$ WRITEVBLK with no remote INET socket address was issued on a socket that was
not the object of an I0$ ACCESS function (UDP).

* An attempt was made to disconnect a socket that is not connected, or an attempt was made to
issue an I0$_WRITEVBLK function on an unconnected socket (TCP).

SS$ SHUT
The local or remote node is no longer accepting connections.
SS$ SUSPENDED
The system detected a condition that might cause the operation to block.
SS$ TIMEOUT
Programming error, INET management error, or hardware error.
* A TCP/IP connection timed out after several unsuccessful retransmissions.

* On a TCP socket where KEEPALIVE is set, the connection was idle for longer than the
timeout interval. The default is 10 minutes.

SS$ TOOMUCHDATA
Programming or INET management error. The message size was too large.
* An IP packet that is broadcast cannot be fragmented.

* The Not Fragment IP flag was set and the IP datagram was too large to be sent without being
fragmented.

* Internal error. The length of the Ethernet datagram does not allow enough space for the
minimum [P header.

* The message to be sent on a UDP or raw IP socket is larger than the socket buffer high water
allows. For more information, see Appendix B.

* An attempt was made to send or receive more than 16 buffers specified with the p5 argument.
SS$ UNREACHABLE
Communication status. The remote host is currently unreachable.

This indicates a hardware error. The data link adapter detected an error and shut itself off. The
TCP/IP Services software is waiting for the adapter to come back on line.

6.4. TELNET Port Driver I/O Function Codes

The TELNET port driver (TNDRIVER) provides terminal session support for TCP streaming
connections using the RAW, NVT, RLOGIN, and TELNET protocols. Either a remote device or an
application can be present at the remote endpoint of the connection.

281

Chapter 6. OpenVMS System Services Reference

A user program can manage a TELNET connection with the standard OpenVMS $QIO system
service by using the IO$ TTY PORT and IO$ TTY PORT BUFIO I/O function codes. This section
describes these 1/0O function codes and their associated arguments.

6.4.1. Interface Definition

The following definitions are used by the interface. The symbols are defined in SYS
SLIBRARY:TNIODEF.H.

6.4.1.1. Item List Codes

Table 6.7 describes the symbols used with the p5 parameter.

Table 6.7. List Codes for the p5 Item

Item Code Maximum Size Description

TN$_ACCPORNAM 64 Access port name string.

When written, the string's
length is determined by the
item_length field. The value of
i tem_| engt h should not be
more than 63 bytes. When read,
the string is returned in ASCIC
format (the first byte contains
the string's length), so a size of
64 is appropriate.

TN$ CHARACTERISTICS 4 Characteristics mask. This
longword contains a bit mask of
the device's characteristics read
or to be written. (See Table 6.8.)

TN 4 Reconnection attempts.

$ CONNECTION ATTEMPTS This item is the number of
unsuccessful reconnection
attempts which have been made
on a reconnectable device. The
value will be reinitialized when
a successful connection is made.
This item is read only.

TN 4 Minimum time (in seconds)

$ CONNECTION INTERVAL before reconnection attempts.

TN 4 Current time (in seconds) since

$§ CONNECTION _TIMEOUT the last reconnection attempt.
This item is read only.

TNS DATA HIGH 4 Maximum amount of output

data (in bytes) buffered at the
network port. This number does
not affect the amount of data
buffered within the socket.

TNS$ DEVICE UNIT 4 Terminal device unit number.
When written, this value must be
between 1 and 9999.

282

Chapter 6. OpenVMS System Services Reference

Item Code

Maximum Size

Description

TNS$ IDLE INTERVAL

4

Maximum idle time (in seconds)
allowed before a connection is to
be broken. Connections are not
broken if the device is stalled.

TN$_IDLE TIMEOUT

Current time (in seconds) since
last output on the terminal. This
item is read only.

TN$_LOCAL ADDRESS

32

Local sockaddr of the active
connection. When written,

the value of i t em_| engt h
determines the size of the
sockaddr . Note that the
sockaddr is in BSD Version
4 .4 format, which includes

a sockaddr size field. (C
programs should be compiled
with the SOCKADDR_LEN
symbol defined.) This item is
read only.

TN
$ NETWORK_DEVICE NAME

64

Name of the network
pseudodevice currently bound
to the terminal. When read,

the data is returned in ASCIC
format (the first byte contains
the string's length). This item is
read only.

TN$_PROTOCOL

Session protocol. (See
Table 6.9.)

TN$_REMOTE ADDRESS

32

Remote peer's sockaddr of the
active connection. Note that the
sockaddr is in BSD Version
4.4 format, which includes a
sockaddr size field. The size
of the sockaddr should be
determined from this field. This
item is read only.

TN$_SERVICE _TYPE

Class of terminal service. (See
Table 6.10.)

TNS$_STATUS

Current device and session
status. This item is read only.

6.4.1.2. Characteristic

Mask Bits

Table 6.8 describes the characteristic mask bits used with the p5 parameter.

Table 6.8. Characteristic Mask Bits

Characteristic

Description

TNSM_AUTOCONNECT

The device supports automatic connect/reconnect.

283

Chapter 6. OpenVMS System Services Reference

Characteristic

Description

TNSM_LOGIN _ON_DASSGN

Initiate a login when the TELNET device is
deassigned. This characteristic requires the
BYPASS or SYSNAM privilege or executive or
kernel mode calls.

TN$SM_LOGIN TIMER

Used in conjunction with TN

$M_LOGIN_ON DASSGN, this bit indicates
that the login completion timer applies. If the
TN device fails to login within 60 seconds,

the connection will be broken and the device
deallocated. This characteristic requires the
BYPASS or SYSNAM privileges or executive or
kernel mode calls.

TNSM_PERMANENT UCB

The TELNET device is to remain until explicitly
deleted.

TNSM_RETAIN ON_DASSGN

The TELNET device is not to be deleted upon
the deassignment of the last channel to this
device. This condition is cleared on this last
deassignment, so that a subsequent assign and
deassign will result in the device being deleted.

TNSM_VIRTUAL TERMINAL

When logging in under this device, a virtual
terminal is to be created by TTDRIVER.

6.4.1.3. Protocol Types

Table 6.9 describes the protocol types used with the p5 parameter.

Table 6.9. Protocol Type Codes

Protocol Type

Description

TNSK PROTOCOL UNDEFINED

There is no explicit protocol for this session. Data
is transmitted and received on the socket without
any interpretation. This is a raw connection.

TN$K_PROTOCOL NVT

Network Virtual Terminal (NVT) protocol. The
protocol understands basic session control but
does not include the options negotiation present
in the TELNET protocol.

TN$K_PROTOCOL_RLOGIN

BSD Remote Login protocol. This simple
protocol provides some special control character
support but lacks the architecture independence of
the NVT and TELNET protocols.

TN$K_PROTOCOL TELNET

TELNET protocol. Including the basic NVT
protocol, TELNET adds support for options
negotiation. This can provide an enhanced
terminal session depending upon the client and
server involved.

6.4.1.4. Service Types

Table 6.10 describes the service type codes used with the p5 parameter.

284

Chapter 6. OpenVMS System Services Reference

Table 6.10. Service Type Codes

Service Type

Description

TNSK _SERVICE NONE

The service type is not currently known.

TN$K_SERVICE INCOMING

The service is an incoming connection.

TN$K_SERVICE OUTGOING

The service is an outgoing connection.

6.4.2. Passing Parameters to the TELNET Port Driver

The IO$_TTY_PORT function is used to pass $QIO parameters through the terminal driver to the
TELNET port driver. The actual subfunction is encoded as an option mask and may be:

* IO$M_TN_STARTUP — Bind socket to a TELNET terminal.

+ IO$SM_TN _SHUTDOWN — Unbind socket from a TELNET terminal.

6.5. TELNET Port Driver I/O Function Codes

|I0$_TTY_PORT|IO$M_TN_STARTUP

I0$ TTY PORT[IO$M TN STARTUP — Bind socket to a TELNET terminal. This subfunction will
bind a created (connected) socket to a TELNET terminal device.

Arguments

pl

OpenVMS usage: channel

type: word (unsigned)
access: read only
mechanism: by value

The p1 argument contains the channel number of the socket over which the TELNET session is to be

established.

p2

OpenVMS usage: protocol number
type: longword (unsigned)
access: read only
mechanism: by value

The p2 argument contains the protocol selection.

p3

OpenVMS usage: characteristics mask
type: longword (unsigned)
access: read only
mechanism: by value

285

Chapter 6. OpenVMS System Services Reference

The p3 argument specifies a mask of characteristics to apply against the connection. See Table 6.8 for
possible values.

Description

The IO$M_TN_STARTUP subfunction allows the application to communicate over a socket using
the terminal driver QIO interface. Note that incoming and outgoing data is processed by the terminal
driver, and that the terminal's characteristics may affect the format of the data. Be aware that by
default, the terminal will echo incoming data back to the sender.

Once the subfunction completes, the application is free to perform all terminal QIO functions
on the connection. While the socket is bound to a terminal device, it will process neither the IO
$ READxBLK nor the [IO$§ WRITExBLK function, and will return the error SS§ DEVINUSE.

Condition Values Returned
SS$ IVCHAN

Programming error. The specified channel is not valid.
SS$ IVMODE

Programming error. The access mode of the channel is more privileged than the access mode of
the terminal's channel.

SS$ NOPRIV

Programming error. The TNSM_LOGIN_ON_DASSGN characteristic was specified in a
characteristics mask from a $QIO in USER or SUPERVISOR mode without either the BYPASS
or SYSPRYV privilege.

SS$ NOTNETDEV
Programming error. The specified channel is an assignment to a non-BG device.
SS$ PROTOCOL

Programming error. The specified protocol number is not valid, or the network is not available.

|I0$_TTY_PORT|IO$M_TN_SHUTDOWN

I0$_TTY PORT|IO$SM TN SHUTDOWN — Unbind socket from a TELNET terminal. This
subfunction will unbind a previously bound socket-terminal connection.

Arguments

pl

OpenVMS usage: channel

type: word (unsigned)
access: read only
mechanism: by value

The p1 argument contains the channel number of the socket to establish the TELNET session.

286

Chapter 6. OpenVMS System Services Reference

Description

The IOSM_TN SHUTDOWN subfunction allows the application to break a previously bound socket-
terminal connection (created with IO$M_TN_ STARTUP). The channel must be from an assignment
to the same network pseudodevice in the socket-terminal connection.

Upon completion, the application retains the assignments to the connection and the TELNET
terminal, but they are no longer related. Any subsequent [0$ READxBLK or I0§ WRITExBLK
function on the socket channel will no longer return the error SS§ DEVINUSE.

Condition Values Returned
SS$ IVCHAN

Programming error. The specified channel is not valid.
SS$ IVMODE

Programming error. The access mode of the channel is more privileged than the access mode of
the terminal's channel.

SS$ NOTNETDEV
Programming error. The specified channel is an assignment to a non-BG device.
SS$ DEVREQERR

Programming error. The device on the channel does not match the device in the socket-terminal
connection.

6.6. Buffered Reading and Writing of Item
Lists

The IO$_TTY PORT BUFIO function is used to pass $QIO parameters through the terminal driver
to the TELNET port driver. [O$ TTY PORT BUFIO differs from IO$ TTY PORT in that certain
subfunctions accept buffered item lists for reading or writing parameters to the terminal device.

* IO$M_TN_SENSEMODE — Read device parameters.
+ JO$M_TN SETMODE — Write device parameters.

The subfunctions of I0O$ TTY PORT BUFIO accept an item list for input or output. Figure 6.1
shows the format of this item list.

Figure 6.1. Subfunction Item List

31 16 15 0
item_code ‘ item_length
Iem 1
lem_address j
_— ::} ltems 2...n
0 0 End of list

W-04404-A1

The item list is terminated with an i t em code andi t em_| engt h, both of which are zero.

287

Chapter 6. OpenVMS System Services Reference

The subfunctions of IO$ TTY PORT BUFIO can be combined into a single $QIO. For example, the
IO$SM_TN_SETMODE and IOSM_TN_CONNECT can be combined to set the device's parameters
and then to attempt to make a connection.

The subfunctions are performed in the following order:
1. IOSM_TN SETMODE

2. IO$M_TN_CONNECT

3. IO$M_TN_SENSEMODE

4. 10SM_TN_DISCON

Note

Certain items are read only (IO$M_TN_SENSEMODE) and cannot be written (10
$M_TN_SETMODE). Normally, attempting to write such items would result in the error

SS$ BADATTRIB. However, if a combination operation (IO$M_TN_ SENSEMODE|IO

$M_TN _SETMODE) is being performed, these items will nof result in an error. Rather, the items
will be ignored in the IOSM_TN_SETMODE processing, and the $QIO will continue with 10
$M_TN_SENSEMODE processing, returning the information that the item specifies.

6.7. TELNET Port Driver I/O Function Codes
I0$_TTY_PORT_BUFIO|IO$M_TN_SENSEMODE

I0$ TTY PORT BUFIO[IO$SM TN SENSEMODE — Read device parameters.

Arguments

pS

OpenVMS usage: item list 2

type: vector byte (unsigned)
access: read only

mechanism: by reference

The p5 argument is the address of an item list that contains a summary of information to be read from
the device.

Description

The IO$M_TN_SENSEMODE subfunction of IO$_TTY PORT_ BUFIO is used to read the
parameters associated with a device.

Condition Values Returned
SS$ BADATTRIB

Programming error. The item code within the list is not valid. This could be because of its code,
an attempt to write a read-only parameter, or inappropriate size. The address of the item's buffer is
returned in the second longword of the I/O status block.

288

Chapter 6. OpenVMS System Services Reference

SS$ IVBUFLEN

Programming error. The length of the specified item is not acceptable. The address of the item's
buffer is returned in the second longword of the I/O status block.

SS$_NOPRIV

Programming error. An item that requires a privilege which the requestor does not have is present
in the item list. The address of the item's buffer is returned in the second longword of the 1/0
status block.

|I0$_TTY_PORT_BUFIO|IO$M_TN_SETMODE

I0$_TTY PORT BUFIO|IO$SM TN SETMODE — Write device parameters.

Arguments

p5

OpenVMS usage: item list 2

type: vector (byte unsigned)
access: read only

mechanism: by reference

The p5 argument is the address of an item list that contains a summary of information to be written to
the device.

Description

The IO$M_TN_SETMODE subfunction of [O$_TTY_ PORT_BUFIO is used to write the parameters
associated with a device.

Condition Values Returned
SS$ BADATTRIB

Programming error. The item code within the list is not valid. This could be because of its code,
an attempt to write a read-only parameter, or inappropriate size. The address of the item's buffer is
returned in the second longword of the 1/O status block.

SS$ DUPLNAM

Programming error. An attempt to set the device's unit number via the TN$ DEVICE UNIT item
has failed because that specified unit number was already present.

SS$ IVBUFLEN

Programming error. The length of the specified item is not acceptable. The address of the item's
buffer is returned in the second longword of the I/O status block.

SS$_NOPRIV

Programming error. An item that requires a privilege which the requester does not have is present
in the item list. The address of the item's buffer is returned in the second longword of the I/0O
status block.

289

Chapter 6. OpenVMS System Services Reference

290

Appendix A. Socket Options

This appendix describes the socket options that you can set with the Sockets API set sockopt ()
function and the $QIO system service [0$ SETMODE and 10§ SETCHAR I/O function codes. You
can query the value of these socket options using the Sockets API get st ockopt () function or the
$QIO system service I0$ SENSEMODE or I0$ SENSECHAR 1/O function code.

The following tables list:
* Socket Options

* TCP Protocol Options
» IP Protocol Options

* [Pv6 Socket Options

Table A.1 lists the socket options that are set at the SOL_SOCKET level and their Sockets API and

system service symbol names.

Table A.1. Socket Options

Sockets API Symbol

System Service Symbol

Description

SO BROADCAST

TCPIPSC_BROADCAST

Permits the sending of broadcast
messages. Requires an integer
parameter and SYSPRYV,
BYPASS, or OPER privilege.
Optional for a connectionless
datagram.

If the i net subsystem attribute
ovne_nobr oadcast check
is not zero, any nonprivileged
application can send broadcast
messages.

SO_DONTROUTE

TCPIP$C _DONTROUTE

Indicates that outgoing messages
should bypass the standard
routing facilities. Instead, the
messages are directed to the
appropriate network interface
according to the network portion
of the destination address.

SO_ERROR

TCPIPSC_ERROR

Obtains the socket error status
and clears the error on the
socket.

SO FULL DUPLEX_CLOSE

TCPIP
$C_FULL DUPLEX_ CLOSE

When set, if the remote
application closes the
connection, the next transmit
operation will return an error.

SO _KEEPALIVE

TCPIP$SC_KEEPALIVE

Keeps connections active.
Enables the periodic
transmission of keepalive probes
to the remote system. If the

291

Appendix A. Socket Options

Sockets API Symbol

System Service Symbol

Description

remote system fails to respond
to the keepalive probes, the
connection is broken.

If the SO KEEPALIVE
option is enabled, the

values of TCP_KEEPCNT,
TCP_KEEPINTVL and
TCP_KEEPIDLE affect TCP
behavior on the socket.

SO LINGER

TCPIP$SC_LINGER

Lingers on a cl ose() function
if data is present. Controls

the action taken when unsent
messages queue on a socket

and a cl ose() function is
performed. Uses a | i nger
structure parameter defined

in SOCKET.H to specify the
state of the option and the linger
interval.

If SO_LINGER is specified, the
system blocks the process during
the cl ose() function until it
can transmit the data or until

the time expires. If the option is
not specified and a cl ose()
function is issued, the system
allows the process to resume as
soon as possible.

SO OOBINLINE

TCPIP$C_OOBINLINE

When this option is set, out-
of-band data is placed in the
normal input queue. When
SO_OOBI NLI NE is set, the
M5G_OOB flag to the receive
functions cannot be used to read
the out-of-band data. A value
of 0 disables the option, and

a nonzero value enables the
option.

SO RCVBUF

TCPIP$SC_RCVBUF

Sets the receive buffer size,

in bytes. Requires an integer
parameter and SYSPRYV,
BYPASS, or OPER privileges.

SO RCVTIMEO

TCPIP$C RCVTIMEO

For VSI use only. Sets the
timeout value forar ecv()
operation. The argument is a
pointer toati meval structure
containing an integer value
specified in seconds.

292

Appendix A. Socket Options

Sockets API Symbol

System Service Symbol

Description

SO_REUSEADDR

TCPIP$C _REUSEADDR

Specifies that the rules used in
validating addresses supplied
by a bi nd() function should
allow reuse of local addresses.
A value of 0 disables the option,
and a non-zero value enables the
option. The SO REUSEPORT
option is automatically set

when an application sets
SO_REUSEADDR.

SO REUSEPORT

TCPIPSC_REUSEPORT

Allows more than one process
to receive UDP datagrams
destined for the same port.
The bi nd() call that binds

a process to the port must be
preceded by a set sockopt ()
call specifying this option.
SO_REUSEPORT is
automatically set when

an application sets the

SO _REUSEADDR option.

SO_SHARE TCPIP$C _SHARE Allows multiple processes to
share the socket.
SO SNDBUF TCPIP$C _SNDBUF Sets the send buffer size

in bytes. Takes an integer
parameter and requires SYSPRV,
BYPASS, or OPER privileges.
Optional for a connectionless
datagram.

SO_SNDLOWAT

TCPIPSC_SNDLOWAT

Sets the low-water mark for
asend() operation. The

send low-water mark is the
amount of space that must exist
in the socket send buffer for
sel ect () to return writeable.
Takes an integer value specified
in bytes.

SO _SNDTIMEO

TCPIP$SC_SNDTIMEO

For VSI use only. Sets the
timeout value for a send()
operation. The argument is a
pointer toati meval structure
containing an integer value
specified in seconds.

SO TYPE

TCPIPSC_TYPE

Obtains the socket type.

SO_USELOOPBACK

TCPIP$SC_USELOOPBACK

For VSI use only. This option
applies only to sockets in the
routing domain (AF_ROUTE),
When you enable this option,

293

Appendix A. Socket Options

Sockets API Symbol

System Service Symbol

Description

the socket receives a copy of
everything sent on the socket.

Table A.2 lists the TCP protocol options that are set at the IPPROTO_TCP level and their Sockets
API and system service symbol names. You must use the TCP.H header file to specify the TCP

protocol options.

Table A.2. TCP Protocol Options

Sockets API Symbol

System Service Symbol

Description

TCP_KEEPCNT

TCPIP$C_TCP_KEEPCNT

When the SO KEEPALIVE
option is enabled, TCP sends
probes to the remote system

of a connection that has been
idle for a period of time.

The TCP_KEEPCNT option
specifies the maximum number
of keepalive probes to be sent.

To display the values of the

i net subsystem attributes,
enter the following command at
the system prompt:

$ TCPIP sysconfig -q
i net

The default value for
TCP_KEEPCNT is 8.

TCP_KEEPIDLE

TCPIPSC _TCP_KEEPIDLE

When the SO KEEPALIVE
option is enabled, TCP sends
probes to the remote system
of a connection that has been
idle for a period of time.
TCP_KEEPIDLE specifies the
number of seconds before TCP
will send the initial keepalive
probe.

To display the values of the

i net subsystem attributes,
enter the following command at
the system prompt:

$ TCPI P sysconfig -q
i net

The default value for
TCP_KEEPIDLE is 75
seconds.

TCP_KEEPINIT

TCPIP$C_TCP KEEPINIT

If a TCP connection cannot
be established within a period

294

Appendix A. Socket Options

Sockets API Symbol

System Service Symbol

Description

of time, TCP will time out the
connection attempt. The default
timeout value for this initial
connection establishment is 75
seconds. The TCP_KEEPINIT
option specifies the number
of seconds to wait before the
connection attempt times out.
For passive connections, the
TCP_KEEPINIT option value
is inherited from the listening
socket.

To display the values of the

i net subsystem attributes,
enter the following command at
the system prompt:

$ TCPI P sysconfig -q
i net

The default value for
TCP_KEEPINIT is 75 seconds!.

TCP_KEEPINIT option does not
require the SO_KEEPALIVE
option to be enabled.

TCP_KEEPINTVL

TCPIP$C_TCP_KEEPINTVL

When the SO KEEPALIVE
option is enabled, TCP sends
probes to the remote system

on a connection that has been
idle for a period of time. The
TCP_KEEPINTVL option
specifies the number of seconds
to wait before retransmitting a
keepalive probe. The default
value for this retransmit interval
is 75 seconds'.

To display the values of the

i net subsystem attributes,
enter the following command at
the system prompt:

$ TCPIP sysconfig -q
i net

TCP_NODELAY

TCPIP$SC_TCP_NODELAY

Specifies that the send()
operation not be delayed to
merge packets.

Under most circumstances, TCP
sends data when it is presented.

295

Appendix A. Socket Options

Sockets API Symbol

System Service Symbol

Description

When outstanding data has

not yet been acknowledged,
TCP gathers small amounts

of the data into a single

packet and sends it when an
acknowledgment is received.
This functionality can cause
significant delays for some
clients that do not expect replies
(such as windowing systems that
send a stream of events from the
mouse). The TCP_NODELAY
option disables the Nagle
algorithm, which reduces the
number of small packets on a
wide area network.

TCP_MAXSEG

TCPIP$C_TCP_MAXSEG

Sets the maximum transmission
unit (MTU) of a TCP segment
to a specified integer value from
1 to 65535. The default is 576
bytes. Can only be set before
alisten() orconnect ()
operation on the socket. For
passive connections, the value
is obtained from the listening
socket.

Note that TCP does not use an
MTU value that is less than
32 or greater than the local
network's MTU. Setting the
option to zero results in the
default behavior.

TCP_NODELACK

TCPIP$C_TCP_NODELACK

When specified, disables

the algorithm that gathers
outstanding data that has not
been acknowledged and sends
it in a single packet when
acknowledgment is received.
Takes an integer value.

TCP_PAWS

TCPIPSC_TCP PAWS

When specified, the receiver
rejects any old duplicate
segments it receives. This option
is used on synchronized TCP
connections only, and requires
that the TCP_TSOPTENA
option be enabled also.

TCP_SACKENA

TCPIP$C TCP_SACKENA

When specified, the receiver
can inform the sender about
all segments that arrive

296

Appendix A. Socket Options

Sockets API Symbol

System Service Symbol

Description

successfully. This allows the
sender to retransmit only those
segments that have actually been
lost. This option is useful in
cases where multiple segments
are dropped.

TCP_TSOPTENA

TCPIP$SC_TSOPTENA

When specified, the sender
places a timestamp in each

data segment. The receiver,

if configured to accept them,
sends these times back in the
acknowledgement (ACK)
segments. This allows the
sender to measure the round-trip
communication time.

TCP protocol options that are obsolete but provided for backward compatibility

TCP_DROP IDLE

TCPIP$C_TCP DROP_IDLE

When the TCP_KEEPALIVE
option is enabled, the
TCP_DROP_IDLE option
specifies the time interval after
which a connection is dropped.
The value of TCP_ DROP_IDLE
is an integer specified in
seconds.

When the TCP_ DROP_IDLE
option is set, the value of

the TCP_KEEPCNT option

is calculated as the value of
TCP_DROP_IDLE divided by
the value of TCP_KEEPINTVL.

A call to get sockopt ()
function specifying the
TCP_DROP_IDLE option
returns the result of multiplying
the values of TCP_KEEPCNT
and TCP_KEEPINTVL.

TCP_PROBE_IDLE

TCPIP$C_TCP_PROBE_IDLE

When the TCP_ KEEPALIVE
option is enabled, the
TCP_PROBE IDLE option
specifies the time interval
between the keepalive probes
and for the connections
establishing the timeout. The
value of TCP_PROBE_IDLE is
an integer specified in seconds.

When this option is set,
TCP_KEEPINTVL,

297

Appendix A. Socket Options

Sockets API Symbol

System Service Symbol

Description

TCP_KEEPIDLE and
TCP_KEEPINIT are set
to the value specified for
TCP_PROBE_IDLE.

A call to the get sockopt ()
function specifying the
TCP_PROBE_IDLE

option returns the value of
TCP_KEEPINTVL.

!The value of this option is stored internally as half-seconds. When setting or retrieving the value of the systemwide parameter, the value is
expressed as half-seconds. When setting or retrieving the value of the socket option, the value is expressed as seconds.

Table A.3 lists options that are set at the IPPROTO_IP level and their Sockets API and system service

symbol names.

Table A.3. IP Protocol Options

Sockets API Symbol

System Service Symbol

Description

IP. ADD_MEMBERSH]

FCPIP
$C IP. ADD MEMBERSHIP

Adds the host to the membership of a
multicast group.

A host must become a member of a
multicast group before it can receive
datagrams sent to the group.

Membership is associated with a

single interface; programs running on
multihomed hosts may need to join the
same group on more than one interface.
Up to IP. MAX MEMBERSHIPS
(currently 20) memberships may be
added on a single socket.

IP. DROP MEMBERS}

TIICPIP
$C 1P DROP_MEMBERSHIP

Removes the host from the membership
of a multicast group.

IP_ HDRINCL

TCPIP$C_IP_HDRINCL

If specified for a raw IP socket, you must
build the IP header for all datagrams sent
on the raw socket.

IP. MULTICAST IF

TCPIP$C_IP. MULTICAST IF

Specifies the interface for outgoing
multicast datagrams sent on this
socket. The interface is specified as an
i n_addr structure.

IP._ MULTICAST LOOI

TCPIP
$C_IP_MULTICAST LOOP

Disables loopback of local delivery.

If a multicast datagram is sent to a group
which the sending host is a member,

a copy of the datagram is looped back
by the IP layer for local delivery (the
default). To disable the loopback
delivery, specify a value of 0.

298

Appendix A. Socket Options

Sockets API Symbol

System Service Symbol

Description

IP. MULTICAST TTL

TCPIP
$C_IP_ MULTICAST TTL

Specifies the time-to-live (TTL) value
for outgoing multicast datagrams.

Takes an integer value between 0 and
255:

Value Action

0 Restricts
distribution to
applications
running on the local
host.

1 Forwards the
multicast datagram
to hosts on the local
subnet.

2-255 With a multicast
router attached to
the sending host's
network, forwards
multicast datagrams
beyond the local
subnet.

Multicast routers
forward the
datagram to known
networks that have
hosts belonging

to the specified
multicast group.
The TTL value

is decremented

by each multicast
router in the

path. When the
TTL value is
decremented to
zero, the datagram
is no longer
forwarded.

IP_OPTIONS

TCPIP$SC_IP_OPTIONS

Provides IP options to be transmitted in
the IP header of each outgoing packet.

IP. RECVDSTADDR

TCPIPSC 1P RECVDSTADDR

Enables a SOCK_DGRAM socket to
receive the destination IP address for a
UDP datagram.

IP_ RECVOPTS

TCPIPSC_IP RECVOPTS

Enables a SOCK_DGRAM socket to
receive IP options.

IP_TTL

TCPIP$C_IP_TTL

Time to live (TTL) for a datagram.

299

Appendix A. Socket Options

Sockets API Symbol

System Service Symbol

Description

IP_TOS

TCPIP$SC_IP_TOS

Type of service (1-byte value).

Table A.4 describes the socket options supporting [Pv6. The IPv6 socket options do not have system

service symbols.

Table A.4. IPv6 Socket Options

Sockets API Symbol

Description

IPV6_RECVPKTINFO

Source and destination IPv6 address, and sending
and receiving interface.

IPV6_RECVHOPLIMIT

Hop limit.

IPV6_RECVRTHDR

Routing header.

IPV6_RECVHOPOPTS

Hop-by-hop options.

IPV6_RECVDSTOPTS

Destination options.

IPV6 _CHECKSUM

For raw IPv6 sockets other than ICMPv6 raw
sockets, causes the kernel to compute and store
checksum for output and to verify the received
checksum on input. Discards the packet if the
checksum is in error.

IPV6_ICMP6 FILTER

Fetches and stores the filter associated with the
ICMPv6 raw socket using the get sockopt ()
function and set sockopt () functions.

IPV6_UNICAST HOPS

Sets the hop limit for all subsequent unicast
packets sent on a socket. You can also use this
option with the get sockopt () function to
determine the current hop limit for a socket.

IPV6_MULTICAST IF

Sets the interface to use for outgoing multicast
packets.

IPV6_MULTICAST HOPS

Sets the hop limit for outgoing multicast packets.

IPV6_MULTICAST LOOP

Controls whether to deliver outgoing multicast
packets back to the local application.

IPV6_JOIN_GROUP

Joins a multicast group on the specified interface.

IPV6_LEAVE GROUP

Leaves a multicast group on the specified
interface.

300

Appendix B. IOCTL Requests

Thei oct| () Sockets API function and the IO$_SENSEMODE and I0$_SETMODE function
codes used with the $QIO system service perform I/O control functions on a network pseudodevice

(BG:).

The following tables list the IOCTL requests supported by TCP/IP Services, their data types, the
equivalent $QIO system services, and descriptions of their operations:

» Table B.1 describes the terminal compatibility options.

» Table B.2 describes the socket operations.

» Table B.3 describes the interface operations. These request types are defined in the IF.H header

file.

» Table B.4 describes the routing operations. These request types are defined in the ROUTE.H

header file.

* Table B.5 describes the ARP cache operations. These request types are defined in the [F_ ARP.H

header file.

Table B.1. Terminal Compatibility Operations

you are at the out-of-
band character mark.
The operation returns
a nonzero value if the

Operation Data Type $QIO Function Code |Description

FIONREAD int 10$_SENSEMODE Get number of bytes to
read.

FIONBIO int 10$_SETMODE Set/clear non-blocking
I/O.

FIOASYNC int 10$ SETMODE Set/clear asynchronous
1/0.

FIOSETOWN int 10$ SETMODE Set owner.

FIOGETOWN int 10$_SENSEMODE Get owner.

FIOPIPESTAT int 10$_SENSEMODE Pipe first-in, first out
statistics.

FIOFATTACH int 10$ SETMODE Internal: fattach.

FIOFDETACH int 10$ SETMODE Internal: fdetach.

Table B.2. Socket Operations

Operation Data Type $QIO Function Code |Description

SIOCSHIWAT int 10$_SETMODE Set high watermark.

SIOCGHIWAT int 10$_SENSEMODE Get high watermark.

SIOCSLOWAT int 10§ SETMODE Set low watermark.

SIOCGLOWAT int I0$_SENSEMODE Get low watermark.

SIOCATMARK int 10$ SENSEMODE Determines whether

301

Appendix B. IOCTL Requests

Operation

Data Type

$QIO Function Code

Description

socket's read pointer
is currently at the end-
of-band mark or a
zero value if the read
pointer is not at the
out-of-band mark. The
value is returned in the
integer pointed to by
the third argument of
thei oct () call. For
more information, see
Section 2.11.2.

Table B.3. Interface Operations

Operation

Data Type

$QIO Function Code

Description

SIOCSIFADDR

struct ifreq

10§ SETMODE

Sets the interface
address from the

i fr_addr member.
The initialization
function for the
interface is also called.

SIOCSIFDSTADDR

struct ifreq

10$ SETMODE

Sets the point-to-
point address from
thei fr_dstaddr
member.

SIOCSIFFLAGS

struct ifreq

10$ SETMODE

Sets the interface flags
fromthei fr_fl ags
member.

SIOCGIFFLAGS

struct ifreq

10$_SENSEMODE

Returns the

interface flags in the

i fr_fl ags member.
The flags indicate
whether the interface
isup (I FF_UP),is a
point-to-point interface
(I FF_PQO NTOPQA NT),
supports broadcasts

(I FF_BROADCAST),
and other flags.

SIOCSIFBRDADDR

struct ifreq

10§ SETMODE

Sets the broadcast

address from the
i fr_broadaddr
member.

SIOCSIFNETMASK

struct ifreq

10$ SETMODE

Sets the subnet
address mask from the
i fr_addr member.

SIOCGIFMETRIC

struct ifreq

10$_SENSEMODE

Returns the interface
routing metric in

302

Appendix B. IOCTL Requests

Operation

Data Type

$QIO Function Code

Description

thei fr_metric
member. The interface
metric is maintained
by the kernel for each
interface but is used by
the routing software
(ROUTED). The
interface metric is added
to the hop count (to
make an interface less
favorable).

SIOCSIFMETRIC

struct ifreq

10$_SETMODE

Sets the interface
routing metric from the
i fr_netric member.

SIOCDIFADDR

struct ifreq

10§ _SETMODE

Deletes an interface
address

SIOCAIFADDR

struct ifaliasreq

10$ SETMODE

Adds or changes an
interface alias.

SIOCPIFADDR

struct ifaliasreq

10$_SETMODE

Sets the primary
interface address.

SIOCADDMULTI

struct ifreq

10$_SETMODE

Adds a multicast
address.

SIOCDELMULTI

struct ifreq

10§ _SETMODE

Deletes a multicast
address.

SIOCENABLBACK

struct ifreq

10$ SETMODE

Enables the loopback
interface.

SIOCDISABLBACK

struct ifreq

10$_SETMODE

Disables the loopback
interface.

SIOCSIPMTU

struct ifreq

10$_SETMODE

Sets the interface IP
MTU value.

SIOCRIPMTU

struct ifreq

10§ _SENSEMODE

Returns the interface IP
MTU value.

SIOCGIFINDEX

struct ifreq

I0$_SENSEMODE

Returns the IF index
value.

SIOCGMEDIAMTU

struct ifreq

10$_SENSEMODE

Returns the value of the
media MTU.

SIOCGIFTYPE

struct ifreq

10$_SENSEMODE

Returns the interface
type.

SIOCGIFADDR

struct ifreq

10§ _SENSEMODE

Returns the interface
address.

SIOCGIFDSTADDR

struct ifreq

I0$_SENSEMODE

Returns the point-to-
point interface address.

SIOCGIFBRDADDR

struct ifreq

10$_SENSEMODE

Returns the interface
broadcast address.

303

Appendix B. IOCTL Requests

Operation Data Type $QIO Function Code |Description

SIOCGIFCONF struct ifconf I0$_SENSEMODE Returns the interface
list.

SIOCGIFNETMASK |struct ifreq 10$_SENSEMODE Returns the interface
subnet address mask.

Table B.4. Routing Table Operations

Operation Data Type $QIO Function Code |Description
SIOCADDRT struct ortentry 10§ SETMODE Adds an entry to the
routing table.
SIOCDELRT struct ortentry 10$_SETMODE Deletes an entry from
the routing table.
Table B.5. ARP Cache Operations
Operation Data Type $QIO Function Code |Description
SIOCSARP struct arpreq 10$_ SETMODE Adds a new entry to or
modifies an existing
entry in the ARP table.
SIOCDARP struct arpreq 10§ SETMODE Deletes an entry from
the ARP table.
SIOCGARP struct arpreq 10$_SENSEMODE Returns an ARP table
entry.

304

Appendix C. Data Types

As part of the OpenVMS common language environment, the TCP/IP system services data types
provide compatibility between procedure calls that support many different high-level languages.
Specifically, the OpenVMS data types apply to Alpha, 164, and VAX architectures as the mechanism
for passing argument data between procedures. This appendix describes the context and structure of
the TCP/IP system services data types and identifies the associated declarations to each of the specific
high-level language implementations.

C.1. OpenVMS Data Types

In Chapter 6, the OpenVMS usage entry in the TCP/IP Services documentation format for system
services indicates the OpenVMS data type of the argument. Most data types can be considered
conceptual types; that is, their meaning is unique in the context of the OpenVMS operating system.
The OpenVMS data type access_node is one example. The storage representation of this
OpenVMS type is an unsigned byte, and the conceptual content of this unsigned byte is the fact that
it designates a hardware access mode and therefore has only four valid values: 0, kernel mode; 1,
executive mode; 2, supervisor mode; and 3, user mode. However, some OpenVMS data types are not
conceptual types; that is, they specify a storage representation but carry no other semantic content in
the OpenVMS context. For example, the data type byt e_si gnhed is not a conceptual type.

Note

The OpenVMS usage entry is not a traditional data type such as the OpenVMS standard data types
—byte, word, longword, and so on. It is significant only within the OpenVMS operating system
environment and is intended solely to expedite data declarations within application programs.

To use the OpenVMS usage entry, perform the following steps:
1. Find the data type in Table C.1 and read its definition.

2. Find the same OpenVMS data type in the C and C++ language implementation table (Table C.2)
and its corresponding source language type declaration.

3. Use this code as your type declaration in your application program. Note that, in some instances,
you might have to modify the declaration.

4. For all other OpenVMS data types, refer to the VSI OpenVMS Programming Concepts, Volume 2
manual.

Table C.1 lists and describes OpenVMS data type declarations for the OpenVMS usage entry of
system services unique to TCP/IP Services.

Table C.1. TCP/IP Services Usage Data Type Entries

Data Type Definition

buffer_list Structure that consists of one or more descriptors
defining the length and starting address of

user buffers. On Alpha and 164 systems, each
descriptor can be a 32- or 64-bit fixed-length
descriptor. On VAX systems, each descriptor

is a 32-bit fixed-length descriptor. For more

305

Appendix C.

Data Types

Data Type

Definition

information concerning descriptors, see the
OpenVMS Calling Standard.

i nput _paraneter _|i st

Structure that consists of one or more
item.|ist_2orioctl _commstructures.

Eachitem | i st _2 structure describes an
individual parameter that can be set by a service.
Such parameters include socket or protocol
options as identified by the item's type field.

Eachi oct | _commstructure describes an
IOCTL command; its encoded request code and
address of its associated argument.

i octl _conm

Quadword structure that describes an IOCTL
command's encoded request code and address of
its associated argument. It contains two longword
fields, as depicted in the following diagram:

The first field is a longword containing the
IOCTL encoded request code specifying the type
of I/O control operation to be performed.

The second field is a longword containing the
address of a variable or a data structure targeted
by this IOCTL command.

itemlist 2

Quadword structure that describes the size, data
type, and starting address of a user-supplied data
item. It contains three fields, as depicted in the
following diagram:

The first field is a word containing the length
(in bytes) of the user-supplied data item being
described.

The second field is a word containing a symbolic
code specifying the data type of the user-supplied
data item.

The third field is a longword containing the
starting address of the user-supplied data item.

itemlist_2 descriptor

Anitem.| i st_2 structure, used as an
argument descriptor and containing structural
information about the argument's type and
the address of a data item. This data item is
associated with the argument.

The format of this descriptor is unique to TCP/IP
Services and supplements argument descriptors
defined in the OpenVMS Calling Standard.

itemlist_3

A 12-byte structure that describes the size, data
type, and address of a buffer in which a service

306

Appendix C.

Data Types

Data Type

Definition

writes information. It contains four fields, as
depicted in the following diagram:

The first field is a word containing the length

(in bytes) of the buffer in which a service writes
information. The length of the buffer needed
depends on the data type specified in the type
field. If the value of buffer length is too small, the
service truncates the data.

The second field is a word containing a symbolic
code and specifies the type of information that a
service is to return.

The third field is a longword containing the
address of the buffer in which a service writes the
information.

The fourth field is a longword containing the
address of a longword in which a service writes
the length in bytes of the information it actually
returned.

itemlist_3 descriptor

Anitem|i st _3 structure, used as an
argument descriptor and containing structural
information about the argument's type and
the address of a buffer used to return service
information. This buffer is associated with the
argument.

The format of this descriptor is unique to TCP/IP
Services and supplements argument descriptors
defined in the OpenVMS Calling Standard.

out put _paraneter |i st

Structure that consists of one or more
item|ist_3orioctl_commstructures.

Eachitem | i st 3 structure describes an
individual parameter that can be returned by

a service. Such parameters include socket or
protocol options as identified by the item's type
field.

Eachi oct | _commstructure describes an
IOCTL command, its encoded request code, and
the address of its associated argument.

socket nane

Internet domain socket address structure that
consists of an Internet address and a port number.
The layouts of socket address structures of BSD
Version 4.3 and BSD Version 4.4 are different.

307

Appendix C.

Data Types

Data Type

Definition

BSD Version 4.3 specifies a 16-byte IPv4 socket
address structure. It contains four fields, as
depicted in the following diagram:

The first field is a word identifying a socket
address structure as belonging to the internet
domain (always a value of 2).

The second field is a word containing a 16-bit
port number (stored in network byte order) used
to demultiplex transport-level messages.

The third field is a longword containing a 32-
bit IPv4 internet address (stored in network byte
order).

The fourth field is a quadword. It is unused but
must be initialized to all zeros.

BSD Version 4.4 specifies a 16-byte IPv4 socket
address structure. It contains five fields, as
depicted in the following diagram:

The first field is a byte containing the size of this
socket address structure (always a value of 16).

The second field is a byte identifying a socket
address structure as belonging to the internet
domain (always a value of 2).

The third field is a word containing a 16-bit port
number (stored in network byte order) used to
demultiplex transport-level messages.

The fourth field is a longword containing a 32-
bit IPv4 internet address (stored in network byte
order).

The fifth field is a quadword. It is unused but
must be initialized to all zeros.

BSD Version 4.4 also specifies a 28-byte [Pv6
socket address structure. It contains six fields, as
depicted in the following diagram:

The first field is a byte containing the size of this
socket address structure (always a value of 28).

The second field is a byte identifying a socket
address structure as belonging to the [Pv6 internet
domain (always a value of 28).

308

Appendix C.

Data Types

Data Type

Definition

The third field is a word containing the 16-bit
port number (stored in network byte order) used
to demultiplex transport-level messages.

The fourth field is a longword containing priority
and flow label information (stored in network
byte order).

The fifth field is an octaword (16 bytes)
containing a 128-bit [Pv6 Internet address (stored
in network byte order).

The sixth field is a longword containing the scope
id (stored in network byte order).

subf uncti on_code

Longword structure specifying the exact
operation an [0O$ ACPCONTROL function is
to perform. This structure has three fields, as
depicted in the following diagram:

The first field is a byte specifying the network
ACP operation.

The second field is a byte specifying the network
ACP suboperation.

The third field is word that is unused but must be
initialized to all zeros (MBZ).

socket characteristics

Longword structure specifying the address family,
socket type, and protocol of a new socket. This
structure has three fields, as depicted in the
following diagram:

The first field is a word specifying the protocol to
be used with the socket.

The second field is a byte specifying the socket
type.

The third field is a byte specifying the address
family.

C.2. C and C++ Implementations

Table C.2 lists the OpenVMS data types and their corresponding C and C++ data type declarations.

Table C.2. C and C++ Implementations

OpenVMS Data Types C and C++ Implementations
buffer _list User defined'
i nput _par amet er | i st User defined!

i octl _conm

struct ioctl_comm

309

Appendix C. Data Types

OpenVMS Data Types C and C++ Implementations
{
int ioctl _req; /* ioctl request
code */
void *ioctl _arg; /[* ioctl
ar gunment */
}
itemlist 2 struct itemlist_2
{
unsi gned short length; /* item
| engt h */
unsi gned short type; /[* itemtype
*/
voi d *address; /* item
addr ess */
}
itemlist 2 descriptor struct itemlist_2
{
unsi gned short length; /* argunent
length */
unsi gned short type; /* argument
type */
voi d *address; [* argument
address */
}
itemlist_3 struct itemlist_3
{
unsi gned short length; /* buffer
I ength */
unsi gned short type; /* buffer
type */
voi d *address; /* buffer
addr ess */
unsigned int *retlen; /* buffer
ret urned */
/* length
addr ess */
}
itemlist_3 descriptor struct itemlist_3
{
unsi gned short length; /* argunent
| ength */
unsi gned short type; [* ar gunent
type */
voi d *address; [* ar gunent
address */
unsigned int *retlen; [* ar gunent
returned */
/* length
addr ess */
}
out put _paraneter |ist User defined!
socket _nane (IPv4) i ncl ude <in. h>
struct sockaddr _in

310

Appendix C. Data Types

OpenVMS Data Types

C and C++ Implementations

socket _nane (IPv6)

i ncl ude <in6. h>
struct sockaddr _in6

subfuncti on_code

struct acpfunc

{

unsi gned char code; /*
subfunction code */
unsi gned char type; /* call code
*/
unsi gned short reserved;/* reserved
*/
[* (must be
Zer o) */
}
socket characteristics struct sockchar
{
unsi gned short prot; /* protoco
*/
unsi gned char type; /* type
*/
unsi gned char af; /* address
f or mat */
}

!The declaration of a user-defined data structure depends on how the data will be used.

ways, each of which is suitable only to specific applications.

Such data structures can be declared in a variety of

311

Appendix C. Data Types

312

Appendix D. Error Codes

This appendix contains a table of Sockets API error codes and their equivalent OpenVMS system

service status codes (Table D.1).

Table D.1. Translation of Socket Error Codes to OpenVMS Status Codes

Sockets (C) Error Code OpenVMS System Service Meaning
Status Code
0 SS$ NORMAL Success
1 EPERM SS$ ABORT Not owner
2 ENOENT SS$ ABORT No such file or directory
3 ESRCH SS$ NOSUCHNODE No such process
4 EINTR SS$ ABORT Interrupted system call
5 EIO SS$ ABORT 1/O error
6 ENXIO SS$ NOSUCHDEV No such device or address
7 E2BIG SS$ ABORT Argument list too long
8 ENOEXEC SS$ ABORT Execution format error
9 EBADF SS$ BADPARAM Bad file number
10 ECHILD SS$ ABORT No children
11 EAGAIN SS$ ABORT No more processes
12 ENOMEM SS$ INSFMEM Not enough core
13 EACCES SS$ ABORT Permission denied
14 EFAULT SS$ ACCVIO Bad address
15 ENOTBLK SS$ ABORT Block device required
16 EBUSY SS$ ABORT Mount device busy
17 EEXIST SS$ FILALRACC File exists
18 EXDEV SS$ ABORT Cross-device link
19 ENODEV SS$ ABORT No such device
20 ENOTDIR SS$ ABORT Not a directory
21 EISDIR SS$ ABORT Is a directory
22 EINVAL SS$ BADPARAM Invalid argument
23 ENFILE SS$ ABORT File table overflow
24 EMFILE SS$ ABORT Too many open files
25 ENOTTY SS$ ABORT Not a terminal
26 ETXTBSY SS$ ABORT Text file busy
27 EFBIG SS$ ABORT File too large
28 ENOSPC SS$ ABORT No space left on device
29 ESPIPE SS$ ABORT Illegal seek
30 EROFS SS$ ABORT Read-only file system
31 EMLINK SS$ ABORT Too many links

313

Appendix D. Error Codes

Sockets (C) Error Code OpenVMS System Service Meaning
Status Code
32 EPIPE SS$ LINKDISCON Broken pipe
33 EDOM SS$ BADPARAM Argument too large
34 ERANGE SS$ TOOMUCHDATA Result too large
35 EWOULDBLOCK SS$ SUSPENDED Operation would block
36 EINPROGRESS SS$ ABORT Operation now in progress
37 EALREADY SS$ ABORT Operation already in progress
38 ENOTSOCK SS$ NOTNETDEV Socket operation on nonsocket
39 EDESTADDRREQ SS$ NOSUCHNODE Destination address required
40 EMSGSIZE SS$ TOOMUCHDATA Message too long
41 EPROTOTYPE SS$ PROTOCOL Protocol wrong type for socket
42 ENOPROTOOPT SS$ PROTOCOL Protocol not available
43 EPROTONOSUPPORT SS$ PROTOCOL Protocol not supported
44 ESOCKTNOSUPPORT SS$ PROTOCOL Socket type not supported

45 EOPNOTSUPP

SS$ ILLCNTRFUNC

Operation not supported on
socket

46 EPFNOSUPPORT SS$ PROTOCOL Protocol family not supported

47 EAFNOSUPPORT SS$ PROTOCOL Address family not supported

48 EADDRINUSE SS$ DUPLNAM Address already in use

49 EADDRNOTAVAIL SS$ IVADDR Requested address cannot be
assigned

50 ENETDOWN SS$ UNREACHABLE Network is down

51 ENETUNREACH SS$ UNREACHABLE Network is unreachable

52 ENETRESET SS$ RESET Network dropped connection on

reset

53 ECONNABORTED

SS$ LINKABORT

Software caused connection
abort

54 ECONNRESET SS$ CONNECFAIL Connection reset by peer

55 ENOBUFS SS$ INSFMEM No buffer space available

56 EISCONN SS$ FILALRACC Socket is already connected

57 ENOTCONN SS$ NOLINKS Socket is not connected

58 ESHUTDOWN SS$ SHUT Cannot send after socket
shutdown

59 ETOOMANYREFS SS$ ABORT Too many references, cannot
splice

60 ETIMEDOUT SS$ TIMEOUT Connection timed out

61 ECONNREFUSED SS$ REJECT Connection refused

62 ELOOP SS$ ABORT Too many levels of symbolic
links

63 ENAMETOOLONG SS$ ABORT File name too long

314

Appendix D. Error Codes

Sockets (C) Error Code OpenVMS System Service Meaning
Status Code
64 EHOSTDOWN SS$ SHUT Host is down

65 EHOSTUNREACH

SS$ UNREACHABLE

No route to host

315

Appendix D. Error Codes

316

Appendix E. Porting Applications to
IPv6

This appendix describes the changes you must make in your application code to operate in an I[Pv6
networking environment, including:

* Name changes
» Structure changes

* Other changes

E.1. Using AF_INET6 Sockets

Figure E.1 shows a sample sequence of events for an application that uses an AF_INET socket to send
IPv4 packets.

Figure E.1. Using AF_INET Socket for IPv4 Communications

» getaddinio —_—
User Thast", "™, bk resui)
Application hostl = afier200:en:
—-— bt ek -

affe:1200::a00:
ebffedozbe | open AF_INETE socket (UDP) usEr Space
kevnel space
¥
| Soc ket layear
\e Sffa:1200: 200 2bt-Redazbe
TCP UDP I
G 3ffe:1200::200:2bfR2d A2bE
ittt S ANt !
| ¥ 1
! |
i IPva IPve LIp
I
i 1‘ i
R -
IPvE
packet
W05 4 34 4]

1. Application calls get host bynanme() and passes the host name, host 1.

2. The search finds host 1 in the hosts database and get host bynane() returns the IPv4 address
1.2.3. 4.

3. The application opens an AF_INET socket.

4. The application sends information to the 1. 2. 3. 4 address.

317

Appendix E. Porting Applications to IPv6

5. The socket layer passes the information and address to the UDP module.

6. The UDP module puts the 1. 2. 3. 4 address into the packet header and passes the information to
the IPv4 module for transmission.

Section E.6.1.1 contains sample program code that demonstrates these steps.

You can use the AF_INET6 socket for both [IPv6 and IPv4 communications. For [Pv4
communications, create an AF_INET6 socket and pass it a sockaddr _i n6 structure that contains
an IPv4-mapped IPv6 address (for example, : : ffff: 1. 2. 3. 4). Figure E.2 shows the sequence of
events for an application that uses an AF_INET6 socket to send [Pv4 packets.

Figure E.2. Using AF_INET6 Socket to Send IPv4 Communications

Uszer
A pplication

_'_0geladdrinb »
{host”, ™, hibfs, resuit)

A—Ohcsn = offff 1 25 gl st =1 250l

fftf1.2.3.4 open AF_INETE sacket (UDP) user space
kemel space
Y
‘ Seckat layar
TCP
:
1
i IPwt
1
1
1
1
g g g g g g g g Sy g Sy |
|Pwa
ekt
W DA

1. Application calls get addr i nf o() and passes the host name (host 1), the AF_INET6 address
family hint, and the (Al VAMAPPED | Al ADDRCONFIQG) flag hint. The flag tells the function
that if an IPv4 address is found for host 1, return the address as an IPv4-mapped IPv6 address.

2. The search finds an IPv4 address, 1. 2. 3. 4, for host 1 in the hosts database and
get addri nf o() returns the IPv4-mapped IPv6 address : : ffff:1.2. 3. 4.

3. The application opens an AF_INET6 socket.

4. The application sends information to the : : ffff: 1. 2. 3. 4 address.

5. The socket layer passes the information and address to the UDP module.

6. The UDP module identifies the IPv4-mapped IPv6 address, puts the 1. 2. 3. 4 address into the
packet header, and passes the information to the IPv4 module for transmission.

AF INET®6 sockets can receive messages sent to either IPv4 or IPv6 addresses on the system. An
AF _INETG6 socket uses the IPv4-mapped IPv6 address format to represent IPv4 addresses. Figure E.3

318

Appendix E. Porting Applications to IPv6

shows the sequence of events for an application that uses an AF_INET6 socket to receive [Pv4

packets.

Figure E.3. Using AF_INET6 Socket to Receive IPv4 Communications

_}9?3123";’;,'?;‘3 &node, nodeler,

User 0, Nags)

Application .._o.mq 2.3.4-host1=—1.2.3.4-hosl] =
A
#ffff:1.2.3.4 | ooen AF_INET socket (TCP) user space
kernel space
| Socket layer
sfiff:1.2.3.4
TCP upp
Q1234
IPv4 IPv6 P
IPvd
packet UM-0B45A-Al

1. The application opens an AF_INET®6 socket, binds to it, and listens on it.

2. An IPv4 packet arrives and passes through the IPv4 module.

3. The TCP layer strips off the packet header and passes the information and the IPv4-mapped IPv6

address: : ffff: 1. 2. 3.4 tothe socket layer.

4. The application calls accept () and retrieves the information from the socket.

5. The application calls get nanmei nf o() and passesthe:: ffff: 1. 2. 3. 4 address and the
NI_NAMEREQD flag. The flag tells the function to return the host name for the address. See
Table 4.3 for a description of the flag bits and their meanings.

6. The search finds the host name for the 1. 2. 3. 4 address in the hosts database, and

get nanei nf o() returns the host name.

For IPv6 communications, create an AF_INET6 socket and pass it a sockaddr _i n6 structure that
contains an IPv6 address (for example, 3f f e: 1200: : a00: 2bf f : f e2d: 02b2). Figure E.4 shows

the sequence of events for an application that uses an AF_INET6 socket to send IPv6 packets.

319

Appendix E. Porting Applications to IPv6

Figure E.4. Using AF_INET6 Socket for IPv6 Communications
_.__o getaddirfo _...

(hast "™, fints, resct]
Aoy T [Nl
PRIEANoN host 1= 3ife:1 2000800
 — Y L 2 Bt +——| ofis
Sffe:1200:a00:
2bfffe2d 02h2 open AF_IMETG socket [UDP) user space
kernef space
Y
| Socket layer I
\e e 1200 00:2bi fe2d:0202
TCFR LDF I
@ Ffe:1200::a00:2bf fe2d:02b2
I_ ____________________________ 1
1 Y !
! i
| IFud 5 P
I
i 1‘ i
O E
PG
packet

YHIE S 1 A-A]

1. Application calls get addr i nf o() and passes the host name (host 1), the AF_INET6 address
family hint, and the (Al _VAMAPPED | Al ADDRCONFIG) flag hint. The flag tells the function
that if an IPv4 address is found for host 1, to return it.

2. The search finds an IPv6 address for host 1 in the hosts database, and get addr i nf o() returns
the IPv6 address 3f f e: 1200: : a00: 2bf f: f e2d: 02b2.

3. The application opens an AF_INET®6 socket.
4. The application sends information to the 3f f e: 1200: : a00: 2bf f : f e2d: 02b2 address.
5. The socket layer passes the information and address to the UDP module.

6. The UDP module identifies the IPv6 address and puts the
3f fe: 1200: : a00: 2bf f: f e2d: 02b2 address into the packet header and passes the
information to the IPv6 module for transmission.

Section E.6.2.1 contains sample program code that demonstrates these steps.

The following sections describe how to convert an existing AF_INET application to an AF_INET6
application that is capable of communicating over both IPv4 and IPv6.

E.2. Name Changes

Most of the changes required are straightforward and mechanical, though some may require a bit of
code restructuring. For example, a routine that returns an i nt data type holding an IPv4 address may
need to be modified to take as an extra parameter a pointer to an i n6_addr into which it writes the
IPv6 address.

320

Appendix E. Porting Applications to IPv6

Table E.1 summarizes the changes you must make to your application's code.

Table E.1. Name Changes

Search file for Replace with Comments

AF INET AF INET6 Replace with IPv6 address
family macro.

PF _INET PF_INET6 Replace with IPv6 protocol
family macro.

INADDR_ANY i n6addr _any Replace with IPv6 global
variable.

E.3. Structure Changes

The structure names and field names have changed for the following structures:
e in_addr

* sockaddr _in

+ sockaddr

* hostent

The following sections discuss these changes.

E.3.1. in_addr Structure

Applications that use the IPv4 i n_addr structure must be changed to use the IPv6 i n6_addr
structure, as follows:

IPv4 Structure IPv6 Structure
struct in_addr struct in6_addr
unsi gned int s_addr uint8 t s6_addr

Make the following changes to your application, as needed:
1. Change the structure name i n_addr toi n6_addr.

2. Change the data type from unsi gned i nt toui nt 8_t and the field name s_addr to
s6_addr.

E.3.2. sockaddr Structure

Applications that use the generic socket address structure (sockaddr) to hold an AF_INET socket

address (sockaddr _i n) must be changed to use the AF_INET6 sockaddr _i n6 structure, as
follows:

AF_INET Structure AF_INET6 Structure

struct sockaddr struct

321

Appendix E. Porting Applications to IPv6

AF _INET Structure AF_INET6 Structure

sockaddr _i n6

Make the following change to your application, as needed:

* Change structure name sockaddr to sockaddr _i n6.

Note

A sockaddr _i n6 structure is larger than a sockaddr structure. For more information, see
Section 3.2.14.

E.3.3. sockaddr_in Structure

Applications that use the BSD Version 4.4 IPv4 sockaddr _i n structure must be changed to use the
IPv6 sockaddr _i n6 structure, as follows:

IPv4 Structure IPv6 Structure

struct sockaddr _in struct sockaddr _in6

unsi gned char sin_len uint8_t sin6_Ilen
sa_famly_t sin_fanmly sa_family_t sin6_famly
in_port_t sin_port int_port_t sin6_port
struct addr sin_addr struct in6_addr sin6_addr

Make the following changes to your application, as needed:

1. Change structure name sockaddr _i n to sockaddr _i n6. Initialize the entire
sockaddr _i n6 structure to zero after your structure declarations.

2. Change the data type unsi gned char to ui nt 8_t and the field name si n_| en to
sin6_| en.

3. Change the field name si n_fam lytosin6é famly.
4. Change the field name Si n_port tosi n6_port.

5. Change the field name si n_addr to si n6_addr .

E.3.4. hostent Structure

Applications that use the host ent structure must be changed to use the addr i nf o structure, as
follows:

AF_INET Structure AF_INET6 Structure
struct hostent struct addrinfo

Make the following change to your application, as needed:

* Change the structure name host ent to addri nf o.

322

Appendix E. Porting Applications to IPv6

See also Section E.4.2 for related changes.

E.4. Function Changes

The names and parameters have changed for the following functions:
+ get host byaddr ()

* get host bynane()

L]

i net _aton()

L]

i net _ntoa()

i net _addr ()

The following sections discuss these changes.

E.4.1. gethostbyaddr() Function

Applications that use the IPv4 get host byaddr () function must be changed to use the IPv6
get nanei nf o() function, as follows:

AF_INET Call AF_INET6 Call

gethostbyaddr(xxx,4,AF INET) err=getnameinfo(&sa, salen, node, nodelen,
service, servicelen, flags);

Make the following change to your application, as needed:

* Change the function name from get host byaddr () to get nanei nf o() and provide a
pointer to the socket address structure, a character string for the returned node name, an integer for
the length of the returned node name, a character string to receive the returned service name, an
integer for the length of the returned service name, and an integer that specifies the type of address
processing to be performed.

E.4.2. gethostbyname() Function

Applications that use the get host bynane() function must be changed to use the
get addri nf o() function, as follows:

AF_INET Call AF_INET6 Call

gethostbyname(name) err=getaddrinfo(nodename, servname, &hints,
&res); #
freeaddrinfo(&ai);

Make the following changes to your application, as needed:

1. Change the function name from get host byname() to get addri nf o() and provide a
character string that contains the node name, a character string that contains the service name
to use, a pointer to a hi nt s structure that contains processing options, and a pointer to an
addr i nf o structure or structures for the returned address information.

323

Appendix E. Porting Applications to IPv6

2. Addacall to the f r eeaddri nf o() function to free the addr i nf o structure or structures
when your application is finished using them.

E.4.3. inet_aton() Function

Applications that use the i net _at on() function must be changed to use the i net _pt on()
function, as follows:

AF _INET Call AF _INET6 Call
inet_aton(&string,&addr) inet_pton (AF_INET6,&src,&dst);

Make the following change to your application, as needed:

* Change the function name from i net _at on() toi net _pt on() and provide an integer for
the address family, a pointer to an address string to be converted, and a pointer to a buffer that is to
contain the numeric address.

E.4.4. inet_ntoa() Function

Applications that use the i net _nt oa() function must be changed to use the i net _nt op()
function, as follows:

AF_INET Call AF_INET6 Call
inet_ntoa(addr) inet_ntop(AF_INET6,&src,&dst,size);

Make the following change to your application, as needed:

* Change the function name from i net _nt oa() toi net _nt op() and provide an integer for
the address family, a pointer to a buffer that contains the numeric internet address, a pointer to a
buffer that is to contain the text string, and an integer for the size of the buffer pointed to by the
dst parameter.

E.4.5. inet_addr() Function

Applications that use the i net _addr () function must be changed to use the i net _pt on()
function, as follows:

AF_INET Call AF_INET6 Call
result=inet_addr(&string) inet_pton (AF_INET6,&src,&dst);

Make the following change to your application, as needed:

» Change the function name from i net _addr () toi net _pt on() and provide an integer for
the address family, a pointer to an address string to be converted, and a pointer to a buffer that is to
contain the numeric address.

E.5. Other Application Changes

In addition to the name changes, you should review your code for specific uses of IP address
information and variables.

324

Appendix E. Porting Applications to IPv6

E.5.1. Comparing IP Addresses

If your application compares IP addresses or tests IP addresses for equality, the i n6_addr structure
changes (see in Section E.3.1) will change the comparison of i nt quantities to a comparison of
structures. This will break the code and cause compiler errors.

Make one of the following changes to your application, as needed:

AF _INET Code AF_INET6 Code
(addr1->s_addr == addr2->s_addr) (memcmp(addrl, addr2, sizeof(struct in6_addr))
==0)

» Change the equality expression to one that uses the mencnp (memory comparison) function.

AF_INET Code AF_INET6 Code

(addrl->s_addr == addr2->s_addr) IN6_ ARE_ ADDR_EQUAL(addr1, addr2)

* Change the equality expression to one that uses the | N6_ ARE_ADDR _EQUAL macro.

E.5.2. Comparing an IP Address to the Wildcard
Address

If your application compares an IP address to the wildcard address, the i n6_addr structure changes
(see Section E.3.1) will change the comparison of int quantities to a comparison of structures. This
will break the code and cause compiler errors.

Make either of the following changes to your application, as needed:

AF_INET Code AF_INET6 Code
(addr->s_addr == INADDR_ANY) IN6_IS_ADDR_UNSPECIFIED(addr)

* Change the equality expression to one that uses the | N6_| S_ADDR_UNSPECI FI ED macro.

AF_INET Code AF_INET6 Code

(addr->s_addr == INADDR ANY) (memcmp(addr, in6addr_any, sizeof(struct
in6_addr)) == 0)

* Change the equality expression to one that uses the mentnp (memory comparison) function.

E.5.3. Using int Data Types to Hold IP Addresses

If your application uses I Nt data types to hold IP addresses, the i n6_addr structure changes (see
Section E.3.1) will change the assignment. This will break the code and cause compiler errors.

Make the following changes to your application, as needed:

AF_INET Code AF_INET6 Code

struct in_addr foo; struct in6_addr foo;

325

Appendix E. Porting Applications to IPv6

AF _INET Code AF _INET6 Code
int bar; struct in6_addr bar;
bar = foo.s_addr; bar = foo;

1. Change the data type for bar fromi nt to a structi n6_addr .

2. Change the assignment statement for bar to remove the s_addr field reference.

E.5.4. Using Functions that Return IP Addresses

If your application uses functions that return IP addresses as i nt data types, the i n6_addr structure
changes (see Section E.3.1) will change the destination of the return value from an i nt to an array of
char . This will break the code and cause compiler errors.

Make the following changes to your application, as needed:

AF_INET Code AF_INET6 Code
struct in_addr *addr; struct in6_addr *addr;
addr->s_addr = foo(xxx); foo(xxx, addr);

» Restructure the function to enable you to pass the address of the structure in the call. In addition,
modify the function to write the return value into the structure pointed to by addr .

E.5.5. Changing Socket Options

If your application uses IPv4 IP-level socket options, change them to the corresponding IPv6 options.

E.6. Sample Client/Server Programs

This section contains sample client and server programs that demonstrate the differences between
IPv4 and IPv6 coding conventions:

» Section E.6.1 contains sample programs using IPv4 AF_INET sockets.
* Section E.6.2 contains sample programs using [Pv6 AF_INETG6 sockets.

To build the examples, use the following commands:

$ CC/ DEFI NE=(_SOCKADDR_LEN) / | NCLUDE=TCPI PSEXAMPLES: client.c
$ LINK client, TCPIP$LI BRARY: TCPI P$LI B/ LI BRARY

$ CC/ DEFI NE=(_SOCKADDR_LEN) / | NCLUDE=TCPI PSEXAMPLES: server.c
$ LINK server, TCPI P$LI BRARY: TCPI P$LI B/ LI BRARY

E.6.1. Programs Using AF_INET Sockets

326

Appendix E. Porting Applications to IPv6

This section contains a client and a server program that use AF_INET sockets.

E.6.1.1. Client Program

The following is a sample client program that you can build, compile and run on your system. The
program sends a request to and receives a response from the system specified on the command line.

#i ncl ude <in. h> /* define internet related constants,
*/
/* functions, and structures
*/
#i ncl ude <inet. h> /* define network address info
*/
#i ncl ude <netdb. h> /* define network database library info
*/
#i ncl ude <socket. h> /* define BSD 4. x socket ap
*/
#i ncl ude <stdio. h> /* define standard i/o functions
*/
#i nclude <stdlib. h> /* define standard library functions
*/
#i ncl ude <string. h> /* define string handling functions
*/
#i ncl ude <uni xi 0. h> /* define unix i/o
*/
#def i ne BUFSZ 1024 [* user input buffer size
*/
#def i ne SERV_PORTNUM 12345 /* server port number
*/
int main(void); /[* client main
*/
void get_serv_addr(void *);® /* get server host address
*/
i nt
mai n(void)
{
i nt sockfd; /* connection socket descri ptor
*/
char buf[512]; /* client data buffer
*/
struct sockaddr _in serv_addr;® /* server socket address structure
*/

menset (&serv_addr, 0, sizeof(serv_addr));®
serv_addr.sin_famly = AF_I NET;

serv_addr. si n_port = htons(SERV_PORTNUM);
get _serv_addr(&serv_addr.sin_addr); O

if ((sockfd = socket (AF_I NET, SOCK_STREAM 0)) <0)@

327

Appendix E. Porting Applications to IPv6

{

perror("Failed to create socket");
exit(EXI T_FAILURE);

}

printf("lInitiated connection to host: %, port: %d\n",
i net_ntoa(serv_addr.sin_addr), ntohs(serv_addr.sin_port)®

)

if (connect (sockfd,
(struct sockaddr *) &serv_addr, sizeof(serv_addr)) <0)@

{

perror("Failed to connect to server");
exit(EXIT_FAILURE);

}

if (recv(sockfd, buf, sizeof(buf), 0) <0)
{

perror("Failed to read data from server connection");
exit(EXIT_FAILURE);

}

printf("Data received: %\n", buf); /* output client's data buffer

*/
if (shutdown(sockfd, 2) < 0)
{
perror("Failed to shutdown server connection");
exit(EXIT_FAILURE);
}
if (close(sockfd) < 0)
{
perror("Failed to cl ose socket");
exit(EXIT_FAILURE);
}
exit(EXI T_SUCCESS);
}
voi d
get _serv_addr(void *addrptr)@
{
char buf [BUFSZ] ; /* input data buffer */
struct in_addr val; /* renote host address structure */
struct hostent *host; /* renpte host hostent structure */

while (TRUE)
{

printf("Enter renmote host: ");

if (fgets(buf, sizeof(buf), stdin) == NULL)
{
printf("Failed to read User input\n");
exit(EXIT_FAILURE);

}

328

Appendix E. Porting Applications to IPv6

buf [strl en(buf)-1] = O;

val . s_addr = inet_addr(buf);
if (val.s_addr != | NADDR_NONE)
{
mencpy(addrptr, &val, sizeof(struct in_addr));
br eak;
}
if ((host = gethostbynane(buf)))©
{
mencpy(addrptr, host->h_addr, sizeof(struct in_addr));
br eak;
}
}

}

This example of a client applications sends a request and receives a response on an AF_INET socket.

Function code prototype for server host address/name translation function.

Declares sockaddr _i n structure.

Clears the server sockaddr _i n structure and sets values for fields of the structure

Calls get _serv_addr passing a pointer to the socket address structure's si n_addr field.
Creates an AF_INET socket

Calls i net _nt oa to convert the server address to a text string.

Calls connect passing a pointer to the sockaddr _i n structure.

Retrieves the server host's address from the user and then stores it in the server's socket address
structure. The user can specify a server host by using either an IPv4 address in dotted decimal
notation or a host domain name

© Calls get host bynamne() to retrieve the server host's address.

0000000

E.6.1.2. Server Program

The following is a sample server program that you can build, compile, and run on your system. The
program receives requests from and sends responses to client programs on other systems.

#i ncl ude <in. h> /* define internet related constants,

*/
/* functions, and structures

*/

#i ncl ude <inet. h> /* define network address info
*/

#i ncl ude <netdb. h> /* define network database library info
*/

#i ncl ude <socket. h> /* define BSD 4. x socket ap
*/

#i ncl ude <stdio. h> /* define standard i/o functions
*/

#i ncl ude <stdlib. h> /* define standard library functions
*/

#i ncl ude <string. h> /* define string handling functions
*/

329

Appendix E. Porting Applications to IPv6

#i ncl ude <uni xi o. h> /* define unix i/o
*/
#def i ne SERV_BACKLOG 1 /* server backl og
*/
#def i ne SERV_PORTNUM 12345 /* server port number
*/
int min(void); [* server main
*/
i nt
mai n(void)
{
int optval = 1; /* SO _REUSEADDR S option val ue (on)
*/
i nt conn_sockfd; /* connection socket descriptor
*/
int listen_sockfd; /* listen socket descriptor
*/
unsi gned int client_addrlen; /* returned length of client socket
*/
/* address structure
*/
struct sockaddr _in client_addr;® /* client socket address structure
*/
struct sockaddr _in serv_addr; /* server socket address structure
*/
struct hostent *host;® /* host nanme structure
*/
char buf[] = "Hello, world!"; /* server data buffer
*/

nmenset (&client_addr, 0, sizeof(client_addr));

nmenset (&serv_addr, 0, sizeof(serv_addr));®

serv_addr.sin _famly = AF_I NET
serv_addr. sin_port = htons(SERV_PORTNUM) ;
serv_addr.sin_addr.s_addr = | NADDR_ANY;

if ((listen_sockfd = socket(AF_INET, SOCK STREAM 0)) <0)0
{
perror("Failed to create socket");
exit(EXIT_FAILURE);

}

if (setsockopt(listen_sockfd,
SOL_SOCKET, SO REUSEADDR, &optval, sizeof(optval)) < 0)
{
perror("Failed to set socket option");
exit(EXIT_FAILURE);

}

330

Appendix E. Porting Applications to IPv6

if (bind(listen_sockfd,
(struct sockaddr *) &serv_addr, sizeof(serv_addr)) < 0)
{
perror("Failed to bind socket");
exit(EXI T_FAILURE);

}

if (listen(listen_sockfd, SERV_BACKLOG < 0)
{
perror("Failed to set socket passive");
exit(EXI T_FAILURE);

}

printf("Waiting for a client connection on port: %l\n",
nt ohs(serv_addr. sin_port)

)
client_addrlen = sizeof (client_addr);

conn_sockfd = accept(|isten_sockfd,
(struct sockaddr *) &client_addr
&cl i ent _addrl en
);
if (conn_sockfd < 0)
{
perror("Failed to accept client connection");
exit(EXI T_FAILURE);

}

host = get host byaddr((char *)&client_addr.sin_addr.s_addr
si zeof (client_addr.sin_addr.s_addr), AF_INET ©
);

if (host == NULL)
{
perror("Failed to translate client address\n");
exit(EXI T_FAILURE);

}

printf("Accepted connection fromhost: % (%), port: %l\n",
host ->h_name, inet_ntoa(client_addr.sin_addr),
nt ohs(client_addr.sin_port)

);

if (send(conn_sockfd, buf, sizeof(buf), 0) <0)
{

perror("Failed to wite data to client connection");
exit(EXI T_FAILURE);

}

printf("Data sent: %\n", buf); /* output server's data buffer */

if (shutdown(conn_sockfd, 2) < 0)

{

perror("Failed to shutdown client connection”);
exit(EXI T_FAILURE);

}

331

Appendix E. Porting Applications to IPv6

if (close(conn_sockfd) < 0)

{

perror("Failed to cl ose socket");
exit(EXI T_FAILURE);

}

if (close(listen_sockfd) < 0)

{

perror("Failed to cl ose socket");
exit(EXI T_FAILURE);

}

exit(EXIT_SUCCESS);
}

This example of a server application sends a request and receives a response on an AF_INET socket.

Declares sockaddr _i n structures.

Declares host ent structure.

Clears the server sockaddr _i n structure and sets values for fields of the structure.
Creates an AF_INET socket.

® Calls get host byaddr () to retrieve client name.

E.6.2. Programs Using AF_INET6 Sockets

This section contains a client and a server program that use AF_INET6 sockets.

E.6.2.1. Client Program

o
(2]
(3]
(4]

The following is a sample client program that you can build, compile, and run on your system. The
program sends a request to and receives a response from the system specified on the command line.

#i ncl ude <in. h> /* define internet related constants,
*/
/* functions, and structures
*/
#i ncl ude <inet. h> /* define network address info
*/
#i ncl ude <netdb. h> /* define network database library
info */
#i ncl ude <socket. h> /* define BSD 4. x socket ap
*/
#i ncl ude <stdio. h> /* define standard i/o functions
*/
#i nclude <stdlib. h> /* define standard library functions
*/
#i ncl ude <string. h> /* define string handling functions
*/
#i ncl ude <uni xi 0. h> /* define unix i/o
*/
#def i ne BUFSZ 1024 /* user input buffer size
*/

332

Appendix E. Porting Applications to IPv6

#def i ne SERV_PORTNUM "12345" /* server port number string
*/

int main(void); [* client main
*/

voi d get _serv_addr(struct addrinfo *hints, struct addrinfo **res);®
/* get server host address

*/
i nt
mai n(void)
{
i nt sockfd; /* connection socket descri ptor
*/
char buf[512]; /* client data buffer
*/
struct addrinfo hints; /* input values to direct operation
*/
struct addrinfo *res;® /* linked list of addrinfo structs
*/
nenset (&ints, 0, sizeof(hints));®
hints.ai _famly = AF_I NET6;
hints.ai _flags = Al _ADDRCONFI G | Al _VAMAPPED | Al _CANONNAME
hints.ai _protocol = | PPROTO TCP;
hi nts. ai _socktype = SOCK STREAM
get _serv_addr(&hints, &es);O
if ((sockfd = socket (AF_INET6, SOCK STREAM 0)) <0)@
{
perror("Failed to create socket");
exit(EXI T_FAILURE);
}
printf("Initiated connection to host: %, port: %d\n",
res->ai _canonnane,
htons(((struct sockaddr_in6 *)res->ai _addr)->sin6_port)®);
if (connect(sockfd, res->ai _addr, res->ai _addrlen) <0)@
{
perror("Failed to connect to server");
exit(EXI T_FAILURE);
}
if (recv(sockfd, buf, sizeof(buf), 0) <0)
{
perror("Failed to read data from server connection");
exit(EXI T_FAILURE);
}
printf("Data received: %\n", buf); /* output client's data buffer
*/

if (shutdown(sockfd, 2) < 0)

333

Appendix E. Porting Applications to IPv6

{

perror("Failed to shutdown server connection”);
exit(EXI T_FAILURE);

}

if (close(sockfd) < 0)
{

perror("Failed to cl ose socket");
exit(EXI T_FAILURE);

}

exit(EXIT_SUCCESS);
}

voi d
get _serv_addr(struct addrinfo *hints, struct addrinfo **res)®

{

int gai_error; /* return val ue of getaddrinfo()
*/
char buf [BUFSZ] ; /* input data buffer
*/
const char *port = SERV_PORTNUM /* server port number
*/
while (TRUE)
{
printf("Enter renmote host: ");
if (fgets(buf, sizeof(buf), stdin) == NULL)
{
printf("Failed to read User input\n");
exit(EXI T_FAILURE);
}
buf [strl en(buf)-1] = O;
gai _error = getaddrinfo(buf, port, hints, res);©
if (gai _error)
printf("Failed to resolve nanme or address: %\n",
gai _strerror(gai _error)®
)
el se
br eak;
}
}

This example of a client application sends a request and receives a response on an AF_INET6 socket.

Function prototype for server host address/name translation function.

Declares addr i nf o structures.

Clears the addr i nf o structure and sets values for fields of the structure.

Calls get _serv_addr () passing pointers to the input and output addr i nf o structures.
Creates an AF_INET6 socket.

Uses values from the output addr i nf o structure for host name and port.

Calls connect () using values from the output addr i nf o structure.

Retrieves the server host's address from the user and stores it in the addr i nf o structure. The
user can specify a server host by using any of the following:

0000000

334

Appendix E. Porting Applications to IPv6

¢ An IPv4 address in dotted-decimal notation

¢ An IPv6 address in hexadecimal

* An IPv4-mapped IPv6 address in hexadecimal

¢ A host domain name

€I1o7T.

E.6.2.2. Server Program

Calls get addri nf o() to retrieve the server host's name or address.
Callsgai _strerror() toconvert one of the EAI xxx return values to a string describing the

The following is a sample server program that you can build, compile, and run on your system. The
program receives requests from and sends responses to client programs on other systems.

#i ncl ude <in. h>

*/
#i ncl ude <i net. h>
*/
#i ncl ude <net db. h>
info */
#i ncl ude <socket. h>
*/
#i ncl ude <stdi o. h>
*/
#i ncl ude <stdlib. h>
*/
#i ncl ude <string. h>
*/
#i ncl ude <uni xi 0. h>
*/
#def i ne SERV_BACKLOG 1
*/
#def i ne SERV_PORTNUM 12345
*/
int min(void);
*/
i nt
mai n(void)
{
int optval = 1;
*/
i nt conn_sockfd;
*/
int |isten_sockfd;
*/

/*

/*

/*

/*

/*

/*

/*

/*

/*

/*

/*

/*

/*

/*

defi ne

functi ons,

defi ne

defi ne

defi ne

defi ne

defi ne

defi ne

defi ne

server

server

server

internet rel ated constants,
and structures

net work address info

net wor k dat abase library

BSD 4. x socket ap
standard i/o functions
standard library functions

string handling functions

unix i/o

backl og

port numnber

SO REUSEADDR' S option val ue (on)

connection socket descriptor

listen

socket descriptor

335

Appendix E. Porting Applications to IPv6

int gni_error;® /* return status for getnaneinfo()
*/
unsi gned int client_addrlen; /* returned I ength of client socket
*/
/* address structure
*/

struct sockaddr_in6 client_addr; /* client socket address structure
*/

struct sockaddr in6 serv_addr;® /* server socket address structure
*/

char buf[] = "Hello, world!"; /* server data buffer
*/

char node[NI _MAXHOST] ; © /* buffer to recei ve node nane
*/

char port[Nl _MAXHOST] ; /* buffer to receive port nunber
*/

char addr buf [| NET6_ADDRSTRLEN] ; /* buffer to receive host's address
*/

nmenset (&client_addr, 0, sizeof(client_addr));

nenset (&serv_addr, 0, sizeof(serv_addr));O

serv_addr.sin6 famly = AF_I NET6;
serv_addr. sin6_port = htons(SERV_PORTNUM) ;
serv_addr. si n6_addr = i n6addr _any;

if ((listen_sockfd = socket (AF_I NET6, SOCK_STREAM 0)) < 0)6
{
perror("Failed to create socket");
exit(EXIT_FAILURE);

}

if (setsockopt(listen_sockfd,
SOL_SOCKET, SO REUSEADDR, &optval, sizeof(optval)) < 0)
{
perror("Failed to set socket option");
exit(EXIT_FAILURE);

}

if (bind(listen_sockfd,
(struct sockaddr *) &serv_addr, sizeof(serv_addr)) < 0)
{
perror("Failed to bind socket");
exit(EXIT_FAILURE);

}

if (listen(listen_sockfd, SERV_BACKLOG < 0)
{
perror("Failed to set socket passive");
exit(EXIT_FAILURE);

}

printf("Waiting for a client connection on port: %l\n",
nt ohs(serv_addr. sin6_port)

);

336

Appendix E. Porting Applications to IPv6

client_addrlen = sizeof (client_addr);

conn_sockfd = accept(|isten_sockfd,
(struct sockaddr *) &client_addr
&cl i ent _addrl en
)
if (conn_sockfd < 0)
{
perror("Failed to accept client connection");
exit(EXI T_FAILURE);

}

gni _error = getnaneinfo((struct sockaddr
*)&client_addr,client_addrlen, O
node, sizeof (node), NULL, 0, N _NAVEREQD
)
if (gni_error)
{
printf("Failed to translate client address: %\n",
gai _strerror(gni _error) @
)
exit(EXI T_FAILURE);
}

gni _error = getnanei nfo((struct sockaddr *)&client_addr
client_addrlen,
addr buf, si zeof (addrbuf), port, sizeof(port),
NI _NUMERI CHOST | NI _NUMERI CSERV ©
)
if (gni_error)
{
printf("Failed to translate client address and/or port: %\n",
gai _strerror(gni _error)
)
exit(EXIT_FAILURE);
}

printf("Accepted connection fromhost: % (%), port: %\n",
node, addrbuf, port

)

if (send(conn_sockfd, buf, sizeof(buf), 0) <0)
{
perror("Failed to wite data to client connection");
exit(EXIT_FAILURE);

}

printf("Data sent: %\n", buf); /* output server's data buffer
*/

if (shutdown(conn_sockfd, 2) < 0)
{

perror("Failed to shutdown client connection");
exit(EXIT_FAILURE);

}

337

Appendix E. Porting Applications to IPv6

}

if (close(conn_sockfd) < 0)

{

perror("Failed to cl ose socket");
exit(EXI T_FAILURE);

}

if (close(listen_sockfd) < 0)

{

perror("Failed to cl ose socket");
exit(EXI T_FAILURE);

}

exit(EXIT_SUCCESS);

This example of a server application sends a request and receives a response on an AF_INET6 socket.

o
(2]
(3]

©00

E.

Declares variable for get nanei nf o() return value

Declares sockaddr _i n6 structures

Declares buffers to receive client's name, port number, and address for calls to

get nanei nfo().

Clears the server sockaddr _i n6 structure and sets values for fields of the structure.

Creates an AF_INET6 socket.

Calls get nanei nf o() to retrieve client name. This is for message displaying purposes only
and is not necessary for proper functioning of the server.

Callsgai _strerror () toconvert one of the EAI xxx return values to a string describing the
error.

Calls get nanei nf o() to retrieve client address and port number. This is for message
displaying purposes only and is not necessary for proper functioning of the server.

6.3. Sample Program Output

This section contains sample output from the preceding server and client programs. The server
program makes and receives all requests on an AF_INET6 socket using sockaddr _i n6. For
requests received over IPv4, sockaddr _i n6 contains an [Pv4-mapped IPv6 address.

L.

The following example shows a client program running on node host b6 and sending a request to
node host a6. The program uses an AF_INET6 socket. The node host a6 has the IPv6 address
3ffe:1200::a00:2bff:fe97:7be0 in the Domain Name System (BIND/DNS).

$ run client.exe

Enter renote host: hosta6

Initiated connection to host: hosta6.ipv6. corp.exanple, port: 12345
Data received: Hello, world!

$

On the server node, the following example shows the server program invocation and the request
received from the client node host b6:

$ run server. exe

Waiting for a client connection on port: 12345

Accept ed connection from host: hostb6.ipv6. corp. exanpl e
(3ffe:1200::a00: 2bff: fe97: 7be0), port: 49174

Data sent: Hello, world!

$

338

Appendix E. Porting Applications to IPv6

3. The following example shows the client program running on node host b and sending a request
to node host a. The program uses an AF_INET6 socket. The host a node has only an IPv4
address in the DNS.

$ run client.exe

Enter renpote host: hosta

Initiated connection to host: hosta.corp.exanple, port 12345
Dat a recei ved: Hello, world!

$

4. On the server node, the following example shows the server program invocation and the request
received from the client node host b:

$ run server.exe

Waiting for a client connection on port: 12345

Accept ed connection from host: hostb. corp. exanpl e
(::ffff:10.10.10.251),

port: 49175
Data sent: Hell o, world!
$

5. The following example shows the client program running on node host b6 and sending a request
to node host a6 using its link-local address fe80::a00:2bff:fe97:7be0. The program uses an
AF INET®6 socket.

$ run client.exe

Enter renpte host: fe80::a00: 2bff:fe97: 7bel

Initiated connection to host: fe80::a00:2bff:fe97: 7be0, port: 12345
Dat a recei ved: Hello, world!

$

6. On the server node, the following example shows the server program invocation and the request
received from the client node host b6.

$ run server.exe

Waiting for a client connection on port: 12345

Accept ed connection from host: hosta6.ipv6. corp. exanpl e%\EQ
(fe80::a00: 2bff: fe97: 7Tbe0WNEQ), port: 49177

Data sent: Hello, world

$

339

Appendix E. Porting Applications to IPv6

340

	VSI TCP/IP Services for OpenVMS Sockets API and System Services Programming
	Table of Contents
	Preface
	1. About VSI
	2. Intended Audience
	3. Document Structure
	4. Related Documentation
	5. VSI Encourages Your Comments
	6. How to Order Additional Documentation
	7. Typographical Conventions

	Chapter 1. Application Programming Interfaces
	1.1. BSD Sockets
	1.2. OpenVMS System Services
	1.3. Application Development Files
	1.3.1. Definition Files
	1.3.2. Libraries
	1.3.3. Programming Examples

	1.4. Compiling and Linking C Language Programs
	1.4.1. Compiling and Linking Programs Using BSD Version 4.4
	1.4.2. C Compilation Warnings

	1.5. Using 64-Bit Addresses (Alpha and I64 Only)

	Chapter 2. Writing Network Applications
	2.1. The Client/Server Communication Process
	2.1.1. Using the TCP Protocol
	2.1.2. Using the UDP Protocol

	2.2. Creating a Socket
	2.2.1. Creating Sockets (Sockets API)
	2.2.2. Creating Sockets (System Services)

	2.3. Binding a Socket (Optional for Clients)
	2.3.1. Binding a Socket (Sockets API)
	2.3.2. Binding a Socket (System Services)

	2.4. Making a Socket a Listener (TCP Protocol)
	2.4.1. Setting a Socket to Listen (Sockets API)
	2.4.2. Setting a Socket to Listen (System Services)

	2.5. Initiating a Connection (TCP Protocol)
	2.5.1. Initiating a Connection (Sockets API)
	2.5.2. Initiating a Connection (System Services)

	2.6. Accepting a Connection (TCP Protocol)
	2.6.1. Accepting a Connection (Sockets API)
	2.6.2. Accepting a Connection (System Services)

	2.7. Getting Socket Options
	2.7.1. Getting Socket Information (Sockets API)
	2.7.2. Getting Socket Information (System Services)

	2.8. Setting Socket Options
	2.8.1. Setting Socket Options (Sockets API)
	2.8.2. Setting Socket Options (System Services)

	2.9. Reading Data
	2.9.1. Reading Data (Sockets API)
	2.9.2. Reading Data (System Services)

	2.10. Receiving IP Multicast Datagrams
	2.11. Reading Out-of-Band Data (TCP Protocol)
	2.11.1. Reading OOB Data (Sockets API)
	2.11.2. Reading OOB Data (System Services)

	2.12. Peeking at Queued Messages
	2.12.1. Peeking at Data (Sockets API)
	2.12.2. Peeking at Data (System Services)

	2.13. Writing Data
	2.13.1. Writing Data (Sockets API)
	2.13.2. Writing Data (System Services)

	2.14. Writing OOB Data (TCP Protocol)
	2.14.1. Writing OOB Data (Sockets API)
	2.14.2. Writing OOB Data (System Services)

	2.15. Sending Datagrams (UDP Protocol)
	2.15.1. Sending Datagrams (System Services)
	2.15.2. Sending Broadcast Datagrams (Sockets API)
	2.15.3. Sending Broadcast Datagrams (System Services)
	2.15.4. Sending Multicast Datagrams

	2.16. Using the Berkeley Internet Name Domain Service
	2.16.1. BIND Lookups (Sockets API)
	2.16.2. BIND Lookups (System Services)

	2.17. Closing and Deleting a Socket
	2.17.1. Closing and Deleting (Sockets API)
	2.17.2. Closing and Deleting (System Services)

	2.18. Shutting Down Sockets
	2.18.1. Shutting Down a Socket (Sockets API)
	2.18.2. Shutting Down a Socket (System Services)

	2.19. Canceling I/O Operations

	Chapter 3. Using the Sockets API
	3.1. Internet Protocols
	3.1.1. TCP Sockets
	3.1.1.1. Wildcard Addressing

	3.1.2. UDP Sockets

	3.2. Structures
	3.2.1. addrinfo Structure
	3.2.2. cmsghdr Structure
	3.2.3. hostent Structure
	3.2.4. in_addr Structure
	3.2.5. in6_addr Structure (IPv6)
	3.2.6. iovec Structure
	3.2.7. linger Structure
	3.2.8. msghdr Structure
	3.2.8.1. BSD Version 4.3
	3.2.8.2. BSD Version 4.4

	3.2.9. netent Structure
	3.2.10. protoent Structure
	3.2.11. servent Structure
	3.2.12. sockaddr Structure
	3.2.12.1. BSD Version 4.3
	3.2.12.2. BSD Version 4.4

	3.2.13. sockaddr_in Structure
	3.2.14. sockaddr_in6 Structure (IPv6)
	3.2.14.1. BSD Version 4.3
	3.2.14.2. BSD Version 4.4

	3.2.15. timeval Structure

	3.3. Header Files
	3.4. Constants and Address Variables (IPv6)
	3.5. Interface Identification (IPv6)
	3.5.1. Sending IPv6 Multicast Datagrams
	3.5.2. Receiving IPv6 Multicast Datagrams
	3.5.3. Address Translation and Conversion Functions
	3.5.4. Address-Testing Macros

	3.6. Advanced API (IPv6)
	3.6.1. Using IPv6 Raw Sockets
	3.6.1.1. Accessing ICMPv6 Messages
	3.6.1.2. Accessing the IPv6 Header
	3.6.1.3. Accessing the IPv6 Routing Header
	3.6.1.4. Accessing the IPv6 Options Headers

	3.7. Calling a Socket Function from an AST State
	3.8. Using 64-Bit Buffer Addresses (Alpha and I64 Only)
	3.9. Standard I/O Functions
	3.10. Guidelines for Compiling and Linking IPv6 Applications
	3.11. Compatibility with the OpenVMS C Run-Time Library
	3.12. Error Checking: errno Values
	3.12.1. errno values
	3.12.2. Relationship Between errno and h_errno

	Chapter 4. Sockets API Reference
	4.1. Summary of Socket Functions
	4.2. Socket API Functions
	accept()
	bind()
	close()
	connect()
	decc$get_sdc()
	decc$socket_fd
	endhostent()
	endnetent()
	endprotoent()
	endservent()
	freeaddrinfo()
	gai_strerror()
	getaddrinfo()
	gethostaddr
	gethostbyaddr()
	gethostbyname()
	gethostbyname_r()
	gethostent()
	gethostname()
	getnameinfo()
	getnetbyaddr()
	getnetbyname()
	getnetent()
	getpeername()
	getprotobyname()
	getprotobynumber()
	getprotoent()
	getservbyname()
	getservbyport()
	getservent()
	getsockname()
	getsockopt()
	herror()
	hostalias()
	hstrerror()
	htonl()
	htons()
	if_freenameindex()
	if_indextoname()
	if_nameindex()
	if_nametoindex()
	inet6_opt_append()
	inet6_opt_find()
	inet6_opt_finish()
	inet6_opt_get_val()
	inet6_opt_init()
	inet6_opt_next()
	inet6_opt_set_val()
	inet6_rth_add()
	inet6_rth_getaddr()
	inet6_rth_init()
	inet6_rth_reverse()
	inet6_rth_segments()
	inet6_rth_space()
	inet_aton()
	inet_lnaof()
	inet_makeaddr()
	inet_netof()
	inet_network()
	inet_ntoa()
	inet_ntop()
	inet_pton()
	ioctl()
	listen()
	ntohl()
	ntohs()
	poll()
	read()
	recv()
	recvfrom()
	recvmsg()
	select()
	send()
	sendmsg()
	sendto()
	sethostent()
	setnetent()
	setprotoent()
	setservent()
	setsockopt()
	shutdown()
	socket()
	socketpair()
	write()

	Chapter 5. Using the $QIO System Service
	5.1. $QIO System Service Variations
	5.2. $QIO Format
	5.2.1. Symbol Definition Files

	5.3. $QIO Functions
	5.4. $QIO Arguments
	5.4.1. $QIO Function-Independent Arguments
	5.4.2. I/O Status Block
	5.4.3. $QIO Function-Dependent Arguments

	5.5. Passing Arguments by Descriptor
	5.5.1. Specifying an Input Parameter List
	5.5.2. Specifying an Output Parameter List
	5.5.3. Specifying a Socket Name
	5.5.4. Specifying a Buffer List

	Chapter 6. OpenVMS System Services Reference
	6.1. System Service Descriptions
	Assign I/O Channel
	Cancel I/O on Channel
	Deassign I/O Channel
	Queue I/O Request

	6.2. Network Pseudodevice Driver I/O Functions
	6.3. Network Pseudodevice Driver I/O Function Codes
	IO$_ACCESS
	IO$_ACCESS|IO$M_ACCEPT
	IO$_ACPCONTROL
	IO$_DEACCESS
	IO$_READVBLK
	IO$_SENSEMODE/IO$_SENSECHAR
	IO$_SETMODE/IO$_SETCHAR
	IO$_SETMODE|IO$M_OUTBAND
	IO$_SETMODE|IO$M_READATTN
	IO$_SETMODE|IO$M_WRTATTN
	IO$_WRITEVBLK

	6.4. TELNET Port Driver I/O Function Codes
	6.4.1. Interface Definition
	6.4.1.1. Item List Codes
	6.4.1.2. Characteristic Mask Bits
	6.4.1.3. Protocol Types
	6.4.1.4. Service Types

	6.4.2. Passing Parameters to the TELNET Port Driver

	6.5. TELNET Port Driver I/O Function Codes
	IO$_TTY_PORT|IO$M_TN_STARTUP
	IO$_TTY_PORT|IO$M_TN_SHUTDOWN

	6.6. Buffered Reading and Writing of Item Lists
	6.7. TELNET Port Driver I/O Function Codes
	IO$_TTY_PORT_BUFIO|IO$M_TN_SENSEMODE
	IO$_TTY_PORT_BUFIO|IO$M_TN_SETMODE

	Appendix A. Socket Options
	Appendix B. IOCTL Requests
	Appendix C. Data Types
	C.1. OpenVMS Data Types
	C.2. C and C++ Implementations

	Appendix D. Error Codes
	Appendix E. Porting Applications to IPv6
	E.1. Using AF_INET6 Sockets
	E.2. Name Changes
	E.3. Structure Changes
	E.3.1. in_addr Structure
	E.3.2. sockaddr Structure
	E.3.3. sockaddr_in Structure
	E.3.4. hostent Structure

	E.4. Function Changes
	E.4.1. gethostbyaddr() Function
	E.4.2. gethostbyname() Function
	E.4.3. inet_aton() Function
	E.4.4. inet_ntoa() Function
	E.4.5. inet_addr() Function

	E.5. Other Application Changes
	E.5.1. Comparing IP Addresses
	E.5.2. Comparing an IP Address to the Wildcard Address
	E.5.3. Using int Data Types to Hold IP Addresses
	E.5.4. Using Functions that Return IP Addresses
	E.5.5. Changing Socket Options

	E.6. Sample Client/Server Programs
	E.6.1. Programs Using AF_INET Sockets
	E.6.1.1. Client Program
	E.6.1.2. Server Program

	E.6.2. Programs Using AF_INET6 Sockets
	E.6.2.1. Client Program
	E.6.2.2. Server Program

	E.6.3. Sample Program Output

