nma Software

VSI OpenVMS

System Services Reference Manual:
A-GETUAI

Document Number: DO-DSSRFA-01A

Publication Date: January 2020

This manual describes a set of routines that the VSI OpenVMS operating system us-
es to control resources, to allow process communication, to control I/0O, and to per-
form other such operating system functions.

Revision Update Information: This is a new manual.
Operating System and Version: VS| OpenVMS x86-64 Version 9.0

VSI OpenVMS 164 Version 8.4-1H1
VSI OpenVMS Alpha 8.4-2L1

VMS Software, Inc., (VSI)
Bolton, Massachusetts, USA

System Services Reference Manual: A-GETUALI:

nma Software

Copyright © 2019 VMS Software, Inc. (VSl), Bolton, Massachusetts, USA

Legal Notice

Confidential computer software. Valid license from VSl required for possession, use or copying. Consistent with FAR 12.211 and 12.212,
Commercial Computer Software, Computer Software Documentation, and Technical Datafor Commercial Items are licensed to the U.S.
Government under vendor's standard commercial license.

Theinformation contained herein is subject to change without notice. The only warranties for VS| products and services are set forth in the
express warranty statements accompanying such products and services. Nothing herein should be construed as constituting an additional
warranty. VS| shall not beliable for technical or editorial errors or omissions contained herein.

HPE, HPE Integrity, HPE Alpha, and HPE Proliant are trademarks or registered trademarks of Hewlett Packard Enterprise.

Intel, Itanium and | A-64 are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States and other coun-
tries.

The VS| OpenVMS documentation set is available on DVD.

System Services Reference Manual: A-GETUAI

Preface .oueeieniinnniniinninnnnnnsnensnensnsssanssssesssnsssnsssssssssssssssssssssasssssssssssssssssasssassssassssssssssssasses vii
Lo ADOUL VST ottt e e e ettt e e e e e et vii
2. Intended AUIEIICE ...cocoiiiiiiiiiiiiiie ettt e et e e e e vii
3. System Services Support for OpenVMS Alpha 64-bit Addressingcccceeeevvvvvvieeeeeenn. vii
4. Related DOCUMEILS ..oeeeviiiiiiiiiiiieeeiiiiiit ettt e e e s et e e e e e e e s s viii
5. VSI Encourages Your COMMENTScceeviiiiiiiiiiiiiiiiiiiiiiiiiiieiiiiieieieteieteeeeeteeeeeeeeeeeeeeeeeeees viii
6. How to Order Additional Documentationeeeeieeiiiiiiiiiieieeeiniiiiieeee e ix
7. Typographical CONVENTIONSeuuiiiiiiieiiiiiiiiiiieee e ettt e ettt e e e e e et eeeeeeee e ix

. System Service DESCIIPLIONS ..ceeeeiiiiiiiiiiiiiiteeiiiitit ettt e ettt e e e e s eeeee e 11
SABORT _TRANS .ttt ettt et e ettt e e sttt e e et e e e sbtaeeeeanes 11
SABORT _TRANSW .ttt ettt ettt e e et e et e e e eibeeee s 17
SACK EVENT L.ttt ettt et e et e et e e e e e e e e 18
SACM ettt e et e e ettt e e et eeeeaae 28
SACMW ettt e e ettt e e as 81
SACQUIRE GALAXY LOCK (Alpha Only)ccooviiiiiiiiiiiieeiiiiieeeeiiee e 82
SADD BRANGCH ..ottt ettt e ettt e e et e e e et eeeeanes 84
SADD BRANCHW ..ottt et e et e et e e e aaeee s 89
SADD _HOLDERooiiiiiiiiieiiit ettt et e e e e e e 89
SADD IDENT ...ttt et et e e ettt e e et e e e et e e e e naiaeeeeans 92
SADD PROXY oottt ettt e ettt et e e 95
SADISTE ettt ettt e ettt e et e e e e atn e e 99
SADIWSL ettt e e 101
SALLOC ..ttt ettt e et e et e e e 103
SASCEFC .t e e 106
SASCTIM .ottt e e ettt e et e et e e 110
SASCTOID ..ttt e e ettt e e ettt e e ettt e e e e e e e 113
SASCUTC ittt ettt e ettt e e ettt e e et e e e eaeeees 116
SASSIGN .ottt e e et e e et eee e e 118
SAUDIT EVENT ..ottt ettt e e et e e e e e 124
SAUDIT EVENTW .ottt ettt et e st eee e 139
SAVOID PREEMPT ...ooiiiiiiiiiiiiiee ettt ettt e e e 139
SBINTIM ittt ettt ettt e ettt e ettt e e ettt e e e et e e e s ettt e e e e eanaeee s 141
SBINUTC ..ttt ettt ettt e e ettt e e ettt e e sttt e e s eaiteeeeanns 144
SBREKTHRU ..ttt et e st e e e ibae e e e 146
SBREKTHRUW .ottt e et e e et e e e iaaeee e 154
SCANCEL ..ttt et e ettt e sttt e e e e et eeen 155
SCANEXH ..ottt ettt e ettt e e e e et ee e 156
SCANTIM ettt et e e ettt e ettt e e ettt e e et e e e e eaeees 157
SCHECK ACCESS .ottt ettt e et e ettt e e e aiaeee s 159
SCHECK FEN (Alpha and INtegrity SEIVETS)ccovrurieeiriiiiieeariiiieeeiiiieeeeniieeeeseineeeeanes 167
SCHECK PRIVILEGE ...ttt 168
SCHECK PRIVILEGEW ..ottt 174
SCHEKPRO ..ottt e et e ettt e et e et e e e 174
SCLEAR SYSTEM EVENT (Alpha and Integrity SErvers)ccccoevuvveeerniveeenniineeeennnne. 182
SCLEAR UNWIND TABLE (Integrity servers Only)ccccevruieeeinniieeeiniiieeeeiiiieeenne 184
SCLOSE ettt e e 185
SCLRAST ettt et et et e e s 185
SCLRCLUEVT ..ttt et et e ettt e e et e e e e itaeeeeane 186
SCLREF .ottt et et e e 188
SCMEXEC ..ottt ettt e et ee e 189
SCMEXEC 04 ..ottt ettt et e as 191
SCMEKRNL ..ttt et e e et e e e ettt e e st e e e naeee s 193

iii

System Services Reference Manual: A-GETUAI

SCMEKRNL 64 .ottt e e e e e ettt e e e e e e s e ettt eeaeee e e s neneeaeeaaeeens 196
SCONNECT ...ttt e e e e ettt e e e e e e et bteeeeaeeesannssaeeeeaeeeeeannneneeas 198
SCPU _CAPABILITIES ..ottt ettt ettt e e e e e ettt e e e e e e e eanneeeeeeas 198
$CPU_TRANSITION (Alpha and Integrity SEIVers)ccccuueeeeeeeeieiiiiiiiiieeeeeeeiaiiieeeeeaaenns 202
$CPU_TRANSITIONW (Alpha and Integrity SEIVErs)ccccuvverrreeeeeiaiiiiiieeeeeeeeaeaneeeee 208
SCREATE ..ottt ettt ettt e e e e e e ettt e e e e e e e s nntaeeeeaaeeeeannnneeeas 208
SCREATE BUFOBJ 64 (Alpha and INtegrity SErVers)coececvveeireeeeeeiiiiiiiieeeaaeeeeeeens 208
SCREATE_GALAXY _LOCK (Alpha Only) ...ccccuviiiiiiiieeeieiiiiee e 212
SCREATE_GALAXY _LOCK TABLE (Alpha Only)ccooeiiiiiiiiiiiiiiieeeeeiieeee e, 215
SCREATE _GDZRO ..ottt et e e e e e et e e e e e e e nnneeees 219
SCREATE_GFILE (Alpha and INtegrity SEIVETS)ccccuvriieieeeeeieiiiiiiieeeeeeeeiiieieeeeaeeenes 227
SCREATE_GPFILE (Alpha and Integrity SEIVers)cccueeeiieeeeeieiiiiiieeeeeeeeeeeiieeeeeeaeenns 233
SCREATE_GPFN (Alpha and Integrity SEIVETS)cceeocuiveiiiieeeeeiiiiiiieeeeeeeeeeeeiieeeeeaaeenns 238
SCREATE RDB ..ottt e e ettt e e e e e e e et e e e e e e e e e enneeees 242
SCREATE _REGION_64 (Alpha and Integrity SEIVers)ccccuuveereeeeeiaeiiiiiiieeeeeeeneneeeee 244
SCREATE UID ..ottt ettt e e e e e e ettt et e e e e e e e e ntbaeeeeaaeeeaannnnees 251
SCREATE _USER PROFILEooiiiiiiiiiiiiiit ettt e e ee e e e e 252
SCRELNM ..ottt e e ettt e e e e e e ettt e e e e e e e et eeeaaeeeeanneees 258
0 2 21 1\ U SURU 265
0 2 211 15 GO PRSPPI 271
SCREPRC .ottt ettt e e e e e e e ettt e e e e e e ettt aeaaaeeaann 278
B R E TV A ettt e e e e e et e e e e e e et e e e e e e e e annneas 296
SCRETVA_ 64 (Alpha and Integrity SETVETS)ccuueiiiireeeieiiiiiiieeeeeeeeeiiiieeee e e e e e e 299
0 21] U PREPRR 304
SCRMPSC_FILE 64 (Alpha and INtegrity SEIVErS)cceeeeeiieoiuiririireeeeeaiiiieieeeaeeeeeanneeeees 315
SCRMPSC_GDZRO 64 (Alpha and Integrity SEIVers)eeveeeeerreiiiieiieeeeeeeieiiieieeeeannn 322
SCRMPSC_GFILE 64 (Alpha and Integrity SEIVEIS)cccecouvrrirrereeesaaiiiieieeeeeeeaeaneeeee 336
SCRMPSC_GPFILE 64 (Alpha and Integrity SEIVETS)ccoceuvrrerreeeeeeeniiiiieieeeaeeeaeaneenee 345
SCRMPSC_GPFN_64 (Alpha and Integrity SEIVEIS)cceeeriourririeeeeeeeeiiiieieeeaeeeeeanneeee 353
SCRMPSC_PFN_64 (Alpha and INtegrity SEIVErs)cccceeeiieriiuiriiireeeeeeieiiiiieeeeeeeeeeeneeee 361
$CVT _FILENAME (Alpha and INtegrity SErVers)c.cceeeiecouuriereeeeeeaiiiiiieeeeeeeeaeeeeeees 366
SDACEFC ...ttt ettt e e e et e e e e e ettt e e e e e e e e nnaaaaeaaaeens 371
] B 72N 5 5 L PRSPPI 372
R B YN € 2 S PEEPRR 374
R B 103 52N U SUPRR 376
] B 1] 51011 = (U PPPPRRN 378
] B 103 51 25,14 = KPR 380
SDECLARE RM ...ttt ettt e e e ettt e e e e e e e e netaeeeeaaaeeennnes 383
SDECLARE RMW ettt ettt e e e e e e ettt e e e e e e e eneaeeeaaaeeens 393
SDELETE ..ottt e e e e ettt e e e e e e ettt e e e e e e e nnnaaaeaaaeeenn 393
SDELETE BUFOBIJ (Alpha and Integrity SErVEIs)cceeericuveiirieeeeeiaiiiiiieeeeaeeeenaeneeeees 393
SDELETE _GALAXY_ LOCK (Alpha Only)eeiiiiieiiiiiiiiiiiee e 394
SDELETE _GALAXY LOCK TABLE (Alpha Only)ccoooioiiiiiiieeeeiiiiieeee e 396
SDELETE INTRUSION ..ottt ettt ettt e e e e e et e e e e e e e e nneeees 397
SDELETE PROXY ..oiiiiiiiiiiiiit ettt ettt ettt e e e e e e ettt et e e e e e e e ennntaaeeeeaaeeeannns 400
SDELETE _REGION_64 (Alpha and Integrity SErVers)eeeeeeeeieiiiiiiieeeeeeeeeiiiiiieeaeeenns 403
N D) 21 51 1N U SUPR 406
N) 21 511 15 GO PRSP 409
R D) 21 51 o PRSP UPRSPR 410
] D) 2 B N U SRPPR 414
SDELTVA_ 64 (Alpha and Integrity SETVErS)ccuuviiiieeeeeieiiiiiiieeeee e e ee e e e e e e 416
] D) 2 O USRS 420

System Services Reference Manual: A-GETUAI

SDEVICE _PATH_SCAN (Alpha and Integrity SEIrvers)ccccveereeeeereriiiiiiieeeeeeeeeeneeeee 425
SDEVICE _SCAN .ottt ettt e e ettt e e e e e e et teeeeaeeeeaannnereeeaaaeaeaannnes 428
R B 1€ 25 1 PR PPRRT 432
SDISCONNECT ..ttt ettt e e e e e ettt e e e e e e e e ntbeeteeaeeeeeaannneeeeaaaeens 435
R B (511 (0 PRSPPI 435
R) 30 o 7N PSP UR PR 439
SDISPLAY PROXY ittt ettt ettt e e e e e e ettt e e e e e e e st eeeaaaeeaeannnes 439
R)) 21 S U UPESPR 445
SEND_ BRANGCH ...ooiiiiiiiiitiiit ettt e e e e ettt e e e e e e e ettt e e e e e e e eannseeneeas 446
SEND BRANCHW ...ttt ettt e e e e e e ettt e e e e e e e e ennteneeeeaaeeeanns 452
SEND TRAN S ittt e e e e e ettt e e e e e e ettt e eeeee e e s e nnseeeeeaaaeeaaannnes 452
SEND TRAN S ettt e e e ettt e e e e e e et ee e e e e e e s snnntneeeeaeens 459
) 21 USRS 460
SN QW ettt e ettt e e e e e e e —bteeeea e e e e e nnaattaeaaaeeeaaane 473
SENTER ..ottt ettt e e e e e e ettt e e e e e e e ettt e e e e e e e e nntraeeaaeens 474
SER AP AT .ttt e ettt e e e e e ettt e e e e e e e et e eaaeeeeaannaaaeeas 474
SE R A S E e e e e e e e e et e e e e e e e nnbbaeaeaae e e e nnaraeeas 477
) 2 PSP UPURR 477
SEXPREG ..ottt e e e et e e e e e e e e et e e e e e e e eaannaneeeas 478
SEXPREG_64 (Alpha and INteGrity SETVEIS)ueeiiieeeeeiiiiiiiiieeaeeeeeeiiieeeeeeeeeeeeieeeeeeaaaens 480
SEXTEND ettt ettt et ettt e e e e e e ettt e e e e e e e e sttt e e e e e e e eannnees 484
SFAO/SFAOL ..ottt e e ettt e e e e e e ettt e e e e e e e e nneaaeeaaaens 484
SFAOL 64 (Alpha and INtegrity SEIVEIS)ceeeeeeiiiuiieiireeeeeeeeiiiiiiieeeeeeeeeieeeeeeeeeeeeeenneeees 503
SFILESCAN ettt ettt e e ettt e e e e e e sttt et e e e e e e e e e nseeeeeeaeeeeeannnenneeeaens 504
] 28 1 5 RSP PRPPR 512
] 2 1D 2 = 021 51 5 USSP 512
SFIND _HOLDER ...ttt e ettt e e e e e e ettt e e e e e e e e annenaeeeeeens 515
SFINISH _RDB ..ttt e e ettt e e e e e s ettt e e e e e e e s nenreeeeaaeeens 518
] 28 516] = U ERUR S 520
R 210 23 20 G PRSPPI 520
SFORGET _RM ..ttt e e e e e e ettt e e e e e e e nteaeeeaaaeeens 523
SFORGET _RMW ittt e e e e e ettt e e e e e e e e nenaeeeaeens 527
0 210 241 ANy X O USSP PRRPR 527
SFORMAT AUDIT ...ttt e e e e e ettt e e e e e e e e ennneaeeeeaaeens 539
SEREE ..ottt e e e e ettt e e e e e e e e e reeaaeeeeaanneeees 543
$FREE_USER _CAPABILITY (Alpha and Integrity SErvers)ccccccveereeeeeeesocveeieereeennn. 543
€ 23 PSPPSR 545
€ 2 1 D N SRR 545
SGETDTIW ettt e e e ettt e e e e e e ettt eeeaeeeeaannneereeaaaaeeaaannnes 555
€ 2 U D 1Y PP URPR 555
SGETDVIW ettt e e e e ettt e e e e e e e ettt et eeaeeeeennenaeeeaaaaeens 586
SGETENV (AIPha ONlY) ..ooiiiiiiiiiiiiiiei ettt e et e e e e e e eeaeees 587
$SGET_GALAXY_LOCK INFO (Alpha Only) ...cooeeeiiiiiiiiiiiiiee e 588
SGET_GALAXY_LOCK SIZE (Alpha Only) ...ccccvuiiiiiieeeieiiiieeee et 591
€ 2 U 53 PRSP 592
SGETIPIW ettt ettt e e e e e e ettt e e e e e e e et e e e e e e e e nneees 617
€ 2 U) S SRR 618
SGETLKIW ettt ettt e e e e ettt e e e e e e ettt eeeaeeeeaannssereeeaaeeeaaannnes 630
SGETIMSG ..ottt ettt e e e e e e ettt e e e e e e e e ettt e e e e e e e e nnaaaaaeaaaeaaaans 630
SGETQUI ettt e e e e ettt e e e e e e ettt e e e e e e e e s nnbaeeeeeaeeeaennnnees 635
SGETQUIW ittt ettt e e e e e ettt e e e e e e e e nnstb ittt eaaeeeeannssaneaeaaaeens 680
SGETRMI ..ottt e ettt e e e e e e ettt e e e e e e e e enntbaeeeeaaeeeanns 681

System Services Reference Manual: A-GETUAI

SGETSYT et et 720
SGETSYIW e ettt e e e e 748
SGETTIM ..o ettt e ettt e et e e e 748
SGETTIM _PREC ..ottt et e 750
SGETUAL ... ettt e ettt e e et e e st eee e 751

vi

Preface
nma Software

1. About VSI

VMS Software, Inc. (VSI) is an independent software company licensed by Hewlett Packard Enter-
prise to develop and support the OpenVMS operating system.

VSI seeks to continue the legendary development prowess and customer-first priorities that are so
closely associated with the OpenVMS operating system and its original author, Digital Equipment
Corporation.

2. Intended Audience

This manual is intended for system and application programmers who want to call system services.

3. System Services Support for OpenVMS Al-
pha 64-bit Addressing

As of Version 7.0, the OpenVMS Alpha operating system provides support for 64-bit virtual memo-
ry addresses. This support makes the 64-bit virtual address space defined by the Alpha architecture
available to the OpenVMS Alpha operating system and to application programs. In the 64-bit virtual
address space, both process-private and system virtual address space extend beyond 2 GB. By using
64-bit address features, programmers can create images that map and access data beyond the previous
limits of 32-bit virtual addresses.

New OpenVMS system services are available, and many existing services have been enhanced to
manage 64-bit address space. The system services descriptions in this manual indicate the services
that accept 64-bit addresses. A list of the OpenVMS system services that accept 64-bit addresses is
available in the VSI OpenVMS Programming Concepts Manual.

The following section briefly describes how 64-bit addressing support affects OpenVMS system ser-

vices. For complete information about OpenVMS Alpha 64-bit addressing features, refer to the VS/
OpenVMS Programming Concepts Manual.

64-Bit System Services Terminology

32-Bit System Service

A 32-bit system service only supports 32-bit addresses on any of its arguments that specify ad-
dresses. If passed by value on OpenVMS Alpha, a 32-bit virtual address is actually a 64-bit ad-
dress that is sign-extended from 32 bits.

64-Bit Friendly Interface

A 64-bit friendly interface can be called with all 64-bit addresses. A 32-bit system service inter-
face is 64-bit friendly if, without a change in the interface, it needs no modification to handle 64-

vii

Preface

bit addresses. The internal code that implements the system service might need modification, but
the system service interface will not.

64-Bit System Service

A 64-bit system service is defined to accept all address arguments as 64-bit addresses (not neces-
sarily 32-bit sign-extended values). A 64-bit system service also uses the entire 64 bits of all virtu-
al addresses passed to it.

Use of the _64 Suffix

The 64-bit system services include the 64 suffix for services that accept 64-bit addresses by refer-
ence. For promoted services, this suffix distinguishes the 64-bit capable version from its 32-bit coun-
terpart. For new services, it is a visible reminder that a 64-bit-wide address cell will be read/written.

Sign-Extension Checking

The OpenVMS system services that do not support 64-bit addresses and all user-written system ser-
vices that are not explicitly enhanced to accept 64-bit addresses receive sign-extension checking.
Any argument passed to these services that is not properly sign-extended causes the error status
SS$ ARG _GTR 32 BITS to be returned.

4. Related Documents

The VSI OpenVMS Programming Concepts Manual contains useful information for anyone who
wants to call system services.

High-level language programmers can find additional information about calling system services in the
language reference manual and language user's guide provided with the OpenVMS language.

Application developers using XA-compliant or other resource managers should refer to the V.SI Open-
VMS Programming Concepts Manual.

The following documents might also be useful:

* VSI OpenVMS Programming Concepts Manual

* Guide to OpenVMS File Applications

o VSI OpenVMS Guide to System Security

* DECnet-Plus for OpenVMS Introduction and User's Guide
* OpenVMS Record Management Services Reference Manual
* VSI OpenVMS I/0 User's Reference Manual

o VSI OpenVMS Guide to Upgrading Privileged-Code Applications

5. VSI Encourages Your Comments

You may send comments or suggestions regarding this manual or any VSI document by sending email
to the following Internet address: <doci nf o@nssof t war e. conp.

viii

Preface

6. How to Order Additional Documentation

For information about how to order additional documentation, email the VSI OpenVMS information
account: <i nf o@nssof t war e. conr. We will be posting links to documentation on our corpo-

rate website soon.

7. Typographical Conventions

The following conventions are used in this manual:

Convention

Meaning

Ctrl/x

A sequence such as Ctrl/x indicates that you must hold down the key la-
beled Ctrl while you press another key or a pointing device button.

PF1x

A sequence such as PF1 x indicates that you must first press and release the
key labeled PF1 and then press and release another key (x) or a pointing de-
vice button.

A horizontal ellipsis in examples indicates one of the following possibili-
ties:

» Additional optional arguments in a statement have been omitted.
* The preceding item or items can be repeated one or more times.

* Additional parameters, values, or other information can be entered.

A vertical ellipsis indicates the omission of items from a code example or
command format; the items are omitted because they are not important to
the topic being discussed.

O

In command format descriptions, parentheses indicate that you must en-
close choices in parentheses if you specify more than one.

[]

In the VSI OpenVMS System Services Reference Manual, brackets general-
ly indicate default arguments. If an argument is optional, it is specified as
such in the argument text.

In command format descriptions, vertical bars separate choices within
brackets or braces. Within brackets, the choices are optional; within braces,
at least one choice is required. Do not type the vertical bars on the com-
mand line.

i

In command format descriptions, braces indicate required choices; you
must choose at least one of the items listed. Do not type the braces on the
command line.

bold type

Bold type represents the name of an argument, an attribute, or a reason.
Bold type also represents the introduction of a new term.

italic type

Italic type indicates important information, complete titles of manuals, or
variables. Variables include information that varies in system output (Inter-
nal erroro number), in command lines (/PRODUCER=name), and in com-
mand parameters in text (where dd represents the predefined code for the
device type).

UPPERCASE TYPE

Uppercase type indicates a command, the name of a routine, the name of a
file, or the abbreviation for a system privilege.

ix

Preface

Convention

Meaning

Exanpl e

This typeface indicates code examples, command examples, and interactive
screen displays. In text, this type also identifies URLs, UNIX commands
and pathnames, PC-based commands and folders, and certain elements of
the C programming language.

A hyphen at the end of a command format description, command line, or
code line indicates that the command or statement continues on the follow-
ing line.

numbers

All numbers in text are assumed to be decimal unless otherwise noted.
Nondecimal radixes—binary, octal, or hexadecimal—are explicitly indicat-
ed.

System Service Descriptions

System services provide basic operating system functions, interprocess communication, and various
control resources.

Condition values returned by system services indicate not only whether the service completed suc-
cessfully, but can also provide other information. While the usual condition value indicating success
is SS§ NORMAL, other values are also defined. For example, the condition value SS§ BUFFER-
OVEREF, which is returned when a character string returned by a service is longer than the buffer pro-
vided to receive it, is a success code, but it also provides additional information.

Warning returns and some error returns indicate that the service might have performed some, but not
all, of the requested function.

The particular condition values that each service can return are described in the Condition Values Re-
turned section of each individual service description.

Returns

OpenVMS usage: cond value

type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. All system services (except SEXIT) return by immediate value a condition
value in RO.

$ABORT_TRANS

Abort Transaction — Ends a transaction by aborting it.

Format
SYS$ABORT _TRANS

[efn] ,[flags] ,iosb [,[astadr] ,[astprn] ,[tid] ,[reason]
,[bid]]

C Prototype

i nt sys$abort_trans
(unsigned int efn, unsigned int flags, struct _iosb *ioshb,...);

Arguments

efn

OpenVMS usage: ef number
type: longword (unsigned)
access: read only

mechanism: by value

System Service Descriptions

Number of the event flag that is set when the service completes. If this argument is omitted, event flag
0 is used.

flags

OpenVMS usage: mask longword
type: longword (unsigned)
access: read only
mechanism: by value

Flags specifying options for the service. The f | ags argument is a longword bit mask in which each
bit corresponds to an option flag. The DDTMDEF macro defines symbolic names for these option
flags. All undefined bits must be 0. If this argument is omitted, no flags are set.

Table 1. SABORT_TRANS Option Flags

Flag Description

DDTM$M_NOWAIT Set this flag to indicate that the service should return to the caller
without waiting for final cleanup. Note that SABORT TRANSW
with the DDTM$M_NOWAIT flag set is not equivalent to
$SABORT TRANS. SABORT_ TRANS returns when the operation
has been queued. The former does not return until the operation
has been initiated. The latter returns as soon as the operation has
been queued. The full range of status values may be returned from
a nowait call.

DDTMS$M SYNC Set this flag to specify that successful synchronous completion is
to be indicated by returning SS§ SYNCH. When SS$§ SYNCH
is returned, the AST routine is not called, the event flag is not set,
and the I/O status block is not filled in.

iosb

OpenVMS usage: io status block

type: quadword (unsigned)
access: write only
mechanism: by reference

I/0 status block in which the following information is returned:

* The completion status of the service, returned as a condition value. See the section called “Condi-
tion Values Returned”.

* An abort reason code that gives one reason why the transaction aborted, if the completion status of
the service is SS§ NORMAL.

Note that, if there are multiple reasons why the transaction aborted, the abort reason code returned
in the I/O status block might not be the same as the abort reason code passed in the r eason argu-
ment. The DECdtm transaction manager returns one of the reasons in the I/O status block. It may
return different reasons to different branches of the transaction.

For example, if the call to SABORT TRANS gives DDTM$ ABORTED as the reason and the
transaction timeout expires at about the same time as the call to SABORT TRANS, then either the
DDTMS$ TIMEOUT or DDTM$ ABORTED reason code can be returned in the I/O status block.

12

System Service Descriptions

The SDDTMMSGDEF macro defines symbolic names for abort reason codes. Those currently de-
fined are shown in Table 2.

Table 2. Abort Reason Codes

Symbolic Name Description

DDTM$ ABORTED The application aborted the transaction without
giving a reason.

DDTM$ COMM FAIL A communications link failed.

DDTMS INTEGRITY A resource manager integrity constraint check
failed.

DDTMS$ LOG_FAIL A write operation to the transaction log failed.

DDTM$ ORPHAN BRANCH An unauthorized branch caused failure.

DDTMS$ PART SERIAL A resource manager serialization check failed.

DDTMS$ PART TIMEOUT The timeout specified by a resource manager ex-
pired.

DDTMS$ SEG FAIL A process or image terminated.

DDTMS SERIALIZATION A DECdtm transaction manager serialization
check failed.

DDTM$ SYNC FAIL The transaction was not globally synchronized; an
authorized branch was not added to the transac-
tion.

DDTMS$ TIMEOUT The timeout specified on SSTART TRANS ex-
pired.

DDTM$ UNKNOWN The reason is unknown.

DDTMS$ VETOED A resource manager was unable to commit the
transaction.

The following diagram shows the structure of the I/O status block:
31 15 0

Reserved to OpenVMS Condition value

Abort reason code

VIM-0456A-Al

astadr

OpenVMS usage: ast_procedure

type: procedure value
access: call without stack unwinding
mechanism: by reference

AST routine that is executed when the service completes, if SS§ NORMAL is returned in RO. The
ast adr argument is the address of the entry mask of this routine. The routine is executed in the ac-
cess mode of the caller.

astprm

OpenVMS usage: user_arg

System Service Descriptions

type: longword (unsigned)
access: read only
mechanism: by value

AST parameter that is passed to the AST routine specified by the ast adr argument.
tid

OpenVMS usage: trans_id

type: octaword (unsigned)
access: read only
mechanism: by reference

Identifier of the transaction to be aborted.
If this argument is omitted, SABORT TRANS aborts the default transaction of the calling process.
reason

OpenVMS usage: cond_value

type: longword (unsigned)
access: read only
mechanism: by value

Code that gives the reason why the application is aborting the transaction. The SDDTMMSGDEF
macro defines symbolic names for abort reason codes. The codes currently defined are listed in Ta-
ble 2. The default value for this argument is DDTM$ ABORTED.

bid

OpenVMS usage: branch id

type: octaword (unsigned)
access: read only
mechanism: by reference

The identifier (BID) of the branch that is aborting the transaction.

The default value of this argument is zero, which is the BID of the branch that started the transaction.

Description

The Abort Transaction service ends a transaction by aborting it.

The SABORT TRANS system service:

» Initiates abort processing for the specified transaction, if it has not already been initiated.

If abort processing has not already been initiated, the DECdtm transaction manager instructs the
resource managers to abort (roll back) the transaction operations so that none of those operations
ever take effect. It delivers an abort event to each RM participant in the transaction that is associ-
ated with an RMI that requested abort events.

* Removes the specified branch from the specified transaction in this process.

14

System Service Descriptions

Preconditions for the successful completion of SABORT TRANS include:
» Ifthe BID is zero, the calling process must have started the transaction.

« If'the BID is nonzero, the calling process must contain the specified branch of the specified trans-
action.

» Ifthe BID is nonzero, the t i d argument must not be omitted. If you explicitly pass the BID, you
must also explicitly pass the TID.

SABORT TRANS may fail for various reasons, including:
* The preconditions were not met.

* There has already been a call to SABORT TRANS, SEND TRANS, or SEND BRANCH for the
specified branch.

Postconditions on successful completion of SABORT TRANS are listed in Table 3.

Table 3. Postconditions When SABORT_TRANS Completes Successfully

Postcondition Meaning
The transaction is ended. If DDTM$M_NOWAIT is clear:

* The TID of the transaction is invalid; calls to any DECdtm system
services except SGETDTI and $SETDTI that pass the TID will
fail, and calls to resource managers that pass the TID will fail.

* The transaction no longer has any application or RM participants
on the local node.

* All communications about the transaction between the local
DECdtm transaction manager and other DECdtm transaction man-
agers are finished (including the final "cleanup" acknowledgment).

The outcome of the transac- |None of the operations of the transaction will ever take effect.
tion is abort.

DECdtm quotas are returned. |[If DDTM$M_NOWAIT is clear, all quotas allocated for the transac-
tion by calls on the local node to DECdtm services are now returned.

The transaction is not the de- |If DDTM$M_NOWAIT is clear, then, if the transaction was the de-
fault transaction of the call- |fault transaction of the calling process, it is now no longer the default.
ing process.

SABORT_TRANS will not complete successfully (that is, the event flag will not be set, the AST rou-
tine will not be called, and the I/O status block will not be filled in) until all branches on the local
node have been removed from the transaction. Thus this call to SABORT_TRANS cannot complete
successfully until every authorized and synchronized branch on the local node has initiated a call to
SEND TRANS, SEND BRANCH, or SABORT TRANS.

$ABORT TRANS must deliver notification ASTs to resource managers participating in the transac-
tion. Therefore it will not complete successfully while the calling process is either:

* Inan access mode that is more privileged than the DECdtm calls made by any resource manag-
er participating in the transaction. RMS journalling calls DECdtm in executive mode. Oracle Rdb
and Oracle CODASYL DBMS call DECdtm in user mode.

System Service Descriptions

e At AST level in the same access mode as the least privileged DECdtm calls made by any resource
manager participating in the transaction.

For example, if Oracle Rdb is a participant in the transaction, SBABORT _TRANS will not complete
successfully while the calling process is in supervisor, executive, or kernel mode, or while the calling
process is at AST level.

Note that successful completion of SABORT TRANS is not indefinitely postponed by network fail-
ure.

Required Access or Privileges

None.

Required Quotas

ASTLM

Related Services

$SABORT TRANSW, SACK_EVENT, SADD BRANCH, $ADD BRANCHW, $CREATE UID,
$DECLARE_RM, $DECLARE_RMW, SEND BRANCH, $SEND BRANCHW, $SEND TRANS,
$END TRANSW, $SFORGET RM, SFORGET RMW, SGETDTIL, $GETDTIW, $GET DE-
FAULT TRANS, $JOIN_RM, $JOIN_RMW, $SETDTI, $SETDTIW, $SET _DEFAULT TRANS,
$SET DEFAULT TRANSW, $START BRANCH, $START BRANCHW, $START TRANS,
$START TRANSW, STRANS EVENT, $TRANS EVENTW

Condition Values Returned

SS$ NORMAL

If this was returned in RO, the request was successfully queued. If it was returned in the I/O status
block, the service completed successfully.

SS$ SYNCH

The service completed successfully and synchronously (returned only if the DDTM$M_SYNC
flag is set).

SS$ ACCVIO
An argument was not accessible by the caller.
SS$ BADPARAM

The options flags were invalid or the t i d argument was omitted and the bi d argument was not
Zero.

SS$ BADREASON
The abort reason code was invalid.
SS$ CURTIDCHANGE

The t i d argument was omitted and a call to change the default transaction of the calling process
was in progress.

16

System Service Descriptions

SS$ EXASTLM
The process AST limit (ASTLM) was exceeded.
SS$ ILLEFC
The event flag number was invalid.
SS$ INSFARGS
A required argument was missing.
SS$ INSFMEM
There was insufficient system dynamic memory for the operation.
SS$ NOCURTID

An attempt was made to abort the default transaction (the t i d argument was omitted), but the
calling process did not have a default transaction.

SS$ NOLOG
The local node did not have a transaction log.
SS$ NOSUCHBID

The calling process did not contain the branch identified by the BID passed in the bi d argu-
ment (possibly because there has already been a call to SABORT TRANS, SEND TRANS, or
$END_BRANCH for that branch).

This error is returned only if the bi d argument is not zero.
SS$ NOSUCHTID
A transaction with the specified transaction identifier does not exist.
SS$ NOTORIGIN
A bi d of zero was specified and the calling process did not start the transaction.
SS$ TPDISABLED
The TP_SERVER process was not running on the local node.
SS$ WRONGSTATE

Commit processing for the transaction had already started. This can occur if bid is zero or the
specified branch was unsynchronized.

$ABORT_TRANSW

Abort Transaction and Wait — Ends a transaction by aborting it. SABORT _TRANSW always

waits for the request to complete before returning to the caller. Other than this, it is identical to
$ABORT_TRANS. Do not call SABORT _TRANSW from AST level, or from an access mode that is
more privileged than the DECdtm calls made by any resource manager participant in the transaction.
If you do, the SABORT TRANSW service will wait indefinitely.

System Service Descriptions

Format

SYS$ABORT_TRANSW
[efn] ,[flags] ,iosb [,[astadr] ,[astprn] ,[tid] ,[reason] ,[bid]]

C Prototype

i nt sys$ABORT_TRANSW
(unsigned int efn, unsigned int flags, struct _iosb *ioshb,...);

$ACK_EVENT

Acknowledge Event — Acknowledges an event reported to a Resource Manager (RM) participant or
Resource Manager instance (RMI).

Format
SYS$ACK_EVENT

[flags] ,report_id ,report _reply [,[reason] ,[beftinme] ,[afttine]
,[part_name] ,[rmcontext], [tinmout]]

C Prototype

i nt sys$ack_event

(unsigned int flags, unsigned int report_id, int report_reply,...);
Arguments
flags
OpenVMS usage: mask longword
type: longword (unsigned)
access: read only
mechanism: by value

Reserved to OpenVMS. This argument must be zero.
report_id

OpenVMS usage: identifier

type: longword (unsigned)
access: read only
mechanism: by value

The identifier of the event report being acknowledged by this call to SACK_EVENT.
report_reply

OpenVMS usage: cond value

type: longword (unsigned)
access: read only
mechanism: by value

18

System Service Descriptions

Acknowledgment code appropriate to the event being acknowledged by this call to SACK _EVENT.
The following tables give the valid acknowledgment codes for the various events. The title of each ta-
ble gives the event, and in brackets, its event code. The event code is passed in the event report block

(sce SDECLARE RM).

Acknowledgment of prepare or one-phase commit events gives a vote on the outcome of the transac-
tion—either to commit or to abort. The tables for these events have a column labeled "Vote". A "yes"
vote means that the RM participant wants to commit the transaction, while a "no" vote means that the
RM participant cannot commit. The transaction will be committed only if all participants vote "yes".

Table 4. Replies to an Abort Event Report (DDTMS$SK ABORT)

report_reply

Description

SS$ FORGET

RM participant guarantees that the effects of its transaction operations will
never be detected by any transaction that commits.

Side effects:

On successful completion of the call to SACK EVENT, the RM participant
is removed from the transaction, and the ASTLM quota consumed by the
call to $JOIN RM or SACK EVENT that added it to the transaction is re-
turned.

DECdtm also releases any application threads that are waiting for the
transaction to end (necessary but not sufficient condition). Any call to
$END TRANS, SEND BRANCH, or SABORT TRANS on a node for a
transaction whose outcome is abort is not allowed to complete until after all
abort event reports delivered to RM participants on that node have been ac-
knowledged.

Table 5. Replies to a Commit Event Report (DDTMS$K COMMIT)

report_reply

Description

SS$ FORGET

Allows the DECdtm transaction manager to forget the RM participant.
The RM participant must not give this reply until it has either:
* Completed the commit processing for its transaction operations.

+ Safely stored enough information to ensure that this commit processing
will inevitably complete (for example, logged that the transaction has
committed in a private log).

If the RM participant is associated with a nonvolatile RMI, then at some
point after receiving this reply, the DECdtm transaction manager will
delete the name of the RM participant from the transaction database. Af-
ter SS§_FORGET replies have been given for all the RM participants in a
transaction, that transaction ceases to be recoverable (some time after all
these replies are given, the transaction is deleted from the transaction data-
base). A subsequent call to SGETDTI can lead the resource manager to
wrongly assume that the transaction had aborted.

If there is a failure after this reply is sent, a recoverable resource manag-
er must be able to rely on its own safely stored information to determine if

System Service Descriptions

report_reply

Description

any of the commit processing associated with the RM participant needs to
be restarted.

Side effects:

On successful completion of the call to SACK EVENT, the RM participant
is removed from the transaction, and the ASTLM quota consumed by the
call to $JOIN_RM or SACK EVENT that added it to the transaction is re-
turned.

DECdtm also releases any application threads that are waiting for the
transaction to end (necessary but not sufficient condition). Any call to
$END TRANS or SEND BRANCH on a node for a transaction whose
outcome is commit cannot complete successfully until all commit event re-
ports delivered to RM participants on that node have been acknowledged.

SS$ REMEMBER

The RM participant requires that the DECdtm transaction manager stores
its name and the outcome of the transaction (commit) in the transaction
database. Note that for an RM participant associated with a volatile RMI,
SS$ REMEMBER is treated in the same way as SS$ FORGET.

Side effects:

On successful completion of the call to SACK_EVENT, the RM participant
is removed from the transaction, and the ASTLM quota consumed by the
call to $JOIN_RM or SACK_EVENT that added it to the transaction is re-
turned.

DECdtm also releases any application threads that are waiting for the
transaction to end (necessary but not sufficient condition). Any call to
$END TRANS or SEND BRANCH on a node for a transaction whose
outcome is commit cannot complete successfully until all commit event re-
ports delivered to RM participants on that node have been acknowledged.

Table 6. Replies to a One-phase Commit Event Report (DDTM
$K ONE_PHASE COMMIT)

report_reply

Vote Meaning

SS$ NORMAL

Yes The RM participant decided to commit the transaction, and
has safely stored enough information to be able to keep this
guarantee even if there is a recoverable failure, caused, for

example, by a node crash.

The DECdtm transaction manager does not log any infor-
mation about the transaction.

Side effects:

On successful completion of the call to SACK_EVENT, the
RM participant is removed from the transaction, the transac-
tion is ended, and the ASTLM quota consumed by the call
to $JOIN_RM or SACK_EVENT that added the RM partic-
ipant to the transaction is returned.

20

System Service Descriptions

report_reply

Vote

Meaning

DECdtm also allows the call to SEND TRANS to complete
(necessary and sufficient condition).

SS$_PREPARED

Yes

RM participant decided not to accept the opportunity to de-
cide the outcome of the transaction. It has performed on-
ly prepare processing for the transaction and requires full
two-phase commit processing. This is equivalent to voting
SS$ PREPARED on a prepare event.

The RM participant can either commit or abort the opera-
tions of the transaction, and guarantees that it will abide by
the DECdtm transaction manager's decision on whether the
transaction (and therefore these operations) are committed
or aborted.

A recoverable resource manager must not give this vote un-
til it has safely stored enough information to be able to keep
this guarantee even if there is a recoverable failure, caused,

for example, by a node crash.

The DECdtm transaction manager will decide the outcome
of the transaction, then inform the resource manager of the
decision with a commit or abort event report delivered to
the RM participant (assuming that it is associated with an
RMI that requested these event reports).

Note that an application or other failure can cause the
DECdtm transaction manager to decide to abort the transac-
tion.

SS$_VETO

No

RM participant requires that the transaction be aborted

and guarantees that the effects of that transaction on its re-

sources will never be detected by any transaction that com-
mits. The r eason argument gives the reason why the RM
participant is aborting the transaction.

The DECdtm transaction manager does not log any infor-
mation about the transaction.

Side effects:

On successful completion of the call to SACK_EVENT, the
RM participant is removed from the transaction, the transac-
tion is ended, and the ASTLM quota consumed by the call
to $JOIN_RM or SACK_EVENT that added the RM partic-
ipant to the transaction is returned.

DECdtm also allows the call to SEND TRANS to complete
(necessary and sufficient condition).

21

System Service Descriptions

Table 7. Replies to a Prepare Event Report (DDTM$K PREPARE)

report_reply Vote Meaning

SS§ FORGET Yes This is called a read-only vote. It is an optimization that al-
lows an RM participant to vote "yes" and not receive a com-
mit or abort event report.

Side effects:

On successful completion of the call to SACK_EVENT,
the RM participant is removed from the transaction, and
the ASTLM quota consumed by the call to $JOIN_RM or
$ACK_EVENT that added it to the transaction is returned.

SS$ PREPARED Yes The RM participant can either commit or abort the opera-
tions of the transaction, and guarantees that it will abide by
the DECdtm transaction manager's decision on whether the
transaction (and therefore these operations) are committed
or aborted. In other words, the RM participant guarantees
that the behavior of its resources will never be inconsistent
with that decision, insofar as that behavior is detected by
any transactions that commit.

A recoverable resource manager must not give this vote un-
til it has safely stored enough information to be able to keep
this guarantee even if there is a recoverable failure, caused,
for example, by a node crash.

The DECdtm transaction manager will decide the outcome
of the transaction, then inform the resource manager of the
decision with a commit or abort event report delivered to
the RM participant (assuming that it is associated with an
RMI that requested these event reports) or, in the event of a
failure, using the resource manager's recovery mechanism.

SS$ VETO No RM participant requires that the transaction be aborted. The
r eason argument gives the reason why the RM participant
is aborting the transaction.

The RM participant guarantees that the effects of its trans-
action operations will never be detected by any transaction
that commits.

Side effects:

The DECdtm transaction manager will deliver an abort
event report for the transaction to the RM participant.

Table 8. Replies to a Default Transaction Started Event Report (DDTM
$K STARTED DEFAULT)

report_reply Description

SS$ NORMAL Adds a new RM participant running in the calling process to the transaction
to which a new branch is being added. The new RM participant is associat-
ed with the RMI to which the default transaction started event was report-

22

System Service Descriptions

report_reply

Description

ed. The part _nanme and r m cont ext arguments specify the name of
the new RM participant and its context.

Side effects:

The postconditions on successful completion of the call to SACK _EVENT
are the same as those for $JOIN RM.

DECdtm also allows the call to SSTART TRANS or $START BRANCH
that is adding the new branch to complete (necessary but not sufficient con-
dition). That call cannot complete successfully until all default transac-

tion-started event reports delivered to RMIs in that process have been ac-
knowledged.

SS$_FORGET

Acknowledgment of the event report.
Side effects:

DECdtm allows the call to $START TRANS or $SSTART BRANCH that is
adding the new branch to complete (necessary but not sufficient condition).

That call cannot complete successfully until all default transaction-started
event reports delivered to RMIs in that process have been acknowledged.

Table 9. Replies to a Nondefault Transaction Started Event Report (DDTM
$K STARTED NONDEFAULT)

report_reply

Description

SS$ NORMAL

Adds a new RM participant running in the calling process to the transaction
to which a new branch is being added. The new RM participant is associat-
ed with the RMI to which the nondefault transaction started event was re-
ported. The part _nanme and r m_cont ext arguments specify the name
of the new RM participant and its context.

Side effects:

The postconditions on successful completion of the call to SACK _EVENT
are the same as those for $JOIN_RM.

DECdtm also allows the call to SSTART TRANS or $START BRANCH
that is adding the new branch to complete (necessary but not sufficient con-
dition). That call cannot complete successfully until all default transac-

tion-started event reports delivered to RMIs in that process have been ac-
knowledged.

SS$_FORGET

Acknowledgment of the event report.
Side effects:

DECdtm allows the call to $START TRANS or $SSTART BRANCH that is
adding the new branch to complete (necessary but not sufficient condition).

That call cannot complete successfully until all default transaction-started
event reports delivered to RMIs in that process have been acknowledged.

23

System Service Descriptions

reason

OpenVMS usage: cond value

type: longword (unsigned)
access: read only
mechanism: by value

A code that gives the reason why the RM participant is aborting the transaction.

This argument is ignored unless the value in the r eport _r epl y argument is SS§ VETO and the
event being acknowledged is a prepare or one-phase commit event.

The SDDTMMSGDEF macro defines symbolic names for abort reason codes described in Table 10.
The default value for this argument is DDTM$_VETOED.

Table 10. Abort Reason Codes

Symbolic Name

Description

DDTM$_ABORTED

Application aborted the transaction without giving a reason.

DDTM$_COMM _FAIL

Transaction aborted because a communications link failed.

DDTMS$ INTEGRITY

Transaction aborted because a resource manager integrity con-
straint check failed.

DDTM$_LOG FAIL

Transaction aborted because an attempt to write to the transac-
tion log failed.

DDTM$_ORPHAN BRANCH

Transaction aborted because it had an unauthorized branch.

DDTMS$ PART SERIAL

Transaction aborted because a resource manager serialization
check failed.

DDTMS$ PART TIMEOUT

Transaction aborted because a resource manager timeout expired.

DDTM$_SEG FAIL

Transaction aborted because a process or image terminated.

DDTMS SERIALIZATION

Transaction aborted because a serialization check failed.

DDTM$_SYNC_FAIL

Transaction aborted because a branch had been authorized for it
but had not been added to it.

DDTM$_TIMEOUT

Transaction aborted because its timeout expired.

DDTM$_UNKNOWN

Transaction aborted; reason unknown.

DDTM$_VETOED

Transaction aborted because a resource manager was unable to
commit it.

beftime

OpenVMS usage: utc date time

type: octaword (unsigned)
access: read only
mechanism: by reference
Reserved to OpenVMS.

afttime

24

System Service Descriptions

OpenVMS usage: utc_date time

type: octaword (unsigned)
access: read only
mechanism: by reference
Reserved to OpenVMS.

part_name

OpenVMS usage: char_string

type: character-coded text string
access: read only
mechanism: by descriptor--fixed-length string descriptor

The name of the new RM participant that is added to the transaction by this call to SACK EVENT.
This argument is ignored unless the event being acknowledged is of type Transaction Started and the
value of the r eport _r epl y argument is SS§ NORMAL.

If this argument is omitted (the default) or its value is zero, the name of the new RM participant is the
same of that of the RMI with which it is associated.

The string passed in this argument must be no longer than 32 characters.

To ensure smooth operation in a mixed-network environment, refer to the chapter entitled Managing
DECdtm Services in the VSI OpenVMS System Manager's Manual, for information on defining node
names.

rm_context

OpenVMS usage: userarg

type: longword (unsigned)
access: read only
mechanism: by value

The context associated with the new RM participant. This argument is ignored unless the value of the
report _reply argument is SS§ NORMAL, and the event being acknowledged is of type Transac-
tion Started.

The context of the new RM participant is passed in the event reports subsequently delivered to that
RM participant.

The context is used to pass information specific to the new RM participant from the main line code in-
to the event handler specified in the call to SDECLARE RM that created the RMI with which the new

RM participant is associated.

If this argument is omitted (the default) or is zero, the context associated with the new RM participant
is the same of that of the RMI with which it is associated.

timout

25

System Service Descriptions

OpenVMS usage: date time

type: quadword (unsigned)

access: read only

mechanism: by reference

Reserved to OpenVMS.

Description

The SACK_EVENT system service:

Acknowledges an event report delivered by the DECdtm transaction manager to an RM partici-
pant or RMI in the calling process.

Every event report delivered by the DECdtm transaction manager to an RM participant or RMI
must be acknowledged by a call to SACK_EVENT specifying the identifier of the event report.
This acknowledgment need not come from AST context. The caller of SACK _EVENT must be in
the same access mode as, or a more privileged access mode than, that in which the event handler
AST was delivered.

The DECdtm transaction manager may deliver multiple event reports to an RMI, but delivers
only one event report at a time to an RM participant. For example, if a prepare event report has
been delivered to an RM participant, and the transaction is aborted while the RM participant is
doing its prepare processing, then the DECdtm transaction manager does not deliver an abort
event report to that RM participant until it has acknowledged the prepare event report by a call to
$ACK _EVENT.

After acknowledging the event report, the RMI or RM participant should no longer access the
event report block.

Adds a new RM participant to a transaction, if the event being acknowledged is of type Transac-
tion Started and the value of the r eport _r epl y argument is SS§ NORMAL.

Note that the new RM participant cannot be the coordinator of the transaction.

Removes an RM participant from a transaction if the event being acknowledged is one of the
events listed in the following table and the r eport _r epl y argument is as listed in this table:

Event report_reply

Abort SS$ FORGET

Commit SS$ FORGET or SS§ REMEMBER
Prepare SS$ FORGET or SS§ VETO
One-phase commit SS$ NORMAL or SS$ VETO

Required Privileges

None

Required Quotas

None

26

System Service Descriptions

Related Services

$ABORT TRANS, SABORT TRANSW, SADD BRANCH, $ADD BRANCHW, $CREATE_UID,
$DECLARE_RM, $DECLARE_RMW, $SEND BRANCH, SEND BRANCHW, $END TRANS,
$END_TRANSW, $FORGET RM, $SFORGET RMW, SGETDTI, $GETDTIW, $GET DE-
FAULT TRANS, $JOIN_RM, $JOIN RMW, $SETDTI, $SETDTIW, $SET DEFAULT TRANS,

$SET DEFAULT TRANSW, $START BRANCH, $START BRANCHW, $START TRANS,
$START TRANSW, STRANS EVENT, $STRANS EVENTW

Condition Values Returned

SS$ NORMAL

The request was successful.
SS$§_ACCVIO

An argument was not accessible to the caller.
SS$ BADPARAM

Either the options flags were invalid, or the reply passed in the r epor t _r epl y argument was
invalid for the type of event being acknowledged.

SS$ BADREASON

The abort reason code passed in the r eason argument was invalid.
SS$ EXASTLM

The process AST limit (ASTLM) was exceeded.
SS$ ILLEFC

The event flag number was invalid.
SS$ _INSFARGS

A required argument was missing.
SS$ INSFMEM

There was insufficient system dynamic memory for the operation.
SS$ INVBUFLEN

The string passed in the par t _nane argument was too long.
SS$ NOSUCHREPORT

Either an event report with the specified report identifier had not been delivered to any RM partic-
ipant or RMI in the calling process, or that event report had already been acknowledged.

27

System Service Descriptions

SS§_WRONGACMODE

The caller was in a less privileged access mode than that of the RMI whose event handler was
used to deliver the event report that is being acknowledged by this call to SACK_EVENT.

$ACM

Authentication and Credential Management — The $ACM service provides a common interface to all
functions supported by the Authentication and Credential Management (ACM) authority. The caller
must specify the function code and any applicable function modifiers and item codes for the request-
ed operation. The SACM service completes asynchronously; for synchronous completion, use the
$ACMW form of the service.

Format

SYS$ACM [efn], func, [context], itm st, acnmsb, [astadr], [astprni

C Prototype

int sys$acm
(unsigned int efn, unsigned int func, struct _acmecb **context, void
*itmst, struct _acnesb *acnsb, void (*astadr)(__unknown_parans),
int astprm;

Arguments

efn

OpenVMS usage: ef number

type: longword (unsigned)
access: read only
mechanism: by value

Number of the event flag that is set when the $ACM request completes. The ef n argument is a long-
word containing this number; however, $ACM uses only the low-order byte.

When the request is queued, SACM clears the specified event flag. Then, when the request completes,
the specified event flag is set.

func

OpenVMS usage: function code

type: longword (unsigned)
access: read only
mechanism: by value

Function code and modifiers specifying the operation that $ACM is to perform. The f unc argument
is a longword containing the function code, logically 'OR'ed together with the modifiers. For some
programming languages this may be defined as a record structure.

28

System Service Descriptions

Function codes have symbolic names of the following format:
ACMES$ FC code

Function modifiers have symbolic names of the following format:
ACMESM_modifier

The language support mechanisms specific to each programming language define the names of each
function code and modifier. Only one function code can be specified across a dialogue sequence of re-
lated calls to SACM.

Most function codes require or allow additional information to be passed in the call. This information
is passed using the i t m st argument, which specifies a list of one or more item descriptors. Each
item descriptor in turn specifies an item code, which either controls the action to be performed, or re-
quests specific information to be returned.

context

OpenVMS usage: context

type: longword pointer (signed)
access: modify
mechanism: by 32- or 64-bit reference

Address of a longword to receive the 32-bit address of an ACM communications buffer.

$ACM uses the ACM communications buffer for dialogue functions (ACME$ FC_AUTHENTI-
CATE_PRINCIPAL and ACMES$ FC CHANGE PASSWORD) to request that the caller provide ad-
ditional information in a subsequent call.

The cont ext argument on a continuation call must contain the same ACM communications buffer
address returned by $ACM on the previous call. The i t m st provided on a continuation call must
contain entries to fulfill each of the input item set entries in the ACM communications buffer returned
by $ACM on the previous call.

The longword specified must contain a -1 on the first call in a dialogue sequence of related calls. If
additional information is required to complete the request, SACM returns a pointer in the cont ext
argument to an ACM communications buffer that describes the information. To continue with the par-
ticular operation call, ACM again specifying the f unct i on argument previously provided.

The ACM communications buffer is user readable, but not user writable. It consists of a structure
header, an item set, and a string buffer segment. The item set is an array of item set entries, each de-
scribing an item of information that is needed to complete the request or information that can be re-
ported to a human user.

$ACM presents the item set entries in the logical presentation order for a sequential interface, so call-
ing programs that give a sequential view to the user should process the item set entries in that SACM
order. More advanced GUI programs may use simultaneous presentation with distinctive placement
for various message types.

The following diagram depicts the overall format of an ACM communications buffer:

ACM Communications Buffer

29

System Service Descriptions

31

]
ACMECB$O_CONTEXT_ID
ACMECBS$W_REVISION_LEVEL ACMECBEW_3IZE 2]
ACMECBSL_ACME_ID 12
ACMECBS$L_ITEM_SET_COUNT 16
ACMECBSPS_ITEM_SET 20
Itern set entry 1 <——|

Item set entry 2 - (N-1)

Itern set entry N

Siring buffer

]

-

WM-OB58A-AI

The following table defines the ACM communications buffer header fields:

Descriptor Field

Definition

ACMECB$Q CONTEXT ID

A quadword containing a value used internally by SACM to
uniquely bind the ACM communications buffer to the asso-
ciated request across iterative calls.

ACMECBSW_SIZE

A word containing the size of the ACM communications
structure.

ACMECBS$W_REVISION LEVEL

A word containing a value that identifies the revision level
of the ACM communications structure.

ACMECBSL_ACME _ID

A longword containing the agent ID of the ACME agent
that initiated this dialogue sequence.

ACMECBSL ITEM SET COUNT

A longword containing the number of item set entries in the
item set.

ACMECBSPS_ITEM_SET

A longword containing the 32-bit address of the item set.
The item set is an array of item set entries that describes the
information needed by $SACM to complete the particular re-
quest.

The following diagram depicts the format of an item set entry:

a 0
ACMEISSL_FLAGS 0
ACMEISSW_MAX_LENGTH * ACMEISEW _ITEM_CODE 4
ACMEIS$Q_DATA_1
ACMEIS$Q_DATA_2 16
* ACMEIS$W _MSG_TYPE is another name for this field 0
describing its use for output item set entries, while o
ACMEISTIW_MAX_| ENGTH describes its use for input item set entries.
VM-OB504-Al

30

System Service Descriptions

The following table defines the item set entry fields:

Descriptor Field

Definition

ACMEISSL_FLAGS

A longword containing a mask of flags that indicates the inter-
pretation of the ACMEIS$Q DATA 1 and ACMEIS$Q DA-
TA_2 quadword-sized 32-bit descriptors and the method for pro-
cessing.

Each flag has a symbolic name that the language support mech-
anisms specific to each programming language define. The fol-
lowing list describes the flags:

ACMEDLOGFLGS$V_INPUT

When clear:

ACMEIS$W_ MSG TYPE contains the message type as-
sociated with this output data.

ACMEIS$Q DATA 1 and ACMEIS$Q DATA 2 are
32-bit descriptors that specify text to be displayed to the
caller.

An address of 0 in either descriptor indicates the calling
program should ignore that descriptor.

A length of 0 with a nonzero address in either descriptor
indicates the calling program should report a separation
indication to the user if that is appropriate for the type of
human interface involved. A line mode command inter-
face, for instance, will display a blank line.

When set:

ACMEIS$W_ITEM_CODE defines the item code to use
when providing the requested information.

ACMEIS$Q DATA 1 is a 32-bit descriptor that speci-
fies prompt text.

An address of 0 indicates no prompt text. A length of 0
with a nonzero address is reserved for future definition.

Interpretation of ACMEIS$Q_DATA 2 is determined by
the state of the ACMEDLOGFLG$V_NOECHO flag.

ACMEDLOGFLGS$V_NOECHO

When clear:

ACMEIS$Q DATA 2 is a 32-bit descriptor that speci-
fies the "default" answer that will be assumed by SACM
if the caller responds to this item set entry with an item
specifying a length of zero. $ACM provides this "default"
answer to the calling program to allow for distinctive dis-

31

System Service Descriptions

Descriptor Field

Definition

play appropriate to the type of interface being support-
ed. For example, traditional line-mode interfaces in VMS
will include such a default answer within square brackets
when prompting, while a character cell screen interface
might pre-fill a field.

When set:

* The associated input data is not to be echoed. This is typ-
ically used to visually protect sensitive data, such as pass-
word information.

+ ACMEIS$Q DATA 2 is a 32-bit descriptor that speci-
fies secondary prompt text for input verification process-
ing.

An address of 0 indicates no verification processing. A
length of 0 with a nonzero address is reserved for future
definition.

The flag ACMEDLOGFLGS$V_NOECHO is ignored when
ACMEDLOGFLGS$V_INPUT is clear.

ACMEIS$W_ITEM _CODE

A word containing the item code that identifies the nature of in-
formation associated with the item set. This field defines the
item code to use when specifying the requested information in
the i t m st argument in the subsequent call to SACM. A se-
quence of item set entries containing the same item code re-
flects a linked list of related information. An item set with the
ACMEDLOGFLGS$V_INPUT flag set or a different item code
indicates the end of the related list.

ACMEIS$W_MAX_LENGTH

When ACMEDLOGFLGS$V_INPUT is set:A word containing
the maximum length (in bytes) of any input data being requested
by this item set. For example, the maximum length of a principal
name string. A value of 0 indicates that the only item the calling
program can return to satisfy the item set entry is an item spec-
ifying zero length. When the calling program returns such a ze-
ro length item, it thereby indicates confirmation, as might be in-
dicated by a prompt such as "Indicate when you have read that
text".

ACMEISSW MSG TYPE

When ACMEDLOGFLGS$V_INPUT is clear:

A word containing a value that categorizes the output messages
described by 32-bit descriptors ACMEIS$Q DATA 1 and
ACMEISSQ DATA 2.

The language support mechanisms specific to each programming
language define the following symbols for the standard message
categories:

ACMEMCSK DIALOGUE ALERT—Text related to the im-
mediately preceding input operation. The calling program should

32

System Service Descriptions

Descriptor Field

Definition

bring this text to the attention of a user prior to handling the re-
newed input item set entry that typically follows. This message
category is used, for example, to indicate that a new password
the user has specified does not conform to local security policy.
ACMSK GENERAL—General text.

ACMS$K HEADER—Text displayed before a succession of
Selections.

ACMEMCSK MAIL NOTICES—Text related to mail opera-
tions, typically an indication that new mail is waiting.
ACMEMCS$K PASSWORD NOTICES—Text indicating that
password expiration is imminent.

ACMSK TRAILER—Text displayed after a succession of Selec-
tions.

ACMSK SELECTION—Acceptable choices for responding to
the subsequent prompt.

ACMSK SYSTEM IDENTIFICATION—System identification
text.

ACMSK SYSTEM NOTICES—Text displayed to a user before
authentication.

ACMSK WELCOME NOTICES—Text displayed to a user af-
ter authentication.

ACMSK LOGON_NOTICES—Logon and logfail statistics.

In addition to those standard message categories, individual
ACME agents may define their own categories, but the mean-
ings of those categories are useful only to callers of SACM that
are specifically recognized by the ACME agent in question, since
those are the only callers of SACM to which the ACME agent
will deliver such ACME-specific categories. Documentation of
the ACME-specific codes used by the VMS ACME is shown in
the VMS ACME-specific Output Message Categories section of
this description.

Documentation of ACME-specific codes in general comes in the
documentation from the vendor of each ACME agent.

For documentation of ACME-specific codes for the VMS
ACME, see the section called “VMS ACME-Specific Item
Codes”.

ACMEIS$Q DATA 1

A quadword containing a 32-bit descriptor that describes infor-
mation (prompt text or other data, as described under the prior
entry for ACMEDLOGFLGS$V_INPUT) applicable to determin-
ing an appropriate response.

ACMEIS$Q DATA 2

A quadword containing a 32-bit descriptor that describes infor-
mation (default answer, secondary prompt text or other data de-
scribed under the prior entries for ACMEDLOGFLGSV_INPUT
and ACMEDLOGFLG$V_NOECHO) applicable to determining
an appropriate response.

itmlst

33

System Service Descriptions

OpenVMS usage: 32-bit item_list 3 or 64-bit item_list 64b

type: longword (unsigned) for 32-bit; quadword (unsigned) for 64-bit
access: read only
mechanism: by 32- or 64-bit reference

Item list specifying information to be used in performing the function and requesting information to
be returned. The i t m st argument is the 32- or 64-bit address of a list of item descriptors, describ-
ing an item of information. An item list in 32-bit format is terminated by a longword of 0; an item list
in 64-bit format is terminated by a quadword of 0.

The item list can be composed of up to 32 segments, connected by a chain item (using item code
ACMES CHAIN) at the end of all but the last segment pointing to the start of the next segment. All
item descriptors in a single segment must be of the same format (32-bit or 64-bit), but a single item
list can contain a mixture of segments composed of 32-bit item descriptors and segments composed of
64-bit item descriptors.

The following diagram depicts the 32-bit format of a single item descriptor:

a1 0
ltem code | Buffer length o
Buffer address 4
Return length address 8
VM-0BE0A-AI

The following table defines the item descriptor fields for 32-bit item list entries:

Descriptor Field |Definition

MBO A word that must contain a 1. The MBO and MBMO fields are used to distin-
guish 32-bit and 64-bit item list entries.

Item code A word containing an item code, which identifies the nature of the information
supplied to SACM or that is received from $ACM. Common item codes have
symbolic names (beginning with the characters "ACMES ") defined by the lan-
guage support mechanisms specific to each programming language. Individual
ACME agents may also define additional item codes specific to the functions of
those ACME agents.

MBMO A longword that must contain a -1. The MBMO and MBO fields are used to dis-
tinguish 32-bit and 64-bit item list entries.

Buffer length A quadword specifying the length of the buffer (in bytes); the buffer either sup-
plies information to $ACM or receives information from $ACM. The required
length of the buffer varies, depending on the item code, and is specified in the
description of each item code.

Buffer address A quadword containing the 64-bit address of the buffer that specifies or receives
the information.

Return length ad- | A quadword containing the 64-bit address of a quadword to receive the length
dress (in bytes) of information returned by SACM. If specified as 0, no length is re-
turned. For input items the return length address is ignored.

In an item list, no ACME-specific item codes can be included in an item list until the ACME Context
has been set with one of the following codes:

ACMES$ _CONTEXT ACME ID

34

System Service Descriptions

ACMES$ CONTEXT ACME NAME
You can also implicitly set the ACME Context with one of the following codes:

ACMES$_TARGET DOI ID
ACMES$_TARGET DOI NAME

These codes are described in the VST OpenVMS Programming Concepts Manual.

acmsb

OpenVMS usage: acm_status block

type: octaword array of 4 longwords
access: write only
mechanism: by 32- or 64-bit reference

ACM status block that is to receive the final completion status. The acnsb argument is the 32- or 64-
bit address of the ACM status block.

The following diagram depicts the structure of an ACM status block:

) 0
ACMESBS$L_STATUS
ACMESB$L_SECONDARY_STATUS 4
ACMESB$L_ACME_ID
ACMESBS$L_ACME_STATUS 12
VR-08624-A1

The following table defines the ACM status block fields:

Descriptor Field Definition

ACMESBS$L _STATUS A longword containing the generalized completion status
for the requested operation.

ACMESBSL SECONDARY_S- A longword containing status that may indicate a more de-

TATUS tailed description of a failure.

ACMESBSL_ACME ID A longword containing the agent ID of the ACME agent

that reported additional status. An agent ID of 0 indicates
that no additional status was reported.

ACMESBSL_ACME STATUS A longword containing additional status information. Aside
from a few cases of item list errors described in the follow-

ing text, the interpretation of this value is specific to the
context of the reporting ACME agent.

Upon request initiation, SACM sets the value of all fields within the ACM status block to 0. When the
requested operation completes. The SACM service writes condition values into the ACMESBSL_S-
TATUS and ACMESBSL_SECONDARY_STATUS fields.

If the status in the ACMESBSL STATUS field is ACME$ AUTHFAILURE, that is the only re-
sult that should be displayed or otherwise made known to a user. The status in ACMESBS$L_SE-
CONDARY_STATUS (when the caller has the SECURITY privilege, or is calling from kernel or ex-
ecutive mode) contains the detailed reason for the failure, which may be used for purposes that do not

35

System Service Descriptions

disclose the code to the user, such as the process termination code supplied to SDELPRC (but not the
image exit code supplied to $EXIT).

Otherwise, the status in ACMESBS$L. _SECONDARY_ STATUS should be considered as subsidiary to
that in ACMESBSL STATUS and used to form a chained message, unless the two cells contain iden-
tical values.

In either case, the caller of $ACM[W] can rely on the success bit (bit 0) of the ACMESBS$L STATUS
and the ACMESBSL _SECONDARY_ STATUS field having the same setting. Either both low-order
bits will be set (success) or both will be clear (failure).

The ACMESBSL_ACME_ STATUS field is valid only when the contents of the
ACMESBSL_ACME ID field are nonzero, indicating which ACME agent supplied the (possibly ze-
ro) value in ACMESBSL ACME_STATUS.

There is one special format for such data in ACMESBSL. ACME_STATUS. If SACM rejects the re-
quest because of a bad entry in the item list, then ACMESBS$L _STATUS contains one of the follow-
ing codes:

SS$ BADPARAM Incorrect contents for the item code

SS$ BADITMCOD Incorrect item code for the function

SS$ BADBUFLEN Incorrect length for the item code

If ACMESBSL_STATUS contains one of the listed returns, then ACMESL ACME_STATUS con-
tains the item code from the incorrect item, which is an aid to debugging.

In all other cases, the value delivered in ACMESL ACME_STATUS is specific to the ACME agent
that failed the request. An ACME agent can return a longword value that indicates additional informa-
tion about the operation. $ACM writes this value in the ACMESBSL _ACME_STATUS field of the
ACM status block.

In these cases, you can expect the success of a valid value (one where ACMESBSL ACME ID

is not zero) in field ACMESBSL ACME_STATUS to match the "success" bits (bit 0) in fields
ACMESBSL _STATUS and ACMESBSL_SECONDARY_STATUS, although what constitutes a
"success" value in ACMESBSL ACME_STATUS is subject to that interpretation specified for the
ACME agent that set the value. In particular, the values in the ACMESBSL ACME STATUS field
from certain ACME Agents might not be a VMS-style message code.

astadr

OpenVMS usage: ast_procedure

type: procedure value
access: call without stack unwinding
mechanism: by 32- or 64-bit reference

AST service routine to be executed when $ACM completes. The ast adr argument is the 32- or
64-bit address of this routine. The AST routine executes at the same access mode as the caller of the
$ACM service.

astprm

OpenVMS usage: user_arg

36

System Service Descriptions

type: quadword (unsigned)
access: read only
mechanism: by value

AST parameter to be passed to the AST service routine specified by the ast pr margument. The
ast pr margument is the longword parameter.

Function Codes

This section describes the various function codes supported by the $ACM service and lists the func-
tion modifiers and item codes relevant to each function:

Function Code Purpose

ACME$ FC AUTHENTICATE Perform authentication and provide credentials.

PRINCIPAL

ACMES$ FC CHANGE PASSWORD Select a new password.

ACME$ FC EVENT Log an event to an ACME agent.

ACME$ FC FREE CONTEXT Abandon a dialogue mode Authentication or Password
Change before it has completed.

ACME$ FC QUERY Retrieve information from an ACME agent.

ACME$ FC RELEASE CREDENTIALS |Give up some of the credentials from a persona.

See the section called “Description” for information relating to the modes of operation and privilege
requirements.

ACMES_FC_AUTHENTICATE_PRINCIPAL

The ACMES$ FC AUTHENTICATE PRINCIPAL function requests authentication of a principal
based on standard or site-specific authentication criteria and optionally requests credentials authorized
for that principal.

You can specify the principal name using the ACMES PRINCIPAL NAME item code. If you do

not specify it on the initial call to ACM, the ACME agents supporting SACM will try to use another

method for determining the principal name. For example, traditional VMS autologin processing deter-
mines a principal name based on your terminal name. Of if your call to SACM was in dialogue mode,
the ACM communication buffer returned may prompt you to supply a principal name.

You can also guide how your request is to be processed by directing it toward a specific domain of in-
terpretation (DOI) with either the ACME$ TARGET DOI NAME or ACMES$ TARGET DOI ID
item code. Using that technique ensures that your request will be handled by the ACME agents that
support the specified domain of interpretation. If that domain of interpretation is not configured on the
system at the time of your call, however, your request will fail. Leaving the domain of interpretation
to be defaulted increases your chance of successful authentication, but does not guarantee any particu-
lar set of credentials beyond the normal VMS credentials.

When the domain of interpretation under which your request is handled is anything other than VMS,
the ACME agents that support that domain of interpretation will indicate an OpenVMS user name
to which the principal name should be mapped. In this case, the OpenVMS user name must corre-
spond to a valid entry in the OpenVMS authorization database (SYSUAF.DAT) that has the UAF
$V_EXTAUTH flag set. (When the IGNORE_EXTAUTH flag is set in system parameter SECURI-
TY POLICY, the UAF$V_EXTAUTH flag requirement does not apply.)

37

System Service Descriptions

The VMS ACME agent uses that OpenVMS user name to provide supplemental authorization pro-
cessing (for example, account disabled or expired, or model restrictions) and to provide security pro-
file and quota information applicable after a successful authentication.

You can use the ACMESM_ACQUIRE CREDENTIALS function modifier to specify that, if your au-
thentication call is successful, you want credentials returned. $ACM will return those credentials via
persona extensions attached to a persona whose handle is returned to a location specified by item code
ACMES$ PERSONA HANDLE OUT.

If you want that persona to be based on some persona you already have, specify the existing persona
handle with the item code ACMES$ PERSONA HANDLE IN and, in addition to the function modifi-
er ACMESM ACQUIRE CREDENTIALS, specify one of the following two function modifiers:

+ ACMESM MERGE PERSONA-—Requests that additional credentials you acquire be added into
the existing persona

* ACMESM COPY_PERSONA—Requests that additional credentials you acquire be added into a
copy of the existing persona

In either case, a handle to the resulting persona will be returned as specified by item code ACME
$ PERSONA HANDLE OUT.

When a new persona is created, the ISS§ PRIMARY EXTENSION designator indicates which per-
sona extension representing the domain of interpretation was responsible for authenticating the user.

On a subsequent call SACM will use that designator to guide processing of the ACME
$M_DEFAULT PRINCIPAL function modifier, for instance when there is an ACME
§ FC_CHANGE PASSWORD request.

ACMES$_FC_CHANGE_PASSWORD

The ACME$ FC CHANGE PASSWORD function performs a password change operation. All
aspects of the ACMESFC _CHANGE PASSWORD function can also be performed as part of the
ACMES$ FC AUTHENTICATE PRINCIPAL function. Some degree of the ACMES$ FC AU-
THENTICATE PRINCIPAL function is also performed as part of ACME$ FC CHANGE PASS-
WORD to ensure the identity of the user changing the password. The primary and secondary pass-
words can be changed independently.

This function requires the ACMES NEW PASSWORD FLAGS item code.
ACMES_FC_EVENT

The ACME$ FC EVENT function provides a simple logging feature that can be used to generate
certain events related to the policy of a domain of interpretation. To log an event, supply the desired
"event type" item code followed by the appropriate "data" item codes pertaining to the "target" do-
main of interpretation.

To determine what event processing might be available, see the documentation provided by the ven-
dors of the supporting ACME agents.

ACMES_FC_FREE_CONTEXT

The ACME$ FC FREE CONTEXT function is used to terminate iterative processing of a request.
The address of the ACM communications buffer associated with the request must be specified using
the context argument.

38

System Service Descriptions

ACMES$_FC_QUERY

The ACME$ FC_QUERY function provides a simple key-based query feature that can be used to ob-
tain certain information related to the policy of a domain of interpretation. To look up an item of infor-
mation, supply the desired "key" item code followed by the appropriate "data" item code.

To determine what query processing might be available, see the documentation provided by the ven-
dors of the supporting ACME agents.

ACMES_FC_RELEASE_CREDENTIALS

The ACME$ FC RELEASE CREDENTIALS function removes credentials for a particular domain
of interpretation from the specified persona. When the domain of interpretation is specified as "VMS",
all non-native credentials are released and the persona is deleted. The "VMS" credentials cannot be
removed from either the currently active or the process' natural persona. Thus, you cannot use the
$ACM service to delete these personae. Function Modifiers This section describes the various func-
tion modifiers for the function codes supported by the SACM service.

Table 11 indicates which Function Modifiers are applicable to the various Function Codes:

Table 11. Function Codes and Function Modifiers

Function Modifiers Function Codes
Authenticate |Change Event |Free Query |Release Cre-
Principal Password Context dentials

ACMESM_ACQUIRE_|IP

CREDENTIALS

ACMES$M_COPY _ O

PERSONA

ACMESM DEFAULT |0 O

PRINCIPAL

ACMESM_FOREIGN_ [SR
POLICY HINTS

ACMESM_MERGE_ |O
PERSONA

ACMES$SM_NOAUDIT |SR

ACMESM _ SR
NOAUTHORIZATION

ACMESM _ IR
OVERRIDE _
MAPPING

ACMESM_TIMEOUT
ACMESM _UCS2 4 O O O 0 0
Key to Codes

[J—Permitted

IP—IMPERSONATE Privilege Required for the MAPPED VMS USERNAME to differ
from the one current when the initial call to SACM is made

IR—IMPERSONATE Privilege Required to override default values

SR—SECURITY Privilege Required

39

System Service Descriptions

ACMESM_ACQUIRE_CREDENTIALS

The ACMESM_ACQUIRE _CREDENTIALS function modifier requests credentials be acquired dur-
ing a successful authentication.

ACMESM_COPY_PERSONA

The ACMESM_COPY_ PERSONA function modifier requests acquired credentials be attached to a
copy of the persona specified with item code ACME$ PERSONA HANDLE IN.

ACMESM_DEFAULT_PRINCIPAL

The ACMESM_DEFAULT PRINCIPAL specifies that the principal name and target domain of inter-
pretation should be taken from the input persona, such as for changing the password of the logged-in
user or reauthenticating the logged-in user.

ACMESM_FOREIGN_POLICY_HINTS

The ACMESM_FOREIGN_POLICY_ HINTS function modifier indicates ACME agents should honor
the ACMESM NOAUDIT and ACME$SM_NOAUTHORIZATION function modifiers for non-VMS
domains of interpretation.

ACMESM_MERGE_PERSONA

The ACMESM_MERGE PERSONA function modifier requests acquired credentials be attached to
the persona specified with item code ACMES PERSONA HANDLE IN.

ACMESM_NOAUDIT

The ACMESM_NOAUDIT function modifier indicates that auditing actions should not be performed.
Unless the ACMESM_FOREIGN_POLICY HINTS function modifier is also specified, this modifier
applies only to the VMS domain of interpretation.

ACMESM_NOAUTHORIZATION

The ACMESM_NOAUTHORIZATION function modifier indicates authorization restrictions, such

as the enforcement of modal constraints, should not apply. This provides a mechanism for performing
pure authentication operations. Unless the ACMESM_FOREIGN POLICY_ HINTS function modifier
is also specified, this modifier applies only to the VMS domain of interpretation.

ACMESM_OVERRIDE_MAPPING

The ACME$SM_OVERRIDE MAPPING function modifier allows for the acquisition of non-VMS
credentials during a persona merge or copy operation. This occurs when an externally authorized prin-
cipal name maps to an OpenVMS user name that differs from the user name associated with the native
(VMS) credentials. By default, mixing credentials is prohibited.

ACMESM_TIMEOUT

The ACMES$M_TIMEOUT modifier indicates that the caller requests timeout processing. The timeout
interval is specified by the ACME$ TIMEOUT INTERVAL item code.

Timeout processing is always enforced for non-privileged callers. Privileged callers (those running
in exec mode or kernel mode or possessing SECURITY privilege) must explicitly specify ACME
$M_TIMEOUT for timeout processing to be enforced.

ACMESM_UCS2_4

40

System Service Descriptions

The ACMESM_UCS2_4 function modifier indicates item codes that specify string values use a 4-byte
UCS-2 (Unicode) representation rather than 8-bit ASCII.

Item Code Encoding

Item codes are 16-bit unsigned values and are encoded as follows:

15 87 0
HNEEEREERERNEERN
A A T T
BIT [12:0] = ltem
BIT [13] = 0 notsubject to Unicode conversion
= 1 subject to Unicode conversion
BIT [14] = 0 Inputtype
= 1 Output type
BIT [15] Common item

Imnn
=

1 ACME - specific item

WM-DBE3IA-A

The item codes can be categorized in three different ways and are described as follows:
* Common and ACME-specific Item Codes
* Common item codes

These item codes are defined for the SACM system service itself and are available to all
ACME agents.

* ACME-specific item codes
These item codes are defined separately for each ACME agent.
* Input and Output Item Codes
* Input item code
Input item codes specify a buffer that contains information provided to $ACM. The buffer
length and buffer address fields in the item descriptor must be nonzero; the return length field
is ignored.
* Output item code
Output item codes specify a buffer in which $ACM is to return information. The buffer length
and buffer address fields of the item descriptor must be nonzero; the return length field can be
ZEro Or NONZero.
* Subject and Not Subject to Unicode Conversion
* Subject to Unicode Conversion
Text strings can be specified as Latinl or 4-byte UCS-2 characters, depending on the setting of

the ACMESM_UCS2 4 function modifier. An item code that is subject to Unicode conversion
indicates it is a text item.

41

System Service Descriptions

* Not subject to Unicode Conversion

Item codes that are not subject to Unicode conversion have a data format implied by the item
code, and the nature of the data format must be explicitly understood by the programmer who
calls SACM.

See the section called “Common Item Codes” for a description of the common item codes and their
data formats.

Documentation of ACME-specific codes in general comes in the documentation from the vendor of
each ACME agent.

For documentation of ACME-specific codes for the VMS ACME, see the section called “VMS
ACME-Specific Item Codes”.

Common ltem Codes

This section describes the common item codes for the function codes supported by the SACM service.

The item code space is partitioned into common items and ACME-specific items. ACME-specific
items are used to request information that is unique to a particular domain of interpretation. The item
codes described in this section fall into the common item code space.

Table 12 indicates which Common Item Codes are applicable to the various Function Codes:

Table 12. Function Codes and Common Item Codes

Item Codes Function Codes
Authenticate |Change Event |Free Query |Release Cre-
Principal Password Context dentials

ACME$ ACCESS O

MODE

ACMES$ ACCESS IR IR

PORT

(S

ACMES$_AUTH_ O

MECHANISM

ACMES _ O 0

AUTHENTICATING _

DOI_ID

0)

ACMES O O

AUTHENTICATING _

Key to Codes

[0—Permitted

IR—IMPERSONATE Privilege Required to override default values
SR—SECURITY Privilege Required

O—Output item code

U—Subject to Unicode Conversion

42

System Service Descriptions

Item Codes

Function Codes

Authenticate
Principal

Change
Password

Event

Free
Context

Query

Release Cre-
dentials

DOI_ NAME

(U,0)

ACMES$_CHAIN

ACMES
CHALLENGE DATA

IR

ACME$ _CONTEXT _
ACME _ID

(V)

ACMES$ CONTEXT
ACME_NAME

ACMES
CREDENTIALS
NAME

U)

ACMES
CREDENTIALS TYPE

ACMES_
DIALOGUE_SUPPORT

ACMES$_EVENT _
DATA_IN

ACMES$ _EVENT
DATA OUT

0

ACME$ _EVENT
TYPE

ACMES$_LOCALE (U)

ACMES_LOGON _
INFORMATION

O

ACMES$_LOGON _
TYPE

ACMES$ MAPPED
VMS_USERNAME

Key to Codes

[J—Permitted

IR—IMPERSONATE Privilege Required to override default values
SR—SECURITY Privilege Required

O—Output item code

U—Subject to Unicode Conversion

43

System Service Descriptions

Item Codes

Function Codes

Authenticate
Principal

Change

Password

Event

Free
Context

Query

Release Cre-
dentials

(U,0)

ACMES$_MAPPING _
ACME_ID

O)

ACMES$_MAPPING _
ACME_NAME

(U,0)

ACME$ NEW
PASSWORD 1

(U)

ACMES NEW
PASSWORD 2

U)

ACME$_NEW _
PASSWORD FLAGS

ACME$ NEW
PASSWORD _
SYSTEM

(V)

SR SR

ACME$ NULL

ACMES
PASSWORD 1

(U)

ACMES_
PASSWORD 2

(V)

ACMES
PASSWORD SYSTEM

U)

ACMES_PERSONA _
HANDLE_IN

Key to Codes

O0—Permitted

O—Output item code

U—Subject to Unicode Conversion

IR—IMPERSONATE Privilege Required to override default values
SR—SECURITY Privilege Required

44

System Service Descriptions

Item Codes

Function Codes

Authenticate
Principal

Change
Password

Event

Free
Context

Query

Release Cre-
dentials

ACMES$ PERSONA
HANDLE OUT

O

0

ACMES_PHASE
TRANSITION

O)

ACMES$_PRINCIPAL
NAME_IN

U)

ACMES$_PRINCIPAL
NAME_OUT

(U,0)

ACMES$_QUERY _
DATA

0)

ACME$_QUERY _
KEY TYPE

ACMES$_QUERY _
KEY_ VALUE

ACME$_QUERY _
TYPE

ACMES$_REMOTE _
HOST ADDRESS

IR

ACME$_REMOTE _
HOST ADDRESS
TYPE

IR

IR

ACME$ REMOTE
HOST FULLNAME

V)

IR

IR

ACMES$_REMOTE
HOST NAME

)

IR

Key to Codes

[]—Permitted

IR—IMPERSONATE Privilege Required to override default values
SR—SECURITY Privilege Required

O—Output item code

U—Subject to Unicode Conversion

45

System Service Descriptions

Item Codes

Function Codes

Authenticate
Principal

Change
Password

Event

Free
Context

Query

Release Cre-
dentials

ACMES$_REMOTE _
USERNAME

U)

IR

IR

ACME$_RESPONSE
DATA

ACMES$_SERVER
NAME_IN

(%)

ACMES$ SERVER
NAME OUT

(U,0)

ACMES_SERVICE
NAME

(V)

IR

IR

IR

IR

IR

IR

ACMES$_TARGET _
DOI ID

ACMES$_TARGET _
DOI NAME

(U)

ACMES$_TIMEOUT _
INTERVAL

Key to Codes

O0—Permitted

IR—IMPERSONATE Privilege Required to override default values

SR—SECURITY Privilege Required

O—Output item code

U—Subject to Unicode Conversion

1Required
2Either ID or Name Required

ACMES$_ACCESS_MODE

The ACME$ ACCESS MODE item code is an input item code. It specifies the access mode at which
a new persona, resulting from credential acquisition processing, is to be created. The buffer must con-
tain a longword value specifying the access mode.

The $PSLDEF macro defines the following symbols for the four access modes:

PSL$C_KERNEL
PSL$C_EXEC
PSL$C_SUPER
PSL$C_USER

46

System Service Descriptions

The most privileged access mode used is the access mode of the caller. The specified access mode and
the access mode of the caller are compared. The less privileged of the two access modes becomes the
access mode at which the persona is created.

ACMES$_ACCESS_PORT

The ACME$ ACCESS PORT item code is an input item code. It specifies the name of local device
(for example, a terminal) applicable to an authentication request. The buffer must contain a case-in-
sensitive name string.

If not specified, SACM passes the name string contained in the PCB§T TERMINAL field of the
process control block for the process, or, if that is empty, for the nearest ancestor process (if any)
where the PCBST TERMINAL field is not empty.

ACMES_AUTH_MECHANISM

The ACME$ AUTH_MECHANISM item code is an input item code. It specifies the authentication
mechanism applicable to an authentication request. The buffer must contain a longword value specify-
ing the desired mechanism code. If not specified, the authenticating domain of interpretation applies
its default mechanism.

The SACMEDEF macro defines the following symbols for the standard mechanism types:

ACMEMECHS$K CHALLENGE RESPONSE
ACMEMECHSK PASSWORD

Individual ACME agents may define their own authentication mechanisms specific to their domain of
interpretation.

ACMES_AUTHENTICATING_DOI_ID

The ACME$ AUTHENTICATING DOI ID item code is an output item code. It specifies the buffer
to receive the agent ID of the domain of interpretation that successfully authenticated the principal.

ACMES_AUTHENTICATING_DOI_NAME

The ACME$ AUTHENTICATING DOI NAME item code is an output item code. It specifies the
buffer to receive the name of the domain of interpretation that successfully authenticated the principal.

The maximum data returned for this item code is the number of characters represented by the sym-
bol, ACMESK MAXCHAR DOI NAME, so a caller's buffer should be at least that long, with the
number of bytes allocated dependent on whether the ACMES$SM_UCS2 4 function code modifier was
specified on the call to SACM[W].

ACMES_CHAIN

The ACMES$ CHAIN item code is an input item code. It specifies the address of the next item list
segment to process immediately after processing the current list segment.

The buffer address field in the item descriptor specifies the address of the next item list segment to be
processed. The ACMES$ CHAIN item code must be last in the item list segment; SACM treats this as
the logical end of the current item list segment. Any item list entries following the ACME$ CHAIN
item code are ignored.

47

System Service Descriptions

On Alpha and Integrity servers platforms, both 32- and 64-bit item lists can be chained together.
ACMES$ CHALLENGE DATA

The ACME$ CHALLENGE DATA item code is an input item code. It specifies the chal-

lenge data that was used as the basis for generating the response data specified by the ACME

$ RESPONSE DATA item code. The meaning of this data is specific to the domain of interpretation
for which it is used.

If this item code is specified, the ACMES AUTH MECHANISM and ACME§$ RESPONSE DATA
item codes must also be specified. (The VMS domain of interpretation does not support this mecha-
nism type.)

ACMES$_CONTEXT ACME_ID

The ACME$ CONTEXT ACME ID item code is an input item code. It establishes the ACME agent
context within which ACME-specific item codes are interpreted. This item code has an effect on the
parsing of the list of ACME-specific item codes, and takes effect immediately. It is in effect until the
next instance of code ACME$ CONTEXT ACME ID, code ACME$ CONTEXT ACME NAME,
code ACMES TARGET DOI_ID, or code ACMES$ _TARGET_DOI_NAME. The buffer must con-
tain a longword value specifying the agent ID of an ACME agent.

ACMES$_CONTEXT ACME_NAME

The ACMES$ CONTEXT ACME_NAME item code is an input item code. It establishes the ACME
agent context within which ACME-specific item codes are interpreted. This item code has an ef-

fect on the parsing of the list of ACME-specific item codes, and takes effect immediately. It is in
effect until the next instance of code ACME$ CONTEXT ACME ID, code ACME$ CONTEX-

T ACME NAME, code ACME _TARGET DOI _ID, or code ACMES$S TARGET DOI NAME. The
buffer must contain the case-insensitive name string of an ACME agent.

ACMES$_CREDENTIALS NAME

The ACME$ CREDENTIALS NAME item code is an input item code. It specifies the name of the
persona extension holding the set of credentials upon which to operate. The buffer must contain the
case-insensitive name string of a persona extension that has been registered on the system.

ACMES_CREDENTIALS_TYPE

The ACME$ CREDENTIALS TYPE item code is an input item code. It specifies the extension ID
of the persona extension holding the set of credentials upon which to operate. The buffer must contain
a longword value specifying the extension ID of a persona extension that has been registered on the
system.

ACMES_DIALOGUE_SUPPORT

The ACMES$ DIALOGUE_SUPPORT item code is an input item code. It specifies which dialogue
mode features are supported by the caller. The buffer must contain a longword bit vector of applicable
flags.

The $ACMEDEF macros defines the following symbols for the valid flags:

ACMEDLOGFLG$V_INPUT—character string input/output capabilities
ACMEDLOGFLG$V_NOECHO—"no echo" input capabilities

48

System Service Descriptions

These are the same as those for the ACMEISSL FLAGS field on an item set entry. See the descrip-
tion of the cont ext argument for further information.

Specify the ACME$ DIALOGUE SUPPORT item code to indicate the interactive capabilities of the
user interface. If the caller is unable to support features necessary to complete a given request, the re-
quest ultimately fails. The caller receives a condition value ACMES$ INSFDIALSUPPORT for insuf-
ficient dialogue support.

ACMES$_EVENT_DATA_IN

The ACME$ EVENT DATA_IN item code is an input item code. It specifies the buffer containing
information applicable to an event operation.

The meaning of this data is specific to the domain of interpretation for which it is used.
ACMES_EVENT _DATA_OUT

The ACME$ EVENT DATA OUT item code is an output item code. It specifies the buffer to re-
ceive information returned from an event operation.

The meaning of this data is specific to the domain of interpretation for which it is used.
ACMES_EVENT _TYPE

The ACME$ EVENT TYPE item code is an input item code. It specifies the type of event being re-
ported. The buffer must contain a longword value. Interpretation of the value is specific to the domain
of interpretation to which the event is being reported.

ACMES$_LOCALE

The ACMES$ LOCALE item code is an input item code. It specifies the collection of data and rules
applicable to a language and culture. The buffer must contain a name string that reflects a locale sup-
ported by the system.

The bufter must contain a string in the following case-insensitive syntax:
language-country

language is a 2-letter language code (ISO 639)

country is a 2-letter country code (ISO 3166)

The default is EN-US, and cannot be overridden by the specified locale. Locale information may be
interpreted by ACME agents to determine country and language requirements.

ACMES_LOGON_INFORMATION

The ACME$ LOGON_INFORMATION item code is an output item code. It specifies the buffer to
receive an ACM logon information structure, which contains statistics pertaining to the authenticated
principal name within the contexts of the authenticating and native (VMS) domains of interpretation.

The size of the buffer must be sufficient to handle data from whatever VMS versions are used, as de-
scribed in the ACME$ LOGON_INFORMATION structure found in the VS OpenVMS Program-

ming Concepts Manual.

The following diagram depicts the overall format of an ACM logon information structure:

49

System Service Descriptions

N 0
0
ACMELISPO_LOGON_INFO_DOIG4
ACMELIEW_REVISION_LEVEL ACMELIFW_SIZE a
ACMELIFL_LOGON_FLAGS 16
ACMELISPO_LOGON_INFO_VMSGE4
Mative (VMS) logon information
Non-native (non VMS) logon information
VM-0BB4A-Al

The following table defines the ACM logon information structure header fields:

Descriptor Field

Definition

ACMELI$PQ LOGON_INFO DOI64

In this situation, a quadword containing the 64-bit address
of the structure segment containing logon information re-
lating to the authenticating domain of interpretation. When
the ACM logon information structure resides in 32-bit ad-
dress space, ACMELISPQ_LOGON INFO DOI64 con-
tains the sign-extended 32-bit address of the structure seg-
ment. The field can be referenced as a 32-bit signed pointer
using ACMELISPS LOGON_INFO DOI32.

ACMELISW _SIZE

A word containing the size of the ACM logon information
structure.

ACMELISW REVISION LEVEL

A word containing a value that identifies the revision level
of the ACM logon information structure.

ACMELISL LOGON FLAGS

Specifies the structure ACMELGIFLGSTYPE, used by
LOGINOUT to populate the longword returned by the

item code JPI$ LOGIN FLAGS when calling the SYS
SGETIJPI[W] system service. This provides the client with
information regarding what took place during authentica-
tion. The ACM Dispatcher manages this item, sending back
to the client the merge of all the output it receives from
ACME:s by calls to the ACMESCB_SET LOGIN FLAG.
For the information that is received, see the VSI OpenVMS
Programming Concepts Manual.

ACMELISPQ LOGON _
INFO_VMS64

In this situation, a quadword containing the 64-bit address
of the structure segment containing logon information about
the native (VMS) domain of interpretation. When the ACM
logon information structure resides in 32-bit address space,
ACMELI$SPQ LOGON INFO VMS64 contains the sign-
extended 32-bit address of the structure segment. The field
can be referenced as a 32-bit signed pointer using ACMELI
$PS LOGON INFO VMS32.

The following diagram depicts the format of the ACM logon structure segment containing informa-
tion about the VMS domain of interpretation:

50

System Service Descriptions

31 0
ACMELIVMSEL_ACME_ID 0
ACMELIVMS$L_PHASE 4
ACMELIVMS$W_REVISION_LEVEL ACMELIVMS$W_SIZE 8
ACMELIVM3$L_LOGFAIL_COUNT 12
ACMELIVMS$0_LOGON_INT 16
ACMELIVYMS$O_LOGON_NOINT 32
WM-0B65A-A)

The following table defines the fields for the ACM logon structure segment containing logon informa-
tion about the native (VMS) domain of interpretation:

Descriptor Field

Definition

ACMELIVMSSL ACME _ID

A longword containing the agent ID of the ACME agent
that reported logon information for the native (VMS) do-
main of interpretation. If this field is zero, the rest of the
structure segment is invalid.

ACMELIVMSSL PHASE

Indicates the ACME Execution Phase during which this val-
ue was provided. ACME Execution Phase numbers are sub-
ject to change, so this field is mainly for use by program-
mers to debug an ACME agent.

ACMELIVMSSW_SIZE

A word containing the size of the ACM logon information
structure segment.

ACMELIVMSS$W_REVISION
LEVEL

A word containing a value that identifies the revision level
of the ACM logon information structure segment.

ACMELIVMSSL LOGFAIL COUNT

A longword containing the number of failed logon attempts
with respect to the VMS domain of interpretation.

ACMELIVMSS$O_LOGON_INT

An octaword containing the date and time in UTC format of
the last interactive logon with respect to the VMS domain
of interpretation. If the contents of the octaword are zero, no
previous non-interactive logon with respect to the VMS do-
main of interpretation was recorded.

ACMELIVMSS$O_LOGON_NONINT

An octaword containing the date and time in UTC format
of the last noninteractive logon with respect to the VMS do-
main of interpretation. If the contents of the octaword are
zero, no previous non-interactive logon with respect to the
VMS domain of interpretation was recorded.

The following diagram depicts the format of the ACM logon structure segment containing informa-
tion about the authenticating domain of interpretation:

51

System Service Descriptions

31 0
ACMELIDOISL_ACME_ID 0
ACMELIDOISL_PHASE
ACMELIDOISW_REVISION_LEVEL ACMELIDOISW_SIZE

ACMELIDOISL_LOGFAIL_COUNT 12
ACMELIDOISO_LOGON 16
ACMELIDOIFO_LOGON_INT 32
ACMELIDOIFO_LOGON_NOINT 43
ACMELIDOIFO_LOGFAIL G4
ACMELIDOI$O_LOGFAIL_INT 80
ACMELIDOIBO_LOGFAIL_NOINT il
WM-D255.4-41

The following table defines the fields for the ACM logon structure segment containing logon informa-
tion about the authenticating domain of interpretation:

Descriptor Field

Definition

ACMELIDOISL_ACME _ID

A longword containing the agent ID of the ACME agent
that reported logon information about the non-native au-
thenticating domain of interpretation. If this field is zero,
the rest of the structure segment is invalid.If the contents of
the longword are zero, the principal was authenticated for
the VMS domain of interpretation.

ACMELIDOISL_PHASE

Indicates the ACME Execution Phase during which this val-
ue was provided. ACME Execution Phase numbers are sub-
ject to change, so this field is mainly for use by program-
mers to debug an ACME agent.

ACMELIDOISW_SIZE

A word containing the size of the ACM logon information
structure segment.

ACMELIDOI$SW_REVISION LEVEL

A word containing a value that identifies the revision level
of the ACM logon information structure segment.

ACMELIDOISL LOGFAIL COUNT

A longword containing the number of failed logon attempts
with respect to the non-native authenticating domain of in-
terpretation.

ACMELIDOISO_LOGON

An octaword containing the date and time in UTC format of
the last logon with respect to the non-native authenticating
domain of interpretation. If the contents of the octaword are
zero, no previous logon with respect to the domain of inter-
pretation was recorded.

ACMELIDOISO LOGON_INT

An octaword containing the date and time in UTC format

of the last interactive logon with respect to the non-native
authenticating domain of interpretation. If the contents of
the octaword are zero, no previous interactive logon with re-
spect to the domain of interpretation was recorded.

ACMELIDOISO LOGON NONINT

An octaword containing the date and time in UTC format
of the last noninteractive logon with respect to the non-na-
tive authenticating domain of interpretation. If the contents

52

System Service Descriptions

Descriptor Field Definition

of the octaword are zero, no previous non-interactive logon
with respect to the domain of interpretation was recorded.

ACMELIDOISO_LOGFAIL An octaword containing the date and time in UTC format of
the last logon failure with respect to the non-native authen-
ticating domain of interpretation. If the contents of the octa-
word are zero, no previous logon failure with respect to the
domain of interpretation was recorded.

ACMELIDOISO_LOGFAIL INT An octaword containing the date and time in UTC format of
the last interactive logon failure with respect to the non-na-
tive authenticating domain of interpretation. If the contents
of the octaword are zero, no previous interactive logon fail-

ure with respect to the domain of interpretation was record-
ed.

ACMELIDOI$O _LOGFAIL_NONINT | An octaword containing the date and time in UTC format of
the last noninteractive logon failure with respect to the non-
native authenticating domain of interpretation. If the con-
tents of the octaword are zero, no previous non-interactive
logon failure with respect to the domain of interpretation
was recorded.

ACMES_LOGON_TYPE

The ACME$ LOGON_TYPE item code is an input item code. It specifies the type of logon being
performed. The buffer must contain a longword value specifying a valid type. If not specified, the val-
ue defaults to the logon type of the calling process.

The SACMEDEF macro defines the following symbols for the valid logon types:

ACMESK DIALUP
ACMESK LOCAL
ACMESK _REMOTE
ACMESK BATCH
ACMESK _NETWORK

The values ACMESK BATCH and zero (0) for batch and detached processes, respectively, are re-
served to LOGINOUT.EXE. If either of these values is defaulted or specified by non-LOGINOUT
clients, the service returns ACMES$ INVREQUEST.

ACMES$ _MAPPED VMS USERNAME

The ACME$ MAPPED VMS USERNAME item code is an output item code. It specifies the buffer
to receive the name of the local OpenVMS user name to which the principal name was mapped.

The maximum data returned for this item code is the number of characters represented by the symbol,
ACMEVMSS$S MAX VMS USERNAME, so a caller's buffer should be at least that long, with the
number of bytes allocated dependent on whether the ACMES$SM_UCS2 4 function code modifier was
specified on the call to SACM[W].

ACMES_MAPPING_ACME_ID

The ACME$ MAPPING ACME _ID item code is an output item code. It specifies the buffer to re-
ceive the agent ID of the ACME agent that successfully mapped the principal name to an OpenVMS
user name. The buffer descriptor must specify a longword.

53

System Service Descriptions

ACMES_MAPPING_ACME_NAME

The ACME$ MAPPING ACME NAME item code is an output item code. It specifies the buffer to
receive the name of the ACME agent that successfully mapped the principal name to an OpenVMS
user name.

Data returned for this item code is the number of characters represented by the symbol, ACME

$K MAXCHAR DOI NAME, so a caller's buffer should be at least that long, with the number of
bytes allocated dependent on whether the ACMESM_UCS2 4 function code modifier was specified
on the call to SACM[W].

ACMES_NEW_PASSWORD _1

The ACME$ NEW_PASSWORD 1 item code is an input item code. It specifies the new primary

password for a password change operation. The buffer must contain a password string. The case of
this string will be preserved in delivery to ACME agents. Each ACME agent has its own policy re-
garding whether password strings are treated in a case sensitive or a case-insensitive manner.

This item code might be requested in a dialogue step.
ACMES_NEW_PASSWORD 2

The ACME$ NEW_PASSWORD 2 item code is an input item code. It specifies the new secondary
password for a password change operation. The buffer must contain a password string. The case of
this string will be preserved in delivery to ACME agents. Each ACME agent has its own policy re-
garding whether password strings are treated in a case sensitive or a case-insensitive manner.

This item code might be requested in a dialogue step.
ACMES_NEW_PASSWORD_FLAGS

The ACME$ NEW _PASSWORD_ FLAGS item code is an input item code. It requests which pass-
words should be explicitly updated. The buffer must contain a longword bit vector of applicable flags.

The SACMEDEF macros defines the following symbols for the valid flags:

ACMEPWDFLG$V_SYSTEM
ACMEPWDFLG$V_PASSWORD 1
ACMEPWDFLG$V_PASSWORD 2

ACMES NEW_PASSWORD SYSTEM

The ACME$ NEW PASSWORD_ SYSTEM item code is an input item code. It specifies the new
system password for a password change operation. The buffer must contain a case-insensitive pass-
word string.

This item code might be requested in a dialogue step.

ACMES_NULL

The ACME$ NULL item code indicates that the current item list entry should be ignored.
ACMES_PASSWORD 1

The ACME$ PASSWORD 1 item code is an input item code. It specifies the primary password
applicable to the requested operation. The buffer must contain a password string. The case of this
string will be preserved in delivery to ACME agents. Each ACME agent has its own policy regarding
whether password strings are treated in a case sensitive or a case-insensitive manner.

54

System Service Descriptions

This item code might be requested in a dialogue step.
ACMES$_PASSWORD 2

The ACME$ PASSWORD 2 item code is an input item code. It specifies the secondary password
applicable to the requested operation. The buffer must contain a password string. The case of this
string will be preserved in delivery to ACME agents. Each ACME agent has its own policy regarding
whether password strings are treated in a case sensitive or a case-insensitive manner.

This item code might be requested in a dialogue step.
ACMES_PASSWORD_SYSTEM

The ACME$ PASSWORD SYSTEM item code is an input item code. It specifies the system pass-
word applicable to the requested operation. The buffer must contain a case-insensitive password
string.

This item code might be requested in a dialogue step.
ACMES_PERSONA_HANDLE_IN

The ACME$ PERSONA HANDLE IN item code is an input item code. It specifies the persona to
use as the basis for credential acquisition processing. The buffer must contain a longword value speci-
fying a persona ID of an existing persona.

ACMES_PERSONA_HANDLE OUT

The ACME$ PERSONA HANDLE OUT item code is an output item code. It specifies a buffer to
receive the persona ID of the persona created or acted upon by credential acquisition processing. The
buffer descriptor must specify a longword.

If no ACME$S PERSONA HANDLE OUT item is specified but function modifier ACMESM_AC-
QUIRE CREDENTIALS is specified, a persona that is created can be located with the SPERSON-
A_FIND system service.

ACMES_PHASE_TRANSITION

The ACME$ PHASE TRANSITION is used by LOGINOUT to convey synchronization information
to the VMS ACME for support of backward compatible interfaces for LGI-callouts and DECwindows
login.

Use of this item code is reserved to OpenVMS.
ACMES$ PRINCIPAL _NAME IN

The ACME$ PRINCIPAL NAME IN item code is an input item code. It specifies the name of the
entity that is subject to authentication within the domain of interpretation to which it belongs. The
buffer must contain a name string.

This item code might be requested in a dialogue step.
ACMES$_PRINCIPAL_NAME_OUT

The ACME$ PRINCIPAL NAME OUT item code is an output item code. It specifies the buffer to
receive the name of the entity that was authenticated by the authenticating domain of interpretation.
This item code is useful when the principal name is not explicitly provided, such as during autologon
style processing during which an ACME agent provides the principal name.

55

System Service Descriptions

The maximum data returned for this item code is the number of characters represented by the symbol,
ACME$SK _MAXCHAR PRINCIPAL NAME, so a caller's buffer should be at least that long, with
the number of bytes allocated dependent on whether the ACME$M_UCS2 4 function code modifier
was specified on the call to SACM[W].

ACMES_QUERY_DATA

The ACMES$ QUERY_DATA item code is an output item code. It specifies the buffer to receive the
data returned from the query operation relating to the corresponding ACME$ QUERY_TYPE item
code.

The ACME$ QUERY_ DATA item code requires that an ACMES$ QUERY_ TYPE item code imme-
diately precede it in the item list.

ACMES_QUERY_KEY TYPE

The ACME$ QUERY KEY_ TYPE item code is an input item code. It specifies the key type for es-
tablishing the context of a query operation. The key format is specific to the ACME agent to which
the call is directed.

An ACMES$ QUERY _KEY TYPE item requires an ACME$ QUERY _KEY VALUE item immedi-
ately following it in the item list.

ACMES$_QUERY_KEY_ VALUE

The ACME$ QUERY KEY VALUE item code is an input item code. It specifies the key data for
establishing the context of a query operation.

An ACMES$ QUERY_KEY_ VALUE item requires that an ACME$ _QUERY_KEY TYPE item im-
mediately precede it in the item list.

ACMES_QUERY_TYPE

The ACME$ _QUERY_TYPE item code is an input item code. It specifies the data to be returned in
the buffer described by the corresponding ACME$ QUERY DATA item code.

The ACME$ QUERY_ TYPE item code requires that an ACME$ QUERY DATA item code imme-
diately follow it in the item list.

ACMES$_REMOTE_HOST_ADDRESS

The ACME$ REMOTE _HOST ADDRESS item code is an input item code. It specifies the network
address of the system from which the request originated. The buffer must contain a network address
using the representation consistent with ACME$ REMOTE _HOST ADDRESS TYPE item code is
specified.

ACMES$_REMOTE_HOST _ADDRESS TYPE

The ACME$ REMOTE _HOST ADDRESS TYPE item code is an input item code that specifies the
representation of the ACME$S REMOTE _HOST ADDRESS item code. The buffer must contain a
longword value specifying the address type.

The SACMEDEF macro defines the following symbols for the standard address types:

Symbol Meaning

ACMEHATS$K DECNET IV DECnet Phase IV

56

System Service Descriptions

Symbol Meaning
ACMEHATS$K DECNET OSI |DECnet OSI
ACMEHATS$K IP V4 Internet Protocol V4
ACMEHATS$K IP V6 Internet Protocol V6

ACMES$S_REMOTE_HOST_FULLNAME

The ACME$ REMOTE _HOST_FULLNAME item code is an input item code. It specifies the ful-
ly expanded name of the remote system from which the request originated. The buffer must contain a
name string.

ACMES$ REMOTE_HOST_NAME

The ACME$ REMOTE_HOST _NAME item code is an input item code. It specifies the name of the
remote system from which the request originated. The buffer must contain a name string.

ACMES$ REMOTE_USERNAME

The ACME$ REMOTE_USERNAME item code is an input item code. It specifies the name of the
remote user on whose behalf the request is being initiated. The buffer must contain a name string.

ACMES$_RESPONSE DATA

The ACME$ RESPONSE DATA item code is an input item code. It specifies the response data that
was calculated using the challenge data.

Interpretation of this data is specific to a domain of interpretation. This item code may be requested in
a dialogue step.

ACMES$_SERVER NAME_IN

Specifies the Event Server to which an Event should be directed. The meaning of this item is specific
to the target domain of interpretation.

ACMES$_SERVER NAME_OUT

Reports the Event Server to which an Event was directed. The meaning of this item is specific to the
target domain of interpretation.

ACMES$_SERVICE_NAME

Indicates the client program making the call to $ACM. The buffer must contain the case-insensitive
service name string. The default value is the current image name if the client program is an installed
image.

Names beginning with x- are reserved for local use.
ACMES$_TARGET _DOI_ID

Establishes the domain of interpretation within which nonquery operations are performed and the con-
text within which ACME-specific items codes are interpreted.

This item code also has an effect on the parsing of the list of ACME-specific item codes and takes ef-
fect immediately. It is in effect until the next instance of code ACME$ CONTEXT ACME ID, code
ACME$_CONTEXT ACME_NAME, code ACME$S TARGET DOI_ID, or code ACME$ TAR-
GET _DOI_NAME. It also specifies which ACME is to be responsible for the authentication.

57

System Service Descriptions

The buffer must contain a longword value specifying the agent ID of a domain of interpretation.
ACMES$_TARGET _DOI_NAME

Establishes the domain of interpretation within which nonquery operations are performed and the con-
text within which ACME-specific item codes are interpreted.

This item code also has an effect on the parsing of the list of ACME-specific item codes, and takes ef-
fect immediately. It is in effect until the next instance of code ACME$ CONTEXT ACME ID, code
ACMES$_CONTEXT ACME NAME, code ACMES_TARGET_DOI _ID, or code ACMES$_TAR-
GET DOI NAME. It also specifies which ACME is to be responsible for the authentication.

The buffer must contain the case-insensitive name string of a domain of interpretation.
ACMES_TIMEOUT_INTERVAL

Specifies the number of seconds that must elapse before the current request times out. (See the ACME
$M_TIMEOUT function modifier.)

Timeout interval values are specified in seconds and must be between 1 and 300 seconds. If an invalid
value is specified, the service returns SS$ IVTIME.

The default timeout interval is 30 seconds. This value may be adjusted by defining the exec mode log-
ical name ACME$TIMEOUT DEFAULT in the LNM$SYSTEM_TABLE logical name table. This
timeout is enforced for non-dialogue requests and for the first request in a sequence of dialogue calls.
The default value for subsequent dialogue requests can be adjusted by defining the exec mode logical
name ACMESDIALOGUE TIMEOUT DEFAULT in the LNM$SYSTEM TABLE logical name ta-
ble.

Unprivileged clients can specify only timeout interval values less than or equal to the default value.
Values greater than the default are ignored. Output Message Categories This section describes the var-
ious output message categories supported by the SACM service.

Message Types are 16-bit unsigned values, encoded as follows:
15

87 0
INNEENEENEEEEENY

11 !

BIT [13:0] = message category

BIT [14] =—== not subject to Unicode conversion
=— = subject to Unicode conversion

BIT [15] =—= common Message category
=—3= ACME specific Message category

WM-DBETA-A

Function-Independent Common Output Message Categories

The following table lists the function-independent common output messages and their meanings:

Message Category Meaning
ACMEMCS$K GENERAL Specifies a general text message
ACMEMCS$K HEADER Specifies a header text message

58

System Service Descriptions

Message Category Meaning

ACMEMCSK TRAILER Specifies a trailer text message
ACMEMCS$K SELECTION Specifies an acceptable choices message
ACMEMCSK DIALOGUE ALERT |Specifies an advisory alert message

Authentication Common Output Message Categories

The following table lists the authentication common output message categories and their meanings:

Message Category Meaning
ACMEMCSK SYSTEM Specifies system identification text messages
IDENTIFICATION

ACMEMCSK SYSTEM NOTICES |Specifies system notices
ACMEMCS$K WELCOME NOTICES |Specifies welcome notices
ACMEMCSK LOGON_NOTICES Specifies logon notices

ACMEMCSK PASSWORD Specifies password notices
NOTICES

ACMEMCSK MAIL NOTICES Specifies MAIL notices
Description

The Authentication and Credential Management (SACM) service presents a unified interface for per-
forming authentication-related operations in a manner independent of applicable policy.

On a given OpenVMS system, multiple authentication policies may be applicable. The system may be
configured to augment the native (local OpenVMS) policy with alternatives pertaining to external en-
vironments, such as LAN Manager. Each policy, together with the operating environment to which it
pertains, constitutes a domain of interpretation. Within a given domain, any entity, such as a user, that
is subject to the applicable authentication policy, is referred to as a principal.

The $ACM service can be used to authenticate a principal, initiate a password change request on be-
half of a principal, query information about a particular domain, or report event data within a particu-
lar domain.

The SACM service completes asynchronously; that is, it returns to the caller after queuing the request,
without waiting for the operation to complete.

To synchronize completion of an operation, use the Authentication and Credential Management
and Wait (SACMW) service. The SACMW service is identical to SACM in every way except that
SACMW returns to the caller after the operation has completed.

Modes of Operation

The typical authentication policy employs the traditional reusable password; however, various alterna-
tive mechanisms exist for forming stronger policies. Some of these mechanisms, such as challenge-re-
sponse, require interaction. The ACM service is designed to accommodate these mechanisms.

The authentication and change password functions are capable of operating in a dialogue (itera-
tive) mode to support different types of interactive authentication mechanisms. The query, event, and
free context functions only support the nondialogue (noniterative) mode of operation.

59

System Service Descriptions

Nondialogue (Noniterative) Mode

The default nature of the SACM service is to operate in a noniterative mode. All information needed
to complete the request must be provided in a single call; otherwise, the request ultimately fails. This
requires the caller to know beforehand what information is required to complete the request.

The following list summarizes the control flow for a typical nondialogue mode authentication request.
For simplicity, the scenario assumes a single domain of interpretation with a traditional user name and
password policy. Also, error processing is ignored.

1. The caller of SACM prompts the user for the principal name and password, builds an item list
specifying the principal name and password, and then calls SACM specifying the authenticate
principal function, the item list with the principal name and password, and a zero address for the
cont ext argument.

2. $ACM processes the request and ultimately returns control to the caller with the final status for the
operation.

Dialogue (lterative) Mode

The caller can use the interactive capabilities of the SACM service for authentication and password
change operations by specifying the ACME$ DIALOGUE_SUPPORT item code and a valid con-

t ext argument. In this mode, ACME agents can request additional information from the caller to
complete the request. In effect, the $ACM service is called in an iterative fashion until all information
required to complete the request has been provided. The sequence of calls are linked together by pass-
ing the cont ext argument returned in one call back in the next call.

In this scenario, when an ACME agent requires additional information, it builds an item set that de-
scribes the nature of the information. The item set is passed back to the caller in the communications
buffer (see the description for the cont ext argument regarding the format of the communications
buffer) and the service returns with the ACME$ OPINCOMPL status. The caller processes each item
set entry, gathers the requested information, and then passes it back to the ACME agent using the

i t m st argument in the next call. The sequence continues until the call returns with a status code
other than ACMES_OPINCOMPL.

The following list summarizes the control flow for a typical dialogue-mode authentication sequence.
For simplicity, the scenario assumes a single domain of interpretation with a traditional user name and
password policy. Also, error processing is ignored.

1. Make an initial call to SACM specifying the authenticate principal function code, an item list that
merely contains the ACME$ DIALOGUE SUPPORT item code, and a cont ext argument that
has been initialized to -1.

2. $ACM builds a communications buffer containing an item set in the buffer requesting the princi-
pal name (user name), sets the cont ext argument to reference the buffer, and returns control to
the caller with a status code of ACME$ OPINCOMPL.

3. The caller processes the item set, prompts for the principal name, builds an item list specifying the
principal name, and then calls $ACM again specifying the authenticate principal function as be-
fore, the item list with the principal name, and a cont ext argument that contains the buffer ad-
dress returned in the previous call.

4. $ACM validates the cont ext argument, processes the username then builds another communi-
cations buffer to contain an item set list requesting the password, sets the cont ext argument to
reference the buffer, and returns control to the caller again with a status code of ACME$_OPIN-
COMPL.

60

System Service Descriptions

5. The caller processes the item set, prompts for the password, builds an item list specifying the pass-
word, and then calls $ACM again specifying the authenticate principal functions as before, the
item list with the password, and a cont ext argument that contains the buffer address returned in
the previous call.

6. $ACM validates the cont ext argument again, clears it, and then completes the processing of the
request, now that it has all the necessary information, and ultimately returns control to the caller
with the final status for the operation.

Unprivileged callers (those running in user mode and not possessing SECURITY privilege) are lim-
ited by the number of iterative requests they can make in a dialogue sequence of calls. The default is
set at 26 dialogue requests. The default can be overridden by defining the exec mode logical name
ACMESDIALOGUE ITERATIVE LIMIT in the LNM$SYSTEM TABLE logical name table. Valid
values are 1 through 100.

Determining an ACME Name Based on an ACME ID

The identity of the ACME that supplied the ACMESL ACME_STATUS contents is indicated in the
ACMEID$V_ACME NUM subfield of the ACMESBSL ACME ID field. This value is consistent
for the duration of one boot of the system, but may have a different value on the next boot. The name
of a particular ACME agent can be determined from the ACME ID by calling $ACM with function
code ACMES$ FC QUERY and the following item list entries:

e Special ACM Dispatch query—ID value zero:

ITMCOD = ACMES_TARGET_DOI_ID
BUFSIZ =4
BUFADR = Address of longword containing 0

* Query ACME name based on ACME ID:

ITMCOD = ACME$_QUERY KEY TYPE
BUFSIZ =4
BUFADR = Address of longword containing ACMESK QUERY ACME ID

* Specify ACME ID value:

ITMCOD = ACMES QUERY _KEY VALUE
BUFSIZ=4
BUFADR = Address of longword containing the ACME_ID

¢ Specify ACME name for the return value:

ITMCOD = ACME$_QUERY_TYPE
BUFSIZ=4
BUFADR = Address of longword containing ACMES$SK _QUERY ACME NAME

* Specify the output buffer:

ITMCOD = ACMES$_QUERY_DATA

BUFSIZ = ACME$K_MAXCHAR_DOI NAME or (ACME$K_MAXCHAR_DOI NAME*4)
depending on whether function modifier ACME$M_UCS2 4 has been specified

BUFADR = Address of buffer large enough to hold ACMESK _MAXCHAR DOI NAME bytes
or (ACMES$SK MAXCHAR DOI NAME#*4) depending on whether function modifier ACME
$M_UCS2 4 has been specified

61

System Service Descriptions

Privileges and Restrictions

The SACM service constitutes a trusted interface. It restricts operations that override the security poli-
cy applicable to a given domain of interpretation to those callers who are suitably privileged. The sta-
tus returned in the ACMESBSL STATUS field of the ACM Status Block for a failed authentication
operation is typically nonspecific, so as not to reveal sensitive information to untrusted callers.

If the caller has the SECURITY privilege, the ACMESBSL_SECONDARY_STATUS field of the
ACM Status Block may contain a detailed status that more accurately reflects the actual nature of the
failure.

To specify the following function modifiers, the caller must have the SECURITY privilege:

ACMESM_NOAUDIT
ACMESM_NOAUTHORIZATION
ACMESM_FOREIGN POLICY HINTS

To specify the following function modifier, the caller must have the IMPERSONATE privilege:
ACMESM_OVERRIDE MAPPING

To specify the following item code, the caller must have the SECURITY privilege:

ACME$ NEW PASSWORD SYSTEM

To specify the following item codes, the caller must have the IMPERSONATE privilege:

ACME$_ACCESS_PORT

ACMES$ CHALLENGE DATA

ACMES$ REMOTE _HOST ADDRESS
ACMES$ REMOTE _HOST ADDRESS TYPE
ACMES$ REMOTE _HOST FULLNAME
ACMES$ REMOTE _HOST NAME

ACMES$ REMOTE USERNAME
ACMES$_SERVICE NAME

Condition Values Returned

SS$ NORMAL
The service completed successfully.
SS$ _ACCVIO

The item list or an input buffer cannot be read in the access mode of the caller; or an output
buffer, a return length buffer, or the I/O status block cannot be written in the access mode of the
caller.

SS$ ARG _GTR 32 BITS
A 64-bit address was passed in a context requiring a 32-bit address.
SS$ BADBUFADR

The buffer address associated with an entry in the item list is inappropriate in the context of the
call. The address may be invalid (for example, 0).

62

System Service Descriptions

SS$ BADBUFLEN

The bufter length associated with an entry in the item list is inappropriate in the context of the
call. The length may be invalid (for example, 0) or outside the range of acceptable values.

SS$ BADCHAIN
A chained item list is inaccessible, or the chain is circular.
SS$ BADCONTEXT
The cont ext argument does not specify a valid context buffer.
SS$ BADITMCOD
A specified item code is invalid or out-of-range.
SS$ BADPARAM
The item list contains an invalid item code.
SS$ BADRETLEN

The return length address associated with an entry in the item list is inappropriate in the context of
the call. The address may be invalid (for example, 0).

SS$ EXASTLM

The ast adr argument was specified and the process has exceeded its ASTLM quota.
SS$ EXQUOTA

A process quota was exceeded.
SS$ ILLEFC

The ef n argument specifies an illegal event flag number.
SS$ ILLMODIFIER

The f unc argument specifies function modifiers that are inappropriate in the context of the call.
SS$ INSFMEM

Insufficient space exists for completing the request.
SS$ IVTIME

An invalid value was specified for the ACMES TIMEOUT INTERVAL item code.
SS$ NOEXTAUTH

External authentication is not available.
SS$ NOPRIV

The caller does not have the necessary privileges to complete the requested operation.
SS$ TOOMUCHDATA

The request size exceeds $ACM messaging constraints.

63

System Service Descriptions

SS$ UNASEFC
The ef n argument specifies an unassociated event flag cluster.
SS$ UNSUPPORTED

The f unc argument specifies an unsupported function.

Condition Values Returned in the ACM Status Block

ACME$ NORMAL
The service completed successfully.
ACME$ ACCOUNTLOCK
The account associated with specified principal name is disabled.
ACMES$ AUTHFAILURE
Authorization failed.
ACME$ BUFFEROVF

An output item returned by the service is larger than the user buffer provided to receive the item;
the item is truncated.

ACMES DOIUNAVAILABLE

The specified domain of interpretation is not processing requests.
ACMES$ INCONSTATE

The ACME server detected an internal consistency error.
ACMES$ INSFDIALSUPPORT

Caller dialogue capabilities specified with the ACMESDIALOGUE_ SUPPORT item code are in-
adequate to meet the needs of one or more ACME agents.

ACMES$_INTRUDER

A record matching the request was found in the intrusion database.
ACMES INVALIDCTX

The cont ext argument is not consistent with the i t ml st argument.
ACMES$ INVALIDPWD

The specified password is invalid.
ACMES INVITMSEQ

The service encountered a query type or query key item code without a corresponding query data
or query key value item code.

ACMES$_INVMAPPING

The OpenVMS user name to which the principal name was mapped is invalid.

64

System Service Descriptions

ACMES$ INVNEWPWD

The new password provided during a change password request does not pass qualification checks.

ACME$ INVPERSONA
The persona handle specified by the i t m st argument is invalid.

ACMES$ INVREQUEST

A parameter is invalid in the context of the request. This error code is returned when the caller ei-

ther defaults or specifies ACMES$ BATCH or the value zero (0) for ACME$ LOGON_TYPE.

ACME$ MAPCONFLICT

An attempt was made to merge credentials for a principal name, which maps to an OpenVMS user

name that differs from the one associated with existing credentials.

ACMES$_NOACMECTX

The service encountered an ACME-specific item code when no ACME context had been estab-

lished.
ACMES$ NOCREDENTIALS
The ACME agent did not issue any credentials.
ACMES$ NOEXTAUTH
The specified principal name cannot be authenticated externally.

ACME$_NOPRIV

The caller does not have the necessary privileges to complete the requested operation.

ACME$ NOSUCHDOI
The specified domain of interpretation does not exist.
ACME$ NOSUCHUSER
The specified principal name does not exist.
ACMES$ NOTARGETCRED
The persona does not contain credentials for the specified domain of interpretation.
ACME$ NOTAUTHORIZED
Authorization failed due to account restrictions.

ACMES$ OPINCOMPL

Interaction is required to complete the request. The context buffer contains information describing

how to proceed.

ACME$ PWDEXPIRED

The password provided during an authentication request has expired and a new password is re-

quired to complete the request.

65

System Service Descriptions

ACMES_TIMEOUT

The server did not respond within the designated time-out interval.

ACMES$_UNSUPPORTED

The requested operation or an item code is not supported with the selected domain of interpreta-

tion.

Status Codes and Function Codes Table

Table 13 lists status codes and their function codes:

Table 13. Status Codes and Function Codes

Status Codes

Function Codes

Authenticate |Change Event |Free Query |Release Cre-
Principal Password Context dentials

ACMES$ O g

ACCOUNTLOCK

ACMES$ O O

AUTHFAILURE

ACMES$ O O

BUFFEROVR

ACMES$ O O g O

DOIUNAVAILABLE

ACMES$ O O O O g 0

INCONSTATE

ACMES$ O O

INSFDIALSUPPORT

ACMES$ O

INTRUDER

ACMES$ O O O

INVALIDCTX

ACMES$ O g

INVALIDPWD

ACMES$ O

INVITMSEQ

ACMES$ O O

INVMAPPING

ACMES$ O g

INVNEWPWD

ACMES$ O g

INVPERSONA

ACMES$ O O O O

INVREQUEST

Key to Codes

[]—Permitted

66

System Service Descriptions

Status Codes Function Codes
Authenticate |Change Event |Free Query |Release Cre-
Principal Password Context dentials
ACMES O 0
MAPCONFLICT
ACMES O O O O O O
NOACMECTX
ACMES O
NOCREDENTIALS
ACMES O O
NOEXTAUTH
ACMES O O O 0 0
NOPRIV
ACMES O O O O O O
NORMAL
ACMES O O 0 0
NOSUCHDOI
ACMES O O
NOSUCHUSER
ACMES 0
NOTARGETCRED
ACMES O
NOTAUTHORIZED
ACMES O 0
OPINCOMPL
ACMES O
PWDEXPIRED
ACMES O O O O
TIMEOUT
ACMES O O O O
UNSUPPORTED

Key to Codes

O0—Permitted

VMS ACME Use of Function Codes

The VMS ACME use of the Event function is reserved to OpenVMS.

The VMS ACME does not support the Query function.

VMS ACME-Specific Item Codes

This section describes the $ACM item codes that are ACME-specific for the VMS ACME.

Table 14 indicates which OpenVMS ACME-specific Item Codes are applicable to the various Func-
tion Codes:

67

System Service Descriptions

Table 14. Function Codes and OpenVMS Specific Item Codes

Item Codes

Function Codes

Authenticate
Principal

Change
Password

Event

Free
Context

Query

Release Cre-
dentials

ACMEVMSS$
AUTOLOGIN
ALLOWED FLAG

ACMEVMSS$_
CLASS DAYS

O

ACMEVMSS$
CLASS_FLAGS

0)

ACMEVMS$_
CLASS_NUMBER

0

ACMEVMSS$
CLASS_
PRIMEDAY LIMIT

O)

ACMEVMSS$
CLASS
SECONDARY LIMIT

)

ACMEVMSS_
CLASS_NAME

(U,0)

ACMEVMSS$
CONFIRM _
PASSWORD 1

)

ACMEVMSS$_
CONFIRM _
PASSWORD 2

Key to Codes

O0—Permitted

O—Output item code

U—Subject to Unicode Conversion
BC—Backward Compatibility—Reserved to OpenVMS support of historical interface

IR—IMPERSONATE Privilege Required to override default values
SR—SECURITY Privilege Required

68

System Service Descriptions

Item Codes Function Codes

Authenticate |Change Event |Free Query |Release Cre-
Principal Password Context dentials

(U)

ACMEVMSS$
CONFIRM _
PASSWORD SYS

(V)

ACMEVMSS$_
CREPRC_BASPRI

O

ACMEVMS$_
CREPRC_IMAGE

O)

ACMEVMSS$
CREPRC_PRCNAM

0)

ACMEVMSS$_
CREPRC_PRVADR

O

ACMEVMSS$_
CREPRC_QUOTA

0)

ACMEVMSS$
CREPRC_UIC

0

ACMEVMSS$
GENPWD COUNT

ACMEVMSS$
GENPWD_
MANDATORY FLAG

ACMEVMSS$_
GENPWD _
MAXLENGTH

Key to Codes

[J—Permitted

IR—IMPERSONATE Privilege Required to override default values

SR—SECURITY Privilege Required

O—Output item code

U—Subject to Unicode Conversion

BC—Backward Compatibility—Reserved to OpenVMS support of historical interface

69

System Service Descriptions

Item Codes Function Codes
Authenticate |Change Event |Free Query |Release Cre-
Principal Password Context dentials

ACMEVMSS$

GENPWD _

MINLENGTH

ACMEVMS$ _OLD_ |BC

CONNECTION_FLAG

ACMEVMSS$ OLD_ |BC

DECWINDOWS FLAG|

ACMEVMSS$ OLD_ |BC

HASHED

PASSWORD 1

ACMEVMSS$ OLD_ |BC

HASHED _

PASSWORD 2

ACMEVMSS$ OLD_ |BC

LGI PHASE

ACMEVMSS$ OLD_ |BC

LGI_STATUS

ACMEVMSS$ OLD_ |BC

PROCESS NAME

ACMEVMSS$ UAI *

0)

ACMEVMSS$ BC

LOGINOUT _

CLI FLAG

ACMEVMSS BC

LOGINOUT _

CREPRC_FLAGS

ACMEVMSS BC

NET_PROXY

ACMEVMSS$ IR

PREAUTHENTICATION _

FLAG

ACMEVMSS$ IR IR

REQUESTOR_PID

ACMEVMSS IR IR

Key to Codes

[J—Permitted

IR—IMPERSONATE Privilege Required to override default values

SR—SECURITY Privil
O—Output item code
U—Subject to Unicode

ege Required

Conversion

BC—Backward Compatibility—Reserved to OpenVMS support of historical interface

70

System Service Descriptions

Item Codes Function Codes
Authenticate |Change Event |Free Query |Release Cre-
Principal Password Context dentials

REQUESTOR_UIC

ACMEVMSS IR IR
REQUESTOR
USERNAME

L)
ACMEVMSS$ _USES_ |SR
SYSTEM_PASSWORD

Key to Codes

[J—Permitted

IR—IMPERSONATE Privilege Required to override default values

SR—SECURITY Privilege Required

O—Output item code

U—Subject to Unicode Conversion

BC—Backward Compatibility—Reserved to OpenVMS support of historical interface

SYS$CREPRC-Ready Item Codes

For users that need to create a process based on quotas and privileges from System User Authoriza-
tion (SYSUAF) data, the following item codes return data in a form ready to be used in a call to
SYSSCREPRC:

Item Code Direction Size Data Provided
ACMEVMSS$ CREPRC BASPRI Output Longword Base priority
ACMEVMSS$ CREPRC IMAGE Output String’ LOGINOUT
ACMEVMSS$ CREPRC PRCNAM Output String1 Null
ACMEVMSS$ CREPRC PRVADR Output Quadword Privilege mask
ACMEVMSS$ CREPRC QUOTA Output Sequence-of-bytes |Quotas
ACMEVMSS$ CREPRC UIC Output Longword UIC

!The caller must create a descriptor for this item returned as a string to pass it to SYS$SCREPRC.

To receive results of these item codes without authentication requires you to use the

ACMEVMSS$ PREAUTHENTICATION FLAG, which in turn requires the IMPERSONATE privi-
lege. No additional privilege for these item codes is required.

ACMEVMS$_CREPRC_BASPRI

This output item code requests UAI data in a format suitable for passing to SYSSCREPRC.

This output item code request UAI data in a format suitable for passing to SYS$CREPRC.
ACMEVMSS$_CREPRC_IMAGE

This output item code requests UAI data in a format suitable for passing to SYS$SCREPRC. The
$ACM[W] client is responsible for creating a descriptor for this string.

71

System Service Descriptions

ACMEVMSS$_CREPRC_PRCNAM

This output item code requests UAI data in a format suitable for passing to SYSSCREPRC. The
SACM[W] client is responsible for creating a descriptor for this string.

ACMEVMS$_CREPRC_PRVADR
This output item code requests UAI data in a format suitable for passing to SYS$CREPRC.
ACMEVMSS$ CREPRC_QUOTA

This output item code requests UAI data in a format suitable for passing to SYSSCREPRC, regardless
of what quota might be handled by this service in the future.

ACMEVMSS$_CREPRC_UIC
This output item code requests UAI data in a format suitable for passing to SYS$CREPRC.

Generated Password Iltem Codes

Any generated password list is returned in the ACM Communications Buffer, which is accessed by
the context parameter. The following item codes are used to affect this password list:

Item Code Direction Size Data Provided
ACMEVMS$ GENPWD COUNT Input Longword Unsigned
ACMEVMSS$ GENPWD MANDATORY _ Input Longword Boolean
FLAG

ACMEVMS$ GENPWD MAXLENGTH Input Longword Unsigned
ACMEVMS$ GENPWD MINLENGTH Input Longword Unsigned

ACMEVMSS_GENPWD_COUNT

The value of this item code indicates the number of any passwords that are generated, regardless
of whether generation is due to the SYSSCREPRC bit or the presence of the ACMEVMSS$ GEN-
PWD _MANDATORY_ FLAG input item code.

ACMEVMSS GENPWD_MANDATORY_FLAG

The caller of SYSSAMCW requests password generation if this item code is present. A value whose
low bit is set indicates the caller wants to force the use of the generated passwords, with the VMS
ACME rejecting any provided passwords that do not match a password on the list. A value whose low
bit is clear indicates that the generated password list is just advisory, with no enforcement by the VMS
ACME. However, VMS ACME might actually enforce generated passwords anyway, depending on
the setting of the SYS$CREPRC bit within the UAI_FLAGS longword bit mask.

ACMEVMSS_GENPWD_MAXLENGTH

The value of this item code indicates the maximum length of any passwords that are gener-
ated, regardless of whether generation is due to the SYS$CREPRC bit or the presence of the
ACMEVMS$ GENPWD MANDATORY FLAG input item code.

ACMEVMSS GENPWD_MINLENGTH

72

System Service Descriptions

The value of this item code indicates the minimum length of any passwords that are generated, regard-
less of whether generation is due to the SYSSCREPRC bit or the presence of the ACMEVMSS$ GEN-
PWD MANDATORY_ FLAG input item code.

Backward Compatibility Item Codes

The ACME-specific item codes that provide backward compatibility are listed in the following table:

Item Code Direction Size Data Provided
ACMEVMSS$ LOGINOUT CLI FLAGS Input Longword Boolean
ACMEVMSS$ LOGINOUT CREPRC FLAGS |Input Longword Bit mask
ACMEVMSS$ OLD CONNECTION FLAG Input Longword Boolean
ACMEVMSS$ OLD DECWINDOWS FLAG Input Longword Boolean
ACMEVMSS$ OLD HASHED PASSWORD 1 |Input Variable String
ACMEVMSS$ OLD HASHED PASSWORD 2 |Input Variable String
ACMEVMSS$ OLD LGI PHASE Input Longword Code value
ACMEVMSS$ OLD LGI _STATUS Input Longword Message code
ACMEVMSS$ OLD PROCESS NAME Input Variable String

ACMEVMSS_LOGINOUT_CLI_FLAGS

This input item code supplies the traditional LOGINOUT qualifiers to the VMS ACME, including
particularly the /LOCAL_PASSWORD and /CONNECT qualifiers. This item is never provided on an
initial call. It is only provided in response to a dialogue step.

Use of this item code is reserved to LOGINOUT, and is enforced by the VMS ACME to prevent
spoofing.

ACMEVMSS_LOGINOUT_CREPRC_FLAGS

This input item code provides the CTL$GL _CREPRC FLAGS longword corresponding to the
FLAGS argument used for process creation. The use of this item code is reserved to LOGINOUT and
is enforced by the VMS ACME to prevent spoofing.

ACMEVMSS _OLD_CONNECTION_FLAG

This input item code is used by LOGINOUT to indicate to the VMS ACME that a terminal user log-
ging in has chosen to connect to a disconnected process rather than proceed with a new process.

Use of this item code is reserved to LOGINOUT, and is enforced by the VMS ACME to prevent
spoofing.

ACMEVMS$_OLD DECWINDOWS_FLAG

This input item code indicates the old DECwindows callout interface is being used. Use of this item
code is reserved to LOGINOUT, and is enforced by the VMS ACME to prevent spoofing.

ACMEVMSS$_OLD_HASHED PASSWORD 1

This input item code specifies a primary password in an alternate form. You can only use this item
code when specifying a value of ACMEVMSS$ ARGUS for ACMES AUTH MECHANISM.

73

System Service Descriptions

To use this item code, you need the IMPERSONATE privilege.
ACMEVMSS OLD HASHED PASSWORD 2

This input item code specifies a secondary password in an alternate form. You can only use this item
code when specifying a value of ACMEVMSS$ ARGUS for ACMES AUTH MECHANISM.

To use this item code, you need the IMPERSONATE privilege.
ACMEVMSS$_OLD LGI_PHASE

This input item code specifies the phase of the latest LGI-callout. It is used to provide processing
equivalent so that when authentication is performed inside LOGINOUT, the following actions occur:

* Allows LGI$ SKIPRELATED from an LGI-callout routine to be honored by ACMEs.

* Allows the VMS ACME to update UAF§W_LOGFAILS and possibly UAF$V_DISACNT even
for a failure declared by an LGI-callout routine.

Use of this item code is reserved to LOGINOUT and is enforced by the VMS ACME to prevent
LGI$ SKIPRELATED spoofing. If you want to perform a similar function, you should write an
ACME.

ACMEVMSS$_OLD_LGI_STATUS

This input item code specifies the status returned from the latest LGI-callout. It is used to provide pro-
cessing equivalent so that when authentication is performed inside LOGINOUT, the following actions
occur.

+ Allows LGI$ SKIPRELATED from an LGI-callout routine to be honored by ACMEs.

+ Allows the VMS ACME to update UAF$SW_LOGFAILS and possibly UAF$V_DISACNT even
for a failure declared by an LGI-callout routine.

Use of this item code is reserved to LOGINOUT, enforced by the VMS ACME to prevent
LGI$ SKIPRELATED spoofing. If you want to perform a similar function, you should write an
ACME.

ACMEVMS$_OLD_PROCESS_NAME

This input item code is used by LOGINOUT to indicate to the VMS ACME the process name after it
has attempted to change the process name to match the username.

Use of this item code is reserved to LOGINOUT, and is enforced by the VMS ACME to prevent
spoofing.

User Authorization Information (UAI) Item Codes

he VMS ACME supports the UAI codes that return SYSUAF values. SYSUAF contents are required
for authorization, initialization, and auditing. The UAI codes are transmitted to the VMS ACME as
ACME-specific codes. For the definition of these item codes, see the SYSSGETUAI system service in
the VSI OpenVMS System Services Reference Manual: GETUTC-Z.

When in dialogue mode and when you ask for the value in the fields, the VMS ACME returns the val-
ue from that of the previous login, that is, the login before the current login.

74

System Service Descriptions

The following ACME UAI item codes are supported:

ACMEVMS$_UAI_ ACCOUNTS
ACMEVMS$ UAI ACCOUNT LIM
ACMEVMS$_UAI ASTLM
ACMEVMS$_UAI_AUDIT FLAGS (*)
ACMEVMSS$ UAI BATCH ACCESS P
ACMEVMS$ UAI BATCH ACCESS_S
ACMEVMS$_UAI BIOLM
ACMEVMS$_UAI BYTLM
ACMEVMSS$ UAI CLITABLES
ACMEVMSS$_UAI CPUTIM
ACMEVMS$_UAI DEF_CLASS
ACMEVMS$_UAI DEFCLI
ACMEVMSS$_UAI DEFDEV
ACMEVMS$_UAI_DEFDIR
ACMEVMSS$_UAI DEF PRIV
ACMEVMS$ UAI DFWSCNT
ACMEVMSS$_UAI _DIOLM
ACMEVMSS$_UAI DIALUP_ACCESS_P
ACMEVMS$_UAI DIALUP_ACCESS S
ACMEVMS$ UAI ENCRYPT
ACMEVMSS$_UAI_ENCRYPT2
ACMEVMS$ UAI ENQLM
ACMEVMS$_UAI_EXPIRATION
ACMEVMS$_UAI FILLM
ACMEVMS$_UAI FLAGS
ACMEVMSS$_UAI_GRP
ACMEVMS$_UAI JTQUOTA
ACMEVMSS$_UAI LASTLOGIN I
ACMEVMSS$ UAI LASTLOGIN N
ACMEVMS$_UAI LGICMD
ACMEVMS$_UAI LOCAL_ACCESS P
ACMEVMSS$ UAI LOCAL ACCESS S
ACMEVMS$ _UAI LOGFAILS
ACMEVMSS$_UAI MAXACCTIOBS
ACMEVMSS$_UAI MAX_CLASS
ACMEVMSS$_UAI MAXDETACH
ACMEVMS$ UAI MAXJOBS
ACMEVMS$ UAI MEM
ACMEVMS$_UAI_MIN_CLASS

ACMEVMS$_UAI NETWORK_ACCESS_P
ACMEVMSS$ UAI NETWORK_ACCESS S

ACMEVMS$_UAI OWNER
ACMEVMS$_UAI PARENT ID
ACMEVMS$ UAI PASSWORD (*)
ACMEVMS$_UAI PASSWORD?2 (*)
ACMEVMS$ UAI PBYTLM
ACMEVMS$_UAI_PGFLQUOTA
ACMEVMSS$_UAI PRCCNT
ACMEVMSS$ _UAI PRI
ACMEVMS$_UAI PRIMEDAYS
ACMEVMSS$_UAI PRIV
ACMEVMSS$_UAI PROXYIES
ACMEVMS$ UAI PROXY LIM
ACMEVMS$ UAI PWD
ACMEVMS$_UAI PWD2
ACMEVMS$ UAI PWD DATE
ACMEVMSS$ _UAI PWD2 DATE
ACMEVMS$ _UAI PWD_LENGTH
ACMEVMSS$ UAI PWD LIFETIME
ACMEVMS$_UAI QUEPRI
ACMEVMS$_UAI REMOTE_ACCESS_P
ACMEVMSS$ UAI REMOTE ACCESS S
ACMEVMS$_UAI_RTYPE
ACMEVMS$_UAI SALT
ACMEVMS$ UAI SHRFILLM
ACMEVMS$_UAI SUB_ID
ACMEVMS$_UAI TQCNT
ACMEVMSS$_UAI_UIC
ACMEVMS$ UAI_USER_DATA
ACMEVMSS$_UAI_USRDATOFF
ACMEVMS$_UAI_USERNAME
ACMEVMS$_UAI USERNAME TAG
ACMEVMS$_UAI _JSVERSION
ACMEVMSS$_UAI WSQUOTA

75

System Service Descriptions

* These items are defined for the following numeric calculations purposes because the base for the
ACME-specific UAI item codes is ACMEVMSS$K UAI BASE. ACMEVMSS$K UAI BASE can be
added to a UAI$_* code to produce the corresponding ACMEVMSS$ UAI * code.

Class Scheduling Iltem Codes

The following table lists class scheduling item codes:

Item Code Direction Size Data Provided
ACMEVMSS$ CLASS DAYS Output Byte Bit-mask
ACMEVMSS$ CLASS FLAGS Output Longword Bit-mask
ACMEVMSS$ CLASS NAME Output Variable String
ACMEVMSS$ CLASS NUMBER Output Word Integer
ACMEVMSS$ CLASS PRIMEDAY LIMIT Output 24 bytes Integer Array
ACMEVMSS$ CLASS SECONDAY LIMIT Output 24 bytes Integer Array

ACMEVMSS$_CLASS_DAYS

This item returns a 7-bit array, one for each day of the week starting with Monday as the low-order
bit.

If a given bit is set, it means the corresponding day of the week is to be treated as a Secondary Day for
purposes of class scheduling. If a given bit is clear, the corresponding day of the week is to be treated
as a Primary Day for purposes of class scheduling. These designations are overridden if the SGETSYT
item code SYI$ DAY OVERRIDE is set.

This data is intended primarily for LOGINOUT in setting up any class scheduling required for a new
process, although other callers of $ACM are free to request it for their own purposes.

Data returned for this item code is 1 byte long, so a caller's buffer should be at least that long.
ACMEVMSS_CLASS_FLAGS
This item code returns a 32-bit mask of flags used for class scheduling.

This data is intended primarily for LOGINOUT in setting up any class scheduling required for a new
process, although other callers of SACM are free to request it for their own purposes.

Data returned for this item code is 4 bytes long, so a caller's buffer should be at least that long.
ACMEVMSS_CLASS_NAME

This item code returns a string indicating the Class Name for class scheduling the VMS Username just
authenticated.

This data is intended primarily for LOGINOUT in setting up any class scheduling required for a new
process, although other callers of ACM are free to request it for their own purposes.

Data returned for this item code is up to 16 characters long, so a caller's buffer should be at least that
long, with the number of bytes allocated dependent on whether the ACMES$SM_UCS2 4 function code
modifier was specified on the call to SACM[W].

76

System Service Descriptions

ACMEVMSS$_CLASS_NUMBER

This item code returns the Class Number for class scheduling the VMS Username just authenticated.
A Class Number of zero means no Class applies to this VMS Username.

This data is intended primarily for LOGINOUT in setting up any class scheduling required for a new
process, although other callers of SACM are free to request it for their own purposes.

Data returned for this item code is 2 bytes long, so a caller's buffer should be at least that long.
ACMEVMSS_CLASS PRIMEDAY_LIMIT

This item code returns an array of 24 bytes, one for each hour of a Primary Day, each containing a
number from 1 to 100 indicating the percentage of the overall system CPU time reserved for members

of that class.

This data is intended primarily for LOGINOUT in setting up any class scheduling required for a new
process, although other callers of ACM are free to request it for their own purposes.

Data returned for this item code is 24 bytes long, so a caller's buffer should be at least that long.
ACMEVMSS_CLASS_SECONDAY_LIMIT

This item code returns an array of 24 bytes, one for each hour of a Secondary Day, each containing a
number from 1 to 100 indicating the percentage of the overall system CPU time reserved for members

of that class.

This data is intended primarily for LOGINOUT in setting up any class scheduling required for a new
process, although other callers of SACM are free to request it for their own purposes.

Data returned for this item code is 24 bytes long, so a caller's buffer should be at least that long.

Miscellaneous Item Codes

The following ACME-specific item codes cannot be classified into any of the previous categories:

Item Code Direction Size Data Provided
ACMEVMSS$ AUTOLOGIN ALLOWED Input Longword Boolean
FLAG

ACMEVMSS$ CONFIRM_PASSWORD 1 Input Variable String
ACMEVMSS$ CONFIRM_PASSWORD 2 Input Variable String
ACMEVMSS$ CONFIRM _PASSWORD SYS |Input Variable String
ACMEVMSS$ NET PROXY Input Variable String
ACMEVMSS$ PREAUTHENTICATION FLAG |Input Longword Boolean
ACMEVMSS$ REQUESTOR PID Input Longword Hexadecimal
ACMEVMSS$ REQUESTOR UIC Input Longword Hexadecimal
ACMEVMSS$ REQUESTOR USERNAME Input Variable String
ACMEVMSS$ USES SYSTEM PASSWORD |Input Longword Boolean

ACMEVMSS AUTOLOGIN_ALLOWED_FLAG

77

System Service Descriptions

This input item code specifies that a particular access port is of a type eligible for VMS Autologin. If
the port is not specified in the Autologin file read by the VMS ACME, then this item code has no ef-
fect.

ACMEVMSS$_CONFIRM_PASSWORD 1

The VMS ACME uses this input item code as a separate verification prompt when a new primary
password is being specified. Use of a separate dialogue step rather than the verification method built
into the Item Set definition allows some initial checking to be done for acceptability of the proposed
password before the user is asked to type the password in again.

Some networked ACME agents are tied to network protocols that do not allow independent checking
of the acceptability of a proposed password, so even when an item set with this item code is returned,
the proposed password could be rejected later.

This item code might be requested in a dialogue step.
ACMEVMS$_CONFIRM_PASSWORD 2

The VMS ACME uses this input item code as a separate verification prompt when a new secondary
password is being specified. Use of a separate dialogue step rather than the verification method built
into the Item Set definition allows some initial checking to be done for acceptability of the proposed
password before the user is asked to type the password again.

Some networked ACME agents are tied to network protocols that do not allow independent check-
ing of the acceptability of a proposed password, so even when an item set with this item code is re-
turned, the proposed password could be rejected later. Most networked ACME agents do not support
secondary passwords, so after an item set with this item code has been returned, rejection later is un-
likely, though possible.

This item code might be requested in a dialogue step.
ACMEVMSS CONFIRM_PASSWORD_SYS

The VMS ACME uses this input item code as a separate verification prompt when a new system pass-
word is being specified. Use of a separate dialogue step rather than the verification method built into
the Item Set definition allows full initial checking to be done for acceptability of the proposed system
password before the user is asked to type the entire password in again.

This item code might be requested in a dialogue step.
ACMEVMSS$_NET_PROXY

This input item code specifies the proxy user name for which a network login is to be processed, with-
out authentication information, just as for a batch login or preauthenticated network login.

This item code requires the IMPERSONATE privilege.
ACMEVMSS PREAUTHENTICATION_FLAG

This input item code specifies a login that is to be processed without authentication information, such
as for a batch login. When first received by the VMS ACME, this item code causes the setting of

the WQE PREAUTHENTICATED flag in the Work Queue Entry Context, which is honored by all
ACMEs.

78

System Service Descriptions

To use this item code, you need the IMPERSONATE privilege.
ACMEVMSS REQUESTOR_PID

This input item code specifies the Request or Processor ID for use by the VMS ACME in au-

diting and breakin detection. Combined with the codes ACMEVMS$ REQUESTOR_UIC and
ACMEVMSS$ REQUESTOR USERNAME, it is used when the process calling $ACM is not actually
the process to which the authentication should be attributed. When first received by the VMS ACME,
the value of this item is stored in the REQUESTOR_PID longword in the Request Context for later
use. This item code is available to support LGI-callout operations and other callers to LGISAUTHEN-
TICATE_USER.

To use this item code, you need the IMPERSONATE privilege to guard against spoofing.
ACMEVMSS$_REQUESTOR_UIC

This input item code specifies the Request or UIC for use by the VMS ACME in auditing and breakin
detection. When first received by the VMS ACME, the value of this item is stored in the REQUES-
TOR_UIC longword in the Request Context for later use. This item code is available to support LGI-
callout operations and other callers of LGISAUTHENTICATE USER.

This item allows the caller of SACM to provide an accurate value because a call to SYS$SGETIPI,

based on the ACMEVMSS$ REQUESTOR PID ACME-specific item code value, might produce inac-
curate results due to a subsequent assumption of a different persona in the request or process.

To use this item code, you need the IMPERSONATE privilege to guard against spoofing.
ACMEVMSS_REQUESTOR_USERNAME

This input item code specifies the Requestor Username for use by the VMS ACME in auditing and
breakin detection. When first received by the VMS ACME, the value of this item is stored in the
OWNER_USERNAME varying string descriptor in the Request Context for later use. This item code
supports LGI-callout operations and other callers of LGISAUTHENTICATE USER.

This item allows the caller of SACM to provide an accurate value because a call to SYS$SGETIPI,
based on the ACMEVMSS$ REQUESTOR PID item code value, might produce inaccurate results
due to a subsequent assumption of a different persona in the requestor process.

To use this item code, you need the IMPERSONATE privilege to guard against spoofing.
ACMEVMSS$_USES_SYSTEM_PASSWORD

This input item code specifies that a particular access port is enabled for use of the System Password.
Other conditions, such as not having a System Password defined, may mean that no Item Set request-
ing a System Password is actually returned to the client. When first received by the VMS ACME, the
value of this item is stored in the USES SYSTEM_ PASSWORD FLAG boolean in the Request Con-
text for later use.

To use this item code, you need the SECURITY privilege to guard against password guessing.

VMS ACME-Specific---Output Message Categories

The following table lists the output message categories specific to the VMS ACME and their mean-
ings:

79

System Service Descriptions

Message Category Meaning

ACMEVMSS$K OLD AUTH FLAGS Password requirement flags
ACMEVMSS$K OLD DECW_PWD EXP 1 Binary expiration warning
ACMEVMSS$K OLD DECW_PWD EXP 2 Binary expiration warning
ACMEVMSS$K OLD DECW_PWD QUALITY Binary password quality status
ACMEVMSS$K OLD _SYSUAF 070 Authorization record
ACMEVMSS$K OLD TERMINAL CONNECT Advance notice of authentication

These categories appear in output item set entries and are specially interpreted by LOGINOUT.

These categories are restricted to the LOGINOUT client since they exist only for supporting the old
style DECwindows and LGI-callouts.

ACMEVMSSK_OLD AUTH_FLAGS

This output message category provides a series of flags that are used to construct the Authentication
Flags indicating what passwords are required for the mapped user name.

These flags are used directly for DECwindows V1.2-4 and earlier in LGISAUTHENTICATE USER,
and for calculations that are passed to LGI-callouts in cell ICR_ PWDCOUNT by INTERACT/IN-
TERACITVE VALIDATION. It provides data abstraction from the specific SYSUAF fields.

The following table lists the flags, their bit number, and meaning;:

Name Bit Number Meaning

OPENACCT 0 No password

PASSWORD 1 1 Primary password exists
PASSWORD 2 2 Secondary password exists
GENPWD 3 Passwords are not generated

This data is only supplied to LOGINOUT to support previous LGI-callout and DECwindows callout
models. Other clients should follow the ACME model for user interaction.

This output item category provides a buffer that is to be filled with
ACMEVMSS$K OLD AUTH FLAGS output message category data.

ACMEVMSSK OLD DECW_PWD EXP 1
This output message category is a binary quadword indicating future password expiration.

It is provided only for compatibility with older versions of DECwindows. Its use is restricted to
LOGINOUT, which is enforced by the VMS ACME.

ACMEVMSSK OLD_DECW_PWD_EXP 2
This output message category is a binary quadword indicating future password expiration.

This data is provided only for compatibility with older versions of DECwindows. Its use is restricted
to LOGINOUT, which is enforced by the VMS ACME.

80

System Service Descriptions

ACMEVMSSK OLD_DECW_PWD_QUALITY Output Message Category

This output message category is a binary longword indicating the failure category on password
change.

This data is provided only for compatibility with older versions of DECwindows. Its use is restricted
to LOGINOUT, which is enforced by the VMS ACME.

ACMEVMSSK_SYSUAF_070

This output message category provides a buffer that is to be filled with UAF070$ data. LOGINOUT
now uses the SACMW service, relying exclusively on UAI$_information rather than the direct ma-
nipulation of SYSUAF records. This output message category provides the same information as var-
ious UAI$ xxxx codes, but in the format of the OpenVMS V7.0 SYSUAF record. This item code al-
lows LOGINOUT to continue supporting the LGI-callout interface. Your new software should use
UAIS xxxx item codes and avoid the ACMEVMSS$K SYSUAF 070 output message category.

This data is only supplied to LOGINOUT to support previous LGI-callout and DECwindows callout
models. Other clients should follow the ACME model for user interaction.

ACMEVMSSK _OLD_TERMINAL_CONNECT
This output message category is passed from the VMS ACME to LOGINOUT to allow for changing
the process name prior to auditing and to give an opportunity for the users to reconnect to any discon-

nected job they may have.

This data is provided only for compatibility with the historic behavior of LOGINOUT. Its use is re-
stricted to LOGINOUT, which is enforced by the VMS ACME.

VMS ACME-Specific Authentication Mechanisms

ACMEVMSS$SK_AUTH_MECH_ARGUS

This authentication mechanism is used by the TNT Server component used for system management
from Intel machines. Its use is restricted to that client, enforced by the VMS ACME.

$ACMW

Authentication and Credential Management — The $ACM service provides a common interface to
all functions supported by the Authentication and Credentials Management (ACM) authority. The
caller must specify the function code and any applicable function modifiers and item codes for the re-
quested operation. The SACM service completes asynchronously; for synchronous completion, use
the SACMW form of the service.

Format

SYS$ACMW [ef n], func, [context], itm st, acnsb, [astadr], [astprn]

C Prototype

int sys$acmwv

81

System Service Descriptions

(unsigned int efn, unsigned int func, struct _acmecb *context, void
*itm st,
struct _acnmesb *acnsb, void (*astadr)(__unknown_parans), int astprnj;

Description

Beginning in OpenVMS Version 7.3-2, a number of functional changes were made to SYSSACM[W].
In the following descriptions of these changes, nonprivileged processes refer to processes running in
user mode that do not have SECURITY privilege.

These changes are the following:

* Timeout processing

Timeout processing is now enforced for nonprivileged processes. Other processes can request time
processing by specifying the ACMESM_TIMEOUT function modifier.

» Dialogue mode iteration limit

Nonprivileged processes are now limited in the number of iterative requests they can make in a di-
alogue sequence of calls.

$ACQUIRE_GALAXY_LOCK (Alpha Only)

Acquire GALAXY Lock — Acquires ownership of an OpenVMS Galaxy lock. Note that this system
service is supported only in an OpenVMS Alpha Galaxy environment. For more information about
programming with OpenVMS Galaxy system services, see the VSI OpenVMS Alpha Partitioning and
Galaxy Guide.

Format

SYS$ACQUI RE_GALAXY_LOCK handl e ,tinmeout ,flags

C Prototype

int sys$acquire_gal axy_Il ock
(unsigned __int64 | ock_handl e, unsigned int timeout, unsigned int
flags);

Arguments

handle

OpenVMS usage: galaxy lock handle

type: quadword (unsigned)
access: read
mechanism: input by value

The 64-bit lock handle that identifies the lock to be acquired. This value is returned by SYS$SCRE-
ATE GALAXY LOCK.

82

System Service Descriptions

timeout

OpenVMS usage: wait timeout

type: longword (unsigned)
access: read
mechanism: input by value

The 32-bit wait or spin timeout specified in 10 microsecond units. If not specified, defaults to 10 mi-
croseconds.

flags

OpenVMS usage: bit mask

type: longword (unsigned)
access: read
mechanism: input by value

Control flags defined by the GLOCKDEF macro: GLOCK$SC NOBREAK, GLOCK$C NOSPIN,
and GLOCK$C_NOWAIT.

Description

This service is used to acquire ownership of an OpenVMS Galaxy lock. If the lock is free, the caller
becomes the owner and control returns immediately. If the lock is owned, based on the input flags and
the timeout value, either the caller will wait or an error will be returned.

The default behavior when an attempt is made to acquire a lock that is owned, is to spin for 10 mi-
croseconds and then to wait. If a wait timeout value was specified in the call, it is used. Otherwise
the timeout value set in the lock by SCREATE GALAXY LOCK will be used. This behavior can be
changed with the input flags.

If just GLOCKS$C_ NOSPIN is specified and the lock is owned, no spin will be done.

If just GLOCKS$SC NOWAIT is specified and the lock is owned, the caller will only spin on the lock.
If a timeout value is specified in the call, it is used as the spin time. Otherwise, the caller will spin for
10 microseconds. If the lock does not become available during the spin, the lock is not acquired and
SS$ NOWAIT is returned.

If both GLOCK$C NOSPIN and GLOCKS$C NOWAIT are specified and the lock is owned, control
returns immediately. The lock is not acquired and SS§ NOWAIT is returned.

Due to system events such an OpenVMS Galaxy instance shutting down, a lock may become owned
by a non-existent entity. If this occurs, the default behavior of SACQUIRE GALAXY LOCK is to
break the old lock ownership. The caller becomes the new owner and the service returns SS§ BRO-
KEN. If GLOCK$C NOBREAK is specified, SACQUIRE_GALAXY LOCK will not break the lock
ownership and returns SS§ NOBREAK.

Required Access or Privileges

Write access to OpenVMS Galaxy lock table contains lock to acquire.

83

System Service Descriptions

Required Quota

None

Related Services
$CREATE GALAXY LOCK, SCREATE GALAXY LOCK TABLE,

$DELETE_GALAXY LOCK, $SDELETE_GALAXY LOCK_TABLE,
$GET_GALAXY LOCK_INFO, $GET GALAXY LOCK_SIZE, SRELEASE GALAXY LOCK

Condition Values Returned

SS$ NORMAL

Normal completion.
SS$ BADPARAM

Bad parameter value.
SS$_BROKEN

Lock acquired after lock ownership was broken.
SS$ IVLOCKID

Invalid lock id.
SS$ IVLOCKOP

Invalid lock operation.
SS$ IVLOCKTBL

Invalid lock table.
SS$ LOCK_TIMEOUT

Failed to acquire lock; request has timed out.
SS$ NOBREAK

Failed to acquire lock; lock ownership is broken.
SS$_NOWAIT

Failed to acquire lock; NOWAIT was specified.

$ADD_BRANCH

Add Branch — Authorizes a new branch to be added to a transaction.

84

System Service Descriptions

Format

SYS$ADD BRANCH
[efn] ,[flags] ,iosb ,[astadr] ,[astprm ,tid ,tmnane ,bid

C Prototype

i nt sys$add_branch
(unsigned int efn, unsigned int flags, struct _iosb *iosh,
void (*astadr)(__unknown_parans), int astprm unsigned int tid [4],
void *tmane, unsigned int bid [4]);

Arguments

efn

OpenVMS usage: ef number

type: longword (unsigned)
access: read only
mechanism: by value

Number of the event flag that is set when the service completes. If this argument is omitted, event flag
0 is used.

flags

OpenVMS usage: mask longword

type: longword (unsigned)
access: read only
mechanism: by value

Flags specifying options for the service. The f | ags argument is a longword bit mask in which each
bit corresponds to an option flag. The SDDTMDEF macro defines symbolic names for the option flag,
which is described in Table 15. All undefined bits must be 0. If this argument is omitted, no flags are
used.

Table 15. SADD_BRANCH Option Flag

Flag Name Description

DDTM$M_SYNC Specifies successful synchronous completion by returning SS§ SYNCH.
When SS$ SYNCH is returned, the AST routine is not called, the event
flag is not set, and the 1/O status block is not filled in.

iosb

OpenVMS usage: io_status block
type: quadword (unsigned)

access: write only

85

System Service Descriptions

mechanism: by reference

The I/0 status block in which the completion status of the service is returned as a condition value. See
the section called “Condition Values Returned”.

The following diagram shows the structure of the I/O status block:

31 15
Reserved to OpenVMS Condition Value

Reserved to OpenVMS

WM-OTTEA-A
astadr

OpenVMS usage: ast_procedure

type: procedure entry mask
access: call without stack unwinding
mechanism: by reference

The AST routine executed when the service completes, if SS§ NORMAL is returned in R0O. The as-
t adr argument is the address of the entry mask of this routine. The routine is executed in the same
access mode as that of the caller of the SADD BRANCH service.

astprm

OpenVMS usage: user_arg

type: longword (unsigned)
access: read only
mechanism: by value

The AST parameter that is passed to the AST routine specified by the ast adr argument.
tid

OpenVMS usage: trans_id

type: octaword (unsigned)
access: read only
mechanism: by reference

The identifier (TID) of the transaction for which a new branch is to be authorized.

tm_name

OpenVMS usage: char string
type: character-coded text string

access: read only

86

System Service Descriptions

mechanism: by descriptor--fixed-length string descriptor

The name of the node on which the new branch is running. Note that this cannot be a cluster alias.
To ensure smooth operation in a mixed-network environment, refer to the chapter entitled Managing
DECdtm Services in the VSI OpenVMS System Manager's Manual, for information on defining node

names.

bid

OpenVMS usage: branch id

type: octaword (unsigned)
access: write only
mechanism: by reference

An octaword in which the identifier (BID) of the new branch is returned. No other call to $AD-
D BRANCH on any node ever returns the same BID value.

Description

The SADD_BRANCH system service:

* Authorizes a new branch to be added to the specified transaction.

* Checks, if the t m_name argument specifies a remote node, that there is a communications link
between the DECdtm transaction manager on that node and the DECdtm transaction manager on

the local node.

The precondition for the successful completion of SADD BRANCH is that the calling process must
contain at least one branch of the specified transaction.

$ADD BRANCH may fail for several reasons, including:
» The precondition was not satisfied.
* An abort event has occurred for the transaction.

+ Acall to SEND TRANS to end the transaction is in progress and it is now too late to authorize a
new branch for the transaction.

* The node specified by the t m_nanme argument was a remote node and a failure was detected by
the IPC mechanism.

Postconditions on successful completion of ADD BRANCH are described in Table 16:

Table 16. Postconditions When$SADD_BRANCH Completes Successfully

Postcondition Meaning

A new branch is authorized for the | The identifier (BID) of the new branch is returned in the octa-

transaction and its identifier is re- |word to which the bi d argument points. SADD BRANCH uses
turned. the SCREATE_UID system service to generate the BID. No oth-

87

System Service Descriptions

Postcondition Meaning

er call to SADD BRANCH or SCREATE_UID on any node ever
returns the same BID value.

The transaction cannot com- See the description of SSTART BRANCH for the definition of a
mit until the new branch has "matching" call to $START BRANCH.

been added to the transac-
tion by a matching call to
$START BRANCH.

There is also a wait form of the service, SBADD _BRANCHW.
Required Privileges
None

Required Quotas

BYTLM, ASTLM

Related Services

$ABORT TRANS, SABORT TRANSW, SACK _EVENT, SADD BRANCHW, $CREATE_UID,
$DECLARE_RM, $DECLARE_RMW, $SEND BRANCH, SEND BRANCHW, $END TRANS,
$END TRANSW, $SFORGET RM, $SFORGET RMW, $GETDTI, $GETDTIW, $GET DE-
FAULT TRANS, $JOIN RM, $JOIN RMW, $SETDTL $SETDTIW, $SET DEFAULT TRANS,

$SET DEFAULT TRANSW, $START BRANCH, $START BRANCHW, $START TRANS,
$START TRANSW, $STRANS EVENT, STRANS EVENTW

Condition Values Returned

SS$ NORMAL

If returned in RO, the request was successfully queued. If returned in the I/O status block, the ser-
vice completed successfully.

SS$ SYNCH

The service completed successfully and synchronously (returned only if the DDTM$M_SYNC
flag is set).

SS$_ACCVIO

An argument was not accessible to the caller.
SS$ BADPARAM

The options flags were invalid.
SS$ EXASTLM

The process AST limit (ASTLM) was exceeded.

88

System Service Descriptions

SS$ EXQUOTA
The job buffered I/O byte limit quota (BYTLM) was exceeded.
SS$ ILLEFC
The event flag number was invalid.
SS$ _INSFARGS
A required argument was missing.
SS$ INSFMEM
There was insufficient system dynamic memory for the operation.
SS$ INVBUFLEN
The string passed in the t m_nanme argument was longer than 256 characters.
SS$ NOSUCHTID
The calling process did not contain any branches in the transaction.
SS$ WRONGSTATE
The transaction was in the wrong state for the attempted operation because either an abort event
has occurred for the transaction, or a call to SEND_TRANS to end the transaction is in progress
and it is now too late to authorize new branches for the transaction.

Any IPC status

An error has occurred while attempting to communicate with the node specified by the t m_name
argument. The set of IPC statuses includes the set of DECnet errors.

$ADD_BRANCHW

Add Branch and Wait — Authorizes a new branch to be added to a transaction. SADD BRANCHW
always waits for the request to complete before returning to the caller. Other than this, it is identical to
$ADD BRANCH.

Format

SYS$ADD BRANCHW
[efn] ,[flags] ,iosb ,[astadr] ,[astprm ,tid ,tmnane ,bid

C Prototype

i nt sys$add_branchw
(unsigned int efn, unsigned int flags, struct _iosb *iosh,
void (*astadr)(__unknown_parans), int astprm unsigned int tid [4],
void *tmane, unsigned int bid [4]);

89

System Service Descriptions

$ADD_HOLDER

Add Holder Record to Rights Database — Adds a specified holder record to a target identifier.
Format

SYS$ADD HOLDER id , holder ,[attrib]

C Prototype

i nt sys$add_hol der
(unsigned int id, struct _generic_64 *holder, unsigned int attrib);

Arguments
id

OpenVMS usage: rights id

type: longword (unsigned)
access: read only
mechanism: by value

Target identifier granted to the specified holder when SADD HOLDER completes execution. The i d
argument is a longword containing the binary value of the target identifier.

holder

OpenVMS usage: rights holder

type: quadword (unsigned)
access: read only
mechanism: by reference

Holder identifier that is granted access to the target identifier when SADD HOLDER completes exe-
cution. The hol der argument is the address of a quadword data structure that consists of a longword
containing the holder's UIC identifier followed by a longword containing a value of 0.

attrib

OpenVMS usage: mask longword

type: longword (unsigned)
access: read only
mechanism: by value

Attributes to be placed in the holder record when SADD HOLDER completes execution. The at -
t ri b argument is a longword containing a bit mask specifying the attributes. A holder is granted a
specified attribute only if the target identifier has the attribute.

90

System Service Descriptions

Symbol values are offsets to the bits within the longword. You can also obtain the values as masks
with the appropriate bit set using the prefix KGB$M rather than KGB$V. The symbols are defined in
the system macro library (SKGBDEF). The symbolic name for each bit position is listed in the follow-
ing table.

Bit Position Meaning When Set

KGB$V_DYNAMIC Allows holders of the identifier to remove it from or add it to
the process rights database by using the DCL command SET
RIGHTS LIST.

KGB$V_HOLDER HIDDEN Prevents someone from getting a list of users who hold an identi-
fier, unless they own the identifier themselves.

KGB$V_NAME HIDDEN Allows holders of an identifier to have it translated — either from
binary to ASCII or vice versa — but prevents unauthorized users
from translating the identifier.

KGB$V_NOACCESS Makes any access rights of the identifier null and void. This at-
tribute is intended as a modifier for a resource identifier or the
Subsystem attribute.

KGB$V_RESOURCE Allows holders of an identifier to charge disk space to the identi-
fier. It is used only for file objects.
KGB$V_SUBSYSTEM Allows holders of the identifier to create and maintain protected

subsystems by assigning the Subsystem ACE to the application
images in the subsystem.

Description

The Add Holder Record to Rights Database service registers the specified user as a holder of the spec-
ified identifier with the rights database.

Required Access or Privileges

Write access to the rights database is required.

Required Quota

None

Related Services

$ADD_IDENT, $ASCTOID, $CREATE_RDB, $FIND HELD, $FIND HOLDER, $FINISH RDB,

$GRANTID, SIDTOASC, SMOD HOLDER, $MOD_IDENT, SREM_HOLDER, $SREM_IDENT,
$REVOKID

Condition Values Returned

SS$ NORMAL
The service completed successfully.
SS$ ACCVIO

The hol der argument cannot be read by the caller.

91

System Service Descriptions

SS$ BADPARAM

The specified attributes contain invalid attribute flags.
SS$ DUPIDENT

The specified holder already exists in the rights database for this identifier.
SS$ INSFMEM

The process dynamic memory is insufficient for opening the rights database.
SS$ IVIDENT

The specified identifier or holder is of an invalid format, the specified holder is 0, or the specified
identifier and holder are equal.

SS$ NORIGHTSDB
The rights database does not exist.
SS$ NOSUCHID

The specified identifier does not exist in the rights database, or the specified holder identifier does
not exist in the rights database.

RMS$ PRV
The user does not have write access to the rights database.

Because the rights database is an indexed file accessed with OpenVMS RMS, this service can also
return RMS status codes associated with operations on indexed files. For descriptions of these status
codes, refer to the OpenVMS Record Management Services Reference Manual.

$ADD_IDENT

Add Identifier to Rights Database — Adds the specified identifier to the rights database.
Format

SYS$ADD | DENT nane ,[id] ,[attrib] ,[resid]

Prototype

int sys$add_i dent
(void *name, unsigned int id, unsigned int attrib, unsigned int *resid);

Arguments

name

OpenVMS usage: char-string

92

System Service Descriptions

type: character-coded text string
access: read only
mechanism: by descriptor—fixed-length string descriptor

Identifier name to be added to the rights database when SADD IDENT completes execution. The
nanme argument is the address of a character-string descriptor pointing to the identifier name string.

An identifier name consists of 1 to 31 alphanumeric characters, including dollar signs ($) and under-
scores (_), and must contain at least one nonnumeric character. Any lowercase characters specified are
automatically converted to uppercase.

id

OpenVMS usage: rights id

type: longword (unsigned)
access: read only
mechanism: by value

Identifier to be created when SADD_IDENT completes execution. The i d argument is a longword
containing the binary value of the identifier to be created.

If the i d argument is omitted, SADD IDENT selects a unique available value from the general iden-
tifier space and returns it in r esi d, if it is specified.

attrib

OpenVMS usage: mask longword

type: longword (unsigned)
access: read only
mechanism: by value

Attributes placed in the identifier's record when SADD IDENT completes execution. The at t ri b
argument is a longword containing a bit mask that specifies the attributes.

Symbol values are offsets to the bits within the longword. You can also obtain the values as masks
with the appropriate bit set using the prefix KGB$M rather than KGB$V. The symbols are defined in
the system macro library ($SKGBDEF). The symbolic name for each bit position is listed in the follow-
ing table.

Bit Position Meaning When Set

KGB$V_DYNAMIC Allows holders of the identifier to remove it from or add it to
the process rights database by using the DCL command SET
RIGHTS_LIST.

KGB$V_HOLDER_HIDDEN Prevents someone from getting a list of users who hold an identi-
fier, unless they own the identifier themselves.

KGB$V_NAME HIDDEN Allows holders of an identifier to have it translated — either from
binary to ASCII or vice versa — but prevents unauthorized users
from translating the identifier.

93

System Service Descriptions

Bit Position Meaning When Set

KGB$V_NOACCESS Makes any access rights of the identifier null and void. This at-
tribute is intended as a modifier for a resource identifier or the
Subsystem attribute.

KGB$V_RESOURCE Allows holders of an identifier to charge disk space to the identi-
fier. It is used only for file objects.
KGB$V_SUBSYSTEM Allows holders of the identifier to create and maintain protected

subsystems by assigning the Subsystem ACE to the application
images in the subsystem.

resid

OpenVMS usage: rights id

type: longword (unsigned)
access: write only
mechanism: by reference

Identifier value assigned by the system when SADD IDENT completes execution. The r esi d argu-
ment is the address of a longword in which the system-assigned identifier value is written.

Description

The Add Identifier to Rights Database service adds the specified identifier to the rights database.
Required Access or Privileges

Write access to the rights database is required.

Required Quota

None

Related Services

$ADD HOLDER, SASCTOID, $CREATE _RDB, $FIND HELD, SFIND HOLDER,

S$FINISH RDB, SGRANTID, $IDTOASC, $SMOD HOLDER, $MOD_IDENT, SREM_ HOLDER,
$REM _IDENT, SREVOKID

Condition Values Returned

SS$ NORMAL
The service completed successfully.
SS$§_ACCVIO

The nane argument cannot be read by the caller, or the r esi d argument cannot be written by
the caller.

94

System Service Descriptions

SS$ BADPARAM
The specified attributes contain invalid attribute flags.
SS$ DUPIDENT
The specified identifier already exists in the rights database.
SS$ DUPLNAM
The specified identifier name already exists in the rights database.
SS$_INSFMEM
The process dynamic memory is insufficient for opening the rights database.
SS$ _IVIDENT
The format of the specified identifier is invalid.
SS$ NORIGHTSDB
The rights database does not exist.
RMSS$_PRV
The user does not have write access to the rights database.
Because the rights database is an indexed file accessed with OpenVMS RMS, this service can also

return RMS status codes associated with operations on indexed files. For descriptions of these status
codes, refer to the OpenVMS Record Management Services Reference Manual.

$ADD_PROXY

Add or Modify Proxy — Adds a new proxy to, or modifies an existing proxy in, the proxy database.

Format

SYS$ADD PROXY rem node ,remuser ,local _user ,[flags]

Prototype

i nt sys$add_proxy
(void *remnode, void *remuser, void *|ocal _user,
unsi gned int flags);

Arguments

rem_node

OpenVMS usage: char_string

type: character-coded text string

95

System Service Descriptions

access: read only

mechanism: by descriptor—fixed-length string descriptor

Remote node name of the proxy to be added to or modified in the proxy database. The r em _node ar-
gument is the address of a character-string descriptor pointing to the remote node name string.

A remote node name consists of 1 to 1024 characters. No specific characters, format, or case are re-
quired for a remote node name string. node names are converted to their DECnet for OpenVMS full
name unless the PRX$M_BYPASS EXPAND flag is set with the f | ags argument.

If you specify a single asterisk (*) for the r em_node argument, the user name specified by the
rem user argument on all nodes is served by the proxy.

rem_user

OpenVMS usage: char string

type: character-coded text string
access: read only
mechanism: by descriptor—fixed-length string descriptor

Remote user name of the proxy to be added to or modified in the proxy database. The r em _user ar-
gument is the address of a character-string descriptor pointing to the user name string.

A remote user name consists of 1 to 32 alphanumeric characters, including dollar signs ($), under-
scores (), and brackets ([]). Any lowercase characters specified are automatically converted to up-
percase.

The r em_user argument can be specified in user identification code (UIC) format ([group, mem-
ber]). Brackets are allowed only if the remote user name string specifies a UIC. Group and member
are character-string representations of octal numbers with no leading zeros.

If you specify a single asterisk (*) for the r em _user argument, all users from the node specified by
the r em_node argument are served by the same user names specified by the | ocal _user argu-
ment.

local_user

OpenVMS usage: char string

type: character-coded text string
access: read only
mechanism: by descriptor—fixed length string descriptor

Local user name to add to the proxy record specified by the r em_node and r em_user arguments in
the proxy database as either the default user or local user. The | ocal _user argument is the address
of a character-string descriptor pointing to the local user name.

A local user name consists of 1 to 32 alphanumeric characters, including dollar signs ($) and under-
scores (_). Any lowercase characters specified are automatically converted to uppercase.

The user name specified by the | ocal _user argument must be a user name known to the local sys-
tem.

96

System Service Descriptions

If the PRXSM_DEFAULT flag is specified in the f | ags argument, the user name specified by the

| ocal _user argument will be added to the proxy record in the proxy database as the default user. If
a default user already exists for the specified proxy record, the default user is placed into the proxy's
local user list and is replaced by the user name specified by the | ocal _user argument.

Proxy records can contain no more than 16 local users and 1 default user. To add multiple users to a
single proxy, you must call this service once for each local user.

flags

OpenVMS usage: mask longword

type: longword (unsigned)
access: read only
mechanism: by value

Functional specification for the service and type of user the | ocal _user argument represents. The
f | ags argument is a longword bit mask wherein each bit corresponds to an option.

Each flag option has a symbolic name. The $SPRXDEF macro defines the following symbolic names.

Symbolic Name Description

PRX$M BYPASS EXPAND The service should not convert the node name specified in the

r em _node argument to its corresponding DECnet for Open-
VMS full name. If this flag is set, it is the caller's responsibili-
ty to ensure that the fully expanded node name is passed into the
service.

PRX$SM_DEFAULT The user name specified by the | ocal _user argument is the
default user for the proxy. If this flag is not specified, the user
name specified by the | ocal _user argument is added to the
proxy record's local user list.

PRX$M _IGNORE RETURN The service should not wait for a return status from the securi-
ty server. No return status from the server's function will be re-
turned to the caller.

Description

The Add Proxy service adds a new proxy to, or modifies an existing proxy in, the proxy database.

Required Access or Privileges

The caller must have either SYSPRYV privilege or a UIC group less than or equal to the MAXSYSGRP
system parameter.

Required Quota
None

Related Services

$DELETE PROXY, $DISPLAY PROXY, $VERIFY PROXY

97

System Service Descriptions

Condition Values Returned

SS$ NORMAL
The service completed successfully.
SS$ ACCVIO
The rem node,rem user,| ocal _user,orfl ags argument cannot be read by the service.
SS$ BADPARAM
An invalid flag was specified in the f | ags argument.
SS$ BADBUFLEN
The length of the r em node, r em user,orl ocal _user argument was out of range.
SS$ NOSYSPRV
The caller does not have access to the proxy database.

This service can also return any of the following messages passed from the security server, or any
OpenVMS RMS error message encountered during operations on the proxy database:

SECSRV$ BADLOCALUSERLEN

The local user name length is out of range.
SECSRV$ BADNODENAMELEN

The node name length is out of range.
SECSRV$ BADREMUSERLEN

The remote user name length is out of range.
SECSRV$ DUPLICATEUSER

The user name specified by the | ocal _user argument already exists in the proxy record's local
user list.

SECSRV$ PROXYEXISTS

The specified proxy already exists.
SECSRV$ PROXYNOTACTIVE

Proxy processing is currently stopped. Try the request again later.
SECSRV$ SERVERNOTACTIVE

The security server is not currently active. Try the request again later.

98

System Service Descriptions

SECSRVS_TOOMANYUSERS

The specified proxy already has 16 local users and cannot accommodate any more.

$ADJSTK

Adjust Outer Mode Stack Pointer — Modifies the stack pointer for a less privileged access mode. The
operating system uses this service to modify a stack pointer for a less privileged access mode after
placing arguments on the stack.

Format

SYS$ADISTK [acnode] ,[adjust] , newadr

C Prototype

int sys$adjstk (unsigned int acnode, short int adjust, void *(*(newadr)));

Arguments

acmode

OpenVMS usage: access_mode

type: longword (unsigned)
access: read only
mechanism: by value

Access mode for which the stack pointer is to be adjusted. The acnode argument is this longword
value. If not specified, the default value 0 (kernel access mode) is used.

adjust

OpenVMS usage: word_signed

type: word (signed)
access: read only
mechanism: by value

Signed adjustment value used to modify the value specified by the newadr argument. The adj ust
argument is a signed longword, which is the adjustment value.

Only the low-order word of this argument is used. The value specified by the low-order word is added
to or subtracted from (depending on the sign) the value specified by the newadr argument. The result
is loaded into the stack pointer for the specified access mode.

If the adj ust argument is not specified or is specified as 0, the stack pointer is loaded with the value
specified by the newadr argument.

For additional information about the various combinations of values for adj ust and newadr , see
the section called “Description”.

99

System Service Descriptions

newadr

OpenVMS usage: address

type: longword (unsigned)
access: modify

mechanism: by reference

Value that adj ust is to adjust. The newadr argument is the address of this longword value.

The value specified by this argument is both read and written by SADJSTK. The $ADJSTK service
reads the value specified and adjusts it by the value of the adj ust argument (if specified). After
this adjustment is made, ADJSTK writes the adjusted value back into the longword specified by
newadr and then loads the stack pointer with the adjusted value.

If the value specified by newadr is 0, the current value of the stack pointer is adjusted by the val-
ue specified by adj ust . This new value is then written back into newadr , and the stack pointer is
modified.

For additional information about the various combinations of values for adj ust and newadr , see
the section called “Description”.

Description

The Adjust Outer Mode Stack Pointer service modifies the stack pointer for a less privileged access
mode. The operating system uses this service to modify a stack pointer for a less privileged access
mode after placing arguments on the stack.

Combinations of zero and nonzero values for the adj ust and newadr arguments provide the fol-
lowing results.

If the adjust |And the val- | The stack pointer is:
argument ue specified
specifies: by newadr
is:
0 0 Not changed
0 An address |Loaded with the address specified
A value 0 Adjusted by the specified value
A value An address |Loaded with the specified address, adjusted by the specified value

In all cases, the updated stack pointer value is written into the value specified by the newadr argu-

ment.

Required Access or Privileges

None.

Required Quota

None.

100

System Service Descriptions

Related Services
$ADJWSL, SCRETVA, SCRMPSC, $DELTVA, $DGBLSC, SEXPREG, SLCKPAG, SLKWSET,

$MGBLSC, $SPURGWS, $SETPRT, $SETSTK, $SETSWM, SULKPAG, SULWSET, SUPDSEC,
SUPDSECW

Condition Values Returned

SS$ NORMAL
The service completed successfully.
SS$ ACCVIO

The value specified by newadr or a portion of the new stack segment cannot be written by the
caller.

SS$_NOPRIV

The specified access mode is equal to or more privileged than the calling access mode.

$ADJWSL

Adjust Working Set Limit — Adjusts a process's current working set limit by the specified number of
pagelets (on Alpha or Integrity server systems) and returns the new value to the caller. The working
set limit specifies the maximum number of process pagelets that can be resident in physical memory.
On Alpha and Integrity server systems, this service accepts 64-bit addresses.

Format

SYS$ADIWSEL [pagent] , [wsetl ni

C Prototype

int sys$adjwsl (int pagcnt, unsigned int *wsetlny;
Arguments

pagent

OpenVMS usage: longword signed

type: longword (signed)
access: read only
mechanism: by value

Signed adjustment value specifying the number of pagelets to add to (if positive) or subtract from (if
negative) the current working set limit. The pagcnt argument is this signed longword value.

Note that, on Alpha and Integrity server systems, the specified value is rounded up to an even multiple
of the CPU-specific page size.

101

System Service Descriptions

If pagcnt is not specified or is specified as 0, no adjustment is made and the current working set
limit is returned in the longword specified by the ws et | margument (if this argument is specified).

wsetlm

OpenVMS usage: longword unsigned

type: longword (unsigned)

access: write only

mechanism: by 32- or 64-bit reference (Alpha)
mechanism: by 32-bit reference (VAX)

Value of the working set limit, in pagelets , returned by SADJWSL. The wset | margument is the 32-
or 64-bit address of this longword value. The wset | margument receives the newly adjusted value if
pagcnt is specified, and it receives the prior, unadjusted value if pagcnt is not specified.

Description

The Adjust Working Set Limit service adjusts a process's current working set limit by the specified
number of pagelets (rounded up or down to a whole page count) and returns the new value to the
caller. The working set limit specifies the maximum number of process pagelets that can be resident in
physical memory.

If a program attempts to adjust the working set limit beyond the system-defined upper and lower lim-

its, no error condition is returned; instead, the working set limit is adjusted to the maximum or mini-
mum size allowed.

Required Access or Privileges

None

Required Quota
The initial value of a process's working set limit is controlled by the working set default (WSDE-
FAULT) quota. The maximum value to which it can be increased is controlled by the working set ex-

tent (WSEXTENT) quota; the minimum value to which it can be decreased is limited by the system
parameter MINWSCNT.

Related Services
$ADJSTK, SCRETVA, SCRMPSC, $DELTVA, $DGBLSC, $SEXPREG, SLCKPAG, $SLKWSET,

$MGBLSC, $SPURGWS, $SETPRT, $SETSTK, $SETSWM, SULKPAG, SULWSET, SUPDSEC,
$UPDSECW

Condition Values Returned

SS$ NORMAL
The service completed successfully.
SS$ ACCVIO

The longword specified by wset | mcannot be written by the caller.

102

System Service Descriptions

$ALLOC

Allocate Device — Allocates a device for exclusive use by a process and its subprocesses. No other
process can allocate the device or assign channels to it until the image that called SALLOC exits or
explicitly deallocates the device with the Deallocate Device ($DALLOC) service.

Format

SYS$ALLOC devnam , [phyl en] , [phybuf] ,[acnode] ,[fl ags]

C Prototype

int sys$alloc
(void *devham unsigned short int *phylen, void *phybuf,
unsi gned int acnode, unsigned int flags);

Arguments

devnam

OpenVMS usage: device name

type: character-coded text string
access: read only
mechanism: by descriptor—fixed-length string descriptor

Device name of the device to be allocated. The devnamargument is the address of a character string
descriptor pointing to the device name string.

The string can be either a physical device name or a logical name. If it is a logical name, it must trans-
late to a physical device name.

phylen

OpenVMS usage: word_unsigned

type: word (unsigned)
access: write only
mechanism: by reference

Word into which SALLOC writes the length of the device name string for the device it has allocated.
The phyl en argument is the address of this word.

phybuf
OpenVMS usage: device name

type: character-coded text string

access: write only

103

System Service Descriptions

mechanism: by descriptor—fixed-length string descriptor

Buffer into which SALLOC writes the device name string for the device it has allocated. The phybuf
argument is the address of a character string descriptor pointing to this buffer.

acmode

OpenVMS usage: access_mode

type: longword (unsigned)
access: read only
mechanism: by value

Access mode to be associated with the allocated device. The acnode argument is a longword con-
taining the access mode.

The most privileged access mode used is the access mode of the caller. Only equal or more privileged
access modes can deallocate the device.

flags

OpenVMS usage: mask longword

type: longword (unsigned)
access: read only
mechanism: by value

Longword of status flags indicating whether to interpret the devnamargument as the type of de-
vice to be allocated. Only one flag exists, bit 0. When it is set, the SALLOC service allocates the first
available device that has the type specified in the devnamargument.

This feature is available for the following mass storage devices:

RA60 RAS0 RASI RC25
RCF25 RKO06 RKO07 RLO1
RLO02 RMO03 RMO5 RMS80
RP04 RPOS5 RP0O6 RPO7
RXO01 RX02 TA78 TA81
TS11 TU16 TUSS TU77
TU78 TU8O TU81

Description

The Allocate Device service allocates a device for exclusive use by a process and its subprocesses. No
other process can allocate the device or assign channels to it until the image that called SALLOC exits
or explicitly deallocates the device with the Deallocate Device (SDALLOC) service.

When a process calls the Assign I/O Channel ($ASSIGN) service to assign a channel to a nonshare-
able, nonspooled device, such as a terminal or line printer, the device is implicitly allocated to the
process.

104

System Service Descriptions

You can use this service only to allocate devices that either exist on the host system or are made avail-
able to the host system in an OpenVMS Cluster environment.

Required Access or Privileges

Read, write, or control access to the device is required.

Required Quota

None

Related Services

$ASSIGN, $BRKTHRU, $BRKTHRUW, SCANCEL, SCREMBX, $DALLOC, $DASSGN,
$DELMBX, $DEVICE_SCAN, $DISMOU, $GETDVI, $SGETDVIW, SGETMSG, $SGETQUI,
$GETQUIW, SINIT_VOL, SMOUNT, $PUTMSG, $QIO, $QIOW, $SNDERR, $SNDJBC, $SND-
JBCW, $SNDOPR

Condition Values Returned

SS$ NORMAL
The service completed successfully.
SS$ BUFFEROVF

The service completed successfully. The physical name returned overflowed the buffer provided,
and was truncated.

SS$ DEVALRALLOC
The service completed successfully. The device was already allocated to the calling process.
SS$ ACCVIO

The device name string, string descriptor, or physical name buffer descriptor cannot be read by
the caller, or the physical name buffer cannot be written by the caller.

SS$ DEVALLOC

The device is already allocated to another process, or an attempt to allocate an unmounted share-
able device failed because other processes had channels assigned to the device.

SS$ DEVMOUNT

The specified device is currently mounted and cannot be allocated, or the device is a mailbox.
SS$ DEVOFFLINE

The specified device is marked off line.
SS$ IVDEVNAM

The device name string contains invalid characters, or no device name string was specified.

105

System Service Descriptions

SS$ IVLOGNAM
The device name string has a length of 0 or has more than 63 characters.
SS$ IVSTSFLG
The bits set in the longword of status flags are invalid.
SS$ NODEVAVL
The specified device in a generic search exists but is allocated to another user.
SS$ NONLOCAL
The device is on a remote node.
SS$ NOPRIV

The requesting process attempted to allocate a spooled device and does not have the required priv-
ilege, or the device protection or access control list (or both) denies access.

SS$ NOSUCHDEV

The specified device does not exist in the host system. This error is usually the result of a typo-
graphical error.

SS$ TEMPLATEDEV
The process attempted to allocate a template device; a template device cannot be allocated.

The $ALLOC service can also return any condition value returned by $ENQ. For a list of these condi-
tion values, see the description of SENQ.

$ASCEFC

Associate Common Event Flag Cluster — Associates a named common event flag cluster with a
process to execute the current image and to be assigned a process-local cluster number for use with
other event flag services. If the named cluster does not exist but the process has suitable privilege, the
service creates the cluster.

Format

SYS$ASCEFC efn , nane ,[prot] ,[perni

C Prototype

int sys$ascefc (unsigned int efn, void *name, char prot, char pern);

Arguments
efn

OpenVMS usage: ef number

106

System Service Descriptions

type: longword (unsigned)
access: read only
mechanism: by value

Number of any event flag contained within the desired common event flag cluster. The ef n argument
is a longword value specifying this number; however, SASCEFC uses only the low-order byte.

There are two common event flag clusters: cluster 2 and cluster 3. Cluster 2 contains event flag num-
bers 64 to 95, and cluster 3 contains event flag numbers 96 to 127. (Clusters 0 and 1 are process-local

event flag clusters.)

To associate with common event flag cluster 2, specify any flag number in the cluster (64 to 95); to
associate with common event flag cluster 3, specify any event flag number in the cluster (96 to 127).

name

OpenVMS usage: ef cluster name

type: character-coded text string
access: read only
mechanism: by descriptor—fixed-length string descriptor

Name of the common event flag cluster with which to associate. The nanme argument is the address of
a character string descriptor pointing to this name string.

The character string descriptor can be 1 to 15 bytes in length, and each byte can be any 8-bit value.

Common event flag clusters are accessible only to processes having the same UIC group number, and
each such process must associate with the cluster using the same name (specified in the name argu-
ment). The operating system implicitly associates the group UIC number with the name, making the
name unique to a UIC group.

You can specify any name from 1 to 43 characters. All processes mapping to the same global section
must specify the same name. Note that the name is case sensitive.

Use of characters valid in logical names is strongly encouraged. Valid values include alphanumeric
characters, the dollar sign ($), and the underscore (). If the name string begins with an underscore
(), the underscore is stripped and the resultant string is considered to be the actual name. Use of the
colon (©) is not permitted.

Names are first subject to a logical name translation, after the application of the prefix GBLS$ to the
name. If the result translates, it is used as the name of the section. If the resulting name does not trans-

late, the name specified by the caller is used as the name of the section.

Additional information on logical name translations and on section name processing is available in the
VSI OpenVMS Programming Concepts Manual.

prot

OpenVMS usage: Boolean
type: byte (unsigned)

107

System Service Descriptions

access: read only

mechanism: by value

Protection specifier that allows or disallows access to the common event flag cluster for processes
with the same UIC group number as the creating process. The pr ot argument is a longword value,
which is interpreted as Boolean.

The default value 0 specifies that any process with the same UIC group number as the creating
process can access the event flag cluster. The value 1 specifies that only processes having the UIC of
the creating process can access the event flag cluster.

When the pr ot argument is 1, all access to the Group category is denied.
The process must have associate access to access an existing common event flag cluster.

perm

OpenVMS usage: Boolean

type: byte (unsigned)
access: read only
mechanism: by value

Permanent specifier that marks a common event flag cluster as either permanent or temporary. The
per margument is a longword value, which is interpreted as Boolean.

The default value 0 specifies that the cluster is temporary. The value 1 specifies that the cluster is per-
manent.

Description

The Associate Common Event Flag Cluster service associates a named common event flag cluster
with a process for the execution of the current image and to assign it a process-local cluster number
for use with other event flag services. A process needs associate access to call the SASCEFC service.

When a process associates with a common event flag cluster, that cluster's reference count is increased
by 1. The reference count is decreased when a process disassociates from the cluster, whether explicit-
ly with the Disassociate Common Event Flag Cluster (SDACEFC) service or implicitly at image exit.

Temporary clusters are automatically deleted when their reference count goes to 0; you must explicit-
ly mark permanent clusters for deletion with the Delete Common Event Flag Cluster (SDLCEFC) ser-
vice.

When a new cluster is created, a security profile is created with the process UIC as the owner of the
common event flag cluster; the remaining characteristics are taken from the COMMON_EVEN-
T CLUSTER.DEFAULT template profile.

Because the SASCEFC service automatically creates the common event flag cluster if it does not al-
ready exist, cooperating processes need not be concerned with which process executes first to create
the cluster. The first process to call SASCEFC creates the cluster and the others associate with it re-
gardless of the order in which they call the service.

The initial state for all event flags in a newly created common event flag cluster is 0.

108

System Service Descriptions

If a process has already associated a cluster number with a named common event flag cluster and then
issues another call to $ASCEFC with the same cluster number, the service disassociates the number
from its first assignment before associating it with its second.

If you previously called any system service that will set an event flag (and the event flag is contained
within the cluster being reassigned), the event flag will be set in the newly associated named cluster,
not in the previously associated named cluster.

Required Access or Privileges

The calling process must have PRMCEB privilege to create a permanent common event flag cluster.

Required Quota

Creation of temporary common event flag clusters uses the quota of the process for timer queue en-
tries (TQELM); the creation of a permanent cluster does not affect the quota. The quota is restored to
the creator of the cluster when all processes associated with the cluster have disassociated.

Related Services

$CLREF, $DACEFC, $DLCEFC, SREADEF, $SETEF, SWAITFR, SWFLAND, SWFLOR

Condition Values Returned

SS$ NORMAL

The service completed successfully.
SS$_ACCVIO

The cluster name string or string descriptor cannot be read by the caller.
SS$ EXPORTQUOTA

The process has exceeded the number of event flag clusters with which processes on this port of
the multiport (shared) memory can associate.

SS$ EXQUOTA

The process has exceeded its timer queue entry quota; this quota controls the creation of tempo-
rary common event flag clusters.

SS$ INSFMEM
The system dynamic memory is insufficient for completing the service.
SS$ ILLEFC

You specified an illegal event flag number. The cluster number must be in the range of event flags
64 through 127.

SS$ INTERLOCK

The bit map lock for allocating common event flag clusters from the specified shared memory is
locked by another process.

109

System Service Descriptions

SS$ IVLOGNAM
The cluster name string has a length of 0 or has more than 15 characters.

SS$ NOPRIV
The process does not have the privilege to create a permanent cluster; the process does not have
the privilege to create a common event flag cluster in memory shared by multiple processors; or
the protection applied to an existing cluster by its creator prohibits association.

S NOSHMBLOCK

The common event flag cluster has no shared memory control block available.

$ASCTIM

Convert Binary Time to ASCII String — Converts an absolute or delta time from 64-bit system time
format to an ASCII string. On Alpha and Integrity server systems, this service accepts 64-bit address-
es.

Format

SYS$ASCTIM [tim en] ,timbuf ,[timadr] ,[cvtflg]

C Prototype

int sys$asctim
(unsigned short int *timen, void *tinbuf, struct _generic_64 *tinadr,
char cvtflg);

Arguments

timlen

OpenVMS usage: word unsigned

type: word (unsigned)
access: write only
mechanism: by 32- or 64-bit reference

Length (in bytes) of the ASCII string returned by SASCTIM. The t i ml en argument is the the 32- or
64-bit address of a word containing this length.

timbuf
OpenVMS usage: time name

type: character-coded text string

access: write only

110

System Service Descriptions

mechanism: by 32- or 64-bit descriptor—fixed-length string descriptor

Buffer into which SASCTIM writes the ASCII string. The t i mbuf argument is the 32-bit address (on
VAX systems) or the 32- or 64-bit address of a character string descriptor pointing to the buffer.

The buffer length specified in the t i Mbuf argument, together with the cvt f | g argument, controls
what information is returned.

timadr

OpenVMS usage: date time

type: quadword
access: read only
mechanism: by 32- or 64-bit reference

Time value that SASCTIM is to convert. The t i madr argument is the 32- or 64-bit address of this
64-bit time value. A positive time value represents an absolute time. A negative time value represents
a delta time. If you specify a delta time, it must be less than 10,000 days.

Ift i madr is not specified or is specified as 0 (the default), SASCTIM returns the current date and
time.

cvtflg

OpenVMS usage: longword unsigned

type: longword (unsigned)
access: read only
mechanism: by value

Conversion indicator specifying which date and time fields SASCTIM should return. The cvtf 1 g
argument is a longword value, which is interpreted as Boolean. The value 1 specifies that SASCTIM
should return only the hour, minute, second, and hundredths-of-second fields. The default value 0
specifies that SASCTIM should return the full date and time.

Description

The Convert Binary Time to ASCII String service converts an absolute or delta time from 64-bit sys-
tem time format to an ASCII string. The service executes at the access mode of the caller and does
not check whether address arguments are accessible before it executes. Therefore, an access viola-
tion causes an exception condition if the input time value cannot be read or the output buffer or buffer
length cannot be written.

This service returns the SS§ INSFARG (insufficient arguments) condition value if one or both of the
required arguments are not supplied.

The ASCII strings returned have the following formats:
e Absolute Time: dd-mmm-yyyy hh:mm:ss.cc

¢ Delta Time: dddd hh:mm:ss.cc

111

System Service Descriptions

The following table lists the length (in bytes), contents, and range of values for each field in the ab-
solute time and delta time formats.

Field Length Contents Range of Values

(Bytes)
dd 2 Day of month 1-31
- 1 Hyphen Required syntax
mmm 3 Month JAN, FEB, MAR, APR, MAY, JUN,

JUL, AUG, SEP, OCT, NOV, DEC

- 1 Hyphen Required syntax
yyyy 4 Year 1858-9999
blank n Blank Required syntax
hh 2 Hour 00-23

1 Colon Required syntax
mm 2 Minutes 00-59

1 Colon Required syntax
ss 2 Seconds 00-59

1 Period Required syntax
cc 2 Hundredths-of-second 00-99
dddd 4 Number of days 000-9999

(in 24-hr units)

Month abbreviations must be uppercase.

The hundredths-of-second field now represents a true fraction. For example, the string .1 represents
ten-hundredths of a second (one-tenth of a second), and the string .01 represents one-hundredth of a
second.

Also, you can add a third digit to the hundredths-of-second field; this thousandths-of-second digit is
used to round the hundredths-of-second value. Digits beyond the thousandths-of-second digits are ig-
nored.

The results of specifying some possible combinations for the values of the cvt f | g and t i mbuf ar-
guments are as follows.

Time Value Buffer Length CVTFLG Argu- |Information Returned
Specified ment

Absolute 23 0 Date and time

Absolute 12 0 Date

Absolute 11 1 Time

Delta 16 0 Days and time

Delta 11 1 Time

Required Access or Privileges

None

112

System Service Descriptions

Required Quota
None
Related Services

$BINTIM, $CANTIM, SCANWAK, $SGETTIM, $GETTIM_PREC, $SNUMTIM, $SCHDWK,
$SETIME, $SETIMR

Condition Values Returned

SS$ NORMAL
The service completed successfully.
SS$ BUFFEROVF
The buffer length specified in the t i mbuf argument is too small.
SS$ INSFARG
Required argument is missing.
SS$ IVTIME

The specified delta time is equal to or greater than 10,000 days.

$ASCTOID

Translate Identifier Name to Identifier — Translates the specified identifier name into its binary iden-
tifier value. On Alpha and Integrity server systems, this service accepts 64-bit addresses.

Format

SYS$ASCTA D nane ,[id] ,[attrib]
C Prototype

int sys$asctoid (void *nane, unsigned int *id, unsigned int *attrib);

Arguments

name

OpenVMS usage: char string
type: character-coded text string

access: read only

113

System Service Descriptions

mechanism: by 32- or 64-bit descriptor—fixed-length string descriptor

Identifier name translated when $ASCTOID completes execution. The nanme argument is the 32- or
64-bit address of a character-string descriptor pointing to the identifier name.

id

OpenVMS usage: rights id

type: longword (unsigned)
access: write only
mechanism: by 32- or 64-bit reference

Identifier value resulting when $ASCTOID completes execution. The i d argument is the 32- or 64-bit
address of a longword in which the identifier value is written.

attrib

OpenVMS usage: mask longword

type: longword (unsigned)
access: write only
mechanism: by 32- or 64-bit reference

Attributes associated with the identifier returned in i d when $ASCTOID completes execution. The
attri b argument is the 32- or 64-bit address of a longword containing a bit mask specifying the at-
tributes.

Symbol values are offsets to the bits within the longword. You can also obtain the values as masks
with the appropriate bit set using the prefix KGB$M rather than KGB$V. The symbols are defined in
the system macro SKGBDEF library. The symbolic names for each bit position are listed in the fol-
lowing table.

Bit Position Meaning When Set

KGB$V_DYNAMIC Allows holders of the identifier to remove it from or add it to
the process rights database by using the DCL command SET
RIGHTS LIST.

KGB$V_HOLDER HIDDEN Prevents someone from getting a list of users who hold an identi-
fier, unless they own the identifier themselves. Special privilege
is required to translate hidden names.

KGB$V_NAME HIDDEN Allows holders of an identifier to have it translated — either from
binary to ASCII or vice versa — but prevents unauthorized users
from translating the identifier. Special privilege is required to
translate hidden names.

KGB$V_NOACCESS Makes any access rights of the identifier null and void. This at-
tribute 1s intended as a modifier for a resource identifier or the
Subsystem attribute.

KGB$V_RESOURCE Allows the holder to charge resources, such as disk blocks, to the
identifier.

114

System Service Descriptions

Bit Position Meaning When Set

KGB$V_SUBSYSTEM Allows holders of the identifier to create and maintain protect-
ed subsystems by assigning the Subsystem access control entry
(ACE) to the application images in the subsystem.

Description

The Translate Identifier Name to Identifier service converts the specified identifier name to its binary
identifier value.

Required Access or Privileges

None, unless the i d is KGB$V_NAME HIDDEN, in which case you must hold the i d or have ac-
cess to the rights database.

Required Quota

None

Related Services
$ADD HOLDER, $SADD_IDENT, $CREATE_RDB, $FIND HELD, $FIND HOLDER,

S$FINISH RDB, SGRANTID, $IDTOASC, $SMOD HOLDER, $MOD_IDENT, SREM HOLDER,
$REM_IDENT, SREVOKID

Condition Values Returned

SS$ NORMAL
The service completed successfully.
SS$ ACCVIO

The name argument cannot be read by the caller, or the i d or at t ri b arguments cannot be writ-
ten by the caller.

SS$ INSFMEM

The process dynamic memory is insufficient for opening the rights database.
SS$ IVIDENT

The format of the specified identifier is invalid.
SS$ NOSUCHID

The specified identifier name does not exist in the rights database, or the identifier is hidden and
you do not have access to the rights database.

SS$ NORIGHTSDB

The rights database does not exist.

115

System Service Descriptions

Because the rights database is an indexed file accessed with OpenVMS RMS, this service can also
return RMS status codes associated with operations on indexed files. For descriptions of these status
codes, refer to the OpenVMS Record Management Services Reference Manual.

$ASCUTC

Convert UTC to ASCII — Converts an absolute time from 128-bit UTC format to an ASCII string.
On Alpha and Integrity server systems, this service accepts 64-bit addresses.

Format

SYS$ASCUTC [timen] ,tinbuf ,[utcadr] ,[cvtflg]

C Prototype

int sys$ascutc
(unsigned short int *timen, void *tinbuf, wunsigned int *utcadr [4],
char cvtflg);

Arguments

timlen

OpenVMS usage: word unsigned

type: word (unsigned)
access: write only
mechanism: by 32- or 64-bit reference

Length (in bytes) of the ASCII string returned by SASCUTC. The t i ml en argument is the 32- or 64-
bit address of a word containing this length.

timbuf

OpenVMS usage: time name

type: character-coded string text
access: write only
mechanism: by 32- or 64-bit descriptor—fixed-length string descriptor

Buffer into which SASCUTC writes the ASCII string. The t i mbuf argument is the 32- or 64-bit ad-
dress of a character string descriptor pointing to the buffer. The buffer length specified in the t i mbuf
argument, together with the cvt f | g argument, controls what information is returned.

utcadr

OpenVMS usage: coordinated universal time

type: utc_date time
access: read only
mechanism: by 32- or 64-bit reference

116

System Service Descriptions

Time value that SASCUTC is to convert. The t i madr argument is the 32- or 64-bit address of this
128-bit time value. Relative times are not permitted. If the t i madr argument is not specified, it de-
faults to 0 and SASCUTC returns the current date and time.

cvtflg

OpenVMS usage: longword unsigned

type: longword (unsigned)
access: read only
mechanism: by value

Conversion indicator specifying which date and time fields SASCUTC should return. The cvt fl g
argument is a longword value that is interpreted as Boolean. The value 1 specifies that SASCUTC
should return only the time, including hour, minute, second, and hundredths-of-second fields. The de-
fault value 0 specifies that SASCUTC should return the full date and time.

Description

The Convert UTC to ASCII service converts an absolute time from 128-bit UTC format to an ASCII
string. The service executes at the access mode of the caller and does not check whether address argu-
ments are accessible before it executes. Therefore, an access violation causes an exception condition if
the input time value cannot be read or the output buffer or buffer length cannot be written.

The $ASCUTC service uses the time zone differential factor encoded in the 128-bit UTC to convert
the UTC to an ASCII string.

This service does not check the length of the argument list, and therefore cannot return the SS$ INS-
FARG condition value.

The ASCII strings returned have the following format:
* Absolute Time: dd-mmm-yyyy hh:mm:ss.cc

The following table lists the length (in bytes), contents, and range of values for each field in the ab-
solute time format.

Field Length Contents Range of Values
(Bytes)
dd 2 Day of month 1-31
- 1 Hyphen Required syntax
mmm 3 Month JAN, FEB, MAR, APR, MAY, JUN,
JUL, AUG, SEP, OCT, NOV, DEC
- 1 Hyphen Required syntax
Vyyy 4 Year 1858-9999
blank n Blank Required syntax
hh 2 Hour 00-23
1 Colon Required syntax
mm 2 Minutes 00-59

117

System Service Descriptions

Field Length Contents Range of Values

(Bytes)

1 Colon Required syntax
ss 2 Seconds 00-59

1 Period Required syntax
cc 2 Hundredths-of-second 00-99

The results of specifying some possible combinations for the values of the cvt f | g and t i mbuf ar-

guments are as follows.

Time Value Buffer Length CVTFLG Argu- |Information Returned
Specified ment

Absolute 23 0 Date and time

Absolute 12 0 Date

Absolute 11 1 Time

Required Access or Privileges

None

Required Quota

None

Related Services

$BINUTC, $GETUTC, SNUMUTC, $STIMCON

Condition Values Returned

SS $NORMAL

The service completed successfully.

SS $BUFFEROVF

The buffer length specified in the t i mbuf argument is too small.

SS_SINVTIME

The UTC time supplied is too small to be represented as a Smithsonian Time, or the UTC time is

not valid.

$ASSIGN

Assign /0O Channel — Provides a process with an I/O channel so input/output operations can be per-
formed on a device, or establishes a logical link with a remote node on a network. On Alpha and In-
tegrity server systems, this service accepts 64-bit addresses.

118

System Service Descriptions

Format

SYS$ASSI GN devnham , chan , [acnode] , [nmbxnam ,[fl ags]

C Prototype

int sys$assign
(void *devnam wunsigned short int *chan, unsigned int acnode,
voi d *nmbxnam...);

Arguments

devnam

OpenVMS usage: device name

type: character-coded text string
access: read only
mechanism: by 32- or 64-bit descriptor—fixed-length string descriptor

Name of the device to which $ASSIGN is to assign a channel. The devnamargument is the 32- or
64-bit address of a character string descriptor pointing to the device name string.

If the device name contains a double colon (::), the system assigns a channel to the first available net-
work device (NET:) and performs an access function on the network.

chan

OpenVMS usage: channel

type: word (unsigned)
access: write only
mechanism: by 32- or 64-bit reference

Number of the channel that is assigned. The chan argument is the 32- or 64-bit address of a word in-
to which $ASSIGN writes the channel number.

acmode

OpenVMS usage: access_mode

type: longword (unsigned)
access: read only
mechanism: by value

Access mode to be associated with the channel. The acnpde argument specifies the access mode.
The $PSLDEF macro defines the following symbols for the four access modes.

Symbol Access Mode Numeric Value
PSL$C KERNEL Kernel 0

119

System Service Descriptions

Symbol Access Mode Numeric Value
PSL$C EXEC Executive 1
PSL$C SUPER Supervisor 2
PSL$C USER User 3

The specified access mode and the access mode of the caller are compared. The less privileged (but
the higher numeric valued) of the two access modes becomes the access mode associated with the as-
signed channel. I/O operations on the channel can be performed only from equal and more privileged
access modes. For more information, see the section on access modes in the VSI OpenVMS Program-
ming Concepts Manual.

mbxnam

OpenVMS usage: device name

type: character-coded text string
access: read only
mechanism: by 32- or 64-bit descriptor—fixed-length string descriptor

Logical name of the mailbox to be associated with the device. The mbxnamargument is the 32- or
64-bit address of a character string descriptor pointing to the logical name string.

If you specify nbxnamas 0, no mailbox is associated with the device. This is the default.

You must specify the mhxnamargument when performing a nontransparent, task-to-task, network op-
eration.

Only the owner of a device can associate a mailbox with the device; the owner of a device is the
process that has allocated the device, whether implicitly or explicitly. Only one mailbox can be asso-
ciated with a device at any one time.

For unshareable, nonspooled devices, an implicit SBALLOCATE is done. This requires read, write, or
control access to the device.

A mailbox cannot be associated with a device if the device has foreign (DEVSM_FOR) or shareable
(DEVSM_SHR) characteristics.

A mailbox is disassociated from a device when the channel that associated it is deassigned.

If a mailbox is associated with a device, the device driver can send status information to the mailbox.
For example, if the device is a terminal, this information might indicate dialup, hangup, or the recep-
tion of unsolicited input; if the device is a network device, it might indicate that the network is con-
nected or perhaps that the line is down.

For details on the nature and format of the information returned to the mailbox, refer to the VSI Open-
VMS 1/O User's Reference Manual.

flags

OpenVMS usage: mask longword
type: longword (unsigned)

access: read only

120

System Service Descriptions

mechanism: by value

An optional device-specific argument. The f | ags argument is a longword bit mask. For more infor-
mation on the applicability of the f | ags argument for a particular device, see the VST OpenVMS I/0
User's Reference Manual.

Description

The Assign I/0 Channel service provides a process with an I/O channel so input/output operations
can be performed on a device. This service also establishes a logical link with a remote node on a net-
work.

Channels remain assigned until they are explicitly deassigned with the Deassign I/O Channel
($DASSGN) service or, if they are user-mode channels, until the image that assigned the channel ex-
its.

The SASSIGN service establishes a path to a device but does not check whether the caller can actually

perform input/output operations to the device. Privilege and protection restrictions can be applied by
the device drivers.

Required Access or Privileges

The calling process must have NETMBX privilege to perform network operations and system dynam-
ic memory is required if the target device is on a remote system.

Note that you should use the SHARE privilege with caution. Applications, application protocols, and
device drivers coded to expect only exclusive access can encounter unexpected and errant behavior
when access to the device is unexpectedly shared. Unless the SHARE privilege is explicitly supported

by the application, the application protocol, and the device driver, its use is generally discouraged. For
additional information, see the V'S OpenVMS Programming Concepts Manual.

Required Quota

If the target of the assignment is on a remote node, the process needs sufficient buffer quota to allo-
cate a network control block.

Related Services
$ALLOC, $BRKTHRU, $BRKTHRUW, $CANCEL, $CREMBX, $SDALLOC, $DASSGN, $DELM-
BX, $DEVICE_SCAN, $DISMOU, $GETDVI, $GETDVIW, $GETMSG, $GETQUI, $GETQUIW,

$INIT_VOL, SMOUNT, $PUTMSG, $QIO, $QIOW, $SNDERR, $SNDJBC, $SNDJBCW, $SNDO-
PR

Condition Values Returned
SS$ NORMAL

The service completed successfully.
SS$ REMOTE

The service completed successfully. A logical link is established with the target on a remote node.

121

System Service Descriptions

SS$_ABORT
A physical line went down during a network connect operation.
SS$_ACCVIO

The device or mailbox name string or string descriptor cannot be read by the caller, or the channel
number cannot be written by the caller.

SS$ CONNECFAIL

For network operations, the connection to a network object timed out or failed.
SS$ DEVACTIVE

You specified a mailbox name, but a mailbox is already associated with the device.
SS$ DEVALLOC

The device is allocated to another process.
SS$ DEVNOTMBX

You specified a logical name for the associated mailbox, but the logical name refers to a device
that is not a mailbox.

SS$ DEVOFFLINE

For network operations, the physical link is shutting down.
SS$ EXBYTLM

The process has exceeded the byte count quota.
SS$_ EXQUOTA

The target of the assignment is on a remote node and the process has insufficient buffer quota to
allocate a network control block.

SS$ FILALRACC
For network operations, a logical link already exists on the channel.
SS$ INSFMEM

The target of the assignment is on a remote node and there is insufficient system dynamic memo-
ry to complete the request.

S INVLOGIN

For network operations, the access control information was found to be invalid at the remote
node.

SS$ IVDEVNAM

No device name was specified, the logical name translation failed, or the device or mailbox name
string contains invalid characters. If the device name is a target on a remote node, this status code
indicates that the network connect block has an invalid format.

122

System Service Descriptions

SS$ IVLOGNAM
The device or mailbox name string has a length of 0 or has more than 63 characters.
SS$ LINKEXIT

For network operations, the network partner task was started, but exited before confirming the
logical link (that is, SASSIGN to SYSSNET).

SS$ NOIOCHAN
No I/O channel is available for assignment.
SS$ NOLINKS

For network operations, no logical links are available. The maximum number of logical links as
set for the Network Control Program (NCP) executor MAXIMUM LINKS parameter was exceed-
ed.

SS$_NOPRIV

For network operations, the issuing task does not have the required privilege to perform network
operations or to confirm the specified logical link.

SS$ NOSUCHDEV

The specified device or mailbox does not exist, or, for DECnet for OpenVMS operations, the net-
work device driver is not loaded (for example, the DECnet for OpenVMS software is not current-
ly running on the local node).

SS$ NOSUCHNODE
The specified network node is nonexistent or unavailable.
SS$ NOSUCHOBJ

For network operations, the network object number is unknown at the remote node; for a TASK=
connect, the named DCL command procedure file cannot be found at the remote node.

S NOSUCHUSER

For network operations, the remote node could not recognize the login information supplied with
the connection request.

SS$ PROTOCOL

For network operations, a network protocol error occurred, most likely because of a network soft-
ware error.

SS$ REJECT

The network connect was rejected by the network software or by the partner at the remote node,
or the target image exited before the connect confirm could be issued.

SS$ REMRSRC

For network operations, the link could not be established because system resources at the remote
node were insufficient.

123

System Service Descriptions

SS$ SHUT
For network operations, the local or remote node is no longer accepting connections.
SS$ THIRDPARTY

For network operations, the logical link connection was terminated by a third party (for example,
the system manager).

SS$ TOOMUCHDATA
For network operations, the task specified too much optional or interrupt data.

SS$ UNREACHABLE

For network operations, the remote node is currently unreachable.

$AUDIT_EVENT

Audit Event — Appends an event message to the system security audit log file or sends an alarm to a
security operator terminal.

Format

SYS$AUDI T_EVENT [efn] ,[flags] ,itm st ,[audsts] ,[astadr] ,[astprni

C Prototype

int sys$audit_event
(unsigned int efn, unsigned int flags, void *itmst,
unsi gned int *audsts, void (*astadr)(__unknown_paranms), int astprm;

Arguments

efn

OpenVMS usage: ef number

type: longword (unsigned)
access: read only
mechanism: by value

Number of the event flag to be set when the audit completes. The ef n argument is a longword con-
taining the number of the event flag; however, SAUDIT EVENT uses only the low-order byte. If ef n
is not specified, event flag 0 is used.

Upon request initiation, SAUDIT EVENT clears the specified event flag.

flags

OpenVMS usage: mask longword

124

System Service Descriptions

type: longword (unsigned)
access: read only
mechanism: by value

Flags specifying options for the SAUDIT EVENT system operation. The f | ags argument is a long-
word bit mask, where each bit corresponds to an option.

Each flag option has a symbolic name. The SNSADEF macro defines the following symbolic names.

Symbolic Name

Description

NSAS$M_ACL

Specifies an event generated by an Alarm ACE or Audit ACE. This
flag is reserved to OpenVMS.

NSA$M_FLUSH

Specifies that all messages in the audit server buffer be written to the
audit log file.

NSASM_INTERNAL

Specifies that the SAUDIT EVENT call originates in the context of a
trusted computing base (TCB) component. The auditing components
use this flag to indicate that internal auditing failures should result in a
SECAUDTCB bugcheck. This flag is reserved to OpenVMS.

NSA$SM_MANDATORY

Specifies that an audit is to be performed, regardless of system alarm
and audit settings.

NSA$M NOEVTCHECK

Specifies that an audit is to be performed, regardless of the system
alarm or audit settings. This flag is similar to the NSASM_MANDA-
TORY bit but, unlike the NSA$SM_MANDATORY bit, this flag is not
reflected in the NSASW_FLAGS field in the resulting audit record on
disk.

NSA$M_SERVER

Indicates that the call originates in a TCB server process and that the
event should be audited regardless of the state of a process-specific
no-audit bit.

Trusted servers use this flag to override the no-audit bit when they
want to perform explicit auditing on behalf of a client process. This
flag is reserved to OpenVMS.

itmlst

OpenVMS usage: item list 3

type: longword (unsigned)
access: read only
mechanism: by reference

Item list specifying information to include in the audit record. The i t M st argument is the address
of a list of item descriptors. The list of item descriptors is terminated by a longword of 0.

The item list for all calls to SAUDIT _EVENT must include the following item codes:

* NSAS$ EVENT TYPE (see Table 17)

« NSAS$ EVENT SUBTYPE (see Table 17)

» Atleast one of the NSA$ ALARM_NAME item code or the NSA$ AUDIT _NAME item code.

125

System Service Descriptions

+ Ifthe event being reported is an object access (NSA$SC _MSG_OBJ_ACCESS) or an object delete
(NSASC MSG OBJ DELETE), the NSA$ FINAL STATUS, NSA$ ACCESS DESIRED, and
NSA$ OBJECT CLASS item codes must be specified.

» If'the event being reported is an object create (NSA$SC MSG _OBJ CREATE), the NSA$ FI-
NAL_STATUS and NSA$ OBJECT CLASS item codes must be specified.

+ Ifthe event being reported is a privilege audit (NSASC_MSG_PRVAUD), the
NSAS$ PRIVS USED or the NSA$ PRIVS MISSING item code must be specified.

» If'the audit event being reported is a deaccess event (NSASC MSG_OBJ DEACCESS), the
NSAS$ OBJECT CLASS item code must be specified.

The item list is a standard format item list. The following diagram depicts the general structure of an
item descriptor.

3 15 0

ltem code Buffer length

Buffer address

Retum length address

ZK-5186A-GE
The following table defines the item descriptor fields.
Descriptor Field Definition
Buffer length A word specifying the length (in bytes) of the buffer; the buffer supplies

information to be used by SAUDIT EVENT. The required length of the
buffer varies, depending on the item code specified; each item code de-
scription specifies the required length.

Item code A word containing a symbolic code describing the nature of the informa-
tion currently in the buffer. The location of the buffer is pointed to by the
buffer address field. Each item code has a symbolic name. This section pro-
vides a detailed description of item codes following the description of argu-
ments.

Buffer address A longword containing the address of the buffer that specifies the informa-
tion.

Return length address | Not currently used; this field is reserved to OpenVMS. You must specify 0.

See the section called “Item Codes” for a description of the SAUDIT EVENT item codes.

audsts

OpenVMS usage: cond value type

type: longword (unsigned)
access: write only
mechanism: by reference

Longword condition value that receives the final completion status from the operation. If a security
audit is required, the final completion status represents either the successful completion of the result-

126

System Service Descriptions

ing security audit or any failing status that occurred while the security audit was performed within the
audit server process.

The audst s argument is valid only when the service returns success and the status is not SS§ EVT-
NOTENAB. In addition, the caller must either make use of the ast adr argument or use the $AU-
DIT EVENTW service before attempting to access audst s.

astadr

OpenVMS usage: ast procedure

type: procedure value
access: call without stack unwinding
mechanism: by reference

Asynchronous system trap (AST) routine to be executed after the audst s is updated. The ast adr
argument, which is the address of a longword value, is the procedure value of the AST routine.

The AST routine executes in the access mode of the caller of SAUDIT EVENT.

astprm

OpenVMS usage: user arg

type: longword (unsigned)
access: read only
mechanism: by value

Asynchronous system trap (AST) parameter passed to the AST service routine. The ast pr margu-
ment is a longword value containing the AST parameter.

Item Codes

This section provides a list of item codes that can be used to affect auditing.

NSAS$ _ALARM_NAME is a string of 1 to 32 characters specifying an alarm journal name to receive
the record. To direct an event to the system alarm journal (that is, all enabled security operator termi-
nals), use the string SECURITY.

NSAS$_AUDIT_NAME is a string of 1 to 65 characters specifying the journal file to receive the audit
record. To direct an event to the system audit journal, use the string SECURITY.

NSAS$ CHAIN is a longword value specifying the item list to process immediately after the current
one. The buffer address field in the item descriptor specifies the address of the next item list to be
processed. Anything after NSA$ CHAIN is ignored.

NSAS$ EVENT FACILITY is a word value specifying the facility generating the event. All operat-
ing system events are audited as facility zero.

NSAS$ EVENT SUBTYPE is a longword value specifying an event message subtype. See Table 17
for a list of valid event subtypes.

NSAS$ EVENT TYPE is a longword value specifying an event message type. See Table 17 for a list
of valid event types.

127

System Service Descriptions

Table 17. Description of SAUDIT _EVENT Types and Subtypes

Symbol of Event Type Meaning
NSA$C MSG_AUDIT Systemwide change to auditing
Subtype and Meaning

NSA$C_AUDIT DISABLED
NSA$C_AUDIT ENABLED
NSA$C AUDIT INITIATE
NSA$C_AUDIT TERMINATE
NSA$C_AUDIT LOG_FINAL
NSA$C AUDIT LOG FIRST

Audit events disabled

Audit events enabled

Audit server startup

Audit server shutdown

Final entry in audit log (forward link)
First entry in audit log (backward link)

NSA$C MSG_BREAKIN

Break-in attempt detected

Subtype and Meaning
NSA$C DETACHED
NSAS$SC DIALUP
NSAS$C LOCAL
NSA$C NETWORK
NSA$C REMOTE

Detached process

Dialup interactive process
Local interactive process
Network server process

Interactive process from another network node

NSA$C_MSG CONNECTION

Logical link connection or termination

Subtype and Meaning
NSA$C CNX ABORT
NSA$C _CNX ACCEPT

NSA$C CNX DECNET CREATE
NSAS$C CNX DECNET DELETE
NSA$C _CNX DISCONNECT
NSA$C CNX IPC _CLOSE
NSAS$C CNX IPC OPEN
NSAS$C_CNX REJECT
NSAS$SC CNX REQUEST
NSA$C CNX INC REQUEST
NSA$C CNX INC _ACCEPT
NSAS$C CNX INC REJECT
NSAS$C CNX INC DISCONNECT
NSA$C CNX INC _ABORT

Connection aborted

Connection accepted

DECnet for OpenVMS logical link created
DECnet for OpenVMS logical link disconnected
Connection disconnected

Interprocess communication association closed
Interprocess communication association opened
Connection rejected

Connection requested

Incoming connection requested

Incoming connection accepted

Incoming connection rejected

Incoming connection disconnected

Incoming connection aborted

NSASC _MSG_INSTALL

Use of the Install utility (INSTALL)

Subtype and Meaning
NSAS$C INSTALL ADD
NSAS$C INSTALL REMOVE

Known image installed

Known image deleted

128

System Service Descriptions

Symbol of Event Type

Meaning

NSA$C_MSG_LOGFAIL

Login failure

Subtype and Meaning
NSA$C BATCH
NSA$C DETACHED
NSAS$C DIALUP
NSAS$C LOCAL
NSA$C NETWORK
NSA$C REMOTE
NSAS$C _SUBPROCESS

Batch process

Detached process

Dialup interactive process

Local interactive process

Network server process

Interactive process from another network node

Subprocess

NSA$C MSG LOGIN

Successful login

Subtype and Meaning

See subtypes for NSASC MSG_ LOG-
FAIL

NSA$C_MSG LOGOUT

Successful logout

Subtype and Meaning

See subtypes for NSASC MSG_ LOG-
FAIL

NSA$C_MSG MOUNT

Volume mount or dismount

Subtype and Meaning
NSA$C _VOL DISMOUNT
NSAS$SC VOL MOUNT

Volume dismount

Volume mount

NSA$C_MSG_NCP

Modification to network configuration database

Subtype and Meaning
NSA$C NCP_COMMAND

Network Control Program (NCP) command issued

NSA$C_MSG _NETPROXY

Modification to network proxy database

Subtype and Meaning

NSAS$C NETPROXY_ ADD
NSAS$C NETPROXY DELETE
NSA$C NETPROXY MODIFY

Record added to network proxy database
Record removed from network proxy database

Record modified in network proxy database

NSAS$SC MSG_OBJ_ACCESS

Object access attempted

Subtype and Meaning
NSAS$C OBJ ACCESS

Object access attempted

129

System Service Descriptions

Symbol of Event Type Meaning

NSAS$C MSG OBJ CREATE Object created
Subtype and Meaning

NSASC OBJ CREATE Object created
NSA$C MSG OBJ DEACCESS Object deaccessed
Subtype and Meaning

NSAS$C OBJ DEACCESS Object deaccessed
NSA$C MSG OBJ DELETE Object deleted
Subtype and Meaning

NSAS$SC OBJ DELETE Object deleted

NSAS$C MSG_PROCESS

Process control system service issued

Subtype and Meaning
NSAS$C PRC_CANWAK
NSA$C PRC CREPRC
NSAS$C PRC DELPRC
NSA$C PRC FORCEX
NSAS$C PRC GETIJPI
NSAS$C PRC _GRANTID
NSAS$C PRC RESUME
NSA$C PRC REVOKID
NSA$C PRC SCHDWK
NSAS$C PRC_SETPRI
NSA$C PRC SIGPRC
NSAS$C PRC SUSPND
NSA$C PRC_WAKE
NSA$C PRC PRCTERM

Process wakeup canceled
Process created

Process deleted

Process exit forced
Process information gathered
Process identifier granted
Process resumed

Process identifier revoked
Process wakeup scheduled
Process priority altered
Process exception issued
Process suspended
Process wakeup issued

Process termination notification requested

NSA$C_MSG_PRVAUD

Attempt to use privilege

Subtype and Meaning
NSAS$C PRVAUD FAILURE
NSAS$C PRVAUD_ SUCCESS

Unsuccessful use of privilege

Successful use of privilege

NSAS$C MSG RIGHTSDB

Modification to rights database

Subtype and Meaning
NSAS$C RDB _ADD ID
NSA$C RDB CREATE

Identifier added to rights database
Rights database created

130

System Service Descriptions

Symbol of Event Type

Meaning

NSAS$SC_RDB_GRANT ID
NSA$C RDB_MOD HOLDER
NSA$C_RDB_MOD ID
NSAS$SC_RDB_REM_ID
NSA$C RDB_REVOKE ID

Identifier given to user

List of identifier holders modified
Identifier name or attributes modified
Identifier removed from rights database

Identifier revoked from user

NSA$C MSG_SYSGEN

Modification of a system parameter using the System Gen-
eration utility (SYSGEN)

Subtype and Meaning
NSAS$C SYSGEN_SET

System parameter modified

NSA$C MSG_SYSTIME

Modification to system time

Subtype and Meaning
NSAS$C SYSTIM_SET
NSAS$SC SYSTIM_CAL

System time set

System time calibrated

NSA$C MSG SYSUAF

Modification to system user authorization file (SYSUAF)

Subtype and Meaning
NSAS$C SYSUAF_ADD
NSAS$C SYSUAF COPY
NSAS$C SYSUAF DELETE
NSAS$C SYSUAF _MODIFY
NSA$C SYSUAF RENAME

Record added to SYSUAF
Record copied in SYSUAF
Record deleted from SYSUAF
Record modified in SYSUAF
Record renamed in SYSUAF

NSAS$ _FIELD_NAME is a string of 1 to 256 characters specifying the name of the field being modi-
fied. This is used in combination with NSA$ ORIGINAL DATA and NSA$ NEW DATA.

NSAS$_MESSAGE specifies a system message code. The SFORMAT AUDIT service will use the
SGETMSG service to translate the message into text. The resulting text is inserted into the format-
ted audit message, with the “Event information:” prefix. For example, the operating system uses this
item code to supply the privilege audit text associated with privilege audit events; this keeps the au-
dit records small. By default, the SGETMSG service can only translate resident system messages. You
can use the NSA$ MSGFILNAM item code to specify the name of an application or site-specific

message file.

NSAS$ MSGFILNAM is a string of 1 to 255 characters specifying the message file contain-
ing the translation for the message code in NSA$S MESSAGE. The default file specification is
SYSSMESSAGE:.EXE. By default, SFORMAT AUDIT uses the resident system message file.

NSAS$ NEW_DATA is a string of 1 to n characters specifying the contents of the field named in
NSAS$ FIELD NAME after the event occurred. NSA$ ORIGINAL DATA contains the field con-

tents prior to the event.

NSAS$ NOP specifies that the item list entry should be ignored. This item code allows you to build a
static item list and then remove those entries that do not apply to the current event.

131

System Service Descriptions

NSAS$ _ORIGINAL_DATA is a string of 1 to n characters specifying the contents of the field named
in NSA$ FIELD NAME before the event occurred. NSA$S NEW_DATA contains the field contents
following the event.

NSAS$_SENSITIVE_FIELD_NAME is a string of 1 to 256 characters specifying the name of the
field being modified. This is used in combination with NSA$ SENSITIVE ORIG DATA and
NSA$ SENSITIVE NEW_DATA. Use NSA$_SENSITIVE FIELD NAME to prevent sensitive
information, such as passwords, from being displayed in an alarm message. Sensitive information is
written to the audit log.

NSAS$ SENSITIVE NEW_DATA is a string of 1 to n characters specifying the con-

tents of the field named in NSA$ SENSITIVE FIELD NAME after the event occurred.

NSA$ SENSITIVE _ORIG _DATA contains the field contents prior to the event. Use

NSAS$ SENSITIVE NEW _DATA to prevent sensitive information from being displayed in an alarm
message. Sensitive information is written to the audit log.

NSAS$_SENSITIVE_ORIG_DATA is a string of 1 to n characters specifying the con-

tents of the field named in NSA$ SENSITIVE FIELD NAME before the event occurred.
NSA$ SENSITIVE NEW_DATA contains the field contents following the event. Use

NSAS$ SENSITIVE FIELD NAME to prevent sensitive information from being displayed in an
alarm message. Sensitive information is written to the audit log.

NSAS$ SUPPRESS is a longword bitmask directing SAUDIT EVENT to ignore the defaults for the
following values and either omit the information from the event record or use the value provided in
another parameter. The bits in the mask inhibit the use of default values for the following item codes:

NSA$V ACCOUNT NAME |NAS$V PROCESS NAME

NSA$V_FINAL_STATUS NSA$V_SUBJECT CLASS
NSA$V IMAGE NAME NSA$V_SUBJECT OWNER
NSA$V_PARENT ID NSA$V_SYSTEM_ID
NSA$V_PARENT NAME NSA$V_SYSTEM OWNER

NSAS$SV_PARENT OWNER NSA$V_TERMINAL

NSA$SV_PARENT USERNAME |NSAS$V TIME STAMP

NSAS$V PROCESS ID NSA$V USERNAME

Use NSAS$ SUPPRESS, for example, when auditing events from server processes when the default
values for many of these items need to explicitly reference the client context rather than be defaulted
from the environment of the server.

The following is a list of additional item codes that are valid as an item descriptor in the i t ml st ar-
gument.

NSAS$ ACCESS_DESIRED is a longword value specifying the access request mask as defined in
$SARMDEEF.

NSAS$ _ACCESS_MODE is a byte value specifying an access mode associated with the event.

NSAS$ _ACCOUNT is a string of 1 to 32 characters specifying the account name associated with the
event.

NSAS$ ASSOCIATION _NAME is a string of 1 to 256 characters specifying an association name.

132

System Service Descriptions

NSAS$ _COMMAND_LINE is a string of 1 to 2048 characters specifying a command line.
NSA$ _CONNECTION_ID is a longword value specifying a connection identification.

NSA$ DECNET_LINK ID is a longword value specifying a DECnet for OpenVMS logical link
identification.

NSA$ DECNET_OBJECT _NAME is a string of 1 to 16 characters specifying a DECnet for Open-
VMS object name.

NSA$ DECNET_OBJECT_NUMBER is a longword value specifying a DECnet for OpenVMS ob-
ject number.

NSAS DEFAULT_USERNAME is a string of 1 to 32 characters specifying a default local user
name for incoming network proxy requests.

NSAS$ DEVICE_NAME is a string of 1 to 64 characters specifying the name of the device where the
volume resides.

NSAS$ DIRECTORY_ENTRY is a string of 1 to 256 characters specifying the name of the directory
entry associated with an XQP operation.

NSAS$ DIRECTORY_ID is an array of three words specifying the directory file identification.

NSAS$ DISMOUNT _FLAGS is a longword value specifying the dismount flags that are defined by
the SDMTDEF macro in STARLET.

NSAS$ _EFC_NAME is a string of 1 to 16 characters specifying the event flag cluster name.
NSAS$_FILE_ID is an array of three words specifying the file identification.

NSAS$_FINAL_STATUS is a longword value specifying the successful or unsuccessful status that
caused the auditing facility to be invoked.

NSA$ HOLDER_NAME is a string of 1 to 32 characters specifying the name of the user holding the
identifier.

NSAS$ HOLDER OWNER is a longword value specifying the owner (UIC) of the holder.

NSAS$ _ID_ATTRIBUTES is a longword value specifying the attributes of the identifier, which are
defined by the SKGBDEF macro in STARLET.

NSAS$_IDENTIFIERS_USED is an array of longwords specifying the identifiers (from the access
control entry [ACE] granting access) that were used to gain access to the object.

NSAS$ _ID_NAME is a string of 1 to 32 characters specifying the name of the identifier.

NSAS$ _ID_NEW_ATTRIBUTES is a longword value specifying the new attributes of the identifier,
which are defined by the SKGBDEF macro in STARLET.

NSAS_ID_NEW_NAME is a string of 1 to 32 characters specifying the new name of the identifier.
NSAS$ _ID_NEW_VALUE is a longword value specifying the new value of the identifier.

NSAS$ _ID_VALUE is a longword value specifying the value of the identifier.

133

System Service Descriptions

NSAS _ID_VALUE_ASCII is a longword specifying the value of the identifier.

NSAS$ IMAGE_NAME is a string of 1 to 1024 characters specifying the name of the image being
executed when the event took place.

NSAS$ _INSTALL_FILE is a string of 1 to 255 characters specifying the name of the installed file.

NSAS INSTALL_FLAGS is a longword value specifying the INSTALL flags. They correspond to
qualifiers for the Install utility; for example, NSASM_INS EXECUTE ONLY.

NSAS$ LNM_PARENT_NAME is a string of 1 to 31 characters specifying the name of the parent
logical name table.

NSAS$ LNM_TABLE_NAME is a string of 1 to 31 characters specifying the name of the logical
name table.

NSA$ LOCAL_USERNAME is a string of 1 to 32 characters specifying user names of the accounts
available for incoming network proxy requests.

NSAS$ LOGICAL_NAME is a string of 1 to 255 characters specifying the logical name associated
with the device.

NSA$ _MAILBOX_UNIT is a longword value specifying the mailbox unit number.
NSAS$ MATCHING_ACE is an array of bytes specifying the ACE granting or denying access.

NSA$ MOUNT _FLAGS is a quadword value specifying mount flags that are defined by the SMNT-
DEF macro in STARLET.

NSAS$ NEW_IMAGE_NAME is a string of 1 to 1024 characters specifying the name of the new im-
age.

NSAS$ NEW_OWNER is a longword value specifying the new process owner (UIC).
NSA$ NEW_PRIORITY is a longword value specifying the new process priority.

NSA$ NEW_PRIVILEGES is a quadword privilege mask specifying the new privileges. The
$PRVDEF macro defines the list of available privileges.

NSA$ NEW_PROCESS_ID is a longword value specifying the new process identification.

NSA$ NEW_PROCESS_NAME is a string of 1 to 15 characters specifying the name of the new
process.

NSA$ NEW_PROCESS_OWNER is a longword value specifying the owner (UIC) of the new
process.

NSAS$ NEW_USERNAME is a string of 1 to 32 characters specifying the new user name.

NSAS$ OBJECT_CLASS is a string of 1 to 23 characters specifying the security object class associ-
ated with the event; for example, FILE.

NSAS$ OBJECT _ID is an array of three words specifying the unique object identification code,
which is currently applicable only to files; therefore, it is the file identification.

134

System Service Descriptions

NSAS _OBJECT_MAX_ CLASS is a 20-byte record specifying the maximum access classification of
the object.

NSAS$ OBJECT_MIN_CLASS is a 20-byte record specifying the minimum access classification of
the object.

NSA$ OBJECT_NAME is a string of 1 to 255 characters specifying an object's name.

NSA$ OBJECT_NAME 2 is a string of 1 to 255 characters specifying an alternate object name;
currently it applies to file-backed global sections where the alternate name of a global section is the
file name.

NSAS$ OBJECT_OWNER is a longword value specifying the UIC or general identifier of the
process causing the auditable event.

NSA$ OBJECT_PROTECTION is a word, or an array of four longwords, specifying the UIC-
based protection of the object.

NSAS$_OLD_PRIORITY is a longword value specifying the former process priority.

NSAS$_OLD_PRIVILEGES is a quadword privilege mask specifying the former privileges. The
$PRVDEF macro defines the list of available privileges.

NSA$ PARAMS _INUSE is a string of 1 to 255 characters specifying the name of the parameter file
given to the SYSGEN command USE.

NSAS$ PARAMS_WRITE is a string of 1 to 255 characters specifying the file name for the SYS-
GEN command WRITE.

NSAS$ PARENT ID is a longword value specifying the process identification (PID) of the parent
process. It is used only when auditing events pertaining to a subprocess.

NSA$ PARENT_NAME is a string of 1 to 15 characters specifying the parent's process name. It is
used only when auditing events pertaining to a subprocess.

NSAS$ PARENT OWNER is longword value specifying the owner (UIC) of the parent process. It is
used only when auditing events pertaining to a subprocess.

NSAS$ PARENT_USERNAME is a string of 1 to 32 characters specifying the user name associated
with the parent process. It is used only when auditing events pertaining to a subprocess.

NSAS PASSWORD is a string of 1 to 32 characters specifying the password used in an unsuccessful
break-in attempt. By default, system security alarms do not include break-in passwords.

NSAS PRIVILEGES is a quadword privilege mask specifying the privileges used to gain access.
The $PRVDEF macro defines the list of available privileges.

NSAS$_PRIVS_MISSING is a longword or a quadword privilege mask specifying the privileges that
are needed. The privileges are defined by a macro in STARLET; see the SCHPDEF macro for defini-
tion as a longword mask and see the SPRVDEF macro for definition as a quadword privilege mask.

NSAS$ PRIVS USED is a longword or a quadword privilege mask specifying the privileges used
to gain access to the object. The privileges are defined by a macro in STARLET; see the SCHPDEF

135

System Service Descriptions

macro for definition as a longword mask and see the SPRVDEF macro for definition as a quadword
privilege mask.

NSAS$ PROCESS_ID is a longword value specifying the PID of the process causing the auditable
event.

NSAS$ PROCESS NAME is a string of 1 to 15 characters specifying the process name that caused
the auditable event.

NSAS$ REM_ASSOCIATION_NAME is a string of 1 to 256 characters specifying the interprocess
communication (IPC) remote association name.

NSAS$ REMOTE_LINK ID is a longword value specifying the remote logical link ID.

NSA$ REMOTE_NODE_FULLNAME is a string of 1 to 255 characters specifying the fully ex-
panded DECnet for OpenVMS node name of the remote process.

NSAS$ REMOTE_NODE _ID is a string of 4 to 24 characters specifying the DECnet for OpenVMS
node address of the remote process. A value 4 bytes in length is a DECnet Phase IV node address. A
value with length greater than 4 bytes is a DECnet/OSI NSAP address.

NSA$ REMOTE_NODENAME is a string of 1 to 6 characters specifying the DECnet for Open-
VMS node name of the remote process.

NSAS$ REMOTE_USERNAME is a string of 1 to 32 characters specifying the user name of the re-
mote process.

NSAS$ REQUEST _NUMBER is a longword value specifying the request number associated with the
system service call.

NSAS$ RESOURCE_NAME is a string of 1 to 32 characters specifying the lock resource name.
NSAS$ _SECTION_NAME is a string of 1 to 42 characters specifying the global section name.

NSAS$ SNAPSHOT_ BOOTFILE is a string of 1 to 255 characters specifying the name of the snap-
shot boot file, the saved system image file from which the system just booted.

NSAS$ _SNAPSHOT_SAVE_FILNAM is a string of 1 to 255 characters specifying the name of the
snapshot save file, which is the original location of the snapshot file at the time that the system was
saved.

NSAS$ SNAPSHOT_TIME is a quadword value specifying the time the picture of the configuration
was taken and saved in the snapshot boot file.

NSA$_SOURCE_PROCESS_ID is a longword value specifying the process identification of the
process originating the request.

NSAS$ SUBJECT_ CLASS is a 20-byte record specifying the current access class of the process
causing the auditable event.

NSAS$ _SUBJECT_OWNER is a longword value specifying the owner (UIC) of the process causing
the event.

NSAS$_SYSTEM_ID is a longword value specifying the SCS identification of the cluster node where
the event took place (system parameter SCSSYSTEMID).

136

System Service Descriptions

NSAS$_SYSTEM_NAME is a string of 1 to 6 characters specifying the System Communications Ser-
vices (SCS) node name where the event took place (system parameter SCSNODE).

NSAS$ SYSTEM_SERVICE_NAME is a string of 1 to 256 characters specifying the name of the
system service associated with the event.

NSAS$ SYSTIM_NEW is a quadword value specifying the new system time.
NSAS$_SYSTIM_OLD is a quadword value specifying the old system time.

NSAS$ TARGET _DEVICE_NAME is a string of 1 to 64 characters specifying the target device
name.

NSA$ TARGET_PROCESS_CLASS is a 20-byte record specifying the target process classifica-
tion.

NSAS_TARGET_PROCESS _ID is a longword value specifying the target process identifier (PID).

NSAS$ TARGET_ PROCESS NAME is a string of 1 to 64 characters specifying the target process
name.

NSAS$ TARGET_PROCESS OWNER is a longword value specifying the target owner (UIC).

NSAS TARGET_USERNAME is a string of 1 to 32 characters specifying the target process user
name.

NSAS$ TERMINAL is a string of 1 to 256 characters specifying the name of the terminal to which
the process was connected when the auditable event occurred.

NSAS$ TIME_STAMP is a quadword value specifying the time when the event occurred.

NSAS_TRANSPORT_NAME is a string of 1 to 256 characters specifying the name of the transport:
interprocess communication, DECnet for OpenVMS, or System Management Integrator (SMI), which
handles requests from SYSMAN (ASCII string).

NSAS$ _UAF_ADD is a string of 1 to 32 characters specifying the name of the authorization record be-
ing added.

NSAS$ _UAF_COPY is a string of 1 to 32 characters specifying the new name of the authorization
record being copied from NSA$ UAF SOURCE.

NSAS$ _UAF_DELETE is a string of 1 to 32 characters specifying the name of the authorization
record being removed.

NSAS$ UAF_MODIFY is a string of 1 to 32 characters specifying the name of the authorization
record being modified.

NSAS$ UAF_RENAME is a string of 1 to 32 characters specifying the name of the authorization
record being renamed.

NSAS$ _UAF_SOURCE is a string of 1 to 32 characters specifying the user name of the source record
for an Authorize utility (AUTHORIZE) copy operation.

NSAS$ USERNAME is a string of 1 to 32 characters specifying the user name of the process causing
the auditable event.

137

System Service Descriptions

NSAS$_VOLUME_NAME is a string of 1 to 15 characters specifying a volume name.

NSAS$ VOLUME_SET_NAME is a string of 1 to 15 characters specifying a volume set name.

Description

The Audit Event service can be called by any program that enforces a security policy in order to ap-
pend an event message to the audit log file or send an alarm to an operator terminal. For example,
AUTHORIZE calls SAUDIT_EVENT whenever a UAF record is altered and LOGINOUT calls the
service whenever a user logs in.

SAUDIT EVENT takes the event message, checks the auditing database to determine whether a class
of event is being audited, and, if the event class is enabled, creates an alarm or audit record.

$SAUDIT EVENT completes asynchronously; that is, it does not wait for final status. For synchronous
completion, use the SAUDIT _EVENTW service.

Required Access or Privileges

AUDIT

Required Quota

None

Related Services

$CHECK ACCESS, $SCHECK_ PRIVILEGE, $CHKPRO

Condition Values Returned

SS$ NORMAL
The service completed successfully.
SS$ ACCVIO
A parameter is not accessible.
SS$ BADBUFADR
The buffer address is invalid or not readable.
SS$ BADBUFLEN
The specified buffer length is invalid or out of range.
SS$ BADCHAIN

The address of the next item list to be processed, as identified in the buffer address field, is either
not readable or points to itself.

138

System Service Descriptions

SS$ BADITMCOD

The specified item code is invalid or out of range.
SS$ EVINOTENAB

The event is not enabled.
SS$ _INSFARG

A required item code or parameter is missing.
SS$ INVAJLNAM

The alarm or audit journal name is invalid.
SS$ IVSTSFLG

The specified system service flags are invalid.
SS$ NOAUDIT

The caller does not have the required privilege to perform the audit.
SS$ OVRMAXAUD

There is insufficient memory to perform the audit.
SS$_SYNCH

An audit was not required.

$AUDIT_EVENTW

Audit Event and Wait — Determines whether a security-related event should be reported. If the event
should be reported, the service sends the event report to the audit server. The SAUDIT EVENTW
service completes synchronously; that is, it returns only after receiving an explicit confirmation from
the audit server that the associated audit, if enabled, has been performed. For asynchronous comple-
tion, use the Audit Event (SAUDIT EVENT) service. In all other respects, SAUDIT EVENTW is
identical to SAUDIT EVENT. For additional information about SAUDIT EVENTW, see the $AU-
DIT_EVENT service.

Format

SYS$AUDI T_EVENTW efn ,[flags] ,itm st ,audsts ,[astadr] ,[astprni

C Prototype

int sys$audit_eventw
(unsigned int efn, unsigned int flags, void *itmst,
unsi gned int *audsts, void (*astadr)(__unknown_parans), int astprnj;

139

System Service Descriptions

$AVOID_PREEMPT

Avoid Process Preemption — Requests that the EXEC avoid preempting the calling process or thread.

Format

SYS$AVO D _PREEMPT enabl e

C Prototype

int sys$avoid_preenpt (int enable);

Arguments

enable

OpenVMS usage: longword unsigned

type: longword (unsigned)
access: read only
mechanism: by value

Enables or disables preemption avoidance. If the enabl e argument is set to 1, preemption avoidance
is enabled; if 0, preemption avoidance is disabled.

Description

The Avoid Process Preemption service is a caller's mode service that sets a thread-specific bit that in-
forms the scheduler that this thread desires to avoid preemption. Before setting the bit, it checks if the
process or thread has already benefited from preemption avoidance during this time on the processor,
and if it has, calls the SRESCHED system service to give up the processor.

If quantum end is reached when this bit is set, the scheduler will “borrow” the next quantum for this
process or thread. It will give the process or thread another quantum immediately and allow it to re-
sume execution. The next time that the process or thread is eligible for scheduling, it will be placed at
the end of the scheduling queue without any execution time, skipping its next quantum.

If another process or thread of the same base priority attempts to preempt a process or thread that has
this bit set, this preemption can be avoided if the process had the ALTPRI privilege when the $SET-

UP_AVOID_PREEMPT service was called. In this case, the priority of the current thread is boosted
to the same level as the thread attempting preemption, denying the attempted preemption.

Required Access or Privileges

ALTPRI

Required Quota

None

140

System Service Descriptions

Related Services

SRESCHED, $SETUP_AVOID PREEMPT

Condition Values Returned

SS$ NORMAL

The service completed successfully.

$BINTIM

Convert ASCII String to Binary Time — Converts an ASCII string to an absolute or delta time value
in the system 64-bit time format suitable for input to the Set Timer ($SSETIMR) or Schedule Wakeup
($SCHDWK) service. On Alpha and Integrity server systems, this service accepts 64-bit addresses.

Format

SYS$BI NTI M ti nbuf , tinadr

C Prototype

int sys$bintim(void *tinbuf, struct _generic_64 *timadr);

Arguments

timbuf

OpenVMS usage: time name

type: character-coded text string
access: read only
mechanism: by 32- or 64-bit descriptor—fixed-length string descriptor

Buffer that holds the ASCII time to be converted. The t i nbuf argument specifies the 32- or 64-bit
address of a character string descriptor pointing to the time string. The time string specifies the ab-
solute or delta time to be converted by $BINTIM. The data type table describes the time string.

timadr

OpenVMS usage: date time

type: quadword
access: write only
mechanism: by 32- or 64-bit reference

Time value that $BINTIM has converted. The t i madr argument is the 32- or 64-bit address of the
quadword system time, which receives the converted time.

141

System Service Descriptions

Description

The Convert ASCII String to Binary Time service converts an ASCII string to an absolute or delta
time value in the system 64-bit time format suitable for input to the Set Timer ($SETIMR) or Sched-
ule Wakeup ($SCHDWK) service. The service executes at the access mode of the caller and does
not check whether address arguments are accessible before it executes. Therefore, an access viola-
tion causes an exception condition if the input buffer or buffer descriptor cannot be read or the output
buffer cannot be written.

This service does not check the length of the argument list and therefore cannot return the SS§ INS-
FARG (insufficient arguments) error status code. If the service does not receive enough arguments
(for example, if you omit required commas in the call), errors can result.

The required ASCII input strings have the following format:

* Absolute Time: dd-mmm-yyyy hh:mm:ss.cc

¢ Delta Time: dddd hh:mm:ss.cc

The following table lists the length (in bytes), contents, and range of values for each field in the ab-
solute time and delta time formats.

Field Length Contents Range of Values
(Bytes)
dd 2 Day of month 1-31
- 1 Hyphen Required syntax
mmm |3 Month JAN, FEB, MAR, APR, MAY, JUN, JUL, AUG, SEP,
OCT, NOV, DEC
- 1 Hyphen Required syntax
yyyy 4 Year 1858-9999
blank n Blank Required syntax
hh 2 Hour 00-23
1 Colon Required syntax
mm 2 Minutes 00-59
1 Colon Required syntax
ss 2 Seconds 00-59
1 Period Required syntax
cc 2 Hundredths ofa |00-99
second
dddd 4 Number of days |000-9999
(in 24-hour units)

Month abbreviations must be uppercase.

The hundredths-of-second field represents a true fraction. For example, the string .1 represents ten-
hundredths of a second (one-tenth of a second) and the string .01 represents one-hundredth of a sec-
ond. Also, you can add a third digit to the hundredths-of-second field; this thousandths-of-second digit

142

System Service Descriptions

is used to round the hundredths-of-second value. Digits beyond the thousandths-of-second digit are ig-
nored.

The following two syntax rules apply to specifying the ASCII input string:
* You can omit any of the date and time fields.

Leaving out any element, however, including hundredths of a second, results in the $BINTIM ser-
vice supplying the current base time for the missing element. Trailing fields can be truncated. If
leading fields are omitted, you must specify the punctuation (hyphens, blanks, colons, periods).
For example, the following string results in an absolute time of 12:00 on the current day:

— 12: 00: 00. 00

For delta time values, the SBINTIM service uses a default value of 0 for unspecified hours, min-
utes, and seconds fields. Trailing fields can be truncated. If you omit leading fields from the time
value, you must specify the punctuation (blanks, colons, periods). If the number of days in the
delta time is 0, you must specify a 0. For example, the following string results in a delta time of 10
seconds:

0 ::10
Note the space between the 0 in the day field and the two colons.

* For both absolute and delta time values, there can be any number of leading blanks, and any num-
ber of blanks between fields normally delimited by blanks. However, there can be no embedded
blanks within either the date or time field.

Required Access or Privileges
None

Required Quota

None

Related Services

$ASCTIM, $CANTIM, SCANWAK, $GETTIM, $SNUMTIM, $SCHDWK, $SETIME, $SETIMR

Condition Values Returned

SS$ NORMAL
The service completed successfully.
SS$ IVTIME

The syntax of the specified ASCII string is invalid, or the time component is out of range.

Example

Column 1 of the following table lists legal input strings to the $BINTIM service; column 2 lists the
$BINTIM output of these strings translated through the Convert Binary Time to ASCII String ($ASC-
TIM) system service. The current date is assumed to be 30-DEC-2003 04:15:28.00.

143

System Service Descriptions

Input to SBINTIM $SASCTIM Output String
— 50 30-DEC-2003 04:50:28.00
—2003 0:0:0.0 29-DEC-2003 00:00:00.00

30-DEC-2003 12:32:1.1161 |30-DEC-2003 12:32:01.12

29-DEC-2003 16:35:0.0 29-DEC-2003 16:35:00.00

0:.1 0 00:00:00.10
0::.06 0 00:00:00.06
53:18:32.068 503:18:32:07
20 12: 20 12:00:00.00
05 0 05:00:00.00

$BINUTC

Convert ASCII String to UTC Binary Time — Converts an ASCII string to an absolute time value in
the 128-bit UTC format. On Alpha and Integrity server systems, this service accepts 64-bit addresses.

Format

SYS$BI NUTC ti nbuf , utcadr

C Prototype

int sys$binutc (void *tinbuf, unsigned int *utcadr [4]);

Arguments

timbuf

OpenVMS usage: time name

type: character-coded text string
access: read only
mechanism: by 32- or 64-bit descriptor—fixed-length string descriptor

Buffer that holds the ASCII time to be converted. The t i mbuf argument specifies the 32- or 64-bit
address of a character string descriptor pointing to a local time string. The time string specifies the ab-
solute time to be converted by SBINUTC.

utcadr
OpenVMS usage: coordinated universal time

type: utc_date time

access: write only

144

System Service Descriptions

mechanism: by 32- or 64-bit reference

Time value that $BINUTC has converted. The ut cadr argument is the 32- or 64-bit address of a 16-
byte location to receive the converted time.

Description

The Convert ASCII String to UTC Binary Time service converts an ASCII string to an absolute time
in the 128-bit UTC format. The service executes at the access mode of the caller and does not check
whether address arguments are accessible before it executes. Therefore, an access violation causes an
exception condition if the input buffer or buffer descriptor cannot be read or the output buffer cannot
be written.

This service does not check the length of the argument list and therefore cannot return the SS§ INS-
FARG (insufficient arguments) error status code. If the service does not receive enough arguments
(for example, if you omit required commas in the call), errors can result.

$BINUTC uses the time zone differential factor of the local system to encode the 128-bit UTC.

The required ASCII input strings have the following format:

* Absolute Time: dd-mmm-yyyy hh:mm:ss.cc

The following table lists the length (in bytes), contents, and range of values for each field in the ab-
solute time format.

Field Length Contents Range of Values

(Bytes)
dd 2 Day of month 1-31
- 1 Hyphen Required syntax
mmm |3 Month JAN, FEB, MAR, APR, MAY, JUN, JUL, AUG, SEP,

OCT, NOV, DEC

- 1 Hyphen Required syntax
yyyy 4 Year 1858-9999
blank n Blank Required syntax
hh 2 Hour 00-23

1 Colon Required syntax
mm 2 Minutes 00-59

1 Colon Required syntax
ss 2 Seconds 00-59

1 Period Required syntax
cc 2 Hundredths ofa |00-99

second

Note that month abbreviations must be uppercase and that the hundredths-of-second field represents a
true fraction. For example, the string .1 represents ten-hundredths of a second (one-tenth of a second)
and the string .01 represents one-hundredth of a second. Note also that you can add a third digit to the

145

System Service Descriptions

hundredths-of-second field; this thousandths-of-second digit is used to round the hundredths-of-sec-
ond value. Digits beyond the thousandths-of-second digit are ignored.

The following two syntax rules apply to specifying the ASCII input string:

* You can omit any of the date and time fields.
For absolute time values, the $BINUTC service supplies the current system date and time for non-
specified fields. Trailing fields can be truncated. If leading fields are omitted, you must specify the

punctuation (hyphens, blanks, colons, periods). For example, the following string results in an ab-
solute time of 12:00 on the current day:

— 12:00: 00. 00
» For absolute time values, there can be any number of leading blanks, and any number of blanks

between fields normally delimited by blanks. However, there can be no embedded blanks within
either the date or time field.

Required Access or Privileges

None

Required Quota

None

Related Services

$ASCUTC, $GETUTC, SNUMUTC, $TIMCON

Condition Values Returned

SS$ NORMAL
The service completed successfully.
SS$ IVTIME

The syntax of the specified ASCII string is invalid, the specified time is a delta time, or the time
component is out of range.

$BRKTHRU

Breakthrough — Sends a message to one or more terminals. The SBRKTHRU service completes
asynchronously; that is, it returns to the caller after queuing the message request, without waiting

for the message to be written to the specified terminals. For synchronous completion, use the Break-
through and Wait (S BRKTHRUW) service. The BRKTHRUW service is identical to the $BRK-
THRU service in every way except that SBRKTHRUW returns to the caller after the message is writ-
ten to the specified terminals. For additional information about system service completion, refer to the
Synchronize (SSYNCH) service. The $BRKTHRU service supersedes the Broadcast (SBRDCST) ser-

146

System Service Descriptions

vice. When writing new programs, you should use SBRKTHRU instead of SBRDCST. When updat-
ing old programs, you should change all uses of $BRDCST to $BRKTHRU.

Format

SYS$BRKTHRU
[efn] ,negbuf [,sendto] [,sndtyp] [,iosb] [,carcon] [,flags]
[,reqid] [,tinout] [,astadr] [,astprni

C Prototype

int sys$brkthru
(unsigned int efn, void *msgbuf, void *sendto, unsigned int sndtyp,
struct _iosb *iosb, unsigned int carcon, unsigned int flags,
unsi gned int reqid, unsigned int tinout,
void (*astadr)(__unknown_parans), int astprm;

Arguments

efn

OpenVMS usage: ef number

type: longword (unsigned)
access: read only
mechanism: by value

Number of the event flag to be set when the message has been written to the specified terminals. The
ef n argument is a longword containing this number; however, SBRKTHRU uses only the low-order
byte.

When the message request is queued, SBRKTHRU clears the specified event flag (or event flag 0 if
ef n is not specified). Then, after the message is sent, SBBRKTHRU sets the specified event flag (or
event flag 0).

msgbuf

OpenVMS usage: char_string

type: character-coded text string
access: read only
mechanism: by descriptor—fixed-length string descriptor

Message text to be sent to the specified terminals. The msgbuf argument is the address of a descrip-
tor pointing to this message text.

The SBRKTHRU service allows the message text to be as long as 16,350 bytes; however, both the
system parameter MAXBUF and the caller's available process space can affect the maximum length
of the message text.

sendto

147

System Service Descriptions

OpenVMS usage: char_string

type: character-coded text string
access: read only
mechanism: by descriptor—fixed-length string descriptor

Name of a single device (terminal) or single user name to which the message is to be sent. The
sendt o argument is the address of a descriptor pointing to this name.

The sendt o argument is used in conjunction with the sndt yp argument. When sndt yp specifies
BRKS$C DEVICE or BRK$C USERNAME, the sendt 0 argument is required.

If you do not specify sndt yp or if sndt yp does not specify BRK$C DEVICE or BRK$C USER-
NAME, you should not specify sendt o; if sendt o is specified, SBRKTHRU ignores it.

sndtyp

OpenVMS usage: longword unsigned

type: longword (unsigned)
access: read only
mechanism: by value

Terminal type to which SBRKTHRU is to send the message. The sndt yp argument is a longword
value specifying the terminal type.

Each terminal type has a symbolic name, which is defined by the $BRKDEF macro. The following ta-
ble describes each terminal type.

Terminal Type

Description

BRK$C ALLTERMS

When specified, SBRKTHRU sends the message to all terminals at
which users are logged in and to all other terminals that are connected
to the system except those with the AUTOBAUD characteristic set.

BRKS$SC_ALLUSERS

When specified, SBRKTHRU sends the message to all users who are
currently logged in to the system.

BRKS$C DEVICE

When specified, SBRKTHRU sends the message to a single terminal;
you must specify the name of the terminal by using the sendt o argu-
ment.

BRKSC USERNAME

When specified, SBRKTHRU sends the message to a user with a spec-
ified user name; you must specify the user name by using the sendt o
argument.

iosb

OpenVMS usage: io status block

type: quadword (unsigned)
access: write only
mechanism: by reference

148

System Service Descriptions

I/0O status block that is to receive the final completion status. The i 0sb argument is the address of
this quadword block.

When the i 0sb argument is specified, SBRKTHRU sets the quadword to 0 when it queues the mes-
sage request. Then, after the message is sent to the specified terminals, SBRKTHRU returns four in-
formational items, one item per word, in the quadword 1/O status block.

These informational items indicate the status of the messages sent only to terminals and mailboxes on
the local node; these items do not include the status of messages sent to terminals and mailboxes on

other nodes in an OpenVMS Cluster system.

The following table shows each word of the quadword block and the informational item it contains.

Word |Informational Item

1 A condition value describing the final completion status.

2 A decimal number indicating the number of terminals and mailboxes to which $BRK-
THRU successfully sent the message.

3 A decimal number indicating the number of terminals to which $BRKTHRU failed to send
the message because the write to the terminals timed out.

4 A decimal number indicating the number of terminals to which SBRKTHRU failed to send
the message because the terminals were set to the NOBROADCAST characteristic (by us-
ing the DCL command SET TERMINAL/NOBROADCAST).

carcon

OpenVMS usage: longword unsigned

type: longword (unsigned)
access: read only
mechanism: by value

Carriage control specifier indicating the carriage control sequence to follow the message that S BRK-
THRU sends to the terminals. The car con argument is a longword containing the carriage control
specifier.

For a list of the carriage control specifiers that you can use in the car con argument, refer to the V.S/
OpenVMS 1/0 User's Reference Manual.

If you do not specify the car con argument, SBRKTHRU uses a default value of 32, which repre-
sents a space in the ASCII character set. The message format resulting from this default value is a line

feed, the message text, and a carriage return.

The car con argument has no effect on message formatting specified by the BRK$SM_ SCREEN flag
in the f | ags argument. See the description of the f | ags argument.

flags

OpenVMS usage: mask longword
type: longword (unsigned)

149

System Service Descriptions

access: read only

mechanism: by value

Flag bit mask specifying options for the SBRKTHRU operation. The f | ags argument is a longword
value that is the logical OR of each desired flag option.

Each flag option has a symbolic name. The SBRKDEF macro defines the following symbolic names.

Symbolic Name

Description

BRKS$V_ERASE_LINES

When specified with the BRK$M_SCREEN flag, BRK$V_ER-

ASE _LINES causes a specified number of lines to be cleared from the
screen before the message is displayed. When BRK$SM_SCREEN is
not also specified, BRK$V_ERASE LINES is ignored.

Unlike the other Boolean flags, BRK$V ERASE LINES specifies
a 1-byte integer in the range 0 to 24. It occupies the first byte in the
longword flag mask. In coding the call to S BRKTHRU, specify the
desired integer value in the OR operation with any other desired flags.

BRKS$M_SCREEN

When specified, SBRKTHRU sends screen-formatted messages as
well as messages formatted through the use of the car con argu-
ment. BBRKTHRU sends screen-formatted messages to terminals
with the DEC_CRT characteristic, and it sends messages formatted by
car con to those without the DEC_CRT characteristic. You set the
DEC_CRT characteristic for the terminal by using the DCL command
SET TERMINAL/DEC CRT.

A screen-formatted message is displayed at the top of the termi-
nal screen, and the cursor is repositioned at the point it was prior to
the broadcast message. However, the BRK$V_ERASE LINES and
BRK$SM_BOTTOM flags also affect the display.

BRK$SM_BOTTOM

When BRK$M_BOTTOM is specified and BRK$SM_SCREEN is al-
so specified, SBRKTHRU writes the message to the bottom of the ter-
minal screen instead of the top. BRK$M_BOTTOM is ignored if the
BRK$M_SCREEN flag is not set.

BRK$M_NOREFRESH

When BRK§M_NOREFRESH is specified, SBRKTHRU, after writ-
ing the message to the screen, does not redisplay the last line of a read
operation that was interrupted by the broadcast message. This flag is
useful only when the BRK$SM SCREEN flag is not specified, because
BRKS$M_NOREFRESH is the default for screen-formatted messages.

BRKS$M_CLUSTER

Specifying BRKSM_CLUSTER enables $BRKTHRU to send the
message to terminals or mailboxes on other nodes in an OpenVMS
Cluster system. If BRK$SM_ CLUSTER is not specified, SBRKTHRU
sends messages only to terminals or mailboxes on the local node.

reqid

OpenVMS usage: longword unsigned

type: longword (unsigned)

access: read only

150

System Service Descriptions

mechanism: by value

Class requester identification, which identifies to SBRKTHRU the application (or image) that is call-
ing $SBRKTHRU. The r eqi d argument is this longword identification value.

The r eqi d argument is used by several images that send messages to terminals and can be used by as
many as 16 different user images as well.

When such an image calls SBRKTHRU, specifying r eqi d, SBRKTHRU notifies the terminal that
this image wants to write to the terminal. This makes it possible for you to allow the image to write or
prevent it from writing to the terminal.

To prevent a particular image from writing to your terminal, you use the image's name in the DCL
command SET TERMINAL/NOBROADCAST= image-name. Note that image-name in this DCL
command is the same as the value of the r eqi d argument that the image passed to SBRKTHRU.

For example, you can prevent the Mail utility (which is an image) from writing to the terminal by en-
tering the DCL command SET BROADCAST=NOMAIL.

The $SBRKDEF macro defines class names that are used by several OpenVMS components. These
components specify their class names by using the r eqi d argument in calls to SBRKTHRU. The
$BRKDEF macro also defines 16 class names (BRK$C USERI through BRK$SC USERI16) for the
use of user images that call SBRKTHRU. The class names and the components to which they corre-
spond are as follows.

Class Name Component

BRKSC GENERAL This class name is used by the image invoked by the DCL command
REPLY and the callers of the SBRKTHRU service. This is the default
if the r eqi d argument is not specified.

BRKS$C PHONE This class name is used by the OpenVMS Phone utility.

BRKS$SC MAIL This class name is used by the OpenVMS Mail utility.

BRKS$C DCL This class name is used by the DIGITAL Command Language (DCL)
interpreter for the Ctrl/T command, which displays the process status.

BRKSC QUEUE This class name is used by the queue manager, which manages print
and batch jobs.

BRKS$C SHUTDOWN This class name is used by the system shutdown image, which is in-
voked by the DCL command REPLY/ID=SHUTDOWN.

BRKS$C URGENT This class name is used by the image invoked by the DCL command

REPLY/ID=URGENT.

BRKS$C USERI through These class names can be used by user-written images.
BRKS$C_USERI16

timout

OpenVMS usage: longword unsigned

type: longword (unsigned)
access: read only
mechanism: by value

151

System Service Descriptions

Timeout value, which is the number of seconds that must elapse before an attempted write by $BRK-
THRU to a terminal is considered to have failed. The t i mout argument is this longword value (in
seconds).

Because $BRKTHRU calls the $QIO service to perform write operations to the terminal, the timeout
value specifies the number of seconds allotted to $QIO to perform a single write operation to the ter-
minal.

If you do not specify the t i mout argument, SBRKTHRU uses a default value of 0 seconds, which
specifies infinite time (no timeout occurs).

The value specified by t i nout can be 0 or any number greater than 4; the numbers 1, 2, 3, and 4 are
illegal.

When you press Ctrl/S or the No Scroll key, SBBRKTHRU cannot send a message to the terminal. In
such a case, the value of t i nout is usually exceeded and the attempted write to the terminal fails.

astadr

OpenVMS usage: ast procedure

type: procedure value
access: call without stack unwinding
mechanism: by reference

AST service routine to be executed after SBRKTHRU has sent the message to the specified terminals.
The ast adr argument is the address of this routine.

If you specify ast adr , the AST routine executes at the same access mode as the caller of $BRK-
THRU.

astprm

OpenVMS usage: user_arg

type: longword (unsigned)
access: read only
mechanism: by value

AST parameter to be passed to the AST routine specified by the ast adr argument. The ast pr mar-
gument specifies this longword parameter.

Description

The Breakthrough service sends a message to one or more terminals. The SBRKTHRU service com-
pletes asynchronously; that is, it returns to the caller after queuing the message request without wait-
ing for the message to be written to the specified terminals.

The $BRKTHRU service operates by assigning a channel (by using the $ASSIGN service) to the
terminal and then writing to the terminal (by using the $QIO service). When calling $QIO, $BRK-
THRU specifies the I0§ WRITEVBLK function code, together with the IO$M_BREAKTHRU,
I0O$SM_CANCTRLO, and (optionally) IO$M_REFRESH function modifiers.

152

System Service Descriptions

The current state of the terminal determines if and when the broadcast message is displayed on the
screen. For example:

+ If the terminal is performing a read operation when $BRKTHRU sends the message, the read op-
eration is suspended, the message is displayed, and then the line that was being read when the read

operation was suspended is redisplayed (equivalent to the action produced by Ctrl/R).

+ If the terminal is performing a write operation when SBRKTHRU sends the message, the message
is displayed after the current write operation has completed.

o If the terminal has the NOBROADCAST characteristic set for all images, or if you have disabled
the receiving of messages from the image that is issuing the SBRKTHRU call (see the description
of the r eqi d argument), the message is not displayed.

After the message is displayed, the terminal is returned to the state it was in prior to receiving the
message.

Required Access or Privileges

The calling process must have OPER privilege for the following conditions:

* To send a message to more than one terminal

* To send a message to a terminal that is allocated to another user

» To send a message to a specific user that has a different user name than the current process

To send a message to a specific user that is the same as your process requires no privileges.

Required Quota
The SBRKTHRU service allows the message text to be as long as 16,350 bytes; however, both

the system parameter MAXBUF and the caller's available process buffered I/O byte count limit
(BYTLM) quota must be sufficient to handle the message.

Related Services
$ALLOC, SASSIGN, $BRKTHRUW, $SCANCEL, $SCREMBX, $SDALLOC, $SDASSGN, $DELM-
BX, $DEVICE_SCAN, $DISMOU, $GETDVI, $GETDVIW, $GETMSG, $GETQUI, $GETQUIW,

$INIT _VOL, SMOUNT, $SPUTMSG, $QIO, $QIOW, $SNDERR, $SNDJBC, $SNDJBCW, $SNDO-
PR

Condition Values Returned

SS$ NORMAL
The service completed successfully.
SS$ ACCVIO

The message buffer, message buffer descriptor, device name string, or device name string descrip-
tor cannot be read by the caller.

153

System Service Descriptions

SS$ BADPARAM

The message length exceeds 16,350 bytes; the process's buffered I/O byte count limit (BYTLM)
quota is insufficient; the message length exceeds the value specified by the system parameter
MAXBUF; the value of the TIMOUT parameter is nonzero and less than 4 seconds; the value of
the REQID is outside the range 0 to 63; or the value of the SNDTYP is not one of the legal ones
listed.

SS$ EXQUOTA

The process has exceeded its buffer space quota and has disabled resource wait mode with the Set
Resource Wait Mode (SSETRWM) service.

SS$ INSFMEM

The system dynamic memory is insufficient for completing the request and the process has dis-
abled resource wait mode with the Set Resource Wait Mode ($SETRWM) service.

SS$ NONLOCAL

The device is on a remote node.
SS$_NOOPER

The process does not have the necessary OPER privilege.
SS$ NOSUCHDEV

The specified terminal does not exist, or it cannot receive the message.

Condition Values Returned in the I/O Status Block

Any condition values returned by the $ASSIGN, $FAO, SGETDVI, $GETJPI, or $QIO service.

$BRKTHRUW

Breakthrough and Wait — Sends a message to one or more terminals. The $BRKTHRUW service op-
erates synchronously; that is, it returns to the caller after the message has been sent to the specified
terminals. For asynchronous operations, use the Breakthrough ($BRKTHRU) service; SBRKTHRU
returns to the caller after queuing the message request, without waiting for the message to be deliv-
ered. Aside from the preceding, SBRKTHRUW is identical to SBRKTHRU. For all other information
about the SBRKTHRUW service, refer to the description of SBRKTHRU. For additional information
about system service completion, refer to the documentation of the Synchronize ($SYNCH) service.
The $BRKTHRU and $BRKTHRUW services supersede the Broadcast (SBRDCST) service. When
writing new programs, you should use $BRKTHRU or SBRKTHRUW instead of $BRDCST. When
updating old programs, you should change all uses of $BRDCST to SBRKTHRU or $BRKTHRUW.
$BRDCST is now an obsolete system service and is no longer being enhanced.

Format

SYS$BRKTHRUW
[efn] ,nsgbuf [,sendto] [,sndtyp] [,iosb] [,carcon] [,flags]

154

System Service Descriptions

[,reqid] [,tinout] [,astadr] [,astprn

C Prototype

i nt sys$brkt hruw
(unsigned int efn, void *msgbuf, void *sendto, unsigned int sndtyp,
struct _iosb *iosb, unsigned int carcon, unsigned int flags,
unsi gned int reqid, unsigned int tinout,
void (*astadr)(__unknown_parans),int astprnj;

$CANCEL

Cancel I/O on Channel — Cancels all pending I/O requests on a specified channel. In general, this in-
cludes all I/O requests that are queued, as well as the request currently in progress.

Format

SYS$CANCEL chan

C Prototype

i nt sys$cancel (unsigned short int chan);

Argument

chan

OpenVMS usage: channel

type: word (unsigned)
access: read only
mechanism: by value

I/O channel on which I/O is to be canceled. The chan argument is a word containing the channel
number.

Description

The Cancel 1/0 on Channel service cancels all pending I/O requests on a specified channel. In general,
this includes all I/O requests that are queued, as well as the request currently in progress.

When you cancel a request currently in progress, the driver is notified immediately. The actual cancel-
lation might occur immediately, depending on the logical state of the driver. When cancellation does
occur, the following action for I/O in progress, similar to that for queued requests, takes place:

1. The specified event flag is set.

2. The first word of the I/O status block, if specified, is set to SS§ CANCEL if the I/O request is
queued, or to SS$ ABORT if the I/O is in progress.

155

System Service Descriptions

3. The AST, if specified, is queued.

Proper synchronization between this service and the actual canceling of 1/0 requests requires the issu-
ing process to wait for I/O completion in the normal manner and then note that the I/O has been can-
celed.

If the I/O operation is a virtual I/O operation involving a disk or tape ancilliary control process (ACP),
the 1/0 cannot be canceled. In the case of a magnetic tape, however, cancellation might occur if the

device driver is hung.

Outstanding I/O requests are automatically canceled at image exit.

Required Access or Privileges

To cancel I/O on a channel, the access mode of the calling process must be equal to or more privileged
than the access mode that the process had when it originally made the channel assignment.

Required Quota

The $SCANCEL service requires system dynamic memory and uses the process's buffered I/0 limit
(BIOLM) quota.

Related Services
$ALLOC, SASSIGN, $BRKTHRU, $BRKTHRUW, $CREMBX, $DALLOC, $DASSGN, $DELM-
BX, $DEVICE_SCAN, $DISMOU, $GETDVI, $GETDVIW, $GETMSG, $GETQUI, $GETQUIW,

SINIT_VOL, SMOUNT, $PUTMSG, $QIO, $QIOW, SSNDERR, $SNDJBC, $SNDJBCW, $SNDO-
PR

Condition Values Returned

SS$ NORMAL

The service completed successfully.
SS$ EXQUOTA

The process has exceeded its buffered 1/0 limit (BIOLM) quota.
SS$_INSFMEM

The system dynamic memory is insufficient for canceling the 1/O.
SS$ IVCHAN

You specified an invalid channel, that is, a channel number of 0 or a number larger than the num-
ber of channels available.

SS$ NOPRIV

The specified channel is not assigned or was assigned from a more privileged access mode.

156

System Service Descriptions

$CANEXH

Cancel Exit Handler — Deletes an exit control block from the list of control blocks for the calling ac-
cess mode. Exit control blocks are declared by the Declare Exit Handler (SDCLEXH) service and are
queued according to access mode in a last-in first-out order.

Format

SYS$CANEXH [desbl k]

C Prototype

i nt sys$canexh (void *deshl k);

Argument

desblk

OpenVMS usage: exit _handler block

type: longword (unsigned)
access: read only
mechanism: by reference

Control block describing the exit handler to be canceled. If you do not specify the desbl k argument
or specify it as 0, all exit control blocks are canceled for the current access mode. The desbl k argu-
ment is the address of this control block.

Condition Values Returned

SS$ NORMAL
The service completed successfully.

SS$ ACCVIO
The first longword of the exit control block or the first longword of a previous exit control block
in the list cannot be read by the caller, or the first longword of the preceding control block cannot
be written by the caller.

SS$ IVSSRQ
The call to the service is invalid because it was made from kernel mode.

SS$ NOHANDLER

The specified exit handler does not exist.

157

System Service Descriptions

$CANTIM

Cancel Timer — Cancels all or a selected subset of the Set Timer requests previously issued by the
current image executing in a process. Cancellation is based on the request identification specified in
the Set Timer (SSETIMR) service. If you give the same request identification to more than one timer
request, all requests with that request identification are canceled.

Format

SYS$CANTI M [reqi dt] ,[acnode]

C Prototype

int sys$cantim (unsigned __int64 reqidt, unsigned int acnode);

Arguments

reqidt

OpenVMS usage: user_arg

type: longword (unsigned)
access: read only
mechanism: by value

Request identification of the timer requests to be canceled. If you specify it as 0 (the default), all timer
requests are canceled. The r eqi dt argument is a longword containing this identification.

acmode

OpenVMS usage: access_mode

type: longword (unsigned)
access: read only
mechanism: by value

Access mode of the requests to be canceled. The acnode argument is a longword containing the ac-
cess mode. The SPSLDEF macro defines the following symbols for the four access modes.

Symbol Access Mode
PSL$C KERNEL Kernel
PSLSC EXEC Executive
PSL$C_SUPER Supervisor
PSL$C USER User

The most privileged access mode used is the access mode of the caller.

158

System Service Descriptions

Description

The Cancel Timer service cancels all or a selected subset of the Set Timer requests previously issued
by the current image executing in a process. Cancellation is based on the request identification speci-
fied in the Set Timer ($SETIMR) service. If you give the same request identification to more than one
timer request, all requests with that request identification are canceled.

Outstanding timer requests are automatically canceled at image exit.

Required Access or Privileges

The calling process can cancel only timer requests that are issued by a process whose access mode is
equal to or less privileged than that of the calling process.

Required Quota
Canceled timer requests are restored to the process's quota for timer queue entries (TQELM quota).
Related Services

$ASCTIM, $BINTIM, $SCANWAK, $GETTIM, SGETTIM_PREC, SNUMTIM, $SCHDWK,
$SETIME, $SETIMR

Condition Values Returned

SS$ NORMAL

The service completed successfully.

$CHECK_ACCESS

Check Access — Determines on behalf of a third-party user whether a named user can access the ob-
ject specified.

Format
SYS$CHECK ACCESS

[objtyp], [objnan], [usrnan], itmst, [contxt], [clsnan], [objpro],
[usrpro]

C Prototype

i nt sys$check_access
(unsigned int *objtyp, void *objnam void *usrnam void *itm st,
unsi gned int *contxt, void *clsnam void *objpro, void *usrpro);

Arguments

objtyp

159

System Service Descriptions

OpenVMS usage: longword unsigned

type: longword (unsigned)
access: read only
mechanism: by reference

Type of object being accessed. The obj t yp argument is the address of a longword containing a value
specifying the type of object. The appropriate symbols are listed in the following table and are defined
in the system macro SACLDEF library.

Symbol Meaning

ACLSC _CAPABILITY Object is a restricted resource; use the reserved name
VECTOR.

ACL$C DEVICE Object is a device.

ACLSC FILE Object is a Files-11 On-Disk Structure Level 2 file.

ACL$C GROUP GLOBAL SECTION Object is a group global section.

ACL$C JOBCTL QUEUE Object is a batch, print, or server queue.

ACLSC LOGICAL NAME TABLE Object is a logical name table.

ACLS$SC SYSTEM_GLOBAL SECTION |Object is a system global section.

For further information about these symbols, see the description of the ¢l shamargument.

objnam

OpenVMS usage: char_ string

type: character-coded text string
access: read only
mechanism: by descriptor—fixed-length string descriptor

Name of the object being accessed. The obj namargument is the address of a character-string de-
scriptor pointing to the object name.

usrnam

OpenVMS usage: char string

type: character-coded text string
access: read only
mechanism: by descriptor—fixed-length string descriptor

Name of the user attempting access. The usr namargument is the address of a descriptor that points
to a character string that contains the name of the user attempting to gain access to the specified ob-
ject. The user name string can contain a maximum of 12 alphanumeric characters.

itmlst

OpenVMS usage: item list 3
type: longword (unsigned)

160

System Service Descriptions

access: read only

mechanism: by reference

Attributes describing how the object is to be accessed and information returned after SCHECK _AC-
CESS performs the protection check (for instance, security alarm information).

For each item code, you must include a set of four elements and end the list with a longword contain-
ing the value 0 (CHP$_END). This is shown in the following diagram:

31 15 0
Buffer length

ltem code

Buffer address

Retum length address

ZK-5186A-GE

The following table defines the item descriptor fields.

Descriptor Field |Definition

Buffer length

A word containing a user-supplied integer specifying the length (in bytes) of
the associated buffer. The length of the buffer needed depends on the item code
specified in the item code field of the item descriptor. If the value of buffer
length is too small, the service truncates the data.

Item code A word containing a user-supplied symbolic code specifying the item of infor-
mation in the associated buffer.

Buffer address A longword containing the user-supplied address of the buffer.

Return length ad- | A longword containing the address of a word in which SCHECK ACCESS

dress writes the number of bytes written to the buffer pointed to by buf adr . If the
buffer pointed to by buf adr is used to pass information to SCHECK AC-
CESS, r et | enadr is ignored but must be included.

contxt

OpenVMS usage: longword

type: longword (unsigned)

access: read-write

mechanism: by reference

Longword used to maintain the user authorization file (UAF) context. The cont xt argument is the
address of a longword to receive a UAI context longword. On the initial call, this longword should
contain the value —1. On subsequent calls, the value of the cont Xt argument from the previous call
should be passed back in.

Using the cont xt argument keeps the UAF open across all calls, thereby improving the performance
of the system on subsequent calls. To close the UAF, you must run down the image.

The resulting cont xt value from a SCHECK ACCESS call can also be used as the input cont xt
argument to the SGETUALI system service, and vice versa.

161

System Service Descriptions

clsnam

OpenVMS usage: char_string

type: character-coded text string
access: read only
mechanism: by descriptor

Object class name associated with the protected object. The ¢l snamargument is the address of a
descriptor pointing to the name of the object class associated with the object specified by either the
obj namor the obj pr 0 argument. The cl shamand obj t yp arguments are mutually exclusive.
The cl snamargument is the preferred argument to SCHECK ACCESS. The following object class
names are valid:

CAPABILITY QUEUE

COMMON _EVENT CLUSTER |RESOURCE DOMAIN
DEVICE SECURITY CLASS

FILE SYSTEM GLOBAL SECTION

GROUP_GLOBAL_SECTION |VOLUME

LOGICAL NAME TABLE

objpro

OpenVMS usage: char string

type: opaque byte stream or object handle
access: read only
mechanism: by descriptor

Buffer containing an object security profile or object handle. The obj pr 0 argument is the address of
a descriptor pointing to a buffer that contains an encoded object security profile or the address of a de-
scriptor pointing to an object handle.

Object handles vary according to the associated security object class. Currently, the only supported
object handles are for the file and device class objects where the object handle is a word or longword
channel.

The obj pr o and obj namarguments are mutually exclusive unless the 0bj pr 0 argument is a sim-
ple object handle. The obj pr 0 and usr pr 0 arguments are also mutually exclusive unless the ob-
j pr 0 argument is an object handle.

usrpro

OpenVMS usage: char_string

type: opaque byte stream
access: read only
mechanism: by descriptor

Buffer containing a user security profile. The usr pr o0 argument is the address of a descriptor point-
ing to a buffer that contains an encoded user security profile.

162

System Service Descriptions

The SCREATE_USER PROFILE service can be used to construct a user security profile. The usr -
pr o and usr namarguments are mutually exclusive. The obj pr o and usr pr o arguments are also
mutually exclusive unless the obj pr 0 argument is an object handle.

The item codes used with SCHECK ACCESS are described in the following list and are defined in
the SCHPDEF system macro library.

Item Codes

CHP$S_ACCESS

A longword bit mask that represents the desired access (SARMDEF). Only those bits set in CH-
P$_ACCESS are checked against the protection of the object to determine whether access is granted.

The default for CHP$ ACCESS is read. Symbolic representations for the access types associated with
the built-in protected classes are found in the SARMDEF macro.

For example, ARM$SM_MANAGE specifies Manage access for the queue class object. Access type
names are object class specific and vary from class to class. Because SCHECK ACCESS performs
only a bitwise comparison of access desired to object protection, the original Read, Write, Execute,
and Delete names can also be used to specify the first four access types for any object class.

The following table shows the access types available and lists their common interpretations. These
symbols are defined in the SARMDEEF system macro library. For more information, see the V'SI Open-
VMS Guide to System Security.

Access Type Access Permitted

ARMSM_READ Allows holders to read an object, perform wildcard directory lookups,
display jobs in a queue, or use an associated vector processor.

ARMS$M_WRITE Allows holders to alter the contents of an object, remove a directory
entry, write or extend existing files on a volume, or submit a job to a
queue.

ARMSM_EXECUTE Allows holders to run an image or command procedure, perform exact

directory lookups, issue physical I/O requests to a device, create new
files on a volume, or act as operator for a queue.

ARMSM DELETE Allows holders to delete an object, perform logical I/O to a device, or
delete a job in a queue.

ARM$M_CONTROL Allows holders to display or alter the security characteristics of an ob-
ject.

CHP$_ACMODE

A byte that defines the accessor's processor access mode (SPSLDEF). The following access modes
and their symbols are defined in the system macro library ($PSLDEF). Objects supported by the oper-
ating system do not consider access mode in determining object access.

Symbol Access Mode
PSL$C USER User
PSL$C SUPER |Supervisor

163

System Service Descriptions

Access Mode

Executive

Symbol
PSLS$C EXEC
PSL$C KERNEL |Kernel

If CHP$_ACMODE is not specified, access mode is not used to determine access.
CHPS_ALARMNAME

Address of a buffer to receive the alarm name from any Alarm ACE contained in the object's ACL.
Currently, if a matching Alarm ACE exists, the string SECURITY will be returned. The string re-
turned by CHP$ ALARMNAME can be used as input to the SAUDIT EVENT system service, using
the NSA$ ALARM_NAME item code.

CHPS_AUDIT_LIST

A list containing information to be added to any resulting security audit. The buf adr argu-
ment points to the beginning of an SAUDIT EVENT item list. See the i t m st argument of the
SAUDIT EVENT system service for a list of valid security auditing item codes. Note that the
NSAS$ EVENT TYPE and NSA$ EVENT SUBTYPE items are ignored when auditing with
SCHECK ACCESS. The CHP$V_AUDIT flag must be specified.

CHPS_AUDITNAME

Address of a buffer to receive the audit name from any Audit ACE contained in the object's ACL.
Currently, if a matching Audit ACE exists, the string SECURITY will be returned. The string returned
by CHP$ AUDITNAME can be used as input to the SAUDIT EVENT system service, using the
NSA$ AUDIT NAME item code.

CHPS_FLAG

A longword that controls various aspects of the protection check. The symbols in the following table
are offsets to the bits within the longword. You can also obtain the values as masks with the appropri-
ate bit set by using the prefix CHP$M rather than CHP$V. These symbols are defined in the system
macro library (SCHPDEF).

Symbol

Access

CHP$V_ALTER

Accessor desires write access to object.

CHP$V_AUDIT

Access audit requested.

CHP$V_CREATE

Perform the audit as an object creation event.

CHP$V_DELETE

Perform the audit as an object deletion event.

CHP$V_FLUSH

Force audit buffer flush.

CHPS$V_INTERNAL

Audit on behalf of the Trusted Computing Base (TCB). Reserved to
OpenVMS.

CHP$SV_MANDATORY

Force the object access event to be audited.

CHP$V_NOFAILAUD

Do not perform audits for failed access.

CHP$V_NOSUCCAUD

Do not perform audits for successful access.

CHP$V_OBSERVE

Accessor desires read access to object.

CHP$V_SERVER

Audit on behalf of a TCB server process.

164

System Service Descriptions

Access
Accessor is eligible for READALL privilege.

Symbol
CHP$V_USEREADALL

The default for CHP$ FLAG is CHP$V_OBSERVE.

The primary purpose of the CHP§V_OBSERVE and CHP$V_ALTER flags is as latent support for a
mandatory (lattice) security policy, such as that provided by the Security Enhanced VMS (SEVMS)
offering.

CHPS_MATCHEDACE

A variable-length data structure containing the first Identifier ACE in the ACL that granted or denied
access to the object. The SFORMAT ACL system service describes the format of an Identifier ACE.

CHPS$_PRIVUSED
A longword mask of flags that represent the privileges used to gain access.

You can also obtain the values as masks with the appropriate bit set by using the prefix CHP$M rather
than CHP$V. The symbols are defined in the system macro library (SCHPDEF). The following sym-
bols are offsets to the bits within the longword.

Symbol Meaning

CHP$V_SYSPRV

SYSPRYV was used to gain the requested access.

CHP$V_GRPPRV

GRPPRYV was used to gain the requested access.

CHP$V_BYPASS

BYPASS was used to gain the requested access.

CHPSV_READALL

READALL was used to gain the requested access.

CHP$V_OPER

OPER was used to gain the requested access.

CHP$V_GRPNAM

GRPNAM was used to gain the requested access.

CHP$V_SYSNAM

SYSNAM was used to gain the requested access.

CHP$V_GROUP

GROUP was used to gain the requested access.

CHP$V_WORLD

WORLD was used to gain the requested access.

CHP$V_PRMCEB

PRMCEB was used to gain the requested access.

CHP$SV_UPGRADE

UPGRADE was used to gain the requested access.

CHP$SV_DOWNGRADE

DOWNGRADE was used to gain the requested access.

Description

The Check Access service invokes the operating system control protection check mechanism,
$CHKPRO, to determine whether a named user is allowed the described access to the named object.
A file server, for example, might check the access attributes of a user who attempts to access a file

(the object).

If the user can access the object, SCHECK ACCESS returns the SS§ NORMAL status code; other-
wise, SCHECK ACCESS returns SS§ NOPRIV.

The arguments accepted by this service specify the name and class of object being accessed, the name
of the user requesting access to the object, the type of access desired, and the type of information to be
returned.

165

System Service Descriptions

The caller can also request that an object access audit be performed if security auditing has been en-
abled for the object class or if Audit ACEs are contained in the object's ACL. Auditing ACEs include
both Alarm ACEs and Audit ACEs. The CHP$V_AUDIT flag requests an access audit. This requires
that the caller be in executive or kernel mode or possess the AUDIT privilege.

Normally, SCHECK ACCESS generates an object access audit when an audit is required. The caller
can specify the CHP$V_CREATE flag to force an object creation audit instead of an object access au-
dit. Similarly, the CHP$V_DELETE flag forces an object deletion audit. The CHP$ AUDIT LIST
item code can be used to specify additional information to be included in any resulting audit records.
With certain types of devices, SCHECK ACCESS can return a false negative, but never a false pos-
itive. This is due to additional LOG IO and PHY IO privilege checking in the $QIO system service
that might override an otherwise unsuccessful access attempt. These privilege checks are not mirrored
by the SCHECK ACCESS system service. The affected devices are those that are non-file-structured
or mounted foreign and also either spooled, file-oriented, or shareable. For example, mailbox devices
fall into this category because they are non-file-structured and shareable. To accurately duplicate the
result that would be obtained if the user had issued a read or write against these devices, it might be
necessary to test for these additional privileges using the SCHECK PRIVILEGE system service. For

more information about access requirements for devices, see the VSI OpenVMS I/O User's Reference
Manual.

Required Access or Privileges

Access to SYSUAF.DAT and RIGHTSLIST.DAT is required. AUDIT privilege is required when re-
questing a user mode audit.

Required Quota

None

Related Services

$CHKPRO, SCREATE_USER_PROFILE, SFORMAT ACL

Condition Values Returned

SS$ NORMAL
The service completed successfully; the desired access is granted.
SS$ _ACCVIO

The item list cannot be read by the caller, one of the buffers specified in the item list cannot be
written by the caller, or one of the arguments could not be read or written.

SS$ BADPARAM
Invalid or conflicting combination of parameters.
SS$ _INSFARG

Insufficient information to identify object or user.

166

System Service Descriptions

SS$ INSFMEM

Insufficient process memory to execute service.
SS$ NOAUDIT

Caller lacks privilege to request audit.
SS$ NOCALLPRIV

Caller lacks privilege to access authorization database.
SS$ NOCLASS

No matching object class was located.
SS$ NOPRIV

The desired access is not granted.
SS$ UNSUPPORTED

Operations on remote object are not supported.

If CHP$V_AUDIT is specified, any error from the SAUDIT EVENT system service can also be re-
turned.

$CHECK_FEN (Alpha and Integrity servers)

Check Floating Point — On Alpha and Integrity server systems, indicates whether floating point is en-
abled for the current image.

Format

SYS$CHECK_FEN [f1 ags]

C Prototype

int sys$check fen (unsigned int *flags);

Arguments
flags

OpenVMS usage: mask longword

type: longword (unsigned)
access: write only
mechanism: by 32- or 64-bit reference (Alpha and Integrity servers)

For architectures that have multiple floating-point resources that can be enabled separately, this long-
word is returned with a bitmask indicating which resources are enabled. On Alpha systems, no sepa-

167

System Service Descriptions

rate resources exist; nothing is returned. On Integrity server systems, the bitmask has two bits: bit 0
for the low floating-point bank and bit 1 for the high floating-point bank.

Description

The Check Floating Point service returns a Boolean value in R0 indicating whether any floating point
resources are enabled for the current image.

The $SCHECK_FEN service returns a value of 1 if the floating point is enabled for the current image.
A value of 0 is returned if the floating point is disabled.

An optional longword, passed by reference, can be specified to receive architecture-dependent infor-
mation about the floating-point resources in use.

Required Access or Privileges

None

Required Quota

None

$CHECK_PRIVILEGE

Check Privilege — Determines whether the caller has the specified privileges or identifier. In addi-
tion to checking for a privilege or an identifier, SCHECK PRIVILEGE determines if the caller's use
of privilege needs to be audited.

Format

SYS$CHECK PRI VI LEGE
[efn] ,prvadr ,[altprv] ,[flags] ,[itmst] ,[audsts] ,[astadr]
,[astprn

C Prototype
int sys$check privilege
(unsigned int efn, struct _generic_64 *prvadr,
struct _generic_64 *altprv, unsigned int flags,

void *itm st, unsigned int *audsts,
void (*astadr)(__unknown_parans), int astprm;

Arguments

efn

OpenVMS usage: ef number

type: longword (unsigned)
access: read only
mechanism: by value

168

System Service Descriptions

Number of the event flag to be set when the audit completes. The ef n argument is a longword con-
taining the number of the event flag; however, SCHECK PRIVILEGE uses only the low-order byte.
If ef n is not specified, event flag 0 is used.

Upon request initiation, SCHECK PRIVILEGE clears the specified event flag.

prvadr

OpenVMS usage: mask quadword

type: quadword (unsigned)
access: read only
mechanism: by reference

The privilege, privileges, or identifier that the calling process must possess.

The pr vadr argument is either the address of a quadword bit array, where each bit corresponds to a
privilege, or the address of a quadword identifier.

When the array lists privileges, each bit has a symbolic name. The $PRVDEF macro defines these
names. You form the bit array by specifying the symbolic name of each desired privilege in a logical
OR operation. See the SSETPRV system service for the symbolic name and description of each privi-
lege.

If the caller passes an identifier, the caller must set the NSA$SM_IDENTIFIER bit in the f | ags long-
word. The identifier structure is defined by the SKGBDEF macro. The identifier attributes (KGB$)

are reserved for future use and should be set to 0.

altprv

OpenVMS usage: mask quadword

type: quadword (unsigned)
access: read only
mechanism: by reference

Alternate privilege mask to check against. The al t pr v argument is the address of a quadword priv-
ilege mask, where each bit corresponds to a privilege. This argument and the flags NSA$M_AUTH-
PRIV, NSA$SM_IDENTIFIER, and NSA$M_PROCPRIV are mutually exclusive.

With this argument, SCHECK PRIVILEGE uses the supplied set of privileges instead of the current,
active privileges. Each bit in the mask has a symbolic name, defined by the $PRVDEF macro. You
form the bit array by specifying the symbolic name of each desired privilege in a logical OR opera-

tion. See the $SSETPRYV system service for the symbolic name and description of each privilege.

flags

OpenVMS usage: mask longword

type: longword (unsigned)
access: read only
mechanism: by value

169

System Service Descriptions

Flags that specify options for the SCHECK PRIVILEGE operation. The f | ags argument is a long-
word bit mask, where each bit corresponds to an option.

Each flag option has a symbolic name. The SNSADEF macro defines the following symbolic names.
Be aware that the flags NSASM_AUTHPRIV, NSA$SM_IDENTIFIER, and NSA$SM_PROCPRIV are
mutually exclusive; therefore, you can specify only one of these flag options.

Symbolic Name

Description

NSAS$SM_AUTHPRIV

Checks the authorized privileges of the process instead of the current
(active) privileges.

NSA$M_FLUSH

Specifies that all messages in the audit server buffer be written to the
audit log file.

NSAS$SM_IDENTIFIER

Interprets the pr vadr argument as the address of an identifier instead
of a privilege mask.

NSA$SM_INTERNAL

Specifies that the SCHECK PRIVILEGE call originates in the context
of a trusted computing base (TCB) component. The auditing compo-
nents use this flag to indicate that internal auditing failures should re-
sult in a SECAUDTCB bugcheck. This flag is reserved to OpenVMS.

NSA$SM_MANDATORY

Specifies that an audit is to be performed, regardless of system alarm
and audit settings.

NSA$M_PROCPRIV

Checks the permanent privileges of the process, instead of the privi-
leges in the current (active) mask.

NSASM_SERVER

Indicates that the call originates in a TCB server process and that the
event should be audited regardless of the state of a process-specific
no-audit bit.

Trusted servers use this flag to override the no-audit bit when they
want to perform explicit auditing on behalf of a client process. This
flag is reserved to OpenVMS.

itmlst

OpenVMS usage: item list 3

type: longword (unsigned)
access: read only
mechanism: by reference

Item list specifying additional security auditing information to be included in any security audit that
is generated by the service. The i t m st argument is the address of a list of item descriptors, each of
which describes an item of information. The list of item descriptors is terminated by a longword of 0.

The item list is a standard format item list. The following diagram depicts the format of a single item

descriptor.
31

15 0

ltem code

Buffer length

Buffer address

Retum length address

ZK-5186A-GE

170

System Service Descriptions

The following table defines the item descriptor fields.

Descriptor Field Definition

Buffer length A word specifying the length of the buffer in bytes. The buffer supplies in-
formation to be used by SCHECK PRIVILEGE. The required length of
the buffer varies, depending on the item code specified; each item code de-
scription specifies the required length.

Item code A word containing a symbolic code describing the nature of the informa-
tion currently in the buffer or to be returned in the buffer. The location of
the buffer is pointed to by the buffer address field. Each item code has a
symbolic name.

Buffer address A longword containing the address of the buffer that specifies or receives
the information.

Return length address | Not currently used; this field is reserved to OpenVMS. You should specify
0.

All item codes listed in the Item Codes section of the SAUDIT EVENT service are valid within

the item list used by the SCHECK PRIVILEGE service except for the NSA$ EVENT TYPE and
NSAS$ EVENT SUBTYPE item codes, which are supplied internally by the SCHECK PRIVILEGE
service.

$CHECK PRIVILEGE should be called with an item list identifying the alarm and audit journals, and
does not need to use the NSA$ PRIVS USED item code. NSA$ PRIVS USED is supplied automat-
ically by the SCHECK PRIVILEGE service. Note that SCHECK PRIVILEGE returns SS§ BAD-
PARAM if you supply either NSA$S EVENT TYPE or NSA$ EVENT SUBTYPE. These items are
supplied internally by SCHECK PRIVILEGE.

audsts

OpenVMS usage: cond value type

type: longword (unsigned)
access: write only
mechanism: by reference

Longword condition value that receives a final completion status from the operation. If a security au-
dit is required, the final completion status represents either the successful completion of the result-
ing security audit or any failing status that occurred while the security audit was performed within the
AUDIT_SERVER process.

The audst s argument is valid only when the service returns success and the status is not SS§ EVT-
NOTENAB. In addition, the caller must either make use of the ast adr argument or use the
$CHECK PRIVILEGEW service before attempting to access audst s.

astadr
OpenVMS usage: ast_procedure

type: procedure value

access: call without stack unwinding

171

System Service Descriptions

mechanism: by reference
Asynchronous system trap (AST) routine to be executed after the audst s argument is written. The

ast adr argument, which is the address of a longword value, is the procedure value of the AST rou-
tine.

The AST routine executes in the access mode of the caller of SCHECK PRIVILEGE.

astprm

OpenVMS usage: user arg

type: longword (unsigned)
access: read only
mechanism: by value

Asynchronous system trap (AST) parameter passed to the AST service routine. The ast pr margu-
ment is a longword value containing the AST parameter.

Description

The Check Privilege service determines whether a user has the privileges or identifier that an opera-

tion requires. In addition, SCHECK PRIVILEGE audits the use of privilege if privilege auditing has
been enabled by the site security administrator. The caller does not need to determine whether privi-

lege auditing has been enabled.

Required Access or Privileges
AUDIT privilege is required.

Required Quota

None

Related Services

SAUDIT EVENT, $SETPRV

Condition Values Returned

SS$ NORMAL

The service completed successfully.
SS$ ACCVIO

The specified parameter of the item list buffer is not accessible.
SS$ BADBUFADR

The buffer address is invalid or not readable.

172

System Service Descriptions

SS$ BADBUFLEN
The specified buffer length is invalid or out of range.
SS$ BADCHAIN

The address of the next item list to be processed, as identified in the buffer address field, is either
not readable or points to itself.

SS$ BADITMCOD
The specified item code is invalid or out of range.
SS$ BADPARAM
The specified list entry is invalid or out of range.
SS$ EVINOTENAB
No audit required; privilege granted.
SS$ ILLEFC
You specified an illegal event flag number.
SS$ INSFARG
The argument list contains too few arguments for the service.
SS$ INVAJLNAM
The alarm or audit journal name is invalid.
SS$ IVSTSFLG
The specified system service flags are invalid.
SS$ NOAUDIT
The caller does not have the required privilege to perform the audit.
SS$ NOPRIV
The subject does not have the required privileges or identifier.
SS$ NOJprivilege-name]
The subject does not have a specific privilege.
SS$ OVRMAXAUD
There is insufficient memory to perform the audit.
SS$ TOOMANYAJL

Too many alarm or audit journals were specified.

173

System Service Descriptions

SS$ UNASEFC

An unassociated event flag cluster was specified.

$CHECK_PRIVILEGEW

Check Privilege and Wait — Determines whether the caller has the specified privileges or identifi-
er. In addition to checking for a privilege or an identifier, the Check Privilege and Wait service deter-
mines if the caller's use of privilege needs to be audited. SCHECK PRIVILEGEW completes syn-
chronously; that is, it returns the final status to the caller only after receiving an explicit confirmation
from the audit server that the associated audit, if enabled, has been performed.

Format

SYS$CHECK PRI VI LEGEW
efn ,prvadr ,[altprv] ,[flags] ,[itmst] ,audsts ,[astadr] ,[astprni

C Prototype

int sys$check_privil egew
(unsigned int efn, struct _generic_64 *prvadr, struct _generic_64
*al tpryv,
unsigned int flags, void *itm st, unsigned int *audsts,
void (*astadr)(__unknown_parans), int astprm;

$CHKPRO

Check Access Protection — Determines whether an accessor with the specified rights and privileges
can access an object with the specified attributes.

Format

SYS$CHKPRO i tm st ,[obj pro] ,[usrpro]

C Prototype

int sys$chkpro (void *itm st, void *objpro, void *usrpro);

Argument

itmlst

OpenVMS usage: item list 3

type: longword (unsigned)
access: read only
mechanism: by reference

174

System Service Descriptions

Protection attributes of the object and the rights and privileges of the accessor. The i t m st argument
is the address of an item list of descriptors used to specify the protection attributes of the object and
the rights and privileges of the accessor.

The following diagram depicts the format of a single item descriptor.

31 15 0
ltem code Buffer length

Buffer address

Return length address

ZK-5186A-GE
The following table defines the item descriptor fields.
Descriptor Field |Definition
Buffer length A word containing a user-supplied integer specifying the length (in bytes) of

the associated buffer. The length of the buffer needed depends on the item code
specified in the item code field of the item descriptor. If the value of buffer
length is too small, the service truncates the data.

Item code A word containing a user-supplied symbolic code specifying the item of infor-
mation in the associated buffer. The item codes are defined in the SACLDEF
system macro library.

Buffer address A longword containing the user-supplied address of the buffer.

Return length ad- | A longword that normally contains the user-supplied address of a word in which
dress the service writes the length in bytes of the information it returned. This is not
used by SCHKPRO and should contain a 0.

Specifying any specific protection attribute causes that protection check to be made; any protection at-
tribute not specified is not checked. Rights and privileges specified are used as needed. If a protection
check requires any right or privilege not specified in the item list, the right or privilege of the caller's
process is used.

objpro

OpenVMS usage: char string

type: opaque byte stream
access: read only
mechanism: by descriptor

Buffer containing an object security profile. The obj pr 0 argument is the address of a descriptor
pointing to a buffer that contains an encoded object security profile. The obj pr 0 argument elimi-
nates the need to supply all of the component object protection attributes with the SCHKPRO item
list. The obj pr 0 argument is currently reserved to OpenVMS.

usrpro

OpenVMS usage: char_string

175

System Service Descriptions

type: opaque byte stream
access: read only
mechanism: by descriptor

Buffer containing a user security profile. The usr pr o argument is the address of a descriptor point-
ing to a buffer that contains an encoded user security profile. The Usr pr o argument eliminates the
need to supply all of the component user security attributes with the SCHKPRO item list.

The SCREATE _USER PROFILE service can be used to construct a user security profile. When the
usr pr o argument is specified, any component user profile attributes specified in the §CHKPRO item
list replace those contained in the user security profile.

The item codes used with SCHKPRO are described in the following list and are defined in the $CH-
PDEF system macro library.

Item Codes

CHP$_ACCESS

A longword bit mask representing the type of access desired (SARMDEF). Be aware that the
$CHKPRO service does not interpret the bits in the access mask; instead, it compares them to the ob-
ject's protection mask (CHP$ PROT). Any bits not specified by CHP$ ACCESS or CHP$ PROT are
assumed to be clear, which grants access.

CHP$_ACL

A vector that points to an object's access control list. The buffer address, buf adr , specifies a buffer
containing one or more ACEs. The number that specifies the length of the CHP$ ACL buffer, bu-

f | en, must be equal to the sum of all ACE lengths. The format of the ACE structure depends on the
value of the second byte in the structure, which specifies the ACE type. The SFORMAT ACL system
service description describes each ACE type and its format.

You can specify the CHP$ ACL item multiple times to point to multiple segments of an access con-
trol list. You can specify a maximum of 20 segments. The segments are processed in the order speci-
fied.

CHP$_ACMODE

A byte that defines the accessor's processor access mode. The following access modes and their sym-
bols are defined in the $PSLDEF macro.

Symbol Access Mode
PSL$C USER User

PSL$C _SUPER Supervisor
PSL$C EXEC Executive
PSL$C KERNEL Kernel

If CHP$_ACMODE is not specified, access mode is not used to determine access.

CHPS_ADDRIGHTS

176

System Service Descriptions

A vector that points to an additional rights list segment to be appended to the existing rights list. Each
entry of the rights list is a quadword data structure consisting of a longword containing the identi-
fier value, followed by a longword containing a mask identifying the attributes of the holder. The
$CHKPRO service ignores the attributes.

A maximum of 11 rights descriptors is allowed. If you specify CHP$ ADDRIGHTS without speci-
fying CHP$ RIGHTS, the accessor's rights list consists of the rights list specified by the CHP$ AD-
DRIGHTS item codes and the rights list of the current process.

If you specify CHP$ RIGHTS and CHP§ ADDRIGHTS, you should be aware of the following:
+ CHP$ RIGHTS must come first.

* The accessor's UIC is the identifier of the first entry in the rights list specified by the CH-
P$ RIGHTS item code.

* The accessor's rights list consists of the rights list specified by the CHP$ RIGHTS item code and
the CHP$ _ADDRIGHTS item codes.

CHP$_ALARMNAME

Address of a buffer to receive the alarm name from any Alarm ACE contained in the object's ACL. If
the object does not have security alarms enabled, SCHKPRO returns r et | enadr as 0. If a matching
Alarm ACE exists, the string SECURITY will be returned.

CHPS_AUDIT_LIST

A security auditing item list containing additional information to be included in any resulting secu-
rity audit. The buf adr argument points to the beginning of an SAUDIT EVENT item list. See the

i t m st argument of the SAUDIT EVENT system service for a list of valid security auditing item
codes. Note that the NSA$S EVENT TYPE and NSAS EVENT SUBTYPE items are ignored when
auditing with SCHKPRO. The CHP$V_AUDIT flag must be specified.

CHPS_AUDITNAME

Address of a buffer to receive the audit name from any Audit ACE contained in the object's ACL. If
the object does not have auditing enabled, SCHKPRO returns r et | enadr as 0. If a matching Audit
ACE exists, the string SECURITY will be returned.

CHPS$_FLAGS

A longword that defines various aspects of the protection check. The symbols in the following table
are offsets to the bits within the longword. You can also obtain the values as masks with the appropri-
ate bit set by using the prefix CHP$M rather than CHP$V. The following symbols are defined only in
the system macro library (SCHPDEF).

Symbol Access

CHP$SV_ALTER Accessor desires write access to object.
CHP$SV_AUDIT Access audit requested.

CHP$SV_CREATE Perform the audit as an object creation event.
CHP$V_DELETE Perform the audit as an object deletion event.
CHP$V_FLUSH Force audit buffer flush.

177

System Service Descriptions

Symbol Access

CHP$V_INTERNAL Audit on behalf of the Trusted Computing Base (TCB). Reserved to
OpenVMS.

CHP$SV_MANDATORY Force the object access event to be audited.

CHP$V_NOFAILAUD Do not perform audits for failed access.

CHP$V_NOSUCCAUD Do not perform audits for successful access.

CHP$V_OBSERVE Accessor desires read access to object.

CHP$V_SERVER Audit on behalf of a TCB server process.

CHP$V_USEREADALL Accessor is eligible for READALL privilege.

The default for CHP$ _FLAG is CHP$M_OBSERVE and CHPSM_ALTER.

The primary purpose of the CHP§V_OBSERVE and CHP$V_ALTER flags is as latent support for a
mandatory (lattice) security policy, such as that provided by the Security Enhanced VMS (SEVMS)
offering.

CHP$_MATCHEDACE

This output item is a variable-length data structure containing the first Identifier ACE in the object's
ACL that allowed or denied the accessor to access the object. See the SFORMAT ACL system ser-
vice for a description of an Identifier ACE format.

CHP$S_MODE

A byte that defines the object's owner access mode. The following access modes of the object's owner
and their symbols are defined in the system macro library (SPSLDEF).

Symbol Access Mode
PSL$C_USER User

PSL$C SUPER |Supervisor
PSLS$C EXEC Executive
PSL$C KERNEL |Kernel

CHP$_MODES

A quadword that defines the object's access mode protection. You specify a 2-bit access mode as
shown in CHP$ MODE for each possible access type. The following diagram illustrates the format of
an access mode vector for bit numbers.
£} 109876543210

I (. I I (. I (. |C|I DIEIWIR

rfr ot ol
63 32
ZK-1943-GE

Each pair of bits in the access mode vector represents the access mode for the specific type of access.
For example, bits <6:7> represent the access mode value used to check for delete access.

CHP$S_OBJECT CLASS

178

System Service Descriptions

A character string containing the protected object class associated with the object. The object class
string is used to determine whether any security auditing is enabled for the object access event. This
item code is required when the CHP$ AUDIT flag is specified.

CHP$_OBJECT NAME

A character string containing the object name associated with the protection check. The object name
string is included in any resulting security audit. If an object name string is not specified, the string
“<not available>" is substituted in any security audit for all protected object classes other than FILE.
For FILE class audits, it is assumed that the caller has supplied an object name by using the auditing
item list (NSA$ _OBJECT NAME).

CHPS_OWNER

A longword describing the object's owner identifier (UIC or general identifier). This might be either a
UIC format identifier or a general identifier.

Note

CHP$ _OWNER is used in conjunction with the CHP$§ PROT item code.

CHPS_PRIV

A quadword that defines an accessor's privilege mask. Each bit in the mask has a symbolic name, de-
fined by the $PRVDEF macro. You form the bit array by specifying the symbolic name of each privi-
lege in a logical OR operation. See the SSETPRV system service for the symbolic name and descrip-
tion of each privilege.

CHPS$_PRIVUSED
A longword mask of flags representing privileges used to gain the requested access.

You can also obtain the values as masks with the appropriate bit set by using the prefix CHP$M rather
than CHP$V. The symbols are defined in the system macro library (SCHPDEF). The following sym-
bols are used as offsets to the bits within the longword.

Symbol Meaning

CHP$V_SYSPRV

SYSPRYV was used to gain the requested access.

CHP$V_GRPPRV

GRPPRYV was used to gain the requested access.

CHP$V_BYPASS

BYPASS was used to gain the requested access.

CHPSV_READALL

READALL was used to gain the requested access.

CHP$V_OPER

OPER was used to gain the requested access.

CHP$V_GRPNAM

GRPNAM was used to gain the requested access.

CHPSV_SYSNAM

SYSNAM was used to gain the requested access.

CHPSV_GROUP

GROUP was used to gain the requested access.

CHP$V_WORLD

WORLD was used to gain the requested access.

CHP$V PRMCEB

PRMCEB was used to gain the requested access.

CHP$V_UPGRADE

UPGRADE was used to gain the requested access.

CHP$V_DOWNGRADE

DOWNGRADE was used to gain the requested access.

179

System Service Descriptions

CHPS$_PROT

A vector describing the object's SOGW protection mask. The following diagram depicts the format
for describing the object's protection.

15 11 7 3 0 AccessBils

World Group | Owner | System | 0-3

4-7

8-1

12-15

16-19
20-23

24-27

1
|
:
|
|
|
|
|
' 28-31
4

| |
: :
: i
: :
: :
1
¥ ¥

ZK-1T04-GE

The first word contains the first four protection bits for each field, the second word the next four pro-
tection bits, and so on. If a bit is clear, access is granted. By convention, the first five protection bits
are (from right to left in each field of the first word) read, write, execute, delete, and (in the low-order
bit in each field of the second word) control access. You can specify the CHP$ PROT item in incre-
ments of words; if a short buffer is given, zeros are assumed for the remainder.

The SCHKPRO service compares the low-order four bits of CHP$ ACCESS against one of the 4-bit
fields in the low-order word of CHP$ PROT, the next four bits of CHP$ ACCESS against one of the
4-bit fields in the next word of CHP$ PROT, and so on. The SCHKPRO service chooses a field of
CHPS$ PROT based on the privileges specified for the accessor (CHP$ PRIV), the UICs of the acces-
sor (CHP$_RIGHTS or CHP$ ADDRIGHTS, or both), and the object's owner (CHP$ OWNER).

You must also specify the identifier of the object's owner with CHP$ OWNER when you use CH-
P§ PROT.

CHPS$_RIGHTS

A vector that points to an accessor's rights list. The accessor's UIC is the identifier of the first entry in
the rights list. The accessor's rights list consists of the rights list specified by CHP$ _RIGHTS and, op-
tionally, the rights list specified by the CHP$ ADDRIGHTS item codes.

CHPS$_UIC

A longword specifying the accessor's owner UIC. This item code can be used to avoid having to pass
an entire rights list segment via the CHP$ RIGHTS item code. If CHP$ RIGHTS and then CH-

P$ UIC are specified, in that order, SCHKPRO initializes the local rights list and then replaces just
the owner UIC with the value of CHP$ UIC.

Description

The Check Access Protection service determines whether an accessor with the specified rights and
privileges can access an object with the specified attributes. The service invokes the system's access
protection check, which permits layered products and other subsystems to build protected structures
that are consistent with the protection facilities provided by the base operating system. The service al-
so allows a privileged subsystem to perform protection checks on behalf of a requester.

180

System Service Descriptions

If the accessor can access the object, SCHKPRO returns the SS§ NORMAL status code; otherwise,
$CHKPRO returns SS$ NOPRIV.

The item list arguments accepted by this service permit you to specify the protection of the object be-
ing accessed, the rights and privileges of the accessor, and the type of access desired.

At a minimum, the following item codes should be specified to perform a third-party protection
check:

CHP$_ACCESS
CHP$ OWNER
CHP$_PRIV
CHP$ PROT
CHP$_UIC

The default for information relating to the subject is to use the current process information (for exam-
ple, privileges). The default for missing object information is a representation of 0.

The caller can also request that an object access audit be performed if security auditing has been en-
abled for the object class or if auditing ACEs are contained in the object's ACL. The CHP$V_AUDIT
flag requests an access audit. This requires that the caller be in executive or kernel mode or possess
the AUDIT privilege.

Usually, SCHKPRO generates an object access audit when an audit is required. The caller can speci-

fy the CHP$V_CREATE flag to force an object creation audit instead of an object access audit. Simi-
larly, the CHP$V_DELETE flag forces an object deletion audit. The CHP$ AUDIT LIST item code
can be used to specify additional information to be included in any resulting audit records.

Required Access or Privileges

AUDIT privilege is required when requesting an audit.

Required Quota

None

Related Services

$AUDIT_EVENT, $CHECK_ACCESS, SCREATE_USER_PROFILE, SFORMAT ACL

Condition Values Returned
SS$ NORMAL

The service completed successfully; the desired access is granted.
SS$ ACCVIO

The item list cannot be read by the caller, or one of the buffers specified in the item list cannot be
written by the caller.

SS$ ACLFULL

More than 20 CHP$_ ACL items were given.

181

System Service Descriptions

SS$ BADPARAM

The argument is invalid.
SS$ BUFFEROVF

The output buffer is too small and the protection check succeeded.
SS$ IVACL

You supplied an invalid ACL segment with the CHP$ ACL item.
SS$ IVBUFLEN

The output buffer is too small and the protection check failed.
SS$ NOAUDIT

Caller lacks privilege to request audit.
SS$ NOPRIV

The desired access is not granted.
SS$ RIGHTSFULL

More than 11 CHPS ADDRIGHTS items were given.

$CLEAR_SYSTEM_EVENT (Alpha and
Integrity servers)

Clear System Event — Removes one or more notification requests previously established by a call
to SSET_SYSTEM_EVENT. This service does not allow you to specify a handle and an event. You
must pass a zero as one of these parameters. You can either clear by handle or request that all events
for the user be cleared.

Format

SYS$CLEAR SYSTEM EVENT [handl e] ,[acnpde] , event

C Prototype

nt sys$cl ear_system event
(struct _generic_64 * handle, unsigned int acnode, unsigned int event);

Arguments
handle

OpenVMS usage: identifier
type: quadword (unsigned)

access: read only

182

System Service Descriptions

mechanism: by reference
Identification of the AST request to be cleared. The handl e argument uniquely identifies the request
and is returned when the $SET SYSTEM_EVENT service is called. The handl e argument may be

omitted by specifying a zero address.

acmode

OpenVMS usage: access _mode

type: longword (unsigned)
access: read only
mechanism: by value

Access mode of the system event to be cleared. The acnode argument is a longword containing the
access mode. The value of the access mode is maximized with the access mode of the caller.

event

OpenVMS usage: event code

type: longword (unsigned)
access: read only
mechanism: by value

The event argument is a value indicating the type of system event to be cleared. SYSEVT$C_AL-
L _EVENTS may be specified to clear all event types.

Description

The Clear System Event service removes one or more event types or notification objects previously
established by a call to the $SSET_SYSTEM_EVENT service.

A valid request specifies either the handl e for a specific notification request, or is a wildcard clear
of all notification objects whose is access mode is greater than or equal to acnode.

If the handl e argument is specified, caller's access mode must be less than or equal to the access
mode of the object to be cleared.

If SYSEVTS$C ALL EVENTS is specified, or the set of events enabled for the object(s) becomes
empty, the notification object is deleted.

Required Access or Privileges
None

Required Quota

None

Related Services

$SET SYSTEM_EVENT

183

System Service Descriptions

Condition Values Returned

SS$ NORMAL
The service completed successfully.
SS$ ACCVIO
The service cannot access the location specified by the handle.
SS$ BADPARAM
One or more arguments has an invalid value, such as an invalid handle.
SS$ NOSUCHOBJ

No request was found that matches the description supplied.

$CLEAR_UNWIND TABLE (Integrity servers
Only)

Clear Unwind Table Routine — Clears unwind table (UT) information.

Format

SYS$CLEAR_UNW ND_TABLE code_base_va

C Prototype
int SYS$CLEAR UNW ND_TABLE (unsigned __int64 code_base_va);
Arguments

code base va

OpenVMS usage: address

type: quadword (unsigned)
access: read only
mechanism: by value

Input by value. Must be the process virtual address of the start of a registered code range.

Description

Clears (removes) the indicated registration. Error status returned on bad code_base_va or insuffi-
cient access mode.

Required Access or Privileges

The unwind table information that corresponds to code base va will be removed only if it was regis-
tered in a mode equal to or less privileged than the caller of SCLEAR_UNWIND TABLE.

184

System Service Descriptions

Required Quota
None
Related Services

SYS$SET UNWIND TABLE, SYSSGET UNWIND ENTRY INFO. Also see LIBSGET UIB_IN-
FO in VSI OpenVMS Calling Standard.

Condition Values Returned

SS$ NORMAL

Routine completed successfully.
SS$ IVAADDR

code_base_va not registered.
SS$ IVACMODE

Insufficient access mode.

$CLOSE

Closes File — The Close service terminates file processing and closes the file. This service performs
an implicit Disconnect service for all record streams associated with the file. For additional informa-
tion about this service, see the OpenVMS Record Management Services Reference Manual.

$CLRAST

Clear AST — Clears the "AST active" status. This enables delivery of asynchronous system traps
(ASTs) for the access mode from which the service call was issued, while an AST routine is active.

Format

SYS$CLRAST

Arguments

None.

Description

Note

The explicit use of SCLRAST is strongly discouraged, as it complicates synchronization issues and
may lead to the unbounded consumption of stack space.

185

System Service Descriptions

Normally, AST delivery for a particular access mode is deferred while an AST routine is executing in
that access mode. When the AST routine returns, an implicit call is made to SCLRAST to re-enable
AST delivery.

Explicitly calling SCLRAST within an AST routine allows the delivery of ASTs for the access mode
from which the service call was issued, prior to completion of the active AST routine.

Required Access or Privileges
None

Required Quota

None

Related Services

$SETAST

Condition Values Returned

None

The return value is undefined.

$CLRCLUEVT

Clear Cluster Event — Removes one or more notification requests previously established by a call to
SYSSSETCLUEVT.

Format

SYS$CLRCLUEVT [handl e] ,[acnpde] ,[event]

C Prototype

int sys$clrcluevt
(struct _cluevthndl *handl e, unsigned int acnode,
unsi gned int event);

Arguments

handle

OpenVMS usage: identifier

type: quadword (unsigned)
access: read only
mechanism: by reference

186

System Service Descriptions

Identification of the AST request to be canceled. The handl e argument uniquely identifies the re-
quest and is returned when the SSETCLUEVT service is called.

acmode

OpenVMS usage: longword (unsigned)
type: read only

access: by value

Access mode of the cluster configuration event to be canceled. The acnode argument is a longword
containing the access mode.

Each access mode has a symbolic name. The $SPSLDEF macro defines the following symbols for the
four access types.

Symbol Access Mode
PSL$C KERNEL Kernel
PSLSC EXEC Executive
PSL$C SUPER Supervisor
PSL$C USER User

event

OpenVMS usage: event code

type: longword (unsigned)
access: read only
mechanism: by value

Event code indicating the type of cluster configuration event for which an AST is no longer to be de-
livered. The event argument is a value indicating which type of event is no longer of interest.

Each event type has a symbolic name. The SCLUEVTDEF macro defines the following symbolic
names.

Symbolic Name Description
CLUEVTS$C ADD One or more OpenVMS nodes have been added to the OpenVMS
Cluster system.

CLUEVTS$C REMOVE One or more OpenVMS nodes have been removed from the Open-
VMS Cluster system.

Description

The Clear Cluster Event service removes one or more notification requests previously established by a
call to the $SETCLUEVT service. SCLRCLUEVT verifies that the parameters specify a valid request,
and dequeues and deallocates the request.

A valid request specifies either the handl e argument or the event argument. If the hand| e argu-
ment is specified, the acnmpde argument must match the value recorded when SSETCLUEVT was

187

System Service Descriptions

called. If the event argument is specified, all requests matching the access mode are canceled, pro-
vided that the access mode is not greater than the caller's mode. If the access mode parameter is more
privileged than the mode of the caller, the mode of the caller will be used.

Required Access or Privileges
None

Required Quota

None

Related Services

$SETCLUEVT, $TSTCLUEVT

Condition Values Returned

SS$ NORMAL
The service completed successfully.
SS$ BADPARAM

There is an unsatisfactory combination of event and handle parameters, or the event was specified
incorrectly.

SS$ NOSUCHOBJ

No request was found that matches the description supplied.

$CLREF

Clear Event Flag — Clears (sets to 0) an event flag in a local or common event flag cluster.

Format

SYS$CLREF ef n

C Prototype

int sys$clref (unsigned int efn);

Argument

efn

OpenVMS usage: ef number

188

System Service Descriptions

type: longword (unsigned)
access: read only
mechanism: by value

Number of the event flag to be cleared. The ef n argument is a longword containing this number;
however, $CLREF uses only the low-order byte.

Condition Values Returned

SS$ WASCLR

The service completed successfully. The specified event flag was previously 0. Note that this is
also the same value as SS§ NORMAL.

SS$ WASSET

The service completed successfully. The specified event flag was previously 1. Note that while
the message id is the same as SS$ ACCVIO, the severity bits are different.

SS$_ILLEFC
You specified an illegal event flag number.
SS$ UNASEFC

The process is not associated with the cluster containing the specified event flag.

$CMEXEC

Change to Executive Mode — Changes the access mode of the calling process to executive mode.

Format

SYS$CMVEXEC routin ,[arglst]

C Prototype

int sys$cmexec (int (*routin)(__unknown_parans), unsigned int *arglst);

Arguments

routin

OpenVMS usage: procedure

type: procedure value
access: call without stack unwinding
mechanism: by reference

189

System Service Descriptions

Routine to be executed while the process is in executive mode. The r out i n argument is the address
of this routine.

arglst

OpenVMS usage: arg list

type: longword (unsigned)
access: read only
mechanism: by reference

Argument list to be passed to the routine specified by the r out i n argument. The ar gl st argument
is the address of this argument list.

If the ar gl st value is nonzero and is not accessible as an address or if the routine is inaccessible, the
service returns SS§ ACCVIO.

Alpha and Integrity server systems require a pointer to a valid argument list or a value of 0 in the ar -

gl st argument. This means that the ar gl st argument must contain an accessible virtual address for
an argument list, the first longword of which must be a valid list size.

Description

The Change to Executive Mode service allows a process to change its access mode to executive, exe-
cute a specified routine, and then return to the access mode in effect before the call was issued.

The SCMEXEC service uses standard procedure calling conventions to pass control to the specified
routine.

To conform to the OpenVMS calling standard, you must not omit the ar gl st argument.

When you use the SCMEXEC service, the system service dispatcher modifies the registers before en-
try into the target routine. The specified routine must exit with a RET instruction and should place a
status value in RO before returning.

All of the Change Mode system services are intended to allow for the execution of a routine at an ac-
cess mode more (not less) privileged than the access mode from which the call is made. If SCMEXEC

is called while a process is executing in kernel mode, the routine specified by the r out i n argument
executes in kernel mode, not executive mode.

Required Access or Privileges

To call this service, the process must either have CMEXEC or CMKRNL privilege or be currently ex-
ecuting in executive or kernel mode.

Required Quota

None

Related Services

None

190

System Service Descriptions

Condition Values Returned

SS§ ACCVIO
The ar gl st or routine argument is not accessible.
SS$ BADPARAM
The routine specified is in a translated image.
SS$ NOPRIV
The process does not have the privilege to change mode to executive.
All other values

The routine executed returns all other values.

$CMEXEC_64

Change to Executive Mode with Quadword Argument List — On Alpha and Integrity server systems,
changes the access mode of the calling process to executive mode. This service accepts 64-bit ad-
dresses.

Format

SYS$SCMEXEC 64 routin_64 ,arglst 64

C Prototype

int sys$cnexec_64
(int (*routin_64)(__unknown_parans),
unsigned __int64 *arglst _64);

Arguments

routin_64

OpenVMS usage: procedure

type: procedure value
access: call without stack unwinding
mechanism: by 32- or 64-bit reference

Routine to be executed while the process is in executive mode. The r out i n_64 argument is the 32-
or 64-bit address of this routine.

arglst_64

OpenVMS usage: arg list

191

System Service Descriptions

type: quadword (unsigned)
access: read only
mechanism: by 32- or 64-bit reference

Argument list to be passed to the routine specified by the r out i n_64 argument. The ar gl st _64
argument is the 32- or 64-bit address of this argument list.

If the ar gl st value is nonzero and is not accessible as an address or if the routine is inaccessible, the
service returns SS$ ACCVIO.

Alpha and Integrity server systems require a pointer to a valid argument list or a value of 0 in the ar -
gl st _64 argument. This means that the ar gl st _64 argument, if nonzero, must contain an accessi-

ble virtual address for an argument list, the first quadword of which must be a number between 0 and
255 specifying the number of quadwords that follow it on the list.

Description

The Change to Executive Mode with Quadword Argument List service allows a process to change its
access mode to executive, execute a specified routine, and then return to the access mode in effect be-
fore the call was issued.

The SCMEXEC 64 service uses standard procedure-calling conventions to pass control to the speci-
fied routine.

When you use the SCMEXEC 64 service, the system modifies the registers before entry into the tar-
get routine. The specified routine must exit with a RET instruction.

All of the Change Mode system services are intended to allow for the execution of a routine at
an access mode more (not less) privileged than the access mode from which the call is made. If

$CMEXEC_64 is called while a process is executing in kernel mode, the routine specified by the
rout i n_64 argument executes in kernel mode, not executive mode.

Required Access or Privileges

To call this service, the process must either have CMEXEC or CMKRNL privilege or be currently ex-
ecuting in executive or kernel mode.

Required Quota

None

Related Services

$CMEXEC, $SCMKRNL, SCMKRNL 64
Condition Values Returned

SS$_ACCVIO

The ar gl st argument or routine is not accessible.

192

System Service Descriptions

SS$ BADPARAM

The routine specified is in a translated image.
SS$ NOCMEXEC

The process does not have the privilege to change mode to executive.
All other values

The routine executed returns all other values.

$CMKRNL

Change to Kernel Mode — Changes the access mode of the calling process to kernel mode. This ser-
vice allows a process to change its access mode to kernel, execute a specified routine, and then return
to the access mode in effect before the call was issued.

Format

SYSSCMKRNL routin ,[arglst]

C Prototype

int sys$cnkrnl (int (*routin)(__unknown_parans), unsigned int *arglst);

Arguments

routin

OpenVMS usage: procedure

type: procedure value
access: call without stack unwinding
mechanism: by reference

Routine to be executed while the process is in kernel mode. The r out i n argument is the address of
this routine.

arglst

OpenVMS usage: arg_list

type: longword (unsigned)
access: read only
mechanism: by reference

Argument list to be passed to the routine specified by the r out i n argument. The ar gl st argument
is the address of this argument list.

193

System Service Descriptions

If the ar gl st value is nonzero and is not accessible as an address or if the routine is inaccessible, the
service returns SS$_ACCVIO.

Alpha systems require a pointer to a valid argument list or a value of 0 in the ar gl st argument. This
means that the ar gl st argument must contain an accessible virtual address for an argument list, the
first longword of which must be a valid list size.

Description

The Change Mode to Kernel (SCMKRNL) and the Change Mode to Executive (SCMEXEC) system
services provide a simple and secure path for applications to execute code in the privileged kernel and
executive processor modes. These services first check for the necessary CMKRNL or CMEXEC priv-
ileges, and then call the routine specified in the argument list in the specified processor mode.

When code is executing in a privileged processor mode, such as executive or kernel mode, the code
executes with full OpenVMS privileges. Furthermore, specific protection checks can also be by-
passed. For example, SCMKRNL bypasses the check for CMKRNL privilege that is normally re-
quired when SCMKRNL is called from executive mode, and $SETPRYV calls are processed without
SETPRYV privilege when called from executive or kernel mode.

The condition value returned from the procedure specified in the argument list is used as the return
status from the SCMKRNL or $SCMEXEC system service call. Based on the OpenVMS calling stan-
dard, this condition value is returned by register R0, using a language-specific mechanism.

Note

The $CMKRNL and $CMEXEC system services are typically used to access privileged or internal
OpenVMS routines or data structures. The code to access these data structures can be OpenVMS ver-
sion-dependent, particularly if the internal routines or data structures change. Errors that occur in code
executing in a privileged processor mode can lead to one or more possible situations: data corruptions,
process deletions, or system crashes.

The particular library routines and libraries that can be called from code executing in executive or ker-
nel mode can also be limited, because not all library routines accessible from user mode can be called
from kernel mode.

Code Example

The following code example shows how to call a specified routine in kernel mode using this service:

/*

/[l cnkrnl.c

/1

/1 OpenVMS exanple of calling a specified routine in kernel node,
/1 using the SYS$CMKRNL system servi ce.

/1

/1 Requires CMKRNL privilege.

/1

/1 Errors in kernel-nbde code can corrupt critical data structures,
/1 can cause process deletions, and can potentially crash the OCpenVNs
/1 operating system

/1

/1 To build:

194

System Service Descriptions

/1

/1 $ CC/ DECC CMKRNL
/1 $ LI NK CVKRNL
/1 $ RUN CMKRNL
*/

#i ncl ude <ssdef. h>
#include <starlet. h>
#i ncl ude <stdi o. h>
#incl ude <stdlib. h>
#i ncl ude <string. h>
#i ncl ude <stsdef. h>

/*
/1 The Kernel Routine routine executes in kernel node, but does
/1 absol utely nothing useful
*/
int KernelRoutine(int *UsrArgl, int *UsrArg2)
{
return SS$_NORVAL;
}
mai n()
{
int RetStat;
int ArgList[3];
int i = 0;

printf("OpenVMS Al pha exanple of calling sys$cnkrnl\n");

/*

/1 Build the routine argunent list in an array -- the Kernel Routine
/1 call expects two arguments, necessitating an array containing the
/1 count and the two argunents.

*/

ArgList[++i] =1

ArgList[++i] = 2;

ArgList[0] =1i;

/*

/1 Now i nvoke the Kernel Routi ne in kernel node..
*/

Ret Stat = sys$cnkrnl (Kernel Routine, ArgList);
if (!$VMS_STATUS SUCCESS(RetStat))

return Ret Stat
printf("Now successfully back in user node.\n");

return SS$_ NORMAL;
}

Required Access or Privileges

To call the SCMKRNL service, a process must either have CMKRNL privilege or be currently execut-
ing in executive or kernel mode.

Required Quota

None

195

System Service Descriptions

Related Services

$CMEXEC, SCMEXEC 64, SCMKRNL 64, SSETPRV

Condition Values Returned
SS$§ _ACCVIO
The ar gl st argument or routine is not accessible.
SS$ BADPARAM
The routine specified is in a translated image.
SS$ NOCMKRNL
The process does not have the privilege to change mode to kernel.
All other values

The routine executed returns all other values.

$CMKRNL_64

Change to Kernel Mode with Quadword Argument List — On Alpha and Integrity server systems,
changes the access mode of the calling process to kernel mode. This service allows a process to
change its access mode to kernel, execute a specified routine, and then return to the access mode in ef-
fect before the call was issued. This service accepts 64-bit addresses.

Format

SYSSCMKRNL_64 routin_64 ,arglst 64

C Prototype

int sys$cnkrnl _64
(int (*routin_64)(__unknown_parans), unsigned __int64 *arglst_64);

Arguments

routin_64

OpenVMS usage: procedure

type: procedure value
access: call without stack unwinding
mechanism: by 32- or 64-bit reference

Routine to be executed while the process is in kernel mode. The r out i n_64 argument is the 32- or
64-bit address of this routine.

196

System Service Descriptions

arglst 64

OpenVMS usage: arg_list

type: quadword (unsigned)
access: read only
mechanism: by 32- or 64-bit reference

Quadword argument list to be passed to the routine specified by the r out i n_64 argument. The
routi n_64 argument is the 32- or 64-bit address of this routine.

If the ar gl st value is nonzero and is not accessible as an address or if the routine is inaccessible, the
service returns SS$ ACCVIO.

Alpha and Integrity server systems require a pointer to a valid argument list or a value of 0 in the ar -
gl st _64 argument. This means that the ar gl st _64 argument, if nonzero, must contain an accessi-
ble virtual address for an argument list, the first quadword of which must be a number between 0 and
255 specifying the number of quadwords that follow it on the list.

Description

The Change to Kernel Mode with Quadword Argument List service allows a process to change its ac-
cess mode to kernel, execute a specified routine, and then return to the access mode in effect before
the call was issued.

The SCMKRNL 64 service uses standard procedure calling conventions to pass control to the speci-
fied routine.

When you use the SCMKRNL 64 service, the system modifies the registers before entry into the tar-
get routine. The system loads R4 with the address of the process control block (PCB). The specified
routine (if programmed in MACRO-32) must exit with a RET instruction.

Required Access or Privileges

To call the SCMKRNL 64 service, a process must either have CMKRNL privilege or be currently ex-
ecuting in executive or kernel mode.

Required Quota
None

Related Services

$CMEXEC, SCMEXEC 64, SCMKRNL, $SETPRV

Condition Values Returned

SS$§_ACCVIO
The ar gl st argument or routine is not accessible.
SS$ BADPARAM

The routine specified is in a translated image.

197

System Service Descriptions

SS$ NOCMKRNL
The process does not have the privilege to change mode to kernel.
All other values

The routine executed returns all other values.

$CONNECT

Connect RAB with FAB — The Connect service establishes a record stream by associating and con-
necting a RAB with a FAB. You can invoke the Connect service only for files that are already open.
For additional information about this service, see the OpenVMS Record Management Services Refer-
ence Manual.

$CPU_CAPABILITIES

Modify CPU User Capabilities — On Alpha and Integrity server systems, allows modification of the
user capability set for a specified CPU, or for the global user capability CPU default. This service ac-
cepts 64-bit addresses.

Format

SYS$CPU_CAPABI LI Tl ES
cpu_id [,select_mask] [,nodi fy_mask] [, prev_mask] [, flags]

C Prototype

int sys$cpu_capabilities
(int cpu_id, struct _generic_64 *sel ect_nask,
struct _generic_64 *nodi fy_mask, struct _generic_64 *prev_nask,
struct _generic_64 *flags);

Arguments
cpu_id

OpenVMS usage: longword

type: longword (unsigned)
access: read only
mechanism: by value

Identifier of the CPU whose user capability mask is to be modified or returned. The cpu_i d argu-
ment is a longword containing this number, which is in the supported range of individual CPUs from
0to SYI$ MAX CPUS -1.

Specifying the constant CAP$K_ALL ACTIVE CPUS applies the current modification operation
to all CPUs currently in the active set, and to the default CPU initialization context in SCH$SGL DE-
FAULT CPU_CAP. If the pr ev_mask argument is also supplied, the previous default CPU initial-

198

System Service Descriptions

ization context in SCH$GL DEFAULT CPU_CAP will be returned rather than any specific CPU
state.

To modify only the user capabilities in SCH$GL DEFAULT CPU_CAP, the f | ags argument

has a bit constant CAPSM_FLAG DEFAULT ONLY. When this bit is set, all service operations

are performed on the global cell rather than on an individual CPU specified in the cpu_i d argu-
ment. This bit does not supersede the CAPSK ALL ACTIVE_ CPUS constant, however. If both con-
stants are specified, CAPSK_ALL ACTIVE CPUS take precedence; nevertheless, the operations to
SCHSGL DEFAULT CPU are identical because that function is a direct subset of the other.

select_mask

OpenVMS usage: mask quadword

type: quadword (unsigned)
access: read only
mechanism: by 32- or 64-bit reference

Mask specifying which bits of the specified CPU's user capability mask are to be modified. The se-
| ect _mask argument is the 32- or 64-bit address of a quadword bit vector wherein a bit, when set,
specifies that the corresponding user capability is to be modified.

The individual user capability bits in Sel ect _nmask can be referenced by their symbolic constant
names, CAPSM_USERI1 through CAP$SM_USER16. These constants (not zero-relative) specify the
position in the mask quadword that corresponds to the bit name. Multiple capabilities can be selected
by connecting the appropriate bits with a logical OR operation.

The constant CAPSK_ALL USER, when specified in the sel ect _nmask argument, selects all user
capability bits.

modify_mask

OpenVMS usage: mask quadword

type: quadword (unsigned)
access: read only
mechanism: by 32- or 64-bit reference

Mask specifying the settings for those capabilities selected in the sel ect _mask argument. The
nodi fy_nmask argument is the 32- or 64-bit address of a quadword bit vector wherein a bit, when
set, specifies that the corresponding user capability is to be added to the specified CPU; when clear,
the corresponding user capability is to be removed from the specified CPU.

The bit constants CAP$SM_USER1 through CAP$SM_USER16 can be used to modify the appropriate
bit position in nodi f y_mask. Multiple capabilities can be modified by connecting the appropriate
bits with OR.

To add a specific user capability to the specified CPU, that bit position must be set in both sel ec-
t _mask and nodi fy_mask. To remove a specific user capability from the specified CPU, that bit
position must be set in sel ect _mask and clear in nodi fy_mask.

The symbolic constant CAPSK _ALL USER ADD, when specified in nodi f y_nask, indicates that
all capabilities specified in sel ect _mask are to be added to the current user capability set. The con-

199

System Service Descriptions

stant CAPSK_ALL _USER_REMOVE indicates that all capabilities specified are to be cleared from
the set.

prev_mask

OpenVMS usage: mask quadword

type: quadword (unsigned)
access: write only
mechanism: by 32- or 64-bit reference

Previous user capability mask for the specified CPU before execution of this call to SCPU_CA-
PABILITIES. The pr ev_mask argument is the 32- or 64-bit address of a quadword into which
$CPU_CAPABILITIES writes a quadword bit mask specifying the previous user capabilities.

If this argument is specified in conjunction with CAP$K_ALL ACTIVE CPUS as the cpu_i d se-
lection constant or with CAPSM_FLAG DEFAULT ONLY, the user capability portion of the default
boot initialization state context SCH$SGL DEFAULT CPU_CAP will be returned.

flags

OpenVMS usage: mask quadword

type: quadword (unsigned)
access: read only
mechanism: by 32- or 64-bit reference

Options selected for the user capability modification. The f | ags argument is a quadword bit vector
wherein a bit corresponds to an option. Only the bits specified in the following table are used; the re-
mainder of the quadword bits are reserved and must be 0.

Each option (bit) has a symbolic name, defined by the SCAPDEF macro. The f | ags argument is
constructed by performing a logical OR operation using the symbolic names of each desired option.
The following table describes the symbolic name of each option:

Symbolic Name Description

CAPSM_FLAG DEFAULT ONLY |Indicates that the specified operations are to be performed
on the global context cell instead of on a specific CPU. This
bit supersedes any individual CPU specified in cpu_i d but
does not override the all active set behavior (CAPSK AL-
L _ACTIVE_CPUS). Specifying this bit constant applies
this operation to the default startup capabilities for all CPUs
booted for the first time.

CAPSM_FLAG CHECK CPU Determines whether the kernel thread can be left in a non-
runnable state under some circumstances. No operation of
this service allows a transition from a runnable to blocked
state; however, if the kernel thread is already at a blocked
state, this bit determines whether the result of the operation
must leave it runnable. If CAPSM_FLAG _CHECK CPU is
set or f | ags is not specified, the kernel thread is checked
to ensure it can safely run on one of the CPUs in the active

200

System Service Descriptions

Symbolic Name Description

set. If CAPSM_FLAG _CHECK CPU is not set, any state
operations on kernel threads already in a blocked state are
allowed.

Description

The Modify CPU User Capabilities system service, based on the arguments sel ect _nmask and
nodi fy_mask, adds or removes user capabilities for the specified cpu_i d. If specified, the previ-
ous capability mask is returned in pr ev_mask. With the nodi f y_nask argument, multiple user
capabilities for a CPU can be added or removed in the same system service call.

Either modi f y_mask or pr ev_mask, or both, must be specified as arguments. If nodi f y_mask
is specified, sel ect _nmask must be specified as an argument. If nodi f y_mask is not specified,
no modifications are made to the user capability mask for the specified CPU. In this case, sel ec-

t _mask is ignored. If pr ev_mask is not specified, no previous mask is returned.

No service state changes that will place any currently runnable kernel thread into a blocked state are
allowed.

If CAPSK_ALL ACTIVE_ CPUS is specified in cpu_li d, the user capability modifications are per-
formed on all CPUs currently in the active set, as well as the global initialization cell. If the bit con-
stant CAPSM_FLAG DEFAULT ONLY is set in the f | ags argument, the user capability modifica-
tions are made only to the global initialization cell, regardless of what individual CPU is specified in
cpu_i d.

Required Access or Privileges

The caller must have both ALTPRI and WORLD privileges to call SYSSCPU CAPABILITIES to
modify CPU user capabilities.

No privileges are required if SYS$CPU_CAPABILITIES is called only to retrieve the current user ca-
pabilities mask from the specified CPU or global default.

Related Services

$PROCESS_CAPABILITIES

Condition Values Returned

SS$ NORMAL

The service completed successfully.
SS$ BADPARAM

One of more arguments has an invalid value or the specified CPU is not in the configuration.
SS$§_ACCVIO

The service cannot access the locations specified by one or more arguments.

201

System Service Descriptions

SS$_NOPRIV

Insufficient privilege for attempted operation.
SS$_CPUCAP

Attempted operation would place one or more processes in an unrunnable state.
SS$ INSFARG

Fewer than the required number of arguments were specified or no operation was specified.

$CPU_TRANSITION (Alpha and Integrity
servers)

— On Alpha and Integrity server systems, changes the current processing state of a CPU in the con-
figure set of the current system or an unassigned CPU in an OpenVMS Galaxy configuration. This
service completes asynchronously. For synchronous completion, use the SCPU_TRANSITIONW ser-
vice.

This service accepts 64-bit addresses. Parameter and bit definitions are resolved in SCSTDEEF in the
appropriate STARLET library.

For more information, see the VSI OpenVMS Alpha Partitioning and Galaxy Guide.

Format
SYS$CPU_TRANSI Tl ON

tran_code ,cpu_id , nodenanme ,node_id ,flags ,efn ,iosb ,astadr_64
, astprm 64

C Prototype

int sys$cpu transition
(int tran_code, int cpu_id, dsc64%$descriptor_s_pqg nodenane, int node_id,
uint32 flags, int efn, 10SB *i osb, VO D _PQ astadr, uint64 astprm
uint32 tinout);

Arguments

tran_code

OpenVMS usage: longword

type: longword (unsigned)
access: read only
mechanism: by value

Identifier specifying the type of state change to be initiated on the target CPU. The t r an_code ar-
gument is a longword containing one of the following values:

Symbolic Name Description

CST$K _CPU_STOP The target CPU is to be removed from the active set and halted into
console mode. It remains in the configure set of the current partition.

202

System Service Descriptions

Symbolic Name Description

CST$SK _CPU_MIGRATE |The target CPU is removed from the configure set of the local par-
tition and the console is requested to add it to the configure set of
the partition specified in node_id. If the CPU is currently in the ac-

tive set, it is automatically brought to console mode through the
CSTSK _CPU_STOP function first.

CST$K CPU _START The target CPU is requested to exit console mode and join the active
set of the current partition. The CPU must already be part of the con-
figure set.

CST$K _CPU _FAILOVER |The CPU is assigned a default target partition where it will automati-
cally migrate on system failure. This assignment persists until it is su-
perseded. To remove an assignment or partition name, the current par-
tition ID should be specified.

CST$SK CPU POWER_OFF | The requested operation is initiated on the target CPU to bring the
electrical power to the OFF state. If the CPU is currently in the ac-
tive set, it is automatically brought to console mode through the
CSTS$K _CPU_STOP function first.

CST$SK _CPU POWER_ON |The requested operation is initiated on the target CPU to bring the
electrical power to the ON state.

Each $K code represents an end state operation, each of which has a specific start state that the CPU
must be in, in order to initiate the transition.

This service may automatically initiate a successful completion of the requested operation by initiat-
ing one or more transparent transitions. This operation takes place if the CPU is not in that specific
start state, and there are an obvious and unique set of transitions that can be initiated prior to the speci-
fied end state.

Multiple transitions can also be initiated simultaneously through the system service t r an_code pa-
rameter. Each transition code has a $M form as shown in the following list, that can be or'd with a
specific end state $K code:

+ CST$SM _CPU_STOP

+ CST$SM_CPU _MIGRATE

*+ CSTSM _CPU START

+ CST$SM_CPU_FAILOVER

+ CST$SM_CPU POWER OFF

+ CST$SM_CPU POWER ON

Any legal combination of transitions can be specified with the $M form, however no more than one
$K code is allowed.

cpu_id

OpenVMS usage: longword

203

System Service Descriptions

type: longword (unsigned)
access: read only
mechanism: by value

Identifier of the CPU whose state is to be modified. The cpu_i d argument is a longword number in
the supported range of individual CPUs from 0 to SYI$§ MAX CPUS - 1.

Generic identifiers can also be used to allow OpenVMS to select the most appropriate resource. The
following table lists these codes:

Code Description

CST$K_ANY_OWNED_CPU Any CPU in the configure set, regardless of the active set state
CST$K_ANY_ACTIVE _CPU Any CPU in the active set

CST$SK_ANY _STOPPED CPU |Any CPU in the configure set, but not the active set

node_id

OpenVMS usage: longword

type: longword (unsigned)
access: read only
mechanism: by value

Identifier of the target Galaxy partition in CSTSK_CPU_ASSIGN, CSTK _CPU_FAILOVER, or
CST$K CPU_MIGRATE transition. The node_i d argument is a longword containing a number in
the supported range of IDs provided by the console for the current hardware platform. If the node-
name parameter is specified, node_i d is ignored.

flags

OpenVMS usage: longword mask

type: longword (unsigned)
access: read only
mechanism: by value

Options selected for the CPU state transition. The f | ags argument is a longword bit vector wherein
a bit corresponds to an option. Only the bits specified below are used; the remainder of the longword

bits are reserved and must be 0.

Each option (bit) has a symbolic name. The f | ags argument is constructed by performing a logical
OR operation using the symbolic names of the following options:

Symbolic Name Description

CST$V_CPU DEFAULT _ At the completion of the transition, the CPU's user capabil-

CAPABILITIES ities are set back to the default system value. If this option
is not specified, modified user capabilities are maintained

204

System Service Descriptions

Symbolic Name

Description

across STOP and START transitions as long as the CPU re-
mains in the local partition configure set.

CST$V_CPU ALLOW _ORPHANS |The transition is to be allowed even though it will leave at

least one thread in the system unable to execute on any CPU
in the active set.

efn

OpenVMS usage:
type:
access:

mechanism:

ef number
longword (unsigned)
read only

by value

The event flag to be set when the state transition attempt has completed. The ef n argument is a long-
word specifying the number of the event flag; however, this service only uses the low-order byte.

When you invoke $CPU_TRANSITION, the specified event flag is cleared; when the operation is
complete, the event flag is set.

iosb

OpenVMS usage:
type:
access:

mechanism:

io_status area

IOSB structure

write only

by 32-bit or 64-bit reference

The I/O status area to receive the final completion status of the transition operation. The i 0sb argu-
ment is the 32-bit or 64-bit virtual address of the I/O status area. The 1/O status area structure is 32
bytes in length; its definition can be found in $SIOSBDEF in STARLET.MLB for macro and in the file

IOSBDEF.H in SYSSSTARLET C.TLB for C.

When you call SCPU_TRANSITION, the I/O status area is cleared. After the transition operation is
complete, the block is modified as follows:

Symbolic Name

Description

iosb$w_status

The first word contains the condition value return, indicating the final comple-
tion status of the operation.

The first bit in the second word of the IOSB is set only if an error occurred dur-
ing the operation; the remaining bits are zeroes.

astadr_64

OpenVMS usage:

type:

acCCess:

ast_procedure
procedure value

call without stack unwinding

205

System Service Descriptions

mechanism: by 32-bit or 64-bit reference

The AST routine to be executed when the requested transition attempt has completed. The as-

t adr _64 argument is the 32-bit or 64-bit virtual address of this routine. If you specify the as-

t adr _64 argument, the AST routine executes at the access mode from which the state transition was
requested.

astprm_64

OpenVMS usage: user_arg

type: quadword
access: read only
mechanism: by value

The quadword AST parameter to be passed to the AST routine.

Description

The state transition in t r an_i d is requested for the target cpu_i d.
A CPU currently in the active set can transition:

* To the STOPPED state; removed from the active set and left in the configure set, halted in console
mode.

A CPU in the configure set can transition:
» To the UNASSIGNED state by STOPPING it and then DEASSIGNING it back to the console.

* To the ACTIVE state; warm rebooted and a full member of the symmetric multiprocessing (SMP)
active set on the requesting partition.

* To another partition through MIGRATION; the target CPU is removed from the configure set and
added to the configure set of the partition specified by node_i d.

A CPU in the Galaxy unassigned state (not in the configure set of any partition in the platform) can
transition:

» To the ASSIGNED state; in the configure set of the partition specified by node_i d. Any parti-
tion can make the assignment, but the CPU must be unassigned.

CPU state transition is a two-phase operation in the OpenVMS scheduling model. This service initi-
ates the request in the process context of the caller and returns the setup status in the service condition
value. Phase 2 proceeds asynchronously; the ef n and i 0Sb arguments can be used to indicate the
completion of the transition through the standard wait system services. Additional notification of the
completion can be made through the OpenVMS AST mechanisms using a routine specified in as-

t adr 64 and a user-supplied parameter in ast pr m 64.

Required Privileges

The caller must have the CMKRNL privilege to call SYS$SCPU_TRANSITION to modify CPU states.

206

System Service Descriptions

Related Services

$CPU_TRANSITIONW

Condition Values Returned

SS$ NORMAL
The service completed successfully.
SS$ BADPARAM
One of more arguments has an invalid value or the specified CPU is not in the configuration.
SS$ ACCVIO
The service cannot access the locations specified by one or more arguments.
SS$ NOPRIV
The service cannot access the locations specified by one or more arguments.
SS$_NOPRIV
Caller does not have CMKRNL privilege needed to complete operation.
SS$ _INSFARG
Fewer than the required number of arguments were specified or no operation was specified.
SS$ TOO MANY_ ARGS
More arguments were specified than are allowed by the service.
SS$ INVCOMPID
The target partition ID is not valid in this configuration.
SS$ CPUNOTACT
The specified CPU is not part of the current partition's active set.
SS$ NOSUCHCPU

The specified CPU does not exist in the current hardware configuration, or is not in the configure
set of the local partition.

SS$_CPUSTARTD
The specified CPU is already in the local active set, or is in the process of joining it.
SS$ CPUSTOPPING

The specified CPU is already STOPPED or in the processing of leaving the active set.

207

System Service Descriptions

$CPU_TRANSITIONW (Alpha and Integrity
servers)

CPU Transition and Wait — On Alpha and Integrity server systems, changes the current process-
ing state of a CPU in the configure set or an unassigned CPU in a Galaxy configuration. This
service completes synchronously; that is, it returns to the caller only after the final completion
status of the operation is known. In all other respects, SCPU_TRANSITIONW is identical to
$CPU_TRANSITION. For all other information about the SCPU_TRANSITIONW service, see the
description of SCPU_TRANSITION in this manual.

This service accepts 64-bit addresses.

For more information, see the VST OpenVMS Alpha Partitioning and Galaxy Guide.

Format
SYS$SCPU_TRANSI TI ONW

tran_id ,cpu_id ,nodename ,node_id ,flags ,efn ,iosb ,astadr_64
, astprm 64

C Prototype
int sys$cpu_transitionw
(int tran_code, int cpu_id, dsc64$descriptor_s_pg nodenane, int node_id,

uint32 flags, int efn, 10SB *iosh, U NT64_PQ astadr, uint64 astprm
uint 32 tinmout);

$CREATE

Constructs New File — The Create service constructs a new file according to the attributes you speci-
fy in the FAB. If any XABs are chained to the FAB, then the characteristics described in the XABs are
applied to the file. This service performs implicit Open and Display services. For additional informa-
tion about this service, see the OpenVMS Record Management Services Reference Manual.

$CREATE_BUFOBJ_64 (Alpha and Integrity
servers)

Create Buffer Object — On Alpha and Integrity server systems, creates a buffer object out of a range
of pages. This service accepts 64-bit addresses.

Format
SYS$CREATE_BUFOBJ_64

start_va 64 ,length_64 ,acnode ,flags ,return_va 64 ,return_|length_64,
buf f er _handl e_64

C Prototype

int sys$create_bufobj_ 64
(void *start_va 64, unsigned __int64 |ength 64, unsigned int acnode,

208

System Service Descriptions

unsigned int flags, void *(*(return_va_64)),
unsigned __int64 *return_| ength_64,
struct _generic_64 *buffer_handl e_64);

Arguments

start va_64

OpenVMS usage: address

type: quadword address
access: read only
mechanism: by value

Starting virtual address of the pages to be included in the buffer object. The specified virtual address
will be rounded down to a CPU-specific page boundary.

The virtual address space must already exist.

length_64

OpenVMS usage: byte count

type: quadword (unsigned)
access: read only
mechanism: by value

Length of the virtual address space to be included in the buffer object. The specified length will be
rounded up to a CPU-specific page boundary such that it includes all CPU-specific pages in the re-
quested range.

acmode

OpenVMS usage: access_mode

type: longword (unsigned)
access: read only
mechanism: by value

Access mode on behalf of which the request is being made. The acnpde argument is a longword
containing the access mode.

The $PSLDEF macro in STARLET.MLB and the file PSLDEF.H in SYS$STARLET C.TLB define
the following symbols and their values for the four access modes:

Value |Symbolic Name Access Mode
0 PSL$C KERNEL Kernel

1 PSLS$C _EXEC Executive

2 PSL$C SUPER Supervisor

3 PSL$C _USER User

209

System Service Descriptions

The most privileged access mode used is the access mode of the caller. For the SCREATE BUFOB-
J 64 service to complete successfully, the resultant access mode must be equal to or more privileged
than the access mode already associated with the pages in the specified input range.

flags

OpenVMS usage: mask longword

type: longword (unsigned)
access: read only
mechanism: by value

Flag mask specifying the request options. The f | ags argument is a longword bit vector in which
each bit corresponds to a flag. The SCBODEF macro in STARLET.MLB and CBODEF.H file in SYS
$STARLET C.TLB define a symbolic name for each flag. The following table describes each flag
that is valid for the SCREATE BUFOBIJ 64 service:

Flag Value |Description

CBOSM_RETSVA 1 If set, returns the system virtual address in the r et ur n_va_64
argument instead of the process virtual address range. (Valid for
inner mode callers only.)

CBOSM_SVA 32 4 If set, creates the buffer object window in 32-bit SO/S1 space.
(By default, this service creates the window in 64-bit S2 space).

return_va_64

OpenVMS usage: address

type: quadword address
access: write only
mechanism: by 32- or 64-bit reference

The lowest process virtual address of the pages in the buffer object. The r et ur n_va_64 argument
is the 32- or 64-bit virtual address of a naturally aligned quadword into which the service returns the
virtual address.

return_length 64

OpenVMS usage: byte count

type: quadword (unsigned)
access: write only
mechanism: by 32- or 64-bit reference

The length of the virtual address range in the buffer object. The r et ur n_| engt h_64 argument
is the 32- or 64-bit virtual address of a naturally aligned quadword into which the service returns the
length of the virtual address range in bytes.

buffer_handle_64

OpenVMS usage: handle

210

System Service Descriptions

type: quadword (unsigned)
access: write only
mechanism: by 32- or 64-bit reference

The 32- or 64-bit virtual address of a naturally aligned quadword into which a buffer handle is re-
turned to be used when referencing the created buffer object.

Description

The Create Buffer Object service creates a buffer object for use by the I/O subsystem. The pages that
constitute the buffer object are permanently locked into physical memory (but not the process's work-
ing set) and double mapped into system space. The net effect is:

* I/O can be initiated to or from the buffer without the need to probe or lock the buffer pages.
* The process is still fully swappable.

If the condition value SS§ ACCVIO is returned by this service, a value cannot be returned in the
memory locations pointed to by ther et urn_va_64,ret urn_| engt h_64, and buf f er _han-
dl e_64 arguments.

If a condition value other than SS§ ACCVIO is returned, the returned address and returned length in-
dicate the pages that were successfully made part of the buffer object before the error occurred. If no
pages were made part of the buffer object, the r et ur n_va_64 argument will contain the value -1,
and a value is not returned in the memory location pointed to by the r et ur n_| engt h_64 argu-
ment.

Required Privileges
No privileges are required if calling SCREATE _BUFOBIJ_64 from an inner mode. If calling from

user mode, the process must hold the rights identifier VMS$BUFFER _OBJECT USER at the time of
the call. This identifier is normally granted by the system administrator via the Authorize utility.

Required Quota

No process quota is charged, but the number of pages is limited by the system parameter MAXBOB-
MEM.

Related Services

$CRETVA_64, SDELETE BUFOBIJ, SEXPREG 64

Condition Values Returned

SS$ NORMAL
The service completed successfully.
SS$ ACCVIO

Thereturn_va_64,return_Il ength_64, orbuf f er _handl e_64 argument cannot be
written by the caller.

211

System Service Descriptions

SS$ BADPARAM
Invalid flags options specified.
SS$ EXBUFOBJLM

Buffer object cannot be created because it would bring the total number of buffer object pages
above the systemwide limit MAXBOBMEM.

SS$ INSFMEM

Insufficient dynamic memory.
SS$_INSFSPTS

Insufficient system page table entries.
SS$_NOBUFOBIJID

The process attempted to create a buffer object from user mode but was not holding required
rights identifier VMS$SBUFFER_OBJECT USER.

SS$ NOPRIV

Valid flag options were specified but from user mode.
SS$ PAGNOTWRITE

A page within the address range is not writeable.
SS$§ PAGOWNVIO

The pages could not put into the buffer object because the access mode associated with the call to
$CREATE BUFOBJ 64 was less privileged than the access mode associated with the pages.

$CREATE_GALAXY_LOCK (Alpha Only)

Create OpenVMS Galaxy Lock — Allocates an OpenVMS Galaxy lock block from a lock table creat-
ed with the SCREATE GALAXY LOCK TABLE service. Note that this system service is support-
ed only in an OpenVMS Alpha Galaxy environment. For more information about programming with
OpenVMS Galaxy system services, see the VSI OpenVMS Alpha Partitioning and Galaxy Guide.

Format

YS$CREATE _GALAXY_LOCK
| ckt bl _handl e , name ,size ,timeout ,ipl ,rank ,handle

C Prototype

int sys$create_gal axy_I ock
(unsigned int |cktbl _handle, void *nane, unsigned int size,
unsigned int tineout, unsigned int ipl, unsigned int rank,
unsigned __int64 *lock handl e);

212

System Service Descriptions

Arguments

Icktbl_handle

OpenVMS usage: lock table handle

type: longword (unsigned)
access: read
mechanism: input by value

The 32-bit lock table handle that identifies the lock table in which to create the lock. This value is re-
turned by SYSSCREATE_GALAXY LOCK_TABLE.

name

OpenVMS usage: address

type: ASCID string
access: read
mechanism: input by reference

The name parameter is a pointer to an ASCID string (passed by descriptor). The name can be a max-
imum of 15 characters. Lock names are not checked for uniqueness; therefore, multiple locks can be
created with the same name.

timeout

OpenVMS usage: wait timeout

type: longword (unsigned)
access: read
mechanism: input by value

The 32-bit wait or spin timeout specified in 10 microsecond units. If not specified, the timeout de-
faults to 10 microseconds.

size

OpenVMS usage: byte count

type: longword (unsigned)
access: read
mechanism: input by value

The size of the galaxy lock in bytes. Galaxy locks have two legal sizes. These values are returned by
SYSSGET _GALAXY_LOCK_SIZE. The value passed to SYSSCREATE GALAXY_ LOCK must
be equal to the value passed to the call to SYSSCREATE GALAXY LOCK TABLE.

ipl

OpenVMS usage: IPL of lock

213

System Service Descriptions

type: longword (unsigned)
access: read
mechanism: input by value

For galaxy locks acquired in kernel mode, the IPL to raise to while the lock is held. This parameter is
ignored for all other access mode.

rank

OpenVMS usage: rank of lock

type: longword (unsigned)
access: read
mechanism: input by value

Rank applied to a galaxy lock. Ranking is used to detect potential deadlocks. This parameter is cur-
rently ignored.

handle

OpenVMS usage: address

type: quadword (unsigned)
access: write
mechanism: output by reference

The handle parameter is a pointer to a quadword. The value returned is a 64-bit handle that uniquely
identifies the lock galaxy-wide.

Description

This service allocates an OpenVMS Galaxy lock block from a lock table created with the SCRE-
ATE GALAXY LOCK TABLE service.

Required Access or Privileges
For System Lock: CMKRNL, SHMEM

For User Lock: SHMEM

Write access to Lock Table

Required Quota

None

Related Services

$ACQUIRE_GALAXY LOCK, $CREATE_GALAXY LOCK_TABLE,
$DELETE_GALAXY LOCK, SDELETE_GALAXY LOCK TABLE,
$GET GALAXY LOCK_INFO, SGET GALAXY LOCK SIZE, SRELEASE GALAXY LOCK

214

System Service Descriptions

Condition Values Returned

SS$ NORMAL
Normal completion.
SS$ ACCVIO
Access violation on parameter.
SS$ BADLCKTBL
OpenVMS Galaxy lock table is corrupt.
SS$ BADPARAM
Bad parameter value.
SS$ IVLOCKID
Invalid lock id.
SS$ IVLOCKTBL
Invalid lock table.
SS$ INSFMEM
Insufficient memory in lock table.
SS$ NOCMKRNL
Operation requires CMKRNL privilege.
SS$ NOSHMEM

Operation requires SHMEM privilege.

$CREATE_GALAXY_LOCK_TABLE (Alpha
Only)

Create OpenVMS Galaxy Lock Table — Allocates an OpenVMS Galaxy lock table. Note that this
system service is supported only in an OpenVMS Alpha Galaxy environment. For more information
about programming with VSI OpenVMS Alpha Partitioning and Galaxy Guide.

Format
SYS$CREATE_GALAXY_LOCK_TABLE

nane , accnode , section_size ,section_type ,prot ,lock_size
, 1 cktbl _handl e

C Prototype

int sys$create_gal axy_| ock_table

215

System Service Descriptions

(void *name, unsigned int accnode, unsigned __int64 section_size,
unsi gned int section_type, unsigned int prot, unsigned int |ock_size,
unsi gned int *I|cktbl_handle);

Arguments

name

OpenVMS usage: address

type: ASCID string
access: read
mechanism: input by reference

The name parameter is a pointer to an ASCID string (passed by descriptor). The name is given to the
global section that is created to contain the galaxy locks.

accmode

OpenVMS usage: access mode

type: longword (unsigned)
access: read
mechanism: input by value

Access mode that is to be the owner of the pages created during the mapping. The accnode argu-
ment is a longword containing the access mode.

section_size

OpenVMS usage: byte count

type: quadword (unsigned)
access: read
mechanism: input by value

Length of the global section to be created, in bytes. The size must be specified as a multiple of the
CPU-specific page size. A size of zero is illegal.

section_type

OpenVMS usage: bit mask

type: longword (unsigned)
access: read
mechanism: input by value

Used to control where in virtual memory the global section is created. If GLCKTBL$C PROCESS
is specified, the section is created in P2 (process) space. If GLCKTBL$C SYSTEM is specified, the
section is created in SO/S1 (system) space. These constants are defined in the GLOCKDEF macro.

216

System Service Descriptions

prot

OpenVMS usage: protection

type: longword (unsigned)
access: read
mechanism: input by value

Protection to be applied to the global section.

The mask contains four 4-bit fields. Bits are read from right to left in each field. The following dia-
gram depicts the mask:

Wiorld Group Owner Sysiem

p|e|w|ar[p|e|w|r|p|e|w|r|[D|E|w|R
1514131211109 8 7 6 5 4 3 2 1 0
ZH-1T06-GE

Cleared bits indicate that read, write, execute, and delete access, in that order, are granted to the par-
ticular category of user.

Only read and write access are meaningful for lock section protection. Delete access bits are ignored.

lock_size

OpenVMS usage: byte count

type: longword (unsigned)
access: read
mechanism: input by value

The size of the galaxy lock in bytes. Galaxy locks have two sizes. The legal values are returned by
SYSSGET GALAXY_ LOCK_SIZE.

Icktbl_handle

OpenVMS usage: address

type: longword
access: write
mechanism: output by reference

Pointer to a longword. The value returned is a 32-bit handle that uniquely identifies the lock table
galaxy-wide.

Description

This service allocates an OpenVMS Galaxy lock table. This structure is used to maintain informa-
tion about a shared memory section, which this service also creates. The first caller of the service with
a unique lock table name creates the section. Additional callers map it. This shared memory section
contains a set of Galaxy locks. All locks residing in the section are of the same size. Once the lock

217

System Service Descriptions

table is created, the SCREATE_GALAXY LOCK service can be used to create and allocate a lock
from the table.

The flags GLCKTBL$SC PROCESS and GLCKTBL$C SYSTEM specify whether the shared mem-
ory region is mapped into system space or process space. Creation of process space sections requires
the SHMEM privilege. Creation of system space sections requires the SHMEM and CMKRNL privi-
leges.

Required Access or Privileges

CMKRNL, SHMEM

Required Quota

None

Related Services

$ACQUIRE GALAXY LOCK, $CREATE GALAXY LOCK, SDELETE GALAXY LOCK,
$DELETE_GALAXY LOCK TABLE, SGET GALAXY LOCK_ INFO,
$GET_GALAXY LOCK_SIZE, SRELEASE_GALAXY LOCK

Condition Values Returned

SS$ NORMAL

Normal completion.
SS$ ACCVIO

Access violation on parameter.
SS$ BADPARAM

Bad parameter value.
SS$ CREATED

File or section did not exist; has been created.
SS$ IVLOCKID

Invalid lock id.
SS$ NOPRIV

No privilege for attempted operation.
SS$ NOCMKRNL

Operation requires CMKRNL privilege.
SS$ NOSHMEM

Operation requires SHMEM privilege.

218

System Service Descriptions

$CREATE_GDZRO

Create Permanent Global Demand-Zero Section — On Alpha and Integrity server systems, creates a
permanent, memory-resident, global demand-zero section to which processes can map. Shared page
table sections can also be created. This service accepts 64-bit addresses.

Format
SYS$CREATE _GDZRO

gs_name_64 ,ident_64 ,prot ,length_64 ,acnode ,fl ags
[,reserved_|l ength_64] [,rad_mask]

C Prototype

i nt sys$create_gdzro
(void *gs_nanme_64, struct _secid *ident_64, unsigned int prot,

unsi gned __int64 |length_64, unsigned int acnode,
unsigned int flags,...);

Arguments

gs_name_64

OpenVMS usage: section name

type: character-coded text string
access: read only
mechanism: by 32- or 64-bit descriptor--fixed-length string descriptor

Name of the global section. The gs_nane_64 argument is the 32- or 64-bit virtual address of a natu-
rally aligned 32- or 64-bit string descriptor pointing to this name string.

ident_64

OpenVMS usage: section id

type: quadword (unsigned)
access: read only
mechanism: by 32- or 64-bit reference

Identification value specifying the version number of the global section. The i dent _64 argument is
a quadword containing three fields. The i dent _64 argument is the 32- or 64-bit virtual address of a
naturally aligned quadword that contains the identification value.

The first longword specifies the matching criteria in its low-order 2 bits. Their meanings are as fol-
lows:

Value Symbolic Name Match Criteria
0 SEC$SK MATALL Match all versions of the section.
1 SEC$SK_MATEQU Match only if major and minor identifications match.

219

System Service Descriptions

Value Symbolic Name Match Criteria

2 SEC$SK_MATLEQ Match if the major identifications are equal and the minor
identification of the mapper is less than or equal to the mi-
nor identification of the global section.

If you specify the i dent _64 argument as 0, the version number and match control fields default to
0.

The version number is in the second longword. The version number contains two fields: a minor iden-
tification in the low-order 24 bits and a major identification in the high-order 8 bits. You can assign
values for these fields by installation convention to differentiate versions of global sections. If no
version number is specified when a section is created, processes that specify a version number when
mapping cannot access the global section.

prot

OpenVMS usage: file protection

type: longword (unsigned)
access: read only
mechanism: by value

Protection to be applied to the global demand-zero section. The mask contains four 4-bit fields. Bits
are read from right to left in each field. The following diagram depicts the mask:

Wiorld Group Owner Sysiem

p|e|w|a[p|e|w|r|p|e|w|r|[D|E|w|R
1514131211109 8 7 6 54 3 2 10
ZH-1T06-GE

Cleared bits indicate that read, write, execute, and delete access, in that order, are granted to the par-
ticular category of user. Only read, write, and execute access are meaningful for section protection.
Delete access bits are ignored. Read access also grants execute access for those situations where exe-
cute access applies. If 0 is specified, read access and write access are granted to all users.

length 64

OpenVMS usage: byte count

type: quadword (unsigned)
access: read only
mechanism: by value

Length, in bytes, of the global demand-zero section to be created. The | engt h_64 argument must be
specified as a multiple of the CPU-specific page size. A length of 0 cannot be specified.

Note

Creating a memory-resident global section with shared page tables does not imply that the global sec-
tion must have a length that is an even multiple of CPU-specific page table pages. The global section
might not fully use the last shared page table page.

220

System Service Descriptions

acmode

OpenVMS usage: access _mode

type: longword (unsigned)
access: read only
mechanism: by value

Access mode that is to be the owner of the pages created during the mapping. The acnode argument
is a longword containing the access mode.

If the memory-resident global section is created with shared page tables, this is the access mode that is
stored in the owner, read, and write fields of the corresponding shared page table entries (PTEs).

The SPSLDEF macro in STARLET.MLB and the file PSLDEF.H in SYSSSTARLET C.TLB define
the following symbols and their values for the four access modes:

Value Symbolic Name Access Mode
0 PSL$C KERNEL Kernel
1 PSLS$C EXEC Executive
2 PSL$C_SUPER Supervisor
3 PSL$C USER User
flags

OpenVMS usage: mask longword

type: longword (unsigned)
access: read only
mechanism: by value

Flag mask specifying the type of global section to be created as well as its characteristics. The f | ags
argument is a longword bit vector in which each bit corresponds to a flag. The $SECDEF macro and
the SECDEF.H file define a symbolic name for each flag. You construct the f | ags argument by per-
forming a logical OR operation on the symbol names for all desired flags.

The following table describes the flags that are valid for the SCREATE GDZRO service:

Flag Description

SEC$SM_DZRO Pages are demand-zero pages. By default, this flag is always
present in this service and cannot be disabled.

SEC$M_GBL Pages form a global section. By default, this flag is always
present in this service and cannot be disabled.

SEC$M_MRES Pages form a memory-resident section. By default, this flag is al-
ways present in this service and cannot be disabled.

SEC$M_PERM Global section is permanent. By default, this flag is always
present in this service and cannot be disabled.

SEC$M_RAD HINT When set, the argument r ad__nmask is used as a mask of RADs

from which to allocate memory. See the r ad_nmask argument
description for more information.

221

System Service Descriptions

Flag Description

SECSM_READ ONLY _SHPT |Create shared table pages for the section that allow read access
only.

SEC$M_SHMGS Create a shared-memory global section.

SEC$M_SYSGBL Pages form a system global section. By default, pages form a
group global section.

SECSM_WRT Pages form a read/write section. By default, this flag is always
present in this service and cannot be disabled.

All other bits in the flags argument are reserved to OpenVMS for future use and should be specified
as 0. The condition value SS§ IVSECFLG is returned if any undefined bits are set.

reserved length 64

OpenVMS usage: byte count

type: quadword (unsigned)
access: write only
mechanism: 32- or 64-bit reference

Length, in bytes, of the global section as currently registered in the Reserved Memory Registry. The
reserved_| engt h_64 argument is the 32- or 64-bit virtual address of a naturally aligned quad-
word into which the service returns the reserved length.

Ifreserved_| engt h_64 is not specified or is specified as 0, no reserved length is returned to the
caller.

If the memory-resident global section is not registered, r eser ved_| engt h_64 is written with the
value 0.

rad_mask

OpenVMS usage: mask quadword

type: quadword (unsigned)
access: read only
mechanism: by value

Use the r ad_mask argument to specify from which RADs to allocate memory. Currently only one
bit may be set. The specified RAD must contain memory. This argument is only a hint. Memory may
be obtained from other RADs if no free memory is available at the time of allocation.

The r ad_nmask argument is considered only if the SECSM_RAD_ HINT flag is specified. Otherwise,
this argument is ignored.

On a system that does not support resource affinity domains (RADs), specifying 1 for the r ad_mask
argument is allowed.

RAD is supported on AlphaServer GS series systems and starting from OpenVMS Version 8.4, sup-
port is extended to NUMA capable Integrity servers.

222

System Service Descriptions

Description

The Create Permanent Global Demand-Zero Section service allows a process to create a permanent,
memory-resident, global demand-zero section. If you set the SEC$M_SHMGS flag, the section is cre-
ated as a Galaxy-wide global demand-zero section in shared memory.

You must call either the SCREATE _GDZRO service or the SCRMPSC_GDZRO 64 service on each
instance where the Galaxy shared memory will be accessed.

Memory-resident or Galaxy-wide global sections contain demand-zero allocation pages that are
writable and memory resident. All pages in these types of global section are shared by all processes
that map to the global section.

The pages are always resident in memory and are not backed up by any file on any disk. The pages
are not placed into the process's working set list when the process maps to the global section and the
virtual memory is referenced by the process. The pages are also not charged against the process's
working set quota or against any page-file quota.

To create a memory-resident section, the process must have the rights identifier, VMSSMEM_RESI-
DENT USER. The error status, SS§ NOMEMRESID, is returned if the caller has not been granted
this identifier. To create a Galaxy-wide shared section, the process must have the SHMEM privilege.

Only memory-resident sections can be registered with the Reserved Memory Registry in the SYS-
MAN facility. Memory for Galaxy-wide shared sections is reserved through appropriate settings of
the console environment parameters.

If the section is not registered in the Reserved Memory Registry, or if the /NOALLOCATE qualifier
was specified when the global section was registered in the Reserved Memory Registry, invalid glob-
al PTEs are written to the global page table. When the global section is mapped, invalid page table en-
tries are placed in the process page table. Physical memory is not allocated until the pages are refer-
enced.

If the global section is registered in the Reserved Memory Registry, the size of the global section need
not match the reserved size. If the global section is not registered in the Reserved Memory Registry,
or if the reserved size is smaller than the size of the global section, the error status SS§ INSFLPGS is
returned if there are not enough fluid pages in the system to satisfy the request.

If the /ALLOCATE qualifier was specified when the global section was registered in the Reserved
Memory Registry, contiguous, aligned, physical pages are preallocated during system initialization
for this global section. Valid page table entries are placed in the global page table and when the global
section is mapped, valid page table entries are placed in the process page table. With the proper virtual
alignment, granularity hints (GH) are used to map to the global pages.

If the global section is not registered in the Reserved Memory Registry, or if the /PAGE_TABLES
qualifier was specified when the global section was registered, shared page tables are created for the
memory-resident global section.

If the /ALLOCATE and /PAGE_TABLE qualifiers were specified when the global section was reg-
istered in the Reserved Memory Registry, contiguous, aligned physical pages are preallocated during
system initialization for this global section, and granularity hints are used to map to the shared page
table sections.

The following table lists the factors affecting the creation of shared page tables for memory-resident
global sections. The /ALLOCATE and the /PAGE_TABLES qualifiers pertain to the Reserved Memo-

223

System Service Descriptions

ry Registry command RESERVED MEMORY ADD entered for the memory-resident global section
being created. For more information about using the SYSMAN utility to create entries to the Reserved
Memory Registry, see the VSI OpenVMS System Management Utilities Reference Manual.

/ALLOCATE /PAGE_TABLES |[Outcome
Not registered Not registered Shared page tables created.

Shared page tables cannot use GH.

Returns SS$ CREATED_ SHPT.

No No No shared page tables created. Returns SS§ CREATED.

No Yes Shared page tables created.
Shared page tables cannot use GH.

Returns SSSCREATED_SHPT.

Yes No No shared page tables created. Returns SS§ CREATED.

Yes Yes Shared page tables created.

Shared page tables can use GH.

Returns SS$ CREATED_SHPT.

Shared page tables are always created for Galaxy-wide shared sections of at least 128 pages.

Shared page tables consume the same internal OpenVMS data structures as global sections. The sys-
tem parameters GBLPAGES and GBLSECTIONS must account for the additional global pages and
the additional global section.

Note that only one set of shared page tables can be associated with any memory-resident or Galaxy-
wide section. By default, shared page tables will allow write access. To create shared page tables that
allow only read access, you must set the READ ONLY_ SHPT flag. A process that requires write ac-
cess to a section where the shared page tables only allow read access must use private page tables to
map the section.

To use the shared page tables associated with a memory-resident global section, a process must first
create a shared page table region (with SCREATE REGION_64). Additionally, a subsequent request

to map to the memory-resident global section must do the following:

* Specify a shared page table region to the mapping request (see Table 22 for additional informa-
tion).

» Specify the same access mode as specified by the acnbde argument to this service.

* Set the flag SECSM_WRT in the mapping request only if shared page tables allow write access.

» Set the flag SECSM_EXPREG in the mapping request or provide a CPU-specific page table page
aligned virtual address. (See the description of the CREATE REGION 64 service for information

about calculating virtual addresses that are aligned to a CPU-specific page table page boundary.)

If a shared page table region is not specified, process-private page tables are used to map to the global
section.

224

System Service Descriptions

If the service returns an error status value that is neither SS§ INSFLPGS nor SS§ MRES PFNS-
MALL, a value is not returned in the r eser ved_I| engt h_64 argument.

If the service returns a successful condition value or if SS§ INSFLPGS or SS§ MRES PFNSMALL
is returned and the r eser ved_| engt h_64 argument is specified as a nonzero address, the length
in bytes of the global section as registered in the Reserved Memory Registry is returned in the r e-
served_| engt h_64 argument.

To map a Galaxy shared section or a memory resident section, see the SCRMPSC GDZRO 64 ser-
vice.

For additional information, see the VSI OpenVMS Alpha Partitioning and Galaxy Guide.
Required Privileges

To create a permanent memory-resident global DZRO section, the process must have the following
privileges or rights identifiers:

» SYSGBL privilege to create a system global section (if flag SEC$M_SYSGBL is set)
« PRMGBL privilege to create a permanent global section
+ VMSSMEM RESIDENT USER rights identifier to create a memory-resident section

* SHMEM privilege on OpenVMS Galaxy systems to create an object in Galaxy shared memory.

Required Quota

None

Related Services

$CRMPSC_GDZRO_64, SDGBLSC, SMGBLSC_64

Condition Values Returned
SS$ NORMAL

A Galaxy-wide section already existed and has been made available.
SS$ CREATED

Global section has been created.
SS$ CREATED SHPT

Global section has been created with shared page tables.
SS$_ACCVIO

The gs_name_64 descriptor cannot be read by the caller, or the r eser ved_| engt h_64 ar-
gument was specified as a nonzero value and cannot be written by the caller.

225

System Service Descriptions

SS$ BADRAD

The specified RAD contains no memory, or if the specified RAD is greater than or equal to the
maximum number of RADs on the system.

SS$ DUPLNAM
A global section of the same name already exists; a new global section was not created.
SS$ GPTFULL

There is no more room in the system global page table to set up page table entries for the global
section or for the shared page tables.

SS$ GSDFULL

There is no more room in the system space allocated to maintain control information for global
sections.

SS$_INSFLPGS
Insufficient fluid pages available.
SS$ INSFRPGS
Insufficient free shared pages or private pages.
SS$ INV_SHMEM
Shared memory is not valid.
SS$ IVLOGNAM
The specified global section name has a length of 0 or has more than 43 characters.
SS$ IVPROTECT
The protection argument format is invalid.
SS$ IVSECFLG
An invalid flag, a reserved flag, or an invalid combination of flags was specified.
SS$ IVSECIDCTL
The match control field of the global section identification is invalid.
SS$ LEN NOTPAGMULT
The | engt h_64 argument is not a multiple of CPU-specific pages.
SS$ LOCK TIMEOUT

An OpenVMS Galaxy lock timed out.

226

System Service Descriptions

SS$ MRES PFNSMALL

Preallocated, contiguous, aligned physical memory specified in the Reserved Memory Registry is
smaller than the length specified for the global section by the | engt h_64 argument.

SS$ NOBREAK
An OpenVMS Galaxy lock is held by another node and was not broken.
SS$ NOMEMRESID

The process attempted to create a memory-resident section but was not holding the correct identi-
fier (VMSSMEM_RESIDENT USER).

SS$_NOPRMGBL

The process does not have the privileges to create or delete a permanent group global section
(PRMGBL).

SS$ NOSYSGBL
The process does not have the privileges to create or delete a system global section (SYSGBL).
SS$ SECTBLFUL

There are no entries available in the system global section table for the global section or for the
shared page tables.

SS$ TOOMANYLNAM

The logical name translation of the gs_name_64 argument exceeded the allowed depth of 10.

$CREATE_GFILE (Alpha and Integrity
servers)

Create Permanent Global Disk File Section — On Alpha and Integrity server systems, creates a per-
manent global disk file section to which processes can map. This service accepts 64-bit addresses.

Format

SYS$CREATE_GFI LE
gs_name_64 ,ident_64 ,file_offset_64 ,length_64 ,chan
,acnode ,flags ,return_length_64 [,fault_cluster]

C Prototype

int sys$create_gfile
(void *gs_nam 64, struct _secid *ident 64, unsigned __int64
file offset 64, unsigned __int64 |l ength 64, unsigned short int chan,
unsi gned int acnode, unsigned int flags,
unsigned __int64 *return_length 64,...);

227

System Service Descriptions

Arguments

gs_name_64

OpenVMS usage: section name

type: character-coded text string
access: read only
mechanism: by 32- or 64-bit descriptor—fixed-length string descriptor

Name of the global section. The gS_nanme_64 argument is the 64-bit virtual address of a naturally
aligned 32- or 64-bit string descriptor pointing to this name string.

ident_64

OpenVMS usage: section id

type: quadword (unsigned)
access: read only
mechanism: by 32- or 64-bit reference

Identification value specifying the version number of a global section. The i dent _64 argument is a
quadword containing three fields. The i dent _64 argument is the 32- or 64-bit virtual address of a
naturally aligned quadword that contains the identification value.

The first longword specifies the matching criteria in its low-order two bits. The valid values, symbolic
names by which they can be specified, and their meanings are as follows:

Value |Symbolic Name Match Criteria

0 SEC$SK MATALL Match all versions of the section.

1 SEC$SK_MATEQU Match only if major and minor identifications match.

2 SEC$SK_MATLEQ Match if the major identifications are equal and the minor identi-
fication of the mapper is less than or equal to the minor identifi-
cation of the global section.

If you specify the i dent _64 argument as 0, the version number and match control fields default to
0.

The version number is in the second longword and contains two fields: a minor identification in the
low-order 24 bits and a major identification in the high-order 8 bits. You can assign values for these
fields by installation convention to differentiate versions of global sections. If no version number is
specified when a section is created, processes that specify a version number when mapping cannot ac-
cess the global section.

file_offset_64
OpenVMS usage: byte offset

type: quadword (unsigned)

access: read only

228

System Service Descriptions

mechanism: by value

Byte offset into the file that marks the beginning of the section. The f i | e_of f set _64 argument is
a quadword containing this number. If you do not specify the f i | e_of f set _64 argument or speci-
fy it as 0, the section is created beginning with the first byte in the file.

Thefil e_of f set _64 argument must be a multiple of virtual disk blocks.

length 64

OpenVMS usage: byte count

type: quadword (unsigned)
access: read only
mechanism: by value

Length, in bytes, of the global disk file section to be created. The length specified must be 0 or a mul-
tiple of virtual disk blocks. If the length specified is 0 or extends beyond end-of-file (EOF), the global
disk file section is created up to and including the virtual block number that contains EOF.

chan

OpenVMS usage: longword

type: longword (unsigned)
access: read only
mechanism: by value

Number of the channel on which the file has been accessed. The chan argument is a longword con-
taining this number. The access mode at which the channel was opened must be equal to or less privi-
leged than the access mode of the caller.

You can use the OpenVMS Record Management Services (RMS) macro $OPEN to access a file; the
file options parameter in the file access block must indicate a user file open (UFO keyword).

acmode

OpenVMS usage: access_mode

type: longword (unsigned)
access: read only
mechanism: by value

Access mode that is to be the owner of the pages created during the mapping. The acnode argument
is a longword containing the access mode.

The $PSLDEF macro in STARLET.MLB and the file PSLDEF.H in SYS$STARLET C.TLB define
the following symbols and their values for the four access modes:

Value |Symbolic Name Access Mode
0 PSL$C KERNEL Kernel

229

System Service Descriptions

Value |Symbolic Name Access Mode
1 PSL$C EXEC Executive
2 PSL$C _SUPER Supervisor
3 PSL$C USER User
flags

OpenVMS usage: mask longword

type: longword (unsigned)
access: read only
mechanism: by value

Flag mask specifying the type of global section to be created as well as its characteristics. The f | ags
argument is a longword bit vector in which each bit corresponds to a flag. The SSECDEF macro and
the SECDEF.H file define a symbolic name for each flag. You construct the f | ags argument by per-
forming a logical OR operation on the symbol names for all desired flags. The following table de-
scribes each flag that is valid for the SCREATE GFILE service:

Flag Description

SEC$SM_CRF Pages are copy-on-reference. By default, pages are shared.

SEC$M_DZRO Pages are demand-zero pages. By default, they are not zeroed when
copied.

Note that SEC$M_DZRO and SEC$M_CRF cannot both be set and
that SEC$M_DZRO set and SEC$SM_WRT clear is an invalid combi-
nation.

SEC$M_GBL Pages form a global section. By default, this flag is always present in
this service and cannot be disabled.

SEC$SM_PERM Global section is permanent. By default, this flag is always present in
this service and cannot be disabled.

SECSM_SYSGBL Pages form a system global section. By default, pages form a group
global section.

SEC$SM_WRT Pages form a read/write section. By default, pages form a read-only
section.

All other bits in the f | ags argument are reserved for future OpenVMS use and should be specified
as 0. The condition value SS$ IVSECFLG is returned if any undefined bits are set or if an illegal
combination of flags is set.

return_length_64

OpenVMS usage: byte count

type: quadword (unsigned)
access: write only
mechanism: by 32- or 64-bit reference

230

System Service Descriptions

The length of the global section created. The r et ur n_I engt h_64 argument is the 32- or 64-bit
virtual address of a naturally aligned quadword into which the service returns the length of the global
section in bytes.

fault_cluster

OpenVMS usage: byte count

type: longword (unsigned)
access: read only
mechanism: by value

Page fault cluster in byte units indicating how many pages are to be brought into memory when a page
fault occurs for a single page. The fault cluster specified is rounded up to a multiple of CPU-specific

pages.
If this argument is specified as 0, the system default page fault cluster is used. If this argument is

specified as more than the maximum allowed for the system, no error is returned. The systemwide
maximum is used.

Description

The Create Permanent Global Disk File Section service allows a process to create a permanent global
disk file section.

Creating a global disk file section involves defining all or part of a disk file as a section. The global
section is created as entire pages; however, the last page in the section might correspond to less than a
full page of virtual disk blocks. Only the number of virtual disk blocks specified by the | engt h_64

argument, or as many as exist in the disk file, will be associated with the disk file section.

Upon successful completion of this service, the r et ur n_| engt h_64 argument will contain the
length of the global section created in even multiples of virtual disk blocks.

The security profile of the file is used to determine access to the global section. For a global disk file

section to allow write access to the file during the mapping of the global section, the channel used to
open the file must allow write access to the file.

Required Privileges

To create a global section, the process must have the following privileges:

» SYSGBL privilege to create a system global section (if flag SEC$M_SYSGBL is set)
* PRMGBL privilege to create a permanent global section

Required Quota

None

Related Services

$CRMPSC, SCRMPSC_GFILE 64, $DGBLSC, SMGBLSC, SMGBLSC 64

231

System Service Descriptions

Condition Values Returned

SS$_CREATED

The service completed successfully. The specified global section did not previously exist and has
been created.

SS$_ACCVIO

The gs_name_64 argument or the r et ur n_| engt h_64 argument cannot be read by the
caller.

SS$ CHANVIO

The specified channel was assigned from a more privileged access mode.
SS$ DUPLNAM

A global section of the same name already exists; a new global section was not created.
SS$ ENDOFFILE

The fil e_of f set _64 argument specified is beyond the logical end-of-file.
SS$ EXBYTLM

Process has exceeded the byte count quota; the system was unable to map the requested file.
SS$_GPTFULL

There is no more room in the system global page table to set up page table entries for the section.
SS$ GSDFULL

There is no more room in the system space allocated to maintain control information for global
sections.

SS$ IVCHAN

An invalid channel number was specified; the channel number specified was 0 or a channel that is
unassigned.

SS$ IVCHNLSEC

The channel number specified is currently active, or there are no files opened on the specified
channel.

SS$ IVIDENT

An invalid channel number was specified; the channel number specified is larger than the number
of channels available.

SS$ IVLOGNAM

The specified global section name has a length of 0 or has more than 43 characters.

232

System Service Descriptions

SS$ IVLVEC
The specified section was not installed using the /PROTECT qualifier.
SS$ IVSECFLG
An invalid flag, a reserved flag, or an invalid combination of flags was specified.
SS$ IVSECIDCTL
The match control field of the global section identification is invalid.
SS$ LEN NOTBLKMULT
The | engt h_64 argument is not a multiple of virtual disk blocks.
SS$ NOPRMGBL

The process does not have the privileges to create or delete a permanent group global section
(PRMGBL).

SS$ NOSYSGBL

The process does not have the privileges to create or delete a system global section (SYSGBL).
SS$ NOTFILEDEV

The device is not a file-oriented, random-access, or directory device.
SS$ NOWRT

The file is read-only, and the flag bit SEC$M_CRF is not set.
SS$ OFF NOTBLKALGN

Thefil e_of f set _64 argument is not a multiple of virtual disk blocks.
SS$ SECTBLFUL

There are no entries available in the system global section table.
SS$ TOOMANYLNAM

The logical name translation of the gs_nanme_64 argument exceeded the allowed depth of 10.

$CREATE_GPFILE (Alpha and Integrity
servers)

Create Permanent Global Page File Section — On Alpha and Integrity server systems, creates a per-
manent global page file section to which processes can map. This service accepts 64-bit addresses.

233

System Service Descriptions

Format

SYS$CREATE _GPFI LE gs_nane_64 ,ident_64 ,prot ,length 64 ,acnode ,flags

C Prototype

int sys$create gpfile
(void *gs_nanme_64, struct _secid *ident_64, unsigned int prot,
unsigned __int64 length_64, unsigned int acnode, unsigned int flags);

Arguments
gs_name_64

OpenVMS usage: section_name

type: character-coded text string
access: read only
mechanism: by 32- or 64-bit descriptor—fixed-length string descriptor

Name of the global section. The gs_namnme_64 argument is the 32- or 64-bit virtual address of a natu-
rally aligned 32- or 64-bit string descriptor pointing to this name string.

ident_64

OpenVMS usage: section id

type: quadword (unsigned)
access: read only
mechanism: by 32- or 64-bit reference

Identification value specifying the version number of a global section. The i dent _64 argument is a
quadword containing three fields. The i dent _64 argument is the 32- or 64-bit virtual address of a
naturally aligned quadword that contains the identification value.

The first longword specifies the matching criteria in its low-order 2 bits. Their meanings are as fol-
lows:

Value |Symbolic Name Match Criteria

0 SECSK_MATALL Match all versions of the section.

1 SEC$K_MATEQU Match only if major and minor identifications match.

2 SEC$K_MATLEQ Match if the major identifications are equal and the minor identi-
fication of the mapper is less than or equal to the minor identifi-
cation of the global section.

If you specify the i dent _64 argument as 0, the version number and match control fields default to
0.

The version number is in the second longword. The version number contains two fields: a minor iden-
tification in the low-order 24 bits and a major identification in the high-order 8 bits. You can assign
values for these fields by installation convention to differentiate versions of global sections. If no

234

System Service Descriptions

version number is specified when a section is created, processes that specify a version number when
mapping cannot access the global section.

prot

OpenVMS usage: file protection

type: longword (unsigned)
access: read only
mechanism: by value

Protection to be applied to the global page file section. The mask contains four 4-bit fields. Bits are
read from right to left in each field. The following diagram depicts the mask:

World Group Cwner Sysiem

p|e|w|r|{o|e{w|r|p|e|w|r|[D|E|W|R
1514131211109 8 7 6 5 4 32 1 0
ZH-1T06-GE

Cleared bits indicate that read, write, execute, and delete access, in that order, are granted to the par-
ticular category of user. Only read, write, and execute access are meaningful for section protection.
Delete access bits are ignored. Read access also grants execute access for those situations where exe-
cute access applies. If 0 is specified, read access and write access are granted to all users.

length_64

OpenVMS usage: byte count

type: quadword (unsigned)
access: read only
mechanism: by value

Length, in bytes, of the global page file section to be created. The | engt h_64 argument must be
specified as a multiple of the CPU-specific page size. A length of 0 cannot be specified.

acmode

OpenVMS usage: access_mode

type: longword (unsigned)
access: read only
mechanism: by value

Access mode that is to be the owner of the pages created during the mapping. The acnode argument
is a longword containing the access mode.

The $PSLDEF macro in STARLET.MLB and the file PSLDEF.H in SYSSSTARLET C.TLB define
the following symbols and their values for the four access modes:

Value |Symbolic Name Access Mode

0 PSL$C KERNEL Kernel

235

System Service Descriptions

Value |Symbolic Name Access Mode
1 PSL$C EXEC Executive
2 PSL$C _SUPER Supervisor
3 PSL$C USER User
flags

OpenVMS usage: mask longword

type: longword (unsigned)
access: read only
mechanism: by value

Flag mask specifying the type of global section to be created as well as its characteristics. The f | ags
argument is a longword bit vector in which each bit corresponds to a flag. The SSECDEF macro and
the SECDEF.H file define a symbolic name for each flag. You construct the f | ags argument by per-
forming a logical OR operation on the symbol names for all desired flags. The following table de-
scribes the flags that are valid for the SCREATE GPFILE service:

Flag Description

SEC$SM_DZRO Pages are demand-zero pages.

SEC$M_GBL Pages form a global section. By default, this flag is always present in
this service and cannot be disabled.

SEC$M_PAGFIL Pages form a global page-file section. SEC$M_PAGFIL also implies

SEC$M_WRT and SEC$M_DZRO. By default, this flag is always
present in this service and cannot be disabled.

SEC$SM_PERM Global section is permanent. By default, this flag is always present in
this service and cannot be disabled.

SECSM_SYSGBL Pages form a system global section. By default, pages form a group
global section.

SEC$SM_WRT Pages form a read/write section. By default, this flag is always present
in this service and cannot be disabled.

All other bits in the f | ags argument are reserved to OpenVMS for future use and should be speci-
fied as 0. The condition value SS§ IVSECFLG is returned if any undefined bits are set.

Description

The Create Permanent Global Page File Section service allows a process to create a permanent global
page file section. Global page file sections contain demand-zero allocation pages that are writable and
backed up by the system page file. All pages in the global page file section are shared by all processes
that map to the global section.

Required Privileges
To create a permanent global page file section, the process must have the following privileges:

» SYSGBL privilege to create a system global section (if flag SEC$M_SYSGBL is set)

236

System Service Descriptions

« PRMGBL privilege to create a permanent global section

Required Quota

The systemwide number of global page file pages is limited by the system parameter GBLPAGFIL.

Related Services

$CRMPSC, $CRMPSC_GPFILE_64, SDGBLSC, SMGBLSC, $SMGBLSC_64

Condition Values Returned

SS$ CREATED

The service completed successfully. The specified global section did not previously exist and has
been created.

SS$ ACCVIO
The gs_name_64 descriptor cannot be read by the caller.
SS$ DUPLNAM
A global section of the same name already exists; a new global section was not created.
SS$ GPTFULL
There is no more room in the system global page table to set up page table entries for the section.
SS$ GSDFULL

There is no more room in the system space allocated to maintain control information for global
sections.

SS$ IVLOGNAM
The specified global section name has a length of 0 or has more than 43 characters.
SS$ IVSECFLG
An invalid flag, a reserved flag, or an invalid combination of flags was specified.
SS$ IVSECIDCTL
The match control field of the global section identification is invalid.
SS$ LEN NOTPAGMULT
The | engt h_64 argument is not a multiple of CPU-specific pages or was specified as 0.
SS$ NOPRMGBL

The process does not have the privileges to create or delete a permanent group global section
(PRMGBL).

237

System Service Descriptions

SS$ NOSYSGBL

The process does not have the privileges to create or delete a system global section (SYSGBL).
SS$_SECTBLFUL

There are no entries available in the system global section table.
SS$ TOOMANYLNAM

The logical name translation of the gs_name_64 argument exceeded the allowed depth of 10.

$CREATE_GPFN (Alpha and Integrity servers)

Create Permanent Global Page Frame Section — On Alpha and Integrity server systems, creates a
permanent page frame section to which processes can map. This service accepts 64-bit addresses.

Format

SYS$CREATE_GPFN
gs_nanme_64 ,ident_64 ,prot ,start_pfn , page_count ,acnode ,flags

C Prototype

int sys$create_gpfn
(void *gs_nane_64, struct _secid *ident_ 64, unsigned int prot,
unsigned int start_pfn, unsigned int page _count, unsigned int acnode,
unsi gned int flags);

Arguments

gs_name_64

OpenVMS usage: section_name

type: character-coded text string
access: read only
mechanism: by 32- or 64-bit descriptor—fixed-length string descriptor

Name of the global section. The gs_nanme_64 argument is the 32- or 64-bit virtual address of a natu-
rally aligned 32- or 64-bit string descriptor pointing to this name string.

ident_64

OpenVMS usage: section_id

type: quadword (unsigned)
access: read only
mechanism: by 32- or 64-bit reference

238

System Service Descriptions

Identification value specifying the version number of a global section. The i dent _64 argument is a
quadword containing three fields. The i dent _64 argument is the 32- or 64-bit virtual address of a
naturally aligned quadword that contains the identification value.

The first longword specifies the matching criteria in its low-order two bits. The valid values, symbolic
names by which they can be specified, and their meanings are as follows:

Value |Symbolic Name Match Criteria

0 SEC$SK MATALL Match all versions of the section.

1 SEC$SK_MATEQU Match only if major and minor identifications match.

2 SEC$K_MATLEQ Match if the major identifications are equal and the minor identi-
fication of the mapper is less than or equal to the minor identifi-
cation of the global section.

If you specify the i dent _64 argument as 0, the version number and match control fields default to
0.

The version number is in the second longword. The version number contains two fields: a minor iden-
tification in the low-order 24 bits and a major identification in the high-order 8 bits. You can assign
values for these fields by installation convention to differentiate versions of global sections. If no
version number is specified when a section is created, processes that specify a version number when
mapping cannot access the global section.

prot

OpenVMS usage: file protection

type: longword (unsigned)
access: read only
mechanism: by value

Protection to be applied to the global page frame section.

The mask contains four 4-bit fields. Bits are read from right to left in each field. The following dia-
gram depicts the mask:

World Group Cwner System

p|e|w|r|o|e|w|r|p|e|w|r|[D|E|W|R
1514131211109 8 7 6 5 4 32 1 0
ZK-1706-GE

Cleared bits indicate that read, write, execute, and delete access, in that order, are granted to the par-
ticular category of user. Only read, write, and execute access are meaningful for section protection.
Delete access bits are ignored. Read access also grants execute access for those situations where exe-
cute access applies. If zero is specified, read access and write access are granted to all users.

start_pfn

OpenVMS usage: page frame number

239

System Service Descriptions

type: longword (unsigned) on Alpha, quadword (unsigned) on Integrity servers
access: read only
mechanism: by value

The CPU-specific page frame number where the section begins in memory.

page_count

OpenVMS usage: CPU-specific page count

type: longword (unsigned) on Alpha, quadword (unsigned) on Integrity servers
access: read only
mechanism: by value

Length of the page frame section in CPU-specific pages.

acmode

OpenVMS usage: access _mode

type: longword (unsigned)
access: read only
mechanism: by value

Access mode that is to be the owner of the pages created during the mapping. The acnode argument
is a longword containing the access mode.

The SPSLDEF macro in STARLET.MLB and the file PSLDEF.H in SYSSSTARLET C.TLB define
the following symbols and their values for the four access modes:

Value |Symbolic Name Access Mode
0 PSL$C KERNEL Kernel

1 PSL$C EXEC Executive

2 PSL$C _SUPER Supervisor

3 PSL$C USER User

flags

OpenVMS usage: mask longword

type: longword (unsigned)
access: read only
mechanism: by value

Flag mask specifying the characteristics of the page frame section to be created. The f | ags argu-
ment is a longword bit vector in which each bit corresponds to a flag. The $SECDEF macro and the
SECDEF.H file define a symbolic name for each flag. You construct the f | ags argument by per-

240

System Service Descriptions

forming a logical OR operation on the symbol names for all desired flags. The following table de-
scribes the flags that are valid for the SCREATE_GPFN service:

Flag Description

SECSM_ARGS64 Indicates that all parameters, specifically st art _pf n and
page_count , are passed as 64-bit numbers. This flag is ignored on
OpenVMS Alpha but must be set on Integrity server systems. If the
flag is not set on Integrity servers, the error code SS§ IVSECFLG is

returned.

SEC$M_GBL Pages form a global section. By default, this flag is always present in
this service and cannot be disabled.

SEC$M_PERM Global section is permanent. By default, this flag is always present in
this service and cannot be disabled.

SEC$M_PFNMAP Pages form a page frame section. By default, this flag is always
present in this service and cannot be disabled.

SEC$M_SYSGBL Pages form a system global page frame section. By default, pages
form a group global page frame section.

SEC$SM_UNCACHED Flag that must be set when a PFN-mapped section is created if this

section must be treated as uncached memory. Flag is ignored on Alpha
systems; it applies only to Integrity server systems.

SEC$SM_WRT Pages form a read/write section. By default, pages form a read-only
section.

All other bits in the f | ags argument are reserved to OpenVMS for future use and should be speci-
fied as 0. The condition value SS§ ITVSECFLG is returned if any undefined bits are set or if an illegal
combination of flags is set.

Description

The Create Permanent Global Page Frame Section service allows a process to create a global page
frame section. All global page frame sections are permanent. Pages mapped to a global page frame
section are not included in or charged against the process's working set; they are always valid.

Do not lock these pages in the working set by using SLKWSET 64; this can result in a machine check
if they are in I/O space.

Required Privileges

To create a permanent global page frame section, the process must have the following privileges:
» SYSGBL privilege to create a system global section (if flag SEC$M_SYSGBL is set)

* PRMGBL privilege to create a permanent global section

* PFNMAP privilege to create a page frame section

Required Quota

None

241

System Service Descriptions

Related Services

$CRMPSC, SCRMPSC_GPFN_64, $DGBLSC, SMGBLSC, SMGBLSC_GPFN_64

Condition Values Returned

SS$ CREATED

The service completed successfully. The specified global section did not previously exist and has
been created.

SS$ ACCVIO
The gs_nane_64 argument cannot be read by the caller.
SS$ DUPLNAM
A global section of the same name already exists; a new global section was not created.
SS$ GPTFULL
There is no more room in the system global page table to set up page table entries for the section.
SS$ GSDFULL

There is no more room in the system space allocated to maintain control information for global
sections.

SS$ IVLOGNAM

The specified global section name has a length of 0 or has more than 43 characters.
SS$ _IVSECFLG

An invalid flag, a reserved flag, or an invalid combination of flags was specified.
SS$_IVSECIDCTL

The match control field of the global section identification is invalid.
SS$ NOPRMGBL

The process does not have the privileges to create or delete a permanent group global section
(PRMGBL).

SS$ NOSYSGBL
The process does not have the privileges to create or delete a system global section (SYSGBL).
SS$ TOOMANYLNAM

The logical name translation of the gs_nane_64 argument exceeded the allowed depth of 10.

242

System Service Descriptions

$CREATE_RDB

Create Rights Database — Initializes a rights database.

Format

SYS$CREATE_RDB [sysi d]

C Prototype

int sys$create_rdb (struct _generic_64 *sysid);

Argument

sysid

OpenVMS usage: system_access_id

type: quadword (unsigned)
access: read only
mechanism: by reference

System identification value associated with the rights database when SCREATE RDB completes exe-
cution. The sysi d argument is the address of a quadword containing the system identification value.
If you omit sysi d, the current system time in 64-bit format is used.

Description

The Create Rights Database service initializes a rights database. The database name is the file equat-
ed to the logical name RIGHTSLIST, which must be defined as a system logical name from executive
mode. If the logical name does not exist, the database is created in SYSSCOMMON:[SYSEXE] with
the file name RIGHTSLIST.DAT. If the database already exists, SCREATE RDB fails with the error
RMS$_FEX.

The rights database is created with an owner of [1,4] and a protection of (RWED, RWED, R).

Required Access or Privileges

Write access to the directory in which the file is being created is required.

Required Quota

None

Related Services

$ADD HOLDER, $ADD IDENT, $ASCTOID, $FIND HELD, $FIND HOLDER, $FINISH RDB,
$FORMAT ACL, SGRANTID, $SGET SECURITY, $IDTOASC, $SMOD HOLDER, $MOD I-
DENT, SPARSE_ACL, SREM_HOLDER, $REM IDENT, SREVOKID, $SET SECURITY

243

System Service Descriptions

Condition Values Returned

SS$ NORMAL
The service completed successfully.
SS$ ACCVIO
The sysi d argument cannot be read by the caller.
SS$ INSFMEM
The process dynamic memory is insufficient for opening the rights database.
RMS$_FEX

A rights database already exists. To create a new one, you must explicitly delete or rename the old
one.

RMSS$_PRV
The user does not have write access to SYS$SSYSTEM.
Because the rights database is an indexed file accessed with OpenVMS RMS, this service can also

return RMS status codes associated with operations on indexed files. For descriptions of these status
codes, refer to the OpenVMS Record Management Services Reference Manual.

$CREATE_REGION_64 (Alpha and Integrity
servers)

Create Virtual Region — On Alpha and Integrity server systems, creates a virtual region within the
process's private address space. This service accepts 64-bit addresses.

Format
SYS$CREATE_REG ON_64

length_64 ,region_prot ,flags ,return_region_id 64 ,return_va_64
,return_length_64 [,start_va_64]

C Prototype

int sys$create regi on 64
(unsigned __int64 | ength 64, unsigned int region_prot,
unsigned int flags, struct _generic_64 *return_region_id,
void *(*(return_va 64)), unsigned _ int64 *return_length 64,...);

Arguments

length_64

OpenVMS usage: byte count

244

System Service Descriptions

type: quadword (unsigned)
access: read only
mechanism: by value

Length of the virtual region to be created. The length specified must be a multiple of CPU-specific
pages. This length is fixed at the time the region is created.

If you want to map multiple memory-resident sections to this region, specify a length large enough not
only to accommodate all of the sections, but also to fill the space necessary to align the next section
for a maximum of effective page sizes (granularity hints). You can satisfy this requirement by simply

allocating a region that is twice as large as the sum of all sections you want to map.

If the flag VASM_SHARED_PTS is set, this length is rounded up to include an even multiple of
CPU-specific pages mapped by a page table page.

region_prot

OpenVMS usage: region_protection

type: longword (unsigned)
access: read only
mechanism: by value

Region protection to be associated with the region to be created. The r egi on_pr ot argument is a
longword containing the create and owner mode.

The file VADEF.H in SYSSSTARLET C.TLB and the $VADEF macro in STARLET.MLB define the
following symbols for valid combinations of create and owner modes:

Symbol Create and Owner Modes

VASC REGION UCREATE UOWN |User create mode and user owner mode

VASC REGION UCREATE SOWN |User create mode and supervisor owner mode
VASC REGION UCREATE EOWN |User create mode and executive owner mode
VASC REGION UCREATE KOWN |User create mode and kernel owner mode

VASC REGION _SCREATE SOWN |Supervisor create mode and supervisor owner mode
VASC REGION SCREATE EOWN |Supervisor create mode and executive owner mode
VASC REGION SCREATE KOWN |Supervisor create mode and kernel owner mode
VASC REGION ECREATE EOWN |Executive create mode and executive owner mode
VASC REGION ECREATE KOWN |Executive create mode and kernel owner mode
VASC REGION KCREATE KOWN |Kernel create mode and kernel owner mode

For both create and owner mode, the SCREATE _REGION_64 service uses whichever of the follow-
ing two access modes is least privileged:

* Access mode specified by the acnode argument.

* Access mode of the caller.

245

System Service Descriptions

A subsequent call to any system service that created address space within a region must be made from
an access mode that is the same or more privileged than the create mode associated with the region.

A subsequent call to SDELETE REGION_64 to delete the region must be made from an access mode
that is the same or more privileged than the owner mode associated with the region.

All regions created by SCREATE _REGION_64 are automatically deleted when the image is run
down on image exit.

flags

OpenVMS usage: mask longword

type: longword (unsigned)
access: read only
mechanism: by value

Flag mask specifying the characteristics of the region to be created. The f | ags argument is a
longword bit vector in which each bit corresponds to a flag. The file VADEF.H in SYS$STAR-

LET C.TLB and the $VADEF macro in STARLET.MLB define a symbolic name for each flag. You
construct the f | ags argument by performing a logical OR operation on the symbol names for all de-
sired flags.

The following table describes the flag that is valid for the SCREATE _REGION 64 service:

Flag Description

VASM DESCEND Created region is a descending region; that is, allocation occurs to-
ward decreasing virtual addresses. If VASM_DESCEND is not speci-
fied, the region allocation occurs toward increasing virtual addresses.

VASM_SHARED PTS Created region requires the virtual address space created within it to

be capable of using shared page tables. If this flag is not specified, the
virtual address space created within the region is mapped by process-
private page tables only. By default, the region does not allow the use

of shared page tables.

VASM_ PO SPACE Create region in PO space. This flag cannot be set if VASM_P1_S-
PACE is set.

VASM P1 _SPACE Create region in P1 space. This flag cannot be set if VASM_PO_S-
PACE is set.

All other bits in the f | ags argument are reserved to OpenVMS for future use. The condition value
SS$ IVREGFLG is returned if any undefined bits are set.

return_region_id 64

OpenVMS usage: region identifier

type: quadword (unsigned)
access: write only
mechanism: by 32- or 64-bit reference

246

System Service Descriptions

The region ID associated with the created region. The r et ur n_r egi on_i d_64 argument is the
32- or 64-bit virtual address of a naturally aligned quadword into which the service returns the region
ID.

return_va 64

OpenVMS usage: return address

type: quadword address
access: write only
mechanism: by 32- or 64-bit reference

The lowest process virtual address of the region. The r et ur n_va_64 argument is the 32- or 64-bit
virtual address of a naturally aligned quadword into which the service returns the lowest virtual ad-
dress of the region.

If the flag VASM_SHARED_PTS is set, the returned virtual address is aligned to a CPU-specific page
table page boundary. If the global section mapped by this shared page table region is large enough that
multiple page table pages are required to map the global section, the page tables themselves can be
mapped with granularity hints. Therefore, the alignment of the returned virtual address can be even
greater than that of a single CPU-specific page table page boundary.

return_length_64

OpenVMS usage: byte count

type: quadword (unsigned)
access: write only
mechanism: by 32- or 64-bit reference

The length of the region actually created. The r et ur n_| engt h_64 argument is the 32- or 64-bit
virtual address of a naturally aligned quadword into which the service returns the length of the region
in bytes.

If the flag VASM_SHARED PTS is set, the returned length is the input length rounded up to an even
multiple of bytes mapped by a single CPU-specific page table page.

start va_64

OpenVMS usage: address

type: quadword address
access: read only
mechanism: by value

The starting address for the created virtual region. The specified virtual address must be a CPU-spe-
cific page aligned address.

Ifthe start _va_64 argument is not specified or is specified as 0, the region can be created any-
where within the following address spaces:

» P2 space (if the flags VASM_P0_SPACE and VASM P1_SPACE are clear)

* PO space (if the flag VASM_P0_SPACE is set and VASM_P1 SPACE is clear)

247

System Service Descriptions

» Pl space (if the flag VASM_P1_SPACE is set and VASM_ PO _SPACE is clear)

If the flag VASM_SHARED PTS is set and this argument is specified, the specified starting address
must be aligned to the larger of a natural page table boundary or the largest possible page size used
to map the section. If the alignment is less than a page table boundary, the SCREATE REGION_ 64
service returns an error. If the alignment is less than the largest page size used in the section, an error
might be returned when you attempt to map the section.

If you do not specify a starting address, OpenVMS automatically ensures correct alignment.

Description

The Create Virtual Region service allows a process to create a virtual region within its PO, P1, or P2
address space. Once a virtual region has been created, virtual address space can be created within it
using the system services that accept a region identifier argument. Note that the virtual region is sim-
ply a reservation of virtual address space. No physical memory is occupied for a virtual region until
virtual address space is created within the region.

If the VASM_SHARED PTS flag is set in the f | ags argument, only memory-resident global sec-
tions can be mapped into the virtual region. The SCRMPSC _GDZRO 64 and SMGBLSC 64 system
services are available for mapping to memory-resident global sections. If a memory-resident global
section was not created with shared page tables, private page tables are used to map to the global sec-
tion.

If a memory-resident global section with shared page tables is mapped into a virtual region that does
not have the shared page table attribute, the global section is mapped with process private page tables.
Other address-space creation services (see Table 18) are not allowed to create address space into a
shared page table region because they have an implicit dependency on process-private page tables.

Table 18. Services That Do Not Accept Shared Page Table Regions

Service Description

$CRETVA[64] Adds a range of demand-zero allocation pages to a process's virtual
address space for the execution of the current image. The new pages
are added at the virtual address specified by the caller.

$CRMPSC Allows a process to create a private or global section and to map a
section of its address space to the private or global section.

$CRMPSC FILE 64 Allows a process to map a section of its address space to a specified
portion of a file. This services maps a private disk file section.

$CRMPSC_GFILE 64 Allows a process to create a global disk file section and to map a sec-

tion of its address space to the global section.

$CRMPSC_GPFILE 64 Allows a process to create a global page file section and to map a sec-
tion of its address space to the global section.

$CRMPSC_GPFN_64 Allows a process to create a permanent global page frame section and
to map a section of its address space to the global page frame section.

$CRMPSC_PFN_64 Allows a process to map a section of its address space to a specified
physical address range represented by page frame numbers. This ser-
vice creates and maps a private page frame section.

$DELTVA Deletes a specified number of pages from a process's virtual address
space.

248

System Service Descriptions

Service Description

$EXPREG_[64]1 Adds a specified number of demand-zero allocation pages to a
process's virtual address space for the execution of the current image.
Expansion occurs at the next free available address within the speci-
fied region.

$MGBLSC Establishes a correspondence between pages in the virtual address
space of the process and the pages occupied by a global section.

$MGBLSC_GPFN_64 Establishes a correspondence between pages in the virtual address
space of the process and the pages occupied by a global page frame
section.

'$EXPREG can specify only the PO or P1 region and thus cannot specify a shared page table region.

SCREATE REGION_64 creates the virtual region on a CPU-specific page aligned boundary. Howev-
er, if the VASM_SHARED_PTS flag is set in the f | ags argument, the virtual region is created on a
CPU-specific page table page aligned boundary.

It is recommended not to specify the st art _va_64 argument when creating a shared page table re-
gion due to the particular alignment that must prevail for virtual addresses created within the virtu-

al region to exploit page table sharing. If the St art _va_64 argument does not contain the proper
alignment, SCREATE REGION 64 returns SS§ VA NOTPAGALGN.

If a starting virtual address must be specified for a shared page table region, use the following steps to
compute a properly aligned st art _va_64:

1. Determine the CPU-specific page size by using the SGETSYT system service and specifying the
SYI$ PAGE SIZE item code.

2. Determine the number of CPU-specific pages mapped by a single page table page by using the
$GETSYI system service and specifying the SYI$ PTES PER PAGE item code.

3. Multiply the CPU-specific page size by the number of pages mapped by a page table page. The
product represents the minimum virtual alignment required for a shared page table region. It also
represents the number of bytes mapped by a single CPU-specific page table page. Assuming a sys-
tem with an 8 kilobyte page size, the alignment of the st art _va_ 64 argument must be an even
multiple of 8,388,608 (8 megabytes). The virtual address, therefore, must have 23 low-order zero
bits.

4. If the shared page tables are to be mapped with granularity hints (GH), the address computed in
the previous step should to be adjusted to account for the granularity hint factor:

* On Alpha systems, granularity hints mean multiples of pages, regardless of page size. The
multiples 8, 64, and 512 pages are architected.

e On Integrity server systems, OpenVMS initially supports page sizes of 64KB, 256KB, and
4MB instead of granularity hints. Additional pages sizes will be supported in the future.

The virtual address alignment factors required for shared page table regions (and mappings using
shared page tables) are more stringent than the simple CPU-specific page alignment. Global pages
provide a level of data sharing in which the unit is a single CPU-specific page or, on today's systems,
8 kilobytes (KB). Shared page tables increase the level of sharing by an order of magnitude, such

that the unit of sharing is a CPU-specific page table page or, on today's systems, 8 megabytes (MB).
Therefore, virtual regions that are to be used for shared page tables and mappings that use shared page
tables require an alignment of at least 8 MB.

249

System Service Descriptions

Table 19 highlights the values SCREATE _REGION_64 returns for various region lengths. When the
length 64 argument is not even multiple of 8 MB, the returned length is rounded up to an even mul-

tiple of 8 MB. This must occur so that a shared page table region ends on an even CPU-specific page
table page boundary.

Note

The requirement for CPU-specific page table page multiples for shared page table regions does not
imply that memory-resident global sections must also be sized at even CPU-specific page table page
multiples. Memory-resident global section must be specified in single CPU-specific page multiples as
is the case for global page file sections.

The virtual alignment of the returned address is further biased by the ability to map the shared page ta-
bles with granularity hints. All values listed are based upon an 8 KB page size. All of the virtual ad-
dresses in the r et ur n_va_64 column accommodate the maximum GH factor for 8 KB page table

pages.

Table 19. Sample Returned Values from SCREATE_REGION_64

| engt h_64 return_va_64 return_ Comments
length_64
1,048,576 (1 MB) FFFFFFFB00800000 at |8,388,608 GH not possible for shared page
least 23 zero bits (8 MB) table pages. Region occupies 1
page table page.
67,108,864 (64 MB) FFFFFFFBFC000000 at |67,108,864 |Returned VA accommodates GH
least 26 zero bits (64 MB) factor of 8 for shared page table
pages.
73,400,320 (70 MB) FFFFFFFBF8000000 at |75,497,472 |Returned VA accommodates GH
least 26 zero bits (72 MB) factor of 8 for shared page table

pages. Region occupies 9 page ta-
ble pages. Only the first 8 can be

mapped with GH.
1,073,741,824 (1 GB) |FFFFFFFBCO0000000 at |1,073,741,824|Returned VA accommodates GH
least 30 zero bits (1 GB) factor of 64 for shared page table

pages. Region occupies 128 page
table pages. In this case, there
would be two GH regions, each
containing 64 page table pages.

If the returned value of the service is not a successful condition value, a value is not returned in
the memory locations pointed to by ther et urn_regi on_i d_64,return_va _64,orr e-
turn_si ze_64 arguments.

Required Privileges

None

Required Quota

None

250

System Service Descriptions

Related Services

$CRETVA_64, $SCRMPSC_GDZRO, $CRMPSC_FILE 64, SCRMPSC_GFILE_64, $CRM-
PSC_GPFILE_64, $SCRMPSC_GPFN_64, SCRMPSC_PFN_64, SDELETE_REGION_64, SDELT-
VA_64, SEXPREG 64, SGET REGION_INFO, SMGBLSC_64, SMGBLSC_GPFN_64

Condition Values Returned

SS$ NORMAL
The service completed successfully.
SS$_ACCVIO

Thereturn_regi on_i d_64 argument, the r et ur n_va_64 argument, or the r e-
t ur n_I| engt h_64 argument cannot be written by the caller.

SS$_IVREGFLG

One or more of the reserved bits in the f | ags argument is set, or an illegal combination of
f | ags bits are set.

SS$ LEN NOTPAGMULT
The | engt h_64 argument is not a multiple of CPU-specific pages.
SS$ VASFULL

The process private address space is full, or no space is available in the process private address
space for a region of the specified size.

SS$ VA IN USE

A page in the specified virtual address range is within another virtual region or is otherwise inac-
cessible.

SS$ VA NOTPAGALGN

The st art _va_64 argument is not CPU-specific page aligned; or, if the flag
VASM_SHARED PTS is set, the st art _va_64 argument is not CPU-specific page table page
aligned.

$CREATE_UID

Create UID — Generates a universally unique identifier (UID)

Format

SYS$CREATE_UI D ui d

C Prototype

int sys$create_uid (unsigned int uid [4]);

251

System Service Descriptions

Arguments
uid

OpenVMS usage: uid

type: octaword (unsigned)
access: write only
mechanism: by reference

Address of an octaword in which the unique identifier is returned to the calling process.

Description

Generates an identifier that is unique across all computer systems.
Required Privileges

None

Required Quotas

None

Related Services

None

Condition Values Returned

SS$ NORMAL
The request was successful.
SS$_ACCVIO

An argument was not accessible to the caller.

$CREATE_USER_PROFILE

Create User Profile — Returns an encoded security profile for the specified user.

Format

SYS$CREATE _USER PROFI LE
usrnam ,[itmst] ,[flags] ,usrpro ,usrprolen ,[contxt]

C Prototype

int sys$create_user_profile

252

System Service Descriptions

(void *usrnam void *itmst, wunsigned int flags, void *usrpro,

unsi gned i nt

Arguments

usrnam

OpenVMS usage:
type:

acCCess:

mechanism:

*usrprol en, unsigned int *contxt);

char string
character-coded text string
read only

by descriptor

Name of the user whose security profile is to be returned. The Usr namargument is the address of a
descriptor pointing to a text string containing the user name. The user name string can contain a maxi-
mum of 12 alphanumeric characters.

For more information about user names, see the VSI OpenVMS Guide to System Security.

itmlst

OpenVMS usage:
type:

acCCess:

mechanism:

item_list 3
longword (unsigned)
read only

by reference

Item list specifying the portions of the user's security profile to be replaced or augmented.

The item list is a standard format item list. The following figure depicts the general format of
an item descriptor. See the section called “Item Codes” for a list of valid item codes for $CRE-

ATE USER PROFILE.

3

15 0

ltem code Buffer length

Buffer addrezs

Retum length address

ZK-5186A-GE

The following table defines the item descriptor fields.

Descriptor Field

Definition

Buffer length

A word containing a user-supplied integer specifying the length (in bytes) of the
buffer from which the service is to read the information. The length of the buffer
needed depends on the item code specified in the item code field of the item de-

scriptor.

Item code

A word containing a user-supplied symbolic code specifying the item of infor-
mation.

253

System Service Descriptions

Descriptor Field |Definition

Buffer address A longword containing the user-supplied address of the buffer.

Return length ad- | A longword that normally contains the user-supplied address of a word in which

dress the service writes the length (in bytes) of the information it returned. This is not
used by SCREATE_USER_PROFILE and should contain a 0.

flags

OpenVMS usage: mask longword

type: longword (unsigned)

access: read only

mechanism: by value

The f | ags argument is used for controlling the behavior of the SCREATE USER_PROFILE ser-
vice. The following table describes each flag.

Symbol

Description

CHPSM_DEFCLASS By default, SCREATE_USER_PROFILE initializes the security pro-

file with the user's maximum authorized classification. When this flag
is set, the service initializes the security profile from the user's default
classification instead. This flag is reserved to OpenVMS.

CHP$SM_DEFPRIV

By default, SCREATE_USER PROFILE initializes the security pro-
file with the user's authorized privilege mask. When this flag is set,
the service initializes the security profile from the user's default privi-
lege mask instead.

CHP$M_NOACCESS Instructs the service not to access the user authorization file

(SYSUAF.DAT) or rights database (RIGHTSLIST.DAT) to build the
security profile. This flag can be used as an optimization when all the
information necessary to build the security profile is known to the
caller.

usrpro

OpenVMS usage:
type:
access:

mechanism:

char_string
opaque byte stream
write only

by descriptor

Buffer to receive the security profile. The usr pr o argument is the address of a buffer to receive the
encoded security profile. If an address of 0 is specified, SCREATE _USER_PROFILE returns the size
of the buffer needed in the usr pr ol en argument.

usrprolen

OpenVMS usage:

type:

word

word (unsigned)

254

System Service Descriptions

access: read/write

mechanism: by reference

Word to receive the full size of the security profile. On input, the usr pr ol en argument specifies the
length of the buffer pointed to by the usr pr o argument. The usr pr ol en argument is the address
of a word to which SCREATE_USER PROFILE writes the actual length of the security profile. If the
caller specifies a usr pr o address of 0, SCREATE _USER_PROFILE returns the anticipated size, in
bytes, of the buffer needed to hold the user's security profile in the usr pr ol en argument.

contxt

OpenVMS usage: longword

type: longword (unsigned)
access: modify
mechanism: by reference

Longword used to maintain authorization file context. The cont Xt argument is the address of a long-
word to receive a SGETUALI context value. On the initial call, this longword should contain the value
—1. On subsequent calls, the value of the cont xt argument from the previous call should be passed
back in.

Using the cont xt argument keeps the UAF open across all calls, thereby improving the performance
of the system on subsequent calls. To close the UAF, you must run down the image.

The resulting context value from a SCREATE _USER_PROFILE call can also be used as the input
cont xt argument to the SGETUALI system service, and vice versa.

Item Codes

CHPS$_ADDRIGHTS

A rights list segment containing additional identifiers to be appended to the set of identifiers held by

the user. A rights list segment is a list of quadword identifier/attributes pairs, each containing a long-
word identifier value, followed by a longword mask identifying the attributes of the holder. The bu-

f I en argument should be set to the total size, in bytes, of the rights list segment. The buf adr argu-
ment points to a descriptor that points to the first byte in the rights list segment (that is, the first byte

of the first identifier value).

This item code can be repeated to add up to 256 additional rights list segments. If more than 256 iden-
tifiers are granted to the user, SCREATE USER PROFILE returns SS$ INSFMEM.

CHPS_CLASS

The classification to be associated with the created security profile. This item code is reserved to
OpenVMS.

CHPS$_PRIV

A quadword privilege mask specifying the user's privileges. The SPRVDEF macro defines the list of
available privileges.

255

System Service Descriptions

CHP$_UIC

A longword describing the user identification code (UIC).

ISS$_ACCOUNT

Variable-length buffer containing the account name. The maximum size of this buffer is 32 bytes.
ISS$_ADD_RIGHTS

A rights list segment containing additional identifiers to be appended to the set of identifiers held by

the user. A rights list segment is a list of quadword identifier/attributes pairs, each containing a long-
word identifier value, followed by a longword mask identifying the attributes of the holder. The bu-

f | en argument should be set to the total size, in bytes, of the rights list segment. The buf adr argu-
ment points to a descriptor that points to the first byte in the rights list segment (that is, the first byte

of the first identifier value).

This item code can be repeated to add up to 256 additional rights list segments. If more than 256 iden-
tifiers are granted to the user, SCREATE_USER PROFILE returns SS$_INSFMEM.

ISS$ AUTHPRIV

Quadword containing the authorized privileges. See $PRVDEF macro for definitions.
ISS$_FLAGS

Longword containing user flags. The following flag is supported:

ISS$M_FLAG SECAUDIT - Mandatory audit flag.

ISS$_MAXCLASS

Buffer containing the maximum classification. The maximum size of this buffer is CLSSK LENGTH.
This item code is reserved to OpenVMS. See the SCLSDEF macro for definitions.

ISSS_MINCLASS

Buffer containing the minimum classification. The maximum size of this buffer is CLSSK_LENGTH.
This item code is reserved to OpenVMS. See the SCLSDEF macro for definitions.

ISS$_MODE

Longword containing the access mode. See $PSLDEF macro for definitions.

ISS$_PERMPRIV

Quadword containing the permanent privileges. See SPRVDEF macro for definitions.
ISS$_RIGHTS

Descriptor pointing to a vector of quadwords containing identifier/attribute pairs used to initialize
the rights identifier list. See the SKGBDEF macro for definitions. Any identifiers specified by the
ISS$ ADD RIGHTS item code will be added to this list.

The format of this vector is as follows:

256

System Service Descriptions

31 0
Identifier
Attributes
Identifier
Attributes
VM-04594-Al
ISSS$_UIC

A longword describing the user identification code (UIC).

ISS$_WORKCLASSThe classification to be associated with the created security profile. This item
code is reserved to OpenVMS.

ISS$_ WORKPRIV

A quadword privilege mask specifying the user's privileges. The SPRVDEF macro defines the list of
available privileges.

Description

The Create User Profile service returns a security profile for a user. This profile can be generated in
two ways.

» If the caller does not specify the CHP$ NOACCESS flag in the f | ags argument, SCRE-
ATE USER PROFILE accesses the system authorization database (SYSUAF.DAT) or the rights
database (RIGHTSLIST.DAT) for the specified user name and builds a representation of the privi-
leges and rights granted to that user. The security profile is returned as an opaque byte stream.

SCREATE USER PROFILE returns a representation of the security profile that the user would
have when logged in at the highest authorized classification with all authorized privileges enabled.

* When the caller specifies the CHP$M_NOACCESS flag in the f | ags argument, $CRE-
ATE USER PROFILE creates a security profile without accessing the user authorization file
(SYSUAF.DAT) or the rights database (RIGHTSLIST.DAT). When CHP$SM_NOACCESS is
specified, all of the information is obtained from the item list. The caller must supply the CH-
P$ PRIV and CHP$ UIC items. In addition, an address of 0 can be specified for the usr namar-
gument.

In either case, the newly created security profile can be passed as input to the SCHKPRO and
SCHECK ACCESS system services using the usr pr o argument.

$CREATE USER PROFILE returns the set of identifiers associated with the user's owner identifier.
The CHP$ ADDRIGHTS item code can be used to add additional identifiers to this set.

Required Access or Privileges

Access to SYSUAF.DAT and RIGHTSLIST.DAT is required unless you are constructing the security
profile for your own user name.

257

System Service Descriptions

Required Quota

None

Related Services

$CHECK ACCESS, $SCHKPRO, $FIND HELD, $FINISH RDB, SGETUAI

Condition Values Returned

SS$ NORMAL

Profile created successfully.
SS$ BADITMCOD

Item list code is invalid.
SS$ BADBUFLEN

Size specified for item is invalid.
SS$ ACCVIO

Buffer address is invalid or inaccessible.
SS$ INSFARG

Insufficient call arguments.
SS$ INSFMEM

Insufficient memory.
SS$ IVSTSFLG

Invalid system service flags specified.
SS$ NOPRIV

Caller lacks privilege to access UAF.
RMSS$_RNF

User name is not in UAF.

$CREATE_USER PROFILE can also return any error returned by the SGETUAI or $SFIND HELD
services.

$CRELNM

Create Logical Name — Creates a logical name and specifies its equivalence names. On Alpha and
Integrity server systems, this service accepts 64-bit addresses.

258

System Service Descriptions

Format

SYS$CRELNM [attr] ,tabnam,|ognam,[acnode] ,[itm st]

C Prototype

int sys$crel nm
(unsigned int *attr, void *tabnam void *l ognam unsigned char *acnode,
void *itmst);

Arguments
attr

OpenVMS usage: mask longword

type: longword (unsigned)
access: read only
mechanism: by 32- or 64-bit reference

Attributes to be associated with the logical name. The at t r argument is the 32- or 64-bit address of a
longword bit mask specifying these attributes.

Each bit in the longword corresponds to an attribute and has a symbolic name. These symbolic names
are defined by the SLNMDEF macro. To specify an attribute, specify its symbolic name or set its cor-
responding bit. The longword bit mask is the logical OR of all desired attributes. All undefined bits in
the longword must be 0.

If you do not specify this argument or specify it as 0 (no bits set), no attributes are associated with the
logical name.

The attributes are as follows.

Attribute Description

LNM$M CONFINE If set, the logical name is not copied from the process to its spawned
subprocesses. You create a subprocess with the DCL command
SPAWN or the LIBSSPAWN Run-Time Library routine. If the logi-
cal name is placed into a process-private table that has the CONFINE
attribute, the CONFINE attribute is automatically associated with the
logical name. This applies only to process-private logical names.

LNM$M NO_ ALIAS If set, the logical name cannot be duplicated in this table at an outer
access mode. If another logical name with the same name already ex-
ists in the table at an outer access mode, it is deleted.

tabnam

OpenVMS usage: logical name

type: character-coded text string
access: read only
mechanism: by 32- or 64-bit descriptor—fixed-length string descriptor

259

System Service Descriptions

Name of the table in which to create the logical name. The t abnamargument is the 32- or 64-bit ad-
dress of a descriptor that points to the name of this table. This argument is required and must be speci-
fied in uppercase.

The name must be entered in uppercase letters. (This requirement differs from the SCRELNT system
service, which automatically changes t abnamto uppercase).

If t abnamis not the name of a logical name table, it is assumed to be a logical name and is translated
iteratively until either the name of a logical name table is found or the number of translations allowed
by the system has been performed. If t abnamtranslates to a list of logical name tables, the logical
name is entered into the first table in the list.

lognam

OpenVMS usage: logical name

type: character-coded text string
access: read only
mechanism: by 32- or 64-bit descriptor—fixed-length string descriptor

Name of the logical name to be created. The | ognamargument is the 32- or 64-bit address of a de-
scriptor that points to the logical name string.

Logical name strings of logical names created within either the system or process directory table must
consist of uppercase alphanumeric characters, dollar signs ($), hyphens (-), and underscores (_); the
maximum length is 31 characters. The maximum length of logical name strings created within other
tables is 255 characters with no restrictions on the types of characters that can be used. This argument
is required.

acmode

OpenVMS usage: access_mode

type: byte (unsigned)
access: read only
mechanism: by 32- or 64-bit reference

Access mode to be associated with the logical name. The acnode argument is the 32- or 64-bit ad-
dress of a byte that specifies the access mode.

The access mode associated with the logical name is determined by maximizing the access mode of
the caller with the access mode specified by the acnode argument, which means that the less privi-
leged of the two is used. Symbols for the four access modes are defined by the $PSLDEF macro.

You cannot specify an access mode more privileged than that of the containing table. However, if the
caller has SYSNAM privilege, then the specified access mode is associated with the logical name re-
gardless of the access mode of the caller.

If you omit this argument or specify it as 0, the access mode of the caller is associated with the logical
name.

itmlst

OpenVMS usage: 32-bit item_list 3 or 64-bit item_list 64b
type: longword (unsigned) for 32-bit; quadword (unsigned) for 64-bit

260

System Service Descriptions

access: read only

mechanism: by 32- or 64-bit reference

Item list describing the equivalence names to be defined for the logical name and information to be
returned to the caller. The i t m st argument is the 32- or 64-bit address of a list of item descriptors,
each of which specifies information about an equivalence name. An item list in 32-bit format is termi-
nated by a longword of 0; an item list in 64-bit format is terminated by a quadword of 0. All items in
an item list must be of the same format—either 32-bit or 64-bit.

The following diagram depicts the 32-bit format of a single item descriptor.
31 15 0

ltem code Buffer length

Buffer addreas

Retumn length address

ZK-5186A-GE

The following table defines the item descriptor fields for 32-bit item list entries.

Descriptor Field Definition

Buffer length A word specifying the number of bytes in the buffer pointed to by the
buffer address field. The length of the buffer needed depends on the item
code specified in the item code field of the item descriptor. If the value of
buffer length is too small, the service truncates the data.

Item code A word containing a symbolic code that describes the information in the
buffer or the information to be returned to the buffer, pointed to by the
buffer address field. The item codes are listed in the Item Codes section.

Buffer address A longword containing the 32-bit address of the buffer that receives or
passes information.

Return length address | A longword containing the 32-bit address of a word specifying the actu-

al length in bytes of the information returned by SCRELNM in the buffer
pointed to by the buffer address field. The return length address field is
used only when the item code specified is LNM$ TABLE. Although this
field is ignored for all other item codes, it must nevertheless be present as a
placeholder in each item descriptor.

The following diagram depicts the 64-bit format of a single item descriptor.

3 15 1]
ltem code (MBO) 0
(MEMO) 4
— Buffer length — B
— Buifer address — 16
= Return length address —_ 24
ZK-BTE2A-A

261

System Service Descriptions

The following table defines the item descriptor fields for 64-bit item list entries.

Descriptor Field Definition

MBO The field must contain a 1. The MBO and MBMO fields are used to distin-
guish 32-bit and 64-bit item list entries.

Item code A word containing a symbolic code that describes the information in the
buffer or the information to be returned to the buffer, pointed to by the
buffer address field. The item codes are listed in the Item Codes section.

MBMO The field must contain a —1. The MBMO and MBO fields are used to dis-
tinguish 32-bit and 64-bit item list entries.

Buffer length A quadword specifying the number of bytes in the buffer pointed to by the
buffer address field. The length of the buffer needed depends upon the item
code specified in the item code field of the item descriptor. If the value of
buffer length is too small, the service truncates the data.

Buffer address A quadword containing the 64-bit address of the buffer that receives or
passes information.

Return length address | A quadword containing the 64-bit address of a word specifying the actu-

al length in bytes of the information returned by SCRELNM in the buffer
pointed to by the buffer address field. The return length address field is
used only when the item code specified is LNM$ TABLE. Although this
field is ignored for all other item codes, it must nevertheless be present as a
placeholder in each item descriptor.

Item Codes

LNMS$_ATTRIBUTES

When you specify LNM$ ATTRIBUTES, the buffer address field of the item descriptor points to a
longword bit mask that specifies the current translation attributes for the logical name. The current
translation attributes are applied to all subsequently specified equivalence strings until another LN-
MS$ ATTRIBUTES item descriptor is encountered in the item list. The symbolic names for these at-
tributes are defined by the SLNMDEF macro. The symbolic name and description of each attribute are
as follows.

Attribute Description

LNMS$M CONCEALED If set, OpenVMS RMS interprets the equivalence name as a device
name or logical name with the LNM$M_CONCEALED attribute.

LNM$M_TERMINAL If set, further iterative logical name translation on the equivalence
name is not to be performed.

LNMS$_CHAIN

When you specify LNM$ CHAIN, the buffer address field of the item descriptor points to another
item list that SCRELNM is to process immediately after it has processed the current item list.

If you specify the LNM$ CHAIN item code, it must be the last item code in the current item list.
You can chain together 32-bit and 64-bit item lists.

LNMS$_STRING

262

System Service Descriptions

When you specify LNM$ STRING, the buffer address field of the item descriptor points to a buffer
containing a user-specified equivalence name for the logical name. The maximum length of the equiv-
alence string is 255 characters.

When SCRELNM encounters an item descriptor with the item code LNM$ STRING, it creates an
equivalence name entry for the logical name using the most recently specified values for LNM$ AT-
TRIBUTES. The equivalence name entry includes the following information:

» Name specified by LNM$ STRING.
* Next available index value. Each equivalence is assigned a unique value from 0 to 127.

» Attributes specified by the most recently encountered item descriptor with item code LNM$_AT-
TRIBUTES (if these are present in the item list).

Therefore, you should construct the item list so that the LNM$ ATTRIBUTES item codes immediate-
ly precede the LNM$ STRING item code or codes to which they apply.

Note that it is possible to create a logical that has no equivalence names. This is done by either omit-
ting the i t M st argument to SCRELNM, or by not including the LNM$_STRING item code to the
i t m st data structure that is passed into SCRELNM. It is not possible to create this kind of logical
using DCL.

LNMS_TABLE

When you specify LNM$ TABLE, the buffer address field of the item descriptor points to a buffer in
which SCRELNM writes the name of the logical name table in which it entered the logical name. The
return length address field points to a word that contains a buffer that specifies the length in bytes of
the information returned by SCRELNM. The maximum length of the name of a logical name table is
31 characters.

This item code can appear anywhere in the item list.

Description

The Create Logical Name service creates a logical name and specifies its equivalence name. Note that
logical names are case sensitive.

Required Access or Privileges

The calling process must have the following:

» Write access to shareable tables to create logical names in those tables

* GRPNAM or GRPPRYV privilege to enter a logical name into the group logical name table
* SYSNAM or SYSPRYV privilege to enter a logical name into the system logical name table
Required Quota

The quota for the specified logical name table must be sufficient for the creation of the logical name.

Related Services

$CRELNT, $DELLNM, $STRNLNM

263

System Service Descriptions

Condition Values Returned

SS$ NORMAL

The service completed successfully; the logical name has been created. However, if you attempt-
ed to create a new clusterwide logical name with the same access mode and identical equivalence
names and attributes as an existing clusterwide logical name, this message indicates only that the
service completed successfully. Because an identical clusterwide logical name already exists, and
because a clusterwide update would adversely affect performance, the name is not created.

SS$ SUPERSEDE

The service completed successfully; the logical name has been created and a previously existing
logical name with the same name has been deleted.

SS$ BUFFEROVF

The service completed successfully; the buffer length field in an item descriptor specified an in-
sufficient value, so the buffer was not large enough to hold the requested data.

SS$ ACCVIO
The service cannot access the locations specified by one or more arguments.

SS$ BADPARAM

One or more arguments have an invalid value, or a logical name table name or logical name was
not specified. Or, an item list containing both 32-bit and 64-bit item list entries was found.

SS$ DUPLNAM
An attempt was made to create a logical name with the same name as an already existing logical
name, and the existing logical name was created at a more privileged access mode and with the
LNMSM NO ALIAS attribute.

SS$ EXLNMQUOTA

The quota associated with the specified logical name table for the creation of the logical name is
insufficient.

SS$ INSFMEM

The dynamic memory is insufficient for the creation of the logical name, or there is insufficient
dynamic memory to build a message describing the creation of a clusterwide name.

SS$ IVLOGNAM
The t abnamargument, the | ognamargument, or the equivalence string specifies a string whose
length is not in the required range of 1 through 255 characters. The | ognamargument specifies a
string whose length is not in the required range of 1 to 31 characters for directory table entries.

SS$ IVLOGTAB

The t abnamargument does not specify a logical name table.

264

System Service Descriptions

SS$ NOLOGTAB

Either the specified logical name table does not exist or the logical name translation of the table
name exceeded the allowable depth of 10 translations.

SS$_NOPRIV
The caller lacks the necessary privilege to create the logical name.
SS$ TOOMANYLNAM

An attempt was made to create a logical name with more than 128 equivalence names.

$CRELNT

Create Logical Name Table — Creates a process-private or shareable logical name table. On Alpha
and Integrity server systems, this service accepts 64-bit addresses.

Format
SYS$CRELNT

[attr] ,[resnam ,[reslen] ,[quota] ,[pronsk] ,[tabnan] ,partab
, [acnode]

C Prototype

int sys$crelnt
(unsigned int *attr, void *resnam unsigned short int *reslen,
unsi gned int *quota, unsigned short int *pronsk, void *tabnam
voi d *partab, unsigned char *acnode);

Arguments

attr

OpenVMS usage: mask longword

type: longword (unsigned)
access: read only
mechanism: by 32- or 64-bit reference

Attributes to affect the creation of the logical name table and to be associated with the newly created
logical name table. The at t r argument is the 32- or 64-bit address of a longword bit mask specifying
these attributes.

Each bit in the longword corresponds to an attribute and has a symbolic name. These symbolic names
are defined by the SLNMDEF macro. To specify an attribute, specify its symbolic name or set its cor-
responding bit. The longword bit mask is the logical OR of all desired attributes. All unused bits in the
longword must be 0.

If you do not specify this argument or specify it as 0 (no bits set), no attributes are associated with the
logical name table or affect the creation of the new table.

265

System Service Descriptions

The following table describes each attribute.

Attribute

Description

LNMS$SM_CONFINE

If set, the logical name table is not copied from the process to its
spawned subprocesses. You create a subprocess with the DCL com-
mand SPAWN or the Run-Time Library LIB§SPAWN routine. You
can specify this attribute only for process-private logical name tables;
it is ignored for shareable tables.

The state of this bit is also propagated from the parent table to the
newly created table and can be overridden only if the parent table does
not have the bit set. Thus, if the parent table has the LNM$M_CON-
FINE attribute, the newly created table will also have it, no matter
what is specified in the at t r argument. On the other hand, if the par-
ent table does not have the LNM$M CONFINE attribute, the newly
created table can be given this attribute through the at t r argument.

The process-private directory table LNM$PROCESS DIRECTORY
does not have the LNM$M_CONFINE attribute.

LNMS$M_CREATE_IF

This attribute applies to all types of logical name tables except clus-
terwide logical name tables. If set, a new logical name table is created
only if the specified table name is not already entered at the specified
access mode in the appropriate directory table. If the table name ex-
ists, a new table is not created and no modification is made to the ex-
isting table name. This holds true even if the existing name has differ-
ing attributes or quota values, or even if it is not the name of a logical
name table.

If LNMSM_CREATE IF is not set, the new logical name table will
supersede any existing table name with the same access mode with-
in the appropriate directory table. Setting this attribute is useful when
two or more users want to create and use the same table but do not
want to synchronize its creation.

Regardless of the setting of LNM$M_CREATE _IF:

* You cannot create a new clusterwide logical name table with the
same name and the same mode as an existing clusterwide logical
name table until you delete the existing one.

* Ifyou specify a new clusterwide logical name table with the same
name and access mode as an existing local logical name table, the
new clusterwide logical name table is created, and the local table
and its logical names are deleted.

LNMS$SM NO_ALIAS

If set, the name of the logical name table cannot be duplicated at an
outer access mode within the appropriate directory table. If this name
already exists at an outer access mode, it is deleted.

resnam

OpenVMS usage: logical name

type: character-coded text string

access: write only

266

System Service Descriptions

mechanism: by 32- or 64-bit descriptor—fixed-length string descriptor

Name of the newly created logical name table, returned by SCRELNT. The r esnamargument is the
32- or 64-bit address of a descriptor pointing to this name. The name is a character string whose maxi-
mum length is 31 characters.

reslen

OpenVMS usage: word unsigned

type: word (unsigned)
access: write only
mechanism: by 32- or 64-bit reference

Length in bytes of the name of the newly created logical name table, returned by SCRELNT. The
r esl en argument is the 32- or 64-bit address of a word to receive this length.

quota

OpenVMS usage: longword unsigned

type: longword (unsigned)
access: read only
mechanism: by 32- or 64-bit reference

Maximum number of bytes of memory to be allocated for logical names contained in this logical
name table. The quOt a argument is the 32- or 64-bit address of a longword specifying this value.

If you specify no quota value, the logical name table has an infinite quota. Note that a shareable table
created with infinite quota permits users with write access to that table to consume system dynamic

memory without limit.

promsk

OpenVMS usage: file protection

type: word (unsigned)
access: read only
mechanism: by 32- or 64-bit reference

Protection mask to be associated with the newly created shareable logical name table. The pr onsk
argument is the 32- or 64-bit address of a word that contains a value that represents four 4-bit fields.
Each field grants or denies the type of access, either delete, create, write, or read, allowed for system,
owner, group, and world users. The following diagram depicts these protection bits.

World Group Crnier System

p|c|w|r|p|c|w|r|p|c|w|r|D|c|w|r
1514131211109 8 7 6 54 3 2 1 O
ZK-3883A-GE

Create access is required to create a shareable table within another shareable table.

267

System Service Descriptions

Each field consists of 4 bits specifying protection for the logical name table. The remaining bits in the
protection mask are as follows:

* Read privileges allow access to names in the logical name table.

» Write privileges allow creation and deletion of names within the logical name table.
* Delete privileges allow deletion of the logical name table.

If a bit is clear, access is granted.

The initial security profile for any shared logical name table is taken from the logical name table tem-
plate. The owner is then set to the process UIC and, if the pr onmsk argument is nonzero, that value re-
places the protection mask.

tabnam

OpenVMS usage: logical name

type: character-coded text string
access: read only
mechanism: by 32- or 64-bit descriptor—fixed-length string descriptor

The name of the new logical name table. The t abnamargument is the 32- or 64-bit address of a char-
acter-string descriptor pointing to this name string. Table names are contained in either the process or
system directory table (LNM$PROCESS DIRECTORY or LNM$SYSTEM_ DIRECTORY); there-
fore, table names must consist of alphanumeric characters, dollar signs (8$), and underscores (_); the
maximum length is 31 characters. Names of logical name tables must be in uppercase letters. If you
specify a lowercase name, the SCRELNT service automatically changes it to uppercase.

This argument is required for clusterwide logical name tables. For all other logical name tables, if you
do not specify this argument, a default name in the format LNMS$xxxx is used, where xxxx is a unique
hexadecimal number.

You need SYSPRYV privilege or write access to LNM$SYSTEM DIRECTORY to specify the name of
a shareable logical name table.

partab

OpenVMS usage: char string

type: character-coded text string
access: read only
mechanism: by 32- or 64-bit descriptor—fixed-length string descriptor

Name string for the parent table name. The par t ab argument is the 32- or 64-bit address of a charac-
ter string descriptor pointing to this name string.

If the parent table is shareable, then the newly created table is shareable and is entered into the system
directory LNM$SYSTEM_DIRECTORY. If the parent table is process-private, then the newly creat-
ed table is process-private and is entered in the process directory LNM$PROCESS DIRECTORY.

You need SYSPRYV privilege or write access to the system directory to create a named shareable table.
This argument is required.

268

System Service Descriptions

acmode

OpenVMS usage: access_mode

type: byte (unsigned)
access: read only
mechanism: by 32- or 64-bit reference (Alpha and Integrity servers)

Access mode to be associated with the newly created logical name table. The acnpde argument is
the 32- or 64-bit address of a byte containing this access mode. The SPSLDEF macro defines symbol-
ic names for the four access modes.

If you do not specify the acnbde argument or specify it as 0, the access mode of the caller is associ-
ated with the newly created logical name table.

The access mode associated with the logical name table is determined by maximizing the access mode
of the caller with the access mode specified by the acnode. The less privileged of the two access

modes is used.

However, if the caller has SYSNAM privilege, then the specified access mode is associated with the
logical name table, regardless of the access mode of the caller.

Access modes associated with logical name tables govern logical name table processing and provide a
protection mechanism that prevents the deletion of inner access mode logical name tables by nonprivi-
leged users. You cannot specify an access mode more privileged than that of the parent table.

A logical name table with supervisor mode access can contain supervisor mode and user mode logi-
cal names and can be a parent to supervisor mode and user mode logical name tables, but cannot con-
tain executive or kernel mode logical names or be a parent to executive or kernel mode logical name

tables.

You need SYSNAM privilege to specify executive or kernel mode access for a logical name table.

Description

The Create Logical Name Table service creates a process-private or a shareable logical name table.
The $CRELNT service uses the following system resources:

* System paged dynamic memory to create a shareable logical name table

* Process dynamic memory to create a process-private logical name table

The parent table governs whether the new table is process-private or shareable. If the parent table is
process-private, so is the new table; if the parent table is shareable, so is the new table.

Note that logical names are case sensitive.

Required Access or Privileges

Create access to the parent table and either SYSPRYV privilege or write access to the system directory
table are required.

269

System Service Descriptions

You need the SYSNAM privilege to create a table at an access mode more privileged than that of the
calling process.

Required Quota

The parent table must have sufficient quota for the creation of the new table.

Related Services

$CRELNM, $DELLNM, $STRNLNM

Condition Values Returned
SS$ NORMAL

The service completed successfully; the logical name table already exists.
SS$ LNMCREATED

The service completed successfully; the logical name table was created.
SS$ SUPERSEDE

The service completed successfully; the logical name table was created and its logical name su-
perseded the already existing logical names in the directory table.

SS$ ACCVIO
The service cannot access the locations specified by one or more arguments.
SS$ BADPARAM
One or more arguments have an invalid value, or a parent logical name table was not specified.
SS$ DUPLNAM
You attempted to create a logical name table with the same name as an already existing name
within the appropriate directory table, and the existing name was created at a more privileged ac-
cess mode with the LNM$M_NO_ALIAS attribute.
SS$_EXLNMQUOTA
The parent table has insufficient quota for the creation of the new table.

SS$ INSFMEM

The dynamic memory is insufficient for the creation of the table, or there is insufficient dynamic
memory to build a message describing the creation of a clusterwide logical name table.

SS$ IVLOGNAM

The par t ab argument specifies a string whose length is not within the required range of 1 to 31
characters.

270

System Service Descriptions

SS$ IVLOGTAB
The t abnamargument is not alphanumeric or specifies a string whose length is not within the
required range of 1 to 31 characters, or the TABNAM argument is omitted from a clusterwide
$CRELNT call.

SS$ NOLOGTAB
The parent logical name table does not exist.

SS$ NOPRIV
The caller lacks the necessary privilege to create the table.

SS$ PARENT DEL
The creation of the new table would have resulted in the deletion of the parent table.

SS$ RESULTOVF

The table name buffer is not large enough to contain the name of the new table.

$CREMBX

Create Mailbox and Assign Channel — Creates a virtual mailbox device named MBAnN and assigns
an 1/0 channel to it. The system provides the unit number # when it creates the mailbox. If a logical
name is specified and a mailbox with the specified name already exists, the SCREMBX service as-
signs a channel to the existing mailbox.

Format
SYS$CREMBX

[prnflg] ,chan ,[maxnmsg] ,[bufquo] ,[pronmsk] ,[acnode] ,[!|ognani
,[flags] ,[nullarg]

C Prototype

i nt sys$crenbx
(char prnflg, unsigned short int *chan, unsigned int maxmsg,
unsi gned int bufquo, unsigned int promnmsk, unsigned int acnode,
void *l ognam...);

Arguments

prmflg

OpenVMS usage: boolean

type: byte (unsigned)
access: read only
mechanism: by value

271

System Service Descriptions

Indicator specifying whether the created mailbox is to be permanent or temporary. The pr nf | g ar-
gument is a byte value. The first bit specifies a permanent mailbox; the value 0, which is the default,
specifies a temporary mailbox. Any other values result in an error.

chan

OpenVMS usage: channel

type: word
access: write only
mechanism: by reference

Channel number assigned by SCREMBX to the mailbox. The chan argument is the address of a word
into which SCREMBX writes the channel number.

maxmsg

OpenVMS usage: longword unsigned

type: longword (unsigned)
access: read only
mechanism: by value

Maximum size (in bytes) of a message that can be sent to the mailbox. The maxnsg argument is a
longword value containing this size.

The maximum value you can specify for the maxnmsg argument is 65535. If you do not specify
a value or specify the value as 0, the operating system provides a default value from the DEFM-

BXBUFQUO system parameter.

bufquo

OpenVMS usage: longword unsigned

type: longword (unsigned)
access: read only
mechanism: by value

Number of bytes of system dynamic memory that can be used to buffer messages sent to the mailbox.
The buf quo argument is a value containing this number. If you do not specify the buf quo argu-
ment or specify it as 0, the operating system provides a default value from the DEFMBXBUFQUO
system parameter.

For a temporary mailbox, this value must be less than or equal to the process buffer quota.

Note that as of Version 7.3-1, the maximum value limit for the buf quo argument is the amount of
available non-paged pool.

promsk

OpenVMS usage: file protection

272

System Service Descriptions

type: longword (unsigned)
access: read only
mechanism: by value

Protection mask to be associated with the created mailbox. The pr onsk argument is a longword val-
ue that is the combined value of the bits set in the protection mask. Cleared bits grant access and set
bits deny access to each of the four classes of user: world, group, owner, and system. The following
diagram depicts these protection bits.

World Group Crwner System
L|p|wlr|L|p|w]r[L|P|w]r|L]|r|wr
1514131271100 8 7 6 5432 10

TH-1TO07T-GE

If you do not specify the pr onsk argument or specify it as 0, the mailbox template is used.
The logical access bit must be clear for the class of user requiring access to the mailbox. The access
bit must be clear for all categories of user because logical access is required to read or write to a mail-

box; thus, setting or clearing the read and write access bits is meaningless unless the logical access bit
is also cleared.

The physical access bit is ignored for all categories of user.
Logical access also allows you to queue read or write attention ASTs.

acmode

OpenVMS usage: access_mode

type: longword (unsigned)
access: read only
mechanism: by value

Access mode to be associated with the channel to which the mailbox is assigned. The achode argu-
ment is a longword containing the access mode. The $SPSLDEF macro defines the following symbols
for the four access modes.

Symbol Access Mode Numeric Value
PSL$C KERNEL |Kernel 0
PSL$C EXEC Executive
PSL$C SUPER |Supervisor
PSLS$C USER User

W N =

The most privileged access mode used is the access mode of the caller. The specified access mode and
the access mode of the caller are compared. The less privileged (but the higher numeric valued) of the
two access modes becomes the access mode associated with the assigned channel. I/O operations on
the channel can be performed only from equal or more privileged access modes.

lognam

273

System Service Descriptions

OpenVMS usage: logical name

type: character-coded text string
access: read only
mechanism: by descriptor—fixed-length string descriptor

Logical name to be assigned to the mailbox. The | ognamargument is the address of a character
string descriptor pointing to the logical name string.

The equivalence name for the mailbox is MBAN. The equivalence name is marked with the terminal
attribute. Processes can use the logical name to assign other I/O channels to the mailbox.

For permanent mailboxes, the SCREMBX service enters the specified logical name, if any, in the
LNMSPERMANENT MAILBOX logical name table and, for temporary mailboxes, into the LN-
MSTEMPORARY MAILBOX logical name table.

flags

OpenVMS usage: mask longword

type: longword (unsigned)
access: read only
mechanism: by value

The f | ags argument is used for specifying options for the assign operation that occurs in $SCREM-
BX. The f | ags argument is a longword bit mask that enables the user to specify that the channel as-
signed to the mailbox is a READ ONLY or WRITE ONLY channel. If the f | ags argument is not
specified, then the default channel behavior is READ/WRITE. The SCMBDEF macro defines a sym-
bolic name for each flag bit. The following table describes each flag.

Flag Description

CMB$SM_READONLY When this flag is specified, SCREMBX assigns a read-only channel to
the mailbox device. An attempt to issue a QIO WRITE operation on
the mailbox channel results in an illegal I/O operation error.

CMB$SM_WRITEONLY When this flag is specified, SCREMBX assigns a write-only channel
to the mailbox device. An attempt to issue a QIO READ operation on
the mailbox channel results in an illegal I/O operation error.

For more information about the f | ags argument, see the VST OpenVMS 1/0O User's Reference Manu-
al.

nullarg

OpenVMS usage: null arg

type: longword (unsigned)
access: read only
mechanism: by value

Placeholding argument reserved to OpenVMS.

274

System Service Descriptions

Description

The Create Mailbox and Assign Channel service creates a virtual mailbox device named MBA n and
assigns an [/O channel to it. The system provides the unit number N when it creates the mailbox. If a
mailbox with the specified name already exists, the SCREMBX service assigns a channel to the exist-
ing mailbox.

The SCREMBX service uses system dynamic memory to allocate a device database for the mailbox
and for an entry in the logical name table (if a logical name is specified).

When a temporary mailbox is created, the process's buffered 1/O byte count (BYTLM) quota is re-
duced by the amount specified in the buf quo argument. The size of the mailbox unit control block
and the logical name (if specified) are also subtracted from the quota. The quota is returned to the
process when the mailbox is deleted.

The initial security profile created for a mailbox is taken from the mailbox template for the device
class. The owner is then set to the process UIC and the pr onsk argument replaces the protection
mask.

After the process creates a mailbox, it and other processes can assign additional channels to it by
calling the Assign I/O Channel ($ASSIGN) or Create Mailbox (SCREMBX) service. If the mailbox
already exists, the SCREMBX service assigns a channel to that mailbox; in this way, cooperating
processes need not consider which process must execute first to create the mailbox.

A channel assigned to the mailbox READ ONLY is considered a READER. A channel assigned to the
mailbox WRITE ONLY is considered a WRITER. A channel assigned to the mailbox READ/WRITE
is considered both a WRITER and READER.

A temporary mailbox is deleted when no more channels are assigned to it. A permanent mailbox must
be explicitly marked for deletion with the Delete Mailbox (SDELMBX) service; its actual deletion oc-
curs when no more channels are assigned to it.

A mailbox is treated as a shareable device; it cannot, however, be mounted or allocated.

The mailbox unit number is determined when the mailbox is created. A process can obtain the unit
number of the created mailbox by calling the Get Device/Volume Information (SGETDVI) service us-
ing the channel returned by SCREMBX.

Mailboxes are assigned sequentially increasing numbers (from 1 to a maximum of 9999) as they are
created. When all unit numbers have been used, the system starts numbering again at unit 1. Logical
names or mailbox names should be used to identify a mailbox between cooperating processes.

Default values for the maximum message size and the buffer quota (an appropriate multiple of the
message size) are determined for a specific system during system generation. The system para-
meter DEFMBXMXMSG determines the maximum message size; the system parameter DEFM-
BXBUFQUO determines the buffer quota. For termination mailboxes, the maximum message size
must be at least as large as the termination message (currently 84 bytes).

When you specify a logical name for a temporary mailbox, the SCREMBX service enters the name in-
to the LNMSTEMPORARY MAILBOX logical name table.

Normally, LNMS$TEMPORARY MAILBOX specifies LNM$JOB, the jobwide logical name table;
thus, only processes in the same job as the process that first creates the mailbox can use the logical

275

System Service Descriptions

name to access the temporary mailbox. If you want to use the temporary mailbox to enable commu-
nication between processes in different jobs, you must redefine LNM$TEMPORARY MAILBOX in
the process logical name directory table (LNM$PROCESS DIRECTORY) to specify a logical name
table that those processes can access.

For instance, if you want to use the mailbox as a communication device for processes in the same
group, you must redefine LNMSTEMPORARY MAILBOX to specify LNM$GROUP, the group
logical name table. The following DCL command assigns temporary mailbox logical names to the
group logical name table:

$ DEFI NE/ TABLE=LNMBPROCESS_DI RECTORY LNMBTEMPORARY_MAI LBOX LNMPGROUP

When you specify a logical name for a permanent mailbox, the system enters the name in the logical
name table specified by the logical name table name LNM$PERMANENT MAILBOX, which nor-
mally specifies LNMSSYSTEM, the system logical name table. If you want the logical name that you
specify for the mailbox to be entered in a logical name table other than the system logical name table,
you must redefine LNMSPERMANENT MAILBOX to specify the desired table. For more informa-
tion about logical name tables, see the VSI OpenVMS Programming Concepts Manual.

If you redefine either LNM$TEMPORARY MAILBOX or LNM$SPERMANENT MAILBOX, be

sure that the name of the new table appears in the logical name table LNMSFILE DEV. OpenVMS
RMS and the I/O system services use LNMSFILE DEYV to translate I/O device names. If the logical
name table specified by either LNMSTEMPORARY MAILBOX or LNM$PERMANENT MAIL-

BOX does not appear in LNMSFILE DEYV, the system will be unable to translate the logical name of
your mailbox and therefore will be unable to access your mailbox as an I/O device.

If you redirect a logical name table to point to a process-private table, then the following occurs:

e Other processes cannot access the mailbox by its name.

+ Ifthe creating process issues a second call to SCREMBX, a different mailbox is created and a
channel is assigned to the new mailbox. (If the creating process issues a second call to SCREMBX

using a shared logical name, a second channel is assigned to the existing mailbox.)

* The logical name is not deleted when the mailbox disappears.

Required Access or Privileges

Depending on the operation, the calling process might need one of the following privileges to use
$CREMBX:

* TMPMBX privilege whenever the pr nf | g argument is specified as 0. However, a process that
has PRMMBX privilege will also meet this requirement.

* PRMMBX privilege whenever the pr nf | g argument is specified as 1.
* SYSNAM privilege to place a logical name for a mailbox in the system logical name table.

* GRPNAM privilege to place a logical name for a mailbox in the group logical name table.

Required Quota

The calling process must have sufficient buffer I/O byte count (BYTLM) quota to allocate the mail-
box unit control block (UCB) or to satisfy buffer requirements. When a temporary mailbox is creat-

276

System Service Descriptions

ed, the process's buffered I/O byte count (BYTLM) quota is reduced by the amount specified in the
buf quo argument. The size of the mailbox UCB and the logical name (if specified) are also subtract-
ed from the quota. The quota is returned to the process when the mailbox is deleted.

Related Services
$ALLOC, $ASSIGN, $BRKTHRU, $SBRKTHRUW, $CANCEL, $SDALLOC, $DASSGN, $DELM-
BX, $DEVICE_SCAN, $DISMOU, $GETDVI, $GETDVIW, $GETMSG, $GETQUI, $GETQUIW,

$INIT _VOL, SMOUNT, $SPUTMSG, $QIO, $SQIOW, $SNDERR, $SNDJBC, $SNDJBCW, $SNDO-
PR

Condition Values Returned

SS$ NORMAL
The service completed successfully.
SS$_ACCVIO

The logical name string or string descriptor cannot be read by the caller, or the channel number
cannot be written by the caller.

SS$ BADPARAM
One or more of the arguments has an invalid value. One possible problem is the f | ags argument
has both the CMB$SM_READONLY and CMB$M_WRITEONLY flags set; however, only one of
these values is allowed.

SS$ EXBYTLM

The process has insufficient buffer I/O byte count (BYTLM) quota to allocate the mailbox UCB
or to satisfy buffer requirements.

SS$ INSFMEM
The system dynamic memory is insufficient for completing the service.
SS$ INTERLOCK

The bit map lock for allocating mailboxes from the specified shared memory is locked by another
process.

SS$ IVLOGNAM

The logical name string has a length of 0 or has more than 255 characters.
SS$ _IVSTSFLG

The bit set in the pr nf | g argument is undefined; this argument can have a value of 1 or 0.
SS$ NOIOCHAN

No I/O channel is available for assignment.

277

System Service Descriptions

SS$_NOPRIV

The process does not have the privilege to create a temporary mailbox, a permanent mailbox, a
mailbox in memory that is shared by multiple processors, or a logical name.

SS$ NOSHMBLOCK
No shared memory mailbox UCB is available for use to create a new mailbox.
SS$ OPINCOMPL

A duplicate unit number was encountered while linking a shared memory mailbox UCB. If this
condition value is returned, contact your VSI support representative.

SS$ SHMNOTCNCT
The shared memory named in the hanme argument is not known to the system. This error can be
caused by a spelling error in the string, an improperly assigned logical name, or the failure to
identify the multiport memory as shared at system generation time.

SS$ TOOMANYLNAM

The logical name translation of the string named in the | oghamargument exceeded the allowed
depth.

$CREPRC

Create Process — Creates, on behalf of the calling process, a subprocess or detached process on the
current node, or a detached process on another OpenVMS Cluster node.

Format

SYS$CREPRC
[pidadr] ,[image] ,[input] ,[output] ,[error] ,[prvadr] ,[quota]
,[prcnam ,[baspri] ,[uic] ,[nbxunt] ,[stsflg] ,[itmst] ,[node]
, [home_r ad]

C Prototype

int sys$creprc
(unsigned int *pidadr, void *imge, void *input, void *output,
void *error, struct _generic_64 *prvadr, unsigned int *quota,

void *prcnam unsigned int baspri, unsigned int uic,
unsi gned short int nmbxunt, unsigned int stsflg,...);

Arguments

pidadr

OpenVMS usage: process_id

278

System Service Descriptions

type: longword (unsigned)
access: write only
mechanism: by reference

Process identification (PID) of the newly created process. The pi dadr argument is the address of a
longword into which SCREPRC writes the PID.

image

OpenVMS usage: logical name

type: character-coded text string
access: read only
mechanism: by descriptor—fixed-length string descriptor

Name of the image to be activated in the newly created process. The i mage argument is the address
of a character string descriptor pointing to the file specification of the image.

The image name can have a maximum of 63 characters. If the image name contains a logical name,
the logical name is translated in the created process and must therefore be in a logical name table that

1t can access.

To create a process that will run under the control of a command language interpreter (CLI), specify
SYSSSYSTEM:LOGINOUT.EXE as the image name.

input

OpenVMS usage: logical name

type: character-coded text string
access: read only
mechanism: by descriptor—fixed-length string descriptor

Equivalence name to be associated with the logical name SYSSINPUT in the logical name table of the
created process. The i nput argument is the address of a character string descriptor pointing to the

equivalence name string.

output

OpenVMS usage: logical name

type: character-coded text string
access: read only
mechanism: by descriptor—fixed-length string descriptor

Equivalence name to be associated with the logical name SYSSOUTPUT in the logical name table of
the created process. The out put argument is the address of a character string descriptor pointing to

the equivalence name string.

error

279

System Service Descriptions

OpenVMS usage: logical name

type: character-coded text string

access: read only

mechanism: by descriptor—fixed-length string descriptor

Equivalence name to be associated with the logical name SYS$ERROR in the logical name table of
the created process. The er r or argument is the address of a character string descriptor pointing to
the equivalence name string.

Note that the er r or argument is ignored if the i mage argument specifies SYS$SYSTEM:LOGI-
NOUT.EXE; in this case, SYSSERROR has the same equivalence name as SYS$SOUPUT.

prvadr

OpenVMS usage: mask privileges
type: quadword (unsigned)
access: read only
mechanism: by reference

Privileges to be given to the created process. The prvadr argument is the address of a quadword bit
mask wherein each bit corresponds to a privilege; setting a bit gives the privilege. If the prvadr argu-
ment is not specified, the current privileges are used.

Each bit has a symbolic name; the SPRVDEF macro defines these names. You form the bit mask by
specifying the symbolic name of each desired privilege in a logical OR operation.Table 20 gives the
symbolic name and description of each privilege.

Table 20. User Privileges

Privilege Symbolic Name Description

ACNT PRVSM_ACNT Create processes for which no accounting is done
ALLSPOOL PRVSM_ALLSPOOL Allocate a spooled device

ALTPRI PRVS§M_ALTPRI Set (alter) any process priority

AUDIT PRVSM_AUDIT Generate audit records

BUGCHK PRVSM_BUGCHK Make bugcheck error log entries

BYPASS PRVSM BYPASS Bypass UIC-based protection

CMEXEC PRVSM_CMEXEC Change mode to executive

CMKRNL PRVSM_CMKRNL Change mode to kernel

DIAGNOSE PRV$M_DIAGNOSE Can diagnose devices

DOWNGRADE |PRVSM DOWNGRADE Can downgrade classification

EXQUOTA PRVSM _EXQUOTA Can exceed quotas

GROUP PRVSM_GROUP Group process control

GRPNAM PRVSM_GRPNAM Place name in group logical name table
GRPPRV PRVSM_GRPPRV Group access via system protection field
IMPERSONATE! PRVSM_ IMPERSONATE |Can create detached processes under another UIC

280

System Service Descriptions

Privilege Symbolic Name Description

IMPORT PRVS§M_IMPORT Mount a nonlabeled tape volume

LOG_IO PRVSM_LOG IO Perform logical 1/0 operations

MOUNT PRVSM_MOUNT Issue mount volume QIO

NETMBX PRVSM NETMBX Create a network device

OPER PRVS§M_OPER All operator privileges

PFNMAP PRVSM_PFNMAP Map to section by physical page frame number

PHY IO PRVSM_PHY 10O Perform physical I/O operations

PRMCEB PRVSM_ PRMCEB Create permanent common event flag clusters

PRMGBL PRV§M_PRMGBL Create permanent global sections

PRMMBX PRVSM_PRMMBX Create permanent mailboxes

PSWAPM PRVSM_PSWAPM Change process swap mode

READALL PRVSM_READALL Possess read access to everything

SECURITY PRVSM_SECURITY Can perform security functions

SETPRV PRVSM_SETPRV Set any process privileges

SHARE PRVSM_SHARE Can assign a channel to a non-shared device

SYSGBL PRVSM_SYSGBL Create system global sections

SYSLCK PRVSM_SYSLCK Queue systemwide locks

SYSNAM PRVSM_SYSNAM Place name in system logical name table

SYSPRV PRVSM_SYSPRV Access files and other resources as if you have a
system UIC

TMPMBX PRVS§M_TMPMBX Create temporary mailboxes

UPGRADE PRVS§M_UPGRADE Can upgrade classification

VOLPRO PRVS§M_VOLPRO Override volume protection

WORLD PRVSM_WORLD World process control

"This privilege replaces the DETACH privilege; however, the prior mask, PRVSM_DETACH, is still valid for existing programs.

You need the user privilege SETPRYV to grant a process any privileges other than your own. If the
caller does not have this privilege, the mask is minimized with the current privileges of the creating
process; any privileges the creating process does not have are not granted, but no error status code is

returned.

quota

OpenVMS usage:

type:
access:

mechanism:

item_quota_list
longword (unsigned)
read only

by reference

Process quotas to be established for the created process. These quotas limit the created process's use
of system resources. The quot a argument is the address of a list of quota descriptors, where each
quota descriptor consists of a 1-byte quota name followed by a longword that specifies the desired
value for that quota. The list of quota descriptors is terminated by the symbolic name PQL$ LIS-

TEND.

281

System Service Descriptions

If you do not specify the quot a argument or specify it as 0, the operating system supplies a default
value for each quota.

For example, in MACRO you can specify a quota list, as follows:

Q.IST: .BYTE PQ$ PRCLM ; Limt nunmber of subprocesses
.LONG 2 ; Max = 2 subprocesses
.BYTE PQ.$_ASTLM ; Limt nunber of asts
.LONG 6 ; Max = 6 outstandi ng asts
.BYTE PQ.$_LI STEND ; End of quota Ilist

The $PQLDEF macro defines symbolic names for quotas.

In C you can specify a quota list, as follows:

#i ncl ude <pql def. h>

#pragma nenber _al i gnnent save
#pragnma nomenber _al i gnment
t ypedef struct

{
char Quot a;

i nt Val ue;
} QUOTA_ENTRY_T;
#pragma nenber _al i gnnent restore

" QUOTA ENTRY_T QuotaArray[] =
{{PQL$_PRCLM 2}, {PQL$_ASTLM 6}, {PQL$_LISTEND, 0}};

Individual Quota Descriptions
A description of each quota follows. The description of each quota lists its minimum value (a sys-

tem parameter), its default value (a system parameter), and whether it is deductible, nondeductible, or
pooled. These terms have the following meanings:

Minimum value A process cannot be created with a quota less than this minimum. Any quo-
ta value you specify is maximized against this minimum. You obtain the
minimum value for a quota by running SYSGEN to display the correspond-
ing SYSGEN parameter.

Default value If the quota list does not specify a value for a particular quota, the system
assigns the process this default value. You obtain the default value by run-
ning SYSGEN to display the corresponding system parameter.

Deductible quota When you create a subprocess, the value for a deductible quota is subtract-
ed from the creating process's current quota and is returned to the creat-
ing process when the subprocess is deleted. There is currently only one de-
ductible quota, the CPU time limit. Note that quotas are never deducted
from the creating process when a detached process is created.

Nondeductible quota Nondeductible quotas are established and maintained separately for each
process and subprocess.

Pooled quota Pooled quotas are established when a detached process is created, and they
are shared by that process and all its descendent subprocesses. Charges
against pooled quota values are subtracted from the current available to-
tals as they are used and are added back to the total when they are not being
used.

282

System Service Descriptions

To run SYSGEN to determine the minimum and default values of a quota, enter the following se-
quence of commands:

$ RUN SYS$SYSTEM SYSGEN
SYSGEN> SHOW PQL

Minimum values are named PQL MXxXXxXX, where XXXXX are the characters of the quota name that
follow “PQLS$ _” in the quota name.

Default values are named PQL_DXxXXXX, where XXXXX are the characters of the quota name that fol-
low “PQL$ _” in the quota name.

Individual Quotas
PQLS ASTLM

Asynchronous system trap (AST) limit. This quota restricts both the number of outstanding AST rou-
tines specified in system service calls that accept an AST address and the number of scheduled wake-
up requests that can be issued.

Minimum: PQL_ MASTLM
Default: PQL_DASTLM
Nondeductible

PQLS$_BIOLM

Buffered I/O limit. This quota limits the number of outstanding system-buffered I/O operations. A
buffered 1/O operation is one that uses an intermediate buffer from the system pool rather than a
buffer specified in a process's $QIO request.

Minimum: PQL._ MBIOLM
Default: PQL_DBIOLM
Nondeductible

PQL$S BYTLM

Buffered I/0O byte count quota. This quota limits the amount of system space that can be used to buffer
I/0O operations or to create temporary mailboxes.

Minimum: PQL MBYTLM
Default: PQL_DBYTLM
Pooled

PQLS_CPULM
CPU time limit, specified in units of 10 milliseconds. This quota limits the total amount of CPU time
that a created process can use. When it has exhausted its CPU time limit quota, the created process is

deleted and the status code SS§ EXCPUTIM is returned.

If you do not specify this quota and the created process is a detached process, the detached process re-
ceives a default value of 0, that is, unlimited CPU time.

If you do not specify this quota and the created process is a subprocess, the subprocess receives half
the CPU time limit quota of the creating process.

283

System Service Descriptions

If you specify this quota as 0, the created process has unlimited CPU time, provided the creating
process also has unlimited CPU time. If, however, the creating process does not have unlimited CPU
time, the created process receives half the CPU time limit quota of the creating process.

The CPU time limit quota is a consumable quota; that is, the amount of CPU time used by the created
process is not returned to the creating process when the created process is deleted.

Minimum: PQL_MCPULM
Default: PQL DCPULM
Deductible

PQLS$_DIOLM

Direct I/O quota. This quota limits the number of outstanding direct I/O operations. A direct I/O oper-
ation is one for which the system locks the pages containing the associated I/O buffer in memory for
the duration of the I/O operation.

Minimum: PQL_MDIOLM
Default: PQL_DDIOLM
Nondeductible

PQLS_ENQLM
Lock request quota. This quota limits the number of lock requests that a process can queue.

Minimum: PQL MENQLM
Default: PQL DENQLM
Pooled

PQLS_FILLM
Open file quota. This quota limits the number of files that a process can have open at one time.

Minimum: PQL_MFILLM
Default: PQL_DFILLM
Pooled

PQLS_JTQUOTA

Job table quota. This quota limits the number of bytes of system paged pool used for the job logical
name table. If the process being created is a subprocess, this item is ignored. A value of 0 represents
an unlimited number of bytes.

Minimum: PQL_ MJTQUOTA
Default: PQL_DJTQUOTA
Nondeductible

PQLS_PGFLQUOTA
Paging file quota. This quota limits the number of pagelets (adjusted up or down to represent CPU-
specific pages) that can be used to provide secondary storage in the paging file for the execution of a

process.

Minimum: PQL_MPGFLQUOTA

284

System Service Descriptions

Default: PQL DPGFLQUOTA
Pooled

PQLS PRCLM
Subprocess quota. This quota limits the number of subprocesses a process can create.

Minimum: PQL_ MPRCLM
Default: PQL_DPRCLM
Pooled

PQL$ TQELM

Timer queue entry quota. This quota limits both the number of timer queue requests a process can
have outstanding and the creation of temporary common event flag clusters.

Minimum: PQL MTQELM
Default: PQL DTQELM
Pooled

PQLS_WSDEFAULT

Default working set size. This quota defines the number of pagelets (adjusted up or down to represent
CPU-specific pages) in the default working set for any image the process executes. The working set
size quota determines the maximum size you can specify for this quota.

Minimum: PQL_ MWSDEFAULT
Default: PQL_DWSDEFAULT
Nondeductible

PQL$_WSEXTENT

Working set expansion quota. This quota limits the maximum size to which an image can expand its
working set size with the Adjust Working Set Limit (SADJWSL) system service.

Minimum: PQL MWSEXTENT
Default: PQL DWSEXTENT
Nondeductible

PQLS_WSQUOTA

Working set size quota. This quota limits the maximum size to which an image can lock pages in its
working set with the Lock Pages in Memory (SLCKPAG) system service.

Minimum: PQL. MWSQUOTA
Default: PQL DWSQUOTA
Nondeductible

Use of the Quota List

The values specified in the quota list are not necessarily the quotas that are actually assigned to the
created process. The SCREPRC service performs the following steps to determine the quota values
that are assigned when you create a process on the same node:

285

System Service Descriptions

1. It constructs a default quota list for the process being created, assigning it the default values for all
quotas. Default values are system parameters and so might vary from system to system.

2. It reads the specified quota list, if any, and updates the corresponding items in the default list. If
the quota list contains multiple entries for a quota, only the last specification is used.

3. For each item in the updated quota list, it compares the quota value with the minimum value re-
quired (also a system parameter) and uses the larger value. Then, the following occurs:

» If asubprocess is being created or if a detached process is being created and the creating
process does not have IMPERSONATE or CMKRNL privilege, the resulting value is com-
pared with the current value of the corresponding quota of the creating process and the lesser
value is used.

Then, if the quota is a deductible quota, that value is deducted from the creating process's quo-
ta, and a check is performed to ensure that the creating process will still have at least the min-
imum quota required. If not, the condition value SS§ EXQUOTA is returned and the sub-
process or detached process is not created.

Pooled quota values are ignored.

» Ifadetached process is being created and the creating process has IMPERSONATE or
CMKRNL privilege, the resulting value is not compared with the current value of the corre-
sponding quota of the creating process and the resulting value is not deducted from the creat-
ing process's quota. A process with IMPERSONATE or CMKRNL privilege is allowed to cre-
ate a detached process with quota values larger than it has.

When you create a detached process on another OpenVMS Cluster node, the quotas assigned to the
process are determined in the following way:

1. The $CREPRC service reads the specified quota list, if any. If it contains multiple entries for
a quota, only the last specification is used. If the process does not have IMPERSONATE or
CMKRNL privilege, the service compares each value in the list with the current value of the cor-
responding quota of the creating process and uses the lesser value. It sends the resulting quota list
to the node on which the new process is to be created.

2. On that node, the SCREPRC service constructs a default quota list for the process being created,
assigning it default values for all quotas based on that node's system parameters.

3. Itupdates the default list with the corresponding values from the quota list.

4. For each item in the updated quota list, it compares the quota value with the minimum value re-
quired based on that node's system parameters and uses the larger value.

prcnam

OpenVMS usage: process name

type: character-coded text string
access: read only
mechanism: by descriptor—fixed-length string descriptor

Process name to be assigned to the created process. The pr cnamargument is the address of a charac-
ter string descriptor pointing to a process name string.

286

System Service Descriptions

If a subprocess is being created, the process name is implicitly qualified by the UIC group number of
the creating process. If a detached process is being created, the process name is qualified by the group
number specified in the Ui C argument.

baspri

OpenVMS usage: longword unsigned

type: longword (unsigned)
access: read only
mechanism: by value

Base priority to be assigned to the created process. The baspri argument is a longword value.

The OpenVMS Alpha and Integrity servers range is 0 to 63, with real-time priorities in the range 32 to
63.

If you want a created process to have a higher priority than its creating process, you must have ALT-
PRI privilege to raise the priority level. If the caller does not have this privilege, the specified base

priority is compared with the caller's priority and the lower of the two values is used.

A process with ALTPRI privilege running on a VAX node can create a process with a priority greater
than 31 on an Alpha or Integrity servers node.

If the baspri argument is not specified, the priority defaults to 2 for VAX MACRO, VAX
BLISS--32, and Pascal; it defaults to 0 for all other languages.

uic

OpenVMS usage: uic

type: longword (unsigned)
access: read only
mechanism: by value

User identification code (UIC) to be assigned to the created process. The ui € argument is a longword
value containing the UIC.

If you do not specify the ui ¢ argument or specify it as 0 (the default), SCREPRC creates a process
and assigns it the UIC of the creating process.

If you specify a nonzero value for the ui ¢ argument, SCREPRC creates a detached process. This val-
ue is interpreted as a 32-bit octal number, with two 16-bit fields:

bits 0—15—member number
bits 16-3 1—group number

You need IMPERSONATE or CMKRNL privilege to create a detached process with a UIC that is dif-
ferent from the UIC of the creating process.

If the i mage argument specifies the SYS§SYSTEM:LOGINOUT.EXE, the UIC of the created
process will be the UIC of the caller of $SCREPRC, and the UIC parameter is ignored.

287

System Service Descriptions

mbxunt

OpenVMS usage: word unsigned

type: word (unsigned)
access: read only
mechanism: by value

Unit number of a mailbox to receive a termination message when the created process is deleted. The
nmbxunt argument is a word containing this number.

If you do not specify the mbxunt argument or specify it as 0 (the default), the operating system sends
no termination message when it deletes the process.

The Get Device/Volume Information (SGETDVI) service can be used to obtain the unit number of the
mailbox.

If you specify the mbxunt argument, the mailbox is used when the created process actually termi-
nates. At that time, the SASSIGN service is issued for the mailbox in the context of the terminating
process and an accounting message is sent to the mailbox. If the mailbox no longer exists, cannot be
assigned, or is full, the error is treated as if no mailbox had been specified.

If you specify this argument when you create a process on another node, an accounting message will
be written to the mailbox when the process terminates. If the node is removed from the cluster before
the created process terminates, an accounting message will be simulated. The simulated message will
contain the created process's PID and name and a final status of SS§ NODELEAVE, but will lack ex-
ecution statistics.

Note that two processes on different nodes cannot use the termination mailbox for general inter-
process communication.

The accounting message is sent before process rundown is initiated but after the process name has
been set to null. Thus, a significant interval of time can occur between the sending of the accounting
message and the final deletion of the process.

To receive the accounting message, the caller must issue a read to the mailbox. When the I/O com-
pletes, the second longword of the I/O status block, if one is specified, contains the process identifica-
tion of the deleted process.

The $ACCDEF macro defines symbolic names for offsets of fields within the accounting message.
The offsets, their symbolic names, and the contents of each field are shown in the following table. Un-
less stated otherwise, the length of the field is 4 bytes.

Offset | Symbolic Name Contents

0 ACCS$SW_MSGTYP MSG$ DELPROC (2 bytes)

2 Not used (2 bytes)

4 ACCSL _FINALSTS Exit status code

8 ACCSL _PID External process identification

12 Not used (4 bytes)

16 ACCS$Q _TERMTIME Current time in system format at process termination (8 bytes)
24 ACCS$T_ACCOUNT Account name for process, blank filled (8 bytes)

288

System Service Descriptions

Offset | Symbolic Name Contents

32 ACCST _USERNAME User name, blank filled (12 bytes)

44 ACCSL CPUTIM CPU time used by the process, in 10-millisecond units
48 ACCS$L_PAGEFLTS Number of page faults incurred by the process

52 ACCSL PGFLPEAK Peak paging file usage

56 ACCSL_WSPEAK Peak working set size

60 ACCSL BIOCNT Count of buffered I/0 operations performed by the process
64 ACCS$L_DIOCNT Count of direct I/O operations performed by the process
68 ACCSL _VOLUMES Count of volumes mounted by the process

72 ACC$Q _LOGIN Time, in system format, that process logged in (8 bytes)
80 ACCSL_OWNER Process identification of owner

The length of the termination message is equated to the constant ACC$K_TERMLEN.

stsflg

OpenVMS usage: mask longword
type: longword (unsigned)
access: read only
mechanism: by value

Options selected for the created process. The st sf | g argument is a longword bit vector wherein a
bit corresponds to an option. Only bits 0 to 18 are used; the others are reserved and must be 0.

Each option (bit) has a symbolic name, which the $PRCDEF macro defines. You construct the St s-
f | g argument by performing a logical OR operation using the symbolic names of each desired op-
tion. The following table describes the symbolic name of each option.

Symbolic Name

Description

PRCSM_BATCH

Create a batch process. IMPERSONATE privilege is required.

PRCSM_IMPERSONATE

Create a detached process under another UIC.

PRCSM_DISAWS

Disable system-initiated working set adjustment.

PRC$SM_HIBER

Force process to hibernate before it executes the image.

PRCSM_HOME_RAD

Assign process to specified home resource affinity domain
(RAD).

RAD is supported on AlphaServer GS series systems and starting
from OpenVMS Version 8.4, support is extended to NUMA ca-
pable Integrity servers.

PRC$M_IMGDMP

Enable image dump facility. If an image terminates due to an un-
handled condition, the image dump facility writes the contents of
the address space to a file in your current default directory. The
file name is the same as the name of the terminated image. The
file type is .DMP.

PRCSM_INTER

Create an interactive process. This option is meaningful on-
ly if the i mage argument specifies SYS$SYSTEM:LOGI-

289

System Service Descriptions

Symbolic Name

Description

NOUT.EXE. The purpose of this option is to provide you with
information about the process. When you specify this option, it
identifies the process as one that is in communication with anoth-
er user (an interactive process). For example, if you use the DCL
lexical function FSMODE to make an inquiry about a process
that has specified the PRC$M_INTER option, FSMODE returns
the value INTERACTIVE.

PRCSM_KT LIMIT

Assign the specified kernel thread limit to the created process.

PRC$M_NETWRK

Create a process that is a network connect object. IM-
PERSONATE privilege required.

PRCSM_NOACNT

Do not perform accounting. ACNT privilege is required.

PRCSM_NOPASSWORD

Do not display the Username: and Password: prompts if

the process is interactive and detached and the image is
SYS$SYSTEM:LOGINOUT.EXE. If you specify this op-

tion in your call to SCREPRC, the process created by the call

is logged in under the user name associated with the creating
process. If you do not specify this option for an interactive
process, SYS$SYSTEM:LOGINOUT.EXE prompts you for the
user name and password to be associated with the process. The
prompts are displayed at the SYSSINPUT device.

PRCSM_NOUAF

Do not check authorization file if the process is detached and
the image is SYS$SSYSTEM:LOGINOUT.EXE. You should not
specify this option if a subprocess is being created.

In previous versions of the operating system, the symbolic name
of this option was PRCSM_LOGIN. The symbolic name has
been changed to more accurately denote the effect of setting this
bit. For compatibility with existing user programs, you can still
specify this bit as PRC$SM_LOGIN.

This flag prevents the loading of the new process's security pro-
file from the contents of the UAF record associated with the
specified user name. Restrictions are still enforced on the UAF
record, if it exists, for account disuser, account expiration, and
primary/secondary days/hours.

PRCSM_PARSE EXTENDED

Sets the PARSE_STYLE PERM and the PARSE _STYLE I-
MAGE properties for the new process to EXTENDED.

PRCSM_PSWAPM

Inhibit process swapping. PSWAPM privilege is required.

PRCSM_SSFEXCU

Enable system service failure exception mode.

PRCSM_SSRWAIT

Disable resource wait mode.

PRCSM_SUBSYSTEM

Inherit any protected subsystem identifiers. The default is that the
new process does not inherit subsystem identifiers.

PRC$SM_TCB

Mark a process as part of the trusted computing base (TCB).
As such, it is expected to perform its own auditing. IM-
PERSONATE privilege is required.

Note that options PRCSM_BATCH, PRCSM_INTER, PRC$SM_NOUAF, PRCSM_NETWRK, and
PRCSM_NOPASSWORD are intended for OpenVMS use.

290

System Service Descriptions

itmlst

OpenVMS usage: reserved
type: longword (unsigned)

The it m st argument is reserved to OpenVMS.

node

OpenVMS usage: SCS _nodename

type: character-coded text string
access: read only
mechanism: by descriptor—fixed-length string descriptor

Name of the OpenVMS Cluster node on which the process is to be created. The node argument is the
address of a character string descriptor pointing to a 1- to 6-character SCS node name string. If the ar-
gument is present but zero or if the string is zero length, the process is created on the current node.

home rad

OpenVMS usage: longword unsigned

type: longword (unsigned)
access: read only
mechanism: by value

Sets the home resource affinity domain (RAD) of a process.

The home RAD is determined by the operating system, unless you explicitly request one. If bit
PRCSM_HOME RAD in the st sf | g is set, home_r ad is the RAD on which the process is to start.
Note that you may set this bit to 0 on non-RAD systems.

RAD is supported on AlphaServer GS series systems and starting from OpenVMS Version 8.4, sup-
port is extended to NUMA capable Integrity servers. For more information about using RADs, see the
VSI OpenVMS Alpha Partitioning and Galaxy Guide.

kt limit

OpenVMS usage: longword signed

type: longword (signed)
access: read only
mechanism: by value

Sets the limit of the number of kernel threads that can be created in the process. If the value is greater
than the SYSGEN MULTITHREAD parameter, an error message is returned.

The number of kernel threads that can be created in a process, is by default controlled by the
MULTITHREAD SYSGEN parameter. The kt _| i mi t argument is used to further limit the number
of possible kernel threads for the process.

291

System Service Descriptions

Description

The Create Process service creates a subprocess or detached process on behalf of the calling process.
A subprocess can be created only on the current OpenVMS Cluster node. A detached process can be
created on the current OpenVMS Cluster node or on the node specified with the node argument.

A detached process is a fully independent process. For example, the process that the system cre-
ates when you log in is a detached process. A subprocess, on the other hand, is related to its creat-
ing process in a treelike structure; it receives a portion of the creating process's resource quotas and
must terminate before the creating process. Any subprocesses that still exist when their creator is be-
ing deleted are automatically deleted.

The presence of the ui ¢ argument, node argument, or the PRC$SM_IMPERSONATE flag specifies
that the created process is detached.

Creating a process is synchronous in that the process has actually been created and its PID determined
before control returns to the program that requested the system service. Note, however, that the new
process has not necessarily begun to execute at that point. Some error conditions are not detected un-
til the created process executes. These conditions include an invalid or nonexistent image; invalid
SYSSINPUT, SYSSOUTPUT, or SYSSERROR logical name equivalence; inadequate quotas; or in-
sufficient privilege to execute the requested image.

In creating a detached or subprocess, you can specify that the process run the image
SYSSSYSTEM:LOGINOUT.EXE. During interactive logins, LOGINOUT performs the following
functions:

1. It validates user name and password.

2. Itreads the system authorization file record associated with that user and redefines the process en-
vironment based on information from the record.

3. It maps a command language interpreter (CLI) into the process and passes control to it.

The CLI reads a command from SYSSINPUT, processes it, and reads another command. The pres-
ence of the CLI enables the process to execute multiple images. It also enables an image running in
the process to use Run-Time Library procedures, such as LIBSSPAWN, LIBSDO COMMAND, and
LIBSSET LOGICAL, that require a CLI.

Running in the context of a process you create through SCREPRC, LOGINOUT can perform some or
all of the preceding steps, depending on whether the process is a subprocess or a detached process and
on the values of PRC$SM_NOPASSWORD and PRC$SM_NOUAF in the st sf | g argument.

Certain characteristics of a created process can be specified explicitly through SCREPRC system ser-
vice arguments, while other characteristics are propagated implicitly from the SCREPRC caller. Im-
plicit characteristics include the following:

* Current default directory

* Creator's equivalence name for SYS$DISK

¢ User and account names

* Command language interpreter (CLI) name and command table file name

292

System Service Descriptions

Note, however, that after the process has been created, if it runs LOGINOUT and LOGINOUT rede-
fines the process environment, those characteristics will be overridden by information from the system
authorization file.

Several process characteristics are relevant to the creation of a process on another OpenVMS Cluster
node, in particular, process quotas, default directory, SYS$DISK equivalence name, CLI name, and
CLI command table name.

Quotas for a process created on another OpenVMS Cluster node are calculated as previously de-
scribed in the section on the use of the quota list; namely, they are based on explicit values passed by
the creator and system parameters on the other OpenVMS Cluster node. If the other node has its own
authorization file with node-specific quotas, you might want to specify in the SCREPRC request that
the process run LOGINOUT so it can redefine the process environment based on that node's quotas
for the user.

Unless overridden by LOGINOUT, the new process will use its creator's default disk and directory.
If the disk is not mounted clusterwide, the created process might need to redefine SYS$DISK with an
equivalence name that specifies a disk accessible from that node.

When you set the PRCSM_NOUAF flag in the st sf | g argument and create a process running
LOGINOUT, LOGINOUT will attempt to map a CLI and command table with the same file names as
those running in your process. The CLI and command table images must therefore have already been
installed by the system manager on the other node. Problems can arise when you are using something
other than the DCL CLI and its standard command tables. For example, if you are running on a VAX
node with MCR as your current CLI, LOGINOUT will be unable to map that CLI on an Alpha node.
The new process will be created but then aborted by LOGINOUT.

A detached process is considered an interactive process only if (1) the process is created with the
PRCSM_INTER option specified and (2) SYSSINPUT is not defined as a file-oriented device.

The $CREPRC service requires system dynamic memory.

Required Access or Privileges

The calling process must have the following:

* IMPERSONATE or CMKRNL privilege to create any of the following types of process:
* A detached process with a UIC that is different from the UIC of the calling process

* A detached process with a larger value specified for some quota than is authorized for the
caller

* A detached process on another node if the system parameter CWCREPRC ENABLE has a
value of 0

* IMPERSONATE privilege to create any of the following types of process:
* A batch process
* A network process
* A trusted computing base process

» ALTPRI privilege to create a subprocess with a higher base priority than the calling process

293

System Service Descriptions

* SETPRYV privilege to create a process with privileges that the calling process does not have
* PSWAPM privilege to create a process with process swap mode disabled
» ACNT privilege to create a process with accounting functions disabled

* OPER privilege to create a detached process on another OpenVMS Cluster node on which interac-
tive logins have not yet been enabled

Required Quota

The number of subprocesses that a process can create is controlled by the subprocess (PRCLM) quota;
this quota is returned when a subprocess is deleted.

The number of detached processes on any one OpenVMS Cluster node that a process can create with
the same user name is controlled by the MAXDETACH entry in the user authorization file (UAF).

When a subprocess is created, the value of any deductible quota is subtracted from the total value
the creating process has available, and when the subprocess is deleted, the unused portion of any de-

ductible quota is added back to the total available to the creating process. Any pooled quota value is
shared by the creating process and all its subprocesses.

Related Services

$CANEXH, $DCLEXH, $DELPRC, $EXIT, SFORCEX, SGETJPI, $GETJPIW, $HIBER, $PRO-
CESS_SCAN, $RESUME, $SETPRI, $SETPRN, $SETPRV, $SSETRWM, $SUSPND, §WAKE

Condition Values Returned

SS$_ACCVIO

The caller cannot read a specified input string or string descriptor, the privilege list, or the quota
list; or the caller cannot write the process identification.

SS$ BADRAD
The specified RAD contains no memory or contains no active CPUs, or the specified RAD is
greater than or equal to the maximum number of RADs on the system. Use the $GETSYT item
code RAD MAX RADS to determine the maximum number of RADs on the system.

SS$ DUPLNAM
The specified process name duplicates one already specified within that group.

SS$ EXPRCLM
The creation of a detached process failed because the creating process already reached its limit for
the creation of detached processes. This limit is established by the MAXDETACH quota in the
user authorization file (UAF) of the creating process.

SS$ EXQUOTA

At least one of the following conditions is true:

294

System Service Descriptions

» The process has exceeded its quota for the creation of subprocesses.

* A quota value specified for the creation of a subprocess exceeds the creating process's corre-
sponding quota.

* The quota is deductible and the remaining quota for the creating process would be less than
the minimum.

SS$ INCOMPAT

The remote node is running an incompatible version of the operating system, namely, one that
does not support remote process creation.

SS$ INSFMEM

The system dynamic memory is insufficient for the requested operation.
SS$ INVARG

An invalid argument is specified.
SS$ INVKTLIM

A value lower than 0, or a value higher than the SYSGEN parameter MULTITHREAD is speci-
fied.

SS$ IVLOGNAM
At least one of the following two conditions is true:
* The specified process name has a length of 0 or has more than 15 characters.

* The specified image name, input name, output name, or error name has more than 255 charac-
ters.

SS$ IVQUOTAL

The quota list is not in the proper format.
SS$ IVSTSFLG

A reserved status flag was specified.
SS$ NODELEAVE

The specified node was removed from the OpenVMS Cluster during the SCREPRC service's exe-
cution.

SS$ NOPRIV
The caller violated one of the privilege restrictions.
SS$ NORMAL

The service completed successfully.

295

System Service Descriptions

SS$_ NOSLOT

No process control block is available; in other words, the maximum number of processes that can
exist concurrently in the system has been reached.

SS$ NOSUCHNODE
The specified node is not currently a member of the cluster.
SS$ REMRSRC

The remote node has insufficient resources to respond to the request. (Bring this error to the atten-
tion of your system manager.)

SS$ UNREACHABLE

The remote node is a member of the cluster but is not accepting requests. This is normal for a
brief period early in the system boot process.

$CRETVA

Create Virtual Address Space — Adds a range of demand-zero allocation pagelets to a process's virtu-
al address space for the execution of the current image.

Format

SYS$CRETVA inadr ,[retadr] ,[acnopde]

C Prototype

int sys$cretva
(struct _va_range *inadr, struct _va_range *retadr,
unsi gned i nt acnode);

Arguments

inadr

OpenVMS usage: address range

type: longword (unsigned)
access: read only
mechanism: by reference

Address of a 2-longword array containing the starting and ending virtual addresses of the pages to be
created. If the starting and ending virtual addresses are the same, a single page is created. The address-
es are adjusted up or down to fall on CPU-specific page boundaries. Only the virtual page number
portion of the virtual address is used; the low order byte-within-page bits are ignored.

retadr

296

System Service Descriptions

OpenVMS usage: address _range

type: longword (unsigned)
access: write only
mechanism: by reference—array reference or descriptor

Address of a 2-longword array to receive the starting and ending virtual addresses of the pages creat-
ed.

On Alpha and Integrity server systems, the r et adr argument should be checked by programs for ac-
tual allocation. Because the Alpha and Integrity servers architectures define more than one page size,
more space might be created than was specified in the i nadr argument.

acmode

OpenVMS usage: access _mode

type: longword (unsigned)
access: read only
mechanism: by value

Access mode and protection for the new pages. The acnpde argument is a longword containing the
access mode. The $PSLDEF macro defines the following symbols for the four access modes.

Symbol Access Mode
PSL$C KERNEL Kernel
PSL$C EXEC Executive
PSL$C _SUPER Supervisor
PSL$C USER User

The most privileged access mode used is the access mode of the caller. The protection of the pages is
read/write for the resultant access mode and those more privileged.

Description

The Create Virtual Address Space service adds a range of demand-zero allocation pages to a process's
virtual address space for the execution of the current image.

Pages are created starting at the address contained in the first longword of the location addressed by
the i nadr argument and ending with the second longword. The ending address can be lower than the
starting address. The r et adr argument indicates the byte addresses of the pages created.

If an error occurs while pages are being created, the r et adr argument, if specified, indicates the
pages that were successfully created before the error occurred. If no pages were created, both long-
words of the r et adr argument contain the value —1.

If SCRETVA creates pages that already exist, the service deletes those pages if they are not owned by
a more privileged access mode than that of the caller. Any such deleted pages are reinitialized as de-
mand-zero pages. For this reason, it is important to use the r et adr argument to capture the address
range actually created. Because the Alpha and Integrity servers architectures have a larger page size
than the VAX architecture, more space is potentially affected on Alpha and Integrity server systems.

297

System Service Descriptions

Required Access or Privileges

None

Required Quota

The paging file quota (PGFLQUOTA) of the process must be sufficient to accommodate the increased
size of the virtual address space.

Related Services

$ADJSTK, SADJWSL, SCRMPSC, SDELTVA, $DGBLSC, $SEXPREG, $LCKPAG, SLKWSET,
$MGBLSC, SPURGWS, $SETPRT, $SETSTK, $SETSWM, SULKPAG, SULWSET, SUPDSEC,
SUPDSECW

The Expand Program/Control Region (SEXPREG) service also adds pages to a process's virtual ad-
dress space.

Note

Do not use the SCRETVA system service in conjunction with other user-written procedures or
procedures supplied by VSI (including Run-Time Library procedures). This system service pro-

vides no means to communicate a change in virtual address space with other routines. VSI recom-
mends that you use either SEXPREG or the Run-Time Library procedure Allocate Virtual Memory
(LIBSGET VM) to get memory. You can find documentation on LIBSGET VM in the VSI OpenVMS
RTL Library (LIB$) Manual. When using SDELTVA, you should take care to delete only pages that
you have specifically created.

Condition Values Returned

SS$ NORMAL
The service completed successfully.
SS$§ _ACCVIO

The i nadr argument cannot be read by the caller, or the r et adr argument cannot be written by
the caller.

SS$ EXQUOTA
The process has exceeded its paging file quota.
SS$ INSFWSL

The process's working set limit is not large enough to accommodate the increased size of the vir-
tual address space.

SS$ NOPRIV

A page in the specified range is in the system address space.

298

System Service Descriptions

SS$ NOSHPTS
A virtual address within a shared page table region was specified.
SS$ PAGOWNVIO

A page in the specified range already exists and cannot be deleted because it is owned by a more
privileged access mode than that of the caller.

SS$ VA IN _USE
The existing underlying page cannot be deleted because it is associated with a buffer object.
SS$ VASFULL

The process's virtual address space is full; no space is available in the page tables for the request-
ed pages.

$CRETVA_64 (Alpha and Integrity servers)

Create Virtual Address Space — On Alpha and Integrity server systems, adds a range of demand-ze-
ro allocation pages to a process's virtual address space for the execution of the current image. The new
pages are added at the virtual address specified by the caller. This service accepts 64-bit addresses.

Format
YS$CRETVA 64

region_id 64 ,start_va 64 ,length_64 ,acnode ,flags ,return_va 64
,return_l ength_64

C Prototype

int sys$cretva_64
(struct _generic_64 *region_id 64, void *start_va_ 64,
unsigned __int64 | ength_64, unsigned int acnode, unsigned int flags,
void *(*(return_va_64)), unsigned __int64 *return_|l ength_64);

Arguments

region_id_64

OpenVMS usage: region identifier

type: quadword (unsigned)
access: read only
mechanism: by 32- or 64-bit reference

The region ID associated with the region to create the virtual address range. The file VADEF.H in
SYSSSTARLET C.TLB and the $VADEF macro in STARLET.MLB define a symbolic name for
each of the three default regions in PO, P1, and P2 space.

299

System Service Descriptions

The following region IDs are defined:

Symbol Region

VASC PO Program region
VASC_P1 Control region

VASC P2 64-bit program region

Other region IDs, as returned by the SCREATE REGION_64 service, can be specified. Also, giv-
en a particular virtual address, the region ID for the region it is in can be obtained by calling the
$GET_REGION_INFO system service specifying the VAS REGSUM_BY VA function.

start va 64

OpenVMS usage: address

type: quadword address
access: read only
mechanism: by value

The starting address for the created virtual address range. The specified virtual address must be a
CPU-specific pagealigned address.

length_64

OpenVMS usage: byte count

type: quadword (unsigned)
access: read only
mechanism: by value

Length of the virtual address space to be created. The length specified must be a multiple of CPU-spe-
cific pages.

acmode

OpenVMS usage: access _mode

type: longword (unsigned)
access: read only
mechanism: by value

Access mode associated with the call to SCRETVA_64. The access mode determines the owner mode
of the pages as well as the read and write protection on the pages. The acnbde argument is a long-
word containing the access mode.

The $PSLDEF macro in STARLET.MLB and the file PSLDEF.H in SYS$STARLET C.TLB define
the following symbols and their values for the four access modes:

Value |Symbolic Name Access Mode

0 PSL$C KERNEL Kernel

300

System Service Descriptions

Value |Symbolic Name Access Mode
1 PSL$C EXEC Executive

2 PSL$C _SUPER Supervisor

3 PSL$C USER User

The SCRETVA_64 service uses whichever of the following access modes is least privileged:

* Access mode specified by the acnbde argument.

* Access mode of the caller.

The protection of the pages is read/write for the resultant access mode and those more privileged.
Address space cannot be created within a region that has a create mode associated with it that is more
privileged than the caller's mode. The condition value SS§ IVACMODE is returned if the caller is

less privileged than the create mode for the region.

flags

OpenVMS usage: mask longword

type: longword (unsigned)
access: read only
mechanism: by value

Flag mask controlling the characteristics of the demand-zero pages created. The f | ags argument is

a longword bit vector in which each bit corresponds to a flag. The $VADEF macro and the VADEF.H
file define a symbolic name for each flag. You construct the f | ags argument by performing a logical
OR operation on the symbol names for all desired flags.

The following table describes the flag that is valid for the SCRETVA_64 service:

Flag Description

VASM_NO OVERMAP Pages cannot overmap existing address space. By default, pages can
overmap existing address space.

All other bits in the flags argument are reserved for future OpenVMS use and should be specified as
0. The condition value SS$ IVVAFLG is returned if any undefined bits are set.

return_va 64

OpenVMS usage: address

type: quadword (unsigned)
access: write only
mechanism: by 32- or 64-bit reference

The lowest process virtual address of the created virtual address range. The r et ur n_va_64 argu-
ment is the 32- or 64-bit virtual address of a naturally aligned quadword into which the service returns
the virtual address.

301

System Service Descriptions

return_length 64

OpenVMS usage: byte count

type: quadword (unsigned)
access: write only
mechanism: by 32- or 64-bit reference

The length of the virtual address range created. The r et ur n_| engt h_64 argument is the 32- or
64-bit virtual address of a naturally aligned quadword into which the service returns the length of the
virtual address range in bytes.

Description

The Create Virtual Address Space service is a kernel mode service that can be called from any mode.

The service adds a range of demand-zero allocation pages, starting at the virtual address specified by

the st art _va_64 argument. The pages are added to a process's virtual address space for the execu-
tion of the current image. Expansion occurs at the next free available address within the specified re-

gion if the range of addresses is beyond the next free available address.

The new pages, which were previously inaccessible to the process, are created as demand-zero pages.

The returned address is always the lowest virtual address in the range of pages created. The returned
length is always an unsigned byte count indicating the length of the range of pages created.

Successful return status from SCRETV A means that the specified address space was created of the
size specified in the | engt h_64 argument.

If SCRETVA_64 creates pages that already exist, the service deletes those pages if they are not owned
by a more privileged access mode than that of the caller. Any such deleted pages are reinitialized as
demand-zero pages.

If the condition value SS§ ACCVIO is returned by this service, a value cannot be returned in the
memory locations pointed to by ther et ur n_va_64 and r et ur n_I engt h_64 arguments.

If an address within the specified address range is not within the bounds of the specified region, the
condition value SS§ PAGNOTINREG is returned.

If a condition value other than SS§ ACCVIO is returned, the returned address and returned length in-
dicate the pages that were successfully added before the error occurred. If no pages were added, the
ret urn_va_64 argument will contain the value —1, and a value cannot be returned in the memory
location pointed to by the r et ur n_I engt h_64 argument.

Required Privileges

None

Required Quota

The working set quota (WSQUOTA) of the process must be sufficient to accommodate the increased
length of the process page table required by the increase in virtual address space.

The process's paging file quota (PGFLQUOTA) must be sufficient to accommodate the increased size
of the virtual address space.

302

System Service Descriptions

Related Services
$CREATE BUFOBJ 64, $SCREATE REGION 64, $DELETE REGION_ 64, SDELTVA 64, SEX-

PREG 64, SLCKPAG 64, SLKWSET 64, SPURGE_WS, $SETPRT 64, SULKPAG 64, SUL-
WSET 64

Condition Values Returned

SS$ NORMAL
The service completed successfully.
SS$ ACCVIO
Thereturn_va_64 orreturn_| engt h_64 argument cannot be written by the caller.
SS$ EXPGFLQUOTA
The process has exceeded its paging file quota.
SS$ INSFWSL

The process's working set limit is not large enough to accommodate the increased virtual address
space.

SS$ IVACMODE
The caller's mode is less privileged than the create mode associated with the region.
SS$ IVREGID
An invalid region ID was specified.
SS$_IVVAFLG
An invalid flag, a reserved flag, or an invalid combination of flags and arguments was specified.
SS$ LEN NOTPAGMULT
The | engt h_64 argument is not a multiple of CPU-specific pages.
SS$ NOSHPTS
The region ID of a shared page table region was specified.
SS$ PAGNOTINREG
A page in the specified range is not within the specified region.
SS$ PAGOWNVIO

A page in the specified range already exists and cannot be deleted because it is owned by a more
privileged access mode than that of the caller.

303

System Service Descriptions

SS$ REGISFULL
The specified virtual region is full.
SS$ VA IN_USE

A page in the specified range is already mapped, and the VA$SM_NO_OVERLAP flag was set, or
the existing underlying page cannot be deleted because it is associated with a buffer object.

SS$ VA NOTPAGALGN

The st art _va_64 argument is not CPU-specific page aligned.

$CRMPSC

Create and Map Section — Allows a process to associate (map) a section of its address space with
either a specified section of a file (a disk file section) or specified physical addresses represented by
page frame numbers (a page frame section). This service also allows the process to create either type
of section and to specify that the section be available only to the creating process (private section) or
to all processes that map to it (global section).

Format
SYS$CRMPSC

[inadr] ,[retadr] ,[acnode] ,[flags] ,[gsdnan] ,[ident] ,[relpag]
,[chan] ,[pagcnt] ,[vbn] ,[prot] ,[pfc]

C Prototype

int sys$crnpsc
(struct _va range *inadr, struct _va range *retadr, unsigned int acnode
unsigned int flags, void *gsdnam unsigned int rel pag,

unsi gned short int chan, unsigned int pagcnt, unsigned int vbn,
unsi gned int prot,unsigned int pfc);

Arguments

inadr

OpenVMS usage: address_range

type: longword (unsigned)
access: read only
mechanism: by reference

Starting and ending virtual addresses into which the section is to be mapped. The i nadr argument is
the address of a 2-longword array containing, in order, the starting and ending process virtual address-
es. Only the virtual page number portion of each virtual address is used to specify which pages are to
be mapped; the low-order byte-within-page bits are ignored for this purpose.

The interpretation of the i nadr argument depends on the setting of SEC$M_EXPREG in the f | ags
argument and on whether you are using an Alpha, an Integrity servers or a VAX system. The two sys-
tem types are discussed separately in this section.

304

System Service Descriptions

Alpha and Integrity servers System Usage

On Alpha and Integrity server systems, if you do not set the SEC$M_EXPREG flag, the i nadr ar-
gument specifies the starting and ending virtual addresses of the region to be mapped. Addresses

in system space are not allowed. The addresses must be aligned on CPU-specific pages; no round-

ing to CPU-specific pages occurs. The lower address of the i nadr argument must be on a CPU-
specific page boundary and the higher address of thei nadr argument must be 1 less than a CPU-
specific boundary, thus forming a range, from lowest to highest, of address bytes. You can use the
SYI$ PAGE SIZE item code in the SGETSYI system service to set the i nadr argument to the prop-
er values. You do this to avoid programming errors that might arise because of incorrect programming
assumptions about page sizes.

If, on the other hand, you do set the SECSM_EXPREG flag, indicating that the mapping should take
place using the first available space in a particular region, the i nadr argument is used only to indi-
cate the desired region: the program region (P0) or the control region (P1).

Caution

Mapping into the P1 region is generally discouraged, but, if done, must be executed with extreme
care. Because the user stack is mapped in P1, it is possible that references to the user stack might in-
advertently read or write the pages mapped with SCRMPSC.

When the SECSM_EXPREG flag is set, the second i nadr longword is ignored, while bit 30 (the
second most significant bit) of the firsti nadr longword is used to determine the region of choice.
If the bit is clear, PO is chosen; if the bit is set, P1 is chosen. On Alpha and Integrity server systems,
bit 31 (the most significant bit) of the first i nadr longword must be 0. To ensure compatibility be-
tween VAX and Alpha or Integrity server systems when you choose a region, VSI recommends that
you specify, for the first i nadr longword, any virtual address in the desired region.

In general, the i nadr argument should be specified; however, it can be omitted to request a special
feature: for permanent global sections, you can omit the i nadr argument, or specify it as 0, to re-
quest that the section be created but not mapped. Such a request will be granted regardless of the set-
ting of the SEC$M_EXPREG flag; however, to ensure compatibility between VAX and Alpha or In-
tegrity server systems, VSI recommends that the SECSM_EXPREG flag be clear when the i nadr ar-
gument is omitted.

retadr

OpenVMS usage: address_range

type: longword (unsigned)
access: write only
mechanism: by reference—array reference

Starting and ending process virtual addresses into which the section was actually mapped by SCRM-
PSC. The retadr argument is the address of a 2-longword array containing, in order, the starting and
ending process virtual addresses.

On Alpha and Integrity server systems, the r et adr argument returns starting and ending addresses

of the usablerange of addresses. This might differ from the total amount mapped. The r et adr argu-
ment is required when ther el pag argument is specified. If the section being mapped does not com-
pletely fill the last page used to map the section, the r et adr argument indicates the highest address

305

System Service Descriptions

that actually maps the section. If the r el pag argument is used to specify an offset into the section,
the r et adr argument reflects the offset.

acmode

OpenVMS usage: access_mode

type: longword (unsigned)
access: read only
mechanism: by value

Access mode that is to be the owner of the pages created during the mapping. The acnode argument
is a longword containing the access mode. The $SPSLDEF macro defines the following symbols for the
four access modes.

Symbol Access Mode
PSL$C KERNEL Kernel
PSLSC EXEC Executive
PSL$C SUPER Supervisor
PSL$C USER User

The most privileged access mode used is the access mode of the caller.

flags

OpenVMS usage: mask longword

type: longword (unsigned)
access: read only
mechanism: by value

Flag mask specifying the type of section to be created or mapped to, as well as its characteristics.
The f | ags argument is a longword bit vector wherein each bit corresponds to a flag. The $SECDEF
macro defines a symbolic name for each flag. You construct the f | ags argument by performing a
logical OR operation on the symbol names for all desired flags.

The following table describes each flag and the default value that it supersedes.

Flag Description

SEC$M_CRF Pages are copy-on-reference. By default, pages are shared.

SEC$M_DZRO Pages are demand-zero pages. By default, they are not zeroed when
copied.

SEC$SM_EXECUTE Pages are mapped if the caller has execute access. This flag takes ef-

fect only (1) when specified from executive or kernel mode, (2) when
the SECSM_GBL flag is also specified, and (3) when SECSM_WRT
is not specified. By default SCRMPSC performs a read access check
against the section.

SEC$M_EXPREG Pages are mapped into the first available space. By default, pages are
mapped into the range specified by the i nadr argument.

306

System Service Descriptions

Flag Description

See the i nadr argument description for a complete explanation of
how to set the SECSM_EXPREG flag.

SEC$SM_GBL Pages form a global section. The default is private section.

SECSM_NO_OVERMAP |Pages cannot overmap existing address space. Note that, by default,
pages can overmap existing address space.

SEC$M_PAGFIL Pages form a global page file section. By default, pages form a
disk file section. SEC$M_PAGFIL also implies SEC$M_WRT and
SEC$SM_DZRO.

SEC$M_PERM Global section is permanent. By default, global sections are tempo-
rary.

SEC$SM_PFNMAP Pages form a page frame section. By default, pages form a disk file

section. Pages mapped by SEC$M_PFNMAP are not included in or
charged against the process's working set; they are always valid. Do
not lock these pages in the working set by using SLKWSET; this can
result in a machine check if they are in 1/O space.

10n Alpha and Integrity server systems, when the SECSM_PFNMAP
flag is set, the pagcnt and r el pag arguments are interpreted in
CPU-specific pages, not as pagelets.

SECSM_SYSGBL Pages form a system global section. By default, pages form a group
global section.
SEC$SM_UNCACHED Flag that must be set when a PFN-mapped section is created if this

section is to be treated as uncached memory. Flag is ignored on Alpha
systems; it applies only to Integrity server systems.

SEC$SM_WRT Pages form a read/write section. By default, pages form a read-only
section.

! Alpha and Integrity servers specific

gsdnam

OpenVMS usage: section name

type: character-coded text string
access: read only
mechanism: by descriptor—fixed-length string descriptor

Name of the global section. The gsdnamargument is the address of a character string descriptor
pointing to this name string.

For group global sections, the operating system interprets the UIC group as part of the global section
name; thus, the names of global sections are unique to UIC groups.

You can specify any name from 1 to 43 characters. All processes mapping to the same global section
must specify the same name. Note that the name is case sensitive.

Use of characters valid in logical names is strongly encouraged. Valid values include alphanumeric
characters, the dollar sign ($), and the underscore (). If the name string begins with an underscore
(1), the underscore is stripped and the resultant string is considered to be the actual name. Use of the
colon (:) is not permitted.

307

System Service Descriptions

Names are first subject to a logical name translation, after the application of the prefix GBLS$ to the
name. If the result translates, it is used as the name of the section. If the resulting name does not trans-
late, the name specified by the caller is used as the name of the section.

Additional information on logical name translations and on section name processing is available in the
VSI OpenVMS Programming Concepts Manual.

ident

OpenVMS usage: section_id

type: quadword (unsigned)
access: read only
mechanism: by reference

Identification value specifying the version number of a global section and, for processes mapping to
an existing global section, the criteria for matching the identification. The i dent argument is the ad-
dress of a quadword structure containing three fields.

The version number is in the second longword. The version number contains two fields: a minor iden-
tification in the low-order 24 bits and a major identification in the high-order 8 bits. You can assign
values for these fields by installation convention to differentiate versions of global sections. If no
version number is specified when a section is created, processes that specify a version number when
mapping cannot access the global section.

The first longword specifies, in its low-order two bits, the matching criteria. The valid values, symbol-
ic names by which they can be specified, and their meanings are as follows.

Value/Name Match Criteria
0 SEC$SK_MATALL Match all versions of the section.
1 SEC$SK_MATEQU |Match only if major and minor identifications match.

2 SECSK_MATLEQ Match if the major identifications are equal and the minor identification
of the mapper is less than or equal to the minor identification of the global
section.

When a section is mapped at creation time, the match control field is ignored.

If you do not specify the i dent argument or specify it as 0 (the default), the version number and
match control fields default to 0.

relpag

OpenVMS usage: longword unsigned

type: longword (unsigned)
access: read only
mechanism: by value

Relative page number within the global section of the first page in the section to be mapped. The
r el pag argument is a longword containing this page number.

308

System Service Descriptions

On Alpha and Integrity server systems, the r el pag argument is interpreted as an index into the sec-
tion file, measured in pagelets for a file-backed section or in CPU-specific pages for a PFN-mapped
section.

On Alpha or Integrity servers, you use this argument only for global sections. If you do not specify
the r el pag argument or specify it as 0 (the default), the global section is mapped beginning with the
first virtual block in the file.

chan

OpenVMS usage: channel

type: word (unsigned)
access: read only
mechanism: by value

Number of the channel on which the file has been accessed. The chan argument is a word containing
this number.

The file must have been accessed with the OpenVMS RMS macro $OPEN; the file options parameter
(FOP) in the FAB must indicate a user file open (UFO keyword). The access mode at which the chan-

nel was opened must be equal to or less privileged than the access mode of the caller.

pagent

OpenVMS usage: longword unsigned

type: longword (unsigned)
access: read only
mechanism: by value

Number of pagelets in the section. The pagcnt argument is a longword containing this number.

On Alpha and Integrity server systems, the smallest allocation is an Alpha or Integrity servers page,
which is 8192 bytes. When requesting pagelets, the size requested is a multiple of 512 bytes, but the
actual allocation is rounded to 8192. For example, when requesting 17 pagelets, the allocation is for
two Alpha or Integrity servers pages, 16384 bytes.

On Alpha and Integrity server systems, if the SECSM_PFNMAP flag bit is set, the pagcnt argument
is interpreted as CPU-specific pages, not as pagelets.

On Alpha or Integrity server systems, the specified page count is compared with the number of blocks
in the section file; if they are different, the lower value is used. If you do not specify the page count or
specify it as 0 (the default), the size of the section file is used. However, for physical page frame sec-
tions, this argument must not be 0.

vbn
OpenVMS usage: longword unsigned

type: longword (unsigned)

access: read only

309

System Service Descriptions

mechanism: by value

Virtual block number in the file that marks the beginning of the section. The vbn argument is a long-
word containing this number. If you do not specify the vbn argument or specify it as 0 (the default),
the section is created beginning with the first virtual block in the file.

If you specified page frame number mapping (by setting the SECSM_PFNMAP flag), the vbn argu-
ment specifies the CPU-specific page frame number where the section begins in memory.

Table 21 shows which arguments are required and which are optional for three different uses of the
$CRMPSC service.

Table 21. Required and Optional Arguments for the SCRMPSC Service

Argument Create/Map Map Global' Sec- Create/Map Private
Global Section tion Section

i nadr Optional® Required Required
retadr Optional Optional Optional
acnode Optional Optional Optional
flags

SEC$M_GBL Required Ignored Not used
SEC$M_CRF? Optional Not used Optional
SEC$M_DZRO3 Optional Not used Optional
SECSM_EXPREG Optional Optional Optional
SEC$M_PERM Optional® Not used Not used
SEC$M_PFNMAP Optional Not used Optional
SEC$M_SYSGBL Optional Optional Not used
SECSM_WRT Optional Optional Optional
SEC$M_PAGFIL Optional Not used Not used
gsdnam Required Required Not used
i dent Optional Optional Not used
rel pag? Optional Optional Not used
chan’ Required Required
pagcnt Required Required
vbn? Optional Optional
pr ot Optional Not used
pf c? Optional Optional

'"The Map Global Section (SMGBLSC) service maps an existing global section.
2See the description of i nadr for the rules governing the omission of the argument.

3For physical page frame sections: vbn specifies the starting page frame number; chan must be 0; pf ¢ is not used; and the SEC$M_CRF
and SEC$M_DZRO flag bit settings are invalid. For page-file sections, chan must be 0 and pf ¢ not used.

prot

OpenVMS usage: file protection
type: longword (unsigned)

310

System Service Descriptions

access: read only

mechanism: by value

Protection to be applied to the global page file and PFN sections. For file-backed sections, the protec-
tion is taken from the backing file and the pr ot argument is ignored.

The mask contains four 4-bit fields. Bits are read from right to left in each field. The following dia-
gram depicts the mask.

World Group COwner System

p|e|w|r|o|e|w|r|p|e|w|r|[D|E|W|R
1514131211109 8 7 6 5 4 32 1 0
ZK-1706-GE

Cleared bits indicate that read, write, execute, and delete access, in that order, are granted to the par-
ticular category of user.

Only read, write, and execute access are meaningful for section protection. Delete access bits are ig-
nored. Read access also grants execute access for those situations where execute access applies.

Protection is taken from the system or group global section template for page file or PFN global sec-
tions if the pr ot argument is not specified.

pfc

OpenVMS usage: longword unsigned

type: longword (unsigned)
access: read only
mechanism: by value

Page fault cluster size indicating how many pagelets are to be brought into memory when a page fault
occurs for a single page.

On Alpha and Integrity server systems, this argument is not used for page file sections or physical
page frame sections. The pf ¢ argument is rounded up to CPU-specific pages. That is, at least 16
pagelets (on an Alpha or Integrity servers system with an 8KB page size) will be mapped for each
physical page. The system cannot map less than one physical page.

Description

The Create and Map Section service allows a process to associate (map) a section of its address space
with (1) a specified section of a file (a disk file section) or (2) specified physical addresses represent-
ed by page frame numbers (a page frame section). This service also allows the process to create either
type of section and to specify that the section be available only to the creating process (private sec-
tion) or to all processes that map to it (global section).

Creating a disk file section involves defining all or part of a disk file as a section. Mapping a disk
file section involves making a correspondence between virtual blocks in the file and pagelets in the
caller's virtual address space. If the SCRMPSC service specifies a global section that already exists,
the service maps it.

Any section created is created as entire pages. See the memory management section in the VSI Open-
VMS Programming Concepts Manual.

311

System Service Descriptions

Depending on the actual operation requested, certain arguments are required or optional. Table 21
summarizes how the SCRMPSC service interprets the arguments passed to it and under what circum-
stances it requires or ignores arguments.

The SCRMPSC service returns the virtual addresses of the virtual address space created in the r e-
t adr argument, if specified. The section is mapped from a low address to a high address, whether the
section is mapped in the program or control region.

If an error occurs during the mapping of a global section, the r et adr argument, if specified, indi-
cates the pages that were successfully mapped when the error occurred. If no pages were mapped, the
value of the longwords is indeterminate. In this case, either both longwords of the r et adr argument
will contain the value —1, or the value of the longwords will be unaltered.

The SECSM_PFNMAP flag setting identifies the memory for the section as starting at the page frame
number specified in the vbn argument and extending for the number of CPU-specific pages specified
in the pagcnt argument. Setting the SECSM_PFNMAP flag places restrictions on the following ar-
guments.

Argument Restriction

chan Must be 0

pagent Must be specified; cannot be 0

vbn Specifies first page frame to be mapped

pfc Does not apply

SECSM_CRF Must be 0

SEC$M_DZRO Must be 0

SEC$SM_PERM Must be 1 if the flags SECSM_GBL or SEC§M_SYSGBL are set

Setting the SECSM_PAGFIL flag places the following restrictions on the following flags.

Flag Restriction
SEC$SM_CRF Must be 0
SEC$M_DZRO Assumed to be 0
SEC$M_GBL Must be 1
SEC$M_PFNMAP Must be 0
SECSM_WRT Assumed to be 0

The f | ags argument bits 4 through 13 and 18 through 31 must be 0.

If the global section is mapped to a file (neither SEC$SM_PAGFIL nor SECSM_PFNMAP is set), the
security profile of the file is used to determine access to the global section.

On VAX systems, by default, the initial security profile created for a page file or PFN global section is
taken from the group global section template. If the SECSM_SYSGBL flag is set, the profile is taken
from the system global section template. The owner is then set to the process UIC. If the pr ot argu-
ment is nonzero, it replaces the protection mask from the template.

On Alpha or Integrity server systems , the flag bit SEC$M_WRT applies only to the way in which the
newly created section is mapped. For a file to be made writable, the channel used to open the file must
allow write access to the file.

312

System Service Descriptions

If the flag bit SEC$M_SYSGBL is set, the flag bit SEC$M_GBL must be set also.

Required Access or Privileges

If SCRMPSC specifies a global section and the SS§ NOPRIV condition value is returned, the process
does not have the required privilege to create that section. To create global sections, the process must
have the following privileges:

* SYSGBL privilege to create a system global section

« PRMGBL privilege to create a permanent global section

* PFNMAP privilege to create a page frame section

Note that you do not need PFNMAP privilege to map an existing page frame section.

Required Quota
If the section pages are copy-on-reference, the process must have sufficient paging file quota

(PGFLQUOTA). The systemwide number of global page file pages is limited by the system parameter
GBLPAGFIL.

Related Services
$ADJSTK, SADJWSL, SCRETVA, $SDELTVA, $DGBLSC, SEXPREG, SLCKPAG, SLKWSET,

$MGBLSC, SPURGWS, $SETPRT, $SETSTK, $SETSWM, SULKPAG, SULWSET, SUPDSEC,
SUPDSECW

Condition Values Returned

SS$ NORMAL

The service completed successfully. The specified global section already exists and has been
mapped.

SS$ CREATED

The service completed successfully. The specified global section did not previously exist and has
been created.

SS$_ACCVIO

The i nadr argument, gsdnamargument, or name descriptor cannot be read by the caller; the
i nadr argument was omitted; or the r et adr argument cannot be written by the caller.

SS$ ENDOFFILE

The starting virtual block number specified is beyond the logical end-of-file, or the value in the
r el pag argument is greater than or equal to the actual size of the global section.

SS$ EXBYTLM

The process has exceeded the byte count quota; the system was unable to map the requested file.

313

System Service Descriptions

SS$ EXGBLPAGFIL

The process has exceeded the systemwide limit on global page file pages; no part of the section
was mapped.

SS$_EXQUOTA

The process exceeded its paging file quota while creating copy-on-reference or page file backing
store pages.

SS$ GPTFULL
There is no more room in the system global page table to set up page table entries for the section.
SS$_GSDFULL

There is no more room in the system space allocated to maintain control information for global
sections.

SS$ ILLPAGCNT

The page count value is negative or is 0 for a physical page frame section.
SS$ INSFMEM

Not enough pages are available in the specified shared memory to create the section.
SS$ _INSFWSL

The process's working set limit is not large enough to accommodate the increased size of the ad-
dress space.

SS$ IVCHAN

An invalid channel number was specified, that is, a channel number of 0 or a number larger than
the number of channels available.

SS$ IVCHNLSEC
The channel number specified is currently active.
SS$ IVLOGNAM
The specified global section name has a length of 0 or has more than 43 characters.
SS$ IVLVEC
The specified section was not installed using the /PROTECT qualifier.
SS$ _IVSECFLG

An invalid flag, a reserved flag, a flag requiring a privilege you lack, or an invalid combination of
flags was specified.

SS$ IVSECIDCTL

The match control field of the global section identification is invalid.

314

System Service Descriptions

SS$_NOPRIV

The process does not have the privileges to create a system global section (SYSGBL) or a perma-
nent group global section (PRMGBL).

The process does not have the privilege to create a section starting at a specific physical page
frame number (PFNMAP).

The process does not have the privilege to create a global section in memory shared by multiple
processors (SHMEM).

A page in the input address range is in the system address space.

The specified channel is not assigned or was assigned from a more privileged access mode.
SS$ NOSHPTS

A virtual address within a shared page table region was specified.
SS$ NOTFILEDEV

The device is not a file-oriented, random-access, or directory device.
SS$ NOWRT

The section cannot be written to because the flag bit SEC$M_WRT is set, the file is read only,
and the flag bit SECSM_CREF is not set.

SS$ PAGOWNVIO
A page in the specified input address range is owned by a more privileged access mode.
SS$ SECREFOVF
The maximum number of references for a global section has been reached (2,147,483,647).
SS$ SECTBLFUL
There are no entries available in the system global section table or in the process section table.
SS$ TOOMANYLNAM
The logical name translation of the gsdnamargument exceeded the allowed depth.
SS$ VA IN _USE
A page in the specified input address range is already mapped, and the flag
SEC$SM_NO_OVERMATP is set, or the existing underlying page cannot be deleted because it is
associated with a buffer object.

SS$_VASFULL

The process's virtual address space is full; no space is available in the page tables for the pages
created to contain the mapped global section.

315

System Service Descriptions

$CRMPSC_FILE_64 (Alpha and Integrity
servers)

Create and Map Private Disk File Section — On Alpha and Integrity server systems, allows a process
to map a section of its address space to a specified portion of a file. This service creates and maps a
private disk file section. This service accepts 64-bit addresses.

Format

SYS$CRMPSC FI LE_64

region_id 64 ,file_offset_64 ,length_64 ,chan ,acnode ,flags ,return_va_64
,return_length 64 [,fault_cluster [,start_va 64]]

C Prototype
int sys$crnpsc_file_64
(struct _generic_64 *region_id 64, unsigned _ int64 file_offset_ 64,
unsi gned __int64 |length_64, unsigned short int chan,

unsi gned int acnode, unsigned int flags, void *(*(return_va_64)),
unsigned __int64 *return_length_64,...)

Arguments

region_id_64

OpenVMS usage: region identifier

type: quadword (unsigned)
access: read only
mechanism: by 32- or 64-bit reference

The region ID associated with the region to map the private disk file section. The file VADEF.H in
SYSSSTARLET C.TLB and the $VADEF macro in STARLET.MLB define a symbolic name for
each of the three default regions in PO, P1, and P2 space. The following region IDs are defined:

Symbol Region

VASC PO Program region
VASC_P1 Control region

VAS$C P2 64-bit program region

Other region IDs, as returned by the SCREATE_REGION_64 service, can be specified.

file_offset_64

OpenVMS usage: byte offset
type: quadword (unsigned)

316

System Service Descriptions

access: read only

mechanism: by value

Byte offset into the file that marks the beginning of the section. The f i | e_of f set _64 argument is
a quadword containing this number. If you specify the f i | e_of f set _64 argument as 0, the section
is created beginning with the first byte in the file.

Thefil e_of f set _64 argument must be a multiple of virtual disk blocks.

length_64

OpenVMS usage: byte count

type: quadword (unsigned)
access: read only
mechanism: value

Length, in bytes, of the private disk file section to be created and mapped to. The length specified
must be 0 or a multiple of virtual disk blocks. If the length specified is 0 or extends beyond end-of-file
(EOF), the disk file is mapped up to and including the virtual block number that contains EOF.

chan

OpenVMS usage: longword

type: longword (unsigned)
access: read only
mechanism: by value

Number of the channel on which the file has been accessed. The chan argument is a longword con-
taining this number. The access mode at which the channel was opened must be equal to or less privi-
leged than the access mode of the caller.

Use the OpenVMS Record Management Services (RMS) macro $OPEN to access a file; the file op-
tions parameter in the file access block must indicate a user file open (UFO) keyword.

acmode

OpenVMS usage: access _mode

type: longword (unsigned)
access: read only
mechanism: by value

Access mode that is to be the owner of the pages created during the mapping. The acnode argument
is a longword containing the access mode.

The $PSLDEF macro in STARLET.MLB and the file PSLDEF.H in SYS$STARLET C.TLB define
the following symbols and their values for the four access modes:

Value |Symbolic Name Access Mode
0 PSL$C KERNEL Kernel

317

System Service Descriptions

Value |Symbolic Name Access Mode
1 PSL$C EXEC Executive

2 PSL$C _SUPER Supervisor

3 PSL$C USER User

The most privileged access mode used is the access mode of the caller. The calling process can delete
pages only if those pages are owned by an access mode equal to or less privileged than the access
mode of the calling process.

flags

OpenVMS usage: mask longword

type: longword (unsigned)
access: read only
mechanism: by value

Flag mask specifying the characteristics of the private section to be created. The f | ags argument is a
longword bit vector in which each bit corresponds to a flag. The $SSECDEF macro and the SECDEF.H
file define a symbolic name for each flag. You construct the f | ags argument by performing a logical
OR operation on the symbol names for all desired flags.

The following table describes each flag that is valid for the SCRMPSC_FILE 64 service:

Flag Description

SECSM_CRF Pages are copy-on-reference.

SEC$SM_DZRO Pages are demand-zero pages. By default, they are not zeroed when
copied.

Note that SEC$M_DZRO and SEC$M_CRF cannot both be set and
that SEC$M_DZRO set and SEC$SM_WRT clear is an invalid combi-
nation.

SEC$M_EXPREG Pages are mapped into the first available space at the current end of
the specified region.

SECSM_NO OVERMAP [Pages cannot overmap existing address space. By default, pages can
overmap existing address space.

SECSM_WRT Pages form a read/write section. By default, pages form a read-only
section.

All other bits in the f | ags argument are reserved to OpenVMS for future use and should be speci-
fied as 0. The condition value SS§ IVSECFLG is returned if any undefined bits are set or if an illegal
combination of flags is set.

return_va 64
OpenVMS usage: address

type: quadword address

access: write only

318

System Service Descriptions

mechanism: by 32- or 64-bit reference
The lowest process virtual address into which the private disk file section was mapped. The r e-
t ur n_va_64 argument is the 32- or 64-bit virtual address of a naturally aligned quadword into

which the service returns the virtual address.

return_length_64

OpenVMS usage: byte count

type: quadword (unsigned)
access: write only
mechanism: by 32- or 64-bit reference.

The 32- or 64-bit virtual address of a naturally aligned quadword into which the service returns the
length of the usable virtual address range mapped in bytes. This length might differ from the total
amount mapped. If the section being mapped does not completely fill the last page used to map the
section, ther et urn_va_64 and r et ur n_I| engt h_64 arguments indicate the highest address that
actually maps the section.

fault_cluster

OpenVMS usage: byte count

type: longword (unsigned)
access: read only
mechanism: by value

Page fault cluster in byte units indicating how many pages are to be brought into memory when a page
fault occurs for a single page. The fault cluster specified will be rounded up to a multiple of CPU-spe-
cific pages.

If this argument is specified as 0, the process default page fault cluster will be used. If this argument is
specified as more than the maximum allowed for the system, no condition value will be returned. The
systemwide maximum will be used.

start va_64

OpenVMS usage: address

type: quadword address
access: read only
mechanism: by value

The starting virtual address to map the private disk file section. The specified virtual address must be
a CPU-specific page aligned address. If the flag SEC$M_EXPREG is specified, the st art _va_64
argument must not be specified or must be specified as 0. [f SECSM_EXPREG is set and the

st art _va_64 argument is non-zero, the condition value SS§ IVSECFLG is returned.

Description

The Create and Map Private Disk File Section service allows a process to create a map to a private
disk file section. Creating a private disk file section involves mapping all or part of a disk file as a sec-

319

System Service Descriptions

tion. The section is mapped from a low address to a high address whether the section is mapped in a
region that grows from low to high addresses or from high to low addresses.

The flag SECSM_WRT applies only to the way in which the newly created section is mapped. For a
file to be made writable, the channel used to open the file must allow write access to the file.

If the condition value SS§ ACCVIO is returned by this service, a value cannot be returned in the
memory locations pointed to by ther et urn_va_64 andr et ur n_I engt h_64 arguments.

If a condition value other than SS§ ACCVIO is returned, the returned address and returned length in-
dicate the pages that were successfully mapped before the error occurred. If no pages were mapped,

the r et ur n_va_64 argument will contain the value —1, and a value cannot be returned in the mem-
ory location pointed to by the r et ur n_| engt h_64 argument.

Required Privileges
None

Required Quota

The working set quota (WSQUOTA) of the process must be sufficient to accommodate the increased
length of the process page table required by the increase in virtual address space.

The process must have sufficient byte count quota to satisfy the request.

If the section pages are copy-on-reference, the process must have sufficient paging file quota
(PGFLQUOTA).

Related Services
$CREATE_REGION_ 64, $SCRMPSC, SCRMPSC_GFILE 64, SCRMPSC_GPFILE 64, SCRM-
PSC_GPFN_64, SCRMPSC_PFN_64, SDELETE_REGION 64, SDELTVA_64, SLCKPAG 64,

SLKWSET 64, SPURGE_WS, $SSETPRT 64, SULKPAG 64, SULWSET 64, SUPDSEC_64, $UP-
DSEC_64W

Condition Values Returned

SS$ NORMAL
The service completed successfully.
SS$ ACCVIO

Ther et ur n_va_64 argument or the r et ur n_| engt h_64 argument cannot be written by the
caller.

SS$ CHANVIO
The specified channel was assigned from a more privileged access mode.
SS$ ENDOFFILE

Thefil e_of f set _64 argument specified is beyond the logical end-of-file.

320

System Service Descriptions

SS$ EXBYTLM

The process has exceeded the byte count quota; the system was unable to map the requested file.
SS$ EXPGFLQUOTA

The process exceeded its paging file quota.
SS$ INSFWSL

The process's working set limit is not large enough to accommodate the increased virtual address
space.

SS$ IVCHAN

An invalid channel number was specified; the channel number specified was 0 or a channel that is
unassigned.

SS$_IVCHNLSEC

The channel number specified is currently active, or there are no files opened on the specified
channel.

SS$ IVIDENT

An invalid channel number was specified; the channel number specified is larger than the number
of channels available.

SS$ IVLOGNAM
The specified global section name has a length of 0 or has more than 43 characters.
SS$ IVREGID
Invalid region ID specified.
SS$ IVSECFLG
An invalid flag, a reserved flag, or an invalid combination of flags and arguments was specified.
SS$ LEN NOTBLKMULT
The | engt h_64 argument is not a multiple of virtual disk blocks.
SS$ NOSHPTS
A virtual address within a shared page table region was specified.
SS$ NOTFILEDEV
The device is not a file-oriented, random-access, or directory device.
SS$ OFF NOTBLKALGN

Thefil e_of f set _64 argument is not a multiple of virtual disk blocks.

321

System Service Descriptions

SS$_NOWRT

The file is read-only, the flag bit SECSM_WRT was set, and the flag bit SECSM_CRF is not set.
SS$ PAGNOTINREG

A page in the specified range is not within the specified region.
SS$§ PAGOWNVIO

A page in the specified range already exists and cannot be deleted because it is owned by a more
privileged access mode than that of the caller.

SS$ REGISFULL

The specified virtual region is full; no space is available in the region for the pages created to con-
tain the mapped section.

SS$ VA IN_USE

A page in the specified input address range is already mapped and the flag
SEC$SM_NO_OVERMATP is set, or the existing underlying page cannot be deleted because it is
associated with a buffer object.

SS$ VA NOTPAGALGN

The st art _va_64 argument is not CPU-specific page aligned.

$CRMPSC_GDZRO_64 (Alpha and Integrity
servers)

Create and Map to Global Demand-Zero Section — On Alpha and Integrity server systems, allows a
process to create a memory-resident global demand-zero section and to map a section of its address
space to the global section. Shared page table sections can also be created. This service accepts 64-bit
addresses.

Format

SYS$CRMPSC_GDZRO 64
gs_name_64 ,ident_64 ,prot ,length_64 ,region_id_64 ,section_offset_64
,acnode ,flags ,return_va 64 ,return_|length_64
[[[[,start_va_64] ,map_length_64] ,reserved_| ength_64] ,rad_nask]

C Prototype

int sys$crnpsc_gdzro_64
(void *gs_nam 64, struct _secid *ident_ 64, unsigned int prot,
unsigned __int64 length 64, struct _generic_64 *region_id 64,
unsigned __int64 section offset 64, unsigned int acnode,
unsigned int flags, void *(*(return_va 64)),
unsigned __int64 *return_length 64,...);

322

System Service Descriptions

Arguments

gs_name_64

OpenVMS usage: section _name

type: character-coded text string
access: read only
mechanism: by 32- or 64-bit descriptor--fixed-length string descriptor

Name of the global section. The gS_namnme_64 argument is the 32- or 64-bit virtual address of a natu-
rally aligned 32- or 64-bit string descriptor pointing to this name string.

ident_64

OpenVMS usage: section_id

type: quadword (unsigned)
access: read only
mechanism: by 32- or 64-bit reference

Identification value specifying the version number of a global section. The i dent _64 argument is a
quadword containing three fields. The i dent _64 argument is the 32- or 64-bit virtual address of a
naturally aligned quadword that contains the identification value.

The first longword specifies the matching criteria in its low-order 2 bits. The valid values, symbolic
names by which they can be specified, and their meanings are as follows:

Value Symbolic Name Match Criteria

0 SEC$K_MATALL Match all versions of the section.

1 SEC$K_MATEQU Match only if major and minor identifications match.

2 SEC$SK MATLEQ Match if the major identifications are equal and the minor
identification of the mapper is less than or equal to the mi-
nor identification of the global section.

When a section is mapped at creation time, the match control field is ignored. If you specify the
i dent _64 argument as 0, the version number and match control fields default to 0.

The version number is in the second longword. The version number contains two fields: a minor iden-
tification in the low-order 24 bits and a major identification in the high-order 8 bits. You can assign
values for these fields by installation convention to differentiate versions of global sections. If no
version number is specified when a section is created, processes that specify a version number when
mapping cannot access the global section.

prot

OpenVMS usage: file protection
type: longword (unsigned)

323

System Service Descriptions

access: read only

mechanism: by value

Protection to be applied to the global demand-zero section. The mask contains four 4-bit fields. Bits
are read from right to left in each field. The following diagram depicts the mask:

Wiorld Group Owner Sysiem

p|e|w|ar|[p|e|w|r|p|[e|w|r|[D|E|w]R
1514131211109 8 7 6 5 4 3 2 1 0
ZH-1T06-GE

Cleared bits indicate that read, write, execute, and delete access, in that order, are granted to the par-
ticular category of user. Only read, write, and execute access are meaningful for section protection.
Delete access bits are ignored. Read access also grants execute access for those situations where exe-
cute access applies. If zero is specified, read access and write access are granted to all users.

length 64

OpenVMS usage: byte count

type: quadword (unsigned)
access: read only
mechanism: by value

Length, in bytes, of the global demand-zero section to be created. The | engt h_64 must be specified
as a multiple of the CPU-specific page size. A length of 0 cannot be specified.

Note

Creating a memory-resident global section with shared page table does not imply that the global sec-
tion must have an even multiple of CPU-specific page table pages. The global section might not fully
use the last page table page.

region_id 64

OpenVMS usage: region identifier

type: quadword (unsigned)
access: read only
mechanism: by 32- or 64-bit reference

The region ID associated with the region to map the global page file section.

The file VADEF.H in SYSSSTARLET C.TLB and the $VADEF macro in STARLET.MLB define a
symbolic name for each of the three default regions in PO, P1, and P2 space.

The following region IDs are defined:

Symbol Region

VASC_PO Program region

324

System Service Descriptions

Symbol Region
VAS$C P1 Control region
VASC P2 64-bit program region

Other region IDs, as returned by the SCREATE_REGION_64 service, can be specified.

section_offset 64

OpenVMS usage: byte offset

type: quadword (unsigned)
access: read only
mechanism: by value

Offset into the global section to start mapping into the process's virtual address space. The offset spec-
ified must be a multiple of a CPU-specific page size.

If a shared page table region is specified by the r egi on_i d_64 argument, secti on_of f set _64
must be an even multiple of the larger of the number of bytes that can be mapped by a CPU-specific
page. For Integrity server systems, the alignment of section offsets must also be an integer multiple of
the page size used to map VA space at this offset.

VSI recommends that you avoid any partial mapping of memory-resident sections when you use
shared page tables on Integrity server systems. If you cannot avoid this, set bit 4 in the system para-
meter MMG_ CTLFLAGS to limit the effective page size to the number of bytes that can be mapped

by a page.

acmode

OpenVMS usage: access _mode

type: longword (unsigned)
access: read only
mechanism: by value

Access mode that is to be the owner of the pages created during the mapping. This access mode is also
the read access mode and the write access mode. The acnode argument is a longword containing the

access mode.

If the memory-resident global section is created with shared page tables, this is the access mode that is
stored in the owner, read, and write fields of the corresponding shared page table entries (PTEs).

The $PSLDEF macro in STARLET.MLB and the file PSLDEF.H in SYS$STARLET C.TLB define
the following symbols and their values for the four access modes:

Value Symbolic Name Access Mode
0 PSL$C KERNEL Kernel

1 PSLSC EXEC Executive

2 PSL$C_SUPER Supervisor

325

System Service Descriptions

Value Symbolic Name

Access Mode

3 PSL$SC_USER

User

The most privileged access mode used is the access mode of the caller. The calling process can delete
pages only if those pages are owned by an access mode equal to or less privileged than the access

mode of the calling process.

Address space cannot be created within a region that has a create mode associated with it that is more
privileged than the caller's mode. The condition value SS§ IVACMODE is returned if the caller is
less privileged than the create mode for the region.

flags

OpenVMS usage: mask longword
type: longword (unsigned)
access: read only
mechanism: by value

Flag mask specifying the type of the global section to be created as well as its characteristics. The

f | ags argument is a longword bit vector in which each bit corresponds to a flag. The $SECDEF
macro and the SECDEF.H file define a symbolic name for each flag. You construct the f | ags argu-
ment by performing a logical OR operation on the symbol names for all desired flags.

The following table describes each flag that is valid for the SCRMPSC_GDZRO_64 service:

Flag

Description

SEC$M_DZRO

Pages are demand-zero pages. By default, this flag is always
present in this service and cannot be disabled.

SEC$M_EXPREG

Pages are mapped into the first available space at the current

end of the specified region. If the /ALLOCATE qualifier was
specified when the global section was registered in the Reserved
Memory Registry, virtually aligned addresses after the first avail-
able space are chosen for the mapping.

SEC$M_GBL

Pages form a global section. By default, this flag is always
present in this service and cannot be disabled.

SEC$SM_NO_OVERMAP

Pages cannot overmap existing address space.

SEC$M_PERM

Global section is permanent.

SECSM_RAD_HINT

When set, the argument r ad__nmask is used as a mask of RADs
from which to allocate memory. See the r ad_nmask argument
description for more information.

SEC$M_READ ONLY_SHPT

Create shared table pages for the section that allow read access
only.

SEC$M_SHMGS

Create a shared-memory global section.

SEC$M_SYSGBL

Pages form a system global section. By default, pages form a
group global section.

SEC$M_MRES

Pages form a memory-resident section. By default, this page is
always present in this service and cannot be disabled.

326

System Service Descriptions

Flag Description

SECSM_WRT Pages form a read/write section. By default, this flag is always
present in this service and cannot be disabled.

All other bits in the f | ags argument are reserved to OpenVMS for future use and should be speci-
fied as 0. The condition value SS§ ITVSECFLG is returned if any undefined bits are set or if an invalid
combination of flags is set.

return_va 64

OpenVMS usage: address

type: quadword address
access: write only
mechanism: by 32- or 64-bit reference

The lowest process virtual address into which the global demand-zero section was mapped. The r e-
t ur n_va_64 argument is the 32- or 64-bit virtual address of a naturally aligned quadword into
which the service returns the virtual address.

If a shared page table region is specified by the r egi on_i d_64 argument and the SECSM_EX-
PREG flag is set, the returned virtual address is aligned to a CPU-specific page table page boundary.

return_length 64

OpenVMS usage: byte count

type: quadword (unsigned)
access: write only
mechanism: by 32- or 64-bit reference

The 32- or 64-bit virtual address of a naturally aligned quadword into which the service returns the
length of the virtual address range mapped in bytes.

start va_64

OpenVMS usage: address

type: quadword address
access: read only
mechanism: by value

The starting virtual address to map the memory-resident global section. The specified virtual ad-
dress must be a CPU-specific page aligned address. If the flag SEC$M_EXPREG is specified, the
start_va_64 argument must not be specified or must be specified as 0. If SEC$M_EXPREG is set
and the st art _va_64 argument is nonzero, the condition value SS$ IVSECFLG is returned.

If SEC$M_EXPREG is clear, st art _va_64 is nonzero, and a shared page table region is specified,

the specified starting address must be aligned to a natural page table page boundary; otherwise, the
condition value SS§ VA NOTPAGALGN is returned.

If the /ALLOCATE qualifier was specified when the memory-resident global section was registered
in the Reserved Memory Registry and st art _va_64 is aligned to a multiple of CPU-specific pages

327

System Service Descriptions

appropriate for taking advantage of granularity hints then granularity hints are used to map to the
global section:

* On Alpha systems, granularity hints mean multiples of pages, regardless of page size. The multi-
ples 8, 64, and 512 pages are architected.

* On Integrity server systems, OpenVMS initially supports page sizes of 64KB, 256KB, and 4MB
instead of granularity hints. Additional pages sizes will be supported in the future.

If the flag VASM_SHARED PTS is set and this argument is specified, the specified starting address
must be aligned to the larger of a natural page table boundary or to the largest possible page size used
to map the section. If the alignment is less than a page table boundary, the SCREATE REGION_64
service returns an error. If the alignment is less than the largest page size used in the section, an error
might be returned when you attempt to map the section.

If you do not specify a starting address, OpenVMS automatically ensures correct alignment.

map_length_64

OpenVMS usage: byte count

type: quadword (unsigned)
access: read only
mechanism: by value

Length of the memory-resident global section to be mapped. The length specified must be a multiple
of CPU-specific pages. If this argument is not specified or is specified as zero, the global file section
is mapped up to and including the last page in that section.

If a shared page table region is specified by the r egi on_i d_64 argument, map_| engt h_64 must
be an even multiple of the number of bytes that can be mapped by a CPU-specific page table page or

must include the last page within the global section.

reserved length 64

OpenVMS usage: byte count

type: quadword (unsigned)
access: write only
mechanism: 32- or 64-bit reference

Length, in bytes, of the global section as currently registered in the Reserved Memory Registry. The
reserved_| engt h_64 argument is the 32- or 64-bit virtual address of a naturally aligned quad-
word into which the service returns the reserved length.

Ifreserved_| engt h_64 is not specified or is specified as 0, no reserved length is returned to the
caller.

If the memory-resident global section is not registered, r eser ved_| engt h_64 is written with the
value 0.

rad_mask

328

System Service Descriptions

OpenVMS usage: mask quadword

type: quadword (unsigned)
access: read only
mechanism: by value

Use the r ad_mask argument to specify from which RADs to allocate memory. Currently only one
bit may be set. The specified RAD must contain memory. This argument is only a hint. Memory may
be obtained from other RADs if no free memory is available at the time of allocation.

The r ad_nask argument is considered only if the SEC$M_RAD HINT flag is specified. Otherwise,
this argument is ignored.

On a system that does not support resource affinity domains (RADs), specifying 1 for the r ad_nask
argument is allowed.

RAD is supported on AlphaServer GS series systems and starting from OpenVMS Version 8.4, sup-
port is extended to NUMA capable Integrity servers.

Description

The Create and Map to Global Demand-Zero Section service allows a process to create and map to a
memory-resident global demand-zero section. If you set the SECSM_SHMGS flag, the section is cre-
ated as a Galaxy-wide global demand-zero section in shared memory.

You must call either the SCREATE GDZRO service or the SCRMPSC GDZRO 64 service on each
instance where the Galaxy shared memory will be accessed.

Memory-resident or Galaxy-wide global sections contain demand-zero allocation pages that are
writable and memory resident. All pages in these types of global section are shared by all processes
that map to the global section.

If the SCRMPSC _GDZRO 64 service specifies a global section that already exists, the service maps
to it only if it is a memory-resident global section. All pages in the memory-resident global section are
shared by all processes that map to the global section.

The global demand-zero pages are always resident in memory and are not backed up by any file on
any disk. The global pages are not charged against any page file quota. The process must have the
rights identifier VMSSMEM_RESIDENT USER to create a memory-resident global section; other-
wise, the error status SS§ NOMEMRESID is returned.

The pages are always resident in memory and are not backed up by any file on any disk. The pages
are not placed into the process's working set list when the process maps to the global section and the
virtual memory is referenced by the process. The pages are also not charged against the process's
working set quota or against any page-file quota.

Only memory-resident sections can be registered with the Reserved Memory Registry in the SYS-
MAN facility. Memory for Galaxy-wide shared sections is reserved through appropriate settings of
the console environment parameters.

If the memory-resident global section is either not registered in the Reserved Memory Registry or
if the /NOALLOCATE qualifier was specified when the global section was registered in the Re-
served Memory Registry, invalid global PTEs are written to the global page table and invalid PTEs

329

System Service Descriptions

are placed in the process page table. Physical memory is not allocated until the virtual memory is ref-
erenced.

If the global section is registered in the Reserved Memory Registry, the size of the global section need
not match the reserved size. If the global section is not registered in the Reserved Memory Registry or
if the reserved size is smaller than the size of the global section, the error status SS§ INSFLPGS is re-
turned if there are not enough fluid pages in the system to satisfy the request.

If the /ALLOCATE qualifier was specified when the global section was registered in the Reserved
Memory Registry, contiguous, aligned physical pages are preallocated during system initialization
for this global section. Valid page table entries are placed in the global page table and in the process
page table. If the reserved preallocated memory is smaller than the size of the global section, the error
SS$ MRES PFNSMALL is returned and the global section is not created.

If the memory-resident global section is not registered in the Reserved Memory Registry or if the /
PAGE_TABLES qualifier was specified when the global section was registered in the Reserved Mem-
ory Registry, shared page tables are created for the global section.

For more information about using the SYSMAN utility to create entries to the Reserved Memory Reg-
istry, refer to the VSI OpenVMS System Management Utilities Reference Manual.

Shared page tables consume the same internal OpenVMS data structures as a global section. The sys-
tem parameters GBLPAGES and GBLSECTIONS must account for the additional global pages and
the additional global section.

To use the shared page tables associated with a memory-resident global section, you must first create a
shared page-table region (with SCREATE REGION_64). To map to the memory-resident global sec-
tion using the shared page tables, you must do the following:

* Specify a shared page-table region in the r egi on_i d_64 argument.

* Set the flag SECSM_EXPREG or provide a CPU-specific page table page aligned virtual address
inthe start _va_64 argument.

* Specify a value for the sect i on_of f set _64 argument that is an even multiple of bytes
mapped by a CPU-specific page table page or zero.

» Specify a value for the map_| engt h_64 argument that is an even multiple of bytes mapped by a
CPU-specific page table page or zero, or include the last page of the section.

See the description of the SCREATE_REGION_64 service for information about calculating virtual
addresses that are aligned to a CPU-specific page table page boundary.

The memory-resident global section can be mapped with shared page tables or private page tables.
The following table lists the factors associated with determining whether the mapping occurs with
shared page tables or with private page tables:

Global Section Created with

Shared Page Table Region

Type of Page Tables Used in

Shared Page Tables Specified by r egi on_i d_64 |Mapping
No No Private
No Yes Private
Yes No Private
Yes Yes Shared

330

System Service Descriptions

In general, if the flag SEC$M_EXPREG is set, the first free virtual address within the specified region
is used to map to the global section.

If the flag SEC$M_EXPREG is set and the r egi on_i d_64 argument indicates a shared page table
region, the first free virtual address within the specified region is rounded up to a CPU-specific page
table page boundary and used to map to the global section.

If the flag SECSM_EXPREG is set and if the /ALLOCATE qualifier was specified with the SYS-
MAN command RESERVED MEMORY ADD for the memory-resident global section, the first free
virtual address within the specified region is rounded up to the same virtual alignment as the physical
alignment of the preallocated pages and used to map to the global section. Granularity hints are set ap-
propriately for each process private PTE.

In general, if the flag SECSM_EXPREGQG is clear, the virtual address in the st art _va_64 argument
is used to map to the global section.

If the flag SECSM_EXPREG is clear, the value specified in the St art _va_64 argument can deter-
mine if the mapping is possible and if granularity hints are used in the private page tables. If a shared
page table region is specified by the r egi on_i d_64 argument, the virtual address specified by the
start _va_64 argument must be on an even CPU-specific page table page boundary or an error is
returned by this service. If the r egi on_i d_64 argument does not specify a shared page table region
and /ALLOCATE was specified with the SYSMAN command RESERVED MEMORY ADD for this
global section, granularity hints are used only if the virtual alignment of st art _va_64 is appropri-
ate for the use of granularity hints (either 8-page, 64-page, or 512-page alignment).

Whenever granularity hints are being used within the mapping of a memory-resident global sec-

tion, if the | engt h_64 argument is not an exact multiple of the alignment factor, lower granularity
hints factors are used as appropriate at the higher addressed portion of the global section. If the sec-
ti on_of f set _64 argument is specified, a lower granularity hint factor can be used throughout the
mapping of the global section to match the physical alignment of the first page mapped.

When you map a Galaxy shared section or a memory resident section that has an associated shared
page table section, you have the following options for accessing data:

Table 22. Shared Page Tables

Shared Page Ta- |Read Only Read and Write

bles

None created Do not set the SECSM_WRT flag in Set the SECSM_WRT flag in the map
the map request. request.

Private page tables will always be used, | Private page tables will always be used,

even if you are specifying a shared even if you are specifying a shared
page table region into which to map the |page table region into which to map the
section. section.

Write access Do not set the SECSM_WRT flag in Set the SEC$M_WRT flag in the map
the map request. request.
Ensure that private page tables will The shared page table section will
be used. Do not specify a shared page |be used for mapping if you specify a
table region into which to map the shared page table region into which to
section. If you do, the error status map the section.

SS$ IVSECFLG is returned.

331

System Service Descriptions

Shared Page Ta-
bles

Read Only

Read and Write

Read access

Do not set the SECSM_WRT flag in
the map request. The shared page table
section will be used for mapping if you
specify a shared page table region into
which to map the section.

Set the SECSM_WRT flag in the map
request. Ensure that private page tables
will be used. Do not specify a shared
page table region into which to map
the section. If you do, the error status

SS$_IVSECFLG is returned.

Note

Shared page tables for Galaxy shared sections are also implemented as Galaxy shared sections. This
implies that they allow either read access only on all OpenVMS instances connected to this section or
read and write access on all instances. The setting of the SECSM_READ ONLY_ SHPT flag as re-
quested by the first instance to create the section is used on all instances.

Using the SCRMPSC _GDZRO_64 service always implies that the SEC$M_WRT flag is set and that
you want to map the section for writing. If you want to use this service to create a section with shared
page tables for read only access, you must use private page tables and you cannot specify a shared
page table region into which to map the section.

If the condition value SS§ ACCVIO is returned by this service, a value cannot be returned in the
memory locations pointed to by the r et ur n_va_64 and r et ur n_I| engt h_64 arguments and, if
specified as a nonzero value, the r eser ved_| engt h_64 argument.

If a condition value other than SS§ ACCVIO is returned, the returned address and returned length in-
dicate the pages that were successfully mapped before the error occurred. If no pages were mapped,
the r et ur n_va_64 argument contains the value --1.

If the service returns an error status value other than SS§ INSFLPGS or SS§ MRES PFNSMALL, a
value is not returned in the r eser ved_| engt h_64 argument.

If the service returns a successful condition value or if SS§ INSFLPGS or SS§ MRES PFNSMALL
is returned and the r eser ved_| engt h_64 argument is specified as a nonzero address, the length
in bytes of the global section as registered in the Reserved Memory Registry is returned in the r e-
served_| engt h_64 argument.

Required Privileges

To create a global section, the process must have the following privileges:

* SYSGBL privilege to create a system global section (if flag SEC$M_SYSGBL is set)
* PRMGBL privilege to create a permanent global section

+ VMSSMEM RESIDENT USER rights identifier to create a memory-resident section

* SHMEM privilege on OpenVMS Galaxy systems to create an object in Galaxy shared memory

Required Quota

If private page tables are used to map to the memory-resident global section, the working set lim-
it quota (WSQUOTA) of the process must be sufficient to accommodate the increased size of the
process page tables required by the increase in virtual address space.

332

System Service Descriptions

If private page tables are used to map to the memory-resident global section, the page file quota
(PGFLQUOTA) of the process must be sufficient to accommodate the increased size of the process
page tables required by the increase in virtual address space.

Related Services

$CREATE_GDZRO, $SCREATE GPFILE, SCREATE REGION 64, SCRMPSC, $CRM-
PSC_FILE_ 64, SCRMPSC_GFILE_64, SCRMPSC_GPFN_64, SCRMPSC_PFN_64,
$DELETE_REGION_ 64, SDELTVA_ 64, SDGBLSC, SLCKPAG 64, SLKWSET 64, SMG-
BLSC 64, SPURGE WS, $SETPRT 64, SULKPAG 64, SULWSET 64, SUPDSEC_64, SUP-
DSEC_64W

Condition Values Returned

SS$ NORMAL

The service completed successfully. The specified global section already exists and has been
mapped.

SS$ CREATED

The service completed successfully. The global section has been created.
SS$ CREATED_ SHPT

Global section has been created with shared page tables.
SS$ ACCVIO

The gs_nane_64 argument cannot be read by the caller, or ther et urn_va_64 orr e-
t ur n_I| engt h_64 argument cannot be written by the caller.

SS$ BADRAD

The specified RAD contains no memory, or if the specified RAD is greater than or equal to the
maximum number of RADs on the system.

SS$_EXPGFLQUOTA

The process's page file quota is not large enough to accommodate the increased virtual address
space.

SS$ GBLSEC MISMATCH

Global section type mismatch. The specified global section was found; however, it is not a memo-
ry-resident section.

SS$_GPTFULL

There is no more room in the system global page table to set up page table entries for the global
section or for the shared page tables.

SS$_GSDFULL

There is no more room in the system space allocated to maintain control information for global
sections.

333

System Service Descriptions

SS$_INSFLPGS

Insufficient fluid pages available.
SS$_INSFRPGS

Insufficient free shared pages or private pages.
SS$_INSFWSL

The process's working set limit is not large enough to accommodate the increased virtual address
space.

SS$_INSF_SHM_REG

The Galaxy shared memory code has run out of internal SHM_REG data structures. You need to
increase the system parameter GLX SHM REG and reboot all Galaxy instances with this larger
parameter value.

SS$ INV_SHMEM
Shared memory is not valid.
SS$ IVACMODE

The specified access mode is greater than PSL$ USER, or the caller's mode is less privileged than
the create mode associated with the region.

SS$ IVLOGNAM

The specified global section name has a length of 0 or has more than 43 characters.
SS$ IVPROTECT

The protection argument format is invalid.
SS$ IVREGID

An invalid region ID was specified.
SS$ IVSECFLG

An invalid flag, a reserved flag, or an invalid combination of flags was specified.
SS$ IVSECIDCTL

The match control field of the global section identification is invalid.
SS$ LEN NOTPAGMULT

The | engt h_64 argument is not a multiple of CPU-specified pages. Or, if a shared page table
region is specified by the r egi on_i d_64 argument, the nap_| engt h_64 argument is not a
multiple of CPU-specific page table pages.

SS$ LOCK TIMEOUT

An OpenVMS Galaxy lock timed out.

334

System Service Descriptions

SS$ MRES PFNSMALL
Preallocated, contiguous, aligned physical memory specified in the Reserved Memory Registry is
smaller than the length specified for the memory-resident global section by the | engt h_64 ar-
gument.

SS$ NOBREAK
An OpenVMS Galaxy lock is held by another node and was not broken.

SS$ NOMEMRESID

The process attempted to create a memory-resident section, but was not holding the right identifi-
er VMSSMEM_RESIDENT USER.

SS$ NOPRMGBL

The process does not have the privileges to create or delete a permanent group global section
(PRMGBL).

SS$ NOSYSGBL
The process does not have the privileges to create or delete a system global section (SYSGBL).
SS$ OFF NOTPAGALGN
The secti on_of f set 64 argument is not CPU-specific page aligned. Or, if a shared page ta-
ble region is specified by the r egi on_i d_64 argument, the secti on_of f set 64 argument
is not CPU-specific page table page aligned.
SS$ _OFFSET _TOO_BIG
The secti on_of f set _64 argument specified is beyond the logical end-of-file.
SS$ PAGNOTINREG
A page in the specified input address range is not within the specified region.
SS$ PAGOWNVIO
A page in the specified input address range is owned by a more privileged access mode.

SS$_REGISFULL

The specified virtual region is full; no space is available in the region for the pages created to con-
tain the mapped section.

SS$ SECREFOVF
The maximum number of references for a global section has been reached (2,147,483,647).
SS$ SECTBLFUL

There are no entries available in the system global section table for the global section or for the
shared page tables.

335

System Service Descriptions

SS§ TOOMANYLNAM
The logical name translation of the gs_nane_64 argument exceeded the allowed depth of 10.
SS$ VA IN_USE
A page in the specified input address range is already mapped and the flag
SEC$M_NO OVERMAP is set, or a page in the specified input address range is in another re-
gion, in system space, or inaccessible; or, the existing underlying page cannot be deleted because
it is associated with a buffer object.
SS$ VA NOTPAGALGN
The st art _va_64 argument is not CPU-specific page aligned. Or, if a shared page table region

is specified by the r egi on_i d_64 argument, the st art _va_64 argument is not CPU-specific
page table page aligned.

$CRMPSC_GFILE_64 (Alpha and Integrity
servers)

Create and Map Global Disk File Section — On Alpha and Integrity server systems, allows a process
to create a global disk file section and to map a section of its address space to the global section. This
service accepts 64-bit addresses.

Format
SYS$CRMPSC _GFI LE 64
gs_name_64 ,ident_64 ,file_offset_64 ,length_64 ,chan ,region_id_64

,section_offset_64 ,acnode ,flags ,return_va_ 64 ,return_|l ength_64
[,fault_cluster [,start_va 64 [, map_l ength_64]]]

C Prototype

int sys$crnpsc_gfile_64

(void *gs_nam 64, struct _secid *ident_ 64, unsigned __ int64
file offset 64, unsigned __int64 | ength 64, unsigned short int chan,
struct _generic_64 *region_id 64, unsigned __int64 section_offset 64,

unsi gned int acnode, unsigned int flags, void *(*(return_va _64)),
unsigned __ int64 *return_length 64,...);

Arguments

gs_name_64

OpenVMS usage: section _name

type: character-coded text string
access: read only
mechanism: by 32- or 64-bit descriptor—fixed-length string descriptor

336

System Service Descriptions

Name of the global section. The gs_nane_64 argument is the 32- or 64-bit virtual address of a natu-
rally aligned 32- or 64-bit string descriptor pointing to this name string.

ident_64

OpenVMS usage: section_id

type: quadword (unsigned)
access: read only
mechanism: by 32- or 64-bit reference

Identification value specifying the version number of a global section. The i dent _64 argument is a
quadword containing three fields. The i dent _64 argument is the 32- or 64-bit virtual address of a
naturally aligned quadword that contains the identification value.

The first longword specifies the matching criteria in its low-order 2 bits. The valid values, symbolic
names by which they can be specified, and their meanings are as follows:

Value |Symbolic Name Match Criteria

0 SEC$K_MATALL Match all versions of the section.

1 SEC$K_MATEQU Match only if major and minor identifications match.

2 SEC$SK_MATLEQ Match if the major identifications are equal and the minor identi-
fication of the mapper is less than or equal to the minor identifi-
cation of the global section.

When a section is mapped at creation time, the match control field is ignored. If you specify the
i dent _64 argument as 0, the version number and match control fields default to 0.

The version number is in the second longword. The version number contains two fields: a minor iden-
tification in the low-order 24 bits and a major identification in the high-order 8 bits. You can assign
values for these fields by installation convention to differentiate versions of global sections. If no
version number is specified when a section is created, processes that specify a version number when
mapping cannot access the global section.

file offset 64

OpenVMS usage: byte offset

type: quadword (unsigned)
access: read only
mechanism: by value

Byte offset into the file that marks the beginning of the section. The f i | e_of f set _64 argument is
a quadword containing this number. If you specify the f i | e_of f set _64 argument as 0, the section
is created beginning with the first byte in the file.

The file offset specified must be a multiple of virtual disk blocks.

length_64

OpenVMS usage: byte count

337

System Service Descriptions

type: quadword (unsigned)
access: read only
mechanism: by value

Length, in bytes, of the global disk file section to be created. The length specified must be 0 or a mul-
tiple of virtual disk blocks. If the length specified is 0 or extends beyond the end-of-file (EOF), the
global disk file section is created up to and including the virtual block number that contains EOF.

chan

OpenVMS usage: longword

type: longword (unsigned)
access: read only
mechanism: by value

Number of the channel on which the file has been accessed. The chan argument is a longword con-
taining this number. The access mode at which the channel was opened must be equal to or less privi-
leged than the access mode of the caller.

You can use the OpenVMS Record Management Services (RMS) macro $SOPEN to access a file; the
file options parameter in the file access block must indicate a user file open (UFO) keyword.

region_id_64

OpenVMS usage: region identifier

type: quadword (unsigned)
access: read only
mechanism: by 64 bit reference

The region ID associated with the region in which to map the global disk file section. The file
VADEF.H in SYSSSTARLET C.TLB and the $VADEF macro in STARLET.MLB define a symbol-
ic name for each of the three default regions in PO, P1, and P2 space. The following region IDs are de-
fined:

Symbol Region

VASC PO Program region
VASC P1 Control region

VASC P2 64-bit program region

Other region IDs, as returned by the SCREATE_REGION 64 service, can be specified.
section_offset 64
OpenVMS usage: byte offset

type: quadword (unsigned)

access: read only

338

System Service Descriptions

mechanism: by value

Offset into the global section to start mapping into the process's virtual address space. The offset spec-
ified must be a multiple of virtual disk blocks.

acmode

OpenVMS usage: access_mode

type: longword (unsigned)
access: read only
mechanism: by value

Access mode that is to be the owner of the pages created during the mapping. The acnode argument
is a longword containing the access mode.

The $PSLDEF macro in STARLET.MLB and the file PSLDEF.H in SYS$STARLET C.TLB define
the following symbols and their values for the four access modes:

Value |Symbolic Name Access Mode
0 PSL$C KERNEL Kernel

1 PSL$C _EXEC Executive

2 PSL$C SUPER Supervisor

3 PSL$C USER User

The most privileged access mode used is the access mode of the caller.
Address space cannot be created within a region that has a create mode associated with it that is more
privileged than the caller's mode. The condition value SS§ IVACMODE is returned if the caller is

less privileged than the create mode for the region.

flags

OpenVMS usage: mask longword

type: longword (unsigned)
access: read only
mechanism: by value

Flag mask specifying the characteristics of the global section to be created. The f | ags argument is a
longword bit vector in which each bit corresponds to a flag. The $SSECDEF macro and the SECDEF.H
file define a symbolic name for each flag. You construct the f | ags argument by performing a logical
OR operation on the symbol names for all desired flags.

The following table describes each flag that is valid for the SCRMPSC_GFILE 64 service:

Flag Description
SEC$M_CRF Pages are copy-on-reference.

339

System Service Descriptions

Flag Description

SEC$M_GBL Pages form a global section. By default, this flag is always present in
this service and cannot be disabled.

SEC$SM_WRT Pages form a read/write section. By default, pages form a read-only
section.

SEC$M_DZRO Pages are demand-zero pages. By default, they are not zeroed when
copied.

Note that SECSM_DZRO and SEC§M_CRF cannot both be set and
that SECSM_DZRO set and SECSM_WRT clear is an invalid combi-
nation.

SECSM_EXPREG Pages are mapped into the first available space at the current end of
the specified region.

SEC$M_NO OVERMAP Pages cannot overmap existing address space. By default, pages can
overmap existing address space.

SEC$M_PERM Global section is permanent. By default, global sections are tempo-
rary.
SEC$M_SYSGBL Pages form a system global section. By default, pages form a group

global section.

All other bits in the f | ags argument are reserved to OPenVMS for future use and should be speci-
fied as 0. The condition value SS§ IVSECFLG is returned if any undefined bits are set or if an illegal
combination of flags is set.

return_va 64

OpenVMS usage: address

type: quadword address
access: write only
mechanism: by 32- or 64-bit reference

The lowest process virtual address into which the global disk file section was mapped. The r e-
t ur n_va_64 argument is the 32- or 64-bit virtual address of a naturally aligned quadword into
which the service returns the virtual address.

Upon successful completion of this service, if the sect i on_of f set _64 argument was specified,
the virtual address returned in r et ur n_va_ 64 reflects the offset into the global section mapped
such that the virtual address returned cannot be aligned on a CPU-specific page boundary. The virtual
address returned will always be on an even virtual disk block boundary.

return_length 64

OpenVMS usage: byte count

type: quadword (unsigned)
access: write only
mechanism: by 32- or 64-bit reference

The 32- or 64-bit virtual address of a naturally aligned quadword into which the service returns the
length of the virtual address range mapped in bytes.

340

System Service Descriptions

Upon successful completion of this service, the value in the r et ur n_| engt h_64 argument indi-
cates the amount of created address space backed by the section file.

If the number of disk blocks mapped does not represent an exact multiple of CPU-specific pages, the
last page in the mapped address space will not be completely mapped by the section file. In this case,
modifying memory beyond the amount indicated by r et ur n_| engt h_64 can result in the loss of
this data.

Unlike the r et ur n_| engt h_64 argument for the SCREATE_GFILE service, upon successful
completion of this service, the r et ur n_| engt h_64 argument does not represent the total length
of the global section created if the sect i on_of f set _64 argument was specified as non-zero. The
value in the sect i on_of f set _64 argument plus the value in the r et ur n_| engt h_64 argu-
ment is the total length of the global disk file section created.

fault_cluster

OpenVMS usage: byte count

type: longword (unsigned)
access: read only
mechanism: by value

Page fault cluster in byte units indicating how many pages are to be brought into memory when a page
fault occurs for a single page. The fault cluster specified will be rounded up to a multiple of CPU-spe-
cific pages.

If this argument is specified as 0, the system default page fault cluster will be used. If this argument
is specified as more than the maximum allowed for the system, no error will be returned. The sys-

temwide maximum will be used.

start_va_64

OpenVMS usage: address

type: quadword address
access: read only
mechanism: by value

The starting virtual address to map the global disk file section. The specified virtual address must be a
CPU-specific page aligned address. If the flag SECSM_EXPREG is specified, this argument will not
be used. If SEC$M_EXPREG is clear and the st art _va_64 argument is not specified or is speci-
fied as 0, the condition value SS$§ TVSECFLG will be returned.

Always refer to the r et ur n_va_64 and r et ur n_I| engt h_64 arguments to determine the usable
range of virtual addresses mapped.

map_length_64

OpenVMS usage: byte count

type: quadword unsigned
access: read only
mechanism: by value

341

System Service Descriptions

Length of the global disk file section to be mapped. The length specified must be a multiple of virtu-
al disk blocks. If this argument is not specified as zero, the global disk section is mapped up to and in-
cluding the last disk block in the section.

Description

The Create and Map Global Disk File Section service allows a process to create and map to a global
disk file section.

Creating a global disk file section involves defining all or part of a disk file as a section. The section
is mapped from a low address to a high address whether the section is mapped in a region that grows
from low to high addresses or from high to low addresses. If the SCRMPSC GFILE 64 service speci-
fies a global disk file section that already exists, the service maps it.

If the condition value SS§ ACCVIO is returned by this service, a value cannot be returned in the
memory locations pointed to by ther et ur n_va_64 and r et ur n_I engt h_64 arguments.

If a condition value other than SS§ ACCVIO is returned, the returned address and returned length in-
dicate the pages that were successfully mapped before the error occurred. If no pages were mapped,
the r et ur n_va_64 argument will contain the value —1, and a value cannot be returned in the mem-
ory location pointed to by the r et ur n_| engt h_64 argument.

The flag SEC$M_WRT applies only to the way in which the newly created section is mapped. For a
file to be made writable, the channel used to open the file must allow write access to the file.

Required Privileges

To create a global section, the process must have the following privileges:

» SYSGBL privilege to create a system global section (if flag SEC$M_SYSGBL is set)
* PRMGBL privilege to create a permanent global section

Required Quota

If the section pages are copy-on-reference, the process must have sufficient paging file quota
(PGFLQUOTA).

The working set quota (WSQUOTA) of the process must be sufficient to accommodate the increased
length of the process page table required by the increase in virtual address space.

Related Services

$CREATE_REGION 64, SCRMPSC, SCRMPSC_FILE 64, SCRMPSC_GPFILE_64, $CRM-
PSC_GPFN_64, SCRMPSC_PFN 64, SDELETE_REGION 64, $DELTVA_64, $DGBLSC, $SLCK-
PAG_64, SLKWSET 64, SMGBLSC 64, SPURGE_WS, $SETPRT 64, SULKPAG 64, SUL-
WSET 64, SUPDSEC_64, SUPDSEC_64W

Condition Values Returned

SS$ NORMAL

The service completed successfully. The specified global section already exists and has been
mapped.

342

System Service Descriptions

SS$ CREATED

The service completed successfully. The specified global section did not previously exist and has
been created.

SS$§_ACCVIO

The gs_nane_64 argument cannot be read by the caller, or theret urn_va_64 orre-
t urn_I| engt h_64 argument cannot be written by the caller.

SS$ CHANVIO
The specified channel was assigned from a more privileged access mode.
SS$ ENDOFFILE
Thefil e_of f set _64 argument specified is beyond the logical end-of-file.
SS$ EXBYTLM
The process has exceeded the byte count quota; the system was unable to map the requested file.
SS$ EXPGFLQUOTA
The process exceeded its paging file quota, creating copy-on-reference pages.
SS$ GBLSEC _MISMATCH

Global section type mismatch. The specified global section was found; however, it was not a
global disk file section.

SS$ GPTFULL
There is no more room in the system global page table to set up page table entries for the section.
SS$ GSDFULL

There is no more room in the system space allocated to maintain control information for global
sections.

SS$ INSFWSL

The process's working set limit is not large enough to accommodate the increased virtual address
space.

SS$ IVACMODE
The caller's mode is less privileged than the create mode associated with the region.
SS$ IVCHAN

An invalid channel number was specified; the channel number specified was 0 or a channel that is
unassigned.

343

System Service Descriptions

SS$ IVCHNLSEC

The channel number specified is currently active or there are no files opened on the specified
channel.

SS$ IVIDENT

An invalid channel number was specified; the channel number specified is larger than the number
of channels available.

SS$ IVLOGNAM

The specified global section name has a length of 0 or has more than 43 characters.
SS$ _IVREGID

Invalid region ID specified.
SS$ IVSECFLG

An invalid flag, a reserved flag, or an invalid combination of flags and arguments was specified.
SS$ IVSECIDCTL

The match control field of the global section identification is invalid.
SS$ LEN NOTBLKMULT

The | engt h_64 or the map_I| engt h_64 argument is not a multiple of virtual disk blocks.
SS$ NOPRMGBL

The process does not have the privileges to create or delete a permanent group global section
(PRMGBL).

SS$ NOSHPTS
The region ID of a shared page table region was specified.
SS$ NOSYSGBL
The process does not have the privileges to create or delete a system global section (SYSGBL).
SS$ NOTFILEDEV
The device is not a file-oriented, random-access, or directory device.
SS$ NOWRT
The file is read-only, and the flag bit SEC$M_CREF is not set.
SS$ OFF NOTBLKALGN

Thefile_of fset 64 orsection_offset_ 64 argument is not virtual disk block aligned.

344

System Service Descriptions

SS$ _OFFSET TOO_BIG
The sect i on_of f set _64 argument specified is beyond the logical end-of-file.
SS$ PAGNOTINREG
A page in the specified range is not within the specified region.
SS$ PAGOWNVIO
A page in the specified input address range is owned by a more privileged access mode.
SS$ REGISFULL

The specified virtual region is full; no space is available in the region for the pages created to con-
tain the mapped section.

SS$ SECREFOVF

The maximum number of references for a global section has been reached (2,147,483,647).
SS$_SECTBLFUL

There are no entries available in the system global section table.
SS$ TOOMANYLNAM

The logical name translation of the gs_name_64 argument exceeded the allowed depth of 10.
SS$ VA IN_USE

A page in the specified input address range is already mapped, and the flag
SEC$SM_NO_ OVERMAP is set.

SS$ VA NOTPAGALGN

The st art _va_64 argument is not CPU-specific page aligned.

$CRMPSC_GPFILE_64 (Alpha and Integrity
servers)

Create and Map Global Page File Section — On Alpha and Integrity server systems, allows a process
to create a global page file section and to map a section of its address space to the global section. This
service accepts 64-bit addresses.

Format

SYS$CRWPSC_GPFI LE_64
gs_nanme_64 ,ident_64 ,prot ,length 64 ,region_id 64 ,section_offset 64
,acnode ,flags ,return_va 64 ,return_|length 64
[,start_va 64 [, map_| ength_64]]

345

System Service Descriptions

C Prototype

int sys$crmpsc_gpfile 64
(void *gs_nam 64, struct _secid *ident_ 64, unsigned int prot,
unsigned __int64 length 64, struct _generic_64 *region_id 64,
unsi gned __int64 section_offset_ 64, unsigned int acnode,
unsigned int flags, void *(*(return_va 64)),
unsigned __int64 *return_|length_64,...);

Arguments

gs_name_64

OpenVMS usage: section name

type: character-coded text string
access: read only
mechanism: by 32- or 64-bit descriptor—fixed-length string descriptor

Name of the global section. The gs_nane_64 argument is the 32- or 64-bit virtual address of a natu-
rally aligned 32- or 64-bit string descriptor pointing to this name string.

ident_64

OpenVMS usage: section_id

type: quadword (unsigned)
access: read only
mechanism: by 32- or 64-bit reference

Identification value specifying the version number of a global section. The i dent _64 argument is a
quadword containing three fields. The i dent _64 argument is the 32- or 64-bit virtual address of a
naturally aligned quadword that contains the identification value.

The first longword specifies the matching criteria in its low-order 2 bits. The valid values, symbolic
names by which they can be specified, and their meanings are as follows:

Value |Symbolic Name Match Criteria

0 SEC$SK MATALL Match all versions of the section.

1 SEC$K_MATEQU Match only if major and minor identifications match.

2 SEC$K_MATLEQ Match if the major identifications are equal and the minor identi-
fication of the mapper is less than or equal to the minor identifi-
cation of the global section.

When a section is mapped at creation time, the match control field is ignored. If you specify the
i dent _64 argument as 0, the version number and match control fields default to 0.

The version number is in the second longword. The version number contains two fields: a minor iden-
tification in the low-order 24 bits and a major identification in the high-order 8 bits. You can assign
values for these fields by installation convention to differentiate versions of global sections. If no

346

System Service Descriptions

version number is specified when a section is created, processes that specify a version number when
mapping cannot access the global section.

prot

OpenVMS usage: file protection

type: longword (unsigned)
access: read only
mechanism: by value

Protection to be applied to the global page file section. The mask contains four 4-bit fields. Bits are
read from right to left in each field. The following diagram depicts the mask:

World Group Cwner Sysiem

p|e|w|r|{o|e{w|r|p|e|w|r|[D|E|W|R
1514131211109 8 7 6 5 4 32 1 0
ZH-1T06-GE

Cleared bits indicate that read, write, execute, and delete access, in that order, are granted to the par-
ticular category of user. Only read, write, and execute access are meaningful for section protection.
Delete access bits are ignored. Read access also grants execute access for those situations where exe-
cute access applies. If zero is specified, read access and write access are granted to all users.

length_64

OpenVMS usage: byte count

type: quadword (unsigned)
access: read only
mechanism: by value

Length, in bytes, of the global page file section to be created. The length specified must be a multiple
of CPU-specific pages. A length of 0 cannot be specified.

region_id_64

OpenVMS usage: region identifier

type: quadword (unsigned)
access: read only
mechanism: by 32- or 64-bit reference

The region ID associated with the region to map the global page file section.

The file VADEF.H in SYSSSTARLET C.TLB and the $VADEF macro in STARLET.MLB define a
symbolic name for each of the three default regions in PO, P1, and P2 space. The following region IDs
are defined:

Symbol Region
VASC_PO Program region

347

System Service Descriptions

Symbol Region
VAS$C P1 Control region
VASC P2 64-bit program region

Other region IDs, as returned by the SCREATE REGION 64 service, can be specified.

section_offset 64

OpenVMS usage: byte offset

type: quadword (unsigned)
access: read only
mechanism: by value

Offset into the global section to start mapping into the process's virtual address space. The offset spec-
ified must be a multiple of virtual disk blocks.

acmode

OpenVMS usage: access_mode

type: longword (unsigned)
access: read only
mechanism: by value

Access mode that is to be the owner of the pages created during the mapping. The acnode argument
is a longword containing the access mode.

The $PSLDEF macro in STARLET.MLB and the file PSLDEF.H in SYS$STARLET C.TLB define
the following symbols and their values for the four access modes:

Value |Symbolic Name Access Mode
0 PSL$C KERNEL Kernel

1 PSL$C EXEC Executive

2 PSL$C SUPER Supervisor

3 PSL$C USER User

The most privileged access mode used is the access mode of the caller. The calling process can delete
pages only if those pages are owned by an access mode equal to or less privileged than the access
mode of the calling process.

Address space cannot be created within a region that has a create mode associated with it that is more
privileged than the caller's mode. The condition value SS§ IVACMODE is returned if the caller is
less privileged than the create mode for the region.

flags

OpenVMS usage: mask longword

348

System Service Descriptions

type: longword (unsigned)
access: read only
mechanism: by value

Flag mask specifying the characteristics of the global section to be created. The f | ags argument is a
longword bit vector in which each bit corresponds to a flag. The $SECDEF macro and the SECDEF.H
file define a symbolic name for each flag. You construct the f | ags argument by performing a logical
OR operation on the symbol names for all desired flags.

The following table describes each flag that is valid for the SCRMPSC_GPFILE 64 service:

Flag Description

SEC$M_DZRO Pages are demand-zero pages. By default, this flag is always present
in this service and cannot be disabled.

SEC$M_EXPREG Pages are mapped into the first available space at the current end of

the specified region. SEC$M_EXPREG cannot be specified with the
SECSM_NO_OVERMAP flag.

SEC$M_GBL Pages form a global section. By default, this flag is always present in
this service and cannot be disabled.

SECSM_NO_OVERMAP Pages cannot overmap existing address space. By default, pages can
overmap existing address space. SECSM_NO_OVERMAP cannot
be specified with the SECSM_EXPREG flag.

SEC$M_PAGFIL Pages form a global page file section. By default, this flag is always
present in this service and cannot be disabled.

SEC$M_PERM Global section is permanent. By default, global sections are tempo-
rary.

SEC$M_SYSGBL Pages form a system global section. By default, pages form a group
global section.

SECSM_WRT Pages form a read/write section. By default, this flag is always

present in this service and cannot be disabled.

All other bits in the f | ags argument are reserved to OpenVMS for future use and should be speci-
fied as 0. The condition value SS§ IVSECFLAG is returned if any undefined bits are set or if an invalid
combination of flags is set.

return_va_64

OpenVMS