uma Software

VSI OpenVMS

VSI OpenVMS RTL General Purpose
(OTS$) Manual

Document Number: DO-RTLOTS-01A

Publication Date: June 2019

This manual provides users of the OpenVMS operating system with detailed usage
and reference information on general-purpose routines supplied in the OTS$ facility
of the Run-Time Library.

Revision Update Information: This is a new manual.

Operating System and Version: HPE OpenVMS 164 Version 8.2
HPE OpenVMS Alpha Version 8.2

VMS Software, Inc. (VSI)
Bolton, Massachusetts, USA

VSI OpenVMS RTL General Purpose (OTS$) Manual:

nma Software

Copyright © 2019 VMS Software, Inc. (VSl), Bolton, Massachusetts, USA

Legal Notice

Confidential computer software. Valid license from VSl required for possession, use or copying. Consistent with FAR 12.211 and 12.212,
Commercial Computer Software, Computer Software Documentation, and Technical Datafor Commercial Items are licensed to the U.S.
Government under vendor's standard commercial license.

The information contained herein is subject to change without notice. The only warranties for VS| products and services are set forth in the
express warranty statements accompanying such products and services. Nothing herein should be construed as constituting an additional
warranty. VS| shall not beliable for technical or editorial errors or omissions contained herein.

HPE, HPE Integrity, HPE Alpha, and HPE Proliant are trademarks or registered trademarks of Hewlett Packard Enterprise.

The VS| OpenVMS documentation set is available on DVD.

ii

VS| OpenVMS RTL General Purpose (OTS$) Manual

Preface \%
L. ADOUL VST oot \%
2. INENAEA AUAIENICE ..ooviiiieiii ettt et e e e e e eaans v
3. DOCUMENE STIUCKUIE ..uuiitniiiiiiiiee e et e e e et e e et e et e e e e e s e e eaneeas \%
4. Related DOCUIMENLSiiveniiiiiiii ettt et e et e e et e e e e e e e e e eaneeanns \%
5. VSI Encourages YOur COMMENTScceeerrririiiiiiiiiiiiiieiieiieeeiee. vi
6. How to Order Additional DoCUMENTAtIONocivuniiiiniiiiiiieii e e Vi
7. Typographical CONVENTIONScceiiiuuiiiiiiiieeiiiiiiiitee e e e ettt e e e ettt ee e e e s eiieeeeeees vi

Chapter 1. Run-Time Library General Purpose (OTS$) Facilityccceeerercercscercscnncenes 1
| R O B 0 175 4 T AP 1
1.2. Linking OTS$ Routines on Alpha and 164 SyStemsceeerruiieeerniiiieeniiiieeeniiiee e 3

1.2.1. 64-Bit Addressing Support (Alpha and 164 Only)cocccuviiiiiiiiiiiniiiiieenn. 4

Chapter 2. General-Purpose (OTSS$) ROULINESccoovererrrerensrercssercsseressesesssesssssssssnsssssasses 7
OTSSCALL PROC (Alpha and 164 Only)ccooouiieiiiiiiiiiiiiiieeeiieee e 7
OTSSCNVOUT .o 8
OTSSCVT L TB ittt ettt e e e e e ettt e e e e e e e s s nttsbaeeeeeeeeeensnsnsaeeeaaeeannes 9
(O I A U D N PR R 11
(O I VA U D N PSP UPR TP 13
(O I VA U D 1O SRR 14
OTSSCVT L TU oottt ettt e ettt e e e e e e e sttt eeeeaeesesnnnssseaaeaeeseennnsssneeas 16
OTSSCVT L TZ oottt e ettt e e e e e e et e e e e e e e e s snssasaeeeaeeeeennnssseeeens 18
(O I VA U D TP UUUTUPR 20
OTSSCVT TB L ettt ettt e e e ettt e e e e e e st e e eeaeeeeesnnssbaeaeaaeaeannns 24
(O I A S U RSP PU SRR 27
(O I VA S N G PSP UPR P 29
OTSSCVT TO L oottt ettt e e e e e sttt e e e e e e e e s snnessaaaaeaeeeeennnssssees 31
OTSSCVT TU L oottt ettt e e e e e ettt e e e e e e s e nnnssaraeeeesseennnsssneens 33
OTSSCVT TZ L oottt ettt e e e e e e et e e e e e e e s snssabaeeeaeeeeennnssseeeeas 35
OTSIDIVECX ettt e e e e e e eaaas 38
OTSSDIV _PK LONG ...ttt ettt e ettt e e e e e sttt e eeeeeeeesntnaseeeaeeeesennsssseeens 41
OTSSDIV _PK SHORT ...outiiiiiiiieiiiiiitite ettt e e e e ettt e e e e e s e e ietnaaaeeaeeeeennnnssaeeaaeeens 45
OTSSJUMP_TO BPV (164 ONLY) ...evvviiiiiieeeeieiiiiiiee ettt e e e et e e e e e e e eenraeeeeaeens 48
OT SEMOVES e 49
OT SIMOVES .o 50
OT SIMULGCK ottt et e et e e e e e e aees 52
OT STPOWECKCK ettt ettt et e e 55
OT SSPOWECKT i e e 57
OTSSPOWDD ... et eaas 60
OT SSPOWDY ..ot e s 61
OTSSPOWDR ..o e e e e 63
OTSSPOWGG ..o e e 64
OTSSPOWG G ..o 67
OTSSPOWHH_R3 (VAX ONLY) weriiiiiiiieiiiiiiiiee ettt e e e e ettt e e e e e e e searnaeeeeaeeeeennnns 68
OTSSPOWHI R3 (VAKX ONLY) oottt ettt e e e e e eireee e e e e e e e esenraaeeeeaeens 70
OT SSPOWIL ..o e e e e s 72
O S P O W e et 73
OTSSPOWLULU ..o e e e e e e 74
OTSSPOWRD ... e e s 75
OT SSPOWRY .o et 77
OTSSPOWRR ..o e e et e e 79
O S P O W ST e 81

iii

VS| OpenVMS RTL General Purpose (OTS$) Manual

OTSSPOWSS ..o e eeee e e e eeeee e st eseee s et eeeeesees e s eseee e eseeeseeeeeeseeeseeeeeeseeeees 83
OTSSPOWTY .o e e e e e e s e s e e s ee et es e eseeese s eeeseeeeeeseeeeeeses e 85
OTSSPOWTT oo eeee e eee e es et e s s es e e s eseee e s ee e esees e eseeeseeseeseeseee 86
OTSSPOWXLU ... e e s eeee s es e e s es e es e s eseeeseeeeeseeese e eeeeeseeeee 89
OTSSSCOPY DXDIX .eovooeoeeeeeeeeeeeeeeeeseeeeeeeeeeseeeseeeseeseeeseeeseeseeeseeeseeseeeseeeeeseeeseeeseseessene 90
OTSSSCOPY R DX oooveeeoeeeeeeeeeeeeeeeeeseeeeees e eseeeeees e eseeeseeseeseeeseeseeeseeeeeeseeeseeseeeseeesees e 92
OTSSSFREEL DD ..o eeeeeeee s s sseeseees e ese s eseesseeseeeseeeseeseeeseeeseeseenes 95
OTSSSFREEN DD ..o e e e s eeeeeee e eseeeseeesees e seee s s eseeese s eseeesees e eseseseesee 96
OTSSSGETT DD ..o e e e s s e s e eseeese e e s eeesaes e s es s eseeeseeeeeereeesee 97

Preface

uma Software

1. About VSI

VMS Software, Inc. (VSI) is an independent software company licensed by Hewlett Packard
Enterprise to develop and support the OpenVMS operating system.

VSI seeks to continue the legendary development prowess and customer-first priorities that are so
closely associated with the OpenVMS operating system and its original author, Digital Equipment
Corporation.

2. Intended Audience

This manual is intended for system and application programmers who write programs that call OTS$
Run-Time Library routines.

3. Document Structure

This manual is organized into two parts as follows:
* Chapter 1 contains a brief overview of the OTS$ routines.

» Chapter 2 provides detailed reference information on each routine contained in the OTSS$ facility
of the Run-Time Library. This information is presented using the documentation format described
in VSI OpenVMS Programming Concepts Manual. Routine descriptions appear in alphabetical
order by routine name.

4. Related Documents

The Run-Time Library routines are documented in a series of reference manuals. A description

of how the Run-Time Library routines are accessed and of OpenVMS features and functionality
available through calls to the OTS$ Run-Time Library appears in the VSI OpenVMS Programming
Concepts Manual. Descriptions of other RTL facilities and their corresponding routines and usages
are discussed in the following books:

* Compagq Portable Mathematics Library

o VSI OpenVMS RTL Library (LIBS) Manual

* VSI OpenVMS RTL Screen Management (SMG3$) Manual
* VSI OpenVMS RTL String Manipulation (STR$) Manual

The Guide to the POSIX Threads Library contains guidelines and reference information for POSIX
Threads, the Multithreading Run-Time Library.

Application programmers using any programming language can refer to the Guide to Creating
OpenVMS Modular Procedures for writing modular and reentrant code.

Preface

High-level language programmers will find additional information on calling Run-Time Library
routines in their language reference manual. Additional information may also be found in the
language user's guide provided with your OpenVMS language software.

For additional information about OpenVMS products and services, access the VSI website at the
following location: https://www.vmssoftware.com/

5. VSI Encourages Your Comments

You may send comments or suggestions regarding this manual or any VSI document by sending email
to the following Internet address: <doci nf o@nssof t war e. conp.

6. How to Order Additional Documentation

For information about how to order additional documentation, email the VSI OpenVMS information
account: <i nf o@nssof t war e. conr. We will be posting links to documentation on our
corporate website soon.

7. Typographical Conventions

The following conventions are used in this manual:

Convention Meaning

Ctrl/x A sequence such as Ctrl/x indicates that you must hold down the key
labeled Ctrl while you press another key or a pointing device button.

PF1x A sequence such as PF1 x indicates that you must first press and release the
key labeled PF1 and then press and release another key (X) or a pointing
device button.

A horizontal ellipsis in examples indicates one of the following
possibilities:

* Additional optional arguments in a statement have been omitted.
* The preceding item or items can be repeated one or more times.

* Additional parameters, values, or other information can be entered.

A vertical ellipsis indicates the omission of items from a code example or
command format; the items are omitted because they are not important to
the topic being discussed.

O) In command format descriptions, parentheses indicate that you must
enclose choices in parentheses if you specify more than one.

[] In command format descriptions, brackets indicate optional choices. You
can choose one or more items or no items. Do not type the brackets on the
command line. However, you must include the brackets in the syntax for
directory specifications and for a substring specification in an assignment
statement.

In command format descriptions, vertical bars separate choices within
brackets or braces. Within brackets, the choices are optional; within
braces, at least one choice is required. Do not type the vertical bars on the
command line.

vi

https://www.vmssoftware.com/

Preface

Convention

Meaning

i

In command format descriptions, braces indicate required choices; you
must choose at least one of the items listed. Do not type the braces on the
command line.

bold type

Bold type represents the name of an argument, an attribute, or a reason.
Bold type also represents the introduction of a new term.

italic type

Italic type indicates important information, complete titles of manuals,

or variables. Variables include information that varies in system output
(Internal error number), in command lines (/PRODUCER=name), and in
command parameters in text (where dd represents the predefined code for
the device type).

UPPERCASE TYPE

Uppercase type indicates a command, the name of a routine, the name of a
file, or the abbreviation for a system privilege.

Exanpl e

This typeface indicates code examples, command examples, and interactive
screen displays. In text, this type also identifies website addresses, UNIX
commands and pathnames, PC-based commands and folders, and certain
elements of the C programming language.

A hyphen at the end of a command format description, command line,
or code line indicates that the command or statement continues on the
following line.

numbers

All numbers in text are assumed to be decimal unless otherwise noted.
Nondecimal radixes—binary, octal, or hexadecimal—are explicitly
indicated.

vii

Preface

viii

Chapter 1. Run-Time Library General
Purpose (OTS$) Facility

This chapter describes the OpenVMS Run-Time Library General Purpose (OTSS$) Facility. See the
Chapter 2 for a detailed description of each routine within the OTSS$ facility.

Most of the OTSS$ routines were originally designed to support language compilers. Because they
perform general-purpose functions, the routines were moved into the language-independent facility,
OTSS.

1.1. 1.1 Overview

The Run-Time Library General Purpose (OTS$) Facility provides routines to perform general-purpose
functions. These functions include data type conversions as part of a compiler's generated code, and
some mathematical functions.

The OTSS$ facility contains routines to perform the following main tasks:

» Convert data types (see Table 1.1)

* Divide complex and packed decimal values (see Table 1.2)

* Move data to a specified destination address (see Table 1.3)

* Multiply complex values (see Table 1.4)

* Raise a base to an exponent (see Table 1.5)

* Copy a source string to a destination string (see Table 1.6)

* Return a string area to free storage (see Table 1.7)

* Use convenience routines related to the OpenVMS Calling Standard (see Table 1.8)

Some restrictions apply if you link certain OTS$ routines on an Alpha system or 164 system. See
Section 1.2 for more information about these restrictions.

Table 1.1. OTSS Conversion Routines

Routine Name Function

OTSSCNVOUT Convert a D-floating, G-floating, H-floating, IEEE S-floating or IEEE
T-floating value to a character string.

OTSSCVT L TB Convert an unsigned integer to binary text.

OTS$SCVT_L TI Convert a signed integer to signed integer text.

OTSSCVT L TL Convert an integer to logical text.

OTS$CVT L TO Convert an unsigned integer to octal text.

OTSSCVT L TU Convert an unsigned integer to decimal text.

OTS$SCVT L TZ Convert an integer to hexadecimal text.

OTSSCVT TB L Convert binary text to an unsigned integer value.

OTSSCVT TI L Convert signed integer text to an integer value.

Chapter 1. Run-Time Library General Purpose (OTS$) Facility

Routine Name

Function

OTS$CVT TL L

Convert logical text to an integer value.

OTS$CVT TO L

Convert octal text to an unsigned integer value.

OTS$CVT TU L

Convert unsigned decimal text to an integer value.

OTSSCVT T x

Convert numeric text to a D-, F-, G-, H-, IEEE S-, or IEEE T-floating
value.

OTS$CVT TZ L

Convert hexadecimal text to an unsigned integer value.

For more information on Run-Time Library conversion routines, see the CVTS$ reference section in
the VSI OpenVMS RTL Library (LIB$) Manual.

Table 1.2. OTSS Division Routines

Routine Name

Function

OTS$DIVCx

Perform complex division.

OTS$DIV_PK_LONG

Perform packed decimal division with a long divisor.

OTS$DIV_PK_SHORT

Perform packed decimal division with a short divisor.

Table 1.3. OTSS$ Move Data Routines

Routine Name

Function

OTS$SMOVE3

Move data without fill.

OTSSMOVES

Move data with fill.

Table 1.4. OTS$ Multiplication Routine

Routine Name

Function

OTSSMULCx

Perform complex multiplication.

Table 1.5. OTSS$ Exponentiation Routines

Routine Name

Function

OTSSPOWCxCx Raise a complex base to a complex floating-point exponent.
OTSSPOWCxJ Raise a complex base to a signed longword exponent.

OTS$POWDD Raise a D-floating base to a D-floating exponent.

OTS$SPOWDR Raise a D-floating base to an F-floating exponent.

OTSSPOWDIJ Raise a D-floating base to a longword integer exponent.
OTSSPOWGG Raise a G-floating base to a G-floating or longword integer exponent.
OTSSPOWG] Raise a G-floating base to a longword integer exponent.

OTS$POWHH_R3!

Raise an H-floating base to an H-floating exponent.

OTS$POWHJ R3!

Raise an H-floating base to a longword integer exponent.

OTSSPOWIIL Raise a word integer base to a word integer exponent.

OTS$POWIJJ Raise a longword integer base to a longword integer exponent.

OTS$SPOWLULU Raise an unsigned longword integer base to an unsigned longword
integer exponent.

OTSS$POWxLU Raise a floating-point base to an unsigned longword integer exponent.

Chapter 1. Run-Time Library General Purpose (OTS$) Facility

Routine Name Function

OTSSPOWRD Raise an F-floating base to a D-floating exponent.

OTS$SPOWRJ Raise an F-floating base to a longword integer exponent.

OTSSPOWRR Raise an F-floating base to an F-floating exponent.

OTSSPOWSJ Raise an IEEE S-floating base to a longword integer exponent.

OTSSPOWSS Raise an IEEE S-floating base to an S-floating or longword integer
exponent.

OTSSPOWTIJ Raise an IEEE T-floating base to a longword integer exponent.

OTSSPOWTT Raise an IEEE T-floating base to a T-floating or longword integer
exponent.

'WAX specific

Table 1.6. OTSS$ Copy Source String Routines

Routine Name

Function

OTS$SCOPY DXDX

Copy a source string passed by descriptor to a destination string.

OTS$SCOPY R DX

Copy a source string passed by reference to a destination string.

Table 1.7. OTS$ Return String Area Routines

Routine Name

Function

OTS$SFREE! DD

Free one dynamic string.

OTSSSFREEN DD

Free n dynamic strings.

OTS$SGET1 DD

Get one dynamic string.

Table 1.8. OTSS Convenience Routines

Routine Name

Function

OTS$CALL PROC

Perform a call to a procedure that may be either in native code or in a
translated image.

OTS$JUMP_TO BPV

Transfer control to a bound procedure.

1.2. Linking OTS$ Routines on Alpha and 164

Systems

On Alpha and 164 systems, if you use the OTS$ entry points for certain mathematics routines, you
must link against the DPMLS$SHR.EXE library. Alternately, you can use the equivalent math$ entry
point for the routine and link against either STARLET.OLB or the DPML$SHR.EXE library. Math$
entry points are available only on Alpha and 164 systems.

Table 1.9 lists the affected OTSS$ entry points with their equivalent math$ entry points. Refer to the
Compagq Portable Mathematics Library for information about the math$ entry points.

Table 1.9. OTSS and Equivalent Math$ Entry Points

OTSS Entry Point

Math$ Entry Point

OTS$DIVC

math$cdiv_f

OTS$DIVCG _R3

math$cdiv_g

Chapter 1. Run-Time Library General Purpose (OTS$) Facility

OTSS$ Entry Point Math$ Entry Point
OTS$DIVCS math$cdiv_s
OTS$DIVCT _R3 mathS$cdiv_t
OTS$SMULCS math$cmul s

OTSSMULCT _R3

math$cmul t

OTS$MULCG _R3

math$cmul g

OTS$POWCC math$cpow
OTS$POWCGCG _R3 math$cpow_g
OTSSPOWCI] math$cpow_fq
OTS$POWCSCS math$cpow s
OTS$SPOWCSJ math$cpow sq

OTSSPOWCTCT R3

math$cpow t

OTS$POWCTJ_R3

math$cpow_tq

OTS$POWGG math$pow_gg
OTS$SPOWG]J math$pow_gq
OTSSPOWGLU math$pow_gq
OTSSPOWIIL math$pow _qq
OTS$POWIJJ math$pow qq
OTS$POWLULU math$pow _qq
OTS$SPOWRIJ math$pow_fq
OTS$SPOWRLU math$pow_fq
OTS$SPOWRR math$pow_ff
OTS$SPOWSS math$pow ss
OTS$SPOWSJ math$pow sq
OTS$POWSLU math$pow_sq
OTSSPOWTIJ math$pow_tq
OTS$POWTLU math$pow_tq
OTS$SPOWTT math$pow_tt

1.2.1. 64-Bit Addressing Support (Alpha and 164 Only)

On Alpha and 164 systems, the General Purpose (OTS$) routines provide 64-bit virtual addressing

capabilities as follows:

descriptor.

All OTSS RTL routines accept 64-bit addresses for arguments passed by reference.

All OTSS RTL routines also accept either 32-bit or 64-bit descriptors for arguments passed by

Note

The OTSS$ routines declared in ots$routines.h do not include prototypes for 64-bit data. You must
provide your own generic prototypes for any OTS$ functions you use.

Chapter 1. Run-Time Library General Purpose (OTS$) Facility

See the VSI OpenVMS Programming Concepts Manual for more information about 64-bit virtual
addressing capabilities.

Chapter 1. Run-Time Library General Purpose (OTS$) Facility

Chapter 2. General-Purpose (OTS$)
Routines

This chapter provides detailed descriptions of the routines provided by the OpenVMS RTL General
Purpose (OTS$) Facility.

OTS$CALL_PROC (Alpha and 164 Only)

OTSSCALL PROC (Alpha and 164 Only) — The Call Special Procedure routine performs a call to a
procedure that may be either in native code or in a translated image.

Format

OTS$CALL_PROC target-func-value ,target-sig-info ,standard-args ,...

Returns

None.

Arguments

target-func-value

OpenVMS usage: function value

type: quadword address
access: read only
mechanism: by value in register R23 (Alpha); by value in register R17 (164)

Function value for the procedure to be called.

target-sig-info

OpenVMS usage: TIE signature information

type: TIE signature block
access: read only
mechanism: by reference in register R24 (Alpha); by value in register R17 (164)

Signature information is used to transform the standard arguments into the form required by
a translated image (if needed). The representation of signature information is described in the
OpenVMS Calling Standard.

standard-args

Zero or more arguments to be passed to the called routine, passed using standard conventions
(including the Al register).

Chapter 2. General-Purpose (OTS$) Routines

Description

When translated code support is requested, the compiled code must call the special service routine,
OTSSCALL PROC. The actual parameters to the target function are passed to OTS$CALL PROC as
though the target routine is native code that is being invoked directly.

OTSS$CALL PROC first determines whether the target routine is part of a translated image.

If the target is in native code, then OTSSCALL PROC completes the call in a way that makes
its mediation transparent (that is, control need not pass back through it for the return). The native
parameters are used without modification.

If the target is in translated code, then OTS$SCALL PROC passes control to the Translated Image
Environment (TIE). For additional information, see the VSI OpenVMS Calling Standard.

Condition Values Returned

None.

OTS$SCNVOUT

OTSSCNVOUT — The Convert Floating to Character String routines convert a D-floating, G-
floating, H-floating, IEEE S-floating, or IEEE T-floating number to a character string in the Fortran E
format.

Format

OTS$CNVOUT
D GH S or-T-float-pt-input-val ,fixed-length-resultant-string
,digits-in-fraction

OTS$CNVOUT_G
DGHSor-T-float-pt-input-val ,fixed-length-resultant-string
,digits-in-fraction

OTS$CNVOUT_H
DGHSor-T-float-pt-input-val ,fixed-length-resultant-string
,digits-in-fraction (VAX only)

OTS$CNVOUT_S
DDGHSor-T-float-pt-input-val ,fixed-length-resultant-string
,digits-in-fraction (VAX only)

OTS$CNVOUT_T
DDGHSor-T-float-pt-input-val ,fixed-length-resultant-string
,digits-in-fraction (VAX only)

Returns

OpenVMS usage: cond_value

type: longword (unsigned)
access: write only
mechanism: by value

Chapter 2. General-Purpose (OTS$) Routines

Arguments
D-G-H-S-or-T-float-pt-input-val

OpenVMS usage: floating_point

type: D_floating, G_floating, H floating, IEEE S _floating, IEEE T floating
access: read only
mechanism: by reference

Value that OTS$SCNVOUT converts to a character string. For OTS$CNVOUT, the D-G-H-S-or-
T-float-pt-input-val argument is the address of a D-floating number containing the value. For
OTSSCNVOUT G, the D-G-H-S-or-T-float-pt-input-val argument is the address of a G-floating
number containing the value. For OTSSCNVOUT S, the D-G-H-S-or-T-float-pt-input-val argument
is the address of an IEEE S-floating number containing the value. For OTS§CNVOUT T, the D-G-
H-S-or-T-float-pt-input-val argument is the address of an IEEE T-floating number containing the
value.

fixed-length-resultant-string

OpenVMS usage: char_string

type: character string
access: write only
mechanism: by descriptor, fixed length

Output string into which OTSSCNVOUT writes the character string result of the conversion. The
fixed-length-resultant-string argument is the address of a descriptor pointing to the output string.

digits-in-fraction

OpenVMS usage: longword_unsigned

type: longword (unsigned)
access: read only
mechanism: by value

Number of digits in the fractional portion of the result. The digits-in-fraction argument is an
unsigned longword containing the number of digits to be written to the fractional portion of the result.

Condition Values Returned

SS$ NORMAL Normal successful completion.
SS$ ROPRAND Floating reserved operand detected.
OTS$ OUTCONERR Output conversion error. The result would have exceeded the fixed-

length string; the output string is filled with asterisks (*).

OTS$CVT L TB

OTSS$CVT L TB — The Convert an Unsigned Integer to Binary Text routine converts an unsigned
integer value of arbitrary length to binary representation in an ASCII text string. By default, a
longword is converted.

Chapter 2. General-Purpose (OTS$) Routines

Format

OTS$CVT_L_TB
varyi ng-i nput -val ue, fi xed-1ength-resultant-string [, nunber-of-digits]
[, input-val ue-size]

Returns

OpenVMS usage: cond_value

type: longword (unsigned)
access: write only
mechanism: by value
Arguments

varying-input-value

OpenVMS usage: varying_arg

type: unspecified
access: read only
mechanism: by reference

Unsigned byte, word, or longword that OTSSCVT L TB converts to an unsigned decimal
representation in an ASCII text string. (The value of the input-value-size argument determines
whether varying-input-value is a byte, word, or longword.) The varying-input-value argument is
the address of the unsigned integer.

fixed-length-resultant-string

OpenVMS usage: char_string

type: character string
access: write only
mechanism: by descriptor, fixed length

ASCII text string that OTS$CVT L _TB creates when it converts the integer value. The fixed-length-
resultant-string argument is the address of a descriptor pointing to this ASCII text string. The string
is assumed to be of fixed length (CLASS S descriptor).

number-of-digits

OpenVMS usage: longword_signed

type: longword (signed)
access: read only
mechanism: by value

Minimum number of digits in the binary representation to be generated. The number-of-digits
argument is a signed longword containing this minimum number. If the minimum number of digits is
omitted, the default is 1. If the actual number of significant digits is less than the minimum number

10

Chapter 2. General-Purpose (OTS$) Routines

of digits, leading zeros are produced. If the minimum number of digits is zero and the value of the
integer to be converted is also zero, OTSSCVT L _TB creates a blank string.

input-value-size

OpenVMS usage: longword_signed

type: longword (signed)
access: read only
mechanism: by value

Size of the integer to be converted, in bytes. The input-value-size argument is a signed longword
containing the byte size. This is an optional argument. If the size is omitted, the default is 4
(longword).

Condition Values Returned
SS§ NORMAL Normal successful completion.

OTS$ OUTCONERR Output conversion error. The result would have exceeded the fixed-
length string; the output string is filled with asterisks (*).

OTS$CVT L _TI

OTS$CVT L TI— The Convert Signed Integer to Decimal Text routine converts a signed integer to

its decimal representation in an ASCII text string. This routine supports Fortran Iw and Iw.m output
and BASIC output conversion.

Format

OTS$CVT_L_TI
varyi ng-input-value ,fixed-length-resultant-string [, nunber-of-digits]
[,input-val ue-size] [,flags-val ue]

Returns

OpenVMS usage: cond_value

type: longword (unsigned)
access: write only
mechanism: by value
Arguments

varying-input-value

OpenVMS usage: varying_arg
type: unspecified
access: read only

mechanism: by reference, fixed length

Chapter 2. General-Purpose (OTS$) Routines

A signed integer that OTS$SCVT_L_TI converts to a signed decimal representation in an ASCII text
string. The varying-input-value argument is the address of the signed integer.

On VAX systems, the integer can be a signed byte, word, or longword. The value of the input-value-
size argument determines whether varying-input-value is a byte, word, or longword.

On Alpha and 164 systems, the integer can be a signed byte, word, longword, or quadword. The value
of the input-value-size argument determines whether varying-input-value is a byte, word, longword,

or quadword.

fixed-length-resultant-string

OpenVMS usage: char_string

type: character string
access: write only
mechanism: by descriptor

Decimal ASCII text string that OTSSCVT LTI creates when it converts the signed integer. The
fixed-length-resultant-string argument is the address of a CLASS S descriptor pointing to this text
string. The string is assumed to be of fixed length.

number-of-digits

OpenVMS usage: longword_signed

type: longword (signed)
access: read only
mechanism: by value

Minimum number of digits to be generated when OTSSCVT L _TI converts the signed integer to

a decimal ASCII text string. The number-of-digits argument is a signed longword containing this
number. If the minimum number of digits is omitted, the default value is 1. If the actual number of
significant digits is smaller, OTSSCVT L TI inserts leading zeros into the output string. If number-
of-digits is zero and varying-input-value is zero, OTSSCVT L _TI writes a blank string to the output
string.

input-value-size

OpenVMS usage: longword_signed

type: longword (signed)
access: read only
mechanism: by value

Size of the integer to be converted, in bytes. The input-value-size argument is a signed longword
containing this value size. If the size is omitted, the default is 4 (longword).

On VAX systems, the value size must be 1, 2, or 4. If value size is 1 or 2, the value is sign-extended to
a longword before conversion.

On Alpha and 164 systems, the value size must be 1, 2, 4, or 8. If the value is 1, 2, or 4, the value is
sign-extended to a quadword before conversion.

12

Chapter 2. General-Purpose (OTS$) Routines

flags-value

OpenVMS usage: mask_longword

type: longword (unsigned)
access: read only
mechanism: by value

Caller-supplied flags that you can use if you want OTSSCVT L _TI to insert a plus sign before the
converted number. The flags-value argument is an unsigned longword containing the flags.

The caller flags are described in the following table:

Bit Action if Set Action if Clear

0 Insert a plus sign (+) before the first Omit the plus sign.
nonblank character in the output string.

If flags-value is omitted, all bits are clear and the plus sign is not inserted.

Condition Values Returned

SS$ NORMAL Normal successful completion.

OTS$ OUTCONERR Output conversion error. Either the result would have exceeded the
fixed-length string or the input-value-size is not a valid value. The
output string is filled with asterisks (*).

OTS$CVT L TL

OTSS$CVT L TL — The Convert Integer to Logical Text routine converts an integer to an ASCII text
string representation using Fortran L (logical) format.

Format

OTrS$CVT_L_TL | ongword-i nteger-val ue ,fixed-length-resultant-string
Returns

OpenVMS usage: cond_value

type: longword (unsigned)
access: write only
mechanism: by value
Arguments

longword-integer-value

OpenVMS usage: longword_signed
type: longword (signed)

Chapter 2. General-Purpose (OTS$) Routines

access: read only

mechanism: by reference

Value that OTS$CVT L _TL converts to an ASCII text string. The longword-integer-value argument
is the address of a signed longword containing this integer value.

fixed-length-resultant-string

OpenVMS usage: char_string

type: character string
access: write only
mechanism: by descriptor, fixed length

Output string that OTSSCVT_L TL creates when it converts the integer value to an ASCII text string.
The fixed-length-resultant-string argument is the address of a descriptor pointing to this ASCII text
string.

The output string is assumed to be of fixed length (CLASS S descriptor).

If bit 0 of longword-integer-value is set, OTSSCVT L _TL stores the character T in the rightmost
character of fixed-length-resultant-string. If bit O is clear, it stores the character F. In either case, it
fills the remaining characters of fixed-length-resultant-string with blanks.

Condition Values Returned

SS$ NORMAL Normal successful completion.

OTS$_OUTCONERR Output conversion error. The result would have exceeded the fixed-
length string; the output string is of zero length (descriptor LENGTH
field contains 0).

Example

51+

I This is an exanpl e program
I showi ng the use of OTS$CVT_L_TL.
I -

VALUE% = 10
QUTSTR$ =
CALL OTS$CVT L_TL(VALUE% OUTSTRS)
PRI NT OUTSTR$

9 END

This BASIC example illustrates the use of OTSSCVT L TL. The output generated by this program is
'F'.

OTS$CVT L_TO

OTSS$CVT L TO — The Convert Unsigned Integer to Octal Text routine converts an unsigned
integer to an octal ASCII text string. OTSSCVT L _TO supports Fortran Ow and Ow.m output
conversion formats.

14

Chapter 2. General-Purpose (OTS$) Routines

Format

OTS$CVT_L_TO
varyi ng-i nput-val ue ,fixed-length-resultant-string [, nunmber-of-digits]
[, input-val ue-size]

Returns

OpenVMS usage: cond_value

type: longword (unsigned)
access: write only
mechanism: by value
Arguments

varying-input-value

OpenVMS usage: varying_arg

type: unspecified
access: read only
mechanism: by reference

Unsigned byte, word, or longword that OTS$CVT L TO converts to an unsigned decimal
representation in an ASCII text string. (The value of the input-value-size argument determines
whether varying-input-value is a byte, word, or longword.) The varying-input-value argument is
the address of the unsigned integer.

fixed-length-resultant-string

OpenVMS usage: char_string

type: character string
access: write only
mechanism: by descriptor, fixed length

Output string that OTSSCVT L TO creates when it converts the integer value to an octal ASCII text
string. The fixed-length-resultant-string argument is the address of a descriptor pointing to the octal
ASCII text string. The string is assumed to be of fixed length (CLASS_S descriptor).

number-of-digits

OpenVMS usage: longword_signed

type: longword (signed)
access: read only
mechanism: by value

Minimum number of digits that OTSSCVT L TO generates when it converts the integer value
to an octal ASCII text string. The number-of-digits argument is a signed longword containing

Chapter 2. General-Purpose (OTS$) Routines

the minimum number of digits. If it is omitted, the default is 1. If the actual number of significant
digits in the octal ASCII text string is less than the minimum number of digits, OTS$CVT L TO
inserts leading zeros into the output string. If number-of-digits is 0 and varying-input-value is 0,
OTS$CVT L _TO writes a blank string to the output string.

input-value-size

OpenVMS usage: longword_signed

type: longword (signed)
access: read only
mechanism: by value

Size of the integer to be converted, in bytes. The input-value-size argument is a signed longword
containing the number of bytes in the integer to be converted by OTSSCVT L TO. If it is omitted,
the default is 4 (longword).

Condition Values Returned

SS$ NORMAL Normal successful completion.

OTS$ OUTCONERR Output conversion error. The result would have exceeded the fixed-
length string; the output string is filled with asterisks (*).

OTS$CVT L TU

OTS$CVT L TU — The Convert Unsigned Integer to Decimal Text routine converts an unsigned
integer value to its unsigned decimal representation in an ASCII text string.

Format

OTS$CVT_L_TU
varyi ng-input-value ,fixed-length-resultant-string [, nunber-of-digits]
[,input-val ue-size]

Returns

OpenVMS usage: cond_value

type: longword (unsigned)
access: write only
mechanism: by value
Arguments

varying-input-value

OpenVMS usage: varying_arg
type: unspecified

access: read only

16

Chapter 2. General-Purpose (OTS$) Routines

mechanism: by reference

An unsigned integer that OTSSCVT_L TU converts to an unsigned decimal representation in an
ASCII text string. The varying-input-value argument is the address of the unsigned integer.

On VAX systems, the integer can be an unsigned byte, word, or longword. (The value of the input-
value-size argument determines whether varying-input-value is a byte, word, or longword.)

On Alpha and 164 systems, the integer can be an unsigned byte, word, longword, or quadword. (The
value of the input-value-size argument determines whether varying-input-value is a byte, word,
longword, or quadword.)

fixed-length-resultant-string

OpenVMS usage: char_string

type: character string
access: write only
mechanism: by descriptor, fixed length

Output string that OTSSCVT L _TU creates when it converts the integer value to unsigned decimal
representation in an ASCII text string. The fixed-length-resultant-string argument is the address of a
descriptor pointing to this ASCII text string.

number-of-digits

OpenVMS usage: longword_signed

type: longword (signed)
access: read only
mechanism: by value

Minimum number of digits in the ASCII text string that OTSSCVT L TU creates. The number-of-
digits argument is a signed longword containing the minimum number. If the minimum number of
digits is omitted, the default is 1.

If the actual number of significant digits in the output string created is less than the minimum number,
OTS$CVT L TU inserts leading zeros into the output string. If the minimum number of digits is zero
and the integer value to be converted is also zero, OTS$CVT L _TU writes a blank string to the output
string.

input-value-size

OpenVMS usage: longword_signed

type: longword (signed)
access: read only
mechanism: by value

Size of the integer to be converted, in bytes. The input-value-size argument is a signed longword
containing this value size. If the size is omitted, the default is 4 (longword).

On VAX systems, the value size must be 1, 2, or 4.

Chapter 2. General-Purpose (OTS$) Routines

On Alpha and 164 systems, the value size must be 1, 2, 4, or 8.

Condition Values Returned

SS$ NORMAL Normal successful completion.

OTS$_OUTCONERR Output conversion error. Either the result would have exceeded the
fixed-length string or the input-value-size is not a valid value. The
output string is filled with asterisks (*).

OTS$CVT L TZ

OTS$CVT L TZ — The Convert Integer to Hexadecimal Text routine converts an unsigned
integer to a hexadecimal ASCII text string. OTS$SCVT L TZ supports Fortran Zw and Zw.m output
conversion formats.

Format

OTS$CVT_L_TZ
varyi ng-i nput-val ue ,fixed-length-resultant-string [, nunmber-of-digits]
[,input-val ue-size]

Returns

OpenVMS usage: cond_value

type: longword (unsigned)
access: write only
mechanism: by value
Arguments

varying-input-value

OpenVMS usage: varying arg

type: unspecified
access: read only
mechanism: by reference

Unsigned byte, word, or longword that OTSSCVT_L_TZ converts to an unsigned decimal
representation in an ASCII text string. (The value of the input-value-size argument determines
whether varying-input-value is a byte, word, or longword.) The varying-input-value argument is
the address of the unsigned integer.

fixed-length-resultant-string

OpenVMS usage: char_string
type: character string

access: write only

18

Chapter 2. General-Purpose (OTS$) Routines

mechanism: by descriptor, fixed length
Output string that OTSSCVT L TZ creates when it converts the integer value to a hexadecimal

ASCII text string. The fixed-length-resultant-string argument is the address of a descriptor pointing
to this ASCII text string. The string is assumed to be of fixed length (CLASS S descriptor).

number-of-digits

OpenVMS usage: longword_signed

type: longword (signed)
access: read only
mechanism: by value

Minimum number of digits in the ASCII text string that OTSSCVT L TZ creates when it converts
the integer. The number-of-digits argument is a signed longword containing this minimum number.
If it is omitted, the default is 1. If the actual number of significant digits in the text string that
OTSS$CVT L TZ creates is less than this minimum number, OTS$CVT L TZ inserts leading zeros
in the output string. If the minimum number of digits is zero and the integer value to be converted is
also zero, OTSSCVT L _TZ writes a blank string to the output string.

input-value-size

OpenVMS usage: longword_signed

type: longword (signed)
access: read only
mechanism: by value

Size of the integer that OTSSCVT L TZ converts, in bytes. The input-value-size argument is a
signed longword containing the value size. If the size is omitted, the default is 4 (longword).

Condition Values Returned

SS$ NORMAL Normal successful completion.

OTS$ OUTCONERR Output conversion error. The result would have exceeded the fixed-
length string; the output string is filled with asterisks (*).

Example

with TEXT_IQ use TEXT_IQ
procedure SHOW CONVERT i s

type INPUT_INT is new | NTEGER range O..| NTEGER LAST,;

I NTVALUE : I NPUT_INT := 256;
HEXSTRI NG : STRING1..11);

procedure CONVERT TO HEX (I : in INPUT_INT; HS : out STRING;
pragma | NTERFACE (RTL, CONVERT_TO HEX);
pragma | MPORT routine (I NTERNAL => CONVERT_TO HEX,

EXTERNAL => "OTS$CVT_L_TZ",

MECHANI SM =>(REFERENCE,

Chapter 2. General-Purpose (OTS$) Routines

DESCRI PTOR (CLASS => S)));

begi n
CONVERT_TO _HEX (I NTVALUE, HEXSTRI NG ;
PUT_LINE("This is the value of HEXSTRI NG');
PUT_LI NE(HEXSTRI NG) ;

end;

This Ada example uses OTSSCVT_L TZ to convert a longword integer to hexadecimal text.

OTS$CVT_T x

OTSSCVT T x — The Convert Numeric Text to D-, F-, G-, H-, IEEE S-, or IEEE T-Floating
routines convert an ASCII text string representation of a numeric value to a D-floating, F-floating, G-
floating, H-floating, IEEE S-floating, or IEEE T-floating value.

Format

OTS$CVT_T_D
fixed-or-dynam c-input-string ,floating-point-val ue
[,digits-in-fraction] [,scale-factor] [,flags-value] [,extension-bits]

OTS$CVT_T_F
fixed-or-dynam c-input-string ,floating-point-val ue
[,digits-in-fraction] [,scale-factor] [,flags-value] [,extension-bits]

OTS$CVT_T_G
fixed-or-dynam c-input-string ,floating-point-val ue
[,digits-in-fraction] [,scale-factor] [,flags-value] [,extension-bits]

OTS$CVT_T_H
fixed-or-dynam c-input-string ,floating-point-val ue
[,digits-in-fraction] [,scale-factor] [,flags-value] [,extension-bits]

OTS$CVT_T_S
fixed-or-dynam c-input-string ,floating-point-val ue
[,digits-in-fraction] [,scale-factor] [,flags-value] [,extension-bits]

OTS$CVT_T_T
fi xed-or-dynam c-input-string ,floating-point-val ue
[,digits-in-fraction] [,scale-factor] [,flags-value] [,extension-bits]

Returns

OpenVMS usage: cond_value

type: longword (unsigned)
access: write only
mechanism: by value
Arguments

fixed-or-dynamic-input-string

OpenVMS usage: char_string

20

Chapter 2. General-Purpose (OTS$) Routines

type: character string
access: read only
mechanism: by descriptor, fixed-length or dynamic string

Input string containing an ASCII text string representation of a numeric value that

OTSSCVT_T xconverts to a D-floating, F-floating, G-floating, H-floating, IEEE S-floating, or IEEE
T-floating value. The fixed-or-dynamic-input-string argument is the address of a descriptor pointing
to the input string.

The syntax of a valid input string is as follows:

[+ }
Ty
[<blanks>] M [=digits>] [.] [<digits=] B [=digits=>]
- e
5} » [<blanks>] |:-_F:|
Q
— L q — —
VM-OT DA-al

E, e, D, d, Q, and q are the possible exponent letters. They are semantically equivalent. Other
elements in the preceding syntax are defined as follows:

Term Description
blanks One or more blanks
digits One or more decimal digits

floating-point-value

OpenVMS usage: floating point

type: D_floating, F_floating, G_floating, H_ floating, IEEE S_floating, IEEE
T_floating

access: write only

mechanism: by reference

Floating-point value that OTS$CVT T x creates when it converts the input string. The floating-
point-value argument is the address of the floating-point value. The data type of floating-point-value
depends on the called routine as shown in the following table:

Routine Floating-Point-Value Data Type
OTS$SCVT T D D-floating

OTSS$SCVT T F F-floating

OTS$CVT T G G-floating

OTS$SCVT T H H-floating

OTS$CVT T S IEEE S-floating

21

Chapter 2. General-Purpose (OTS$) Routines

Routine Floating-Point-Value Data Type

OTS$CVT T T IEEE T-floating

digits-in-fraction

OpenVMS usage: longword_unsigned

type: longword (unsigned)
access: read only
mechanism: by value

Number of digits in the fraction if no decimal point is included in the input string. The digits-in-
fraction argument contains the number of digits. If the number of digits is omitted, the default is zero.

scale-factor

OpenVMS usage: longword_signed

type: longword (signed)
access: read only
mechanism: by value

Scale factor. The scale-factor argument contains the value of the scale factor. If bit 6 of the flags-

value argument is clear, the resultant value is divided by 10°°¢74" ynless the exponent is present. If
bit 6 of flags-value is set, the scale factor is always applied. If the scale factor is omitted, the default

is zero.
flags-value

OpenVMS usage: mask_longword

type: longword (unsigned)
access: read only
mechanism: by value

User-supplied flags. The flags-value argument contains the user-supplied flags described in the

following table:

Bit Action if Set Action if Clear

0 Ignore blanks. Interpret blanks as zeros.

1 Allow only E or e exponents. (This is Allow E, e, D, d, Q and q exponents. (This is

consistent with Fortran semantics.)

consistent with BASIC semantics.)

2 Interpret an underflow as an error. Do not interpret an underflow as an error.

3 Truncate the value. Round the value.

4 Ignore tabs. Interpret tabs as invalid characters.

5 An exponent must begin with a valid The exponent letter can be omitted.
exponent letter.

6 Always apply the scale factor. Apply the scale factor only if there is no

exponent present in the string.

If you omit the flags-value argument, OTS$CVT T x defaults all flags to clear.

22

Chapter 2. General-Purpose (OTS$) Routines

extension-bits (D-, F-floating, IEEE S-floating)

OpenVMS usage: byte unsigned

type: byte (unsigned)
access: write only
mechanism: by reference

extension-bits (G-, H-floating, IEEE T-floating)

OpenVMS usage: word_unsigned

type: word (unsigned)
access: write only
mechanism: by reference

Extra precision bits. The extension-bits argument is the address of a word containing the extra
precision bits. [fextension-bits is present, floating-point-value is not rounded, and the first # bits
after truncation are returned left-justified in this argument, as follows:

Routine Number of Bits Data Type
Returned

OTS$SCVT T D 8 Byte (unsigned)
OTS$SCVT T F 8 Byte (unsigned)
OTS$CVT T G 11 Word (unsigned)
OTS$SCVT T H 15 Word (unsigned)
OTS$SCVT T S 8 Byte (unsigned)
OTS$SCVT T T 11 Word (unsigned)

A value represented by extension bits is suitable for use as the extension operand in an EMOD
instruction.

The extra precision bits returned for H-floating may not be precise because OTS$SCVT T _H carries
its calculations to only 128 bits. However the error should be small.

Description

The OTSSCVT T D, OTS$CVT T F, OTSSCVT T G, OTSSCVT_T H, OTS$CVT_T_S, and
OTSSCVT _T _T routines support Fortran D, E, F, and G input type conversion as well as similar types
for other languages.

These routines provide run-time support for BASIC and Fortran input statements.

Although Alpha and 164 systems do not generally support H-floating operations, you can use
OTSS$CVT T H to convert a text string to an H-floating value on an Alpha or 164 system.

Condition Values Returned

SS$ NORMAL Normal successful completion.

OTS$_INPCONERR Input conversion error; an invalid character in the input string, or the
value is outside the range that can be represented. The floating-point-

23

Chapter 2. General-Purpose (OTS$) Routines

value and extension-bits arguments, if present, are set to +0.0 (not
reserved operand —0.0).

Example

C+
C This is a Fortran program denonstrating the use of
C OTS$CVT_T_F.

C-
REAL*4 A
CHARACTER* 10 T(5)
DATA T/'1234567+23' ,' 8. 786534+3' ,' -983476E- 3", ' - 23. 734532' ,' 45"/
DO21 =1, 5
TYPE 1,1, T(I)
1 FORMAT(' Input string ',11," is ',Al0Q)
C+

CBis the return status.

CT(l) is the string to be converted to an

C F-floating point value. A is the F-floating

C point conversion of T(l). %/AL(5) nmeans 5 digits
Care in the fraction if no decimal point is in

C the input string T(I).

C-
B = OTS$CVT_T_F(T(1), A WAL(5),,)
TYPE *,' Qutput of OTSCVT T F is CUA
TYPE *,'
2 CONTI NUE
END

This Fortran example demonstrates the use of OTSSCVT_T_F. The output generated by this program
is as follows:

Input string 1 is 1234567+23

Qutput of OISCVT_T_F is 1. 2345669E+24
Input string 2 is 8.786534+3

Qut put of OISCVT_T_F is 8786. 534
Input string 3 is -983476E-3

Qut put of OISCVT_T_F is -9. 8347599E- 03
Input string 4 is -23.734532

Qut put of OISCVT_T_F is -23.73453
Input string 5 is 45

Qut put of OISCVT_T_F is 45000. 00

OTS$CVT TB L

OTS$CVT_TB_L — The Convert Binary Text to Unsigned Integer routine converts an ASCII text
string representation of an unsigned binary value to an unsigned integer value. The integer value can
be of arbitrary length but is typically a byte, word, longword, or quadword. The default size of the
result is a longword.

Format

OTS$CVT_TB L

24

Chapter 2. General-Purpose (OTS$) Routines

fixed-or-dynam c-input-string ,varying-output-val ue [, out put-val ue-si ze]
[,flags-val ue]

Returns

OpenVMS usage: cond_value

type: longword (unsigned)
access: write only
mechanism: by value
Arguments

fixed-or-dynamic-input-string

OpenVMS usage: char_string

type: character string
access: read only
mechanism: by descriptor

Input string containing the string representation of an unsigned binary value that OTSSCVT _TB_L
converts to an unsigned integer value. The fixed-or-dynamic-input-string argument is the address of
a descriptor pointing to the input string. The valid input characters are blanks and the digits 0 and 1.
No sign is permitted.

varying-output-value

OpenVMS usage: varying_arg

type: unspecified
access: write only
mechanism: by reference

Unsigned integer of specified size that OTSSCVT _TB_L creates when it converts the ASCII text
string. The varying-output-value argument is the address of the integer. The value of the output-
value-size argument determines the size in bytes of the output value.

output-value-size

OpenVMS usage: longword_signed

type: longword (signed)
access: read only
mechanism: by value

Arbitrary number of bytes to be occupied by the unsigned integer output value. The output-value-
size argument contains a value that equals the size in bytes of the output value. If the value ofoutput-
value-size is zero or a negative number, OTS$CVT_TB_L returns an input conversion error. If you
omit the output-value-size argument, the default is 4 (longword).

flags-value

25

Chapter 2. General-Purpose (OTS$) Routines

OpenVMS usage: mask_longword

type: longword (unsigned)
access: read only
mechanism: by value

User-supplied flag that OTSSCVT TB_L uses to determine how to interpret blanks within the input
string. The flags-value argument contains this user-supplied flag.

OTS$CVT _TB_L defines the flag as follows:

Bit

Action if Set Action if Clear

0

Ignore blanks. Interpret blanks as zeros.

If you omit the flags-value argument, OTS$CVT_TB_L defaults all flags to clear.

Condition Values Returned

SS$ NORMAL Normal successful completion.
OTS$ INPCONERR Input conversion error. OTSSCVT_TB_L encountered an invalid

character in the fixed-or-dynamic-input-string, an overflow of
varying-output-value, or an invalid output-value-size. In the case of
an invalid character or of an overflow, varying-output-value is set to
ZEerO0.

Example

OPTI ON &
TYPE = EXPLICIT

I+

! Thi s program denonstrates the use of OTS$SCVT_TB L from BASI C.
! Several binary nunbers are read and then converted to their

! i nteger equival ents.

-

I+

! DECLARATI ONS
-

DECLARE STRI NG Bl N_STR

DECLARE LONG BI N_VAL, |, RET_STATUS

DECLARE LONG CONSTANT FLAGS = 17 I 270 + 274

EXTERNAL LONG FUNCTI ON OTS$CVT_TB_L (STRING LONG &
LONG BY VALUE, LONG BY VALUE)

I+

! MAI N PROGRAM
-

I+

! Read the data, convert it to binary, and print the result.
I -

26

Chapter 2. General-Purpose (OTS$) Routines

FOR1 =1 TO5
READ BI N_STR
RET_STATUS = OTS$CVT_TB_L(BIN_STR, BIN_VAL, '4'L, FLAGS)
PRINT BIN STR;" treated as a binary number equal s"; BI N_ VAL
NEXT |

I+

! Done, end the program
I -

GOTO 32767
999 Dat a “i111*, "1 111", "1011011", "11111111", "0O0OOOOOOO"
32767 END

This BASIC example program demonstrates how to call OTSSCVT TB_L to convert binary text to a
longword integer.

The output generated by this BASIC program is as follows:

1111 treated as a binary nunber equals 15

1 111 treated as a binary nunber equals 15
1011011 treated as a binary nunber equals 91
11111111 treated as a binary nunber equals 255
00000000 treated as a binary number equals O

OTS$CVT Tl L

OTSS$CVT TI L — The Convert Signed Integer Text to Integer routine converts an ASCII text string
representation of a signed decimal number to a signed integer value. The default size of the result is a
longword.

Format

OrS$CvT_TI _L
fixed-or-dynam c-input-string ,varying-output-val ue [, out put-val ue-si ze]
[, flags-val ue]

Returns

OpenVMS usage: cond_value

type: longword (unsigned)
access: write only
mechanism: by value
Arguments

fixed-or-dynamic-input-string

OpenVMS usage: char_string

27

Chapter 2. General-Purpose (OTS$) Routines

type: character string
access: read only
mechanism: by descriptor, fixed-length or dynamic string

Input ASCII text string that OTS$SCVT _TI_L converts to a signed integer. The fixed-or-dynamic-
input-string argument is the address of a descriptor pointing to the input string.

The syntax of a valid ASCII text input string is as follows:

<integer-digits>

OTSSCVT TI L always ignores leading blanks.

varying-output-value

OpenVMS usage: varying arg

type: unspecified
access: write only
mechanism: by reference

Signed integer that OTS$SCVT _TI_L creates when it converts the ASCII text string. The varying-
output-value argument is the address of the signed integer. The value of the output-value-
sizeargument determines the size of varying-output-value.

output-value-size

OpenVMS usage: longword_signed

type: longword (signed)
access: read only
mechanism: by value

Number of bytes to be occupied by the value created when OTS$CVT_TI L converts the ASCII text
string to an integer value. The output-value-size argument contains the number of bytes in varying-
output-value.

On VAX systems, valid values for the output-value-size argument are 1, 2, and 4. The value
determines whether the integer value that OTSSCVT TI L creates is a byte, word, or longword.

On Alpha and 164 systems, valid values for the output-value-size argument are 1, 2, 4, and 8. The
value determines whether the integer value that OTSSCVT _TI L creates is a byte, word, longword, or
quadword.

For VAX and Alpha systems, if you specify a 0 (zero) or omit the output-value-size argument, the
size of the output value defaults to 4 (longword). If you specify any other value, OTS$CVT TI L
returns an input conversion error.

flags-value

OpenVMS usage: mask_longword

28

Chapter 2. General-Purpose (OTS$) Routines

type: longword (unsigned)
access: read only
mechanism: by value

User-supplied flags that OTSSCVT _TI_L uses to determine how blanks and tabs are interpreted. The
flags-value argument is an unsigned longword containing the value of the flags.

Bit Action if Set Action if Clear

0 Ignore all blanks. Ignore leading blanks but interpret blanks after the first legal
character as zeros.

4 Ignore tabs. Interpret tabs as invalid characters.

If you omit the flags-value argument, OTSSCVT _TI L defaults all flags to clear.
Condition Values Returned

SS§ NORMAL Normal successful completion.

OTS$ INPCONERR Input conversion error. OTSSCVT_TI L encountered an invalid
character in the fixed-or-dynamic-input-string, an overflow of
varying-output-value, or an invalid output-value-size. In the case of
an invalid character or of an overflow, varying-output-value is set to
Zero.

OTS$CVT TL L

OTSSCVT _TL L — The Convert Logical Text to Integer routine converts an ASCII text string
representation of a FORTRAN-77 L format to a signed integer.

Format

OTS$CVT_TL_L
fixed-or-dynam c-input-string ,varying-output-val ue [, out put-val ue-si ze]

Returns

OpenVMS usage: cond_value

type: longword (unsigned)
access: write only
mechanism: by value
Arguments

fixed-or-dynamic-input-string

OpenVMS usage: char_string

type: character string

29

Chapter 2. General-Purpose (OTS$) Routines

access: read only

mechanism: by descriptor, fixed-length or dynamic string

Input string containing an ASCII text representation of a FORTRAN-77 L format that
OTSSCVT _TL L converts to a signed integer value. The fixed-or-dynamic-input-string argument is
the address of a descriptor pointing to the input string.

Common ASCII text representations of a FORTRAN-77 logical are . TRUE., .FALSE., T, t, F, and f. In
practice, an OTSSCVT _TL L input string is valid if it adheres to the following syntax:
~— —
<blanks>

" ™

T

[<blanks=][.] :: = |=characters>]
| ¢
. _—

VMHIT I A-al

One of the letters T, t, F, or f is required. Other elements in the preceding syntax are defined as
follows:

Term Description
blanks One or more blanks
characters One or more of any character

varying-output-value

OpenVMS usage: varying arg

type: unspecified
access: write only
mechanism: by reference

Signed integer that OTS$SCVT_TL L creates when it converts the ASCII text string. The varying-
output-value argument is the address of the signed integer. The value of the output-value-size
argument determines the size in bytes of the signed integer.

OTSSCVT _TL L returns —1 as the contents of the varying-output-value argument if the character
denoted by "letter" is T or t. Otherwise, OTSSCVT _TL L sets varying-output-value to zero.

output-value-size

OpenVMS usage: longword_signed

type: longword (signed)
access: read only
mechanism: by value

Number of bytes to be occupied by the signed integer created when OTSSCVT TL L converts the
ASCII text string to an integer value. The output-value-size argument contains a value that equals

30

Chapter 2. General-Purpose (OTS$) Routines

the size in bytes of the output value. If output-value-size contains a zero or a negative number,
OTS$CVT _TL L returns an input conversion error.

On VAX systems, valid values for the output-value-size argument are 1, 2, and 4. The value
determines whether the integer value that OTSSCVT TL L creates is a byte, word, or longword.

On Alpha and 164 systems, valid values for the output-value-size argument are 1, 2, 4, and 8. This
value determines whether the integer value that OTS$SCVT_TL L creates is a byte, word, longword,
or quadword.

For VAX, Alpha, and 164 systems, if you omit the output-value-size argument, the default is 4
(longword).

Condition Values Returned

SS$ NORMAL Normal successful completion.

OTS$ INPCONERR Input conversion error. OTSSCVT_TL L encountered an invalid
character in the fixed-or-dynamic-input-string or an invalid output-
value-size. In the case of an invalid character varying-output-value
is set to zero.

OTS$CVT TO L

OTS$CVT _TO_L — The Convert Octal Text to Unsigned Integer routine converts an ASCII text
string representation of an unsigned octal value to an unsigned integer. The integer value can be of
arbitrary length but is typically a byte, word, longword, or quadword. The default size of the result is a
longword.

Format

OTS$CVT_TO L
fi xed-or-dynam c-i nput-string ,varyi ng-output-val ue [, out put-val ue-size]
[,flags-val ue]

Returns

OpenVMS usage: cond_value

type: longword (unsigned)
access: write only
mechanism: by value
Arguments

fixed-or-dynamic-input-string

OpenVMS usage: char_string
type: character string

access: read only

31

Chapter 2. General-Purpose (OTS$) Routines

mechanism: by descriptor, fixed-length or dynamic string

Input string containing the string representation of an unsigned octal value that OTS$CVT TO L
converts to an unsigned integer. The fixed-or-dynamic-input-string argument is the address of a
descriptor pointing to the input string. The valid input characters are blanks and the digits 0 through 7.
No sign is permitted.

varying-output-value

OpenVMS usage: varying_arg

type: unspecified
access: write only
mechanism: by reference

Unsigned integer of specified size that OTSSCVT _TO L creates when it converts the ASCII text
string. The varying-output-value argument is the address of the unsigned integer. The value of the
output-value-size argument determines the size in bytes of the output value.

output-value-size

OpenVMS usage: longword_signed

type: longword integer (signed)
access: read only
mechanism: by value

Arbitrary number of bytes to be occupied by the unsigned integer output value. The output-value-
size argument contains a value that equals the size in bytes of the output value. If the value ofoutput-
value-size is zero or a negative number, OTSSCVT TO_ L returns an input conversion error. If you
omit the output-value-size argument, the default is 4 (longword).

flags-value

OpenVMS usage: mask longword

type: longword (unsigned)
access: read only
mechanism: by value

User-supplied flag that OTSSCVT _TO L uses to determine how to interpret blanks within the input
string. The flags-value argument contains the user-supplied flag described in the following table:

Bit Action if Set Action if Clear

0 Ignore all blanks. Interpret blanks as zeros.

If you omit the flags-value argument, OTSSCVT _TO L defaults the flag to clear.
Condition Values Returned

SS$ NORMAL Normal successful completion.

32

Chapter 2. General-Purpose (OTS$) Routines

OTS$ INPCONERR Input conversion error. OTSSCVT _TO L encountered an invalid
character in the fixed-or-dynamic-input-string, an overflow of
varying-output-value, or an invalid output-value-size. In the case of
an invalid character or of an overflow, varying-output-value is set to
ZEro.

Example
OCTAL_CONV: PROCEDURE OPTI ONS (MAIN) RETURNS (FI XED Bl NARY (31));

% NCLUDE $STSDEF; /* Include definition of return status val ues */
DECLARE OTS$CVT_TO L ENTRY

(CHARACTER (*), /* Input string passed by descriptor */

FI XED BI NARY (31), /* Returned val ue passed by reference */

FI XED BI NARY VALUE, /* Size for returned val ue passed by val ue */

FI XED BI NARY VALUE) /* Flags passed by val ue */

RETURNS (FI XED BI NARY (31)) /* Return status */

OPTI ONS (VARI ABLE) ; /* Arguments nay be onmitted */

DECLARE | NPUT CHARACTER (10);
DECLARE VALUE FI XED BI NARY (31);
DECLARE S| ZE FI XED BI NARY(31) INITIAL(4) READONLY STATIC, /* Longword */
DECLARE FLAGS FI XED BI NARY(31) INITIAL(1) READONLY STATIC;, /* lgnore
bl anks */

ON ENDFI LE (SYSIN) STOP;

DO VH LE (' 1'B); /* Loop continuously, until end of file */
PUT SKIP (2);
GET LI ST (I NPUT) OPTIONS (PROWPT (' Cctal value: '));
STS$VALUE = OTS$CVT_TO L (I NPUT, VALUE, SIZE, FLAGS);
| F A"STS$SUCCESS THEN RETURN (STS$VALUE) ;
PUT SKIP EDIT (I NPUT, 'Cctal equals', VALUE, 'Decinmal')
(A X, A X F(10), X A);
END;

END OCTAL_CONV;

This PL/I program translates an octal value in ASCII into a fixed binary value. The program is run
interactively; press Ctrl/Z to quit.

$ RUN OCTAL

Cctal value: 1

1 Octal equals 1 Decimal

Cctal value: 11

11 Cctal equal s 9 Deci mal

Cctal value: 1017346

1017346 COctal equals 274150 Deci mal
Cctal value: Crl/z

OTS$CVT TU L

OTS$CVT _TU_L — The Convert Unsigned Decimal Text to Integer routine converts an ASCII text
string representation of an unsigned decimal value to an unsigned integer value. By default, the size of
the result is a longword.

33

Chapter 2. General-Purpose (OTS$) Routines

Format

OTS$CVT_TU L
fi xed-or-dynam c-i nput-string ,varying-output-val ue [, out put-val ue-size]
[,flags-val ue]

Returns

OpenVMS usage: cond_value

type: longword (unsigned)
access: write only
mechanism: by value
Arguments

fixed-or-dynamic-input-string

OpenVMS usage: char_string

type: character string
access: read only
mechanism: by descriptor

Input string containing an ASCII text string representation of an unsigned decimal value that
OTSS$CVT TU L converts to an unsigned integer value. The fixed-or-dynamic-input-string
argument is the address of a descriptor pointing to the input string. Valid input characters are the space
and the digits 0 through 9. No sign is permitted.

varying-output-value

OpenVMS usage: varying_arg

type: unspecified
access: write only
mechanism: by reference

Unsigned integer that OTSSCVT TU L creates when it converts the ASCII text string. The varying-
output-value argument is the address of the unsigned integer. The value of the output-value-size
argument determines the size of varying-output-value.

output-value-size

OpenVMS usage: longword_signed

type: longword integer (signed)
access: read only
mechanism: by value

Number of bytes occupied by the value created when OTS$CVT _TU L converts the input string. The
output-value-size argument contains the number of bytes in varying-output-value.

34

Chapter 2. General-Purpose (OTS$) Routines

On VAX systems, valid values for the output-value-size argument are 1, 2, and 4. The value
determines whether the integer value that OTSSCVT _TU _L creates is a byte, word, or longword.

On Alpha and 164 systems, valid values for the output-value-size argument are 1, 2, 4, and 8. The
value determines whether the integer value that OTSSCVT TU_L creates is a byte, word, longword,
or quadword.

For VAX, Alpha, and 164 systems, if you specify a 0 (zero) or omit the output-value-size argument,
the size of the output value defaults to 4 (longword). If you specify any other value, OTS$CVT TU L

returns an input conversion error.

flags-value

OpenVMS usage: mask longword

type: longword (unsigned)
access: read only
mechanism: by value

User-supplied flags that OTSSCVT _TU L uses to determine how blanks and tabs are interpreted. The
flags-value argument contains the user-supplied flags as described in the following table:

Bit Action if Set Action if Clear

0 Ignore all blanks. Ignore leading blanks but interpret blanks after the first legal
character as zeros.

4 Ignore tabs. Interpret tabs as invalid characters.

If you omit the flags-value argument, OTSSCVT _TU L defaults all flags to clear.
Condition Values Returned

SS§ NORMAL Normal successful completion.

OTS$ INPCONERR Input conversion error. OTSSCVT _TU_L encountered an invalid
character in the fixed-or-dynamic-input-string, overflow of varying-
output-value, or an invalid output-value-size. In the case of an
invalid character or of an overflow, varying-output-value is set to
Zero.

OTS$CVT TZ L

OTS$CVT TZ L — The Convert Hexadecimal Text to Unsigned Integer routine converts an ASCII
text string representation of an unsigned hexadecimal value to an unsigned integer. The integer value
can be of arbitrary length but is typically a byte, word, longword, or quadword. The default size of the
result is a longword.

Format

OTS$CVT_TZ_L
fixed-or-dynam c-input-string ,varying-output-val ue [, out put-val ue-si ze]
[, flags-val ue]

35

Chapter 2. General-Purpose (OTS$) Routines

Returns

OpenVMS usage: cond_value

type: longword (unsigned)
access: write only
mechanism: by value
Arguments

fixed-or-dynamic-input-string

OpenVMS usage: char_string

type: character string
access: read only
mechanism: by descriptor, fixed-length or dynamic string

Input string containing the string representation of an unsigned hexadecimal value that

OTSSCVT _TZ_L converts to an unsigned integer. The fixed-or-dynamic-input-string argument is
the address of a descriptor pointing to the input string. The valid input characters are blanks, the digits
0 through 7, and the letters A through F. Letters can be uppercase or lowercase. No sign is permitted.

varying-output-value

OpenVMS usage: varying_arg

type: unspecified
access: write only
mechanism: by reference

Unsigned integer of specified size that OTS$CVT TZ L creates when it converts the ASCII text
string. The varying-output-value argument is the address of the unsigned integer. The value of the
output-value-size argument determines the size in bytes of the output value.

output-value-size

OpenVMS usage: longword_signed

type: longword (signed)
access: read only
mechanism: by value

Arbitrary number of bytes to be occupied by the unsigned integer output value. The output-value-
size argument contains a value that equals the size in bytes of the output value. If the value ofoutput-
value-size is zero or a negative number, OTS$SCVT_TZ L returns an input conversion error. If you
omit the output-value-size argument, the default is 4 (longword).

flags-value

OpenVMS usage: mask_longword

36

Chapter 2. General-Purpose (OTS$) Routines

type: longword (unsigned)
access: read only
mechanism: by value

User-supplied flags that OTSSCVT _TZ L uses to determine how to interpret blanks within the input
string. The flags-value argument contains these user-supplied flags as described in the following
table:

Bit Action if Set Action if Clear

0 Ignore all blanks. Interpret blanks as zeros.

If you omit the flags-value argument, OTSSCVT _TZ L defaults the flag to clear.
Condition Values Returned

SS$ NORMAL Normal successful completion.

OTS$ INPCONERR Input conversion error. OTSSCVT_TZ_L encountered an invalid
character in the fixed-or-dynamic-input-string, overflow of varying-
output-value, or an invalid output-value-size. In the case of an
invalid character or of an overflow, varying-output-value is set to
Zero.

Examples

+
Thi s BASIC program converts a character string representing
a hexadeci mal value to a | ongword.

1. 10

100 I+

I Illustrate (and test) OIS convert hex-string to | ongword
I -

EXTERNAL LONG FUNCTI ON OTS$CVT_TZ L

EXTERNAL LONG CONSTANT OTS$ | NPCONERR

| NPUT "Enter hex nuneric"; HEXVAL$

RET_STAT% = OTS$CVT_TZ_ L(HEXVAL$, HEX%)

PRI NT "Conversion error " |F RET_STAT% = OTS$_| NPCONERR

PRI NT "Deci mal val ue of "; HEXVALS;" is"; HEX% &
| F RET_STAT% <> OTS$_| NPCONERR

This BASIC example accepts a hexadecimal numeric string, converts it to a decimal integer, and
prints the result. One sample of the output generated by this program is as follows:

$ RUN HEX
Enter hex nuneric? A
Deci mal value of Ais 10

2. HEX_CONV: PROCEDURE OPTI ONS (MAIN) RETURNS (FI XED Bl NARY (31));

% NCLUDE $STSDEF; /* Include definition of return status val ues */
DECLARE OTS$CVT _TZ L ENTRY
(CHARACTER (*), /* Input string passed by descriptor */

37

Chapter 2. General-Purpose (OTS$) Routines

FI XED BI NARY (31), /* Returned val ue passed by reference */
FI XED BI NARY VALUE, /* Size for returned val ue passed by

val ue */
FI XED BI NARY VALUE) /* Flags passed by val ue */
RETURNS (FI XED BI NARY (31)) /* Return status */
OPTI ONS (VARI ABLE); /* Argunents may be omitted */

DECLARE | NPUT CHARACTER (10);
DECLARE VALUE FI XED BI NARY (31);
DECLARE FLAGS FI XED BI NARY(31) INITIAL(1) READONLY STATIC;, /* lgnore
bl anks */

ON ENDFI LE (SYSIN) STOP;

DO VHI LE (' 1'B); /* Loop continuously, until end of file */
PUT SKIP (2);
GET LI ST (I NPUT) OPTIONS (PROVPT (' Hex value: '));
STS$VALUE = OTS$CVT_TZ_L (I NPUT, VALUE, , FLAGS);
| F "STS$SUCCESS THEN RETURN (STS$VALUE) ;
PUT SKIP EDI T (I NPUT, 'Hex equals', VALUE, 'Decinal')
(A X, A X F(10), X A);
END;

END HEX_CONV;

This PL/I example translates a hexadecimal value in ASCII into a fixed binary value. This
program continues to prompt for input values until the user presses Ctrl/Z.

One sample of the output generated by this program is as follows:

$ RUN HEX
Hex value: 1A
1A Hex equal s 26 Deci mal

Hex value: C
C Hex equal s 12 Deci nal

Hex value: Crl/Z

OTS$DIVCx

OTS$DIVCx — The Complex Division routines return a complex result of a division on complex
numbers.

Format

OTsS$Dl VC conpl ex-di vi dend , conpl ex- di vi sor

Ors$bl VCD_R3 conpl ex- di vi dend , conpl ex-di vi sor (VAX only)
Ors$Dl VCG_R3 conpl ex-di vi dend , conpl ex- di vi sor

OTS$DI VCS conpl ex-di vi dend , conpl ex- di vi sor

OTS$DI VCT_R3 conpl ex-di vi dend , conpl ex-di vi sor

Each of these formats corresponds to one of the floating-point complex types.

38

Chapter 2. General-Purpose (OTS$) Routines

Returns

OpenVMS usage: complex number

type: F_floating complex, D_floating complex, G_floating complex, IEEE
S_floating complex, IEEE T_floating complex,

access: write only

mechanism: by value

Complex result of complex division. OTS$SDIVC returns an F-floating complex number.
OTS$DIVCD R3 returns a D-floating complex number. OTS$DIVCG_R3 returns a G-floating
complex number. OST$DIVCS returns an IEEE S-floating complex number. OTS$DIVCT R3 returns
an [EEE T-floating complex number.

Arguments

complex-dividend

OpenVMS usage: complex number

type: F _floating complex, D floating complex, G_floating complex, IEEE
S_floating complex, IEEE T _floating complex

access: read only

mechanism: by value

Complex dividend. The complex-dividend argument contains a floating-point complex value. For

OTS$DIVC, complex-dividend is an F-floating complex number. For OTS$DIVCD_R3, complex-
dividend is a D-floating complex number. For OTS$DIVCG_R3, complex-dividend is a G-floating
complex number. For OTS$DIVCT _R3, complex-dividend is an IEEE T-floating complex number.

complex-divisor

OpenVMS usage: complex number

type: F_floating complex, D_floating complex, G_floating complex, IEEE
S_floating complex, IEEE T_floating complex

access: read only

mechanism: by value

Complex divisor. The complex-divisor argument contains the value of the divisor. For
OTS$DIVC,complex-divisor is an F-floating complex number. For OTS§DIVCD R3, complex-
divisor is a D-floating complex number. For OTS$DIVCG_R3, complex-divisor is a G-floating
complex number. For OTS$SDIVCS, complex-divisor is an IEEE S-floating complex number. For
OTS$DIVCS, complex-dividend is an IEEE S-floating complex number. For OTS$SDIVCT R3,
complex-divisoris an IEEE T-floating complex number.

Description

These routines return a complex result of a division on complex numbers.

The complex result is computed as follows:

39

Chapter 2. General-Purpose (OTS$) Routines

1. Let (a,b) represent the complex dividend.
2. Let (c,d) represent the complex divisor.
3. Let (r,1) represent the complex quotient.

The results of this computation are as follows:

(ac + bd)/(c? + d?)
(bc - ad)/(c? + d?)

r
[

On Alpha and 164 systems, some restrictions apply when linking OTS$DIVC or OTS$SDIVCG_R3.
See Chapter 1 for more information about these restrictions.

Condition Values Signaled

SS$ FLTDIV_F Arithmetic fault. Floating-point division by zero.
SS$ FLTOVF F Arithmetic fault. Floating-point overflow.
Examples
1.
C+
C This Fortran exanple fornms the conpl ex
C qguotient of two conpl ex numbers using
C OTsS$Dl VC and the Fortran random nunber
C gener at or RAN.
C
C Declare Z1, Z2, Z Q and OIS$DI VC as conpl ex val ues.
C OTS$DI VC will return the conplex quotient of Z1 divided
C by Z2: Z Q = OIS$DI VC[WAL(REAL(Z1)), %WAL(Al MAG Z1),
C %W/AL(REAL(Z2)), 9W/AL(AI MAGQZ2))
C-
COVPLEX Z1, Z2,Z_Q OrS$DI VC
C+
C CGenerate a conpl ex nunber.
C-
Z1 = (8.0,4.0)
C+
C Gener at e anot her conpl ex nunber.
C-
Z2 = (1.0,1.0)
C+
C Conpute the conpl ex quotient of Z1i/Z2.
C-
Z Q = OTS$DI VC(W/AL(REAL(Z1)), 9WAL(AI MAG(Z1)), WAL(REAL(Z2)),
+ %/AL(Al MAG(Z2)))
TYPE *, ' The conplex quotient of',Z1,' divided by ',Zz2," is'
TYPE *, ' ',Z Q
END

This Fortran program demonstrates how to call OTS$SDIVC. The output generated by this program
is as follows:

The conpl ex quotient of (8.000000, 4.000000) divided by
(1.000000, 1. 000000)

40

Chapter 2. General-Purpose (OTS$) Routines

is (6.000000, -2.000000)

OOOOOOOOOQ

This Fortran exanple forns the conpl ex
guotient of two conpl ex numbers by using
Ors$Dl VCG R3 and the Fortran random nunber
gener at or RAN.
Declare Z1, Z2, and Z_Q as conpl ex val ues. OTS$DI VCG_R3
will return the conplex quotient of Z1 divided by Z2:
Z_Q= 271/ 22
COWPLEX*16 Z1,72,Z Q
CGenerate a conpl ex numnber.
Z1 = (8.0,4.0)
CGener ate anot her conpl ex number.

Z2 = (1.0,1.0)

Conpute the conpl ex quotient of Z1i/Z2.

Z_ Q= 271/ 22

TYPE *, ' The conplex quotient of',Z1,' divided by ',Z2," is'
TYPE *, ' ',Z2 Q

END

This Fortran example uses the OTS$SDIVCG_R3 entry point instead. Notice the difference in the
precision of the output generated:

The conpl ex quotient of (8.000000000000000, 4. 000000000000000) di vi ded

by

(1. 000000000000000, 1. 000000000000000) is

(6.000000000000000, - 2. 000000000000000)

OTS$DIV_PK_LONG

OTS$DIV_PK LONG — The Packed Decimal Division with Long Divisor routine divides fixed-
point decimal data, which is stored in packed decimal form, when precision and scale requirements
for the quotient call for multiple precision division. The divisor must have a precision of 30 or 31

digits.

Format

Ors$Dl V_PK_LONG
packed- deci mal - di vi dend , packed-deci nal - di vi sor , di vi sor-precision
, packed- deci mal - quoti ent , quotient-precision ,precision-data ,scal e-data

Returns

OpenVMS usage: cond_value

type:

longword (unsigned)

41

Chapter 2. General-Purpose (OTS$) Routines

access: write only
mechanism: by value
Arguments

packed-decimal-dividend

OpenVMS usage: varying_arg

type: packed decimal string
access: read only
mechanism: by reference

Dividend. The packed-decimal-dividend argument is the address of a packed decimal string that
contains the shifted dividend.

Before being passed as input, the packed-decimal-dividend argument is always multiplied by 10°,
where c is defined as follows:

¢ = 31 - prec(packed-deci nal - di vi dend)
Multiplying packed-decimal-dividend by 10° makes packed-decimal-dividend a 31-digit number.

packed-decimal-divisor

OpenVMS usage: varying_arg

type: packed decimal string
access: read only
mechanism: by reference

Divisor. The packed-decimal-divisor argument is the address of a packed decimal string that contains
the divisor.

divisor-precision

OpenVMS usage: word_signed

type: word (signed)
access: read only
mechanism: by value

Precision of the divisor. The divisor-precision argument is a signed word that contains the precision
of the divisor. The high-order bits are filled with zeros.

packed-decimal-quotient

OpenVMS usage: varying_arg

type: packed decimal string
access: write only
mechanism: by reference

42

Chapter 2. General-Purpose (OTS$) Routines

Quotient. The packed-decimal-quotient argument is the address of the packed decimal string into
which OTS$DIV_PK LONG writes the quotient.

quotient-precision

OpenVMS usage: word_signed

type: word (signed)
access: read only
mechanism: by value

Precision of the quotient. The quotient-precision argument is a signed word that contains the
precision of the quotient. The high-order bits are filled with zeros.

precision-data

OpenVMS usage: word_signed

type: word (signed)
access: read only
mechanism: by value

Additional digits of precision required. The precision-data argument is a signed word that contains
the value of the additional digits of precision required.

OTS$DIV_PK LONG computes the precision-data argument as follows:
preci sion-data = scal e(packed-deci nal - quoti ent)

+ scal e(packed- deci mal - di vi sor)

- scal e(packed- deci mal - di vi dend)

- 31 + prec(packed-deci nal - di vi dend)

scale-data

OpenVMS usage: word_signed

type: word (signed)
access: read only
mechanism: by value

Scale factor of the decimal point. The scale-data argument is a signed word that contains the scale
data.

OTS$DIV_PK LONG defines the scale-data argument as follows:

scal e-data = 31 - prec(packed-deci mal -di vi sor)

Description

On VAX systems, before using this routine, you should determine whether it is best to use
OTS$DIV_PK LONG, OTS$DIV_PK_ SHORT, or the VAX instruction DIVP. To determine this, you
must first calculate b, where b is defined as follows:

b = scal e(packed-deci nal - quoti ent)
+ scal e(packed- deci mal - di vi sor)
- scal e(packed- deci mal - di vi dend)

43

Chapter 2. General-Purpose (OTS$) Routines

+ prec(packed-deci mal - di vi dend)

If b is greater than 31, then OTSSDIV_PK LONG can be used to perform the division. If b is less
than 31, you could use the instruction DIVP instead.

When using this routine on an OpenVMS Alpha system, an 164 system, or on an OpenVMS
VAX system and you have determined that you cannot use DIVP, you need to determine whether
you should use OTS$DIV_PK_LONG or OTSSDIV_PK_SHORT. To determine this, you must
examine the value of scale-data. If scale-data is less than or equal to 1, then you should use
OTS$DIV_PK_LONG. If scale-data is greater than 1, you should use OTS$DIV_PK_SHORT
instead.

Condition Values Returned

SS$ _FLTDIV Fatal error. Division by zero.
Example
1

OPTI ON &

TYPE = EXPLICIT

I+

! Thi s program uses OTS$DI V_PK LONG to perform packed deci nmal
! di vi si on.

I -

I+

! DECLARATI ONS

I -

DECLARE DECI MAL (31, 2) NATI ONAL_DEBT

DECLARE DECI MAL (30, 3) POPULATI ON

DECLARE DECI MAL (10, 5) PER_CAPI TA_DEBT

EXTERNAL SUB OTS$DI V_PK_LONG (DECI MAL(31,2), DECIMAL (30, 3), &
WORD BY VALUE, DECI MAL(10, 5), WORD BY VALUE, WORD BY VALUE, &
WORD BY VALUE)

I+

! Pronpt the user for the required input.
I -

I NPUT "Enter national debt: ";NATI ONAL_DEBT
I NPUT "Enter current popul ation: ";POPULATI ON

Performthe division and print the result.

scal e(divd) = 2
scal e(divr) = 3
scal e(quot) =5

44

Chapter 2. General-Purpose (OTS$) Routines

prec(divd) = 31
prec(divr) = 30
prec(quot) = 10

prec-data = scal e(quot) + scale(divr) - scale(divd) - 31 +
prec(divd)

prec-data = 5 + 3 - 2 - 31 + 31

prec-data = 6

b = scal e(quot) + scale(divr) - scale(divd) + prec(divd)

b= 5 + 3 - 2 + 31

b = 37

c = 31 - prec(divd)

c =31 - 31

c =0

scal e-dat a
scal e-dat a
scal e-dat a

31 - prec(divr)
31 - 30
1

b is greater than 31, so either OTS$D V_PK _LONG or
OTsS$Dl V_PK_SHORT may be used to performthe division
If bis less than or equal to 31, then the DI VP
i nstruction may be used.

scal e-data is less than or equal to 1, so OTS$D V_PK LONG
shoul d be used instead of OTIS$D V_PK_ SHORT.

CALL OTS$DI V_PK_LONG(NATI ONAL_DEBT, POPULATION, '30'W
PER_CAPI TA DEBT, & '10'W '6'W '"1'W

PRINT "The per capita debt is "; PER CAPI TA DEBT
END

This BASIC example program uses OTS$DIV_PK LONG to perform packed decimal division. One
example of the output generated by this program is as follows:

$ RUN DEBT

Enter national debt: ? 12345678
Enter current population: ? 1212
The per capita debt is 10186.20297

OTS$DIV_PK_SHORT

OTS$DIV_PK SHORT — The Packed Decimal Division with Short Divisor routine divides fixed-
point decimal data when precision and scale requirements for the quotient call for multiple-precision
division.

Format
Orss$Dl V_PK_SHORT

packed- deci mal - di vi dend , packed-deci nal - di vi sor , di vi sor-precision
, packed-deci nal - quoti ent , quotient-precision ,precision-data

45

Chapter 2. General-Purpose (OTS$) Routines

Returns

OpenVMS usage: cond_value

type: longword (unsigned)
access: write only
mechanism: by value
Arguments

packed-decimal-dividend

OpenVMS usage: varying_arg

type: packed decimal string
access: read only
mechanism: by reference

Dividend. The packed-decimal-dividend argument is the address of a packed decimal string that
contains the shifted dividend.

Before being passed as input, the packed-decimal-dividend argument is always multiplied by 10,
where ¢ is defined as follows:

¢ = 31 - prec(packed-deci nal - di vi dend)
Multiplying packed-decimal-dividend by 10 makes packed-decimal-dividend a 31-digit number.
packed-decimal-divisor

OpenVMS usage: varying_arg

type: packed decimal string
access: read only
mechanism: by reference

Divisor. The packed-decimal-divisor argument is the address of a packed decimal string that contains
the divisor.

divisor-precision

OpenVMS usage: word_signed

type: word (signed)
access: read only
mechanism: by value

Precision of the divisor. The divisor-precision argument is a signed word integer that contains the
precision of the divisor; high-order bits are filled with zeros.

packed-decimal-quotient

OpenVMS usage: varying_arg

46

Chapter 2. General-Purpose (OTS$) Routines

type: packed decimal string
access: write only
mechanism: by reference

Quotient. The packed-decimal-quotient argument is the address of a packed decimal string into
which OTS$DIV_PK_ SHORT writes the quotient.

quotient-precision

OpenVMS usage: word_signed

type: word (signed)
access: read only
mechanism: by value

Precision of the quotient. The quotient-precision argument is a signed word that contains the
precision of the quotient; high-order bits are filled with zeros.

precision-data

OpenVMS usage: word_signed

type: word (signed)
access: read only
mechanism: by value

Additional digits of precision required. The precision-data argument is a signed word that contains
the value of the additional digits of precision required.

OTS$DIV_PK SHORT computes the precision-data argument as follows:

preci sion-data = scal e(packed-deci nal - quoti ent)
+ scal e(packed- deci mal - di vi sor)

- scal e(packed- deci mal - di vi dend)

- 31 + prec(packed-deci nal - di vi dend)

Description

On VAX systems, before using this routine, you should determine whether it is best to use
OTS$DIV_PK LONG, OTS$DIV_PK SHORT, or the VAX instruction DIVP. To determine this, you
must first calculate b, where b is defined as follows:

b = scal e(packed-deci mal - quoti ent) + scal e(packed-deci mal -di vi sor) -
scal e(packed- deci mal - di vi dend) + prec(packed-deci mal - di vi dend)

If b is greater than 31, then OTS$DIV_PK_SHORT can be used to perform the division. If b is less
than 31, you could use the VAX instruction DIVP instead.

When using this routine on an OpenVMS Alpha system, an 164 system, or on an OpenVMS
VAX system and you have determined that you cannot use DIVP, you need to determine whether
you should use OTS$DIV_PK LONG or OTS$DIV_PK SHORT. To determine this, you must
examine the value of scale-data. If scale-data is less than or equal to 1, then you should use
OTSS$DIV_PK LONG. If scale-data is greater than 1, you should use OTS$DIV_PK_SHORT
instead.

47

Chapter 2. General-Purpose (OTS$) Routines

Condition Values Returned

SS$ FLTDIV Fatal error. Division by zero.

OTS$JUMP_TO_BPV (164 Only)

OTS$JUMP_TO_BPV (164 Only) — The Jump to Bound Procedure Value routine transfers control to
a bound procedure.

Format
Ors$JUMP_TO BPV bound- func-val ue , st andard-args |,
Returns

None.

Arguments

bound-func-value

OpenVMS usage: quadword address

type: address
access: read only
mechanism: by value in register R1 (GP)

Function value for the procedure being called.
standard-args

Zero or more arguments to be passed to the called routine, passed using standard conventions
(including the Al register).

Description

When a procedure value that refers to a bound procedure descriptor is used to make a call, the routine
designated in the OTS_ENTRY field (typically OTS$JUMP_TO_BPV) receives control with the

GP register pointing to the bound procedure descriptor (instead of a global offset table). This routine
performs the following steps:

1. Load the "real" target entry address into a volatile branch register, for example, B6.

2. Load the dynamic environment value into the appropriate uplevel-addressing register for the target
function, for example, OTS$SJUMP_TO_BPV uses RO.

3. Load the "real" target GP address into the GP register.
4. Transfer control (branch, not call) to the target entry address.

Control arrives at the real target procedure address with both the GP and environment register values
established appropriately.

48

Chapter 2. General-Purpose (OTS$) Routines

Support routine OTS$JUMP_TO BPV is included as a standard library routine. The operation of
OTS$JUMP_TO_BPV is logically equivalent to the following code:

OTS$JUMP_TO BPV: :

add gp=gp, 24 ; Adjust GP to point to entry address
| d8 r9=[gpl, 16 ; Load target entry address

nov b6=r9

| d8 r9=[gp], -8 ; Load target environnent val ue

| d8 ap=[gp] ; Load target GP

br b6 ; Transfer to target

Note that there can be multiple OTS$JUMP_TO_BPV-like support routines, corresponding to
different target registers where the environment value should be placed. The code that creates the
bound function descriptor is also necessarily compiled by the same compiler that compiles the target
procedure, thus can correctly select an appropriate support routine.

Condition Values Returned

None.

OTS$MOVE3

OTS$SMOVE3 — The Move Data Without Fill routine moves up to 2321 bytes (2,147,483,647
bytes) from a specified source address to a specified destination address.

Format

OTS$MOVE3 | engt h-val ue , source-array , destination-array
Corresponding JSB Entry Point
OTS$MOVE3_R5

Returns

None.

Arguments

length-value

OpenVMS usage: longword_signed

type: longword (signed)
access: read only
mechanism: by value

Number of bytes of data to move. The length-value argument is a signed longword that contains the
number of bytes to move. The value of length-value may range from 0 to 2,147,483,647 bytes.

source-array

OpenVMS usage: vector_byte unsigned

49

Chapter 2. General-Purpose (OTS$) Routines

type: byte (unsigned)
access: read only
mechanism: by reference, array reference

Data to be moved by OTSSMOVE3. The source-array argument contains the address of an unsigned
byte array that contains this data.

destination-array

OpenVMS usage: vector_byte unsigned

type: byte (unsigned)
access: write only
mechanism: by reference, array reference

Address into which source-array will be moved. The destination-array argument is the address of
an unsigned byte array into which OTS$MOVE3 writes the source data.

Description

OTS$MOVES3 performs the same function as the VAX MOVC3 instruction except that the length-
value is a longword integer rather than a word integer. When called from the JSB entry point, the
register outputs of OTS$MOVE3_R5 follow the same pattern as those of the MOVC3 instruction:

RO 0

R1 Address of one byte beyond the source string

R2 0

R3 Address of one byte beyond the destination string
R4 0

RS 0

For more information, see the description of the MOVC3 instruction in the VAX Architecture
Reference Manual. See also the routine LIBSMOVC3, which is a callable version of the MOVC3
instruction.

Condition Values Returned

None.

OTS$MOVES

OTSSMOVES — The Move Data with Fill routine moves up to 2321 bytes (2,147,483,647
bytes) from a specified source address to a specified destination address, with separate source and
destination lengths, and with fill. Overlap of the source and destination arrays does not affect the
result.

Format

OTS$MOVES

50

Chapter 2. General-Purpose (OTS$) Routines

| ongwor d-int-source-length ,source-array ,fill-value
,l ongword-int-dest-length ,destination-array

Corresponding JSB Entry Point

OTS$MOVES_R5

Returns

None.

Arguments

longword-int-source-length

OpenVMS usage: longword_signed

type: longword (signed)
access: read only
mechanism: by value

Number of bytes of data to move. The longword-int-source-length argument is a signed longword
that contains this number. The value of longword-int-source-length may range from 0 to
2,147,483,647.

source-array

OpenVMS usage: vector_byte unsigned

type: byte (unsigned)
access: read only
mechanism: by reference, array reference

Data to be moved by OTS$MOVES. The source-array argument contains the address of an unsigned
byte array that contains this data.

fill-value

OpenVMS usage: byte_unsigned

type: byte (unsigned)
access: read only
mechanism: by value

Character used to pad the source data if longword-int-source-length is less than longword-int-dest-
length. The fill-value argument contains the address of an unsigned byte that is this character.

longword-int-dest-length

OpenVMS usage: longword_signed
type: longword (signed)

access: read only

51

Chapter 2. General-Purpose (OTS$) Routines

mechanism: by value

Size of the destination area in bytes. The longword-int-dest-length argument is a signed
longword containing this size. The value of longword-int-dest-length may range from 0 through
2,147,483,647.

destination-array

OpenVMS usage: vector_byte unsigned

type: byte (unsigned)
access: write only
mechanism: by reference, array reference

Address into which source-array is moved. The destination-array argument is the address of an
unsigned byte array into which OTSSMOVES writes the source data.

Description

OTSSMOVES performs the same function as the VAX MOVCS instruction except that the longword-
int-source-length and longword-int-dest-length arguments are longword integers rather than word
integers. When called from the JSB entry point, the register outputs of OTSSMOVES_ RS follow the
same pattern as those of the MOVCS instruction:

RO Number of unmoved bytes remaining in source string
R1 Address of one byte beyond the source string

R2 0

R3 Address of one byte beyond the destination string

R4 0

RS 0

For more information, see the description of the MOVCS instruction in the VAX Architecture
Reference Manual. See also the routine LIBSMOVCS, which is a callable version of the MOVCS
instruction.

Condition Values Returned

None.

OTSSMULCXx

OTS$SMULCx — The Complex Multiplication routines calculate the complex product of two complex
values.

Format
OTS$MULCD_R3 conpl ex-mul tiplier ,conplex-multiplicand (VAX only)
OTS$MULCG R3 conpl ex-mul tiplier ,conplex-mltiplicand

OTS$MULCT_R3 conpl ex-mul tiplier ,conplex-mltiplicand

52

Chapter 2. General-Purpose (OTS$) Routines

OTS$MULCS conpl ex-mul tiplier ,conmplex-multiplicand

These formats correspond to the D-floating, G-floating, IEEE S-floating, and IEEE T-floating
complex types.

Returns

OpenVMS usage: complex_number

type: D_floating complex, G_floating complex, IEEE S floating complex, IEEE
T_floating complex,

access: write only

mechanism: by value

Complex result of multiplying two complex numbers. OTSSMULCD_R3 returns a D-floating
complex number. OTSSMULCG_R3 returns a G-floating complex number. OTS$MULCS returns an
IEEE S-Floating complex number. OTSSMULCT _R3 returns an IEEE T-floating complex number.

Arguments

complex-multiplier

OpenVMS usage: complex number

type: D_floating complex, G_floating complex, S_floating complex, S_floating
complex

access: read only

mechanism: by value

Complex multiplier. The complex-multiplier argument contains the complex multiplier. For
OTSSMULCD_R3, complex-multiplier is a D-floating complex number. For OTSSMULCG_R3,
complex-multiplier is a G-floating complex number. For OTSSMULCS, complex-multiplier is a
IEEE S-Floating complex number. For OTSSMULCT _R3, complex-multiplier is an IEEE T-floating
complex number.

complex-multiplicand

OpenVMS usage: complex number

type: D_floating complex, G_floating complex, IEEE S_floating complex, IEEE
T_floating complex

access: read only

mechanism: by value

Complex multiplicand. The complex-multiplicand argument contains the complex multiplicand. For
OTSSMULCD_R3, complex-multiplicand is a D-floating complex number. For OTS$MULCG_R3,
complex-multiplicand is a G-floating complex number. For OTS$MULCS, complex-multiplicandis
an IEEE S-floating complex number. For OTSSMULCT _R3, complex-multiplicand is an IEEE T-
floating complex number.

Description

OTSS$SMULCx calculates the complex product of two complex values.

53

Chapter 2. General-Purpose (OTS$) Routines

The complex product is computed as follows:

1. Let (a,b) represent the complex multiplier.

2. Let (c,d) represent the complex multiplicand.
3. Let (r,i) represent the complex product.

The results of this computation are as follows:

(a,b) * (c,d) = (ac-bd) + y-1(ad+bc)
Therefore: r ac - bd
Therefore: i ad + bc

On Alpha and 164 systems, some restrictions apply when linking OTS$MULCG_R3, OTS$MULCS,
and OTSSMULCT R3. See Chapter 1 for more information about these restrictions.

Condition Values Signaled

SS$ FLTOVF F Floating value overflow can occur.

SS$ ROPRAND Reserved operand. OTS$MULCx encountered a floating-point
reserved operand because of incorrect user input. A floating-point
reserved operand is a floating-point datum with a sign bit of 1 and a
biased exponent of zero. Floating-point reserved operands are reserved

for future OpenVMS use.
Example
C+
C This Fortran exanple forns the product of
C two conpl ex nunbers using OTS$MULCD R3
C and the Fortran random nunber generator RAN.
C
C Declare Z1, Z2, and Z _Q as conpl ex val ues. OTS$MILCD R3
C returns the conpl ex product of Z1 tines Z2:
C ZQ=21* 22
C

COWPLEX*16 Z71,722,7_Q

C+
C Generate a conpl ex nunber.
C
Z1 = (8.0,4.0)
C+
C Gener at e anot her conpl ex numnber.
C
Z2 = (2.0,3.0)
C+
C Conput e the conpl ex product of Z1*Z2.
C

ZQ=21* 22

TYPE *, ' The conplex product of',ZzZ1,' tinmes ',Z2," is'
TYPE *, ' ',Z Q

END

54

Chapter 2. General-Purpose (OTS$) Routines

This Fortran example uses OTSSMULCD_R3 to multiply two complex numbers. The output
generated by this program is as follows:

The conpl ex product of (8.000000000000000, 4. 000000000000000) ti mes
(2. 000000000000000, 3. 000000000000000) is
(4.000000000000000, 32. 00000000000000)

OTS$POWCXCx

OTS$POWCxCx — The Raise a Complex Base to a Complex Floating-Point Exponent routines raise
a complex base to a complex exponent.

Format

OTS$PONCC conpl ex- base , conpl ex- exponent - val ue

OTS$PONCDCD_R3 conpl ex- base , conpl ex- exponent - val ue (VAX only)
OTS$PONCGCG _R3 conpl ex- base , conpl ex- exponent - val ue
OTS$PONCSCS conpl ex- base , conpl ex- exponent - val ue

OTS$PONCTCT_R3 conpl ex- base , conpl ex- exponent - val ue

Each of these formats corresponds to one of the floating-point complex types.

Returns

OpenVMS usage: complex number

type: F_floating complex, D floating complex, G_floating complex, IEEE
S_floating complex, IEEE T_floating complex

access: write only

mechanism: by value

Result of raising a complex base to a complex exponent. OTSSPOWCC returns an F-floating complex
number. OTSSPOWCDCD_R3 returns a D-floating complex number. OTS$POWCGCG_R3 returns
a G-floating complex number. OTS$§POWCSCS returns an IEEE S-floating complex number.
OTS$POWCTCT R3 returns an IEEE T-floating complex number.

Arguments

complex-base

OpenVMS usage: complex number

type: F_floating complex, D floating complex, G_floating complex, IEEE
S_floating complex, IEEE T_floating complex

access: read only

mechanism: by value

Complex base. The complex-base argument contains the value of the base. For OTS$POWCC,
complex-base is an F-floating complex number. For OTS§POWCDCD_R3, complex-base is a
D-floating complex number. For OTS$POWCGCG_R3, complex-base is a G-floating complex

55

Chapter 2. General-Purpose (OTS$) Routines

number. For OTS$POWCSCS, complex-base is an IEEE S-floating complex number. For
OTS$POWCTCT R3, complex-base is an IEEE T-floating complex number.

complex-exponent-value

OpenVMS usage: complex_number

type: F _floating complex, D floating complex, G_floating complex, IEEE
S floating complex, IEEE T floating complex

access: read only

mechanism: by value

Complex exponent. The complex-exponent-value argument contains the value of the
exponent. For OTSSPOWCC, complex-exponent-value is an F-floating complex number.
For OTSSPOWCDCD_R3, complex-exponent-value is a D-floating complex number. For
OTS$SPOWCGCG_R3, complex-exponent-value is a G-floating complex number. For
OTS$POWCSCS, complex-exponent-value is an IEEE S-floating complex number. For
OTSSPOWCTCT R3, complex-exponent-value is an IEEE T-floating complex number.

Description

OTS$POWCC, OTSSPOWCDCD_R3, OTSSPOWCGCG_R3, OTS$SPOWCSCS, and
OTSSPOWCSCT R3 raise a complex base to a complex exponent. The American National Standard
FORTRAN-77 (ANSI X3.9—1978) defines complex exponentiation as follows:

x’ = exp(y * log(x))
In this example, x and y are of type COMPLEX.

On Alpha and 164 systems, some restrictions apply when linking OTSSPOWCC or
OTSSPOWCGCG_R3. See Chapter 1 for more information about these restrictions.

Condition Values Signaled

MTHS _INVARGMAT Invalid argument in math library. Base is (0.,0.).
MTHS$ FLOOVEMAT Floating-point overflow in math library.
SS$ ROPRAND Reserved operand.
Examples
1. C+
C This Fortran exanple raises a conplex base to a conpl ex
C power using OTS$POACC.
C
C Declare Z1, Z2, Z3, and OIS$PONCC as conpl ex val ues. Then OTS$PONCC
C returns the conplex result of Z1**Z2: Z3 = OTS$PONCC(71, 22),
C where Z1 and Z2 are passed by val ue.
C

COWPLEX Z1, Z2, Z3, OTS$PONCC
C+
C Generate a conpl ex base.

56

Chapter 2. General-Purpose (OTS$) Routines

Z1 = (2.0,3.0)

C+
C Cenerate a conpl ex power.
C
Z2 = (1.0,2.0)
C+
C Conput e the conpl ex val ue of Z1**Z2.
C
Z3 = OTS$PONCC(%W/AL(REAL(Z1)), %W/AL(AI MAGZ1)),
+ %WAL(REAL(Z2)), WAL(A MAG(Z2)))
TYPE *, ' The value of',Z1,'**' 72," is',6Z3
END

This Fortran example uses OTS$POWCC to raise an F-floating complex base to an F-floating
complex exponent.

The output generated by this program is as follows:

The val ue of (2.000000, 3. 000000)** (1.000000, 2. 000000) is
(-0.4639565, - 0. 1995301)

2. C+
C This Fortran exanple raises a conplex base to a conpl ex
C power using OTS$PONCGCG R3.
C
C Declare Z1, Z2, and Z3 as conpl ex val ues. OIS$PONCGCG R3
C returns the conplex result of Z1**Z2: Z3 = Z1**Z2.
C-
COWPLEX*16 Z1, 72, Z3
C+
C CGenerate a conpl ex base.
C-
Z1 = (2.0,3.0)
C+
C CGenerate a conpl ex power.
C-
Z2 = (1.0,2.0)
C+
C Conput e the conpl ex val ue of Z1**Z2.
C-
Z3 = Z1** 72
TYPE 1, 71, 72, Z3
1 FORMAT(' The value of (',F11.8,',',F11.8,")**(', F11.8,
+ ',',F11.8,") is (',F11.8,"',',F11.8,').")
END

This Fortran example program shows how to use OTSSPOWCGCG_R3. Notice the high precision
in the output generated by this program:

The val ue of (2.00000000, 3.00000000)**(1.00000000, 2.00000000) is
(- 0. 46395650, - 0. 46395650) .

OTS$POWCxJ

OTS$POWCxXJ — The Raise a Complex Base to a Signed Longword Integer Exponent routines return
the complex result of raising a complex base to an integer exponent.

57

Chapter 2. General-Purpose (OTS$) Routines

Format

OTS$PONCI conpl ex- base , | ongwor d-i nt eger - exponent

OTrS$PONCDI_R3 conpl ex- base , | ongwor d-i nt eger - exponent (VAX only)
OTS$PONCGE)_R3 conpl ex- base , | ongwor d-i nt eger - exponent (VAX only)
OTS$PONCS] conpl ex- base , | ongwor d- i nt eger - exponent

OTS$PONCTI_R3 conpl ex- base , | ongwor d- i nt eger - exponent

Each of these formats corresponds to one of the floating-point complex types.

Returns

OpenVMS usage: complex_number

type: F_floating complex, D_floating complex, G_floating complex, IEEE
S_floating complex, IEEE T _floating complex

access: write only

mechanism: by value

Complex result of raising a complex base to an integer exponent. OTSSPOWC] returns an F-floating
complex number. OTS$§POWCDIJ_R3 returns a D-floating complex number. OTS$POWCGJ_R3
returns a G-floating complex number. OTSSPOWCGS_R3 returns an IEEE S-floating complex
number. OTSSPOWCGT _R3 returns an IEEE T-floating complex number. In each format, the result
and base are of the same data type.

Arguments

complex-base

OpenVMS usage: complex number

type: F_floating complex, D_floating complex, G_floating complex, S_floating
complex, T_floating complex,

access: read only

mechanism: by value

Complex base. The complex-base argument contains the complex base. For OTS$POWC],
complex-base is an F-floating complex number. For OTSSPOWCDJ_R3, complex-base is a
D-floating complex number. For OTS§POWCGJ_R3, complex-base is a G-floating complex
number. For OTS$POWCSIJ, complex-base is an IEEE S-floating complex number. For
OTSSPOWCTJ_R3,complex-base is an IEEE T-floating complex number.

longword-integer-exponent
OpenVMS usage: longword_signed

type: longword (signed)

access: read only

58

Chapter 2. General-Purpose (OTS$) Routines

mechanism: by value

Exponent. The longword-integer-exponent argument is a signed longword containing the exponent.

Description

The OTS$POWCxJ routines return the complex result of raising a complex base to an integer
exponent. The complex result is as follows:

Base Exponent Result

Any >0 The product of (base**2 i), where i is each nonzero bit in longword-
integer-exponent.

0,0) |<=0 Undefined exponentiation.

Not <0 The product of (base**2 "), where i is each nonzero bit in longword-

(0.,0.) integer-exponent.

Not 0 (1.0,0.0)

(0.,0)

On Alpha and 164 systems, some restrictions apply when linking OTS$POWCJ, OTSSPOWCSJ, and
OTSSPOWCTIJ_R3. See Chapter 1 for more information about these restrictions.

Condition Values Signaled

SS$ FLTDIV Floating-point division by zero.
SS$ FLTOVF Floating-point overflow.
MTH$ UNDEXP Undefined exponentiation.
Example
+
C This Fortran exanple raises a conplex base to
C a NONNEGATI VE i nteger power using OTS$SPONC].
C
C Declare Z1, Z2, Z3, and OIS$PONC] as conpl ex val ues.
C Then OTS$PONCI returns the conplex result of
C Z1**72: Z3 = OTS$PONCI(71, 22),
C where Z1 and Z2 are passed by val ue.
C
COVWPLEX Z1, Z3, OTS$PONC]
| NTEGER Z2
C+
C CGenerate a conpl ex base.
C
Z1 = (2.0,3.0)
C+
C Generate an integer power.
C
Z2 =2
C+

59

Chapter 2. General-Purpose (OTS$) Routines

C Conput e the conpl ex val ue of Z1**Z2.

C
Z3 = OTS$PONCI(WAL(REAL(Z1)), WAL(AI MAG(Z1)), WAL(Z2))
TYPE 1, 71, 22, Z3

1 FORVAT(' The value of (',F10.8,',' ,F11.8,')**' ,11,' is
+ (',F11.8,',',F12.8,"').")
END

The output generated by this Fortran program is as follows:

The val ue of (2.00000000, 3.00000000)**2 is
(-5.00000000, 12.00000000).

OTS$POWDD

OTS$POWDD — The Raise a D-Floating Base to a D-Floating Exponent routine raises a D-floating

base to a D-floating exponent.

Format

OrsS$PONDD D-fl oati ng- poi nt - base , D-fl oati ng- poi nt - exponent

Returns

OpenVMS usage: floating_point

type: D_floating
access: write only
mechanism: by value

Result of raising a D-floating base to a D-floating exponent.

Arguments

D-floating-point-base

OpenVMS usage: floating_point

type: D_floating
access: read only
mechanism: by value

Base. The D-floating-point-base argument is a D-floating number containing the base.

D-floating-point-exponent

OpenVMS usage: floating_point

type: D_floating
access: read only
mechanism: by value

60

Chapter 2. General-Purpose (OTS$) Routines

Exponent. The D-floating-point-exponent argument is a D-floating number that contains the
exponent.

Description

OTS$POWDD raises a D-floating base to a D-floating exponent.
The internal calculations and the floating-point result have the same precision as the base value.

The D-floating result for OTSSPOWDD is given by the following:

Base Exponent Result

= >0 0.0

=0 =0 Undefined exponentiation
=0 <0 Undefined exponentiation
<0 Any Undefined exponentiation
>0 >0 5 lexponent*log2(base)]

>0 =0 1.0

>0 <0 5 lexponent*log2(base)]

Floating-point overflow can occur.

Undefined exponentiation occurs if the base is zero and the exponent is zero or negative, or if the base
is negative.

Condition Values Signaled

MTHS$ FLOOVEMAT Floating-point overflow in math library.
MTHS$ FLOUNDMAT Floating-point underflow in math library.
MTHS$ UNDEXP Undefined exponentiation. This error is signaled if D-floating-point-

base is zero and D-floating-point-exponent is zero or negative, or if
the D-floating-point-base is negative.

OTS$POWDJ

OTS$POWDJ — The Raise a D-Floating Base to a Longword Exponent routine raises a D-floating
base to a longword exponent.

Format

OrS$POADJ D-fl oati ng- poi nt - base , | ongwor d- i nt eger - exponent

Returns

OpenVMS usage: floating_point
type: D_floating

61

Chapter 2. General-Purpose (OTS$) Routines

access: write only

mechanism: by value

Result of raising a D-floating base to a longword exponent.
Arguments
D-floating-point-base

OpenVMS usage: floating_point

type: D_floating
access: read only
mechanism: by value

Base. The D-floating-point-base argument is a D-floating number containing the base.

longword-integer-exponent

OpenVMS usage: longword_signed

type: longword (signed)
access: read only
mechanism: by value

Exponent. The longword-integer-exponent argument is a signed longword that contains the signed
longword integer exponent.

Description

OTS$POWDI raises a D-floating base to a longword exponent.
The internal calculations and the floating-point result have the same precision as the base value.

The floating-point result is as follows:

Base Exponent Result

Any >0 Product of (base**2 "), where i is each nonzero bit position in longword-
integer-exponent.

>0 =0 1.0

=0 =0 Undefined exponentiation.

<0 =0 1.0

>0 <0 1.0/(base**2 "), where i is each nonzero bit position in longword-integer-
exponent.

=0 <0 Undefined exponentiation.

<0 <0 1.0/(base**2 "), where i is each nonzero bit position in longword-integer-
exponent.

Floating-point overflow can occur.

62

Chapter 2. General-Purpose (OTS$) Routines

Undefined exponentiation occurs if the base is zero and the exponent is zero or negative.

Condition Values Signaled

SS$ FLTOVF Arithmetic trap. This error is signaled by the hardware if a floating-
point overflow occurs.

MTHS$ FLOOVEMAT Floating-point overflow in math library.

MTHS$ FLOUNDMAT Floating-point underflow in math library.

MTHS$_UNDEXP Undefined exponentiation. This error is signaled if D-floating-point-

base is zero and longword-integer-exponent is zero or negative, or if
the D-floating-point-base is negative.

OTS$POWDR

OTS$POWDR — The Raise a D-Floating Base to an F-Floating Exponent routine raises a D-floating
base to an F-floating exponent.

Format

OTS$PONDR D-f | oat i ng- poi nt - base , F-fl oati ng- poi nt - exponent

Returns

OpenVMS usage: floating_point

type: D_floating
access: write only
mechanism: by value

Result of raising a D-floating base to an F-floating exponent.

Arguments
D-floating-point-base

OpenVMS usage: floating_point

type: D_floating
access: read only
mechanism: by value

Base. The D-floating-point-base argument is a D-floating number containing the base.
F-floating-point-exponent
OpenVMS usage: floating_ point

type: F floating

access: read only

63

Chapter 2. General-Purpose (OTS$) Routines

mechanism: by value

Exponent. The F-floating-point-exponent argument is an F-floating number that contains the
exponent.

Description
OTS$POWDR raises a D-floating base to an F-floating exponent.
The internal calculations and the floating-point result have the same precision as the base value.

OTS$POWDR converts the F-floating exponent to a D-floating number. The D-floating result for
OTS$POWDR is given by the following:

Base Exponent Result

= >0 0.0

= =0 Undefined exponentiation
=0 <0 Undefined exponentiation
<0 Any Undefined exponentiation
>0 >0 5 [exponent*log2 (base)]

>0 =0 1.0

>0 <0 5 lexponent*log2 (base)]

Floating-point overflow can occur.

Undefined exponentiation occurs if the base is zero and the exponent is zero or negative, or if the base
is negative.

Condition Values Signaled

SS$ FLTOVF Arithmetic trap. This error is signaled by the hardware if a floating-
point overflow occurs.

MTHS$ FLOOVEMAT Floating-point overflow in math library.

MTHS$ _FLOUNDMAT Floating-point underflow in math library.

MTH$ UNDEXP Undefined exponentiation. This error is signaled if D-floating-point-

base is zero and F-floating-point-exponent is zero or negative, or if
the D-floating-point-base is negative.

OTS$POWGG

OTS$POWGG — The Raise a G-Floating Base to a G-Floating Exponent routine raises a G-floating
base to a G-floating exponent.

Format

OTS$PONGSG G- fl oati ng- poi nt - base , G fl oati ng- poi nt - exponent

64

Chapter 2. General-Purpose (OTS$) Routines

Returns

OpenVMS usage: floating_point
type: G_floating
access: write only
mechanism: by value

Result of raising a G-floating base to a G-floating exponent.
Arguments
G-floating-point-base

OpenVMS usage: floating_point

type: G_floating
access: read only
mechanism: by value

Base that OTSSPOWGG raises to a G-floating exponent. The G-floating-point-base argument is a G-
floating number containing the base.

G-floating-point-exponent

OpenVMS usage: floating_point

type: G_floating
access: read only
mechanism: by value

Exponent to which OTSSPOWGG raises the base. The G-floating-point-exponent argument is a G-
floating number containing the exponent.

Description

OTS$POWGG raises a G-floating base to a G-floating exponent.
The internal calculations and the floating-point result have the same precision as the base value.

The G-floating result for OTSSPOWGG is as follows:

Base Exponent Result

=0 >0 0.0

= =0 Undefined exponentiation
= <0 Undefined exponentiation
<0 Any Undefined exponentiation
>0 >0 5 lexponent*log2(base)]

>0 =0 1.0

>0 <0 o lexponent*log2(base)]

65

Chapter 2. General-Purpose (OTS$) Routines

Floating-point overflow can occur.

Undefined exponentiation occurs if the base is zero and the exponent is zero or negative, or if the base
is negative.

On Alpha and 164 systems, some restrictions apply when linking OTSSPOWGG. See Chapter 1 for
more information about these restrictions.

Condition Values Signaled

SS$ FLTOVF Arithmetic trap. This error is signaled by the hardware if a floating-
point overflow occurs.

MTHS$ FLOOVEMAT Floating-point overflow in math library.

MTHS$ FLOUNDMAT Floating-point underflow in math library.

MTHS$ _UNDEXP Undefined exponent. This error is signaled if G-floating-point-base

is zero and G-floating-point-exponent is zero or negative, or if G-
floating-point-base is negative.

Example

C+

C This exanpl e denmonstrates the use of OIS$PONGG,
C which raises a Gfloating point base

C to a Gfloating point power.
C-

REAL*8 X, Y, RESULT, OTS$PONGG

C+
C The arguments of OTS$PONGG are passed by value. Fortran can
C only pass |INTEGER and REAL*4 expressions as VALUE. Since
C INTEGER and REAL*4 val ues are one |ongword | ong, while REAL*8
C values are two longwords |ong, equate the base (and power) to
C two-di nensional | NTEGER vectors. These vectors will be passed
C by VALUE.
C-

| NTEGER N(2), M 2)

EQUI VALENCE (N(1),X), (M1),V)

X =28.0

Y =20
C+

C To pass X by value, pass N(1) and N(2) by value. Simlarly for Y.
C-
RESULT = OTS$PONGG %W/AL(N(1)), WAL(N(2)), WAL(M 1)), WAL(M2)))
TYPE *,' 8.0**2.0 IS ', RESULT
X =29.0
Y =-0.5

C In Fortran, OTIS$POMNNGG is indirectly called by sinply using the
C exponentiation operator.

RESULT = X**Y

TYPE *,' 9.0**-0.5 1S ', RESULT
END

This Fortran example uses OTS$POWGG to raise a G-floating base to a G-floating exponent.

66

Chapter 2. General-Purpose (OTS$) Routines

The output generated by this example is as follows:

8.0**2.0 IS 64. 0000000000000
9.0**-0.5 IS 0.333333333333333

OTS$POWGJ

OTS$POWGIJ — The Raise a G-Floating Base to a Longword Exponent routine raises a G-floating
base to a longword exponent.

Format

OrsS$PONEI G- fl oati ng- poi nt - base , | ongwor d- i nt eger - exponent
Returns

OpenVMS usage: floating point

type: G_floating
access: write only
mechanism: by value

Result of raising a G-floating base to a longword exponent.

Arguments
G-floating-point-base

OpenVMS usage: floating_point

type: G_floating
access: read only
mechanism: by value

Base that OTS$POWG] raises to a longword exponent. The G-floating-point-base argument is a G-
floating number containing the base.

longword-integer-exponent

OpenVMS usage: longword_signed

type: longword (signed)
access: read only
mechanism: by value

Exponent to which OTS$POWG] raises the base. The longword-integer-exponent argument is a
signed longword containing the exponent.

Description

OTS$POWGTI raises a G-floating base to a longword exponent.

67

Chapter 2. General-Purpose (OTS$) Routines

The internal calculations and the floating-point result have the same precision as the base value.

The floating-point result is as follows:

Base Exponent Result

Any >0 Product of (base**2 "), where i is each nonzero bit position in longword-
integer-exponent.

>0 =0 1.0

= = Undefined exponentiation.

<0 =0 1.0

>0 <0 1.0/(base**2 "), where i is each nonzero bit position in longword-integer-
exponent.

=0 <0 Undefined exponentiation.

<0 <0 1.0/(base**2 "), where i is each nonzero bit position in longword-integer-
exponent.

Floating-point overflow can occur.

Undefined exponentiation occurs if the base is zero and the exponent is zero or negative.

On Alpha and 164 systems, some restrictions apply when linking OTS$POWG]J. See Chapter 1 for
more information about these restrictions.

Condition Values Signaled

SS$ FLTOVF

MTHS$_FLOOVEMAT
MTHS$_FLOUNDMAT

MTH$_UNDEXP

Arithmetic trap. This error is signaled by the hardware if a floating-
point overflow occurs.

Floating-point overflow in math library.
Floating-point underflow in math library.

Undefined exponent. This error is signaled if G-floating-point-base
is zero and longword-integer-exponent is zero or negative, or if G-
floating-point-base is negative.

OTS$POWHH_R3 (VAX Only)

OTS$SPOWHH_R3 (VAX Only) — On VAX systems, the Raise an H-Floating Base to an H-Floating
Exponent routine raises an H-floating base to an H-floating exponent.

Format

OTrS$POMH _R3 H-fl oati ng- poi nt - base , Hfl oati ng- poi nt - exponent

Returns
OpenVMS usage: floating_point
type: H_floating

68

Chapter 2. General-Purpose (OTS$) Routines

access: write only

mechanism: by value

Result of raising an H-floating base to an H-floating exponent.

Arguments
H-floating-point-base

OpenVMS usage: floating_point

type: H_floating
access: read only
mechanism: by value

Base. The H-floating-point-base argument is an H-floating number containing the base.

H-floating-point-exponent

OpenVMS usage: floating_point

type: H_floating
access: read only
mechanism: by value

Exponent. The H-floating-point-exponent argument is an H-floating number that contains the H-
floating exponent.

Description

OTS$SPOWHH_R3 raises an H-floating base to an H-floating exponent.
The internal calculations and the floating-point result have the same precision as the base value.

The H-floating result for OTSSPOWHH_R3 is as follows:

Base Exponent Result

= >0 0.0

= =0 Undefined exponentiation
= <0 Undefined exponentiation
<0 Any Undefined exponentiation
>0 >0 5 [exponent*log2(base)]

>0 =0 1.0

>0 <0 5 lexponent*log2(base)]

Floating-point overflow can occur.

Undefined exponentiation occurs if the base is zero and the exponent is zero or negative, or if the base
is negative.

69

Chapter 2. General-Purpose (OTS$) Routines

Condition Values Signaled

SS$ FLTOVF Arithmetic trap. This error is signaled by the hardware if a floating-
point overflow occurs.

MTHS$ FLOOVEMAT Floating-point overflow in math library.

MTHS$ FLOUNDMAT Floating-point underflow in math library.

MTHS$ UNDEXP Undefined exponentiation. This error is signaled if H-floating-point-

base is zero and H-floating-point-exponent is zero or negative, or if
the H-floating-point-base is negative.

Example

C+

C Exanpl e of OTS$POMHH, which raises an H floating

C point base to an H floating point power. In Fortran,
Cit is not directly called.

C
REAL*16 X, Y, RESULT
X = 9877356535. 0
Y = -0. 5837653

C+

Cln Fortran, OTS$POWNHH is indirectly called by sinply using the
C exponenti ati on operator.
C

RESULT = X**Y

TYPE *,' 9877356535. 0**-0.5837653 IS ', RESULT

END

This Fortran example demonstrates how to call OTSSPOWHH_R3 to raise an H-floating base to an
H-floating power.

The output generated by this program is as follows:

9877356535. 0**-0.5837653 | S 1.463779145994628357482343598205427E- 0006

OTS$POWHJ_R3 (VAX Only)

OTS$POWHIJ R3 (VAX Only) — On VAX systems, the Raise an H-Floating Base to a Longword
Exponent routine raises an H-floating base to a longword exponent.

Format

OTrS$POMI_R3 H-fl oati ng- poi nt - base , | ongwor d-i nt eger - exponent
Returns

OpenVMS usage: floating_ point
type: H_floating

access: write only

70

Chapter 2. General-Purpose (OTS$) Routines

mechanism: by value

Result of raising an H-floating base to a longword exponent.
Arguments
H-floating-point-base

OpenVMS usage: floating_ point

type: H_floating
access: read only
mechanism: by value

Base. The H-floating-point-base argument is an H-floating number containing the base.

longword-integer-exponent

OpenVMS usage: longword_signed

type: longword (signed)
access: read only
mechanism: by value

Exponent. The longword-integer-exponent argument is a signed longword that contains the signed
longword exponent.

Description

OTS$POWHIJ _R3 raises an H-floating base to a longword exponent.
The internal calculations and the floating-point result have the same precision as the base value.

The floating-point result is as follows:

Base Exponent Result

Any >0 Product of (base**2 "), where i is each nonzero bit position in longword-
integer-exponent.

>0 =0 1.0

= = Undefined exponentiation.

<0 =0 1.0

>0 <0 1.0/(base**2 "), where i is each nonzero bit position in longword-integer-
exponent.

=0 <0 Undefined exponentiation.

<0 <0 1.0/(base**2 "), where i is each nonzero bit position in longword-integer-
exponent.

Floating-point overflow can occur.

Undefined exponentiation occurs if the base is zero and the exponent is zero or negative.

71

Chapter 2. General-Purpose (OTS$) Routines

Condition Values Signaled

SS$ FLTOVF Arithmetic trap. This error is signaled by the hardware if a floating-
point overflow occurs.

MTHS$ FLOOVEMAT Floating-point overflow in math library.

MTHS$ FLOUNDMAT Floating-point underflow in math library.

MTHS$ UNDEXP Undefined exponentiation. This error is signaled if H-floating-point-

base is zero and longword-integer-exponent is zero or negative, or if
the H-floating-point-base is negative.

OTS$SPOWII

OTS$POWII — The Raise a Word Base to a Word Exponent routine raises a word base to a word
exponent.

Format

OTS$PON | wor d-i nt eger - base , wor d-i nt eger - exponent
Returns

OpenVMS usage: word_signed

type: word (signed)
access: write only
mechanism: by value

Result of raising a word base to a word exponent.

Arguments
word-integer-base

OpenVMS usage: word_signed

type: word (signed)
access: read only
mechanism: by value

Base. The word-integer-base argument is a signed word containing the base.

word-integer-exponent

OpenVMS usage: word_signed

type: word (signed)
access: read only
mechanism: by value

Exponent. The word-integer-exponent argument is a signed word containing the exponent.

72

Chapter 2. General-Purpose (OTS$) Routines

Description

The OTS$POWII routine raises a word base to a word exponent.

On Alpha and 164 systems, some restrictions apply when linking OTS$POWII. See Chapter 1 for
more information about these restrictions.

Condition Values Signaled

SS$ FLTDIV Arithmetic trap. This error is signaled by the hardware if a floating-
point division by zero occurs.

SS$ FLTOVF Arithmetic trap. This error is signaled by the hardware if a floating-
point overflow occurs.

MTH$ UNDEXP Undefined exponentiation. This error is signaled if word-integer-base

is zero and word-integer-exponent is zero or negative, or if word-
integer-base is negative.

OTS$POWJJ

OTS$POWJJ — The Raise a Longword Base to a Longword Exponent routine raises a signed
longword base to a signed longword exponent.

Format

OTS$POMJ | ongwor d- i nt eger - base , | ongwor d- i nt eger - exponent

Returns

OpenVMS usage: longword_signed
type: longword (signed)
access: write only
mechanism: by value

Result of raising a signed longword base to a signed longword exponent.

Arguments

longword-integer-base

OpenVMS usage: longword_signed

type: longword (signed)
access: read only
mechanism: by value

Base. The longword-integer-base argument is a signed longword containing the base.
longword-integer-exponent

OpenVMS usage: longword_signed

73

Chapter 2. General-Purpose (OTS$) Routines

type: longword (signed)
access: read only
mechanism: by value

Exponent. The longword-integer-exponent argument is a signed longword containing the exponent.

Description

The OTS$POWIJ routine raises a signed longword base to a signed longword exponent.

On Alpha and 164 systems, some restrictions apply when linking OTS$POWIJ. See Chapter 1 for
more information about these restrictions.

Condition Values Signaled

SS$ FLTDIV Arithmetic trap. This error is signaled by the hardware if a floating-
point division by zero occurs.
SS$ FLTOVF Arithmetic trap. This error is signaled by the hardware if a floating-

point overflow occurs.

MTHS$ _UNDEXP Undefined exponentiation. This error is signaled if longword-integer-
base is zero and longword-integer-exponent is zero or negative, or if
longword-integer-base is negative.

OTS$POWLULU

OTSSPOWLULU — The Raise an Unsigned Longword Base to an Unsigned Longword Exponent
routine raises an unsigned longword integer base to an unsigned longword integer exponent.

Format

OTS$PONULU unsi gned- | wor d-i nt - base, unsi gned- | word-i nt-exponent

Returns

OpenVMS usage: longword_unsigned
type: longword (unsigned)
access: write only
mechanism: by value

Result of raising an unsigned longword integer base to an unsigned longword integer exponent.

Arguments

unsigned-lword-int-base

OpenVMS usage: longword_unsigned
type: longword (unsigned)

access: read only

74

Chapter 2. General-Purpose (OTS$) Routines

mechanism: by value

Unsigned longword integer base. The unsigned-lword-int-base argument contains the value of the
integer base.

unsigned-lword-int-exponent

OpenVMS usage: longword_unsigned

type: longword (unsigned)
access: read only
mechanism: by value

Unsigned longword integer exponent. The unsigned-lword-int-exponent argument contains the value
of the integer exponent.

Description

OTS$POWLULU returns the unsigned longword integer result of raising an unsigned longword
integer base to an unsigned longword integer exponent. Note that overflow cannot occur in this
routine. If the result or intermediate result is greater than 32 bits, the low-order 32 bits are used.

On Alpha and 164 systems, some restrictions apply when linking OTS$POWLULU. See Chapter 1 for
more information about these restrictions.

Condition Values Signaled

MTH$ UNDEXP Both the base and exponent values are zero.

OTS$POWRD

OTS$POWRD — The Raise an F-Floating Base to a D-Floating Exponent routine raises an F-floating
base to a D-floating exponent.

Format

OTS$POARD F-fl oati ng- poi nt -base , D-fl oati ng- poi nt - exponent

Returns

OpenVMS usage: floating_point
type: D_floating
access: write only
mechanism: by value

Result of raising an F-floating base to a D-floating exponent.

Arguments

F-floating-point-base

75

Chapter 2. General-Purpose (OTS$) Routines

OpenVMS usage: floating_point

type: F_floating
access: read only
mechanism: by value

Base. The F-floating-point-base argument is an F-floating number containing the base.

D-floating-point-exponent

OpenVMS usage: floating_point

type: D_floating
access: read only
mechanism: by value

Exponent. The D-floating-point-exponent argument is a D-floating number that contains the
exponent.

Description

OTS$POWRD raises an F-floating base to a D-floating exponent.
The internal calculations and the floating-point result have the same precision as the base value.

OTS$POWRD first converts the F-floating base to D-floating. The D-floating result for
OTS$POWRD is as follows:

Base Exponent Result

=0 >0 0.0

=0 =0 Undefined exponentiation
= <0 Undefined exponentiation
<0 Any Undefined exponentiation
>0 >0 5 lexponent*LOG2(base)]

>0 =0 1.0

>0 <0 5 [exponent*LOG2(base)]

Floating-point overflow can occur.

Undefined exponentiation occurs if the base is zero and the exponent is zero or negative, or if the base
is negative.

Condition Values Signaled

SS$ FLTOVF Arithmetic trap. This error is signaled by the hardware if a floating-
point overflow occurs.

MTHS$ FLOOVEMAT Floating-point overflow in math library.

MTHS$ FLOUNDMAT Floating-point underflow in math library.

76

Chapter 2. General-Purpose (OTS$) Routines

MTHS$ UNDEXP Undefined exponentiation. This error is signaled if F-floating-point-
baseis zero and D-floating-point-exponent is zero or negative, or if
F-floating-point-base is negative.

Example

C+
C This Fortran exanple uses OTS$POARD, to raise an F-floating point
C base to a Dfloating point exponent. The result is a D floating val ue.
C-
REAL*4 X
REAL*8 Y, RESULT, OTS$PONRD
| NTEGER M 2)
EQUI VALENCE (M 1),V)
X = 9768.0
Y =9.0

C+
C The argunents of OIS$PONRD are passed by val ue.
C-
RESULT = OTS$POWRD(WAL(X) , WAL(M 1)), WAL(M 2)))
TYPE *,' 9768.0**9.0 IS ', RESULT
X = 7689.0
Y - 0. 587436654545

C+
C In Fortran, OIS$POMRD is indirectly called by the exponentiation
C operator.
C-
RESULT = X**Y
TYPE *,' 7689.0**-0.587436654545 | S ', RESULT
END

This Fortran example uses OTSSPOWRD to raise an F-floating base to a D-floating exponent. Notice
the difference in the precision of the result produced by this routine in comparison to the result
produced by OTS$POWRR. The output generated by this program is as follows:

9768.0**9.0 IS 8.0956338648832908E+35
7689. 0**-0. 587436654545 |S 5.2155199252836588E- 03

OTS$POWRJ

OTS$POWRJ — The Raise an F-Floating Base to a Longword Exponent routine raises an F-floating
base to a longword exponent.

Format

OTrS$PONRI F-fl oati ng- poi nt - base , | ongwor d- i nt eger - exponent
Returns

OpenVMS usage: floating_point
type: F_floating

77

Chapter 2. General-Purpose (OTS$) Routines

acCCess:

mechanism:

write only

by value

Result of raising an F-floating base to a longword exponent.

Arguments
F-floating-point-base

OpenVMS usage: floating_point
type: F_floating
access: read only
mechanism: by value

Base. The F-floating-point-base argument is an F-floating number containing the base.

longword-integer-exponent

OpenVMS usage: longword_signed
type: longword (signed)
access: read only
mechanism: by value

Exponent. The longword-integer-exponent argument is a signed longword that contains the
longword exponent.

Description

OTS$POWRIJ raises an F-floating base to a longword exponent.

The internal calculations and the floating-point result have the same precision as the base value.

The floating-point result is as follows:

Base Exponent Result

Any >0 Product of (base**2 d), where i is each nonzero bit position in longword-
integer-exponent.

>0 =0 1.0

=0 =0 Undefined exponentiation.

<0 = 1.0

>0 <0 1.0/(base**2 "), where i is each nonzero bit position in longword-integer-
exponent.

=0 <0 Undefined exponentiation.

<0 <0 1.0/(base**2 "), where i is each nonzero bit position in longword-integer-
exponent.

Floating-point overflow can occur.

Undefined exponentiation occurs if the base is zero and the exponent is zero or negative.

78

Chapter 2. General-Purpose (OTS$) Routines

On Alpha and 164 systems, some restrictions apply when linking OTS$POWRIJ. See Chapter 1 for
more information about these restrictions.

Condition Values Signaled

SS$ FLTOVF Arithmetic trap. This error is signaled by the hardware if a floating-
point overflow occurs.

MTHS$ FLOOVEMAT Floating-point overflow in math library.

MTH$ FLOUNDMAT Floating-point underflow in math library.

MTHS$ UNDEXP Undefined exponentiation. This error is signaled if F-floating-point-

baseis zero and longword-integer-exponent is zero or negative, or if
F-floating-point-base is negative.

OTS$POWRR

OTS$POWRR — The Raise an F-Floating Base to an F-Floating Exponent routine raises an F-
floating base to an F-floating exponent.

Format

OTS$POMRR F- f | oat i ng- poi nt - base , F-fl oati ng- poi nt - exponent
Returns

OpenVMS usage: floating_point

type: F_floating
access: write only
mechanism: by value

Result of raising an F-floating base to an F-floating exponent.
Arguments
F-floating-point-base

OpenVMS usage: floating_point

type: F floating
access: read only
mechanism: by value

Base. The F-floating-point-base argument is an F-floating number containing the base.

F-floating-point-exponent

OpenVMS usage: floating_ point
type: F_floating

access: read only

79

Chapter 2. General-Purpose (OTS$) Routines

mechanism: by value

Exponent. The F-floating-point-exponent argument is an F-floating number that contains the
exponent.

Description

OTS$POWRR raises an F-floating base to an F-floating exponent.
The internal calculations and the floating-point result have the same precision as the base value.

The F-floating result for OTSSPOWRR is as follows:

Base Exponent Result

=0 >0 0.0

=0 =0 Undefined exponentiation
=0 <0 Undefined exponentiation
<0 Any Undefined exponentiation
>0 >0 5 [exponent*log2(base)]

>0 =0 1.0

>0 <0 5 [exponent*log2(base)]

Floating-point overflow can occur.

Undefined exponentiation occurs if the base is zero and the exponent is zero or negative, or if the base
is negative.

On Alpha and 164 systems, some restrictions apply when linking OTSSPOWRR. See Chapter 1 for
more information about these restrictions.

Condition Values Signaled

SS$ FLTOVF Arithmetic trap. This error is signaled by the hardware if a floating-
point overflow occurs.

MTHS$S _FLOOVEMAT Floating-point overflow in math library.

MTHS$ FLOUNDMAT Floating-point underflow in math library.

MTH$ UNDEXP Undefined exponentiation. This error is signaled if F-floating-point-

baseis zero and F-floating-point-exponent is zero or negative, or if
F-floating-point-base is negative.

Example

C+

C This Fortran exanpl e denonstrates the use
C of OTS$POARR, which raises an F-floating

C point base to an F-floating point power.

C

REAL*4 X, Y, RESULT, OTS$POARR
X=28.0

80

Chapter 2. General-Purpose (OTS$) Routines

Y =20
C+
C The argunments of OTS$POARR are passed by val ue.
C
RESULT = OTS$PONRR(WAL (X), WAL(Y))
TYPE *,"' 8.0**2.0 IS ', RESULT
X=9.0
Y =-0.5
C+

C In Fortran, OTS$POMNRR is indirectly called by sinply
C wusing the exponentiation operator.
C

RESULT = X**Y

TYPE *," 9.0**-0.5 IS ', RESULT
END

This Fortran example uses OTSSPOWRR to raise an F-floating point base to an F-floating point
exponent. The output generated by this program is as follows:

8.0**2.0 IS 64. 00000
9.0**-0.5 1S 0.3333333

OTS$POWSJ

OTS$POWSJ — The Raise an IEEE S-Floating Base to a Longword Exponent routine raises an IEEE
S-floating base to a longword exponent.

Format

OTS$PONS] S-fl oati ng- poi nt - base , | ongwor d- i nt eger - exponent

Returns

OpenVMS usage: floating_point
type: S floating
access: write only
mechanism: by value

Result of raising an IEEE S-floating base to a longword exponent.

Arguments
S-floating-point-base

OpenVMS usage: floating_point
type: S_floating

81

Chapter 2. General-Purpose (OTS$) Routines

access: read only

mechanism: by value

Base. The S-floating-point-base argument is an IEEE S-floating number containing the base.

longword-integer-exponent

OpenVMS usage: longword_signed

type: longword (signed)
access: read only
mechanism: by value

Exponent. The longword-integer-exponent argument is a signed longword that contains the
longword exponent.

Description

OTS$POWS] raises an IEEE S-floating base to a longword exponent.
The internal calculations and the floating-point result have the same precision as the base value.

The floating-point result is as follows:

Base Exponent Result

Any >0 Product of (base**2 "), where i is each nonzero bit position in longword-
integer-exponent.

>0 =0 1.0

=0 =0 Undefined exponentiation.

<0 = 1.0

>0 <0 1.0/(base**2), where i is each nonzero bit position in longword-integer-
exponent.

=0 <0 Undefined exponentiation.

<0 <0 1.0/(base**2 '), where i is each nonzero bit position in longword-integer-
exponent.

Floating-point overflow can occur.
Undefined exponentiation occurs if the base is zero and the exponent is zero or negative.

On Alpha and 164 systems, some restrictions apply when linking OTS$POWSIJ. See Chapter 1 for
more information about these restrictions.

Condition Values Signaled

SS$ FLTOVF Arithmetic trap. This error is signaled by the hardware if a floating-
point overflow occurs.

MTHS$ FLOOVEMAT Floating-point overflow in math library.

MTH$ FLOUNDMAT Floating-point underflow in math library.

82

Chapter 2. General-Purpose (OTS$) Routines

MTHS$ UNDEXP Undefined exponentiation. This error is signaled if S-floating-point-
baseis zero and longword-integer-exponent is zero or negative, or if
S-floating-point-base is negative.

OTS$POWSS

OTS$POWSS — The Raise an IEEE S-Floating Base to an IEEE S-Floating Exponent routine raises a
IEEE S-floating base to an IEEE S-floating exponent.

Format

OTS$POANSS S-fl oat i ng- poi nt-base , S-fl oati ng- poi nt - exponent

Returns

OpenVMS usage: floating point
type: IEEE S_floating
access: write only
mechanism: by value

Result of raising an IEEE S-floating base to an IEEE S-floating exponent.
Arguments
S-floating-point-base

OpenVMS usage: floating_point

type: IEEE S floating
access: read only
mechanism: by value

Base that OTS$SPOWSS raises to an IEEE S-floating exponent. The S-floating-point-base argument
is an IEEE S-floating number containing the base.

S-floating-point-exponent

OpenVMS usage: floating_point

type: IEEE S floating
access: read only
mechanism: by value

Exponent to which OTS$POWSS raises the base. The S-floating-point-exponent argument is an
IEEE S-floating number containing the exponent.

Description

OTS$POWSS raises an IEEE S-floating base to an IEEE S-floating exponent.

The internal calculations and the floating-point result have the same precision as the base value.

83

Chapter 2. General-Purpose (OTS$) Routines

The S-floating result for OTS$POWSS is as follows:

Base Exponent Result

= >0 0.0

= =0 Undefined exponentiation
=0 <0 Undefined exponentiation
<0 Any Undefined exponentiation
>0 >0 5 lexponent*log2(base)]

>0 =0 1.0

>0 <0 5 lexponent*log2(base)]

Floating-point overflow can occur.

Undefined exponentiation occurs if the base is zero and the exponent is zero or negative, or if the base
is negative.

On Alpha and 164 systems, some restrictions apply when linking OTS$POWSS. See Chapter 1 for
more information about these restrictions.

Condition Values Signaled

SS$ FLTOVF Arithmetic trap. This error is signaled by the hardware if a floating-
point overflow occurs.

MTHS$ FLOOVEMAT Floating-point overflow in math library.

MTHS$ FLOUNDMAT Floating-point underflow in math library.

MTHS$ UNDEXP Undefined exponent. This error is signaled if S-floating-point-base

is zero and S-floating-point-exponent is zero or negative, or if S-
floating-point-base is negative.

Example

The following example demonstrates the use of OTS§POWSS.

C+

C This Fortran exanpl e denonstrates the use of
C OTS$PONBS, which raises an |EEE S-floating

C point base to an | EEE S-fl oating point power.
C

OPTI ONS / FLOAT=I EEE_FLOAT

REAL*4 X, Y, RESULT, OTS$POANSS

X =10.0

Y =3.0

C+

C The argunents of OIS$POANSS are passed by val ue.
C

RESULT = OTS$POWSS(WAL(X), WAL(Y))
TYPE *,' 10.0**3.0 IS ', RESULT

84

Chapter 2. General-Purpose (OTS$) Routines

X
Y

9.0
-0.5

C+

ClIn Fortran, OTS$POAES is indirectly called by
C sinply using the exponentiati on operator.

C

RESULT = X**Y
TYPE *," 9.0**-0.5 IS ', RESULT
END

This Fortran example uses OTSSPOWSS to raise an IEEE S-floating point base to an IEEE S-floating
point exponent. The output generated by this program is as follows:

10.0**3.0 IS 1000. 000
9.0**-0.5 1S 0.3333333

OTS$POWTJ

OTS$POWTJ — The Raise a T-Floating base to a Longword Exponent routine raises an IEEE T-
floating base to a longword exponent.

Format

OTS$POMJ T-fl oati ng- poi nt - base , | ongwor d- i nt eger - exponent

Returns

OpenVMS usage: floating_point
type: IEEE T floating
access: write only
mechanism: by value

Result of raising an IEEE T-floating base to a longword exponent.
Arguments
T-floating-point-base

OpenVMS usage: floating_point

type: IEEE T floating
access: read only
mechanism: by value

Base. The T-floating-point-base argument is an IEEE T-floating number containing the base.

longword-integer-exponent

OpenVMS usage: longword_signed
type: longword (signed)

85

Chapter 2. General-Purpose (OTS$) Routines

access: read only

mechanism: by value

Exponent. The longword-integer-exponent argument is a signed longword that contains the
longword exponent.

Description

OTS$POWT] raises an IEEE T-floating base to a longword exponent.
The internal calculations and the floating-point result have the same precision as the base value.

The floating-point result is as follows:

Base Exponent Result

Any >0 Product of (base**2 "), where i is each nonzero bit position in longword-
integer-exponent.

>0 = 1.0

=0 =0 Undefined exponentiation.

<0 =0 1.0

>0 <0 1.0/(base**2 "), where i is each nonzero bit position in longword-integer-
exponent.

= <0 Undefined exponentiation.

<0 <0 1.0/(base**2 "), where i is each nonzero bit position in longword-integer-
exponent.

Floating-point overflow can occur.
Undefined exponentiation occurs if the base is zero and the exponent is zero or negative.

On Alpha and 164 systems, some restrictions apply when linking OTS$POWT]J. See Chapter 1 for
more information about these restrictions.

Condition Values Signaled

SS$ FLTOVF Arithmetic trap. This error is signaled by the hardware if a floating-
point overflow occurs.

MTHS$ FLOOVEMAT Floating-point overflow in math library.

MTHS$ _FLOUNDMAT Floating-point underflow in math library.

MTHS$ UNDEXP Undefined exponentiation. This error is signaled if T-floating-point-

base is zero and longword-integer-exponent is zero or negative, or if
T-floating-point-base is negative.

OTS$POWTT

OTS$SPOWTT — The Raise an IEEE T-Floating Base to an IEEE T-Floating Exponent routine raises
an IEEE T-floating base to an IEEE T-floating exponent.

86

Chapter 2. General-Purpose (OTS$) Routines

Format

OTSSPOWTT T-floating-point-base , T-floating-point-exponent

Returns

OpenVMS usage: floating_point
type: IEEE T floating
access: write only
mechanism: by value

Result of raising an IEEE T-floating base to an IEEE T-floating exponent.
Arguments
T-floating-point-base

OpenVMS usage: floating_point

type: IEEE T_floating
access: read only
mechanism: by value

Base that OTS$POWTT raises to an IEEE T-floating exponent. The T-floating-point-base argument
is an IEEE T-floating number containing the base.

T-floating-point-exponent

OpenVMS usage: floating point

type: IEEE T_floating
access: read only
mechanism: by value

Exponent to which OTSSPOWTT raises the base. The T-floating-point-exponent argument is an
IEEE T-floating number containing the exponent.

Description

OTS$POWTT raises an IEEE T-floating base to an IEEE T-floating exponent.
The internal calculations and the floating-point result have the same precision as the base value.

The T-floating result for OTSSPOWTT is as follows:

Base Exponent Result

= >0 0.0

=0 =0 Undefined exponentiation
=0 <0 Undefined exponentiation
<0 Any Undefined exponentiation

87

Chapter 2. General-Purpose (OTS$) Routines

Base Exponent Result

>() > () 2 [exponent*log2(base)]
>0 =0 1.0

> () <0 2 [exponent*log2(base)]

Floating-point overflow can occur.

Undefined exponentiation occurs if the base is zero and the exponent is zero or negative, or if the base
is negative.

On Alpha and 164 systems, some restrictions apply when linking OTS$POWTT. See Chapter 1 for
more information about these restrictions.

Condition Values Signaled

SS$ FLTOVF Arithmetic trap. This error is signaled by the hardware if a floating-
point overflow occurs.

MTHS$ FLOOVEMAT Floating-point overflow in math library.

MTHS$ _FLOUNDMAT Floating-point underflow in math library.

MTHS$ UNDEXP Undefined exponent. This error is signaled if T-floating-point-base

is zero and T-floating-point-exponent is zero or negative, or if T-
floating-point-base is negative.

Example

The following example demonstrates the use of OTSSPOWTT.

C+

C This Fortran exanpl e denonstrates the use of
C OTSSPOWMT, which raises an |EEE T-floating

C point base to an |EEE T-fl oati ng poi nt power.
C

OPTI ONS / FLOAT=I EEE_FLOAT

REAL*8 X, Y, RESULT, OTS$POMT

X =10.0

Y =3.0

C+

C The argunents of OIS$POMT are passed by val ue.
C

RESULT = OTS$POMT(%WAL(X) , WAL(Y))
TYPE *,' 10.0**3.0 IS ', RESULT

X=9.0
Y=-0.5

C+

Cln Fortran, OTS$POMT is indirectly called by
C sinply using the exponentiation operator.

C

88

Chapter 2. General-Purpose (OTS$) Routines

RESULT = X**Y
TYPE *," 9.0**-0.5 IS ', RESULT
END

This Fortran example uses OTSSPOWTT to raise an IEEE T-floating point base to an IEEE T-floating
point exponent. The output generated by this program is as follows:

10.0**3.0 IS 1000. 00000000000
9.0**-0.5 1S 0.333333333333333

OTS$POWxLU

OTS$POWXLU — The Raise a Floating-Point Base to an Unsigned Longword Integer Exponent
routines raise a floating-point base to an unsigned longword integer exponent.

Format

OTS$POMRLU f | oat i ng- poi nt - base , unsi gned- | wor d-i nt - exponent
OrsS$POADLU f 1 oat i ng- poi nt - base , unsi gned- | wor d-i nt - exponent
OrS$PONGELU fl oati ng- poi nt - base , unsi gned- | wor d-i nt - exponent
OTS$PONSLU f | oat i ng- poi nt - base , unsi gned- | wor d-i nt - exponent
OTS$POMLU f | oat i ng- poi nt - base , unsi gned- | wor d-i nt - exponent

OTS$POMLU_R3 fl oati ng- poi nt - base , unsi gned- | word-i nt -exponent (VAX only)
Returns

OpenVMS usage: floating_point

type: F_floating, D_floating, G_floating, H_floating, IEEE S_floating, IEEE
T_floating

access: write only

mechanism: by value

Result of raising a floating-point base to an unsigned longword integer exponent. OTSSPOWRLU
returns an F-floating number. OTS$POWDLU returns a D-floating number. OTS$POWGLU returns
a G-floating number. OTS$POWSLU returns an IEEE S-floating number. OTSSPOWTLU returns an
IEEE T-floating number.

On VAX systems, OTSSPOWHLU R3 returns an H-floating number.
Arguments
floating-point-base

OpenVMS usage: floating_point

type: F_floating, D_floating, G_floating, H_floating, IEEE S_floating, IEEE
T_floating

89

Chapter 2. General-Purpose (OTS$) Routines

access: read only

mechanism: by value

Floating-point base. The floating-point-base argument contains the value of the base. For
OTS$SPOWRLU, floating-point-base is an F-floating number. For OTS$POWDLU, floating-point-
base is a D-floating number. For OTSSPOWGLU, floating-point-base is a G-floating number. For
OTS$SPOWHLU R3, floating-point-base is an H-floating number. For OTS$POWSLU, floating-
point-base is an IEE S-floating number. For OTSSPOWTLU, floating-point-base is an IEEE T-
floating number.

unsigned-lword-int-exponent

OpenVMS usage: longword_unsigned

type: longword (unsigned)
access: read only
mechanism: by value

Integer exponent. The unsigned-lword-int-exponent argument contains the value of the unsigned
longword integer exponent.

Description

The OTS$SPOWxLU routines return the result of raising a floating-point base to an unsigned longword
integer exponent. The floating-point result is as follows:

Base Exponent Result

Any >0 Product of (base*2 !), where i is each nonzero bit position in longword-
integer-exponent.

>0 =0 1.0

=0 =0 Undefined exponentiation.

<0 =0 1.0

On Alpha and 164 systems, some restrictions apply when linking OTS§POWRLU, OTS$POWGLU,
OTSS$POWSLU, and OTSSPOWTLU. See Chapter 1 for more information about these restrictions.

Condition Values Signaled

MTHS$ FLOOVEMAT Floating-point overflow in math library.

MTHS$ FLOUNDMAT Floating-point underflow in math library. This can only occur if the
caller has floating-point underflow enabled.

MTH$ UNDEXP Undefined exponentiation. This occurs if both the floating-point-base

andunsigned-longword-integer-exponent arguments are zero.

OTS$SCOPY_DXDX

OTS$SCOPY_DXDX — The Copy a Source String Passed by Descriptor to a Destination String
routine copies a source string to a destination string. Both strings are passed by descriptor.

90

Chapter 2. General-Purpose (OTS$) Routines

Format

OTS$SCOPY_DXDX source-string ,destination-string

Corresponding JSB Entry Point

OTS$SCOPY_DXDX6

Returns

OpenVMS usage: word_unsigned

type: word (unsigned)
access: write only
mechanism: by value

Number of bytes not moved to the destination string if the length of source-string is greater than the
length of destination-string. The value is 0 (zero) otherwise.

Arguments

source-string

OpenVMS usage: char_string

type: character string
access: read only
mechanism: by descriptor

Source string. The source-string argument is the address of a descriptor pointing to the source string.
The descriptor class can be unspecified, fixed length, dynamic, scalar decimal, array, noncontiguous
array, or varying.

destination-string

OpenVMS usage: char_string

type: character string
access: write only
mechanism: by descriptor

Destination string. The destination-string argument is the address of a descriptor pointing to the
destination string. The class field determines the appropriate action.

See the Description section for further information.

Description

OTS$SCOPY_DXDX copies a source string to a destination string. It passes the source string
by descriptor. If the length of the source string is greater than the length of the destination string,
OTS$SCOPY_DXDX returns the number of bytes not moved to the destination string. If the length

91

Chapter 2. General-Purpose (OTS$) Routines

of the source string is less than or equal to the length of the destination string, it returns 0 (zero). All
error conditions except truncation are signaled; truncation is ignored.

An equivalent JSB entry point is provided, with RO being the first argument (the descriptor of the

source string), and R1 the second (the descriptor of the destination string). On return, RO through

RS and the PSL are as they would be after a VAX MOVCS instruction. RO through RS contain the
following:

RO Number of bytes of source string not moved to destination string
R1 Address one byte beyond the last copied byte in the source string
R2 0

R3 Address one byte beyond the destination string

R4 0

RS 0

For further information, see the VAX Architecture Reference Manual.

The actions taken by OTS$SCOPY DXDX depend on the descriptor class of the destination string.
The following table describes these actions for each descriptor class:

Descriptor |Action
Class

S,Z,SD, A, |Copy the source string. If needed, space fill or truncate on the right.
NCA

D If the area specified by the destination descriptor is large enough to contain the source
string, copy the source string and set the new length in the destination descriptor.

If the area specified is not large enough, return the previous space allocation if any,
and then dynamically allocate the amount of space needed. Copy the source string
and set the new length and address in the destination descriptor.

VS Copy source string to destination string up to the limit of the destination descriptor's
MAXSTRLEN field with no padding. Adjust the string's current length field
(CURLEN) to the actual number of bytes copied.

Condition Values Signaled

OTSS$_FATINTERR Fatal internal error.
OTS$ INVSTRDES Invalid string descriptor.
OTS$ INSVIRMEM Insufficient virtual memory.

OTS$SCOPY_R_DX

OTS$SCOPY_R_DX — The Copy a Source String Passed by Reference to a Destination String
routine copies a source string passed by reference to a destination string.

Format

OTS$SCOPY_R_DX

92

Chapter 2. General-Purpose (OTS$) Routines

wor d-i nt -sour ce-| engt h-val , source-string-address ,destination-string

Corresponding JSB Entry Point

OTS$SCOPY_R_DX6

Returns

OpenVMS usage: word_unsigned

type: word (unsigned)
access: write only
mechanism: by value

Number of bytes not moved to the destination string if the length of the source string pointed to by
source-string-address is greater than the length of destination-string. Otherwise, the value is 0
(zero).

Arguments

word-int-source-length-val

OpenVMS usage: word_unsigned

type: word (unsigned)
access: read only
mechanism: by value

Length of the source string. The word-int-source-length-val argument is an unsigned word integer
containing the length of the source string.

source-string-address

OpenVMS usage: char_string

type: character string
access: read only
mechanism: by reference

Source string. The source-string-address argument is the address of the source string.

destination-string

OpenVMS usage: char_string

type: character string
access: write only
mechanism: by descriptor

Destination string. The destination-string argument is the address of a descriptor pointing to the
destination string. OTS$SCOPY R DX determines the appropriate action based on the descriptor's
CLASS field. The descriptor's LENGTH field alone or both the POINTER and LENGTH fields can

93

Chapter 2. General-Purpose (OTS$) Routines

be modified if the string is dynamic. For varying strings, the string's current length (CURLEN) is
rewritten.

Description

OTS$SCOPY_R_DX copies a source string to a destination string. It passes the source string by
reference preceded by a length argument. The length argument, word-int-source-length-val, is
passed by value.

If the length of the source string is greater than the length of the destination string,
OTS$SCOPY_R_DX returns the number of bytes not moved to the destination string. If the length
of the source string is less than or equal to the length of the destination string, it returns 0 (zero). All
conditions except truncation are signaled; truncation is ignored.

An equivalent JSB entry point is provided, with RO being the first argument, R1 the second, and R2
the third, if any. The length argument is passed in bits 15:0 of the appropriate register. On return,
RO through RS and the PSL are as they would be after a VAX MOVCS instruction. RO through RS
contain the following:

RO Number of bytes of source string not moved to destination string
R1 Address one byte beyond the last copied byte in the source string
R2 0

R3 Address one byte beyond the destination string

R4 0

RS 0

For additional information, see the VAX Architecture Reference Manual.

The actions taken by OTS$SCOPY R DX depend on the descriptor class of the destination string.
The following table describes these actions for each descriptor class:

Descriptor |Action
Class

S,Z,SD, A, |Copy the source string. If needed, space fill or truncate on the right.
NCA

D If the area specified by the destination descriptor is large enough to contain the source
string, copy the source string and set the new length in the destination descriptor.

If the area specified is not large enough, return the previous space allocation (if any)
and then dynamically allocate the amount of space needed. Copy the source string
and set the new length and address in the destination descriptor.

VS Copy source string to destination string up to the limit of the descriptor's
MAXSTRLEN field with no padding. Adjust the string's current length (CURLEN)
field to the actual number of bytes copied.

Condition Values Signaled

OTS$_FATINTERR Fatal internal error.
OTS$ INVSTRDES Invalid string descriptor.
OTS$ INSVIRMEM Insufficient virtual memory.

94

Chapter 2. General-Purpose (OTS$) Routines

Example

A Fortran example that demonstrates the manipulation of dynamic strings appears at the
end of OTS$SSGET1_DD. This example uses OTS$SCOPY R DX, OTS$SGET1 DD, and
OTS$SFREE1 DD.

OTS$SFREE1_DD

OTS$SFREE1 DD — The Strings, Free One Dynamic routine returns one dynamic string area to free

storage.
Format

OTS$SFREEL_DD dynani c- descri pt or
Corresponding JSB Entry Point
OTS$SFREEL_DD6

Returns

None.

Arguments
dynamic-descriptor

OpenVMS usage: quadword_unsigned

type: quadword (unsigned)
access: modify
mechanism: by reference

Dynamic string descriptor. The dynamic-descriptor argument is the address of the dynamic string
descriptor. The descriptor is assumed to be dynamic and its class field is not checked.

Description

OTSS$SFREE1 DD deallocates the described string space and flags the descriptor as describing no
string at all. The descriptor's POINTER and LENGTH fields contain 0.

Condition Values Signaled
OTS$_FATINTERR Fatal internal error.

Example

A Fortran example that demonstrates the manipulation of dynamic strings appears at the
end of OTS$SSGET1_DD. This example uses OTS$SFREE1 DD, OTS$SGET1 DD, and
OTS$SCOPY R DX.

95

Chapter 2. General-Purpose (OTS$) Routines

OTS$SFREEN_DD

OTSSSFREEN DD — The Free n Dynamic Strings routine takes as input a vector of one or more
dynamic string areas and returns them to free storage.

Format

OTS$SFREEN DD descri ptor-count-val ue ,first-descriptor
Corresponding JSB Entry Point

OTS$SFREEN_DD6

Returns

None.

Arguments

descriptor-count-value

OpenVMS usage: longword_unsigned

type: longword (unsigned)
access: read only
mechanism: by value

Number of adjacent descriptors to be flagged as having no allocated area (the descriptor's POINTER
and LENGTH fields contain 0) and to have their allocated areas returned to free storage by
OTSS$SFREEN DD. The descriptor-count-value argument is an unsigned longword containing this
number.

first-descriptor

OpenVMS usage: quadword_unsigned

type: quadword (unsigned)
access: modify
mechanism: by reference

First string descriptor of an array of string descriptors. The first-descriptor argument is the address
of the first string descriptor. The descriptors are assumed to be dynamic, and their class fields are not
checked.

Description

OTS$SFREEN_DD6 deallocates the described string space and flags each descriptor as describing no
string at all. The descriptor's POINTER and LENGTH fields contain 0.

Condition Values Signaled

OTSS$_FATINTERR Fatal internal error.

96

Chapter 2. General-Purpose (OTS$) Routines

OTS$SGET1_DD

OTS$SGET1 DD — The Get One Dynamic String routine allocates a specified number of bytes of
dynamic virtual memory to a specified string descriptor.

Format

OTS$SCET1_DD wor d-i nt eger -1 engt h-val ue , dynam c-descri ptor
Corresponding JSB Entry Point

OTS$SGET1_DD _R6

Returns

None.

Arguments

word-integer-length-value

OpenVMS usage: word_unsigned

type: word (unsigned)
access: read only
mechanism: by value

Number of bytes to be allocated. The word-integer-length-value argument contains the number of
bytes. The amount of storage allocated is automatically rounded up. If the number of bytes is zero, a
small number of bytes is allocated.

dynamic-descriptor

OpenVMS usage: quadword_unsigned

type: quadword (unsigned)
access: modify
mechanism: by reference

Dynamic string descriptor to which the area is to be allocated. The dyn-str argument is the address of
the dynamic string descriptor. The CLASS field is not checked but it is set to dynamic (CLASS =2).
The LENGTH field is set to word-integer-length-value and the POINTER field is set to the string
area allocated (first byte beyond the header).

Description

OTSS$SGET1 DD allocates a specified number of bytes of dynamic virtual memory to a specified
string descriptor. This routine is identical to OTS$SCOPY_DXDX except that no source string is
copied. You can write anything you want in the allocated area.

If the specified string descriptor already has dynamic memory allocated to it, but the amount allocated
is either greater than or less than word-integer-length-value, that space is deallocated before
OTS$SGET1 DD allocates new space.

97

Chapter 2. General-Purpose (OTS$) Routines

Condition Values Signaled

OTS$ FATINTERR Fatal internal error.
OTS$ INSVIRMEM Insufficient virtual memory.
Example
PROGRAM STRI NG_TEST
C+
C This program denonstrates the use of some dynamic string
C mani pul ation routines.
C
C+
C DECLARATI ONS
C
| MPLI CI' T NONE
CHARACTER* 80 DATA LI NE
| NTEGER* 4 DATA LEN, DSC(2), CRLF_DSC(2), TEMP_DSC(2)
CHARACTER* 2 CRLF
C+
C Initialize the output descriptor. It should be enpty.
C
CALL OTS$SCGET1_DD(W/AL(0), DSC)
C+
C Initialize a descriptor to the string CRLF and copy the
C character CRLF to it.
C
CALL OTS$SCGET1_DD(W/AL(2), CRLF_DSC)
CRLF = CHAR(13)// CHAR(10)
CALL OTS$SCOPY_R DX(9%/AL(2), 9YREF(CRLF(1:1)), CRLF_DSC)
C+
C Initialize a tenmporary descriptor.
C
CALL OTS$SCGET1_DD(W/AL(0), TEMP_DSC)
C+
C Pronmpt the user.
C
WRI TE(6, 999)
999 FORMAT(1X, 'Enter your nessage, end with Crl/Z ")
C+
C Read lines of text fromthe terminal until end-of-file.
C Concatenate each line to the previous input. Include a
C CRLF between each line.
C

98

Chapter 2. General-Purpose (OTS$) Routines

998

C+

This Fortran example program demonstrates the manipulation of dynamic strings using

[

DO WH LE (. TRUE.)
READ(5, 998, ERR = 10) DATA LEN, DATA LINE
FORMAT(Q A)
CALL OTS$SCOPY_R DX(%/AL(DATA LEN),
YREF(DATA LI NE(1: 1)),
TEMP_DSC)
CALL STR$CONCAT(DSC, DSC, TEMP_DSC, CRLF_DSC)
END DO

The user has typed Crl/Z Qutput the data we read.

CALL LI B$PUT_OUTPUT(DSC)

Free the storage allocated to the dynam c strings.

CALL OTS$SFREE1_DD{ DSC)
CALL OTS$SFREE1_DDX CRLF_DSC)
CALL OTS$SFREE1_DDX TEMP_DSC)
End of program

STOP
END

OTS$SGET1 DD, OTS$SFREE! DD, and OTS$SCOPY R_DX.

99

Chapter 2. General-Purpose (OTS$) Routines

100

	VSI OpenVMS RTL General Purpose (OTS$) Manual
	Table of Contents
	Preface
	1. About VSI
	2. Intended Audience
	3. Document Structure
	4. Related Documents
	5. VSI Encourages Your Comments
	6. How to Order Additional Documentation
	7. Typographical Conventions

	Chapter 1. Run-Time Library General Purpose (OTS$) Facility
	1.1. 1.1 Overview
	1.2. Linking OTS$ Routines on Alpha and I64 Systems
	1.2.1. 64-Bit Addressing Support (Alpha and I64 Only)

	Chapter 2. General-Purpose (OTS$) Routines
	OTS$CALL_PROC (Alpha and I64 Only)
	OTS$CNVOUT
	OTS$CVT_L_TB
	OTS$CVT_L_TI
	OTS$CVT_L_TL
	OTS$CVT_L_TO
	OTS$CVT_L_TU
	OTS$CVT_L_TZ
	OTS$CVT_T_x
	OTS$CVT_TB_L
	OTS$CVT_TI_L
	OTS$CVT_TL_L
	OTS$CVT_TO_L
	OTS$CVT_TU_L
	OTS$CVT_TZ_L
	OTS$DIVCx
	OTS$DIV_PK_LONG
	OTS$DIV_PK_SHORT
	OTS$JUMP_TO_BPV (I64 Only)
	OTS$MOVE3
	OTS$MOVE5
	OTS$MULCx
	OTS$POWCxCx
	OTS$POWCxJ
	OTS$POWDD
	OTS$POWDJ
	OTS$POWDR
	OTS$POWGG
	OTS$POWGJ
	OTS$POWHH_R3 (VAX Only)
	OTS$POWHJ_R3 (VAX Only)
	OTS$POWII
	OTS$POWJJ
	OTS$POWLULU
	OTS$POWRD
	OTS$POWRJ
	OTS$POWRR
	OTS$POWSJ
	OTS$POWSS
	OTS$POWTJ
	OTS$POWTT
	OTS$POWxLU
	OTS$SCOPY_DXDX
	OTS$SCOPY_R_DX
	OTS$SFREE1_DD
	OTS$SFREEN_DD
	OTS$SGET1_DD

