
VSI OpenVMS

VSI OpenVMS Record Management
Services Reference Manual

Document Number: DO–RMSSRM–01A

Publication Date: July 2019

This reference manual contains general information intended for use in any
OpenVMS programming language, as well as specific information on writing
programs that use OpenVMS Record Management Services (OpenVMS RMS).

Revision Update Information: This is a new manual.

Operating System and Version: OpenVMS Alpha Version 7.3-1
OpenVMS VAX Version 7.3

VMS Software, Inc. (VSI)
Bolton, Massachusetts, USA

VSI OpenVMS Record Management Services Reference Manual:

Copyright © 2019 VMS Software, Inc. (VSI), Bolton, Massachusetts, USA

Legal Notice

Confidential computer software. Valid license from VSI required for possession, use or copying. Consistent with FAR 12.211 and 12.212,
Commercial Computer Software, Computer Software Documentation, and Technical Data for Commercial Items are licensed to the U.S.
Government under vendor's standard commercial license.

The information contained herein is subject to change without notice. The only warranties for VSI products and services are set forth in the
express warranty statements accompanying such products and services. Nothing herein should be construed as constituting an additional
warranty. VSI shall not be liable for technical or editorial errors or omissions contained herein.

HPE, HPE Integrity, HPE Alpha, and HPE Proliant are trademarks or registered trademarks of Hewlett Packard Enterprise.

The VSI OpenVMS documentation set is available on DVD.

ii

VSI OpenVMS Record Management Services Reference Manual

Preface .. xi
1. About VSI ... xi
2. Intended Audience ... xi
3. Document Structure ... xi
4. Related Documents .. xi
5. VSI Encourages Your Comments ... xii
6. How To Order Additional Documentation .. xii
7. Typographycal Conventions ... xii

Part I. OpenVMS Record Management Services (RMS)—
General Information

Chapter 1. Introduction to RMS .. 3
1.1. RMS Functions .. 3
1.2. Passing Arguments to RMS .. 5

1.2.1. Record Management Services and Control Blocks ... 5
1.2.2. Control Blocks for File Services .. 5
1.2.3. Control Blocks for Record Services .. 6
1.2.4. Dual Purpose of Control Blocks ... 7

Chapter 2. RMS Program Interface .. 9
2.1. RMS Run-Time Environment ... 9
2.2. Conventions for Naming Fields .. 9
2.3. RMS Calling Sequence ... 11
2.4. Service Completion .. 12

2.4.1. Illformed Calls to RMS ... 12
2.4.2. Setting Synchronous or Asynchronous Option ... 13
2.4.3. Synchronous Completion ... 13
2.4.4. Asynchronous Completion ... 13
2.4.5. Status Code Testing ... 14
2.4.6. Types of Errors ... 15

2.5. Allowable Program Execution Modes .. 16
2.6. Access-Mode Protected Memory ... 16
2.7. Reserved Event Flags ... 17
2.8. DEC Multinational Character Set .. 17

Chapter 3. Implementing RMS from C Programs ... 19
3.1. Creating, Accessing, and Deaccessing a File .. 19

3.1.1. Example of Copying Records from One File to Another File 19
3.2. Program to Illustrate Record Operations .. 23
3.3. Program to Show Index Root Levels ... 26
3.4. Program to Illustrate Using NAML Blocks (Alpha Only) ... 27
3.5. Program to Illustrate Using the RAB64 Structure ... 30

Part II. RMS Control Blocks

Chapter 4. File Access Block (FAB) .. 37
4.1. Summary of Fields ... 37
4.2. FAB$B_ACMODES Field .. 38
4.3. FAB$L_ALQ Field ... 38
4.4. FAB$B_BID Field .. 39
4.5. FAB$B_BKS Field ... 39

iii

VSI OpenVMS Record Management Services Reference Manual

4.6. FAB$B_BLN Field ... 40
4.7. FAB$W_BLS Field .. 40
4.8. FAB$V_CHAN_MODE Subfield .. 41

4.8.1. Override Value .. 41
4.8.2. Channel Access Mode Function ... 41

4.9. FAB$L_CTX Field ... 42
4.10. FAB$W_DEQ Field .. 42
4.11. FAB$L_DEV Field ... 43
4.12. FAB$L_DNA Field .. 44
4.13. FAB$B_DNS Field ... 45
4.14. FAB$B_FAC Field ... 45
4.15. FAB$L_FNA Field ... 47
4.16. FAB$B_FNS Field ... 47
4.17. FAB$L_FOP Field .. 47
4.18. FAB$B_FSZ Field .. 54
4.19. FAB$W_GBC Field .. 55
4.20. FAB$W_IFI Field ... 56
4.21. FAB$B_JOURNAL Field ... 56
4.22. FAB$V_LNM_MODE Subfield .. 57
4.23. FAB$L_MRN Field .. 57
4.24. FAB$W_MRS Field ... 58
4.25. FAB$L_NAM Field .. 59
4.26. FAB$B_ORG Field .. 59
4.27. FAB$B_RAT Field ... 60
4.28. FAB$B_RFM Field .. 62
4.29. FAB$B_RTV Field ... 63
4.30. FAB$L_SDC Field ... 63
4.31. FAB$B_SHR Field ... 64
4.32. FAB$L_STS Field .. 66
4.33. FAB$L_STV Field ... 66
4.34. FAB$L_XAB Field ... 66

Chapter 5. Name Block (NAM) ... 67
5.1. Summary of Fields ... 67
5.2. File Specification Component Descriptors ... 68
5.3. NAM$B_BID Field .. 69
5.4. NAM$B_BLN Field ... 69
5.5. NAM$B_DEV and NAM$L_DEV Fields .. 70
5.6. NAM$W_DID Field ... 70
5.7. NAM$B_DIR and NAM$L_DIR Fields .. 70
5.8. NAM$T_DVI Field .. 70
5.9. NAM$L_ESA Field .. 70
5.10. NAM$B_ESL Field .. 71
5.11. NAM$B_ESS Field .. 71
5.12. NAM$W_FID Field ... 71
5.13. NAM$W_FIRST_WILD_DIR Field .. 71
5.14. NAM$L_FNB Field ... 71
5.15. NAM$W_LONG_DIR_LEVELS Field .. 73
5.16. NAM$B_NAME and NAM$L_NAME Fields .. 73
5.17. NAM$B_NMC ... 73
5.18. NAM$B_NODE and NAM$L_NODE Fields ... 74
5.19. NAM$B_NOP Field ... 74
5.20. NAM$L_RLF Field .. 75

iv

VSI OpenVMS Record Management Services Reference Manual

5.21. NAM$L_RSA Field ... 75
5.22. NAM$B_RSL Field .. 76
5.23. NAM$B_RSS Field .. 76
5.24. NAM$B_TYPE and NAM$L_TYPE Fields ... 76
5.25. NAM$B_VER and NAM$L_VER Fields ... 76
5.26. NAM$L_WCC Field .. 76

Chapter 6. Long Name Block (NAML) ... 77
6.1. Using the NAM and NAML Block ... 77
6.2. Summary of Fields ... 78
6.3. Validating the NAML Block ... 80
6.4. NAML$B_BID Field .. 80
6.5. NAML$B_BLN Field ... 80
6.6. NAML$L_FILESYS_NAME Field ... 80
6.7. NAML$L_FILESYS_NAME_ALLOC Field ... 81
6.8. NAML$L_FILESYS_NAME_SIZE Field .. 81
6.9. NAML$L_INPUT_FLAGS Field .. 81
6.10. NAML$L_LONG_DEFNAME and NAML$L_LONG_DEFNAME_SIZE Fields 81
6.11. NAML$L_LONG_DEV and NAML$L_LONG_DEV_SIZE Fields 82
6.12. NAML$L_LONG_DIR and NAML$L_LONG_DIR_SIZE Fields 82
6.13. NAML$L_LONG_EXPAND Field .. 82
6.14. NAML$L_LONG_EXPAND_ALLOC Field .. 82
6.15. NAML$L_LONG_EXPAND_SIZE Field .. 83
6.16. NAML$L_LONG_FILENAME and NAML$L_LONG_FILENAME_SIZE Fields 83
6.17. NAML$L_LONG_NAME and NAML$L_LONG_NAME_SIZE Fields 83
6.18. NAML$L_LONG_NODE and NAML$L_LONG_NODE_SIZE Fields 83
6.19. NAML$L_LONG_RESULT Field ... 84
6.20. NAML$L_LONG_RESULT_ALLOC Field ... 84
6.21. NAML$L_LONG_RESULT_SIZE Field .. 84
6.22. NAML$L_LONG_TYPE and NAML$L_LONG_TYPE_SIZE Fields 84
6.23. NAML$L_LONG_VER and NAML$L_LONG_VER_SIZE Fields 85
6.24. NAML$L_OUTPUT_FLAGS Field ... 85
6.25. NAML$Q_USER_CONTEXT Field .. 85

Chapter 7. Record Access Block (RAB) .. 87
7.1. Summary of Fields ... 87
7.2. RAB$B_BID Field ... 88
7.3. RAB$L_BKT Field .. 88
7.4. RAB$B_BLN Field .. 89
7.5. RAB$L_CTX Field .. 89
7.6. RAB$L_FAB Field ... 89
7.7. RAB$W_ISI Field .. 89
7.8. RAB$L_KBF Field .. 89
7.9. RAB$B_KRF Field .. 90
7.10. RAB$B_KSZ Field .. 90
7.11. RAB$B_MBC Field ... 92
7.12. RAB$B_MBF Field .. 93
7.13. RAB$L_PBF Field ... 93
7.14. RAB$B_PSZ Field ... 94
7.15. RAB$B_RAC Field .. 94
7.16. RAB$L_RBF Field ... 95
7.17. RAB$W_RFA Field .. 95
7.18. RAB$L_RHB Field .. 96

v

VSI OpenVMS Record Management Services Reference Manual

7.19. RAB$L_ROP Field .. 96
7.20. RAB$W_ROP_2 Field .. 107
7.21. RAB$W_RSZ Field .. 109
7.22. RAB$L_STS Field ... 109
7.23. RAB$L_STV Field ... 109
7.24. RAB$B_TMO Field ... 109
7.25. RAB$L_UBF Field ... 110
7.26. RAB$W_USZ Field .. 110
7.27. RAB$L_XAB Field .. 110

Chapter 8. 64-Bit Record Access Block (RAB64) .. 111
8.1. Summary of Fields ... 111
8.2. RAB64$Q_CTX Field .. 113
8.3. RAB64$PQ_KBF Field .. 113
8.4. RAB64$PQ_RBF Field ... 113
8.5. RAB64$PQ_RHB Field .. 113
8.6. RAB64$Q_RSZ Field ... 114
8.7. RAB64$PQ_UBF Field .. 114
8.8. RAB64$Q_USZ Field ... 114

Chapter 9. Allocation Control XAB (XABALL) .. 115
9.1. Summary of Fields ... 115
9.2. XAB$B_AID Fields ... 116
9.3. XAB$B_ALN Field .. 116
9.4. XAB$L_ALQ Field .. 117
9.5. XAB$B_AOP Field .. 117
9.6. XAB$B_BKZ Field .. 118
9.7. XAB$B_BLN Field .. 119
9.8. XAB$B_COD Field ... 119
9.9. XAB$W_DEQ Field ... 119
9.10. XAB$L_LOC Field .. 119
9.11. XAB$L_NXT Field .. 120
9.12. XAB$W_RFI Field ... 120
9.13. XAB$W_VOL Field ... 120

Chapter 10. Date and Time XAB (XABDAT) .. 121
10.1. Summary of Fields ... 121
10.2. XAB$Q_BDT Field .. 122
10.3. XAB$B_BLN Field .. 122
10.4. XAB$Q_CDT Field .. 122
10.5. XAB$B_COD Field .. 122
10.6. XAB$Q_EDT Field .. 122
10.7. XAB$L_NXT Field .. 122
10.8. XAB$Q_RDT Field .. 122
10.9. XAB$W_RVN Field ... 123
10.10. XAB$Q_RCD Field (VAX Only) .. 123
10.11. XAB$Q_EFF Field (VAX Only) .. 123
10.12. POSIX–Compliant Access Dates (Alpha Only) ... 123

10.12.1. XAB$Q_ACC Field ... 124
10.12.2. XAB$Q_ATT Field .. 124
10.12.3. XAB$Q_MOD Field .. 124

Chapter 11. File Header Characteristic XAB (XABFHC) ... 125
11.1. Summary of Fields ... 125

vi

VSI OpenVMS Record Management Services Reference Manual

11.2. XAB$B_ATR Field ... 126
11.3. XAB$B_BKZ Field .. 126
11.4. XAB$B_BLN Field .. 126
11.5. XAB$B_COD Field .. 127
11.6. XAB$W_DXQ Field ... 127
11.7. XAB$L_EBK Field .. 127
11.8. XAB$W_FFB Field .. 127
11.9. XAB$W_GBC Field ... 127
11.10. XAB$L_HBK Field .. 127
11.11. XAB$B_HSZ Field ... 128
11.12. XAB$W_LRL Field .. 128
11.13. XAB$W_MRZ Field ... 128
11.14. XAB$L_NXT Field .. 128
11.15. XAB$B_RFO Field ... 128
11.16. XAB$L_SBN Field ... 129
11.17. XAB$W_VERLIMIT Field ... 129

Chapter 12. Item List XAB (XABITM) .. 131
12.1. Summary of Fields ... 131

12.1.1. XAB$B_BLN Field ... 132
12.1.2. XAB$B_COD Field ... 132
12.1.3. XAB$L_ITEMLIST Field .. 132
12.1.4. XAB$B_MODE Field .. 132
12.1.5. XAB$L_NXT Field ... 132

12.2. Network File Access Items (XAB$_NET_... and XAB$_CAP_...) 132
12.3. File User Characteristics Items (XAB$_UCHAR_...) .. 138
12.4. RMS Performance Monitoring (XAB$_STAT_ENABLE) ... 139
12.5. Compound Document Support (XAB$_..._SEMANTICS) ... 140
12.6. Specifying the Number of Local Buffers (XAB$_MULTIBUFFER_COUNT) 141
12.7. Expiration Date and Time Suppression .. 141

12.7.1. XAB$_NORECORD XABITM .. 141
12.7.2. Application .. 142

12.8. File Length Hint (XAB$_FILE_LENGTH_HINT) .. 142
12.9. Extended File Cache (XAB$_CACHE_OPTIONS) (Alpha Only) 143
12.10. POSIX-Compliant Access Dates (Alpha Only) ... 144

Chapter 13. Journaling XAB (XABJNL) .. 147
Chapter 14. Key Definition XAB (XABKEY) .. 149

14.1. Summary of Fields ... 149
14.2. XAB$B_BLN Field .. 150
14.3. XAB$B_COD Field .. 150
14.4. XAB$L_COLNAM Field .. 150
14.5. XAB$L_COLSIZ Field ... 150
14.6. XAB$L_COLTBL Field .. 150
14.7. XAB$B_DAN Field ... 151
14.8. XAB$B_DBS Field .. 151
14.9. XAB$W_DFL Field ... 152
14.10. XAB$B_DTP Field ... 152
14.11. XAB$L_DVB Field .. 155
14.12. XAB$B_FLG Field ... 155
14.13. XAB$B_IAN Field ... 157
14.14. XAB$B_IBS Field .. 157
14.15. XAB$W_IFL Field ... 158

vii

VSI OpenVMS Record Management Services Reference Manual

14.16. XAB$L_KNM Field ... 158
14.17. XAB$B_LAN Field .. 158
14.18. XAB$B_LVL Field ... 159
14.19. XAB$W_MRL Field ... 159
14.20. XAB$B_NSG Field .. 159
14.21. XAB$B_NUL Field .. 159
14.22. XAB$L_NXT Field .. 160
14.23. XAB$W_POS0 Through XAB$W_POS7 Field .. 160
14.24. XAB$B_PROLOG Field ... 160
14.25. XAB$B_REF Field ... 161
14.26. XAB$L_RVB Field ... 161
14.27. XAB$B_SIZ0 Through XAB$B_SIZ7 Field .. 161
14.28. XAB$B_TKS Field ... 162

Chapter 15. Protection XAB (XABPRO) .. 163
15.1. Summary of Fields ... 163
15.2. XAB$L_ACLBUF Field ... 164
15.3. XAB$L_ACLCTX Field ... 164
15.4. XAB$W_ACLLEN Field .. 164
15.5. XAB$W_ACLSIZ Field .. 165
15.6. XAB$L_ACLSTS Field .. 165
15.7. XAB$B_BLN Field .. 165
15.8. XAB$B_COD Field .. 166
15.9. XAB$W_GRP Field ... 166
15.10. XAB$W_MBM Field .. 166
15.11. XAB$B_MTACC Field ... 166
15.12. XAB$L_NXT Field .. 166
15.13. XAB$W_PRO Field ... 167
15.14. XAB$B_PROT_OPT Field .. 168
15.15. XAB$L_UIC Field ... 169

Chapter 16. Revision Date and Time XAB (XABRDT) ... 171
16.1. Summary of Fields ... 171
16.2. XAB$B_BLN Field .. 172
16.3. XAB$B_COD Field .. 172
16.4. XAB$L_NXT Field .. 172
16.5. XAB$Q_RDT Field .. 172
16.6. XAB$W_RVN Field ... 173

Chapter 17. Recovery Unit XAB (XABRU) .. 175
Chapter 18. Summary XAB (XABSUM) .. 177

18.1. Summary of Fields ... 177
18.2. XAB$B_BLN Field .. 177
18.3. XAB$B_COD Field .. 177
18.4. XAB$B_NOA Field ... 177
18.5. XAB$B_NOK Field ... 177
18.6. XAB$L_NXT Field .. 178
18.7. XAB$W_PVN Field ... 178

Chapter 19. Terminal XAB (XABTRM) ... 179
19.1. Summary of Fields ... 179
19.2. XAB$B_BLN Field .. 180
19.3. XAB$B_COD Field .. 180
19.4. XAB$L_ITMLST Field .. 180

viii

VSI OpenVMS Record Management Services Reference Manual

19.5. XAB$W_ITMLST_LEN Field .. 180
19.6. XAB$L_NXT Field .. 180

Part III. OpenVMS RMS Services

$CLOSE ... 183
$CONNECT ... 187
$CREATE ... 191
$DELETE ... 205
$DISCONNECT .. 207
$DISPLAY .. 209
$ENTER ... 215
$ERASE ... 219
$EXTEND .. 225
$FIND .. 229
$FLUSH ... 235
$FREE .. 239
$GET .. 241
$NXTVOL .. 251
$OPEN ... 255
$PARSE .. 265
$PUT .. 273
$READ ... 281
$RELEASE ... 285
$REMOVE ... 287
$RENAME ... 293
$REWIND .. 299
$SEARCH .. 303
$SPACE .. 309
$TRUNCATE .. 311
$UPDATE ... 315
$WAIT .. 319
$WRITE ... 321

Appendix A. RMS Control Block Macros .. 325
$FAB .. 325
$FAB_STORE ... 326
$NAM .. 327
$NAM_STORE ... 327
$NAML .. 328
$NAML_STORE ... 329
$RAB ... 330
$RAB_STORE .. 331
$RAB64 (Alpha Only) .. 332
$RAB64_STORE (Alpha Only) ... 333
$XABALL .. 334
$XABALL_STORE ... 335
$XABDAT .. 336
$XABDAT_STORE ... 336
$XABFHC .. 337
$XABFHC_STORE ... 337
$XABITM .. 338
$XABKEY ... 338

ix

VSI OpenVMS Record Management Services Reference Manual

$XABKEY_STORE .. 339
$XABPRO .. 340
$XABPRO_STORE ... 341
$XABRDT .. 342
$XABRDT_STORE .. 342
$XABSUM ... 343
$XABSUM_STORE .. 343
$XABTRM ... 344
$XABTRM_STORE .. 344

Appendix B. VAX MACRO Programming Information and Examples 347
B.1. RMS Macros ... 347

B.1.1. Conventions for Naming RMS Macros ... 348
B.1.2. Applicable VAX MACRO Syntax Rules ... 350

B.2. Using the RMS Macros .. 352
B.2.1. Control Block Initialization Macros .. 352
B.2.2. Control Block Symbol Definition Macros ... 353
B.2.3. Control Block Store Macros .. 353
B.2.4. Service Macros ... 355

B.3. VAX MACRO Example Programs .. 357
B.3.1. Creating, Accessing, and Deaccessing a File ... 357
B.3.2. Example of Opening and Creating Files ... 358
B.3.3. Example of Creating a Multiple-Key Indexed File ... 361
B.3.4. Processing File Specifications .. 365
B.3.5. Connecting and Disconnecting Record Streams ... 368
B.3.6. Other File-Processing Operations ... 370
B.3.7. Retrieving and Inserting Records ... 371
B.3.8. Deleting Records ... 374
B.3.9. Updating Records .. 375
B.3.10. Using Block I/O .. 377
B.3.11. Mixed Block and Record I/O ... 378
B.3.12. Next Block Pointer (NBP) ... 379

x

Preface
1. About VSI
VMS Software, Inc. (VSI) is an independent software company licensed by Hewlett Packard
Enterprise to develop and support the OpenVMS operating system.

VSI seeks to continue the legendary development prowess and customer-first priorities that are so
closely associated with the OpenVMS operating system and its original author, Digital Equipment
Corporation.

2. Intended Audience
This document describes OpenVMS Record Management Services (RMS) control blocks and services
for programmers.

3. Document Structure
This document consists of three parts and two appendixes.

• Part I contains general information about Record Management Services (RMS).

• Chapter 1 introduces the reader to RMS functions and associated control blocks.

• Chapter 2 discusses the RMS program interface that applies to using any OpenVMS
programming language.

• Chapter 3 describes to advanced high-level language programmers how to use RMS macros.

• Part II describes the RMS control blocks and their associated fields, in Chapter 4 through
Chapter 19. This information is intended for a programmer using any programming language.

• Part III describes the record management services, including the control block fields accessed by
each service. This information is intended for a programmer using any programming language.

• Appendix A contains the formats and associated usage notes for the RMS control block
initialization and store macros used by VAX MACRO programmers.

• Appendix B describes the VAX MACRO programming interface, and how to use RMS macros.
This appendix also provides additional descriptions implementing groups of record management
services, together with appropriate VAX MACRO example programs.

4. Related Documents
The following documents contain information related to this reference manual:

• VSI OpenVMS Programming Concepts Manual, Volume II contains information about calling
routines on an OpenVMS system.

• Guide to OpenVMS File Applications contains descriptions of file and record options available to
users in a task-oriented format.

xi

Preface

• VSI OpenVMS Record Management Utilities Reference Manual contains related information about
RMS utilities and the File Definition Language (FDL).

• DECnet for OpenVMS Networking Manual discusses the support of RMS options for remote file
access to non OpenVMS systems. For example, when the remote system is a PDP-11 system
running RMS-11, Prolog 3 index files are not supported and some RMS XABKEY (key definition
extended attribute block) fields, as well as other control block fields, are not fully supported.

5. VSI Encourages Your Comments
You may send comments or suggestions regarding this manual or any VSI document by sending
electronic mail to the following Internet address: <docinfo@vmssoftware.com>.

6. How To Order Additional Documentation
For information about how to order additional documentation, email the VSI OpenVMS information
account: <info@vmssoftware.com>. We will be posting links to documentation on our
corporate website soon.

7. Typographycal Conventions
The following conventions are used in this manual:

Ctrl/x A sequence such as Ctrl/x indicates that you must hold down the key
labeled Ctrl while you press another key or a pointing device button.

PF1 x A sequence such as PF1 x indicates that you must first press and release the
key labeled PF1 and then press and release another key or a pointing device
button.

... A horizontal ellipsis in examples indicates one of the following
possibilities:

• Additional optional arguments in a statement have been omitted.

• The preceding item or items can be repeated one or more times.

• Additional parameters, values, or other information can be entered.
.
.
.

A vertical ellipsis indicates the omission of items from a code example or
command format; the items are omitted because they are not important to
the topic being discussed.

() In command format descriptions, parentheses indicate that you must
enclose choices in parentheses if you specify more than one.

[] In command format descriptions, brackets indicate optional choices. You
can choose one or more items or no items. Do not type the brackets on the
command line. However, you must include the brackets in the syntax for
OpenVMS directory specifications and for a substring specification in an
assignment statement.

| In command format descriptions, vertical bars separate choices within
brackets or braces. Within brackets, the choices are optional; within
braces, at least one choice is required. Do not type the vertical bars on the
command line.

xii

Preface

{ } In command format descriptions, braces indicate required choices; you
must choose at least one of the items listed. Do not type the braces on the
command line.

bold text This typeface represents the introduction of a new term. It also represents
the name of an argument, an attribute, or a reason.

italic text Italic text indicates important information, complete titles of manuals,
or variables. Variables include information that varies in system output
(Internal error number), in command lines (/PRODUCER= name), and in
command parameters in text (where dd represents the predefined code for
the device type).

UPPERCASE TEXT Uppercase text indicates a command, the name of a routine, the name of a
file, or the abbreviation for a system privilege.

Monospace text Monospace type indicates code examples and interactive screen displays.
In the C programming language, monospace type in text identifies the
following elements: keywords, the names of independently compiled
external functions and files, syntax summaries, and references to variables
or identifiers introduced in an example.

- A hyphen at the end of a command format description, command line,
or code line indicates that the command or statement continues on the
following line.

numbers All numbers in text are assumed to be decimal unless otherwise noted.
Nondecimal radixes—binary, octal, or hexadecimal—are explicitly
indicated.

xiii

Preface

xiv

Part I. OpenVMS Record Management
Services (RMS)—General Information

Part I introduces the general mechanisms and conventions associated with Record Management
Services (RMS). It discusses the following topics:

• Argument passing

• Control blocks

1

2

Chapter 1. Introduction to RMS
This section presents an overview of the general functions available through RMS. It also briefly
describes the record management services and related control blocks.

1.1. RMS Functions
RMS is a set of generalized services that assist application programs in processing and managing files
and their contents. OpenVMS languages may invoke these services using appropriate macros stored
in system libraries using the OpenVMS calling standard. Record management services are system
services identified by the entry point prefix SYS$ followed by three or more characters; but the SYS
prefix is omitted in the corresponding VAX MACRO macro name. For example, the Create service
has an entry point of SYS$CREATE and a VAX MACRO macro name of $CREATE. A complete
description of each service is provided in Part III.

Table 1.1 describes the functions of each service, including the service entry point name and its
corresponding VAX MACRO macro name.

Table 1.1. Record Management Services

Service Name Macro Name Description
File Processing and File Naming Macros
SYS$CLOSE $CLOSE Terminates file processing and disconnects all record

streams previously associated with the file
SYS$CREATE $CREATE Creates and opens a new file
SYS$DISPLAY $DISPLAY Returns the opened file's attributes to the application

program
SYS$ENTER1 $ENTER Enters a file name into a directory
SYS$ERASE $ERASE Deletes a file and removes its directory entry
SYS$EXTEND $EXTEND Allocates additional space to a file
SYS$OPEN $OPEN Opens an existing file and initiates file processing
SYS$PARSE $PARSE Parses a file specification
SYS$REMOVE1 $REMOVE Removes a file name from a directory but does not

actually delete the file data; compare this with the
$ERASE macro

SYS$RENAME $RENAME Assigns a new name to (renames) a file
SYS$SEARCH $SEARCH Searches a directory, or possibly multiple directories,

for a file name
Record Processing Macros
SYS$CONNECT $CONNECT Establishes a record stream by associating a RAB with

an open file
SYS$DELETE $DELETE Deletes a record from a relative or indexed file
SYS$DISCONNECT $DISCONNECT Terminates a record stream by disconnecting a RAB

from an open file

3

Chapter 1. Introduction to RMS

Service Name Macro Name Description
SYS$FIND $FIND Locates the specified record, establishes it as the

current record and returns the record's RFA to the
application program

SYS$FLUSH $FLUSH Writes (flushes) modified I/O buffers and file attributes
to the disk before closing a file

SYS$FREE $FREE Unlocks all records previously locked by the record
stream

SYS$GET $GET Retrieves a record from a file
SYS$NXTVOL1 $NXTVOL Causes processing of a magnetic tape file to continue

to the next volume of a volume set
SYS$PUT $PUT Writes a new record to a file
SYS$RELEASE $RELEASE Unlocks a record pointed to by the contents of the

RAB$W_RFA field
SYS$REWIND $REWIND Establishes the first file record as the current record
SYS$TRUNCATE $TRUNCATE Truncates a sequential file
SYS$UPDATE $UPDATE Deletes and rewrites (updates) an existing file record
SYS$WAIT $WAIT Awaits the completion of an asynchronous record

operation
Block I/O Processing Macros
SYS$READ $READ Retrieves a specified number of bytes from a file,

beginning on block boundaries
SYS$SPACE $SPACE Positions forward or backward in a file to a block

boundary
SYS$WRITE $WRITE Writes a specified number of bytes to a file, beginning

on block boundaries
1This service is not supported for network operations involving file access between remote OpenVMS systems.

Although RMS supports unit-record devices, such as terminals and printers, it primarily provides a
comprehensive software interface to mass storage devices, such as disk and magnetic tape drives.

RMS provides a variety of disk file organizations, record formats, and record access modes from
which you can select the appropriate processing techniques for your application. RMS supports
sequential, relative, and indexed file organizations, and fixed-length and variable-length record
formats are supported for each file organization. (Relative and sequential files also support other
record formats.) The RMS record access modes permit you to access records sequentially, directly
by key value, directly by relative record number, or directly by record file address (RFA). RMS also
provides a means of performing block I/O operations for users with certain performance-critical
applications (such applications may require user-defined file organizations or record formats, or both).

RMS ensures safe and efficient file sharing by providing:

• Multiple file access modes to match file sharing with file operations

• Automatic record locking in applicable file access modes that ensures data integrity during record
updates

• Optional buffer sharing to minimize I/O operations when multiple processes access the same file

4

Chapter 1. Introduction to RMS

RMS also enforces the security requirements of a multiuser system with potential multinode access by
restricting file access to one or more user types and a list of user names.

For systems that support network capabilities, RMS provides a subset of file and record management
services through the data access protocol (DAP) to remote network nodes. Network DAP remote file
operations are generally transparent to application programs.

1.2. Passing Arguments to RMS
RMS flexibility requires application programs to pass a multitude of arguments to RMS services for
doing common operations such as file creation and file access. To minimize the problems associated
with passing numerous arguments for each service call, the application program places the arguments
in one or more data control blocks before it invokes a record management service. The only argument
required for most services is the symbolic address of the appropriate data control block.

1.2.1. Record Management Services and Control
Blocks
Because RMS operates on files and records, its services generally belong to one of two groups:

• File services that create and access a new file, access (open) an existing file, extend the disk space
allocated to a file, close a file, obtain file characteristics, and perform other functions related to
files

• Record services that get, find (locate), put (insert), update, and delete records, and perform other
operations not directly related to record I/O, such as associating one or more record streams
(methods of accessing records) with an open file

To support service operations, RMS provides two types of control blocks:

• Control blocks that provide file-related arguments to file services

• Control blocks that provide record-related arguments to record services

1.2.2. Control Blocks for File Services
File services use a control block called the file access block (FAB). When creating a file, the user
must store arguments in the FAB that define the file characteristics, the file specification, and certain
run-time access options. When your process opens an existing file, the FAB specifies only the file
specification and the run-time access options.

There are three categories of FAB arguments; the following list briefly introduces each category.

• File specification arguments identify primary and default file specifications used at run-time to
locate the file.

• File characteristics arguments specify the file organization, record type, space allocation
information, and other information.

• Run-time access options specify the operations that can be done by the initiating process and
the operations that can be done by sharing processes, a variety of file-processing options, and the
address (or addresses) of one or more control blocks whose fields supplement or supersede the
information in the FAB.

5

Chapter 1. Introduction to RMS

The two types of optional control blocks that can supplement or supersede the information in the FAB
are the extended attribute block (XAB, pronounced “zab”) and the NAM or NAML block.

A XAB usually supersedes and supplements the file characteristics specified in the associated FAB,
and multiple XABs may support a single file. There are several types of XABs, each of which is used
for a different purpose. Each type of XAB has a 6-letter mnemonic name consisting of the prefix
“XAB” followed by a 3-letter mnemonic that relates to the XAB function. For instance, the XAB that
supplements and supersedes the file allocation information in the FAB is called an allocation control
XAB, or XABALL.

The XABs used for file operations are briefly described in the following list:

• Allocation control XAB (XABALL)—allows greater control over disk file allocation and
positioning during file allocation.

• Date and time XAB (XABDAT)—specifies date and time values for when the files were backed
up, created, and expired. It also provides the time and date for file revisions and the revision
number.

• File header characteristic XAB (XABFHC)—receives the file characteristics information
contained in the file header block.

• Item list XAB (XABITM)—provides a convenient means for using item lists to pass information
between RMS and the application program.

• Journaling XAB (XABJNL)—on VAX systems, supports file journaling operations.

• Key definition XAB (XABKEY)—defines the key characteristics to be associated with an indexed
file.

• File protection XAB (XABPRO)—defines file protection characteristics that specify what class of
users or list of users can have certain specified access rights. For ANSI magnetic tape files using
HDR1 labels, this XAB specifies the accessibility field character.

• Revision date and time XAB (XABRDT)—specifies the revision date and time value and the
revision number associated with closing a file.

• Recovery unit XAB (XABRU)—on VAX systems, supports the use of recovery units to assure
data file integrity.

• Summary XAB (XABSUM)—stores additional file characteristics associated with an indexed file.

1.2.3. Control Blocks for Record Services
Record services use a control block known as the record access block, or RAB. Some of the
arguments the user must store in the RAB include the address of the related FAB, the address of input
and output record buffers, the type and size of general I/O buffers, whether a file's records will be
accessed directly or sequentially, certain tuning options, and other information.

An extended attribute block (XAB) can both supersede and supplement the record characteristics
specified in the RAB. As with a XAB that supersedes and supplements a FAB, a XAB that supersedes
and supplements a RAB has a 6-letter mnemonic name consisting of the prefix “XAB” followed by
three letters. Note that there are only two XAB types used for record operations, the terminal XAB
(XABTRM) and, on VAX systems only, the recovery unit XAB (XABRU).

6

Chapter 1. Introduction to RMS

The XABTRM defines the symbolic address and length of a user-supplied argument list that defines
the terminal operation and provides more flexibility than using RAB fields.

See the RMS Journaling for OpenVMS Manual for details relating to the use of the XABRU on VAX
systems.

1.2.4. Dual Purpose of Control Blocks
Control blocks provide input to and output from record management services, including the following
run-time information:

• Detailed file characteristics, including file organization, record format, and record size

• Device characteristics

• File, directory, and device identifiers

• The address (location) and length of a requested record

• Returned condition values

For this reason, certain programs specifically allocate a NAM or NAML block or one or more XABs
dedicated to receiving information returned by RMS. Typically, such information can be examined to
determine how the file should be processed.

In most cases, however, control blocks are used both to transmit and to receive information between
the application program and RMS, and should not be located in a read-only program section.

Be sure that control block fields not currently used by a particular service have valid default values,
because future versions of RMS may use them. This applies also to control block fields that are
currently described as “ignored for DECnet for OpenVMS operations” because future versions of
RMS or DECnet for OpenVMS may support those fields.

A name (NAM) block supplements the file specification information stored in the related FAB.
It is especially useful for locating and opening files when the file specification is entered by an
interactive user or when a file specification includes a wildcard character or a search list logical name
representing multiple files.

On Alpha systems, a long name block (NAML) can optionally take the place of a NAM block. The
NAML allows OpenVMS Alpha users to locate and use file specifications that are longer than 255
bytes. For an extra level of file specification defaults, RMS may apply defaults using additional NAM
or NAML blocks that contain the file specifications of related files.

7

Chapter 1. Introduction to RMS

8

Chapter 2. RMS Program Interface
This section introduces the application program interface with RMS that is applicable to all
OpenVMS languages in terms of the following:

• The run-time processing environment

• RMS symbol-naming conventions

• The calling sequence for record management services

• Allowable program execution modes

• Condition values returned by record management services

2.1. RMS Run-Time Environment
The RMS run-time processing environment consists of a set of blocks and the run-time services.
The control block fields accessed by each service specify the appropriate file and record operations.
Depending on the operation, RMS uses one or more control blocks by referring to one or more fields
as input to, or output from, the operation.

To use RMS, you must do the following:

1. Allocate the appropriate control block, usually at assembly time or compilation time. Control
blocks must not reside in read-only storage and should be aligned on a longword boundary to
maximize efficiency.

2. Insert the appropriate values into the control block fields before you invoke the related service.

3. Invoke the appropriate service. As part of this step, a condition value should always be examined.

To perform advanced RMS functions, you may need to set various control block field values at run-
time between the time the file is opened and when the appropriate service is invoked.

Note that OpenVMS languages perform some of these steps transparently when a particular language
statement or macro is present in a source program.

Two fields in each control block—the block length (BLN) field and the block identifier (BID) (or
block code [COD] field in a XAB)—define the length of the control block (in bytes) and identify
the control block type, respectively. These internal fields are always used as input arguments by the
service that accesses the control block, and must be set before the control block can be used. After the
block length and block identifier fields are established, you must treat them as read-only fields until
the control block is no longer needed.

Part II describes each control block field in detail, including its length and its symbolic name.

Part III lists the calling format for each service together with the input control block fields and the
output control block fields for each service.

2.2. Conventions for Naming Fields
RMS uses mnemonics to identify control block fields. For example, the mnemonic name for the FAB
allocation quantity field is ALQ.

9

Chapter 2. RMS Program Interface

The mnemonic name (usually consisting of three characters) serves as a suffix to a symbolic name
that identifies the location of each control block field. You should use the symbolic names to be sure
you place values in the correct control block fields. RMS defines each symbolic name as a constant
value equal to the offset, in bytes, from the beginning of the control block to the beginning of the
field. These field names are thus called symbolic offsets.

Symbolic offset names are defined when the appropriate VAX MACRO control block initialization
macro is used, when the appropriate VAX MACRO control block symbol definition macro is used,
and when some languages invoke RMS. Alternatively, all control block symbolic offset names are
available when you use the VAX MACRO $FABDEF, $RABDEF, $NAMDEF, and $XAB...DEF
macros in a VAX MACRO program or procedure.

The format of the symbolic offsets consists of a 3-letter control block identifier (FAB, NAM, XAB, or
RAB), a dollar sign ($), a 1-letter indicator of the length of the field (B, W, L, Q, or T), an underscore
(_), and the field mnemonic, which is usually three letters.

The general format of the symbolic offset is shown in the following example:

ccc$x_fff

The components of the symbolic offset format are summarized in the following table.

Component Length Description
ccc 3 letters Identifies the type of control block: FAB, NAM, XAB (for all XABs),

or RAB.
$ 1 character Separates the control block identifier from the field length identifier; a

dollar sign ($).
x 1 letter Identifies the length of the field: B for byte, W for word, L for

longword, Q for quadword, T for text buffer address. Symbolic length
fields are identified by the letter S in this position. For example, the
value field XAB$S_CACHE_TMO specifies the number of bytes
allocated for defining the value of the cache timeout. See text for
exceptions.

_ 1 character Separates the field length identifier from the field name; always an
underscore (_).

fff 3 or more
letters

Identifies the mnemonic name of the field, which is used in the VAX
MACRO control block macro. Some mnemonics contain more than
three letters; for example, symbolic offset XAB$B_PROLOG (from
XABKEY).

For example, the FAB field whose mnemonic is ALQ has a length of one longword and is identified
by the symbolic offset FAB$L_ALQ. The field NAM$L_RLF is a NAM longword field whose
mnemonic RLF reflects its name, the related file field.

Exceptions to the length designation are NAMW_DID, NAMW_FID, XAB$W_RFI, and
RAB$W_RFA, each of which is three words in length rather than one word.

The length of a T field is specified by the corresponding S field; for example, the length of the
NAM$T_DVI field is specified by the symbolic value field named NAM$S_DVI.

When a control block field contains options identified by bits, each valid bit location has a symbolic
offset name. Certain control block fields are binary options fields consisting of bit values. For these
bits in a binary options field, the format of symbolic names resembles the format of the field names,

10

Chapter 2. RMS Program Interface

except for the length indicator. Instead of identifying the field length, which is always one bit, the
length field indicates whether a mask value (M) or bit offset (V) is defined by the symbolic name, as
described in the following table.

Format Description
xxx$M_fff Indicates a mask value in a binary options field, typically where multiple bit options

can be chosen. Used to set or clear bit values.
xxx$V_fff Indicates the symbolic bit offset (number of bits from the beginning of the binary

options field). Used to test bit values or to set bit values.

The xxx identifies the control block (FAB, NAM, XAB, or RAB); the $ and _ are separator characters,
and the fff defines the mnemonic for the bit option. For example, the option CTG in the FAB file-
processing options (FOP) field has a symbolic bit offset of FAB$V_CTG and a mask value of
FAB$M_CTG.

Constant (or keyword) fields can contain only a limited set of values, thus there are no mask values or
symbolic bit offsets. In some instances, the letter K is used to denote a constant (keyword) value field
in place of the letter C; otherwise, the naming convention is the same.

Unlike a binary options field, each possible value is identified by a symbolic constant value, in the
following form:

xxx$C_fff

Note that the letter C replaces the letter M, denoting that this field is a constant (keyword) value field,
not a mask value field. For example, the file organization (ORG) field of the FAB (FAB$B_ORG) can
contain only the values FAB$C_IDX (indexed), FAB$C_REL (relative), or FAB$C_SEQ (sequential).

When specifying control block field locations, avoid using actual byte displacement values to identify
control block field locations; instead, use the supplied symbolic offsets. RMS control block field
locations may not always be the same from release to release; however, the symbolic offset names that
identify the field locations always identify the same fields.

2.3. RMS Calling Sequence
RMS uses the appropriate OpenVMS standard calling sequence and conventions, and preserves
all general registers across a call, except for register 0 (R0) and register 1 (R1). When the service
completes execution, it returns control to the calling program, passing a condition value in R0. You
should analyze the completion value to determine the success or failure of the service and to alter
the flow of execution of your program, if necessary. Where applicable, you should use the STS field
and the STV field of the appropriate control block for signaling errors, instead of R0. For additional
information about RMS completion values, see Section 2.4.

When calling a service, you must provide an argument list to specify the associated control block
(FAB or RAB) and, optionally, any completion routines.

Note

When a service invokes an AST-level completion routine, it passes the address of the associated
control block (FAB or RAB) as the AST argument value in the AST argument list.

The argument list sent to the service is from two to four longwords in length, as shown in Figure 2.1.
(The Rename service, however, uses a 5-longword argument list.)

11

Chapter 2. RMS Program Interface

Figure 2.1. Argument List Format

RMS interprets the fields in the argument list as follows:

• The argument count field contains a binary value, from 1 through 3, representing the number of
arguments in the argument list. For the Rename service only, set this value to 4.

• The control block address field contains the address of either the FAB (for file operations) or the
RAB (for record operations).

• The error completion routine address field optionally contains the address of the entry mask
of a user-written completion routine to be called if the requested operation fails. If used, the
completion routine executes as an asynchronous system trap (AST).

• The success completion routine address field optionally contains the address of the entry mask of
a user-written completion routine to be called if the requested operation completes successfully. If
used, the completion routine executes as an asynchronous system trap (AST).

• The new FAB address field (not shown in Figure 2.1) contains the address of the FAB that
contains the new file name for the Rename service. This field applies only to the Rename service.

2.4. Service Completion
This section describes various service completion scenarios. The events associated with completing an
RMS service call depend to some extent on how the user calls the service. The user may specify either
the synchronous or asynchronous option in the control block (FAB or RAB) passed to the service, and
the user may or may not specify an AST.

2.4.1. Illformed Calls to RMS
Every RMS service call requires an interface data structure (FAB or RAB) which is writable in caller's
mode and not currently in use for another operation. If these requirements are not met, the call is
illformed, and one of the following errors is returned in R0:

Error Meaning
RMS$_BLN Invalid block length field (either FAB or RAB)
RMS$_BUSY User structure (FAB/RAB) still in use
RMS$_FAB FAB not writable or invalid block ID field
RMS$_RAB RAB not writable or invalid block ID field

12

Chapter 2. RMS Program Interface

Error Meaning
RMS$_STR User structure (FAB/RAB) became invalid during operation

Since the FAB or RAB data structure is invalid or inaccessible, RMS will not attempt to store the error
code in the status (FAB/RAB$L_STS) field. The error will only be returned in R0, and if an error
completion AST was specified, it will not be delivered.

Also, if the application deletes, overmaps, or alters the contents of the memory containing the
interface data structure while the service is active, the results are unpredictable.

These illformed calls are not considered in the remaining discussion in this section on service
completion.

2.4.2. Setting Synchronous or Asynchronous Option
The ASY option in the FOP field of the FAB or the ROP field of the RAB must be set to specify
asynchronous completion. If this option is clear (the default), the service completes synchronously.

2.4.3. Synchronous Completion
If the user chooses synchronous completion, RMS does not return control to the application program
until the I/O operation terminates. The service returns the completion status value in R0 as well as
in the status field (FAB/RAB$L_STS). The status RMS$_SYNCH or RMS$_PENDING is never
returned in the synchronous case.

If the user specifies an AST routine to the service, the AST routine executes prior to returning control
from the service call, unless it is called from AST level or AST delivery is disabled.1

2.4.4. Asynchronous Completion
Asynchronous completion allows the application to continue execution while RMS completes
the requested service, if the completion requires an I/O or synchronization stall. Asynchronous
completion is enabled by setting the ASY option (FAB$V_ASY or RAB$V_ASY, as appropriate).

The called service clears the completion status field (FAB/RAB$L_STS). When the service
completes, the (nonzero) completion status is returned.

The status returned (in R0) from an asynchronous RMS service may depend on whether the
SYNCSTS option is set. The SYNCSTS option (FAB/RAB$V_SYNCSTS) allows the application to
avoid the overhead of processing a completion AST, if the RMS service is completed before returning
from the service call.

Applications must not make assumptions about completion timing for specific services.

The possible statuses returned in R0 and the implication each has on AST delivery are as follows:

Status Returned Meaning
RMS$_SYNCH The operation is complete. This status is returned only if the user

specified the SYNCSTS option. The actual completion status is stored in
FAB/RAB$L_STS. No completion AST (success or failure) is delivered.

1When operating in a POSIX Threads Library environment, consult your POSIX Threads Library documentation.

13

Chapter 2. RMS Program Interface

Status Returned Meaning
RMS$_PENDING The operation had not completed when the RMS service call returned.

When the requested operation completes, the actual completion status is
stored in FAB/RAB$L_STS and any requested success or error AST will
be delivered.1

Any other status The operation is complete. Any requested success or error AST has been
delivered (or is queued for delivery).1 The completion status is stored in
FAB/RAB$L_STS, which is also the service return value in R0.

1When operating in a POSIX Threads Library environment, consult your POSIX Threads Library documentation.

When using asynchronous completion, the application can determine that the operation is complete
by:

• Checking periodically for a nonzero status in FAB/RAB$L_STS

• Specifying success and error AST routines

• Calling SYS$WAIT when the application has completed other work, and now wishes to wait for
the service to complete

2.4.5. Status Code Testing
In general, you may receive one of many error or success codes from an operation. The discussion of
each service in Part III includes a list of the possible condition values that you can receive when you
invoke the service.

Note

$RMSDEF gives you the names of the condition values returned by RMS. See the OpenVMS system
messages documentation for a list of all RMS status codes.

You should test for success by checking only the low-order bit of the status code for a true condition
(bit set). The three low-order bits returned in the status code indicate the severity of the code. The
severity codes are as follows:

Severity Code Meaning
001 (1) Success (low-order bit set).
011 (3) Information (low-order bit set).
000 (0) Warning; indicates a nonstandard condition. The operation may have performed

some, but not all, of the requested function.
010 (2) Error; you must recognize that a problem exists and provide a contingency plan

in your program for such a condition.
100 (4) Severe error; normally caused by program logic errors or other unrecoverable

conditions.

The usual method of testing the completion status is to examine register 0 for success, failure, or
specific completion values. For certain completion values, RMS returns additional information in the
status value field (STV) of the control block. The description of the codes presented in the OpenVMS
system messages documentation indicates the instances when the STV contains such information.

14

Chapter 2. RMS Program Interface

The STS and STV fields should be used to signal RMS errors to ensure that the error message
includes all relevant information. For the file processing and file naming services, use the STS and
STV fields of the specified FAB (use the old FAB for the Rename service). For record processing
and block I/O processing services, use the STS and STV fields of the corresponding RAB. (Consult
Table 1.1 if you are not sure of the group to which a particular service belongs.)

The recommended way to signal RMS errors is to provide both the STS and STV fields of the
RAB or FAB as arguments to the run-time library (RTL) routine LIB$SIGNAL (or LIB$STOP).
Certain languages provide a built-in means of signaling errors, such as by providing a system-defined
function. For a more detailed explanation of condition signaling and invoking RTL routines, see the
VSI OpenVMS RTL Library (LIB$) Manual.

2.4.6. Types of Errors
RMS completion status error codes generally fall into one of four groups:

• Programming errors

• Program design errors

• System environment errors

• Operator/user errors

Programming Errors

These errors are caused by incorrect programming and are usually detected during the early stages
of developing and debugging a program that uses RMS. Typical examples are missing values for
required fields, referring to a RAB instead of a FAB, invalid address for a buffer, and so forth. This
type of error is generally self-explanatory and usually requires only a minor change to the program.

Program Design Errors

These errors are caused by more subtle errors that may rarely occur, particularly if asynchronous
record I/O, multistreamed sharing, or shared files are involved. These errors may occur long after
a program has been in use and could require either a major program revision or the addition of
substantial error recovery code to handle the error conditions. Record-lock errors, resource-exhaustion
errors, and record-stream-currently-active errors are typical program design errors.

System Environment Errors

These errors include hardware errors and RMS or other system software errors that are not caused by
your program. You may need to add substantial defensive error-handling code or you may be able to
run the program again without error.

Operator/User Errors

These errors include errors by the user of the program, such as not mounting a device before running
the program, or typing an invalid file specification. As with system environment errors, you may
need to add substantial defensive error-handling code or simply reprompt the user for the correct
information or user action.

There are conditions in which completion status codes may not be returned as expected:

• The completion status codes that apply to the Close service do not include errors introduced by
the FAB$V_SCF option and the FAB$V_SPL option. If the request is serviced successfully,

15

Chapter 2. RMS Program Interface

then a success completion code is returned, even if the request is found to be in error by the job
controller process.

• The Wait service has unique errors. This service can return any status code of the awaited
operation.

• Errors associated with output operations may not necessarily be reported as the status of a
particular operation because modified I/O buffers are not always written out immediately. Such
errors are reported as the status of a subsequent operation, which may be an input, output, or
control operation.

When you submit a problem report, you should also provide a magnetic tape copy of the file causing
the error.

When using the debugger, use the debug command EXAMINE/CONDITION to view the message
corresponding to the value in R0 or the STS field or the STV field. For example, you can view
the error codes in the STS and STV fields of the FAB at symbolic address (label) MYFAB when
debugging a VAX MACRO program by entering the following commands:

DBG> EXAMINE/CONDITION MYFAB+FAB$L_STS
DBG> EXAMINE/CONDITION MYFAB+FAB$L_STV

For additional information about the debugger, see the VSI OpenVMS Debugger Manual.

2.5. Allowable Program Execution Modes
Generally, RMS executes in either executive mode or executive AST mode. When an operation is
initiated, processing begins in executive mode. If device I/O is necessary to process the request, the
$QIO system service is called. RMS specifies an executive-mode AST to signal completion. At this
point, RMS exits from executive mode. If the operation is being performed asynchronously, control is
returned to the caller; if the operation is synchronous, RMS waits for an event flag in the access mode
of the caller. When the I/O is complete, RMS continues processing in executive AST mode. Thus,
user-mode ASTs can be serviced while a synchronous operation called from user mode is awaiting I/O
completion. However, processing in user mode during an asynchronous operation is interrupted by
RMS processing in executive AST mode when I/O completes.

RMS should not be called from kernel mode, from executive AST mode, or from executive mode
when executive-mode ASTs are disabled.

2.6. Access-Mode Protected Memory
RMS protects the following data structures and their associated I/O buffers at EW (execute read/
write):

• RMS-controlled data structures

• Process-permanent data structures

• Image-activated data structures

Previously, the data structures were protected at UREW (user read, executive write).

The following memory protection exceptions apply to USER-mode accessors of RMS and are
protected at UREW:

16

Chapter 2. RMS Program Interface

• Internal RMS I/O buffers to facilitate RAB$V_LOC mode

• RMS buffers containing collated tables used for indexed files

2.7. Reserved Event Flags
RMS uses system-reserved event flags to synchronize its internal operations. RMS reserves event
flags 27, 28, 29, and 30 for possible use; in addition, event flag 31 is used to specify a “do not care”
event flag for asynchronous processing.

2.8. DEC Multinational Character Set
You can use any character in the DEC Multinational character set in RMS records, including the key
value of an indexed file. Keys are collated according to their corresponding character code value.

For a list of characters in the DEC Multinational character set, see the VSI OpenVMS User's Manual.

17

Chapter 2. RMS Program Interface

18

Chapter 3. Implementing RMS from C
Programs
This section includes C programming examples illustrating the implementation of RMS from a
high-level programming interface. Each of the sample programs illustrates the implementation of a
particular programming task in the OpenVMS environment.

From a high-level language program, you can create new files, process existing files, extend and
delete files, and read, write, update, and delete records within files in an RMS environment.

To create and process RMS files, your program must contain calls to appropriate record management
services from your language interface with RMS. Generally, you make these calls by using the service
macros for run-time processing. When encountered at run-time, the expanded code of these macros
generates a call to the corresponding service. Each call represents a program request for a file service,
a record service, or a block I/O transfer operation.

3.1. Creating, Accessing, and Deaccessing a
File
You can create, access, and deaccess a file using either the Create service or the Open service. The
Create service constructs a new file structured to the attributes you specify in the FAB for the file,
whereas the Open service makes an existing file available for processing by your program. Both of
these services allocate the system resources needed to establish an access path to a file. You must
open or create a file to perform most file operations and any record operations on that file. Where
applicable, you must declare the type of shared access when you create or open a file. You do this
through your program interface with RMS by selecting file access control options.

RMS provides several file-processing options for the Create service. The create-if option requests
that the file be created only if it does not exist in the specified directory. If the file does exist in the
specified directory, the existing file is opened. The Open and Create services both establish access to
the desired file, but the Create service also allocates disk space and performs the functions related to
allocation.

When you are finished processing a file, you invoke the Close service to close the file, disconnect
all record streams associated with the file, and free all resources allocated to the file. If you do not
explicitly invoke the Close service when the program image exits, RMS attempts an implicit close.
All resources associated with open files are returned when the files are deaccessed at image rundown
time. However, process permanent files are not implicitly closed when an image exits.

3.1.1. Example of Copying Records from One File to
Another File
Example 3.1 illustrates the use of various services to access and copy records from one file to another.

Example 3.1. Use of the Create, Open, and Close Services

/*
** COPYFILE.C This program copies the input file to the output file.
** It is made to resemble the MACRO example in the RMS Reference Manual.
*/
#define REC_SIZE 132

19

Chapter 3. Implementing RMS from C Programs

#define INPUT_NAME "INFILE"
#define OUTPUT_NAME "OUTFILE"
#define DEFAULT_NAME ".DAT"

#include <rms> /* defines for rabs and fabs */
#include <stdio> /* defins printf... */
#include <starlet> /* defines sys$open et al */

COPYFILE ()
{
struct FAB infab, outfab, *fab; /* Allocate fabs and a pointer to fab */
struct RAB inrab, outrab, *rab; /* Allocate fabs and a pointer to fab */
int lib$signal();
int stat;
char rec_buff[REC_SIZE]; /* maximum record size */

infab = cc$rms_fab; /* Make this a real FAB (bid and bln) */
infab.fab$l_fna = (char *) &INPUT_NAME; /* Primary file name:.. */
 /* ..(logical) name.. */
infab.fab$b_fns = sizeof INPUT_NAME -1; /* .. and its size */
infab.fab$l_dna = (char *) &DEFAULT_NAME; /* Default name:.. */
 /* ..here file type.. */
infab.fab$b_dns = sizeof DEFAULT_NAME -1; /* .. and its size */

inrab = cc$rms_rab; /* Make this a real RAB (bid and bln) */
inrab.rab$l_fab = &infab; /* Point to FAB for $CONNECT */
inrab.rab$v_rah = 1; /* Set bitVield to request read-ahead */
inrab.rab$l_ubf = rec_buff; /* Point to buffer area.. */
inrab.rab$w_usz = REC_SIZE; /* ..and indicate its size */

outfab = cc$rms_fab; /* Make this a real FAB (bid and bln) */
outfab.fab$v_ctg = 1; /* Allocate contigeously */
outfab.fab$v_put = 1; /* Write access (default on create) */
outfab.fab$v_nil = 1; /* No sharing (default on create) */
outfab.fab$b_rat = FAB$M_CR; /* Set option using bitMask */
outfab.fab$w_mrs = REC_SIZE;
outfab.fab$l_fna = (char *) &OUTPUT_NAME;
outfab.fab$b_fns = sizeof OUTPUT_NAME -1;
outfab.fab$l_dna = (char *) &DEFAULT_NAME;
outfab.fab$b_dns = sizeof DEFAULT_NAME -1;

outrab = cc$rms_rab;
outrab.rab$l_fab = &outfab;
outrab.rab$v_wbh = 1; /* Write Ahead */
outrab.rab$l_rbf = rec_buff; /* Same buffer address as before */

fab = &infab; /* for error handling */
stat = sys$open (fab); /* Actual open (could use &infab) */
if (stat & 1) /* $OPEN Success ? */
{
 outfab.fab$l_alq = infab.fab$l_alq; /* Set proper size for output */
 fab = &outfab; /* for error handling */
 stat = sys$create (fab); /* Try to create the file */
}

if (stat & 1) /* Both open & create success ? */
{
 rab = &outrab; /* for error handling */

20

Chapter 3. Implementing RMS from C Programs

 stat = sys$connect (rab); /* get some rms internal buffers */
 if (stat & 1) /* output $CONNECT Success ? */
 {
 rab = &inrab; /* for error handling */
 stat = sys$connect (rab); /* input $CONNECT Success ? */
 }
 if (stat & 1) /* CONNECTs succes? then prime loop */
 stat = sys$get (rab); /* setting stat for while */

 while (stat & 1) /* success on record operation ? */
 {
 /*
 ** Main Code. Opened and connected files and buffer
 ** First $GET done and inrab is current. Copy records.
 */
 outrab.rab$w_rsz = inrab.rab$w_rsz; /* set correct size */
 rab = &outrab; /* error handler */
 stat = sys$put (rab); /* Actual copy */
 if (stat & 1) /* $PUT success? */
 {
 rab = &inrab; /* for error handling */
 stat = sys$get (rab); /* $GET next , set stat */
 }
 } /* while */

 /*
 ** Fallen through while. stat must be EOF if copy was succesful.
 ** if not, signal error from connect, get or put. Using stat instead
 ** of rab->rab$l_sts to handle (programming) error providing RAB.
 */

 if (stat != RMS$_EOF)
 stat = lib$signal(stat, rab->rab$l_stv);

 stat = sys$close (&infab);
 stat = sys$close (&outfab);
 }
else
{
 /* Failed to open input or output file */
 stat = lib$signal(stat, fab->fab$l_stv);
}

return stat; /* Using output close stat to return */
}

This example illustrates how you can use the sequential file organization to create a new file by
copying records from an existing file. The newly created file and the source file have variable-length
records.

This example assumes that an external program has identified the input file as a search list logical
name using the equivalent of the following DCL command:

$ ASSIGN [INV]30JUN93,[INV.OLD]30JUN93 INFILE

This command directs RMS to look for the input file in directory [INV] first, and, if it does not find
the file, to look in directory [INV.OLD].

21

Chapter 3. Implementing RMS from C Programs

The program also specifies the default file type .INV for the input file using this statement:

infab.fab$l_dna = &DEFAULT_NAME; /* Default name: here file type.. */
infab.fab$b_dns = sizeof DEFAULT_NAME; /* .. and its size */

Next the program configures the RAB used for the input file. The first argument links the RAB to
the associated FAB. This is the only required argument to a RAB. The rest of the arguments specify
the read-ahead option (described in later text) and the record buffer for the input file. The Get service
uses the user record buffer address (UBF) field and the user record buffer size (USZ) field as inputs to
specify the record buffer and the record size, respectively.

Note

When you invoke the GET service, RMS takes control of the record buffer and may modify it. RMS
returns the record size and only guarantees the contents from where it accessed the record to the
completion of the record.

The program then configures the FAB for the output file. The first argument equates the file name to
the externally defined logical name. After the program specifies the default file type for the output
file, it specifies three additional FAB fields.

First, it specifies that RMS should allocate contiguous space for the output file by setting the CTG bit
in the FAB$L_FOP field of the FAB.

Next, the program uses a program-defined variable to store the value 132 in the MRS field:

#define REC_SIZE 132
outfab.fab$w_mrs = REC_SIZE;

The program then specifies that each record is to be preceded by a line feed and followed by a
carriage return whenever the record is output to a line printer or terminal:

outfab.fab$b_rat = FAB$M_CR; /* Set option using bitMask */

Because the program alternately reads and then writes each record, the input file and the output file
may share the same buffer. However, because the Put service does not have access to the UBF and
UBZ fields, the output RAB defines the buffer using the RBF and the RSZ fields.

Note that the UBF, USZ, and RBF values are set prior to run-time, but that the RSZ value is set at run-
time, just prior to invocation of the Put service. This is done because the input file contains variable-
length records and the Put service relies on the Get service to supply each record's size by way of the
RSZ field, an INRAB output field.

The following statement from the sample program illustrates this feature:

outrab.rab$w_rsz = inrab.rab$w_rsz; /* set correct size */

The run-time processing macros for the input file consist of a $OPEN, a $CONNECT, a $GET, and a
$CLOSE macro. Because the input file already exists, the program accesses it with a $OPEN macro.
The sole argument to this macro identifies the FAB to the Open service:

stat = SYS$OPEN (fab); /* Actual open (could use &infab) */

Next, the program connects a record stream to the input file by calling the Connect service and
specifying INRAB as the appropriate RAB:

stat = SYS$CONNECT (rab); /* get some rms internal buffers */

22

Chapter 3. Implementing RMS from C Programs

Note that upon completion of each service call, the program tests the condition value in STAT
returned by the service before proceeding to the next call. If the call fails, the program exits with the
appropriate control block address in rab or fab.

After creating the output file and establishing its record stream, the program begins a processing loop
in which the Get service reads a record from the input file and the Put service writes the record to the
output file. When all file records are copied, as indicated by the detection of the end of the file, the
main while loop terminates.

The Close service disconnects the record stream for all RABs connected to the specified FAB. In a
multistream environment (more than one RAB can be connected to a single FAB), a program may
disconnect individual record streams using the Disconnect service.

3.2. Program to Illustrate Record Operations
The record-processing services provide the following record operations:

• Get

• Find

• Put

• Update

• Delete

This section illustrates the use of RMS record operations from a C program as shown in Example 3.2.

Example 3.2. Record Operations

/*
 RECORD OPERATIONS

 This program looks up records by key and then

 * copies the record to an output file,
 * deletes the record, or
 * updates the record
*/

#include <rms> /* defines for rabs and fabs */
#include <stdio> /* defins printf... */
#include <string> /* defines strlen */
#include <stdlib> /* defines exit */
#include <starlet> /* defines sys$open et al */

#define INPUT_NAME "INFILE:"
#define OUTPUT_NAME "OUTFILE:"
#define RECORD_SIZE 132
#define TYPING_SIZE 100

struct FAB infab, outfab;
struct RAB inrab, outrab;

error_exit (code, value)
long code;
long value;

23

Chapter 3. Implementing RMS from C Programs

{
 void lib$signal();
 lib$signal (code, value);
 exit (0);
}
main ()
{
 char record [RECORD_SIZE]; /* record buffer */
 char key [RECORD_SIZE]; /* key buffer */
 char choice [TYPING_SIZE]; /* typing buffer */
 long status;

 /* set up input fab */
 infab = cc$rms_fab;
 infab.fab$b_fac = FAB$M_GET | FAB$M_PUT | FAB$M_UPD | FAB$M_DEL;
 infab.fab$b_shr = FAB$M_SHRGET | FAB$M_SHRPUT | FAB$M_SHRUPD
 | FAB$M_SHRDEL; /* read/write sharing */
 infab.fab$l_fna = (char *) &INPUT_NAME; /* logical name INFILE */
 infab.fab$b_fns = sizeof INPUT_NAME - 1;

 /* set up output fab */
 outfab = cc$rms_fab;
 outfab.fab$b_fac = FAB$M_PUT;
 outfab.fab$l_fna = (char *) &OUTPUT_NAME; /* logical name OUTFILE */
 outfab.fab$b_fns = sizeof OUTPUT_NAME - 1;
 outfab.fab$w_mrs = RECORD_SIZE; /* record size */
 outfab.fab$b_org = FAB$C_REL; /* relative file */
 outfab.fab$b_rat = FAB$M_CR; /* implied carriage return */

 /* set up input rab */
 inrab = cc$rms_rab;
 inrab.rab$l_fab = &infab;
 inrab.rab$b_rac = RAB$C_KEY; /* key access */
 inrab.rab$b_krf = 0; /* access by primary key */
 inrab.rab$l_kbf = key; /* key buffer */
 inrab.rab$l_ubf = record; /* record buffer */
 inrab.rab$w_usz = RECORD_SIZE; /* maximum record size */

 /* set up output rab */
 outrab = cc$rms_rab;
 outrab.rab$l_fab = &outfab;
 outrab.rab$l_rbf = record; /* record buffer */

 /* open files and connect streams */
 status = sys$open (&infab);
 if (! (status & 1))
 error_exit (status, infab.fab$l_stv);
 status = sys$connect (&inrab);
 if (! (status & 1))
 error_exit (status, inrab.rab$l_stv);
 status = sys$create (&outfab);
 if (! (status & 1))
 error_exit (status, outfab.fab$l_stv);
 status = sys$connect (&outrab);
 if (! (status & 1))
 error_exit (status, outrab.rab$l_stv);

 while (1)

24

Chapter 3. Implementing RMS from C Programs

 {
 /* get a key and a record */
 printf ("Please input key value: ");
 gets (key); /* get key from user */
 if (feof (stdin)) /* stop on ctrl-Z */
 break;
 inrab.rab$b_ksz = strlen (key); /* set key length */
 status = sys$get (&inrab);
 if (! (status & 1))
 error_exit (status, inrab.rab$l_stv);

 /* display the record */
 record[inrab.rab$w_rsz] = '\0';
 printf ("Record: {%s}\n", record);

 /* choose what to do */
 printf ("Please choose C(opy), D(elete), or U(pdate):");
 gets (choice); /* get choice from user */
 if (feof (stdin)) /* stop on ctrl-Z */
 break;
 switch (choice[0])
 {
 case 'c':
 case 'C':
 /* copy the record */
 outrab.rab$w_rsz = inrab.rab$w_rsz;
 /* out length = in length */
 status = sys$put (&outrab);
 if (! (status & 1))
 error_exit (status,
 outrab.rab$l_stv);
 break;
 case 'd':
 case 'D':
 /* delete */
 status = sys$delete (&inrab);
 if (! (status & 1))
 error_exit (status, inrab.rab$l_stv);
 break;
 case 'u':
 case 'U':
 /* get a new record */
 printf ("Please input record value: ");
 gets (record); /* get record from user */
 inrab.rab$w_rsz = strlen (record);
 /* set record length */
 status = sys$update (&inrab);
 if (! (status & 1))
 error_exit (status, inrab.rab$l_stv);
 break;
 default:
 /* do nothing */
 break;
 }
 }

 /* close files */
 status = sys$close (&infab);

25

Chapter 3. Implementing RMS from C Programs

 if (! (status & 1))
 error_exit (status, infab.fab$l_stv);
 status = sys$close (&outfab);
 if (! (status & 1))
 error_exit (status, outfab.fab$l_stv);
}

The program requires access to RMS.H and STDIO.H in SYS$LIBRARY to provide RMS structure
definitions and standard C input/output. The program sets up four FABs: a FAB and a RAB for the
input file and a FAB and a RAB for the output file. The program then opens and connects the input
file and creates and connects the output file.

The main loop prompts the user for a key and then retrieves the record with that key. It then prompts
the user for a decision of what to do with the record:

• Copy the record to the output file

• Delete the record

• Update the record using new user data

The program handles all errors by signaling the error and then exiting.

3.3. Program to Show Index Root Levels
Example 3.3 shows the index root level(s) for a specified file. You can modify the program to display
more parameters, add LIB$FIND_FILE, and so forth.

To use the program, define an external DCL command and pass the filespec to the program as a
parameter.

Example 3.3. Displaying the Index Root for a File

** Show_roots.c
**
*/

#include <rms>
#include <stdio>
#define MAXKEY 10
main (int argc, char *argv[])
{
struct FAB fab;
struct XABSUM sum;
struct XABKEY xab[MAXKEY];
int i, stat, lvl, keys;

fab = cc$rms_fab;
sum = cc$rms_xabsum;
fab.fab$b_shr = FAB$M_SHRPUT;
fab.fab$b_fac = FAB$M_GET;
fab.fab$l_fna = argv[1];
fab.fab$b_fns = STRLEN(argv[1]);
fab.fab$l_xab = ∑
stat = SYS$OPEN (&fab);
if (!(stat&1)) return stat;
if (fab.fab$b_org!=FAB$C_IDX) return RMS$_ORG;
keys = sum.xab$b_nok;

26

Chapter 3. Implementing RMS from C Programs

fab.fab$l_xab = &xab[0];
for (i=0; i<keys; i++)
 {
 /*
 ** Init Xab Key for each defined key
 ** Point previous to current except first.
 */
 xab[i] = cc$rms_xabkey;
 xab[i].xab$b_ref = i;
 if (i) xab[i-1].xab$l_nxt = &xab[i];
 }
/*
** Ask RMS to fill in the XABs hooked off the FAB.
*/
stat = SYS$DISPLAY (&fab);
if (!(stat&1)) return stat;
printf ("File %s, Root levels: %d", argv[1], xab[0].xab$b_lvl);
for (i=1; i<keys; i++) printf (", %d", xab[i].xab$b_lvl);
printf (".\n");
return stat;
}

3.4. Program to Illustrate Using NAML Blocks
(Alpha Only)
Example 3.4 contains a sample program which uses the new NAML blocks available beginning with
OpenVMS V7.2. The NAML block is similar to the NAM block, except that it contains long fields to
allow for the extended file names and deep directory structures supported on ODS-5 disks.

NAML blocks are only supported on Alpha platforms, and are only supported for V7.2 and later.
If you attempt to compile this sample program on the VAX platform, you will get compiler errors
indicating that the NAML symbols, structures and offsets are not defined, similar to the following:

%CC-E-UNDECLARED, In the declaration of "primarySpec", "NAML$C_MAXRSS"
is not declared.

Although the program compiles correctly on an OpenVMS Alpha system prior to V7.2, when you run
the program you get the error:

%RMS-F-NAM, invalid NAM block or NAM block not accessible

The sample program does the following:

• Creates string buffers for resultant and expanded filenames.

• Prompts the user for a primary file specification.

• Uses the long input buffer field of the NAML for the primary specification.

• Uses the short input buffer field of the FAB for the default specification (providing a default of
"*.*;*").

• Does a $PARSE and displays the expanded file specifications (short and long).

• Does repeated $SEARCHes (until no-more-files or failure) and displays the resultant file
specifications (short and long) each time.

The program prompts for the file specification to process, and then displays the results.

27

Chapter 3. Implementing RMS from C Programs

In order for the full capabilities of the NAML block to be seen, you can set up an ODS-5 file system,
which allows files with long file names, filenames with the extended character set, and deep directory
structures (greater than 8 levels) to be created.

Example 3.4. Using NAML Blocks for Extended File Specifications

/*--
 *
 * NAML_EXAMPLE.C
 *
 * This sample program uses NAML blocks (short and long
 * buffers) with RMS $PARSE and $SEARCH functions to
 * demonstrate extended file specification capabilities.
 *
 * NAML blocks are supported only on Alpha platforms.
 *
 * Notes:
 * The no-short-upcase NAML bit is set, so the short expanded
 * specification will not be upcased.
 *
 ---/

#include <string> // for strlen, etc.
#include <ssdef> // for SS$_NORMAL
#include <stdio> // for printf, etc.
#include <starlet> // sys$parse, sys$search
 // function prototypes
#include <rms> // NAML and FAB structure
 definitions

int main()
{
 int vms_status;
 int primarySpecLength = 0;
 char primarySpec[NAML$C_MAXRSS+2]; // (Include room for LF and \0.)
 char defaultSpec[] = "*.*;*";

 /*
 * Create the string buffers for the resultant and expanded strings
 */

 char Naml_Shrt_Esa[NAM$C_MAXRSS],
 Naml_Long_Esa[NAML$C_MAXRSS],
 Naml_Shrt_Rsa[NAM$C_MAXRSS],
 Naml_Long_Rsa[NAML$C_MAXRSS];

 /*
 * Declare the FAB and NAML structures
 */

 struct FAB fab;
 struct namldef naml;

 /*
 * Initialize the FAB and NAML using the default structures,
 * then set them up for our use.
 */

28

Chapter 3. Implementing RMS from C Programs

 fab = cc$rms_fab;
 naml = cc$rms_naml;

 /*
 * To indicate that the NAML fields should be used rather
 * than the FAB fields for the filename, we put a -1 in
 * the FNA field, and a zero in the FNS field.
 */

 fab.fab$l_fna = (char *)-1;
 fab.fab$b_fns = 0;

 fab.fab$l_dna = defaultSpec;
 fab.fab$b_dns = strlen(defaultSpec);

 fab.fab$l_naml = &naml; // tie the NAML to the FAB

 naml.naml$l_long_filename = primarySpec;
 naml.naml$l_esa = Naml_Shrt_Esa;
 naml.naml$b_ess = sizeof (Naml_Shrt_Esa);
 naml.naml$l_rsa = Naml_Shrt_Rsa;
 naml.naml$b_rss = sizeof (Naml_Shrt_Rsa);

 naml.naml$l_long_expand = Naml_Long_Esa;
 naml.naml$l_long_expand_alloc = sizeof (Naml_Long_Esa);
 naml.naml$l_long_result = Naml_Long_Rsa;
 naml.naml$l_long_result_alloc = sizeof (Naml_Long_Rsa);

 /*
 * Set NAML options flags
 */

 naml.naml$v_synchk = 0; // Have $PARSE do directory
 // existence check
 naml.naml$v_no_short_upcase = 1; // Don't upcase short expanded
 // spec.

 /*
 * Prompt for the input file specification. A blank
 * response will use the default filespec of *.*;*
 */

 printf("File specification to be scanned: ");
 gets(primarySpec);

 naml.naml$l_long_filename_size = strlen(primarySpec);

 /*
 * Parse the given file specification. This sets up for
 * the $SEARCH loop. On success, print out the expanded
 * file specifications.
 */

 printf ("\n\nParsing: %s\n", primarySpec);
 vms_status = sys$parse (&fab);
 if (!(vms_status & 1)) // return any error
 {
 return vms_status;

29

Chapter 3. Implementing RMS from C Programs

 }

 naml.naml$l_esa[naml.naml$b_esl] = '\0'; // terminate the string
 printf (" (Short) Expanded Specification: '%s'\n",
 naml.naml$l_esa);

 naml.naml$l_long_expand[naml.naml$l_long_expand_size] = '\0';
 printf (" (Long) Expanded Specification: '%s'\n",
 naml.naml$l_long_expand);

 /*
 * Go into the $SEARCH loop. We loop until the
 * $SEARCH fails or returns No More Files (NMF)
 * For each successful $SEARCH, print out the
 * resultant file names from the NAML block.
 */

 printf ("\n\nSearching for files matching: %s\n", primarySpec);
 while (1)
 {
 vms_status = sys$search (&fab);
 if (!(vms_status & 1)) // handle any error
 {
 if (vms_status == RMS$_NMF)
 return SS$_NORMAL;
 else
 return vms_status;
 }

 printf (" (Short) Resultant Specification: '%-*.*s'\n",
 naml.naml$b_rsl,
 naml.naml$b_rsl,
 naml.naml$l_rsa);

 printf (" (Long) Resultant Specification: '%-*.*s'\n",
 naml.naml$l_long_result_size,
 naml.naml$l_long_result_size,
 naml.naml$l_long_result);

 } // end of while loop

} // end of function main()

3.5. Program to Illustrate Using the RAB64
Structure
This section contains an example program, written in C, which demonstrates the use of the RAB64
structure. The RAB64 structure has the same fields as the RAB structure, but contains additional
quadword fields to allow addressing of the 64-bit Alpha address space. The RAB64 structure is only
supported on Alpha platforms beginning with OpenVMS V7.0. This program does the following:

• Declares RMS structures

• Declares 64-bit pointers and values for allocating Alpha P2 space.

• Opens a given file

30

Chapter 3. Implementing RMS from C Programs

• Allocates Alpha P2 space for a record buffer.

• Sets up the RAB64 structure to use the returned Alpha P2 address space.

• Connects a record stream using the RAB64

• Reads the first record from the file for illustration purposes

• Closes the file and deallocates the P2 memory.

Prior to OpenVMS V7.2, the cc$rms_rab64 initializer was not available. The example program sets
up the RAB64 structure explicitly by zeroing the structure and setting the block-id and block length
fields. As of OpenVMS V7.2, this explicit set up can be replaced with the assignment:

x_rab = cc$rms_rab64;

Example 3.5. Using the RAB64 Structure

/*
 * RAB64_EXAMPLE.C
 *
 * Description:
 * This sample program uses the 64-bit pointers in the new RAB64
 * structure to allow addressing of the full 64-bit Alpha
 * address space.
 *
 * NOTE:
 * Prior to V7.2, the cc$rms_rab64 initializer was not available
 * and the RAB64 structure had to be initialized manually. See
 * the comment in the code for details.
 *
 */

#define __NEW_STARLET

#include <far_pointers.h> // basic set of 64-bit pointer types
#include <rms.h> // both RAB and RAB64 structures
#include <lib$routines.h> // for lib$signal
#include <starlet.h> // for RMS function prototypes
#include <stdio.h> // for printf, gets, etc.
#include <string.h> // for strlen
#include <ssdef.h> // for status codes

#include <stdlib.h> // for memset

/*
 * Start of code
 */

int main()
{
 int status;

 /*
 * Define the structures for RMS
 */

 struct FAB fab;
 struct RAB64 x_rab;

31

Chapter 3. Implementing RMS from C Programs

 char file_name[NAM$C_MAXRSS];

 /*
 * Set up variables for allocating a record buffer
 * from 64-bit P2 address space.
 */

 VOID_PQ p2_va;
 CHAR_PQ record_buffer;

 __int64 num_bytes = 1024;
 __int64 num_pagelets = (num_bytes / 512);

 /*
 * Get the filename
 */

 printf("Enter filename to read: ");
 gets(file_name);

 /*
 * Set up the FAB using the default structures, then
 * set it up for our use.
 */

 fab = cc$rms_fab;

 fab.fab$l_fna = file_name;
 fab.fab$b_fns = strlen(file_name);
 fab.fab$b_org = FAB$C_SEQ;
 fab.fab$b_fac = FAB$M_GET;
 fab.fab$b_shr = FAB$M_NIL;

 /*
 * Open the file
 */

 status = sys$open(&fab);
 if (!(status & 1))
 {
 return status;
 }
 printf("File %s was opened.\n", file_name);

 /*
 * Dynamically allocate record buffer in 64-bit P2 space
 */

 status = LIB$GET_VM_PAGE_64 (&num_pagelets, &p2_va);
 if (!(status & 1))
 {
 return status;
 }
 printf("Allocated %Ld pagelets of P2 space starting at
 %LX\n",num_pagelets,p2_va);

 record_buffer = p2_va;

32

Chapter 3. Implementing RMS from C Programs

 /*
 * Initialize rab64
 *
 * NOTE: Prior to OpenVMS V7.2, the cc$rms_rab64 initializer
 * was not available. As of V7.2, the following memset, block-id
 * and length assignments may be replaced with the assignment:
 *
 * x_rab = cc$rms_rab64;
 *
 */

 memset(&x_rab,0,RAB$C_BLN64); // requires stdlib.h
 x_rab.rab64$b_bid = RAB$C_BID; // block id
 x_rab.rab64$b_bln = RAB$C_BLN64; // block length

 x_rab.rab64$l_fab = &fab; // tie the FAB to the RAB
 x_rab.rab64$b_rac = RAB$C_SEQ;
 x_rab.rab64$l_ubf = (char *) -1; // -1 says use the PQ field
 x_rab.rab64$pq_ubf = record_buffer;
 x_rab.rab64$w_usz = 0; // 0 says use the Q field
 x_rab.rab64$q_usz = num_bytes;

 /*
 * Connect our record stream
 */

 status = sys$connect((struct _rabdef *) &x_rab);
 if (!(status & 1))
 {
 return status;
 }
 printf("Record stream was connected.\n");

 /*
 * Retrieve first record in file for illustration purposes
 */

 status = sys$get ((struct _rabdef *) &x_rab);
 if (!(status & 1))
 {
 /*
 * Signal the error rather than just returning
 * it so we can include the STV field from
 * the RAB
 */

 lib$signal (status, x_rab.rab64$l_stv);
 }

 /*
 * Add null byte to terminate record in record buffer
 */

 record_buffer[x_rab.rab64$q_rsz] = 0;
 printf ("Record = %s\n",record_buffer);

 /*

33

Chapter 3. Implementing RMS from C Programs

 * Close the file, doing an implicit disconnect of
 * the record stream.
 */

 status = sys$close (&fab);
 if (!(status & 1))
 {
 return status;
 }
 printf("File was closed.\n");

 /*
 * Deallocate record buffer in 64-bit P2 space
 */

 status = LIB$FREE_VM_PAGE_64 (&num_pagelets, &p2_va);
 if (!(status & 1))
 {
 return status;
 }
 printf("Deallocated %Ld pagelets of P2 space starting
 at %LX\n",num_pagelets,p2_va);

 return SS$_NORMAL;
}

34

Part II. RMS Control Blocks
Part II describes each RMS control block, including a complete listing and description of each field.

35

36

Chapter 4. File Access Block (FAB)
The file access block (FAB) defines file characteristics, file access, and certain run-time options. It
also indicates whether other control blocks are associated with the file.

4.1. Summary of Fields
Many FAB fields are directly equivalent to certain File Definition Language (FDL) attributes. For
information about FDL, refer to the VSI OpenVMS Record Management Utilities Reference Manual.

The symbolic offset, the size, the FDL equivalent, and a brief description of each FAB field are
presented in Table 4.1.

Table 4.1. FAB Fields

Field Offset Size
(Bytes)

FDL Equivalent Description

FAB$B_ACMODES 1 None File access modes
FAB$L_ALQ 4 FILE ALLOCATION Allocation quantity (blocks)
FAB$B_BID1 1 None Block identifier
FAB$B_BKS 1 FILE BUCKET_SIZE Bucket size
FAB$B_BLN1 1 None Block length
FAB$W_BLS 2 FILE MT_BLOCK_SIZE Magnetic tape block size
FAB$V_CHAN_MODE2 – None Channel access mode

protection
FAB$L_CTX 4 FILE CONTEXT Context
FAB$W_DEQ 2 FILE EXTENSION Default file extension

quantity
FAB$L_DEV3 4 None Device characteristics
FAB$L_DNA 4 FILE DEFAULT_NAME Default file specification

string address
FAB$B_DNS 1 FILE DEFAULT_NAME Default file specification

string size
FAB$B_FAC 1 ACCESS3 File access
FAB$L_FNA 4 FILE NAME File specification string

address
FAB$B_FNS 1 FILE NAME File specification string size
FAB$L_FOP 4 FILE3 File-processing options
FAB$B_FSZ 1 RECORD

CONTROL_FIELD_SIZE
Fixed-length control area
size

FAB$W_GBC 2 FILE
GLOBAL_BUFFER_COUNT

Global buffer count

FAB$W_IFI4 2 None Internal file identifier
FAB$B_JOURNAL 1 None Journal flags status

37

Chapter 4. File Access Block (FAB)

Field Offset Size
(Bytes)

FDL Equivalent Description

FAB$V_LNM_MODE –2 None Logical name translation
access mode

FAB$L_MRN 4 FILE
MAX_RECORD_NUMBER

Maximum record number

FAB$W_MRS 2 RECORD SIZE Maximum record size
FAB$L_NAM5 4 None Name (NAM) or long name

(NAML) block address
FAB$B_ORG 1 FILE ORGANIZATION File organization
FAB$B_RAT 1 RECORD3 Record attributes
FAB$B_RFM 1 RECORD FORMAT Record format
FAB$B_RTV 1 FILE WINDOW_SIZE Retrieval window size
FAB$L_SDC4 4 None Secondary device

characteristics
FAB$B_SHR 1 SHARING3 File sharing
FAB$L_STS4 4 None Completion status code
FAB$L_STV4 4 None Status values
FAB$L_XAB 4 None Extended attribute block

address
1This field is statically initialized by the $FAB macro to identify this control block as a FAB.
2This is a 2-bit subfield.
3This field contains options; corresponding FDL equivalents are listed in the description of the field.
4This field cannot be initialized by the $FAB macro.
5FAB$L_NAML is available as an alternative definition for C programmers to allow for appropriate type checking of a NAML block.

Each FAB field is described in this section. Unless indicated otherwise, each field is supported for
DECnet for OpenVMS operations on files at the remote OpenVMS systems. For information about
the support of RMS options for remote file access to other systems, see the DECnet for OpenVMS
Networking Manual.

To use a FAB, you must allocate process storage and specify the character string for the primary file
specification and, optionally, the default file specification. The FAB$L_FNA and FAB$B_FNS fields
define the primary file specification to RMS; the FAB$L_DNA and FAB$B_DNS fields define the
default file specification to RMS.

4.2. FAB$B_ACMODES Field
This field comprises four 2-bit subfields, two of which are unsupported. The supported subfields are
the FAB$V_CHAN_MODE subfield and the FAB$V_LNM_MODE subfield (see Section 4.22).

4.3. FAB$L_ALQ Field
The allocation quantity (ALQ) field defines the number of blocks to be initially allocated to a disk file
when it is created (using the Create service) or to be added to the file when it is explicitly extended
(using the Extend service). This field corresponds to the FDL attribute FILE ALLOCATION.

38

Chapter 4. File Access Block (FAB)

The field takes numeric values in the range of 0 through 4,294,967,295, although the maximum value
depends on the number of blocks available on the disk. There are several rules concerning the use of
the value 0:

• If you specify 0 blocks when you create a sequential file, RMS allocates no initial space for the
file.

• If you specify 0 blocks for relative or indexed files, RMS allocates the minimum number of blocks
needed to support the file organization. For example, if you specify 0 blocks when you create an
indexed file, RMS allocates the number of blocks necessary to contain specified key and area
definitions as the initial extent.

• A value of 0 blocks is meaningless when you intend to extend a file.

When RMS opens an existing file, it puts the highest virtual block number currently allocated to the
file in the FAB$L_ALQ field.

 For the Extend service, this field specifies the number of blocks to be added to the file. Note that
RMS uses this as the extension value when a process extends a file using the Extend service, unless
the process changes the value before it invokes the Extend service.

When you use the Create and Extend services, the allocation quantity value is rounded up to the next
disk cluster boundary; the number of blocks actually allocated is returned in the FAB$L_ALQ field.

Note that the function of the FAB$L_ALQ field changes if allocation control XABs are used when
you create or extend a file. The description of the XABALL control block (see Chapter 9) discusses
how allocation control XABs affect the FAB$L_ALQ field.

4.4. FAB$B_BID Field
The block identifier (BID) field is a static field that identifies a control block as a FAB. Once set, this
field should not be altered unless the control block is no longer needed. This field must be initialized
to the symbolic value FAB$C_BID (this is done by the $FAB macro).

4.5. FAB$B_BKS Field
The bucket size (BKS) field is used only for relative or indexed files to specify the number of blocks
in each bucket of the file.

This field contains a numeric value in the range of 0 to 63. If you do not specify a value or specify a
value of 0, RMS uses a default of the minimum number of blocks needed to contain a single record, or
a minimum of two records for indexed files. If the file will be processed by RMS-11, the bucket size
must be less than or equal to 32 blocks.

When calculating the bucket size, you must consider the control information (overhead) associated
with each bucket. Also, certain record types contain control bytes; thus, the number of records per
bucket multiplied by the number of control bytes per record equals the number of record overhead
bytes per bucket. See the Guide to OpenVMS File Applications for more information.

Before specifying a bucket size, you must be aware of the relationship between bucket size and record
size. You must also consider any record control bytes (overhead) required for the type of record
chosen. Because RMS does not allow records to cross bucket boundaries, you must ensure that the
number of blocks per bucket conforms to formulas designed to handle one of the following:

39

Chapter 4. File Access Block (FAB)

• Relative files with fixed-length records

• Relative files with variable-length records

• Relative files with VFC (variable with fixed control) records

• Indexed files with fixed-length records

• Indexed files with variable-length records

You can use the Edit/FDL utility to determine the optimum bucket size. Note that if an allocation
control XAB is specified, the value specified in the XAB$B_BKZ field supersedes the value specified
in the FAB$B_BKS field. When multiple allocation control XABs are specified, the largest value
in any XAB$B_BKZ field supersedes the value in the FAB$B_BKS field. Refer to Section 9.6 for
information about the XAB$B_BKZ field.

When you open an existing relative or indexed file, RMS sets the FAB$B_BKS field to the defined
size of the largest bucket size in the file. However, when you create a new relative or indexed file, set
the FAB$B_BKS field before you invoke the Create service rather than use the default.

With indexed files, note that if the FAB$B_BKS field is not specified and a maximum record size
(FAB$W_MRS field) is specified, then RMS selects a bucket size that allows at least one maximum
size record to fit. Generally, performance for record insertion and sequential retrieval on the primary
key improves if at least six or seven data records fit into a primary data bucket. If either the bucket
size or the disk cluster size is other than one block, use a default extension quantity (FAB$W_DEQ)
that is the least common multiple of the bucket size and cluster size to avoid allocated but unused
blocks within the file.

This field corresponds to the FDL attribute FILE BUCKET_SIZE.

4.6. FAB$B_BLN Field
The block length (BLN) field is a static field that defines the length of the FAB. Once set, this field
should not be altered unless the control block is no longer needed. This field must be initialized to the
symbolic value FAB$C_BLN (this is done by the $FAB macro).

4.7. FAB$W_BLS Field
RMS uses the block size (BLS) field as input for nondisk files. The BLS field usually defines the size,
in bytes, of the blocks on a magnetic tape. Note that for some devices, this value must be an even
number. This field corresponds to the FDL attribute FILE MT_BLOCK_SIZE.

The FAB$W_BLS field contains a numeric value in the range of 20 through 65,535 for ANSI-
formatted tapes and 14 through 65,532 for foreign tapes. (Foreign tapes are those that are not in the
standard ANSI format used by OpenVMS operating systems, and must be mounted using the DCL
command MOUNT/FOREIGN.) If no value or a value of 0 is specified, the default selected when the
volume was mounted is used.

When you create a magnetic tape file, you can set the FAB$W_BLS field before you invoke the
Create service. In all other cases, RMS ignores this field. When you open an existing sequential file
with an Open service, RMS returns the device buffer size. For terminals, this field defines the WIDTH
setting; for mailboxes, this field defines the maximum message size.

40

Chapter 4. File Access Block (FAB)

For compatibility with RMS-11, RMS rounds off the block size for an ANSI-formatted tape to the
next highest multiple of 4. For example, if you set the block length to 38, RMS sets it to 40. The block
size of a foreign tape is not rounded off by RMS.

To create a magnetic tape for interchange with operating systems other than OpenVMS systems,
consult the documentation for the recipient system to identify possible limitations on block size. ANSI
standards require that the block size be less than or equal to 2048 bytes.

4.8. FAB$V_CHAN_MODE Subfield
The channel access mode protection (FAB$V_CHAN_MODE) subfield is part of the
FAB$B_ACMODES field. The 2-bit FAB$V_CHAN_MODE subfield provides one of two functions:

• For standard processing, where neither the FAB$V_NFS nor FAB$V_UFO option is selected in
the FAB$L_FOP field, the user program can use the FAB$V_CHAN_MODE subfield to override
the access-mode protected files function.

• When the user program specifies a nonstandard processing option by selecting either non-file-
structured operations (FAB$V_NFS) or a user-file-open operation (FAB$V_UFO), RMS uses the
FAB$V_CHAN_MODE subfield to assign the calling program's access mode to the I/O channel.

4.8.1. Override Value
The access-mode protected files function ensures that accessors who are operating in an outer access
mode cannot access files opened or created by inner-mode accessors. Access-mode protection
includes memory and data structures that are interrelated to access-mode protected files.

When the user program seeks to override access-mode protection, it must specify the value
PSL$C_USER in the FAB$V_FAB$V_CHAN_MODE subfield.

4.8.2. Channel Access Mode Function
When used to specify the channel access mode, the FAB$V_CHAN_MODE subfield can contain one
of the following values, with the related constant value for each shown in parentheses:

0 None
1 Executive mode (PSL$C_EXEC)
2 Supervisor mode (PSL$C_SUPER)
3 User mode (PSL$C_USER)

The default value is 0 (none), which is interpreted by RMS as executive mode.

If the access mode requested is more privileged than the access mode of the calling process, RMS
uses the access mode of the caller and does not return an error.

There is no corresponding FDL equivalent for this field. The FAB$V_CHAN_MODE subfield is used
locally for channel to DECnet for OpenVMS communications but is ignored on the remote system.

To set this field from MACRO level, you include the appropriate expression as an argument to the
$FAB macro. For example, to specify supervisor channel access mode, you might include a statement
in this format:

41

Chapter 4. File Access Block (FAB)

$FAB ...,CHAN_MODE = PSL$C_SUPER,...

If you are using a high-level language, refer to your documentation as to how (and whether) you can
directly access RMS fields and then incorporate the appropriate channel access mode expression into
the appropriate language statement.

4.9. FAB$L_CTX Field
The user context (CTX) field allows you to convey user information to a completion routine in your
program. This field contains a user-specified value, up to four bytes long, and is intended solely for
your use. RMS never uses it for record management activities.

This field corresponds to the FDL attribute FILE CONTEXT.

4.10. FAB$W_DEQ Field
The default file extension quantity (DEQ) field specifies the number of blocks to be added when RMS
automatically extends the file. Automatic extension only applies to files that reside on disk devices
and occurs whenever your process invokes a Put or Write service and the currently allocated file space
is exhausted. When you invoke a Put service, automatic file extension occurs when needed, regardless
of the file organization. When you invoke the Write service, automatic extension occurs only for
sequential files (indexed and relative files require the Extend service to extend file allocation).

This field corresponds to the FDL attribute FILE EXTENSION.

This field contains a numeric value in the range 0 through 65,535, which is rounded up to the next
cluster boundary. A large value results in fewer file extensions over the life of a file; a small value
results in numerous file extensions over the life of a file. When a file has numerous file extensions
that may be noncontiguous, this slows record access.

If you do not specify a value or specify the value 0 when you create a file, RMS uses the
default specified by the DCL command SET RMS_DEFAULT/EXTEND_QUANTITY. If this
value is 0, RMS uses the system default extension quantity specified by the system parameter
RMS_EXTEND_SIZE. If this value is 0, RMS computes the default value.

If the value in the FAB$W_DEQ field, the value set by the SET RMS_DEFAULT/
EXTEND_QUANTITY command, and the value of the system parameter RMS_EXTEND_SIZE
are all 0, RMS may provide an overly large value to minimize the number of extend operations
that it must perform. At times, this value can exceed the available disk quota even though there is
actually enough space for the file if only the required amount is used. You can use the DCL command
SET RMS_DEFAULT/EXTEND_QUANTITY to limit (explicitly specify) the extension size to the
recommended number of blocks. An appropriate size is the number of blocks specified as the cluster
size for the device (set by the DCL command INITIALIZE/CLUSTER_SIZE). For large files on a
volume where there is sufficient disk space, consider using a multiple of the cluster size to improve
subsequent performance.

When creating a new file, you can specify the extension quantity for the file by setting the desired
value in the FAB$W_DEQ field before or after invoking the Create service. This value becomes a
permanent attribute for the file.

When processing an existing file, you can temporarily override the default extension quantity
specified when the file was created. To do this, set the desired value before or after invoking the Open

42

Chapter 4. File Access Block (FAB)

service. When you subsequently close the file, the default extension quantity reverts to the value set
when the file was created.

See the discussion under FAB$B_BKS for indexed files.

Note that the use of an allocation control XAB overrides the value in this field. See Chapter 9 for a
detailed description of allocation control XABs.

4.11. FAB$L_DEV Field
The device characteristics (DEV) field allows your program to obtain the generic characteristics of
the device containing the file. You can locate and test the various bits in the field using symbolic
offsets. RMS returns a value in this binary options field when you invoke an Open, Create, or Display
Service. RMS also returns a value in this field for the Parse service unless you take the syntax check
option (NAM$V_SYNCHK in the NAM$B_NOP field is clear).

Table 4.2 describes the bits in the device characteristics field. Each bit has its own symbolic bit offset
and mask value. These definitions are made available to your program by referring to the $DEVDEF
macro in SYS$LIBRARY:STARLET.MLB. The symbolic bit offset is formed by prefixing the
characteristic name with DEV$V_. The mask value is formed by prefixing the characteristic name
with DEV$M_. For example, the DEV$V_REC bit has a mask value of DEV$M_REC.

Table 4.2. Device Characteristics

Bit Offset Description
DEV$V_ALL Device is allocated.
DEV$V_AVL Device is available for use.
DEV$V_CCL Carriage control device.
DEV$V_CDP Device has dual access paths, one of which is a remote node using an

MSCP server.
DEV$V_CLU Device is available on an OpenVMS Cluster.
DEV$V_DET Terminal device is detached.
DEV$V_DIR Directory-structured device.
DEV$V_DMT Device is marked for dismount.
DEV$V_DUA Device has dual access paths, both of which use a disk class driver.
DEV$V_ELG Device is error log enabled.
DEV$V_FOD File-oriented device (disk and magnetic tape).
DEV$V_FOR Device is mounted foreign (non-file-structured).
DEV$V_GEN Device is a generic device.
DEV$V_IDV Device can provide input.
DEV$V_MBX Device is a mailbox.
DEV$V_MNT Device is currently mounted.
DEV$V_NET Network device.
DEV$V_ODV Device can accept output.
DEV$V_OPR Device has been enabled as an operator console terminal.
DEV$V_RCK Device has read-check enabled.

43

Chapter 4. File Access Block (FAB)

Bit Offset Description
DEV$V_RCT Device includes a Replacement and Caching Table. See the VSI OpenVMS

I/O User's Reference Manual for more information about RCTs.
DEV$V_REC Record-oriented device (terminal, mailbox, line printer, for example). If

field is 0, device is assumed to be block-oriented (disk device or magnetic
tape device). All record-oriented devices are considered sequential in
nature.

DEV$V_RND Device is random access in nature (disk).
DEV$V_RTM Device is real-time in nature; not suitable for use by RMS.
DEV$V_RTT Terminal device is a remote terminal (DCL command SET HOST).
DEV$V_SDI Single directory device (master file directory only).
DEV$V_SHR Shareable device.
DEV$V_SPL Device is being spooled.
DEV$V_SQD Sequential block-oriented device (magnetic tape).
DEV$V_SWL Device is currently software write-locked.
DEV$V_TRM Terminal device.
DEV$V_WCK Device has write-check enabled.

For DECnet for OpenVMS operations, this field represents the actual characteristics of the target
device when a Create, Open, or Display service is invoked. It is not filled in when a Parse service is
invoked using a file specification that contains a node name.

4.12. FAB$L_DNA Field
The default file specification string address (DNA) field provides the address of a file specification
string RMS uses to apply defaults for any missing components of the file specification. This field
works with the FAB$B_DNS field, which initializes the default file specification string size, to
provide a default file specification string. Defaults are applied after RMS examines the primary file
specification string to which the FAB$L_FNA field (described in Section 4.15) points.

This field and the FAB$B_DNS field correspond to the FDL attribute FILE DEFAULT_NAME.

The FAB$L_DNA field contains the symbolic address of a default file specification string, which is
an ASCII string containing one or more components of a file specification. The components in the
string must be in the order in which they would occur in a complete file specification.

The FAB$L_DNA (input only) field is equivalent to the NAML$L_LONG_DEFNAME field of the
long name (NAML) block. See Chapter 6 for more information.

The default file specification string is used primarily when a process accepts file specifications
interactively; normally, file specifications known to a user program are specified completely in the
FAB$L_FNA and FAB$B_FNS fields. You can specify defaults for one or more of the following file
specification components:

• Node

• Device

• Directory

44

Chapter 4. File Access Block (FAB)

• File name

• File type

• File version number

The default file specification string is used only if components are missing from the string whose
address is stored in the FAB$L_FNA field and those components are present in the default file
specification string.

4.13. FAB$B_DNS Field
The default file specification string size (DNS) field indicates the size, in bytes, of the string whose
address is contained in the FAB$L_DNA field. This field contains a numeric value in the range 0 to
255.

This field and the FAB$L_DNA field correspond to the FDL attribute FILE DEFAULT_NAME.

4.14. FAB$B_FAC Field
The file access (FAC) field specifies the operations and services a process is seeking to use in
accessing a file. RMS uses this field, together with the share field (SHR) in each potential accessor's
FAB, to determine whether to permit a process to access a file. The FAC field corresponds to the FDL
primary attribute ACCESS.

Within the FAC field, each bit position corresponds to an operation or service option that the process
intends to use when accessing the file. In this manner, a process may specify several options,
assuming they are compatible, by setting the appropriate bits. Each option has its own symbolic bit
offset and mask value. For example, the GET service option has a symbolic bit offset of FAB$V_GET
and a mask value of FAB$M_GET.

When RMS attempts to open a file for a process, it examines the process's FAB$B_FAC field to
determine what operations or services the process is seeking to use in conjunction with the file access.

RMS determines whether or not the process seeking access to the file intends to use operations and
services that are compatible with the sharing options permitted by processes currently accessing the
file. It checks the FAC field of the requesting process to determine whether it requires read or write
access to the file. It then checks the SHR field of the requesting process to determine whether it will
share read or write access with other processes that are accessing the file. A read (GET) implies read
access. Delete (DEL), write (PUT), truncate (TRN), and update (UPD) all imply write access.

For example, assume that Process A opens the file for GET access (FAC=GET) and is willing to share
the file with processes that are doing GET and PUT accesses (SHR=GET,PUT). Since this is the only
process accessing the file, RMS permits it to read access the file.

Assume that a second process, Process B, wants to access the same file doing PUT accesses
(FAC=PUT) and is willing to share the file with processes doing GET accesses and PUT accesses
(SHR=GET,PUT). Because Process B is compatible with Process A (they both agree to share the
file with any process that is doing either GET accesses or PUT accesses), RMS permits the second
process to access the file.

Now assume that a third process, Process C, wants GET access (FAC=GET) to the same file but
will share the file only with processes doing GET accesses (SHR=GET). Although Process C is

45

Chapter 4. File Access Block (FAB)

compatible with Process A (FAC=GET), it is not compatible with Process B (FAC=PUT), so RMS
denies Process C access to the file. Conversely, if C tries to access the file before B, C gets access and
B is denied access.

RMS always grants file access to the first process accessing a file, assuming no security access
restrictions exist. When a process acquires access to a file, RMS rejects any attempt to use a service
not included in the initial access request.

Options
FAB$V_BIO

Requests file access for doing block I/O operations that use Read (FAB$V_GET), Write
(FAB$V_PUT), or the Space services. Specifying block I/O prohibits the use of record I/O operations
(such as the Get, Put, Update, Delete, or Truncate services).

This option corresponds to the FDL attribute ACCESS BLOCK_IO.

FAB$V_BRO

Requests file access for doing either block I/O or record I/O as determined by the state of the
RAB$V_BIO bit in the RAB at connect time. Mixed block and record I/O operations are restricted to
sequential files. For additional information, see Section 7.19 and Section B.3.10.

This option corresponds to the FDL attribute ACCESS RECORD_IO.

FAB$V_DEL

Requests file access for invoking the Delete service (or the equivalent language statement that deletes
a record). This option applies only to relative and indexed files.

This option corresponds to the FDL attribute ACCESS DELETE.

FAB$V_GET

Requests file access for invoking either the Get or Find service (or equivalent language statement
that reads a record). This is the default if a process requests access to a file without including
FAB$B_FAC field information. If the process takes the FAB$V_GET option together with either the
FAB$V_BIO option or the FAB$V_BRO option, it can invoke the Read service.

This option corresponds to the FDL attribute ACCESS GET.

FAB$V_PUT

Requests file access for invoking either the Put or Extend service (or the equivalent language
statement that writes a record or extends a file). This is the default when a process creates a file.
If the process takes the FAB$V_PUT option together with either the FAB$V_BIO option or the
FAB$V_BRO option, it can invoke the Write service.

This option corresponds to the FDL attribute ACCESS PUT.

FAB$V_TRN

Requests file access for invoking the Truncate service (or the equivalent language statement that
truncates a file). Also allows use of the RAB$L_ROP truncate-on-put (RAB$V_TPT) option with the
Put and Write service. This option applies only to sequential files.

46

Chapter 4. File Access Block (FAB)

This option corresponds to the FDL attribute ACCESS TRUNCATE.

FAB$V_UPD

Requests file access for invoking either an Update or Extend service (or the equivalent language
statement that rewrites a record or extends a file). Also allows use of the RAB$L_ROP update-if
(RAB$V_UIF) option for the Put service.

This option corresponds to the FDL attribute ACCESS UPDATE.

4.15. FAB$L_FNA Field
The file specification string address (FNA) field works with the FAB$B_FNS field to specify the
primary file specification of the file to be processed. If this string does not contain all the components
of a full file specification, RMS uses the defaults supplied in the default file specification string (see
FAB$L_DNA and FAB$B_DNS). If no default string is present, or if the file specification is still
incomplete, RMS provides additional defaults.

This field contains the symbolic address of a file specification string, which is an ASCII string
containing one or more components of a file specification. This field is used as input by many file-
processing services. To obtain the file specification returned by RMS after it translates any logical
names and applies defaults, a NAM or NAML block must be present (see FAB$L_NAM).

This field and the FAB$B_FNS field correspond to the FDL attribute FILE NAME.

The FAB$L_FNA field is equivalent to the NAML$L_LONG_FILENAME field of the long name
block (NAML). See Chapter 6 for more information.

4.16. FAB$B_FNS Field
The file specification string size (FNS) field specifies the size, in bytes, of the ASCII file specification
string, whose address is contained in the FAB$L_FNA field. This field contains a numeric value in the
range of 0 through 255.

This field and the FAB$L_FNA field correspond to the FDL attribute FILE NAME.

4.17. FAB$L_FOP Field
FAB$L_FOP is the symbolic offset value for the FAB's file-processing options (FOP) field. This field
specifies which of the various optional file operations are to be implemented for the process.

The FOP is a 32-bit field in which each file-processing option has a corresponding bit assignment to
let you specify multiple options (multiple bits can be set), when applicable. Each option has a unique
symbolic offset value and mask value, but you need only specify the appropriate 3-letter mnemonic
when coding a function. For example, the spool-file-on-close option has a symbolic offset value of
FAB$V_SPL, but to specify the option, you use the following MACRO statement:

FOP=SPL

As detailed in the appropriate descriptions, the only file-processing option bits that may be affected by
record management services are the FABV_CBT, FABV_CTG, FAB$V_RCK, and FAB$V_WCK
bits.

47

Chapter 4. File Access Block (FAB)

This section presents the seven types of file-processing options alphabetically by functional category:

• Allocation and extension options

• File name parsing modifiers

• File disposition options

• Magnetic tape processing options

• Nonstandard processing options

• Performance options

• Reliability options

Table 4.3 lists each of the options alphabetically by category.

Table 4.3. File Processing Options

Option Symbolic Offset
Allocation and Extension Options
Contiguous best try FAB$V_CBT
Contiguous allocation FAB$V_CTG
Truncate at end of file FAB$V_TEF
File Name Parsing Modifier Options
Create-if FAB$V_CIF
Maximum version number FAB$V_MXV
Use NAM or NAML block inputs FAB$V_NAM
Output file parse FAB$V_OFP
Supersede existing file FAB$V_SUP
File Disposition Options
Delete on close FAB$V_DLT
Erase regardless of lock FAB$V_ERL
Submit command file on close FAB$V_SCF
Spool file on close FAB$V_SPL
Temporary marked for delete FAB$V_TMD
Temporary file FAB$V_TMP
Magnetic Tape Processing Options
Do not set to EOF FAB$V_NEF
Current position FAB$V_POS
Rewind file on close FAB$V_RWC
Rewind file on open FAB$V_RWO
Nonstandard Processing Options
Non-file-structured FAB$V_NFS
User file open FAB$V_UFO

48

Chapter 4. File Access Block (FAB)

Option Symbolic Offset
Performance Options
Asynchronous operation FAB$V_ASY
Deferred write FAB$V_DFW
Sequential only FAB$V_SQO
Synchronous status FAB$V_SYNCSTS
Reliability Options
Read-check FAB$V_RCK
Write-check FAB$V_WCK

This field corresponds to the FDL primary attribute FILE.

Allocation and Extension Options
FAB$V_CBT

Contiguous best try; indicates that the file is to be allocated contiguously on a “best effort” basis.
It is input to the Create service and output from the Open service to indicate the file status. The
FAB$V_CBT option overrides the FAB$V_CTG option. Note that this option is ignored if multiple
areas are defined for an indexed file.

This option corresponds to the FDL attribute FILE BEST_TRY_CONTIGUOUS.

FAB$V_CTG

Contiguous; indicates that the space for the file is to be allocated contiguously. If this cannot be done,
the operation fails. It is input to the Create service and is output by the Open service to indicate the
status of the file. Note that this option is ignored if multiple areas are defined for an indexed file. The
FAB$V_CBT option overrides the FAB$V_CTG option.

This option corresponds to the FDL attribute FILE CONTIGUOUS.

FAB$V_TEF

Truncate at end of file; indicates that unused space allocated to a file is to be deallocated on a Close
service. This option is tested only at $CLOSE time. When a writer requests this option at close, if
other readers are still accessing the file, the file systems defers the actual file truncation until the last
reader closes the file. The system still returns a success status. The last truncation request made by a
writer before the last close has precedence over any previous deferred truncation. Once the file system
starts the truncate operation, the file is locked from other writers until the truncate operation is done.

The FAB$V_TEF option applies only to sequential files.

This option corresponds to the FDL attribute FILE TRUNCATE_ON_CLOSE.

File Name Parsing Modifiers
FAB$V_CIF

Create if nonexistent; creates and opens a file and returns the alternate success status
RMS$_CREATED, assuming the file does not exist. If you specify an existing file, RMS opens it.

49

Chapter 4. File Access Block (FAB)

Note that if you specify the CIF option for an indexed file, you need to provide a key XAB. If you do
not provide a key XAB, RMS returns an RMS$_NPK error.

The FAB$V_CIF option is input only to the Create service and overrides the FAB$V_SUP option.
When the create-if option is used with a search list logical name and the file is not found in any of the
file specifications supplied using the search list, the file is created using the file specification from the
first element of the search list.

This option corresponds to the FDL attribute FILE CREATE_IF.

FAB$V_MXV

Maximize version number; indicates that the version number of the file should be the maximum of the
explicit version number given in the file specification, or one greater than the highest version number
for an existing file in the same directory with the same file name and file type. This option enables
you to create a file with a specific version number (if the requested version number is greater than that
of the existing file) or a file with a version number that is one higher than the existing file's version
number.

This option is used as input to the Create service only and it corresponds to the FDL attribute FILE
MAXIMIZE_VERSION (default is “YES”).

FAB$V_NAM

Use NAM or NAML block inputs; indicates that the NAM or NAML block whose address is
contained in the FAB$L_NAM (name block address) field provides the device, file, and/or the
directory identification when a file is being opened, closed, or erased (deleted). If a file is being
created, the field specifies the device and directory identification.

This option has no corresponding FDL attribute and it is not supported for DECnet for OpenVMS
operations.

FAB$V_OFP

Output file parse; specifies that related file resultant file specification strings, if used, are to provide
directory, file name, and file type defaults only (requires NAM or NAML block).

This option corresponds to the FDL attribute FILE OUTPUT_FILE_PARSE.

FAB$V_SUP

Supersede existing file; allows an existing file to be superseded on a Create service by a new file of
the same name, type, and version. The FAB$V_CIF and the FAB$V_MXV option take precedence
over the FAB$V_SUP option.

This option corresponds to the FDL attribute FILE SUPERSEDE.

File Disposition Options
FAB$V_DLT

Delete file on Close; indicates that the file is to be deleted when closed. This option may be specified
for the Create, Open, or Close services. However, if you set the bit when you create or open a file,
RMS deletes the file when you close it, regardless of the state of the bit when you invoke the Close
service. You can specify the FAB$V_DLT option with the FAB$V_SCF or FAB$V_SPL option.

50

Chapter 4. File Access Block (FAB)

This option corresponds to the FDL attribute FILE DELETE_ON_CLOSE.

FAB$V_ERL

Erase regardless of lock; allows a file open for write access to be marked for delete by the $ERASE
service. The erase operation will complete once the file's reference count reaches zero.

This option can only be specified for the Erase service.

FAB$V_SCF

Submit command file on Close; indicates that the file is to be submitted as a batch-command file to
the process-default batch queue (SYS$BATCH) when the file is closed. This option can be specified
for the Create, Open, and Close services. However, if you set the bit when you create or open a file,
RMS submits the file to SYS$BATCH when you close it, regardless of the state of the bit when you
invoke the Close service.

The FAB$V_SCF option applies to sequential files only and it corresponds to the FDL attribute FILE
SUBMIT_ON_CLOSE.

FAB$V_SPL

Spool file on Close; indicates that the file is to be spooled to the process-default print queue
(SYS$PRINT) when the file is closed. This option can be specified for the Create, Open, or
Close services. However, if you set the bit when you create or open a file, RMS spools the file to
SYS$PRINT when you close it, regardless of the state of the bit when you invoke the Close service.

The FAB$V_SPL option applies to sequential files only and it corresponds to the FDL attribute FILE
PRINT_ON_CLOSE.

FAB$V_TMD

Temporary file marked for delete; indicates that a temporary file is to be created but is to be deleted
when the file is closed. This option is input only to the Create service. The FAB$V_TMD option takes
precedence over the FAB$V_TMP option.

This option corresponds to the FDL attribute FILE TEMPORARY.

FAB$V_TMP

Temporary file; indicates that a temporary file is to be created and retained, but that no directory entry
is to be made for it. This option is used solely as input to the Create service. If you have a NAM or
NAML block, you are given the file identification (FID) of the file, which you can use to reopen
the file. If you do not have a NAM or NAML block or if you do not save the FID, the file becomes
inaccessible once it is closed. The FAB$V_TMD option overrides the FAB$V_TMP option.

This option corresponds to the FDL attribute FILE DIRECTORY_ENTRY (“NO” means this bit is
set).

Magnetic Tape Processing Options
FAB$V_NEF

Do not position to end of file; inhibits positioning to the end of a file when a tape file is opened and
the FAB$B_FAC (file access) field indicates a Put service.

51

Chapter 4. File Access Block (FAB)

This option corresponds to the FDL attribute FILE MT_NOT_EOF.

FAB$V_POS

Current position; directs RMS to position the magnetic tape volume set immediately after the most
recently closed file (the current position) when it opens the next file. If you use this option when you
invoke the Create service, RMS begins overwriting data beginning with the current tape position.

The FAB$V_POS option corresponds to the FDL attribute FILE MT_CURRENT_POSITION and is
superseded by the FAB$V_RWO option, where applicable.

FAB$V_RWC

Rewind file on Close; specifies that the magnetic tape volume is to be rewound when the file is
closed. This option can be specified for the Close, Create, or Open services.

This option corresponds to the FDL FILE attribute MT_CLOSE_REWIND.

FAB$V_RWO

Rewind on Open; specifies that the magnetic tape volume is to be rewound before the file is opened
or created. If you use this option when you invoke the Create service, RMS overwrites the tape
beginning with the first file. The FAB$V_RWO option takes precedence over the FAB$V_POS
option.

This option corresponds to the FDL FILE attribute MT_OPEN_REWIND and takes precedence over
the FAB$V_POS option, where applicable.

Nonstandard Processing Options
FAB$V_NFS

Non-file-structured; indicates (on an Open or Create service) that the volume is to be processed in a
non-file-structured manner.

The FAB$V_NFS option corresponds to the FDL attribute FILE NON_FILE_STRUCTURED and it
is not supported for DECnet for OpenVMS operations.

FAB$V_UFO

User file open; indicates that RMS operations for this file are limited to opening it or creating it. To
perform additional processing of the file, invoke the $QIO system service using the channel number
returned by RMS in the status value field (FAB$L_STV). This channel is assigned the access mode of
the caller unless otherwise specified by the FAB$V_CHAN_MODE bits.

If you specify this option, you must set the FAB$B_SHR field FAB$V_UPI bit option unless the file
is not shared (FAB$B_SHR field FAB$V_NIL option is set). For the Create service, the end-of-file
mark is set to the end of the block specified in the FAB$L_ALQ field on input. For either the Open or
Create services, the FAB$W_IFI field is set to 0 on return to indicate that RMS cannot perform any
more operations (including the Close service) on the file. If you set the FAB$V_UFO option with the
Open or Create service, the channel needs only to be deassigned when you finish with the file.

This option corresponds to the FDL attribute FILE USER_FILE_OPEN and it is not supported for
DECnet for OpenVMS operations.

52

Chapter 4. File Access Block (FAB)

Performance Options
FAB$V_ASY

Asynchronous; indicates that the specified task is to be done asynchronously. The FAB$V_ASY
option is relevant only to file tasks that involve I/O operations. The asynchronous I/O option is
typically used with success/error ASTs, or in conjunction with the $WAIT service, to synchronize the
program with task completion. When you specify FAB$V_ASY, you pass the address of the FAB as
an argument to the AST routine and RMS returns control to your program immediately.

This option corresponds to the FDL attribute FILE ASYNCHRONOUS.

FAB$V_DFW

Deferred write; indicates that writing back to the file of modified I/O buffers is to be deferred until
the buffer must be used for other purposes. This option applies to relative files, indexed files, and
sequential files opened for shared access.

This option corresponds to the FDL attribute FILE DEFERRED_WRITE and is not supported for
DECnet for OpenVMS operations.

FAB$V_SQO

Local File Accesses

Sequential only; indicates that the file can be processed only in a sequential manner, permitting certain
processing optimizations. Any attempt to perform random access results in an error. This option is
restricted to sequential files and is ignored for all other file organizations. The FAB$V_SQO option is
input to the Create and Open services.

Remote DECnet Accesses

For OpenVMS DECnet operations, this option has an added meaning. When set for a remote file
access, it indicates that file transfer mode (FTM) should be used for Get, Put, Read, and Write
services. File transfer mode is a Data Access Protocol (DAP) feature that allows several records to
be transferred in a single-network I/O operation to maximize throughput for sequential access file
transfers.

While the file transfer mode (FTM) feature for the SQO option is applied regardless of file
organization to remote accesses, FTM has restrictions to make it consistent with the sequential only
meaning applied to local accesses. For a remote file access, FTM is restricted to sequential access; if
FTM is requested (FAB$V_SQO option set), a keyed or RFA record access will fail with an RMS-F-
FTM error (network file transfer mode precludes operation (SQO set)). For record I/O, FTM is also
restricted to Gets or Puts; Updates or Deletes, if attempted, will fail with the RMS-F-FTM error.

The transmitting of records as a block of data, of course, results in performance improvement; what is
not as obvious is that some of the improvement is due to the fact that the Data Access Protocol (DAP)
eliminates much of its messaging for the FTM feature. Messages are not sent between the local and
remote systems on a record-by-record basis but rather for the whole block of records transferred. This
can result in apparent inconsistencies in what a reader sees when FTM is used.

While the RMS default locking behavior does not change when FTM is used, by the time the record
is in your buffer on the local system, the record may have already been updated or deleted by another
process that is not using FTM. If a locking collision happens on the remote system when the records
are being loaded into the message buffer, then the locking error will not be returned until the end of

53

Chapter 4. File Access Block (FAB)

the transfer. When using the file transfer mode (SQO) feature with shared write access to a remote
file, you should expect to see the same kind of inconsistencies in reading data as you see when the
read-regardless (RRL) option is set. To avoid the possibility of a hang that may be induced by retrying
remote accesses after a record lock error, you are advised to set both the no-lock (NLK) and read-
regardless (RRL) options in the RAB$L_ROP in applications that use the file transfer mode (SQO)
feature for remote file accesses. (The no query locking (NQL) option is not supported by the DAP
protocol for remote files.)

This option corresponds to the FDL attribute FILE SEQUENTIAL_ONLY.

FAB$V_SYNCSTS

Synchronous status; returns the success status RMS$_SYNCH if the requested service completes its
task immediately. The most common reason for not completing a task immediately is that the task
involves I/O operations. If the service completes synchronously (that is, it has not returned to caller's
execution mode prior to completion), RMS returns RMS$_SYNCH as the completion status in R0,
stores the true completion status (success or failure) in FAB$L_STS, and does not deliver an AST.

The FAB$V_SYNCSTS option is best used in conjunction with the FAB$V_ASY option.

The system returns RMS$_SYNCH status in R0. Refer to the FAB$L_STS field for the actual success
status or failure status of the task.

Reliability Options
FAB$V_RCK

Read-check; specifies that transfers from disk volumes are to be checked by a read-compare
operation, which effectively doubles the amount of disk I/O at some increase in reliability. This option
is an input to the Open and Create services. If FAB$V_RCK is set, then checking is performed for the
duration of the access. The FAB$V_RCK option is also an output of the Open service, which indicates
the default for the file. This option is not available for RX01 and RX02 devices, or for any device that
has been mounted using the DCL command MOUNT/FOREIGN.

This option corresponds to the FDL attribute FILE READ_CHECK.

FAB$V_WCK

Write-check; indicates that transfers to disk volumes are to be checked by a read-compare operation.
The FAB$V_WCK option is similar to the FAB$V_RCK option. This option is not available for
RX01 and RX02 devices, or for any device that has been mounted using the DCL command MOUNT/
FOREIGN.

This option corresponds to the FDL attribute FILE WRITE_CHECK.

4.18. FAB$B_FSZ Field
The fixed-length control area size (FSZ) field is used only for variable with fixed-length control
(VFC) records. When you create a file with this record type, you must set the value for the fixed-
control area before you issue the Create service. When you open an existing file that contains variable
with fixed control records, RMS sets this field equal to the value specified when the file was created.
The FAB$B_FSZ field is not applicable to indexed files.

This field corresponds to the FDL attribute RECORD CONTROL_FIELD_SIZE.

54

Chapter 4. File Access Block (FAB)

This field contains a numeric value in the range of 1 to 255 that indicates, in bytes, the size of the
fixed control area; the default size is 2 bytes. If you do not specify a value or specify 0, then the
default size is used.

4.19. FAB$W_GBC Field
The global buffer count (GBC) field indicates the requested number of global buffers for a file. This
field contains a numeric value in the range of 0 to 32,767; the default is 0.

Global buffers support sharing of I/O buffers by more than one process. The use of global buffers
can minimize I/O operations for a shared file, thus reducing record access time at the cost of using
additional system resources. RMS is able to locate requested records (or blocks) in the global
buffers associated with this file, which it can read directly from memory, eliminating much I/O.
However, since global buffers use global sections, the value contained in FAB$W_GBC is limited by
systemwide restrictions on resources determined by the system parameters GBLSECTIONS (number
of global sections), GBLPAGES (number of global page table entries), and GBLPAGFIL (number of
systemwide pages allowed for global page-file sections, or scratch global sections). For a complete
description of these parameters, see the VSI OpenVMS System Management Utilities Reference
Manual.

If global buffers are specified for a file, global buffers are used instead of local (process) buffers, with
the exception of deferred write operations (FAB$L_FOP field FAB$V_DFW option).

The value that is specified when the file is created is returned in the FAB$W_GBC field as output
from the Open service. This value is then used as input to the Connect service.

If you want to override the default value specified when the file was created, you can set a different
value in the FAB$W_GBC field after opening the file but before invoking the Connect service. If
you do not want to use global buffers, you can clear the field before issuing the Connect service if the
default value is not 0.

If you modify the value in the FAB$W_GBC field that is returned from the Open service prior to the
Connect service, this action determines whether or not global buffers are assigned to your process.

If you want to permanently change the default global buffer count value for the file, use the following
command syntax:

SET FILE file-spec /GLOBAL_BUFFERS=buffer-count

If you want to permanently clear the default global buffer count for a file, use the following command
syntax:

SET FILE file-spec /GLOBAL_BUFFERS=0

You can also vary the number of global buffers used each time you process the file. If you choose
this method, you change (or clear) the FAB$W_GBC field after you open the file, but before you
invoke the Connect service. In this case, the specified value is assigned to the FAB$W_GBC field, or
the FAB$W_GBC field remains clear only for the current processing of the file; that is, you do not
permanently alter the FAB$W_GBC field in the FAB. If no value is specified in the FAB$W_GBC
field when the file is created, the default value is 0.

The number of global buffers for a file is determined by the first record stream to connect to the file
(systemwide). If the file is already open and connected, then the number of global buffers is already
set and modifications made before the Connect service are useful only to request that this process use
(or not use) global buffers.

55

Chapter 4. File Access Block (FAB)

To specify a read-only global buffer cache, the initial accessor must set the FAB$B_SHR field
FAB$V_SHRGET and FAB$V_MSE bits on. Selecting the FAB$V_MSE option turns on locking to
coordinate access to the global buffer cache.

You can use global buffers for all file organizations opened for shared record access. If the global
buffer count is nonzero for the first process that connects to the file, then a temporary global section
that is large enough to contain the specified number of buffers (as well as internal RMS data
structures) is created and mapped. This section is mapped by processes that subsequently connect
to the file, thus allowing multiple processes to reference a single set of one or more buffers without
performing additional I/O operations. Thus, the first user to open the file requesting global buffers
determines the number of the global buffers. For shared sequential file operations, the value stored in
the RAB$B_MBC field establishes the global buffer size. See Section 7.11 for more information.

The FAB$W_GBC field corresponds to the FDL attribute FILE GLOBAL_BUFFER_COUNT and it
is not supported for DECnet for OpenVMS operations.

4.20. FAB$W_IFI Field
The internal file identifier (IFI) field associates the FAB with the corresponding internal file access
block. RMS sets this field on successful Create or Open services. It is then an input for subsequent
Close, Connect, Display, and Extend services. The Close service deallocates the internal control
structures and clears the FAB$W_IFI field. When the user file open (FAB$V_UFO) option in the
FAB$L_FOP field is specified, no internal structures are allocated on Create or Open services.
Therefore, the FAB$W_IFI field remains cleared.

There is no FDL equivalent for this field.

4.21. FAB$B_JOURNAL Field
The journal field provides flags to identify whether a file is marked for journaling and to identify,
where applicable, the type of journaling:

• After-image (AI) journaling

• Before-image (BI) journaling

• Recovery unit (RU) journaling

These flags are used for output only, from either the Open service or the Display service. Although
they are included as inputs to the Create service, the input value must be 0. If the input value is
nonzero, RMS returns an RMS$_JNS error. You can only store the associated attributes in the file
header through the DCL interface using the SET FILE command with an appropriate qualifier. (See
the VSI OpenVMS DCL Dictionary for information about using the SET FILE command to store these
attributes in a file header.)

You can obtain additional information about a file marked for journaling using the journaling XAB.
For example, you can obtain the name of the after-image journal file, and so forth.

Here is a code example showing how you might use the Open service to determine if a file is
marked for RU journaling. In the example, the program opens a file and branches to a label
FILE_MARKED_FOR_RU if the file is marked for RU journaling:

$OPEN FAB = MY_FAB
BLBC R0,ERROR

56

Chapter 4. File Access Block (FAB)

BBS #FABV_RU,FABB_JOURNAL+MY_FAB,-
 FILE_MARKED_FOR_RU

Each journaling flag in the field has a unique symbolic bit offset and mask value. For example, the
after-image journaling flag has the symbolic bit offset FAB$V_AI and the constant value FAB$M_AI.
If a flag is set, the logical value is 1; if it is reset, the logical value is 0.

There are no corresponding FDL attributes for the journaling flags because they cannot be set through
the FDL interface.

A listing of symbolic offsets for each of the journaling flags follows:

Flags
FAB$V_AI

The file is marked for after-image journaling.

FAB$V_BI

The file is marked for before-image journaling.

FAB$V_RU

The file is marked for recovery unit journaling.

4.22. FAB$V_LNM_MODE Subfield
The logical name translation access mode (LNM_MODE) subfield is the part of the
FAB$B_ACMODES field that specifies the RMS access mode used to translate logical names during
parsing.

The FAB$V_LNM_MODE subfield may contain one of these four values, with the related constant
value for each shown in parentheses:

0 None
1 Executive mode (PSL$C_EXEC)
2 Supervisor mode (PSL$C_SUPER)
3 User mode (PSL$C_USER)

The default value is 0 (none), which RMS interprets as user mode.

The FAB$V_LNM_MODE field is not supported for DECnet for OpenVMS operations, and it is
ignored during remote file access.

There is no corresponding FDL equivalent for this field. For more information about logical name
concepts, see the VSI OpenVMS Programming Concepts Manual, Volume II.

4.23. FAB$L_MRN Field
The maximum record number (MRN) field applies only to relative files and indicates the highest
record number that can be written to a file.

57

Chapter 4. File Access Block (FAB)

This field contains a numeric value of the highest numbered record allowed in the file, in the range of
0 to 2,147,483,647, although the maximum value depends on the number of blocks on the device to be
used. The default for this field is 0.

If you attempt to write (put) or retrieve (get) a record with a relative record number higher than the
specified limit, an error occurs and RMS returns a message indicating an invalid record number.
Checking is suppressed if you specify 0 for the FAB$L_MRN field.

Note that RMS does not maintain the relative record number of the highest existing record in the file.

This field corresponds to the FDL attribute FILE MAX_RECORD_NUMBER.

4.24. FAB$W_MRS Field
The maximum record size (MRS) field defines the size of all records in a file with fixed-length
records, the maximum size of variable-length records, the maximum size of the data area for variable
with fixed-length control records, and the cell size (minus overhead) for relative files.

This field contains a numeric value in the range applicable to the file type and record format (see
Table 4.4) that indicates the size of the records in the file, in bytes. This value specifies the number of
bytes of data and does not include any control bytes associated with each record.

For fixed-length records, the value represents the actual size of each record in the file. You must
specify a size when you create a file with fixed-length records.

For variable-length records, the value represents the size of the largest record that can be written into
the file. If the file is not a relative file, a value of 0 is used to suppress record size checking, thus
indicating that there is no user limit on record size, except for the limitations listed in Table 4.4 and
certain physical limitations. For magnetic tape files, a value of 0 sets an effective maximum record
size that is equal to the block size minus 4.

The size of variable-length records must conform to physical limitations. With indexed and
relative files, for example, records may not cross bucket boundaries. If both the FAB$B_BKS and
FAB$W_MRS fields are 0 (not specified) for an indexed file, RMS attempts to calculate a reasonable
bucket size, usually 2. Thus, if any record requires more than two buckets, you must explicitly specify
the required value for the FAB$B_BKS or the FAB$W_MRS field. If the FAB$B_BKS field is
specified, the value should specify a bucket size large enough to exceed the longest possible record.

For variable with fixed-length control records, the value includes only the data portion; it does not
include the size of the fixed control area.

For all relative files, the size is used in conjunction with the FAB$B_BKS field to determine the size
of the record cell. You must specify the FAB$W_MRS field when you create a relative file.

You specify a value when you invoke a Create service. RMS returns the maximum record size when
you invoke an Open service.

Table 4.4 summarizes the maximum record size allowed for the various file and record formats.

Table 4.4. Maximum Record Size for File Organizations and Record Formats

File Organization Record Format Maximum Record Size
Sequential Fixed length 32,767

58

Chapter 4. File Access Block (FAB)

File Organization Record Format Maximum Record Size
Sequential (disk) Variable length 32,767
Sequential (disk) VFC 32,767-FSZ1

Sequential (disk) Stream 32,767
Sequential (disk) Stream-CR 32,767
Sequential (disk) Stream-LF 32,767
Sequential (ANSI tape) Variable length 9,995
Sequential (ANSI tape) VFC 9,995-FSZ1

Relative Fixed length 32,255
Relative Variable length 32,253
Relative VFC 32,253-FSZ1

Indexed, Prolog 1 or 2 Fixed length 32,234
Indexed, Prolog 1 or 2 Variable length 32,232
Indexed, Prolog 3 Fixed length 32,224
Indexed, Prolog 3 Variable length 32,224

1The FSZ represents the size, in bytes, of the fixed control area in a record having VFC record format. On a disk device, the length of the
largest record in a sequential file using variable or VFC format is also maintained by RMS and is available through the longest record length
field (XAB$W_LRL) in the file header characteristics XAB (XABFHC). See Chapter 11.

For DECnet for OpenVMS remote file access, the maximum record size may be set by the /
NETWORK_BLOCK_COUNT=n qualifier to the SET RMS_DEFAULT command or by a
$XABITM parameter. DECnet for OpenVMS remote file access can support record sizes as large as
the record sizes that RMS supports. The default number of blocks is equal to the system parameter
RMS_DFNBC, the default for which is 8 blocks (4096 bytes). For more information about the SET
RMS_DEFAULT command, see the VSI OpenVMS DCL Dictionary. The system parameters are
detailed in the VSI OpenVMS System Management Utilities Reference Manual.

This field corresponds to the FDL attribute RECORD SIZE.

4.25. FAB$L_NAM Field
The name block field specifies the address of either the name (NAM) block (see Chapter 5) or the
long name (NAML) block (see Chapter 6) used to invoke a file service, such as an Open or Create. On
Alpha systems, the NAML block can optionally take the place of a NAM block. The NAML allows
OpenVMS Alpha users to locate and use file specifications that are longer than 255 bytes.

The NAM or NAML block is required only in conjunction with the file specification processing
services. Both can also be used with other services, typically to obtain a file specification string after
all logical name translation is completed and all defaults applied.

To allow for appropriate type checking of a NAML block, FAB$L_NAML is available as an
alternative definition for C programmers who are using a NAML block.

For further information, see Section 4.17 and Chapter 6.

4.26. FAB$B_ORG Field
The file organization (ORG) field assigns the organization of the file.

59

Chapter 4. File Access Block (FAB)

The FAB$B_ORG field is a keyword value field in which each file organization has a symbolic value.
Options are identified using 3-letter mnemonics. Each option in the FAB$B_ORG field has its own
symbolic constant value. For example, the relative (REL) file organization has a constant value of
FAB$C_REL.

You must set this field before you invoke a Create service. RMS returns the contents of this field
when you invoke an Open service. The options are described in the following list:

• FAB$C_IDX — Indexed file organization

• FAB$C_REL — Relative file organization

• FAB$C_SEQ — Sequential file organization (default)

This field corresponds to the FDL attribute FILE ORGANIZATION.

4.27. FAB$B_RAT Field
The record attributes (RAT) field specifies control information associated with each record in a
file, including carriage control information, block boundary control, and count byte formatting
for variable-length records. Within the FAB$B_RAT field, each control bit has a unique symbolic
offset and constant value. For example, the CR (carriage return) control bit has a symbolic offset of
FAB$V_CR and a mask value of FAB$M_CR.

For most programs, the default value for the carriage control is FAB$V_CR (carriage return). When
you create your own file, however, the default value is 0. When you want to create a stream format
file or a file containing ASCII text, specify the FAB$V_CR option for the Create service. RMS sets
this field when you invoke an Open service.

When a process-permanent file is accessed indirectly for output, the value in this field is always an
input value. Therefore, RMS automatically uses the process-permanent file's record attributes.

This field corresponds to the FDL primary attribute RECORD.

Options
FAB$V_CR

Indicates that each record is to be preceded by a line feed and followed by a carriage return when the
record is written to a carriage control device such as a line printer or terminal.

This option corresponds to the FDL attribute RECORD CARRIAGE_CONTROL
CARRIAGE_RETURN. It cannot be used with either the FAB$V_FTN option or the FAB$V_PRN
option.

FAB$V_FTN

Indicates that the first byte of each record contains a FORTRAN (ASA) carriage control character.

This option corresponds to the FDL attribute RECORD CARRIAGE_CONTROL FORTRAN.
Records are defined as follows:

Byte 0
Value (Hex)

ASCII
Character

Meaning

0 (null) Null carriage control (sequence: print buffer contents).

60

Chapter 4. File Access Block (FAB)

Byte 0
Value (Hex)

ASCII
Character

Meaning

20 (space) Single-space carriage control (sequence: line feed, print buffer
contents, carriage return).

30 0 Double-space carriage control (sequence: line feed, line feed, print
buffer contents, carriage return).

31 1 Page eject carriage control (sequence: form feed, print buffer contents,
carriage return).

2B + Overprint carriage control (sequence: print buffer contents, carriage
return). Allows double printing for emphasis.

24 $ Prompt carriage control (sequence: line feed, print buffer contents).
Other values Same as ASCII space character: single-space carriage control.

The FAB$V_FTN option cannot be used with either the FAB$V_CR option or the FAB$V_PRN
option.

FAB$V_PRN

Indicates print file format for variable-length records having 2-byte fixed-length control fields, where
the fixed-length control area contains the carriage control specification. The first byte of the control
area constitutes a “prefix” area, that is, action to be taken before printing the record. The second byte
constitutes a “suffix” area, that is, action to be taken after printing the record.

The following table shows the coding scheme for both control bytes (even though they are interpreted
separately):

Bit 7 Bit 6 Bit 5 Bit 4 Meaning
0 0 0 0 To specify no carriage control (NULL), set bits 3 through 0

at 0.
0 x x x Use bits 6 through 0 to specify a count of new lines (line

feed followed by carriage return).
1 0 0 x Output the ASCII C0 control character specified by the

configuration of bits 4 through 0.
1 0 1 x Reserved.
1 1 0 0 Skip to the vertical format unit (VFU) channel (1–16)

specified by bits 3 through 0. Devices that do not have
hardware VFUs translate these codes as a 1-line advance.

1 1 0 1 Reserved.
1 1 1 0 Reserved.

This option corresponds to the FDL attribute RECORD CARRIAGE_CONTROL PRINT. It cannot
be used with either the FAB$V_CR option or the FAB$V_FTN option.

FAB$V_BLK

Applicable to sequential files only; indicates that records are not permitted to cross block boundaries.
The FAB$V_BLK record attribute option may be used with any one of the other record attribute
options (FABV_CR, FABV_FTN, or FAB$V_PRN), but it cannot be used with files that use the
STREAM record format.

61

Chapter 4. File Access Block (FAB)

This option corresponds to the FDL attribute RECORD BLOCK_SPAN.

FAB$V_MSB

The state of this control bit determines whether the format for the 2-byte count field that is prefixed
to each variable-length record is formatted as LSB or MSB. If the bit is set, RMS reads the contents
of the 2-byte count field using the most significant byte as the high-order byte. The 2-byte count field
contains the number of bytes in the associated variable-length record.

This option corresponds to the FDL attribute RECORD MSB_RECORD_LENGTH.

4.28. FAB$B_RFM Field
The record format (RFM) field specifies the format for all the records in a file.

The FAB$B_RFM field is a keyword value field where each record format has a symbolic value.
Options are identified by mnemonics. Each option has its own symbolic constant value. For example,
the FIX (fixed) record format has a symbolic constant value of FAB$C_FIX; the STMCR (stream
with carriage return) record format has a symbolic constant value of FAB$C_STMCR.

When you create the file, you must set this field before you invoke the Create service. RMS returns
the record format when you invoke an Open service. The record format options are described under
Options.

This field corresponds to the FDL attribute RECORD FORMAT.

Options
FAB$C_FIX

Indicates fixed-length record format.

This option corresponds to the FDL attribute RECORD FORMAT FIXED.

FAB$C_STM

Indicates stream record format. Records are delimited by FF, VT, LF, or CR LF, and all leading zeros
are ignored. This format applies to sequential files only and cannot be used with the block spanning
option.

This option corresponds to the FDL attribute RECORD FORMAT STREAM.

FAB$C_STMCR

Indicates stream record format. Records are delimited by CR. This format is supported for sequential
files only.

This option corresponds to the FDL attribute RECORD FORMAT STREAM_CR.

FAB$C_STMLF

Indicates stream record format. Records are delimited by LF. This format is supported for sequential
files only.

This option corresponds to the FDL attribute RECORD FORMAT STREAM_LF.

62

Chapter 4. File Access Block (FAB)

FAB$C_UDF

Indicates undefined record format. The undefined record format is valid for sequential files only. This
is the default value if the FAB is not initialized with a $FAB macro.

This option corresponds to the FDL attribute RECORD FORMAT UNDEFINED.

FAB$C_VAR

Indicates variable-length record format. For the $FAB macro, this is the default value.

This option corresponds to the FDL attribute RECORD FORMAT VARIABLE.

FAB$C_VFC

Indicates variable-length with fixed-length control record format. This format is not supported for
indexed files.

This option corresponds to the FDL attribute RECORD FORMAT VFC.

If you intend to use stream record format, then specify the FAB$V_CR record attribute (see
FAB$B_RAT).

4.29. FAB$B_RTV Field
The retrieval window size (RTV) field specifies the number of retrieval pointers RMS is to maintain
in memory for the file. Retrieval pointers are stored in the file header and indicate the beginning
of each extent associated with the file. If a file has been extended repeatedly, the extents may be
scattered noncontiguously on the disk, requiring numerous retrieval pointers. When RMS needs
to access a new extent, it must obtain the retrieval pointer for that extent. RMS first looks for the
retrieval pointer in the retrieval window, which contains the number of retrieval pointers specified
by this field. If the retrieval pointer is not in the retrieval window, RMS reads the file header, thereby
requiring an additional I/O operation.

This field contains a numeric value in the range of 0 through 127, or 255. A value of 0 directs RMS
to use the system default number of retrieval pointers. A value of 255 means to map the entire file,
if possible. If you specify a value of 255 when creating a file, the initial number of retrieval pointers
is minimal; as records are added, however, the number of retrieval pointers increases as the number
of extents increases. The system resources required for retrieval windows are subtracted from the
buffered I/O quota of the process. Values from 128 to 254 (inclusive) are reserved for future use.

This field corresponds to the FDL attribute FILE WINDOW_SIZE and it is not supported for DECnet
for OpenVMS operations.

4.30. FAB$L_SDC Field
The secondary device characteristics (SDC) field is equivalent to the FAB$L_DEV field, except
that secondary device characteristics refer to the intermediate device used for spooling or the logical
link for DECnet for OpenVMS operations. Within the FAB$L_SDC field, the bit definitions are the
same as those defined for the FAB$L_DEV field (see Table 4.2). Like the FAB$L_DEV field, the
bit definitions must first be made available to your process referring to the $DEVDEF system macro
definition; the values are set by certain record management services (see FAB$L_DEV for additional
information).

63

Chapter 4. File Access Block (FAB)

4.31. FAB$B_SHR Field
The file sharing (SHR) field defines the record operations that the opening process allows sharing
processes to perform. RMS supports file sharing for all file organizations.

Within the FAB$B_SHR field, each record operation that sharing processes are permitted to do has a
corresponding bit assignment. You can specify multiple record operations (multiple bits may be set).

Options are identified by symbolic bit offsets. Note that conflicts between the names of symbolic
offsets in the FAB$B_SHR field and the names of symbolic offsets in the FAB$B_FAC field are
resolved by prefixing the letters SHR to the symbolic offset in the FAB$B_SHR field. For example,
both the FAB$B_FAC and FAB$B_SHR fields have a bit that specifies the get record option. In the
FAB$B_FAC field, this bit offset is assigned the symbol FAB$V_GET; in the FAB$B_SHR field, this
bit is assigned the symbol FAB$V_SHRGET.

Note that the letters SHR in the mnemonic part of the bit offset symbol may be omitted by VAX
MACRO programs. Thus, the GET option, which is common to the FAB$B_FAC and FAB$B_SHR
fields, has a symbolic bit offset of FAB$V_SHRGET and a mask value of FAB$M_SHRGET, but
VAX MACRO programs may use the synonyms FAB$V_GET and FAB$M_GET. This rule applies to
the FABV_SHRPUT, FABV_SHRGET, FAB$V_SHRDEL, and FAB$V_SHRUPD options.

The way in which RMS uses the file access (FAB$B_FAC) field and file sharing (FAB$B_SHR) field
is described in greater detail in the FAB$B_FAC field discussion.

Note that if you do not specify a value in the FAB$B_SHR field, the following defaults apply:

• If the FAB$B_FAC field is set or defaulted to FAB$V_GET, the FAB$B_SHR field defaults to
FAB$V_SHRGET.

• If the FAB$B_FAC field is set or defaulted to either FABV_PUT, FABV_DEL, FAB$V_UPD,
or FAB$V_TRN, the FAB$B_SHR field defaults to FAB$V_NIL. Thus, write sharing must be
explicitly requested using the FAB$B_SHR field (because it is not the default).

This field corresponds to the FDL primary attribute SHARING. See the Guide to OpenVMS File
Applications for additional details on file sharing.

The following list includes descriptions of the sharing options.

Options
FAB$V_MSE

Allows multistream access and is relevant for record operations only. You must specify FAB$V_MSE
whenever you want to call Connect services for multiple RABs for this FAB.

Note that if you specify the FAB$V_MSE and FAB$V_BIO options, you must set the FAB$V_UPI
bit regardless of the other sharing bits. To specify a read-only global buffer cache, the initial
accessor must set the FAB$B_SHR field FAB$V_SHRGET and FAB$V_MSE bits. Selecting the
FAB$V_MSE option turns on locking to coordinate access to buffers. The FAB$V_MSE option is not
supported for DECnet for OpenVMS operations. RMS returns an error when the application program
attempts to connect a second stream. Although RMS cannot perform multistreaming for DECnet for
OpenVMS operations, you can obtain similar functionality by using multiple FABs to access the file
in a shared manner.

64

Chapter 4. File Access Block (FAB)

This option is available for all file organizations and corresponds to the FDL attribute SHARING
MULTISTREAM.

FAB$V_NIL

Prohibits any file sharing by other users. Setting this option requires the user to have write protection
access to the file. If FAB$V_NIL is specified with other options, it takes precedence.

This option corresponds to the FDL attribute SHARING PROHIBIT.

FAB$V_NQL

Requests that RMS disable query locking (see the description of the query record locking option
in the Guide to OpenVMS File Applications) for any read operation that has both RAB$V_NLK
and RAB$V_RRL set in the RAB$L_ROP field for the entire period the file is open. If both record
options are not set, RMS ignores the query disabling request. This option is only processed when
some form of write sharing is allowed, and can be set with any combination of the other sharing
options in this list that can be assigned to the FAB$B_SHR field.

This option is implemented on the Alpha platform with OpenVMS V7.2–1H1. The FAV$V_NQL
symbol facilitates common code and you may specify it in applications that execute on both the Alpha
and VAX platforms. The functionality for the option is not implemented on the VAX platform.

This option is not supported for DECnet for OpenVMS operations, and has no corresponding FDL
attribute.

FAB$V_SHRPUT

Allows other users to write records to the file or to extend the file.

This option corresponds to the FDL attribute SHARING PUT.

FAB$V_SHRGET

Allows other users to read the file.

This option corresponds to the FDL attribute SHARING GET.

FAB$V_SHRDEL

Allows other users to delete records from the file.

This option corresponds to the FDL attribute SHARING DELETE.

FAB$V_SHRUPD

Allows other users to update records that currently exist in the file or to extend the file.

This option corresponds to the FDL attribute SHARING UPDATE.

FAB$V_UPI

This option is used when the user wants to assume responsibility for interlocking of multiple,
simultaneous accessors of a file. This option disables all RMS locking for the current access of the
file. Except for block I/O, the FAB$V_MSE option overrides the FAB$V_UPI option. Usually, the
FAB$V_UPI option is used for a file that is open for block I/O (FAB$V_BIO or FAB$V_BRO).

65

Chapter 4. File Access Block (FAB)

When you select the FAB$V_UFO option, you must also select the FAB$V_UPI option if the file is
write shared. A file is specified as being write shared when you select either the FAB$V_PUT option,
the FAB$V_DEL option, the FAB$V_TRN option, or the FAB$V_UPD option in the FAB$B_SHR
field.

This option corresponds to the FDL attribute SHARING USER_INTERLOCK.

4.32. FAB$L_STS Field
RMS sets the completion status code (STS) field with success or failure codes before it returns control
to your program (except for a subset of errors, as detailed in Section 2.4). Register 0 contains the same
status as the STS field. Potential error codes for specific services are listed under their descriptions.

4.33. FAB$L_STV Field
RMS sets the status value (STV) field on the basis of the operation performed and the contents of the
completion status code (FAB$L_STS) field, communicates additional completion information to your
program.

4.34. FAB$L_XAB Field
The extended attribute block address (XAB) field specifies the XAB, or first of a series of XABs, that
you want to use for file operations. This field contains the symbolic address of a XAB control block.
A value of 0 (the default) indicates no XABs for the file.

For some operations, you must associate extended attribute blocks with a FAB to convey additional
attributes about a file. (See Section 1.2.2 for a description of a XAB.) The FAB$L_XAB field can
contain the symbolic address of the first associated block (of a potential chained list of such blocks)
for the file.

RMS uses XAB values as follows:

• If you specify a XAB for either an Open or Display service, RMS returns the file attributes to the
XAB.

• If you specify a XAB for a Create, Close, or Extend service, RMS uses the XAB as input to those
functions.

66

Chapter 5. Name Block (NAM)
The name (NAM) block provides additional fields for extended file specification use, including
parsing and obtaining the actual file specification used for a file operation. On Alpha systems, the
long name block (NAML) can optionally take the place of a NAM block (see Chapter 6).

5.1. Summary of Fields
The symbolic offset, the size, and a brief description of each NAM block field are presented in
Table 5.1. Additional details are given in the remaining sections of this chapter.

Table 5.1. NAM Block Fields

Field Offset Size
(Bytes)

Description

NAM$B_BID1 1 Block identifier
NAM$B_BLN1 1 Block length
NAM$B_DEV2 1 Device string length
NAM$L_DEV2 4 Device string address
NAM$W_DID2 6 Directory identification
NAM$B_DIR2 1 Directory string length
NAM$L_DIR2 4 Directory string address
NAM$T_DVI2 16 Device identification
NAM$L_ESA 4 Expanded string area address
NAM$B_ESL2 1 Expanded string length
NAM$B_ESS 1 Expanded string area size
NAM$W_FID2 6 File identification
NAM$W_FIRST_WILD_DIR 2 The topmost directory level to contain a wildcard.
NAM$L_FNB2 4 File name status bits
NAM$W_LONG_DIR_LEVELS 2 Total number directories
NAM$B_NAME2 1 File name string length
NAM$L_NAME2 4 File name string address
NAM$B_NMC 1 Name characteristics
NAM$B_NODE 2 1 Node name string length
NAM$L_NODE2 4 Node name string address
NAM$B_NOP 1 Name block options
NAM$L_RLF3 4 Related file NAM or NAML block address
NAM$L_RSA 4 Resultant string area address
NAM$B_RSL 2 1 Resultant string length
NAM$B_RSS 1 Resultant string area size
NAM$B_TYPE2 1 File type string length
NAM$L_TYPE2 4 File type string address

67

Chapter 5. Name Block (NAM)

Field Offset Size
(Bytes)

Description

NAM$B_VER2 1 File version string length
NAM$L_VER 2 4 File version string address
NAM$L_WCC2 4 Wildcard context

1This field is statically initialized by the $NAM macro to identify this control block as a NAM.
2This field cannot be initialized by the $NAM macro.
3The NAM$L_RLF_NAML is available for C programmers to allow for appropriate type checking of a NAML block.

The NAM block fields have no corresponding FDL equivalents. However, if your application requires
the presence of a NAM block, consider using the $NAM macro (or equivalent) in a USEROPEN or a
USERACTION routine.

Unless otherwise indicated, each field is supported for DECnet for OpenVMS operations on files at
remote OpenVMS systems. For information about the support of RMS options for remote file access
to other systems, see the DECnet for OpenVMS Networking Manual.

Depending on the services to be used, the user may need to allocate program storage for the expanded
string and the resultant string. The Parse service uses the expanded string to pass information related
to wildcards (or search lists) to the Search service. When it creates a resultant string for other file
services, RMS uses the expanded string as a work area to apply defaults. You can use the resultant
string with file services to provide the file specification that results from the translation of logical
names and the application of defaults. Typical uses of the resultant string include showing the
resulting file specification after a partial file specification is entered by a terminal user, reporting
errors, and logging the progress of a program.

To request use of the expanded or resultant strings, you must indicate the address and size of the
user-allocated buffer to receive the string. The expanded string is indicated by the NAM$L_ESA and
NAM$B_ESS fields; the resultant string is indicated by the NAM$L_RSA and NAM$B_RSS fields.
When it fills in the expanded or resultant strings, RMS returns the actual length of the returned string
in the NAM$B_ESL or NAM$B_RSL fields.

5.2. File Specification Component
Descriptors
For each element of the fully qualified file specification returned in the expanded-string field or the
resultant-string field in the NAM block, RMS returns a descriptor in the NAM block made up of a 1-
byte size field and a 4-byte (longword) address field. The fields of these descriptors are described as
one of the following:

NAM$B_xxx (size field of xxx)
NAM$L_xxx (address field of xxx)

Descriptors
NAMB_NODE, NAML_NODE

Node name descriptor, including access control string and double colon (::) delimiter.

NAMB_DEV, NAML_DEV

68

Chapter 5. Name Block (NAM)

Device name descriptor, including colon (:) delimiter.

NAMB_DIR, NAML_DIR

Directory name descriptor, including brackets ([] or <>).

NAMB_NAME, NAML_NAME

File name descriptor or, if the file specification following a node name is within quotation marks
(“file”), a quoted string descriptor.

NAMB_TYPE, NAML_TYPE

File type descriptor, including period (.) delimiter.

NAMB_VER, NAML_VER

File version number descriptor, including semicolon (;) or period (.) delimiter.

 These descriptors are returned, enabling the program to extract a particular component from the
resultant string without having to parse the resultant or expanded string. The entire resultant or
expanded string, including delimiters, is described by the various component descriptors. If the value
in the NAM$B_RSL field is nonzero, then the descriptors point to the NAM$L_RSA field. If the
value in the NAM$B_RSL field is 0 and the value in the NAM$B_ESL field is nonzero, then the
descriptors point to the NAM$L_ESA field. In all other cases, they are undefined.

This is an example of a resultant file specification and its file specification component descriptors:

NODE"TEST password"::WORK_DISK:[TEST.TEMP]FILE.DAT;3

 NODE NODE"TEST password"::
 DEV WORK_DISK:
 DIR [TEST.TEMP]
 NAME FILE
 TYPE .DAT
 VER ;3

You can use the file component descriptors individually or collectively to describe sections of the
resultant or expanded string. For example, if you want to use the file name and file type fields, use
NAM$L_NAME for the starting address and NAM$B_NAME+NAM$B_TYPE for the total length.

5.3. NAM$B_BID Field
The block identifier (BID) field is a static field that identifies this control block as a NAM block.
Once set, this field must not be altered unless the control block is no longer needed. This field must be
initialized to the symbolic value NAM$C_BID (this is done by the $NAM macro).

5.4. NAM$B_BLN Field
The block length (BLN) field is a static field that defines the length of the NAM block, in bytes. Once
set, this field must not be altered unless the control block is no longer needed. This field must be
initialized to the symbolic value NAM$C_BLN (this is done by the $NAM macro).

69

Chapter 5. Name Block (NAM)

5.5. NAM$B_DEV and NAM$L_DEV Fields
RMS fills this field with a pointer into either the expanded string buffer specified by NAM$L_ESA
or the resultant string buffer specified by NAM$L_RSA. The pointer in NAM$L_DEV points to the
start of the device name within the complete file specification in the buffer. You can tell which buffer
this field points into by checking NAM$B_RSS. If NAM$B_RSS is 0, this field points into the buffer
specified by NAM$L_ESA. Otherwise, it points into the buffer specified by NAM$L_RSA. The
device name is always returned with uppercase letters.

For NAM$B_DEV, RMS fills this field with the length, in bytes, of the device name pointed to by
NAM$L_DEV, including the ":".

5.6. NAM$W_DID Field
The directory identification (DID) field identifies the directory for the file. RMS outputs this 3-word
field as part of the Open, Create and Display services. RMS also outputs this field as part of the Parse
service unless you specify the syntax check option (NAM$V_SYNCHK). If, once you open the file,
you want to refer to this directory again, you can do so more quickly by specifying that the NAM
block has a valid directory identifier.

This field is not supported for DECnet for OpenVMS operations; it is ignored on input and zero-filled
on output.

5.7. NAM$B_DIR and NAM$L_DIR Fields
RMS fills this field with a pointer into either the expanded string buffer specified by NAM$L_ESA
or the resultant string buffer specified by NAM$L_RSA. The pointer in NAM$L_DIR points to the
directory specification within the complete file specification in the buffer. You can tell which buffer
this field points into by checking NAM$B_RSS. If NAM$B_RSS is 0, this field points into the buffer
specified by NAM$L_ESA. Otherwise, it points into the buffer specified by NAML$L_RSA.

For NAM$B_DIR fills this field with the length, in bytes, of the directory pointed to by
NAM$L_DIR, including the delimiter] or >.

5.8. NAM$T_DVI Field
The device identification (DVI) field defines the device for the file. RMS outputs this field as part
of the Open, Create, and Display services. RMS also outputs this field as part of the Parse service
unless you specify the syntax check option (NAM$V_SYNCHK). You can use this field with
the file identification field to reopen the file by referring to the NAM block. The symbolic value
NAM$S_DVI gives the length of this field in bytes. The form of this field is a counted string. The
first byte is a count of the number of characters following it.

This field is not supported for DECnet for OpenVMS operations; it is ignored on input and zero-filled
on output.

5.9. NAM$L_ESA Field
The expanded string area address (ESA) field contains the symbolic address of a user buffer in the
application program to receive the file specification string resulting from the translation of logical
names and the application of default file specification information.

70

Chapter 5. Name Block (NAM)

You must specify this field for processing wildcard characters.

5.10. NAM$B_ESL Field
RMS sets the expanded string length (ESL) field as part of the Open, Create, and Parse services. This
field contains the length, in bytes, of the file specification string returned in the buffer whose address
is in the NAM$L_ESA field.

5.11. NAM$B_ESS Field
The expanded string area size (ESS) field contains the size of the user-allocated buffer whose address
is contained in the NAM$L_ESA field.

This field contains a numeric value representing the size, in bytes, of the user buffer that will receive
the file specification string, in the range of 0 through 255.

The symbolic value NAM$C_MAXRSS defines the maximum possible length of an expanded file
specification string.

5.12. NAM$W_FID Field
The file identification (FID) field is a 3-word field that RMS uses to identify the file when it invokes
an Open, Create, or Display service. When you want to open a file by using the file identifier, set this
field before you open the file.

This field is not supported for DECnet for OpenVMS operations; it is ignored on input and zero-filled
on output.

5.13. NAM$W_FIRST_WILD_DIR Field
The first wild directory field contains a number that indicates how may levels below the device or root
directory RMS first encountered a wildcard. The topmost directory level is numbered 0. If there are no
wildcards, this field contains -1.

The following examples illustrate the use of NAM$W_FIRST_WILD_DIR:

For the filespec DKB100:[ROOT1.ROOT2.][*.SUBDIR1.SUBDIR2], NAM$W_FIRST_WILD_DIR
would be set to 0.

For the filespec DKB100:[SUBDIR0.*.SUBDIR2], NAM$W_FIRST_WILD_DIR would be set to 1.

For the filespec DKB100:[SUBDIR0.SUBDIR1.SUBDIR2], NAM$W_FIRST_WILD_DIR would be
set to -1.

This field is not supported by DECnet for OpenVMS operations.

5.14. NAM$L_FNB Field
The file name status (FNB) field is a binary options field that RMS uses to convey status information
obtained from the file specification parsing routine. Each bit within this field denotes a specific status
relative to the various components of the file specification.

71

Chapter 5. Name Block (NAM)

Each status bit has its own offset and mask value. For instance, the number of directory levels
(DIR_LVLS) field has a symbolic bit offset of NAM$V_DIR_LVLS and a mask value of
NAM$M_DIR_LVLS. The bits and the conditions they express for the NAM$L_FNB field are
described in Table 5.2.

Table 5.2. NAM$L_FNB Status Bits

Field Offset Description
NAM$V_CNCL_DEV Device name is a concealed device.
NAM$V_DIR_LVLS Indicates the number of subdirectory levels (value is 0 if there is a

user file directory only); a 3-bit field (maximum 7).
NAM$V_DIR_LVLS_G7 Indicates that the number of directory levels are greater than 7. If this

is set, NAM$V_DIR_LVLS is set to 7.
NAM$V_EXP_DEV Device name is explicit in primary filespec.
NAM$V_EXP_DIR Directory specification is explicit in primary filespec.
NAM$V_EXP_NAME File name is explicit in primary filespec.
NAM$V_EXP_TYPE File type is explicit in primary filespec.
NAM$V_EXP_VER Version number is explicit in primary filespec.
NAM$V_GRP_MBR Directory specification is in the group/member number format.
NAM$V_HIGHVER A higher-numbered version of the file exists (output from Create and

Enter services). For DECnet for OpenVMS operations, this bit is
returned as a binary zero.

NAM$V_LOWVER A lower-numbered version of the file exists (output from Create and
Enter services). For DECnet for OpenVMS operations, this bit is
returned as a binary zero.

NAM$V_NODE File specification includes a node name.
NAM$V_PPF File is indirectly accessed process-permanent file.
NAM$V_QUOTED File specification includes a quoted string; indicates that the file name

length and address field contains a quoted string file specification.
Applies to network operations or magnetic tape devices only.1

NAM$V_ROOT_DIR Device name incorporates a root directory.
NAM$V_SEARCH_LIST A search list logical name is present in the file specification.
NAM$V_WILDCARD File specification string includes a wildcard; returned whenever any of

the other wildcard bits is set.
NAM$V_WILD_DIR Directory specification includes a wildcard character.
NAM$V_WILD_GRP Group number contains a wildcard character.
NAM$V_WILD_MBR Member number contains a wildcard character.
NAM$V_WILD_NAME File name contains a wildcard character.
NAM$V_WILD_SFD1—
NAM$V_WILD_SFD7

Subdirectory 1 through 7 specification includes a wildcard character.

NAM$V_WILD_SFDG7 Indicates that a subdirectory greater than 7 contains a wildcard
character.

NAM$V_WILD_TYPE File type contains a wildcard character.
NAM$V_WILD_UFD User file directory specification includes a wildcard character.

72

Chapter 5. Name Block (NAM)

Field Offset Description
NAM$V_WILD_VER Version number contains a wildcard character.

1To distinguish network quoted string file specifications from quoted strings containing ASCII “a” file names (supported for ANSI-labeled
magnetic tapes), both the NAM$V_QUOTED and NAM$V_NODE bits are set.

5.15. NAM$W_LONG_DIR_LEVELS Field
This field contains the total number of directory levels that exist below the device or root directory.
The topmost directory level is numbered 0. For directory levels between 0 and 7, this field contains
the same number that NAM$V_DIR_LVLS contains. If NAM$V_DIR_LVLS_G7 is set, this field is
the only way to find out the number of directory levels.

The following are examples of using NAM$W_LONG_DIR_LEVELS:

For the filespec, DKB100:[ROOT1.ROOT2.][*.SUBDIR1.SUBDIR2],
NAM$W_LONG_DIR_LEVELS would be set to 2.

For the filespec, DKB100:[SUBDIR0.SUBDIR1], NAM$W_LONG_DIR_LEVELS would be set to
1.

This field is not supported by DECnet for OpenVMS operations.

5.16. NAM$B_NAME and NAM$L_NAME
Fields
RMS fills this field with a pointer into either the expanded string buffer specified by NAM$L_ESA
or the resultant string buffer specified by NAM$L_RSA. The pointer in NAM$L_NAME points to
the start of the file name within the complete file specification in the buffer. You can tell which buffer
this field points into by checking NAM$B_RSS. If NAM$B_RSS is 0, this field points into the buffer
specified by NAM$L_ESA. Otherwise, it points into the buffer specified by NAM$L_RSA.

For NAM$B_NAME, RMS fills this field with the length, in bytes, of the file name pointed to by
NAM$L_NAME, not including the type field nor the period separating the name from the type.

5.17. NAM$B_NMC
The name characteristics (NMC) field is a binary field that RMS uses to convey characteristics of file
specifications. Each bit within this field denotes a specific status relative to the various components of
the file specification.

The bits and the characteristics they describe are shown in the following table:

Field Offset Meaning
NAM$V_DID Set by RMS if it found a DID-compressed directory in the root or

directory name component of an input directory.
NAM$V_FID Set by RMS if it found a FID-compressed file name in an input file

specification.
NAM$V_RES_DID Set by RMS if there is a DID-compressed directory in the short

resultant or expanded buffer.

73

Chapter 5. Name Block (NAM)

Field Offset Meaning
NAM$V_RES_FID Set by RMS if there is a FID-compressed name in the short resultant

or expanded buffer.
NAM$V_RES_ESCAPE Set by RMS if there are any escape characters (^) in the short resultant

or expanded buffer.
NAM$V_RES_UNICODE Set by RMS if there are one or more ^U sequences in the short

resultant or expanded buffer.

5.18. NAM$B_NODE and NAM$L_NODE
Fields
RMS fills this field with a pointer into either the expanded string buffer specified by
NAML$L_NODE or the resultant string buffer specified by NAM$L_RSA. The pointer in
NAM$L_NODE points to the start of the node name within the complete file specification in the
buffer. You can tell which buffer this field points into by checking NAM$B_RSS. If NAM$B_RSS
is 0, this field points into the buffer specified by NAM$L_ESA. Otherwise, it points into the buffer
specified by NAM$L_RSA.

For NAM$B_NODE, RMS fills this field with the length, in bytes, of the node name pointed
to by NAM$L_NODE, including the ::. Note that if this is not a DECnet file specification,
NAM$B_NODE will be 0.

5.19. NAM$B_NOP Field
The name block options (NOP) field indicates the options applicable to the file name parsing services.

The NAM$B_NOP field is a binary options field in which each option has a corresponding bit
assignment. Multiple options can be specified (multiple bits can be set) but the default state
for each bit is clear (not set). Each option has its own symbolic bit offset and mask value. For
example, the SYNCHK option has a symbolic bit offset of NAM$V_SYNCHK and a mask value of
NAM$M_SYNCHK.

Options
NAM$V_NOCONCEAL

When used with the Open, Create, Parse, Search, or Display services, a concealed device logical name
is translated into its physical device name (and directory, if so defined) in the resultant string field,
whose address is supplied by the NAM$L_RSA field. If this option is not set and a concealed device
name is used, the concealed device name appears in the resultant string field, instead of the physical
device name (and directory, if so defined).

NAM$V_NO_SHORT_UPCASE

When set by the user, this option tells RMS not to uppercase the directory and file specification in the
NAM$L_ESA buffer.

NAM$V_PWD

When used with the Create, Open, Parse, Search, or Display services, the password in the access
control string of a node specification, if present, is returned unaltered in the expanded or resultant file

74

Chapter 5. Name Block (NAM)

specification fields. If you do not select this option, the actual password used is replaced by the word
“password” in the resultant or expanded file specification string fields for security reasons.

NAM$V_SRCHXABS

When used with the Search service for remote file access, this option directs RMS to fill in the FAB
and any chained XABs as if a Display service had been invoked. This allows you to obtain file
attribute information using the Search service without the need to open the file.

NAM$V_SYNCHK

This gives you the option of using the Parse service to verify the syntax validity of the file
specification without invoking I/O processing that verifies the actual existence of the specified device
and directory.

If you invoke the Parse service without setting the NAMV_SYNCHK bit, an accompanying I/O
process verifies that the device and directory exist. Note that this processing verifies the existence
of the device and directory, only; it does not verify the existence of the file. You can only verify the
existence of the file using a $SEARCH or $OPEN.

If you opt to set the NAM$V_SYNCHK bit when you invoke the Parse service, RMS does not
return the device characteristics (FAB$L_DEV and FAB$L_SDC fields) and does not fill in
the NAM$W_DID and NAM$T_DVI fields, rendering the results of the $PARSE unusable for
subsequent Search services. It also does not do a directory ID (DID) compression of long path names.

5.20. NAM$L_RLF Field
The related file NAM block address (RLF) field contains the symbolic address of the NAM block for
the related file. A NAML block may optionally be used. This field supports the secondary file concept
of the command language (DCL), giving an extra default level in processing file specifications.

To provide an extra level of file specification defaults, the related NAM or NAML block must
have been used previously by an Open, Create, Search, or Display service to create a resultant file
specification string. Moving the address of the related NAM block into the NAM$L_RLF field of
the current NAM block specifies that the previously parsed NAM block's resultant file specification
string should be used as a default when the current NAM block is parsed. Note that the previously
parsed NAM block must contain a resultant file specification (see NAM$L_RSA and NAM$B_RSS
for additional details).

Note that a NAM can be used in the NAM$L_RLF field of a NAML, and a NAM can be used in
the NAML$L_RLF field of a NAML. To allow for appropriate type checking of a NAML block,
NAM$L_RLF_NAML is available as an alternative definition for C programmers who are using a
NAML block.

Refer to the Guide to OpenVMS File Applications for additional details on file specification parsing
concepts.

5.21. NAM$L_RSA Field
The resultant string area address (RSA) field contains the symbolic address of a buffer in your
program to receive the resultant file specification string. The NAM$B_RSS field must also be
specified to obtain a resultant file specification string.

75

Chapter 5. Name Block (NAM)

This string is the fully specified name of the file that results from the resolution of all system defaults,
including version numbers and wildcard character substitution in the expanded file name string. You
must specify this field for wildcard processing.

5.22. NAM$B_RSL Field
The resultant string length (RSL) contains the length, in bytes, of the resultant file specification string
returned in the buffer whose address is in the NAM$L_RSA field.

5.23. NAM$B_RSS Field
The resultant string area size (RSS) field defines the size of the user-allocated buffer whose address is
contained in the NAM$L_RSA field.

This field contains a numeric value representing the size, in bytes, of the user buffer that will receive
the resultant file specification string, in the range of 0 through 255.

The symbolic value NAM$C_MAXRSS defines the maximum possible length of a resultant file
specification string.

5.24. NAM$B_TYPE and NAM$L_TYPE Fields
RMS fills this field with a pointer into either the expanded string buffer specified by NAM$L_ESA
or the resultant string buffer specified by NAM$L_RSA. The pointer in NAM$L_TYPE points
to the start of the file type, including the dot separating it from the name, within the complete file
specification in the buffer. You can tell which buffer this field points into by checking NAM$B_RSS.
If NAM$B_RSS is 0, this field points into the buffer specified by NAM$L_ESA. Otherwise, it points
into the buffer specified by NAM$L_RSA.

For NAM$B_TYPE, RMS fills this field with the length, in bytes, of the file type pointed to by
NAM$L_TYPE.

5.25. NAM$B_VER and NAM$L_VER Fields
RMS fills this field with a pointer into either the expanded string buffer specified by NAM$L_ESA
or the resultant string buffer specified by NAM$L_RSA. The pointer in NAM$L_VER points to the
start of the file version, including the semicolon separating if from the type, within the complete file
specification in the buffer. You can tell which buffer this field points into by checking NAM$B_RSS.
If NAM$B_RSS is 0, this field points into the buffer specified by NAM$L_ESA. Otherwise, it points
into the buffer specified by NAM$L_RSA.

For NAM$B_VER, RMS fills this field with the length, in bytes, of the file version pointed to by
NAM$L_VER.

5.26. NAM$L_WCC Field
The wildcard context (WCC) field contains the information needed to use wildcard characters in place
of the various file specification components. In particular, this field restarts a directory search to find
the next matching file name, type, and/or version number. You can also use it to identify various RMS
extended contexts; for instance, during remote file processing.

76

Chapter 6. Long Name Block (NAML)
On Alpha systems, the long name block (NAML) can optionally take the place of a NAM block (see
Chapter 5). The NAML allows OpenVMS Alpha users to locate and use file specifications that are
longer than 255 bytes.

6.1. Using the NAM and NAML Block
The NAML has fields that are equivalent to all the NAM fields, plus 28 additional fields to
accommodate longer file specifications. The additional fields are not supported for DECnet
operations. There are also no equivalent FDL attributes for these additional fields.

Many of the additional fields in the NAML correspond to NAM fields but allow longer names.
For example, the fields NAML$L_LONG_EXPAND, NAML$L_LONG_EXPAND_ALLOC, and
NAML$L_LONG_EXPAND_SIZE correspond to NAML_ESA, NAMB_ESS, and NAM$B_ESL,
but allow names that are longer than 255 bytes. When there are fields that correspond like this, the
original field is referred to as a "short field." The corresponding field is referred to as a "long field."

When RMS is writing information into fields in a NAML that have both a short and long version,
RMS normally writes the equivalent information into both fields. If either the short field or the long
field is too small to contain the information, RMS returns an error, though RMS attempts to compress
file specifications to allow them to fit in the short fields. You can prevent RMS from writing into
the short fields by setting the flag NAML$V_NO_SHORT_OUTPUT. However, if you are using a
NAML, RMS always uses the long fields. If you do not want RMS to use the long fields, you must
use a NAM rather than a NAML.

When RMS is reading information from fields in a NAML that has both a short and a long version,
RMS always reads from the long version. If you want RMS to read from the short fields, you must
use a NAM rather than a NAML. The most common time that RMS reads from these fields is
during a $SEARCH operation following a $PARSE, when RMS reads from the buffer pointed to by
NAML$L_LONG_EXPAND for a NAML and NAM$L_ESA for a NAM. In addition, if a NAM
or NAML is used as a related name block, RMS reads information from the buffer pointed to by
NAML$L_LONG_RESULT for a NAML, or NAM$L_RSA for a NAM.

Because of these differences in the way RMS processes a NAM and a NAML, it is important that any
code that might come in contact with the NAML be aware that it is a NAML and not a NAM. Several
operations that a routine might do on a NAM will not work as expected on a NAML. For example, if a
routine makes a copy of a NAML but uses the NAM$C_BLN constant as the length to copy, the result
is an illegal NAML. If a routine replaces the buffers pointed to by NAM$L_ESA and NAM$L_RSA
with the expectation that it can use the NAM without affecting the calling routine, it misses the buffers
pointed to by NAML$L_LONG_EXPAND and NAML$L_LONG_RESULT.

For this reason, any API supplied by OpenVMS adheres to the rule that if it returned a NAM
(either directly or indirectly through a FAB) in previous versions, it will not now start returning a
NAML without some explicit action by the caller (usually setting a flag bit). We recommend that
other APIs use the same rule. Further, if a NAML-aware application passes a NAML to an API,
it must be prepared for that API to use only the NAM section (for example, it should not set the
NAML$V_NO_SHORT_OUTPUT bit).

If you are writing a routine that is to accept either a NAM or a NAML, you should check the
NAM$B_BID field to determine whether you have a NAM or a NAML; if you have a NAML,
and you wish to read information that RMS has left in the NAML, look at the information in the
long fields. In addition, if you wish to copy that NAM or NAML block to another location, you

77

Chapter 6. Long Name Block (NAML)

must be careful to use the length that is stored in the structure itself to determine how much to
copy. You should use the NAM$B_BLN field in the structure you are copying rather than the
NAM$C_BLN constant, since NAM$B_BLN contains the actual length of the structure. If you use
the NAM$C_BLN, which is the length of a NAM, it would be too short for a NAML.

6.2. Summary of Fields
The additional fields in the NAML data structure are summarized at the beginning of Table 6.1
and are described starting with Section 6.4. All the other NAML fields are exactly like their NAM
counterparts described in Table 5.1, unless noted otherwise in this chapter.

Table 6.1. NAML Fields

Field Offset Size
(Bytes)

Corresponding
NAM or FAB
Field

Description

Alpha-Only NAML Fields Described in This Chapter
NAML$B_BID 1 None Block identifier
NAML$B_BLN 1 None Block length
NAML$L_FILESYS_NAME 4 None File system name buffer

address.
NAML$L_FILESYS_NAME_ALLOC 4 None File system name buffer

allocated size
NAML$L_FILESYS_NAME_SIZE 4 None File system name length
NAML$L_INPUT_FLAGS 4 None Additional flags specified as

input
NAML$L_LONG_DEFNAME 4 FAB$L_DNA Long default file

specification string address
specified as input (used if
FAB$L_DNA contains -1)

NAML$L_LONG_DEFNAME_SIZE 4 FAB$B_DNS Long default file
specification string size
specified as input

NAML$L_LONG_DEV 4 NAM$L_DEV Long device string address
NAML$L_LONG_DEV_SIZE 4 NAM$B_DEV Long device string length
NAML$L_LONG_DIR 4 NAM$L_DIR Long directory string address
NAML$L_LONG_DIR_SIZE 4 NAM$B_DIR Long directory string length
NAML$L_LONG_EXPAND 4 NAM$L_ESA Long expanded string area

address
NAML$L_LONG_EXPAND_ALLOC 4 NAM$B_ESS Long expanded string area

size
NAML$L_LONG_EXPAND_SIZE 4 NAM$B_ESL Long expanded string length
NAML$L_LONG_FILENAME 4 FAB$L_FNA Long file specification string

address
NAML$L_LONG_FILENAME_SIZE 4 FAB$B_FNS Long file specification string

size

78

Chapter 6. Long Name Block (NAML)

Field Offset Size
(Bytes)

Corresponding
NAM or FAB
Field

Description

NAML$L_LONG_NAME 4 NAM$L_NAME Long file name string address
NAML$L_LONG_NAME_SIZE 4 NAM$B_NAME Long file name string length
NAML$L_LONG_NODE 4 NAM$L_NODE Long node name string

address
NAML$L_LONG_NODE_SIZE 4 NAM$B_NODE Long node name string

length
NAML$L_LONG_RESULT 4 NAM$L_RSA Long resultant string area

address
NAML$L_LONG_RESULT_ALLOC 4 NAM$B_RSS Long resultant string area

size
NAML$L_LONG_RESULT_SIZE 4 NAM$B_RSL Long resultant string length
NAML$L_LONG_TYPE 4 NAM$L_TYPE Long file type string length
NAML$L_LONG_TYPE_SIZE 4 NAM$B_TYPE Long file type string address
NAML$L_LONG_VER 4 NAM$L_VER Long file version string

address
NAML$L_LONG_VER_SIZE 4 NAM$B_VER Long file version string

length
NAML$L_OUTPUT_FLAGS 4 None Additional status bits passed

as output
NAML$L_USER_CONTEXT 8 None User context
NAML Fields Equivalent to NAM Fields (Described in Chapter 5)
NAML$B_DEV 1 NAM$B_DEV Device string length
NAML$L_DEV 4 NAM$L_DEV Device string address
NAML$W_DID 6 NAM$W_DID Directory identification
NAML$B_DIR 1 NAM$B_DIR Directory string length
NAML$L_DIR 4 NAM$L_DIR Directory string address
NAML$T_DVI 16 NAM$T_DVI Device identification
NAML$L_ESA 4 NAM$L_ESA Expanded string area address
NAML$B_ESL 1 NAM$B_ESL Expanded string length
NAML$B_ESS 1 NAM$B_ESS Expanded string area size
NAML$W_FID 6 NAM$W_FID File identification
NAML$W_FIRST_WILD_DIR 2 NAM$W_FIRST_

WILD_DIR
The topmost directory level
to contain a wildcard.

NAML$L_FNB 4 NAM$L_FNB File name status bits
NAML$W_LONG_DIR_LEVELS 2 NAM$W_LONG_

DIR_LEVELS
Total number directories

NAML$B_NAME 1 NAM$B_NAME File name string length
NAML$L_NAME 4 NAM$L_NAME File name string address
NAML$B_NMC 1 NAM$B_NMC Name characteristics

79

Chapter 6. Long Name Block (NAML)

Field Offset Size
(Bytes)

Corresponding
NAM or FAB
Field

Description

NAML$B_NODE 1 NAM$B_NODE Node name string length
NAML$L_NODE 4 NAM$L_NODE Node name string address
NAML$B_NOP 1 NAM$B_NOP Name block options
NAML$L_RLF1 4 NAM$L_RLF Related file NAM or NAML

block address
NAML$L_RSA 4 NAM$L_RSA Resultant string area address
NAML$B_RSL 1 NAM$B_RSL Resultant string length
NAML$B_RSS 1 NAM$B_RSS Resultant string area size
NAML$B_TYPE 1 NAM$L_TYPE File type string length
NAML$L_TYPE 4 NAM$B_TYPE File type string address
NAML$B_VER 1 NAM$B_VER File version string length
NAML$L_VER 4 NAM$L_VER File version string address
NAML$L_WCC 4 NAM$L_WCC Wildcard context

1The NAML$L_RLF_NAML is available for C programmers to allow for approprite type checking of a NAML block.

6.3. Validating the NAML Block
If the name block passed to RMS (see FAB$L_NAM) contains a block identifier (see NAML$B_BID)
equal to NAML$C_BID, RMS performs the following validation checks:

1. NAML$B_BLN field is exactly equal to NAML$C_BLN.

2. NAML$L_LONG_RESULT_ALLOC and NAML$L_LONG_EXPAND_ALLOC are less than or
equal to NAML$C_MAXRSS.

3. All unused fields (which have a symbolic name containing MBZ) contain zero. You can clear the
entire structure before initializing any fields to meet this requirement.

If any of these validation checks fail, a RMS$_NAML error status is returned.

6.4. NAML$B_BID Field
The block identifier (BID) field is a static field that identifies this control block as a NAML block.
Once set, this field must not be altered unless the control block is no longer needed. This field must be
initialized to the symbolic value NAML$C_BID (this is done by the $NAML macro).

6.5. NAML$B_BLN Field
The block length (BLN) field is a static field that defines the length of the NAML block, in bytes.
Once set, this field must not be altered unless the control block is no longer needed. This field must be
initialized to the symbolic value NAML$C_BLN (this is done by the $NAML macro).

6.6. NAML$L_FILESYS_NAME Field
This field contains the address of a user buffer that receives the file name, type, and version in a form
appropriate for specifying directly to the file system by the SYS$QIO system service.

80

Chapter 6. Long Name Block (NAML)

6.7. NAML$L_FILESYS_NAME_ALLOC Field
This field contains the size of the user-allocated buffer whose address is contained in the
NAML$L_FILESYS_NAME field.

6.8. NAML$L_FILESYS_NAME_SIZE Field
RMS sets this field to indicate the length, in bytes, of the name string returned in
NAML$L_FILESYS_NAME.

6.9. NAML$L_INPUT_FLAGS Field
The NAML$L_INPUT_FLAGS field contains the following flags:

Flag Meaning
NAML$V_NO_SHORT_OUTPUT Set by the user to tell RMS not to fill in the NAM$L_ESA

or NAM$L_RSA buffer.
NAML$V_CASE_LOOKUP Value may be specified in this 2-bit field by user to

indicate case sensitivity preference for a file on an
ODS–5 disk on Alpha systems. Table 6.2 contains
the alternative values that may be specified for this
option. If NAML$V_CASE_LOOKUP is zero, the
current process case sensitivity setting is used (see
DCL SET PROCESS/CASE_LOOKUP command or
SYS$SET_PROCESS_PROPERTIESW system service).
This option is restricted to files on an ODS–5 disk on Alpha
systems and is ignored on non-ODS–5 disks.

Table 6.2 shows the values and their meanings for this option.

Table 6.2. NAML$V_CASE_LOOKUP Values

Values Meaning
NAML$C_CASE_LOOKUP_BLIND Set by the user to tell RMS to ignore case when creating,

deleting, and searching for files on an ODS–5 disk on Alpha
systems.

NAML$C_CASE_LOOKUP_
SENSITIVE

Set by the user to tell RMS to include case as a criteria
when creating, deleting, and searching for files on an ODS–
5 disk on Alpha systems.

6.10. NAML$L_LONG_DEFNAME and
NAML$L_LONG_DEFNAME_SIZE Fields
These fields can be used to replace the FAB$L_DNA and FAB$B_DNS fields in the FAB. Using
these NAML fields allows you to specify a default name string longer than the 255 bytes allowed by
FAB$B_DNS.

RMS uses the NAML$L_LONG_DEFNAME and NAML$L_LONG_DEFNAME_SIZE fields in
place of the FAB$L_DNA and FAB$L_DNS fields if FAB$L_DNA contains a -1 and FAB$B_DNS
contains 0.

81

Chapter 6. Long Name Block (NAML)

The following table illustrates this procedure:

To use this field: Put a -1 in
this field:

Use this size field: Put a 0 in
this field:

NAML$L_LONG_DEFNAME FAB$L_DNA NAML$L_LONG_DEFNAME_
SIZE

FAB$B_DNS

6.11. NAML$L_LONG_DEV and
NAML$L_LONG_DEV_SIZE Fields
RMS fills this field with a pointer into either the expanded string buffer specified by
NAML$L_LONG_EXPAND or the resultant string buffer specified by NAML$L_LONG_RESULT.
The pointer in NAML$L_LONG_DEV points to the start of the device name within the complete
file specification in the buffer. You can tell which buffer this field points into by checking
NAML$L_LONG_RESULT_SIZE. If NAML$L_LONG_RESULT_SIZE is 0, this field points into
the buffer specified by NAML$L_LONG_EXPAND. Otherwise, it points into the buffer specified by
NAML$L_LONG_RESULT. The device name is always returned with uppercase letters.

For NAML$L_LONG_DEV_SIZE, RMS fills this field with the length, in bytes, of the device name
pointed to by NAML$L_LONG_DEV, including the ":".

6.12. NAML$L_LONG_DIR and
NAML$L_LONG_DIR_SIZE Fields
RMS fills this field with a pointer into either the expanded string buffer specified by
NAML$L_LONG_EXPAND or the resultant string buffer specified by NAML$L_LONG_RESULT.
The pointer in NAML$L_LONG_DIR points to the directory specification within the complete
file specification in the buffer. You can tell which buffer this field points into by checking
NAML$L_LONG_RESULT_SIZE. If NAML$L_LONG_RESULT_SIZE is 0, this field points into
the buffer specified by NAML$L_LONG_EXPAND. Otherwise, it points into the buffer specified by
NAML$L_LONG_EXPAND.

For NAML$L_LONG_DIR_SIZE, RMS fills this field with the length, in bytes, of the directory
pointed to by NAML$L_LONG_DIR, including the delimiter] or >.

6.13. NAML$L_LONG_EXPAND Field
The expanded string area address field contains the symbolic address of a user buffer in the
application program to receive the file specification string resulting from the translation of logical
names and the application of default file specification information.

You must specify this field for processing wildcard characters.

The NAML$L_LONG_EXPAND field's corresponding short field, NAML$L_ESA, can be specified
as well, but a separate buffer must be allocated for it.

6.14. NAML$L_LONG_EXPAND_ALLOC Field
The expanded string area allocation size field contains the size of the user-allocated buffer whose
address is contained in the NAML$L_LONG_EXPAND field.

82

Chapter 6. Long Name Block (NAML)

This field contains a numeric value representing the size, in bytes, of the user buffer that will receive
the file specification string, in the range of 0 through 4095.

The symbolic value NAML$C_MAXRSS defines the maximum possible length of an expanded file
specification string.

6.15. NAML$L_LONG_EXPAND_SIZE Field
RMS sets the expanded string size field as part of the Open, Create, and Parse services. This field
contains the length, in bytes, of the file specification string returned in the buffer whose address is in
the NAML$L_LONG_EXPAND field.

6.16. NAML$L_LONG_FILENAME and
NAML$L_LONG_FILENAME_SIZE Fields
These fields can be used to replace the FAB$L_FNA and FAB$L_FNS fields in the FAB. Using
these NAML fields allows you to specify a default name string longer than the 255 bytes allowed by
FAB$B_FNS.

RMS uses the NAML$L_LONG_FILENAME and NAML$L_LONG_FILENAME_SIZE fields in
place of the FAB$L_FNA and FAB$L_FNS fields if FAB$L_FNA contains -1 and FAB$B_FNS
contains 0.

The following illustrates this procedure.

To use this field: Put a -1 in
this field:

Use this size field: Put a 0 in
this field:

NAML$L_LONG_FILENAME FAB$L_FNA NAML$L_LONG_FILENAME_
SIZE

FAB$B_FNS

6.17. NAML$L_LONG_NAME and
NAML$L_LONG_NAME_SIZE Fields
RMS fills this field with a pointer into either the expanded string buffer specified by
NAML$L_LONG_EXPAND or the resultant string buffer specified by NAML$L_LONG_RESULT.
The pointer in NAML$L_LONG_NAME points to the start of the file name within the complete
file specification in the buffer. You can tell which buffer this field points into by checking
NAML$L_LONG_RESULT_SIZE. If NAML$L_LONG_RESULT_SIZE is 0, this field points into
the buffer specified by NAML$L_LONG_EXPAND. Otherwise, it points into the buffer specified by
NAML$L_LONG_RESULT.

For NAML$L_LONG_NAME_SIZE, RMS fills this field with the length, in bytes, of the file name
pointed to by NAML$L_LONG_NAME, not including the type field nor the period separating the
name from the type.

6.18. NAML$L_LONG_NODE and
NAML$L_LONG_NODE_SIZE Fields
RMS fills this field with a pointer into either the expanded string buffer specified by
NAML$L_LONG_EXPAND or the resultant string buffer specified by NAML$L_LONG_RESULT.

83

Chapter 6. Long Name Block (NAML)

The pointer in NAM$L_LONG_NODE points to the start of the node name within the complete
file specification in the buffer. You can tell which buffer this field points into by checking
NAML$L_LONG_RESULT_SIZE. If NAML$L_LONG_RESULT_SIZE is 0, this field points into
the buffer specified by NAML$L_LONG_EXPAND. Otherwise, it points into the buffer specified by
NAML$L_LONG_RESULT.

For NAML$L_LONG_NODE_SIZE, RMS fills this field with the length, in bytes, of the node name
pointed to by NAML$L_LONG_NODE, including the :: delimiter. Note that if this is not a DECnet
file specification, NAML$L_LONG_NODE_SIZE will be 0.

6.19. NAML$L_LONG_RESULT Field
The resultant string area address field contains the symbolic address of a buffer in your program to
receive the resultant file specification string. The NAML$L_LONG_RESULT_ALLOC field must
also be specified to obtain a resultant file specification string.

This string is the fully specified name of the file that results from the resolution of all system defaults,
including version numbers and wildcard character substitution in the expanded file name string. You
must specify this field for wildcard processing.

The NAML$L_LONG_RESULT field's corresponding short field, NAML$L_RSA, can be specified
as well, but a separate buffer should be allocated for it.

6.20. NAML$L_LONG_RESULT_ALLOC Field
The resultant string area allocation size field defines the size of the user-allocated buffer whose
address is contained in the NAML$L_LONG_RESULT field.

This field contains a numeric value representing the size, in bytes, of the user buffer that will receive
the resultant file specification string, in the range of 0 through 4095.

The symbolic value NAML$C_MAXRSS defines the maximum possible length of a resultant file
specification string.

6.21. NAML$L_LONG_RESULT_SIZE Field
The resultant string size contains the length, in bytes, of the resultant file specification string returned
in the buffer whose address is in the NAML$L_LONG_RESULT field.

6.22. NAML$L_LONG_TYPE and
NAML$L_LONG_TYPE_SIZE Fields
RMS fills this field with a pointer into either the expanded string buffer specified by
NAML$L_LONG_EXPAND or the resultant string buffer specified by NAML$L_LONG_RESULT.
The pointer in NAML$L_LONG_TYPE points to the start of the file type, including the
dot separating it from the name, within the complete file specification in the buffer. You
can tell which buffer this field points into by checking NAML$L_LONG_RESULT_SIZE.
If NAML$L_LONG_RESULT_SIZE is 0, this field points into the buffer specified
by NAML$L_LONG_EXPAND. Otherwise, it points into the buffer specified by
NAML$L_LONG_RESULT.

84

Chapter 6. Long Name Block (NAML)

For NAML$L_LONG_TYPE_SIZE, RMS fills this field with the length, in bytes, of the file type
pointed to by NAML$L_LONG_TYPE.

6.23. NAML$L_LONG_VER and
NAML$L_LONG_VER_SIZE Fields
RMS fills this field with a pointer into either the expanded string buffer specified by
NAML$L_LONG_EXPAND or the resultant string buffer specified by NAML$L_LONG_RESULT.
The pointer in NAML$L_LONG_VER points to the start of the file version, including the
semicolon separating it from the type, within the complete file specification in the buffer. You
can tell which buffer this field points into by checking NAML$L_LONG_RESULT_SIZE.
If NAML$L_LONG_RESULT_SIZE is 0, this field points into the buffer specified
by NAML$L_LONG_EXPAND. Otherwise, it points into the buffer specified by
NAML$L_LONG_RESULT.

For NAML$L_LONG_VER_SIZE, RMS fills this field with the length, in bytes, of the file version
pointed to by NAML$L_LONG_VER.

6.24. NAML$L_OUTPUT_FLAGS Field
The output flags field contains additional status bits returned by RMS.

The NAML$L_OUTPUT_FLAGS field contains the following flags.

Flag Meaning
NAML$V_FILESYS_NAME_UCS2 Set by RMS if name pointed to by

NAML$L_FILESYS_NAME consists of a 2-byte Unicode
character.

NAML$V_LONG_RESULT_DID Set by RMS if there is a DID-compressed directory in the
long resultant or expanded buffer.

NAML$V_LONG_RESULT_ESCAPE Set by RMS if there are any escape characters (^) in the
long resultant or expanded buffer.

NAML$V_LONG_RESULT_FID Set by RMS if there is a FID-compressed name in the long
resultant or expanded buffer.

NAML$V_LONG_RESULT_
UNICODE

Set by RMS if there is one or more ^U sequences in the
long resultant or expanded buffer.

6.25. NAML$Q_USER_CONTEXT Field
The user context field contains any user-selected value, up to 8 bytes long. This field is devoted
exclusively to your use. RMS makes no use of the contents of this field; therefore, you can set
any value you want in this field. For example, you could use this field to communicate with a file
I/O completion routine in your program that the file access block (FAB) is passed to, since the
FAB$L_NAM provides a link to this name block.

85

Chapter 6. Long Name Block (NAML)

86

Chapter 7. Record Access Block
(RAB)
The record access block (RAB) defines run-time options for a record stream and for individual
operations within a predefined record stream context. After you connect the file to a record stream and
associate the record stream with a FAB, you use the RAB fields to specify the next record you want to
access and to identify appropriate record characteristics.

Note

If you are using 64-bit addressing on an OpenVMS Alpha system, refer to Chapter 8 for information
about using RAB64 instead of RAB.

7.1. Summary of Fields
Table 7.1 gives the symbolic offset, the size, the FDL equivalent, and a brief description of each RAB
field.

Table 7.1. RAB Fields

Field Offset Size
(Bytes)

FDL Equivalent Description

RAB$B_BID1 1 None Block identifier
RAB$L_BKT 4 CONNECT BUCKET_CODE Bucket code
RAB$B_BLN1 1 None Block length
RAB$L_CTX 4 CONNECT CONTEXT User context
RAB$L_FAB 4 None File access block address
RAB$W_ISI2 2 None Internal stream identifier
RAB$L_KBF 4 None Key buffer address
RAB$B_KRF 1 CONNECT KEY_OF_REFERENCE Key of reference
RAB$B_KSZ 1 None Key size
RAB$B_MBC 1 CONNECT MULTIBLOCK_COUNT Multiblock count
RAB$B_MBF 1 CONNECT MULTIBUFFER_COUNT Multibuffer count
RAB$L_PBF 4 None Prompt buffer address
RAB$B_PSZ 1 None Prompt buffer size
RAB$B_RAC 1 CONNECT3 Record access mode
RAB$L_RBF 4 None Record buffer address
RAB$W_RFA 6 None Record file address
RAB$L_RHB 4 None Record header buffer address
RAB$L_ROP 4 CONNECT3 Record-processing options
RAB$W_RSZ 2 None Record size
RAB$L_STS2 4 None Completion status code

87

Chapter 7. Record Access Block (RAB)

Field Offset Size
(Bytes)

FDL Equivalent Description

RAB$L_STV2 4 None Status value
RAB$W_STV04 2 None Low-order word status value
RAB$W_STV24 2 None High-order word status value
RAB$B_TMO 1 CONNECT TIMEOUT_PERIOD Timeout period
RAB$L_UBF 4 None User record buffer address
RAB$W_USZ 2 None User record buffer size
RAB$L_XAB 4 None Next XAB address

1This field is statically initialized by the $RAB macro to identify this control block as a RAB.
2This field cannot be initialized by the $RAB macro.
3This field contains options; corresponding FDL equivalents are listed in the description of the field.
4Alternate definition of RAB$L_STV field.

Unless otherwise indicated, each field is supported for DECnet for OpenVMS operations using files at
remote OpenVMS systems. For information about the support of RMS options for remote file access
to other systems, see the DECnet for OpenVMS Networking Manual.

The format and arguments of the $RAB macro and the $RAB_STORE macro are described in
Appendix A.

7.2. RAB$B_BID Field
The block identifier (BID) field is a static field that identifies the block as a RAB. Once set, this field
must not be altered unless the control block is no longer needed. This field must be initialized to the
symbolic offset value RAB$C_BID (this is done by the $RAB macro).

7.3. RAB$L_BKT Field
The bucket code (BKT) field is used with records in a relative file and when performing block I/O.

This field contains a relative record number or a numeric value representing the virtual block number
to be accessed.

For relative files, the relative record number of the record acted upon (or which produced an error)
is returned to the RAB$L_BKT field only after the completion of a sequential operation. That is,
RMS returns the relative record number when you set the record access mode for sequential access
(RAB$B_RAC is RAB$C_SEQ) on the execution of a Get, Put, or Find service.

Before performing block I/O on disk devices, this field must contain the virtual block number (VBN)
of the first block you want to read or write. For all other devices, this field is not used. If you specify
a VBN of 0, RMS begins the block transfer at the block pointed to by the next block pointer (NBP).
(The NBP is an internal pointer maintained by RMS; it is described in Section B.3.12.)

This field is also input to the Space service to specify the number of blocks to be spaced forward or
backward.

This field corresponds to the FDL attribute CONNECT BUCKET_CODE.

88

Chapter 7. Record Access Block (RAB)

7.4. RAB$B_BLN Field
The block length (BLN) field is a static field that defines the length of the RAB, in bytes. Once
set, this field must not be altered unless the control block is no longer needed. This field must be
initialized to the symbolic value RAB$C_BLN (this is done by the $RAB macro).

7.5. RAB$L_CTX Field
The user context (CTX) field contains any user-selected value, up to four bytes long. This field is
devoted exclusively to your use. RMS makes no use of the contents of this field; therefore, you can
set any value you want in this field. For example, you could use this field to communicate with a
completion routine in your program.

This field corresponds to the FDL attribute CONNECT CONTEXT.

7.6. RAB$L_FAB Field
The file access block address (FAB) field contains the symbolic address of the FAB for the file.
Before you invoke the Connect service, you must set this field to indicate the address of the FAB
associated with the open file.

7.7. RAB$W_ISI Field
The internal stream identifier (ISI) field associates the RAB with a corresponding FAB. RMS sets this
field after the execution of a Connect service. A Disconnect service clears this field. This field should
not be altered.

7.8. RAB$L_KBF Field
The key buffer address (KBF) field contains the symbolic address of the buffer containing the key
value for random access. Note that the RAB$B_KBF field has the same offset as the RAB$L_PBF
(prompt buffer address) field, but no conflict is presented because the fields are used in mutually
exclusive operations.

When the RAB$B_RAC (record access mode) field specifies random access by key value, this field
provides the address of a buffer that contains the key of the desired record. The key is the relative
record number in files that are organized for relative access or in files organized for sequential access
containing fixed-length records. In indexed files, the key value in RAB$L_KBF is used with the index
specified in the key of reference field (RAB$B_KRF) to randomly access the desired record. Note
that although a collating key affects the stored order for records, the collating value does not govern
record lookups. For example, a collating sequence may assign the same ordering for the keys “dog”
and “DOG”. However, both keys do not have the same access (lookup) value. Therefore, when doing
lookups, a program should specify either the specific key value or a range of values that includes the
uppercase and lowercase combinations of the key. See the Guide to OpenVMS File Applications for
more information about accessing indexed records.

Before you invoke the Get or Find service for doing random access in an indexed file, you place the
address of the location containing the specified key value in the RAB$L_KBF field. The size of this
key value must be specified in the RAB$B_KSZ field. During execution of the Get or Find service,
RMS uses the specified key value for searching an index (which you specify using the RAB$B_KRF
field) to locate the desired record. The type of match, that is, exact, generic, approximate, or

89

Chapter 7. Record Access Block (RAB)

approximate generic, is determined by examining the RAB$B_KSZ field in combination with selected
search bits in the RAB$L_ROP field.

7.9. RAB$B_KRF Field
The key of reference (KRF) field specifies the key or index (primary, first alternate, and so on) to
which the operation applies. The RAB$B_KRF field is applicable to indexed files only.

This field contains a numeric value representing the key path to records in a file. The value 0, the
default, indicates the primary key. The values 1 through 254 indicate alternate keys.

When your program invokes a Get or Find service in random access mode, the key of reference
specifies the index to search for a match on the key value that is described by the RAB$L_KBF and
RAB$B_KSZ fields. When your program invokes a Connect or Rewind service, the key of reference
identifies the index in the file of the next record in the stream. The next record is important when
records are retrieved sequentially.

Note that although a collating key affects the stored order for records, the collating value does not
govern record lookups. For example, a collating sequence may assign the same ordering for the keys
“dog” and “DOG”. However, both keys do not have the same access (lookup) value. Therefore,
when doing lookups, a program should specify either the specific key value or a range of values
that includes the uppercase and lowercase combinations of the key. See the Guide to OpenVMS File
Applications for more information about accessing indexed records. This field corresponds to the FDL
attribute CONNECT KEY_OF_REFERENCE.

7.10. RAB$B_KSZ Field
The key size (KSZ) field contains a numeric value equal to the size, in bytes, of the record key
pointed to by the RAB$L_KBF field.

Note that the RAB$B_KSZ field has the same offset as the RAB$B_PSZ (prompt buffer size) field
but no conflict is presented because the fields are used in mutually exclusive operations.

For indexed files, the size of the key depends on the key data type:

• For string data-type keys, a value from 1 through the size of the key field can be used.

Note

The string data-type keys include STRING, DSTRING, COLLATED, and DCOLLATED keys.

If the specified size is less than the size of the key field, then only the leftmost characters of each
key are used for comparison.

• For numeric key data types, a value of 0 causes RMS to use the key data type defined at file
creation to determine the key size. A nonzero value is checked against the defined size, and an
error is returned if they are not equal.

Note that for DECnet for OpenVMS operations, the RAB$B_KSZ field must be explicitly specified
as a nonzero value because the key data type information might not be available to RMS at the local
node.

The size of the relative record number of a record in a relative file or a sequential file with fixed-
length records is a longword, positive, integer value; therefore, the key size is 4. For relative record

90

Chapter 7. Record Access Block (RAB)

numbers, the default value of 0 causes a key size of 4 to be used. For DECnet for OpenVMS
operations, however, the RAB$B_KSZ field must be explicitly specified as 4 for relative files.

With indexed files, the size of key values in bytes of an indexed file can be from 1 to 255 bytes.

A program can access indexed file records directly in one of four ways:

• By an exact match

• By an approximate match

• By a generic match

• By a combination of approximate and generic matches

The program specifies the type of match using the RAB$B_KSZ field together with the search options
from the RAB$L_ROP field (see the section called “Indexed File Options”).

• To specify an exact match, do the following:

• Set a value in the RAB$B_KSZ field equal to the number of bytes in the key.

• Reset the appropriate search bit, RAB$V_EQNXT or RAB$V_NXT.

• Specify the search direction by doing the following:

• For a forward search (toward the end of the file), be sure that the RAB$V_REV bit is not
set.

• For a reverse search (toward the beginning of the file), set the RAB$V_REV bit.

Note

VSI recommends the use of the mask designator (M) in specifying the equal or next and the next
search options because it is more universally applicable, especially for high-level languages. Using
mask designators, you can specify multiple options in a single instruction. See the description of the
reverse search option in Section 7.19 [101].

• To specify an approximate match, do the following:

• Set a value in the RAB$B_KSZ field equal to the number of bytes in the key.

• Specify the type of match by doing the following:

• If you want to match on a record having either an equal key value or the next key value
(greater for ascending sort order, less for descending sort order) set the RAB$V_EQNXT
bit.

Note

Sort order is established in the data type (XAB$B_DTP) field of the associated XABKEY when the
file is created.

• If you want to match on a record having the next value and to ignore equal key values, set
the RAB$V_NXT bit.

91

Chapter 7. Record Access Block (RAB)

• Specify the search direction by doing the following:

• For a forward search (toward the end of the file), be sure that the RAB$V_REV bit is not
set.

• For a reverse search (toward the beginning of the file), set the RAB$V_REV bit.

• To specify a generic match, do the following:

• Set a value in the RAB$B_KSZ field equal to the number of leading bytes in the key you want
to match on.

• Reset the appropriate search bit, RAB$V_EQNXT or RAB$V_NXT

• Specify the search direction by doing the following:

• For a forward search (toward the end of the file), be sure that the RAB$V_REV bit is not
set.

• For a reverse search (toward the beginning of the file), set the RAB$V_REV bit.

• To specify an approximate generic match, do the following:

• Set a value in the RAB$B_KSZ field equal to the number of leading bytes in the key you want
to match on.

• Specify the type of match by doing the following:

• If you want to match on a record having a generic key value equal to the specified generic
key value or the next generic key value, set the RAB$V_EQNXT bit.

• If you want to match on a record having the next generic key value but to ignore equal
generic key values, set the RAB$V_NXT bit.

• Specify the search direction by doing the following:

• For a forward search (toward the end of the file), be sure that the RAB$V_REV bit is not
set.

• For a reverse search (toward the beginning of the file), set the RAB$V_REV bit.

7.11. RAB$B_MBC Field
The multiblock count (MBC) field applies only to sequential disk file operations. This field specifies
the number of blocks, in the range of 0 through 127, to be allocated to each process (local) I/O buffer
and, correspondingly, the number of blocks of data to be transferred in each I/O unit. If you do not
specify this field, or if you specify the value 0, RMS uses the process default for the multiblock count.
If the process default is 0, RMS uses the system default, and if the system default is 0, RMS assigns
each local buffer one block.

Note

The DCL command SET RMS_DEFAULT is used to set process or system defaults.

92

Chapter 7. Record Access Block (RAB)

When it invokes the Connect service, RMS uses the RAB$B_MBC field to determine the
number of blocks in the I/O transfers for this record stream and allocates a local buffer with the
appropriate storage capacity. Note that either the RAB$B_MBF (multibuffer count) field or the
XAB$_MULTIBUFFER_COUNT XABITM field (see Section 12.6) can be used to allocate multiple
local buffers of this size for the record stream.

For shared sequential file operations, the first accessor of the file uses the RAB$B_MBC field to
establish the global buffer size for all subsequent accessors.

The use of the RAB$B_MBC field optimizes data throughput for sequential operations, and does not
affect the structure of the file. It reduces the number of disk accesses for record operations, resulting
in faster program execution. However, the extra buffering increases memory requirements.

Note that the RAB$B_MBC field is not used with block I/O. With multiblocks, the number of blocks
in an I/O unit is fixed by the multiblock count, whereas in block I/O operations the number of blocks
being transferred is specified by the program.

This field corresponds to the FDL attribute CONNECT MULTIBLOCK_COUNT and it is not
supported for DECnet for OpenVMS operations.

7.12. RAB$B_MBF Field
The multibuffer count (MBF) field indicates the number (0 to 255) of process (local) I/O buffers you
want RMS to allocate when you invoke the Connect service for a record stream.

Note

You can optionally override the RAB$B_MBF field with the XAB$_MULTIBUFFER_COUNT
XABITM (see Section 12.6 for information), which allows you to specify up to 32,767 local buffers.

If this field is not specified or is set to 0, and if the XAB$_MULTIBUFFER_COUNT XABITM is not
implemented, RMS uses the process default for the particular file organization and device type. If the
process default is also 0, the system default for the particular file organization and device type applies.
If the system default is 0, RMS allocates the record stream one local buffer. However, if you specify
either the read-ahead option or the write-behind option, RMS allocates at least two buffers.

RMS allocates at least one local buffer for sequential and relative files and at least two buffers for
indexed files, unless the file is to be processed with block I/O operations only. Multiple local buffers
can be used efficiently to overlap I/O time with compute time, particularly in read-ahead or write-
behind processing (see RAB$L_ROP for information on these options), and to increase use of the
local buffers (as compared to disk I/O) when performing random processing.

Note that the RAB$B_MBF field is not used when block I/O access is specified with the Open,
Create, or Connect services because no local buffers are required.

This field corresponds to the FDL attribute CONNECT MULTIBUFFER_COUNT and it is not
supported for DECnet for OpenVMS operations.

7.13. RAB$L_PBF Field
The prompt buffer address (PBF) field points to a character string to be used as a prompt for terminal
input. Note that the RAB$L_PBF field has the same offset as the RAB$B_KBF (key buffer address)
field but, because the fields are used in mutually exclusive operations, no conflict is presented.

93

Chapter 7. Record Access Block (RAB)

This field contains the symbolic address of the buffer containing the prompt character string. If you
select the RAB$V_PMT option of the RAB$L_ROP field when you invoke a Get service, RMS
outputs this character string to the terminal before the Get service begins its task.

To perform any carriage control on the terminal, you must insert the appropriate carriage control
characters into this character string.

This field is not supported for DECnet for OpenVMS operations; it is ignored.

7.14. RAB$B_PSZ Field
The prompt buffer size (PSZ) field indicates the size of the prompt character string to be used as a
terminal prompt. This field contains the size, in bytes, in the range of 0 to 255.

Note that the RAB$B_PSZ field has the same offset as the RAB$B_KSZ (key buffer size) field but no
conflict is presented because the fields are used in mutually exclusive operations.

This field is not supported for DECnet for OpenVMS operations; it is ignored.

7.15. RAB$B_RAC Field
The record access mode (RAC) field indicates the method of retrieving or inserting records in the file;
that is, whether records are read (or written) sequentially, directly, or by record file address. Only one
access method can be specified for any single record operation, but you can change the record access
mode between record operations.

The RAB$B_RAC field is a keyword value field in which each record access mode has a symbolic
offset. Options are identified using mnemonics. Each access mode in the RAB$B_RAC field has
its own symbolic constant. For example, the SEQ (sequential record) access mode has the symbolic
constant RAB$C_SEQ.

The RAB$B_RAC field is not applicable to block I/O operations and there is no corresponding FDL
attribute for this field.

Options
RAB$C_SEQ

Indicates sequential record access mode (the default); it can be specified with any type of file
organization.

Records read from (or written to) sequential files are accessed in chronological order. That is, older
records are accessed before newer records.

Records read sequentially from indexed files are accessed by the key of reference according to the
key's sort order. Where records have duplicate keys, older records are read before newer records,
regardless of the key's sort order.

For example, assume an ascending key indexed file with four 2-byte records (A1, B1, B2, C1), where
the key is the first byte of each record. When processed sequentially, the records are encountered in
the following order:

A1 B1 B2 C1

94

Chapter 7. Record Access Block (RAB)

Here, records B1 and B2 have the duplicate key B, but record B1 was inserted chronologically before
record B2 and, therefore, is encountered before B2 when the program is reading records sequentially.

If this file is reorganized as a descending-key indexed file, the records are encountered in the
following order:

C1 B1 B2 A1

Note that the chronological order of insertion for the two records with duplicate keys is maintained
without regard to sort order.

When records are written sequentially to indexed files, RMS verifies that the key value of each
successive record is ordered correctly with respect to the key value in the previously written record.
For example, with a descending key of reference, RMS ensures that the key value of the third record
written is less than the value of the second record.

RAB$C_KEY

Indicates random access by key. For relative files and sequential files on disk with fixed-length
records, random access is by relative record number. Indexed files are accessed directly by specifying
the appropriate value for the key of reference.

RAB$C_RFA

Indicates random access by record file address; used for all disk file organizations.

7.16. RAB$L_RBF Field
When a program invokes a service that writes records to a file, the output record buffer address (RBF)
field contains the symbolic address of the buffer that holds the record to be written. The record size
field (RAB$W_RSZ) specifies the size of the record buffer.

When you invoke the Get or Read service, RMS sets this field to the address of the record just read
from the file; you do not need to initialize this field. The record's address can be based on whether the
program specifies locate mode (RAB$V_LOC). For locate mode, the address can be within an RMS
buffer; otherwise, the address is in the user buffer (RAB$L_UBF) provided by the program.

7.17. RAB$W_RFA Field
The record file address (RFA) field comprises three words that define the physical disk address (not
symbolic address) of the current record.

After the successful execution of a record or block I/O operation, RMS sets the RAB$W_RFA field to
the address of the record acted on by the operation. This address provides an unambiguous means of
directly locating this same record at some later time but is meaningful for disk files only.

You can store the contents of the RAB$W_RFA field for future use. When you want to retrieve the
record again, merely restore the saved contents of the field, set the record access mode to random by
RFA, and invoke a Get or Find service.

The following rules apply to RFA access:

• There are two additional names for portions of this field: RAB$L_RFA0 is the offset of the first of
three words; RAB$W_RFA4 is the offset of the last word.

95

Chapter 7. Record Access Block (RAB)

• RFA values remain valid for a record in a sequential file as long as the record is within the space
defined by the logical file; that is, until the file is truncated to a point before the record.

• RFA values remain valid for a record in a relative file for the life of the file; that is, until the file is
reorganized, using the Convert utility, or deleted.

• With an indexed file, RFA values remain valid until the file is reorganized, using the Convert
utility, or deleted. Note that the Convert/Reclaim utility partially reorganizes a file while
maintaining RFA values.

7.18. RAB$L_RHB Field
The fixed-length record header buffer (RHB) field contains the symbolic address of the record header
buffer, which RMS uses only when processing VFC records.

For a Get service, RMS strips the fixed control area portion of the record and places it in the buffer
whose address is specified in this field. For Put or Update services, RMS writes the contents of the
specified buffer to the file as the fixed control area portion of the record.

If this field is not specified, RMS assumes the absence of a record header buffer. When no record
header buffer exists, the fixed control area is discarded for a Get service, zeroed for a Put service, and
left unchanged for an Update service.

The size of the fixed control area is defined in the FAB, using the FAB$B_FSZ field. You must
ensure that the buffer size described in the RAB$L_RHB field is equal to the value specified by the
FAB$B_FSZ field.

7.19. RAB$L_ROP Field
RAB$L_ROP is the symbolic offset for the RAB's record-processing options (ROP) field. This field
specifies which of the various optional record operations are to be implemented for the program.

The ROP is a 32-bit field in which each record-processing option has a corresponding bit assignment
to let you specify multiple options (multiple bits can be set), when applicable. Each option has a
unique symbolic offset and a unique mask value but you need only specify the appropriate 3-letter
mnemonic when coding a function. For example, the end-of-file option is assigned symbolic offset
RAB$V_EOF, but to specify the option, you use the following MACRO statement:

ROP=EOF

The record-processing option bits are never affected by record management services.

This section describes the seven types of record-processing options alphabetically by functional
category:

• Connect service options

• Indexed file options

• Miscellaneous options

• Performance options

• Put service options

96

Chapter 7. Record Access Block (RAB)

• Record locking options

• Terminal device options

This field corresponds to the FDL primary attribute CONNECT.

Table 7.2 lists the options alphabetically by category.

Table 7.2. Record Processing Options

Option Symbolic Offset
Connect Service Options
Block I/O RAB$V_BIO
End of file RAB$V_EOF
Read ahead RAB$V_RAH
Write behind RAB$V_WBH
Indexed File Options
Key greater than or equal RAB$V_EQNXT (or RAB$V_KGE)
Limit RAB$V_LIM
Load RAB$V_LOA
Key greater than RAB$V_NXT (or RAB$V_KGT)
Reverse search RAB$V_REV
Miscellaneous Options
Check for duplicate key RAB$V_CDK
Timeout RAB$V_TMO
Performance Options
Asynchronous RAB$V_ASY
Fast delete RAB$V_FDL
Locate mode RAB$V_LOC
Read ahead RAB$V_RAH
Synchronous status RAB$V_SYNCSTS
Write behind RAB$V_WBH
Put Service Options
Truncate on put RAB$V_TPT
Update-if RAB$V_UIF
Record Locking Options
Do not lock RAB$V_NLK
Nonexistent record RAB$V_NXR
Lock for read RAB$V_REA
Lock for write RAB$V_RLK
Ignore read lock RAB$V_RRL
Timeout RAB$V_TMO
Manual unlock RAB$V_ULK

97

Chapter 7. Record Access Block (RAB)

Option Symbolic Offset
Wait to lock RAB$V_WAT
Terminal Device Options
Cancel CTRL/O RAB$V_CCO
Convert RAB$V_CVT
Extended operation RAB$V_ETO
Prompt RAB$V_PMT
Purge type-ahead RAB$V_PTA
Read, no echo RAB$V_RNE
Read, no filter RAB$V_RNF
Timeout RAB$V_TMO

In the following text, each of the options is described under its symbolic offset. For example, the
asynchronous option is described under RAB$V_ASY.

Connect Service Options
RAB$V_BIO

Block I/O; specifies that only block I/O operations are to occur, when mixed record I/O and block I/
O operations are allowed. This option is meaningful only if the FAB$B_FAC FAB$V_BRO option
was specified when the file was opened (by a Create or Open service). When the RAB$V_BIO option
is set for the Connect service, only block I/O operations are allowed for this record stream. When the
RAB$V_BIO option is clear for the Connect service, only record I/O operations are allowed when
accessing a relative or indexed file and mixed (block I/O and record I/O) operations are allowed for
sequential files. This option corresponds to the FDL attribute CONNECT BLOCK_IO.

RAB$V_EOF

End-of-file; indicates that RMS is to position the record stream to the end of the file for the connect
record operation only. An application program sets the EOF bit when it requires append access to a
 file. Append access provides a convenient way of positioning the data entry pointer to point to the
end of file in order to append records. Shared append access is supported only for sequential files.
Unshared append access is supported for sequential, relative, and indexed file organizations.

This option corresponds to the FDL attribute CONNECT END_OF_FILE.

RABV_RAH, RABV_WBH

Read ahead and write behind; see explanation under Performance Options.

Indexed File Options
Note that search operations have limited application with relative files. See the Guide to OpenVMS
File Applications for details.

Indexed file options can be enabled or disabled during any record operation.

RMS supports four search key options, two forward search and two reverse search, using
combinations of the three search bits shown in the following table.

98

Chapter 7. Record Access Block (RAB)

Search Option Definition
RAB$V_EQNXT Return the next record having a key value equal to, or greater than, the

current key of reference, according to the specified sort order.
RAB$V_NXT Return the next record having a key value greater than the current key of

reference, according to the specified sort order.
RAB$V_REV When used with either of the first two options, reverses the search

direction, that is, searches toward the beginning of the file.

RAB$V_EQNXT

When you select the RAB$V_EQNXT option and ascending sort order, RMS returns the next record
having a key value equal to or greater than the value specified by the RAB$L_KBF and RAB$B_KSZ
fields. If you specify descending sort order, RMS returns the next record that contains a key value
equal to or less than the value specified by the RAB$L_KBF and RAB$B_KSZ fields. In either case,
the file is searched in the forward direction (toward the end of the file) unless the reverse search key
option is selected.

Note

Sort order is established in the data type field (symbolic offset XAB$B_DTP) of the associated
XABKEY when the file is created.

If the program specifies a RAB$V_EQNXT search and no record has a key value identical to the
specified search value, RMS returns the record with the next key value according to the specified sort
order. (See the description of the RAB$V_NXT bit.)

If the program specifies a RAB$V_EQNXT search and a record with a key value identical to the
search key is found, RMS returns the record regardless of sort order.

If the program specifies a reverse search by setting the RAB$V_EQNXT bit and the RAB$V_REV
bit, RMS reverses the search direction, searching toward the beginning of the file.

Table 7.3 provides the search results for both ascending and descending sort order in a file that has
records containing one of three index keys (“B”, “K”, and “Q”), and three keys of reference (“A”,
“K”, and “Z”). For example, assume the current key of reference is “Z”, the sort order is ascending,
and the program is looking for the next record having a key that is greater than the key of reference.
In this case, RMS returns RNF (record not found) because there are no records that have a key greater
than “Z” in the file.

Table 7.3. Search Option Results

 Current Key of Reference
Resultant Search
Option

Sort Order “A” “K” “Z”

Ascending “B” “Q” RNFNXT
Descending RNF “B” “Q”
Ascending “B” “K” RNFEQNXT
Descending RNF “K” “Q”
Ascending RNF “B” “Q”REV + NXT
Descending “B” “Q” RNF

99

Chapter 7. Record Access Block (RAB)

 Current Key of Reference
Resultant Search
Option

Sort Order “A” “K” “Z”

Ascending RNF “K” “Q”REV + EQNXT
Descending “B” “K” RNF

If neither a RAB$V_EQNXT search nor a RAB$V_NXT search is specified, an exact key match is
required unless a generic key match is specified. (See the description of the RAB$B_KSZ bit.)

This option corresponds to the FDL CONNECT attribute KEY_GREATER_EQUAL.

RAB$V_KGE

This bit is logically synonymous with the RAB$V_EQNXT option and is described under
RAB$V_EQNXT.

RAB$V_KGT

This bit is logically synonymous with the RAB$V_NXT option and is described under RAB$V_NXT.

RAB$V_LIM

This option is supported for indexed files only. It permits you to use RMS as a limit sensor when
accessing a file sequentially. When the RAB$V_LIM bit is set, the key value defined by the
RAB$L_KBF and RAB$B_KSZ fields (limit key value) is compared to the key value in each record
as it is accessed. When a record is accessed that has a key value different from the limit key value,
RMS returns the RMS$_OK_LIM success status code.

This option corresponds to the FDL attribute CONNECT KEY_LIMIT.

RAB$V_LOA

This option is supported for indexed files only. It specifies that RMS is to load buckets according to
the fill size established at file creation time. The bucket fill size is established in the XAB$W_DFL
and XAB$W_IFL fields of the key definition XAB. If the LOA option is not specified, RMS ignores
the established bucket fill size; that is, buckets are completely filled.

This option corresponds to the FDL attribute CONNECT FILL_BUCKETS.

RAB$V_NXT

If you select the RAB$V_NXT option and ascending sort order, RMS returns the next record that
has a key value greater than the value specified by the RAB$L_KBF and RAB$B_KSZ fields. If
descending sort order is specified, RMS returns the next record having a key value less than the value
specified by the RAB$L_KBF and RAB$B_KSZ fields. In either case, the file is searched in the
forward direction (toward the end of the file) unless the reverse search key option is selected.

If you specify neither RAB$V_NXT nor RAB$V_EQNXT, an exact key match is required.

Note

Sort order is established in the data type XAB$B_DTP field of the associated XABKEY when the file
is created.

100

Chapter 7. Record Access Block (RAB)

If the program specifies a reverse search by setting the RAB$V_NXT bit and the RAB$V_REV
bit, RMS reverses the search direction, searching toward the beginning of the file. This option
corresponds to the FDL CONNECT attribute KEY_GREATER_THAN.

RAB$V_REV

The RAB$V_REV option reverses the direction of the search when used with either of the forward
search key options in random keyed access only. Sequential access still proceeds forward only,
according to the sort order.

• RAB$V_REV + RAB$V_EQNXT—This combination of search key options searches toward
the beginning of the file and returns records having either the same key value as the current key
of reference, or a key value less than the current key of reference, according to the specified sort
order.

• RAB$V_REV + RAB$V_NXT—This combination of search key options searches toward the
beginning of the file and returns records having a key value less than the current key of reference,
according to the specified sort order.

When a set of records having duplicate keys is encountered, RMS returns only the first record in
the set. An application that needs to access all of the records having duplicate key values requires
additional compiler or program logic.

In all cases, you specify search key options symbolically, using the mask bits in the RAB$L_ROP
field of the RAB structure. Table 7.4 identifies the results of all combinations of the REV, EQNXT,
and NXT bits.

Table 7.4. Keyed Search Combinations

Search Result REV EQNXT NXT
Equal (default) 0 0 0
Greater-than or equal 0 1 0
Greater-than (next) 0 0 1
RMS$_ROP error 0 1 1
RMS$_ROP error 1 0 0
Less-than or equal 1 1 0
Less than (previous) 1 0 1
RMS$_ROP error 1 1 1

The reverse-search option includes a performance caching optimization to improve performance
when retrieving successive previous records. To take advantage of this feature, specify full key sizes
(RAB$B_KSZ) and select the RAB$V_NXT search option.

Miscellaneous Options
RAB$V_CDK

During RMS $GET operations, the CDK option allows applications to look ahead for indexed file
records with keys that duplicate the current key of reference. If the RAB$V_CDK bit is set, and a
record with a duplicate key is detected during a successful $GET operation, RMS returns an alternate
success status, RMS$_OK_DUP. Note that this does not guarantee access to the record with the

101

Chapter 7. Record Access Block (RAB)

duplicate key. For example, if the record is in a shared file, another accessor may delete the record
before your application can access it.

RAB$V_TMO

Timeout; in addition to its use for terminals and preventing delays due to record locks (described
later), the RAB$V_TMO option serves a special purpose for mailbox devices. If specified in
combination with a timeout value of 0 (RAB$B_TMO), Get and Put services to mailbox devices
use the IO$M_NOW modifier. Doing so causes the operation to complete immediately, instead of
synchronizing with another cooperating writer or reader of the mailbox.

This option corresponds to the FDL attribute CONNECT TIMEOUT_ENABLE and is not supported
for DECnet for OpenVMS operations.

See the VSI OpenVMS I/O User's Reference Manual for a further discussion of mailboxes.

Performance Options
RAB$V_ASY

Asynchronous; indicates that this I/O operation is to be performed asynchronously. When you specify
RAB$V_ASY, you pass the address of the RAB as an argument to the AST routine. RMS returns
control to your program as soon as an I/O operation is initiated, even though that operation might not
yet be completed. This option is normally used with the Wait service to synchronize with operation
completion.

The RAB$V_ASY option corresponds to the FDL attribute CONNECT ASYNCHRONOUS.

RAB$V_FDL

Fast delete; this option reduces the time required to delete records in indexed files when you are
using duplicate alternate keys. The saving in time is achieved by temporarily avoiding the processing
needed to eliminate pointers from alternative indexes to the record. However, there is a cost associated
with this option. First, the structural linkage from the alternate indexes remains in place but has
no utility; therefore, a certain amount of space is wasted. Second, if the program tries to access the
deleted record from an alternate index, RMS traverses the linkage, finds the record no longer exists,
and then generates a “nonexistent record” error message that the program must process.

You should take the fast delete option only if the immediate saving in time is of greater benefit to you
than the associated costs in space and overhead.

This option corresponds to the FDL attribute CONNECT FAST_DELETE.

RAB$V_LOC

Locate mode; under specified conditions, you have the option of specifying locate mode instead of
move mode, which is the default method of buffer handling. In locate mode, your program accesses
records directly in an I/O buffer, thus eliminating the overhead of moving records between I/O buffers
and application program buffers.

The RAB$V_LOC option activates locate mode. RMS supports the locate mode option for the Get
service only and ignores requests for the option if one of the following conditions exists:

• Record crosses one or more block boundaries

• The FAB$B_FAC field FAB$V_UPD option is set

102

Chapter 7. Record Access Block (RAB)

• Process-permanent files are accessed indirectly

• Records are compressed (applies to indexed Prolog 3 files only)

• Global buffers

• Multistreaming

In move mode, RMS transfers individual records between I/O buffers and the application's program
buffer. When the application program invokes a Get service, RMS reads a block or set of blocks
(for sequential files) or a bucket (for relative and indexed files) into an I/O buffer. It then selects the
desired record from the I/O buffer and moves it into the program-specified location. Locate mode
eliminates the last step by accessing the record directly in the I/O buffer.

This option corresponds to the FDL attribute CONNECT LOCATE_MODE. It is not supported for
DECnet for OpenVMS operations, which always use move mode.

RAB$V_RAH

Read-ahead; used with multiple local buffers to indicate read-ahead operations. RMS issues I/O
requests as soon as possible when a local buffer is needed. When the first local buffer is filled,
the I/O operation takes place for the first local buffer as the second local buffer receives the next
record; the second local buffer soon becomes filled and the next record is read into the first local
buffer as the I/O operation for the second local buffer occurs. The system does not have to wait
for I/O completion, which permits an overlapping of input and computing. Read ahead is ignored
for unit record device I/O and is supported only for the nonshared sequential file organization. If
the RAB$V_RAH option is specified when the multibuffer count (specified by RAB$B_MBF or
by the XAB$_MULTIBUFFER_COUNT XABITM) is 0, two local buffers are allocated to allow
multibuffering. If two or more local buffers are specified, multibuffering is allowed regardless of what
was specified to the Connect service. Conversely, if a buffer count of 1 is specified, multibuffering is
disabled regardless of what was specified to the Connect service.

This option corresponds to the FDL attribute CONNECT READ_AHEAD and it is not supported for
DECnet for OpenVMS operations.

RAB$V_SYNCSTS

When you select this option, RMS returns the success status RMS$_SYNCH if the requested service
completes its task immediately. The most common reason for not completing a task immediately
is that the task involves I/O operations. If the service completes synchronously (that is, it has not
returned to caller's execution mode prior to completion), RMS returns RMS$_SYNCH as the
completion status in R0, stores the true completion status (success or failure) in RAB$L_STS, and
does not deliver an AST.

The status RMS$_SYNCH is returned in R0 only. Refer to the RAB$L_STS field for the actual
success status or failure status of the task.

The RAB$V_SYNCSTS option should be used in conjunction with the RAB$V_ASY option.

RAB$V_WBH

Write-behind; used with multiple local buffers. When one local buffer is filled, the next record is
written into the next local buffer while the I/O operation takes place for the first local buffer. The
system does not have to wait for I/O completion, which allows for an overlapping of computing
and output. Write-behind is ignored for unit record devices. This option is implemented only for the
nonshared sequential file organization. If the RAB$V_WBH option is specified when the multibuffer

103

Chapter 7. Record Access Block (RAB)

count (specified by RAB$B_MBF or by the XAB$_MULTIBUFFER_COUNT XABITM) is 0,
two local buffers are allocated to allow multibuffering. If two or more local buffers are specified,
multibuffering is allowed regardless of what was specified to the Connect service. Conversely, if you
specify a multibuffer count of 1, RMS disables multibuffering regardless of what was specified to the
Connect service.

This option corresponds to the FDL attribute CONNECT WRITE_BEHIND and it is not supported
for DECnet for OpenVMS operations.

Put Service Options
RAB$V_TPT

Truncate-on-put; specifies that a Put or Write service using sequential record access mode can occur
at any point in the file, truncating the file at that point. The end-of-file mark is set to the position
immediately following the last byte written.

Truncating a file deletes all records beyond the point of truncation. In a shared environment, the
application must ensure proper interpretation of a truncate operation. The process must have specified
truncate access by setting the FAB$V_TRN option in the FAB$B_FAC field when the file was opened
or created.

This option applies only to sequential files and corresponds to the FDL attribute CONNECT
TRUNCATE_ON_PUT.

RAB$V_UIF

Update-if; indicates that if a Put service is invoked for a record that already exists in the file, the
operation is converted to an Update. This option is necessary to overwrite (as opposed to update) an
existing record in relative and indexed files. Indexed files using this option must not allow duplicates
on the primary key. The process must have specified Update access by setting the FAB$V_UPD
option in the FAB$B_FAC field when the file was opened or created.

When using this option with shared files and automatic record locking, you should be aware that
the Put service, unlike the Update service, briefly releases record locks until it is determined that
an Update should take place. At that point, the record is relocked for the Update operation. Note
that during the time the Put operation is being converted into an Update operation, it is possible that
another record stream could update or delete the record.

This option corresponds to the FDL attribute CONNECT UPDATE_IF.

Record Locking Options
This section describes the record-processing options related to controlling record locking. Except as
noted, these options apply to all file organizations and can be selected for each operation.

RAB$V_NLK

No lock (query locking); requests that RMS take out a lock to probe for status and immediately
release the lock without holding it for synchronization. If the lock is not granted (exclusive lock held)
and the read-regardless (RAB$V_RRL) option is not set, the record access fails with an RMS$_RLK
status. Otherwise, the record is returned with one of the following success or alternate success
statuses:

• RMS$_SUC – No other writers.

104

Chapter 7. Record Access Block (RAB)

• RMS$_OK_RLK – Record can be read but not written.

• RMS$_OK_RRL – For relative and indexed files, exclusive lock is held (lock request denied) but
the read-regardless (RAB$V_RRL) option is set.

When only the RAB$V_NLK option is specified, record access can be denied. When both the
RAB$V_NLK and RAB$V_RRL options are specified, an application can guarantee the return of any
record with a success or alternate success status.

If you do not require a lock and do not need one of the alternate success statuses returned to indicate
whether the record would have been blocked, then consider using the RAB$V_NQL record stream
(RAB$W_ROP_2) option or the FAB$V_NQL file (FAB$B_SHR) option to avoid the locking
overhead.

RAB$V_NXR

Nonexistent record processing; specifies that if the record directly accessed through a Get or Find
service does not exist (was never inserted into the file or was deleted), the service is to be performed
anyway. For a Get service, the previous contents of a deleted record are returned. The processing of
a deleted record returns a completion status code of RMS$_OK_DEL, and the processing of a record
that never existed returns RMS$_OK_RNF.

This option applies only to relative files and it corresponds to the FDL attribute CONNECT
NONEXISTENT_RECORD.

RAB$V_REA

Lock record for read; specifies that the record is to be locked for a read operation for this process,
while allowing other accessors to read the record (but not to modify the record). Use this option only
when you do not want the file to be modified by any subsequent activities. Use the RAB$V_RLK
option to allow possible subsequent modification of the file.

This option corresponds to the FDL attribute CONNECT LOCK_ON_READ.

RAB$V_RLK

Lock record for write; specifies that a user who locks a record for modification is allowing the locked
record to be read by other accessors. If both RAB$V_RLK and RAB$V_REA are specified, the
RAB$V_REA option is ignored. The RAB$V_NLK option takes precedence over all others.

This option corresponds to the FDL attribute CONNECT LOCK_ON_WRITE.

RAB$V_RRL

Read regardless of lock; read the record even if another stream has locked the record (see discussion
for RAB$V_NLK option). This option allows the reader some control over access. If a record is
locked against all access and this bit is set for either a Find or Get service request, the record is
returned without a lock for all three file organizations. The returned status, however, varies, depending
on the file organization:

• The service returns RMS$_SUC for sequential files.

• The service returns alternate success status, RMS$_OK_RRL, for relative and indexed files.

For relative and indexed file applications, the RMS$_OK_RRL status has the added value of
indicating when the record is returned without a lock.

105

Chapter 7. Record Access Block (RAB)

This option corresponds to the FDL attribute CONNECT READ_REGARDLESS.

RAB$V_TMO

Timeout; specifies that if the RAB$V_WAT option was specified, the RAB$B_TMO field contains
the maximum time value, in seconds, to be allowed for a record input wait caused by a locked record.
If the timeout period expires and the record is still locked, RMS aborts the record operation with the
RMS$_TMO completion status. Note that the maximum time allowed for a timeout is 255 seconds.
Other functions of the RAB$V_TMO option are listed under Miscellaneous Options.

This option corresponds to the FDL attribute CONNECT TIMEOUT_ENABLE and it is not
supported for DECnet for OpenVMS operations.

RAB$V_ULK

Manual unlocking; prohibits RMS from automatically unlocking records. Instead, once locked
(through a Get, Find, or Put service), a record must be specifically unlocked by a Free or Release
service. The RAB$V_NLK option takes precedence over the RAB$V_ULK option.

This option corresponds to the FDL attribute CONNECT MANUAL_UNLOCKING.

RAB$V_WAT

Wait; if the record is currently locked by another stream, wait until it is available. This option can be
used with the RAB$V_TMO option to limit waiting periods to a specified time interval.

This option corresponds to the FDL attribute CONNECT WAIT_FOR_RECORD.

Terminal Device Options
This section describes the record-processing options related to terminal devices. These options map
directly into equivalent modifiers to the QIO function code. For a further discussion of their effects,
see the VSI OpenVMS I/O User's Reference Manual. These options can be selected for each operation.

RAB$V_CCO

Cancel CTRL/O; guarantees that terminal output is not discarded if the operator presses Ctrl/O.

This option corresponds to the FDL attribute CONNECT TT_CANCEL_CONTROL_O and it is not
supported for DECnet for OpenVMS operations.

RAB$V_CVT

Convert; changes characters to uppercase on a read from a terminal.

This option corresponds to the FDL attribute CONNECT TT_UPCASE_INPUT and it is not
supported for DECnet for OpenVMS operations.

RAB$V_ETO

Extended terminal operation; indicates presence of a terminal XAB (XABTRM) to describe
terminal input using extended terminal characteristics. Note that if this option is specified, all other
RAB$L_ROP options specific to terminal devices are ignored (including the RAB$V_TMO option).

This option is not supported for DECnet for OpenVMS operations.

106

Chapter 7. Record Access Block (RAB)

RAB$V_PMT

Prompt option; indicates that the contents of the prompt buffer are to be used as a prompt for reading
data from a terminal (see RAB$L_PBF field).

This option corresponds to the FDL attribute CONNECT TT_PROMPT and it is not supported for
DECnet for OpenVMS operations.

RAB$V_PTA
Purge type-ahead; eliminates any information that might be in the type-ahead buffer on a read from a
terminal.

This option corresponds to the FDL attribute CONNECT TT_PURGE_TYPE_AHEAD and it is not
supported for DECnet for OpenVMS operations.

RAB$V_RNE

Read no echo; indicates that input data is not echoed (displayed) on the terminal as it is entered on the
keyboard.

This option corresponds to the FDL attribute CONNECT TT_READ_NOECHO and it is not
supported for DECnet for OpenVMS operations.

RAB$V_RNF

Read no filter; indicates that CTRL/U, CTRL/R, and DELETE are not to be considered control
commands on terminal input but are to be passed to the application program.

This option corresponds to the FDL attribute CONNECT TT_READ_NOFILTER and it is not
supported for DECnet for OpenVMS operations.

RAB$V_TMO

Timeout; for terminal operations, indicates that the content of the RAB$B_TMO field is to be used
to determine the number of seconds allowed between characters received during terminal input. If
the timeout period expires, RMS returns an error status (see RAB$B_TMO). Other functions of the
RAB$V_TMO option are listed under Miscellaneous Options and Record Locking Options.

This option corresponds to the FDL attribute CONNECT TIMEOUT_ENABLE and is not supported
for DECnet for OpenVMS operations.

7.20. RAB$W_ROP_2 Field
The RAB$W_ROP_2 field is the symbolic offset for an extension to the RAB's record-processing
options (RAB$L_ROP) field. This field specifies which of the extended record options are to be
implemented for an application.

The ROP_2 field is a 16-bit field in which each extended record-processing option has a
corresponding bit assignment to let you specify multiple options (multiple bits can be set) when
applicable.

Table 7.5 lists the options alphabetically and their associated symbols. You may specify all these
symbols, which facilitate common code, in applications that execute on either platform. The
functionality for the RAB$V_NQL option is not implemented on the VAX platform.

107

Chapter 7. Record Access Block (RAB)

The ROP_2 field was implemented on the Alpha platform with OpenVMS V7.2–1H1, on the VAX
platform with OpenVMS V7.3. The ROP_2 field and its options are not supported for DECnet for
OpenVMS operations and have no corresponding FDL attributes.

Table 7.5. ROP_2 Record Processing Options

Option Symbolic Offset
No Query Locking RAB$V_NQL
No Deadlock Wait RAB$V_NODLCKWT
No Deadlock Blocking RAB$V_NODLCKBLK

Options
This section describes the options available for the RAB$W_ROP_2 field.

RAB$V_NQL

No Query Locking. Applications wishing to read records without any consideration for record locking
(see the description of the no query record locking option in the Guide to OpenVMS File Applications)
may use this option for read ($get/$find) operations, and avoid the processing associated with record
locking calls to the lock manager. This option:

• Does not make a call to the Lock Manager

• Is equivalent to both RAB$V_NLK and RAB$V_RRL being set except that the alternate
success statuses RAB$_OK_RLK or RMS$_OK_RRL will not be returned (see discussion for
RAB$V_NLK option)

This option is applicable to record processing for all three file applications (sequential, relative, and
indexed).

This option takes precedence over all other record locking options (see the RAB$L_ROP field in this
section). You can set this option for each record operation for a $get or $find. You should set it only if
the current read ($get or $find) operation is not followed by either an $update or a $delete.

This option is implemented on the Alpha platform and is ignored on the VAX platform.

RAB$V_NODLCKWT

No Deadlock Wait. RMS uses the distributed lock manager for record locking. The lock manager
provides deadlock detection. The lock manager allows an application to control deadlock detection
with regard to particular locks using LCK$V_NODLCKWT (see the VSI OpenVMS System
Services Reference Manual: A-GETUAI). By selecting this option, you request RMS to specify
LCK$V_NODLCKWT in its record locking requests for this record stream. You can set the option
for each record operation for a $get or $find. This option is implemented on both VAX and Alpha
platforms.

RAB$V_NODLCKBLK

No Deadlock Blocking. RMS uses the distributed lock manager for record locking. The lock manager
provides deadlock detection. The lock manager allows an application to control deadlock detection
with regard to particular locks using LCK$V_NODLCKBLK (see the VSI OpenVMS System
Services Reference Manual: A-GETUAI). By selecting this option, you request RMS to specify

108

Chapter 7. Record Access Block (RAB)

LCK$V_NOLCKBLK in its record locking requests for this record stream. You can set the option
for each record operation for a $get or $find. This option is implemented on both VAX and Alpha
platforms.

7.21. RAB$W_RSZ Field
The record size (RSZ) field contains the size, in bytes, of the record to which the record buffer address
(RAB$L_RBF) field points. For a Write service, the range is 1 through 65,535. For a Put or Update
service, the range is 0 to the maximum value shown in Table 4.4. The record size field specifies the
size of a record that a Put or Update service can write, or the number of bytes that a Write (block I/O)
service can write. The Update service requires the record size field only if the file contains variable-
length records or VFC records.

On input from a file, RMS sets this field to indicate the length, in bytes, of the record that a Get
service transfers or that a Read service (block I/O) reads.

Three notes apply to this field:

• After a Get service, RMS places the record size in the RAB$W_RSZ field. On a Read service,
RMS sets the RAB$W_RSZ field to the number of bytes actually transferred.

• For variable with fixed-length control records, RMS does not include the size of the fixed control
area in the RAB$W_RSZ field.

• For block I/O operations, some devices require that an even number of bytes be transferred. No
user action is required because RMS automatically rounds the number of transfers up to an even
number.

7.22. RAB$L_STS Field
RMS sets the completion status code (STS) field together with the success or failure status codes
for a record operation before returning control to your program. For an asynchronous operation that
has been initiated but not yet completed, this field is 0. When the operation is complete, the field is
updated with the completion status. See Chapter 2 for additional details about signaling RMS status
codes. Potential error codes for specific operations are listed with their descriptions in Part III.

7.23. RAB$L_STV Field
The completion status value (STV) field communicates additional completion information to your
program, on the basis of the type of operation and the contents of the completion status code field. For
additional information on the RAB$L_STS and RAB$L_STV fields, see Part I.

The RAB$L_STV field can be accessed using alternate symbolic offsets; RAB$W_STV0 is the
location of the first word and RAB$W_STV2 is the location of the second word within RAB$L_STV.

7.24. RAB$B_TMO Field
The timeout (TMO) field indicates the maximum number of seconds, in the range 0 to 255, that RMS
should wait for an operation to conclude. If the operation does not conclude within the specified
timeout period, RMS returns an error status code.

To use this field, you must also specify the RAB$V_TMO record-processing option.

109

Chapter 7. Record Access Block (RAB)

For a Get service using a terminal device, this value specifies the number of seconds to wait between
the characters being typed. If you specify 0 along with RAB$V_TMO, the current contents of the
type-ahead buffer are returned.

When you use a wait-on-record lock (RAB$V_WAT) with a Get, Find, or Put service, this value
specifies the maximum number of seconds for RMS to wait for the record to become available.

Note that if the RAB$B_TMO field contains a value of 0 and RAB$V_TMO is set when you invoke
either a Get or Put service to a mailbox device, the operation terminates immediately, rather than
waiting for another process. For example, if you invoke the Put service to a mailbox device with the
RAB$B_TMO field clear, the Put service does not wait for the receiving process to get the record.

This field corresponds to the FDL attribute CONNECT TIMEOUT_PERIOD and it is not supported
for DECnet for OpenVMS operations.

7.25. RAB$L_UBF Field
The user record buffer address (UBF) field indicates the location of a record or block buffer.

Note

When you invoke the Get service, RMS takes control of the record buffer and can modify it. RMS
returns the record size and only guarantees the contents from where it accessed the record to the
completion of the record.

This field contains the symbolic address of a work area (buffer) within your program. The size of this
buffer must be defined in the RAB$W_USZ (user record area size) field.

When you invoke a Get service, this field must contain the buffer address, regardless of the record
transfer mode (locate or move). This option also applies when you invoke the Read service for block
I/O. However, a Put or Write service never needs a user buffer.

7.26. RAB$W_USZ Field
The user record buffer size (USZ) field indicates the length (1 through 65,535 bytes) of the user
record buffer (RAB$L_UBF).

The user record buffer should be large enough to contain the largest record in the file. If the buffer is
not large enough to accommodate a record obtained by a Get service operation, RMS moves as much
of the record as possible into the buffer and returns a warning status code.

The value in this field specifies the transfer length, in bytes, for block I/O operations with a Read
service and for a Get service to UDF (undefined) format sequential files.

7.27. RAB$L_XAB Field
The extended attribute block address (XAB) field contains the symbolic address of a XAB control
block that you want to use when performing an operation such as a Get service for a terminal device.
A value of 0 (the default) indicates no XABs for this record stream.

For certain record operations, you can associate XABs with a RAB to convey additional attributes
about an operation. (See Section 1.2.2 for the description of a XAB.)

110

Chapter 8. 64-Bit Record Access
Block (RAB64)
On an Alpha system, the 64-bit record access block (RAB64) is an extension of the RAB (described in
Chapter 7) that allows OpenVMS Alpha users to use 64-bit addresses for the following I/O buffers:

• UBF (user record buffer)

• RBF (record buffer)

• RHB (fixed-length record header buffer; fixed portion of VFC record format)

• KBF (key buffer containing the key value for random access)

RAB64 has fields corresponding to all the RAB fields, plus seven additional fields to accommodate
64-bit addressing.

8.1. Summary of Fields
The additional fields in the extended RAB64 data structure are summarized at the beginning of
Table 8.1 and are described in this chapter. All the other RAB64 fields are exactly like their RAB
counterparts described in Chapter 7, unless noted otherwise in this chapter.

Table 8.1 gives the symbolic offset, the size, the RAB cross-reference, and a brief description for each
RAB64 field.

Table 8.1. RAB64 Fields

Field Offset Size
(Bytes)

RAB Cross-Reference Description

Alpha-Only RAB64 Fields Described in This Chapter1:
RAB64$Q_CTX 8 None User context (64-bit)
RAB64$PQ_KBF 8 None Key buffer 64-bit address
RAB64$PQ_RBF 8 None Record buffer 64-bit address
RAB64$PQ_RHB 8 None Record header buffer 64-bit

address
RAB64$Q_RSZ 8 None Record buffer size
RAB64$PQ_UBF 8 None User record buffer 64-bit

address
RAB64$Q_USZ 8 None User record buffer size
RAB64 Fields Equivalent to RAB Fields Described in Chapter 7:
RAB64$B_BID2 1 See RAB$B_BID in Section 7.2 Block identifier
RAB64$L_BKT 4 See RAB$L_BKT in Section 7.3 Bucket code
RAB64$B_BLN3 1 See RAB$B_BLN in Section 7.4 Block length
RAB64$L_CTX 4 See RAB$L_CTX in Section 7.5 User context
RAB64$L_FAB 4 See RAB$L_FAB in Section 7.6 File access block address

111

Chapter 8. 64-Bit Record Access Block (RAB64)

Field Offset Size
(Bytes)

RAB Cross-Reference Description

RAB64$W_ISI4 2 See RAB$W_ISI in Section 7.7 Internal stream identifier
RAB64$L_KBF 4 See RAB$L_KBF in Section 7.8 Key buffer address
RAB64$B_KRF 1 See RAB$B_KRF in Section 7.9 Key of reference
RAB64$B_KSZ 1 See RAB$B_KSZ in Section 7.10 Key size
RAB64$B_MBC 1 See RAB$B_MBC in Section 7.11 Multiblock count
RAB64$B_MBF 1 See RAB$B_MBF in Section 7.12 Multibuffer count
RAB64$L_PBF 4 See RAB$L_PBF in Section 7.13 Prompt buffer address
RAB64$B_PSZ 1 See RAB$B_PSZ in Section 7.14 Prompt buffer size
RAB64$B_RAC 1 See RAB$B_RAC in Section 7.15 Record access mode
RAB64$L_RBF 4 See RAB$L_RBF in Section 7.16 Record buffer address
RAB64$W_RFA 6 See RAB$W_RFA in Section 7.17 Record file address
RAB64$L_RHB 4 See RAB$L_RHB in Section 7.18 Record header buffer address
RAB64$L_ROP 4 See RAB$L_ROP in Section 7.19 Record-processing options
RAB64$W_ROP_2 2 See RAB$W_ROP_2 in Section 7.20 Extended record-processing

options
RAB64$W_RSZ 2 See RAB$W_RSZ in Section 7.21 Record buffer size
RAB64$L_STS4 4 See RAB$L_STS in Section 7.22 Completion status code
RAB64$L_STV4 4 See RAB$L_STV in Section 7.23 Status value
RAB64$W_STV05 2 See RAB$L_STV in Section 7.23 Low-order word status value
RAB64$W_STV25 2 See RAB$L_STV in Section 7.23 High-order word status value
RAB64$B_TMO 1 See RAB$B_TMO in Section 7.24 Timeout period
RAB64$L_UBF 4 See RAB$L_UBF in Section 7.25 User record buffer address
RAB64$W_USZ 2 See RAB$W_USZ in Section 7.26 User record buffer size
RAB64$L_XAB 4 See RAB$L_XAB in Section 7.27 Next XAB address

1None of these fields have FDL equivalents.
2The $RAB64 macro statically initializes this field to identify this control block as a RAB.
3The $RAB64 macro statically initializes this field to identify this control block as a RAB64. If the user initializes this field, it must be
initialized to RAB64$C_BLN64.
4This field cannot be initialized by the $RAB64 macro.
5Alternate definition of RAB64$L_STV field.

The RAB64 $PQ_ fields can hold either 64-bit addresses or 32-bit addresses sign-extended to 64-bits.
Therefore, you can use these fields in all applications whether or not you are using 64-bit addresses.

If your application already uses RAB fields, only minimal source code changes are required to use 64-
bit RMS support. The RAB64 64-bit counterpart to a 32-bit address field is used only if the following
two conditions exist:

• The RAB64$B_BLN field has been initialized to RAB64$C_BLN64.

• The 32-bit address cell in the 32-bit portion of the RAB64 contains -1.

Because the RAB64 is an upwardly compatible version of the RAB, RMS allows you to use the
RAB64 wherever you can use a RAB. For example, a RAB64 can be used in place of a RAB as the
first argument passed to any of the RMS record or block I/O services.

112

Chapter 8. 64-Bit Record Access Block (RAB64)

While RMS allows you to use the RAB64 wherever you can use a RAB, some source languages may
impose other restrictions. Consult the documentation for your source language for more information.

DECnet for OpenVMS support for RAB64 fields is identical to support described for RAB fields in
Chapter 7.

The format and arguments of the $RAB64 macro and the $RAB64_STORE macro are described in
Appendix A.

8.2. RAB64$Q_CTX Field
This Alpha-only, 8-byte field is a 64-bit extension of the user context field and serves the same
purpose as RAB$L_CTX (see Section 7.5 for details). The only difference between these fields, other
than size, is that there is no corresponding FDL attribute for RAB64$Q_CTX.

8.3. RAB64$PQ_KBF Field
This Alpha-only, 8-byte field is a key buffer 64-bit address field that serves the same purpose as
RAB$L_KBF (see Section 7.8 for details). This field can hold either a 64-bit address or a 32-bit
address sign-extended to 64 bits.

To use this field: Put a -1 in this field: Use this size field:
RAB64$PQ_KBF RAB64$L_KBF RAB64$B_KSZ

8.4. RAB64$PQ_RBF Field
This Alpha-only, 8-byte field is a record buffer 64-bit address field that serves the same purpose as
RAB$L_RBF (see Section 7.16 for details). This field can hold either a 64-bit address or a 32-bit
address sign-extended to 64 bits.

To use this field: Put a -1 in this field: Use this size field: Put a 0 in this field:
RAB64$PQ_RBF RAB64$L_RBF RAB64$Q_RSZ RAB64$W_RSZ

For most record I/O service requests, there is an RMS internal buffer between the device and the
user's data buffer. The one exception occurs with the RMS service $PUT. If the device is a unit record
device and it is not being accessed over the network, RMS passes the address of the user record
buffer to the $QIO system service. If you inappropriately specify a record buffer allocated in 64-
bit address space for a $PUT service to a unit record device that does not support 64-bit address
space (for example, a terminal), the $QIO service returns error status SS$_NOT64DEVFUNC.
RMS returns error status RMS$_SYS with SS$_NOT64DEVFUNC as the secondary status value in
RAB64$L_STV.

8.5. RAB64$PQ_RHB Field
This Alpha-only, 8-byte field is a record header buffer 64-bit address field that serves the same
purpose as RAB$L_RHB (see Section 7.18 for details). This field can hold either a 64-bit address or a
32-bit address sign-extended to 64 bits.

To use this field: Put a -1 in this field: Use this size field:
RAB64$PQ_RHB RAB64$L_RHB FAB$B_FSZ

113

Chapter 8. 64-Bit Record Access Block (RAB64)

8.6. RAB64$Q_RSZ Field
This Alpha-only, 8-byte field is an extended record size field that serves the same purpose as
RAB$W_RSZ (see Section 7.21 for details). Use this field whenever you use the RAB64$PQ_RBF
field.

The buffer size maximum for the RMS block I/O service $WRITE has been increased from 65535
bytes to 2**31-1 bytes for OpenVMS Alpha users, with two exceptions:

• For RMS journaling, a journaled $WRITE service is restricted to the current maximum (65535
minus 99 bytes of journaling overhead). An RSZ error is returned (RAB$L_STS) if the maximum
is exceeded.

• Magnetic tape is still limited at the device driver level to 65535 bytes.

8.7. RAB64$PQ_UBF Field
This Alpha-only, 8-byte field is a user record buffer 64-bit address field that serves the same purpose
as RAB$L_UBF (see Section 7.25 for details). This field can hold either a 64-bit address or a 32-bit
address sign-extended to 64 bits.

To use this field: Put a -1 in this field: Use this size field: Put a 0 in this field:
RAB64$PQ_UBF RAB64$L_UBF RAB64$Q_USZ RAB64$W_USZ

8.8. RAB64$Q_USZ Field
This Alpha-only, 8-byte field is an extended user record buffer size field that serves the same purpose
as RAB$W_USZ (see Section 7.26 for details). Use this field whenever you use the RAB64$PQ_UBF
field.

The buffer size maximum for the RMS block I/O service $READ has been increased from 65535
bytes to 2**31-1 bytes for OpenVMS Alpha users, with one exception:

• Magnetic tape is still limited at the device driver level to 65535 bytes.

114

Chapter 9. Allocation Control XAB
(XABALL)
The allocation control XAB (XABALL) provides additional control over file or area space allocation
on disk devices in order to optimize performance. In the following descriptions, the terms file and
area are synonymous for sequential and relative files because these file organizations are limited to a
single area (Area 0).

9.1. Summary of Fields
When RMS uses a XAB to create or extend an area, the following XABALL fields duplicate and take
precedence over associated fields in the related FAB:

• The allocation quantity (ALQ) field, XAB$L_ALQ, overrides FAB$L_ALQ

• The bucket size (BKZ) field, XAB$B_BKZ, overrides FAB$B_BKS

• The default extension quantity (DEQ) field, XAB$W_DEQ, overrides FAB$W_DEQ

• The XAB$V_CBT and XAB$V_CTG options of the allocation options field, XAB$B_AOP,
override the FAB$V_CBT and FAB$V_CTG options of the file-processing options field,
FAB$L_FOP

When opening a file or displaying a file's attributes, RMS outputs appropriate information to your
program using these fields.

The symbolic offset, the size, the FDL equivalent, and a brief description of each XABALL field are
presented in Table 9.1.

Table 9.1. XABALL Fields

Field Offset Size
(Bytes)

FDL Equivalent Description

XAB$B_AID 1 AREA n Area identification number
XAB$B_ALN 1 AREA POSITION1 Alignment boundary type
XAB$L_ALQ 4 AREA ALLOCATION Allocation quantity
XAB$B_AOP 1 AREA1 Allocation options
XAB$B_BKZ 1 AREA BUCKET_SIZE Bucket size
XAB$B_BLN2 1 None Block length
XAB$B_COD2 1 None Type code
XAB$W_DEQ 2 AREA EXTENSION Default extension quantity
XAB$L_LOC 4 AREA POSITION Location
XAB$L_NXT 4 None Next XAB address
XAB$W_RFI 6 AREA POSITION FILE_ID or

FILE_NAME
Related file identifier

XAB$W_VOL 2 AREA VOLUME Related volume number
1This field contains options; corresponding FDL equivalents are listed in the description of the field.

115

Chapter 9. Allocation Control XAB (XABALL)

2This field is statically initialized by the $XABALL macro to identify this control block as a XABALL.

Unless otherwise indicated, each field is supported for DECnet for OpenVMS operations on files at
remote OpenVMS systems. For information about the support of RMS options for remote file access
to other systems, see the DECnet for OpenVMS Networking Manual.

9.2. XAB$B_AID Fields
RMS uses the area identification number (AID) field to determine which area within a file is
supported by this XAB. Note that sequential and relative files are limited to area 0.

The area is identified by a numeric value in the range 0 through 254 (default is 0) and is most
appropriate for use with index files having multiple areas allocated.

This field corresponds to the FDL attribute AREA n, where n indicates the area number.

9.3. XAB$B_ALN Field
The alignment boundary type (ALN) field gives you several options for aligning the allocated area.
RMS uses this field in conjunction with the XAB$L_LOC field and with the XAB$W_RFI field to
provide precise positioning control of the area or area extension.

The XAB$B_ALN field is a keyword value field in which an alignment boundary option is defined by
a symbolic constant value. For example, the cylinder boundary option has a symbolic constant value
of XAB$C_CYL.

Note that if no value is defined for this field, RMS assumes the XAB$C_ANY option (no additional
positioning control desired). Additional positioning control is not supported for DECnet for
OpenVMS operations.

The XAB$B_ALN field corresponds to the FDL attribute AREA POSITION.

Options
XAB$C_ANY

Any allocation; specifies that no positioning control over the area is desired. If this option is selected,
the XAB$L_LOC and XAB$W_RFI fields are ignored.

This option corresponds to the FDL attribute AREA POSITION NONE.

XAB$C_CYL

Specifies that the area boundary begin at the cylinder number identified by the location field
XAB$L_LOC.

This option corresponds to the FDL attribute AREA POSITION CYLINDER.

XAB$C_LBN

Specifies that the area boundary begin at the logical block number identified by the location field
XAB$L_LOC.

This option corresponds to the FDL attribute AREA POSITION LOGICAL.

116

Chapter 9. Allocation Control XAB (XABALL)

XAB$C_RFI

This option is used only for extending an area. It specifies that the area extension begin as close as
possible to the file identified by the related-file-identification field (XAB$W_RFI), and that the extent
begin with the VBN specified by the location field XAB$L_LOC.

This option corresponds to the FDL attribute AREA POSITION FILE_ID or AREA POSITION
FILE_NAME. If you try to use this option with DECnet for OpenVMS operations, RMS replaces it
with the XAB$C_ANY option.

XAB$C_VBN

This option applies to area extension only. It specifies that the area extension begin as close as
possible to the virtual block number identified by the location field XAB$L_LOC.

This option corresponds to the FDL attribute AREA POSITION VIRTUAL.

9.4. XAB$L_ALQ Field
The allocation quota field defines the number of blocks to be initially allocated to an area when it is
created using a Create service, or the number of blocks to be added to an area when it is explicitly
extended using an Extend service (as opposed to automatic extension). In both cases, this field
overrides the allocation quantity in the associated FAB (see Chapter 4).

The XAB$L_ALQ field accepts numeric values of up to 4,294,967,295 for initial allocation, but the
allocation is limited by the number of blocks available on the device.

When you create a new area using the Create service, RMS interprets the value in the XAB$L_ALQ
field as the number of blocks for the area's initial extent. If the value is 0, RMS allocates a minimum
number of blocks depending on the file organization. For example, RMS allocates only the number of
blocks needed for the key and area definitions with indexed files.

When you use either the Create or Extend services with indexed files, RMS rounds the allocation
quantity value up to the next cluster boundary and returns this value to the program in the
XAB$L_ALQ field. RMS uses this value as the extension value when you extend an existing area
using the Extend service, unless the program changes the value before invoking the Extend service.
Note that the value 0 is not acceptable for extending an area.

9.5. XAB$B_AOP Field
The allocation options (AOP) field lets you specify a particular type of allocation.

This field is a binary options field where one or more options may be selected by setting the
appropriate bits. Each option is identified by a symbolic offset and has a mask value; for example, the
CBT option has an offset of XAB$V_CBT and a mask value of XAB$M_CBT.

Options
XAB$V_CBT

Contiguous best try; indicates that the allocation or extension should use contiguous blocks, on a “best
effort” basis. This option overrides the FAB$L_FOP field FAB$V_CBT option.

This option corresponds to the FDL attribute AREA BEST_TRY_CONTIGUOUS.

117

Chapter 9. Allocation Control XAB (XABALL)

XAB$V_CTG

Contiguous; indicates that the initial allocation extension must use contiguous blocks only; the
allocation fails if the requested number of contiguous blocks is not available. If this is the initial
allocation and only a single area is specified, the file is marked contiguous. This option overrides the
FAB$L_FOP field FAB$V_CTG option.

This option corresponds to the FDL attribute AREA CONTIGUOUS.

XAB$V_HRD

Hard; indicates that if the requested alignment cannot be performed, an error will be returned. By
default, the allocation is performed as near as possible to the requested alignment.

Note that the XAB$V_HRD option is applicable only to XAB$C_CYL and XAB$C_LBN alignment
boundary types, specified by the XAB$B_ALN field.

This option corresponds to the FDL attribute AREA EXACT_POSITIONING.

XAB$V_ONC

On cylinder boundary; indicates that RMS is to begin the allocation on any available cylinder
boundary.

This option corresponds to the FDL attribute AREA POSITION ANY_CYLINDER.

9.6. XAB$B_BKZ Field
When RMS creates relative and indexed files, this field specifies bucket size using numeric values
ranging from 0 through 63 to represent the number of blocks in a bucket. If this argument is omitted,
or if a value of 0 is inserted, RMS uses a default size equal to the minimum number of blocks required
to contain a single record. For RMS-11 processing, the bucket size must be less than or equal to 32
blocks.

When calculating the bucket size, you must consider the control information (overhead) associated
with each bucket. Note that some record types contain control bytes and to calculate the overhead you
must multiply the number of records per bucket by the number of control bytes per record. See the
Guide to OpenVMS File Applications for more information.

The Edit/FDL utility can be used to calculate efficient bucket sizes for indexed files. (For information
about the Edit/FDL utility, see the VSI OpenVMS Record Management Utilities Reference Manual.)

 When you create a file, RMS uses this field as input to determine the specified bucket size and, upon
conclusion, uses the field to output the bucket size. Because relative files are limited to one area, this
field specifies the size for all buckets in the file. For indexed files, you can specify a different size for
each area using this field in the appropriate XABALL.

When you open an existing file, RMS uses this field to output the bucket size to your program.

The value in this field overrides the contents of the bucket size field of the FAB on a Create service
(see Chapter 4).

You can specify multiple areas for a single index by having the XAB$B_IAN and XAB$B_LAN
fields in the key definition XAB (XABKEY) indicate that the lowest level of the index and the
remainder of that index occupy different areas (defined by different XABALLs). However, the

118

Chapter 9. Allocation Control XAB (XABALL)

number of blocks per bucket (XAB$B_BKZ value) must be the same for the entire index of a
particular key. If multiple areas are specified for an index and if the XAB$B_BKZ values are not
the same, RMS returns an error because the values for one index must be the same. However, if you
specify the XAB$B_BKZ field for at least one area and use the default (0) for the XAB$B_BKZ field
of a different area (or areas) of the same index, RMS uses the largest XAB$B_BKZ value specified
among the XABALL control blocks to determine the bucket size for that index.

This field corresponds to the FDL attribute AREA BUCKET_SIZE.

9.7. XAB$B_BLN Field
The block length (BLN) field is a static field that defines the length of the XABALL, in bytes. Once
set, this field must not be altered unless the control block is no longer needed. This field must be
initialized to the symbolic value XAB$C_ALLLEN (this is done by the $XABALL macro).

9.8. XAB$B_COD Field
The type code (COD) field is a static field that identifies this control block as a XABALL. Once
set, this field must not be altered unless the control block is no longer needed. This field must be
initialized to the symbolic value XAB$C_ALL (this is done by the $XABALL macro).

9.9. XAB$W_DEQ Field
The default extension quantity (DEQ) field specifies the number (0 to 65,535) of blocks to be added
when RMS extends the area. If you specify 0, the RMS provides a default extension value.

The value in this field overrides the contents of the default extension quantity field of the FAB (see
Chapter 4).

This field corresponds to the FDL attribute AREA EXTENSION.

9.10. XAB$L_LOC Field
The location (LOC) field contains a numeric value that indicates the beginning point for area
allocation. RMS refers to the location field when executing a Create or Extend service, but only if the
XAB$B_ALN field specifies an alignment option. The way the XAB$L_LOC field is used depends
on the value specified for the XAB$B_ALN field (a binary options field). The beginning point for the
allocation is determined as follows:

• If the XAB$B_ALN field XAB$C_CYL option is specified, the location number is the cylinder
number (0 through the maximum cylinder number on the volume) where the allocation begins.

• If the XAB$B_ALN field XAB$C_LBN option is specified, the location number is the logical
block number (0 through the maximum number of blocks on the volume) where the allocation
begins.

• If the XAB$B_ALN field XAB$C_VBN or XAB$C_RFI option is specified, the location number
is the virtual block number (1 through the maximum number of blocks in the file) where the
allocation begins. This applies only to the Extend service. If the number 0 is specified, or if the
number is omitted during an Extend service, RMS places the file extension as near to the end of
the file as possible.

119

Chapter 9. Allocation Control XAB (XABALL)

This field corresponds to the FDL attribute AREA POSITION.

9.11. XAB$L_NXT Field
The next XAB address (NXT) field specifies the symbolic address of the next XAB in the XAB chain.
A value of 0 (the default) indicates that the current XAB is the last (or only) XAB in the chain.

9.12. XAB$W_RFI Field
The related file identification (RFI) field allows you to position files or areas of an indexed file close
to a specified file.

This field contains the 3-word file identification value of the related file. A value of 0,0,0 (the default)
indicates that the current file is to be used. Specifying the XAB$B_ALN field XAB$C_RFI option
and specifying the XAB$W_RFI field as 0,0,0 are equivalent to specifying the XAB$B_ALN field
XAB$C_VBN option.

You can view the file identification of a file using the DCL command DIRECTORY with the /FULL
qualifier.

The file is created or extended as near to the specified related file as possible at the virtual block
number specified by the LOC argument.

The XAB$W_RFI field is ignored unless the XAB$B_ALN field is set to XAB$C_RFI. It is also
ignored for DECnet for OpenVMS operations.

This field corresponds to the FDL attribute AREA POSITION FILE_ID or AREA POSITION
FILE_NAME.

9.13. XAB$W_VOL Field
The relative volume number (VOL) field indicates the specific member of a volume set upon which
the file is to be allocated.

This field contains an integer in the range 0 through 255. The default is 0, specifying the “current”
member of the volume set.

Note that volume placement will be performed only if an alignment type in the XAB$B_ALN field is
either XAB$C_CYL or XAB$C_LBN (you cannot specify XAB$C_VBN or XAB$C_RFI alignment
types). If the XAB$B_ALN field contains a value of 0, placement of the file within the volume set
will be at the discretion of the system, regardless of the contents of the XAB$W_VOL field.

This field corresponds to the FDL attribute AREA VOLUME.

120

Chapter 10. Date and Time XAB
(XABDAT)
On Alpha systems for Files-11 B (ODS–2) media, the date and time XAB (XABDAT) block provides
extended control of the date and time of the file's creation, revision (update), backup, and expiration.

10.1. Summary of Fields
RMS sets certain values for date and time and returns them in XABDAT fields for your inspection.
You can override these system-supplied values by using a XABDAT as input to a Create service. Note
that date-time values are expressed in either absolute (positive) or delta (negative) format, and several
system services are available for date-time conversion and use (see Example B.1 in Appendix B of
this manual and the VSI OpenVMS System Services Reference Manual).

The symbolic offset, the size, the FDL equivalent (where applicable), and a brief description of each
XABDAT field are presented in Table 10.1.

Table 10.1. XABDAT Fields

Field Offset Size
(Bytes)

FDL Equivalent Description

XAB$Q_BDT1 8 DATE BACKUP Backup date and time
XAB$B_BLN2 1 None Block length
XAB$Q_CDT1 8 DATE CREATION Creation date and time
XAB$B_COD2 1 None Type code
XAB$Q_EDT 8 DATE EXPIRATION Expiration date and time
XAB$L_NXT 4 None Next XAB address
XAB$Q_RDT1 8 DATE REVISION Revision date and time
XAB$W_RVN1 2 FILE REVISION Revision number
XAB$Q_ACC1 8 None Last time file accessed
XAB$Q_ATT1 8 None Last time file attribute modified
XAB$Q_MOD1 8 None Last time file data modified

1This field cannot be initialized by the $XABDAT macro.
2This field is statically initialized by the $XABDAT macro to identify this control block as a XABDAT.

The Display service and the Open service always use the XABDAT fields as output. The Create
service uses the XABDAT fields as input when it creates a new file. However, when it opens an
existing file (see the description of the FAB$V_CIF option in Section 4.17), the Create service also
uses the XABDAT fields as output.

No other RMS services use the XABDAT block.

Each XABDAT field is described in the following sections. Unless indicated otherwise, each field
is supported for DECnet for OpenVMS operations on files at remote OpenVMS systems. For
information about the support of RMS options for remote file access to other systems, see the DECnet
for OpenVMS Networking Manual.

121

Chapter 10. Date and Time XAB (XABDAT)

10.2. XAB$Q_BDT Field
The backup date and time (BDT) field contains a 64-bit binary value expressing the date and time
when the file was most recently backed up. Note that this field is limited to a granularity of 1 second
for remote files.

This field corresponds to the FDL attribute DATE BACKUP.

10.3. XAB$B_BLN Field
The block length (BLN) field is a static field that defines the length of the XABDAT in bytes. Once
set, this field must not be altered unless the control block is no longer needed. This field must be
initialized to the symbolic value XAB$C_DATLEN (this is done by the $XABDAT macro).

10.4. XAB$Q_CDT Field
The creation date and time (CDT) field contains a 64-bit binary value expressing the date and time
when the file was created. Note that this field is limited to a granularity of 1 second for remote files.
If the application program specifies this field as 0 (either explicitly or by default), the Create service
uses the current date and time.

This field corresponds to the FDL attribute DATE CREATION.

10.5. XAB$B_COD Field
The type code (COD) field is a static field that identifies this control block as a XABDAT. Once
set, this field must not be altered unless the control block is no longer needed. This field must be
initialized to the symbolic value XAB$C_DAT (this is done by the $XABDAT macro).

10.6. XAB$Q_EDT Field
The expiration date and time (EDT) field contains a 64-bit binary value that indicates the date
and time after which a file residing on a disk device may be considered for deletion by the system
manager. For files residing on magnetic tape devices, the XAB$Q_EDT field sets the date and time
after which you can overwrite the file. Note that this field is limited to a granularity of 1 second for
remote files.

This field corresponds to the FDL attribute DATE EXPIRATION.

10.7. XAB$L_NXT Field
The next XAB address (NXT) field contains the symbolic address of the next XAB to be used. A
value of 0 (the default) indicates that the current XAB is the last (or only) XAB in the chain.

10.8. XAB$Q_RDT Field
The revision date and time (RDT) field contains a 64-bit binary value representing the date and time
when the file was last revised. The Open and Display services use this field to read the revision date
and time. The Create service uses this field to set the revision date and time. However, a subsequent

122

Chapter 10. Date and Time XAB (XABDAT)

Close service overrides the value set by the Create service by using the value in the XAB$Q_RDT
field of the XABRDT.

Note

The Close service uses the current date and time when the XAB$Q_RDT field of the XABRDT
contains 0 or no value.

If you want to avoid having the Close service override the revision date and time, use the
XAB$Q_RDT field in the XABRDT (see Chapter 16) to establish the revision date and time.

If the application program specifies this field as 0 (either explicitly or by default), the Create service
uses the current date and time as the revision date and time. Note that this field is limited to a
granularity of 1 second for remote files.

This field corresponds to the FDL attribute DATE REVISION.

10.9. XAB$W_RVN Field
The revision number (RVN) field contains a numeric value that indicates the number of times this file
was opened for write operations.

This field corresponds to the FDL attribute FILE REVISION.

10.10. XAB$Q_RCD Field (VAX Only)
On VAX systems, the XAB$Q_RCD (RCD) field contains a 64-bit binary value expressing the date
and time that the file was recorded.

This field is applicable only to ISO 9660 files and has no corresponding FDL attribute.

10.11. XAB$Q_EFF Field (VAX Only)
On VAX systems, the XAB$Q_EFF (EFF) field contains a 64-bit binary value expressing the date and
time when the file information may be used. If no value is specified in this field, the data may be used
immediately.

This field is applicable only to ISO 9660 files and has no corresponding FDL attribute.

10.12. POSIX–Compliant Access Dates
(Alpha Only)
To support POSIX-compliant file timestamps on ODS–5 disks, the XABDAT structure has been
extended to include the following three access timestamps:

• The last access date (XAB$Q_ACC)

• The last attribute modification date (XAB$Q_ATT)

• The last data modification date (XAB$Q_MOD)

123

Chapter 10. Date and Time XAB (XABDAT)

Because these access dates must be written out to disk, there is a performance impact when these
dates are used. The SET VOLUME command can be used to either limit the frequency of the
updates or disable support for this set of access dates. (See the DCL SET VOLUME/VOLUME_
CHARACTERISTICS command.) A SETMODE XABITM access date interface can be used to
update these dates on a $CLOSE operation regardless of the volume setting. (See Chapter 12 in this
manual.)

10.12.1. XAB$Q_ACC Field
On Alpha systems, the XAB$Q_ACC field contains a 64-bit binary value expressing the date and time
that the file was last assessed (corresponding to POSIX st_atime). This field is restricted to ODS–5
disks; if specified for a non-ODS–5 disk, the field will contain zero.

This field cannot be initialized by the $XABDAT macro and has no corresponding FDL attribute. It is
not supported for DECnet for OpenVMS operations; it is ignored.

10.12.2. XAB$Q_ATT Field
On Alpha systems, the XAB$Q_ATT field contains a 64-bit binary value expressing the date and time
that a file attribute was last modified (corresponding to POSIX st_ctime). This field is restricted to
ODS–5 disks; if specified for a non-ODS–5 disk, the field will contain zero.

This field cannot be initialized by the $XABDAT macro and has no corresponding FDL attribute. It is
not supported for DECnet for OpenVMS operations; it is ignored.

10.12.3. XAB$Q_MOD Field
On Alpha systems, the XAB$Q_MOD field contains a 64-bit binary value expressing the date and
time that file data was last modified (corresponding to POSIX st_mtime). This field is restricted to
ODS–5 disks; if specified for a non-ODS–5 disk, the field will contain zero.

This field cannot be initialized by the $XABDAT macro and has no corresponding FDL attribute. It is
not supported for DECnet for OpenVMS operations; it is ignored.

124

Chapter 11. File Header Characteristic
XAB (XABFHC)
The file header characteristic XAB (XABFHC) contains file header information that is output by the
Open service and the Display service. The Create service can output information in this XAB when it
opens an existing file through use of the Create-if option.

The only input field is the longest record length (XAB$W_LRL) field. The Create service uses this
field when it creates a sequential file that does not use a fixed-length record format.

Note that, for unshared sequential files or sequential files shared using the FAB$V_UPI option,
the values in the end-of-file block (XAB$L_EBK), first free byte in the end-of-file block
(XAB$W_FFB), and longest record length (XAB$W_LRL) fields correspond to the values at the time
of the last Close or Flush service.

11.1. Summary of Fields
The symbolic offset, size, and a brief description of each RAB field are presented in Table 11.1. Note
that many of these fields are also available in the FAB.

Table 11.1. XABFHC Fields

Field Offset Size
(Bytes)

Description

XAB$B_ATR1 1 Record attributes; equivalent to FAB$B_RAT
XAB$B_BKZ1 1 Bucket size; equivalent to FAB$B_BKS
XAB$B_BLN2 1 Block length
XAB$B_COD2 1 Type code
XAB$W_DXQ1 2 Default file extension quantity; equivalent to FAB$W_DEQ
XAB$L_EBK1 4 End-of-file block
XAB$W_FFB1 2 First free byte in the end-of-file block
XAB$W_GBC1 2 Default global buffer count
XAB$L_HBK1 4 Highest virtual block in the file; equivalent to FAB$L_ALQ
XAB$B_HSZ1 1 Fixed-length control header size; equivalent to FAB$B_FSZ
XAB$W_LRL1 2 Longest record length
XAB$W_MRZ1 2 Maximum record size; equivalent to FAB$W_MRS
XAB$L_NXT 4 Next XAB address
XAB$B_RFO1 1 File organization and record format; combines FAB$B_RFM and

FAB$B_ORG
XAB$L_SBN1 4 Starting logical block number for the file if it is contiguous;

otherwise this field is 0
XAB$W_VERLIMIT1 2 Version limit for the file

1This field cannot be initialized by the $XABFHC macro.
2This field is statically initialized by the $XABFHC macro to identify this control block as a XABFHC.

125

Chapter 11. File Header Characteristic XAB (XABFHC)

There are no FDL equivalents for the XABFHC fields. Unless otherwise indicated, each field is
supported for DECnet for OpenVMS operations on files at remote OpenVMS systems. See the
DECnet for OpenVMS Networking Manual for information about the support of RMS options for
remote file access to other systems.

11.2. XAB$B_ATR Field
The record attributes (ATR) field indicates the record attributes (special control information)
associated with each record in this file. This field is equivalent to the FAB$B_RAT field.

This field is a binary options field where each record attribute has a corresponding bit assignment.
Options are identified using mnemonics. Each option in the field has its own symbolic offset and
constant value. For example, the CR record attribute has the symbolic offset XAB$V_CR and the
mask value XAB$M_CR. The record attribute options are described in the following list.

Options
XAB$V_BLK

Records do not cross block boundaries in sequential files.

XAB$V_CR

Each record is preceded by a line feed and followed by a carriage return.

XAB$V_FTN

Each record contains a FORTRAN (ASA) carriage return in the first byte.

XAB$V_PRN

Print file format.

For more information about the XAB$B_ATR field, refer to the description of the FAB$B_RAT field
in Section 4.27.

11.3. XAB$B_BKZ Field
The bucket size (BKZ) field specifies the number of blocks in each bucket of the file. It is equivalent
to the FAB$B_BKS (or XAB$B_BKZ) field and is used only for relative or indexed files.

This field contains a numeric value in the range of 0 to 63.

For more information about the XAB$B_BKZ field, refer to the description of the FAB$B_BKS field
in Section 4.5 and the description of the XAB$B_BKZ field in Section 9.6.

11.4. XAB$B_BLN Field
The block length (BLN) field is a static field that defines the length of the XABFHC, in bytes. Once
set, this field must not be altered unless the control block is no longer needed. This field must be
initialized to the symbolic value XAB$C_FHCLEN (this is done by the $XABFHC macro).

126

Chapter 11. File Header Characteristic XAB (XABFHC)

11.5. XAB$B_COD Field
The type code (COD) field is a static field that identifies this control block as a XABFHC. Once
set, this field must not be altered unless the control block is no longer needed. This field must be
initialized to the symbolic value XAB$C_FHC (this is done by the $XABFHC macro).

11.6. XAB$W_DXQ Field
The default file extension quantity (DXQ) field specifies the number of blocks to be added when a
disk file is extended automatically. This automatic extension occurs whenever your program performs
a Put or Write service and the currently allocated file space is exhausted.

This field is equivalent to the FAB$W_DEQ (or XAB$W_DEQ) field; it contains a numeric value in
the range 0 through 65,535, which is rounded up to the value of the next cluster boundary.

For more information about the XAB$W_DXQ field, refer to the description of the FAB$W_DEQ
field in Section 4.10 and the description of the XAB$W_DEQ field in Section 9.9.

11.7. XAB$L_EBK Field
When you open a file, RMS stores the VBN of the physical block where the next record will be
written in the XAB$L_EBK field. For example, assume that a file is allocated five physical blocks
and that the last record written to the file is at byte 0FF16 in the file's second physical block. When
your program opens this file, RMS stores the VBN of the second physical block in XAB$L_EBK and
it stores 10016 in the XAB$W_FFB field.

If the previous block is full when you open the file, RMS stores the first location (000 16) of the next
block in XAB$W_FFB and the VBN of the next block in XAB$L_EBK. By way of contrast, in a
similar situation RMS-11 stores the last byte (200 16) of the filled block in the XAB$W_FFB field and
the VBN of the filled block in the XAB$L_EBK field.

The XAB$L_EBK field is meaningful for sequential files only.

11.8. XAB$W_FFB Field
The first free byte in the end-of-file block (FFB) field contains the byte location in the end-of-file
block where the next record will be written. The XAB$W_FFB field is meaningful for sequential files
only.

11.9. XAB$W_GBC Field
The default global buffer count (GBC) field contains the current global buffer count for this file. For
more information about the XAB$W_GBC field, refer to the description of the FAB$W_GBC field in
Section 4.19.

This field is not supported for DECnet for OpenVMS operations; it is ignored.

11.10. XAB$L_HBK Field
The highest virtual block (HBK) field contains the virtual block number currently allocated to this
file. It is equivalent to the FAB$L_ALQ field after a Create, Open, or Display service executes. For

127

Chapter 11. File Header Characteristic XAB (XABFHC)

sequential files, the difference between XAB$L_HBK and XAB$L_EBK equals the number of blocks
in the file available for additional records without extending the file.

11.11. XAB$B_HSZ Field
The fixed-length control header size (HSZ) field indicates the length of the fixed portion for records in
the VFC format. It is equivalent to the FAB$B_FSZ field.

This field contains a numeric value (1 to 255) that indicates, in bytes, the size of the fixed-length
control area. This field is not applicable to indexed files.

For more information about the XAB$B_HSZ field, refer to the description of the FAB$B_FSZ field
in Section 4.18.

11.12. XAB$W_LRL Field
The longest record length (LRL) field contains a numeric value that indicates the longest record
currently in the file, in bytes. This value is meaningful for sequential files only. If you specify the
XAB$W_MRZ field, the LRL field takes the same value as the XAB$W_MRZ field.

11.13. XAB$W_MRZ Field
The maximum record size (MRZ) field indicates the size of all records in a file with fixed-length
records, the maximum size of variable-length records, the maximum size of the data area for
variable with fixed-length control records, and the cell size for relative files. It is equivalent to the
FAB$W_MRS field.

This field contains a numeric value in the range applicable to the file type and record format (see
Table 4.4), in bytes.

For fixed-length records, the value represents the actual size of each record in the file.

For variable-length records, the value represents the size of the largest record that can be written into
the file. If the file is not a relative file, a value of 0 is used to suppress record size checking, thus
indicating that there is no user limit on record size.

For variable with fixed-length control records, the value includes only the data portion; it does not
include the size of the fixed control area.

For more information about the XAB$W_MRZ field, refer to the description of the FAB$W_MRS
field in Section 4.24.

11.14. XAB$L_NXT Field
The next XAB address (NXT) field contains the symbolic address of the next XAB. A value of 0 (the
default) indicates that the current XAB is the last (or only) XAB in the chain.

11.15. XAB$B_RFO Field
The file organization and record format (RFO) field combines the FAB$B_RFM and FAB$B_ORG
fields using an inclusive OR.

128

Chapter 11. File Header Characteristic XAB (XABFHC)

The following table lists the record formats.

Record Format Description
FIX Fixed length
STM Stream, delimited by FF, VT, LF, or CR LF
STMCR Stream, delimited by CR
STMLF Stream, delimited by LF
UDF Undefined
VAR Variable length
VFC Variable length with fixed control area

The following table lists the file organizations.

File Organization Description
IDX Indexed sequential
REL Relative
SEQ Sequential

For more information about the XAB$B_RFO field, refer to the description of the FAB$B_ORG field
and the FAB$B_RFM field in Section 4.28.

11.16. XAB$L_SBN Field
The starting logical block number (SBN) field contains the starting logical block number for a
contiguous file; if the file is not contiguous, this field contains 0.

11.17. XAB$W_VERLIMIT Field
The file version limit (VERLIMIT) field contains the version limit for this file. This value is not
available if the file was opened by file ID.

This field is not supported for DECnet for OpenVMS operations; it is ignored.

129

Chapter 11. File Header Characteristic XAB (XABFHC)

130

Chapter 12. Item List XAB (XABITM)
The item list XAB (XABITM) provides a convenient means for using item list information to support
RMS functions. Each XABITM points to an item list that includes one or more entries representing
either a set function or a sense function that can be passed to the application program by way of the
RMS interface.

Because the mode field in a XABITM can be used to either set or sense the items in the list, you
cannot use a single XABITM to both set and sense a particular function. However, you may use
multiple XABITMs, some for setting functions and other for sensing functions. RMS logically ignores
items that are irrelevant to any particular function while acting on any item that is relevant.

Each entry in the item list includes three longwords, and a longword 0 terminates the list. See
Figure 12.1. Note the field "Return length address" in Figure 12.1 is ignored for Set Mode. Also note
that RMS does not validate the item list. If the item list is invalid, RMS indicates that the XABITM is
not valid by returning the invalid XAB status (RMS$_XAB) in the RAB$L_STS field.

Figure 12.1. Item Descriptor Data Structure

You can store the item list anywhere within process readable address space, but any buffers required
by the related function must be in read/write memory.

The format and arguments of the $XABITM macro are defined in Appendix A.

The XABITM control block currently supports the following functions:

• Enhancements to network file access functions

• Passing of file user characteristic information

• Enhancements to RMS performance monitoring functions

• Support for compound documents

• Specifying the number of local buffers

• Expiration date and time suppression

• Support for file size in heterogeneous environments

Although the benefits derived from these enhancements are readily apparent, functional details are
transparent to most users.

12.1. Summary of Fields
The symbolic offset, the size, and a brief description of each XABITM field are presented in
Table 12.1.

131

Chapter 12. Item List XAB (XABITM)

Table 12.1. XABITM Fields

Field Offset Description
XAB$B_BLN1 Block length
XAB$B_COD1 Type code
XAB$L_ITEMLIST Item list address
XAB$B_MODE Set/sense control
XAB$L_NXT Next XAB address

1This field is statically initialized by the $XABITM macro to identify the control block as a XABITM.

12.1.1. XAB$B_BLN Field
The block length (BLN) field is a static field that defines the length of the XABITM, in bytes. Once
set, this field must not be altered unless the control block is no longer needed. This field must be
initialized to the symbolic value XAB$C_ITMLEN by the $XABITM macro.

12.1.2. XAB$B_COD Field
The type code (COD) field is a static field that identifies this control block as a XABITM. Once
set, this field must not be altered unless the control block is no longer needed. This field must be
initialized to the symbolic value XAB$C_ITM by the $XABITM macro.

12.1.3. XAB$L_ITEMLIST Field
The item list address (ITEMLIST) field contains the symbolic address of the item list.

12.1.4. XAB$B_MODE Field
The item list mode (MODE) field specifies whether the items in the item list can be set or sensed
by the program. It contains either the symbolic value XAB$K_SETMODE or the symbolic value
XAB$K_SENSEMODE (default).

12.1.5. XAB$L_NXT Field
The next XAB address (NXT) field contains the symbolic address of the next XAB to be used. A
value of 0 (the default) indicates that the current XAB is the last (or only) XAB in the chain.

12.2. Network File Access Items
(XAB$_NET_... and XAB$_CAP_...)
This section lists and briefly describes the items that support network file access features.

Network items are effectively ignored for local operations. Although the application program may
include network items in the XAB chain for the related FAB, RMS does not consider any of the
network-specific fields during local processing. Nor does RMS return remote file contents to the
application program during local file processing.

Table 12.2 lists the entries in the XABITM item list relating to network file access features together
with the buffer size required to store the data and a brief functional description. Note that although
the application program can sense all of the item values from the RMS interface, it can set only the
following item values:

132

Chapter 12. Item List XAB (XABITM)

• XAB$_NET_BLOCK_COUNT

• XAB$_NET_EXTPROT

• XAB$_NET_LINK_TIMEOUT

• XAB$_NET_LINK_CACHE_ENABLE

• XAB$_NET_DATA_CRC_ENABLE

Table 12.2. XABITM Item List

Item Value Description
XAB$_NET_BUFFER_SIZE The size of the buffer allocated for DAP messages

between the local and remote node is a negotiated
value that is decided by DAP. This informational item
returns the actual buffer size, in bytes, allocated for DAP
messages. The buffer size is slightly larger than the limit
specified for the records being transferred.

A 4-byte buffer is needed to store the net buffer size.
XAB$_NET_BLOCK_COUNT This is the value in blocks that the local node wants to

use for buffering messages between itself and the remote
node.

DAP tries to allocate this buffer space at the local node;
however, if the maximum buffer size at the remote node
is smaller, DAP allocates buffer space based on the
smaller value. When the remote system incorporates the
file access listener, it allows any size buffer up to 32,767
bytes.

The minimum buffer size for task-to-task network
operations is 4096 bytes.

A 4-byte buffer is needed to store the net block count.
This informational item returns the identity of the remote
operating system.

A 4-byte buffer is needed to store the symbolic constants
representing the remote system identities listed in the
following table:
Symbolic Constant Operating System
XAB$K_RT11 RT-11
XAB$K_RSTS RSTS/E
XAB$K_RSX11S RSX-11S
XAB$K_RSX11M RSX-11M
XAB$K_RSX11D RSX-11D
XAB$K_IAS IAS
XAB$K_VAXVMS VMS

XAB$_NET_REMOTE_SYSTEM

XAB$K_TOPS10 TOPS–10

133

Chapter 12. Item List XAB (XABITM)

Item Value Description
XAB$K_TOPS20 TOPS–20
XAB$K_RSX11MP RSX-11M-PLUS
XAB$K_P_OS P/OS
XAB$K_VAXELN VAXELN
XAB$K_MS_DOS MS–DOS
XAB$K_ULTRIX_32 ULTRIX–32
XAB$K_SNA_OS SNA gateway to IBM
This informational item returns the identity of the remote
file system.

A 4-byte buffer is needed to store the symbolic constants
listed in the following table:
Symbolic Constant File System
XAB$K_RMS11 RMS-11
XAB$K_RMS20 RMS–20
XAB$K_RMS32 RMS-32
XAB$K_FCS11 FCS–11
XAB$K_RT11FS RT-11
XAB$K_NO_FS No file system present
XAB$K_TOPS20FS TOPS–20
XAB$K_TOPS10FS TOPS–10
XAB$K_RMS32S RMS-32 subset (VAXELN)
XAB$K_MS_DOSFS MS–DOS
XAB$K_ULTRIX32_FS ULTRIX–32

XAB$_NET_REMOTE_FILE_SYSTEM

XAB$K_SNA_FS SNA gateway to IBM
This item permits the application program to specify or
to sense the extended file protection that is likely to be
mapped to a protection subset supported by the remote
system.

An 8-byte buffer is needed to store protection mask
specification.

The application program implements extended file
protection as part of either a Create or Close service by
specifying the appropriate protection mask in the related
subfield:
Subfield Protection
XAB$W_SYSTEM_ACC System access
XAB$W_OWNER_ACC Owner access
XAB$W_GROUP_ACC Group access

XAB$_NET_EXTPROT

XAB$W_WORLD_ACC World access

134

Chapter 12. Item List XAB (XABITM)

Item Value Description
Each of the protection mask fields provides the following
mask values for further defining access:
Mask Value Protection Function
XAB$M_RED_ACC Deny read access
XAB$M_WRT_ACC Deny write access
XAB$M_EXE_ACC Deny execute access
XAB$M_DLT_ACC Deny delete access
XAB$M_APP_ACC Deny append access
XAB$M_DIR_ACC Deny directory access
XAB$M_UPD_ACC Deny update access
XAB$M_CHG_ACC Deny change protection

access
XAB$M_EXT_ACC Deny extend access
Note that not all systems support all of the protection
mask fields.

XAB$_NET_SYSCAP_LOCAL This informational item permits the application program
to read the network capabilities of the local system by
returning symbolic bit vector values. An 8-byte buffer is
needed to store the symbolic bit vector values.

See Table 12.3 for a description of the network
capabilities bit vectors used by the local and remote
systems.

XAB$_NET_SYSCAP_REMOTE This informational item permits the application program
to read the network capabilities of the remote system by
returning symbolic bit vector values. An 8-byte buffer is
needed to store the symbolic bit vector values.

See Table 12.3 for a description of the network
capabilities bit vectors used by the local and remote
systems.
This informational item returns the version of DAP on
the local system using five symbolic bytes, thus requiring
a 5-byte buffer:
Symbolic Byte Version Information
XAB$B_VER_DAP DAP protocol version
XAB$B_VER_ECO DAP protocol ECO level
XAB$B_VER_CUS Customer modification level

of DAP protocol; set to 0
XAB$B_VER_DSV Software version (release

number)

XAB$_NET_DAPVER_LOCAL

XAB$B_VER_CSV Customer software version
number; set to 0

135

Chapter 12. Item List XAB (XABITM)

Item Value Description
This informational item returns the version of DAP on
the remote system using five symbolic bytes:
Symbolic Byte Version Information
XAB$B_VER_DAP DAP protocol version
XAB$B_VER_ECO DAP protocol ECO level
XAB$B_VER_CUS Customer modification level

of DAP protocol; set to 0
XAB$B_VER_DSV Software version (release

number)

XAB$_NET_DAPVER_REMOTE

XAB$B_VER_CSV Customer software version
number; set to 0

XAB$_NET_LINK_TIMEOUT This item permits the application program to set the
timeout interval for logical link caching. The setting is
passed as the number of seconds used to cache the logical
link. A zero (0) setting enables caching until image
rundown. The default interval is 30 seconds.

A 4-byte buffer is needed to store the timeout interval
value.

XAB$_NET_DATA_CRC_ENABLE This item allows the application program to enable cyclic
redundancy checking at the DAP level. The symbolic
value XAB$K_ENABLE enables CRC checking at
the DAP level (the default state); the symbolic value
XAB$K_DISABLE disables CRC checking at the DAP
level.

XAB$_NET_LINK_CACHE_ENABLE This item is used to enable or to disable logical link
caching. The symbolic value XAB$K_ENABLE enables
link caching (the default state); the symbolic value
XAB$K_DISABLE disables link caching. A 4-byte
buffer is required.

The system capabilities supported by various DAP implementations are described using a vector
of bits wherein a bit is set if the corresponding capability is supported. Any attempt to implement
a feature at the local node that is not supported at the remote node is treated as a protocol error.
Table 12.3 describes the bit vectors that RMS uses to return the networking capabilities for both the
local and remote nodes to the calling program.

Table 12.3. System Networking Capabilities

Bit Value Capability
XAB$V_CAP_FILALL Allocation of space at file creation
XAB$V_CAP_SEQORG Sequential file organization
XAB$V_CAP_RELORG Relative file organization
XAB$V_CAP_EXTEND Manual file extension
XAB$V_CAP_SEQFIL Sequential file access (file transfer mode)
XAB$V_CAP_RANRRN Random access by relative record number

136

Chapter 12. Item List XAB (XABITM)

Bit Value Capability
XAB$V_CAP_RANVBN Random access by virtual block number
XAB$V_CAP_RANKEY Random access by key value
XAB$V_CAP_RANRFA Random access by record file address
XAB$V_CAP_IDXORG Multikeyed indexed file organization
XAB$V_CAP_SWMODE Dynamic switching of access modes
XAB$V_CAP_APPEND Records appended to end of file
XAB$V_CAP_SUBMIT Command file submission/execution
XAB$V_CAP_MDS Multiple data streams for each file
XAB$V_CAP_DISPLAY Display of file attributes on request
XAB$V_CAP_MSGBLK Blocking of DAP messages up to response (less than 256

bytes)
XAB$V_CAP_UNRBLK Unrestricted blocking of DAP messages
XAB$V_CAP_BIGBLK Blocking of DAP messages up to response (greater than or

equal to 256 bytes)
XAB$V_CAP_DAPCRC DAP message CRC checksum
XAB$V_CAP_KEYXAB Key definition XAB message
XAB$V_CAP_ALLXAB Allocation XAB message
XAB$V_CAP_SUMXAB Summary XAB message
XAB$V_CAP_DIRECTORY Directory list operation
XAB$V_CAP_TIMXAB Date and time XAB message
XAB$V_CAP_PROXAB File protection XAB message
XAB$V_CAP_FOPSPL Spool file on Close FOP option
XAB$V_CAP_FOPSCF Submit command file on Close FOP option
XAB$V_CAP_FOPDLT Delete file on Close FOP option
XAB$V_CAP_SEQRAC Sequential record access
XAB$V_CAP_BITOPT Bit count option in the FLAGS field
XAB$V_CAP_WARNING Warning status message and error recovery message

exchange
XAB$V_CAP_RENAME File rename operation
XAB$V_CAP_WILDCARD Wildcard operations (excluding directory)
XAB$V_CAP_GNGOPT Go/Nogo option in the ACCOPT field
XAB$V_CAP_NAMMSG Name message
XAB$V_CAP_SEGMSG Segmented DAP messages
XAB$V_CAP_CHGATTCLS Changing file attributes on Close using ATT message
XAB$V_CAP_CHGTIMCLS Changing file attributes on Close using TIM message
XAB$V_CAP_CHGPROCLS Changing file attributes on Close using PRO message
XAB$V_CAP_CHGNAMCLS Changing file attributes on Close using NAM message
XAB$V_CAP_MODATTCRE Modified attributes returned when file is created

137

Chapter 12. Item List XAB (XABITM)

Bit Value Capability
XAB$V_CAP_NAM3PART Three-part name message format in DISPLAY field of both

Access and Control messages
XAB$V_CAP_CHGATTREN Changing file attributes on Rename using ATT message
XAB$V_CAP_CHGTIMREN Changing file attributes on Rename using TIM message
XAB$V_CAP_CHGPROREN Changing file attributes on Rename using PRO message
XAB$V_CAP_CTLBLKCNT BLKCNT field in Control message
XAB$V_CAP_OCTALVER Octal version numbers only in file specifications

12.3. File User Characteristics Items
(XAB$_UCHAR_...)
This section describes the use of the XABITM to pass ODS-2 file information outside the RMS
interface level in contrast to the file header information (see Chapter 11) which is used internally
by the record management system. The information in this XABITM is independent of any record
management system or database management system.

Table 12.4 lists the file user information you can include in a XABITM. You can sense all of the
functions listed in the table using either $OPEN or $DISPLAY, but you can set only the following
functions using a XABITM:

• XAB$_UCHAR_CONTIGB

• XAB$_UCHAR_ERASE

• XAB$_UCHAR_LOCKED

• XAB$_UCHAR_NOBACKUP

• XAB$_UCHAR_NOMOVE

• XAB$_UCHAR_NOSHELVABLE

• XAB$_UCHAR_READCHECK

• XAB$_UCHAR_WRITECHECK

You can only set these functions when you use the $CREATE operation for a new file. The
buffer associated with the item code must contain the symbolic value XAB$K_ENABLE and the
XAB$B_MODE field must contain the symbolic value XAB$K_SETMODE.

You cannot enable or disable these functions for an existing file using the XABITM interface; you can
only enable or disable these functions for an existing file from the DCL interface using the SET FILE
command. See the VSI OpenVMS DCL Dictionary for details.

None of these functions are supported for DECnet operations; they are ignored. The user buffer is left
unchanged.

Table 12.4. File User Characteristics

Item Description
XAB$_UCHAR_BADACL File's ACL is corrupt.

138

Chapter 12. Item List XAB (XABITM)

Item Description
XAB$_UCHAR_BADBLOCK File contains bad blocks.
XAB$_UCHAR_CONTIG File is contiguous.
XAB$_UCHAR_CONTIGB Keep the file as contiguous as possible.
XAB$_UCHAR_DIRECTORY File is a directory.
XAB$_UCHAR_ERASE Erase the file's contents before deleting it.
XAB$_UCHAR_LOCKED File is deaccess-locked.
XAB$_UCHAR_MARKDEL File is marked for deletion.
XAB$_UCHAR_NOBACKUP Do not back up the file.
XAB$_UCHAR_NOCHARGE Do not charge file space.
XAB$_UCHAR_NOMOVE Disable movefile operations on the file.
XAB$_UCHAR_NOSHELVABLE File is not shelvable.
XAB$_UCHAR_PRESHELVED File is shelved but also kept online.
XAB$_UCHAR_READCHECK Verify read operations to the file.
XAB$_UCHAR_SHELVED File is shelved.
XAB$_UCHAR_SPOOL File is an intermediate spool file.
XAB$_UCHAR_WASCONTIG File was (and should be) contiguous.
XAB$_UCHAR_WRITEBACK File may be write-back cached.
XAB$_UCHAR_WRITECHECK Verify write operations to the file.

12.4. RMS Performance Monitoring
(XAB$_STAT_ENABLE)
This section describes the implementation of performance monitoring from the RMS interface using a
XABITM.

To explicitly obtain performance statistics for a file through the RMS interface, the application
program enables the statistics function using the XAB$_STAT_ENABLE item. This item may be used
with a $OPEN or $DISPLAY operation to sense the statistics monitoring state. You can only set the
statistics function when you use a $CREATE operation to create a new file. The buffer associated with
the item code must contain the symbolic value XAB$K_ENABLE and the XAB$B_MODE field must
contain the symbolic value XAB$K_SETMODE.

You cannot enable or disable this function for an existing file using the XABITM interface. You can
only enable or disable this function for an existing file from the DCL interface using the SET FILE
command. See the VSI OpenVMS DCL Dictionary for details.

For details about using the Monitor utility for gathering performance statistics, see the VSI OpenVMS
System Manager's Manual.

This option is not supported for DECnet operations; it is ignored. The user buffer is left unchanged.

139

Chapter 12. Item List XAB (XABITM)

Example 12.1 illustrates the use of XABITM to enable statistics monitoring.

Example 12.1. Using XABITM to Enable RMS Statistics

 .
 .
 .
ITEMLIST : BLOCK [ITM$S_ITEM+4, BYTE]
 INITIAL(REP (ITM$S_ITEM+4) OF (0)),

ITEM_XAB : $XABITM(mode = SETMODE,
 itemlist = ITEMLIST),

ITEM_BUFFER : LONG INITIAL (XAB$K_ENABLE);
FILE_FAB : $FAB(
 .
 .
 .
 XAB = ITEM_XAB,
 .
 .
 .
);
ITEMLIST[ITM$W_ITMCOD] = XAB$_STAT_ENABLE;
ITEMLIST[ITM$W_BUFSIZ] = 4;
ITEMLIST[ITM$L_BUFADR] = ITEM_BUFFER;
$CREATE(fab = FILE_FAB);
 .
 .
 .

12.5. Compound Document Support
(XAB$_..._SEMANTICS)
The term compound documents refers to files that can contain a number of integrated components
including text, graphics, and scanned images. To support the use of text in compound documents,
RMS implements the file attribute, stored semantics. The value of the stored semantics attribute is
called the file tag, and it specifies how file data is to be interpreted.

RMS support for compound documents requires that compound document files be tagged. You can
tag a file from the RMS interface by using the Create service in conjunction with a $XABITM macro,
and you can sense the tagged status of a file using a $XABITM macro. Tagged file support involves
the use of the two item codes shown in Table 12.5. Each of these item codes requires buffers up to 64
bytes long.

Table 12.5. Tag Support Item Codes

Item Function
XAB$_STORED_SEMANTICS Defines the file semantics established when the file is

created
XAB$_ACCESS_SEMANTICS Defines the file semantics desired by the accessing program

 The entries XAB$_STORED_SEMANTICS and XAB$_ACCESS_SEMANTICS in the item
list can represent either a control (set) function or a monitor (sense) function that can be passed to

140

Chapter 12. Item List XAB (XABITM)

RMS from the application program by way of the RMS interface. You can use the symbolic value
XAB$K_SEMANTICS_MAX_LEN, representing the tag length, to allocate buffer space for sensing
and setting stored semantics for the file.

Within any one $XABITM, you can activate either the set function or the sense function for the
XAB$_STORED_SEMANTICS and XAB$_ACCESS_SEMANTICS items because a common field
(XAB$B_MODE) determines which function is active. If you want to activate both the set function
and the sense function for either or both items, you must use two $XABITM control blocks, one for
setting the functions and one for sensing the functions.

12.6. Specifying the Number of Local Buffers
(XAB$_MULTIBUFFER_COUNT)
This section describes how to use the item list XAB to specify up to 32,767 local buffers. Prior to
implementation of the XAB$_MULTIBUFFER_COUNT XABITM, you could only specify up to
127 local buffers for a record stream from the RMS interface using the RAB multibuffer count field
(RAB$B_MBF). When you use the multibuffer count XABITM, the value specified overrides any
value that resides in the RAB$_MBF for the related record stream.

The XAB$_MULTIBUFFER_COUNT XABITM requires a 4-byte buffer to store the value
specifying the number of local buffers. Before you increase the size of the local buffer pool, your
current memory management parameters should be considered because excessively large buffer pools
can introduce additional paging that reduces performance.

This option is not supported for DECnet operations; it is ignored.

You cannot sense the value stored in the XAB$_MULTIBUFFER_COUNT XABITM, and any
attempt to sense this value leaves the user buffer unchanged.

12.7. Expiration Date and Time Suppression
The file system, in conjunction with parameters established through the DCL interface (see the SET
VOLUME command in the VSI OpenVMS DCL Dictionary), gives users the capability to determine
whether the contents of a data file have grown stale and whether the file is a candidate for less costly
and less accessible storage, typically archived tape.

The file system determines whether a file has grown stale by evaluating the Expiration Date and Time
flag. This value should reflect real file activity; that is, it should indicate when a file is no longer being
actively used for informational purposes. The flag should not be affected by maintenance functions or
for any function that does not involve data access.

This capability is also available to all user application programs through the RMS interface using the
XAB$_NORECORD XABITM.

12.7.1. XAB$_NORECORD XABITM
When an application program reads data from a disk file or writes data to a disk file, the $CLOSE
service updates the Expiration Date and Time value to the current date and time. This effectively
pushes back the expiration date and time to reflect user interest in the file.

When the user program accesses a file for maintenance or monitoring purposes, it should use the
XAB$_NORECORD XABITM as an input to the appropriate file service to inhibit the update of

141

Chapter 12. Item List XAB (XABITM)

the Expiration Date and Time field and thereby maintain the true expiration status of the file. For
example, the DCL command DIRECTORY/FULL uses the XAB$_NORECORD XABITM when
it opens files to access prolog data containing key information. In this case, DIRECTORY displays
prolog information but does not display or modify the file data and therefore should not modify the
Expiration Date and Time.

Maintenance utilities should also consider using this XABITM. For example, a disk defragmentation
utility should not affect the expiration status of a disk file because the file is not accessed for
informational purposes, but rather for maintenance purposes.

The XAB$_NORECORD XABITM uses a 4-byte buffer to set the NORECORD flag to logic 1 using
the symbol XAB$_ENABLE. Any other value in this XABITM buffer returns an RMS$_XAB error.
An application cannot disable this option because the ODS-2 ACP does not support disabling the
option when it is selected on a $OPEN or $CREATE.

This option is not supported for DECnet operations; it is ignored.

12.7.2. Application
The XAB$_NORECORD function can be enabled on input to the $CLOSE, $OPEN, and $CREATE
services. However, VSI recommends using the XAB$_NORECORD XABITM with the $OPEN
service instead of with the $CLOSE service in order to insure that the Expiration Date and Time
flag is updated should the file deaccess or should a close occur because of process deletion or RMS
rundown.

The XAB$_NORECORD XABITM can also be used when the $CREATE service opens an existing
file through the Create-if option and the user does not want to change the Expiration Date. When the
XAB$_NORECORD XABITM is used on a $CREATE that creates a file, it disables the update on the
subsequent $CLOSE but does not prevent initialization of the Expiration Date and Time on the file
creation in the ACP.

An application typically senses the XAB$_NORECORD XABITM to determine if the XABITM
was specified on a previous $OPEN or $CREATE option or if it is specified by the current RMS
operation. The XAB$_NORECORD can be sensed on output from RMS for the $OPEN, $CREATE,
$DISPLAY, and $CLOSE services.

12.8. File Length Hint
(XAB$_FILE_LENGTH_HINT)
The file length hint is a pair of quadword integer fields (16 bytes) as follows:

1. Record count (bytes 0-7): the number of data records written to the file using record I/O ($PUT).

2. User data byte count (bytes 8-15): the total number of user data bytes in the file (excluding any
overhead bytes added by RMS).

For sequential files with a record format of variable (VAR) or variable with fixed control (VFC) on an
ODS-5 volume, RMS will maintain the file hint, provided:

• The file is written only using unshared RMS record I/O.

• The file does not have journaling enabled.

• The contents of the fields are valid when the file is opened.

142

Chapter 12. Item List XAB (XABITM)

The XAB$_FILE_LENGTH_HINT item code may be used with an item list XAB on $OPEN or
$DISPLAY operations to sense the file length hint values. A SETMODE may be used with a $CLOSE
operation to set the file length hint counts. The SETMODE will override any counts that RMS may be
concurrently maintaining.

The XAB$_FILE_LENGTH_HINT XABITM requires a 16-byte buffer for the two quadwords. These
fields are maintained as a set: either both fields are valid or invalid.

The most significant (sign) bit of each quadword is used to indicate whether the associated count is
valid. A sequential file with VAR or VFC format that is created on an ODS-5 volume, had any data
added to it using RMS record I/O ($PUTs) and has met the conditions indicated above should have
valid counts. If, however, at some point in time, some data are written to a file using RMS block I/O,
for example, then the sign bits will be set on file deaccess to indicate the counts are invalid. The last
count maintained in each field is retained as a hint of what its last valid value was, but the sign bit
being set indicates it is stale.

If these fields have never been modified by RMS for a file on an ODS-5 volume, then the contents of
each quadword will be 8 bytes of 0xFF. For example, after a file originally created and maintained on
an ODS-2 volume is converted from ODS-2 format to ODS-5 format, these fields will contain 8 bytes
of 0xFF.

The counts in these fields are invalidated if a truncate-on-put is done, except if the truncate is to zero.

The utility ANALYZE/RMS_FILE has an /UPDATE_HEADER function that can be used to
revalidate the counts in these fields.

If a SENSEMODE using this item code is requested for a non-ODS-5 file, the contents returned for
each quadword will be 8 bytes of 0xFF. A SETMODE using this item code for a non-ODS-5 file will
be ignored.

The file length hint is not supported for DECnet operations; it is ignored. If a SENSE is attempted, 8
bytes of 0xFF will be returned to the user buffer for each quadword.

12.9. Extended File Cache
(XAB$_CACHE_OPTIONS) (Alpha Only)
The ODS-2 and ODS-5 volumes of the Files-11 file system can use a caching technique to improve
performance. In using caching, the file system keeps a copy of data that it recently read from disk
in an area of memory called a cache. When an application reads data, for example, the file system
checks whether the data is in its cache. The file system only issues an I/O to read the data from disk
if the data is not in the cache. Caching improves read performance, because reading data from cache
memory is much faster than reading it from disk.

The extended file cache (XFC) is a virtual block cache, which caches both data and image files, and is
available only on Alpha Systems. The extended file cache allows you to specify the following caching
options:

• Write-through caching

• No caching

You can control the files that the Extended File Cache option caches by setting and showing the
current caching option. This is described in the following section.

143

Chapter 12. Item List XAB (XABITM)

Setting and Showing the Current Caching Option
When you access a file, you can specify the caching option that you would like for the current
process. If you want the file to be cached, select write-through caching. This is the default. The write-
through cache allows an application to write data to a file and straight through to disk. When this
occurs, the application waits until the disk I/O is done and the data is on the disk.

The current caching option is stored in the XAB$_CACHING_OPTIONS XABITM, which has the
following structure.

Table 12.6 shows the fields and gives a description of XAB$_CACHING_OPTIONS XABITM.

Table 12.6. XAB$_CACHING_OPTIONS XABITM

Field Description
XAB$V_FILE_CONTENTS Can have one of the following values:

• XAB$K_NOCACHING

• XAB$K_WRITETHROUGH
XAB$V_FLUSH_ON_CLOSE Must have the value XAB$K_FLUSH.1

1Note that this must be set. It is required for future enhancements.

You can set the caching option by supplying a set mode XAB$_CACHING_OPTIONS XABITM
when you do the following:

• When you create a file using SYS$CREATE

• When you open an existing file using SYS$OPEN

If you do not supply a XABITM or, if you supply a XABITM whose value is zero (0), the file system
uses the value in the file's caching attribute.

If another process on your computer is accessing the file, and you ask for write-through caching, your
request is ignored if the file's current caching option is no caching. When more than one process is
accessing a file on a single node, the most restrictive caching option takes effect on that node. Write-
through caching is least restrictive; no caching is most restrictive.

When more than one node in an OpenVMS Cluster is accessing a file, its caching option may be
different on different nodes. It may be write-through on one node and no caching on another.

To show the caching option, supply a sense mode XABITM on a call to SYS$DISPLAY.

12.10. POSIX-Compliant Access Dates
(Alpha Only)
To support POSIX-compliant file timestamps on ODS–5 disks, file attributes have been extended to
include the following three access dates:

144

Chapter 12. Item List XAB (XABITM)

• The last access date (XAB$Q_ACC)

• The last attribute modification date (XAB$Q_ATT)

• The last data modification date (XAB$Q_MOD)

The XABITM SENSEMODE interface can be used with the following item codes on $OPEN or
$DISPLAY operations to sense each of these three access dates:

• XAB$_ACCDATE

• XAB$_ATTDATE

• XAB$_MODDATE

Sensing these dates requires that access date support be enabled on the ODS-5 volume. (See the DCL
SET VOLUME/VOLUME_CHARACTERISTICS command in the VSI OpenVMS DCL Dictionary:
N-Z.)

A SETMODE can be used with a $CLOSE operation with any of these item codes to update these
dates regardless of the volume setting. A user may inhibit the update of the access dates by using the
XAB$_NORECORD XABITM.

Each of these item codes requires a quadword buffer.

If a SENSEMODE using any of these item codes is requested for a non-ODS–5 file, a zero is
returned. A SETMODE using any of these item codes for a non-ODS–5 file will be ignored.

These items are ignored for DECnet operations. If a SENSEMODE is attempted for any of these
items, the user buffer is left unchanged.

145

Chapter 12. Item List XAB (XABITM)

146

Chapter 13. Journaling XAB
(XABJNL)
The journaling XAB (XABJNL) control block supports file journaling operations. See the RMS
Journaling for OpenVMS Manual for details.

147

Chapter 13. Journaling XAB (XABJNL)

148

Chapter 14. Key Definition XAB
(XABKEY)
You must provide a key definition XAB (XABKEY) for each key in an indexed file in order to define
the key's characteristics. Before you create an indexed file, you must establish the contents of the
XABKEY fields for the primary key and for each alternate key.

When you invoke an Open or Display service for an existing indexed file, you can use XABKEYs if
you want to provide your program with one or more of the key definitions specified when the file was
created. Alternatively, the summary XAB (see Chapter 18) provides the number of keys, the number
of allocated areas, and the prolog version assigned to the file.

14.1. Summary of Fields
Table 14.1 lists the symbolic offset, the size, the FDL equivalent, and a brief description of each
XABKEY field.

Table 14.1. XABKEY Fields

Field Offset Size
(Bytes)

FDL Equivalent Description

XAB$B_BLN1 1 None Block length
XAB$B_COD1 1 None Type code
XAB$L_COLNAM 4 None Collating sequence name
XAB$L_COLSIZ 4 None Collating sequence table size
XAB$L_COLTBL 4 COLLATING_SEQUENCE Collating sequence table address
XAB$B_DAN 1 KEY DATA_AREA Data bucket area number
XAB$B_DBS2 1 None Data bucket size
XAB$W_DFL 2 KEY DATA_FILL Data bucket fill size
XAB$B_DTP 1 KEY TYPE3 Data type of the key
XAB$L_DVB2 4 None First data bucket virtual block

number
XAB$B_FLG 1 KEY3 Key options flag
XAB$B_IAN 1 KEY INDEX_AREA Index bucket area number
XAB$B_IBS2 1 None Index bucket size
XAB$W_IFL 2 KEY INDEX_FILL Index bucket file size
XAB$L_KNM 4 KEY NAME Key name buffer address
XAB$B_LAN 1 KEY

LEVEL1_INDEX_AREA
Lowest level of index area number

XAB$B_LVL2 1 None Level of root bucket
XAB$W_MRL2 2 None Minimum record length
XAB$B_NSG2 1 None Number of key segments
XAB$B_NUL 1 KEY NULL_VALUE Null key value
XAB$L_NXT 4 None Next XAB address

149

Chapter 14. Key Definition XAB (XABKEY)

Field Offset Size
(Bytes)

FDL Equivalent Description

XAB$W_POSn 2 KEY POSITION and
SEGn_POSITION

Key position, XAB$W_POS0 to
XAB$W_POS7

XAB$B_PROLOG 1 KEY PROLOG Prolog level
XAB$B_REF4 1 KEY n Key of reference
XAB$L_RVB2 4 None Root bucket virtual block number
XAB$B_SIZn 1 KEY LENGTH and

SEGn_LENGTH
Key size XAB$B_SIZ0 to
XAB$B_SIZ7

XAB$B_TKS2 1 None Total key field size
1This field is statically initialized by the $XABKEY macro to identify this control block as a XABKEY.
2This field cannot be initialized by the $XABKEY macro.
3This field contains options; corresponding FDL equivalents are listed in the description of the field.
4For BLISS-32, this field is designated XAB$B_KREF.

Unless otherwise indicated, each field is supported for DECnet for OpenVMS operations on files at
remote OpenVMS nodes. For information about the support of RMS options for remote file access to
other systems, see the DECnet for OpenVMS Networking Manual.

14.2. XAB$B_BLN Field
The block length (BLN) field is a static field that defines the length of the XABKEY, in bytes. Once
set, this field must not be altered unless the control block is no longer needed. The $XABKEY macro
initializes the XAB$B_BLN field to the symbolic value XAB$C_KEYLEN.

14.3. XAB$B_COD Field
The type code (COD) field is a static field that identifies this control block as a XABKEY. Once set,
this field must not be altered unless the control block is no longer needed. The $XABKEY macro
initializes the XAB$B_COD field to the symbolic value XAB$C_KEY.

14.4. XAB$L_COLNAM Field
When you invoke the Display service, RMS uses this field to return a pointer to a memory buffer
containing the name of the collating sequence for this key.

The name buffer is in the form of an ASCII counted string where the first byte indicates the length
of the name and the remaining bytes are the ASCII representation of the name itself. The maximum
length of the buffer is 32 bytes, 1 byte for the count and 31 bytes for the name.

14.5. XAB$L_COLSIZ Field
When you invoke the Display service, RMS returns the size, in bytes, of the collating sequence used
with this key to this field.

14.6. XAB$L_COLTBL Field
RMS provides you with a way to use alternative (non-ASCII) collating sequences with indexed file
keys. You can define a collating sequence for each key of reference, yielding, for example, a file
sorted in German by one key, French by another key, and so forth.

150

Chapter 14. Key Definition XAB (XABKEY)

This feature is based on the National Character Set utility, which permits you to define alternative
collating sequences for special characters and to establish and maintain a library of collating
sequences. This eliminates having to redefine an alternative collating sequence when the application
requires it. See the OpenVMS National Character Set Utility Manual for details.

Note

Key compression and index compression are not permitted with collating keys.

To access an alternative collating sequence for a key, enter the symbolic address of the appropriate
collating table in the XAB$L_COLTBL field. For example, you might enter the following:

DST_KEY0:
 $XABKEY
 .
 .
 .
 COLTBL=FRENCH, - ;symbolic address of French collating
 table
 .
 .
 .

RMS responds by storing the specified collating table in the initial blocks of the indexed file
immediately following the area descriptors. Collating tables are typically about one block long.

When you invoke the Display or the Open service, RMS returns the address of the collating table in
this field.

This field corresponds to the FDL attribute COLLATING_SEQUENCE.

14.7. XAB$B_DAN Field
The data bucket area number (DAN) field contains a numeric value that identifies the area where
the data buckets for this key reside. The number reflects the value in the XAB$B_AID field of the
XABALL for this XAB chain. The numeric value may range from 0 through 254, but the default is 0;
that is, area 0.

When you create a new indexed file or when you use allocation XABs to define areas (see Chapter 9),
you must specify a value for this field to identify the file area where the data buckets are to reside.

When a XABKEY describes the primary key, the data level of the index consists of buckets that
contain the actual data records of the file. However, when the key definition describes an alternate
key, the data level of the index consists of buckets in which RMS maintains pointers to the actual data
records.

The XAB$B_DAN field corresponds to the FDL attribute KEY DATA_AREA.

14.8. XAB$B_DBS Field
After an Open or Display service, the data bucket size (DBS) field contains the size of the data level
(level 0) buckets, in virtual blocks, for the key described by the XAB.

151

Chapter 14. Key Definition XAB (XABKEY)

14.9. XAB$W_DFL Field
The data bucket fill size (DFL) field contains a numeric value that indicates the maximum number of
bytes (of data) in a data bucket. The largest possible fill size is the bucket size, in blocks, multiplied
by 512. The default value is 0, which is interpreted as the maximum available space (that is, no
unused space). If the specified size is not 0, but is less than one-half of the bucket size (in bytes), then
the fill size used is one-half of the bucket size.

When you create an indexed file, you use this field to specify the number of bytes of data you want in
each data level bucket. If you specify a value that is less than the actual bucket size, the data buckets
contain some amount of free space. At run-time, RMS uses the fill size specified when the file was
created only if the RAB$L_ROP (record-processing options) field RAB$V_LOA option is specified
in the RAB; otherwise, RMS fills the buckets.

When a XABKEY describes the primary key, the XAB$W_DFL field describes the space in the
buckets containing actual user data records. When a XABKEY describes an alternate key, the
XAB$W_DFL field describes the space in the buckets containing pointers to the user data records.

It is advantageous to use the XAB$W_DFL field if you expect to execute numerous random Put and
Update services on the file after it has been initially populated. You can minimize the movement of
records (bucket splitting) by specifying less than the maximum bucket fill size when you create the
file. To use the free space reserved in the buckets, programs that execute Put or Update services on the
file should not specify the RAB$L_ROP field RAB$V_LOA option.

This field corresponds to the FDL attribute KEY DATA_FILL (which is expressed as a percentage).

14.10. XAB$B_DTP Field
The XAB$B_DTP field specifies the key data type and the key sort order, ascending or descending.

In this keyword value field, each key data type option is defined by a symbolic value. If the key sort
order is descending, the letter D is prefixed to the symbolic value; if the sort order is ascending, the
prefix is omitted. For example, a XAB$B_DTP field having the value XAB$C_DBN2 is an unsigned,
2-byte binary number that is sorted in descending order. On the other hand, a XAB$B_DTP field
having the value XAB$C_BN2 is an unsigned, 2-byte binary number that is sorted in ascending order.

Only one option can be specified. It is identified by a symbolic constant value; for example, the STG
(string) option has the constant value XAB$C_STG.

The options for the XAB$B_DTP field are listed in the following table:

Keyword Data Type Sort Order
XAB$C_BN2 Unsigned 2-byte binary Ascending
XAB$C_DBN2 Unsigned 2-byte binary Descending
XAB$C_BN4 Unsigned 4-byte binary Ascending
XAB$C_DBN4 Unsigned 4-byte binary Descending
XAB$C_BN8 Unsigned 8-byte binary Ascending
XAB$C_DBN8 Unsigned 8-byte binary Descending
XAB$C_IN2 Signed 2-byte integer Ascending

152

Chapter 14. Key Definition XAB (XABKEY)

Keyword Data Type Sort Order
XAB$C_DIN2 Signed 2-byte integer Descending
XAB$C_IN4 Signed 4-byte integer Ascending
XAB$C_DIN4 Signed 4-byte integer Descending
XAB$C_IN8 Signed 8-byte integer Ascending
XAB$C_DIN8 Signed 8-byte integer Descending
XAB$C_COL Collating key Ascending
XAB$C_DCOL Collating key Descending
XAB$C_PAC Packed decimal string Ascending
XAB$C_DPAC Packed decimal string Descending
XAB$C_STG1 Left-justified string of

unsigned 8-bit bytes
Ascending

XAB$C_DSTG Left-justified string of
unsigned 8-bit bytes

Descending

1This is the default value.

The string data type may consist of from one to eight detached key field segments that collectively
make up the key. For more information about segmented keys, see the descriptions of the
XAB$W_POS0 through XAB$W_POS7 field and the XAB$B_SIZ0 through XAB$B_SIZ7 field.

Integer, binary, and packed decimal key fields must be a contiguous set of bytes.

The formats of the binary and integer key field data types are presented in the following table.

Key Type Format
XAB$C_BN2 LSB at A, MSB at A+1
XAB$C_DBN2 LSB at A, MSB at A+1
XAB$C_BN4 LSB at A, MSB at A+3
XAB$C_DBN4 LSB at A, MSB at A+3
XAB$C_BN8 LSB at A, MSB at A+7
XAB$C_DBN8 LSB at A, MSB at A+7
XAB$C_IN2 LSB at A, MSB and sign at A+1
XAB$C_DIN2 LSB at A, MSB and sign at A+1
XAB$C_IN4 LSB at A, MSB and sign at A+3
XAB$C_IN4 LSB at A, MSB and sign at A+3
XAB$C_IN8 LSB at A, MSB and sign at A+7
XAB$C_DIN8 LSB at A, MSB and sign at A+7

The collating key data types are used in conjunction with collating sequences located in the indexed
file prolog. Collating sequences are used with multinational characters and are specified for each key.
Note that key compression and index compression are not permitted with collating keys.

Note that although a collating key affects the stored order for records, the collating value does not
govern record lookups. For example, a collating sequence may assign the same ordering for the keys
“dog” and “DOG”. However, both keys do not have the same access (lookup) value. Therefore, when

153

Chapter 14. Key Definition XAB (XABKEY)

doing lookups, a program should specify either the specific key value or a range of values that include
the uppercase and lowercase combinations of the key. See the Guide to OpenVMS File Applications
for more information about accessing indexed records.

A packed decimal string is a contiguous sequence of bytes specified by two attributes: the address (A)
of the first byte of the string and a length (L) that is the number of digits in the packed decimal. The
bytes of a packed decimal are divided into two 4-bit fields that must contain decimal digits, except
for the first four bits (0 through 3) of the last (highest addressed) byte, which must contain a sign. The
representation for the digits and signs is shown in the following table.

Digit or Sign Decimal Value Hexadecimal Value
0 0 0
1 1 1
2 2 2
3 3 3
4 4 4
5 5 5
6 6 6
7 7 7
8 8 8
9 9 9
+ 10, 12, 14, or 15 A, C, E, or F
– 11 or 13 B or D

The preferred sign representation is 12 for plus (+) and 13 for minus (–). The length (L) is the number
of digits in the packed decimal string (not counting the sign) and must be in the range 0 through 31.
When the number of digits is even, an extra 0 digit must appear in the last four bits (4 through 7) of
the first byte. Again the length in bytes of the packed decimal is L/2 + 1. The value of a zero-length
packed decimal is 0; it contains only the sign byte, which also includes the extra 0 digit.

The address, A, of the packed decimal specifies the byte containing the most significant digit in its
high order. Digits of decreasing significance are assigned to increasing byte addresses and from high
to low within a byte. Thus, +123 has length 3 and is represented as follows:

Similarly, –12 has length 2 and is represented as follows:

154

Chapter 14. Key Definition XAB (XABKEY)

This field corresponds to the FDL attribute KEY TYPE.

14.11. XAB$L_DVB Field
After an Open or Display service, the DVB field contains the starting virtual block number of the first
data level bucket for the key described by the XAB.

14.12. XAB$B_FLG Field
The key options flag (FLG) field specifies the following conditions:

• Whether duplicate keys are permitted in the file

• Whether a key value can change

• Whether a null value has been defined for a key

• Whether data is compressed

• Whether string key options apply

Note

The string data-type keys include STRING, DSTRING, COLLATED, and DCOLLATED keys.

Primary key values cannot change, but alternate key values may change, depending on application
requirements. Primary and alternate keys may be duplicated depending on the key field and the
application. An alternate key field is more likely than a primary key field to use duplicates.

This field is a binary options field where each key characteristic has a corresponding bit assignment.
Multiple key characteristics can be associated with each key (multiple bits can be set). Each option in
the field has its own symbolic offset and mask value. For example, the CHG key characteristic has a
symbolic offset of XAB$V_CHG and a mask value of XAB$M_CHG.

When you create an indexed file and are defining a string key, you can specify the
XAB$V_IDX_NCMPR and XAB$V_KEY_NCMPR options, which are described in the following
list.

Options
XAB$V_CHG

The key value within the record in the file can be changed by a program during an Update service.
This option can be specified only for alternate keys.

This option corresponds to the FDL attribute KEY CHANGES.

XAB$V_DAT_NCMPR

Do not compress data. This option can be specified to override compression of data for Prolog 3
files for the primary key; that is, when XAB$_REF is 0. For additional information, see Guide to
OpenVMS File Applications.

155

Chapter 14. Key Definition XAB (XABKEY)

This option corresponds to the FDL attribute KEY DATA_RECORD_COMPRESSION.

This option is not supported for DECnet for OpenVMS operations; it is ignored.

XAB$V_DUP

The key value within the record in the file may have the same key value as another record (or other
records) within the file.

This option corresponds to the FDL attribute KEY DUPLICATES.

XAB$V_IDX_NCMPR

Do not compress index. This option can be specified to override compression of keys in the index for
Prolog 3 files. This option is valid only if a string key is being defined and the string is at least 6 bytes
in length. For additional information, see Guide to OpenVMS File Applications.

This option corresponds to the FDL attribute KEY INDEX_COMPRESSION and it is not supported
for DECnet for OpenVMS operations.

XAB$V_KEY_NCMPR

Do not compress key. This option can be specified to override compression of each key for Prolog
3 files. For a primary key (XAB$_REF is 0), the primary keys at the data level are not compressed;
for each alternate key (XAB$_REF is greater than 0), the secondary index data records (SIDRs) that
point to the data record location are not compressed. This option is valid only if a string key is being
defined and the string is at least 6 bytes in length. For additional information, see Guide to OpenVMS
File Applications.

This option corresponds to the FDL attribute KEY DATA_KEY_COMPRESSION and it is not
supported for DECnet for OpenVMS operations.

XAB$V_NUL

The null key option permits you to exclude records from an alternate index by effectively removing
the related key. Typically, you would use this in an application where performance is more critical
than the indexing capability. This option can be specified only for alternate key indexes but it can be
used with all key types.

When you set the XAB$V_NUL bit for a string-type key (string, descending string, collated,
descending collated) RMS checks the XAB$B_NUL field to determine the null character you
have defined for the related key. When you use the XAB$V_NUL option with the integer, binary,
and packed decimal data types, RMS assigns a default null value of 0 and does not check the
XAB$B_NUL field (see XAB$B_FLG and XAB$B_NUL).

The defaults and combinations of allowing changeable key values (XAB$V_CHG option) and
duplicate key values (XAB$V_DUP option) depend on whether a primary or alternate key is being
defined by this XABKEY. The allowed combinations and defaults for duplicate and changeable key
values are described in the following table.

Combinations Primary Key Alternate Key
XAB$V_CHG and XAB$V_DUP both set Error Allowed
XAB$V_CHG set, XAB$V_DUP clear Error Allowed

156

Chapter 14. Key Definition XAB (XABKEY)

Combinations Primary Key Alternate Key
XAB$V_CHG clear, XAB$V_DUP set Allowed Allowed
XAB$V_CHG and XAB$V_DUP both clear Default Default

By default, duplicate keys are not allowed for the primary key and its value cannot change.

If the XABKEY control block is not initialized by the $XABKEY macro, then the defaults for
alternate keys are the same as for primary keys and null key values are not used. However, if the
XABKEY control block is initialized by the $XABKEY macro, the following defaults apply to
alternate keys:

• Duplicate key values are allowed.

• Key values can change.

• Null key values are not allowed.

These defaults are applied only if the entire XAB$B_FLG field is defaulted.

Note that RMS supports alternate indexes that do not allow duplicate key values but do allow key
values to change for Update services. Older versions of RMS-11 (in contrast to RMS) do not allow
this particular combination of attributes for alternate indexes. This factor should be considered when
you create files with RMS that may also be processed by RMS-11.

This option corresponds to the FDL attribute KEY NULL_KEY.

14.13. XAB$B_IAN Field
The index bucket area number (IAN) field contains a numeric value in the range 0 through 254,
representing an area identification number contained in the XAB$B_AID field of a XABALL present
in the same chain. The default is 0 (that is, area 0).

When you create an indexed file, you use this argument to specify the area of the file that the index
buckets are to reside in only when both of the following are true:

• You are creating a new indexed file.

• You are using allocation XABs to define areas.

When the XABKEY describes the primary key, the index level of the index consists of all levels of
the tree-structured primary index down to and including the level containing pointers to the user data
records themselves. However, when the key definition describes an alternate key, the index level
of the index comprises all levels of the tree-structured alternate index down to, but not including,
the level containing buckets with pointer arrays that describe the user data records. For directions
about how to place the lowest level of the index in a location separate from the higher levels, see the
description of the XAB$B_LAN field.

This field corresponds to the FDL attribute KEY INDEX_AREA.

14.14. XAB$B_IBS Field
After an Open or Display service, the index bucket size (IBS) field contains the size of the index level
(level 1 to n buckets, in virtual blocks, for the key described by the XAB).

157

Chapter 14. Key Definition XAB (XABKEY)

14.15. XAB$W_IFL Field
The index bucket fill size (IFL) field contains a numeric value representing the maximum number of
bytes in an index bucket. The maximum possible fill size is the bucket size, in blocks, multiplied by
512. The default value is 0, meaning the maximum available space (that is, no unused space). If the
specified size is not 0, but is less than one-half of the bucket size (in bytes), then the fill size used is
one-half of the bucket size.

When you create an indexed file, you use this argument to specify the number of bytes you want in
each index bucket. If you specify less than the total possible bucket size, you indicate that the index
buckets are to contain some amount of free space. At run-time, RMS uses the fill size specified at
creation time if the LOA option is specified in the RAB$L_ROP (record-processing options) field of
the RAB; otherwise, RMS fills the buckets.

When a XABKEY describes the primary key, the XAB$W_IFL field describes the space in the
buckets in all levels of the primary index down to and including the level containing pointers to the
user data records. When a XABKEY describes an alternate key, the XAB$W_IFL field describes the
space in the buckets in all levels of the alternate index down to, but not including, the level containing
buckets with pointer arrays that describe the user data records.

It is advantageous to use the XAB$W_IFL field if you expect to perform numerous random Put and
Update services on the file after it has been initially populated. You can minimize the movement of
index records (bucket splitting) by specifying less than the maximum bucket fill size when a file is
created. To use the free space thereby reserved in the buckets, programs that invoke the Put or Update
services for writing to the file should not specify the RAB$L_ROP field RAB$V_LOA option.

This field corresponds to the FDL attribute KEY INDEX_FILL (which is expressed as a percentage).

14.16. XAB$L_KNM Field
The key name buffer address (KNM) field contains the symbolic address of a buffer that is available
for assigning a user-specified name to the key being defined. The name buffer must be at least 32
bytes in length and you may use any 32-character string you choose to name the key field.

If the default value is taken (0), no name is to be assigned to the key. RMS does not use this string but
retains it in the file as part of the key definition information for documentation purposes.

This field corresponds to the FDL attribute KEY NAME.

14.17. XAB$B_LAN Field
The lowest level of index area number (LAN) field contains a numeric value (0 through 254)
representing an area identification number contained in the XAB$B_AID field of a XABALL present
in the same XAB chain. If the XAB$B_LAN field is not specified (that is, if the value is 0), the value
in the XAB$B_IAN field is used as a default; in other words, the lowest level of the index occupies
the same area of the file as the remainder of the index.

This field permits you to separate the lowest level (level 1) of the index from all higher levels (levels
2+) of the index in an indexed file; you can use the XAB$B_LAN field to specify an area of the
index wherein the lowest level of the index resides, separate from the area (or areas) specified by the
XAB$B_IAN field (wherein all other levels of the index reside). See XAB$B_IAN for additional
information.

158

Chapter 14. Key Definition XAB (XABKEY)

You can specify the XAB$B_LAN field only when both of the following conditions exist:

• You are creating a new indexed file.

• You are using allocation XABs to define areas.

Note that the area specified by the XAB$B_LAN field must have the same bucket size as the area
specified by the XAB$B_IAN field.

This field corresponds to the FDL attribute KEY LEVEL1_INDEX_AREA.

14.18. XAB$B_LVL Field
Following an Open or Display service, the level of root bucket (LVL) field contains the level of the
root bucket for the key described by the XAB.

14.19. XAB$W_MRL Field
Following an Open or Display service, the minimum record length (MRL) field contains the minimum
record length (in bytes) needed to contain the key field for the key described by the XAB.

If the key described by the XAB is the primary key (XAB$_REF is 0), then a record must be equal to
or greater than the minimum record length returned in XAB$W_MRL to be inserted or updated in the
file.

If the key described by the XAB is an alternate key (XAB$_REF is greater than 0), then a record
must be equal to or greater than the minimum record length returned in the XAB$W_MRL field to be
recorded in the associated index for that alternate key.

14.20. XAB$B_NSG Field
Following an Open or Display service, the number of key segments (NSG) field contains the number
of key segments that make up the key field for the key described by the XAB (see the XAB$W_POS0
through XAB$W_POS7 field).

14.21. XAB$B_NUL Field
Normally, RMS updates all indexes to reflect the values in the corresponding key fields of the records
written to an indexed file. The XAB$B_NUL field permits you to instruct RMS not to make an entry
in an alternate index if a record being entered in an indexed file contains a specified null alternate key
value. To specify the XAB$B_NUL field, three conditions must be satisfied:

• The XABKEY must define an alternate key.

• The XAB$B_FLG field XAB$V_NUL option must be set when you create the file (see
XAB$B_FLG).

• The key data type must be string.

You can use any ASCII character in the null (NUL) field when you define a string-type alternate key
(string, descending string, collated, descending collated). If you do not specify a null value, RMS
assigns the key a default null value of 0.

This field corresponds to the FDL attribute KEY NULL_VALUE.

159

Chapter 14. Key Definition XAB (XABKEY)

14.22. XAB$L_NXT Field
The next XAB address (NXT) field contains the symbolic address of the next XAB. A value of 0 (the
default) indicates that the current XAB is the last (or only) XAB in the chain.

14.23. XAB$W_POS0 Through XAB$W_POS7
Field
There are two types of keys: simple keys and segmented keys.

A simple key is made up of one or more contiguous bytes and it may be used with any data type,
including the string data type. For simple keys, the first byte of the key position field contains a byte
offset relative to the beginning of the record buffer that defines the starting position of the key. The
remaining bytes contain zeros.

Segmented keys include two through eight strings of key data (segments) and can only be used with
string data type key fields. The key segments need not be contiguous nor must they be in a particular
order. Key segments may overlap except for primary keys used with Prolog 3 files. If your application
requires overlapping key segments in a Prolog 3 file, consider using an alternate segmented key. If
you must have a primary key with overlapping segments, RMS requires you to use either a Prolog 2
or Prolog 1 structure (which it automatically assigns if the XAB$B_PROLOG field is not specified).

For segmented keys, the first word of the key position field specifies the starting position of the first
segment and each succeeding byte specifies the starting position of one of the remaining segments.
When processing records that contain segmented keys, RMS regards a segmented key field as a
single, logically contiguous string beginning with the first segment and ending with the last.

You should note that the XAB$W_POS0 through XAB$W_POS7 and the XAB$B_SIZ0 through
XAB$B_SIZ7 (key size) fields must define the same number of key position values and key size
values.

This field corresponds to the FDL attributes KEY POSITION and SEGn_LENGTH.

14.24. XAB$B_PROLOG Field
The prolog (PROLOG) field defines the version or structure level of the file index. It contains a
numeric value from 0 through 3.

The XAB$B_PROLOG field is input to the Create service, and it is returned by the Display and Open
services.

This field must only be used to define a primary key.

Prolog 3 is the default prolog level, unless the primary key contains overlapping segments. RMS
examines the key characteristics and determines the correct prolog structure to apply to the file. If the
XAB$B_PROLOG field is not specified (that is, if the value is 0), the process default prolog level
is examined, then the system default prolog level is used. These default values are set by the DCL
command SET RMS_DEFAULT/PROLOG.

You should not specify a prolog level 1 because RMS decides whether a Prolog 1 or Prolog 2 file
should be created, depending on the key type defined for the file. If you want to select a prolog level
other than Prolog 3, you should select either 0 or 2.

160

Chapter 14. Key Definition XAB (XABKEY)

For more detailed information regarding the options for selecting a specific prolog level, see the
description of the Create service in Part III.

This field corresponds to the FDL attribute KEY PROLOG and it is not supported for DECnet for
OpenVMS operations; the default prolog in effect at the remote node is used.

14.25. XAB$B_REF Field
The key of reference (REF) field defines a key as either the primary key or some alternate key.

Note

For BLISS-32, this field is designated XAB$B_KREF.

This field contains a numeric value in the range 0 through 254. A value of 0 indicates that this is the
primary key; a value of 1 indicates the first alternate key; a value of 2 indicates the second alternate
key, and so on. The order of the XABKEYs is irrelevant.

Note that RMS can process an indexed file with 255 defined keys; each defined key field, however,
has an associated cost in processing and I/O time. The time required to build and maintain the index
for the key field and the disk storage required to contain the index for each key field should be
considered when you decide whether the field should be an alternate key field. A file with six to eight
defined keys (the primary key and five to seven alternate keys) should be considered as a maximum; a
file with two or three defined keys is typical.

This field corresponds to the FDL attribute KEY n, where n is the number of the key being defined.

14.26. XAB$L_RVB Field
After an Open or Display service, the root index bucket virtual block number (RVB) field contains the
virtual block number for the root bucket of the index for the key described by the XAB.

14.27. XAB$B_SIZ0 Through XAB$B_SIZ7
Field
The key size (SIZ) field defines the length of the key field within each record. This field contains a
numeric value representing the length, in bytes, of the key within the record. Up to eight values can be
assigned; maximum values depend on the type of key.

The XAB$B_SIZ0 through XAB$B_SIZ7 field defines the length (in bytes) of the key whose starting
position is defined in the key position field of the XAB. Two types of keys can be defined: simple and
segmented (see the XAB$W_POS0 through XAB$W_POS7 field).

For a simple key, the XAB$B_SIZ0 through XAB$B_SIZ7 field contains only one key size value (in
XAB$B_SIZ0).

For a segmented key, the XAB$B_SIZ0 through XAB$B_SIZ7 field contains a key size value for
each segment of the key. You should note that the XAB$B_SIZ0 through XAB$B_SIZ7 field and the
XAB$W_POS0 through XAB$W_POS7 field must contain the same number of key size values and
key position values. RMS associates the first key position value with the first key size value to define
the location and length of the first segment of a segmented key, and so forth.

161

Chapter 14. Key Definition XAB (XABKEY)

When the data type of the key is string, the total size (sum of all sizes) of the key must be less than
256 bytes.

When the data type of the key is 2-byte integer or 2-byte binary, XAB$B_SIZ0 must equal 2 and
XAB$B_SIZ1 through XAB$B_SIZ7 must contain 0. If the size is 0, it defaults to 2.

When the data type of the key is 4-byte integer or 4-byte binary, XAB$B_SIZ0 must equal 4 and
XAB$B_SIZ1 through XAB$B_SIZ7 must contain 0. If the size is 0, it defaults to 4.

When the data type of the key is 8-byte integer or 8-byte binary, XAB$B_SIZ0 must equal 8 and
XAB$B_SIZ1 through XAB$B_SIZ7 must contain 0. If the size is 0, it defaults to 8.

When the data type of the key is packed decimal, the size specified by XAB$B_SIZ0 must be from 1
through 16, and XAB$B_SIZ1 through XAB$B_SIZ7 must contain 0.

This field corresponds to the FDL attribute KEY LENGTH or KEY SEG n_LENGTH, where n is the
number of the segment being defined.

14.28. XAB$B_TKS Field
After an Open or Display service, the total key size (TKS) field contains the total key size (the sum [in
bytes] of XAB$B_SIZ0 through XAB$B_SIZ7) for the key described by the XAB.

162

Chapter 15. Protection XAB
(XABPRO)
The protection XAB (XABPRO) specifies the ownership, accessibility, and protection for a file.
Although an application program typically uses a XABPRO as input to establish file protection
when it creates a file, it can also use the XABPRO to change file protection when it closes a file. The
program that opened the file can change file protection when it closes the file only if it accessed the
file to make modifications (FAC = PUT, UPDATE, DELETE, or TRUNCATE) and has control access.
Control access grants to the file accessor all of the file access privileges of the file owner.

For more information about control access, see the VSI OpenVMS Guide to System Security.

RMS also uses the XABPRO to return file protection information to the application program by way
of the Display service and the Open service.

15.1. Summary of Fields
The symbolic offset, the FDL equivalent, and a brief description of each XABPRO field are presented
in Table 15.1.

Table 15.1. XABPRO Fields

Field Offset FDL Equivalent Description
XAB$L_ACLBUF1 None Address of buffer that contains ACL
XAB$L_ACLCTX1 None ACL positioning context
XAB$W_ACLLEN1 None Receives the length of an ACL during an

Open or Display service
XAB$W_ACLSIZ1 None Length of buffer containing binary ACEs
XAB$L_ACLSTS1 None System error status for ACL processing
XAB$B_BLN2 None Block length
XAB$B_COD2 None Type code
XAB$W_GRP3 FILE OWNER Group number of file owner
XAB$W_MBM3 FILE OWNER Member number of file owner
XAB$B_MTACC FILE MT_PROTECTION Magnetic tape accessibility
XAB$L_NXT None Next XAB address
XAB$W_PRO FILE PROTECTION File protection; contains four separate fields

denoting protection for system, owner,
group, and world

XAB$B_PROT_OPT None File protection options
XAB$L_UIC FILE OWNER User identification code; contains both the

group and member fields
1ACL operations apply only to Files–11 ODS-2 files.
2This field is statically initialized by the $XABPRO macro to identify this control block as a XABPRO.
3This field cannot be initialized by the $XABPRO macro.

163

Chapter 15. Protection XAB (XABPRO)

Unless otherwise indicated, each field is supported for DECnet for OpenVMS operations on files at
remote OpenVMS systems. For information about the support of RMS options for remote file access
to other systems, see the DECnet for OpenVMS Networking Manual.

15.2. XAB$L_ACLBUF Field
The ACL buffer field (ACLBUF) stores the address of a buffer area that contains an access control
list (ACL) for this file. The ACL buffer contains one or more access control entries (ACE) in binary
format. The system processes the ACL until it encounters an ACE with a length byte value of
0 or until it reaches the end of the buffer as indicated by XAB$W_ACLSIZ. The ACL buffer is
used as input to a Create service and as output from an Open or Display service. The address in
XAB$L_ACLBUF is used only as input to these services.

During a Create operation, if the XAB$L_ACLBUF field has a value other than 0, RMS attempts to
create the file using the value in the ACL buffer. When the XAB$L_ACLBUF field has a value of 0
during a Create operation, the file has an ACL only if an ACL is specified by the systemwide defaults.
Once a file has been created, the ACL cannot be changed using RMS.

During an Open or a Display operation, if the XAB$L_ACLBUF field has a value other than 0, RMS
passes this address to the file system. The file system then fills the user's buffer with the file's ACL (in
binary format). If the entire ACL does not fit into the user's buffer, the file system puts only as many
ACEs as possible into the buffer. (See the XAB$L_ACLCTX field for more information.)

You can convert an ASCII ACL to binary format by using the $PARSE_ACL system service, and you
can convert an ACL from binary format to ASCII using the $FORMAT_ACL system service. For
information about using the $PARSE_ACL and $FORMAT_ACL services, see the VSI OpenVMS
System Services Reference Manual.

The use of this field for DECnet for OpenVMS remote file access is not supported.

15.3. XAB$L_ACLCTX Field
The XAB$L_ACLCTX field is used as a placeholder by RMS, and it is used as an input and output
field by RMS during Open and Display operations when the XAB$L_ACLBUF field has a value
other than 0. In order to read an ACL beginning with the first ACE, the XAB$L_ACLCTX field
must have a value of 0. When the initial Open or Display operation is complete, RMS fills the
XAB$L_ACLCTX field with a value that serves as a context field, allowing subsequent Open or
Display operations that read the remainder of the ACL (if the entire list of ACEs did not fit into the
user's buffer).

For example, suppose you perform an Open operation, find that the value of XAB$W_ACLLEN is
greater than the ACL buffer, and then perform Display operations until all of the ACEs in the ACL
have been returned. You can then reread the entire ACL on subsequent Opens or Displays only if you
set the value of the XAB$L_ACLCTX field to 0.

The use of this field for DECnet for OpenVMS remote file access is not supported.

15.4. XAB$W_ACLLEN Field
The ACL length (ACLLEN) field receives the length (in bytes) of the access control list for the file
during an Open or a Display operation. If the file has no ACL, the XAB$W_ACLLEN field has a
value of 0.

164

Chapter 15. Protection XAB (XABPRO)

If the file has an ACL that fits in the user's buffer, the value of the XAB$W_ACLLEN field is equal
to the number of bytes in the ACL. Even if the file's ACL does not fit into the user's buffer, the value
of the XAB$W_ACLLEN field is still equal to the number of bytes in the ACL (not just the length of
that portion that fits into the buffer).

To determine the number of ACL entries that are in the user's buffer, you must process binary ACEs
until you find an ACE with a value of 0 or until you come to the end of the buffer.

The use of this field for DECnet for OpenVMS remote file access is not supported.

15.5. XAB$W_ACLSIZ Field
The ACL buffer size (ACLSIZ) field specifies the length of the user buffer pointed to by the
XAB$L_ACLBUF field.

RMS passes all information, including the ACL buffer, to and from the file system using buffered I/O
operations. RMS limits buffered I/O transfers to 512 bytes, excluding the ACL buffer. Therefore, the
size of the ACL buffer plus 512 bytes cannot exceed either the BYTLM quota for the process or the
MAXBUF value for the system.

The use of this field for DECnet for OpenVMS remote file access is not supported.

15.6. XAB$L_ACLSTS Field
The ACL error status (ACLSTS) field contains a system error status relating to the processing of
ACLs. A value is returned to this field upon a successful return from a Create, Open, or Display
service.

Whenever you use the XABL_ACLBUF, XABL_ACLCTX, XAB$W_ACLLEN, or
XAB$W_ACLSIZ fields, be sure to use the following error-handling guidelines:

• If the FAB$L_STS field (R0) contains an error status, handle the error in the usual manner.

• If the FAB$L_STS field (R0) contains a success status, then you must check the value in
XAB$L_ACLSTS. If XAB$L_ACLSTS contains a success status, then the entire operation
completed successfully and no further action is required; if XAB$L_ACLSTS contains an error
status, handle the error appropriately. Note that a value is placed in the XAB$L_ACLSTS field
only when a success status is returned in FAB$L_STS (R0).

This extra level of error checking is necessary because the success or failure of reading and writing
ACLs is independent of the success or failure of the whole operation. Thus, in the absence of this
additional error checking, it is possible to create a file successfully even though an ACL error
occurred.

This field is relevant only when an ACL is used with a Create service or when an ACL is returned
from an Open or Display service. The use of this field for DECnet for OpenVMS remote file access is
not supported.

15.7. XAB$B_BLN Field
The block length (BLN) field is a static field that defines the length of the XABPRO, in bytes. Once
set, this field must not be altered unless the control block is no longer needed. This field must be
initialized to the symbolic value XAB$C_PROLEN (this is done by the $XABPRO macro).

165

Chapter 15. Protection XAB (XABPRO)

15.8. XAB$B_COD Field
The type code (COD) field is a static field that identifies this control block as a XABPRO. Once
set, this field must not be altered unless the control block is no longer needed. This field must be
initialized to the symbolic value XAB$C_PRO (this is done by the $XABPRO macro).

15.9. XAB$W_GRP Field
The file owner group number (GRP) field contains the half of the XAB$L_UIC field that defines
the group number. Refer to the XAB$L_UIC field description for additional information. The
contents of the XAB$L_UIC field, rather than the $XABPRO macro, establish the initial value of the
XAB$W_GRP field.

This field corresponds to the FDL attribute FILE OWNER.

15.10. XAB$W_MBM Field
The file owner member number (MBM) field contains the half of the XAB$L_UIC field that defines
the member number. Refer to the XAB$L_UIC field description for additional information. The
contents of the XAB$L_UIC field, rather than the $XABPRO macro, establish the initial value of the
XAB$W_MBM field.

This field corresponds to the FDL attribute FILE OWNER.

15.11. XAB$B_MTACC Field
The magnetic tape accessibility (MTACC) field enables you to access HDR1 labels for ANSI-labeled
magnetic tapes, in compliance with ANSI standards. The value specified in the XAB$B_MTACC
field is input to the Create service and output from the Open and Display services for magnetic tape
only.

The character to be inserted in the accessibility field of the HDR1 label must be one of the following:

• An uppercase letter from A through Z

• A digit from 0 through 9

• One of the following special characters: (!), (%), (&), ('), ((), ()), (*), (+), (,), (-), (.), (/), (:), (;), (<),
(=), (>), (?)

Note that if this field is not specified or if the specification is invalid, a space character is inserted into
the HDR1 accessibility field.

This field corresponds to the FDL attribute FILE MT_PROTECTION, and it is not supported for
DECnet for OpenVMS operations.

15.12. XAB$L_NXT Field
The next XAB address (NXT) field specifies the symbolic address of the next XAB in the XAB chain.
A value of 0 (the default) indicates that the current XAB is the last (or only) XAB in the chain.

166

Chapter 15. Protection XAB (XABPRO)

15.13. XAB$W_PRO Field
The file protection (PRO) field specifies the file access privileges that RMS grants to the four classes
of users: System, Owner, Group, and World.

This field consists of four 4-bit subfields, each of which specifies file access privileges for one of the
four user classes.

You can specify the user class using the $XABPRO macro or through the use of symbolic offsets, if
you do not have access to the VAX macro libraries. This is the syntax for representing the four user
classes as arguments to a $XABPRO macro:

<SYSTEM,OWNER,GROUP,WORLD>

Alternatively, you can specify the user class using the appropriate symbolic offset from the following
list:

• System – XAB$V_SYS

• Owner – XAB$V_OWN

• Group – XAB$V_GRP

• World – XAB$V_WLD

You can also specify access privileges for each user class using the $XABPRO macro or through the
use of symbolic mask values. Using a $XABPRO macro, you insert the appropriate initial letters for
each user class in the macro argument:

• R – read access

• W – write (modify) access

• E – execute access

• D – delete access

For example, to grant each user class read and write privileges, you would use this line of code:

PRO = <RW,RW,RW,RW>

Alternatively, you can specify user class privileges using the appropriate symbolic mask value from
the following list:

• No read access – XAB$M_NOREAD

• No write access – XAB$M_NOWRITE

• No execute access – XAB$M_NOEXE

• No delete access – XAB$M_NODEL

If you do not specify access privileges for a file, by default RMS grants all access privileges (read,
write, execute, delete) to all user classes by zeroing all bits in the XAB$W_PRO field.

167

Chapter 15. Protection XAB (XABPRO)

Note

A logical 0 enables access; a logical 1 denies access.

You cannot deny all access to all user classes through the RMS interface. If you set all bits in the
XAB$W_PRO field to logical 1, RMS assigns the file process default protection.

Users are granted the maximum number of types of access rights for each of the classes to which they
belong.

Figure 15.1 illustrates the organization of the subfields in the XAB$W_PRO field.

Figure 15.1. File Protection Field

If you do not explicitly specify file protection when you invoke the Create service, RMS attempts to
determine file protection by default in the following order:

1. Using the protection assigned to an existing file of the same name

2. Using the default file protection of the directory

3. Using the process-default protection

The following table provides detailed descriptions of the four user classes.

User Class Description
System Specifies access rights for users executing under a system UIC, that is, users

whose group number is less than the value for a system UIC, which is defined
by the system manager (usually 10 or less).

Owner Specifies access rights for the owner of the file. A user is considered the owner
of the file only if both the group and member number fields of the accessing
process match the group and member number fields of the file owner's UIC
stored with the file.

Group Specifies the access rights for users whose group number matches the group
number field of the file owner.

World Specifies access rights for all users. World access is used for granting access to
users who are not in the system, owner, or group classifications.

This field corresponds to the FDL attribute FILE PROTECTION.

15.14. XAB$B_PROT_OPT Field
The ACL file protection (PROT_OPT) field provides a single option, the XAB$V_PROPAGATE
option, which is used as input during an Enter or a Rename operation. (During a Rename operation,
the protection XAB is assumed to be attached to FAB2.)

168

Chapter 15. Protection XAB (XABPRO)

The XAB$B_PROT_OPT field is a binary options field where each file protection option has a
corresponding bit assignment. Options are identified using mnemonics, and each option has its own
symbolic offset and mask value. For example, the PROPAGATE option has a symbolic offset of
XAB$V_PROPAGATE and a mask value of XAB$M_PROPAGATE.

If the XAB$V_PROPAGATE bit is set in this field during either an Enter or Rename operation, the
file receives new security attributes when the new directory entry is made. These security attributes
follow the same rules as apply during a Create operation. For example, if a lower version of a new
file exists, the new file inherits the security attributes of the next lower version of the file. If the
XAB$V_PROPAGATE bit is not set, the security attributes of the new file do not change.

This field is not supported for DECnet for OpenVMS operations.

15.15. XAB$L_UIC Field
The user identification code (UIC) field combines the two XABPRO fields that define the UIC of the
owner of a file: the XAB$W_GRP (group number) and XAB$W_MBM (member number) fields.
Both numbers are octal numbers. The valid range for a group number is 0 to 37777; the valid range
for a member number is 0 to 177777. Note that the maximum value in each case (37777 and 177777)
is reserved for Compqy use only. This field corresponds to the FDL attribute FILE OWNER.

The symbolic offsets for the group number field and the member number field respectively are
XAB$W_GRP and XAB$W_MBM.

The total user identification field, including both the group and member number fields, has a symbolic
offset of XAB$L_UIC.

Note that if no file protection XAB is provided or if the user identification field is null for a Create
service, the file system, in processing the ACP create request made by RMS, determines the owner's
UIC using the following logical order:

1. The owner UIC of an existing version of the file if the creating process has ownership rights to the
previous version

2. The owner UIC of the parent directory, if the creating process has ownership privileges to the
parent directory

3. The UIC of the creating process

If you wish to create an output file with a UIC different from your own, you must have system
privilege (SYSPRV).

169

Chapter 15. Protection XAB (XABPRO)

170

Chapter 16. Revision Date and Time
XAB (XABRDT)
 The revision date and time XAB (XABRDT) complements the date and time XAB (XABDAT) by
providing revision time and date input to the Close service when RMS closes a file that has been
modified. Like the XABDAT, the XABRDT can be used as input to the Create Service or can be
used to store revision data returned by the Open service or the Display service. The distinction is
that XABDAT cannot be used to modify the revision data. Only the XABRDT can be used to update
revision data when a file is closed after being modified. Typically, a process would use the two data
structures when it wants to sense and set revision data within a single file operation.

To change the revision data, the process must have Control access to the file and must have opened
the file for modification using the Put, Update, Truncate, or Delete service. Normally when RMS
closes a file and these conditions prevail, it uses the current date and time as the revision date and time
and increments the revision number. Thus, the previous revision values for the file are superseded.
(See the VSI OpenVMS Guide to System Security for more information about CONTROL access.)

Using the XABRDT as an input to a Close service, you can specify a set of revision values other than
the current time and date and the next revision number.

16.1. Summary of Fields
The two XABRDT fields that specify revision values are the XABQ_RDT (revision date and time)
field and the XAB$W_RVN (revision number) field.

• The 64-bit XAB$Q_RDT binary field indicates the date and time when the file was last opened for
modifications.

• The XAB$W_RVN field indicates how many times the file is opened for modifications.

The following table indicates how RMS uses the XABRDT fields for various file-processing services.

Service Input/Output
Close Input
Create Input
Display Output
Erase Not used
Extend Not used
Open Output

The Open service overwrites the XAB$Q_RDT and XAB$W_RVN fields with the file's existing
revision values. If you do not change these values, the existing values are subsequently input to the
Close service and the file's revision data is not updated.

To change the revision data, you must set the fields between the time you open the file and the time
you close the file. If you specify a revision date and time of 0 or if you do not include a XABRDT
as input to the Close service, RMS uses the current date and time for the revision date and time and
increments the revision number.

171

Chapter 16. Revision Date and Time XAB (XABRDT)

To sense the contents of the XAB$Q_RDT and XAB$W_RVN fields before you specify new values
with the XABRDT, examine the XAB$Q_RDT field and the XAB$W_RVN field in the XABDAT
block.

The symbolic offset, size, FDL equivalent, and a brief description of each XABRDT field are
presented in Table 16.1.

Table 16.1. XABRDT Fields

Field Offset Size
(Bytes)

FDL Equivalent Description

XAB$B_BLN1 1 None Block length
XAB$B_COD1 1 None Type code
XAB$L_NXT 4 None Next XAB address
XAB$Q_RDT2 8 DATE REVISION Revision date and time
XAB$W_RVN2 2 FILE REVISION Revision number

1This field is statically initialized by the $XABRDT macro to identify this control block as a XABRDT.
2This field cannot be initialized by the $XABRDT macro; it must be specified before you invoke the Close service to be used as input to the
Close service.

Unless otherwise indicated, each field is supported for DECnet for OpenVMS operations on files at
remote OpenVMS systems. For information about the support of RMS options for remote file access
to other systems, see the DECnet for OpenVMS Networking Manual.

16.2. XAB$B_BLN Field
The block length (BLN) field is a static field that defines the length of the XABRDT, in bytes. Once
set, this field must not be altered unless the control block is no longer needed. This field is initialized
to the symbolic value XAB$C_RDTLEN by the $XABRDT macro.

16.3. XAB$B_COD Field
The type code (COD) field is a static field that identifies this control block as a XABRDT. Once set,
this field must not be altered unless the control block is no longer needed. This field is initialized to
the symbolic value XAB$C_RDT by the $XABRDT macro.

16.4. XAB$L_NXT Field
The next XAB address (NXT) field contains the symbolic address of the next XAB to be used. A
value of 0 (the default) indicates that the current XAB is the last (or only) XAB in the chain.

16.5. XAB$Q_RDT Field
The revision date and time (RDT) field contains a 64-bit binary value expressing the date and time
when the file was last opened for modifications. Note that this field is limited to a granularity of 1
second for remote files.

This field corresponds to the FDL attribute DATE REVISION.

172

Chapter 16. Revision Date and Time XAB (XABRDT)

16.6. XAB$W_RVN Field
The revision number (RVN) field contains a numeric value that indicates the number of times this file
was opened for modifications.

This field corresponds to the FDL attribute FILE REVISION.

173

Chapter 16. Revision Date and Time XAB (XABRDT)

174

Chapter 17. Recovery Unit XAB
(XABRU)
The recovery unit XAB (XABRU) control block supports the use of recovery units to assure data file
integrity. See the RMS Journaling for OpenVMS Manual for details.

175

Chapter 17. Recovery Unit XAB (XABRU)

176

Chapter 18. Summary XAB (XABSUM)
The summary XAB (XABSUM) can be associated with a FAB at the time a Create, Open, or Display
service is invoked. The presence of this XAB during these calls allows RMS to return to your program
the total number of keys and allocation areas defined and the version number when the file was
created. Note that a XABSUM is used only with indexed files.

18.1. Summary of Fields
The symbolic offset, the size, and a brief description of each XABSUM field are presented in
Table 18.1.

Table 18.1. XABSUM Fields

Field Offset Size Description
XAB$B_BLN1 Byte Block length
XAB$B_COD1 Byte Type code
XAB$B_NOA2 Byte Number of allocation areas defined for the file
XAB$B_NOK2 Byte Numbers of keys defined for the file
XAB$L_NXT Longword Next XAB address
XAB$W_PVN2 Word Prolog version number

1This field is statically initialized by the $XABSUM macro to identify this control block as a XABSUM.
2This field cannot be initialized by the $XABSUM macro.

Unless otherwise indicated, each field is supported for DECnet for OpenVMS operations on files at
remote OpenVMS systems. See the DECnet for OpenVMS Networking Manual for information about
the support of RMS options for remote file access to other systems.

18.2. XAB$B_BLN Field
The block length (BLN) field is a static field that defines the length of the XABSUM, in bytes. Once
set, this field must not be altered unless the control block is no longer needed. This field is initialized
to the symbolic value XAB$C_SUMLEN by the $XABSUM macro.

18.3. XAB$B_COD Field
The type code (COD) field is a static field that identifies this control block as a XABSUM. Once set,
this field must not be altered unless the control block is no longer needed. This field is initialized to
the symbolic value XAB$C_SUM by the $XABSUM macro.

18.4. XAB$B_NOA Field
The number of allocation areas (NOA) field indicates the number of allocation areas defined when the
file was created. Refer to Chapter 9 for information about multiple allocation areas.

18.5. XAB$B_NOK Field
The number of keys (NOK) field indicates the number of keys defined when the file was created.
Refer to Chapter 14 for more information.

177

Chapter 18. Summary XAB (XABSUM)

18.6. XAB$L_NXT Field
The next XAB address (NXT) field contains the symbolic address of the next XAB. A value of 0 (the
default) indicates that the current XAB is the last (or only) XAB in the chain.

18.7. XAB$W_PVN Field
The prolog version number (PVN) contains a numeric value that indicates the prolog number defined
when the file was created. For more information about prolog numbers, refer to Chapter 14.

178

Chapter 19. Terminal XAB (XABTRM)
The terminal XAB (XABTRM) allows extended terminal read operations to occur when a Get service
is used for a terminal device. Unlike most other XABs, the XABTRM is associated with a RAB
(record stream). The XABTRM provides information that the terminal driver uses to process a user-
defined item list that defines the terminal read operation.

19.1. Summary of Fields
The symbolic offset, the size, and a brief description of each XABTRM field are presented in
Table 19.1.

Table 19.1. XABTRM Fields

Field Offset Size
(Bytes)

Description

XAB$B_BLN1 1 Block length
XAB$B_COD1 1 Type code
XAB$L_ITMLST 4 Item list address
XAB$W_ITMLST_LEN 2 Item list length
XAB$L_NXT 4 Next XAB address

1This field is statically initialized by the $XABTRM macro to identify this control block as a XABTRM.

To perform the extended terminal read operation, the following information is required:

• In the RAB, the RAB$L_ROP field RAB$V_ETO option must be specified (set).

• In the RAB, the RAB$L_XAB field must contain the address of the XABTRM.

• In the XABTRM, the XAB$L_ITMLST and XAB$W_ITMLST_LEN fields must contain the
starting address and length of a valid terminal driver read function item list.

• The item list must be supplied according to the conventions described for creating an item list for
the terminal driver in the VSI OpenVMS I/O User's Reference Manual.

An item list consists of one or more item list entries, where each item defines an attribute of the
terminal read operation. Instead of defining terminal read arguments in the RAB, all such arguments
(including certain arguments only available with the item list method) are defined in the item list. The
following list shows the RAB$L_ROP options related to a terminal read operation and the equivalent
item codes:

Option Item Code
RAB$V_CVT TRM$_MODIFIERS, bit TRM$M_TM_CVTLOW
RAB$V_PMT TRM$_PROMPT
RAB$V_PTA TRM$_MODIFIERS, bit TRM$M_TM_PURGE
RAB$V_RNE TRM$_MODIFIERS, bit TRM$M_TM_NOECHO
RAB$V_RNF TRM$_MODIFIERS, bit TRM$M_TM_NOFILTR
RAB$V_TMO TRM$_TIMEOUT

179

Chapter 19. Terminal XAB (XABTRM)

Each item code required for the terminal read operation is placed in an item list along with other
required information. Each item code is made up of three longwords. Note that RMS does not validate
the item list. If the item list is invalid, RMS returns RMS$_QIO status in the RAB$L_STS field and
the specific terminal driver QIO status in the RAB$L_STV field (see the VSI OpenVMS I/O User's
Reference Manual).

The XABTRM is not supported for DECnet for OpenVMS operations between two OpenVMS
systems. There are no equivalent FDL attributes for the XABTRM fields.

19.2. XAB$B_BLN Field
The block length (BLN) field is a static field that defines the length of the XABTRM, in bytes. Once
set, this field must not be altered unless the control block is no longer needed. This field is initialized
to the symbolic value XAB$C_TRMLEN by the $XABTRM macro.

19.3. XAB$B_COD Field
The type code (COD) field is a static field that identifies this control block as a XABTRM. Once set,
this field must not be altered unless the control block is no longer needed. This field is initialized to
the symbolic value XAB$C_TRM by the $XABTRM macro.

19.4. XAB$L_ITMLST Field
The item list address (ITMLST) field contains the symbolic address of the item list that defines the
extended terminal read operation.

19.5. XAB$W_ITMLST_LEN Field
The item list length (ITMLST_LEN) field contains a numeric value that indicates the length of the
item list, in bytes.

19.6. XAB$L_NXT Field
The next XAB address (NXT) field contains the symbolic address of the next XAB to be used. A
value of 0 (the default) indicates that the current XAB is the last (or only) XAB in the chain.

180

Part III. OpenVMS RMS Services
Part III lists the format of each record management service and describes each service in detail. Each
service is documented in a structured format. See VSI OpenVMS Programming Concepts Manual,
Volume II for a discussion of the format and how it is used.

Note that the calling format for each service requires a placeholder (a comma) if you omit the first
optional argument (err) but include the second optional argument (suc).

181

182

$CLOSE
$CLOSE — The Close service terminates file processing and closes the file. This service performs an
implicit Disconnect service for all record streams associated with the file.

Format
SYS$CLOSE fab [,[err] [,suc]]

Returns
OpenVMS usage: cond_value
type: longword
access: write only
mechanism: by value

The value is returned in symbolic offset FAB$L_STS. Symbolic offset FAB$L_STV may contain
additional status information.

Arguments
fab

OpenVMS usage: fab
type: longword (unsigned)
access: modify
mechanism: by reference

FAB control block whose contents are to be used as indirect arguments for the Close service call. The
fab argument is the address of the FAB control block.

err

OpenVMS usage: ast_procedure
type: procedure value
access: call without stack unwinding
mechanism: by reference

AST-level error completion routine that the service invokes if the operation is unsuccessful. The err
argument is the address of the entry mask of this user-written completion routine.

suc

OpenVMS usage: ast_procedure
type: procedure value
access: call without stack unwinding

183

$CLOSE

mechanism: by reference

AST-level success completion routine that the service invokes if the operation is successful. The suc
argument is the address of the entry mask of this user-written completion routine.

Description
You can invoke the Close service only when no operation is currently under way (by your process) for
the file being processed; that is, when no RMS requests for the file are outstanding.

When the Close service is invoked properly, RMS disconnects all RABs for you, performs the various
cleanup procedures (including file option processing and XAB processing), and closes the file. The
only types of XABs that the Close service processes are the file protection XAB (XABPRO) and
revision date and time XAB (XABRDT). It processes these XABs only if the file was opened or
created for write access.

On a $CLOSE, the EOF value written to the file header is “seen” only by subsequent accessors. Any
process that has the file open at the time of the $CLOSE does not “see” the new EOF value without
some explicit action.

If a process tries to implement the Truncate service when closing a sequential file, it must have sole
write access to the file. If other processes have write access to the file, it remains accessible until
all processes have completed. If other processes have the file open for read access, RMS defers the
truncation until the final process having read access closes the file.

Table 30 lists the control block fields read as input by the Close service. Note that if the FAB$V_DLT,
FAB$V_SCF, or the FAB$V_SPL bits are set by the associated Open or Create service, RMS does not
act on them for the Close service. For example, if you open the file and specify that it be deleted on
close by setting the FAB$V_DLT bit, RMS deletes it when it is closed regardless of the bit state when
the Close service is invoked.

For additional information on the fields accessed by this service, see Part II.

Table 30. Close Service FAB and XAB Input Fields

Field Name Option or XAB
Type

Description

FAB$W_IFI1 Internal file identifier.
File-processing options.

FAB$V_ASY Asynchronous; indicates that the specified task is to be done
asynchronously.

FAB$V_DLT Deletes file on close.
FAB$V_RWC Rewinds a magnetic tape volume.
FAB$V_SCF2 Submits a file as a batch job (sequential files only).
FAB$V_SPL2 Submits a file to the print queue (sequential files only).

FAB$L_FOP

FAB$V_TEF Truncates data at the end of the file (sequential files only).
Next XAB address.

XABPRO Modifies file protection and ownership.
FAB$L_XAB

XABRDT Modifies revision date and number.
1This field is required input to the FAB.

184

$CLOSE

2This field is not supported for DECnet for OpenVMS operations.

Table 31 lists the control block fields written as output by the Close service.

Table 31. Close Service FAB and XAB Output Fields

Field Name Option or XAB
Type

Description

FAB$W_IFI Internal file identifier (cleared only when the file is closed).
FAB$L_STS Completion status (also returned in register 0).
FAB$L_STV Status value.

Next XAB address.FAB$L_XAB
XABRDT New revision date and number returned.

Condition Values Returned
The following condition values can be returned. Use the Help Message utility to access online
message descriptions. For more information about interpreting condition values, see Section 2.4.

RMS$_ACT RMS$_ATR RMS$_ATW
RMS$_BLN RMS$_BUG_DAP RMS$_BUSY
RMS$_CCF RMS$_CDA RMS$_COD
RMS$_CRC RMS$_DAC RMS$_DME
RMS$_DNR RMS$_EXENQLM RMS$_FAB
RMS$_IFI RMS$_IMX RMS$_MKD
RMS$_NET RMS$_NETFAIL RMS$_NORMAL
RMS$_PRV RMS$_SPL RMS$_STR
RMS$_SUC RMS$_SUP RMS$_SUPPORT
RMS$_SYS RMS$_WBE RMS$_WER
RMS$_WLK RMS$_WPL RMS$_XAB

Note that even though a failure is indicated by the completion status code value, the file is truly closed
only if RMS clears the internal file identifier value (FAB$W_IFI).

185

$CLOSE

186

$CONNECT
$CONNECT — The Connect service establishes a record stream by associating and connecting
a RAB with a FAB. You can invoke the Connect service only for files that are already open. The
maximum number of record streams that can be connected within an image at one time is 16383.
On OpenVMS Alpha systems, RAB64 can replace the RAB or RAB prefix wherever it is used with
the Connect service

Format
SYS$CONNECT rab [,[err] [,suc]]

Returns
OpenVMS usage: cond_value
type: longword
access: write only
mechanism: by value

The value is returned in symbolic offset RAB$L_STS. Symbolic offset RAB$L_STV may contain
additional status information.

Arguments
rab

OpenVMS usage: rab
type: longword (unsigned)
access: modify
mechanism: by reference

RAB control block whose contents are to be used as indirect arguments for the Connect service call.
The rab argument is the address of the RAB control block.

err

OpenVMS usage: ast_procedure
type: procedure value
access: call without stack unwinding
mechanism: by reference

AST-level error completion routine that the Connect service invokes if the operation is unsuccessful.
The err argument is the address of the entry mask of this user-written completion routine.

suc

OpenVMS usage: ast_procedure
type: procedure value
access: call without stack unwinding

187

$CONNECT

mechanism: by reference

AST-level success completion routine that the Connect service invokes if the operation is successful.
The suc argument is the address of the entry mask of this user-written completion routine.

Description
Any number of RABs can be connected to a FAB if the multistream (FAB$V_MSE) option is selected
when the file is opened or created. Each RAB represents an independent record stream.

When you issue a Connect service, RMS allocates an internal counterpart for the RAB. This
counterpart consists of the internal controls needed to support the stream, such as record pointers and
request status information. All required I/O buffers are also allocated at this time.

The Connect service also initializes the next record pointer to the first record. In indexed files, the key
of reference establishes the index of the next record pointer.

If you set the end-of-file (RAB$V_EOF) option in the RAB$L_ROP field when issuing a Connect
service, RMS examines the organization of the file being processed to determine the end-of-file
positioning strategy.

 For sequential or relative files, RMS goes to the next record beyond the last currently existing
record in the file. (The next record is inserted at the logical end of the file, and the service returns
RMS$_EOF status in response to a request for sequential access.)

For indexed files, RMS verifies that the first record is inserted in the proper sort order. If the record
cannot be inserted in the proper sort order because of user action, RMS returns a sequence error
(RMS$_SEQ).

Get services that specify the sequential record access mode (RAB$B_RAC is RAB$C_SEQ)
return an RMS$_EOF status. Get services that specify the random access mode (RAB$B_RAC is
RAB$C_KEY) ignore (turn off) the end-of-file positioning. Positioning to end-of-file is supported
for all indexed files, regardless of how many indexes the file contains. However, the EOF positioning
is supported only when you access a file by the primary key. If the specified key of reference is a
secondary key, an RMS$_ROP message is returned.

In most cases, setting the RAB$V_EOF bit guarantees that the next record is inserted at the logical
end of the file. However, if a relative file or an indexed file is shared by two or more active processes,
the following scenario may develop.

Assume that process A has invoked the Connect service after setting the RAB$V_EOF bit and is
positioned to the end of the file. Before process A can do a $PUT, process B inserts a record into the
file and changes the current record position. When process A attempts to do a $PUT into the position
that was formerly the end of the file, the record may be inserted improperly. It may be inserted either
before or after the record inserted by process B, depending on the respective key values. Or, the $PUT
operation may even fail if the keys have the same value and duplicates are not allowed.

Table 32 lists the control block fields read as input by the Connect service. For additional information
about the fields accessed by this service, see Part II.

Table 32. Connect Service RAB Input Fields

Field Name Option or XAB
Type

Description

FAB$W_GBC Global buffer count.

188

$CONNECT

Field Name Option or XAB
Type

Description

RAB$L_FAB1 File access block address (required to access the internal file
identifier field, FAB$W_IFI).

RAB$W_ISI1 Internal stream identifier (must be 0).
RAB$B_KRF Key of reference (applies only to indexed files).
RAB$B_MBC2 Multiblock count (applies only to sequential files residing

on disk devices).
RAB$B_MBF2 Multibuffer count.4

Record-processing options:
RAB$V_ASY Asynchronous: performs Connect service asynchronously.
RAB$V_BIO Block I/O: specifies that only block I/O operations are

permitted. The FAB$B_FAC field FAB$V_BRO or
FAB$V_BIO option must be specified to the Open or
Create service.

RAB$V_EOF3 End-of-file: positions to the end of the file upon execution
of the Connect service.

RAB$V_RAH2 Read ahead: allocates at least two buffers for multibuffering
(applies only to sequential files on disk devices).

RAB$L_ROP

RAB$V_WBH2 Write behind: allocates at least two buffers for
multibuffering (applies only to sequential files on disk
devices).

1This field is a required input to the Connect service.
2This field is not supported for DECnet for OpenVMS operations.
4Optionally, you can specify the multibuffer count using the XAB$_MULTIBUFFER_COUNT XABITM.
3Refer to text for exceptions.

Table 33 lists the control block fields written as output by the Connect service.

Table 33. Connect Service RAB Output Fields

Field Name Description
RAB$W_ISI Internal stream identifier
RAB$L_STS Completion status code (also returned in Register 0)
RAB$L_STV Status value

Condition Values Returned
The following condition values can be returned. Use the Help Message utility to access online
message descriptions. For more information about interpreting condition values, see Section 2.4.

RMS$_ACT RMS$_BLN RMS$_BUG_DAP
RMS$_CCR RMS$_CDA RMS$_CRMP
RMS$_DME RMS$_EXT_ERR RMS$_EXTNOTFOU
RMS$_FAB RMS$_GBC RMS$_IAL
RMS$_IFA RMS$_IFI RMS$_KRF
RMS$_MBC RMS$_NET RMS$_NETFAIL

189

$CONNECT

RMS$_NORMAL RMS$_OPNOTSUP RMS$_PENDING
RMS$_RAB RMS$_RFM RMS$_ROP
RMS$_RPL RMS$_STR RMS$_SUC
RMS$_SUP RMS$_SUPPORT

190

$CREATE
$CREATE — The Create service constructs a new file according to the attributes you specify in the
FAB. If any XABs are chained to the FAB, then the characteristics described in the XABs are applied
to the file. This service performs implicit Open and Display services.

Format
SYS$CREATE fab [,[err] [,suc]]

Returns
OpenVMS usage: cond_value
type: longword
access: write only
mechanism: by value

The value is returned in symbolic offset FAB$L_STS. Symbolic offset FAB$L_STV may contain
additional status information.

Arguments
fab

OpenVMS usage: fab
type: longword (unsigned)
access: modify
mechanism: by reference

FAB control block whose contents are to be used as indirect arguments for the Create service call. The
fab argument is the address of the FAB control block.

err

OpenVMS usage: ast_procedure
type: procedure value
access: call without stack unwinding
mechanism: by reference

AST-level error completion routine that the service invokes if the operation is unsuccessful. The err
argument is the address of the entry mask of this user-written completion routine.

suc

OpenVMS usage: ast_procedure
type: procedure value
access: call without stack unwinding
mechanism: by reference

191

$CREATE

AST-level success completion routine that the service invokes if the operation is successful. The suc
argument is the address of the entry mask of this user-written completion routine.

Description
The Create service first uses the information from the specified FAB. If an allocation control XAB
is present, however, its allocation quantity (XAB$L_ALQ), allocation options (XAB$B_AOP, only
for the XAB$V_CTG and XAB$V_CBT options), bucket size (XAB$B_BKZ), and default extension
quantity (XAB$W_DEQ) fields are used instead of the corresponding fields of the FAB. When
either key definition or allocation XABs are present, they can be grouped in any order. If a name
block (NAM) or long name block (NAML) is also connected to the FAB, RMS fills in its fields with
information about the created file. The Create service leaves the file opened.

When a search list logical name is used, the file is placed in the first resultant search list file
specification unless the create-if (FAB$V_CIF) option is specified. If you select the FAB$V_CIF
option, RMS searches all search list file specifications to locate the file. If it finds the file, RMS
opens it rather than create a new file. If RMS does not find the file, it creates a new file using the first
resultant search list file specification.

You do not have to explicitly specify the FAB$V_PUT option when invoking a Create service because
write is the default access mode when you create a file.

Table 34 lists the control block fields read as input by the Create service. For additional information
on the fields accessed by this service, see Chapter 4.

Table 34. Create Service FAB and XAB Input Fields

Field Name Option or XAB Type Description
File access modes.

FAB$V_CHAN_
MODE1

Assigns the channel access mode by setting either
the FAB$V_UFO or the FAB$V_NFS bit in the
FAB$L_FOP field (see Section 4.17). If neither bit
is set, this field can be used to override the access
mode protection for a specified I/O operation. See
Section 4.8.

FAB$B_ACMODES

FAB$V_LNM_
MODE1

Specifies the logical name translation access mode.

FAB$L_ALQ Allocation quantity; ignored if an allocation XAB is
present.

FAB$B_BKS Bucket size; ignored if an allocation XAB is
present.

FAB$W_BLS Block size (applies to magnetic tape only).
FAB$W_DEQ Default file extension quantity; ignored if an

allocation XAB is present.
FAB$L_DNA Default file specification string address.
FAB$B_DNS Default file specification string size.

File access.
FAB$V_BIO Block I/O access to file.
FAB$V_BRO Block or record I/O access to file.

FAB$B_FAC

FAB$V_DEL Delete access to file.

192

$CREATE

Field Name Option or XAB Type Description
FAB$V_GET2 Read access to file.
FAB$V_PUT2 Write access to file and explicit file extension.
FAB$V_TRN Truncate access to file.
FAB$V_UPD Update access to file and explicit file extension.

FAB$L_FNA3 File specification string address.
FAB$B_FNS3 File specification string size.

File-processing options.
FAB$V_ASY Asynchronous; indicates that the specified task is to

be done asynchronously.
FAB$V_CBT Contiguous best try: indicates that the file is to be

allocated contiguously on a “best effort” basis.
To specify a single extent, use the FAB$V_CTG
option.

FAB$V_CIF Create-if: opens a file if it already exists or creates a
file if it does not already exist.

FAB$V_CTG Contiguous: indicates that the space for a file is to
be allocated contiguously.

FAB$V_DFW1 Deferred write: writing back to the file from the
modified buffer is deferred. Applies to relative and
indexed files and sequential files opened for shared
access.

FAB$V_DLT Delete: indicates that the file is to be deleted when
closed.

FAB$V_MXV Maximize version: indicates that the created file be
given the specific version number requested or a
version number that is one greater than the highest
version number of an existing file.

FAB$V_NAM1 Name block inputs: indicates that the
NAM$W_DID and NAM$T_DVI fields in the
specified NAM block are used as input.

FAB$V_NFS1 Non-file-structured: indicates that the accessed
volume is to be processed in a non-file-structured
manner.

FAB$V_OFP Output file parse: specifies that the resultant file
specification string of the related file, if used, is to
provide file name and file type defaults only.

FAB$V_POS Current position (applies to magnetic tapes only).
FAB$V_RCK Read-check: indicates that transfers from disk are to

be followed by a read-compare operation.
FAB$V_RWC Rewind on close (applies to magnetic tape only).

FAB$L_FOP

FAB$V_RWO Rewind on open (applies to magnetic tape only).

193

$CREATE

Field Name Option or XAB Type Description

Note

If you specify the FAB$V_RWO option as input
to the Create service, RMS overwrites the tape
beginning with the first file.

FAB$V_SCF Submit command file: indicates that the file is to be
submitted as a batch-command file to the process
default batch queue (SYS$BATCH) when the file is
closed (applies to sequential files only).

FAB$V_SPL Spool: indicates that the file is to be spooled to the
process default print queue (SYS$PRINT) when the
file is closed (applies to sequential files only).

FAB$V_SQO Sequential only: indicates that the file can be
processed in a sequential manner only, usually to
enable DECnet for OpenVMS file transfer.

FAB$V_SUP Supersede: allows an existing file to be superseded
by a new file of the same name, type, and version.

FAB$V_TEF Truncate at end of file: indicates that the unused
space allocated to a file is deallocated when that file
is closed (applies to sequential files only).

FAB$V_TMD Temporary marked for delete: indicates that a
temporary file is to be created, and then deleted
when the file is closed.

FAB$V_TMP Temporary: indicates that a temporary file is to be
created and retained, but no directory entry is made
for this file.

FAB$V_UFO1 User file open: indicates that the file is to be created
or opened only (no further processing of that file is
allowed).

FAB$V_WCK Write-check: indicates that transfers to disk are to be
followed by a read-compare operation.

FAB$B_FSZ Fixed control area size.
FAB$W_GBC1 Global buffer count for shared files.
FAB$W_IFI Internal file identifier (must be 0).
FAB$L_MRN Maximum record number (applies to relative files

only).
FAB$W_MRS Maximum record size.
FAB$L_NAM4 NAM or NAML block address.
FAB$B_ORG File organization: sequential (FAB$C_SEQ2),

relative (FAB$C_REL), or indexed (FAB$C_IDX).
FAB$B_RAT Record attributes.
FAB$B_RFM Record format: fixed-length (FAB$C_FIX),

variable-length (FAB$C_VAR), VFC
(FAB$C_VFC), stream (FAB$C_STM), stream with

194

$CREATE

Field Name Option or XAB Type Description
line feed terminator (FAB$C_STMLF), stream with
carriage return terminator (FAB$C_STMCR), or
unidentified format (FAB$C_UDF2).

FAB$B_RTV1 Retrieval window size.
File sharing.

FAB$V_SHRDEL Allows other users to delete records from the file.
FAB$V_SHRGET Allows other users to read the file; also used

with the FAB$V_MSE and FAB$V_GET bits to
specify a read-only global buffer cache when global
buffering is enabled.

FAB$V_MSE1 Allows multistream access.
FAB$V_NIL Prohibits any type of file sharing by other users.
FAB$V_SHRPUT Allows other users to write records to the file and

extend it.
FAB$V_SHRUPD Allows other users to update records in the file and

extend it.

FAB$B_SHR

FAB$V_UPI Allows one or more users write access to a shared
file open for block I/O (applies to sequential files
only).
Extended attribute block address.

XABALL Allocation XAB; see Chapter 9.
XABDAT Date and time XAB; see Chapter 10.
XABFHC File header characteristics XAB; see Chapter 11.
XABITM Item list XAB; see Chapter 12.
XABKEY Key definition XAB; see Chapter 14.
XABPRO Protection XAB; see Chapter 15.
XABRDT Revision date and time XAB; see Chapter 16.

FAB$L_XAB

XABSUM Summary XAB; see Chapter 18.
1This field is not supported for DECnet for OpenVMS operations.
2These are the default values supplied by RMS.
3These fields must be specified unless you select the FAB$V_TMD or the FAB$V_TMP option.
4FAB$L_NAL is available as an alternative definition for C programmers to allow for appropriate type checking of a NAML block.

Table 35 lists the control block fields written as output by the Create service.

Table 35. Create Service FAB and XAB Output Fields

Field Name Option or XAB
Type

Description

FAB$L_ALQ Allocation quantity: contains actual number of blocks
allocated.

FAB$B_BKS Bucket size: applies only to relative and indexed files.
When multiple areas are defined for an indexed file, the
largest bucket size is returned.

195

$CREATE

Field Name Option or XAB
Type

Description

FAB$W_BLS Device block size (applies to files of sequential organization
only).

FAB$W_DEQ Default file extension quantity.
FAB$L_DEV Device characteristics.
FAB$B_FAC File access.
FAB$B_FSZ Fixed-length control area size for VFC format.
FAB$W_GBC Global buffer count.
FAB$W_IFI Internal file identifier.
FAB$L_MRN Maximum record number.
FAB$W_MRS Maximum record size.
FAB$B_ORG File organization.
FAB$B_RAT Record attributes.
FAB$B_RFM Record format.
FAB$L_SDC Secondary device characteristics.
FAB$B_SHR File sharing.
FAB$L_STS Completion status code (also returned in register 0).
FAB$L_STV Status value: contains the I/O channel number if the

operation is successful.
Next XAB field.

XABALL Allocation XAB; see Chapter 9.
XABDAT Date and time XAB; see Chapter 10.
XABFHC File header characteristics XAB; see Chapter 11.
XABITM Item list XAB; see Chapter 12.
XABKEY Key definition XAB; see Chapter 14.
XABPRO Protection XAB; see Chapter 15.
XABRDT Revision date and time XAB; see Chapter 16.

FAB$L_XAB

XABSUM Summary XAB; see Chapter 18.

Use of the NAM Block for Creating Files
Table 36 and Table 37 list the NAM block fields used as input and output for the Create service
(provided that the name block address field [FAB$L_NAM] is specified).

Table 36. Create Service NAM Input Fields

Field Name Option Description
NAM$W_DID1 Directory identification (input only if the

FAB$L_FOP FAB$V_NAM option is set).
NAM$T_DVI1 Device identification (input only if the

FAB$L_FOP FAB$V_NAM option is set).
NAM$L_ESA Expanded string area address.

196

$CREATE

Field Name Option Description
NAM$B_ESS Expanded string area size.

NAM block options.
NAM$V_PWD Password: indicates that a password contained

in a DECnet for OpenVMS access control
string, if present in a file specification, is to
be left unaltered in the expanded and resultant
strings (instead of being replaced by the word
“password”).

NAM$V_NOCONCEAL Do not conceal device name: indicates that when
a concealed device logical name is present,
the concealed device logical name is to be
replaced by the actual physical device name in the
resultant string.

NAM$B_NOP

NAM$V_NO_
SHORT_UPCASE1

Do not uppercase the directory and file
specification in the NAM$L_ESA buffer.

NAM$L_RLF Related file NAM or NAML block address.
NAM$L_RSA Resultant string address.
NAM$B_RSL Resultant string length.
NAM$L_FNB File name status bits.
NAM$B_RSS Resultant string area size.

1This field or option is not supported for DECnet for OpenVMS operations.

Table 37. Create Service NAM Output Fields

Field Name Description
NAM$B_DEV Size of file specification device string.
NAM$L_DEV Address of file specification device string.
NAM$W_DID1 Directory identification.
NAM$B_DIR Size of file specification directory string.
NAM$L_DIR Address of file specification directory string.
NAM$T_DVI1 Device identification.
NAM$B_ESL Expanded string length. If the NAM$L_ESA field and

the NAM$B_ESS field are nonzero, and you do not select
the FAB$V_NAM option, or if the NAM$W_DID field is
clear when you invoke the Create service, RMS copies the
expanded file specification string to the buffer specified by the
NAM$L_ESA field.

NAM$W_FID1 File identification.
NAM$W_FIRST_WILD_DIR1 First wild directory.
NAM$L_FNB File name status bits. This is an output field from the Create

service only if the NAM bit in FAB$L_FOP field is clear, or if
the NAM$W_DID field is clear when you invoke the Create
service.

NAM$W_LONG_DIR_LEVELS1 Total number of directory levels.

197

$CREATE

Field Name Description
NAM$B_NAME Size of file specification name string.
NAM$L_NAME Address of file specification name string.
NAM$B_NODE Size of file specification node string.
NAM$L_NODE Address of file specification node string.
NAM$B_RSL Resultant string length. If the NAM$L_RSA field and the

NAM$B_RSS field are both nonzero on input, the resultant file
specification is copied to the buffer specified by NAM$L_RSA.

NAM$B_TYPE Size of file specification type string.
NAM$L_TYPE Address of file specification type string.
NAM$B_VER Size of file specification version string.
NAM$L_VER Address of file specification version string.

1This field is not supported for DECnet for OpenVMS operations.

Table 38 and Table 39 list the NAML block fields used as input and output for the Create service.

Table 38. Create Service NAML Input Fields (Alpha Only)

Field Name Option Description
NAML$W_DID1 Directory identification (input only if the

FAB$L_FOP FAB$V_NAM option is
set).

NAML$T_DVI1 Device identification (input only if the
FAB$L_FOP FAB$V_NAM option is
set).

NAML$L_ESA Expanded string area address.
NAML$B_ESS Expanded string area size.
NAML$L_FILESYS_NAME1 File system file name.
NAML$L_FILESYS_NAME_
ALLOC1

File system file name buffer size.

NAML$L_FNB File name status bits.
NAML$L_INPUT_FLAGS Additional flags specified as input.
NAML$L_LONG_DEFNAME Long default file specification string

address (used if FAB$L_DNA contains
-1).

NAML$L_LONG_DEFNAME_
SIZE

Long default file specification string size.

NAML$L_LONG_EXPAND Long expanded string area address.
NAML$L_LONG_EXPAND_
ALLOC

Long expanded string area size.

NAML$L_LONG_FILENAME Long file specification string address
(used if FAB$L_FNA contains -1).

NAML$L_LONG_FILENAME_
SIZE

Long file specification string size.

NAML$L_LONG_RESULT Long resultant string area address.

198

$CREATE

Field Name Option Description
NAML$L_LONG_RESULT_
ALLOC

Long resultant string area.

NAML$L_LONG_RESULT_
SIZE

Long resultant string length.

NAML block options.
NAML$V_PWD Password: indicates that a password

contained in a DECnet for OpenVMS
access control string, if present in a file
specification, is to be left unaltered in the
expanded and resultant strings (instead of
being replaced by the word “password”).

NAML$V_
NOCONCEAL

Do not conceal device name: indicates
that when a concealed device logical
name is present, the concealed device
logical name is to be replaced by the
actual physical device name in the
resultant string.

NAML$B_NOP

NAML$V_NO_
SHORT_UPCASE1

Do not uppercase the directory and file
specification in the NAM$L_ESA buffer.

NAML$L_RLF Related file NAM or NAML block
address.

NAML$L_RSA Resultant string address.
NAML$B_RSL Resultant string length.
NAML$B_RSS Resultant string area size.

1This field is not supported for DECnet for OpenVMS operations.

Table 39. Create Service NAML Output Fields (Alpha Only)

Field Name Description
NAML$B_DEV Size of file specification device string.
NAML$L_DEV Address of file specification device string.
NAML$W_DID1 Directory identification.
NAML$B_DIR Size of file specification directory string.
NAML$L_DIR Address of file specification directory string.
NAML$T_DVI1 Device identification.
NAML$B_ESL Expanded string length. If the NAML$L_ESA field and

the NAML$B_ESS field are nonzero, and you do not select
the FAB$V_NAM option, or if the NAML$W_DID field is
clear when you invoke the Create service, RMS copies the
expanded file specification string to the buffer specified by
the NAML$L_ESA field.

NAML$W_FID1 File identification.
NAM$W_FIRST_WILD_DIR1 First wild directory.
NAML$L_FILESYS_NAME_SIZE1 File system name size.

199

$CREATE

Field Name Description
NAML$L_FNB File name status bits. This is an output field from the Create

service only if the NAM bit in FAB$L_FOP field is clear,
or if the NAML$W_DID field is clear when you invoke the
Create service.

NAML$L_LONG_DEV Long device string address.
NAML$L_LONG_DEV_SIZE Long device string size.
NAML$L_LONG_DIR Long directory string address.
NAML$W_LONG_DIR_LEVELS1 Total number of directory levels.
NAML$L_LONG_DIR_SIZE Long directory string size.
NAML$L_LONG_EXPAND_SIZE Long expanded string length.
NAML$L_LONG_NAME Long file name string address.
NAML$L_LONG_NAME_SIZE Long file name string length.
NAML$L_LONG_NODE1 Long node name string address.
NAML$L_LONG_NODE_SIZE Long node name string length.
NAML$L_LONG_RESULT_SIZE1 Long resultant string length.
NAML$L_LONG_TYPE Long file type string length.
NAML$L_LONG_TYPE_SIZE Long file type string address.
NAML$L_LONG_VER Long file version string address.
NAML$L_LONG_VER_SIZE Long file version string length.
NAML$B_NAME Size of file specification name string.
NAML$L_NAME Address of file specification name string.
NAML$B_NODE Size of file specification node string.
NAML$L_NODE Address of file specification node string.
NAML$L_OUTPUT_FLAGS Output flags.
NAML$B_RSL Resultant string length. If the NAML$L_RSA field and

the NAML$B_RSS field are both nonzero on input, the
resultant file specification is copied to the buffer specified
by NAML$L_RSA.

NAML$B_TYPE Size of file specification type string.
NAML$L_TYPE Address of file specification type string.
NAML$B_VER Size of file specification version string.
NAML$L_VER Address of file specification version string.

1This field is not supported for DECnet for OpenVMS operations.

Creating Files with the Create-If Option

Note that setting the create-if (FAB$V_CIF) option in the FAB$L_FOP field specifies that if a
new file has the same file specification as an existing file, RMS opens the existing file and no new
file is created. Some fields in the FAB, such as the file organization (FAB$B_ORG) and record
format (FAB$B_RFM) fields, are input to a Create service, but are output from an Open service. For
example, the indexed file organization could be specified in the FAB$B_ORG field on a create-if
operation. However, if an existing sequential file has the same file specification as the indexed file

200

$CREATE

that the user is attempting to create, then the existing file is opened and the FAB$B_ORG field is set
to sequential.

Creating Indexed Files
An indexed file consists of a prolog, with which it begins, and one or more index structures. RMS
supplies the prolog with certain information about the file, including file attributes.

RMS supports two prolog levels, called Prolog 2 and Prolog 3. Unlike Prolog 2 files, Prolog 3 files
allow for file compression and additional key types. For compatibility with RMS-11 data files that are
transported or copied (without conversion) between systems, you may want to choose Prolog 2.

If you want to create a Prolog 3 file, you must be sure that records in the file are not larger than
32,224 bytes and, if the primary key is segmented, that the segments of the primary key do not
overlap (one or more bytes of the record are used in more than one segment). If the primary key
contains overlapping segments, you can consider using that key as an alternate key instead of a
primary key or you can either request, or let RMS assign you, a Prolog 2 indexed file.

Prolog 3 is the default prolog for RMS, although RMS creates a Prolog 2 file only if the key
characteristics are not compatible with Prolog 3 files. You can, however, override this default by
requesting a specific prolog version. The option you choose in requesting a specific prolog level
affects the behavior of RMS with regard to creating the file and returning error messages.

If you explicitly request a prolog version using the XABKEY XAB$B_PROLOG field in an
application program, and if other file characteristics are incompatible with that prolog, then RMS
returns an error message and does not attempt to create the file. For example, if you explicitly specify
Prolog 2 in the XAB$B_PROLOG field and have requested a key type that is available only with
Prolog 3 (such as an 8-byte integer key type), an error is returned and the file is not created.

However, if a specific prolog version is not explicitly requested in the XAB$B_PROLOG field, RMS
selects the greatest prolog level that can support the specified key characteristics and does not return
an error completion code.

In summary, there are two ways in which you can specify a particular prolog version:

• Specify the XAB$B_PROLOG field in a XABKEY block in an application program, affecting
only the file being created.

• Use the DCL command SET RMS_DEFAULT/PROLOG to change the process default.

If you do not specify the XAB$B_PROLOG field in your application program, RMS examines your
process defaults to check for prolog information. If this information is not specified in your process
defaults, RMS examines the system defaults. If no prolog information is specified at the system level,
RMS attempts to create a Prolog 3 file.

You need not be concerned with the distinctions between Prolog 2 and Prolog 1 files. To create an
indexed file with a prolog version other than Prolog 3, specify a Prolog 2 file. If all keys in the file are
string keys, RMS provides a default of Prolog 1; in all other cases, Prolog 2 is the default.

Note

String keys include the STRING, DSTRING, COLLATED, and DCOLLATED data-type keys.

If the file contains all string keys and Prolog 2 is requested, RMS attempts to create a Prolog 1 file
only if no binary keys are present.

201

$CREATE

Note that RMS-11 and previous versions of RMS return error messages if requested to process Prolog
3 files.

If a failure is indicated, the file may be created, but it may not be opened for processing, depending on
the nature of the failure.

Condition Values Returned
The following condition values can be returned. Use the Help Message utility to access online
message descriptions. For more information about interpreting condition values, see Section 2.4.

RMS$_ACS RMS$_ACT RMS$_AID
RMS$_ALN RMS$_ALQ RMS$_AOP
RMS$_ATR RMS$_ATW RMS$_BKS
RMS$_BKZ RMS$_BLN RMS$_BUG
RMS$_BUG_DAP RMS$_BUG_DDI RMS$_CDA
RMS$_CHN RMS$_COD RMS$_CRE
RMS$_CREATED RMS$_CRE_STM RMS$_CRMP
RMS$_DAN RMS$_DEV RMS$_DFL
RMS$_DIR RMS$_DME RMS$_DNA
RMS$_DNF RMS$_DNR RMS$_DTP
RMS$_DVI RMS$_ENQ RMS$_ENV
RMS$_ESA RMS$_ESS RMS$_EXENQLM
RMS$_EXP RMS$_EXTNOTFOU RMS$_FAB
RMS$_FEX RMS$_FLG RMS$_FLK
RMS$_FNA RMS$_FNF RMS$_FNM
RMS$_FOP RMS$_FSZ RMS$_FUL
RMS$_GBC RMS$_IAL RMS$_IAN
RMS$_IBK RMS$_IFA RMS$_IFI
RMS$_IFL RMS$_IMX RMS$_IOP
RMS$_KNM RMS$_KSI RMS$_LAN
RMS$_LNE RMS$_MRN RMS$_MRS
RMS$_NAM RMS$_NAML RMS$_NAMLESS
RMS$_NAMLFSINV RMS$_NAMLFSSIZ RMS$_NAMLRSS
RMS$_NET RMS$_NETFAIL RMS$_NOD
RMS$_NORMAL RMS$_NPK RMS$_ORG
RMS$_POS RMS$_PRV RMS$_QUO
RMS$_RAT RMS$_REF RMS$_RFM
RMS$_RLF RMS$_RPL RMS$_RSS
RMS$_RST RMS$_RUNDOWN RMS$_SEG
RMS$_SEMANTICS RMS$_SHR RMS$_SIZ
RMS$_STR RMS$_SUC RMS$_SUP
RMS$_SUPERSEDE RMS$_SUPPORT RMS$_SYN

202

$CREATE

RMS$_SYS RMS$_UPI RMS$_VER
RMS$_WLK RMS$_WPL RMS$_XAB

203

$CREATE

204

$DELETE
$DELETE — The Delete service removes an existing record from a relative or indexed file. You
cannot use this service when processing sequential files.
On OpenVMS Alpha systems, RAB64 can replace the RAB or RAB prefix wherever it is used with
the Delete service.

Format
SYS$DELETE rab [,[err] [,suc]]

Returns
OpenVMS usage: cond_value
type: longword
access: write only
mechanism: by value

The value is returned in symbolic offset RAB$L_STS. Symbolic offset RAB$L_STV may contain
additional status information.

Arguments
rab

OpenVMS usage: rab
type: longword (unsigned)
access: modify
mechanism: by reference

RAB control block whose contents are to be used as indirect arguments for the Delete service call.
The rab argument is the address of the RAB control block.

err

OpenVMS usage: ast_procedure
type: procedure value
access: call without stack unwinding
mechanism: by reference

AST-level error completion routine that the service invokes if the operation is unsuccessful. The err
argument is the address of the entry mask of this user-written completion routine.

suc

OpenVMS usage: ast_procedure
type: procedure value

205

$DELETE

access: call without stack unwinding
mechanism: by reference

AST-level success completion routine that the service invokes if the operation is successful. The suc
argument is the address of the entry mask of this user-written completion routine.

Description
A Delete service always applies to the current record. Therefore, immediately before invoking the
Delete service, you must establish the current record by issuing a Find or Get service.

Table 40 lists the control block fields read as input by the Delete service. For additional information
on the fields accessed by this service, see Part II.

Table 40. Delete Service RAB Input Fields

Field Name Option Description
RAB$W_ISI Internal stream identifier (required).

Record-processing options.
RAB$V_ASY Asynchronous: performs Delete service asynchronously.

RAB$L_ROP

RAB$V_FDL Fast delete (applies to indexed files).

Table 41 lists the control block fields written as output by the Delete service.

Table 41. Delete Service RAB Output Fields

Field Name Description
RAB$L_STS Completion status code (also returned in register 0).
RAB$L_STV Status value.

Condition Values Returned
The following condition values can be returned. Use the Help Message utility to access online
message descriptions. For more information about interpreting condition values, see Section 2.4.

RMS$_ACT RMS$_BLN RMS$_BUG
RMS$_BUG_DAP RMS$_CDA RMS$_CHK
RMS$_CUR RMS$_DME RMS$_DNR
RMS$_EXT_ERR RMS$_FAC RMS$_FTM
RMS$_IAL RMS$_IBF RMS$_IOP
RMS$_IRC RMS$_ISI RMS$_NET
RMS$_NETFAIL RMS$_NORMAL RMS$_OPNOTSUP
RMS$_PENDING RMS$_RAB RMS$_RNL
RMS$_RPL RMS$_RRV RMS$_RSA
RMS$_STR RMS$_SUC RMS$_SUP
RMS$_SUPPORT RMS$_SYS RMS$_TRE
RMS$_WLK

206

$DISCONNECT
$DISCONNECT — The Disconnect service breaks the connection between a RAB and a FAB,
thereby terminating a record stream. All system resources, such as I/O buffers and data structure
space, are deallocated.
On OpenVMS Alpha systems, RAB64 can replace the RAB or RAB prefix wherever it is used with
the Disconnect service.

Format
SYS$DISCONNECT rab [,[err] [,suc]]

Returns
OpenVMS usage: cond_value
type: longword
access: write only
mechanism: by value

The value is returned in symbolic offset RAB$L_STS. Symbolic offset RAB$L_STV may contain
additional status information.

Arguments
rab

OpenVMS usage: rab
type: longword (unsigned)
access: modify
mechanism: by reference

RAB control block whose contents are to be used as indirect arguments for the Disconnect service
call. The rab argument is the address of the RAB control block.

err

OpenVMS usage: ast_procedure
type: procedure value
access: call without stack unwinding
mechanism: by reference

AST-level error completion routine that the service invokes if the operation is unsuccessful. The err
argument is the address of the entry mask of this user-written completion routine.

suc

OpenVMS usage: ast_procedure
type: procedure value

207

$DISCONNECT

access: call without stack unwinding
mechanism: by reference

AST-level success completion routine that the service invokes if the operation is successful. The suc
argument is the address of the entry mask of this user-written completion routine.

Description
The Close service (see $CLOSE) performs an implied disconnect for all record streams connected to
the FAB. Thus, you need not explicitly issue a Disconnect service prior to closing the file. However,
if more than one RAB is connected to a single FAB, then you must explicitly disconnect the desired
RAB in order to terminate a particular record stream and leave the others active.

Table 42 lists the control block fields read as input by the Disconnect service. For additional
information on the fields accessed by this service, see Part II.

Table 42. Disconnect Service RAB Input Fields

Field Name Option Description
RAB$W_ISI Internal stream identifier (required).

Record-processing option.RAB$L_ROP
RAB$V_ASY Asynchronous. Performs Disconnect service

asynchronously.

Table 43 lists the control block fields written as output by the Disconnect service.

Table 43. Disconnect Service RAB Output Fields

Field Name Description
RAB$W_ISI Internal stream identifier (zeroed).
RAB$L_STS Completion status code (also returned in register 0).
RAB$L_STV Status value.

Condition Values Returned
The following condition values can be returned. Use the Help Message utility to access online
message descriptions. For more information about interpreting condition values, see Section 2.4.

RMS$_ACT RMS$_ATR RMS$_ATW
RMS$_BLN RMS$_BUG_DAP RMS$_CDA
RMS$_CRC RMS$_DME RMS$_DNR
RMS$_EXT_ERR RMS$_ISI RMS$_NET
RMS$_NETFAIL RMS$_NORMAL RMS$_OPNOTSUP
RMS$_PENDING RMS$_RAB RMS$_RSA
RMS$_STR RMS$_SUC RMS$_SUP
RMS$_SUPPORT RMS$_SYS RMS$_WBE
RMS$_WER RMS$_WLK

208

$DISPLAY
$DISPLAY — The Display service retrieves file attribute information about a file and places this
information in fields in the FAB, in XABs chained to the FAB, and in a NAM or NAML block (if one
is requested).

Format
SYS$DISPLAY fab [,[err] [,suc]]

Returns
OpenVMS usage: cond_value
type: longword
access: write only
mechanism: by value

The value is returned in symbolic offset FAB$L_STS. Symbolic offset FAB$L_STV may contain
additional status information.

Arguments
fab

OpenVMS usage: fab
type: longword (unsigned)
access: modify
mechanism: by reference

FAB control block whose contents are to be used as indirect arguments for the Display service call.
The fab argument is the address of the FAB control block.

err

OpenVMS usage: ast_procedure
type: procedure value
access: call without stack unwinding
mechanism: by reference

AST-level error completion routine that the service invokes if the operation is unsuccessful. The err
argument is the address of the entry mask of this user-written completion routine.

suc

OpenVMS usage: ast_procedure
type: procedure value
access: call without stack unwinding

209

$DISPLAY

mechanism: by reference

AST-level success completion routine that the service invokes if the operation is successful. The suc
argument is the address of the entry mask of this user-written completion routine.

Description
A file must be open for access by a Create or Open service before the Display service can be invoked.

RMS places the file attribute information in the corresponding fields of the FAB and specified XABs.
If the FAB$L_NAM field contains a valid NAM or NAML block address, certain NAM or NAML
block fields are filled in, including the resultant string, and the NAM$B_NOP options are examined.

Note that the Open and Create services automatically perform an implicit Display service (see $OPEN
and $CREATE).

Table 44 lists the FAB control block fields read as input by the Display service. For additional
information on the fields accessed by this service, see Part II.

Table 44. Display Service FAB Input Fields

Field Name Description
FAB$W_IFI Internal file identifier.
FAB$L_NAM1 NAM or NAML block address.
FAB$L_XAB1 Extended attribute block address.

1 If you want information about a particular XAB, NAM, or NAML block, you must pass it to the Display service as input.

Table 45 lists the FAB and XAB control block fields written as output by the Display service.

Table 45. Display Service FAB and XAB Output Fields

Field Name XAB Type Description
FAB$L_ALQ Allocation quantity in blocks.
FAB$B_BKS Bucket size.
FAB$W_BLS Block size.
FAB$W_DEQ Default file extension quantity.
FAB$L_DEV Device characteristics.
FAB$B_FAC File access.
FAB$B_FSZ Fixed control area size.
FAB$W_GBC Global buffer count.
FAB$L_MRN Maximum record number.
FAB$W_MRS Maximum record size.
FAB$B_ORG File organization.
FAB$B_RAT Record attributes.
FAB$B_RFM Record format.
FAB$B_RTV Retrieval window size.
FAB$B_SHR File sharing.

210

$DISPLAY

Field Name XAB Type Description
FAB$L_STS Completion status code (also returned in register 0).
FAB$L_STV Status value.

Next XAB address.
XABALL Allocation XAB; see Chapter 9.
XABDAT Date and time XAB; see Chapter 10.
XABFHC File header characteristics XAB; see Chapter 11.
XABITM Item list XAB; see Chapter 12.
XABKEY Key definition XAB; see Chapter 14.
XABPRO Protection XAB; see Chapter 15.
XABRDT Revision date and time XAB; see Chapter 16.

FAB$L_XAB

XABSUM Summary XAB; see Chapter 18.

Table 46 lists the NAM control block fields read as input by the Display service. For additional
information on the fields accessed by this service, see Part II.

Table 46. Display Service NAM Input Fields

Field Name Option Description
NAM block options.

NAM$V_PWD Password: indicates that a password contained
in a DECnet for OpenVMS access control
string, if present in a file specification, is to
be left unaltered in the expanded and resultant
strings (instead of being replaced by the word
“password”).

NAM$B_NOP

NAM$V_NOCONCEAL Do not conceal device name: indicates that when
a concealed device logical name is present, the
concealed device logical name is to be replaced
by the actual physical device name (and directory,
if present) in the resultant string.

Table 47 lists the NAM control block fields written as output by the Display service.

Table 47. Display Service NAM Output Fields

Field Name Description
NAM$W_DID1 Directory identification.
NAM$T_DVI1 Device identification.
NAM$W_FID1 File identification.
NAM$L_FNB File name status bits.
NAM$B_RSL Resultant string length: indicates the length of the resultant string that is written

into the buffer whose address is contained in the NAM$L_RSA field (if the
NAM$L_RSA and NAM$B_RSS fields are nonzero).

1This field is not supported for DECnet for OpenVMS operations.

Table 48 lists the NAML block fields used as input for the Display service.

211

$DISPLAY

Table 48. Display Service NAML Input Fields (Alpha Only)

Field Name
Option Description

NAML$L_INPUT_FLAGS Additional flags specified as input.
NAML block options.

NAML$V_PWD Password: indicates that a password
contained in a DECnet for OpenVMS
access control string, if present in a
file specification, is to be left unaltered
in the expanded and resultant strings
(instead of being replaced by the word
“password”).

NAML$B_NOP

NAML$V_NOCONCEAL Do not conceal device name: indicates
that when a concealed device logical
name is present, the concealed device
logical name is to be replaced by the
actual physical device name (and
directory, if present) in the resultant
string.

Table 49 lists the NAML block fields used as output for the Display service.

Table 49. Display Service NAML Output Fields (Alpha Only)

Field Name Description
NAML$W_DID1 Directory identification.
NAML$T_DVI1 Device identification.
NAML$W_FID1 File identification.
NAML$L_FNB File name status bits.
NAML$L_LONG_RESULT_SIZE Long resultant string length.
NAML$L_OUTPUT_FLAGS Additional status bits passed as output.
NAML$B_RSL Resultant string length: indicates the length of the resultant

string that is written into the buffer whose address is
contained in the NAM$L_RSA field (if the NAML$L_RSA
and NAML$B_RSS fields are nonzero).

1This field is not supported for DECnet for OpenVMS operations.

Condition Values Returned
The following condition values can be returned. Use the Help Message utility to access online
message descriptions. For more information about interpreting condition values, see Section 2.4.

RMS$_ACT RMS$_AID RMS$_ATR
RMS$_BLN RMS$_BUG_DAP RMS$_CDA
RMS$_COD RMS$_DME RMS$_DNR
RMS$_ESA RMS$_ESL RMS$_ESS
RMS$_NAMLESS RMS$_NAMLFSINV RMS$_NAMLFSSIZ

212

$DISPLAY

RMS$_FAB RMS$_IFI RMS$_IMX
RMS$_NET RMS$_NETFAIL RMS$_NORMAL
RMS$_OK_NOP RMS$_PLG RMS$_PRV
RMS$_REF RMS$_RPL RMS$_STR
RMS$_SUC RMS$_SUP RMS$_SUPPORT
RMS$_XAB

213

$DISPLAY

214

$ENTER
$ENTER — The Enter service inserts a file name in a directory. Note that the $ENTER service is not
supported for DECnet.

Format
SYS$ENTER fab [,[err] [,suc]]

Returns
OpenVMS usage: cond_value
type: longword
access: write only
mechanism: by value

The value is returned in symbolic offset FAB$L_STS. Symbolic offset FAB$L_STV may contain
additional status information.

Arguments
fab

OpenVMS usage: fab
type: longword (unsigned)
access: modify
mechanism: by reference

FAB control block whose contents are to be used as indirect arguments for the Enter service call. The
fab argument is the address of the FAB control block.

err

OpenVMS usage: ast_procedure
type: procedure value
access: call without stack unwinding
mechanism: by reference

AST-level error completion routine that the service invokes if the operation is unsuccessful. The err
argument is the address of the entry mask of this user-written completion routine.

suc

OpenVMS usage: ast_procedure
type: procedure value
access: call without stack unwinding

215

$ENTER

mechanism: by reference

AST-level success completion routine that the service invokes if the operation is successful. The suc
argument is the address of the entry mask of this user-written completion routine.

Description
The Enter service function is performed automatically by the Create service unless you select
the FAB$V_TMP option or the FAB$V_TMD option. The Enter service, however, allows you to
perform this step separately. Note that the file must be closed before you invoke the Enter service
(FAB$W_IFI must be 0).

When you enter a file name in a directory, no file associated with the FAB can be open and no
wildcard characters can be used.

The Enter service requires many NAM or NAML block fields as input. You normally precede
the Enter service with an Open, Create, or Parse service (see $PARSE) and a Search service (see
$SEARCH), specifying the same FAB and NAM block for each service.

The optional resultant string is moved to the buffer described by the NAM$L_RSA (or
NAML$L_LONG_RESULT) and NAM$B_RSS (or NAML$L_LONG_RESULT_ALLOC) fields
(only if both these fields are nonzero). If the file version number of the name string described by the
expanded string length and address fields of the NAM or NAML block is omitted or contains a 0, the
Enter service scans the entire directory. It assigns a version number that is one higher than the highest
found (or 1 if none is found).

Note

The Enter service is not supported for DECnet for OpenVMS operations on remote files between two
OpenVMS systems.

Table 50 lists the FAB control block fields read as input by the Enter service. For additional
information on the fields accessed by this service, see Part II.

Table 50. Enter Service FAB Input Fields

Field Name Description
FAB$W_IFI Internal file identifier (must be 0).
FAB$L_NAM NAM or NAML block address.

Table 51 lists the FAB control block fields read as output by the Enter service. For additional
information on the fields accessed by this service, see Part II.

Table 51. Enter Service FAB Output Fields

Field Name Description
FAB$L_STS Completion status code (also returned in register 0).
FAB$L_STV Status value.

Table 52 lists the NAM control block fields read as input by the Enter service. For additional
information on the fields accessed by this service, see Part II.

216

$ENTER

Table 52. Enter Service NAM Input Fields

Field Name Description
NAM$W_DID Directory identification: identifies the directory in which the file name is to be

entered.
NAM$T_DVI Device identification: identifies the device containing the directory in which the

file name is to be entered.
NAM$L_ESA Expanded string area address: contains file name, type, and version to be

entered.
NAM$B_ESL Expanded string length.
NAM$W_FID File identification: identifies the file to be entered into the directory.
NAM$L_RSA Resultant string area address.
NAM$B_RSS Resultant string size.

Table 53 lists the NAM control block field read as output by the Enter service. For additional
information on the fields accessed by this service, see Part II.

Table 53. Enter Service NAM Output Field

Field Name Description
NAM$B_RSL Resultant string length.

Table 54 lists the NAML block fields used as input for the Enter service.

Table 54. Enter Service NAML Input Fields (Alpha Only)

Field Name Description
NAML$W_DID Directory identification: identifies the directory in which the

file name is to be entered.
NAML$T_DVI Device identification: identifies the device containing the

directory in which the file name is to be entered.
NAML$L_ESA Expanded string area address: contains the file name, type,

and version to be entered.
NAML$B_ESL Expanded string length.
NAML$W_FID File identification: identifies the file to be entered into the

directory.
NAML$L_INPUT_FLAGS Additional flags specified as input.
NAML$L_LONG_EXPAND Long expanded string area address.
NAML$L_LONG_EXPAND_ALLOC Long expanded string area size.
NAML$L_LONG_RESULT Long resultant string area address.
NAML$L_LONG_RESULT_ALLOC Long resultant string area size.
NAML$L_RSA Resultant string area address.
NAML$B_RSS Resultant string size.

Table 55 lists the NAML control block fields read as output by the Enter service. For additional
information on the fields accessed by this service, see Part II.

217

$ENTER

Table 55. Enter Service NAML Output Fields (Alpha Only)

Field Name Description
NAML$L_LONG_RESULT_SIZE Long resultant string length.
NAML$L_OUTPUT_FLAGS Additional status bits passed as output.
NAML$B_RSL Resultant string length.

Condition Values Returned
The following condition values can be returned. Use the Help Message utility to access online
message descriptions. For more information about interpreting condition values, see Section 2.4.

RMS$_BLN RMS$_CDA RMS$_CHN
RMS$_DEV RMS$_DME RMS$_DNF
RMS$_DNR RMS$_DVI RMS$_ENT
RMS$_ESA RMS$_ESL RMS$_FAB
RMS$_FNF RMS$_IFI RMS$_NAM
RMS$_NAML RMS$_NAMLFSINV RMS$_NAMLFSSIZ
RMS$_NAMLRSS RMS$_NORMAL RMS$_PRV
RMS$_RSL RMS$_RSS RMS$_RST
RMS$_STR RMS$_SUC RMS$_SUP
RMS$_SUPPORT RMS$_SYS RMS$_WLD
RMS$_WLK

218

$ERASE
$ERASE — The Erase service deletes a disk file and removes the file's directory entry specified in the
path to the file. If additional directory entries have been created for this file by the Enter service, you
must use the Remove service to delete them.

Format
SYS$ERASE fab [,[err] [,suc]]

Returns

OpenVMS usage: cond_value
type: longword
access: write only
mechanism: by value

The value is returned in symbolic offset FAB$L_STS. Symbolic offset FAB$L_STV may contain
additional status information.

Arguments
fab

OpenVMS usage: fab
type: longword (unsigned)
access: modify
mechanism: by reference

FAB control block whose contents are to be used as indirect arguments for the Erase service call. The
fab argument is the address of the FAB control block.

err

OpenVMS usage: ast_procedure
type: procedure value
access: call without stack unwinding
mechanism: by reference

AST-level error completion routine that the service invokes if the operation is unsuccessful. The err
argument is the address of the entry mask of this user-written completion routine.

suc

OpenVMS usage: ast_procedure
type: procedure value

219

$ERASE

access: call without stack unwinding
mechanism: by reference

AST-level success completion routine that the service invokes if the operation is successful. The suc
argument is the address of the entry mask of this user-written completion routine.

Description
Using the Erase service to delete a file releases the file's allocated space for use by another file. The
Erase service does not physically remove the data (as does overwriting or zeroing).

Note that the file must be closed before you invoke the Erase service (FAB$W_IFI must be zero).
You can, however, delete a file that is currently open, if you issue a Close service and specify the
FAB$L_FOP field FAB$V_DLT option. RMS does not allow you to delete files from magnetic tape
volumes; they must be overwritten.

If a search list logical name is specified, the file is deleted only if it is found in the first resulting
search list file specification.

A file that is open for write access by another process may be marked for delete by specifying the
FAV$V_ERL file option for the erase service. The file deletion will occur when the file's reference
count reaches zero.

Table 56 lists the FAB control block fields read as input by the Erase service. For additional
information on the fields accessed by this service, see Part II.

Table 56. Erase Service FAB Input Fields

Field Name Option Description
FAB$L_DNA Default file specification string address.
FAB$B_DNS Default file specification string size.
FAB$L_FNA File specification string address.
FAB$B_FNS File specification string size.

File-processing options.
FAB$V_ERL Erase regardless of lock: allows a file open for write access

to be marked for delete.

FAB$L_FOP

FAB$V_NAM1 NAM block inputs: allows use of the NAM$W_DID,
NAM$T_DVI, and NAM$W_FID fields.

FAB$W_IFI Internal file identifier (must be 0).
FAB$L_NAM NAM or NAML block address.

1This field is not supported for DECnet for OpenVMS operations.

Table 57 lists the FAB control block fields read as output by the Erase service. For additional
information on the fields accessed by this service, see Part II.

Table 57. Erase Service FAB Output Fields

Field Name Description
FAB$L_STS Completion status code (also returned in register 0).
FAB$L_STV Status value.

220

$ERASE

Table 58 lists the NAM control block fields read as input by the Erase service. For additional
information on the fields accessed by this service, see Part II.

Table 58. Erase Service NAM Input Fields

Field Name Option Description
NAM$W_DID1 Directory identification (input only if the FAB$L_FOP field

FAB$V_NAM bit is set).
NAM$T_DVI1 Device identification (input only if the FAB$L_FOP field

FAB$V_NAM bit is set).
NAM$L_ESA Expanded string area address.
NAM$B_ESS Expanded string area size.
NAM$W_FID1 File identification (input only if the FAB$L_FOP field

FAB$V_NAM bit is set).
NAM block option.NAM$B_NOP

NAM$V_NO_
SHORT_UPCASE

Do not uppercase the directory and file specification in the
NAM$L_ESA buffer.

NAM$L_RLF Related file NAM or NAML block address.
NAM$L_RSA Related file resultant string address.
NAM$B_RSS Related file resultant string size.
NAM$L_FNB Related file file name status bits.

1This field is not supported for DECnet for OpenVMS operations.

Note that the NAM block fields are used for output only if the name block address field is specified in
the FAB.

Table 59 lists the NAM control block fields read as output by the Erase service. For additional
information on the fields accessed by this service, see Part II.

Table 59. Erase Service NAM Output Fields

Field Name Description
NAM$W_DID1 Directory identification.
NAM$T_DVI1 Device identification.
NAM$B_ESL Expanded string length. If the NAM$L_ESA field and the

NAM$B_ESS field are nonzero, and if the FAB$V_NAM bit is
clear or the NAM$W_DID field contains a zero, RMS copies the
expanded file specification string to the buffer specified by the
input NAM$L_ESA field.

NAM$W_FIRST_WILD_DIR1 The topmost directory level to contain a wildcard.
NAM$L_FNB File name status bits.
NAM$L_LONG_DIR_LEVELS1 Total number of directories.
NAM$B_RSL Resultant string length (if NAM$L_RSA and NAM$B_RSS are

both nonzero on input, the resultant file specification is copied to
the buffer specified by NAM$L_RSA).

1This field is not supported for DECnet for OpenVMS operations.

Table 60 lists the NAML block fields used as input for the Erase service.

221

$ERASE

Table 60. Erase Service NAML Input Fields (Alpha Only)

Field Name Option Description
NAML$W_DID1 Directory identification (input only if the

FAB$L_FOP field FAB$V_NAM bit is set).
NAML$T_DVI1 Device identification (input only if the

FAB$L_FOP field FAB$V_NAM bit is set).
NAML$L_ESA Expanded string area address.
NAML$B_ESS Expanded string area size.
NAML$W_FID1 File identification (input only if the FAB$L_FOP

field FAB$V_NAM bit is set).
NAML$L_FILESYS_
NAME1

File system name buffer address.

NAML$L_FILESYS_
NAME_ALLOC1

File system name buffer size.

NAML$L_FNB Related file name status bits.
NAML$L_INPUT_FLAGS Additional flags specified as input.
NAML$L_LONG_
DEFNAME

Long default file specification string address
(used if FAB$L_DNA contains -1).

NAML$L_LONG_
DEFAME_SIZE

Long default file specification string size.

NAML$L_LONG_EXPAND Long expanded string area address.
NAML$L_LONG_
EXPAND_ALLOC

Long expanded string area size.

NAML$L_LONG_
FILENAME

Long file specification string address (used if
FAB$L_FNA contains -1).

NAML$L_LONG_
FILENAME_SIZE

Long file specification string size.

NAML$L_LONG_RESULT Long resultant string area address.
NAML$L_LONG_
RESULT_ALLOC

Long resultant string area size.

NAML block option.NAML$B_NOP
NAML$V_NO_
SHORT_UPCASE

Do not uppercase the directory and file
specification in the NAML$L_ESA buffer.

NAML$L_RLF Related file NAM or NAML block address.
NAML$L_RSA Resultant string address.
NAML$B_RSS Resultant string size.

1This field is not supported for DECnet for OpenVMS operations.

Table 61 lists the NAML control block fields read as output by the Erase service. For additional
information on the fields accessed by this service, see Part II.

Table 61. Erase Service NAML Output Fields (Alpha Only)

Field Name Description
NAML$W_DID1 Directory identification.

222

$ERASE

Field Name Description
NAML$T_DVI 1 Device identification.
NAML$B_ESL Expanded string length. If the NAML$L_ESA field and the

NAML$B_ESS field are nonzero, and if the FAB$V_NAM
bit is clear or the NAML$W_DID field contains a zero,
RMS copies the expanded file specification string to the
buffer specified by the input NAML$L_ESA field.

NAML$L_FILESYS_NAME_SIZE1 File system name length.
NAML$W_FIRST_WILD_DIR1 First wild directory.
NAML$L_FNB File name status bits.
NAML$L_LONG_DIR_LEVELS1 Total number of directories.
NAML$L_LONG_EXPAND_SIZE Long expanded string length.
NAML$L_LONG_RESULT_SIZE Long resultant string length.
NAML$L_OUTPUT_FLAGS Additional status bits passed as output.
NAML$B_RSL Resultant string length (if NAML$L_RSA and

NAML$B_RSS are both nonzero on input, the resultant
file specification is copied to the buffer specified by
NAML$L_RSA).

1This field is not supported for DECnet for OpenVMS operations.

Condition Values Returned
The following condition values can be returned. Use the Help Message utility to access online
message descriptions. For more information about interpreting condition values, see Section 2.4.

RMS$_ACS RMS$_BLN RMS$_BUG_DAP
RMS$_BUG_DDI RMS$_CDA RMS$_CHN
RMS$_DEV RMS$_DIR RMS$_DME
RMS$_DNA RMS$_DNF RMS$_DNR
RMS$_DVI RMS$_ESA RMS$_ESS
RMS$_FAB RMS$_FNF RMS$_FNM
RMS$_IFI RMS$_IOP RMS$_LNE
RMS$_MKD RMS$_NAM RMS$_NAML
RMS$_NAMLESS RMS$_NAMLFSINV RMS$_NAMLFSSIZ
RMS$_NAMLRSS RMS$_NET RMS$_NETFAIL
RMS$_NOD RMS$_NORMAL RMS$_PRV
RMS$_QUO RMS$_RLF RMS$_RSS
RMS$_RST RMS$_STR RMS$_SUC
RMS$_SUP RMS$_SUPERSEDE RMS$_SUPPORT
RMS$_SYN RMS$_TYP RMS$_VER
RMS$_WLK

223

$ERASE

224

$EXTEND
$EXTEND — The Extend service increases the amount of space allocated to a disk file. This service
is most useful for extending relative files and indexed files when you are doing block I/O transfers
using the Write service.

Format
SYS$EXTEND fab [,[err] [,suc]]

Returns
OpenVMS usage: cond_value
type: longword
access: write only
mechanism: by value

The value is returned in symbolic offset FAB$L_STS. Symbolic offset FAB$L_STV may contain
additional status information.

Arguments
fab

OpenVMS usage: fab
type: longword (unsigned)
access: modify
mechanism: by reference

FAB control block whose contents are to be used as indirect arguments for the Extend service call.
The fab argument is the address of the FAB control block.

err

OpenVMS usage: ast_procedure
type: procedure value
access: call without stack unwinding
mechanism: by reference

AST-level error completion routine that the service invokes if the operation is unsuccessful. The err
argument is the address of the entry mask of this user-written completion routine.

suc

OpenVMS usage: ast_procedure
type: procedure value
access: call without stack unwinding

225

$EXTEND

mechanism: by reference

AST-level success completion routine that the service invokes if the operation is successful. The suc
argument is the address of the entry mask of this user-written completion routine.

Description
When a program adds data to a file using record I/O operations, RMS invokes the Extend service to
provide additional file space, if needed, regardless of the file organization. But, when data is added
using block I/O operations, RMS provides additional file space for sequential files only. To obtain
additional file space when using block I/O, the program must invoke the Extend service.

You might also want to consider using the Extend service for all file organizations when you want to
extend a file for performance reasons, such as placing a large file extent (an extended part of a file)
contiguous with the file.

In order for a program to invoke the Extend service, it must open the file (FAB$W_IFI must not be 0);
otherwise, an error occurs. RMS also requires that the file access field (FAB$B_FAC) specify either
put access (FAB$V_PUT) or update access (FAB$V_UPD) before permitting file extensions.

The program uses the appropriate allocation quantity field (FAB$L_ALQ or XAB$L_ALQ) to specify
the number of blocks that RMS uses to extend a file.

You can specify other attributes, such as how and where the additional space is allocated. For
example, you can specify whether you want the additional space allocated contiguously. If you specify
contiguous space and the additional space is not available, the operation fails.

When the program uses an allocation control XAB, the XAB's allocation quantity (XAB$L_ALQ)
and allocation options (XABB_AOP, XABV_CBT, and XAB$V_CTG bits) are used instead of the
corresponding options specified in the FAB. You can specify multiple XABs to extend separate areas
of indexed files.

If no XABALL is present on the extend of an indexed file that is opened for I/O record access, RMS
extends Area 0 of the file. If block I/O access is specified, RMS extends the file but does not affect the
area descriptor. If no XABALL is present and you have not specified either of the contiguity options
(FABV_CBT, FABV_CGT), RMS requests placement control to position the extension as near as
possible to the last block allocated to the file.

Table 62 lists the control block fields read as input by the Extend service. For additional information
on the fields accessed by this service, see Part II of this manual.

Table 62. Extend Service FAB Input Fields

Field Name Description
FAB$L_ALQ Allocation quantity. Ignored if an allocation XAB is present.
FAB$L_FOP File-processing options. Checked to see whether the FAB$V_CTG or

FAB$V_CBT bit is set to indicate contiguous allocation (ignored for allocation
XAB).

FAB$W_IFI Internal file identifier (must not be 0).
FAB$L_XAB Extended attribute block address. Only an allocation XAB (XABALL) is

processed.

Table 63 lists the control block fields written as output by the Extend service.

226

$EXTEND

Table 63. Extend Service FAB Output Fields

Field Name Description
FAB$L_ALQ Allocation quantity. Contains the actual extension allocation value if no

allocation XAB is present.
FAB$L_STS Completion status code (also returned in register 0).
FAB$L_STV Status value. Contains the total number of blocks allocated, totaled across all

allocation XABs.

Condition Values Returned
The following condition values can be returned. Use the Help Message utility to access online
message descriptions. For more information about interpreting condition values, see Section 2.4.

RMS$_ACT RMS$_AID RMS$_ALN
RMS$_ALQ RMS$_AOP RMS$_ATR
RMS$_ATW RMS$_BLN RMS$_BUG_DAP
RMS$_CDA RMS$_COD RMS$_DME
RMS$_EXT RMS$_FAB RMS$_FAC
RMS$_FUL RMS$_IFI RMS$_IMX
RMS$_IOP RMS$_LEX RMS$_NET
RMS$_NETFAIL RMS$_NORMAL RMS$_PLG
RMS$_RPL RMS$_STR RMS$_SUC
RMS$_SUP RMS$_SUPPORT RMS$_SYS
RMS$_WBE RMS$_WER RMS$_WLK
RMS$_WPL RMS$_XAB

227

$EXTEND

228

$FIND
$FIND — The Find service locates a specified record in a file and returns its record file address in the
RAB$W_RFA field of the RAB. The Find service can be used with all file organizations.
On OpenVMS Alpha systems, RAB64 can replace the RAB or RAB prefix wherever it is used with
the Find service.

Format
SYS$FIND rab [,[err] [,suc]]

Returns
OpenVMS usage: cond_value
type: longword
access: write only
mechanism: by value

The value is returned in symbolic offset RAB$L_STS. Symbolic offset RAB$L_STV may contain
additional status information.

Arguments
rab

OpenVMS usage: rab
type: longword (unsigned)
access: modify
mechanism: by reference

RAB control block whose contents are to be used as indirect arguments for the Find service call. The
rab argument is the address of the RAB control block.

err

OpenVMS usage: ast_procedure
type: procedure value
access: call without stack unwinding
mechanism: by reference

AST-level error completion routine that the service invokes if the operation is unsuccessful. The err
argument is the address of the entry mask of this user-written completion routine.

suc

OpenVMS usage: ast_procedure
type: procedure value
access: call without stack unwinding
mechanism: by reference

229

$FIND

AST-level success completion routine that the service invokes if the operation is successful. The suc
argument is the address of the entry mask of this user-written completion routine.

Description
The Find service gives you the following functional capabilities:

• You can skip records when you are accessing a file sequentially by making successive invocations
of the Find service.

• You can establish the current record context prior to invoking an Update, Delete, or Truncate
service.

• You can establish a random access starting point in a file for subsequent sequential access
operations such as the Get service.

When you follow the Find service with a sequential access operation, such as the Get service,
the current record context is established by the Find service and the sequential access operation
establishes a new sequential access context. Conversely, when you follow the Find service with a
nonsequential access operation such as a Delete service or an Update service, the sequential access
context remains the same as it was prior to the Find service.

RAB Control Block Fields
Table 64 lists the control block fields read as input by the Find service. For additional information on
the fields accessed by this service, see Part II.

Table 64. Find Service RAB Input Fields

Field Name Option Description
RAB$W_ISI Internal stream identifier (required).
RAB$L_KBF Key buffer address (used only if the RAB$B_RAC field

contains RAB$C_KEY or if RAB$B_RAC contains
RAB$C_SEQ and the RAB$L_ROP field RAB$V_LIM
option is set).

RAB$B_KRF Key of reference (used only with indexed files and if
RAB$B_RAC contains RAB$C_KEY).

RAB$B_KSZ Key size (used only if the RAB$B_RAC field contains
RAB$C_KEY or if RAB$B_RAC contains RAB$C_SEQ
and the RAB$L_ROP field RAB$V_LIM option is set).

RAB$L_PBF1 Prompt buffer address (applies to terminal devices only).
RAB$B_PSZ1 Prompt buffer size (applies to terminal devices only).
RAB$B_RAC Record access mode (RABC_SEQ, RABC_KEY,

RAB$C_RFA)2.
RAB$W_RFA Record file address (used only if the RAB$B_RAC field

contains RAB$C_RFA).
Record-processing options.

RAB$V_ASY Asynchronous: performs Find services asynchronously.
RAB$L_ROP

RAB$V_CVT1 Convert: changes characters to uppercase for a Find service
to a terminal device.

230

$FIND

Field Name Option Description
RAB$V_KGE3 Key is greater than or equal to compared value (applies only

to indexed files).
RAB$V_KGT4 Key is greater than compared value (applies only to indexed

files). If neither RAB$V_KGE nor RAB$V_KGT is
specified, a key equal match is made.

RAB$V_LIM Limit: the key value described by the KBF and KSZ fields
is compared to the value in the sequentially-accessed
record.

RAB$V_NLK No lock: specifies that the record accessed through the Find
service is not to be locked.

RAB$V_NXR Nonexistent record processing: specifies that if the record
accessed directly through a Find service does not exist, the
service is to be performed anyway.

RAB$V_PMT1 Prompt indicates that the contents of the prompt buffer
are to be used as a prompt for a Find service to a terminal
device.

RAB$V_PTA1 Purge type-ahead buffer: eliminates any information that
may be in the type-ahead buffer for a Find service to a
terminal device.

RAB$V_RAH1 Read ahead: used with multiple buffers to indicate read-
ahead operations (sequential files only).

RAB$V_REA Lock for read: allows other users read access to the record.
RAB$V_REV Reverses search direction for random keyed access

operations when used with either RAB$V_KGE or
RAB$V_KGT (applies only to indexed files).

RAB$V_RLK Read of locked record allowed: specifies that a locked
record can be read by other users.

RAB$V_RNE1 Read no echo: indicates that input data entered on the
keyboard is not displayed on the terminal device.

RAB$V_RNF1 Read no filter: indicates that Ctrl/U, Ctrl/R, and DELETE
are not to be considered control commands on terminal
input, but are to be passed to the application program.

RAB$V_RRL Read regardless of lock: read the record even if another
stream has locked the record.

RAB$V_TMO1 Timeout: indicates that the contents of the timeout period
field (RAB$B_TMO) is to be used on a Find request for
a locked record (when the RAB$V_WAT option is also
specified) or for a terminal or mailbox device.

RAB$V_ULK Manual unlocking: specifies that a record cannot be
unlocked automatically.

RAB$V_WAT Wait: if record is locked, wait until it is available.
Extended record-processing options.

RAB$V_NQL No query locking.
RAB$W_ROP_21

RAB$V_ No deadlock wait.

231

$FIND

Field Name Option Description
NODLCKWT
RAB$V_
NODLCKBLK

No deadlock blocking.

RAB$B_TMO1 Timeout period: indicates the maximum number of seconds
that RMS can spend to complete a Find request.

1This field is not supported for DECnet for OpenVMS operations.
2The default for the RAB$B_RAC field is RAB$C_SEQ.
3This symbolic offset is logically synonymous with RAB$V_EQNXT.
4This symbolic offset is logically synonymous with RAB$V_NXT.

Table 65 lists the control block fields written as output by the Find service.

Table 65. Find Service RAB Output Fields

Field Name Description
RAB$L_BKT Bucket code: set to the relative record number for sequentially accessed relative

files.
RAB$W_RFA Record file address.
RAB$L_STS Completion status code (also returned in register 0).
RAB$L_STV Status value.

The record address (RAB$L_RBF) field and the record size (RAB$W_RSZ) field are undefined after
a Find service.

RAB64 Control Block Fields (Alpha Only)
Table 66 lists the Alpha-only RAB64 control block fields read as input by the Find service. These
fields are comparable to the RAB fields described in Table 64. For additional information on the fields
accessed by this service, see Part II.

Table 66. Find Service RAB64 Input Fields (Alpha Only)

Field Name Description
RAB64$B_BLN This field must be initialized to RAB64$C_BLN64 in order for RAB64

fields to be used.
RAB64$W_ISI Internal stream identifier (required). Equates to RAB$W_ISI.
RAB64$L_KBF Key buffer address. This field must contain -1 if you want to use

RAB64$PQ_KBF. For 32-bit addressing, this field equates to
RAB$L_KBF (see Table 64).

RAB64$PQ_KBF Key buffer 64-bit address (used if RAB64$L_KBF contains -1). This field
can hold either a 64-bit address or a 32-bit address sign-extended to 64 bits.

RAB64$B_KRF Key of reference. Equates to RAB$B_KRF (see Table 64).
RAB64$B_KSZ Key buffer size. Equates to RAB$B_KSZ (see Table 64).
RAB64$L_PBF1 Prompt buffer address. Equates to RAB$L_PBF (see Table 64).
RAB64$B_PSZ1 Prompt buffer size. Equates to RAB$B_PSZ (see Table 64).
RAB64$B_RAC Record access mode. Equates to RAB$B_RAC (see Table 64).
RAB64$W_RFA Record file address. Equates to RAB$W_RFA (see Table 64).

232

$FIND

Field Name Description
RAB64$L_ROP Record-processing options. Equates to RAB$L_ROP and options described

in Table 64. Options are identical except for the RAB64 prefix; for
example, option RAB64$V_ASY equates to RAB$V_ASY.

RAB64$W_ROP_21 Extended record-processing options. Equates to RAB64$W_ROP_2
and options described in Table 64. Options are identical except for the
RAB64 prefix; for example, option RAB64$V_NODLCKWT equates to
RAB$V_NODLCKWT.

RAB64$B_TMO1 Timeout period. Equates to RAB$B_TMO (see Table 64).
1This field is not supported for DECnet for OpenVMS operations.

Table 67 lists the Alpha-only RAB64 control block fields written as output by the Find service. These
fields are comparable to the RAB fields described in Table 65.

Table 67. Find Service RAB64 Output Fields (Alpha Only)

Field Name Description
RAB64$L_BKT Bucket code. Equates to RAB$L_BKT (see Table 65).
RAB64$W_RFA Record file address. Equates to RAB$W_RFA.
RAB64$L_STS Completion status code. Equates to RAB$L_STS (see Table 65).
RAB64$L_STV Status value. Equates to RAB$L_STV.

The record address (RAB64$L_RBF) field and the record size (RAB64$W_RSZ) field are undefined
after a Find service.

Condition Values Returned
The following condition values can be returned. Use the Help Message utility to access online
message descriptions. For more information about interpreting condition values, see Section 2.4.

RMS$_ACT RMS$_ANI RMS$_ATR
RMS$_ATW RMS$_BES RMS$_BLN
RMS$_BUG RMS$_BUG_DAP RMS$_CDA
RMS$_CHK RMS$_CONTROLC RMS$_CONTROLY
RMS$_DEADLOCK RMS$_DEL RMS$_DME
RMS$_DNR RMS$_EOF RMS$_EXENQLM
RMS$_EXT_ERR RMS$_FAC RMS$_FTM
RMS$_IBF RMS$_IDXSEARCH RMS$_IOP
RMS$_IRC RMS$_ISI RMS$_KBF
RMS$_KEY RMS$_KRF RMS$_KSZ
RMS$_MRN RMS$_NET RMS$_NETFAIL
RMS$_NORMAL RMS$_OK_ALK RMS$_OK_DEL
RMS$_OK_LIM RMS$_OK_RLK RMS$_OK_RNF
RMS$_OK_RRL RMS$_OK_WAT RMS$_OPNOTSUP
RMS$_PBF RMS$_PENDING RMS$_PES
RMS$_PLG RMS$_RAB RMS$_RAC

233

$FIND

RMS$_REF RMS$_RER RMS$_RFA
RMS$_RHB RMS$_RLK RMS$_RNF
RMS$_ROP RMS$_RPL RMS$_RRV
RMS$_RSA RMS$_SQO RMS$_STR
RMS$_SUC RMS$_SUP RMS$_SUPPORT
RMS$_SYS RMS$_TMO RMS$_TRE
RMS$_WBE RMS$_WER RMS$_WLK

234

$FLUSH
$FLUSH — The Flush service writes out all modified I/O buffers and file attributes associated with
the file. This ensures that all record activity up to the point at which the Flush service executes is
actually reflected in the file.
On OpenVMS Alpha systems, RAB64 can replace the RAB or RAB prefix wherever it is used with
the Flush service.

Format
SYS$FLUSH rab [,[err] [,suc]]

Returns
OpenVMS usage: cond_value
type: longword
access: write only
mechanism: by value

The value is returned in symbolic offset RAB$L_STS. Symbolic offset RAB$L_STV may contain
additional status information.

Arguments
rab

OpenVMS usage: rab
type: longword (unsigned)
access: modify
mechanism: by reference

RAB control block whose contents are to be used as indirect arguments for the Flush service call. The
rab argument is the address of the RAB control block.

err

OpenVMS usage: ast_procedure
type: procedure value
access: call without stack unwinding
mechanism: by reference

AST-level error completion routine that the service invokes if the operation is unsuccessful. The err
argument is the address of the entry mask of this user-written completion routine.

suc

OpenVMS usage: ast_procedure
type: procedure value

235

$FLUSH

access: call without stack unwinding
mechanism: by reference

AST-level success completion routine that the service invokes if the operation is successful. The suc
argument is the address of the entry mask of this user-written completion routine.

Description
Explicit invocation of the Flush service is useful when an application program must be certain that all
file changes are represented on disk (as in protecting against a crash).

The Close service includes an implicit Flush service, so an application program need not invoke a
Flush service prior to invoking a Close service.

On VAX systems with recovery unit journaling, no explicit call to the Flush service is required
because invoking the Commit service causes an implicit flush.

During asynchronous operations, you must wait for any I/O activity to complete before issuing a
Flush service. You can also issue a Flush service after receiving notification of completion through an
asynchronous system trap (AST).

On a flush, the EOF value written to the file header is only accessible to subsequent accessors. Any
process that has the file open at the time of the flush cannot access the new EOF value without some
explicit action.

Table 68 lists the control block fields read as input by the Flush service. For additional information on
the fields accessed by this service, see Part II.

Table 68. Flush Service RAB Input Fields

Field Name Option Description
RAB$W_ISI Internal stream identifier (required).

Record-processing option.RAB$L_ROP
RAB$V_ASY Performs Flush services asynchronously.

Table 69 lists the control block fields written as output by the Flush service.

Table 69. Flush Service RAB Output Fields

Field Name Description
RAB$L_STS Completion status code (also returned in register 0).
RAB$L_STV Additional status information.

Condition Values Returned
The following condition values can be returned. Use the Help Message utility to access online
message descriptions. For more information about interpreting condition values, see Section 2.4.

RMS$_ACT RMS$_ATR RMS$_ATW
RMS$_BLN RMS$_BUG_DAP RMS$_CDA
RMS$_DME RMS$_DNR RMS$_EXT_ERR

236

$FLUSH

RMS$_ISI RMS$_NET RMS$_NETFAIL
RMS$_NORMAL RMS$_OPNOTSUP RMS$_PENDING
RMS$_RAB RMS$_RSA RMS$_STR
RMS$_SUC RMS$_SUP RMS$_SUPPORT
RMS$_SYS RMS$_WBE RMS$_WER
RMS$_WLK

237

$FLUSH

238

$FREE
$FREE — The Free service unlocks all records that were previously locked for the record stream.
On OpenVMS Alpha systems, RAB64 can replace the RAB or RAB prefix wherever it is used with
the Free service.

Format
SYS$FREE rab [,[err] [,suc]]

Returns
OpenVMS usage: cond_value
type: longword
access: write only
mechanism: by value

The value is returned in symbolic offset RAB$L_STS. Symbolic offset RAB$L_STV may contain
additional status information.

Arguments
rab

OpenVMS usage: rab
type: longword (unsigned)
access: modify
mechanism: by reference

RAB control block whose contents are to be used as indirect arguments for the Free service call. The
rab argument is the address of the RAB control block.

err

OpenVMS usage: ast_procedure
type: procedure value
access: call without stack unwinding
mechanism: by reference

AST-level error completion routine that the service invokes if the operation is unsuccessful. The err
argument is the address of the entry mask of this user-written completion routine.

suc

OpenVMS usage: ast_procedure
type: procedure value
access: call without stack unwinding

239

$FREE

mechanism: by reference

AST-level success completion routine that the service invokes if the operation is successful. The suc
argument is the address of the entry mask of this user-written completion routine.

Description
The Free service unlocks all records previously locked for the record stream (see also $RELEASE). If
no records are locked for the record stream, RMS returns a status code of RMS$_RNL.

Table 70 lists the control block fields used as input by the Free service. For additional information on
the fields accessed by this service, see Part II.

Table 70. Free Service RAB Input Fields

Field Name Option Description
RAB$W_ISI Internal stream identifier (required).

Record-processing option.RAB$L_ROP
RAB$V_ASY Asynchronous: performs Free services asynchronously.

Table 71 lists the control block fields written as output by the Free service.

Table 71. Free Service RAB Output Fields

Field Name Description
RAB$L_STS Completion status code (also returned in register 0).
RAB$L_STV Additional status information.

Condition Values Returned
The following condition values can be returned. Use the Help Message utility to access online
message descriptions. For more information about interpreting condition values, see Section 2.4.

RMS$_ACT RMS$_BLN RMS$_BUG_DAP
RMS$_EXT_ERR RMS$_ISI RMS$_NET
RMS$_NETFAIL RMS$_NORMAL RMS$_OPNOTSUP
RMS$_PENDING RMS$_RAB RMS$_RNL
RMS$_RSA RMS$_STR RMS$_SUC
RMS$_SUP RMS$_SUPPORT

240

$GET
$GET — The Get service retrieves a record from a file. When you invoke the Get service, RMS
takes control of the record buffer and may modify it. RMS returns the record size and guarantees the
contents only from where it accessed the record to the completion of the record.
On OpenVMS Alpha systems, RAB64 can replace the RAB or RAB prefix wherever it is used with
the Get service.

Format
SYS$GET rab [,[err] [,suc]]

Returns
OpenVMS usage: cond_value
type: longword
access: write only
mechanism: by value

The value is returned in symbolic offset RAB$L_STS. Symbolic offset RAB$L_STV may contain
additional status information.

Arguments
rab

OpenVMS usage: rab
type: longword (unsigned)
access: modify
mechanism: by reference

RAB control block whose contents are to be used as indirect arguments for the Get service call. The
rab argument is the address of the RAB control block.

err

OpenVMS usage: ast_procedure
type: procedure value
access: call without stack unwinding
mechanism: by reference

AST-level error completion routine that the service invokes if the operation is unsuccessful. The err
argument is the address of the entry mask of this user-written completion routine.

suc

OpenVMS usage: ast_procedure
type: procedure value
access: call without stack unwinding

241

$GET

mechanism: by reference

AST-level success completion routine that the service invokes if the operation is successful. The suc
argument is the address of the entry mask of this user-written completion routine.

Description
The Get service uses one of three record access modes, as specified by the record access
(RAB$B_RAC) field. The three record access modes are sequential (SEQ), which is the default,
random by key (KEY), and random by record file address (RFA).

Relevant Record Access Modes
The sequential access mode is relevant for all file organizations as well as for all devices. It is the only
access mode allowed for nondisk devices, such as terminals, mailboxes, and magnetic tape devices. In
this mode, records are retrieved from a given file in the same order in which they were written to that
file. This is not the case, however, for records retrieved from indexed files. Sequential Get services
for indexed files return records by key value in the specified sort order, ascending or descending.
The next record's key of reference for sequential access to indexed files is established by one of the
following services:

• Connect

• Rewind (see $REWIND)

• Find or Get using random access by key

• Find or Get using random access by RFA

When you use random access by key with any operations related to these services, the key of
reference is established by the key of reference field (RAB$B_KRF). When you use random access
by RFA in conjunction with a Find or Get service, however, the key of reference is always set to the
primary key.

You can use random access by key to retrieve records by key value. For relative files and sequential
files having fixed-length records, the key value is the relative record number. For indexed files, the
key value depends on the data type of the specified key of reference. The key value is used to search
the index of the specified key of reference to locate the desired record. A random access by key also
establishes the next record for subsequent sequential retrieval. This type of access may be used in this
way to establish a starting point for sequential retrieval of records at other than the beginning of the
file.

You can use random access by RFA to retrieve records directly from files residing on disk devices.
However, a record's address can be determined only if the record has been accessed previously. The
Find, Get, and Put services each return the RFA value as output in the RAB$W_RFA field.

Random access of records in a file is prohibited when you open the file and select the FAB$V_SQO
option; that is, if you specify sequential operations only.

Input from Stream Format Files
For stream format files, RMS fills the user buffer with data until a terminator is reached. If the
buffer fills before a terminator is encountered, the remainder of the data preceding the terminator is
discarded, and an RMS$_RTB error is returned. If the terminator for stream format (FAB$B_RFM

242

$GET

contains FAB$C_STM) is not CRLF (carriage return followed by line feed), the terminator is stored in
the buffer following the record and included in the size of the record.

Input from Terminal Devices
There are two methods of obtaining input from a terminal using RMS:

• Using the RAB$L_ROP field to define the terminal input operation. Certain options applicable
to the RAB$L_ROP field are used for terminal device input, such as whether a prompt is to be
displayed and whether a time limit between characters is enforced. These options may require
certain information to be placed in other fields of the RAB (see Chapter 7). The maximum buffer
size is 512 bytes.

• Using an item list to define the terminal input operation in conjunction with a terminal XAB
(XABTRM). The ETO option of the RAB$L_ROP field must be set and the user must provide
an item list in the calling program, which RMS passes to the terminal driver using the item list
address and length specified in the XABTRM (see Chapter 19). This method allows use of any
terminal input option supported by the terminal driver, in contrast to the subset of RAB$L_ROP
options available using the other method. The maximum buffer size is 512 bytes.

RMS uses the standard terminator set when performing input operations from terminal devices. The
second longword of the I/O status block used is returned in the RAB$L_STV field. The terminating
character is returned in the lower word of the status value field (RAB$W_STV0); however, note that
with extended terminal operations, the terminating character is in the first byte of RAB$W_STV0,
not in the entire RAB$W_STV0 word. More information about the second longword of the I/O status
block is available in the VSI OpenVMS I/O User's Reference Manual. The RAB$W_STV0 field is
device dependent for terminal devices.

The Ctrl/Z character terminates the Get service and acts as an end-of-file marker. If you enter a
Ctrl/Z in response to a request for data, RMS returns the completion status code for end-of-file
(RMS$_EOF). RMS takes the data you enter before the Ctrl/Z but the next Get service returns a single
end-of-file error (RMS$_EOF) without accepting any further input from the device. RMS resumes
taking input if you request a subsequent Get service.

RMS also supports the use of escape sequences from terminal devices that are accessed locally and
have escape sequences enabled. Escape sequences for a terminal are enabled by the SET TERMINAL
command (described in the VSI OpenVMS DCL Dictionary). Escape sequences are returned in the
record buffer. The record size (RAB$W_RSZ) is the offset within the buffer (RAB$L_RBF) to the
beginning of the escape sequence. The high-order word of the status value field (RAB$W_STV2)
contains the length of the escape sequence, except for extended terminal operations. In this case, the
escape sequence length is returned in the first byte of RAB$W_STV2, not the entire RAB$W_STV2
word, and the terminator position is returned in the second byte of the RAB$W_STV2 word. When
a partial escape sequence warning (RMS$_PES) is returned, the remaining characters in the escape
sequence are returned by the next read request from the terminal.

Input from Mailbox Devices
Mailboxes may be used to synchronize activity across cooperating processes. Normally, a Get service
from a mailbox device is not completed until a record is present in the mailbox. When the Get service
is completed, the status value field (RAB$L_STV) contains the process identification (PID) of
the process that put the record into the mailbox. However, if the timeout (TMO) record option is
specified with a value of 0 in the timeout field and if no messages are present in the mailbox, then
the Get service returns an end-of-file error (RMS$_EOF). This technique assures your process of an
immediate return, whether or not messages are present in the mailbox.

243

$GET

Using the RAB$L_STV Field
The RAB$L_STV field contains additional status information for a number of situations. When the
completion status is a record-too-big warning (RMS$_RTB), RAB$L_STV contains the total record
size. For record-oriented devices such as terminals and mailboxes, the second longword of the I/O
status block is returned in the RAB$L_STV field, whenever the completion status (RAB$L_STS) is
a success code. The alternate field definitions of RAB$W_STV0 and RAB$W_STV2 are provided
to reference the respective low- and high-order words of the RAB$L_STV field. The record size
field (RAB$W_RSZ) always reports the amount of data returned, regardless of the completion status
(RAB$L_STS). The presence of valid data on error conditions may then be detected by checking the
record size field.

User Record Area
The Get service always requires the presence of a user record area, as specified by the user
record buffer address and user buffer area size fields in the RAB. The traditional fields used are
RAB$L_UBF and RAB$W_USZ. However, OpenVMS Alpha users can code -1 in RAB64$L_UBF
to direct the Get service to use the alternative fields RAB64$PQ_UBF and RAB64$Q_USZ.
RAB64$PQ_UBF can hold either a 64-bit address or a 32-bit address sign-extended to 64 bits.

For undefined format files, the user buffer area size field (RAB$W_USZ or RAB64$Q_USZ) defines
the amount of data to be returned on each Get service.

RAB Control Block Fields
Table 72 lists the RAB control block fields read as input by the Get service. For additional
information on the fields accessed by this service, see Part II.

Table 72. Get Service RAB Input Fields

Field Name Option or XAB
Type

Description

RAB$W_ISI Internal stream identifier (required).
RAB$L_KBF Key buffer address: used only if the RAB$B_RAC field

contains RAB$C_KEY, or if the RAB$B_RAC field
contains RAB$C_SEQ and you select the RAB$V_LIM
option.

RAB$B_KRF Key of reference: used only with indexed files and only if
the RAB$B_RAC field contains RAB$C_KEY.

RAB$B_KSZ Key buffer size: used only if the RAB$B_RAC field
contains RAB$C_KEY, or if the RAB$B_RAC field
contains RAB$C_SEQ and you select the RAB$V_LIM
option.

RAB$L_PBF1 Prompt buffer address (for terminal devices only).
RAB$B_PSZ1 Prompt buffer size (for terminal devices only).
RAB$B_RAC Record access mode (RABC_SEQ, RABC_KEY,

RAB$C_RFA).2

RAB$W_RFA Record file address: used only if the RAB$B_RAC field
contains RAB$C_RFA.

RAB$L_RHB Record header buffer: used for the fixed-length control
area of VFC records.

244

$GET

Field Name Option or XAB
Type

Description

Record-processing options.
RAB$V_ASY Asynchronous: performs Get services asynchronously.
RAB$V_CDK Allows applications to look ahead for indexed file records

with keys that duplicate the current key of reference.
RAB$V_CVT1 Convert: changes characters to uppercase for a Get

service to a terminal device.
RAB$V_ETO1 Extended terminal operation: specifies that a XABTRM

and an item list are used to define the terminal
input operation. If this option is specified, no other
RAB$L_ROP options applicable to terminal devices can
be used.

RAB$V_KGE3 Search for equal key value or next key value according to
sort order (for indexed files only).

RAB$V_KGT4 Search for next key value according to sort order; if
neither the RAB$V_KGE (RAB$V_EQNXT) option nor
the RAB$V_KGT (RAB$V_NXT) option is specified,
RMS looks for a key match.

RAB$V_LIM Limit: specifies that the key value described by the
RAB$L_KBF field and the RAB$B_KSZ field is to be
compared with the value in the sequentially accessed
record.

RAB$V_LOC1 Locate mode: specifies that Get service record operations
use locate mode.

RAB$V_NLK No lock: specifies that the record accessed through the
Get service is not to be locked.

RAB$V_NXR Nonexistent record processing: specifies that if the record
directly accessed through a Get service does not exist, the
service is to be performed anyway.

RAB$V_PMT1 Prompt: indicates that the contents of the prompt buffer
are to be used as a prompt on a Get service to a terminal
device.

RAB$V_PTA1 Purge type ahead: eliminates any information that may
be in the type-ahead buffer on a Get service to a terminal
device.

RAB$V_RAH1 Read ahead: used with multiple buffers to indicate read-
ahead operations (sequential files only).

RAB$V_REA Lock for read: allows other users read access to the
record.

RAB$V_REV Reverses search direction for random keyed access
operations when used with either RAB$V_KGE or
RAB$V_KGT (for indexed files only).

RAB$L_ROP

RAB$V_RLK Read of locked record allowed: specifies that a record
locked for modification can be read by other users.

245

$GET

Field Name Option or XAB
Type

Description

RAB$V_RNE1 Read no echo indicates that input data entered on the
keyboard is not displayed on the terminal device.

RAB$V_RNF1 Read no filter: indicates that Ctrl/U, Ctrl/R, and DELETE
are not to be considered control commands on terminal
input, but are to be passed to the application program.

RAB$V_RRL Read regardless of lock: read the record even if another
stream has locked the record.

RAB$V_TMO1 Timeout: indicates that the content of the timeout period
field (RAB$B_TMO) is to be used.

RAB$V_ULK Manual unlocking: specifies that records cannot be
unlocked automatically.

RAB$V_WAT Wait: if record is locked, wait until it is available.
Extended record-processing options.

RAB$V_NQL No query locking.
RAB$V_
NODLCKWT

No deadlock wait.

RAB$W_ROP_21

RAB$V_
NODLCKBLK

No deadlock blocking.

RAB$B_TMO1 Timeout period: indicates the maximum number of
seconds that RMS allows between characters for a Get
service to terminal and mailbox devices, or the maximum
number of seconds RMS waits for a locked record if you
specify the RAB$V_TMO and RAB$V_WAT options in
the RAB$L_ROP field.

RAB$L_UBF User record buffer address (required).
RAB$W_USZ User record buffer size (required).
RAB$L_XAB XABTRM1 Next XAB address: indicates the address of a XABTRM

control block (the RAB$L_ROP field RAB$V_ETO
option must be set for an extended terminal operation).

1This field is not supported for DECnet for OpenVMS operations.
2The default for the RAB$B_RAC field is RAB$C_SEQ.
3This symbolic offset is logically synonymous with RAB$V_EQNXT.
4This symbolic offset is logically synonymous with RAB$V_NXT.

Table 73 lists the RAB control block fields written as output by the Get service.

Table 73. Get Service RAB Output Fields

Field Name Description
RAB$L_BKT Bucket code: set to the relative record number for relative files when the record

access mode is sequential.
RAB$L_RBF Record buffer address.
RAB$W_RFA Record file address.
RAB$W_RSZ Record size.
RAB$L_STS Completion status code (also returned in register 0).

246

$GET

Field Name Description
RAB$L_STV Status value (contains a terminator character for terminal input or the record

length if the requested record is too large for the user buffer area).

RAB64 Control Block Fields (Alpha Only)

Table 74 lists the Alpha-only RAB64 control block fields read as input by the Get service. These
fields are comparable to the RAB fields described in Table 72. For additional information on the fields
accessed by this service, see Part II.

Table 74. Get Service RAB64 Input Fields (Alpha Only)

Field Name Description
RAB64$B_BLN This field must be initialized to RAB64$C_BLN64 in order for RAB64

fields to be used.
RAB64$W_ISI Internal stream identifier (required). Equates to RAB$W_ISI.
RAB64$L_KBF Key buffer address. This field must contain -1 if you want to use

RAB64$PQ_KBF. For 32-bit addressing, this field equates to
RAB$L_KBF (see Table 72).

RAB64$PQ_KBF Key buffer 64-bit address (used if RAB64$L_KBF contains -1). This field
can hold either a 64-bit address or a 32-bit address sign-extended to 64 bits.

RAB64$B_KRF Key of reference. Equates to RAB$B_KRF (see Table 72).
RAB64$B_KSZ Key buffer size. Equates to RAB$B_KSZ (see Table 72).
RAB64$L_PBF1 Prompt buffer address. Equates to RAB$L_PBF (see Table 72).
RAB64$B_PSZ1 Prompt buffer size. Equates to RAB$B_PSZ (see Table 72).
RAB64$B_RAC Record access mode. Equates to RAB$B_RAC and constants described

in Table 72. The constants are identical except for the RAB64 prefix; for
example, RAB64$C_KEY equates to RAB$C_KEY.

RAB64$W_RFA Record file address. Equates to RAB$W_RFA (see Table 72).
RAB64$L_RHB Record header buffer. This field must contain -1 if you want to

use RAB64$PQ_RHB. For 32-bit addressing, this field equates to
RAB$L_RHB (see Table 72).

RAB64$PQ_RHB Record header buffer 64-bit address (used if RAB64$L_RHB contains -1).
This field can hold either a 64-bit address or a 32-bit address sign-extended
to 64 bits.

RAB64$L_ROP Record-processing options. Equates to RAB$L_ROP and options described
in Table 72. Options are identical except for the RAB64 prefix; for
example, option RAB64$V_ASY equates to RAB$V_ASY.

RAB64$W_ROP_21 Extended record-processing options. Equates to RAB$W_ROP_2 and
options described in Table 72. Options are identical except for the
RAB64 prefix; for example, option RAB64$V_NODLCKWT equates to
RAB$V_NODLCKWT.

RAB64$B_TMO1 Timeout period. Equates to RAB$B_TMO (see Table 72).
RAB64$L_UBF2 User record buffer address . This field must contain -1 if you want

to use RAB64$PQ_UBF. For 32-bit addressing, this field equates to
RAB$L_UBF (see Table 72).

247

$GET

Field Name Description
RAB64$PQ_UBF2 User record buffer 64-bit address (used if RAB64$L_UBF contains -1).

This field can hold either a 64-bit address or a 32-bit address sign-extended
to 64 bits.

RAB64$W_USZ2 User record buffer size. This field is ignored in favor of RAB64$Q_USZ if
RAB64$L_UBF contains -1. Otherwise, this field equates to RAB$W_USZ
(see Table 72).

RAB64$Q_USZ2 User record buffer size. This field must be used when RAB64$L_UBF
contains -1 and a value is specified in RAB64$PQ_UBF.

RAB64$L_XAB Next XAB address. Equates to RAB$L_XAB and its XABTRM option (see
Table 72).

1This field is not supported for DECnet for OpenVMS operations.
2One of the UBF fields must contain an address and the USZ field associated with it must contain a size.

Table 75 lists the Alpha-only RAB64 control block fields written as output by the Get service. These
fields are comparable to the RAB fields described in Table 73.

Table 75. Get Service RAB64 Output Fields (Alpha Only)

Field Name Description
RAB64$L_BKT Bucket code. Equates to RAB$L_BKT (see Table 73).
RAB64$L_RBF Record buffer address is returned to this field if RAB64$L_UBF does not

contain -1. Equates to RAB$L_RBF.
RAB64$PQ_RBF Record buffer address is returned to this field if RAB64$L_UBF contains

-1.
RAB64$W_RFA Record file address. Equates to RAB$W_RFA.
RAB64$W_RSZ Record buffer size is returned to this field if RAB64$L_UBF does not

contain -1. Equates to RAB$W_RSZ.
RAB64$Q_RSZ Record buffer size is returned to this field if RAB64$L_UBF contains -1.
RAB64$L_STS Completion status code. Equates to RAB$L_STS (see Table 73).
RAB64$L_STV Status value. Equates to RAB$L_STV (see Table 73).

Condition Values Returned
The following condition values can be returned. Use the Help Message utility to access online
message descriptions. For more information about interpreting condition values, see Section 2.4.

RMS$_ACT RMS$_ANI RMS$_BES
RMS$_BLN RMS$_BUG RMS$_BUG_DAP
RMS$_CDA RMS$_CHK RMS$_CONTROLC
RMS$_CONTROLY RMS$_DEADLOCK RMS$_DEL
RMS$_DME RMS$_DNR RMS$_EOF
RMS$_ENQ RMS$_EXENQLM RMS$_EXP
RMS$_EXT_ERR RMS$_FAC RMS$_FTM
RMS$_IBF RMS$_IDXSEARCH RMS$_IOP
RMS$_IRC RMS$_ISI RMS$_KBF

248

$GET

RMS$_KEY RMS$_KRF RMS$_KSZ
RMS$_MRN RMS$_NET RMS$_NETBTS
RMS$_NETFAIL RMS$_NORMAL RMS$_OK_ALK
RMS$_OK_DEL RMS$_OK_LIM RMS$_OK_RLK
RMS$_OK_RNF RMS$_OK_RRL RMS$_OK_WAT
RMS$_OPNOTSUP RMS$_PBF RMS$_PENDING
RMS$_PES RMS$_PLG RMS$_RAB
RMS$_RAC RMS$_RER RMS$_RFA
RMS$_RHB RMS$_RLK RMS$_RNF
RMS$_ROP RMS$_RPL RMS$_RRV
RMS$_RSA RMS$_RTB RMS$_SQO
RMS$_STR RMS$_SUC RMS$_SUP
RMS$_SUPPORT RMS$_SYS RMS$_TMO
RMS$_TNS RMS$_TRE RMS$_UBF
RMS$_WBE RMS$_WER RMS$_WLK
RMS$_XAB

249

$GET

250

$NXTVOL
$NXTVOL — The Next Volume service allows you to process the next tape volume in a multiple
volume set. This service applies only to files on magnetic tape volumes.
On OpenVMS Alpha systems, RAB64 can replace the RAB or RAB prefix wherever it is used with
the Next Volume service.

Format
SYS$NXTVOL rab [,[err] [,suc]]

Returns
OpenVMS usage: cond_value
type: longword
access: write only
mechanism: by value

The value is returned in symbolic offset RAB$L_STS. Symbolic offset RAB$L_STV may contain
additional status information.

Arguments
rab

OpenVMS usage: rab
type: longword (unsigned)
access: modify
mechanism: by reference

RAB control block whose contents are to be used as indirect arguments for the Next Volume service
call. The rab argument is the address of the RAB control block.

err

OpenVMS usage: ast_procedure
type: procedure value
access: call without stack unwinding
mechanism: by reference

AST-level error completion routine that the service invokes if the operation is unsuccessful. The err
argument is the address of the entry mask of this user-written completion routine.

suc

OpenVMS usage: ast_procedure
type: procedure value

251

$NXTVOL

access: call without stack unwinding
mechanism: by reference

AST-level success completion routine that the service invokes if the operation is successful. The suc
argument is the address of the entry mask of this user-written completion routine.

Description
You use the Next Volume service when you want to proceed to the next volume in the set before the
end of the current volume (EOV label) is reached on input, or before the end-of-tape (EOT) mark
is reached on output. RMS positions your process to the first file section on the next volume. File
sections occur when a file is written on more than one volume, the portion of the file on each of the
volumes constituting a file section.

When you perform a Next Volume service for input files, RMS responds as follows:

• If the current volume is the last volume of the set, RMS reports end-of-file information.

• If another file section exists, the next volume is mounted. When necessary, the current volume is
rewound and a request to mount the next volume is issued to the operator.

• The header label (HDR1) of the file section on the newly mounted volume is read. If this is not the
volume being sought, the operator is requested to mount the correct volume.

When you perform a Next Volume service for output files, the following sequence occurs:

1. The file section on the current volume is closed with the appropriate end-of-volume labels, and the
volume is rewound.

2. The next volume is mounted.

3. A file with the same file name and the next higher file section number is opened for output, and
processing continues.

If your program is operating asynchronously, it must wait for any I/O activity on this volume to
complete before issuing a Next Volume service.

The Next Volume service performs a Flush service for write-accessed volumes (see $FLUSH), thus
writing the I/O buffers on the current volume before creating the next file section. If this is an input-
only file, then all records currently contained in the I/O buffers are lost, and the next Get service
returns the first record on the next volume.

The Next Volume service is not supported for DECnet for OpenVMS operations on files between two
OpenVMS systems.

Table 76 lists the control block fields read as input and written as output by the Next Volume service.
For additional information on the fields accessed by this service, see Part II.

Table 76. Next Volume Service RAB Input Fields

Field Name Option Description
RAB$W_ISI Internal stream identifier (required).
RAB$L_ROP Record-processing options.

252

$NXTVOL

Field Name Option Description
RAB$V_ASY Asynchronous: performs Next Volume service

asynchronously.

Table 77 lists the control block fields written as output by the Next Volume service.

Table 77. Delete Service RAB Output Fields

Field Name Description
RAB$L_STS Completion status code (also returned in register 0).
RAB$L_STV Status value.

Condition Values Returned
The following condition values can be returned. Use the Help Message utility to access online
message descriptions. For more information about interpreting condition values, see Section 2.4.

RMS$_ACT RMS$_BLN RMS$_CDA
RMS$_DME RMS$_DNR RMS$_DPE
RMS$_EXT_ERR RMS$_IOP RMS$_ISI
RMS$_NORMAL RMS$_OPNOTSUP RMS$_PENDING
RMS$_RAB RMS$_RSA RMS$_STR
RMS$_SUC RMS$_SUP RMS$_SUPPORT
RMS$_SYS

253

$NXTVOL

254

$OPEN
$OPEN — The Open service makes an existing file available for processing by your program. The
Open service specifies the type of record access to be used and determines whether the file can be
shared. The Open service also performs an implicit Display service. The maximum number of files
that can be open within an image at one time is 16383.

Format
SYS$OPEN fab [,[err] [,suc]]

Returns
OpenVMS usage: cond_value
type: longword
access: write only
mechanism: by value

The value is returned in symbolic offset FAB$L_STS. Symbolic offset FAB$L_STV may contain
additional status information.

Arguments
fab

OpenVMS usage: fab
type: longword (unsigned)
access: modify
mechanism: by reference

FAB control block whose contents are to be used as indirect arguments for the Open service call. The
fab argument is the address of the FAB control block.

err

OpenVMS usage: ast_procedure
type: procedure value
access: call without stack unwinding
mechanism: by reference

AST-level error completion routine that the service invokes if the operation is unsuccessful. The err
argument is the address of the entry mask of this user-written completion routine.

suc

OpenVMS usage: ast_procedure
type: procedure value
access: call without stack unwinding
mechanism: by reference

255

$OPEN

AST-level success completion routine that the service invokes if the operation is successful. The suc
argument is the address of the entry mask of this user-written completion routine.

Description
You must open a file to perform any record operations and most file operations. If any XABs
are chained to the FAB, RMS places the attribute values in the fields of the appropriate XAB. If
you specify a NAM or NAML block in the FAB, the contents of the device, directory, and file
identification fields can be used with the open-by-NAM-block option to open the file. The NAM or
NAML block fields are filled in with auxiliary file specification information.

Table 78 lists the FAB and XAB control block fields read as input by the Open service. For additional
information on the fields accessed by this service, see Part II.

Table 78. Open Service FAB and XAB Input Fields

Field Name Option or XAB
Type

Description

File access modes.
FAB$V_CHAN_
MODE1

Assigns the channel access mode by setting either
the FAB$V_UFO or the FAB$V_NFS bit in the
FAB$L_FOP field (see Section 4.17). If neither bit
is set, this field can be used to override the access
mode protection for a specified I/O operation. See
Section 4.8.

FAB$B_ACMODES

FAB$V_LNM_
MODE1

Specifies the logical name translation access mode.

FAB$W_DEQ Default file extension quantity: if a nonzero value is
present in this field, it applies only to this open of the
file.

FAB$L_DNA Default file specification string address.
FAB$B_DNS Default file specification string size.

File access field.
FAB$V_BIO Block I/O access.
FAB$V_BRO Block or record I/O.
FAB$V_DEL Delete access.
FAB$V_GET2 Read access.
FAB$V_PUT Write access.
FAB$V_TRN Truncate access.

FAB$B_FAC

FAB$V_UPD Update access.
FAB$L_FNA3 File specification string address.
FAB$B_FNS3 File specification string size.

File-processing options.FAB$L_FOP
FAB$V_ASY Asynchronous; indicates that the specified task is to be

done asynchronously.

256

$OPEN

Field Name Option or XAB
Type

Description

FAB$V_DFW1 Deferred write: indicates that writing back to the file
from the modified buffer is deferred (applies to relative
and indexed files only).

FAB$V_DLT Delete: indicates the file is to be deleted when it is
closed.

FAB$V_NAM1 Name block inputs: indicates that the NAM$W_FID,
NAM$W_DID, and NAM$T_DVI fields in the
specified NAM or NAML block are to be used to
describe the file.

FAB$V_NFS1 Non-file-structured: indicates that the accessed volume
is to be processed in a non-file-structured manner.

FAB$V_OFP Output file parse: specifies that the related file
resultant file specification string, if used, is to provide
file name and file type defaults only.

FAB$V_RCK Read-check: indicates that transfers from disk are to be
checked by a followup, read-compare operation.

FAB$V_RWC Rewind on close (applies to magnetic tapes only).
FAB$V_RWO Rewind on open (applies to magnetic tapes only).
FAB$V_SCF1 Submit command file: indicates that the file is to be

submitted as a batch-command file to the process
default batch queue (SYS$BATCH) when the file is
closed (applies to sequential files only).

FAB$V_SPL1 Spool: indicates that the file is to be spooled to the
process default print queue (SYS$PRINT) when the
file is closed (applies to sequential files only).

FAB$V_SQO Sequential only: indicates that the file can be processed
in a sequential manner only.

FAB$V_TEF Truncate at end of file: indicates that unused space
allocated to a file is to be deallocated when that file is
closed (applies to sequential files only).

FAB$V_UFO1 User file open: indicates the file is to be opened only
(no further processing of that file is allowed).

FAB$V_WCK Write-check: indicates that transfers to disk are to be
followed by a read-compare operation.

FAB$B_FSZ Fixed control area size: unit record devices only.
FAB$W_IFI Internal file identifier (must be 0).
FAB$L_NAM NAM or NAML block address.
FAB$B_RAT Record attributes; only for process permanent files

with print file format.
FAB$B_RFM Record format; unit record devices only.
FAB$B_RTV1 Retrieval window size.

File-sharing field.FAB$B_SHR
FAB$V_SHRDEL Shared delete access.

257

$OPEN

Field Name Option or XAB
Type

Description

FAB$V_SHRGET Shared read access.
FAB$V_MSE1 Multistream access; also used with the FAB$V_MSE

and FAB$V_GET bits to specify a read-only global
buffer cache when global buffering is enabled.

FAB$V_NIL No shared access.
FAB$V_SHRPUT Shared write access.
FAB$V_SHRUPD Shared update access.
FAB$V_UPI Shared write access for block I/O (applies to sequential

files only).
FAB$V_NQL No query record locking.

FAB$L_XAB4 Extended attribute block address.
1This field is not supported for DECnet for OpenVMS operations.
2This is the default value supplied by RMS.
3These fields must be supplied by the user.
4The appropriate XAB must be specified as input if you desire information about that particular XAB on output from the Open service.

Table 79 lists the FAB amd XAB control block fields written as output by the Open service.

Table 79. Open Service FAB and XAB Output Fields

Field Name Option or XAB
Type

Description

FAB$L_ALQ Allocation quantity: contains the highest numbered block
allocated to the file.

FAB$B_BKS Bucket size (does not apply to sequential files).
FAB$W_BLS Device block size (applies only to sequential files).
FAB$W_DEQ Default file extension quantity.
FAB$L_DEV Device characteristics.
FAB$B_FAC File access.

File-processing options.
FAB$V_CBT Contiguous best try: indicates that the file is allocated

contiguously on a “best effort” basis.
FAB$V_CTG Contiguous: indicates that space for the file is allocated

contiguously.
FAB$V_RCK Read-check: transfers are followed up by a read-compare

operation.

FAB$L_FOP

FAB$V_WCK Write-check: transfers are followed up by a read-compare
operation.

FAB$B_FSZ Fixed-length control area size (applies only to VFC
records).

FAB$W_GBC Global buffer count.
FAB$W_IFI Internal file identifier.
FAB$L_MRN Maximum record number (for relative files only).

258

$OPEN

Field Name Option or XAB
Type

Description

FAB$W_MRS Maximum record size.
FAB$B_ORG File organization.
FAB$B_RAT Record attributes; used as output field except for process-

permanent files with print file format.
FAB$B_RFM Record format.
FAB$L_SDC Spooling device characteristics.
FAB$B_SHR File sharing.
FAB$L_STS Completion status code (also returned in register 0).
FAB$L_STV Status value (contains the I/O channel number if the

operation is successful).
Next XAB address.

XABALL Allocation XAB; see Chapter 9.
XABDAT Date and time XAB; see Chapter 10.
XABFHC File header characteristics XAB; see Chapter 11.
XABITM Item list XAB; see Chapter 12.
XABKEY Key definition XAB; see Chapter 14.
XABPRO Protection XAB; see Chapter 15.
XABRDT Revision date and time XAB; see Chapter 16.

FAB$L_XAB

XABSUM Summary XAB; see Chapter 18.

Using the Name Block for Opening Files

Table 80 and Table 81 list the NAM block fields (further described in Chapter 5) used as input and
output for the Open service (provided that the NAM block address field is specified in the FAB).

Table 80. Open Service NAM Input Fields

Field Name Option Description
NAM$W_DID1 Directory identification (input only if the FAB$L_FOP field

FAB$V_NAM option is set).
NAM$T_DVI1 Device identification (input only if the FAB$L_FOP field

FAB$V_NAM option is set).
NAM$L_ESA Expanded string area address.
NAM$B_ESS Expanded string area size.
NAM$W_FID1 File identification (input only if the FAB$L_FOP field

FAB$V_NAM option is set).
NAM block options.NAM$B_NOP

NAM$V_PWD Password: indicates that a password contained in a DECnet
for OpenVMS access control string, if present in a file
specification, is to be left unaltered in the expanded and
resultant strings (instead of being replaced by the word
“password”).

259

$OPEN

Field Name Option Description
NAM$V_
NOCONCEAL

Do not conceal device name: indicates that when a
concealed device logical name is present, the concealed
device logical name is to be replaced by the actual physical
device name in the resultant string.

NAM$V_NO_
SHORT_UPCASE1

Do not uppercase the directory and file specification in the
NAM$L_ESA buffer.

NAM$L_RLF Related file NAM or NAML block address.
NAM$B_RSL Resultant string length.
NAM$L_RSA Resultant string address.
NAM$L_FNB File name status bits.
NAM$B_RSS Resultant string area size.

1This field or option is not supported for DECnet for OpenVMS operations.

Table 81. Open Service NAM Output Fields

Field Name Description
NAM$B_DEV Size of file specification device string.
NAM$L_DEV Address of file specification device string.
NAM$W_DID1 Directory identification.
NAM$B_DIR Size of file specification directory string.
NAM$L_DIR Address of file specification directory string.
NAM$T_DVI1 Device identification.
NAM$B_ESL Expanded string length. If the NAM$L_ESA and NAM$B_ESS

fields are nonzero, and if the FAB$L_FOP field FAB$V_NAM
option is clear or the NAM$W_DID and NAM$W_FID fields
are 0 on input, the expanded file specification string is copied to
the buffer specified by the NAM$L_ESA field.

NAM$W_FID1 File identification.
NAM$W_FIRST_WILD_DIR1 The topmost directory level to contain a wildcard.
NAM$L_FNB File name status bits.
NAM$W_LONG_DIR_LEVELS1 Total number of directories.
NAM$B_NAME Size of file specification name string.
NAM$L_NAME Address of file specification name string.
NAM$B_NODE Size of file specification node string.
NAM$L_NODE Address of file specification node string.
NAM$B_RSL Resultant string length. If the NAM$L_RSA field and the

NAM$B_RSS field are nonzero, and if the FAB$V_NAM bit
is clear or the NAM$W_FID field is zero when you invoke the
Open service, the resultant file specification is copied to the
buffer specified by the NAM$L_RSA field.

NAM$B_TYPE Size of file specification type string.
NAM$L_TYPE Address of file specification type string.
NAM$B_VER Size of file specification version string.

260

$OPEN

Field Name Description
NAM$L_VER Address of file specification version string.

1This field is not supported for DECnet for OpenVMS operations.

Table 82 lists the NAML block fields used as input for the Open service.

Table 82. Open Service NAML Input Fields (Alpha Only)

Field Name Option Description
NAML$W_DID1 Directory identification (input only if the

FAB$L_FOP field FAB$V_NAM option is set).
NAML$T_DVI1 Device identification (input only if the

FAB$L_FOP field FAB$V_NAM option is set).
NAML$L_ESA Expanded string area address.
NAML$B_ESS Expanded string area size.
NAML$W_FID1 File identification (input only if the FAB$L_FOP

field FAB$V_NAM option is set).
NAML$L_FILESYS_
NAME1

File system name buffer address.

NAML$L_FILESYS_
NAME_ALLOC1

File system name buffer size.

NAML$L_FNB Related file NAM or NAML block file name
status bits.

NAML$L_INPUT_FLAGS Additional flags specified as input.
NAML$L_LONG_
DEFNAME

Long default file specification string address
(used if FAB$L_DNA contains -1).

NAML$L_LONG_
DEFNAME_SIZE

Long default file specification string size.

NAML$L_LONG_EXPAND Long expanded string area address.
NAML$L_LONG_
EXPAND_ALLOC

Long expanded string area size.

NAML$L_LONG_
FILENAME

Long file specification string address (used if
FAB$L_FNA contains -1).

NAML$L_LONG_
FILENAME_SIZE

Long file specification string size.

NAML$L_LONG_RESULT Long resultant name string address.
NAML$L_LONG_
RESULT_ALLOC

Long resultant string size.

NAM or NAML block options.NAML$B_NOP
NAM$V_PWD Password: indicates that a password contained

in a DECnet for OpenVMS access control
string, if present in a file specification, is to
be left unaltered in the expanded and resultant
strings (instead of being replaced by the word
“password”).

261

$OPEN

Field Name Option Description
NAM$V_
NOCONCEAL

Do not conceal device name: indicates that when
a concealed device logical name is present,
the concealed device logical name is to be
replaced by the actual physical device name in the
resultant string.

NAM$V_NO_
SHORT_UPCASE1

Do not uppercase the directory and file
specification in the NAML$L_ESA buffer.

NAML$L_RLF Related file NAM or NAML block address.
NAML$L_RSA Resultant string address.
NAML$B_RSL Resultant string length.
NAML$B_RSS Resultant string area size.

1This field or option is not supported for DECnet for OpenVMS operations.

Table 83 lists the NAML block fields used as output for the Open service.

Table 83. Open Service NAML Output Fields

Field Name Description
NAML$B_DEV Size of file specification device string.
NAML$L_DEV Address of file specification device string.
NAML$W_DID1 Directory identification.
NAML$B_DIR Size of file specification directory string.
NAML$L_DIR Address of file specification directory string.
NAML$T_DVI1 Device identification.
NAML$B_ESL Expanded string length. If the NAM$L_ESA and

NAML$B_ESS fields are nonzero, and if the FAB$L_FOP
field FAB$V_NAM option is clear or the NAML$W_DID
and NAML$W_FID fields are 0 on input, the expanded file
specification string is copied to the buffer specified by the
NAML$L_ESA field.

NAML$W_FID1 File identification.
NAML$L_FILESYS_
NAME_SIZE1

File system name length.

NAML$W_FIRST_WILD_DIR1 First wild directory.
NAML$L_FNB File name status bits.
NAML$L_LONG_DEV Long device string address.
NAML$L_LONG_DEV_SIZE Long device string length.
NAML$L_LONG_DIR Long directory string address.
NAML$L_LONG_DIR_SIZE Long directory string length.
NAML$W_LONG_
DIR_LEVELS1

Total number of directories.

NAML$L_LONG_
EXPAND_SIZE

Long expanded string length.

NAML$L_LONG_NAME Long file name string address.

262

$OPEN

Field Name Description
NAML$L_LONG_NAME_SIZE Long file name string length.
NAML$L_LONG_NODE Long node name string address.
NAML$L_LONG_NODE_SIZE Long node name string length.
NAML$L_LONG_
RESULT_SIZE1

Long resultant string length.

NAML$L_LONG_TYPE Long file type string length.
NAML$L_LONG_TYPE_SIZE Long file type string address.
NAML$L_LONG_VER Long file version string address.
NAML$L_LONG_VER_SIZE Long file version string length.
NAML$B_NAME Size of file specification name string.
NAML$L_NAME Address of file specification name string.
NAML$B_NODE Size of file specification node string.
NAML$L_NODE Address of file specification node string.
NAML$L_OUTPUT_FLAGS Additional status bits passed as output.
NAML$B_RSL Resultant string length. If the NAML$L_RSA field and the

NAML$B_RSS field are nonzero, and if the FAB$V_NAM bit
is clear or the NAML$W_FID field is zero when you invoke
the Open service, the resultant file specification is copied to the
buffer specified by the NAML$L_RSA field.

NAML$B_TYPE Size of file specification type string.
NAML$L_TYPE Address of file specification type string.
NAML$B_VER Size of file specification version string.
NAML$L_VER Address of file specification version string.

1This field is not supported for DECnet for OpenVMS operations.

Condition Values Returned
The following condition values can be returned. Use the Help Message utility to access online
message descriptions. For more information about interpreting condition values, see Section 2.4.

RMS$_ACC RMS$_ACS RMS$_ACT
RMS$_AID RMS$_ATR RMS$_BLN
RMS$_BUG_DAP RMS$_BUG_DDI RMS$_CHN
RMS$_COD RMS$_CRMP RMS$_DEV
RMS$_DIR RMS$_DME RMS$_DNA
RMS$_DNF RMS$_DNR RMS$_DVI
RMS$_ENQ RMS$_ENV RMS$_ESA
RMS$_ESS RMS$_EXP RMS$_EXTNOTFOU
RMS$_FAB RMS$_FLK RMS$_FNA
RMS$_FNF RMS$_FNM RMS$_FOP
RMS$_IFA RMS$_IFI RMS$_IMX
RMS$_IRC RMS$_KNM RMS$_KSI

263

$OPEN

RMS$_LNE RMS$_NAM RMS$_NAML
RMS$_NAMLESS RMS$_NAMLFSINV RMS$_NAMLFSSIZ
RMS$_NAMLRSS RMS$_NET RMS$_NETFAIL
RMS$_NOD RMS$_NORMAL RMS$_OK_NOP
RMS$_ORG RMS$_PLG RMS$_PLV
RMS$_PRV RMS$_QUO RMS$_RAT
RMS$_REF RMS$_RLF RMS$_RPL
RMS$_RSS RMS$_RST RMS$_RUNDOWN
RMS$_SHR RMS$_STR RMS$_SUC
RMS$_SUP RMS$_SUPERSEDE RMS$_SUPPORT
RMS$_SYN RMS$_SYS RMS$_TYP
RMS$_UPI RMS$_VER RMS$_WLK
RMS$_XAB

264

$PARSE
$PARSE — The Parse service analyzes the file specification string and fills in various NAM or
NAML block fields.

Format
SYS$PARSE fab [,[err] [,suc]]

Returns
OpenVMS usage: cond_value
type: longword
access: write only
mechanism: by value

The value is returned in symbolic offset FAB$L_STS. Symbolic offset FAB$L_STV may contain
additional status information.

Arguments
fab

OpenVMS usage: fab
type: longword (unsigned)
access: modify
mechanism: by reference

FAB control block whose contents are to be used as indirect arguments for the Parse service call. The
fab argument is the address of the FAB control block.

err

OpenVMS usage: ast_procedure
type: procedure value
access: call without stack unwinding
mechanism: by reference

AST-level error completion routine that the service invokes if the operation is unsuccessful. The err
argument is the address of the entry mask of this user-written completion routine.

suc

OpenVMS usage: ast_procedure
type: procedure value
access: call without stack unwinding

265

$PARSE

mechanism: by reference

AST-level success completion routine that the service invokes if the operation is successful. The suc
argument is the address of the entry mask of this user-written completion routine.

Description
The functions of the Parse service are performed automatically as part of the Open, Create, and Erase
services. One special purpose of the Parse service is to prepare the FAB and NAM or NAML blocks
for wildcard character processing to be used in the Search service. If wildcard characters, search
list logical names, or a node name are present in the file specification, RMS allocates internal data
structures (including a device channel) to store the context for subsequent searches. This space is
released when the Search service encounters a no-more-files condition (in which case an RMS$_NMF
error status is returned) or when another Parse service is performed using the same FAB and NAM
or NAML blocks. To release this space, use a Parse service that specifies the NAM$B_NOP field
NAM$V_SYNCHK option and sets the FAB$B_DNS and NAM$L_RLF fields to zero. If you are
using the NAML$L_LONG_DEFNAME and NAM$L_LONG_DEFNAME_SIZE fields, set the
NAML$L_LONG_DEFNAME_SIZE field to zero in place of FAB$B_DNS.

Note that the file must be closed before you invoke the Parse service (FAB$W_IFI must be 0).

By default, the Parse service assigns a channel to the device and does a lookup of the directory in
addition to analyzing the file specification and filling in the NAM or NAML block fields. To request a
Parse service without I/O, specify the NAM$B_NOP field NAM$V_SYNCHK option. The result of a
Parse service without I/O cannot be used as input to subsequent Search services.

The following tables list the fields in both the FAB and NAM or NAML blocks that the Parse service
uses as input and output. In addition, RMS fills in the string component descriptors from the expanded
string (see Chapter 5).

The expanded file specification string is moved to the buffer described by the expanded string area
address (NAM$L_ESA) and size (NAM$B_ESS) fields of the NAM or NAML block (only if both
fields are nonzero). The NAM$L_ESA and NAM$B_ESS fields must be specified (nonzero) for
wildcard character processing.

Table 84 lists the FAB control block fields read as input by the Parse service. For additional
information on the fields accessed by this service, see Part II.

Table 84. Parse Service FAB Input Fields

Field Name Option Description
File access modes.FAB$B_ACMODES

FAB$V_CHAN_
MODE1

This field can be used to override the access
mode protection for a specified I/O operation (see
Section 4.8).

FAB$L_DNA Default file specification string.
FAB$B_DNS Default file specification string size.
FAB$L_FNA File specification string address.
FAB$B_FNS File specification string size.
FAB$L_FOP File-processing option, FAB$V_OFP. Output file

parse: indicates that RMS uses only the file name

266

$PARSE

Field Name Option Description
and file type fields of a related file resultant string
whose address is contained in the NAM$L_RSA
field.

FAB$W_IFI Internal file identifier (must be zero).
FAB$L_NAM NAM or NAML block address.

1This field or option is not supported for DECnet for OpenVMS operations

Table 85 lists the FAB control block fields written as output by the Parse service.

Table 85. Parse Service FAB Output Fields

Field Name Description
FAB$L_DEV Device characteristics (unless you select the NAM$V_SYNCHK option).
FAB$L_SDC Secondary device characteristics (unless you select the NAM$V_SYNCHK

option).
FAB$L_STS Completion status code (also returned in register 0).
FAB$L_STV Status value.

Table 86 lists the NAM control block fields read as input by the Parse service. For additional
information on the fields accessed by this service, see Part II.

Table 86. Parse Service NAM Input Fields

Field Name Option Description
NAM$L_ESA Expanded string area address.
NAM$B_ESS Expanded string area size.
NAM$L_FNB Related file NAM block file name status bits.

NAM block options.
NAM$V_
NOCONCEAL

Do not conceal device name: indicates that when
a concealed device logical name is present,
the concealed device logical name is to be
replaced by the actual physical device name in the
expanded string.

NAM$V_PWD Password: indicates that a password contained
in a DECnet for OpenVMS access control
string, if present in a file specification, is to
be left unaltered in the expanded and resultant
strings (instead of being replaced by the word
“password”).

NAM$V_NO_
SHORT_UPCASE1

Do not uppercase the directory and file
specification in the NAM$L_ESA buffer.

NAM$B_NOP

NAM$V_SYNCHK Performs Parse service with no I/O.
NAM$L_RLF Related file NAM or NAML block address.
NAM$L_RSA Resultant string area address.
NAM$B_RSL Resultant string length.

1This field or option is not supported for DECnet for OpenVMS operations

267

$PARSE

Table 87 lists the NAM control block fields written as output by the Parse service.

Table 87. Parse Service NAM Output Fields

Field Name Description
NAM$L_DEV Address of file specification device string.
NAM$B_DEV Size of file specification device string.
NAM$W_DID1 Directory identification (unless you select the

NAM$V_SYNCHK option).
NAM$L_DIR Address of file specification directory string.
NAM$B_DIR Size of file specification directory string.
NAM$T_DVI1 Device identification (unless you select the NAM$V_SYNCHK

option).
NAM$B_ESL Expanded string length.
NAM$W_FID1 File identification (zeroed).
NAM$W_FIRST_WILD_DIR1 The topmost directory level to contain a wildcard.
NAM$L_FNB File name status bits: contains information about the parse

results.
NAM$L_LONG_DIR_LEVELS1 Total number of directories.
NAM$L_NAME Address of file specification name string.
NAM$B_NAME Size of file specification name string.
NAM$L_NODE Address of file specification node string.
NAM$B_NODE Size of file specification node string.
NAM$B_RSL Resultant string length (zeroed).
NAM$L_TYPE Address of file specification type string.
NAM$B_TYPE Size of file specification type string.
NAM$L_VER Address of file specification version string.
NAM$B_VER Size of file specification version string.
NAM$L_WCC Wildcard context.

1This field or option is not supported for DECnet for OpenVMS operations.

Table 88 lists the NAML block fields used as input for the Parse service.

Table 88. Parse Service NAML Input Fields (Alpha Only)

Field Name Option Description
NAML$L_ESA Expanded string area address.
NAML$B_ESS Expanded string area size.
NAML$L_FILESYS_
NAME1

File system name buffer address.

NAML$L_FILESYS_
NAME_ALLOC1

File system name buffer size.

NAML$L_FNB Related file NAM or NAML block file name
status bits.

NAML$L_INPUT_FLAGS Additional flags specified as input.

268

$PARSE

Field Name Option Description
NAML$L_LONG_
DEFNAME

Long default file specification string address
(used if FAB$L_DNA contains -1).

NAML$L_LONG_
DEFNAME_SIZE

Long default file specification string size.

NAML$L_LONG_EXPAND Long expanded string area address.
NAML$L_LONG_
EXPAND_ALLOC1

Long expanded string area size.

NAML$L_LONG_
FILENAME

Long file specification string address (used if
FAB$L_FNA contains -1).

NAML$L_LONG_
FILENAME_SIZE1

Long file specification string size.

NAML$L_LONG_RESULT Long resultant string area address.
NAML$L_LONG_
RESULT_ALLOC

Long resultant string size.

NAM or NAML block options.
NAML$V_
NOCONCEAL

Do not conceal device name: indicates that when
a concealed device logical name is present,
the concealed device logical name is to be
replaced by the actual physical device name in the
expanded string.

NAML$V_PWD Password: indicates that a password contained
in a DECnet for OpenVMS access control
string, if present in a file specification, is to
be left unaltered in the expanded and resultant
strings (instead of being replaced by the word
“password”).

NAML$V_NO_
SHORT_UPCASE1

Do not uppercase the directory and file
specification in the NAML$L_ESA buffer.

NAML$B_NOP

NAML$V_
SYNCHK

Performs Parse service with no I/O.

NAML$L_RLF Related file NAM or NAML block address.
NAML$L_RSA Resultant string area address.
NAML$B_RSL Resultant string length.

1This field or option is not supported for DECnet for OpenVMS operations

Table 89 lists the NAML block fields used as output for the Parse service.

Table 89. Parse Service NAML Output Fields (Alpha Only)

Field Name Description
NAML$L_DEV Address of file specification device string.
NAML$B_DEV Size of file specification device string.
NAML$W_DID1 Directory identification (unless you select the

NAML$V_SYNCHK option).
NAML$L_DIR Address of file specification directory string.

269

$PARSE

Field Name Description
NAML$B_DIR Size of file specification directory string.
NAML$T_DVI1 Device identification (unless you select the

NAML$V_SYNCHK option).
NAML$B_ESL Expanded string length.
NAML$W_FID1 File identification (zeroed).
NAML$L_FILESYS_NAME_SIZE1 File system name length.
NAML$W_FIRST_WILD_DIR1 First wild directory.
NAML$L_FNB File name status bits: contains information about the parse

results.
NAML$L_LONG_DEV Long device string address.
NAML$L_LONG_DEV_SIZE Long device string length.
NAML$L_LONG_DIR Long directory string address.
NAML$W_LONG_DIR_LEVELS Total number of directories.
NAML$L_LONG_DIR_SIZE Long directory string length.
NAML$L_LONG_EXPAND_SIZE Long expanded string length.
NAML$L_LONG_NAME Long file name string address.
NAML$L_LONG_NAME_SIZE Long file name string length.
NAML$L_LONG_NODE Long node name string address.
NAML$L_LONG_NODE_SIZE Long node name string length.
NAML$L_LONG_RESULT_SIZE Long resultant string length.
NAML$L_LONG_TYPE Long file type string length.
NAML$L_LONG_TYPE_SIZE Long file type string address.
NAML$L_LONG_VER Long file version string address.
NAML$L_LONG_VER_SIZE Long file version string length.
NAML$L_NAME Address of file specification name string.
NAML$B_NAME Size of file specification name string.
NAML$L_NODE Address of file specification node string.
NAML$B_NODE Size of file specification node string.
NAML$L_OUTPUT_FLAGS Additional status bits passed as output.
NAML$B_RSL Resultant string length (zeroed).
NAML$L_TYPE Address of file specification type string.
NAML$B_TYPE Size of file specification type string.
NAML$L_VER Address of file specification version string.
NAML$B_VER Size of file specification version string.
NAML$L_WCC Wildcard context.

1This field or option is not supported for DECnet for OpenVMS operations.

270

$PARSE

Condition Values Returned
The following condition values can be returned. Use the Help Message utility to access online
message descriptions. For more information about interpreting condition values, see Section 2.4.

RMS$_ACS RMS$_BLN RMS$_BUG_DDI
RMS$_CDA RMS$_CHN RMS$_DEV
RMS$_DIR RMS$_DME RMS$_DNA
RMS$_DNF RMS$_DNR RMS$_ESA
RMS$_ESS RMS$_FAB RMS$_FNA
RMS$_FNM RMS$_IFI RMS$_LNE
RMS$_NAM RMS$_NAML RMS$_NAMLESS
RMS$_NAMLFSINV RMS$_NAMLFSSIZ RMS$_NOD
RMS$_NORMAL RMS$_QUO RMS$_RLF
RMS$_RUNDOWN RMS$_STR RMS$_SUC
RMS$_SYN RMS$_TYP RMS$_VER
RMS$_WCC

271

$PARSE

272

$PUT
$PUT — The Put service inserts a record into a file.
On OpenVMS Alpha systems, RAB64 can replace the RAB or RAB prefix wherever it is used with
the Put service.

Format
SYS$PUT rab [,[err] [,suc]]

Returns
OpenVMS usage: cond_value
type: longword
access: write only
mechanism: by value

The value is returned in symbolic offset RAB$L_STS. Symbolic offset RAB$L_STV may contain
additional status information.

Arguments
rab

OpenVMS usage: rab
type: longword (unsigned)
access: modify
mechanism: by reference

RAB control block whose contents are to be used as indirect arguments for the Put service call. The
rab argument is the address of the RAB control block.

err

OpenVMS usage: ast_procedure
type: procedure value
access: call without stack unwinding
mechanism: by reference

AST-level error completion routine that the service invokes if the operation is unsuccessful. The err
argument is the address of the entry mask of this user-written completion routine.

suc

OpenVMS usage: ast_procedure
type: procedure value
access: call without stack unwinding

273

$PUT

mechanism: by reference

AST-level success completion routine that the service invokes if the operation is successful. The suc
argument is the address of the entry mask of this user-written completion routine.

Description
The Put service usually adds records to the logical end of a sequential file. For relative files, it may
add records to the logical end of the file or it may insert new records in cells formerly occupied by
deleted records. RMS directs the Put service where to insert the record using the contents of the
record's primary key field.

Inserting Records into Sequential Files
When using sequential record access mode to process sequential files, you usually insert records at
the end of the file only. The records to be inserted cannot be larger than the maximum length that was
specified when the file was created.

You can use random access by relative record number mode and the update-if record-processing
option (RAB$V_UIF) to insert fixed-length records into a sequential file residing on a disk device.

RMS also provides for establishing the logical end of the file when two or more processes are doing
shared write operations. For example, assume that processes A and B are sharing a sequential file and
each process is putting data into the file. Process A puts a record at the end of the file and intends to
put another record at the new end-of-file location. However, before process A can put the next record
in the file, process B gains access to the file and puts a record at the end of the file. In order to ensure
that the next record from process A does not overwrite the record just inserted by process B, RMS
updates process A's write pointer to the new end-of-file position; that is, the location immediately
following the location of process B's record.

The truncate-on-put option (RAB$V_TPT) can be used with sequential files. This option lets you add
records at locations other than the logical end of the file. When you add a record using the truncate-
on-put option, the file is automatically truncated, effectively deleting all data between the new record
(logical end of the file) and the physical end of the file. If you try to use this option without having
truncate access, RMS rejects the operation and issues a file access error (RMS$_FAC).

For stream format files, RMS writes the contents of the user's buffer into the file beginning at the
current entry position. If the last byte in the buffer is not a terminator, RMS adds the appropriate
terminator. For stream format, the terminator is CRLF (carriage return character followed immediately
by a line feed character).

Mailboxes may be used to synchronize activity between processes. Usually, a Put service to a
mailbox does not conclude until another accessor reads the record. If you select the timeout option
(RAB$V_TMO) and specify a timeout period of 0, the Put service does not wait for another accessor
to read the record.

At the conclusion of the Put service, the RAB$L_STV field contains the process identification (PID)
of the process that read the record.

Inserting Records into Relative Files
When processing relative files, you can use either sequential or random access by key mode. Records
cannot be larger than the size specified at file creation time, and the record's relative record number

274

$PUT

must not exceed the maximum record number established for the file. Usually, if the target record
cell for a Put service contains a record, a record-already-exists error (RMS$_REX) is returned as the
completion status (RAB$L_STS). If you specify the update-if (RAB$V_UIF) record option, RMS
overwrites the existing record instead of returning an error message. If you try to use the update-
if option but do not have update access, RMS rejects the operation and issues a file access error
(RMS$_FAC).

Inserting Records into Indexed Files

In an indexed file, you can use sequential access or random access by key mode. When sequential
access is used to insert records, the primary key value of the record to be inserted must be consistent
with the specified sort order of the file. That is, the key must be greater than or equal to the primary
value of the previous record if ascending sort order is specified. If descending sort order is specified,
the key must be less than or equal to the primary key value of the previous record.

The records cannot be larger than the size established when the file was created if a maximum length
was specified. Each record written must contain a primary key, but the records do not have to contain
alternate keys. If alternate keys are partially or completely missing because of the record length
limitation, RMS does not make an entry for the record in the associated alternate index. Put services
to an indexed file do not require a separate key value or key of reference. By examining the contents
of the primary key in the record, RMS determines where to insert the record.

When inserting a record into an indexed file, RMS compares the key values in the record with the key
values of records previously inserted into the file to determine whether the new record's key value
duplicates any existing key values. If the record duplicates a key value in an index where duplication
is not allowed, RMS rejects the operation with an RMS$_DUP error code. Where duplicate keys are
allowed, RMS inserts the record.

Records with duplicate keys are inserted in chronological order; that is, RMS inserts each record
having duplicate keys at the end of a “chain” of identically keyed records so that newer records are
stored closer to the end of the file regardless of sort order.

If you specify the update-if (RAB$V_UIF) option when duplicates are not allowed on the primary
key, RMS overwrites the existing record with the same primary key value, rather than returning a
duplicate record error (RMS$_DUP). This gives the appearance of an Update service being performed
on the existing record. Alternate key values are modified to reflect the newly inserted record.

To use the RAB$V_UIF option, you must have update access to the file. If update access to the file is
not permitted, the Put service (which becomes an Update service when this option is selected) fails,
and RMS returns a file access error (RMS$_FAC).

Be careful when invoking the Put service with the RAB$V_UIF option and automatic record locking
for a shared file. The Put service, unlike the Update service, momentarily releases record locks
previously applied by a Get or Find service, until the Put service is converted into an Update service.
This could allow another record stream to delete or update the record between the invocation of the
Put service and the conversion to an Update service. To avoid this complication, you should use the
Update service instead of the Put service with the update-if option to update an existing record in a
file-sharing situation.

The record address field and the record size field are required inputs to the Put service. Some
Put service options may require additional fields. The traditional address and size fields are
RAB$L_RBF and RAB$W_RSZ. However, OpenVMS Alpha users have the option to code -1
in the RAB64$L_RBF field to direct the Put service to use the values in the alternative fields,

275

$PUT

RAB64$PQ_RBF and RAB64$Q_RSZ. The RAB64$PQ_RBF field can hold either a 64-bit address
or a 32-bit address sign-extended to 64 bits.

A successful Put service returns the record file address (RFA) in the RAB$W_RFA field.

RAB Control Block Fields
Table 90 lists the control block fields read as input by the Put service. For additional information on
the fields accessed by this service, see Part II.

Table 90. Put Service RAB Input Fields

Field Name Option or XAB
Type

Description

RAB$W_ISI Internal stream identifier (required).
RAB$L_KBF Key buffer address (used as input only with random access

by relative record number mode).
RAB$B_KSZ Key size (used only if RAB$B_RAC is KEY and the file is

a relative file).
RAB$B_RAC Record access mode (SEQ, KEY)1.
RAB$L_RBF Record buffer address.
RAB$L_RHB Record header buffer (for variable with fixed control

records only).
RAB$W_RSZ Record size.
RAB$L_ROP Record-processing options.

RAB$V_ASY Asynchronous: performs Put services asynchronously.
RAB$V_CCO2 Cancel Ctrl/O: guarantees that terminal output is not

discarded if the operator enters Ctrl/O.
RAB$V_LOA Load: specifies that buckets are to be loaded according to

the fill size established at file creation time.
RAB$V_REA3 Lock for read: allows other users read access to the record.

This is not valid for relative files.
RAB$V_RLK3 Read of locked record allowed: specifies that a record

locked for modification can be read by other users.
RAB$V_TMO2 Timeout: indicates that the content of the timeout period

field (RAB$B_TMO) is to be used.
RAB$V_TPT Truncate-on-put: specifies that a Put service with a

sequentially-accessed record can occur at any point in the
file, truncating the file at that point.

RAB$V_UIF Update-if: converts a Put service to a record that already
exists to an Update service.

RAB$V_ULK Manual unlocking: specifies that records cannot be
unlocked automatically.

RAB$V_WBH Write behind: two buffers are allocated to allow
multibuffering.

RAB$V_WAT Wait: if the record is locked, wait until it is available (for
relative files only).

276

$PUT

Field Name Option or XAB
Type

Description

RAB$B_TMO2 Timeout period: a value of 0 indicates that RMS should not
wait to complete a Put service (for mailbox devices only).

1The default for the RAB$B_RAC field is RAB$C_SEQ.
2This field is not supported for DECnet for OpenVMS operations.
3This option is meaningless unless you specify manual unlocking.

Table 91 lists the control block fields written as output by the Put service.

Table 91. Put Service RAB Output Fields

Field Name Description
RAB$L_BKT Bucket code: set to the relative record number for sequential access to relative

files.
RAB$W_RFA Record file address.
RAB$L_STS Completion status code (also returned in register 0).
RAB$L_STV Status value1.

1On the successful completion of a Put service to a record-oriented device, the RAB$L_STV field contains the second longword of the I/O
status block. See the VSI OpenVMS I/O User's Reference Manual for details on specific devices.

RAB64 Control Block Fields (Alpha Only)
Table 92 lists the Alpha-only RAB64 control block fields read as input by the Put service. These
fields are comparable to the RAB fields described in Table 90. For additional information on the fields
accessed by this service, see Part II.

Table 92. Put Service RAB64 Input Fields (Alpha Only)

Field Name Description
RAB64$B_BLN This field must be initialized to RAB64$C_BLN64 in order for RAB64 fields to

be used.
RAB64$W_ISI Internal stream identifier (required). Equates to RAB$W_ISI.
RAB64$L_KBF Key buffer address. This field must contain -1 if you want to use

RAB64$PQ_KBF. For 32-bit addressing, this field equates to RAB$L_KBF (see
Table 90).

RAB64$PQ_KBF Key buffer 64-bit address (used if RAB64$L_KBF contains -1). This field can
hold either a 64-bit address or a 32-bit address sign-extended to 64 bits.

RAB64$B_KSZ Key buffer size. Equates to RAB$B_KSZ (see Table 90).
RAB64$B_RAC Record access mode. Equates to RAB$B_RAC (see Table 90).
RAB64$L_RBF1 Record buffer address. This field must contain -1 if you want to use

RAB64$PQ_RBF. For 32-bit addressing, this field equates to RAB$L_RBF.
RAB64$PQ_RBF1 Record buffer 64-bit address (used if RAB64$L_RBF contains -1). This field

can hold either a 64-bit address or a 32-bit address sign-extended to 64 bits.
RAB64$L_RHB Record header buffer. This field must contain -1 if you want to use

RAB64$PQ_RHB. For 32-bit addressing, this field equates to RAB$L_RHB
(see Table 90).

RAB64$PQ_RHB Record header buffer 64-bit address (used if RAB64$L_RHB contains -1). This
field can hold either a 64-bit address or a 32-bit address sign-extended to 64 bits.

277

$PUT

Field Name Description
RAB64$W_RSZ1 Record buffer size. This field is ignored in favor of RAB64$Q_RSZ if

RAB64$L_RBF contains -1. Otherwise, this field equates to RAB$W_RSZ.
RAB64$Q_RSZ1 Record buffer size. This field must be used when RAB64$L_RBF contains -1

and a value is specified in RAB64$PQ_RBF.
RAB64$L_ROP Record-processing options. Equates to RAB$L_ROP and options described in

Table 90. Options are identical except for the RAB64 prefix; for example, option
RAB64$V_ASY equates to RAB$V_ASY.

RAB64$B_TMO2 Timeout period. Equates to RAB$B_TMO (see Table 90).
1One of the RBF fields must contain an address and the RSZ field associated with it must contain a size.
2This field is not supported for DECnet for OpenVMS operations.

 Table 93 lists the Alpha-only RAB64 control block fields written as output by the Put service. These
fields are comparable to the RAB fields described in Table 91.

Table 93. Put Service RAB64 Output Fields (Alpha Only)

Field Name Description
RAB64$L_BKT Bucket code. Equates to RAB$L_BKT (see Table 91).
RAB64$W_RFA Record file address. Equates to RAB$W_RFA.
RAB64$L_STS Completion status code. Equates to RAB$L_STS (see Table 91).
RAB64$L_STV Status value. Equates to RAB$L_STV (see Table 91).

Condition Values Returned
The following condition values can be returned. Use the Help Message utility to access online
message descriptions. For more information about interpreting condition values, see Section 2.4.

RMS$_ACT RMS$_BLN RMS$_BUG
RMS$_BUG_DAP RMS$_CDA RMS$_CHK
RMS$_CONTROLC RMS$_CONTROLO RMS$_CONTROLY
RMS$_DME RMS$_DNR RMS$_DUP
RMS$_ENQ RMS$_EXT RMS$_EXT_ERR
RMS$_FAC RMS$_FTM RMS$_FUL
RMS$_IBF RMS$_IDX RMS$_IOP
RMS$_IRC RMS$_ISI RMS$_KBF
RMS$_KEY RMS$_KSZ RMS$_MRN
RMS$_NEF RMS$_NET RMS$NETBTS
RMS$_NETFAIL RMS$_NORMAL RMS$_OK_ALK
RMS$_OK_DUP RMS$_OK_IDX RMS$_OPNOTSUP
RMS$_PENDING RMS$_PLG RMS$_RAB
RMS$_RAC RMS$_RBF RMS$_RER
RMS$_REX RMS$_RHB RMS$_RLK
RMS$_RPL RMS$_RRV RMS$_RSA
RMS$_RSZ RMS$_RVU RMS$_SEQ

278

$PUT

RMS$_SQO RMS$_STR RMS$_SUC
RMS$_SUP RMS$_SUPPORT RMS$_SYS
RMS$_TRE RMS$_WBE RMS$_WER
RMS$_WLK RMS$_WPL

279

$PUT

280

$READ
$READ — The Read service retrieves a specified number of bytes from a file (beginning on a block
boundary) and transfers them to memory. A Read service using block I/O can be performed on any
file organization.
On OpenVMS Alpha systems, RAB64 can replace the RAB or RAB prefix wherever it is used with
the Read service.

Format
SYS$READ rab [,[err] [,suc]]

Returns
OpenVMS usage: cond_value
type: longword
access: write only
mechanism: by value

The value is returned in symbolic offset RAB$L_STS. Symbolic offset RAB$L_STV may contain
additional status information.

Arguments
rab

OpenVMS usage: rab
type: longword (unsigned)
access: modify
mechanism: by reference

RAB control block whose contents are to be used as indirect arguments for the Read service call. The
rab argument is the address of the RAB control block.

err

OpenVMS usage: ast_procedure
type: procedure value
access: call without stack unwinding
mechanism: by reference

AST-level error completion routine that the service invokes if the operation is unsuccessful. The err
argument is the address of the entry mask of this user-written completion routine.

suc

OpenVMS usage: ast_procedure
type: procedure value
access: call without stack unwinding

281

$READ

mechanism: by reference

AST-level success completion routine that the service invokes if the operation is successful. The suc
argument is the address of the entry mask of this user-written completion routine.

Description
To use the Read service, you must do the following:

1. Supply a buffer area for transferring data (user record area address field) and specify the buffer
size:

• To supply a 32-bit buffer address and a buffer size no greater than 65,535 bytes, use these
fields:

User Buffer Address Field User Buffer Size Field
RAB$L_UBF RAB$W_USZ

• On OpenVMS Alpha systems, you can supply a 64-bit buffer address (or a 32-bit address
sign-extended to 64 bits) and a buffer size up to 2**31-1 bytes. To do so, code -1 in
RAB64$L_UBF and use these fields:

User Buffer Address Field User Buffer Size Field
RAB64$PQ_UBF RAB64$Q_USZ

2. Indicate the first virtual block number (VBN) for the transfer (bucket number field). This field is
RAB$L_BKT or RAB64$L_BKT (available only on Alpha to accommodate 64-bit addressing).
If the value for the VBN is 0, the transfer starts with the block indicated by the next block pointer
(NBP).

RAB Control Block Fields
Table 94 lists the control block fields read as input by the Read service. For additional information on
the fields accessed by this service, see Part II.

Table 94. Read Service RAB Input Fields

Field Name Option Description
RAB$L_BKT Bucket number: must contain the virtual block number of

the first block to read. When this field has a value of 0, then
the next block is read.

RAB$W_ISI Internal stream identifier (required).
Record-processing option.RAB$L_ROP

RAB$V_ASY Asynchronous: performs Delete service asynchronously.
RAB$L_UBF User record buffer address. For block I/O, alignment of

the user's record buffer on a page or at least a quadword
boundary may improve performance.

RAB$W_USZ User record area size: indicates the length of the transfer, in
bytes1.

1Certain devices require that an even number of bytes be transferred. For further details, see the VSI OpenVMS I/O User's Reference
Manual.

282

$READ

Table 95 lists the control block fields written as output by the Read service.

Table 95. Read Service RAB Output Fields

Field Name Description
RAB$L_RBF Record address.
RAB$W_RFA Record file address.
RAB$W_RSZ Record size: indicates the actual number of bytes transferred.
RAB$L_STS Completion status code (also returned in register 0).
RAB$L_STV Status value.

RAB64 Control Block Fields (Alpha Only)
Table 96 lists the Alpha-only RAB64 control block fields read as input by the Read service. These
fields are comparable to the RAB fields described in Table 94. For additional information on the fields
accessed by this service, see Part II.

Table 96. Read Service RAB64 Input Fields (Alpha Only)

Field Name Description
RAB64$B_BLN This field must be initialized to RAB64$C_BLN64 in order for RAB64 fields to

be used.
RAB64$L_BKT Bucket number. Equates to RAB$L_BKT (see Table 94).
RAB64$W_ISI Internal stream identifier (required). Equates to RAB$W_ISI.
RAB64$L_ROP Record-processing option. Equates to RAB$L_ROP (see Table 94). The

RAB64$V_ASY option is identical to RAB$V_ASY.
RAB64$L_UBF1 User record buffer address. This field must contain -1 if you want to use

RAB64$PQ_UBF. For 32-bit addressing, this field equates to RAB$L_UBF (see
Table 94).

RAB64$PQ_UBF1 User record buffer 64-bit address (used if RAB64$L_UBF contains -1). This
field can hold either a 64-bit address or a 32-bit address sign-extended to 64 bits.

RAB64$W_USZ1 User record buffer size. This field is ignored in favor of RAB64$Q_USZ if
RAB64$L_UBF contains -1. Otherwise, this field equates to RAB$W_USZ (see
Table 94).

RAB64$Q_USZ1 User record buffer size. This field must be used when RAB64$L_UBF contains
-1 and a value is specified in RAB64$PQ_UBF. (See Section 8.8 for more
information.)

1One of the UBF fields must contain an address and the USZ field associated with it must contain a size.

Table 97 lists the Alpha-only RAB64 control block fields written as output by the Read service. These
fields are comparable to the RAB fields described in Table 95.

Table 97. Read Service RAB64 Output Fields (Alpha Only)

Field Name Description
RAB64$L_RBF Record buffer address is returned to this field if RAB64$L_UBF does not

contain -1. Equates to RAB$L_RBF.
RAB64$PQ_RBF Record buffer address is returned to this field if RAB64$L_UBF contains -1.

283

$READ

Field Name Description
RAB64$W_RFA Record file address. Equates to RAB$W_RFA.
RAB64$W_RSZ Record buffer size is returned to this field if RAB64$L_UBF does not contain

-1. Equates to RAB$W_RSZ (see Table 95).
RAB64$Q_RSZ Record buffer size is returned to this field if RAB64$L_UBF contains -1.
RAB64$L_STS Completion status code. Equates to RAB$L_STS (see Table 95).
RAB64$L_STV Status value. Equates to RAB$L_STV.

Condition Values Returned
The following condition values can be returned. Use the Help Message utility to access online
message descriptions. For more information about interpreting condition values, see Section 2.4.

RMS$_ACT RMS$_BLN RMS$_BUG_DAP
RMS$_CDA RMS$_CONTROLC RMS$_CONTROLY
RMS$_DME RMS$_DNR RMS$_EOF
RMS$_FAC RMS$_FTM RMS$_IOP
RMS$_ISI RMS$_NET RMS$_NETFAIL
RMS$_NORMAL RMS$_PBF RMS$_PENDING
RMS$_RAB RMS$_RER RMS$_RSA
RMS$_STR RMS$_SUC RMS$_SUP
RMS$_SUPPORT RMS$_SYS RMS$_TMO
RMS$_UBF RMS$_USZ RMS$_WBE

284

$RELEASE
$RELEASE — The Release service unlocks the record specified by the contents of the record file
address (RAB$W_RFA) field of the RAB.
On OpenVMS Alpha systems, RAB64 can replace the RAB or RAB prefix wherever it is used with
the Release service.

Format
SYS$RELEASE rab [,[err] [,suc]]

Returns
OpenVMS usage: cond_value
type: longword
access: write only
mechanism: by value

The value is returned in symbolic offset RAB$L_STS. Symbolic offset RAB$L_STV may contain
additional status information.

Arguments
rab

OpenVMS usage: rab
type: longword (unsigned)
access: modify
mechanism: by reference

RAB control block whose contents are to be used as indirect arguments for the Release service call.
The rab argument is the address of the RAB control block.

err

OpenVMS usage: ast_procedure
type: procedure value
access: call without stack unwinding
mechanism: by reference

AST-level error completion routine that the service invokes if the operation is unsuccessful. The err
argument is the address of the entry mask of this user-written completion routine.

suc

OpenVMS usage: ast_procedure
type: procedure value

285

$RELEASE

access: call without stack unwinding
mechanism: by reference

AST-level success completion routine that the service invokes if the operation is successful. The suc
argument is the address of the entry mask of this user-written completion routine.

Description
The Release service unlocks a specified record (see also the discussion of the Free service). If the
named record is not locked, RMS returns a status code of RMS$_RNL.

Table 98 lists the control block fields used as input by the Release service. For additional information
on the fields accessed by this service, see Part II.

Table 98. Release Service RAB Input Fields

Field Name Option Description
RAB$W_ISI Internal stream identifier (required).

Record-processing options.RAB$L_ROP
RAB$V_ASY Asynchronous: performs Release service asynchronously.

Table 99 lists the control block fields written as output by the Release service.

Table 99. Release Service RAB Output Fields

Field Name Description
RAB$L_STS Completion status code (also returned in register 0).
RAB$L_STV Additional status information.

Condition Values Returned
The following condition values can be returned. Use the Help Message utility to access online
message descriptions. For more information about interpreting condition values, see Section 2.4.

RMS$_ACT RMS$_BLN RMS$_BUG_DAP
RMS$_CDA RMS$_EXT_ERR RMS$_ISI
RMS$_NET RMS$_NETFAIL RMS$_NORMAL
RMS$_OPNOTSUP RMS$_PENDING RMS$_RAB
RMS$_RNL RMS$_RSA RMS$_STR
RMS$_SUC RMS$_SUP RMS$_SUPPORT

286

$REMOVE
$REMOVE — The Remove service deletes a file name from a directory. It is the reverse of the Enter
service. The $REMOVE service is not supported for DECnet.

Format
SYS$REMOVE fab [,[err] [,suc]]

Returns
OpenVMS usage: cond_value
type: longword
access: write only
mechanism: by value

The value is returned in symbolic offset FAB$L_STS. Symbolic offset FAB$L_STV may contain
additional status information.

Arguments
fab

OpenVMS usage: fab
type: longword (unsigned)
access: modify
mechanism: by reference

FAB control block whose contents are to be used as indirect arguments for the Remove service call.
The fab argument is the address of the FAB control block.

err

OpenVMS usage: ast_procedure
type: procedure value
access: call without stack unwinding
mechanism: by reference

AST-level error completion routine that the service invokes if the operation is unsuccessful. The err
argument is the address of the entry mask of this user-written completion routine.

suc

OpenVMS usage: ast_procedure
type: procedure value
access: call without stack unwinding

287

$REMOVE

mechanism: by reference

AST-level success completion routine that the service invokes if the operation is successful. The suc
argument is the address of the entry mask of this user-written completion routine.

Description
The Remove service searches for the first file name that matches the expanded name string and
directory ID in the user's NAM or NAML block, and then it deletes the file name without deleting
the actual file. The Remove service is similar to the Erase service, except that the Erase service also
deletes the file after performing an implicit Remove. Note that you must close the file before invoking
the Remove service (that is, the value of FAB$W_IFI must be 0).

The Remove service accepts wildcard characters and search lists, and it is usually preceded by a call
to the Parse service in order to fill in the appropriate fields of the NAM or NAML block. Because the
Remove service returns the wildcard context field of the NAM or NAML block (NAM$L_WCC or
NAML$L_WCC), the Remove service can be used on multiple successive calls to remove successive
file names that match a wildcard file specification.

Be careful when you mix calls to the Search and Remove services. For example, assume you invoke
the following service sequence:

1. PARSE

2. SEARCH

3. REMOVE

4. SEARCH

5. REMOVE

RMS responds by doing the following:

1. Searches for the first file specification that matches the expanded name string

2. Searches for and removes the second file specification

3. Searches for the third file specification

4. Searches for and removes the fourth file specification

If you want to remove the directory entry of a file and you have that file's ID, then you can improve
the speed of the Remove service by specifying the NAM bit in the FAB$L_FOP field. To do this
properly, you must first parse the name of the file specification (to clear the NAM$W_FID or
NAML$W_FID field), place the correct FID in the NAM or NAML block, and then perform the
Remove service.

Note

The Remove service is not supported for DECnet for OpenVMS operations on files at remote
OpenVMS systems.

Table 100 lists the FAB control block fields read as input by the Remove service. For additional
information on the fields accessed by this service, see Part II.

288

$REMOVE

Table 100. Remove Service FAB Input Fields

Field Name Description
FAB$L_FOP File-processing option, FAB$V_NAM only. NAM or NAML block inputs:

indicates that the NAM$W_FID field is used as input.
FAB$W_IFI Internal file identifier (must be zero).
FAB$L_NAM NAM or NAML block address.

Table 101 lists the FAB control block fields written as output by the Remove service.

Table 101. Remove Service FAB Output Fields

Field Name Description
FAB$L_STS Completion status code (also returned in register 0).
FAB$L_STV Status value.

Table 102 lists the NAM control block fields read as input by the Remove service.

Table 102. Remove Service NAM Input Fields

Field Name Description
NAM$W_DID Directory identification; identifies the directory from which the file is to be

removed.
NAM$T_DVI Device identification; identifies the device containing the directory from which

the file is to be removed.
NAM$L_ESA Expanded string area address specifying the name, type, and version of the file

to be removed.
NAM$B_ESL Expanded string length.
NAM$W_FID File identification: if nonzero and FAB$L_FOP field FAB$V_NAM bit is set

in the input FAB, the first file in the directory with this file identification is
removed.

NAM$L_FNB File name status bits (wildcard character bits only).
NAM$L_RSA Resultant string area address: specifies the name, type, and version number of

the last file removed (required for wildcard character processing).
NAM$B_RSL Resultant string length.
NAM$B_RSS Resultant string area size.
NAM$L_WCC Wildcard character context value.

Table 103 lists the NAM control block fields written as output by the Remove service.

Table 103. Remove Service NAM Output Fields

Field Name Description
NAM$B_RSL Resultant string length.
NAM$L_WCC Wildcard context value.

The resultant string is moved to the buffer described by the NAM$L_RSA and NAM$B_RSS fields
(only if both fields are nonzero on input).

289

$REMOVE

Table 104 lists the NAML block fields used as input for the Remove service.

Table 104. Remove Service NAML Input Fields (Alpha Only)

Field Name Description
NAML$W_DID Directory identification; identifies the directory from which

the file is to be removed.
NAML$T_DVI Device identification; identifies the device containing the

directory from which the file is to be removed.
NAML$L_ESA Expanded string area address specifying the name, type, and

version of the file to be removed.
NAML$B_ESL Expanded string length.
NAML$W_FID File identification: if nonzero and FAB$L_FOP field

FAB$V_NAM bit is set in the input FAB, the first file in the
directory with this file identification is removed.

NAML$L_FILESYS_NAME File system name buffer address.
NAML$L_FILESYS_NAME_ALLOC File system name buffer size.
NAML$L_FNB File name status bits (wildcard character bits only).
NAML$L_INPUT_FLAGS Additional flags specified as input.
NAML$L_LONG_EXPAND Long expanded string area address.
NAML$L_LONG_EXPAND_ALLOC Long expanded string area size.
NAML$L_LONG_RESULT Long resultant string area address.
NAML$L_LONG_RESULT_ALLOC Long resultant string area size.
NAML$L_RSA Resultant string area address: specifies the name, type,

and version number of the last file removed (required for
wildcard character processing).

NAML$B_RSL Resultant string length.
NAML$B_RSS Resultant string area size.
NAML$L_WCC Wildcard character context value.

Table 105 lists the NAML control block fields read as output by the Remove service.

Table 105. Remove Service NAML Block Output Fields (Alpha Only)

Field Name Description
NAML$L_FILESYS_NAME_SIZE File system name length.
NAML$L_LONG_RESULT_SIZE Long resultant string length.
NAML$L_OUTPUT_FLAGS Additional status bits passed as output.
NAML$B_RSL Resultant string length.
NAML$L_WCC Wildcard context value.

Condition Values Returned
The following condition values can be returned. Use the Help Message utility to access online
message descriptions. For more information about interpreting condition values, see Section 2.4.

290

$REMOVE

RMS$_BLN RMS$_CDA RMS$_CHN
RMS$_DEV RMS$_DME RMS$_DNF
RMS$_DNR RMS$_DVI RMS$_ESA
RMS$_ESL RMS$_FAB RMS$_FNF
RMS$_IFI RMS$_NAM RMS$_NAML
RMS$_NAMLFSINV RMS$_NAMLFSSIZ RMS$_NAMLRSS
RMS$_NMF RMS$_NORMAL RMS$_PRV
RMS$_RMV RMS$_RSL RMS$_RSS
RMS$_RST RMS$_STR RMS$_SUC
RMS$_SUP RMS$_SUPPORT RMS$_SYS
RMS$_WCC RMS$_WLD RMS$_WLK

291

$REMOVE

292

$RENAME
$RENAME — You can use this service to change the name, type, or version of a file, or to move a file
to another directory by changing its directory specification. However, note that you cannot use this
service to move a file to another device.

Format
SYS$RENAME old-fab ,[err] ,[suc] ,new-fab

Returns
OpenVMS usage: cond_value
type: longword
access: write only
mechanism: by value

The value is returned in symbolic offset FAB$L_STS. Symbolic offset FAB$L_STV may contain
additional status information.

Arguments
old-fab

OpenVMS usage: fab
type: longword (unsigned)
access: modify
mechanism: by reference

FAB control block whose contents are to be used as indirect arguments for the Rename service call.
The old-fab argument is the address of the FAB control block that specifies the old file name.

err

OpenVMS usage: ast_procedure
type: procedure value
access: call without stack unwinding
mechanism: by reference

AST-level error completion routine that the service invokes if the operation is unsuccessful. The err
argument is the address of the entry mask of this user-written completion routine.

suc

OpenVMS usage: ast_procedure
type: procedure value
access: call without stack unwinding

293

$RENAME

mechanism: by reference

AST-level success completion routine that the service invokes if the operation is successful. The suc
argument is the address of the entry mask of this user-written completion routine.

new-fab

OpenVMS usage: fab
type: longword (unsigned)
access: modify
mechanism: by reference

The new-fab argument is the address of the FAB control block that specifies the new file name.

Note

If you invoke the Rename service using the $RENAME macro and if you do not specify arguments,
you must construct an additional field within your argument list to contain the address of the FAB that
specifies the new file name. This additional field is placed in the argument list following the field for
the success completion routine (see Part I), and the argument count is set to 4.

Description
The Rename service performs the equivalent of two Parse services (old and new name), a Search
service for the old directory, an Enter service to insert the new file name into the new directory, and a
Remove service to delete the old file name from the old directory.

No wildcard character specifications are allowed. You can move a file from one directory to another
using this service, but both directories must be on the same disk device.

If the Rename service is successful, the new directory entry is created and the old entry is deleted. If
the service fails, the old entry remains and the new entry is deleted.

The following tables list the fields in FAB, NAM, and NAML blocks that the Rename service uses as
input and output. In these tables, these blocks are called FAB1 and NAM1 for the old entry, and FAB2
and NAM2 for the new entry. For output, FAB2 is not used, although it must be in writable memory.
To check or signal the completion codes in FAB$L_STS and FAB$L_STV, use the first FAB (FAB1).

The resultant file specification string for each of the names (old and new) is placed in the
buffer described by the NAM$L_RSA (or NAML$L_LONG_RESULT) and NAM$B_RSS (or
NAML$_LONG_RESULT_ALLOC) fields of the separate NAM or NAML blocks (only if both
fields are nonzero).

Table 106 lists the FAB control block fields read as input by the Rename service. For additional
information on the fields accessed by this service, see Part II.

Table 106. Rename Service FAB Input Fields

Control Block Field Name Description
FAB$L_DNA Default file specification string address.
FAB$B_DNS Default file specification string size.

FAB1 and FAB2

FAB$L_FNA File specification string address.

294

$RENAME

Control Block Field Name Description
FAB$B_FNS File specification string size.
FAB$W_IFI Internal file identifier (must be zero).
FAB$L_NAM NAM or NAML block address.

Table 107 lists the FAB control block fields written as output by the Rename service.

Table 107. Rename Service FAB Output Fields

Control Block Field Name Description
FAB$L_STS Completion status code (also returned in register 0).FAB1
FAB$L_STV Status value.

Table 108 lists the NAM control block fields read as input by the Rename service. For additional
information on the fields accessed by this service, see Part II.

Table 108. Rename Service NAM Input Fields

Control Block
Field Name Option Description

NAM$L_ESA Expanded string area address (must be
nonzero).

NAM$B_ESS Expanded string area size (must be
nonzero).
NAM block options.NAM$B_NOP

NAM$V_NO_
SHORT_UPCASE1

Do not uppercase the directory and
file specification in the NAM$L_ESA
buffer.

NAM$L_RLF Related file NAM or NAML block
address.

NAM$L_RSA Resultant string area address.

NAM1 and NAM2

NAM$B_RSS Resultant string area size.
NAM$L_RSA Related file resultant string area

address.
NAM$B_RSL Related file resultant string length.

Related file NAM
blocks

NAM$L_FNB Related file name status bits.
1This field or option is not supported for DECnet for OpenVMS operations.

Table 109 lists the NAM control block fields written as output by the Rename service.

Table 109. Rename Service NAM Output Fields

Control Block Field Name Description
NAM$W_DID1 Directory identification.
NAM$T_DVI1 Device identification.
NAM$B_ESL Expanded string length.

NAM1 and NAM2

NAM$W_FID1 File identification.

295

$RENAME

Control Block Field Name Description
NAM$L_FNB File name status bits.
NAM$B_RSL Resultant string length.
NAM$L_WCC Wildcard context.
NAM$W_FIRST_WILD_DIR1 The topmost directory level to contain a

wildcard.
NAM$W_LONG_DIR_LEVELS1 Total number of directories.

1This field is not supported for DECnet for OpenVMS operations.

Table 110 lists the NAML block fields used as input for the Rename service.

Table 110. Rename Service NAML Input Fields (Alpha Only)

Control Block Field Name Option Description
NAML$L_ESA Expanded string area address

(must be nonzero).
NAML$B_ESS Expanded string area size (must

be nonzero).
NAM block options.NAML$B_NOP

NAML$V_NO_
SHORT_UPCASE1

Do not uppercase the directory
and file specification in the
NAML$L_ESA buffer.

NAML$L_FILESYS_
NAME1

File system name buffer address.

NAML$L_FILESYS_
NAME_ALLOC1

File system name size.

NAML$L_INPUT_
FLAGS1

Additional flags specified as
input.

NAML$L_LONG_
DEFNAME1

Long default file specification
string address.

NAML$L_LONG_
DEFNAME_SIZE1

Long default file name size.

NAML$L_LONG_
EXPAND1

Long expanded string area
address.

NAML$L_LONG_
EXPAND_ALLOC1

Long expanded string area size.

NAML$L_LONG_
FILENAME1

Long file specification string
address (used if FAB$L_FNA
contains -1).

NAML$L_LONG_
FILENAME_SIZE1

Long file specification string
size.

NAML$L_LONG_
RESULT1

Long resultant string area
address.

NAML1 and
NAML2

NAML$L_LONG_
RESULT_ALLOC1

Long resultant string area size.
(used if FAB$L_DNA contains
-1).

296

$RENAME

Control Block Field Name Option Description
NAML$L_RLF Related file NAM or NAML

block address.
NAML$L_RSA Resultant string area address.
NAML$B_RSS Resultant string area size.
NAML$L_RSA Related file resultant string area

address.
NAML$B_RSL Related file resultant string

length.

Related file
NAML blocks

NAML$L_FNB Related file name status bits.
1This field or option is not supported for DECnet for OpenVMS operations.

Table 111 lists the NAML control block fields written as output by the Rename service.

Table 111. Rename Service NAML Output Fields (Alpha Only)

Control Block Field Name Description
NAML$W_DID1 Directory identification.
NAML$T_DVI1 Device identification.
NAML$B_ESL Expanded string length.
NAML$W_FID1 File identification.
NAML$L_FILESYS_NAME_SIZE1 File system name length.
NAML$W_FIRST_WILD_DIR1 First wild directory.
NAML$L_FNB File name status bits.
NAML$W_LONG_DIR_LEVELS1 Total number of directories.
NAML$L_LONG_EXPAND_SIZE1 Long expanded string length.
NAML$L_LONG_RESULT_SIZE1 Long resultant string length.
NAML$L_OUTPUT_FLAGS1 Additional status bits passed as output.
NAML$B_RSL Resultant string length.

NAML1 and
NAML2

NAML$L_WCC Wildcard context.
1This field is not supported for DECnet for OpenVMS operations.

Condition Values Returned
The following condition values can be returned. Use the Help Message utility to access online
message descriptions. For more information about interpreting condition values, see Section 2.4.

RMS$_ACC RMS$_BLN RMS$_BUG_DDI
RMS$_CDA RMS$_CHN RMS$_DEV
RMS$_DIR RMS$_DME RMS$_DNA
RMS$_DNF RMS$_DNR RMS$_DVI
RMS$_ENT RMS$_ESA RMS$_ESS
RMS$_FAB RMS$FNA RMS$_FNM
RMS$_IDR RMS$_IFI RMS$_LNE

297

$RENAME

RMS$_NAM RMS$_NAML RMS$_NAMLESS
RMS$_NAMLFSINV RMS$_NAMLFSSIZ RMS$_NAMLRSS
RMS$_NET RMS$_NETFAIL RMS$_NMF
RMS$_NORMAL RMS$_PRV RMS$_QUO
RMS$_REENT RMS$_RLF RMS$_RMV
RMS$_RSS RMS$_RST RMS$_RUNDOWN
RMS$_STR RMS$_SUC RMS$_SUPPORT
RMS$_SYN RMS$_SYS RMS$_TYP
RMS$_VER RMS$_WLD

298

$REWIND
$REWIND — The Rewind service sets the context of a record stream to the first record in the file.
RMS alters the context of the next record to indicate the first record as being the next record.
On OpenVMS Alpha systems, RAB64 can replace the RAB or RAB prefix wherever it is used with
the Rewind service.

Format
SYS$REWIND rab [,[err] [,suc]]

Returns
OpenVMS usage: cond_value
type: longword
access: write only
mechanism: by value

The value is returned in symbolic offset RAB$L_STS. Symbolic offset RAB$L_STV may contain
additional status information.

Arguments
rab

OpenVMS usage: rab
type: longword (unsigned)
access: modify
mechanism: by reference

RAB control block whose contents are to be used as indirect arguments for the Rewind service call.
The rab argument is the address of the RAB control block.

err

OpenVMS usage: ast_procedure
type: procedure value
access: call without stack unwinding
mechanism: by reference

AST-level error completion routine that the service invokes if the operation is unsuccessful. The err
argument is the address of the entry mask of this user-written completion routine.

suc

OpenVMS usage: ast_procedure
type: procedure value

299

$REWIND

access: call without stack unwinding
mechanism: by reference

AST-level success completion routine that the service invokes if the operation is successful. The suc
argument is the address of the entry mask of this user-written completion routine.

Description
The Rewind service implicitly performs the Flush and Free services, writing out all I/O buffers and
releasing all locked records. This service is valid for all file organizations on disk volumes and for
sequential files on tape volumes. For indexed files, the key of reference field establishes the index to
be used for subsequent sequential accesses. You cannot rewind a unit record device (such as a card
reader), indirectly accessed process-permanent files, or a file that was opened with the FAB$V_SQO
option set.

Table 112 lists the control block fields read as input by the Rewind service. For additional information
on the fields accessed by this service, see Part II.

Table 112. Rewind Service RAB Input Fields

Field Name Option Description
RAB$W_ISI Internal stream identifier (required).
RAB$B_KRF Key of reference (used only with indexed files).

Record-processing options.RAB$L_ROP
RAB$V_ASY Asynchronous: performs Rewind service asynchronously.

Table 113 lists the control block fields written as output by the Rewind service.

Table 113. Rewind Service RAB Output Fields

Field Name Description
RAB$L_STS Completion status code (also returned in register 0).
RAB$L_STV Status value.

Condition Values Returned
The following condition values can be returned. Use the Help Message utility to access online
message descriptions. For more information about interpreting condition values, see Section 2.4.

RMS$_ACT RMS$_ATR RMS$_ATW
RMS$_BLN RMS$_BOF RMS$_BUG_DAP
RMS$_CDA RMS$_DME RMS$_DNR
RMS$_DPE RMS$_EXT_ERR RMS$_IOP
RMS$_ISI RMS$_KRF RMS$_NET
RMS$_NETFAIL RMS$_NORMAL RMS$_OPNOTSUP
RMS$_PENDING RMS$_QUO RMS$_RAB
RMS$_RSA RMS$_STR RMS$_SUC
RMS$_SUP RMS$_SUPPORT RMS$_SYS

300

$REWIND

RMS$_WBE RMS$_WER RMS$_WLK

301

$REWIND

302

$SEARCH
$SEARCH — The Search service scans a directory file and fills in various NAM or NAML block
fields. This service should be preceded by the Parse service, in order to initialize the NAM or NAML
block appropriately.

Format
SYS$SEARCH fab [,[err] [,suc]]

Returns

OpenVMS usage: cond_value
type: longword
access: write only
mechanism: by value

The value is returned in symbolic offset FAB$L_STS. Symbolic offset FAB$L_STV may contain
additional status information.

Arguments
fab

OpenVMS usage: fab
type: longword (unsigned)
access: modify
mechanism: by reference

FAB control block whose contents are to be used as indirect arguments for the Search service call. The
fab argument is the address of the FAB control block.

err

OpenVMS usage: ast_procedure
type: procedure value
access: call without stack unwinding
mechanism: by reference

AST-level error completion routine that the service invokes if the operation is unsuccessful. The err
argument is the address of the entry mask of this user-written completion routine.

suc

OpenVMS usage: ast_procedure

303

$SEARCH

type: procedure value
access: call without stack unwinding
mechanism: by reference

AST-level success completion routine that the service invokes if the operation is successful. The suc
argument is the address of the entry mask of this user-written completion routine.

Description
The basic functions of the Search service and the Parse service are performed automatically as part
of the Open, Create, and Erase services. Note that you must close the file before invoking the Search
service (FAB$W_IFI must be 0).

When called, the Search service scans the directory file specified by the directory identification
(NAM$W_DID or NAML$W_DID) field of the NAM or NAML block. It looks for an entry that
matches the file name, type, and version number specified by the expanded string area address and
expanded string length fields. Upon finding a match, RMS returns the file name, type, and version
number in the buffer described by the resultant string area address and size fields. RMS also fills in
the file identification field to enable a subsequent open-by-NAM-block operation. You can also use
the Search service to obtain a series of file specifications whose names match a file specification that
contains wildcard characters or search lists.

The resultant file specification string is placed in the buffer described by NAM$L_RSA (or
NAML$L_LONG_RESULT) and NAM$B_RSS (or NAML$L_LONG_RESULT_ALLOC) fields of
the NAM or NAML block (only if both fields are nonzero). The NAM$L_RSA and NAM$B_RSS
fields must be specified (nonzero) for wildcard character processing.

Table 114 lists the FAB control block fields read as input by the Search service. For additional
information on the fields accessed by this service, see Part II.

Table 114. Search Service FAB Input Fields

Field Name Option Description
File access modes.FAB$B_ACMODES

FAB$V_CHAN_
MODE1

This field can be used to override the access
mode protection for a specified I/O operation (see
Section 4.8).

FAB$W_IFI Internal file identifier (must be zero).
FAB$L_NAM NAM or NAML block address.

1This field or option is not supported for DECnet for OpenVMS operations.

Table 115 lists the FAB control block fields read as output by the Search service. For additional
information on the fields accessed by this service, see Part II.

Table 115. Search Service FAB Block Output Fields

Field Name Description
FAB$L_STS Completion status code (also returned in register 0).
FAB$L_STV Status value.

304

$SEARCH

Table 116 lists the NAM control block fields read as input by the Search service.

Table 116. Search Service NAM Input Fields

Field Name Option Description
NAM$W_DID1 Directory identification of the directory to be searched.
NAM$T_DVI1 Device identification of device containing directory to

be searched.
NAM$L_ESA Expanded string area address: specifies file name,

type, and version of file.
NAM$B_ESL Expanded string length.
NAM$L_FNB File name status bits (wildcard character options only).

NAM block options.
NAM$V_NO_
SHORT_UPCASE1

Do not uppercase the directory and file specification in
the NAM$L_ESA buffer.

NAM$V_PWD Password: indicates that a password contained in
a DECnet for OpenVMS access control string, if
present in a file specification, is to be left unaltered in
the expanded and resultant strings (instead of being
replaced by the word “password”).

NAM$V_
NOCONCEAL

Do not conceal device name: indicates that when
a concealed device logical name is present, the
concealed device logical name is to be replaced by the
actual physical device name in the resultant string.

NAM$B_NOP

NAM$V_SRCHXABS Performs Display service on remote files (for output
fields, see description of Display service).

NAM$L_RSA Resultant string area address: specifies name, type,
and version of last file found (required for wildcard
character processing).

NAM$B_RSL Resultant string length.
NAM$B_RSS Resultant string area size.
NAM$L_WCC Wildcard character context value.

1This field or option is not supported for DECnet for OpenVMS operations.

Table 117 lists the NAM control block fields written as output by the Search service.

Table 117. Search Service NAM Output Fields

Field Name Description
NAM$L_DEV Address of file specification device string.
NAM$B_DEV Size of file specification device string.
NAM$L_DIR Address of file specification directory string.
NAM$B_DIR Size of file specification directory string.
NAM$W_FID1 File identification.
NAM$W_FIRST_WILD_DIR1 First wild directory.
NAM$L_FNB File name status bits (wildcard status bits only).

305

$SEARCH

Field Name Description
NAM$W_LONG_DIR_LEVELS1 Total number of directories.
NAM$L_NAME Address of file specification name string.
NAM$B_NAME Size of file specification name string.
NAM$L_NODE Address of file specification node string.
NAM$B_NODE Size of file specification node string.
NAM$B_RSL Resultant string length.
NAM$L_TYPE Address of file specification type string.
NAM$B_TYPE Size of file specification type string.
NAM$L_VER Address of file specification version string.
NAM$B_VER Size of file specification version string.
NAM$L_WCC Wildcard character context value.

1This field is not supported for DECnet for OpenVMS operations.

Table 118 lists the NAML control block fields written as input by the Search service.

Table 118. Search Service NAML Input Fields (Alpha Only)

Field Name Option Description
NAML$W_DID1 Directory identification of the directory to be

searched.
NAML$T_DVI1 Device identification of device containing

directory to be searched.
NAML$L_ESA Expanded string area address: specifies file

name, type, and version of file.
NAML$B_ESL Expanded string length.
NAML$L_FNB File name status bits (wildcard character

options only).
NAML$L_FILESYS_
NAME1

File system name buffer address.

NAML$L_FILESYS_
NAME_ALLOC1

File system name buffer size.

NAML$L_INPUT_FLAGS Additional flags specified as input.
NAML$L_LONG_EXPAND Long expanded string area address.
NAML$L_LONG_
EXPAND_ALLOC

Long expanded string area size.

NAML$L_LONG_RESULT Long resultant string area address.
NAML$L_LONG_
RESULT_ALLOC

Long resultant string area size.

NAML block options.
NAML$V_NO_
SHORT_UPCASE1

Do not uppercase the directory and file
specification in the NAML$L_ESA buffer.

NAML$B_NOP

NAML$V_PWD Password: indicates that a password
contained in a DECnet for OpenVMS

306

$SEARCH

Field Name Option Description
access control string, if present in a file
specification, is to be left unaltered in the
expanded and resultant strings (instead of
being replaced by the word “password”).

NAML$V_
NOCONCEAL

Do not conceal device name: indicates that
when a concealed device logical name is
present, the concealed device logical name is
to be replaced by the actual physical device
name in the resultant string.

NAML$V_SRCHXABS Performs Display service on remote files
(for output fields, see description of Display
service).

NAML$L_RSA Resultant string area address: specifies
name, type, and version of last file found
(required for wildcard character processing).

NAML$B_RSL Resultant string length.
NAML$B_RSS Resultant string area size.
NAML$L_WCC Wildcard character context value.

1This field or option is not supported for DECnet for OpenVMS operations.

Table 119 lists the NAML control block fields read as output by the Search service.

Table 119. Search Service NAML Output Fields (Alpha Only)

Field Name Description
NAML$L_DEV Address of file specification device string.
NAML$B_DEV Size of file specification device string.
NAML$L_DIR Address of file specification directory string.
NAML$B_DIR Size of file specification directory string.
NAML$W_FID1 File identification.
NAML$W_FIRST_WILD_DIR1 First wild directory.
NAML$L_FNB File name status bits (wildcard status bits only).
NAML$L_FILESYS_NAME_SIZE1 File system name length.
NAML$L_LONG_DEV Long device string address.
NAML$L_LONG_DEV_SIZE Long device string length.
NAML$L_LONG_DIR Long directory string address.
NAML$W_LONG_DIR_LEVELS1 Total number of directories.
NAML$L_LONG_DIR_SIZE Long directory string length.
NAML$L_LONG_NAME Long file name string address.
NAML$L_LONG_NAME_SIZE Long file name string length.
NAML$L_LONG_NODE Long node name string address.
NAML$L_LONG_NODE_SIZE Long node name string length.
NAML$L_LONG_RESULT_SIZE Long resultant string length.

307

$SEARCH

Field Name Description
NAML$L_LONG_TYPE Long file type string length.
NAML$L_LONG_TYPE_SIZE Long file type string address.
NAML$L_LONG_VER Long file version string address.
NAML$L_LONG_VER_SIZE Long file version string length.
NAML$L_NAME Address of file specification name string.
NAML$B_NAME Size of file specification name string.
NAML$L_NODE Address of file specification node string.
NAML$B_NODE Size of file specification node string.
NAML$L_OUTPUT_FLAGS Additional status bits passed as output.
NAML$B_RSL Resultant string length.
NAML$L_TYPE Address of file specification type string.
NAML$B_TYPE Size of file specification type string.
NAML$L_VER Address of file specification version string.
NAML$B_VER Size of file specification version string.
NAML$L_WCC Wildcard character context value.

1This field is not supported for DECnet for OpenVMS operations.

Condition Values Returned
The following condition values can be returned. Use the Help Message utility to access online
message descriptions. For more information about interpreting condition values, see Section 2.4.

RMS$_ACS RMS$_BLN RMS$_CHN
RMS$_DEV RMS$_DME RMS$_DNF
RMS$_DNR RMS$_DVI RMS$_ESA
RMS$_ESL RMS$_FAB RMS$_FND
RMS$_FNF RMS$_IFI RMS$_NAM
RMS$_NAML RMS$_NAMLFSINV RMS$_NAMLFSSIZ
RMS$_NAMLRSS RMS$_NET RMS$_NETFAIL
RMS$_NMF RMS$_NORMAL RMS$_NOVALPRS
RMS$_PRV RMS$_RSL RMS$_RSS
RMS$_RST RMS$_STR RMS$_SUC
RMS$_SUP RMS$_SUPPORT RMS$_SYS
RMS$_WCC

308

$SPACE
$SPACE — The Space service lets you space (skip) a tape file forward or backward a specified
number of blocks.
On OpenVMS Alpha systems, RAB64 can replace the RAB or RAB prefix wherever it is used with
the Space service.

Format
SYS$SPACE rab [,[err] [,suc]]

Returns
OpenVMS usage: cond_value
type: longword
access: write only
mechanism: by value

The value is returned in symbolic offset RAB$L_STS. Symbolic offset RAB$L_STV may contain
additional status information.

Arguments
rab

OpenVMS usage: rab
type: longword (unsigned)
access: modify
mechanism: by reference

RAB control block whose contents are to be used as indirect arguments for the Space service call. The
rab argument is the address of the RAB control block.

err

OpenVMS usage: ast_procedure
type: procedure value
access: call without stack unwinding
mechanism: by reference

AST-level error completion routine that the service invokes if the operation is unsuccessful. The err
argument is the address of the entry mask of this user-written completion routine.

suc

OpenVMS usage: ast_procedure
type: procedure value

309

$SPACE

access: call without stack unwinding
mechanism: by reference

AST-level success completion routine that the service invokes if the operation is successful. The suc
argument is the address of the entry mask of this user-written completion routine.

Description
The Space service is intended primarily for use with magnetic tape files; the tape is skipped forward
or backward the number of blocks specified in the bucket number field. (The size of each block on
any tape is specific to that tape and is defined on the tape itself, not by OpenVMS or RMS.) If the
value in this field is positive, the tape skips forward; if the value is negative, the tape skips backward.
For disk files, the next block pointer (NBP) is updated to reflect the new sequential operation position.

Table 120 lists the control block fields read as input by the Space service. For additional information
on the fields accessed by this service, see Part II.

Table 120. Space Service RAB Input Fields

Field Name Option Description
RAB$L_BKT Bucket code. Indicates the number of blocks to space

forward (positive value) or backward (negative value).
RAB$W_ISI Internal stream identifier (required).

Record-processing options.RAB$L_ROP
RAB$V_ASY Asynchronous. Performs Space service asynchronously.

Table 121 lists the control block fields written as output by the Space service.

Table 121. Space Service RAB Output Fields

Field Name Description
RAB$L_STS Completion status code (also returned in register 0).
RAB$L_STV Status value (the absolute number of blocks actually skipped; the value is always

positive).

Condition Values Returned
The following condition values can be returned. Use the Help Message utility to access online
message descriptions. For more information about interpreting condition values, see Section 2.4.

RMS$_ACT RMS$_BLN RMS$_BOF
RMS$_BUG_DAP RMS$_CDA RMS$_DME
RMS$_DNR RMS$_DPE RMS$_EOF
RMS$_IOP RMS$_ISI RMS$_NET
RMS$_NETFAIL RMS$_NORMAL RMS$_PENDING
RMS$_RAB RMS$_RSA RMS$_STR
RMS$_SUC RMS$_SUP RMS$_SUPPORT
RMS$_SYS RMS$_WBE

310

$TRUNCATE
$TRUNCATE — The Truncate service shortens a sequential file.
On OpenVMS Alpha systems, RAB64 can replace the RAB or RAB prefix wherever it is used with
the Truncate service.

Format
SYS$TRUNCATE rab [,[err] [,suc]]

Returns

OpenVMS usage: cond_value
type: longword
access: write only
mechanism: by value

The value is returned in symbolic offset RAB$L_STS. Symbolic offset RAB$L_STV may contain
additional status information.

Arguments
rab

OpenVMS usage: rab
type: longword (unsigned)
access: modify
mechanism: by reference

RAB control block whose contents are to be used as indirect arguments for the Truncate service call.
The rab argument is the address of the RAB control block.

err

OpenVMS usage: ast_procedure
type: procedure value
access: call without stack unwinding
mechanism: by reference

AST-level error completion routine that the service invokes if the operation is unsuccessful. The err
argument is the address of the entry mask of this user-written completion routine.

suc

OpenVMS usage: ast_procedure
type: procedure value

311

$TRUNCATE

access: call without stack unwinding
mechanism: by reference

AST-level success completion routine that the service invokes if the operation is successful. The suc
argument is the address of the entry mask of this user-written completion routine.

Description
The Truncate service shortens a sequential file by resetting the logical end-of-file position to the
beginning of the current record. You can then append records to the file by issuing successive Put
services.

The record access mode determines the current record position for the Truncate service as follows:

• In sequential record access mode, you can only use this service immediately after setting the
context of the current record by successfully executing a Get or Find service.

• In random-access-by-key mode, RMS establishes the current record position as defined by the key
of reference or the relative record number (RRN), as applicable.

• In random-access-by-RFA (record file address) mode, RMS establishes the current record position
as defined by the RFA.

The Truncate service does not deallocate space between the end-of-file position and the physical end
of the file, nor does it overwrite the records between the end-of-file position and the physical end of
the file with an erase pattern. You can read records from the end-of-file position to the physical end
of the file by setting the end-of-file position to the highest block allocated using the DCL command
SET FILE/END_OF_FILE. If you want to erase the data between the logical end of the file and
the physical end of the file, either you must delete the file and write a new one, or your application
program must overwrite the records you want to delete.

The Truncate service requires that the file access (FAB$B_FAC) field specify a truncate access
(FAB$V_TRN). Truncating a file opened for shared access may have unexpected results if other
accessors are currently accessing the file beyond the end-of-file position.

Table 122 lists the control block fields read as input by the Truncate service. For additional
information on the fields accessed by this service, see Part II.

Table 122. Truncate Service RAB Input Fields

Field Name Option Description
RAB$W_ISI Internal stream identifier (required).

Record-processing options.RAB$L_ROP
RAB$V_ASY Asynchronous: performs Truncate service asynchronously.

Table 123 lists the control block fields written as output by the Truncate service.

Table 123. Truncate Service RAB Output Fields

Field Name Description
RAB$L_STS Completion status code (also returned in register 0).
RAB$L_STV Status value.

312

$TRUNCATE

Condition Values Returned
The following condition values can be returned. Use the Help Message utility to access online
message descriptions. For more information about interpreting condition values, see Section 2.4.

RMS$_ACT RMS$_ATR RMS$_ATW
RMS$_BLN RMS$_BUG_DAP RMS$_CDA
RMS$_CUR RMS$_DEADLOCK RMS$_DME
RMS$_DNR RMS$_DPE RMS$_EXT_ERR
RMS$_FAC RMS$_IOP RMS$_ISI
RMS$_NET RMS$_NETFAIL RMS$_NORMAL
RMS$_OPNOTSUP RMS$_PENDING RMS$_RAB
RMS$_RER RMS$_RSA RMS$_STR
RMS$_SUC RMS$_SUP RMS$_SUPPORT
RMS$_SYS RMS$_WBE RMS$_WER
RMS$_WLK

313

$TRUNCATE

314

$UPDATE
$UPDATE — The Update service allows you to modify the contents of an existing record in a file
residing on a disk device.
On OpenVMS Alpha systems, RAB64 can replace the RAB or RAB prefix wherever it is used with
the Update service.

Format
SYS$UPDATE rab [,[err] [,suc]]

Returns
OpenVMS usage: cond_value
type: longword
access: write only
mechanism: by value

The value is returned in symbolic offset RAB$L_STS. Symbolic offset RAB$L_STV may contain
additional status information.

Arguments
rab

OpenVMS usage: rab
type: longword (unsigned)
access: modify
mechanism: by reference

RAB control block whose contents are to be used as indirect arguments for the Update service call.
The rab argument is the address of the RAB control block.

err

OpenVMS usage: ast_procedure
type: procedure value
access: call without stack unwinding
mechanism: by reference

AST-level error completion routine that the service invokes if the operation is unsuccessful. The err
argument is the address of the entry mask of this user-written completion routine.

suc

OpenVMS usage: ast_procedure
type: procedure value
access: call without stack unwinding

315

$UPDATE

mechanism: by reference

AST-level success completion routine that the service invokes if the operation is successful. The suc
argument is the address of the entry mask of this user-written completion routine.

Description
The record to be updated by the Update service must first be locked by this stream, using either a Find
or Get service. When updating a record, you must use move mode (not locate mode); that is, you must
supply a buffer.

The record length for sequential files cannot change. For relative files with variable-length or variable
with fixed-length control records, the length of the replacement record can be different from the
length of the original record, but cannot be larger than the maximum size you set when you created
the file.

For stream format files, the Update service functions in the same manner as the Put service, with
one exception: when using the Update service, you do not have to set the RAB$L_ROP field
RAB$V_TPT option to update data in the middle of a file.

For indexed files, the length of the replacement record written by the Update service may be different
from the original record, but RMS does not permit you to change the primary key. Each replacement
record must be large enough to contain a complete primary key, but it does not have to contain all
alternate keys.

If an alternate key is partially or completely missing in the replacement record, the key must have the
characteristic that the values can change; this is also true if the replacement record contains a key that
was not present in the original record.

Update operations to an indexed file do not require a key value or key of reference. Before writing
the record, RMS compares the key values (primary and alternate) in the replacement record with
the key values of the original record already existing in the file. This comparison takes the defined
characteristics of each key into account. For example, if a particular key is not allowed to change,
RMS rejects the operation with an RMS$_CHG error code if the replacement record contains an
altered value in the associated key. Similarly, this comparison determines whether the replacement
record would result in the presence of duplicate key values among records of the file. If duplicates
would occur, RMS verifies the defined characteristics for the keys being duplicated. If duplicates
are not allowed for a particular key, RMS rejects the operation with an RMS$_DUP error code. If
duplicates are allowed, RMS performs the operation.

Subsequent sequential operations on a given index retrieve records with identical key values in the
order in which the records were written.

RAB Control Block Fields
Table 124 lists the control block fields read as input by the Update service. For additional information
on the fields accessed by this service, see Part II.

Table 124. Update Service RAB Input Fields

Field Name Option Description
RAB$W_ISI Internal stream identifier (required).
RAB$L_RBF Record buffer address.

316

$UPDATE

Field Name Option Description
RAB$L_RHB Record header buffer (for variables with fixed control

records only).
Record-processing options.

RAB$V_ASY Asynchronous: performs Update services asynchronously.
RAB$L_ROP

RAB$V_WBH Write-locked: two buffers are allocated to allow
multibuffering.

RAB$W_RSZ Record size (required).

Table 125 lists the control block fields written as output by the Update service.

Table 125. Update Service RAB Output Fields

Field Name Description
RAB$W_RFA Record file address.
RAB$L_STS Completion status code (also returned in register 0).
RAB$L_STV Status value.

RAB64 Control Block Fields (Alpha Only)
Table 126 lists the Alpha-only RAB64 control block fields read as input by the Update service. These
fields are comparable to the RAB fields described in Table 124. For additional information on the
fields accessed by this service, see Part II.

Table 126. Update Service RAB64 Input Fields (Alpha Only)

Field Name Description
RAB64$B_BLN This field must be initialized to RAB64$C_BLN64 in order for RAB64 fields to

be used.
RAB64$W_ISI Internal stream identifier (required). Equates to RAB$W_ISI.
RAB64$L_RBF1 Record buffer address. This field must contain -1 if you want to use

RAB64$PQ_RBF. For 32-bit addressing, this field equates to RAB$L_RBF.
RAB64$PQ_RBF1 Record buffer 64-bit address (used if RAB64$L_RBF contains -1). This field

can hold either a 64-bit address or a 32-bit address sign-extended to 64 bits.
RAB64$L_RHB Record header buffer. This field must contain -1 if you want to use

RAB64$PQ_RHB. For 32-bit addressing, this field equates to RAB$L_RHB
(see Table 124).

RAB64$PQ_RHB Record header buffer 64-bit address (used if RAB64$L_RHB contains -1). This
field can hold either a 64-bit address or a 32-bit address sign-extended to 64 bits.

RAB64$L_ROP Record-processing options. Equates to RAB$L_ROP and options described
in Table 124. Options are identical except for the RAB64 prefix; for example,
option RAB64$V_ASY equates to RAB$V_ASY.

RAB64$W_RSZ1 Record buffer size. This field is ignored in favor of RAB64$Q_RSZ if
RAB64$L_RBF contains -1. Otherwise, this field equates to RAB$W_RSZ.

RAB64$Q_RSZ1 Record buffer size. This field must be used when RAB64$L_RBF contains -1
and a value is specified in RAB64$PQ_RBF.

1One of the RBF fields must contain an address and the RSZ field associated with it must contain a size.

317

$UPDATE

Table 127 lists the Alpha-only RAB64 control block fields written as output by the Update service.
These fields are comparable to the RAB fields described in Table 125.

Table 127. Update Service RAB64 Output Fields (Alpha Only)

Field Name Description
RAB64$W_RFA Record file address. Equates to RAB$W_RFA.
RAB64$L_STS Completion status code. Equates to RAB$L_STS (see Table 125).
RAB64$L_STV Status value. Equates to RAB$L_STV.

Condition Values Returned
The following condition values can be returned. Use the Help Message utility to access online
message descriptions. For more information about interpreting condition values, see Section 2.4.

RMS$_ACT RMS$_ATR RMS$_ATW
RMS$_BLN RMS$_BUG RMS$_BUG_DAP
RMS$_CDA RMS$_CHG RMS$_CHK
RMS$_CUR RMS$_DME RMS$_DNR
RMS$_DUP RMS$_ENQ RMS$_EXP
RMS$_EXT_ERR RMS$_FAC RMS$_FTM
RMS$_IBF RMS$_IDX RMS$_IOP
RMS$_NETBTS RMS$_NETFAIL RMS$_NORMAL
RMS$_OK_DUP RMS$_OK_IDX RMS$_OPNOTSUP
RMS$_PENDING RMS$_PLG RMS$_RAB
RMS$_RBF RMS$_RER RMS$_RHB
RMS$_RNL RMS$_RPL RMS$_RRV
RMS$_RSA RMS$_RSZ RMS$_RVU
RMS$_STR RMS$_SUC RMS$_SUP
RMS$_SUPPORT RMS$_SYS RMS$_TRE
RMS$_WBE RMS$_WER RMS$_WLK
RMS$_WPL

318

$WAIT
$WAIT — The Wait service suspends image execution until an asynchronous file or record service
completes. The same control block that is used with the asynchronous file or record service call is
specified as the parameter for the Wait service. If it is an asynchronous file service, the control block
is a FAB; if it is an asynchronous record service, the control block is a RAB. Upon completion of the
service, RMS returns control to your program at the point following the Wait service call.
On OpenVMS Alpha systems, RAB64 can replace the RAB or RAB prefix wherever it is used with
the Wait service.

Format
SYS$WAIT control-block

Returns
OpenVMS usage: cond_value
type: longword
access: write only
mechanism: by value

The value is returned in symbolic offset FAB$L_STS or RAB$L_STS. Symbolic offset FAB$L_STV
or RAB$L_STV may contain additional status information.

Argument
control-block

fab or rab

OpenVMS usage: fab or rab
type: longword (unsigned)
access: modify
mechanism: by reference

FAB or RAB control block whose contents are to be used as indirect arguments for the Open service
call. The fab or rab argument is the address of the FAB or RAB control block.

Description
The Wait service takes no arguments to define entry points for user-written completion routines; the
completion routines are specified by the service being awaited.

Any completion routines specified on the operation being awaited are declared as ASTs before RMS
returns control. They are executed before the Wait service completes unless ASTs are disabled.
Completion routines are always executed as asynchronous system traps (ASTs).

Table 128 lists the control block fields used as input by the Wait service for the FAB. For additional
information on the fields accessed by this service, see Part II of this manual.

319

$WAIT

Table 128. Wait Service FAB Input Fields

Field Name Description
FAB$W_IFI Internal file identifier (required).
FAB$L_STS Status completion code.

Table 129 lists the control block field written as output by the Wait service for the FAB.

Table 129. Wait Service FAB Output Field

Field Name Description
FAB$L_STS Completion status code (also returned in register 0).

Table 130 lists the control block fields used as input by the Wait service for the RAB. For additional
information on the fields accessed by this service, see Part II of this manual.

Table 130. Wait Service RAB Input Fields

Field Name Description
RAB$W_ISI Internal stream identifier (required).
RAB$L_STS Status completion code.

Table 131 lists the control block field written as output by the Wait service for the RAB.

Table 131. Wait Service RAB Output Field

Field Name Description
RAB$L_STS Completion status code (also returned in register 0).

Condition Values Returned
The following condition values can be returned. Use the Help Message utility to access online
message descriptions. For more information about interpreting condition values, see Section 2.4.

RMS$_BLN RMS$_CDA RMS$_EXT_ERR
RMS$_FAB RMS$_ISI RMS$_NORMAL
RMS$_OPNOTSUP RMS$_RAB RMS$_STR
RMS$_SUC

The RMS completion status codes for the Wait service are determined by the service being awaited,
unless the address of the FAB or RAB specified for the wait is different from that specified for the
awaited operation. In this case, RMS$_NORMAL is returned.

320

$WRITE
$WRITE — The Write service transfers a user-specified number of bytes (beginning on a block
boundary) to an RMS file of any file organization.
On OpenVMS Alpha systems, RAB64 can replace the RAB or RAB prefix wherever it is used with
the Write service.

Format
SYS$WRITE rab [,[err] [,suc]]

Returns

OpenVMS usage: cond_value
type: longword
access: write only
mechanism: by value

The value is returned in symbolic offset RAB$L_STS. Symbolic offset RAB$L_STV may contain
additional status information.

Arguments
rab

OpenVMS usage: rab
type: longword (unsigned)
access: modify
mechanism: by reference

RAB control block whose contents are to be used as indirect arguments for the Write service call. The
rab argument is the address of the RAB control block.

err

OpenVMS usage: ast_procedure
type: procedure value
access: call without stack unwinding
mechanism: by reference

AST-level error completion routine that the service invokes if the operation is unsuccessful. The err
argument is the address of the entry mask of this user-written completion routine.

suc

OpenVMS usage: ast_procedure

321

$WRITE

type: procedure value
access: call without stack unwinding
mechanism: by reference

AST-level success completion routine that the service invokes if the operation is successful. The suc
argument is the address of the entry mask of this user-written completion routine.

Description
To use the Write service, you must do the following:

1. Supply a buffer area and specify the buffer size:

• To supply a 32-bit buffer address and a buffer size no greater than 65,535 bytes, use these
fields:

User Buffer Address Field User Buffer Size Field
RAB$L_RBF RAB$W_RSZ

• On OpenVMS Alpha systems, you can supply a 64-bit buffer address (or a 32-bit address
sign-extended to 64 bits) and a buffer size up to 2**31-1 bytes. To do so, put a -1 in
RAB64$L_RBF and use these fields:

User Buffer Address Field User Buffer Size Field
RAB64$PQ_RBF RAB64$Q_RSZ

2. Indicate the virtual block number (VBN) of the first block to be written in the bucket number
field. This field is RAB$L_BKT or RAB64$L_BKT (available only on Alpha to accommodate
64-bit addressing). If the value for the VBN is 0, the transfer starts with the block indicated by the
next block pointer (NBP).

A sequential file is automatically extended if you write a block past the end of the currently allocated
space when using block I/O (or record I/O). For sequential files, RMS maintains a logical end of file
to correspond to the last block and highest byte written within the block. For relative and indexed
files, you must use the Extend service when using block I/O.

RAB Control Block Fields
Table 132 lists the control block fields read as input by the Write service. For additional information
on the fields accessed by this service, see Part II.

Table 132. Write Service RAB Input Fields

Field Name Option Description
RAB$L_BKT Bucket number: must contain the virtual block number of

the first block to be written.
RAB$W_ISI Internal stream identifier.
RAB$L_RBF Record buffer address. For block I/O, alignment of the

user's record buffer on a page or at least a quadword
boundary may improve performance.

RAB$L_ROP Record-processing options.

322

$WRITE

Field Name Option Description
RAB$V_ASY Asynchronous: performs Write services asynchronously.
RAB$V_TPT Truncate on Put: specifies that a Write service truncate the

file after the transferred data.
RAB$W_RSZ Record size: indicates the transfer length, in bytes.1

1Certain devices require that an even number of bytes be transferred. For further details, see the VSI OpenVMS I/O User's Reference
Manual.

Table 133 lists the control block fields written as output by the Write service.

Table 133. Write Service RAB Output Fields

Field Name Description
RAB$W_RFA Record file address.
RAB$L_STS Completion status code (also returned in register 0).
RAB$L_STV Status value: contains the actual number of bytes transferred if an end-of-file

error occurs.

RAB64 Control Block Fields (Alpha Only)
Table 134 lists the Alpha-only RAB64 control block fields read as input by the Write service. These
fields are comparable to the RAB fields described in Table 132. For additional information on the
fields accessed by this service, see Part II.

Table 134. Write Service RAB64 Input Fields (Alpha Only)

Field Name Description
RAB64$B_BLN This field must be initialized to RAB64$C_BLN64 in order for RAB64 fields to

be used.
RAB64$L_BKT Bucket number. Equates to RAB$L_BKT (see Table 132).
RAB64$W_ISI Internal stream identifier. Equates to RAB$W_ISI.
RAB64$L_RBF1 Record buffer address. This field must contain -1 if you want to use

RAB64$PQ_RBF. For 32-bit addressing, this field equates to RAB$L_RBF (see
Table 132).

RAB64$PQ_RBF1 Record buffer 64-bit address (used if RAB64$L_RBF contains -1). This field
can hold either a 64-bit address or a 32-bit address sign-extended to 64 bits.

RAB64$L_ROP Record-processing options. Equates to RAB$L_ROP and options described
in Table 132. Options are identical except for the RAB64 prefix; for example,
option RAB64$V_ASY equates to RAB$V_ASY.

RAB64$W_RSZ1 Record buffer size. This field is ignored in favor of RAB64$Q_RSZ if
RAB64$L_RBF contains -1. Otherwise, this field equates to RAB$W_RSZ (see
Table 132).

RAB64$Q_RSZ1 Record buffer size. This field must be used when RAB64$L_RBF contains
-1 and a value is specified in RAB64$PQ_RBF. See Section 8.6 for more
information.

1One of the RBF fields must contain an address and the RSZ field associated with it must contain a size.

Table 135 lists the Alpha-only RAB64 control block fields written as output by the Write service.
These fields are comparable to the RAB fields described in Table 133.

323

$WRITE

Table 135. Write Service RAB64 Output Fields (Alpha Only)

Field Name Description
RAB64$W_RFA Record file address. Equates to RAB$W_RFA.
RAB64$L_STS Completion status code. Equates to RAB$L_STS (see Table 133).
RAB64$L_STV Status value. Equates to RAB$L_STV (see Table 133).

Condition Values Returned
The following condition values can be returned. Use the Help Message utility to access online
message descriptions. For more information about interpreting condition values, see Section 2.4.

RMS$_ACT RMS$_ATR RMS$_ATW
RMS$_BLN RMS$_BUG_DAP RMS$_CDA
RMS$_CONTROLC RMS$_CONTROLO RMS$_CONTROLY
RMS$_DME RMS$_DNR RMS$_EOF
RMS$_EXT RMS$_FAC RMS$_FTM
RMS$_FUL RMS$_IOP RMS$_ISI
RMS$_NET RMS$_NETFAIL RMS$_NORMAL
RMS$_PENDING RMS$_RAB RMS$_RBF
RMS$_RSA RMS$_RSZ RMS$_STR
RMS$_SUC RMS$_SUP RMS$_SUPPORT
RMS$_WBE RMS$_WER RMS$_WLK

324

Appendix A. RMS Control Block
Macros
This appendix lists the format of each RMS control block macro and includes special syntax notes that
differ from the rules provided in Part I. Note that in this appendix the use of the term “macro” refers to
a VAX MACRO macro.

$FAB
$FAB — The $FAB macro allocates storage for a FAB and initializes certain FAB fields with defaults
and user-specified values. No value is returned for this assembly-time operation.

Format
$FAB ALQ=allocation-quantity,

BKS =bucket-size,
BLS =block-size,
CHAN _MODE=channel-access-mode
CTX =user-context-value,
DEQ =extension-quantity,
DNA =default-filespec-address,
DNM =<filespec>,
DNS =default-filespec-string-size,
FAC =<BIO BRO DEL GET PUT TRN UPD>,
FNA =filespec-string-address,
FNM =<filespec>,
FNS =filespec-string-size,
FOP =<CBT CIF CTG DFW DLT MXV NAM NEF NFS OFP POS RCK RWC RWO SCF SPL SQO
 SUP TEF TMD TMP UFO WCK>,
FSZ =header-size,
GBC =global-buffer-count,
LNM _MODE=logical-name-translation-access-mode,
MRN =maximum-record-number,
MRS =maximum-record-size,
NAM =nam-address,
ORG ={IDX|REL|SEQ},
RAT =<BLK{CR|FTN|PRN}>,
RFM ={FIX|STM|STMCR|STMLF|UDF|VAR|VFC},
RTV =window-size,
SHR =<DEL GET MSE NIL PUT UPD UPI NQL>,
XAB =xab-address

Arguments
For a description of the control block fields that correspond to the $FAB macro arguments, see
Chapter 4. In some cases, specific default values are assigned automatically when you omit an
argument. If there is no specific default, RMS uses a default value of 0.

Arguments fall into three categories: values, addresses, and keywords. Rules applicable to these
argument categories are described in Appendix B.

325

Appendix A. RMS Control Block Macros

Note that multiple arguments can be specified for the FAC, FOP, RAT, and SHR keywords, but the
arguments must be enclosed within left angle (<) and right angle (>) brackets. The DNM and FNM
arguments must also be delimited by these signs.

The DNM and FNM arguments contain ASCII characters and have no corresponding field in the FAB.
If the DNM argument is present, RMS places its appropriate address and size in the FAB$L_DNA and
FAB$B_DNS fields. Similarly, if the FNM argument is present, RMS places its appropriate address
and size in the FAB$L_FNA and FAB$B_FNS fields.

$FAB_STORE
$FAB_STORE — The $FAB_STORE macro moves user-specified values into fields of the specified
FAB. The expanded $FAB_STORE code executes at run-time on a previously initialized (allocated)
FAB, in contrast to the $FAB macro, which initializes the FAB at assembly time. The $FAB_STORE
macro must reside in a code program section.

Format
$FAB_STORE fab=fab-address,

ALQ =#allocation-quantity,
BKS =#bucket-size,
BLS =#block-size,
CHAN _MODE=#channel-access-mode
CTX =user-context-value,
DEQ =#extension-quantity,
DNA =default-filespec-address,
DNS =#default-filespec-string-size,
FAC =<BIO BRO DEL GET PUT TRN UPD>,
FNA =filespec-string-address,
FNS =#filespec-string-size,
FOP =<CBT CIF CTG DFW DLT MXV NAM NEF NFS OFP POS RCK RWC RWO SCF SPL SQO
 SUP TEF TMD TMP UFO WCK>,
FSZ =#header-size,
GBC =#global-buffer-count,
LNM _MODE=#logical-name-translation-access-mode,
MRN =#maximum-record-number,
MRS =#maximum-record-size,
NAM =nam-address,
ORG ={IDX|REL|SEQ},
RAT =<BLK{CR|FTN|PRN}>,
RFM ={FIX|STM|STMCR|STMLF|UDF|VAR|VFC},
RTV =#window-size,
SHR =<DEL GET MSE NIL PUT UPD UPI NQL>,
XAB =xab-address

Arguments
For a description of the control block fields that correspond to the $FAB_STORE macro arguments,
see Chapter 4.

Arguments fall into several categories: values, addresses, keywords, and the address of the control
block to receive the specified arguments. Rules applicable to these argument categories for the control
block store macros are described in Appendix B.

326

Appendix A. RMS Control Block Macros

The FAB argument fab-address is required for the $FAB_STORE macro and is not present
for the $FAB macro. Conversely, the DNM argument filespec and FNM argument default-
filespec are not available for the $FAB_STORE macro, although you can use the DNA/DNS and
FNA/FNS arguments to specify file specifications at run-time.

Note that R0 is usually used by the $FAB_STORE macro; thus, R0 is not preserved and does not
contain a return status.

$NAM
$NAM — The $NAM macro allocates storage for a NAM block and initializes certain NAM fields
with default values and user-specified values. No value is returned for this assembly-time operation.

Format
$NAM ESA=expanded-string-address,

ESS =expanded-string-size,
NOP =<NOCONCEAL PWD NO_SHORT_UPCASE SRCHXABS SYNCHK>,
RLF =related-file-nam-block-address,
RSA =resultant-string-address,
RSS =resultant-string-size

Arguments
For a description of the control block fields that correspond to the $NAM macro arguments, see
Chapter 5.

Arguments fall into three categories: values, addresses, and keywords. Rules applicable to these
argument categories are described in Appendix B.

Note that multiple arguments can be specified for the NOP keyword, but the arguments must be
enclosed within left angle (<) and right angle (>) brackets.

$NAM_STORE
$NAM_STORE — The $NAM_STORE macro moves user-specified values into fields of the
specified NAM block. The expanded $NAM_STORE code executes at run-time on a previously
initialized (allocated) NAM block, in contrast to the $NAM macro, which initializes a NAM block at
assembly time. The $NAM_STORE macro must reside in a code program section.

Format
$NAM_STORE NAM=nam-address,

DID =#directory-identification,
DVI =#device-identification,
ESA =expanded-string-address,
ESS =#expanded-string-size,
FID =#file-identification,
NOP =<NOCONCEAL NO_SHORT_UPCASE PWD SRCHXABS SYNCHK>,
RLF =related-file-nam-block-address,

327

Appendix A. RMS Control Block Macros

RSA =resultant-string-address,
RSS =#resultant-string-size

Arguments
For a description of the control block fields that correspond to the $NAM_STORE macro arguments,
see Chapter 5.

Arguments fall into several categories: values, addresses, keywords, and the address of the control
block to receive the specified arguments. Rules applicable to these argument categories for the control
block store macros are described in Appendix B.

The NAM argument nam-address is required for the $NAM_STORE macro and is not present
for the $NAM macro. Also, the following $NAM_STORE argument fields are not available for the
$NAM macro:

• The DID argument directory-identification sets the NAM$W_DID field, which is a 3-
word field used when the FAB$L_FOP field FAB$V_NAM option is set. This argument is usually
specified by its symbolic address. If a register is used to contain a value for the NAM$W_DID
field, do not use R12, because two contiguous registers must be used to contain the value of this
3-word field. Note that you cannot use the byte, word, or longword displacements for an offset, or
for indexed or deferred addressing.

• The DVI argument device-identification sets the NAM$T_DVI field, which is a 16-
byte field used when the FAB$L_FOP field FAB$V_NAM option is set. This argument must
be passed by its symbolic address. A register must not be specified to contain a value for this
argument.

• The FID argument file-identification sets the NAM$W_FID field, which is a 3-word
field used when the FAB$L_FOP field FAB$V_NAM option is set. This argument is specified
by its symbolic address. If a register is used to contain a value for the NAM$W_FID field, do not
use R12, because two contiguous registers must be used to contain the value of this 3-word field.
Note that you cannot use the byte, word, or longword displacements for an offset, or for indexed
or deferred addressing.

Note that R0 is usually used by the $NAM_STORE macro; thus, R0 is not preserved and does not
contain a return status.

$NAML
$NAML — The $NAML macro allocates storage for a NAML block and initializes certain NAML
fields with default values and user-specified values.

Format
$NAML ESA=expanded-string-address,

ESS =expanded-string-size,
NOP =<NOCONCEAL PWD NO_SHORT_UPCASE SRCHXABS SYNCHK>,
RLF =related-file-nam-block-address,
RSA =resultant-string-address,
RSS =resultant-string-size,
FILESYS _NAME=file system name buffer address,

328

Appendix A. RMS Control Block Macros

FILESYS _NAME_ALLOC=file system name buffer size,
INPUT _FLAGS=<NO_SHORT_OUTPUT>,
LONG _DEFNAME=long default file specification string address,
LONG _DEFNAME_SIZE=long default file specification string size,
LONG _FILENAME=long file specification string address,
LONG _FILENAME_SIZE=long file specification string size,
LONG _EXPAND=long expanded string area address,
LONG _EXPAND_ALLOC=long expanded string area size,
LONG _RESULT=long resultant string area address,
LONG _RESULT_ALLOC=long resultant string area size,
USER _CONTEXT=user context

Arguments
For a description of the control block fields that correspond to the $NAML macro arguments, see
Chapter 6.

Arguments fall into three categories: values, addresses, and keywords. Rules applicable to these
argument categories are described in Appendix B.

Note that multiple arguments can be specified for the NOP keyword, but the arguments must be
enclosed with left angle (<) and right angle (>) brackets.

$NAML_STORE
$NAML_STORE — The $NAML_STORE macro moves user-specified values into fields of the
specified NAML block. The expanded $NAML_STORE code executes at run-time on a previously
initialized (allocated) NAML block, in contrast to the $NAML macro, which initializes a NAML
block at assembly time. The $NAML_STORE macro must reside in a code program section.

Format
$NAML_STORE NAM=naml-address,

DID =#directory-identification,
DVI =#device-identification,
ESA =expanded-string-address,
ESS =#expanded-string-size,
FID =#file-identification,
NOP =<NOCONCEAL NO_SHORT_UPCASE PWD SRCHXABS SYNCHK>,
RLF =related-file-nam-block-address,
RSA =resultant-string-address,
RSS =#resultant-string-size,
FILESYS _NAME=file system name buffer address,
FILESYS _NAME_ALLOC=#file system name buffer size,
INPUT _FLAGS=<NO_SHORT_OUTPUT>,
LONG _DEFNAME=long default file specification string address,
LONG _DEFNAME_SIZE=#long default file specification string size,
LONG _FILENAME=long file specification string address,
LONG _FILENAME_SIZE=#long file specification string size,
LONG _EXPAND=long expanded string area address,
LONG _EXPAND_ALLOC=#long expanded string area size,
LONG _RESULT=long resultant string area address,
LONG _RESULT_ALLOC=#long resultant string area size,
USER _CONTEXT=#user context

329

Appendix A. RMS Control Block Macros

Arguments
For a description of the control block fields that correspond to the $NAML_STORE macro arguments,
see Chapter 6.

Arguments fall into several categories: values, addresses, keywords, and the address of the control
block to receive the specified arguments. Rules applicable to these argument categories for the control
block store macros are described in Appendix B.

The NAML argument naml-address is required for the $NAML_STORE macro and is not present
for the $NAML macro. Also, the following $NAML_STORE argument fields are not available for the
$NAML macro:

• The DID argument directory-identification sets the NAML$W_DID field, which
is a 3-word field used when the FAB$L_FOP field FAB$V_NAM option is set. This argument
is usually specified by its symbolic address. If a register is used to contain a value for the
NAML$W_DID field, do not use R12, because two contiguous registers must be used to contain
the value of this 3-word field. Note that you cannot use the byte, word, or longword displacements
for an offset, or for indexed or deferred addressing.

• The DVI argument device-identification sets the NAML$T_DVI field, which is a 16-
byte field used when the FAB$L_FOP field FAB$V_NAM option is set. This argument must
be passed by its symbolic address. A register must not be specified to contain a value for this
argument.

• The FID argument file-identification sets the NAML$W_FID field, which is a 3-word
field used when the FAB$L_FOP field FAB$V_NAM option is set. This argument is specified by
its symbolic address. If a register is used to contain a value for the NAML$W_FID field, do not
use R12, because two contiguous registers must be used to contain the value of this 3-word field.
Note that you cannot use the byte, word, or longword displacements for an offset, or for indexed
or deferred addressing.

Note that R0 is usually used by the $NAML_STORE macro; thus, R0 is not preserved and does not
contain a return status.

$RAB
$RAB — The $RAB macro allocates storage for a RAB and initializes certain RAB fields with
defaults and user-specified values. You cannot use this macro within a sequence of executable
instructions. No value is returned for this assembly-time operation.

Format
$RAB BKT=bucket-code-number,

CTX =user-context-value,
FAB =fab-address,
KBF =key-buffer-address,
KRF =key-of-reference-number,
KSZ =key-size,
MBC =multiblock-count-number,
MBF =multibuffer-count-number,
PBF =prompt-buffer-address,
PSZ =prompt-buffer-size,

330

Appendix A. RMS Control Block Macros

RAC ={KEY|RFA|SEQ},
RBF =record-buffer-address,
RHB =record-header-buffer-address,
ROP =<ASY BIO CCO CDK CVT EOF EQNXT ETO FDL KGE KGT LIM LOA LOC NLK NXR NXT
 PMT PTA RAH REA REV RLK RNE RNF RRL TMO TPT UIF ULK WAT WBH>,
ROP _2=<NQL NODLCKWT NODLCKBLK>,
RSZ =record-size,
TMO =time-out-number-of-seconds,
UBF =user-record-buffer-address,
USZ =user-record-buffer-size,
XAB =xab-address

Arguments
For a description of the control block fields that correspond to the $RAB macro arguments, see
Chapter 7. In some cases, specific default values are assigned automatically when you omit an
argument. These specific defaults are noted in the text that explains each field in Chapter 7. If there is
no specific default, RMS uses a default value of 0.

Arguments fall into three categories: values, addresses, and keywords. Rules applicable to these
argument categories are described in Appendix B.

Note that multiple arguments can be specified for the ROP keyword, but the arguments must be
enclosed within left angle (<) and right angle (>) brackets. Also note that the KGE and EQNXT
arguments are logically synonymous, as are the KGT and NXT arguments.

$RAB_STORE
$RAB_STORE — The $RAB_STORE macro moves user-specified values into fields of the specified
RAB. The expanded $RAB_STORE code executes at run-time on a previously initialized (allocated)
RAB, in contrast to the $RAB macro, which allocates and initializes the RAB at assembly time. The
$RAB_STORE macro must reside in a code program section.

Format
$RAB_STORE RAB=rab-address,

BKT =#bucket-code-number,
CTX =user-context-value,
FAB =fab-address,
KBF =key-buffer-address,
KRF =#key-of-reference-number,
KSZ =#key-size,
MBC =#multiblock-count-number,
MBF =#multibuffer-count-number,
PBF =prompt-buffer-address,
PSZ =#prompt-buffer-size,
RAC ={KEY|RFA|SEQ},
RBF =record-buffer-address,
RFA =#record-file-address,
RHB =record-header-buffer-address,
ROP =<ASY BIO CCO CDK CVT EOF EQNXT ETO FDL KGE KGT LIM LOA LOC NLK NXR NXT
 PMT PTA RAH REA REV RLK RNE RNF RRL TMO TPT UIF ULK WAT WBH>,
ROP _2=<NQL NODLCKWT NODLCKBLK>,
RSZ =#record-size,

331

Appendix A. RMS Control Block Macros

TMO =#time-out-number-of-seconds,
UBF =user-record-buffer-address,
USZ =#user-record-buffer-size,
XAB =xab-address

Arguments
For a description of the control block fields that correspond to the $RAB_STORE macro arguments,
see Chapter 7.

Arguments fall into many categories: values, addresses, keywords, and the address of the control
block to receive the specified arguments. Rules applicable to these argument categories for the control
block store macros are described in Appendix B.

The RAB argument rab-address is required for the $RAB_STORE macro and is not present for
the $RAB macro.

The RFA argument record-file-address is a value (not an address), and it is not available for
the $RAB macro. The value for the 3-word RAB$W_RFA field must be set before each RFA record
access. This argument is specified by its symbolic address. If a register is used to contain a value for
the RAB$W_RFA field, do not use R12, because two contiguous registers must be used to contain the
value of this 3-word field. Note that you cannot use the byte, word, or longword displacements for an
offset, or for indexed or deferred addressing.

Note that multiple arguments can be specified for the ROP keyword, but the arguments must be
enclosed within left angle (<) and right angle (>) brackets. Also note that the KGE and EQNXT
arguments are logically synonymous, as are the KGT and NXT arguments.

Note that R0 is usually used by the $RAB_STORE macro; thus, R0 is not preserved and does not
contain a return status.

$RAB64 (Alpha Only)
$RAB64 — On Alpha systems, the $RAB64 macro allocates storage for a RAB64 and initializes
certain RAB64 fields with defaults and user-specified values. You cannot use this macro within a
sequence of executable instructions. No value is returned for this assembly-time operation.
The defaults unique to $RAB64 are: 1) RAB64$B_BLN is initialized to RAB64$C_BLN64; 2) The
original longword I/O buffers (KBF, RHB, RBF, and UBF) are initialized to -1; USZ and RSZ word
sizes are initialized to 0.
User-specified values using the CTX, KBF, RHB, RBF, RSZ, UBF, or USZ keywords are moved into
the quadword fields for these keywords. In contrast, the $RAB macro moves them into the longword
(or word) fields for these keywords.

Format
$RAB64 BKT=bucket-code-number,

CTX =user-context-value,
FAB =fab-address,
KBF =key-buffer-address,
KRF =key-of-reference-number,
KSZ =key-size,
MBC =multiblock-count-number,
MBF =multibuffer-count-number,

332

Appendix A. RMS Control Block Macros

PBF =prompt-buffer-address,
PSZ =prompt-buffer-size,
RAC ={KEY|RFA|SEQ},
RBF =record-buffer-address,
RHB =record-header-buffer-address,
ROP =<ASY BIO CCO CDK CVT EOF EQNXT ETO FDL KGE KGT LIM LOA LOC NLK NXR NXT
 PMT PTA RAH REA REV RLK RNE RNF RRL TMO TPT UIF ULK WAT WBH>,
ROP _2=<NQL NODLCKWT NODLCKBLK>,
RSZ =record-size,
TMO =time-out-number-of-seconds,
UBF =user-record-buffer-address,
USZ =user-record-buffer-size,
XAB =xab-address

Arguments
For a description of the control block fields that correspond to the $RAB64 macro arguments, see
Chapter 8. In some cases, specific default values are assigned automatically when you omit an
argument. These specific defaults are described above or noted in the text that explains each field in
Chapter 8. If there is no specific default, RMS uses a default value of 0.

Arguments fall into three categories: values, addresses, and keywords. Rules applicable to these
argument categories are described in Appendix B.

Note that multiple arguments can be specified for the ROP keyword, but the arguments must be
enclosed within left angle (<) and right angle (>) brackets. Also note that the KGE and EQNXT
arguments are logically synonymous, as are the KGT and NXT arguments.

$RAB64_STORE (Alpha Only)
$RAB64_STORE — On Alpha systems, the $RAB64_STORE macro moves user-specified values
into fields of the specified RAB64. The expanded $RAB64_STORE code executes at run-time on a
previously initialized (allocated) RAB64. In contrast, the $RAB64 macro allocates and initializes the
RAB64 at assembly time. The $RAB64_STORE macro must reside in a code program section.
User-specified values that use the CTX, KBF, RHB, RBF, RSZ, UBF, or USZ keywords are moved
into the quadword fields for these keywords. In contrast, the $RAB_STORE macro moves them into
the longword (or word) fields for these keywords.

Format
$RAB64_STORE RAB=rab64-address,

BKT =#bucket-code-number,
CTX =user-context-value,
FAB =fab-address,
KBF =key-buffer-address,
KRF =#key-of-reference-number,
KSZ =#key-size,
MBC =#multiblock-count-number,
MBF =#multibuffer-count-number,
PBF =prompt-buffer-address,
PSZ =#prompt-buffer-size,
RAC ={KEY|RFA|SEQ},
RBF =record-buffer-address,

333

Appendix A. RMS Control Block Macros

RFA =#record-file-address,
RHB =record-header-buffer-address,
ROP =<ASY BIO CCO CDK CVT EOF EQNXT ETO FDL KGE KGT LIM LOA LOC NLK NXR NXT
 PMT PTA RAH REA REV RLK RNE RNF RRL TMO TPT UIF ULK WAT WBH>,
ROP _2=<NQL NODLCKWT NODLCKBLK>,
RSZ =#record-size,
TMO =#time-out-number-of-seconds,
UBF =user-record-buffer-address,
USZ =#user-record-buffer-size,
XAB =xab-address

Arguments
For a description of the control block fields that correspond to the $RAB64_STORE macro
arguments, see Chapter 8.

Arguments fall into many categories: values, addresses, keywords, and the address of the control
block to receive the specified arguments. Rules applicable to these argument categories for the control
block store macros are described in Appendix B.

The RAB argument rab64-address is required for the $RAB64_STORE macro and is not present
for the $RAB64 macro.

The RFA argument record-file-address is a value (not an address), and it is not available
for the $RAB64 macro. The value for the 3-word RAB64$W_RFA field must be set before each
RFA record access. This argument is specified by its symbolic address. If a register is used to contain
a value for the RAB64$W_RFA field, do not use R12, because two contiguous registers must be
used to contain the value of this 3-word field. Note that you cannot use the byte, word, or longword
displacements for an offset, or for indexed or deferred addressing.

Note that multiple arguments can be specified for the ROP keyword, but the arguments must be
enclosed within left angle (<) and right angle (>) brackets. Also note that the KGE and EQNXT
arguments are logically synonymous, as are the KGT and NXT arguments.

Note that R0 is usually used by the $RAB64_STORE macro; thus, R0 is not preserved and does not
contain a return status.

$XABALL
$XABALL — The $XABALL macro allocates and initializes a XABALL, which allows extended
control of file disk space allocation, both for initial allocation and later extension. No value is returned
for this assembly-time operation.

Format
$XABALL AID=area-identification-number,

ALN ={ANY|CYL|LBN|RFI|VBN},
ALQ =allocation-quantity,
AOP =<CBT CTG HRD ONC>,
BKZ =bucket-size,
DEQ =extension-quantity,
LOC =location-number,
NXT =next-xab-address,
RFI =<f(1), f(2), f(3)>,

334

Appendix A. RMS Control Block Macros

VOL =volume-number

Arguments
For a description of the control block fields that correspond to the $XABALL macro arguments, see
Chapter 9.

Arguments fall into three categories: values, addresses, and keywords. Rules applicable to these
argument categories are described in Appendix B.

Note that multiple arguments can be specified for the AOP keyword, but the arguments must be
enclosed within left angle (<) and right angle (>) brackets.

$XABALL_STORE
$XABALL_STORE — The $XABALL_STORE macro moves user-specified values into fields of the
specified XABALL. The expanded $XABALL_STORE code executes at run-time on a previously
initialized (allocated) XABALL, in contrast to the $XABALL macro, which initializes a XABALL at
assembly time. The $XABALL_STORE macro must reside in a code program section.

Format
$XABALL_STORE XAB=xaball-address,

AID =#area-identification-number,
ALN ={ANY|CYL|LBN|RFI|VBN},
ALQ =#allocation-quantity,
AOP =<CBT CTG HRD ONC>,
BKZ =#bucket-size,
DEQ =#extension-quantity,
LOC =#location-number,
NXT =next-xab-address,
RFI =#related-file-identification,
VOL =#volume-number

Arguments
For a description of the control block fields that correspond to the $XABALL_STORE macro
arguments, see Chapter 9.

Arguments fall into several categories: value, address, keyword, and the address of the control block
to receive the specified arguments. Rules applicable to these argument categories for the control block
store macros are described in Appendix B.

The XAB argument xaball-address is required for the $XABALL_STORE macro and is not
present for the $XABALL macro. Also, the RFI argument related file identification
sets the XAB$W_RFI field, which is a 3-word field used when the XAB$B_ALN field XAB$V_RFI
option is set. This argument is usually specified by its symbolic address. If a register is used to
contain a value for the XAB$W_RFI field, do not use R12, because two contiguous registers must be
used to contain the value of this 3-word field. Note that you cannot use the byte, word, or longword
displacements for an offset, or for indexed or deferred addressing.

Note that R0 is usually used by the $XABALL_STORE macro; thus, R0 is not preserved and does not
contain a return status.

335

Appendix A. RMS Control Block Macros

$XABDAT
$XABDAT — The $XABDAT macro allocates and initializes a XABDAT. No value is returned for
this assembly-time operation.

Format
$XABDAT EDT=date-time,

NXT =next-xab-address

Arguments
For a description of the control block fields that correspond to the $XABDAT macro arguments, see
Chapter 9.

Rules applicable to arguments are described in Appendix B.

$XABDAT_STORE
$XABDAT_STORE — The $XABDAT_STORE macro moves user-specified values into fields of
the specified XABDAT. The expanded $XABDAT_STORE code executes at run-time on a previously
initialized (allocated) XABDAT, in contrast to the $XABDAT macro, which initializes a XABDAT at
assembly time. The $XABDAT_STORE macro must reside in a code program section.

Format
$XABDAT_STORE XAB=xabdat-address,

CDT =#creation-date-time,
EDT =#expiration-date-time,
RDT =#revision-date-time,
RVN =#revision-number,
NXT =next-xab-address

Arguments
For a description of the control block fields that correspond to the $XABDAT_STORE macro
arguments, see Chapter 9.

Arguments fall into several categories: values, addresses, keywords, and the address of the control
block to receive the specified arguments. Rules applicable to these argument categories for the control
block store macros are described in Appendix B.

The XAB argument xabdat-address is required for the $XABDAT_STORE macro and is not
present for the $XABDAT macro. Also, the arguments differ from the general rules.

• The CDT argument creation-date-time sets the XAB$Q_CDT field, which is a quadword
field. However, if a register is used to contain a literal value for the XAB$Q_CDT field, do not
use R12, because two contiguous registers must be used to contain the value of this quadword
field.

336

Appendix A. RMS Control Block Macros

• The EDT argument expiration-date-time sets the XAB$Q_EDT field, which is a
quadword field. The rules for the other time fields also apply to this one.

• The RDT argument revision-date-time sets the XAB$Q_CDT field, which is a quadword
field. The rules for the other time fields also apply to this one.

Note that R0 is usually used by the $XABDAT_STORE macro; thus, R0 is not preserved and does not
contain a return status.

$XABFHC
$XABFHC — The $XABFHC macro allocates and initializes a XABFHC. No value is returned for
this assembly-time operation.

Format
$XABFHC NXT=next-xab-address

Arguments
For a description of the control block fields that correspond to the $XABFHC macro arguments, see
Chapter 11.

Rules applicable to arguments are described in Appendix B.

$XABFHC_STORE
$XABFHC_STORE — The $XABFHC_STORE macro moves user-specified values into fields of the
specified XABFHC. The expanded $XABFHC_STORE code executes at run-time on a previously
initialized (allocated) XABFHC, in contrast to the $XABFHC macro, which initializes a XABFHC at
assembly time. The $XABFHC_STORE macro must reside in a code program section.

Format
$XABFHC_STORE XAB=xabfhc-address,

NXT =next-xab-address

Arguments
For a description of the control block fields that correspond to the $XABFHC_STORE macro
arguments, see Chapter 11.

Arguments fall into several categories: values, addresses, keywords, and the address of the control
block to receive the specified arguments. Rules applicable to these argument categories for the control
block store macros are described in Appendix B.

The XAB argument xabfhc-address is required for the $XABFHC_STORE macro and is not
present for the $XABFHC macro.

Note that R0 may be used by the $XABFHC_STORE macro; thus, R0 is not preserved and does not
contain a return status.

337

Appendix A. RMS Control Block Macros

$XABITM
$XABITM — The $XABITM macro allocates and initializes a XABITM. No value is returned for
this assembly-time operation.

Format
$XABITM ITEMLIST=item-list-address,

MODE ={sensemode|setmode},
NXT =next-xab-address

Arguments
For a description of the control block fields that correspond to the $XABITM macro arguments, see
Chapter 12.

Rules applicable to arguments are described in Appendix B.

ITEMLIST defaults to 0 but a valid pointer must be specified when you use a $XABITM macro.
MODE defaults to sensemode.

$XABKEY
$XABKEY — The $XABKEY macro allocates and initializes a XABKEY. No value is returned for
this assembly-time operation.

Format
$XABKEY COLTBL=collating-table-address,

DAN =data-bucket-area-number,
DFL =data-bucket-fill-size,
DTP ={BN2|DBN2|BN4|DBN4|BN8|DBN8|IN2 |DIN2|IN4|DIN4|IN8|DIN8|COL|DCOL |PAC|
DPAC|STG|DSTG},
FLG =<CHG DAT_NCMPR DUP IDX_NCMPR KEY_NCMPR NUL>,
IAN =index-bucket-area-number,
IFL =index-bucket-file-size,
KNM =key-name-buffer-address,
LAN =lowest-level-index-area-number,
NUL =null-key-value,
NXT =next-xab-address,
POS =<position,...>,
PROLOG =prolog-level,
REF =key-of-reference-value,
SIZ =<size,...>

Arguments
For a description of the control block fields that correspond to the $XABKEY macro arguments, see
Chapter 14.

338

Appendix A. RMS Control Block Macros

Arguments fall into three categories: values, addresses, and keywords. Rules applicable to these
argument categories are described in Appendix B.

Multiple arguments can be specified for the FLG keyword, but the arguments must be enclosed within
left angle (<) and right angle (>) brackets. Defaults are applied to the XAB$B_FLG field only if no
FLG argument is specified. Consider the following:

KEY_1: $XABKEY REF=1, POS=0, SIZ=10

This line specifies the key for alternate index 1. Therefore the macro defaults the XAB$B_FLG field
to allow duplicates and changes (the default for alternate keys). However, if an FLG argument is
explicitly specified, the results are different, as shown in the following code example.

KEY_2: $XABKEY REF=1, POS=0, SIZ=10, FLG=CHG

In this case, the CHG bit is set in the XAB$B_FLG field and the DUP bit remains clear, to disallow
duplicates on this key.

Depending on whether the key being defined is simple or segmented, you would use one of the
following two formats for the POS and SIZ arguments:

POS=position
 .
 .
 .
SIZ=size

or

POS=<position0,...,position7>
 .
 .
 .
SIZ=<size0,...,size7>

You must include the angle brackets for multiple argument key positions and sizes.

$XABKEY_STORE
$XABKEY_STORE — The $XABKEY_STORE macro moves user-specified values into fields of
the specified XABKEY. The expanded $XABKEY_STORE code executes at run-time on a previously
initialized (allocated) XABKEY, in contrast to the $XABKEY macro, which initializes the XABKEY
at assembly time. The $XABKEY_STORE macro must reside in a code program section.

Format
$XABKEY_STORE XAB=xabkey-address,

COLTBL =#collating-table-address,
DAN =#data-bucket-area-number,
DFL =#data-bucket-fill-size,
DTP ={BN2|DBN2|BN4|DBN4|BN8|DBN8|IN2 |DIN2|IN4|DIN4|IN8|DIN8|COL|DCOL |PAC|
DPAC|STG|DSTG},
FLG =<CHG DAT_NCMPR DUP IDX_NCMPR KEY_NCMPR NUL>,
IAN =#index-bucket-area-number,

339

Appendix A. RMS Control Block Macros

IFL =#index-bucket-fill-size,
KNM =key-name-buffer-address,
LAN =#lowest-level-index-area-number,
NUL =#null-key-value,
NXT =next-xab-address,
POS =<position,...>,
PROLOG =#prolog-level,
REF =#key-of-reference-value,
SIZ =<size,...>

Arguments
For a description of the control block fields that correspond to the $XABKEY_STORE macro
arguments, see Chapter 14.

Arguments fall into several categories: values, addresses, keywords, and the address of the control
block to receive the specified arguments. Rules applicable to these argument categories for the control
block store macros are described in Appendix B.

The XAB argument xabkey-address is required for the $XABKEY_STORE macro and is not
present for the $XABKEY macro. The POS and SIZ arguments can be either symbolic addresses or a
list of up to eight values, where each value must be preceded by a number sign (#), and the entire list
must be enclosed within left angle and right angle brackets (<#value,...,#value>). The number of POS
and SIZ values must be equal. Alternatively, each POS and SIZ value can be specified as an argument,
using the following form:

POS0 = #value, POS1 = #value, ..., POS7 = #value

SIZ0 = #value, SIZ1 = #value, ..., SIZ7 = #value

Note that R0 is usually used by the $XABKEY_STORE macro; thus, R0 is not preserved and does not
contain a return status.

$XABPRO
$XABPRO — The $XABPRO macro allocates and initializes a XABPRO. No value is returned for
this assembly-time operation.

Format
$XABPRO ACLBUF=ACL-buffer-address,

ACLCTX =<ACL-context>,
ACLSIZ =ACL-buffer-size,
MTACC =magnetic-tape-accessibility,
NXT =next-xab-address,
PRO =<system, owner, group, world>,
PROT _OPT=<PROPAGATE>,
UIC =<group, member>

Arguments
For a description of the control block fields that correspond to the $XABPRO macro arguments, refer
to Chapter 15.

340

Appendix A. RMS Control Block Macros

Rules applicable to arguments are described in Appendix B.

For the MTACC (magnetic tape accessibility) argument, an ASCII radix indicator is required. For
example, the letter Z is entered as the accessibility character with the following macro expression:

$XABPRO MTACC=^A/Z/

In this example, the circumflex (^) followed by an uppercase A indicates that ASCII text follows. The
two slashes (//) delimit the ASCII text. RMS converts all lowercase characters to uppercase. No other
modification is made.

For the PRO argument, the angle brackets are required syntax, and each user class must be separated
from the others by a comma. When you omit a class to use the default protection, you must retain the
comma to indicate the omission, unless no other class follows.

To allow all system users read and write access, use the default file protection for the file owner (by
omission), allow group users read access, and use the default for world users, you would specify
<RW,,R>. You may specify all, some, or none of the access characters, and place multiple characters
in any order, for each user class.

Here is a listing of the user classes together with the letters used to represent them:

• R—read access

• W—write access

• E—execute access

• D—delete access

The absence of a code specifies that the access associated with the code is denied to the user.

Users are granted the maximum number of access rights for each of the classes to which they belong.

For the UIC argument, the value for the group item must be in the range of 1 to 37776; the value for
the member item must from 0 to 177776. Note that the maximum values (37776 and 177776) are
reserved for OpenVMS use only. The group number and member number must be enclosed within
angle brackets, placed in the order <group,member>, and be separated by a comma. Each number
is interpreted as an octal number.

$XABPRO_STORE
$XABPRO_STORE — The $XABPRO_STORE macro moves user-specified values into fields of the
specified XABPRO. The expanded $XABPRO_STORE code executes at run-time on a previously
initialized (allocated) XABPRO, in contrast to the $XABPRO macro, which initializes a XABPRO at
assembly time. The $XABPRO_STORE macro must reside in a code program section.

Format
$XABPRO_STORE XAB=xabpro-address,

ACLBUF =ACL-buffer-address,
ACLCTX =#<ACL-context>,
ACLSIZ =#ACL-buffer-size,

341

Appendix A. RMS Control Block Macros

MTACC =#magnetic-tape-accessibility,
NXT =next-xab-address,
PRO =<system, owner, group, world>,
PROT _OPT=<PROPAGATE>,
UIC =#uic-value

Arguments
For a description of the control block fields that correspond to the $XABPRO_STORE macro
arguments, see Chapter 15.

Arguments fall into several categories: values, addresses, keywords, and the address of the control
block to receive the specified arguments. Rules applicable to these argument categories for the control
block store macros are described in Appendix B.

The XAB argument xabpro-address is required for the $XABPRO_STORE macro and is not
present for the $XABPRO macro. Also, the following arguments do not comply with the general
rules:

• The PRO argument (file protection) can be either a symbolic address or a list of keyword values.
If you specify a list of keywords, it must be enclosed within left angle (<) and right angle (>)
brackets and the number sign (#) must be omitted; for example, PRO=<RWED,RWED,R,R>.

• The UIC argument (group,member) can be either a symbolic address or a list of two data values.
If the data values are constants, they must be specified with an octal radix without a preceding
number sign (#). This argument can be passed by its symbolic address or by using a VAX
MACRO expression.

Note that R0 is usually used by the $XABPRO_STORE macro; thus, R0 is not preserved and does not
contain a return status.

$XABRDT
$XABRDT — The $XABRDT macro allocates and initializes a XABRDT. No value is returned for
this assembly-time operation.

Format
$XABRDT NXT=next-xab-address

Arguments
For a description of the control block fields that correspond to the $XABRDT macro argument, see
Chapter 16.

Rules applicable to arguments are described in Appendix B.

$XABRDT_STORE
$XABRDT_STORE — The $XABRDT_STORE macro moves user-specified values into fields of
the specified XABRDT. The expanded $XABRDT_STORE code executes at run-time on a previously

342

Appendix A. RMS Control Block Macros

initialized (allocated) XABRDT, in contrast to the $XABRDT macro, which initializes the XABRDT
at assembly time. The $XABRDT_STORE macro must reside in a code program section.

Format
$XABRDT_STORE XAB=xabrdt-address,

RDT =#revision-date-time,
RVN =#revision-number,
NXT =next-xab-address

Arguments
For a description of the control block fields that correspond to the $XABRDT_STORE macro
arguments, see Chapter 16.

Arguments fall into several categories: values, addresses, keywords, and the address of the control
block to receive the specified arguments. Rules applicable to these argument categories for the control
block store macros are described in Appendix B.

The XAB argument xabrdt-address is required for the $XABRDT_STORE macro and is
not present for the $XABRDT macro. Also, the RDT argument revision-date-time and
RVN argument revision-number are not present in the $XABRDT macro. The RDT argument
revision-date-time is usually passed by its symbolic address. However, if a register is used to
contain a value for the XAB$Q_RDT field, do not use R12, because two contiguous registers must be
used to contain the value of this quadword field.

Note that R0 is usually used by the $XABRDT_STORE macro; thus, R0 is not preserved and does not
contain a return status.

$XABSUM
$XABSUM — The $XABSUM macro allocates and initializes a XABSUM. No value is returned for
this assembly-time operation.

Format
$XABSUM NXT=next-xab-address

Arguments
For a description of the control block fields that correspond to the $XABSUM macro argument, see
Chapter 18.

Rules applicable to arguments are described in Appendix B.

$XABSUM_STORE
$XABSUM_STORE — The $XABSUM_STORE macro moves user-specified values into fields
of the specified XABSUM. The expanded $XABSUM_STORE code executes at run-time on a
previously initialized (allocated) XABSUM, in contrast to the $XABSUM macro, which initializes the
XABSUM at assembly time. The $XABSUM_STORE macro must reside in a code program section.

343

Appendix A. RMS Control Block Macros

Format
$XABSUM_STORE XAB=xabsum-address,

NXT =next-xab-address

Arguments
For a description of the control block fields that correspond to the $XABSUM_STORE macro
arguments, see Chapter 18.

Arguments fall into several categories: values, addresses, keywords, and the address of the control
block to receive the specified arguments. Rules applicable to these argument categories for the control
block store macros are described in Appendix B.

The XAB argument xabsum-address is required for the $XABSUM_STORE macro and is not
present for the $XABSUM macro.

Note that R0 may be used by the $XABSUM_STORE macro; thus, R0 is not preserved and does not
contain a return status.

$XABTRM
$XABTRM — The $XABTRM macro allocates and initializes a XABTRM. No value is returned for
this assembly-time operation.

Format
$XABTRM ITMLST=item-list-address,

ITMLST _LEN=item-list-length,
NXT =next-xab-address

Arguments
For a description of the control block fields that correspond to the $XABTRM macro arguments, see
Chapter 19.

Rules applicable to arguments are described in Appendix B.

$XABTRM_STORE
$XABTRM_STORE — The $XABTRM_STORE macro moves user-specified values into fields
of the specified XABTRM. The expanded $XABTRM_STORE code executes at run-time on a
previously initialized (allocated) XABTRM, in contrast to the $XABTRM macro, which initializes a
XABTRM at assembly time. The $XABTRM_STORE macro must reside in a code program section.

Format
$XABTRM_STORE XAB=xabtrm-address,

344

Appendix A. RMS Control Block Macros

ITMLST =item-list-address,
ITMLST _LEN=#item-list-length,
NXT =next-xab-address

Arguments
For a description of the control block fields that correspond to the $XABTRM_STORE macro
arguments, see Chapter 19.

Arguments fall into several categories: values, addresses, keywords, and the address of the control
block to receive the specified arguments. Rules applicable to these argument categories for the control
block store macros are described in Appendix B.

The XAB argument xabtrm-address is required for the $XABTRM_STORE macro and is not
present for the $XABTRM macro.

Note that R0 is usually used by the $XABTRM_STORE macro; thus, R0 is not preserved and does
not contain a return status.

345

Appendix A. RMS Control Block Macros

346

Appendix B. VAX MACRO
Programming Information and
Examples
This appendix provides VAX MACRO programmers with information about the four types of RMS
macros used in VAX MACRO programming. It describes each of the four types of macros, the macro
naming conventions, and macro syntax rules. It then shows you how to use the macros and includes
examples for each of the four types. Note that the term “macro” refers to a program macro written in
the VAX MACRO language.

B.1. RMS Macros
RMS provides four types of macros used by VAX MACRO programs implementing RMS features.
The functions these macros provide are described in the following list.

• Control block initialization macros initialize a control block at assembly time. This type of macro
performs five separate actions:

• Allocates space within the program image for the specified control block

• Defines the symbolic names associated with a control block

• Initializes certain control block fields with internally used values

• Initializes specified control block fields with user-specified values

• Initializes certain fields with system-supplied defaults (does not apply to all control block
macros)

As an alternative to using this type of macro, an application program would have to allocate
each control block needed with its correct length, initialize the internally used fields with the
correct values, and initialize or set user-specified values in the appropriate fields. It is strongly
recommended that you use these macros for VAX MACRO programs.

• Control block symbol definition macros define control block symbolic names at assembly time
without allocating and initializing the control block. These macros are needed only when the
corresponding initialization macro is not used and the symbols are not defined.

• Control block store macros store user-specified field values in control blocks at run-time.
Alternatively, you can store values in control block fields at run-time using VAX MACRO
instructions, such as the MOVx and MOVAx instructions. RMS accesses control block fields
using the symbolic names that represent field offsets from the start of the control block.

• Service macros invoke record management services at run-time. When a service is invoked, one
or more control blocks are examined for required field values. Values are also returned in one
or more control blocks, including condition codes. Record management services conform to the
OpenVMS calling standard and can be invoked directly, if needed, without the calling program
having to use the service macro. However, the appropriate control block must be present with the
appropriate field values set for the requested operation.

RMS stores its macros for use by VAX MACRO programs in SYS$LIBRARY:STARLET.MLB.

347

Appendix B. VAX MACRO Programming Information and Examples

B.1.1. Conventions for Naming RMS Macros
The names for the macros that initialize control blocks at assembly time consist of a dollar sign ($)
followed by the name of the control block. For example, the name of the macro that initializes a FAB
is $FAB; the name of the macro that initializes a XABALL is $XABALL.

The names for the macros that define symbolic offsets without performing control block initialization
contain the suffix DEF following the corresponding initialization macro name; for example,
$FABDEF and $XABALLDEF.

The names for the macros that set control block field values at run-time contain the suffix
“_STORE” following the corresponding initialization macro name; for example, $FAB_STORE and
$XABALL_STORE.

Table B.1 summarizes the control blocks, their assembly time macro names, and their functions.

Table B.1. User Control Blocks

Control
Block

Macro Names Function

Describes a file and contains file-related information
$FAB Allocates storage for a FAB and initializes certain FAB fields;

also defines symbolic offsets for a FAB
$FABDEF Defines symbolic offsets for FAB fields

FAB

$FAB_STORE Moves specified values into a previously allocated and initialized
FAB
Contains file specification information beyond that in the file
access block

$NAM Allocates storage for a NAM and initializes certain NAM fields;
also defines symbolic offsets for a NAM

$NAMDEF Defines symbolic offsets for NAM fields

NAM

$NAM_STORE Moves specified values into a previously specified and allocated
NAM
Describes a record stream and contains record-related
information

$RAB Allocates storage for a RAB and initializes certain RAB fields;
also defines symbolic offsets for a RAB

$RABDEF Defines symbolic offsets for both RAB and RAB64 fields
$RAB_STORE Moves specified values into a previously specified and allocated

RAB
$RAB64 Allocates storage for a RAB64 and initializes certain RAB64

fields; also defines symbolic offsets for a RAB64

RAB

$RAB64_STORE Moves specified values into a previously specified and allocated
RAB64

XAB Supplements file attributes in the file access block; for
XABTRM and XABRU, supplements information in the record
access block

348

Appendix B. VAX MACRO Programming Information and Examples

Control
Block

Macro Names Function

$XABxxx1 Allocates and initializes a XAB
$XABxxxDEF Defines symbolic offsets for a XABxxx
$XABxxx_STORE Moves specified values into a previously specified and allocated

XABxxx
1The variable xxx represents a 3-character mnemonic.

Record management services can be called using the OpenVMS calling standard. These services are
system services identified by the entry point prefix “SYS$” followed by three or more characters; the
“SYS” prefix is omitted in the corresponding VAX MACRO macro name. For example, the Create
service has an entry point of SYS$CREATE and a VAX MACRO macro name of $CREATE. A
complete description of each service is provided in Part III.

Table B.2 describes the functions of each service, including the service entry point name and its
corresponding VAX MACRO macro name.

Table B.2. Record Management Services

Service Name Macro Name Description
File-Processing and File-Naming Macros
SYS$CLOSE $CLOSE Terminates file processing and disconnects all

record streams previously associated with the file
SYS$CREATE $CREATE Creates and opens a new file
SYS$DISPLAY $DISPLAY Returns the opened file's attributes to the

application program
SYS$ENTER1 $ENTER Enters a file name into a directory
SYS$ERASE $ERASE Deletes a file and removes its directory entry
SYS$EXTEND $EXTEND Allocates additional space to a file
SYS$OPEN $OPEN Opens an existing file and initiates file processing
SYS$PARSE $PARSE Parses a file specification
SYS$REMOVE1 $REMOVE Removes a file name from a directory but does

not actually delete the file data; compare this with
the $ERASE macro

SYS$RENAME $RENAME Assigns a new name to (renames) a file
SYS$SEARCH $SEARCH Searches a directory, or possibly multiple

directories, for a file name
Record-Processing Macros
SYS$CONNECT $CONNECT Establishes a record stream by associating a RAB

with an open file
SYS$DELETE $DELETE Deletes a record from a relative or indexed file
SYS$DISCONNECT $DISCONNECT Terminates a record stream by disconnecting a

RAB from an open file
SYS$FIND $FIND Locates the specified record, establishes it as the

current record, and returns the record's RFA to the
application program

349

Appendix B. VAX MACRO Programming Information and Examples

Service Name Macro Name Description
SYS$FLUSH $FLUSH Writes (flushes) modified I/O buffers and file

attributes to the disk before closing a file
SYS$FREE $FREE Unlocks all records previously locked by the

record stream
SYS$GET $GET Retrieves a record from a file
SYS$NXTVOL1 $NXTVOL Causes processing of a magnetic tape file to

continue to the next volume of a volume set
SYS$PUT $PUT Writes a new record to a file
SYS$RELEASE $RELEASE Unlocks a record pointed to by the contents of the

RAB$W_RFA field
SYS$REWIND $REWIND Establishes the first file record as the current

record
SYS$TRUNCATE $TRUNCATE Truncates a sequential file
SYS$UPDATE $UPDATE Deletes and rewrites (updates) an existing file

record
SYS$WAIT $WAIT Awaits the completion of an asynchronous record

operation
Block I/O-Processing Macros
SYS$READ $READ Retrieves a specified number of bytes from a file,

beginning on block boundaries
SYS$SPACE $SPACE Positions forward or backward in a file to a block

boundary
SYS$WRITE $WRITE Writes a specified number of bytes to a file,

beginning on block boundaries
1This service is not supported for DECnet for OpenVMS operations involving remote file access between two OpenVMS systems.

B.1.2. Applicable VAX MACRO Syntax Rules
One of the conventions used with RMS control block macros is to identify a field by a mnemonic;
for example, you can specify the FAB$L_ALQ field using its mnemonic, ALQ. Using a mnemonic
ensures the accuracy of argument value placement regardless of how you code the related argument.
For example, the mnemonic for the FAB field that specifies the allocation quantity is ALQ. Thus,
when using the $FAB macro to initialize the allocation quantity field, you might use the following
macro expression:

INFAB: $FAB ALQ=500

This macro statement defines the start of the FAB at label (symbolic address) INFAB and initializes
the allocation field to provide 500 blocks of space to the specified file.

In this instance, if you want to change the allocation value to 250 blocks at run-time, you could use
the following macro expression:

MOVL #250, INFAB+FAB$L_ALQ ; Set allocation quantity

In fields that contain binary options or keyword values, you should use the appropriate keyword or
symbolic binary option value. For example, the FAB uses the ORG field to specify a file organization.

350

Appendix B. VAX MACRO Programming Information and Examples

Three keywords are defined for this field: SEQ (sequential file), REL (relative file), and IDX (indexed
file). To specify an indexed file organization, you should use the following macro expression:

OUTFAB: $FAB ORG=IDX

To specify an indexed file organization at run-time, you must move the value into the field using
appropriate symbols:

MOVAL OUTFAB, R5 ; Move address into R5
MOVB #FABC_IDX, FABB_ORG(R5) ; Store constant value

In control block macros, arguments for bit fields that can contain multiple values are usually enclosed
within angle brackets <value_1,value_2,value_n>. Consider the file access (FAC) field
(FAB$B_FAC) in the FAB, a bit field that can contain multiple values. To permit a process to do Get
and Put operations, the following macro expression could be used:

INFAB: $FAB FAC=<GET,PUT> ; Specify Put and Get operations

Control block macro arguments that are interpreted as ASCII characters (such as a file specification)
must also be enclosed within angle brackets. The use of the left angle (<) and right angle (>)
delimiters is noted in the format and argument descriptions of the control block macros in Part II.

At run-time, you could use the following code sequence to make the file accessible to a Get operation:

MOVAL OUTFAB, R6 ; Move FAB addr into R6
BBS #FABV_GET, FABB_FAC(R6), OK ; Go to OK if GET bit set
BISB #FABM_GET, FABB_FAC(R6) ; Else set GET bit
OK:

When you use RMS macros, follow the coding rules used by the VAX MACRO assembler as
described in the following list:

• Comments must be separated from the rest of the code line by a semicolon (;). For example:

$FAB BKS=4 ; Bucket size

• All the arguments for a macro must be coded in a single statement. If the arguments do not fit on
a line or if you want to use multiple lines, type the continuation character, a hyphen (-), as the last
character on the line; then continue typing arguments on the next line. Comments can follow the
hyphen. For example:

$FAB FNA=FLNAM,- ; Filename address
 ALQ=100,- ; Allocation quantity
 BKS=4 ; Bucket size

• Arguments and subarguments can be separated from each other by one of the following:

• A comma, with or without spaces or tabs:

FNA=FLNAM,ALQ=100

• A space:

FNA=FLNAM ALQ=100

• Multiple spaces or tabs:

FNA=FLNAM ALQ=100

351

Appendix B. VAX MACRO Programming Information and Examples

The comma without a space or tab is preferred. All coding examples in this manual use a comma
to separate arguments.

B.2. Using the RMS Macros
This section provides examples of how to use the four types of RMS macros.

B.2.1. Control Block Initialization Macros
A major advantage to using the control block initialization macros is that they direct the initialization
values to the correct field locations in the control block. Returned status values do not apply here
because RMS evaluates this type of macro at assembly time, not at run-time.

Control block initialization macros are located at the beginning of their associated control block. The
initialization macro should have a related label because the address of the control block is a required
argument for most services and for some control block macros. As shown in the following example,
the label provides a programming convenience for symbolically addressing the control block:

MYFAB: $FAB

Arguments usually require an address, such as a symbolic address, or a value. RMS initializes the
appropriate field by simply taking the supplied argument and placing it after the appropriate macro
data declaration directive, as shown in the following code example:

.ADDRESS address

.BYTE value

Arguments that specify field values must be enclosed within angle brackets under the following
conditions:

• When the argument is a file specification (ASCII character string)

• When more than one argument is supplied for a binary options field, where each bit option is
identified by a 3-letter mnemonic

• Where otherwise indicated in the format of the macro, such as for UICs and file identifiers in
which multiple values separated by commas constitute the argument

Here are several examples:

MYFAB: $FAB FAC=<GET, PUT>,- ; Multioption field
 FNM=<DEGREE_DAY.DAT>,- ; File specification
 .
 .
 .
 NXT=MYXPRO,- ; XAB address
 ORG=SEQ ; Single-option field
;
MYXPRO: $XABPRO PRO=<RWED,RWED,R,R>,- ; File protection
 UIC=<377,377> ; UIC

Do not position the macro name in a read-only program section because control block fields may
receive values during the execution of a service. For efficiency, align the control blocks on a longword

352

Appendix B. VAX MACRO Programming Information and Examples

boundary. The initialization macros display an informational message in the listing file if the control
block is not longword aligned.

In summary, initialization macros must be placed in a writable data program section in which the data
has been aligned on a longword boundary.

B.2.2. Control Block Symbol Definition Macros
A control block symbol definition macro includes the macro name only, has no arguments, and can be
placed in any program section. The macro name is made up of the associated initialization macro and
the suffix DEF.

RMS does not provide return values for control block symbol definition macros.

B.2.3. Control Block Store Macros
A control block store macro consists of executable run-time code, so it must be placed within an
executable code program section. R0 cannot be used to return condition codes because control block
store macros may use R0 to move arguments. The only detectable errors are assembly-time errors.

The calling format of each control block store macro resembles the calling format of the
corresponding initialization macro except that a control block store macro can take a run-time value
as an argument. Run-time values include date and time values, file identifier values, device identifier
values, directory identifier values, and record file address values.

The following list describes other differences between the format of a control block store macro and
its corresponding control block initialization macro:

• An argument specifying the address of the control block is required unless the calling program
provides the control block address in R0. If this argument is not a register value in the form R n,
RMS loads the control block address into R0.

• For each argument that requires an address, the store macro uses the VAX MACRO instruction
MOVAx (usually MOVAL) to move the address into the appropriate control block field. Thus,
VAX MACRO expressions can be used. For instance, you can use a symbolic address to specify
the control block address argument directly (for example, FAB=MYFAB, NAM=MYNAM,
RAB=MYRAB, or XAB=MYXAB).

You may also specify a register that contains the address using the form Rn, where n is a decimal
number from 0 through 12.

• For each argument that requires a nonkeyword data value, the store macro uses the VAX MACRO
instruction MOVx to move data into the appropriate control block field. Thus, VAX MACRO
expressions can be used. Note that a number sign (#) must precede a literal nonkeyword value,
except when a literal value is enclosed within left angle (<) and right angle (>) brackets.
However, if you specify the address where the argument value resides, a number sign must not
precede the symbolic address nor the register expression that contains the address.

• For binary option or keyword value fields, use the supplied keyword without a number sign and
do not use a VAX MACRO expression. Multiple keyword arguments must be enclosed within left
angle (<) and right angle (>) brackets.

In some cases, arguments are specified as run-time values using one of the following forms:

353

Appendix B. VAX MACRO Programming Information and Examples

• A VAX MACRO expression

• The symbolic address of the argument value

Example B.1 illustrates the use of the $XABDAT_STORE macro to set the creation date of the file to
the beginning of a fiscal quarter, thereby establishing a valid starting date for the file data.

Example B.1. Use of the $XABDAT and $XABDAT_STORE Macros

.TITLE CREAT - SET CREATION DATE
; Program that uses XABDAT and XABDAT_STORE
;
 .PSECT LONG WRT,NOEXE
;
MYFAB: $FAB ALQ=500,FOP=CBT,FAC=PUT, -
 FNM=<DISK$:[PROGRAM]SAMPLE_FILE.DAT>,-
 ORG=SEQ,RAT=CR,RFM=VAR,SHR=NIL,MRS=52,XAB=MYXDAT
;
MYXDAT: $XABDAT
;
ATIM: .ASCID /9-AUG-1994 00:00:00.00/
BTIM: .BLKQ 1
;
 .PSECT CODE NOWRT,EXE
 .ENTRY CREAT, ^M<>
START: $BINTIM_S TIMBUF=ATIM, TIMADR=BTIM ; Convert ASCII to binary
 ; time
 BLBC R0,SS_ERR ; Branch on error
 $XABDAT_STORE XAB=MYXDAT, CDT=BTIM ; Move time into XAB$Q_CDT
 $CREATE FAB=MYFAB ; Create file; populate
 BLBC R0,ERROR ; file later
CLOSE: $CLOSE FAB=MYFAB ; Close file
 BRB FINI ; and exit
ERROR: PUSHL FAB$L_STV+MYFAB ; Push FAB STS and
 PUSHL FAB$L_STS+MYFAB ; STV on stack
 CALLS #2, G^LIB$SIGNAL ; Signal error
 BRB FINI
SS_ERR: PUSHL R0 ; Push R0
 CALLS #1, G^LIB$SIGNAL ; Signal error
FINI: RET
 .END CREAT

This short program creates a file with a creation date of midnight, August 9, 1994. The FAB at
symbolic address MYFAB defines a sequential file with variable-length records up to 52 bytes in
length and specifies an allocation size of 500 blocks using the contiguous-best-try file processing
option. It also specifies the file specification. The .ASCID assembler directive defines the constant
date-time character string at symbolic address ATIM.

The SYS$BINTIM system service is invoked to convert the constant ASCII time at symbolic
address ATIM to binary format in the quadword at BTIM. The BTIM value is moved into the
XAB$Q_CDT field of the XABDAT control block at symbolic address MYXDAT using the following
XABDAT_STORE macro:

$XABDAT_STORE XAB=MYXDAT, CDT=BTIM

Because the creation date in field XAB$Q_CDT is input to the Create service ($CREATE macro), the
value must be stored before the program invokes the Create service. The file is created, then closed.
Note that Create service errors are signaled using the FAB$L_STS and FAB$L_STV fields, not R0.

354

Appendix B. VAX MACRO Programming Information and Examples

B.2.4. Service Macros
This section describes the general macro format of record management service macros. Part III
describes each service in detail, including the calling format.

Note that the general information applicable to invoking record management services in Chapter 2
also applies to programs written in VAX MACRO.

The service macros use two general formats:

label: macro-name

label: macro-name RAB=rab-address,-
 ERR=entry,-
 SUC=entry

The first format takes no arguments. You supply the argument list within your program, and the
argument pointer register (AP) is assumed to contain the address of the argument list. An example of
this format follows.

ARG_LOC: .BLKL 2
 .
 .
 .
MOVL #1,ARG_LOC ; Move number of args to ARG_LOC
MOVAL INFAB, ARG_LOC+4 ; Move FAB address to ARG_LOC+4
MOVAL ARG_LOC, AP ; Move ARG_LOC address to AP
$OPEN ; Open file

 In this form, the $OPEN macro expands to the following VAX MACRO code:

CALLG (AP), G^SYS$OPEN

In the second format, you supply arguments that automatically generate an argument list on the stack
according to the values you supplied. You specify these arguments using keywords, which can be in
any order. You must separate keywords using a comma, a blank space, or tabs. The only argument
required when using the second format is the control block address (FAB=fab-address or RAB=rab-
address). This argument must be either a general register (R0 through R11) containing the control
block address, or a suitable address for a PUSHAL instruction. If you omit this argument, no other
arguments are allowed; in other words, you must use the first format.

The ERR=entry and SUC=entry arguments are optional and, if used, provide the addresses of
completion routine entry points. Completion routines are always executed as ASTs. RMS places the
values you supply in the argument list on the stack during execution of the expanded macro. These
values must be addresses that can be used by a PUSHAL instruction.

Here is an example of the second format:

$OPEN FAB=INFAB

This macro line expands to the following VAX MACRO code:

PUSHAL INFAB
CALLS #01, G^SYS$OPEN

When the argument list contains a completion routine argument, an AST is queued. When the AST
routine executes, the following conditions hold:

355

Appendix B. VAX MACRO Programming Information and Examples

• General registers R0 through R11 are undefined. The AP contains the address of the AST
argument list; the AST argument value in the AST argument list specifies the address of the
associated control block (FAB or RAB). The status must be retrieved from the completion status
code field (STS) of the associated control block.

• Any general registers saved by an entry mask can be modified, in addition to R0 and R1.

• Additional calls to record management services can be made within the completion routines.

• To exit from a completion routine, you must perform any necessary cleanup operations and
execute a RET instruction.

The calling format of each service is listed alphabetically in Part III. The format for the Close service
is shown in the following code example:

SYS$CLOSE fab [,[err] [,suc]]

When you use a macro to call a service, remember to omit the SYS prefix. For example, use $CLOSE
instead of SYS$CLOSE.

All file-processing macros require the FAB address as an argument and optionally allow you to
specify the entry points for error or success condition handlers, as shown in the following format
illustration:

$macro FAB=fab-addr [,ERR=error-entry] [,SUC=success-entry]

For example, to invoke the $OPEN macro and pass it the FAB address of INFAB and the error entry
point of OPEN_ERR, you could use the following macro:

$OPEN FAB=INFAB, ERR=OPEN_ERR

Note that the $RENAME macro has a different format, as noted in Table B.3. This file processing
macro has the following format:

$RENAME OLDFAB=old-fab-addr [,ERR=error-entry]
 [,SUC=success-entry] ,NEWFAB=new-fab-addr

The format for record processing macros and block I/O macros requires the RAB address as an
argument and optionally allows you to specify the entry points for error or success condition handlers,
as shown in the following format illustration:

$macro RAB=rab-addr [,ERR=error-entry] [,SUC=success-entry]

Note that the $WAIT macro has a different format, in that it does not use the error and success
arguments:

$WAIT RAB=rab-addr

Table B.3 lists each service macro according to its macro type.

Table B.3. File, Record, and Block I/O Processing Macros

File Processing Record Processing Block I/O
$CLOSE $CONNECT $READ
$CREATE $DELETE $SPACE
$DISPLAY $DISCONNECT $WRITE
$ENTER $FIND

356

Appendix B. VAX MACRO Programming Information and Examples

File Processing Record Processing Block I/O
$ERASE $FLUSH
$EXTEND $FREE
$NXTVOL $GET
$OPEN $PUT
$PARSE $RELEASE
$REMOVE $REWIND
$RENAME1 $TRUNCATE
$SEARCH $UPDATE

$WAIT
1Denotes macro with nonstandard format (see text).

After calling a service, you should check the status code returned in R0 (and the STS field of the
appropriate control block). The recommended way to signal errors is to provide both the STS
and STV fields of the FAB or RAB as arguments to the appropriate run-time library routine. The
following VAX MACRO instructions invoke the LIB$SIGNAL routine for a file-related (FAB) error
using the CALLS (stack) form of calling a routine, where the FAB is located at symbolic address
MYFAB (not shown):

PUSHL MYFAB+FAB$L_STV ; Push fields on stack
PUSHL MYFAB+FAB$L_STS ; in reverse order
CALLS #2, G^LIB$SIGNAL ; Invoke signal routine

B.3. VAX MACRO Example Programs
This section includes examples illustrating the implementation of RMS at the VAX MACRO
programming level. See the Guide to OpenVMS File Applications for RMS examples using the Edit/
FDL utility.

Using RMS macros, you can create new files, process existing files, extend and delete files, and read,
write, update, and delete records within files.

To create and process RMS files, your program must contain calls to appropriate services. Generally,
you make these calls by using the service macros for run-time processing. When encountered at run-
time, the expanded code of these macros generates a call to the corresponding service. Each macro
and its resultant call represent a program request for a file or record service, or a block I/O transfer
operation.

B.3.1. Creating, Accessing, and Deaccessing a File
The Create service constructs a new file according to the attributes you specify in the FAB for the
file, whereas the Open service makes an existing file available for processing by your program. Both
of these services, invoked by the $CREATE and $OPEN macros respectively, allocate resources
within the system to establish access (a path) to a file. You must open or create a file to perform most
file operations and any record operations on that file. Applications designed for shared access must
declare the type of sharing at this time. The user specifies the various types of shared access by setting
bits in the file access control (FAB$B_FAC) and share (FAB$B_SHR) fields in the appropriate FAB.

RMS provides several file-processing options for the Create service. The create-if option
(FAB$V_CIF option in the FAB$L_FOP field) requests that the file be created only if it does not
exist. If the file does exist in the specified directory, the file is opened, not created. The Open and

357

Appendix B. VAX MACRO Programming Information and Examples

Create services both establish access to the desired file, but the Create service additionally allocates
disk space and performs functions related to allocation.

When you are finished processing a file, you invoke the Close service ($CLOSE macro) to close the
file, disconnect all record streams associated with the file, and free all resources allocated to the file.
If you do not explicitly invoke the Close service when the program image exits, RMS attempts an
implicit close. All resources associated with open files are returned when the files are deaccessed at
image rundown time. However, process permanent files are not implicitly closed when an image exits.
These are special files that the current CLI opens outside the context of a normal image.

B.3.2. Example of Opening and Creating Files
Example B.2 illustrates the use of the Open, Create, Connect, Get, Put, and Close services to access
and copy records from one file to another. Note that the arguments to the $FAB and $RAB macros
are listed vertically on separate lines for ease in reading them. However, the argument list must be
contiguous and a common programming error is omission of required delimiters and continuation
characters when the arguments are listed in this manner.

Example B.2. Use of the Create, Open, and Close Services

 .TITLE COPYFILE
;
; This program copies the input file to the output file.
;
 .PSECT DATA,WRT,NOEXE
INFAB: $FAB FNM = <INFILE:>,- ; Primary input file name
 DNM = <.INV> ; Default input file type
INRAB: $RAB FAB = INFAB,- ; Pointer to FAB
 ROP = RAH,- ; Read-ahead option
 UBF = REC_BUFF,- ; Record buffer
 USZ = REC_SIZE ; and size
OUTFAB: $FAB FNM = <OUTFILE:>,- ; Primary output file name
 DNM = <.INV>,- ; Default output file name
 FOP = CTG,- ; Make contiguous file
 FAC = <PUT>,- ; Open for PUT operations
 SHR = <NIL>,- ; Exclusive file access
 MRS = REC_SIZE,- ; Maximum record size
 RAT = CR ; Implied carriage control

OUTRAB: $RAB FAB = OUTFAB,- ; Pointer to FAB
 ROP = WBH,- ; Write-behind option
 RBF = REC_BUFF ; Output uses same buffer
 ; as input

;
REC_SIZE = 132 ; Maximum record size
REC_BUFF:
 .BLKB REC_SIZE ; Record buffer

 .PSECT CODE,NOWRT,EXE
;
; Initialization - Open input and output files and connect streams
;
 .ENTRY COPYFILE,^M<R6> ; Save R6
 $OPEN FAB=INFAB ; Open input file
 BLBC R0,EXIT1 ; Quit on error
 $CONNECT RAB=INRAB ; Connect to input

358

Appendix B. VAX MACRO Programming Information and Examples

 BLBC R0,EXIT2 ; Quit on error
 MOVL INFAB+FAB$L_ALQ,- ; Set proper size for output
 OUTFAB+FAB$L_ALQ
 $CREATE FAB=OUTFAB ; Create output file
 BLBC R0,EXIT3 ; Quit on error
 $CONNECT RAB=OUTRAB ; Connect to output
 BLBS R0,READ ; Branch to READ loop
 BRB EXIT4 ; Trap error
EXIT1: MOVAL INFAB,R6 ; Error: Keep FAB address
 BRB F_ERR ; Signal file error
EXIT2: MOVAL INRAB,R6 ; Keep RAB address
 BRB R_ERR ; Signal record error
EXIT3: MOVAL OUTFAB,R6 ; Keep FAB address
 BRB F_ERR ; Signal record error
EXIT4: MOVAL OUTRAB,R6 ; If error, retain RAB addr.
 BRB R_ERR ; Signal record error
;
; Copy records loop
;
READ: $GET RAB=INRAB ; Get a record
 BLBS R0,WRITE ; Write the record
 CMPL R0,#RMS$_EOF ; Was error end-of-file?
 BEQL DONE ; Successful completion
 BRB EXIT2 ; Error otherwise
WRITE: MOVW INRAB+RAB$W_RSZ, - ; Input RAB sets record
 OUTRAB+RAB$W_RSZ ; size for output RAB
 $PUT RAB=OUTRAB ; Write the record
 BLBC R0,EXIT4 ; Quit on error
 BRB READ ; Go back for more
;
; Close files, signal any errors, and exit
;
F_ERR: PUSHL FAB$L_STV(R6) ; Push STV and STS of FAB
 PUSHL FAB$L_STS(R6) ; on the stack
 CALLS #2, G^LIB$SIGNAL ; Signal error
 BRB EXIT
R_ERR: PUSHL RAB$L_STV(R6) ; Push STV and STS of RAB
 PUSHL RAB$L_STS(R6) ; on the stack
 CALLS #2, G^LIB$SIGNAL ; Signal error
DONE: $CLOSE FAB=INFAB ; Close input
 $CLOSE FAB=OUTFAB ; and output
EXIT: RET ; Return with status in R0
 .END COPYFILE

This example illustrates how you can use the sequential file organization to create a new file by
copying records from an existing file. The newly created file and the source file have variable-length
records.

This example assumes that an external program has identified the input file as a search list logical
name using this statement:

$ ASSIGN [INV]30JUN85,[INV.OLD]30JUN85 INFILE:

This directs RMS to look for the input file in directory [INV] first, and if it does not find the file, it
should look in directory [INV.OLD].

The program also specifies the default file type .INV for the input file using this statement:

DNM=<.INV> ; Default input file name

359

Appendix B. VAX MACRO Programming Information and Examples

Next the program configures the RAB used for the input file (labeled INRAB). The first argument
links the RAB to the associated FAB (INFAB) and this is the only required argument to a RAB. The
rest of the arguments specify the read-ahead option (described in later text) and the record buffer for
the input file. The Get service uses the user record buffer address (UBF) field and the user record
buffer size (USZ) field as inputs to specify the record buffer and the record size, respectively.

Note

When you invoke the Get service, RMS takes control of the record buffer and may modify it. RMS
returns the record size and only guarantees the contents from where it accessed the record to the
completion of the record.

The program then configures the FAB for the output file. The first argument uses the FNM field to
equate the file name to the externally defined logical name OUTFILE. After the program specifies the
default file specification extension for the output file, it specifies three additional FAB fields.

First it directs RMS to allocate contiguous space for the output file by setting the CTG bit in the
FAB$L_FOP field of the FAB.

Next the program uses a program-defined variable to store the value 132 in the MRS field:

MRS=REC_SIZE
REC_SIZE= 132

The program then specifies that each record is to be preceded by a line feed and followed by a
carriage return whenever the record is output to a line printer or terminal:

RAT=CR

Because the program alternately reads and then writes each record, the input file and the output file
may share the same buffer. However, because the Put service does not have access to the UBF and
UBZ fields, the output RAB defines the buffer using the RBF and the RSZ fields.

Note that the UBF, USZ, and RBF values are set prior to run-time, but that the RSZ value is set at run-
time, just prior to invocation of the Put service. This is done because the input file contains variable-
length records and the Put service relies on the Get service to supply each record's size by way of the
RSZ field, an INRAB output field.

The following statement from the sample program illustrates this feature:

WRITE: MOVW INRAB+RAB$W_RSZ, - ; Input RAB sets record
 OUTRAB+RAB$W_RSZ ; size for output RAB

The run-time processing macros for the input file consist of a $OPEN, a $CONNECT, a $GET, and a
$CLOSE macro. Because the input file already exists, the program accesses it with a $OPEN macro.
The sole argument to this macro identifies the FAB to the Open service:

$OPEN FAB=INFAB

Next, the program connects a record stream to the input file by calling the Connect service and
specifying INRAB as the appropriate RAB:

$CONNECT RAB=INRAB

Note that upon completion of each service call, the program tests the condition value in R0 returned
by the service before proceeding to the next call. If the call fails, the program exits with the
appropriate control block address in R6.

360

Appendix B. VAX MACRO Programming Information and Examples

After creating the output file and establishing its record stream, the program begins a processing loop
in which the Get service reads a record from the input file and the Put service writes the record to the
output file. When all file records are copied, as indicated by the detection of the end of the file, the
program exits to label DONE, which closes both files.

The Close service disconnects the record stream for all RABs connected to the specified FAB. In a
multistream environment (more than one RAB can be connected to a single FAB), a program may
disconnect individual record streams using the Disconnect service.

B.3.3. Example of Creating a Multiple-Key Indexed File
Example B.3 creates an indexed file on a remote node from a sequential file on the local node.
The indexed file contains three keys: a segmented primary key and two simple alternate keys. The
segmented primary key includes the customer's last name, the first letter of the customer's first name,
and the customer's middle initial.

Example B.3. Use of the Create Service for an Indexed File

 .TITLE CREATEIDX - CREATE INDEXED FILE
 .IDENT /V001/
;
; This program creates an indexed file with three keys from a
; sequential file containing a name and address list. The record
; format of the input file is shown below:
;
; First Name Column 00-10
; Middle Initial Column 11-11
; Last Name Column 12-26
; Street Column 27-46
; City Column 47-58
; State Column 59-60
; Zip Code Column 61-65
; Reserved for
; new data Column 66-end of record
;
; The input and output files are specified by the logical names SRC
; and DST, respectively. For example:
;
; $ DEFINE SRC DBB1:[TEST]INPUT.DAT
; $ DEFINE DST TRNTO::DRA4:[RMS.FILES]OUTPUT.DAT
; $ RUN CREATEIDX
;
;**

 .SBTTL Control block and buffer storage
 .PSECT DATA NOEXE,LONG
;
; Define the source file FAB and RAB control blocks.
;
SRC_FAB:
 $FAB FAC=<GET>,- ; File access for GET only
 FOP=<SQO>,- ; DAP file transfer mode

 FNM=<SRC:> ; Name of input file
SRC_RAB:
 $RAB FAB=SRC_FAB,- ; Address of associated FAB
 RAC=SEQ,- ; Sequential record access

361

Appendix B. VAX MACRO Programming Information and Examples

 UBF=BUFFER,- ; Buffer address
 USZ=BUFFER_SIZE ; Buffer size

;
; Define the destination file FAB and RAB control blocks.
;
DST_FAB:
 $FAB FAC=<PUT>,- ; File access for PUT only
 FOP=CTG,- ; Allocate contiguous
 SHR = <NIL>,- ; Exclusive file access
 FNM=<DST:>,- ; Name of output file
 MRS=128,- ; Maximum record size
 RFM=VAR,- ; Variable length records
 RAT=<CR>,- ; Implied carriage control
 ORG=IDX,- ; Indexed file organization
 XAB=DST_KEY0 ; Address of start of XAB chain
DST_RAB:
 $RAB FAB=DST_FAB,- ; Address of associated FAB
 MBF=3,- ; Use 3 buffers
 RAC=KEY,- ; Random record writes
 RBF=BUFFER,- ; Buffer address
 ROP=LOA,- ; Specify initial fill size
 RSZ=BUFFER_SIZE ; Buffer size
;
; Define a key definition XAB for the primary key.
;
DST_KEY0: ; Primary key is Name
 $XABKEY REF=0,- ; Key reference number
 DAN=0,- ; Define data XABALL
 DFL=1536,- ; Define data fill of 75%
 FLG=<DUP>,- ; Allow duplicate keys
 DTP=DSTG,- ; Descending sort order
 IAN=1,- ; Define index XABALL
 IFL=1536,- ; Initial index fill 75%
 PROLOG=3,- ; Request prolog 3
 POS=<12,0,11>,- ; Key segment positions
 SIZ=<15,1,1>,- ; Key segment lengths
 NXT=DST_KEY1 ; Address of next XAB in chain
;
; Define key definition XABs for the alternate keys.
;
DST_KEY1: ; 1st alternate key is City
 $XABKEY REF=1,- ; Key reference number
 DAN=2,- ; Data level (SIDR) XABALL
 IAN=2,- ; Index XABALL
 IFL=768,- ; Initial index fill 75%
 POS=47,- ; Starting key position
 SIZ=12,- ; Key size
 FLG=<CHG,DUP>,- ; Duplicates and changes
 NXT=DST_KEY2 ; Address of next XAB in chain
DST_KEY2: ; 2nd alternate key is State
 $XABKEY REF=2,- ; Key reference number
 DAN=2,- ; Data level (SIDR) XABALL
 IAN=2,- ; Index XABALL
 IFL=768,- ; Initial index fill 75%
 POS=59,- ; Starting key position
 FLG=<CHG,DUP>,- ; Duplicates and changes
 SIZ=2,- ; Key size

362

Appendix B. VAX MACRO Programming Information and Examples

 NXT=DST_ALL0 ; Designate next XAB

;
; Define allocation control XABs to define multiple areas
;
DST_ALL0:
 $XABALL AID=0,- ; Data area definition
 ALQ=328,- ; Allocation quantity and
 AOP=<CBT>,- ; contiguous best try
 BKZ=4,- ; Bucket size of 4 blocks
 DEQ=112,- ; Default extension quantity
 NXT=DST_ALL1 ; Designate next XAB
DST_ALL1:
 $XABALL AID=1,- ; Primary key index area
 ALQ=8,- ; Allocation quantity and
 AOP=<CBT>,- ; contiguous best try
 BKZ=4,- ; Bucket size of 4 blocks
 DEQ=4,- ; Default extension quantity
 NXT=DST_ALL2 ; Designate next XAB
DST_ALL2:
 $XABALL AID=2,- ; Alternate key data area
 ALQ=112,- ; Allocation quantity and
 AOP=<CBT>,- ; contiguous best try
 BKZ=2,- ; Bucket size of 2 blocks
 DEQ=38,- ; Default extension quantity
 NXT=0 ; No more XABs
;
; Allocate buffer to the size of the largest record being read.
;
BUFFER: .BLKB 66 ; Buffer for input and output
 BUFFER_SIZE=.-BUFFER ; Buffer size

;***

 .SBTTL Mainline
 .PSECT CODE NOWRT,BYTE
;
; Start of program
;
 .ENTRY CREATEIDX,^M<R6> ; Entry point
;
; Open the source and destination files.
;
 $OPEN FAB=SRC_FAB ; Open input file
 BLBC R0,EXIT1 ; Branch on failure
 $CONNECT RAB=SRC_RAB ; Connect input record stream
 BLBC R0,EXIT2 ; Branch on failure
 $CREATE FAB=DST_FAB ; Create output file
 BLBC R0,EXIT3 ; Branch on failure
 $CONNECT RAB=DST_RAB ; Connect output record stream
 BLBC R0,EXIT4 ; Branch on failure
 BRB LOOP ; Bypass signaling code
EXIT1: MOVAL SRC_FAB,R6 ; Keep FAB address
 BRB F_ERR ; Signal error
EXIT2: MOVAL SRC_RAB,R6 ; Keep RAB address
 BRB R_ERR ; Signal error
EXIT3: MOVAL DST_FAB,R6 ; Keep FAB address
 BRB F_ERR ; Signal error

363

Appendix B. VAX MACRO Programming Information and Examples

EXIT4: MOVAL DST_RAB,R6 ; Keep RAB address
 BRB R_ERR ; Signal error

;
; Transfer records until end-of-file is reached.
;
LOOP: $GET RAB=SRC_RAB ; Read next rec from input file
 BLBS R0,PUT ; Branch on success
 CMPL R0,#RMS$_EOF ; Was it end-of-file (EOF)?
 BNEQ EXIT2 ; Branch if not EOF error
 BRB CLOSE ; Close and exit if EOF
PUT: $PUT RAB=DST_RAB ; Write 66-byte record to output
 BLBS R0,LOOP ; On success, continue loop
 BRB EXIT4 ; On error, signal and exit
;
; Close the source and destination files.
;
F_ERR: PUSHL FAB$L_STV(R6) ; Push STV and STS fields
 PUSHL FAB$L_STS(R6) ; on stack
 CALLS #2, G^LIB$SIGNAL ; Signal file error
 BRB EXIT ; Exit
R_ERR: PUSHL RAB$L_STV(R6) ; Push STV and STS fields
 PUSHL RAB$L_STS(R6) ; on stack
 CALLS #2, G^LIB$SIGNAL ; Signal file error
CLOSE: $CLOSE FAB=DST_FAB ; Close output file
 $CLOSE FAB=SRC_FAB ; Close input file
EXIT: $EXIT_S ; Exit
 .END CREATEIDX ; Specify starting address

This example program creates an indexed file with a primary key and two alternate keys that are
defined by appropriate key definition control blocks (XABKEY). For efficiency, the file is divided
into areas consisting of a data area and an index area for each key using multiple allocation control
blocks (XABALL).

In each XABKEY, the DAN and IAN arguments (XAB$B_DAN and XAB$B_IAN fields) indicate
the area identification number (AID) of the corresponding XABALL. By setting the RAB$V_LOA
bit in RAB field RAB$L_ROP, the program directs RMS to use the DFL and IFL arguments
(XAB$W_DFL and XAB$W_IFL fields) to determine the maximum initial fill size (in bytes) for
data and index buckets (each bucket contains the number of blocks specified in the XABALL BKZ
argument, XAB$B_BKZ field).

These are the XABKEY and XABALL control blocks for the primary key (the NAME key) in this
example:

DST_KEY0: ; Primary key is Name
 $XABKEY REF=0,- ; Key reference number
 DAN=0,- ; Define data XABALL
 DFL=1536,- ; Define data fill of 75%
 FLG=<DUP>,- ; Allow duplicate keys
 DTP=DSTG,- ; Descending sort order
 IAN=1,- ; Define index XABALL
 IFL=1536,- ; Initial index fill 75%
 PROLOG=3,- ; Request prolog 3
 .
 .
 .
DST_ALL0:
 $XABALL AID=0,- ; Data area definition

364

Appendix B. VAX MACRO Programming Information and Examples

 ALQ=328,- ; Allocation quantity and
 AOP=<CBT>,- ; contiguous best try
 BKZ=4,- ; Bucket size of 4 blocks
 DEQ=112,- ; Default extension quantity
 NXT=DST_ALL1 ; Designate next XAB
DST_ALL1:
 $XABALL AID=1,- ; Primary key index area
 ALQ=8,- ; Allocation quantity and
 AOP=<CBT>,- ; contiguous best try
 BKZ=4,- ; Bucket size of 4 blocks
 DEQ=4,- ; Default extension quantity
 NXT=DST_ALL2 ; Designate next XAB

The allocation information was obtained using the File Definition Language (FDL) editor which is
especially useful when you are creating large indexed files. The DCL commands CREATE/FDL and
CONVERT can be used to create files by using an FDL file produced by the Edit/FDL utility, without
any programming. Instead of using the multiple XABs for the key definition and area allocations in
this program, a simpler approach is to use the FDL file produced by the Edit/FDL utility by invoking
the FDL routines FDL$PARSE and FDL$RELEASE (for more information on these routines, see the
VSI OpenVMS Utility Routines Manual).

Fixed-length records are copied from the sequential input file on the local node to the indexed file on
the remote node. Each variable-length output record is initially 66 bytes long and may be extended to
a maximum of 128 bytes.

B.3.4. Processing File Specifications
The file name and file specification services, Parse and Search, are used for relatively complex
operations such as processing wildcard characters.

Before you can perform operations on a file, you must establish a path to the file. You do this by
specifying the file specification string address and size (FAB$L_FNA and FAB$B_FNS) fields (and
possibly the default file specification string address and size fields) of the FAB to describe an ASCII
string within the program. In this ASCII string, you can have a concatenation of the network node
name; a logical or device name; the directory name; and the file name, type, and version number.

If a logical name is used, RMS translates the logical name into its equivalent file specification before
it applies defaults to any missing components of the file specification. If the logical name is a search
list logical name, RMS translates each element of the search list into an equivalent file specification
before it applies defaults to that element. When using the Search service, a file specification that may
contain a search list logical name must be handled as if wildcard characters were present in the file
specification.

The Parse service is required prior to the Search service in order to examine the file specification
for wildcard characters or a search list. If the file is found, the Parse service sets a NAM or NAML
block bit that RMS uses internally and sets an appropriate value in the wildcard character context that
is used as input by the Search service. The Parse service is invoked once, then the Search service is
repetitively invoked as many times as there are files that match the original file specification.

If a wildcard is present, the Search service attempts to find all files that match the file specification.
If an asterisk (*) is in the directory field, all directories on the specified device are searched for files
that match the remaining file specification components. As with the use of wildcard characters, when
a search list logical name is present, a single Parse service and multiple Search services return all files
that match the file specification. With search lists, however, all list elements are searched for matching
file specifications in the specified order without regard to uniqueness between the resulting file
specifications. Search lists can be used in place of (or in addition to) wildcard characters to specify

365

Appendix B. VAX MACRO Programming Information and Examples

a more efficient search order, which can mean different combinations for the device, directory, file
name, file type, and version number parts of a file specification. Search lists can also contain wildcard
characters, if needed.

In summary, the Parse and Search services use a search list logical name very much like a wildcard.
Unlike the case of opening a file, in which the first instance where the file is found successfully ends
the use of additional search list file specifications, the Parse and Search services use all search list file
specifications.

Example B.4 shows how the $PARSE and $SEARCH macros can be used in wildcard processing.

Example B.4. Wildcard Processing Using Parse and Search Services

 .TITLE WILD
;
; Program to accept wildcard characters in input (partial) file
; specification and display full file specification.
;
 $NAMDEF ; NAM block definitions

 .PSECT DATA,NOEXE,WRT
NAM_BLK:
 $NAM RSA=RES_STR,- ; Result buffer address
 RSS=NAM$C_MAXRSS,- ; Result buffer size
 ESA=EXP_STR,- ; Expanded buffer address
 ESS=NAM$C_MAXRSS ; Expanded buffer size
FAB_BLK:
 $FAB FOP=NAM,- ; Use NAM block option
 NAM=NAM_BLK,- ; Pointer to NAM block
 FNA=INP_STR ; Addr of file name string

EXP_STR: ; Expanded string buffer
 .BLKB NAM$C_MAXRSS
RES_STR: ; Resultant string buffer
 .BLKB NAM$C_MAXRSS
RES_STR_D: ; Resultant string descriptor
 .BLKL 1
 .LONG RES_STR
INP_STR: ; Input string buffer
 .BLKB NAM$C_MAXRSS
INP_STR_D: ; Input string descriptor
 .LONG NAM$C_MAXRSS
 .LONG INP_STR
INP_STR_LEN: ; Input string length
 .BLKL 1
PROMPT_D: ; User prompt string
 .ASCID /Please enter the file specification: /

 .PSECT CODE,EXE,NOWRT
 .ENTRY WILD,^M<>
 PUSHAB INP_STR_LEN ; Address for string length
 PUSHAB PROMPT_D ; Prompt string descriptor
 PUSHAB INP_STR_D ; String buffer descriptor
 CALLS #3,G^LIB$GET_INPUT ; Get input string value
 BLBC R0,EXIT ; Quit on error
;
; Store user input string and perform initial parse to
; set up RMS context for subsequent search.

366

Appendix B. VAX MACRO Programming Information and Examples

;
 MOVB INP_STR_LEN, - ; Set string size
 FAB_BLK+FAB$B_FNS
 $PARSE FAB=FAB_BLK ; Parse the file spec
 BLBC R0,F_ERR ; Quit and signal on error
;
; Search until all possibilities are exhausted.
;
SEARCH_LOOP:
 $SEARCH FAB=FAB_BLK ; Find next file
 BLBC R0,SRCHERR ; Any more?
;
; Print out the resultant string from the search operation
;
 MOVZBL NAM_BLK+NAM$B_RSL, -
 RES_STR_D ; Set string length
 PUSHAB RES_STR_D ; String descriptor
 CALLS #1,G^LIB$PUT_OUTPUT ; Output the result
 BLBC R0,EXIT ; Quit on error
 BRB SEARCH_LOOP ; Go for more
SRCHERR: ; If error is "No more files",
 CMPL R0,#RMS$_NMF ; this is normal completion
 BEQL S_EXIT ; of the search loop.
F_ERR: PUSHL FAB_BLK+FAB$L_STV ; Push STV and STS on stack
 PUSHL FAB_BLK+FAB$L_STS ; in reverse order
 CALLS #2, G^LIB$SIGNAL ; Signal error
S_EXIT: MOVL #1,R0 ; Suppress "No More Files"
EXIT: RET
 .END WILD

This program is designed to locate all files corresponding to a partial file specification input. The
program prompts the user for an input string, which can consist of a partial file specification, using
the wildcard characters and/or any type of logical name, including a search list logical name. In many
respects, this program emulates the DCL command DIRECTORY, which is discussed in the VSI
OpenVMS DCL Dictionary.

The program illustrates the use of the $PARSE and $SEARCH file name processing macros. Here is
the program statement that invokes the Parse service for parsing the file name string:

$PARSE FAB=FAB_BLK

Before invoking the Parse service ($PARSE macro), the program moves the input string length to
the file name string (FAB$B_FNS) field. If the Parse service returns an error completion status, the
program branches to the F_ERR error routine.

Assuming no error, the program searches the disk directories specified by the expanded string area
address field in the NAM block (NAM$L_ESA) until all possible files conforming to the partial file
specification input are found. Here is the program line that invokes the Search service:

$SEARCH FAB=FAB_BLK

A status test is performed immediately after the $SEARCH macro. If an error is detected, the
program branches to the SRCHERR label. If a no-more-files condition is detected, RMS returns the
RMS$_NMF message to indicate that all files that match the specification have been found. (This
error, however, is not signaled.)

This program contains two run-time library routines: LIB$GET_INPUT and LIB$PUT_OUTPUT.
The LIB$GET_INPUT routine inputs a record from the current controlling input device, specified by

367

Appendix B. VAX MACRO Programming Information and Examples

SYS$INPUT, using the Get service. The LIB$PUT_OUTPUT routine outputs a record (line) to the
current controlling output device, specified by SYS$OUTPUT, using the Put service. Both routines
are discussed in greater detail in the VSI OpenVMS RTL Library (LIB$) Manual.

B.3.5. Connecting and Disconnecting Record Streams
To associate or disassociate a file with one or more record streams, RMS provides the Connect and
Disconnect services, which are invoked using the $CONNECT and $DISCONNECT macros.

Before reading and writing file records, the program must open (or create) the input and output files
and then connect the files to the appropriate record streams by executing the $OPEN (or $CREATE)
macro followed by the $CONNECT macro.

Closing a file implicitly disconnects the record stream. Use the Disconnect service to explicitly
disconnect a record stream that is not to be used immediately. This keeps the file open but releases
various data structures for use by other processes until your program needs the record stream.

Example B.5 shows a program in which a user-entered reply determines which key path is selected to
access the indexed file created in Example B.3. The user-entered value determines the value specified
for the RAB$B_KRF field. The RAB$B_KRF value is set before the connect operation occurs
because this field is input to the Connect service.

Example B.5. Use of the Connect Service and Multiple Keys

 .TITLE MULTIKEY
;
REC_SIZE=128
 .PSECT DATA NOEXE,LONG
; ** RMS DATA **
MODFAB: $FAB FNM=<DATA_OUTPUT.DAT>,- ; FAB file spec.
 FAC=<GET>,- ; Get access needed
 SHR=<GET, UPD, PUT>,- ; Allow Get, Update, Put
 MRS=REC_SIZE ; Specify record size
MODRAB: $RAB FAB=MODFAB,- ; RAB; indicate FAB
 MBF=3,- ; Use 3 buffers
 UBF=REC_MODBUF,- ; Specify buffer
 USZ=REC_SIZE,-
 KRF=0 ; Primary is default key
REC_START: .LONG REC_SIZE ; Record buffer
 .ADDRESS REC_MODBUF
REC_MODBUF: .BLKB REC_SIZE
; TERMINAL I/O DATA **
MPRO0: .ASCID / /
MPRO1: .ASCID /Enter list order: 1-by name, 2-by city, 3-by state, 9-end
 :/
ENTRYERR: .ASCID /* * Value entered must be 1, 2, 3, or 9. * */
;
REGANS: .LONG 1
 .ADDRESS REGBUF
REGBUF: .BLKB 1
;
DONE: .ASCID /Press RETURN to continue/
;
 .PSECT CODE
START: .WORD ^M<>
INPUT: PUSHAL MPRO0 ; Get input
 PUSHAL MPRO1 ; Display prompt

368

Appendix B. VAX MACRO Programming Information and Examples

 PUSHAL REGANS
 CALLS #3, G^LIB$GET_INPUT
 BLBC R0,FINIBR
 CMPB #^A/1/,REGBUF ; Test value of menu answer
 BEQLU PRIM ; 1 means primary
 CMPB #^A/2/,REGBUF ; Continue testing
 BEQLU ALT1 ; 2 means first alternate
 CMPB #^A/3/,REGBUF ; Continue testing
 BEQLU ALT2 ; 3 means second alternate
 CMPB #^A/9/,REGBUF ; Continue testing
 BEQLU FINIBR ; 9 means end program
BADANS: PUSHAL ENTRYERR ; otherwise, display error message
 CALLS #1, G^LIB$PUT_OUTPUT
 BLBC R0,FINIBR
 BRB INPUT ; Entry error; retry
FINIBR: BRW FINI ; branch extender
PRIM: MOVB #0,MODRAB+RAB$B_KRF ; Set key of reference in RAB
 BRB OPEN
ALT1: MOVB #1,MODRAB+RAB$B_KRF ; Set key of reference in RAB
 BRB OPEN
ALT2: MOVB #2,MODRAB+RAB$B_KRF ; Set key of reference in RAB
OPEN: $OPEN FAB=MODFAB ; Open file
 BLBS R0,CONN
 BRW ERROR_OPEN
CONN: $CONNECT RAB=MODRAB ; Connect record stream
 BLBS R0,NEXT
 BRW ERROR
NEXT: $GET RAB=MODRAB ; Get record
 CMPL #RMS$_EOF,R0 ; Test if EOF
 BEQLU CLEAN
 BLBC R0,ERROR
 MOVZWL RAB$W_USZ+MODRAB,REC_START ; Set ASCII descriptor length
 PUSHAL REC_START ; Display each record
 CALLS #1, G^LIB$PUT_OUTPUT
 BLBS R0,NEXT
 BRB FINI ; Repeat until EOF
CLEAN: $CLOSE FAB=MODFAB ; Close file
 BLBC R0,ERROR_OPEN
 PUSHAL MPRO0
 CALLS #1, G^LIB$PUT_OUTPUT
 BLBC R0,FINI
 PUSHAL DONE
 PUSHAL REGANS
 CALLS #2, G^LIB$GET_INPUT
 BLBC R0,FINI
 BRW INPUT
;
ERROR_OPEN:
 PUSHL MODFAB+FAB$L_STV ; Error opening
 PUSHL MODFAB+FAB$L_STS ; file. Signal error
 CALLS #2, G^LIB$SIGNAL ; using LIB$SIGNAL.
 BRB FINI ; End program
ERROR: PUSHL MODRAB+RAB$L_STV ; Record-related error
 PUSHL MODRAB+RAB$L_STS
 CALLS #2, G^LIB$SIGNAL ; Signal error, then
 $CLOSE FAB=MODFAB ; close file
FINI: RET
 .END START

369

Appendix B. VAX MACRO Programming Information and Examples

Here the SHR argument limits access to processes that perform the Get service, Put service, and
Update service. If you anticipate no file modifications as your program accesses the file, you can
improve performance by having the SHR argument limit access to processes that use the Get service
(SHR=GET).

Errors are signaled according to the recommended practice of using the FAB$L_STS and
FAB$L_STV fields for file errors and RAB$L_STS and RAB$L_STV fields for record errors.

B.3.6. Other File-Processing Operations
Other file services include the Display, Erase, Extend, Remove, and Rename services, which can
be invoked using the $DISPLAY, $ERASE, $EXTEND, $REMOVE, and $RENAME macros,
respectively.

Example B.6 illustrates the use of the Rename service to rename a file from directory [USER] named
NAMES.DAT to directory [USER.HISTORY] named OLD_NAMES.DAT.

Example B.6. Use of the Rename Service

 .TITLE RENAME
;
; Program that renames a file into a different directory and
; displays the resultant string.
;
 .PSECT DATA,NOEXE,WRT
;
; Define old FAB, old NAM, new FAB, new NAM, and buffers
;
OLD_FAB: ; Define old file FAB
 $FAB FNM=<[USER]NAMES.DAT>,-
 NAM=OLD_NAM ; Pointer to NAM block
OLD_NAM: ; Define old file NAM
 $NAM ESA=EXP_OLD,- ; Equivalence string
 ESS=NAM$C_MAXRSS,- ; address and size
 RSA=RES_OLD,- ; Resultant string
 RSS=NAM$C_MAXRSS ; address and size
NEW_FAB: ; Define new file FAB
 $FAB FNM=<[USER.HISTORY]OLD_NAMES.DAT>,-
 NAM=NEW_NAM ; Pointer to NAM block
NEW_NAM:
 $NAM ESA=EXP_NEW,- ; Equivalence string
 ESS=NAM$C_MAXRSS,- ; address and size
 RSA=RES_NEW,- ; Resultant string
 RSS=NAM$C_MAXRSS ; address and size

EXP_OLD: ; Old file equivalence
 .BLKB NAM$C_MAXRSS ; string buffer
EXP_NEW: ; New file equivalence
 .BLKB NAM$C_MAXRSS ; string buffer
RES_OLD: ; Old file resultant
 .BLKB NAM$C_MAXRSS ; string buffer
RES_OLD_D: ; String descriptor
 .BLKL 1
 .LONG RES_OLD
RES_NEW: ; New file resultant
 .BLKB NAM$C_MAXRSS ; string buffer
RES_NEW_D: ; String descriptor

370

Appendix B. VAX MACRO Programming Information and Examples

 .BLKL 1
 .LONG RES_NEW
;
MESS: .ASCID /has been successfully relocated to /
;
 .PSECT CODE,EXE,NOWRT
 .ENTRY RENAME,^M<>
 ; Rename file
;
 $RENAME OLDFAB=OLD_FAB, NEWFAB=NEW_FAB
 BLBC R0,ERROR
 ; Set up descriptors
;
 MOVZBL OLD_NAM+NAM$B_RSL,RES_OLD_D
 MOVZBL NEW_NAM+NAM$B_RSL,RES_NEW_D
;
 PUSHAL RES_OLD_D ; Push resultant name,
 CALLS #1,G^LIB$PUT_OUTPUT ; display old file spec.
 BLBC R0,TERM_ERROR ; Branch on error
 PUSHAL MESS ; Push message on stack,
 CALLS #1,G^LIB$PUT_OUTPUT ; display message
 BLBC R0,TERM_ERROR ; Branch on error
 PUSHAL RES_NEW_D ; Push resultant name,
 CALLS #1,G^LIB$PUT_OUTPUT ; display new file spec.
 BLBS R0,DONE ; Branch on success
TERM_ERROR:
 PUSHL R0 ; Signal output error
 CALLS #1,G^LIB$SIGNAL ; from R0
 BRB DONE
ERROR: PUSHL OLD_FAB+FAB$L_STV ; Push STV and STS on
 PUSHL OLD_FAB+FAB$L_STS ; stack (reverse order)
 CALLS #2,G^LIB$SIGNAL ; Signal error
DONE: RET
 .END RENAME

This program uses the Rename service to change both the directory and the name of the object
file, which is being replaced by a new file (created by a separate program). If the Rename service
executes correctly, the resultant file specification of the old file, the message defined by the ASCII
descriptor following the label MESS, and the resultant file specification of the new file are displayed
as verification that the Rename service successfully completed.

B.3.7. Retrieving and Inserting Records
The record-processing services provided by RMS insert records into a file and retrieve records from
a file. These services are the Find, Get, and Put services, which can be invoked by the $FIND, $GET,
and $PUT macros, respectively.

Example B.7 illustrates the use of the $GET and $PUT macros. It connects the input and output
record streams, reads a record from an indexed file, and writes the record to a relative file. The
program illustrates the use of the key string buffer, the key string descriptor, and the key string length
when reading indexed records, and it includes the use of a user prompt string.

Example B.7. Use of the Get and Put Services

 .TITLE LOOKUP
;
; This program looks up records in the input file and

371

Appendix B. VAX MACRO Programming Information and Examples

; writes the records to the output file.

 .PSECT DATA,WRT,NOEXE
INFAB: $FAB FNM = <INFILE:>,- ; Input file logical name
 SHR = <GET,PUT,UPD,DEL> ; Allow read/write sharing
INRAB: $RAB FAB = INFAB,- ; Pointer to FAB
 KBF = INP_STR,- ; Key buffer
 KRF = 0,- ; Primary key
 RAC = KEY,- ; Keyed access
 ROP = WAT,- ; Wait for record
 UBF = REC_BUFF,- ; Record buffer
 USZ = REC_SIZE ; and size
OUTFAB: $FAB FNM = <OUTFILE:>,- ; Output file logical name
 BKS = 3,- ; 3 blocks per bucket
 MRS = REC_SIZE,- ; Maximum record size
 ORG = REL,- ; Relative file
 RAT = CR ; Implied carriage control
OUTRAB: $RAB FAB = OUTFAB,- ; Pointer to FAB
 RBF = REC_BUFF ; Output uses same buffer
 ; as input
REC_SIZE = 132 ; Maximum size records
REC_BUFF:
 .BLKB REC_SIZE ; Record buffer
INP_STR: ; Key string buffer
 .BLKB REC_SIZE
INP_STR_D: ; Key string descriptor
 .LONG REC_SIZE
 .LONG INP_STR
INP_STR_LEN: ; Key string length
 .BLKL 1
PROMPT_D: ; User prompt string
 .ASCID /Please input key value: /
 .PSECT CODE,NOWRT,EXE
;
; Initialization - Open input and output files and connect streams
;
 .ENTRY LOOKUP,^M<> ; No registers to save
 $OPEN FAB=INFAB ; Open input file
 BLBC R0,EXIT1 ; Quit on error
 $CONNECT RAB=INRAB ; Connect to input
 BLBC R0,EXIT2 ; Quit on error
 $CREATE FAB=OUTFAB ; Create output file
 BLBC R0,EXIT3 ; Quit on error
 $CONNECT RAB=OUTRAB ; Connect to output
 BLBC R0,EXIT4 ; Quit on error
 BRB READ ; Skip error branching
EXIT1: MOVAL INFAB, R6 ; Keep INFAB address
 BRW F_ERR ; Signal FAB error
EXIT2: MOVAL INRAB, R6 ; Keep INRAB address
 BRW R_ERR ; Signal RAB error
EXIT3: MOVAL OUTFAB, R6 ; Keep OUTFAB address
 BRB F_ERR ; Signal FAB error
EXIT4: MOVAL OUTRAB, R6 ; Keep OUTRAB address
 BRB R_ERR ; Signal RAB error
;
; Loop to copy records
;
READ:

372

Appendix B. VAX MACRO Programming Information and Examples

 PUSHAB INP_STR_LEN ; Address for string length
 PUSHAB PROMPT_D ; Prompt string descriptor
 PUSHAB INP_STR_D ; String buffer descriptor
 CALLS #3,G^LIB$GET_INPUT ; Get input string value
 BLBS R0,GET ; Quit on error or end-of-file
 CMPL R0,#RMS$_EOF ; Was error end-of-file?
 BEQL DONE ; Successful completion
 BRB EXIT ; Error otherwise
GET: MOVB INP_STR_LEN, - ; Set key size
 INRAB+RAB$B_KSZ
 $GET RAB=INRAB ; Get a record
 BLBS R0,PUT ; Put if successful
 CMPL R0,#RMS$_RNF ; No such record?
 BEQL READ ; Try again
 BRB EXIT2 ; Error otherwise
PUT: MOVW INRAB+RAB$W_RSZ, - ; Set the record size
 OUTRAB+RAB$W_RSZ ; for output
 $PUT RAB=OUTRAB ; Write the record
 BLBC R0,EXIT4 ; Quit on error
 BRB READ ; Go back for more
;
; Close files and exit
;
F_ERR: PUSHL FAB$L_STV(R6) ; Push STV and STS on
 PUSHL FAB$L_STS(R6) ; stack in reverse order
 CALLS #2, G^LIB$SIGNAL ; Signal message
 BRB EXIT
R_ERR: PUSHL RAB$L_STV(R6) ; Push STV and STS on
 PUSHL RAB$L_STS(R6) ; stack in reverse order
 CALLS #2, G^LIB$SIGNAL ; Signal message
DONE: $CLOSE FAB=INFAB ; Close input
 $CLOSE FAB=OUTFAB ; and output
EXIT: RET ; Return with status in R0
 .END LOOKUP

This program writes records from an existing indexed input file into a newly created relative output
file.

The program configures the file-sharing field (FAB$B_SHR) in the input FAB to permit sharing of the
file by processes that use the Get, Put, Update, and Delete services.

The output FAB sets the bucket size field (FAB$B_BKS) at 3 blocks per bucket, limits the record size
in the output file to 132 bytes, specifies the relative file organization, and specifies an implicit carriage
control when the file output is directed to a terminal.

The RAB for the input file establishes the key data, sets the WAIT record option, and defines the
record buffer. The output RAB locates the record buffer. The rest of the first program section assigns
values and allocates space to various program variables. After the program opens and creates the two
files and connects the record streams, it executes a series of instructions at label READ that input
the required key values and the user prompt. Then the program uses the $GET and $PUT macros
to invoke the respective services for retrieving and inserting the records. The $GET macro uses the
INRAB and the $PUT macro uses the OUTRAB, as shown in the following program statements:

$GET RAB=INRAB

$PUT RAB=OUTRAB

373

Appendix B. VAX MACRO Programming Information and Examples

Each time the program reads or writes a record, it performs a status check. If the status check is
successful, the program branches back to the READ label for the next record. If any of the status
checks indicate an error, the program branches to the appropriate error handler before exiting.

When the program completes the record transfers, it branches to the DONE label to close the record
and exit.

B.3.8. Deleting Records
This service can only be used with relative and indexed files. Example B.8 illustrates the use of the
Delete service.

Example B.8. Use of the Delete Service

 .TITLE DELETE
;
; This program looks up records in the input file and
; deletes those records.
;

 .PSECT DATA,WRT,NOEXE
INFAB: $FAB FNM = <INFILE:>,- ; Input file logical name
 FAC = <DEL,GET> ; DEL access
INRAB: $RAB FAB = INFAB,- ; Pointer to FAB
 KBF = INP_STR,- ; Key buffer
 KRF = 0,- ; Primary key
 RAC = KEY ; Keyed access
REC_SIZE = 132 ; Maximum size records
INP_STR: ; Key string/record buffer
 .BLKB REC_SIZE
INP_STR_D: ; Key string descriptor
 .LONG REC_SIZE
 .LONG INP_STR
INP_STR_LEN: ; Key string length
 .BLKL 1
KEY_PMT_D: ; Key value prompt string
 .ASCID /Please enter key value: /
 .PSECT CODE,NOWRT,EXE
;
; Initialization - Open file and connect stream
;
 .ENTRY DELETE,^M<> ; No registers to save
 $OPEN FAB=INFAB ; Open input file
 BLBC R0,F_ERR ; Quit on error
 $CONNECT RAB=INRAB ; Connect to input
 BLBC R0,R_ERR ; Quit on error
;
; Delete record loop
;
READ:
 PUSHAB INP_STR_LEN ; Address for string length
 PUSHAB KEY_PMT_D ; Prompt string descriptor
 PUSHAB INP_STR_D ; String buffer descriptor
 CALLS #3,G^LIB$GET_INPUT ; Get input string value
 BLBS R0,FIND ; Quit on error or end-of-file
 CMPL R0,#RMS$_EOF ; Was error end-of-file?
 BEQL DONE ; Successful completion

374

Appendix B. VAX MACRO Programming Information and Examples

 BRB EXIT ; Error otherwise
FIND: MOVB INP_STR_LEN, - ; Set key size
 INRAB+RAB$B_KSZ
 $FIND RAB=INRAB ; Locate the record
 BLBS R0,DEL ; Continue if found
 CMPL R0,#RMS$_RNF ; No such record?
 BEQL READ ; Try again
 BRB R_ERR ; Error otherwise
DEL: $DELETE RAB=INRAB ; Delete the record
 BLBC R0,R_ERR ; Quit on error
 BRB READ ; Go back for more
;
; Close files and exit
;
F_ERR: PUSHL FAB$L_STV+INFAB ; Push STV and STS on
 PUSHL FAB$L_STS+INFAB ; stack in reverse order
 CALLS #2, G^LIB$SIGNAL ; Signal message
 BRB EXIT
R_ERR: PUSHL RAB$L_STV+INRAB ; Push STV and STS on
 PUSHL RAB$L_STS+INRAB ; stack in reverse order
 CALLS #2, G^LIB$SIGNAL ; Signal message
DONE: $CLOSE FAB=INFAB ; Close files
EXIT: RET ; Return with status in R0
 .END DELETE

This program uses a key to find and delete a record. To use the $DELETE macro, the $FAB macro for
the file must set the FAB$V_DEL bit as shown in the following code example:

INFAB: $FAB FNM=<INFILE:>,-
 FAC=

The following program statement invokes the Delete service and points to the input RAB:

$DELETE RAB=INRAB

B.3.9. Updating Records
Example B.9 illustrates the use of the Update service.

Example B.9. Use of the Update Service

 .TITLE UPDATE
;
; This program looks up records in the input file and
; updates those records.
;

 .PSECT DATA,WRT,NOEXE
INFAB: $FAB FNM = <INFILE:>,- ; Input file logical name
 FAC = <GET,UPD> ; Read and Write access
INRAB: $RAB FAB = INFAB,- ; Pointer to FAB
 KBF = INP_STR,- ; Key buffer
 KRF = 0,- ; Primary key
 RAC = KEY,- ; Keyed access
 RBF = INP_STR ; Record buffer
REC_SIZE = 132 ; Maximum size records
INP_STR: ; Key string/record buffer
 .BLKB REC_SIZE
INP_STR_D: ; Key string descriptor

375

Appendix B. VAX MACRO Programming Information and Examples

 .LONG REC_SIZE
 .LONG INP_STR
INP_STR_LEN: ; Key string length
 .BLKL 1
KEY_PMT_D: ; Key value prompt string
 .ASCID /Please input key value: /
DATA_PMT_D: ; Data value prompt string
 .ASCID /Please input new record value: /
 .PSECT CODE,NOWRT,EXE
;
; Initialization - Open file and connect stream
;
 .ENTRY UPDATE,^M<> ; No registers to save
 $OPEN FAB=INFAB ; Open input file
 BLBC R0,FAB_E ; Quit on error
 $CONNECT RAB=INRAB ; Connect to input
 BLBC R0,RAB_E ; Quit on error
 BRB READ ; Begin update loop
FAB_E: BRW F_ERR ; File (FAB) error
RAB_E: BRW R_ERR ; Record (RAB) error
;
; Update record loop
;
READ:
;
; Prompt for key value to look up.
;
 PUSHAB INP_STR_LEN ; Address for string length
 PUSHAB KEY_PMT_D ; Prompt string descriptor
 PUSHAB INP_STR_D ; String buffer descriptor
 CALLS #3,G^LIB$GET_INPUT ; Get input string value
 BLBS R0,FIND ; Quit on error or end-of-file
 CMPL R0,#RMS$_EOF ; Was error end-of-file?
 BEQL ALL_D ; Successful completion
 BRW EXIT ; Error otherwise
ALL_D: BRW DONE
FIND: MOVB INP_STR_LEN, - ; Set key size
 INRAB+RAB$B_KSZ
 $FIND RAB=INRAB ; Locate the record
 BLBS R0,UPD ; Continue if found
 CMPL R0,#RMS$_RNF ; No such record?
 BEQL READ ; Try again
 BRB R_ERR ; Error otherwise
;
; Prompt for new data record.
;
UPD:
 PUSHAB INP_STR_LEN ; Address for string length
 PUSHAB DATA_PMT_D ; Prompt string descriptor
 PUSHAB INP_STR_D ; String buffer descriptor
 CALLS #3,G^LIB$GET_INPUT ; Get input string value
 BLBC R0,EXIT ; Quit on error
 MOVW INP_STR_LEN, - ; Set record size
 INRAB+RAB$W_RSZ
 $UPDATE RAB=INRAB ; Write the record
 BLBC R0,R_ERR ; Quit on error
 BRW READ ; Go back for more
;

376

Appendix B. VAX MACRO Programming Information and Examples

; Close files and exit
;
F_ERR: PUSHL FAB$L_STV+INFAB ; Push STV and STS on
 PUSHL FAB$L_STS+INFAB ; stack in reverse order
 CALLS #2, G^LIB$SIGNAL ; Signal message
 BRB EXIT
R_ERR: PUSHL RAB$L_STV+INRAB ; Push STV and STS on
 PUSHL RAB$L_STS+INRAB ; stack in reverse order
 CALLS #2, G^LIB$SIGNAL ; Signal message
DONE: $CLOSE FAB=INFAB ; Close files
EXIT: RET ; Return with status in R0
 .END UPDATE

This program uses a key and a new record entered from the terminal to update a record in the input
file.

To use the $UPDATE macro, the $FAB macro for the file must specify that the FAB$V_UPD bit is
marked in the file access (FAB$B_FAC) field as shown in the following code example:

INFAB: $FAB FNM=<INFILE:>,-
 FAC=<GET,UPD>

Before updating a record, the program uses the Find service to locate the record by executing the
$FIND macro located at the FIND label:

$FIND RAB=INRAB

B.3.10. Using Block I/O
In addition to the major types of record access provided by the sequential, random by key value or
relative record number, and random by RFA access modes, RMS provides another means to access
data in a file: block I/O.

Block I/O operations let you directly read or write the blocks of a file. These operations are provided
for users who must keep system overhead to a minimum and need no interpretation of file data as
logical records, yet still want to take advantage of RMS file accessibility. Block I/O is an intermediate
step between the RMS record operations and direct use of $QIO system services.

The three block I/O services are invoked using the $READ, $SPACE, and $WRITE macros,
respectively.

• The Read service transfers a specified number of bytes to memory.

• The Space service positions a file forward or backward a specified number of blocks.

• The Write service writes a specified number of bytes to a file.

The Read and Write services always begin on a block boundary.

In addition to the Read, Space, and Write services, you can use the following services on a record
stream connected for block I/O operations:

• The Disconnect service ($DISCONNECT macro)

• The Flush service ($FLUSH macro)

• The Next Volume service ($NXTVOL macro)

• The Rewind service ($REWIND macro)

377

Appendix B. VAX MACRO Programming Information and Examples

These services perform miscellaneous operations or disconnect the record stream. They do not work
on the contents of the records themselves.

You cannot perform block I/O operations on shared files. That is, file access for block I/O operations
is denied unless the FAB$V_UPI or the FAB$V_NIL bit is set in the FAB$B_SHR field. You
specify block I/O operations for a record stream by setting the FAB$V_BIO bit in the file access
(FAB$B_FAC) field as input to the Open or Create services. If you intend to write to the file, you
must set the PUT option in the FAB$B_FAC field; if you intend to read from the file, you must set
the GET option in the FAB$B_FAC field. If you set the FAB$V_BIO bit when you create a relative
or indexed file, RMS omits prolog processing for indexed files and initial space prezeroing in relative
files.

For files of unknown organization, block I/O is the only form of processing allowed. Processing
proceeds identically to that for block I/O to the relative file organization described previously.

B.3.11. Mixed Block and Record I/O
 How and when RMS allows you to switch between record I/O and block I/O depends on the
organization of the file being accessed.

When you access sequential files, RMS allows you to switch between record I/O and block I/O
with each record operation, if desired. To enable I/O switching for a record stream connected to a
sequential file, use the following procedure:

1. Set the FAB$V_BRO option in the FAB$B_FAC field as input to the Create or Open service.

2. Clear the RAB$L_ROP field RAB$V_BIO option as input to the Connect service.

This procedure informs RMS that it should check the RAB$V_BIO option in the RAB$L_ROP field
after each operation.

To do a block I/O operation:

1. Set the RAB$L_ROP field RAB$V_BIO option.

2. Invoke a block I/O service (Read, Space, or Write).

To do a record I/O operation:

1. Clear the RAB$L_ROP field RAB$V_BIO option.

2. Invoke a record I/O service.

Use care if you do choose to mix record and block I/O operations for sequential files. When you
switch operations on disk devices, the context of the current record, the next record, and the next
block pointer is undefined. Thus, the first operation after the switch must not use sequential record
access mode. For magnetic tape devices, the context of the next record or next block indicates the start
of the following block on the tape for the first operation after the switch.

As previously noted, you usually set the FAB$B_FAC field FAB$V_BRO option only to indicate
that you want to mix record I/O and block I/O operations. If you decide that you want to perform
block I/O processing only, you can set the RAB$L_ROP field RAB$V_BIO option after you open
the file but before you invoke the Connect service. This connect-time operation overrides the setting
of the FAB$V_BRO option for the current record stream and indicates to the Connect service that
you only intend to do block I/O for this file, thus eliminating the need to allocate internal I/O buffers.
(However, you must still allocate buffers for block I/O operations in your application program.) If you

378

Appendix B. VAX MACRO Programming Information and Examples

set the FAB$V_BRO option when you create an indexed file, the key definition XABs for that file
must be present.

When you access relative or indexed files, switching is available only if you close and reopen the file.
RMS does not permit both types of I/O simultaneously. When multiple record streams are used, all
record streams must use the same type of I/O, either record I/O or block I/O.

You specify the I/O type when you create or open a file by selecting either the block I/O option
(FAB$V_BIO bit set) or the record I/O option (FAB$V_BIO bit clear). For relative and indexed files,
the decision to use block I/O or record I/O for a file can be postponed, if desired, until the record
stream is connected by the following procedure:

1. Set the FAB$B_FAC field FAB$V_BRO option when you are opening (or creating) the file.

2. Indicate the appropriate operation to the Connect service by either setting the RAB$V_BIO bit in
the RAB$L_ROP for block I/O or by clearing it for record I/O.

B.3.12. Next Block Pointer (NBP)
For block I/O operations to sequential files on disk devices, RMS maintains an internal next block
pointer (NBP) that does the following functions:

• Points to the beginning of the file following execution of a Connect service if the RAB$V_EOF
option in the RAB$L_ROP field of the RAB is cleared. If the RAB$L_ROP field RAB$V_EOF
option is set, the NPB points to the block following the end of the file. The RAB$V_EOF option
is relevant only for sequential files doing block I/O processing.

• Points to the block following the highest numbered block transferred by a read or write operation.

• Points to the next block following an operation invoked by the Space service.

An explicit Extend service is required for relative and indexed files because RMS does not
automatically extend a file's allocation when using block I/O processing.

Example B.10 illustrates how to copy a file using block I/O.

Example B.10. Use of Block I/O

 .TITLE BLOCKIO
;
; This program copies the input file to the output file.
; It illustrates block I/O using the RMS $READ and $WRITE
; macros.
;
 .PSECT DATA,WRT,NOEXE
INFAB: $FAB FNM = <INFILE:>,- ; Input file name
 FAC = <BIO,GET> ; Block I/O read operations
INRAB: $RAB FAB = INFAB,- ; Pointer to FAB
 BKT = 0,- ; Start with current block
 UBF = REC_BUFF,- ; Record buffer
 USZ = REC_SIZE ; and size
OUTFAB: $FAB FNM = <OUTFILE:>,- ; Output file name
 FOP = CBT,- ; Try for contiguous file
 MRS = REC_SIZE,- ; Maximum record size
 FAC = <BIO,PUT>,- ; Block I/O write operations
 RAT = CR ; Implied carriage control
OUTRAB: $RAB FAB = OUTFAB,- ; Pointer to FAB
 BKT = 0,- ; Start with current block

379

Appendix B. VAX MACRO Programming Information and Examples

 RBF = REC_BUFF ; Output uses same buffer
 ; as input
REC_SIZE = 1024 ; Maximum record size
REC_BUFF:
 .BLKB REC_SIZE ; Record buffer

 .PSECT CODE,NOWRT,EXE
;
; Initialization - Open input and output files and connect streams
;
 .ENTRY BLOCKIO,^M<> ; No registers to save
 $OPEN FAB=INFAB ; Open input file
 BLBC R0,EXIT1 ; Quit on error
 $CONNECT RAB=INRAB ; Connect to input
 BLBC R0,EXIT2 ; Quit on error
 MOVL INFAB+FAB$L_ALQ,- ; Set proper size
 OUTFAB+FAB$L_ALQ ; for output
 $CREATE FAB=OUTFAB ; Create output file
 BLBC R0,EXIT3 ; Quit on error
 $CONNECT RAB=OUTRAB ; Connect to output
 BLBC R0,EXIT4 ; Quit on error
;
; Copy loop
;
READ: $READ RAB=INRAB ; Get a block
 BLBS R0,WRITE ; Write the block
 CMPL R0,#RMS$_EOF ; Was error end-of-file?
 BEQL DONE ; Successful completion
 BRB EXIT2 ; If not, signal error
WRITE: MOVW INRAB+RAB$W_RSZ, - ; Set the record size
 OUTRAB+RAB$W_RSZ ; for output
 $WRITE RAB=OUTRAB ; Write the block
 BLBC R0,EXIT4 ; Quit on error
 BRB READ ; Go back for more
;
; Error Signaling
;
EXIT1: MOVL INFAB+FAB$L_STS,R2 ; Move STS into R2
 MOVL INFAB+FAB$L_STV,R3 ; Move STV into R3
 BRB EXIT ; Signal error
EXIT2: MOVL INRAB+RAB$L_STS,R2 ; Move STS into R2
 MOVL INRAB+RAB$L_STV,R3 ; Move STV into R3
 BRB EXIT ; Signal error
EXIT3: MOVL OUTFAB+FAB$L_STS,R2 ; Move STS into R2
 MOVL OUTFAB+FAB$L_STV,R3 ; Move STV into R3
 BRB EXIT ; Signal error
EXIT4: MOVL OUTRAB+RAB$L_STS,R2 ; Move STS into R2
 MOVL OUTRAB+RAB$L_STV,R3 ; Move STV into R3
 BRB EXIT ; Signal error
;
; Close files and exit
;
DONE: $CLOSE FAB=INFAB ; Close input and
 $CLOSE FAB=OUTFAB ; output files
 RET ; Return w/ success in R0
EXIT: PUSHL R3 ; Push STV and STS
 PUSHL R2 ; on stack
 CALLS #2, G^LIB$SIGNAL ; Signal error

380

Appendix B. VAX MACRO Programming Information and Examples

 RET ; Return w/ status in R0
 .END BLOCKIO

This example program uses block I/O to transfer the contents of the input file to the output file. The
following program data statements specify block I/O read operations from the input file by setting the
FAB$V_BIO bit (block I/O) and the FAB$V_GET bit (read) in the FAB$B_FAC field of the input
file's FAB:

INFAB: $FAB FNM = <INFILE>, - ;Input file name
 FAC = <BIO,GET>,-

The following data statements specify block I/O write operations to the output file by setting the
FAB$V_BIO bit (block I/O) and the FAB$V_PUT bit (write) in the FAB$B_FAC field of the output
file's FAB:

OUTFAB: $FAB FNM = <INFILE>, - ;Output file name
 FAC = <BIO,PUT>,-

The input file's contents are copied until the end of file is encountered. Any errors are signaled with
the convention of using both the STS and STV fields of the appropriate control block.

381

Appendix B. VAX MACRO Programming Information and Examples

382

	VSI OpenVMS Record Management Services Reference Manual
	Table of Contents
	Preface
	1. About VSI
	2. Intended Audience
	3. Document Structure
	4. Related Documents
	5. VSI Encourages Your Comments
	6. How To Order Additional Documentation
	7. Typographycal Conventions

	Part I. OpenVMS Record Management Services (RMS)—General Information
	Chapter 1. Introduction to RMS
	1.1. RMS Functions
	1.2. Passing Arguments to RMS
	1.2.1. Record Management Services and Control Blocks
	1.2.2. Control Blocks for File Services
	1.2.3. Control Blocks for Record Services
	1.2.4. Dual Purpose of Control Blocks

	Chapter 2. RMS Program Interface
	2.1. RMS Run-Time Environment
	2.2. Conventions for Naming Fields
	2.3. RMS Calling Sequence
	2.4. Service Completion
	2.4.1. Illformed Calls to RMS
	2.4.2. Setting Synchronous or Asynchronous Option
	2.4.3. Synchronous Completion
	2.4.4. Asynchronous Completion
	2.4.5. Status Code Testing
	2.4.6. Types of Errors

	2.5. Allowable Program Execution Modes
	2.6. Access-Mode Protected Memory
	2.7. Reserved Event Flags
	2.8. DEC Multinational Character Set

	Chapter 3. Implementing RMS from C Programs
	3.1. Creating, Accessing, and Deaccessing a File
	3.1.1. Example of Copying Records from One File to Another File

	3.2. Program to Illustrate Record Operations
	3.3. Program to Show Index Root Levels
	3.4. Program to Illustrate Using NAML Blocks (Alpha Only)
	3.5. Program to Illustrate Using the RAB64 Structure

	Part II. RMS Control Blocks
	Chapter 4. File Access Block (FAB)
	4.1. Summary of Fields
	4.2. FAB$B_ACMODES Field
	4.3. FAB$L_ALQ Field
	4.4. FAB$B_BID Field
	4.5. FAB$B_BKS Field
	4.6. FAB$B_BLN Field
	4.7. FAB$W_BLS Field
	4.8. FAB$V_CHAN_MODE Subfield
	4.8.1. Override Value
	4.8.2. Channel Access Mode Function

	4.9. FAB$L_CTX Field
	4.10. FAB$W_DEQ Field
	4.11. FAB$L_DEV Field
	4.12. FAB$L_DNA Field
	4.13. FAB$B_DNS Field
	4.14. FAB$B_FAC Field
	4.15. FAB$L_FNA Field
	4.16. FAB$B_FNS Field
	4.17. FAB$L_FOP Field
	4.18. FAB$B_FSZ Field
	4.19. FAB$W_GBC Field
	4.20. FAB$W_IFI Field
	4.21. FAB$B_JOURNAL Field
	4.22. FAB$V_LNM_MODE Subfield
	4.23. FAB$L_MRN Field
	4.24. FAB$W_MRS Field
	4.25. FAB$L_NAM Field
	4.26. FAB$B_ORG Field
	4.27. FAB$B_RAT Field
	4.28. FAB$B_RFM Field
	4.29. FAB$B_RTV Field
	4.30. FAB$L_SDC Field
	4.31. FAB$B_SHR Field
	4.32. FAB$L_STS Field
	4.33. FAB$L_STV Field
	4.34. FAB$L_XAB Field

	Chapter 5. Name Block (NAM)
	5.1. Summary of Fields
	5.2. File Specification Component Descriptors
	5.3. NAM$B_BID Field
	5.4. NAM$B_BLN Field
	5.5. NAM$B_DEV and NAM$L_DEV Fields
	5.6. NAM$W_DID Field
	5.7. NAM$B_DIR and NAM$L_DIR Fields
	5.8. NAM$T_DVI Field
	5.9. NAM$L_ESA Field
	5.10. NAM$B_ESL Field
	5.11. NAM$B_ESS Field
	5.12. NAM$W_FID Field
	5.13. NAM$W_FIRST_WILD_DIR Field
	5.14. NAM$L_FNB Field
	5.15. NAM$W_LONG_DIR_LEVELS Field
	5.16. NAM$B_NAME and NAM$L_NAME Fields
	5.17. NAM$B_NMC
	5.18. NAM$B_NODE and NAM$L_NODE Fields
	5.19. NAM$B_NOP Field
	5.20. NAM$L_RLF Field
	5.21. NAM$L_RSA Field
	5.22. NAM$B_RSL Field
	5.23. NAM$B_RSS Field
	5.24. NAM$B_TYPE and NAM$L_TYPE Fields
	5.25. NAM$B_VER and NAM$L_VER Fields
	5.26. NAM$L_WCC Field

	Chapter 6. Long Name Block (NAML)
	6.1. Using the NAM and NAML Block
	6.2. Summary of Fields
	6.3. Validating the NAML Block
	6.4. NAML$B_BID Field
	6.5. NAML$B_BLN Field
	6.6. NAML$L_FILESYS_NAME Field
	6.7. NAML$L_FILESYS_NAME_ALLOC Field
	6.8. NAML$L_FILESYS_NAME_SIZE Field
	6.9. NAML$L_INPUT_FLAGS Field
	6.10. NAML$L_LONG_DEFNAME and NAML$L_LONG_DEFNAME_SIZE Fields
	6.11. NAML$L_LONG_DEV and NAML$L_LONG_DEV_SIZE Fields
	6.12. NAML$L_LONG_DIR and NAML$L_LONG_DIR_SIZE Fields
	6.13. NAML$L_LONG_EXPAND Field
	6.14. NAML$L_LONG_EXPAND_ALLOC Field
	6.15. NAML$L_LONG_EXPAND_SIZE Field
	6.16. NAML$L_LONG_FILENAME and NAML$L_LONG_FILENAME_SIZE Fields
	6.17. NAML$L_LONG_NAME and NAML$L_LONG_NAME_SIZE Fields
	6.18. NAML$L_LONG_NODE and NAML$L_LONG_NODE_SIZE Fields
	6.19. NAML$L_LONG_RESULT Field
	6.20. NAML$L_LONG_RESULT_ALLOC Field
	6.21. NAML$L_LONG_RESULT_SIZE Field
	6.22. NAML$L_LONG_TYPE and NAML$L_LONG_TYPE_SIZE Fields
	6.23. NAML$L_LONG_VER and NAML$L_LONG_VER_SIZE Fields
	6.24. NAML$L_OUTPUT_FLAGS Field
	6.25. NAML$Q_USER_CONTEXT Field

	Chapter 7. Record Access Block (RAB)
	7.1. Summary of Fields
	7.2. RAB$B_BID Field
	7.3. RAB$L_BKT Field
	7.4. RAB$B_BLN Field
	7.5. RAB$L_CTX Field
	7.6. RAB$L_FAB Field
	7.7. RAB$W_ISI Field
	7.8. RAB$L_KBF Field
	7.9. RAB$B_KRF Field
	7.10. RAB$B_KSZ Field
	7.11. RAB$B_MBC Field
	7.12. RAB$B_MBF Field
	7.13. RAB$L_PBF Field
	7.14. RAB$B_PSZ Field
	7.15. RAB$B_RAC Field
	7.16. RAB$L_RBF Field
	7.17. RAB$W_RFA Field
	7.18. RAB$L_RHB Field
	7.19. RAB$L_ROP Field
	7.20. RAB$W_ROP_2 Field
	7.21. RAB$W_RSZ Field
	7.22. RAB$L_STS Field
	7.23. RAB$L_STV Field
	7.24. RAB$B_TMO Field
	7.25. RAB$L_UBF Field
	7.26. RAB$W_USZ Field
	7.27. RAB$L_XAB Field

	Chapter 8. 64-Bit Record Access Block (RAB64)
	8.1. Summary of Fields
	8.2. RAB64$Q_CTX Field
	8.3. RAB64$PQ_KBF Field
	8.4. RAB64$PQ_RBF Field
	8.5. RAB64$PQ_RHB Field
	8.6. RAB64$Q_RSZ Field
	8.7. RAB64$PQ_UBF Field
	8.8. RAB64$Q_USZ Field

	Chapter 9. Allocation Control XAB (XABALL)
	9.1. Summary of Fields
	9.2. XAB$B_AID Fields
	9.3. XAB$B_ALN Field
	9.4. XAB$L_ALQ Field
	9.5. XAB$B_AOP Field
	9.6. XAB$B_BKZ Field
	9.7. XAB$B_BLN Field
	9.8. XAB$B_COD Field
	9.9. XAB$W_DEQ Field
	9.10. XAB$L_LOC Field
	9.11. XAB$L_NXT Field
	9.12. XAB$W_RFI Field
	9.13. XAB$W_VOL Field

	Chapter 10. Date and Time XAB (XABDAT)
	10.1. Summary of Fields
	10.2. XAB$Q_BDT Field
	10.3. XAB$B_BLN Field
	10.4. XAB$Q_CDT Field
	10.5. XAB$B_COD Field
	10.6. XAB$Q_EDT Field
	10.7. XAB$L_NXT Field
	10.8. XAB$Q_RDT Field
	10.9. XAB$W_RVN Field
	10.10. XAB$Q_RCD Field (VAX Only)
	10.11. XAB$Q_EFF Field (VAX Only)
	10.12. POSIX–Compliant Access Dates (Alpha Only)
	10.12.1. XAB$Q_ACC Field
	10.12.2. XAB$Q_ATT Field
	10.12.3. XAB$Q_MOD Field

	Chapter 11. File Header Characteristic XAB (XABFHC)
	11.1. Summary of Fields
	11.2. XAB$B_ATR Field
	11.3. XAB$B_BKZ Field
	11.4. XAB$B_BLN Field
	11.5. XAB$B_COD Field
	11.6. XAB$W_DXQ Field
	11.7. XAB$L_EBK Field
	11.8. XAB$W_FFB Field
	11.9. XAB$W_GBC Field
	11.10. XAB$L_HBK Field
	11.11. XAB$B_HSZ Field
	11.12. XAB$W_LRL Field
	11.13. XAB$W_MRZ Field
	11.14. XAB$L_NXT Field
	11.15. XAB$B_RFO Field
	11.16. XAB$L_SBN Field
	11.17. XAB$W_VERLIMIT Field

	Chapter 12. Item List XAB (XABITM)
	12.1. Summary of Fields
	12.1.1. XAB$B_BLN Field
	12.1.2. XAB$B_COD Field
	12.1.3. XAB$L_ITEMLIST Field
	12.1.4. XAB$B_MODE Field
	12.1.5. XAB$L_NXT Field

	12.2. Network File Access Items (XAB$_NET_... and XAB$_CAP_...)
	12.3. File User Characteristics Items (XAB$_UCHAR_...)
	12.4. RMS Performance Monitoring (XAB$_STAT_ENABLE)
	12.5. Compound Document Support (XAB$_..._SEMANTICS)
	12.6. Specifying the Number of Local Buffers (XAB$_MULTIBUFFER_COUNT)
	12.7. Expiration Date and Time Suppression
	12.7.1. XAB$_NORECORD XABITM
	12.7.2. Application

	12.8. File Length Hint (XAB$_FILE_LENGTH_HINT)
	12.9. Extended File Cache (XAB$_CACHE_OPTIONS) (Alpha Only)
	12.10. POSIX-Compliant Access Dates (Alpha Only)

	Chapter 13. Journaling XAB (XABJNL)
	Chapter 14. Key Definition XAB (XABKEY)
	14.1. Summary of Fields
	14.2. XAB$B_BLN Field
	14.3. XAB$B_COD Field
	14.4. XAB$L_COLNAM Field
	14.5. XAB$L_COLSIZ Field
	14.6. XAB$L_COLTBL Field
	14.7. XAB$B_DAN Field
	14.8. XAB$B_DBS Field
	14.9. XAB$W_DFL Field
	14.10. XAB$B_DTP Field
	14.11. XAB$L_DVB Field
	14.12. XAB$B_FLG Field
	14.13. XAB$B_IAN Field
	14.14. XAB$B_IBS Field
	14.15. XAB$W_IFL Field
	14.16. XAB$L_KNM Field
	14.17. XAB$B_LAN Field
	14.18. XAB$B_LVL Field
	14.19. XAB$W_MRL Field
	14.20. XAB$B_NSG Field
	14.21. XAB$B_NUL Field
	14.22. XAB$L_NXT Field
	14.23. XAB$W_POS0 Through XAB$W_POS7 Field
	14.24. XAB$B_PROLOG Field
	14.25. XAB$B_REF Field
	14.26. XAB$L_RVB Field
	14.27. XAB$B_SIZ0 Through XAB$B_SIZ7 Field
	14.28. XAB$B_TKS Field

	Chapter 15. Protection XAB (XABPRO)
	15.1. Summary of Fields
	15.2. XAB$L_ACLBUF Field
	15.3. XAB$L_ACLCTX Field
	15.4. XAB$W_ACLLEN Field
	15.5. XAB$W_ACLSIZ Field
	15.6. XAB$L_ACLSTS Field
	15.7. XAB$B_BLN Field
	15.8. XAB$B_COD Field
	15.9. XAB$W_GRP Field
	15.10. XAB$W_MBM Field
	15.11. XAB$B_MTACC Field
	15.12. XAB$L_NXT Field
	15.13. XAB$W_PRO Field
	15.14. XAB$B_PROT_OPT Field
	15.15. XAB$L_UIC Field

	Chapter 16. Revision Date and Time XAB (XABRDT)
	16.1. Summary of Fields
	16.2. XAB$B_BLN Field
	16.3. XAB$B_COD Field
	16.4. XAB$L_NXT Field
	16.5. XAB$Q_RDT Field
	16.6. XAB$W_RVN Field

	Chapter 17. Recovery Unit XAB (XABRU)
	Chapter 18. Summary XAB (XABSUM)
	18.1. Summary of Fields
	18.2. XAB$B_BLN Field
	18.3. XAB$B_COD Field
	18.4. XAB$B_NOA Field
	18.5. XAB$B_NOK Field
	18.6. XAB$L_NXT Field
	18.7. XAB$W_PVN Field

	Chapter 19. Terminal XAB (XABTRM)
	19.1. Summary of Fields
	19.2. XAB$B_BLN Field
	19.3. XAB$B_COD Field
	19.4. XAB$L_ITMLST Field
	19.5. XAB$W_ITMLST_LEN Field
	19.6. XAB$L_NXT Field

	Part III. OpenVMS RMS Services
	$CLOSE
	$CONNECT
	$CREATE
	$DELETE
	$DISCONNECT
	$DISPLAY
	$ENTER
	$ERASE
	$EXTEND
	$FIND
	$FLUSH
	$FREE
	$GET
	$NXTVOL
	$OPEN
	$PARSE
	$PUT
	$READ
	$RELEASE
	$REMOVE
	$RENAME
	$REWIND
	$SEARCH
	$SPACE
	$TRUNCATE
	$UPDATE
	$WAIT
	$WRITE

	Appendix A. RMS Control Block Macros
	$FAB
	$FAB_STORE
	$NAM
	$NAM_STORE
	$NAML
	$NAML_STORE
	$RAB
	$RAB_STORE
	$RAB64 (Alpha Only)
	$RAB64_STORE (Alpha Only)
	$XABALL
	$XABALL_STORE
	$XABDAT
	$XABDAT_STORE
	$XABFHC
	$XABFHC_STORE
	$XABITM
	$XABKEY
	$XABKEY_STORE
	$XABPRO
	$XABPRO_STORE
	$XABRDT
	$XABRDT_STORE
	$XABSUM
	$XABSUM_STORE
	$XABTRM
	$XABTRM_STORE

	Appendix B. VAX MACRO Programming Information and Examples
	B.1. RMS Macros
	B.1.1. Conventions for Naming RMS Macros
	B.1.2. Applicable VAX MACRO Syntax Rules

	B.2. Using the RMS Macros
	B.2.1. Control Block Initialization Macros
	B.2.2. Control Block Symbol Definition Macros
	B.2.3. Control Block Store Macros
	B.2.4. Service Macros

	B.3. VAX MACRO Example Programs
	B.3.1. Creating, Accessing, and Deaccessing a File
	B.3.2. Example of Opening and Creating Files
	B.3.3. Example of Creating a Multiple-Key Indexed File
	B.3.4. Processing File Specifications
	B.3.5. Connecting and Disconnecting Record Streams
	B.3.6. Other File-Processing Operations
	B.3.7. Retrieving and Inserting Records
	B.3.8. Deleting Records
	B.3.9. Updating Records
	B.3.10. Using Block I/O
	B.3.11. Mixed Block and Record I/O
	B.3.12. Next Block Pointer (NBP)

