
VSI OpenVMS

Linker Utility Manual

Document Number: DO–DLKRRM–01A

Publication Date: August 2019

This manual describes the OpenVMS Linker utility. The linker creates images
containing binary code and data that run on OpenVMS x86-64, OpenVMS I64,
OpenVMS Alpha, or OpenVMS VAX systems. These images are primarily executable
images activated at the DCL command line. The linker also creates shareable
images that can be called by executable or by other shareable images.

Revision Update Information: This is a new manual.

Operating System and Version: VSI OpenVMS x86-64 Version 9.0
VSI OpenVMS I64 Version 8.4-1H1
VSI OpenVMS Alpha 8.4-2L1

VMS Software, Inc., (VSI)
Bolton, Massachusetts, USA

Linker Utility Manual:

Copyright © 2019 VMS Software, Inc. (VSI), Bolton, Massachusetts, USA

Legal Notice

Confidential computer software. Valid license from VSI required for possession, use or copying. Consistent with FAR 12.211 and 12.212,
Commercial Computer Software, Computer Software Documentation, and Technical Data for Commercial Items are licensed to the U.S.
Government under vendor's standard commercial license.

The information contained herein is subject to change without notice. The only warranties for VSI products and services are set forth in the
express warranty statements accompanying such products and services. Nothing herein should be construed as constituting an additional
warranty. VSI shall not be liable for technical or editorial errors or omissions contained herein.

HPE, HPE Integrity, HPE Alpha, and HPE Proliant are trademarks or registered trademarks of Hewlett Packard Enterprise.

Intel, Itanium, and IA-64 are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States and other
countries.

UNIX is a registered trademark of The Open Group.

The VSI OpenVMS documentation set is available on DVD.

ii

Linker Utility Manual

Preface .. ix
1. About VSI ... ix
2. Intended Audience ... ix
3. Document Structure ... ix
4. Related Documents ... x
5. VSI Encourages Your Comments ... x
6. How to Order Additional Documentation ... x
7. Typographical Conventions ... x

Chapter 1. Introduction .. 1
1.1. Overview ... 1

1.1.1. Terminology Used in this Manual .. 1
1.1.2. Linker Overview ... 2
1.1.3. Linker Functions ... 4
1.1.4. Using the Linker ... 4

1.2. Specifying Input to the Linker .. 6
1.2.1. Object Modules as Linker Input Files ... 7
1.2.2. Shareable Images as Linker Input Files .. 7

1.2.2.1. Including a Shareable Image in a Link Operation 8
1.2.2.2. Installing a Shareable Image .. 9

1.2.3. Library Files as Linker Input Files ... 9
1.2.3.1. Creating a Library File .. 9
1.2.3.2. Including a Library File in a Link Operation .. 10

1.2.4. Symbol Table Files as Linker Input Files (VAX Only) 11
1.2.5. Options Files as Linker Input Files ... 11

1.3. Specifying Linker Output Files ... 13
1.3.1. Creating an Executable Image .. 14
1.3.2. Creating a Shareable Image .. 14
1.3.3. Creating a System Image (Alpha and VAX) .. 14
1.3.4. Creating a Symbol Table File ... 15
1.3.5. Creating a Map File ... 15
1.3.6. Creating a Debug Symbol File (64-Bit Systems) ... 16

1.4. Controlling a Link Operation .. 16
1.4.1. Linker Qualifiers ... 16
1.4.2. Link Options ... 19

1.5. Linking for Different Architectures (Alpha and VAX) .. 21
Chapter 2. Understanding Symbol Resolution (x86-64 and I64) 23

2.1. Overview ... 23
2.1.1. Types of Symbols .. 23

2.1.1.1. Understanding Strong and Weak Symbols .. 24
2.1.1.2. Group Symbols ... 24
2.1.1.3. The C Extern Common Model ... 24
2.1.1.4. Tentative Definitions in C ... 25
2.1.1.5. Considerations for C Language Extensions ... 25

2.1.2. Linker Symbol Resolution Processing ... 25
2.2. Input File Processing for Symbol Resolution ... 29

2.2.1. Processing Object Modules .. 30
2.2.2. Processing Shareable Images .. 32

2.2.2.1. Implicit Processing of Shareable Images .. 34
2.2.3. Processing Library Files ... 34

2.2.3.1. Identifying Library Files Using the /LIBRARY Qualifier 35

iii

Linker Utility Manual

2.2.3.2. Including Specific Modules from a Library Using the /INCLUDE
Qualifier ... 36
2.2.3.3. Processing Default Libraries .. 36

2.2.4. Processing Input Files Selectively ... 37
2.3. Ensuring Correct Symbol Resolution ... 38

2.3.1. Understanding Cluster Creation .. 38
2.3.2. Controlling Cluster Creation ... 40

2.3.2.1. Using the CLUSTER= Option to Control Clustering 40
2.3.2.2. Using the COLLECT= Option to Control Clustering 40

2.4. Resolving Symbols Defined in the OpenVMS Executive .. 41
2.5. Processing Weak and Strong Global Symbols .. 42

2.5.1. Overview of Weak and Strong Global Symbol Processing 42
2.5.1.1. Strong Symbols .. 43
2.5.1.2. VMS-Style Weak Symbols .. 43
2.5.1.3. UNIX-Style Weak Symbols ... 43

2.5.2. Strong and Weak Definitions .. 43
2.5.3. Resolving Strong and Weak Symbols ... 44
2.5.4. Creating and Using VMS-style Weak Symbols .. 45

2.6. Processing VSI C++ Compiler-Generated UNIX-Style Weak and Group Symbols 45
2.6.1. Processing Group Symbols ... 45
2.6.2. VSI C++ Examples .. 46
2.6.3. Compiler-Generated Symbols and Shareable Images .. 48

2.7. Understanding and Fixing DIFTYPE and RELODIFTYPE Linker Conditions (I64
Only) .. 48

Chapter 3. Understanding Image File Creation (x86-64 and I64) 51
3.1. Overview ... 51
3.2. Creating Sections ... 52

3.2.1. Sections Created by The Linker ... 60
3.2.1.1. Sections for Relaxed Symbol Definitions ... 60
3.2.1.2. Sections Embedded in Code Segments (I64 Only) 60
3.2.1.3. Short Data Sections (I64 Only) .. 62
3.2.1.4. Section for the Symbol Vector ... 63
3.2.1.5. Sections that Contain Unwind Data (I64 Only) 64

3.3. Creating Segments .. 64
3.3.1. Processing Clusters to Create Segments .. 65
3.3.2. Combining Sections into Image Segments ... 65
3.3.3. Traditional OpenVMS Image Attribute Terms and ELF Terms 67
3.3.4. Processing Significant Section Attributes .. 67
3.3.5. Allocating Memory for Segments ... 72
3.3.6. Segment Attributes .. 73
3.3.7. Controlling Segment Creation .. 75

3.3.7.1. Modifying Section Attributes ... 75
3.3.7.2. Alternate Way to Modify Section Attributes ... 76
3.3.7.3. Manipulating Cluster Creation ... 77
3.3.7.4. Isolating a Section into a Segment ... 77

3.4. Initializing an Image on x86-64 and I64 Systems ... 78
3.4.1. Handling of Initialized Overlaid Sections .. 78
3.4.2. Writing the Binary Contents of Segments ... 79
3.4.3. Other Image Segments ... 80

3.4.3.1. Global Offset Table Segments (x86-64 Only) ... 80
3.4.3.2. Unwind Segments (I64 Only) .. 80
3.4.3.3. Short Data Segment (I64 Only) ... 80

iv

Linker Utility Manual

3.4.3.4. Signature Segment (I64 Only) ... 80
3.4.3.5. Dynamic Segment ... 81

3.4.4. Keeping the Size of Image Files Manageable .. 83
3.4.4.1. Controlling Demand-Zero Image Segment Creation 84

3.4.5. Creating ELF Sections in the Image File ... 84
3.4.6. Writing the Main Output Files .. 85

Chapter 4. Creating Shareable Images (x86-64 and I64) .. 87
4.1. Overview of Creating Shareable Images on x86-64 and I64 Systems 87
4.2. Declaring Universal Symbols in x86-64 and I64 Shareable Images 88

4.2.1. Symbol Definitions Point to Shareable Image Sections 92
4.2.2. Creating Upwardly Compatible Shareable Images ... 93
4.2.3. Deleting Universal Symbols Without Disturbing Upward Compatibility 94
4.2.4. Creating Run-Time Kits ... 94
4.2.5. Specifying an Alias Name for a Universal Symbol .. 95

4.3. Improving the Performance of Installed Shareable Images .. 95
4.4. Linking User-Written System Services .. 96

Chapter 5. Interpreting an Image Map File (x86-64 and I64) .. 97
5.1. Overview of x86-64/I64 Linker Map ... 97
5.2. Components of an x86-64/I64 Image Map File .. 98

5.2.1. Object and Image Synopsis Section .. 99
5.2.2. Cluster Synopsis Section .. 101
5.2.3. Image Segment Synopsis Section .. 102
5.2.4. Program Section Synopsis Section .. 104
5.2.5. Symbol Cross-Reference Section .. 105
5.2.6. Symbols By Value Section ... 106
5.2.7. Image Synopsis Section ... 107
5.2.8. Link Run Statistics Section .. 108

5.3. Shortened Names with Footnotes in the Cross-Reference .. 109
5.4. Translation Table for Mangled Names ... 110

Chapter 6. Understanding Symbol Resolution (Alpha and VAX) 113
6.1. Overview ... 113

6.1.1. Types of Symbols .. 113
6.1.2. Linker Symbol Resolution Processing ... 114

6.2. Input File Processing for Symbol Resolution .. 117
6.2.1. Processing Object Modules .. 118
6.2.2. Processing Shareable Images .. 120
6.2.3. Processing Library Files ... 122

6.2.3.1. Identifying Library Files Using the /LIBRARY Qualifier 122
6.2.3.2. Including Specific Modules from a Library Using the /INCLUDE
Qualifier ... 123
6.2.3.3. Processing Default Libraries .. 124
6.2.3.4. Open Systems Library Support .. 124

6.2.4. Processing Input Files Selectively ... 125
6.3. Ensuring Correct Symbol Resolution ... 126

6.3.1. Understanding Cluster Creation .. 126
6.3.2. Controlling Cluster Creation ... 127

6.3.2.1. Using the CLUSTER= Option to Control Clustering 127
6.3.2.2. Using the COLLECT= Option to Control Clustering 128

6.4. Resolving Symbols Defined in the OpenVMS Executive .. 128
6.5. Defining Weak and Strong Global Symbols ... 129

v

Linker Utility Manual

Chapter 7. Understanding Image File Creation (Alpha and VAX) 131
7.1. Overview of Creating Images on Alpha/VAX Systems .. 131
7.2. Creating Program Sections (Alpha/VAX) ... 132
7.3. Creating Image Sections ... 138

7.3.1. Processing Clusters to Create Image Sections .. 139
7.3.2. Combining Program Sections into Image Sections ... 140
7.3.3. Processing Significant Program Section Attributes (Alpha/VAX) 141
7.3.4. Allocating Memory for Image Sections ... 146
7.3.5. Image Section Attributes .. 147
7.3.6. Controlling Image Section Creation .. 151

7.3.6.1. Modifying Program Section Attributes ... 151
7.3.6.2. Manipulating Cluster Creation ... 151
7.3.6.3. Isolating a Program Section into an Image Section 152

7.4. Initializing an Image on Alpha/VAX Systems .. 152
7.4.1. Writing the Binary Contents of Image Sections ... 152
7.4.2. Fixing Up Addresses .. 153
7.4.3. Keeping the Size of Image Files Manageable .. 154

7.4.3.1. Controlling Demand-Zero Image Section Creation 154
Chapter 8. Creating Shareable Images (Alpha and VAX) ... 155

8.1. Overview of Creating Shareable Images on Alpha/VAX Systems 155
8.2. Declaring Universal Symbols in VAX Shareable Images ... 156

8.2.1. Creating Upwardly Compatible Shareable Images (VAX Only) 158
8.2.1.1. Creating a Transfer Vector (VAX Only) .. 159
8.2.1.2. Fixing the Location of the Transfer Vector in Your Image (VAX
Only) .. 161

8.2.2. Creating Based Shareable Images (VAX Linking Only) 161
8.3. Declaring Universal Symbols in Alpha Shareable Images ... 161

8.3.1. Symbol Definitions Point to Shareable Image Psects (Alpha Only) 163
8.3.2. Creating Upwardly Compatible Shareable Images (Alpha Only) 164
8.3.3. Deleting Universal Symbols Without Disturbing Upward Compatibility (Alpha
Only) .. 164
8.3.4. Creating Run-Time Kits (Alpha Only) .. 165
8.3.5. Specifying an Alias Name for a Universal Symbol (Alpha Only) 165
8.3.6. Improving the Performance of Installed Shareable Images (Alpha Only) 165

Chapter 9. Interpreting an Image Map File (Alpha and VAX) 167
9.1. Overview of Alpha/VAX Linker Map .. 167
9.2. Components of an Image Map File (Alpha/VAX) ... 168

9.2.1. Object Module Synopsis (Alpha/VAX) .. 169
9.2.2. Module Relocatable Reference Synopsis (VAX Only) 169
9.2.3. Image Section Synopsis Section (Alpha/VAX) ... 170
9.2.4. Program Section Synopsis Section (Alpha/VAX) ... 172
9.2.5. Symbols By Name Section (Alpha/VAX) .. 173
9.2.6. Symbol Cross-Reference Section (Alpha/VAX) ... 174
9.2.7. Symbols By Value Section (Alpha/VAX) .. 174
9.2.8. Image Synopsis Section (Alpha/VAX) ... 175
9.2.9. Link Run Statistics Section (Alpha/VAX) .. 175

Chapter 10. LINK Command Reference .. 177
10.1. LINK Command ... 177
10.2. Qualifier Descriptions ... 178
10.3. Option Descriptions .. 213

vi

Linker Utility Manual

Glossary ... 239

vii

Linker Utility Manual

viii

Preface

1. About VSI
VMS Software, Inc. (VSI) is an independent software company licensed by Hewlett Packard
Enterprise to develop and support the OpenVMS operating system.

VSI seeks to continue the legendary development prowess and customer-first priorities that are so
closely associated with the OpenVMS operating system and its original author, Digital Equipment
Corporation.

2. Intended Audience
Programmers at all levels of experience can use this manual effectively.

3. Document Structure
This book is organized as follows:

Chapter 1 introduces the OpenVMS Linker utility and how to use the LINK command and its
qualifiers and parameters.

Chapter 2 describes how the linker resolves symbolic references among input files on x86-64 and I64
systems.

Chapter 3 describes how the linker creates image files on x86-64 and I64 systems.

Chapter 4 describes how to create shareable images and use them in link operations on x86-64 and I64
systems.

Chapter 5 describes how to interpret linker image maps on x86-64 and I64 systems.

Chapter 6 describes how the linker resolves symbolic references among input files on Alpha and VAX
systems.

Chapter 7 describes how the linker creates image files on Alpha and VAX systems.

Chapter 8 describes how to create shareable images and use them in link operations on Alpha and
VAX systems.

Chapter 9 describes how to interpret linker image maps on Alpha and VAX systems.

Chapter 10 provides reference information that describes the LINK command and its qualifiers and
options.

The Glossary contains a list of important terms to refer to hardware and/or software entities, for the
OpenVMS Linker running on a variety of OpenVMS operating systems and computers.

ix

Preface

4. Related Documents
The following manuals contain related information.

For architecture-specific information, see:

• VAX Architecture Handbook, Digital Equipment Corporation, 1987

• Alpha Architecture Handbook, Digital Equipment Corporation, 1996

• Intel® Itanium® Architecture Software Developer’s Manual, Intel Corporation, 2010

• Intel® 64 and IA-32 Architectures Software Developer Manuals, Intel Corporation, 2019

For information about run-time conventions, see the VSI OpenVMS Calling Standard.

For information on including the debugger in the linking operation and about debugging in general,
see the VSI OpenVMS Debugger Manual.

5. VSI Encourages Your Comments
You may send comments or suggestions regarding this manual or any VSI document by sending
electronic mail to the following Internet address: <docinfo@vmssoftware.com>.

6. How to Order Additional Documentation
For information about how to order additional documentation, email the VSI OpenVMS information
account: <info@vmssoftware.com>. We will be posting links to documentation on our
corporate website soon.

7. Typographical Conventions
The following conventions are used in this manual:

Convention Meaning
Ctrl/x A sequence such as Ctrl/x indicates that you must hold down the key

labeled Ctrl while you press another key or a pointing device button.
PF1 x A sequence such as PF1 x indicates that you must first press and release the

key labeled PF1 and then press and release another key (x) or a pointing
device button.

... A horizontal ellipsis in examples indicates one of the following
possibilities:

• Additional optional arguments in a statement have been omitted.

• The preceding item or items can be repeated one or more times.

• Additional parameters, values, or other information can be entered.
.
.
.

A vertical ellipsis indicates the omission of items from a code example or
command format; the items are omitted because they are not important to
the topic being discussed.

x

Preface

Convention Meaning
() In command format descriptions, parentheses indicate that you must

enclose choices in parentheses if you specify more than one.
[] In command format descriptions, brackets indicate optional choices. You

can choose one or more items or no items. Do not type the brackets on the
command line. However, you must include the brackets in the syntax for
directory specifications and for a substring specification in an assignment
statement.

| In command format descriptions, vertical bars separate choices within
brackets or braces. Within brackets, the choices are optional; within
braces, at least one choice is required. Do not type the vertical bars on the
command line.

{ } In command format descriptions, braces indicate required choices; you
must choose at least one of the items listed. Do not type the braces on the
command line.

bold type Bold type represents the name of an argument, an attribute, or a reason.
Bold type also represents the introduction of a new term.

italic type Italic type indicates important information, complete titles of manuals,
or variables. Variables include information that varies in system output
(Internal error number), in command lines (/PRODUCER=name), and in
command parameters in text (where dd represents the predefined code for
the device type).

UPPERCASE TYPE Uppercase type indicates a command, the name of a routine, the name of a
file, or the abbreviation for a system privilege.

Example This typeface indicates code examples, command examples, and interactive
screen displays. In text, this type also identifies website addresses, UNIX
command and pathnames, PC-based commands and folders, and certain
elements of the C programming language.

- A hyphen at the end of a command format description, command line,
or code line indicates that the command or statement continues on the
following line.

numbers All numbers in text are assumed to be decimal unless otherwise noted.
Nondecimal radices—binary, octal, or hexadecimal—are explicitly
indicated.

xi

Preface

xii

Chapter 1. Introduction
This chapter introduces the OpenVMS Linker utility (the linker), describing its primary functions and
its role in software development. The chapter describes the following:

• Definition of the linker and its main functions

• How to invoke the linker

• How to specify input files in a link operation

• How to specify which output files the linker produces

In addition, this chapter provides an overview of how you can control a link operation by using
qualifiers and options.

1.1. Overview
This section provides a list of key terms used in this manual and an overview of the OpenVMS
Linker.

1.1.1. Terminology Used in this Manual
The OpenVMS Linker utility runs on a variety of OpenVMS operating systems and computers.
Several important terms are used in this manual to refer to these hardware and/or software entities.
The following list defines these terms. For a complete list of linker terminology, see the Glossary.

• system — The computer hardware, the server; distinguish from the operating system (for example,
OpenVMS Alpha).

• platform — The system architecture; includes all systems running (for example, Intel® Itanium®
processors).

• OpenVMS system — An operating system that runs on multiple platforms including x86-64, I64,
Alpha, and VAX.

• OpenVMS x86-64 system (or x86-64 system) — A server running the OpenVMS x86-64
operating environment.

• OpenVMS I64 system (or I64 system) — An HPE Integrity server running the OpenVMS I64
operating environment.

• OpenVMS Alpha system (or Alpha system) — An HPE Alpha system running the OpenVMS
Alpha operating system.

OpenVMS x86-64, OpenVMS I64, and OpenVMS Alpha systems are collectively referred to as the
64-bit systems.

• OpenVMS VAX system (or a VAX system) — An HPE VAX system running the OpenVMS VAX
operating system.

• Executable and Linkable Format (ELF) — The object and image format described in the System
V Application Binary Interface. See the Glossary for a complete definition of this term and
additional terms.

1

Chapter 1. Introduction

x86-64, I64, Alpha, or VAX might be used as prefixes as well. For example:

• x86-64 linking — The process of using the OpenVMS Linker utility to create an
OpenVMS x86-64 image.

• I64 image — An OpenVMS I64 image that includes binary data and Itanium instructions.

• Alpha object file — An OpenVMS Alpha object that includes binary data and Alpha instructions.

1.1.2. Linker Overview
The primary purpose of the linker is to create images. An image is a file containing binary code and
data that can be executed on an OpenVMS system.

On OpenVMS x86-64 and OpenVMS I64 systems, the linker creates only native images—x86-64
images on x86-64 systems, I64 images on I64 systems.

On OpenVMS Alpha and OpenVMS VAX systems, the linker creates native images by default.

On both OpenVMS Alpha and OpenVMS VAX systems, the linker supports /ALPHA and /VAX
qualifiers that allow you to instruct the linker to accept Alpha or VAX object files on each respective
system (see information about these linker qualifiers in Chapter 10). As a result, the linker can create
VAX images on an Alpha system, and vice versa.

The primary type of image the linker creates is an executable image. An executable image can be
activated at the DCL command line by issuing the RUN command. At run-time, the image activator,
which is part of the operating system, opens the image file and reads activation information from the
image to set up process page tables and pass control to the location (transfer address) where image
execution is to begin.

The linker can also create a shareable image. A shareable image is a collection of procedures and
data that can be called by executable images or by other shareable images. A shareable image is
similar to an executable image. The linker separates shareable from nonshareable code and data.
Shareable code and data can be shared via global sections that are set up by the Install utility or by the
image activator.

To use the procedures or data of a shareable image, the shareable image has to be included in a link
operation for another image, either explicitly in a linker option or implicitly from a default shareable
image library. At run-time, when the image activator processes an executable image, it activates all
the shareable images to which the executable image was linked.

The OpenVMS Alpha and OpenVMS VAX linkers can also create a system image, which can be run
as a standalone system. System images generally do not contain image activation information and
are not activated by the image activator. Images without activation information are not defined in the
OpenVMS x86-64 and I64 object languages. As a result, the OpenVMS x86-64 and OpenVMS I64
linkers do not create this special type of image.

The linker creates images by processing the input files you specify. The primary type of input file
that can be specified in a link operation is an object file. Object files that contain one or more object
modules are produced by language processors, such as compilers or assemblers.

The binary code and data in an object module is in a platform-specific format:

• On x86-64 and I64 platforms, the object module (and the resulting image) is in the Executable and
Linkable Format (ELF).

2

Chapter 1. Introduction

• On Alpha platforms, the object module is in the Alpha Object Language format.

• On VAX platforms, the object module is in the VAX Object Language format.

Note

This manual frequently refers to parts of the format of the object language. As such, different
terminology is occasionally used when referring to the same item on different platforms.

For example, on OpenVMS Alpha and VAX systems, the linker collects program sections (generally
called psects) into image sections. Comparatively, on OpenVMS x86-64 and I64 systems the linker
collects sections into segments. Although the names appear similar, there are considerable differences
between the structure and content of an image section on OpenVMS Alpha and VAX compared with a
segment on OpenVMS x86-64 and I64.

OpenVMS I64 compilers also take advantage of a short data section when constructing code with
offsets from the global pointer (GP) register, neither of which are present on OpenVMS Alpha and
VAX.

When the manual refers to a specific part of the object language, distinctions are made as to whether
the reference pertains to the object language used by OpenVMS x86-64, I64, Alpha, or VAX.

The linker also accepts other input files such as shareable images, and on VAX platforms, symbol
table files, which are both products of previous link operations. Section 1.2 provides more information
about all the types of input files accepted by the linker. Section 1.3 provides more information about
the output files created by the linker.

Figure 1.1 illustrates the relationship of the linker to the language processor in the program
development process.

Figure 1.1. Position of the Linker in Program Development

3

Chapter 1. Introduction

1.1.3. Linker Functions
To create an image from the input files you specify, the linker performs the following primary
functions:

• Symbol resolution. Source modules can use symbols to represent the location of a routine entry
point, the location of a data item, or a constant value. A source module may reference symbols
that are defined externally to the module. When a language processor, such as a compiler or
assembler, processes the source module, it cannot find the value of a symbol defined externally to
the module. A language processor flags these externally defined symbols as unresolved symbolic
references and leaves it to the linker to find their definitions among the other input files you
specify. When the linker finds the definition of a symbol, it substitutes the value of the symbol (its
definition) for the reference to the symbol. Chapter 2 (x86-64 and I64) and Chapter 6 (Alpha and
VAX) provide more information about symbol resolution.

• Virtual memory allocation. After resolving symbolic references among the input files, the linker
allocates virtual memory for the image, based on the memory requirements specified by the input
files. Chapter 3 (x86-64 and I64) and Chapter 7 (Alpha and VAX) provide more information about
memory allocation.

• Image initialization. After the linker resolves references and obtains the memory requirements of
the image, it initializes the image by filling it with the compiled binary data and code. The linker
also inserts the actual value of resolved symbols at each instance where the symbol is referenced.

For certain global symbols, the linker does not write their value into the image. For example,
when taken from shareable images, the value of a symbol that represents an address cannot be
determined until run-time; that is, when the image activator loads the image into memory. The
linker lists these symbols in the fix-up information, to which the image activator provides the
actual address at run-time.

When the image activator loads a shareable image in memory and relocates all the symbols in the
shareable image, it must ensure that the other images that reference these symbols in the shareable
image have their correct addresses. Chapter 3 (x86-64 and I64) and Chapter 7 (Alpha and VAX)
provide more information about image initialization.

• Image optimization. For OpenVMS Alpha images, the linker can perform certain optimizations
to improve the run-time performance of the image it is creating. These optimizations include
replacing JSR instruction sequences with the more efficient Branch to Subroutine (BSR)
instruction sequence wherever the language processors specify. For OpenVMS I64 images, the
linker can optimize data references to the short data segment. For more information, see Chapter 3
(I64) and Chapter 7 (Alpha and VAX).

1.1.4. Using the Linker
You start the linker interactively by entering the LINK command together with the appropriate input
file names at the DCL prompt. You can also start the linker by including the LINK command in a
command procedure. For more information about starting the linker, see Chapter 10.

The simple program shown in Example 1.1 prints the greeting “Hello World!” on the terminal.

4

Chapter 1. Introduction

Example 1.1. Hello World! Program (HELLO.C)

#include
<stdio.h>main() {
 printf("Hello World!\n");
}

To run this program, you must first compile the source file to create an object module. To compile this
VSI C example, invoke the appropriate VSI C compiler to create an object module, as in the following
example:

$ CC HELLO

During compilation, the compiler translates the statements in the source file into machine instructions
and groups portions of the program into program sections according to their memory use and other
characteristics. In addition, the compiler lists all the global symbols defined in the module and
referenced by the module in the symbol table. In Alpha and VAX object modules, this table is also
called a global symbol directory (GSD). In Example 1.1, the printf routine is referenced by
the module but is not defined in it. The printf routine is defined in the VSI C Run-Time Library
(DECC$SHR).

To create an executable image, you usually link the object file produced by the compiler, as in the
following example:

$ LINK HELLO

By default, the linker processes DECC$SHR because it resides in the default system shareable image
library [IMAGELIB.OLB]. Because of this, you do not need to specify this as input unless you are
changing the behavior of the default library scans (for example, linking with /NOSYSLIB). See
Section 2.2.3.3 (x86-64 and I64) and Section 6.2.3.3 (Alpha and VAX) for more information about
how the linker processes default system libraries.

The linker processes the input files you specify in two passes. In its first pass through the input files,
the linker resolves symbolic references between the modules. Because the linker processes different
types of input files in different ways, the order in which you specify input files can affect symbol
resolution. Chapter 2 (x86-64 and I64) and Chapter 6 (Alpha and VAX) provide more information
about this topic.

After performing symbol resolution and determining all the input modules necessary to create the
image, the linker ascertains the memory requirements of the image based on the memory requirements
of the input files. The compilers have specified the memory requirements of the object modules as
program section attributes.

On Alpha and VAX systems, the linker gathers together program sections with similar attributes into
image sections. At activation time, the image activator reads the memory requirements of the image
that the linker has stored in the image file by processing the list of image section descriptors (ISDs)
and begins to set up the image for execution. Chapter 7 provides more information about Alpha and
VAX image creation.

On x86-64 and I64 systems, the linker gathers ELF sections with similar attributes into ELF segments.
At run-time, the image activator reads the memory requirements of the image that the linker has
stored in the image file by processing the segments. Chapter 3 provides more information about
creation of x86-64 and I64 images.

If the image that results from the link operation is an executable image, it can be executed at the DCL
command line. The following example illustrates how to execute the program in Example 1.1:

5

Chapter 1. Introduction

$ RUN HELLO
Hello World!

Note that a LINK command required to create a real application, unlike the Hello World! example,
can involve specifying hundreds of input files of various types.

As with most other DCL commands, the LINK command supports numerous qualifiers with which
you can control various aspects of a link operation. The linker also supports linker options, which you
can use to further control a link operation. Linker options can be specified in an options file, which is
then specified as an input file in a link operation. Section 1.2.5 describes the benefits of using options
files and describes how to create them. Chapter 10 provides descriptions of the qualifiers and options
supported by the linker. Section 1.4 contains a summary table of these qualifiers and options.

1.2. Specifying Input to the Linker
You specify the files you want the linker to process on the LINK command line or in a linker options
file. (Library files may also be specified as a user library, which the linker processes by default). You
must specify at least one input file in every link operation and, in every link operation, at least one
input file must be an object module. Table 1.1 lists the different types of input files accepted by the
linker, along with their default file types. (The defaults are used on all OpenVMS platforms). The
table also describes how you can specify the file in a link operation.

Table 1.1. Input Files Accepted by the Linker

File Default File
Type

Description

Object file .OBJ Created by a language processor. May be specified on the
LINK command line or in a linker options file. This is the
default input file accepted by the linker.

Shareable image .EXE Produced by a previous link operation. Must be specified in
a linker options file; you cannot specify a shareable image
as an input file on the command line. Identify the input
file as a shareable image by appending the /SHAREABLE
qualifier to the file specification.

Library file .OLB Produced by the Librarian utility. May contain object
modules or shareable images. May be specified on the
LINK command line, in a linker options file, or as a default
user library processed by the linker. Identify the input file
as a library file by appending the /LIBRARY qualifier to
the library file specification. You can also include specific
modules from a library in a link operation by appending
the /INCLUDE qualifier to the library file specification.

Symbol table file .STB Produced by a previous link operation or a language
processor. May be specified on the LINK command line or
in an options file. Because a symbol table file is processed
as an object module, it requires no identifying qualifier.

Note that symbol table files produced by the linker during
x86-64, I64, and Alpha links cannot be specified as input
files in a link operation. They are intended to be used only
as an aid to debugging with the System Dump Analyzer
utility (see Section 1.2.4 for more information).

6

Chapter 1. Introduction

File Default File
Type

Description

Options file .OPT Text file containing link option specifications or link input
file specifications. May be specified only on the command
line; you cannot specify an options file inside another
options file. Identify the input file as an options file by
appending the /OPTIONS qualifier to the end of the file
specification.

Only object files and image files of the same architecture can be combined to create an image.

Note

OpenVMS VAX images can run as translated images on OpenVMS Alpha and I64 systems. Similarly,
OpenVMS Alpha images can run as translated images on I64 systems. Translated images can
interoperate with native OpenVMS images.

For information about migrating applications from VAX to Alpha, see Migrating an Application from
OpenVMS VAX to OpenVMS Alpha.

For information about migrating applications from Alpha to I64, see Porting Applications from VSI
OpenVMS Alpha to VSI OpenVMS Industry Standard 64 for Integrity Servers.

1.2.1. Object Modules as Linker Input Files
When a language processor translates a source language program, it produces an output file that
contains one or more object modules. This output file, called an object file, has the default file type
of .OBJ and is the primary form of linker input. At least one object file must be specified in any link
operation. An object file may be specified in the command line or in an options file.

For example, in Example 1.1, the only input file specified on the LINK command line is the object
module named HELLO.OBJ (the .OBJ file type does not need to be specified because it is the
default):

$ LINK HELLO

The linker processes the entire contents of an object file, that is, every object module in the file. It
cannot selectively process object modules within an object file. The linker can process object modules
selectively in an object module library (.OLB) file only.

You cannot examine an object module by using a text editor. The only way to examine an object file is
by using the ANALYZE/OBJECT utility. This utility produces a report that lists the records that make
up the object module. This report is primarily useful to compiler writers. For information about using
the ANALYZE command, see the VSI OpenVMS DCL Dictionary.

1.2.2. Shareable Images as Linker Input Files
In order to execute code or reference data from a shareable image, the image must first be referenced
by another image. That is, a shareable image can serve as input to a link operation for that image. To
provide useful input for a link operation, the shareable image offers symbols (for example, procedure
names) that are external to the other input modules of the image. As a result, when the image is run,
the image activator activates the shareable image at the same time so that code and data from the
shareable image can be referenced.

7

Chapter 1. Introduction

Note

Another method for referencing a shareable image is to dynamically activate the image by calling
LIB$FIND_IMAGE_SYMBOL and passing one of its symbols. For more information, see the VSI
OpenVMS RTL Library (LIB$) Manual.

A shareable image file consists of activation information, image binaries (code and data), and a
symbol table. This symbol table contains definitions of universal symbols exported by the shareable
image. A universal symbol is to a shareable image what a global symbol is to a module. That is,
where a global symbol can be used to satisfy references external to an object module, a universal
symbol can be used to satisfy references external to the shareable image.

Shareable images can provide the following benefits:

• Reducing total link processing time. Because the linker needs only to read the activation
information and to process the symbol table in a shareable image, it takes less time for the linker
to process a shareable image. The linker does not have to resolve symbolic references within the
shareable image, sort program sections into the image, or initialize the image contents as it does
when processing object modules.

• Avoiding relinking entire applications. You can create a shareable image that can be modified,
recompiled, and relinked without causing the images that were linked against previous versions of
the shareable image to be relinked. This is called upward compatibility. For more information
about this topic, see Chapter 4 (x86-64 and I64) and Chapter 8 (Alpha and VAX).

• Conserving disk space. Because many different executable images can be linked against the
same shareable image, it is necessary to keep only a single copy of the shareable image on the
disk. (Images that are linked with shareable images do not actually contain a copy of the shareable
image).

• Conserving physical memory. Because the system can map the shareable pages of an installed
shareable image into the address space of many processes, each process does not need to have its
own copy of these pages. Note that, to achieve this benefit, the shareable image must be installed
using the Install utility, specifying the /SHARED qualifier.

• Reduction of paging I/O. Because a page in an installed shareable image may be mapped into the
working set of several processes, it is more likely to be in physical memory, reducing paging I/O.
Note that, to achieve this benefit, the shareable image must be installed using the Install utility,
specifying the /SHARED qualifier.

• Implementing memory-resident databases. Because installed shareable images are memory
resident, they simplify the implementation of applications, such as data acquisition and control
systems, where response times are so critical that control variables and data readings must remain
in main memory.

1.2.2.1. Including a Shareable Image in a Link Operation
To include a shareable image in a link operation, you must specify the shareable image in an options
file, identifying the input file as a shareable image by appending the /SHAREABLE qualifier to the
file specification. You cannot specify a shareable image as an input file on the LINK command line.
The following example illustrates an options file, named MY_OPTIONS_FILE.OPT, that contains
an input file specification of the shareable image (the .EXE file type does not need to be specified
because it is the default):
MY_SHARE/SHAREABLE

8

Chapter 1. Introduction

The following example illustrates the LINK command in which the options file is specified. For more
information about creating and using shareable images, see Chapter 4 (x86-64 and I64) and Chapter 8
(Alpha and VAX). Note that the default file types for the options file and the object module do not
need to be specified.
$ LINK MY_MAIN_PROGRAM,MY_OPTIONS_FILE/OPTIONS

By default, if you do not specify the device and directory in the file specification, the linker looks for
shareable images in your default device and directory.

You link against shareable images in a shareable image library by specifying the library on the LINK
command line or in a linker options file, identifying the file as a library by appending the /LIBRARY
qualifier to the library file specification. You can include specific shareable images from the library in
the link operation by appending the /INCLUDE qualifier to the library file specification, specifying
which shareable images you want to include as parameters. For more information about specifying
library files in a link operation, see Section 1.2.3. By default, the linker looks for user library files in
the current default directory.

Note that images that link against shareable images do not contain the shareable image but only a
reference to it. When the executable image is activated, the image activator activates all the shareable
images to which it has been linked. By default, each image maps its own copy of the shareable
image's pages.

1.2.2.2. Installing a Shareable Image
If you install the shareable image (using the Install utility), all processes can share the same physical
copy of the shareable image in memory. To take advantage of this feature, you must specify the
ADD subcommand and the /SHARED qualifier on the INSTALL command line, as in the following
example:
$ INSTALL ADD/SHARED WORK:[PROGRAMS]MY_SHARE.EXE

The system creates a set of global sections for the portions of the shareable image that can be shared.
The system can map these portions as global sections into the address space of multiple processes. For
portions of the image that are not shareable, each process gets a private copy at image activation time.
For help in creating an image on x86-64 and I64 systems, see Chapter 3. For similar information on
Alpha and VAX systems, see Chapter 7.

If you do not install the shareable image specifying the /SHARED qualifier, each process receives
a private copy of the image. For information about installing images, see the VSI OpenVMS System
Manager's Manual.

1.2.3. Library Files as Linker Input Files
A library file is a file produced by the Librarian utility (default file type is .OLB). The linker accepts
object module libraries and shareable image libraries as input files.

1.2.3.1. Creating a Library File
You create a library by specifying the /CREATE qualifier with the LIBRARY command. In the
following example, the object module MY_PROG.OBJ is inserted into the library MY_LIB.OLB:
$ LIBRARY/CREATE/INSERT MY_LIB MY_PROG

A library file contains a library header and a name table. A library name table lists all of the global
symbols in all of the modules and shareable images inserted in the library and associates the name of
the symbol with the name of the module or shareable image in which it is defined.

9

Chapter 1. Introduction

Object module libraries contain copies of the object module. Shareable image libraries contain only
the names of the shareable images. However, both object and shareable image libraries contain a name
table, each entry associated with a definition in an object module or shareable image. Note that this is
not the full symbol table of a module or a shareable image.

You cannot examine a library file using a text editor. To find out which modules a library contains,
start the Librarian utility with the /LIST qualifier. The Librarian utility lists the symbols defined
in these modules if you also specify the /NAMES qualifier. In the following example, the library
MYMATH_LIB.OLB contains the object module MYMATHROUTS.OBJ, which contains the
definitions of the symbols myadd, mysub, mydiv, and mymul:

$ LIBRARIAN/LIST/NAMES MYMATH_LIB
Directory of ELF OBJECT library WORK:[PROGS]MYMATH_LIB.OLB;1 on 8-MAR-2019 09:59:06
Creation date: 8-MAR-2019 09:58:53 Creator: Librarian I01-42
Revision date: 8-MAR-2019 09:58:53 Library format: 6.0
Number of modules: 1 Max. key length: 1024
Other entries: 4 Preallocated index blocks: 213
Recoverable deleted blocks: 0 Total index blocks used: 2
Max. Number history records: 20 Library history records: 0
Module MYMATHROUTS
MYADD
MYDIV
MYMUL
MYSUB

For more information about creating and using libraries, see the VSI OpenVMS Command Definition,
Librarian, and Message Utilities Manual.

1.2.3.2. Including a Library File in a Link Operation
You can specify a library file in a link operation in any of the following ways:

• Using the /LIBRARY qualifier. You can specify a library file on the LINK command line or in
an options file, identifying the input file as a library by appending the /LIBRARY qualifier.

When the linker processes a library file, it searches the library's name table for the definitions of
symbols referenced in the other input files it has processed previously in the link operation. Note
that the order in which the linker processes a library file can affect symbol resolution. For more
information, see Chapter 2 (x86-64 and I64) and Chapter 6 (Alpha and VAX).

When the linker finds the symbol name of a definition in the library's name table, it includes
the associated library element in the link operation and processes it as it would any other object
module or shareable image. For object module libraries, the linker extracts the object module
from the library. For shareable image libraries, the linker takes the image name from the library
and attempts to translate it in order to find the image. If that fails, the linker looks for the
shareable image in the device and directory in which the library resides. If the linker cannot
find the shareable image at this location, it looks in the directory pointed to by the logical name
X86$LIBRARY for x86-64 links, IA64$LIBRARY for I64 links, ALPHA$LIBRARY for Alpha
links, and SYS$LIBRARY for VAX links.

• Using the /INCLUDE qualifier. You can include specific modules from a library into a link
operation by appending the /INCLUDE qualifier to the library file specification. You specify the
modules you want included in the link operation as arguments to the qualifier.

Note, however, that the linker does not process the name table of a library file specified using
the /INCLUDE qualifier. The linker includes from the library the modules specified as arguments
to the /INCLUDE qualifier into the link operation and processes them as it would any other object
module or shareable image.

10

Chapter 1. Introduction

If you append both the /LIBRARY qualifier and the /INCLUDE qualifier to a library file
specification, the linker processes the library's name table and also includes the specified modules
in the link operation.

• Defining the library as a default user library. You can include a library in a link operation by
defining it as a default user library. To define a default user library, assign the name of the library
as the value of one of the linker's LNK$LIBRARY logical names. The linker processes libraries
pointed to by these logicals after processing all the other input files specified in the link operation.
See Section 2.2.3.3 (x86-64 and I64) and Section 6.2.3.3 (Alpha and VAX) for more information
about default library processing.

1.2.4. Symbol Table Files as Linker Input Files
(VAX Only)
A symbol table file is the product of a previous link operation or a language processor. A symbol table
file is similar to an object module but it contains only a symbol table.

For VAX linking, you can specify a symbol table file as input in a link operation as you would any
other object module, as in the following example:
$ LINK MY_MAIN_PROGRAM, MY_SYMBOL_TABLE

Note

On 64-bit systems, you cannot specify a symbol table as input in a link operation.

The linker processes the symbol table file during symbol resolution. If the symbol table file is the by-
product of a link operation in which an executable image or system image was created, the symbol
table contains the names and values of every global symbol in the image. If the symbol table file is
associated with a shareable image, it contains by default the names and values of the symbols in the
image declared as universal.

For a symbol table file to be useful in link operations, the values associated with the symbols in
the symbol table file must be constants. The value of symbols that represent addresses, such as a
procedure entry point, can vary each time the image is activated (unless the image is based).

Note also that a symbol table file associated with a shareable image should not be specified as an
input file in a link operation in place of the shareable image. The shareable image itself must be
specified as input because the linker requires more information than can be found in a symbol table
file, such as the memory requirements of the shareable image (contained in the image header).

Symbol table files created by the linker on 64-bit systems can be used as an aid to debugging with the
System Dump Analyzer utility (SDA).

1.2.5. Options Files as Linker Input Files
An options file is a standard text file you must use to specify linker options and shareable images
specified as input files. You cannot specify linker options or shareable images on the LINK command
line. Linker options, similar to linker qualifiers, allow you to control various aspects of the linker
operation. Chapter 10 includes descriptions of the options supported by the linker.

In addition, you can use options files to perform the following tasks:

• Specifying frequently used input file specifications

11

Chapter 1. Introduction

• Entering LINK commands that might exceed the buffer capacity of the command language
interpreter

When creating a linker options file, keep in mind the following restrictions:

• Separate input file specifications with a comma (,).

• Do not enter any linker qualifiers except those required to identify input files or modules, such as
the /SELECTIVE_SEARCH, /LIBRARY (optionally followed by /INCLUDE) or /SHAREABLE
(optionally followed by /SELECTIVE_SEARCH) qualifier.

• Do not specify an options file within an options file.

• Enter at most one option per line.

• Continue a line by entering the continuation character (the hyphen (-)) at the end of the line.

• Enter comments after an exclamation point (!).

• You may abbreviate the name of a link option to as few letters as needed to make the abbreviation
unique.

Example 1.2 illustrates an options file, named PROJECT3.OPT, that contains both input file
specifications and linker options.

Example 1.2. Sample Linker Options File
MOD1.OBJ,MOD7.OBJ,LIB3.OLB/LIBRARY,-
LIB4/LIBRARY/INCLUDE=(MODX,MODY,MODZ),-
MOD12.OBJ/SELECTIVE_SEARCH
STACK=75
SYMBOL=JOBCODE,5

To use an options file in a link operation, specify the name of the options file on the command
line, identifying the file as an options file by appending the linker qualifier /OPTIONS to the file
specification (the .OPT file type does not need to be specified because it is the default), as in the
following example:
$ LINK PROGA,PROGB,PROJECT3/OPTIONS

If you precede the link operation with the SET VERIFY command, DCL displays the contents of the
options file as the file is processed.

If you want to use an options file in a command procedure or interactively on the command line,
specify the input file as the logical name SYS$INPUT,appending the /OPTIONS qualifier to the
logical name. DCL interprets the lines immediately following the LINK command as the contents of
the options file. The following example illustrates a LINK command in a command procedure:
$! LINK command
$ LINK MAIN,SUB1,SYS$INPUT/OPTIONS
MYPROC/SHAREABLE
SYS$LIBRARY:APPLPCKGE/SHAREABLE
STACK=75
$

When you specify SYS$INPUT as an interactive options file, you must terminate the options file by
entering the Ctrl/Z key sequence, as in the following example:
$ LINK MAIN,SUB1,SUB2,SYS$INPUT:/OPTIONS
MYPROC/SHAREABLE
SYS$LIBRARY:APPLPCKGE/SHAREABLE
STACK=75
Ctrl/Z

12

Chapter 1. Introduction

It is recommended to use command procedures to invoke the LINK command because it enables you
to keep both the LINK command and all input file specifications, including any options files, together
in a single file. To perform a link operation using a command procedure, simply invoke the command
procedure, as in the following example:

$ @LINKPROC

1.3. Specifying Linker Output Files
The primary output generated by the linker is an image file. In addition, the linker can generate other
output files:

• On all platforms, a symbol table file and a map file

• On 64-bit systems, a debug symbol file

Table 1.2 lists all the output files created by the linker.

Table 1.2. Output Files Generated by the Linker

File Default File
Type

Description

Executable image .EXE A program that can be run at the command line. This image
is the default output file created by the linker. Specify
the /EXECUTABLE qualifier to create an executable image.

Shareable image .EXE A collection of procedures and data that usually can be
referenced after being included in a link operation in which
another image is created. Specify the /SHAREABLE
qualifier to create a shareable image.

System image1 .EXE A program that is meant to be run as a standalone system.
Specify the /SYSTEM qualifier to create a system image.

Symbol table file .STB An object module containing the global symbol
table from an executable or system image, or the
universal symbol table from a shareable image. Specify
the /SYMBOL_TABLE qualifier to create a symbol table
file.

Map file .MAP A text file created by the linker that provides information
about the layout of the image and statistics about the link
operation. Specify the /MAP qualifier to create a map file.

Debug symbol file2 .DSF A file containing debug information for use by the
OpenVMS Debugger or System Code Debugger. Specify
the /DSF qualifier to create a debug symbol file.

See VSI OpenVMS Debugger Manual and Writing
OpenVMS Alpha Device Drivers in C for guidelines on
using the system code debugger.

1Alpha and VAX specific
264-bit specific

You cannot examine an image file using a text editor. To examine an image file, check for errors in
image format, and obtain other information about the image, you must use the ANALYZE/IMAGE
utility. See the VSI OpenVMS DCL Dictionary for information about using this utility.

13

Chapter 1. Introduction

1.3.1. Creating an Executable Image
An executable image is a file that can be executed by the RUN command.

On x86-64 and I64 systems, an executable image conforms to the ELF specification. Typically, this
image consists of header tables, note sections containing the image identification information, a
dynamic segment containing the image activation information and shareable image dependencies, and
program segments containing the image binaries that define the memory requirements of the image.

On Alpha and VAX systems, an executable image is usually made up of an image header which
contains image identification information and the image section descriptors (ISDs) that define the
memory requirements and shareable image dependencies of the image binaries.

An executable image can reference one or more shareable images.

To create an executable image, you can specify the /EXECUTABLE qualifier. Note, however, that the
linker creates executable images by default. For example, the command used to create the executable
image in Example 1.1 did not specify the /EXECUTABLE qualifier:

$ LINK HELLO

By default, the linker uses the name of the first input file specified as the name of the image file,
giving the file the .EXE file type. However, you can alter this default naming convention. For more
information, see the LINK command description in Chapter 10.

1.3.2. Creating a Shareable Image
A shareable image is similar in structure and content to an executable image, though it differs in the
way that shareable program sections are sorted. To make use of a shareable image, include it in a link
operation in which another image is created.

In x86-64 and I64 images, the symbol table is an ELF section that contains the symbol information.

In Alpha and VAX images, the symbol table resembles an appended object module that only contains
the symbol information.

Note that the following LINK command includes an options file using SYS$INPUT. To make
symbols in the shareable image available for other images to link against, you must declare them as
universal symbols in a linker options file. The mechanism used to declare universal symbols for I64
and Alpha linking differs from VAX linking. For information and examples about creating and using
shareable images, see Chapter 4 (x86-64 and I64) and Chapter 8 (Alpha and VAX).

To create a shareable image, specify the /SHAREABLE qualifier in the LINK command line, as in the
following example:

$ LINK/SHAREABLE MY_SHARE, SYS$INPUT/OPTIONS
SYMBOL_VECTOR=(-
MY_ROUTINE=PROCEDURE,-
MY_COUNTER=DATA)
$

1.3.3. Creating a System Image (Alpha and VAX)
A system image is an image that does not run under the control of the operating system. It is intended
for standalone operation only.

14

Chapter 1. Introduction

On x86-64 and I64 systems, system images have no special format; they are simply OpenVMS images
that conform to the ELF specification. These system images might have constraints that you may have
to address (for example, limits to the number of program segments).

By default, Alpha and VAX system images do not contain an image header, as do executable and
shareable images. You can create a system image with a header by specifying the /HEADER qualifier.
System images do not contain global symbol tables.

To create an Alpha or VAX system image, specify the /SYSTEM qualifier in the LINK command line,
as in the following example:

$ LINK/SYSTEM MY_SYSTEM_IMAGE

1.3.4. Creating a Symbol Table File
A symbol table file is like an object module that contains all the global symbol definitions in the
image. You can create a symbol table for any type of image: executable, shareable, or system. For
executable images and system images, the symbol table contains a listing of the global symbols in the
image. For shareable images, the symbol table lists the universal symbols in the image.

On 64-bit systems, the symbol table files created by the linker cannot be used as input files in
subsequent link operations.

For VAX linking, symbol table files can be specified as input files in link operations. For more
information, see Section 1.2.4.

On all platforms, symbol table files are intended to be used with SDA as an aid to debugging.

To create a symbol table file, specify the /SYMBOL_TABLE qualifier in the LINK command line. In
the following link operation in which an executable image is created, a symbol table file is requested:

$ LINK/SYMBOL_TABLE MY_EXECUTABLE_IMAGE

By default, the linker uses the name of the first input file specified as the name of the symbol table
file, giving the file the .STB file type. However, you can alter this default naming convention. For
more information, see the description of the /SYMBOL_TABLE qualifier in Chapter 10.

1.3.5. Creating a Map File
The linker can generate a diagnostic file, called an image map, which you can use to locate link-
time errors, to study the image layout, and to keep track of global symbols. The image map provides
information about the linking process, including the following types of information:

• A listing of the object modules included in the link operation

• A listing of the image segments (on x86-64 and I64 systems) or image sections (on Alpha and
VAX systems) created by the linker for the image

• A listing of all the program sections created by the linker

• A listing of all the global and universal symbols resolved by the linker for the image

• A compilation of summary statistics about the link operation

To create an image map file, specify the /MAP qualifier on the LINK command line. In batch
mode, the linker creates a map file by default. When you invoke the linker interactively (at the DCL

15

Chapter 1. Introduction

command prompt), you must request a map explicitly. By default, the linker uses the name of the first
input file specified as the name of the map file, giving the file the .MAP file type. However, you can
alter this default naming convention. For more information, see the LINK command description in
Chapter 10.

For example, to generate a map file in Example 1.1, you would specify the /MAP qualifier as in the
following example:

$ LINK/MAP HELLO

You can determine the information contained in the image map by specifying additional qualifiers
that are related to the /MAP qualifier. For example, by specifying the /BRIEF qualifier with the /MAP
qualifier, you can generate a map file that contains only a subset of the total information that can
be returned. For information about creating a map file and the contents of a map file, see Chapter 5
(x86-64 and I64) and Chapter 9 (Alpha and VAX).

1.3.6. Creating a Debug Symbol File
(64-Bit Systems)
On 64-bit systems, a debug symbol file (DSF) is a file containing debug information for use by the
OpenVMS Debugger and the System Code Debugger (SCD). To create a debug symbol file, specify
the /DSF qualifier in the LINK command line, as in the following example:

$ LINK/DSF MY_PROJ.OBJ

By default, the linker uses the name of the first input file specified as the name of the DSF file,
giving the file the .DSF file type. However, you can alter this default naming convention. For more
information, see the description of the /DSF qualifier in Chapter 10.

1.4. Controlling a Link Operation
The linker allows you to control various aspects of the link operation by specifying qualifiers and
options. The following sections summarize the qualifiers and options supported by the linker. The
remaining chapters of this manual describe how to use these qualifiers and options, and Chapter 10
provides reference information about each linker qualifier and option.

1.4.1. Linker Qualifiers
As with any DCL command, the LINK command supports qualifiers that allow you to control aspects
of linker processing. The qualifiers supported by the linker allow you to:

• Identify input files. For example, you must identify library files by appending the /LIBRARY
qualifier to the file specification. Section 1.2 describes these qualifiers.

• Specify output files. For example, you must specify the /SHAREABLE qualifier to direct the
linker to create a shareable image. Section 1.3 describes these qualifiers.

• Control symbol resolution. For example, if you specify the /NOSYSLIB qualifier, the linker
will not process the default system object library or the default system image library. Chapter 2
(x86-64 and I64) and Chapter 6 (Alpha and VAX) contain more information about this topic.

• Control image file creation. For example, if you specify the /CONTIGUOUS qualifier, the linker
attempts to allocate contiguous disk blocks for the image file. Chapter 3 (x86-64 and I64) and
Chapter 7 (Alpha and VAX) contain more information about this topic.

16

Chapter 1. Introduction

Table 1.3 lists the LINK command qualifiers alphabetically.

Table 1.3. Linker Qualifiers

Qualifier Supported
Platform

Description

/ALPHA Alpha, VAX Directs the linker to build an OpenVMS Alpha
image. Section 1.5 describes this qualifier in more
detail.

/BASE_ADDRESS x86-64, I64 Directs the linker to suggest a starting address
for an executable image, when used in the boot
process. This starting address is ignored by the
image activator.

/BPAGE All Specifies the page size the linker should use when
creating image sections or segments.

/BRIEF All Directs the linker to create a brief image map.
Must be specified with the /MAP qualifier.

/CONTIGUOUS All Directs the linker to attempt to store the output
image in contiguous disk blocks.

/CROSS_REFERENCE All Directs the linker to replace the Symbols By
Name section of the image map with the Symbol
Cross-Reference section. Must be specified with
the /MAP qualifier.

/DEBUG All Directs the linker to include debug information
in the image and to give control to the OpenVMS
Debugger when the image is run.

/DEMAND_ZERO 64-bit platforms Controls how the linker creates demand-zero
image sections or segments.

/DNI x86-64, I64 Controls the processing of demangling
information.

/DSF 64-bit platforms Directs the linker to create a file called a
debug symbol file (DSF) for use by OpenVMS
debuggers.

/EXECUTABLE All Directs the linker to create an executable image.
/FP_MODE x86-64, I64 Directs the linker to set the program's initial

floating-point mode in case it was not supplied by
the main module.

/FULL All Directs the linker to create a full image map.
Used only with the /MAP qualifier.

/GST 64-bit platforms Directs the linker to include symbols that have
been declared universal in the global symbol
table (GST) of a shareable image. Use /NOGST
to create an image with an empty GST. As
such, /NOGST allows you to ship a shareable
image that cannot be linked against. This qualifier
is not supported for VAX linking.

/HEADER All Directs the linker to include an image header in
a system image. Used only with the /SYSTEM

17

Chapter 1. Introduction

Qualifier Supported
Platform

Description

qualifier. Accepted on x86-64 and I64, but not
processed.

/INCLUDE All Identifies the input file to which it is appended
as a library file and directs the linker to include
specific modules from the library in the link
operation.

/INFORMATIONALS All Directs the linker to output informational
messages produced by a link
operation. /NOINFORMATIONALS directs the
linker to suppress informational messages.

/LIBRARY All Identifies the input file to which it is appended as
a library file.

/MAP All Directs the linker to create an image map.
/NATIVE_ONLY Alpha, I64 Directs the linker to create an image that cannot

operate with a translated OpenVMS image.
/OPTIONS All Identifies an input file as a linker options file.
/P0IMAGE All Directs the linker to mark the specified

executable image as one that can run only in P0
address space.

/PROTECT All Directs the linker to protect the shareable image
from user-mode and supervisor-mode write
access. Used with the /SHAREABLE qualifier
when the linker creates a shareable image.

/REPLACE Alpha Directs the linker to perform certain optimizations
that improve the performance of the resulting
image.

/SECTION_BINDING Alpha Directs the linker to check whether the image to
be created contains dependencies on the layout
of image sections that could interfere with the
performance enhancement if installed resident.

/SEGMENT_ATTRIBUTE x86-64, I64 Directs the linker to set attributes for image
segments.

/SELECTIVE_SEARCH All Directs the linker to include only those global
symbols that are defined in the module or image
and referenced by previously processed modules.

/SHAREABLE All Directs the linker to create a shareable image.
Can also be used to identify an input file as a
shareable image.

/SYMBOL_TABLE All Directs the linker to create a symbol table file.
/SYSEXE 64-bit platforms Directs the linker to process the OpenVMS

executive file SYS$BASE_IMAGE.EXE (located
in the directory pointed to by the logical name
X86$LOADABLE_IMAGES on x86-64 systems,
IA64$LOADABLE_IMAGES on I64 systems,
or ALPHA$LOADABLE_IMAGES on Alpha

18

Chapter 1. Introduction

Qualifier Supported
Platform

Description

systems) to resolve references to symbols in a
link operation.

/SYSLIB All Directs the linker to search the default system
image library and the default system object
library to resolve undefined symbolic references.

/SYSSHR All Directs the linker to search the default system
shareable image library to resolve undefined
symbolic references.

/SYSTEM Alpha,VAX Directs the linker to create a system image.
/THREADS_ENABLE All Directs the linker to enable features of the thread

environment, in which the generated image is
activated.

/TRACEBACK All Directs the linker to include traceback
information in the image.

/USERLIBRARY All Directs the linker to search default user
libraries to resolve undefined symbolic
references. /USERLIBRARY accepts a keyword
(ALL, GROUP, PROCESS, SYSTEM, or NONE)
to further specify which logical name tables to
search for the definitions of default user libraries.

/VAX Alpha, VAX Directs the linker to build an OpenVMS VAX
image. Section 1.5 describes this qualifier in more
detail.

1.4.2. Link Options
In addition to qualifiers, the linker supports options that allow you to control other aspects of a link
operation, such as the following:

• Specify image identification information. Using options such as NAME=, ID=, and
GSMATCH=, you can supply values to identify the image.

• Declare universal symbols in shareable images. Using the UNIVERSAL= option on VAX
systems and the SYMBOL_VECTOR= option on 64-bit systems, you can make symbols in
shareable images accessible to external modules.

• Group input files together. Using the CLUSTER= option or the COLLECT= option, you
can specify which input files (or program sections in those input files) the linker should group
together. This can affect the order of module processing and, therefore, symbol resolution.

Note that linker options must be specified in a linker options file. (See Section 1.2.5 for information
about creating linker options files and specifying them in link operations).

Table 1.4 lists all the linker options alphabetically.

19

Chapter 1. Introduction

Table 1.4. Linker Options

Option Supported
Platform

Description

BASE= VAX Sets the base virtual address for the image.
CASE_SENSITIVE= All Determines whether the linker preserves

the mixture of uppercase and lowercase
characters used in arguments to linker
options.

CLUSTER= All Directs the linker to create a cluster and
to assign the cluster the specified name,
and insert the input files specified in the
cluster. Note that the base-address option
value, which specifies the virtual address
for the cluster, is valid on VAX, valid on
Alpha for executable images only, and not
accepted on x86-64 and I64. See Chapter 10
for information about CLUSTER= option
and other option values.

COLLECT= All Moves the specified program sections into
the specified cluster.

DZRO_MIN= Alpha, VAX Sets the minimum number of
uninitialized,contiguous pages that must be
found in an image section before the linker
can extract the pages from the image section
and create a demand-zero image section.

GSMATCH= All Sets match control parameters for a
shareable image.

IDENTIFICATION= All Sets the image ID field.
IOSEGMENT= All Specifies the size of the image I/O segment.
ISD_MAX= Alpha, VAX Specifies the maximum number of image

sections.
NAME= All Sets the image name field.
PROTECT= All Directs the linker to protect one or more

clusters from user-mode or supervisor-
mode write access. Can be used only with
shareable images.

PSECT_ATTR= All Assigns values and attributes to program
sections.

RMS_RELATED_CONTEXT= All Determines RMS related-name context
processing, also known as file specification
"stickiness".

STACK= All Sets the initial size of the user-mode stack.
SYMBOL= All Defines a global symbol and assigns it a

value.
SYMBOL_TABLE= 64-bit platforms Specifies whether a symbol table file,

produced in a link operation in which a

20

Chapter 1. Introduction

Option Supported
Platform

Description

shareable image is created, should contain
all the global symbols as well as the
universal symbols in the shareable image.
By default, the linker includes only universal
symbols.

SYMBOL_VECTOR= 64-bit platforms Exports symbols in a shareable image,
making them accessible to external images.

UNIVERSAL= VAX Declares the specified global symbol as a
universal symbol, making it accessible to
external images.

1.5. Linking for Different Architectures
(Alpha and VAX)
You can create OpenVMS Alpha images on an OpenVMS VAX system and create OpenVMS VAX
images on an OpenVMS Alpha system. To do this, you must mount a system disk of the target
architecture and make it accessible on the system where the link is to occur. Also, you must assign
logical names to point to portions of the target architecture disk.

Note

You cannot create OpenVMS x86-64 or I64 images on Alpha and VAX platforms, nor create images
for Alpha or VAX on x86-64 and I64 systems.

Table 1.5 lists the logical names and the conditions of their use.

Table 1.5. Logical Names for Cross-Architecture Linking

Logical Name Description
ALPHA$LIBRARY The linker uses this logical name when creating an OpenVMS

Alpha image to locate the target system's shareable images and
system libraries.

VAX$LIBRARY The linker uses this logical name when creating an OpenVMS
VAX image on an OpenVMS Alpha computer to locate the target
system's shareable images and system libraries.

SYS$LIBRARY The linker uses this logical name when creating an OpenVMS
VAX image on an OpenVMS VAX computer to locate the target
system's shareable images and system libraries.

ALPHA$LOADABLE_IMAGES The linker uses this logical when creating an OpenVMS
Alpha image to locate the target system's base image
SYS$BASE_IMAGE.EXE when the /SYSEXE qualifier is in the
link command line.

The /ALPHA and /VAX qualifiers control which architecture an image is built for:

• When you specify /ALPHA, the linker creates an OpenVMS Alpha image using the OpenVMS
Alpha libraries and OpenVMS Alpha images from the target system disk that the logicals

21

Chapter 1. Introduction

ALPHA$LIBRARY and ALPHA$LOADABLE_IMAGES point to. When you link on an
OpenVMS Alpha system, these logical names initially point to the current system's libraries and
images. The qualifier /ALPHA is the default on OpenVMS Alpha systems.

• When you specify /VAX on an OpenVMS Alpha system, the linker creates an OpenVMS VAX
image using the OpenVMS VAX libraries and OpenVMS VAX images from the target system
disk that the logical VAX$LIBRARY points to. On an OpenVMS VAX system, you create VAX
images by using the OpenVMS VAX libraries and OpenVMS VAX images that the logical
SYS$LIBRARY points to. The qualifier /VAX is the default on OpenVMS VAX systems.

22

Chapter 2. Understanding Symbol
Resolution (x86-64 and I64)
This chapter describes how the linker performs symbol resolution on OpenVMS x86-64 and
OpenVMS I64 systems.

For information on performing symbol resolution on OpenVMS Alpha and OpenVMS VAX systems,
see Chapter 6.

As one of its primary tasks, the linker must resolve symbolic references between modules. This
chapter describes how you can control the process to ensure that the linker resolves symbolic
references as you intend.

2.1. Overview
Programs are typically made up of many interdependent modules. For example, one module may
define a symbol to represent a program location or data element that is referenced by many other
modules. The linker is responsible for finding the correct definition of each symbol referenced in all
the modules included in the link operation. This process of matching symbolic references with their
definitions is called symbol resolution.

2.1.1. Types of Symbols
Symbols can be categorized by their scope, that is, the range of modules over which they are intended
to be visible. Some symbols, called local symbols, are meant to be visible only within a single
module. Because the definition and the references to these symbols must be confined to a single
module, language processors such as compilers can resolve these references.

Other symbols, called global symbols, are meant to be visible to external modules. A module can
reference a global symbol that is defined in another module. Because the value of the symbol is not
available to the compiler processing the source file, it cannot resolve the symbolic reference. Instead,
a compiler creates an ELF symbol table (SYMTAB) in an object module that includes all of the global
symbol references and global symbol definitions it contains. These symbols are part of the global
symbol directory (GSD).

On x86-64 and I64 systems, the GSD has a conceptual meaning. It no longer indicates an area within
an object module, in which all named entities are listed. For ELF objects, the named entities for data
and code are listed in the ELF symbol table; the name identities for sections are listed in the section
header table. To use the traditional name GSD on x86-64 and I64 systems, the GSD can be seen as a
subset of the ELF symbol table, plus a subset of the section header table.

In most programming languages, you can explicitly specify whether a symbol is global or local by
setting or omitting particular attributes in the symbol definition or reference. For example, in C all
functions are global symbols by default but the functions with the static attribute are local symbols.

In shareable images, symbols that are intended to be visible to external modules are called universal
symbols. A universal symbol in a shareable image is the equivalent of a global symbol in an object
module. Note, however, that only those global symbols that have been declared as universal are listed
in the ELF symbol table (SYMTAB) of the shareable image and are available to external modules to
link against. These symbols are part of the global symbol table (GST).

23

Chapter 2. Understanding Symbol Resolution (x86-64 and I64)

Similar to the GSD, the GST has a conceptual meaning on x86-64 and I64 systems; that is, it no
longer indicates an area within an image file, in which all named entities are listed. For ELF images,
the named entities for data and code are listed in the ELF symbol table and the named entities for
sections are listed in the section header table. To use the traditional name GST on x86-64 and I64
systems, the GST can be seen as a subset of the ELF symbol table, plus a subset of the section header
table.

You must explicitly declare universal symbols as part of the link operation in which the shareable
image is created. For more information about declaring universal symbols, see Chapter 4.

2.1.1.1. Understanding Strong and Weak Symbols

As on Alpha and VAX systems, the linkers on x86-64 and I64 systems support global symbols that
can be strong or weak. Weak symbols can be one of two types: VMS-style weak and UNIX-style
weak.

The VMS-style weak symbol is identical to the weak symbol on Alpha and VAX. Using VMS-
style weak symbols reflects a programming concept where the developer marks a symbol as weak
depending on available language support. For information about how the linker processes VMS-style
weak symbols, see Section 2.5.

UNIX-style weak symbols are unique to x86-64 and I64 systems and primarily used by the C++
compiler. Using UNIX-style weak symbols reflects an implementation concept, where the compiler
marks symbols as weak, depending on language constructs. For information about how the linker
processes UNIX-style weak symbols, see Section 2.6.

2.1.1.2. Group Symbols

Global symbols can be gathered in a group which is seen by the linker as a single entity. All symbols
in a group are included or excluded in the link process. The group is identified by its group name,
which is also called a group signature. A group also defines a set of sections, which contain
definitions or references of the group symbols. As with UNIX-style weak symbols, groups are an
implementation concept, primarily used by the VSI C++ compiler. For more information about
working with group symbols, see Section 2.6.

2.1.1.3. The C Extern Common Model

In some VSI programming languages, certain types of global symbols, such as external variables
in the C common extern model and COMMON data in FORTRAN, are not listed in the symbol
table as global symbol references or definitions. Because these data types implement virtual memory
that is shared, the languages implement them as sections that are overlaid. Rather than appearing as
global symbol definitions or references, these variable names emerge as section names. (Compilers
use sections to define the memory requirements of an object module). Although this may look like
symbol resolution to the user, the linker does not process symbols. For information about how the
linker processes sections, see Chapter 3.

For example, this C definition and the Fortran data that follows are matched and address the same
data:

#pragma extern_model common_block
struct { int first; int second; } numbers;

INTEGER*4 first, second
COMMON /numbers/ first, second

24

Chapter 2. Understanding Symbol Resolution (x86-64 and I64)

2.1.1.4. Tentative Definitions in C
In the VSI C programming language, external variables can be defined in a strict or a relaxed
reference/definition model. The strict model allows only one strong definition. The relaxed model,
allows several tentative definitions. Any initialized variable is a strong symbol definition in the strict
model. All uninitialized variables can be relaxed or tentative definitions. For both types of external
variables, strong global symbols are generated by the compiler. For a strong definition in any model,
the compiler reserves memory in the defining module. For tentative definitions, the compiler does not
reserve memory. Tentative definitions result in global symbols in the symbol table, marked as ELF
common.

Note

Do not confuse the term "ELF common" with "Fortran common"; these are different concepts.

If there is one strong definition, the linker uses it as the primary definition and treats all the tentative
definitions as references. Otherwise, the linker does the following:

• Creates a section named after the symbol to define memory for the tentative definitions.

• Assigns the first module with a tentative definition as the defining module.

The section created by the linker contains the overlay attribute. Any other section with the same name
and the same attributes can overlay onto this section.

For example, the following C definitions are tentative:
/* module A */
#pragma extern_model relaxed_refdef
int my_data;
/* module B */ #pragma extern_model relaxed_refdef
int my_data;

The linker creates a section with memory for the variable and marks module A as the defining module
for the section.

Note

The linker does not include section names in its symbol resolution processing. The name spaces for
symbols and sections are separate. The overlaying of sections with a created section for a tentative
definition with the same name does not produce an exception.

2.1.1.5. Considerations for C Language Extensions
On x86-64 and I64 systems, the VSI C language extensions globalref and globaldef allow
you to create external variables that appear as symbol references and definitions in the symbol table.
For more information, see the VSI C User's Guide for OpenVMS Systems.

In addition, VSI C supports command line qualifiers and source code pragma statements (as shown in
the previous examples) that allow you to control the extern model. For more information, see the VSI
C User's Guide for OpenVMS Systems.

2.1.2. Linker Symbol Resolution Processing
During its first pass through the input files specified in the link operation, the linker attempts to find
the definition for every symbol referenced in the input files. By default, the linker processes all the

25

Chapter 2. Understanding Symbol Resolution (x86-64 and I64)

global symbols defined and referenced in the symbol table of each object module (GSD) and all the
universal symbols defined in the global symbol table (GST) of each shareable image and any symbol
defined by linker options. The definition of the symbol provides the value of the symbol. The linker
substitutes this value for each instance where the symbol is referenced in the image being created.
This value might not be the actual value of the virtual address at run-time, because the values might
be relocated by the image activator.

The value of a symbol depends on what the symbol represents. A symbol can represent a routine entry
point or a data location within an image. For these symbols, the value of the symbol is an address. A
symbol can also represent a data constant (for example, the linker option SYMBOL=X,10). In this
case, the value of the symbol is its actual value.

For symbols that represent addresses in object modules, the value is expressed initially as an
offset into a section. (This is the manner in which language processors express addresses). Later
in its processing, the linker determines the symbol's preliminary value after combining all module
contributions into segments, which yields the proposed memory layout. For information about how
the linker determines the virtual memory layout of an image, see Chapter 3.

For x86-64 and I64 images, at link time, the value of a symbol in a shareable image (as listed in the
GST of the image) is the index of the symbol's entry in the symbol vector of the image.

An x86-64 symbol vector entry is a pair of quadwords. The contents of the two quadwords depend
on whether the symbol represents a procedure entry point, data location, or absolute constant. For
procedure entries, the first quadword is the procedure's canonical address (that is, its procedure value);
and the second quadword is the procedure's actual entry address. For data locations and constant
values, the first quadword contains the address, offset, or constant value, and the second quadword
contains zero. Figure 2.1 shows the contents of the x86-64 symbol vector at link time and at image
activation time.

Figure 2.1. Symbol Vector Contents on x86-64

An I64 symbol vector entry is a quadword that contains the value of the symbol. The contents of
the quadword depends on whether the symbol represents a procedure entry point, data location,
or a constant. At link time, a symbol vector entry for a procedure entry point or a data location
is expressed as an offset into the image. At image activation time, when the image is loaded into
memory and the base address of the image is known, the image activator converts the image offset
into a virtual address. Figure 2.2 shows the contents of the I64 symbol vector at link time and at image
activation time.

26

Chapter 2. Understanding Symbol Resolution (x86-64 and I64)

Figure 2.2. Symbol Vector Contents on I64

Note that the linker does not allow programs to make procedure calls to symbols that represent data
locations.

The actual value of an address symbol in a shareable image is determined at run-time by the
image activator when it loads the shareable image into memory. The image activator converts or
relocates all the addresses within a shareable image when it loads the image into memory. Once it
has determined the absolute values of these addresses, the image activator fixes up references to these
addresses in the image that linked against the shareable image. When the image was linked, the linker
created fix-ups that flag to the image activator where it must insert the actual addresses to complete
the linkage of a symbolic reference to its definition in an image. The linker listed these fix-ups in
the fix-up table, which is part of the dynamic segment created for the image. For more information
about shareable images, see Chapter 4.

Note

For x86-64 and I64 images, you can not specify an address at which you want an image mapped into
virtual memory. The image activator decides where to place the image.

Figure 2.3 illustrates the interdependencies created by symbolic references among the modules that
make up an application. In the figure, arrows point from a symbol reference to a symbol definition.
(The statements do not reflect a specific programming language).

27

Chapter 2. Understanding Symbol Resolution (x86-64 and I64)

Figure 2.3. Symbol Resolution

The linker creates an image, even if it cannot find a definition for every symbol referenced in the
input files it processes. As shown in the following example, the linker reports these undefined
symbols if at least one of the unresolved references is a strong reference. (For information about
strong and weak symbolic references, see Section 2.5). The linker includes the message in the map
file, if a map file was requested.

$ LINK MY_MAIN ! The module MY_MATH is omitted
%ILINK-W-NUDFSYMS, 1 undefined symbol:

 %ILINK-I-UDFSYM, MYSUB

 %ILINK-W-USEUNDEF, undefined symbol MYSUB referenced
 section: $CODE$
 offset: %X0000000000000110 slot: 2
 module: MY_MAIN
 file: WORK:[PROGRAMS]MY_MAIN.OBJ;1

The linker issues an informational message for each symbol for which it cannot find a definition.
The linker issues a warning message for each instance where an undefined symbol is referenced
in the image.

If you run an image that contains undefined symbols and the symbols are never accessed, the program
runs successfully. However, if you run an image that contains undefined symbols and the image
accesses the symbols at run-time, then the image will abort. In most cases, it aborts with an access
violation because the linker assigns the value zero to undefined symbols or because the linker
indicates that an undefined function symbol was called, as shown in the following example:

28

Chapter 2. Understanding Symbol Resolution (x86-64 and I64)

$ RUN MY_MAIN
%SYSTEM-F-CALLUNDEFSYM, Call using undefined function symbol
%TRACE-F-TRACEBACK, symbolic stack dump follows
image module routine line rel PC abs PC
MY_MAIN 0 00000000000101B2 00000000000101B2
MY_MAIN MY_MAIN main 1594 0000000000000120 0000000000010120
MY_MAIN MY_MAIN __main 1586 00000000000000C0 00000000000100C0
 0 FFFFFFFF80B7FB30 FFFFFFFF80B7FB30
DCL 0 000000000006BD60 000000007AE25D60
%TRACE-I-END, end of TRACE stack dump

2.2. Input File Processing for Symbol
Resolution
The linker can include object modules, shareable images, and libraries in its symbol resolution
processing. Options files do not play an important role in symbol resolution (the SYMBOL= option
can define a symbol and its value).

By default, the linker includes all the symbol definitions from the object module or shareable image.
However, if you append the /SELECTIVE_SEARCH qualifier to the object module or shareable
image file specification, then the linker includes in its processing only those symbols that define
symbols referenced in a previously processed input file. For more information about selectively
processing input files, see Section 2.2.4.

Table 2.1 summarizes how the linker processes these different types of input files when performing
symbol resolution.

Table 2.1. Linker Input File Processing

Input File How Processed
Object file (.OBJ) By default, the linker processes all the symbol definitions

and references listed in the GSD of the module. If you
append the /SELECTIVE_SEARCH qualifier to the input file
specification, the linker includes only those symbol definitions
from the GSD that resolve symbolic references found in previously
processed input files.

Shareable image file (.EXE) By default, the linker processes all symbol definitions listed in the
GST of the image. However, the linker lists only those symbol
definitions in the map file that are referenced by other modules in
order to reduce map file clutter.

If you append the /SELECTIVE_SEARCH qualifier to the input
file specification, the linker includes in its processing only those
symbol definitions from the GST that resolve symbolic references
found in previously processed input files.

Library files (.OLB) Specifying /LIBRAY, the linker searches the name table of the
library for symbols that are undefined in previously-processed
input files. (Usually, a library file's name table lists all the symbols
available in all of the modules it contains). If the linker finds the
definition of a symbol referenced by a previously-processed input
file, it includes in the link operation, the library module containing
the definition of the symbol. Once the object module or shareable
image is included in the link operation, the linker processes it as
any other object module or shareable image.

29

Chapter 2. Understanding Symbol Resolution (x86-64 and I64)

Input File How Processed
If you append only the /INCLUDE qualifier to a library file
specification, the linker does not search the library's name table to
find undefined symbolic references. Instead, the linker includes
the specified object module or shareable image specified as a
parameter to the /INCLUDE qualifier.

You cannot process a library file selectively. However, if the
Librarian utility's /SELECTIVE_SEARCH qualifier was specified
when the object module or shareable image was inserted into the
library, the linker processes the module selectively when it extracts
it from the library.

2.2.1. Processing Object Modules
The linker resolves symbolic references with their definitions. For example, the program in
Example 2.1 references the symbol mysub.

Example 2.1. Source File Containing a Symbolic Reference: MY_MAIN.C
#include <stdio.h>
int mysub(int value_1, int value_2);
main()
{
 int num1, num2, result;
 num1 = 5;
 num2 = 6;
 result = 0;
 result = mysub(num1, num2);
 printf("Result is: %d\n", result);
}

mysub, which Example 2.1 references, is defined in the program in Example 2.2.

Example 2.2. Source File Containing a Symbol Definition: MY_MATH.C
int myadd(int value_1, int value_2)
{
 int result;
 result = value_1 + value_2;
 return result;
}
int mysub (int value_1, int value_2)
{
 int result;
 result = value_1 - value_2;
 return result;
}
int mymul(int value_1, int value_2)
{
 int result;
 result = value_1 * value_2;
 return result;
}
int mydiv(int value_1, int value_2)
{
 int result;
 result = value_1 / value_2;
 return result;
}

The GSD created by the language processor for the object module MY_MAIN.OBJ lists the reference
to the symbol mysub. Because object modules cannot be examined using a text editor, the following

30

Chapter 2. Understanding Symbol Resolution (x86-64 and I64)

representation of the GSD is taken from the output of the ANALYZE/OBJECT utility of the
OpenVMS object module MY_MAIN.OBJ.

$ CC MY_MAIN.C
$ ANALYZE/OBJECT/SECTION=SYMTAB MY_MAIN.OBJ
 .
 .
 .
Description Hex <bitmask> Decimal Interpretation
----------- --------------- ------- --------------

Symbol 16. (00000010) "MYSUB"
 Name Index in Sec. 8.: 0000004C 76.
 Symbol Info Field: 12

 Symbol Type: 02 STT_FUNC

 Symbol Binding: 01 STB_GLOBAL
 Symbol 'Other' Field: 80
 Symbol Visibility 00 STV_DEFAULT
 .
 .
 .

 Bound to section: 0000 0. (SHDR$K_SHN_UNDEF)

 Symbol Value 0000000000000000 0.
 Size associated with sym: 0000000000000000

In Example 2.2, MYSUB is defined in lowercase characters: mysub. The C
compiler automatically upper cases all external symbol names unless you use the
qualifier /NAMES=AS_IS.
The Symbol Type for MYSUB is STT_FUNC, which classifies MYSUB as a function (procedure).
The linker checks the definition of mysub and make sure that its Symbol Type is also
STT_FUNC. The linker issues an error if there is a discrepancy.
The Symbol Binding for MYSUB is STB_GLOBAL. For most applications, symbol types fall
into two categories: global (STB_GLOBAL) and local (STB_LOCAL). Global symbols are
visible across modules. Local symbols are visible only within the module.
References, or undefined symbols, are bound to a special section number which
marks an undefined, missing, irrelevant or otherwise meaningless section (zero or
SHDR$K_SHN_UNDEF). Definitions are bound to a section with a number greater than zero.
For references, the Symbol Value and the Size are not always known, and therefore are displayed
as a zero.

The GSD created by the language processor for the object module MY_MATH.OBJ contains the
definition of the symbol mysub, as well as the other symbols defined in the module. The definition
of the symbol includes the value of the symbol.

The following excerpt from an analysis of the OpenVMS object module (performed using the
ANALYZE/OBJECT utility) c.

$ CC MY_MATH.C
$ ANALYZE/OBJECT/SECTION=SYMTAB MY_MATH.OBJ
 .
 .
 .
Description Hex <bitmask> Decimal Interpretation
----------- ------------- ------- --------------
Symbol 12. (0000000C) "MYSUB"
 Name Index in Sec. 8.: 00000027 39.
 Symbol Info Field: 12
 Symbol Type: 02 STT_FUNC
 Symbol Binding: 01 STB_GLOBAL
 Symbol 'Other' Field: 80
 Symbol Visibility 00 STV_DEFAULT
 .
 .
 .

31

Chapter 2. Understanding Symbol Resolution (x86-64 and I64)

 Bound to section: 0003 3. "$CODE$"

 Symbol Value 0000000000000020 32.

 Size associated with sym: 0000000000000020

Since MYSUB is a procedure, it is associated with a code section.
The Symbol Value (32) is the byte offset of the code entry point into the section $CODE$.
The Size associated with the symbol is the amount of code in the routine (32 bytes).

When you link the modules shown in Example 2.1 and Example 2.2 together to create an image, you
specify both object modules on the command line, as in the following example:

$ LINK MY_MAIN, MY_MATH

When the linker processes these object modules, it reads the contents of the GSDs, obtaining the value
of the symbol from the symbol definition.

For I64 images, the value of a symbol that is a function can be expressed in two ways:

• If the linker has created a function descriptor (called a procedure descriptor on Alpha) the value
is the address of the function descriptor. This is listed in the Symbol Cross Reference portion of
the map with the suffix -R or in the Symbols By Value portion of the map with the prefix R-.

• If the symbol is a function, and the linker has not created a function descriptor, the value of a
symbol is the location within the image of the entry point of the function. This information is
listed in the Symbol Cross Reference portion of the map with the suffix -RC or in the Symbols By
Value portion of the map with the prefix RC-. R is the label that means relocatable, and C is the
label that means code address.

The function descriptor created by the linker is a pair of quadwords that contain the Global Pointer
(GP) for the image and the pointer to the entry point of the function. Note that on I64, the linker
creates the function descriptors rather than the compiler. The linker also chooses the value for the GP,
which is an address that the code segment uses to access the short data segment. It accesses different
parts of the short data segment by using different offsets to the value the linker has chosen for the GP.

For x86-64 images, a function symbol's value is always a code address. There is no GP and no short
data segment.

If the symbol is data, it can be either relocatable or not relocatable. The linker uses the R prefix or
suffix in the map to indicate relocation.

2.2.2. Processing Shareable Images
When the linker processes a shareable image, it processes all the universal symbol definitions in the
GST of the image. Because the linker creates the GST of a shareable image in the same format as an
object module's symbol table, the processing of shareable images for symbol resolution is similar to
the processing of object modules. The linker sets an attribute that flags the symbol as protected, which
also indicates a universal symbol when the linker creates an image. Note that the linker includes only
those universal symbols in the map file that resolve references, thus eliminating extraneous symbols
in the linker map.

For example, the program in Example 2.2 (in Section 2.2.1) can be implemented as a shareable
image. (For information about creating a shareable image, see Chapter 4). The shareable image can be
included in the link operation as in the following example:

32

Chapter 2. Understanding Symbol Resolution (x86-64 and I64)

$ LINK/MAP/FULL MY_MAIN, SYS$INPUT/OPT
MY_MATH.EXE/SHAREABLE
Ctrl/Z

The GST created by the linker for the shareable image MY_MATH.EXE contains the universal
definition of the symbol MYSUB, as well as the other symbols defined in the module.

Because images cannot be examined using a text editor, the following representations of the GST are
taken from the output of the ANALYZE/IMAGE utility:

$ CC MY_MATH.C
$ LINK/MAP/FULL/CROSS/SHAREABLE MY_MATH.OBJ,SYS$INPUT/OPT
SYMBOL_VECTOR=(MYADD=PROCEDURE,-
 MYSUB=PROCEDURE,-
 MYMUL=PROCEDURE,-
 MYDIV=PROCEDURE)
Ctrl/Z
$ ANALYZE/IMAGE/SECTION=SYMTAB MY_MATH.EXE
Ctrl/Z
 .
 .
 .
 Symbol 3. (00000003) "MYSUB"
 Name Index in Sec. 2.: 0000000D 13.
 Symbol Info Field: 12
 Symbol Type: 02 STT_FUNC
 Symbol Binding: 01 STB_GLOBAL
 Symbol 'Other' Field: 93
 Symbol Visibility 03 STV_PROTECTED
 Function Type 10 VMS_SFT_SYMV_IDX
 .
 .
 .
 Bound to section: 0008 8. "$LINKER RELOCATABLE_SYMBOL"
 Symbol Value 0000000000000001 1.
 Size associated with sym: 0000000000000000

For x86-64 and I64 images, STV_PROTECTED indicates a universal definition. The "Symbol Type",
STT_FUNC, indicates that this symbol represents a function (or procedure). The Function Type,
VMS_SFT_SYMV_IDX, indicates that the symbol value (in this case 1) is the index into the symbol
vector of the pointer to the function descriptor for MYSUB.

The analysis also lists all the indexes in the symbol vector. The following Index, which matches the
previous value for the symbol, is 1.

For x86-64 images, the entry in the symbol vector with the index value of 1 contains the values
00002080 and 80000020. The first value is the procedure value for MYSUB, and the second value is
the code address of the entry point for MYSUB.

SYMBOL VECTOR 4. Elements
------------- -----------
Index Value Size Symbol or Section Name
----- ----- ---- ----------------------
 0. 0000000000002070 PROCEDURE "MYADD"
 0000000080000000
 1. 0000000000002080 PROCEDURE "MYSUB"
 0000000080000020
 2. 0000000000002090 PROCEDURE "MYMUL"
 0000000080000040
 3. 00000000000020A0 PROCEDURE "MYDIV"
 0000000080000060
 .
 .
 .

33

Chapter 2. Understanding Symbol Resolution (x86-64 and I64)

For I64 images, the entry in the symbol vector with the index value of 1, contains the value 30080,
which is the address of a function descriptor for MYSUB. The function descriptor is a quadword pair.
The first quadword is the address of the entry point for MYSUB (10020). The address 10020 is in a
segment that has the execute flag set (that is, a code segment). The second quadword contains the
global pointer chosen by the linker for the image (230000).

SYMBOL VECTOR 4. Elements
------------- -----------
Index Value Entry/GP or Size Symbol or Section Name
----- ----- ---------------- ----------------------
 0. 0000000000030068 PROCEDURE 0000000000010000 "MYADD"
 0000000000230000
 1. 0000000000030080 PROCEDURE 0000000000010020 "MYSUB"
 0000000000230000
 2. 0000000000030098 PROCEDURE 0000000000010040 "MYMUL"
 0000000000230000
 3. 00000000000300B0 PROCEDURE 0000000000010090 "MYDIV"
 0000000000230000
 .
 .
 .

2.2.2.1. Implicit Processing of Shareable Images
For VAX linking, when you specify a shareable image in a link operation, the linker not only resolves
symbols from the shareable image you specify but it also resolves symbols from all shareable images
that the shareable image has been linked against (that is, the shareable image's dependency list).

The x86-64 and I64 linkers perform like the Alpha linker in that it does not automatically scan down a
shareable image's dependency list to resolve symbols. Instead, on I64 an image's dependency list is in
the dynamic segment. It appears in an analysis near the top of the file under the title Shareable Image
List, as in the following example analysis of MY_MAIN.EXE:

$ LINK/MAP/FULL/CROSS MY_MAIN,SYS$INPUT/OPT
MY_MATH.EXE/SHAREABLE
Ctrl/Z
$ ANALYZE/IMAGE MY_MAIN
 .
 .
 .
Image Activation Information, in segment 4.
 Global Pointer: 0000000000240000
 Whole program FP-mode: IEEE DENORM_RESULTS
 Link flags
 Call SYS$IMGSTA
 Image has main transfer
 Traceback records in image file
 Shareable Image List
 MY_MATH
 (EQUAL, 9412., 468313704).
 DECC$SHR
 (LESS/EQUAL, 1., 1).

Note

If your VAX application's build procedure depends on implicit processing of shareable images, you
may need to add these shareable images to your x86-64 or I64 linker options file.

2.2.3. Processing Library Files
Libraries specified as input files in link operations contain either object modules or shareable images.
The way in which the linker processes library files depends on how you specify the library in the link

34

Chapter 2. Understanding Symbol Resolution (x86-64 and I64)

operation. Sections 2.2.3.1, 2.2.3.2, and 2.2.3.3 describe these differences. Note, however, that once
an object module or shareable image is included from the library into the link operation, the linker
processes the file as it would any other object module or shareable image.

For example, to create a library and insert the object module version of the program in Example 2.2
into the library, you could specify the following command:

$ LIBRARY/CREATE/INSERT MYMATH_LIB MY_MATH

The librarian includes the module in its module list and all of the global symbols defined in the
module in its name table. To view the library's module list and name table, specify the LIBRARY
command with the /LIST and /NAMES qualifiers, as in the following example:

$ LIBRARY/LIST/NAMES MYMATH_LIB
Directory of ELF OBJECT library WORK:[PROGRAMS]MYMATH_LIB.OLB;1 on 8-MAR-2019 17:49:14
Creation date: 8-MAR-2019 17:48:57 Creator: Librarian I01-42
Revision date: 8-MAR-2019 17:48:57 Library format: 6.0
Number of modules: 1 Max. key length: 1024
Other entries: 4 Preallocated index blocks: 213
Recoverable deleted blocks: 0 Total index blocks used: 2
Max. Number history records: 20 Library history records: 0
 Module MY_MATH
MYADD
MYDIV
MYMUL
MYSUB

You can specify the library in the link operation using the following command:

$ LINK/MAP/FULL/CROSS MY_MATH, MYMATH_LIB/LIBRARY

The map file produced by the link operation verifies that the object module MY_MATH.OBJ was
included in the link operation.

2.2.3.1. Identifying Library Files Using the /LIBRARY Qualifier

When the linker processes a library file identified by the /LIBRARY qualifier, the linker processes the
library's name table and looks for the definitions of symbols referenced in previously processed input
files.

Note that in order to resolve a reference to a symbol defined in a library, the linker must first process
the module that references the symbol before it processes the library file. As such, while the order
of object modules and shareable images is not usually important in a link operation, how you order
library files can be important. For more information about controlling the order in which the linker
processes input files, see Section 2.3.

Once the object module or shareable image is included from the library into the link operation,
the linker processes all the symbol definitions in a shareable image, and symbol definitions and
references in an object module. If you want the linker to selectively process object modules or
shareable images that are included in the link operation from a library, you must append the Librarian
utility's /SELECTIVE_SEARCH qualifier to the file specification of the object module or shareable
image when you insert it into the library. Appending the linker's /SELECTIVE_SEARCH qualifier to
a library file specification in a link operation is illegal. For more information about processing input
files selectively, see Section 2.2.4.

Processing Object Module Libraries

When the linker finds a symbol in the name table of an object module library, it:

35

Chapter 2. Understanding Symbol Resolution (x86-64 and I64)

• Extracts from the library the object module that contains the definition and includes it in the link
operation

• Processes the GSD of the object module extracted from the library, adding an entry to the linker's
list of symbol definitions for every symbol defined in the object module, and adding entries to the
linker's undefined symbol list for all the symbols referenced by the module (see Section 2.2.1)

• Continues to process the undefined symbol list until there are no definitions in the library for any
outstanding references

When the linker finishes processing the library, it will have extracted all the modules that resolve
references generated by modules that were previously extracted from the library.

Processing Shareable Image Libraries

When the linker finds a symbol in the name table of a shareable image library, it notes which
shareable image contains the symbol and then looks for the shareable image to include it in the link
operation. By default, the linker looks for the shareable image in the same device and directory as the
library file

If the linker cannot find the shareable image in the device and directory of the library file, the linker
looks for the shareable image in the directory pointed to by the logical name X86$LIBRARY for
x86-64 links and IA64$LIBRARY for I64 links.

Once the linker locates the shareable image, it processes the shareable image as it does any other
shareable image (see Section 2.2.2).

2.2.3.2. Including Specific Modules from a Library Using
the /INCLUDE Qualifier

 If the library file is specified with the /INCLUDE qualifier, the linker does not process the library's
name table. Instead, the linker includes in the link operation modules from the library specified
with the /INCLUDE qualifier and processes these modules as it would any other object module or
shareable image.

If you append both the /LIBRARY qualifier and the /INCLUDE qualifier to a library file
specification, the linker processes the library's name table to search for modules that contain needed
definitions. When the linker finds an object module or shareable image in the library that contains a
needed definition, it processes it as described in Section 2.2.3.1. In addition, the linker includes the
modules specified with the /INCLUDE qualifier in the link operation and processes them as it would
any other object module or shareable image.

2.2.3.3. Processing Default Libraries

In addition to the libraries you specify using the /LIBRARY qualifier or the /INCLUDE qualifier, the
linker processes certain other libraries by default. The linker processes these default libraries in the
following order:

1. Default user library files. You specify a default user library by associating the library with
one of the linker's default logical names from the range LNK$LIBRARY, LNK$LIBRARY_1,
… LNK$LIBRARY_999. If the /NOUSERLIBRARY qualifier is specified, the linker skips
processing default user libraries. For more information about defining a default user library, see
the description of the /USERLIBRARY qualifier in Chapter 10.

36

Chapter 2. Understanding Symbol Resolution (x86-64 and I64)

If the default user library contains shareable images, the linker looks for the shareable image as
described in Section 2.2.3.1.

2. Default system shareable image library file. The linker processes the default system
shareable image library IMAGELIB.OLB by default unless you specify the /NOSYSSHR or
the /NOSYSLIB qualifier.

Note that when the linker needs to include a shareable image from IMAGELIB.OLB in a
link operation, it always looks for the shareable images in X86$LIBRARY on x86-64 and
IA64$LIBRARYon I64. The linker does not look for the shareable image in the device and
directory of IMAGELIB.OLB as it does for other shareable image libraries.

3. Default system object module library file. The linker processes the default system object library
STARLET.OLB by default unless you specify the /NOSYSLIB qualifier.

When the x86-64 or I64 linkers process STARLET.OLB by default, it also processes the shareable
image (SYS$PUBLIC_VECTORS.EXE). This shareable image is needed to resolve references to
system services.

When STARLET is not processed by default (for example, when the /NOSYSLIB qualifier is
specified), the linker does not process SYS$PUBLIC_VECTORS.EXE automatically, even if you
explicitly specify STARLET.OLB in an options file.

If you specify SYS$PUBLIC_VECTORS.EXE explicitly in an options file when it is already
being processed by default, the linker displays the following warning:

%ILINK-W-MULCLUOPT, cluster SYS$PUBLIC_VECTORS multiply defined
 in options file [filename]

2.2.4. Processing Input Files Selectively
By default, the linker processes all the symbol definitions and references in an object
module or a shareable image specified as input in a link operation. However, if you append
the /SELECTIVE_SEARCH qualifier to an input file specification, the linker processes from the input
file only those symbol definitions that resolve references in previously processed input files.

Processing input files selectively can reduce the amount of time a link operation takes and can
conserve the linker's use of virtual memory. Note, however, that selective processing can also
introduce dependencies on the ordering of input files in the LINK command.

Note

Processing files selectively does not affect the size of the resultant image; the entire object module is
included in the image even if only a subset of the symbols it defines is referenced. (Shareable images
do not contribute to the size of an image).

For example, in the link operation in Section 2.2.2, the linker processes the shareable image
MY_MATH.EXE before it processes the object module MY_MAIN.OBJ because of the way in
which the linker clusters input files. (For information about how the linker clusters input files, see
Section 2.3.1). When it processes the shareable image, the linker includes on its list of symbol
definitions all the symbols defined in the shareable image. When it processes the object module
MY_MAIN.OBJ and encounters the reference to the symbol mysub, the linker has the definition to
resolve the reference.

37

Chapter 2. Understanding Symbol Resolution (x86-64 and I64)

If you append the /SELECTIVE_SEARCH qualifier to the shareable image file specification and all
of the other input files are specified on the command line, the link will fail. In the following example,
because the linker has no symbols on its undefined symbol list when it processes the shareable image
file MY_MATH.EXE, it does not include any symbol definitions from the shareable image in its
processing. When it subsequently processes the object module MY_MAIN.OBJ that references the
symbol mysub, the linker cannot resolve the reference to the symbol. For information about how to
correct this link operation, see Section 2.3.1.

$ LINK MY_MAIN, SYS$INPUT/OPT
MY_MATH.EXE/SHAREABLE/SELECTIVE_SEARCH
Ctrl/Z
%ILINK-W-NUDFSYMS, 1 undefined symbol:
%ILINK-I-UDFSYM, MYSUB
%ILINK-W-USEUNDEF, undefined symbol MYSUB referenced
 section: $CODE$
 offset: %X0000000000000110 slot: 2
 module: MY_MAIN
 file: WORK:[PROGRAMS]MY_MAIN.OBJ;1

To process object modules or shareable images in a library selectively, you must specify
the /SELECTIVE_SEARCH qualifier when you insert the module in the library. The following
command creates the library MYMATH_LIB.OLB and inserts the file MY_MATH.OBJ into the
library. For more information about using the Librarian utility, see the VSI OpenVMS Command
Definition, Librarian, and Message Utilities Manual.

$ LIBRARY/CREATE/INSERT MYMATH_LIB MY_MATH/SELECTIVE_SEARCH

2.3. Ensuring Correct Symbol Resolution
For many link operations, the order in which the input files are specified in the LINK command is
not important. However, in complex link operations that specify multiple library files or process input
files selectively, correct symbol resolution may become problematic.

To ensure that the linker resolves all the symbolic references as you intend, you may need to know
order in which the linker processes the input files. To control the order in which the linker processes
input files, you must understand how the linker parses the command line. The following sections
describe these processes.

2.3.1. Understanding Cluster Creation
As it parses the command line, the linker groups the input files you specify into clusters and places
these clusters on a cluster list. A cluster is an internal linker construct that determines segment
creation. The position of an input file in a cluster and the position of that cluster on the linker's cluster
list determine the order in which the linker processes the input files you specify.

The linker always creates at least one cluster, called the default cluster. The linker may create
additional clusters, called named clusters, depending on the types of input files you specify and the
linker options you specify. If it creates additional clusters, the linker places them on the cluster list
ahead of the default cluster, in the order in which it encounters them in the options file. The default
cluster appears at the end of the cluster list. (Within the default cluster, input files appear in the same
order in which they are specified on the LINK command line).

Clusters for shareable images, specified in shareable image libraries, appear after the default cluster
on the cluster list because they are created later in linker processing, when the linker knows which
shareable images in the library are needed for the link operation.

38

Chapter 2. Understanding Symbol Resolution (x86-64 and I64)

The linker groups input files into clusters according to file type. Table 2.2 lists the types of input files
accepted by the linker and describes how the linker processes them when creating clusters.

Table 2.2. Linker Input File Cluster Processing

Input File Cluster Processing
Object file (.OBJ) Placed in the default cluster unless explicitly placed in a named cluster

using the CLUSTER= option.
Shareable image file (.EXE) Always placed in a named cluster.
Library files (.OLB) Placed in the default cluster unless explicitly placed in a named cluster

using the CLUSTER= option. If the library contains shareable images
and the linker includes a shareable image from the library in the link
operation, the linker creates a new cluster for the shareable image.

The linker puts input files included in a link operation from a library
using the /INCLUDE qualifier in the same cluster as the library.

The linker puts modules extracted from any default user library
that is an object library and from STARLET.OLB in the default
cluster. However, the linker puts shareable images referenced from
IMAGELIB.OLB into new clusters at the end of the cluster list (after
the default cluster).

Options file (.OPT) Not placed in a cluster.

The following example illustrates how the linker puts the various types of input files in clusters. To
see which clusters the linker creates for this link operation, look at the Cluster Synopsis section of the
image map file. Figure 2.4 illustrates the clusters created for this link operation. Note that order of
cluster creation is: MY_CLUS, MY_SHARE, DEFAULT_CLUSTER, MY_SHARE_IMG.
$ DEFINE LNK$LIBRARY SYS$DISK:[]MY_DEFAULT_LIB.OLB
$ LINK MY_MAIN.OBJ, MY_LIB.OLB/LIBRARY, SYS$INPUT/OPT
CLUSTER=MY_CLUS,,,MY_PROG.OBJ
MY_SHARE.EXE/SHAREABLE
MY_SHARE_LIB.OLB/LIBRARY
Ctrl/Z

Figure 2.4. Clusters Created for Sample Link

39

Chapter 2. Understanding Symbol Resolution (x86-64 and I64)

The linker processes input files in cluster order, processing each input file starting with the first file
in the first cluster, then processing the second file, and so on, until it has processed all files in the first
cluster. The linker continues processing the input files in the second, and subsequent, clusters in the
same manner. Processing concludes when the linker has processed all files in all clusters.

2.3.2. Controlling Cluster Creation
You can control cluster creation and ordering by using either of the following linker options:

• CLUSTER= option

• COLLECT= option

2.3.2.1. Using the CLUSTER= Option to Control Clustering

The CLUSTER= option causes the linker to create a named cluster and to place, in the cluster, the
object modules specified in the option. (The linker puts shareable images in their own clusters).

For example, you can use the CLUSTER= option to fix the link operation illustrated in Section 2.2.4,
where the link operation yielded warnings because a shareable image was processed first and
selectively. To make the linker process the object module MY_MAIN.OBJ before it processes the
shareable image MY_MAIN.EXE, put the object module in a named cluster before specifying
the shareable image. In the following example, the /EXECUTABLE qualifier is specified on the
command line to specify the name of the resultant image, because MY_MAIN is not specified on the
command line.

$ LINK/EXECUTABLE=MY_MAIN SYS$INPUT/OPT
CLUSTER=MYMAIN_CLUS,,,MY_MAIN
MY_MATH/SHAREABLE/SELECTIVE_SEARCH
Ctrl/Z

The Object and Image Synopsis section of the image map file verifies that the linker processed the
object module MY_MAIN before it processed the shareable image MY_MATH, as in the following
map file excerpt:

 +---------------------------+
 ! Object and Image Synopsis !
 +---------------------------+
 Module/Image File Ident Attributes Bytes
 ------------ ---- ----- –-------------- -----
 MY_MAIN V1.0 Lkg Dnrm 504
 WORK:[PROGRAMS]MY_MAIN.OBJ;1
 MY_MATH V1.0 Sel Lkg 0
 WORK:[PROGRAMS]MY_MATH.EXE;1
 .
 .
 .

2.3.2.2. Using the COLLECT= Option to Control Clustering

You can also create a named cluster by specifying the COLLECT= option. The COLLECT= option
directs the linker to put specific sections in a named cluster. The linker creates the cluster if it does not
already exist. Note that the COLLECT= option manipulates sections, not input files.

The linker sets the global (GBL) attribute of the sections specified in a COLLECT= option to enable a
global search for the definition of that section.

40

Chapter 2. Understanding Symbol Resolution (x86-64 and I64)

$ LINK/EXECUTABLE=MY_MAIN SYS$INPUT/OPT
CLUSTER=MYMAIN_CLUS,,,MY_MAIN
COLLECT=MYCODE_CLUS,$CODE$
MY_MATH/SHAREABLE/SELECTIVE_SEARCH
Ctrl/Z

In this example, a cluster MYCODE_CLUS is created after MYMAIN_CLUS and the section
$CODE$ is collected into the cluster MYCODE_CLUS.

2.4. Resolving Symbols Defined in the
OpenVMS Executive
For x86-64 and I64 linking, you link against the OpenVMS executive by specifying the /SYSEXE
qualifier. When this qualifier is specified, the linker selectively processes the system shareable
image, SYS$BASE_IMAGE.EXE, located in the directory pointed to by the logical name
X86$LOADABLE_IMAGES for x86-64 links and IA64$LOADABLE_IMAGES for I64 links.
The linker does not process SYS$BASE_IMAGE.EXE by default. Note that, because the linker is
processing a shareable image, references to symbols in the OpenVMS executive are fixed up at image
activation.

When the /SYSEXE qualifier is specified, the linker processes the file selectively. To disable selective
processing, specify the /SYSEXE=NOSELECTIVE qualifier and keyword. For more information
about using the /SYSEXE qualifier, see the description of the qualifier in Chapter 10.

Relation to Default Library Processing
When you specify the /SYSEXE qualifier, the linker processes the SYS$BASE_IMAGE.EXE
file after processing the system shareable image library, IMAGELIB.OLB, and before processing
the system object library, STARLET.OLB. (Note that the linker also processes the system service
shareable image, SYS$PUBLIC_VECTORS.EXE, when it processes STARLET.OLB by default).

The /SYSSHR and /SYSLIB qualifiers, which control processing of the default system libraries,
do not affect SYS$BASE_IMAGE.EXE processing. When the /NOSYSSHR qualifier is specified
with the /SYSEXE qualifier, the linker does not process IMAGELIB.OLB, but still processes
SYS$BASE_IMAGE.EXE and then STARLET.OLB and SYS$PUBLIC_VECTORS.EXE.
When /NOSYSLIB is specified, the linker does not process IMAGELIB.OLB, STARLET.OLB, or
SYS$PUBLIC_VECTORS, but still processes SYS$BASE_IMAGE.EXE.

To process SYS$BASE_IMAGE.EXE before the shareable images in IMAGELIB.OLB, specify
SYS$BASE_IMAGE.EXE in a linker options file as you would any other shareable image. If you
specify SYS$BASE_IMAGE.EXE in your options file, do not use the /SYSEXE qualifier.

Figure 2.5 illustrates how the /SYSEXE qualifier, in combination with the /SYSSHR and /SYSLIB
qualifiers, can affect linker processing. (The default syntax illustrated in the figure is rarely specified).

41

Chapter 2. Understanding Symbol Resolution (x86-64 and I64)

Figure 2.5. Linker Processing of Default Libraries and SYS$BASE_IMAGE.EXE

2.5. Processing Weak and Strong Global
Symbols
This section describes how the linker processes weak and strong global symbols.

2.5.1. Overview of Weak and Strong Global Symbol
Processing
The linker records each symbol definition and each symbol reference in its internal global symbol
table. For each symbol, the linker notes whether the symbol is strong, VMS-style weak, or UNIX-
style weak.

The linker processes strong symbol definitions differently than it does UNIX-style weak symbol
definitions (see Section 2.5.2). In general, a symbol can have only one strong or one VMS-style weak
definition but it can have multiple UNIX-style weak definitions. When linking against libraries, note
that there is also a difference between VMS-style weak and UNIX-style weak symbol definitions.

The linker processes weak references differently than it does strong references, although it handles
both types of weak references in the same manner. Strong references must be resolved, whereas VMS-
style and UNIX-style weak can be resolved optionally. If any weak symbol is not resolved, then the
linker puts the value zero in place of the reference. In this case, the linker does not display a warning
message.

By default, all global symbols generated by most x86-64 and I64 language processors are strong.
That is, object modules usually contain strong symbol definitions and strong symbol references. You
can decide to make some symbols VMS-weak definitions and references. To do so, you must use a
language feature and explicitly mark the code or data as VMS-style weak. (For example, you would
explicitly mark the code or data as VMS-style weak with the intention of performing a link operation
on partially complete development code). See Section 2.5.1.2 for more information about creating and
using VMS-style weak symbols.

42

Chapter 2. Understanding Symbol Resolution (x86-64 and I64)

For some language constructs, the VSI C++ compiler generates UNIX-style weak symbols. That is,
some object modules may contain strong and weak symbol definitions and references. The compiler
produces redundant code or data in multiple object modules and the linker resolves to the first symbol
encountered in the link operation.

2.5.1.1. Strong Symbols
For strong global symbols, there can be only one definition. If the linker finds more than one
definition in different input modules, any secondary definition is reported as a multiple definition.

By default, when adding an object module to a library, a strong symbol definition from the object
module is included in the library symbol table. As a result, the symbol can be found when the linker
searches a library to resolve a symbol reference.

2.5.1.2. VMS-Style Weak Symbols
VMS-style weak global symbols can have only one definition. If the linker finds more than one
definition in different input modules, any secondary definition is reported as multiply defined.

When adding an object module to a library, a VMS-style weak global symbol is not included in
the library symbol table. As a result, if the module containing the weak symbol definition is in a
library but is not selected for inclusion (by means of the /INCLUDE qualifier or to resolve a strong
reference), the linker is unable to resolve the reference.

2.5.1.3. UNIX-Style Weak Symbols
UNIX-style weak global symbols can have multiple definitions. When a strong definition is absent,
the linker selects the first occurrence of the UNIX-style weak definition and views subsequent ones as
references.

When adding an object module to a library, a UNIX weak symbol is included in the library symbol
table. (The x86-64 and I64 Librarians are compatible with UNIX-style weak symbols). If multiple
modules define the same UNIX-style weak symbol, the librarian maintains an ordered list of symbols
in its symbol table. With this information, the linker can find a UNIX-style weak symbol when
searching a library for an unresolved symbol. Note that the earliest module added in the library
defining the symbol is selected for inclusion.

If the object module containing any type of weak symbol definition is explicitly specified, either as
an input object file or for extraction from a library (by means of the /INCLUDE qualifier or to resolve
a strong reference), the VMS-style weak or UNIX-style weak symbol definitions are available for
symbol resolution.

2.5.2. Strong and Weak Definitions
The OpenVMS x86-64 and I64 linkers support modules from various programming languages and
contain rules for handling symbols from these languages under different circumstances. Table 2.3
shows how symbol definitions are handled when object modules are processed.

43

Chapter 2. Understanding Symbol Resolution (x86-64 and I64)

Table 2.3. Symbol Definition Handling

Current Symbol Definition New Symbol Definition
Encountered

Action

<none> <any> Assign new definition
UNIX-style weak UNIX-style weak Ignore new definition
UNIX-style weak VMS-style weak Assign VMS-style weak

definition
UNIX-style weak Strong Assign Strong definition
VMS-style weak UNIX-style weak Ignore new definition
VMS-style weak VMS-style weak Report multiple defined symbols
VMS-style weak Strong Report multiple defined symbols
Strong UNIX-style weak Ignore new definition
Strong VMS-style weak Report multiple defined symbols
Strong Strong Report multiple defined symbols

An exception to the rules presented in Table 2.3 is for the special symbol, ELF$TFRADR, which
defines the image entry point. Typically, each compiler defines one symbol for each module that
contains code. If the module contains a main entry, then a strong symbol is defined. Conversely, if
there is no main entry, a VMS-style weak symbol is defined (which behaves differently than a strong
symbol).

If you have only VMS-style weak ELF$TFRADR symbols, the first-encountered definition
determines the image entry and the other definitions are ignored. If there is a strong definition, it
overwrites an existing VMS-style weak definition and other definitions are ignored.

Note

This case is different than processing UNIX-style weak symbols, where ignored symbols are
converted to references.

2.5.3. Resolving Strong and Weak Symbols
This section describes how the x86-64 and I64 linkers process strong and weak references to resolve
symbols. In general, a strong reference can be resolved by a strong symbol definition or any type of
weak symbol definition.

For a strong reference, the linker searches all input files (explicit and implicit) for a definition of the
symbol. If the linker cannot locate the definition needed to resolve the strong reference, it reports
the undefined symbol and assigns the symbol a value, which usually results in a run-time error for
accessing the data or calling the routine.

When the linker resolves a weak reference with a strong symbol definition or a weak symbol
definition, it resolves the weak reference in the same way it does a strong reference, with the
following exceptions:

• The linker will not search library modules that have been specified with the /LIBRARY qualifier
or default libraries (user-defined or system) solely to resolve a weak reference. If, however, the
linker resolves a strong reference to another symbol in such a module, it will also use that module
to resolve any weak references.

44

Chapter 2. Understanding Symbol Resolution (x86-64 and I64)

• If the linker cannot locate the definition needed to resolve a weak reference, it assigns the symbol
a value, which usually results in a run-time error, but does not report an undefined symbol. If,
however, the linker reports any unresolved strong references, it will also report any unresolved
weak references.

By default, most global definitions in x86-64 and I64 languages are strongly defined.

2.5.4. Creating and Using VMS-style Weak Symbols
In the dialects of MACRO, BLISS, and Pascal supported on x86-64 and I64 systems, you can define a
global symbol as either strong or VMS-style weak, and you can make either a strong or a VMS-style
weak reference into a global symbol.

In these languages, all definitions and references are strong by default. To make a VMS-style
weak definition or a VMS-style weak reference, you must use the .WEAK assembler directive (in
MACRO), the WEAK attribute (in BLISS), or the WEAK_GLOBAL or WEAK_EXTERNAL
attribute (in Pascal).

One purpose for making a weak reference is need to write and test incomplete programs. Resolving
all symbolic references is crucial to a successful link operation. Therefore, a problem arises when the
definition of a referenced global symbol does not yet exist. (This would be the case, for example, if
the global symbol definition is an entry point to a module that is not yet written). The solution to this
condition is to make the reference to the symbol VMS-style weak, which informs the linker that the
resolution of this particular global symbol is not crucial to the link operation.

2.6. Processing VSI C++ Compiler-Generated
UNIX-Style Weak and Group Symbols
UNIX-style weak symbols and groups are used by the VSI C++ compiler to implement template
instantiation. Templates, commonly used in the VSI C++ standard library,provide a programming
model that allows you to write and use data type-independent code. When this code is part of a source
module, it is used with a data type, that is, the template is instantiated.

To instantiate the template, the compiler defines UNIX-style weak symbols for variables and
functions used in the template and generates a group. All these symbols, along with code and data, are
placed in the group and marked as group symbols. When the same template with the same data type is
instantiated in several source modules, a group with the same name containing the same code and data
appears in each object module.

The linker handles group symbols in a special way to generate an image which contains only one
occurrence of this group of sections. The linker ensures that all references to the groups are resolved
to the designated instance of the group.

Currently, UNIX-style weak symbols and group symbols are only used by the VSI C++ compiler,
which also limits the usage of UNIX-style weak binding to group symbols. However, UNIX-style
weak symbols and group symbols can be seen as independent, and the linker handles them as such.

2.6.1. Processing Group Symbols
When linking modules, the first occurrence of a group makes its symbols known to the linker. The
linker regards any additional occurrence of the group with the same name as redundant and therefore,
ignores it.

45

Chapter 2. Understanding Symbol Resolution (x86-64 and I64)

Because the concept of groups (as described in the ELF specification) is limited to object modules,
the use of shareable images requires a different approach: the VMS extension to ELF allows groups
for shareable images. A shareable image group always takes precedence over groups found in object
modules. For global symbols and identical groups, this means that all group symbols from an already
processed group of an object module are replaced by the ones from the shareable image. The linker's
intention is to always use the code and data from the shareable image.

2.6.2. VSI C++ Examples
The following VSI C++ examples demonstrate how symbols are resolved when you link with
compiler-generated UNIX-style weak and group symbols.

The examples apply a user-written function template called myswap. Note that you can also use class
templates, which are implemented in a similar manner. If you are an experienced C++ programmer,
you will also recognize that there is a "swap" function in the VSI C++ standard library, which you
should use instead of writing your own function.

In the examples, the compiler combines code sections (and other required data)into a group, giving it
a unique group name derived from the template instantiation.

The linker includes the first occurrence of this group in the image. All UNIX-style weak definitions
obtained from that group are now defined by the module providing this group. All subsequent groups
with the same name do not contribute code or data; that is, the linker ignores all subsequent sections.
The UNIX-style weak definitions from these ignored sections become references, which are resolved
by the definition from the designated instance (that is, first-encountered instance) of the group. In this
manner, code (and data) from templates are included only once for the image.

Example 2.3 shows UNIX-Style weak symbols and group symbols.

Example 2.3. UNIX-Style Weak and Group Symbols

// file: my_asc.cxx

template <typename T>

void myswap (T &v1, T &v2) {
 T tmp;
 tmp = v1;
 v1 = v2;
 v2 = tmp;
}
void ascending (int &v1, int &v2) {
 if (v2<v1)

 myswap (v1,v2);
}
// file: my_desc.cxx

template <typename T>

void myswap (T &v1, T &v2) {
 T tmp;
 tmp = v1;
 v1 = v2;
 v2 = tmp;
}
void descending (int &v1, int &v2) {
 if (v1<v2)

 myswap (v1,v2);
}
// file: my_main.cxx
#include <cstdlib>
#include <iostream>
using namespace std;
static int m = 47;

46

Chapter 2. Understanding Symbol Resolution (x86-64 and I64)

static int n = 11;
template <typename T> void myswap (T &v1, T &v2);
extern void ascending (int &v1, int &v2);
extern void descending (int &v1, int &v2);
int main (void) {
 cout << "original: " << m << " " << n << endl;

 myswap (m,n);
 cout << "swapped: " << m << " " << n << endl;
 ascending (m,n);
 cout << "ascending: " << m << " " << n << endl;
 descending (m,n);
 cout << "descending: " << m << " " << n << endl;
 return EXIT_SUCCESS;
}

Example 2.4 shows the compile and link commands.

Example 2.4. Compile and Link Commands

$ CXX/OPTIMIZE=NOINLINE/STANDARD=STRICT_ANSI MY_MAIN

$ CXX/OPTIMIZE=NOINLINE/STANDARD=STRICT_ANSI MY_ASC

$ CXX/OPTIMIZE=NOINLINE/STANDARD=STRICT_ANSI MY_DESC

$ CXXLINK MY_MAIN, MY_ASC, MY_DESC

In the examples, the compiler combines code sections (and other required data) into a group, giving it
a unique group name derived from the template instantiation.

The linker includes the first occurrence of this group in the image. All UNIX-style weak definitions
obtained from that group are now defined by the module providing this group. All subsequent groups
with the same name do not contribute code or data; that is, the subsequent sections are ignored. The
UNIX-style weak definitions from these ignored sections become references, which are resolved by
the definition from the designated instance (first-encountered) of the group. In this manner, code (and
data) from templates are included only once for the image.

To keep the examples simple, the template definitions are included in the sources, usually
templates are defined in include files.
C++ mangles symbol names to guarantee unique names for overloaded functions. Therefore,
in the linker map or in the output from ANALYZE/OBJECT utility, the string MYSWAP may
be part of a longer symbol name and may not be easily identified. Further, the compiler creates
more names using the string MYSWAP:the unique group name, code section names, and so on.
The functions "ascending" and "descending" sort a pair of numbers. If necessary the contents are
swapped. Swapping is implemented as a function template, which is automatically instantiated
with the call inside of the functions "ascending"and "descending".
In the main function, "myswap" is used to demonstrate a strong reference to a UNIX-style
weak definition. (As previously mentioned, this is not common practice. Usually, templates
are defined in include files and included in all sources). Note that there is only a reference to
the function and that there is no definition. That is, the compiler does not create a group. When
compiling the main module, a reference to "myswap <int>" is automatically generated
for the call to myswap inside the main function. This strong reference will be resolved by the
first UNIX-style weak definition from either MY_ASC.OBJ or MY_DESC.OBJ which define
"myswap <int>".

To see the effects of this example, the compiler should not inline code. Because inlining is an
optimization, this feature is demonstrated only by omitting optimization.
When both source modules are compiled, both object modules contain the definition of the
"myswap <int>" function. The compiler groups the code (and other required data) sections
into a group with a unique group name derived from the template instantiation. The compiler
generates UNIX-style weak symbols and adds them to the group.

47

Chapter 2. Understanding Symbol Resolution (x86-64 and I64)

For linking, the CXXLINK command is used in the examples. This command invokes the C++
linker driver, which in turn calls the OpenVMS linker to perform the actual link operation.

2.6.3. Compiler-Generated Symbols and Shareable
Images
To create a VMS shareable image, you must define the interface in a symbol vector at link time with
a SYMBOL_VECTOR option. VSI C++ generated objects contain mangled symbols and may contain
compiler-generated data, which belongs to a public interface. In the SYMBOL_VECTOR option, the
interface is describe with the names from the object modules. Because they contain mangled names,
such a relationship may not be obvious from the source code and the symbols as seen in an object
module.

If you do not export all parts of an interface, code that is intended to update one data cell may be
duplicated in the executable and the shareable image along with the data cell. That is, data can
become inconsistent at run-time, producing a severe error condition. This error condition can not
be detected at link time nor at image activation time. Conversely, if you export all symbols from an
object module, you may export the same symbol which is already public from other shareable images.

A conflict arises when an application is linked with two shareable images that export the same symbol
name. In this case, the linker flags the multiple definitions with a MULDEF warning that should not
be ignored. This type of error most often results when using templates defined in the C++ standard
library but instantiated by the user with common data types. Therefore, VSI recommends that you
only create a shareable image when you know exactly what belongs to the public interface. In all other
cases, use object libraries and let applications link against these libraries.

The VSI C++ run-time library contains pre-instantiated templates. The public interfaces for these
are known and therefore, the VSI C++ run-time library ships as a shareable image. The universal
symbols from the VSI C++ run-time library and the group symbols take precedence over user
instantiated templates with the same data types. As with other shareable images, this design is
upwardly compatible and does not require you to recompile or relink to make use of the improved
VSI C++ run-time library.

2.7. Understanding and Fixing DIFTYPE and
RELODIFTYPE Linker Conditions (I64 Only)
On OpenVMS I64 systems, if a module defines a variable as data (OBJECT), it must be referenced as
data by all other modules. If a module defines a variable as a procedure (FUNC), it must be referenced
as a procedure by all other modules.

When data is referenced as a procedure, the linker displays the following informational message:

%ILINK-I-DIFTYPE, symbol symbol-name of type OBJECT cannot be
referenced as type FUNC

When a procedure is referenced as data, the following informational message is displayed:

%ILINK-I-DIFTYPE, symbol symbol-name of type FUNC cannot be
referenced as type OBJECT

Type checking is performed by the linker on OpenVMS I64 because the linker must create function
descriptors. The equivalent procedure descriptor was created by the compiler on OpenVMS Alpha, so
this informational message is new for the linker on OpenVMS I64.

48

Chapter 2. Understanding Symbol Resolution (x86-64 and I64)

This message is informational only and does not require user action. However, if the linker detects
data referenced as a procedure, it might issue the following warning message in addition to the
DIFTYPE message:

%ILINK-W-RELODIFTYPE, relocation requests the linker to build a
function descriptor for a non-function type of symbol

The following example of two modules demonstrates how to fix these conditions:

TYPE1.C
#include <stdio>
int status ; // Defines status as data.
extern int sub();
main ()
{
 printf ("Hello World\n");
 sub();
}
TYPE2.C
 extern int status (int x) ; // Refers to status as a procedure.
 sub ()
 {
 int x;
 x = (int)status;
 return status (x);
 }

When these modules are linked, you get an informational message and a warning message, as follows:

$ CC/EXTERN_MODEL=STRICT_REFDEF TYPE1
$ CC/EXTERN_MODEL=STRICT_REFDEF TYPE2
$ LINK TYPE1,TYPE2
%ILINK-I-DIFTYPE, symbol STATUS of type OBJECT cannot be referenced as
type FUNC
 module: TYPE2
 file: NODE1$:[SMITH]TYPE2.OBJ;6
%ILINK-W-RELODIFTYPE, relocation requests the linker to build a
function descriptor for a non-function type of symbol
 symbol: STATUS
 relocation section: .rela$CODE$ (section header entry: 18)
 relocation type: RELA$K_R_IA_64_LTOFF_FPTR22
 relocation entry: 0
 module: TYPE2
 file: NODE1$:[SMITH]TYPE2.OBJ;6

To correct the problem and avoid the informational and warning messages, correct TYPE1.C to define
status as a procedure:

TYPE1.C
#include <stdio>
int status (int x); // Defines status as a procedure.
extern int sub();
main ()
{
 printf ("Hello World\n");
 sub();
}
nt status (int x) {
 return 1;
}
$ CC/EXTERN_MODEL=STRICT_REFDEF TYPE1
$ CC/EXTERN_MODEL=STRICT_REFDEF TYPE2
$ LINK TYPE1,TYPE2

49

Chapter 2. Understanding Symbol Resolution (x86-64 and I64)

50

Chapter 3. Understanding Image File
Creation (x86-64 and I64)
This chapter describes how the linker creates an image on OpenVMS x86-64 and OpenVMS I64
systems. The linker creates images from the input files you specify in a link operation. You can
control image file creation by using linker qualifiers and options.

3.1. Overview
After the linker has resolved all symbolic references between the input files specified in the LINK
command (described in Chapter 2), the linker knows all the object modules and shareable images that
are required to create the image. For example, the linker has extracted from libraries specified in the
LINK command those modules that contain the definitions of symbols required to resolve symbolic
references in other modules. The linker must now combine all these modules into an image.

To create an image, the linker must perform the following processing:

• Determine the memory requirements of the image

The memory requirements of an image are the sum of the memory requirements of each object
module included in the link operation, together with the memory the linker created to support
code and data. The language processors that create the object modules specify the memory
requirements of an object module as section definitions. A section represents an area of memory
that has a name, a length, and other characteristics, called attributes, which describe the intended
or permitted usage of that portion of memory. Section 3.2 describes sections.

The linker processes the section definitions in each object module, combining sections with
similar attributes into a segment, which on x86-64 and I64 systems is analogous to an image
section on Alpha and VAX systems (see Chapter 7). Each segment specifies the size and attributes
of a portion of the virtual memory of an image. The image activator uses the segment attributes to
determine the characteristics of the physical memory pages into which it loads the image, such as
protection.

Figure 3.1 illustrates how memory requirements are communicated from the language processor to
the linker and from the linker to the image activator. Section 3.3 provides more information about
this process.

51

Chapter 3. Understanding Image File Creation (x86-64 and I64)

Figure 3.1. Communication of Image Memory Requirements on x86-64/I64

Note that shareable images included in link operations have already been processed by the linker.
These images are separate images with their own memory requirements, as specified by their own
segments. The image activator activates these shareable images at run-time.

• Initialize the image

When segments are first created, they are empty. In this step of linker processing, the linker
copies the code and data sections from the object modules into the image's segments. Section 3.4
provides more information about this process.

In the process of initializing the image, the linker may encounter sections that have the
type SHT_NOBITS. This section type indicates that the section occupies no space in
the file — a demand-zero section. The linker combines these sections together into
demand-zero segments. The linker also trims the zeros off the end of segments when the
qualifier /DEMAND_ZERO=PER_PAGE is used. Note that this is not the default. The operating
system initializes demand-zero segments at run-time, when a reference to a segment requires the
operating system to move the pages into memory. Section 3.4.4 describes how the linker creates
demand-zero segments.

After creating segments and filling them with binary code and data, the linker writes the image to an
image file. Section 3.4.2 describes this process.

3.2. Creating Sections
Language processors create sections and define their attributes. The number of sections created by
a language processor and the attributes of these sections are depend on language semantics. For
example, some programming languages implement global variables as separate sections with a

52

Chapter 3. Understanding Image File Creation (x86-64 and I64)

particular set of attributes. Programmers working in high-level languages typically have little direct
control over the sections created by the language processor. Medium- and low-level languages provide
programmers with more control over section creation. For more information about the section creation
features of a particular programming language, see the language processor documentation.

The x86-64 and I64 linkers also create sections that are combined with the compiler sections to create
segments (see Section 3.2.1).

Section Attributes
The language processors define the attributes of the sections they create and communicate these
attributes to the linker in the section header table.

Section attributes define various characteristics of the area of memory described by the section, such
as the following:

• Access

Using section attributes, compilers can prohibit some types of access, such as write access. Using
other section attributes, compilers can allow access to the section by more than one process.

• Positioning

By specifying certain section attributes, compilers can specify to the linker how it should position
the section in memory.

Section attributes are Boolean values, that is, they are either on or off. Table 3.2 lists all section
attributes with the keyword you can use to set or clear the attribute, using the PSECT_ATTR=option.
For more information about using the PSECT_ATTR= option, see Section 3.3.7.

For example, to specify that a section should have write access, specify the writability attribute as
WRT. To turn off an attribute, specify the negative keyword. Some attributes have separate keywords
that express the negation of the attribute. For example, to turn off the global attribute (GBL), you
must specify the local attribute (LCL). Note that the alignment of a section is not strictly considered
an attribute of the section. However, because you can set it using the PSECT_ATTR= option, it is
included in the table.

To be compatible with Alpha and VAX linkers, the x86-64 and I64 linkers retain the user interfaces as
much as possible. This information includes the traditional OpenVMS section attribute names (WRT,
EXE, and so on) that are used in the PSECT_ATTR= option. However, on x86-64 and I64 systems,
the underlying object conforms to the ELF standard. When processing the object module, the linker
maps the ELF terms to the OpenVMS terms. For compatibility, only OpenVMS terms are written to
the map file. In contrast, other tools, such as the ANALYZE/OBJECT utility, do not use OpenVMS
terms; they simply format the contents of the object file and therefore display the ELF terms.

Table 3.1 provides mapping between the ELF names and the traditional OpenVMS section attribute
names.

Table 3.1. Mapping ELF Section Terms to OpenVMS Attributes

ELF Section Attribute
(prefix SHDR$V_)

Traditional OpenVMS Section Attribute

SHF_WRITE WRT
SHF_EXECINSTR EXE
SHF_VMS_GLOBAL GBL

53

Chapter 3. Understanding Image File Creation (x86-64 and I64)

ELF Section Attribute
(prefix SHDR$V_)

Traditional OpenVMS Section Attribute

SHF_VMS_OVERLAID OVR
—1 REL
SHF_VMS_SHARED SHR
SHF_VMS_VECTOR VEC
SHF_VMS_ALLOC_64BIT ALLOC_64BIT
SHF_X86_64_LARGE2 —
SHF_IA_64_SHORT3 SHORT
SHT_NOBITS5 NOMOD6

1All ELF sections are relative (REL). There is only a conceptual absolute section: the reserved section number SHDR$K_SHN_ABS.
Absolute symbols are defined by that mechanism.
2x86-64 specific
3I64 specific
5This is an ELF section type (prefixed with SHDR$K_), mapped to an OpenVMS section attribute.
6SHT_NOBITS/NOMOD is only set by compilers; it reflects uninitialized data.

Table 3.2 lists all section attributes with the keyword you can use to set or clear the attribute, using the
PSECT_ATTR=option.

Table 3.2. Section Attributes on x86-64/I64

Attribute Keyword Description
Specifies the alignment of the section as an integer
that represents the power of 2 required to generate
the desired alignment. For certain alignments, the
linker supports keywords to express the alignment. The
following table lists all the alignments supported by
the linker with their keywords:
Power
of 2

Keyword Meaning

0 BYTE Alignment on byte boundaries.
1 WORD Alignment on word boundaries.
2 LONG Alignment on longword

boundaries.
3 QUAD Alignment on quadword

(8-byte) boundaries.
4 OCTA Alignment on octaword

(16-byte) boundaries.
5 HEXA Alignment on hexadecimal

word (32-byte) boundaries.
6 — Alignment on 64-byte

boundaries.
7 — Alignment on 128-byte

boundaries.

Alignment —

8 — Alignment on 256-byte
boundaries.

54

Chapter 3. Understanding Image File Creation (x86-64 and I64)

Attribute Keyword Description
9 — Alignment on 512-byte

boundaries.
13 — Alignment on 8 KB boundaries.
14 — Alignment on 16 KB

boundaries.
15 — Alignment on 32 KB

boundaries.
16 — Alignment on 64 KB

boundaries.
— PAGE Alignment on the default target

page size, which is 64 KB
for x86-64 and I64 linking.
You can override this default
by specifying the /BPAGE
qualifier.

Position Independence PIC/NOPIC This keyword is ignored by the x86-64 and I64 linkers.
Overlaid/Concatenated OVR/CON When set to OVR, specifies that the linker will overlay

this section with other sections with the same name
and attribute settings. Sections that are overlaid are
assigned the same base address. When set to CON, the
linker concatenates the sections.

Relocatable/Absolute REL/ABS When set to REL, specifies that the linker can place
the section anywhere in virtual memory. Absolute
sections are used by compilers primarily to define
constants, but in the ELF object language they are not
put into an actual section. Setting the section to ABS
on x86-64 and I64 is not meaningful, and the ABS
keyword is ignored by the x86-64 and I64 linkers.

Global/Local GBL/LCL When set to GBL, specifies that the linker should
gather contributions to the section from all clusters and
place them in the same segment. When set to LCL, the
linker gathers sections into the same segment only if
they are in the same cluster. The memory for a global
section is allocated in the cluster that contains the first
contributing module.

Shareability SHR/NOSHR Specifies that the section can be shared between
several processes. Only used to sort sections in
shareable images.

Executability EXE/NOEXE Specifies that the section contains executable code.
Writability WRT/NOWRT Specifies that the contents of a section can be modified

at run-time.
Protected Vectors VEC/NOVEC Specifies that the section contains privileged change-

mode vectors or message vectors. In shareable images,
segments with the VEC attribute are automatically
protected.

55

Chapter 3. Understanding Image File Creation (x86-64 and I64)

Attribute Keyword Description
Solitary SOLITARY Specifies that the linker should place this section in its

own segment. Useful for programs that map data into
specific locations in their virtual memory space. Note
that compilers do not set this attribute. You can set this
attribute using the PSECT_ATTR=option.

Unmodified NOMOD/MOD When set, specifies that the section has not been
initialized (NOMOD). The x86-64 and I64 linkers
use this attribute to create demand zero segments (see
Section 3.4.4). Only compilers can set this attribute
(in ELF objects, the section type SHT_NOBITS). You
can clear this attribute only by specifying the MOD
keyword in the PSECT_ATTR= option.

Readability RD This keyword is ignored by the x86-64 and I64 linkers.
User/Library USR/LIB This keyword is ignored by the x86-64 and I64 linkers.
Short Data1 SHORT When set this indicates that a data section should be

put in one of the short sections. Compilers can set this
attribute, in which case the user can not alter it.

Allocate section in P2
space

ALLOC_64BIT/
NOALLOC_64BIT

When set this indicates that the section should be
allocated in P2 space instead of P0 space. The program
may run but not execute correctly when initialized data
is put in P2 space. Code and demand zero data do work
properly.

1I64 specific

To illustrate section creation, consider the sections created by the VSI C compiler when it processes
the sample programs in the following examples:

Example 3.1. Sample Program MYTEST.C
#include <stdio.h>
extern int global_data;
extern int myadd(int, int);
extern int mysub(int, int);
main()
{
 int num1, num2, res1, res2;
 num1 = 5;
 num2 = 6;
 res1 = myadd(num1, num2);
 res2 = mysub(num1, num2);
 printf("res1 = %d, res2 = %d, globaldata = %d\n", res1, res2, global_data);
}

Example 3.2. Sample Program MYADD.C
#include <stdio.h>
int add_data = -1;
int myadd(int value_1, int value_2)
{
 printf("In MYADD.C\n");
 add_data = value_1 + value_2;
 return add_data;
}

56

Chapter 3. Understanding Image File Creation (x86-64 and I64)

Example 3.3. Sample Program MYSUB.C
#include <stdio.h>
int global_data = 5;
int sub_data = -1;
int mysub(int value_1, int value_2)
{
 printf("In MYSUB.C\n");
 sub_data = value_1 - value_2;
 return sub_data;
}

To see what sections the VSI C compiler creates for these modules, use the ANALYZE/OBJECT
utility to examine each object module. Example 3.4 (x86-64) and Example 3.5 (I64) present excerpts
from the analysis of the object module MYTEST.OBJ. Only the section definitions are included in the
excerpts.

Example 3.4. Sections Generated by an Analysis of Example 3.1 on x86-64
$ anal/object/section=all/out=mytest.anl mytest.obj
 .
 .
 .
SECTION SUMMARY

Number Type Name Flags
 0. NULL -----------------------------
 1. PROGBITS .text -AE--------------------------
 2. PROGBITS .data WA---------------------------
 3. NOBITS .bss WA---------------------------
 4. NOTE .note -----------------------------
 5. PROGBITS .debug_info -----------------------------
 6. RELA .rela.debug_info -----------------------------
 7. PROGBITS .debug_abbrev -----------------------------
 8. PROGBITS .debug_aranges -----------------------------
 9. PROGBITS .debug_macinfo -----------------------------
 10. PROGBITS .debug_line -----------------------------
 11. RELA .rela.debug_line -----------------------------
 12. PROGBITS .debug_loc -----------------------------
 13. PROGBITS .debug_pubnames -----------------------------
 14. RELA .rela.debug_pubnames -----------------------------
 15. PROGBITS .debug_pubtypes -----------------------------
 16. RELA .rela.debug_pubtypes -----------------------------
 17. PROGBITS .debug_str ---S-------------------------
 18. PROGBITS .debug_ranges -----------------------------
 19. PROGBITS $CODE$ -AE--------------Shr---------
 20. RELA .rela$CODE$ -----------------------------
 21. PROGBITS .rodata -A---------------------------
 22. PROGBITS .note.GNU-stack -----------------------------
 23. PROGBITS .eh_frame -A---------------------------
 24. RELA .rela.eh_frame -----------------------------
 25. STRTAB .shstrtab -----------------------------
 26. SYMTAB .symtab -----------------------------
 27. STRTAB .strtab -----------------------------

Key for Flags: W (Write), A (Alloc), E (Execute), S (Strings), I (Info link), L (Link order),
 O (OS-specific processing), G (Group), Lrg (Large), Sho (Short), Nrc (No recovery code),
 Gbl (Global), Ovr (Overlaid), Shr (Shared), Vec (Vector), 64b (Allocate 64bit address),
 Pro (Protected)
 .
 .
 .
SECTION HEADER ENTRY 19. (0013)
"$CODE$"
Description Hex (<bitmask>) Interpretation Field Name
----------- --------------- -------------- ----------

Name Offset in .shstrtab: 000000FA "$CODE$" shdr$l_sh_name
Section Type: 00000001 SHDR$K_SHT_PROGBITS shdr$l_sh_type

Section Flags: 0000000000400006 shdr$q_sh_flags
 Data occupies memory: <0000000000000002> SHDR$M_SHF_ALLOC shdr$v_shf_alloc

57

Chapter 3. Understanding Image File Creation (x86-64 and I64)

 Machine instructions: <0000000000000004> SHDR$M_SHF_EXECINSTR shdr$v_shf_execinstr
 Shareable section: <0000000000400000> SHDR$M_SHF_VMS_SHARED_ shdr$v_shf_vms_shared_
Section Load Address: 0000000000000000 Not Used (Object File) shdr$pq_sh_addr
Offset to Section Data: 00000000000001B0 shdr$q_sh_offset

Size of Section Data: 0000000000000163 shdr$q_sh_size
Section Link Field: 00000000 shdr$l_sh_link
Section Info Field: 00000000 shdr$l_sh_info

Alignment Constraint: 0000000000000010 shdr$q_sh_addralign
Entry Size (if table): 0000000000000000 shdr$q_sh_entsize
 .
 .
 .
SECTION HEADER ENTRY 23. (0017)
".eh_frame"
Description Hex (<bitmask>) Interpretation Field Name
----------- --------------- -------------- ----------
Name Offset in .shstrtab: 000000B8 ".eh_frame" shdr$l_sh_name
Section Type: 00000001 SHDR$K_SHT_PROGBITS shdr$l_sh_type
Section Flags: 0000000000000002 shdr$q_sh_flags
 Data occupies memory: <0000000000000002> SHDR$M_SHF_ALLOC shdr$v_shf_alloc
Section Load Address: 0000000000000000 Not Used (Object File) shdr$pq_sh_addr
Offset to Section Data: 0000000000000340 shdr$q_sh_offset
Size of Section Data: 0000000000000058 shdr$q_sh_size
Section Link Field: 00000000 shdr$l_sh_link
Section Info Field: 00000000 shdr$l_sh_info
Alignment Constraint: 0000000000000008 shdr$q_sh_addralign
Entry Size (if table): 0000000000000000 shdr$q_sh_entsize

Example 3.5. Sections Generated by an Analysis of Example 3.1 on I64

$ anal/object/section=all/out=mytest.anl mytest.obj
 .
 .
 .
SECTION SUMMARY

Number Type Name Flags
 0. NULL ------------------------------
 1. STRTAB .shstrtab ------------------------------
 2. NOTE .note ------------------------------
 3. PROGBITS $CODE$ -AE-----------------Shr-------
 4. PROGBITS $LITERAL$ -A------------------Shr-------
 5. NOBITS $LINK$ -A----------------------------
 6. PROGBITS .IA_64.unwind_info -A----------------------------

 7. IA_64_UNWIND .IA_64.unwind -A---L------------------------
 8. STRTAB .strtab ------------------------------
 9. SYMTAB .symtab ------------------------------
 10. VMS_TRACE .debug_line ------------------------------
 11. RELA .rela.debug_line ------------------------------
 12. VMS_TRACE .trace_abbrev ------------------------------
 13. VMS_TRACE .trace_info ------------------------------
 14. RELA .rela.trace_info ------------------------------
 15. VMS_TRACE .trace_aranges ------------------------------
 16. RELA .rela.trace_aranges ------------------------------
 17. RELA .rela.IA_64.unwind_info ------------------------------
 18. RELA .rela.IA_64.unwind ------------------------------
 19. RELA .rela$CODE$ ------------------------------

Key for Flags: W (Write), A (Alloc), E (Execute), S (Strings), I (Info link), L (Link order),
 O (OS-specific processing), G (Group), Sho (Short), Nrc (No recovery code),
 Gbl (Global), Ovr (Overlaid), Shr (Shared), Vec (Vector),
 64b (Allocate 64bit address), Pro (Protected)
 .
 .
 .

SECTION HEADER ENTRY 3. (0003)
"$CODE$"
Description Hex (<bitmask>) Interpretation Field Name
----------- --------------- -------------- ----------

Name Offset in .shstrtab: 00000011 "$CODE$" shdr$l_sh_name

58

Chapter 3. Understanding Image File Creation (x86-64 and I64)

Section Type: 00000001 SHDR$K_SHT_PROGBITS shdr$l_sh_type

Section Flags: 0000000400000006 shdr$q_sh_flags
 Data occupies memory: <0000000000000002> SHDR$M_SHF_ALLOC shdr$v_shf_alloc
 Machine instructions: <0000000000000004> SHDR$M_SHF_EXECINSTR shdr$v_shf_execinstr
 Shareable section: <0000000400000000> SHDR$M_SHF_VMS_SHARED shdr$v_shf_vms_shared
Section Load Address: 0000000000000000 Not Used (Object File) shdr$pq_sh_addr
Offset to Section Data: 0000000000000170 shdr$q_sh_offset

Size of Section Data: 00000000000001C0 shdr$q_sh_size
Section Link Field: 00000000 shdr$l_sh_link
Section Info Field: 00000000 shdr$l_sh_info

Alignment Constraint: 0000000000000010 shdr$q_sh_addralign
Entry Size (if table): 0000000000000000 shdr$q_sh_entsize
 .
 .
 .
SECTION HEADER ENTRY 7. (0007)
".IA_64.unwind"
Description Hex (<bitmask>) Interpretation Field Name
----------- --------------- -------------- ----------
Name Offset in .shstrtab: 0000003C ".IA_64.unwind" shdr$l_sh_name
Section Type: 70000001 SHDR$K_SHT_IA_64_UNWIND shdr$l_sh_type
Section Flags: 0000000000000082 shdr$q_sh_flags
 Data occupies memory: <0000000000000002> SHDR$M_SHF_ALLOC shdr$v_shf_alloc
 Preserve section order: <0000000000000080> SHDR$M_SHF_LINK_ORDER shdr$v_shf_link_order
Section Load Address: 0000000000000000 Not Used (Object File) shdr$pq_sh_addr
Offset to Section Data: 0000000000000090 shdr$q_sh_offset
Size of Section Data: 0000000000000030 shdr$q_sh_size

Section Link Field: 00000003 shdr$l_sh_link

Section Info Field: 00000006 shdr$l_sh_info
Alignment Constraint: 0000000000000008 shdr$q_sh_addralign
Entry Size (if table): 0000000000000000 shdr$q_sh_entsize

Note

You can also determine the sections in an object module after a link operation by looking at the
Program Section Synopsis of an image map file, as illustrated in Example 3.8.

The items in the following list correspond to the numbered items in Example 3.4 and Example 3.5:

The unwind table section is the only section with the Link Order attribute set. The Link Order
attribute signifies that the I64 linker must preserve section ordering (see Section 3.2.1.5).
The Name Offset indicates the name of the section.
Section flags indicate which section attributes are set. The attributes are listed by their ELF
name. Note that the keywords are only listed when the bit in shdr$q_sh_flags is set. For
example SHDR$M_SHF_EXECINSTR (Machine Instructions) is an attribute of the $CODE$
section.
The Size of Section Data indicates the number of bytes required for the section.
Alignment Constraint specifies the address boundary at which the linker must place a module's
contribution to the section. The number shown here, 10 (hexadecimal), is a byte alignment and
not an OpenVMS style (power of 2) of specifying the section attributes.

Figure 3.2 illustrates some of the sections created by the VSI C Compiler for the modules in Examples
3.1, 3.2, and 3.3 on x86-64 and I64 systems. The shaded areas represent the settings of the section
attributes the linker considers when sorting the sections into image segments in an executable image.
See Section 3.3.4 for more information about how the linker creates segments in an image.

59

Chapter 3. Understanding Image File Creation (x86-64 and I64)

Figure 3.2. Sections Created for Examples 3.1, 3.2, and 3.3

3.2.1. Sections Created by The Linker
Unlike the VAX and Alpha linkers, the x86-64 and I64 linkers create new sections as well as
contributions to existing sections for loadable segments.

When the linker assigns a name for a section, the name can be a reserved name containing an
embedded space (for example, $LINKER UNWIND$). The linker uses the embedded space in a
reserved name to prevent you from changing the section attributes. The PSECT_ATTR option reads
the embedded space and compresses it out of the name. As such, the name is not read by the linker as
you intended and the attributes are preserved.

3.2.1.1. Sections for Relaxed Symbol Definitions
In VSI C, relaxed symbol definitions that can act like a reference or a definition (when no other
definition is found) have no section assigned to them. If there is no hard definition (that is, a symbol
with a compiler-supplied section), the linker allocates a section for the symbol. The section has the
same name as the symbol, and is contributed by the linker (labeled with <Linker> in the map).

3.2.1.2. Sections Embedded in Code Segments (I64 Only)
The I64 linker contributes sections to code segments that contain calls to code outside the image,
outside the code segment but to another segment within the image, or to code that can't be reached
with a normal branch instruction inside the segment (called a trampoline).

The instructions can be helpful when using the debugger to step into subroutines. The instructions are
grouped in 128-bit bundles, with a series of dashes marking the end of a bundle.

<Linker> is used to label the linker contribution in the map, usually at the end of the code section
(normally named $CODE$).

Calls Out of the Image

The compiler is unaware whether a call is internal or external to the image being created. The linker
has this knowledge and for external calls, generates the following sequence of instructions:

60

Chapter 3. Understanding Image File Creation (x86-64 and I64)

addl r15=<offset>,r1;;
ld8 r16=[r15],8
nop.i

ld8 r1=[r15]
mov b6=r16

br.few b6;;

This is an Indirect Branch (B4). For more information, see the Intel IA-64 Architecture Software
Developer's Manual

In the first instruction, R15 contains the address of the Function Descriptor (FD), which the linker
obtained by adding an offset to the Global Pointer register (GP, implemented as R1). R16 is loaded
with a pointer to the code address. R1 then receives the new Global Pointer. The branch instruction
completes the call sequence.

Calls Out of the Segment to Another Segment in the Same Image

The compiler is unaware whether the destination of a call is in another segment of the same image.
The linker has this knowledge and for calls that cross segment boundaries, generates the following
sequence of instructions:

addl r15=<offset>,r1;;
ld8 r16=[r15]
nop.i

nop.m
mov b6=r16

br.few b6;;

This is an Indirect Branch (B4). For more information, see the Intel IA-64 Architecture Software
Developer's Manual

In the first instruction, R15 contains the address of the Function Descriptor (FD), which the linker
obtained by adding an offset to the Global Pointer (GP, implemented as R1) register. R16 is loaded
with a pointer to the code address. Because the instructions branch to another segment in the same
image and because there is one GP per image, the linker can skip copying the GP from the FD.

Calls That Cannot be Reached with Normal Branch Instruction (Trampolines)

The linker uses a trampoline when when the branch-to-code instruction in the same segment
(calculated in 128 bit or 16 byte bundles) is more than 21-bit signed offset. The trampoline must be
located somewhere within the original 21-bit signed branch. The trampoline then does an indirect
branch from the trampoline to the target instruction.

nop.m 0x0

movl r15=<offset between the next instruction and the target>

nop.m 0x0

mov r16=ip;;
add r16=r15,r16;;

nop.m 0x0
mov b6=r16

br.few b6;;

See the Intel IA-64 Architecture Software Developers Manual.
The ip is the PC; it points to the previous instruction that indicates the beginning of an
instruction bundle.

61

Chapter 3. Understanding Image File Creation (x86-64 and I64)

This is an Indirect Branch (B4). For more information, see the Intel IA-64 Architecture Software
Developer's Manual.

3.2.1.3. Short Data Sections (I64 Only)

In order to make position-independent code that does not require any relocations, Itanium platforms
allow code to make a reference to pointers and other short data using offsets from an address in a
register. This special register is called the Global Pointer (GP) register. The language processors place
such data into sections named short data sections. It is the task of the linker to collect these sections
into a segment or segments and to determine the GP value. The GP value is determined so that the
beginning of the first (or only) short data segment is the negative-most offset from the GP within
range. For the Intel Itanium architecture, the negative-most offset is 2 MB. Therefore, the GP value is
the virtual address of the beginning of the first (or only) short data segment plus 2 MB. If the address
range for your short data segment or segments is less than 2 MB, the GP value may not even point to a
virtual address mapped by your image. The compilers usually place data in the short data sections that
are relatively short (like quadwords or smaller) and not long (like an array).

There are two kinds of short data sections — read-only and read-write. The I64 linker is a major
contributor to the read-only short data section. In this section, the linker puts addresses of data and
function descriptors (termed procedure descriptors on Alpha) that can be reached by code with a
short offset from the Global Pointer register. This section is named $LINKER SDATA$. In the map,
<Linker> is used to label the linker contributions to this section.

Function descriptors placed in the read-only short data section have varying lengths depending on
their type. The types are official and local. Official function descriptors are always three quadwords
long. Local function descriptors can be two quadwords or four quadwords long, depending on whether
the qualifier /NONATIVE_ONLY is present. If the image is supposed to interoperate with translated
images, the /NONATIVE_ONLY qualifier must be used, and local function descriptors will be four
quadwords long.

Official function descriptors represent functions that are defined by an image. One example of
functions defined by an image are those functions which can be exported from a shareable image
by the symbol vector and called by other images. Official function descriptors always contain
the address of the first instruction of the function in the first quadword. The GP value under
which the function executes is in the second quadword. The third quadword contains a zero, or
if the /NONATIVE_ONLY qualifier is used it contains the function's signature or a pointer to the
function's signature. A signature describes the parameters and return status of the function. If the third
quadword is zero then the function descriptor has no signature, and a translated image is not allowed
to call the function.

An official function descriptor has the following format at run-time:

Figure 3.3. Official Function Descriptor

62

Chapter 3. Understanding Image File Creation (x86-64 and I64)

A local function descriptor represents a function outside of the image. Local function descriptors
made for images that do not interoperate with translated images contain at run-time the address of
the first instruction of the function in the first quadword. The GP value under which the function
executes is in the second quadword. The linker generates a fix-up for the function descriptor because
it has no knowledge of those addresses. The fix-up is applied by the image activator which has already
activated the image with those addresses in it.

A local function descriptor has the following format at run-time:

Figure 3.4. Local Function Descriptor — Two Quadwords

Local function descriptors made by the linker for images that can interoperate with translated images
are four quadwords long. At run-time, after the image activator has determined that the target
shareable image is translated, the four quadwords in the function descriptor contain the following:

• Entry (code) address of the routine that mediates calls between native and translated code

• Address of this function descriptor

• Signature information for the call

• Pointer to the official function descriptor for the entry point in the translated image (or some other
unique identification that can be interpreted by the support facility the mediates calls between
native and translated code)

The linker assumes the image activator will find a native image, and issues a fix-up to the image
activator to fill in the first two (of four) quadwords with the code address and GP. The third quadword
is filled in with signature information, like an official function descriptor. The fourth quadword is
filled in with a zero. If the image activator determines that the function referenced by this function
descriptor in a native image, it applies the fix-up and ignores the last two quadwords.

3.2.1.4. Section for the Symbol Vector

The x86-64 and I64 linkers place the symbol vector in a section with the name
$LINKER SYMBOL_VECTOR$. The I64 linker places this section in the short data segment by
default.

In the map, <Linker Option> is used to label this linker contribution.

For I64 linking, you can use the qualifier /SEGMENT=(SYMBOL_VECTOR=NOSHORT) to move
$LINKER SYMBOL_VECTOR$ to a data segment which is read-only. The I64 linker creates a read-
only data segment if one does not already exist.

For the layout of a symbol vector, see Figure 2.1 (x86-64) and Figure 2.2 (I64).

63

Chapter 3. Understanding Image File Creation (x86-64 and I64)

3.2.1.5. Sections that Contain Unwind Data (I64 Only)

When an exception is signaled by hardware or software,the condition handling facility looks for a
condition handler. If a condition handler is found, the handler may choose to call SYS$UNWIND to
unwind the stack. SYS$UNWIND has, at its disposal, an unwind table. The unwind table contains a
pointer into a variable-sized information block that contains the unwind descriptor list and a language-
specific area. The unwind table and the unwind information block are created by the compilers. The
linker has to place the contributions to the unwind tables in the same order as the contributions to the
code segment for unwinding to work.

The I64 linker renames the compiler-named sections that contain unwind tables (usually
named .IA_64.unwind) and unwind information blocks (usually named .IA_64_unwinfo). It can tell
which sections contain unwind tables because those sections have the type SHT_IA_64_UNWIND.
It also has the link order (SHF_LINK_ORDER) attribute set. The link order attribute means that
the contributions to the unwind table must be in the same order as contributions pointed to by the
SH_LINK field (a code section).

The new, reserved name of the section that contains the unwind tables is $LINKER
UNWIND$.$LINKER UNWINFO$ is the new, reserved name of the section that contains unwind
information. These names appear in the linker map; the actual names of these sections are gone by
the time the map is written. The linker uses reserved names for these sections;this means that you are
not allowed to change the section attributes with a PSECT_ATTR= clause or collect them with the
COLLECT= option to other clusters. This is because the placement and ordering of these sections
are driven by the placement and ordering of the code sections to which they refer. By altering the
placement or ordering of the code sections through the use of linker options or input file ordering, the
sections containing unwind tables and unwind information blocks will likewise have the placement or
ordering of their contributions altered.

$LINKER UNWIND$ and $LINKER UNWINFO$ have identical significant attributes and therefore
end up in the same unwind segment. This is denoted in the Image Segment Synopsis section of the
map by the [UNWIND] tag. The unwind segment is connected to the corresponding code segment by
entries in the dynamic segment (which the image activator uses for activating an image).

If you have a complex link with an options file that contains a number of CLUSTER= or COLLECT=
options, you may have more unwind segments than you really need. The I64 linker constructs one
unwind segment per cluster with one or more code segments. To reduce the number of unwind
segments, you should reduce the number of clusters containing code. This is done by collecting code
sections onto a smaller number of clusters or onto a single cluster.

3.3. Creating Segments
On x86-64 and I64 systems, the linker creates segments, which are analogous to image sections
on Alpha and VAX systems. Segments define the memory requirements and page protection
characteristics of an image.

To create segments, the linker processes the sections in the object modules specified in the link
operation. The number and type of segments the linker creates depend on the input files and what is
specified in the link operation. For more information on creating segments, see Section 3.3.1, which
describes how the clustering of input files affects segment creation, and Section 3.3.2, which describes
the effects of section attributes on segment creation.

64

Chapter 3. Understanding Image File Creation (x86-64 and I64)

3.3.1. Processing Clusters to Create Segments
To create segments, the linker processes the section definitions in the input files you specify in the
LINK command. The linker processes these input files on a cluster-by-cluster basis (as described in
Section 2.3.1).

Each cluster spawns segments into which sections are placed. However, the linker crosses cluster
boundaries when processing sections with the global (GBL) attribute. (In ELF, GBL corresponds to
SHF_VMS_GLOBAL). When the linker encounters a section with the global attribute, it searches all
the previously processed clusters for a section with the same name and attributes and, if it finds one,
places the new definition of the global section in the same cluster as the first definition of the program
section.

The linker processes input files in the order by which they appear in the clusters. Note that on x86-64
and I64 systems, there are no based clusters, that is, the x86-64 and I64 linkers do not allow you to
enter a base address with the CLUSTER= option. In addition, the linkers only have to process clusters
once.

For more information about creating clusters, see the descriptions of the CLUSTER= and the
COLLECT= option in Chapter 10.

A LINK command to create an image using the object modules in Section 3.2 is shown in
Example 3.6.

Example 3.6. Linking Examples 3.1, 3.2, and 3.3
$ LINK/MAP/FULL/CROSS MYTEST, MYADD, SYS$INPUT/OPT
CLUSTER=MYSUB_CLUS,,,MYSUB
Ctrl/Z

The CLUSTER= option in this link operation causes the linker to create a cluster named
MYSUB_CLUS, which contains the object module MYSUB.OBJ. The linker puts the object modules
MYTEST.OBJ and MYADD.OBJ in the default cluster. These clusters appear on the linker's cluster
list in the following order:

1. MYSUB_CLUS

2. DEFAULT_CLUSTER

3. DECC$SHR

The linker always processes the default cluster after any user-specified cluster (MYSUB_CLUS).
DECC$SHR was automatically picked up from IMAGELIB.OLB by the x86-64 and I64 linkers after
the preceding clusters were processed and there were still unresolved symbols.

3.3.2. Combining Sections into Image Segments
The linker creates segments by grouping together sections with similar attributes. Within a segment,
the linker organizes sections alphabetically by name. If more than one object module contributes to
the same section, the linker lays out their contributions in the order it processes them.

Figure 3.5 shows how the linker groups the sections in the object modules from the sample link
into segments, based on the setting of their significant attributes. In the figure, the settings of these
significant attributes are represented by shading. (The figure considers attributes that are significant
when creating executable images, and does not consider the SHR attribute as significant as it does
with shareable images. Section 3.3.4 provides more information about which program section
attributes are significant).

65

Chapter 3. Understanding Image File Creation (x86-64 and I64)

Note that in Figure 3.5, the relaxed definition from MYTEST.OBJ for GLOBAL_DATA appears in
the MYSUB_CLUS cluster, even though the object module MYTEST.OBJ is in the default cluster. In
general, the linker puts all contributions to a global section in the cluster in which it is first defined. In
the relaxed case, the linker chooses the memory from the hard definition that occurs in MYSUB.OBJ.

Figure 3.5. Combining Sections into Image Segments — Part 1

Figure 3.6 continues the representation in Figure 3.5.

Figure 3.6. Combining Sections into Image Segments — Part 2

66

Chapter 3. Understanding Image File Creation (x86-64 and I64)

3.3.3. Traditional OpenVMS Image Attribute Terms and
ELF Terms
The ELF format has fewer attributes than a traditional OpenVMS image. Some of the attributes are
expressed in the segment header and some are not used on x86-64 and I64 systems. In addition, the
linker creates an image file in the ELF format. However, for compatibility, the x86-64 and I64 linkers
write a map file with image attribute names the same as for other OpenVMS systems. Other utilities
like ANALYZE/IMAGE simply display the ELF terms. Table 3.3 shows how traditional OpenVMS
image attribute terms are mapped ELF terms.

Table 3.3. Mapping OpenVMS Image Attribute Terms to ELF Terms

Traditional OpenVMS Image
Attribute
(prefix [E]ISD$M_)

Display Name in Linker
Map

ELF Image Attribute
(prefix PHDR$M_)

GBL — —1

CRF WRITE,SHARED PF_VMS_SHARED,PF_W
Demand zero DEMAND ZERO Zero segment file size2

EXE EXECUTABLE PF_X
WRT READ WRITE PF_W
MATCHCTL — —1

LASTCLU — —3

FIXUPVEC — —1

RESIDENT RESIDENT PF_VMS_RESIDENT4

VECTOR VECTOR PF_VMS_VECTOR
PROTECT PROTECT PF_VMS_PROTECT

1Not an attribute, implemented in the dynamic segment
2Zero PHDR$Q_P_FILESZ and nonzero PHDR$Q_P_MEMSZ
3Not used on x86-64 and I64
4Reserved to OpenVMS

Note

All sections, and therefore all segments, are position independent. Therefore, there is no PIC segment
type on x86-64 and I64.

3.3.4. Processing Significant Section Attributes
When combining sections into segments, the linker considers only significant section attributes, that
is, a subset of the section attributes. The set of significant attributes varies according to the type of
image being created. When creating an executable image, the linker considers all combinations of the
following attributes when combining sections into segments:

• Writability (WRT/NOWRT)

• Executability (EXE/NOEXE)

• Protected vector (VEC/NOVEC)

67

Chapter 3. Understanding Image File Creation (x86-64 and I64)

• Unmodified (NOMOD/MOD)

• Short (SHORT/NOSHORT)

• Allocation in P2 (ALLOC_64BIT/NOALLOC_64BIT)

When creating a shareable image, the linker considers all combinations of the following attributes
when combining sections into segments:

• Writability (WRT/NOWRT)

• Executability (EXE/NOEXE)

• Shareability (SHR/NOSHR)

• Protected vector (VEC/NOVEC)

• Unmodified (NOMOD/MOD)

• Short (SHORT/NOSHORT)

• Allocation in P2 (ALLOC_64BIT/NOALLOC_64BIT)

Tables 3.4 and 3.5 list all the possible combinations of the significant section attributes for executable
images and shareable images. Note that the order in which the combinations appear in the table (each
row) is the same order in which the linker processes them.

For example, the linker first processes all sections with the WRT, NOEXE, NOVEC, MOD, and
NOSHORT attributes, creating a segment of sections with these attributes. The linker then processes
all sections with the WRT, NOEXE, NOVEC, NOMOD, and NOSHORT attributes, creating another
segment for those sections. The linker continues this processing until all the combinations of
significant attributes have been processed and all the sections in the cluster have been placed in a
segment.

The tables include only sections that are relocatable (with the REL attribute). Absolute sections (with
the ABS attribute), by definition, can have no allocation (they contain only constants) and cannot
contribute to a segment.

To simplify the tables, they do not include the ALLOC_64BIT attribute. ALLOC_64BIT only
determines if the section should be allocated in P2 space. The default is NOALLOC_64BIT. This
attribute does not influence the segment attributes of the created segment. But obviously, two
sections, whose attribute only differ in ALLOC_64BIT, end up in different segments. On I64, the
ALLOC_64BIT attribute can be set for all sections except the ones with the SHORT attribute.

The linker creates additional segments that cannot be controlled by the user (see Section 3.4.3).

The tables assume that the images are linked using the /DEMAND_ZERO qualifier, which is the
default. (When this qualifier is specified, the linker groups sections that do not contain any data into
demand-zero segments, allocating memory for the segment but not writing zeros to disk). If the image
is linked with the /NODEMAND_ZERO qualifier, then the linker allocates space for the segment
in the image file. Note that the /NODEMAND_ZERO qualifier does not affect how the linker sorts
sections; it proceeds exactly as specified by the table. However, when the image is written, the linker
allocates disk space for the segment and fills the space with zeros.

The tables also show how a particular combination of section attributes determines the attributes of
the segment in which it is placed. For more information about segment attributes, see Section 3.3.6.

68

Chapter 3. Understanding Image File Creation (x86-64 and I64)

Table 3.4. Mapping Section Attributes to Segment Attributes for Executable Images

Significant Section Attribute Settings Segment Attributes Set
(prefix PHDR$V_)

NOEXE WRT NOVEC MOD NOSHORT PF_R,PF_W
NOEXE WRT NOVEC NOMOD NOSHORT PF_R,PF_W,Demand zero1

NOEXE WRT VEC MOD NOSHORT PF_R,PF_W,PF_VMS_VECTOR,
PF_VMS_PROTECT

EXE NOWRT NOVEC MOD NOSHORT PF_R,PF_X
EXE WRT NOVEC MOD NOSHORT PF_R,PF_W,PF_X
EXE NOWRT VEC MOD NOSHORT PF_R,PF_X,PF_VMS_VECTOR,

PF_VMS_PROTECT
EXE WRT VEC MOD NOSHORT PF_R,PF_W,PF_X,PF_VMS_VECTOR,

PF_VMS_PROTECT
EXE NOWRT *2 NOMOD NOSHORT PF_R,PF_X
EXE WRT * NOMOD NOSHORT PF_R,PF_W,PF_X
NOEXE NOWRT NOVEC MOD NOSHORT PF_R
NOEXE NOWRT NOVEC NOMOD NOSHORT PF_R,Demand zero1

NOEXE NOWRT VEC MOD NOSHORT PF_R,PF_VMS_VECTOR,
PF_VMS_PROTECT

* WRT * * SHORT PF_R,PF_W,PF_VMS_SHORT
* NOWRT * * SHORT PF_R,PF_VMS_SHORT

1Demand zero is no attribute, it is expressed as a file size of zero for a segment with nonzero memory size. If the /NODEMAND_ZERO
qualifier is specified, the file size is equal to the memory size of the segment.
2An asterisk (*) means any section attribute.

Table 3.5. Mapping Section Attributes to Segment Attributes for Shareable Images

Significant Section Attribute Settings Segment Attributes Set
(prefix PHDR$V_)

NOSHR NOEXE WRT NOVEC MOD NOSHORT PF_R,PF_W
NOSHR NOEXE WRT NOVEC NOMOD NOSHORT PF_R,PF_W,Demand zero1

SHR NOEXE WRT NOVEC MOD NOSHORT PF_R,PF_W,PF_VMS_SHARED
SHR NOEXE WRT NOVEC NOMOD NOSHORT PF_R,PF_W,PF_VMS_SHARED
NOSHR NOEXE WRT VEC MOD NOSHORT PF_R,PF_W,PF_VMS_VECTOR,

PF_VMS_PROTECT
SHR NOEXE WRT VEC MOD NOSHORT PF_R,PF_W,PF_VMS_VECTOR,

PF_VMS_PROTECT
NOSHR EXE NOWRT NOVEC MOD NOSHORT PF_R,PF_X
NOSHR EXE WRT NOVEC MOD NOSHORT PF_R,PF_W,PF_X
SHR EXE NOWRT NOVEC MOD NOSHORT PF_R,PF_X,PF_VMS_SHARED
SHR EXE WRT NOVEC MOD NOSHORT PF_R,PF_W,PF_X,

PF_VMS_SHARED
NOSHR EXE NOWRT VEC MOD NOSHORT PF_R,PF_X,PF_VMS_VECTOR,

PF_VMS_PROTECT

69

Chapter 3. Understanding Image File Creation (x86-64 and I64)

Significant Section Attribute Settings Segment Attributes Set
(prefix PHDR$V_)

NOSHR EXE WRT VEC MOD NOSHORT PF_R,PF_W,PF_X,
PF_VMS_VECTOR,
PF_VMS_PROTECT

SHR EXE NOWRT VEC MOD NOSHORT PF_R,PF_X,PF_VMS_VECTOR,
PF_VMS_PROTECT,PF_VMS_
SHARED

SHR EXE WRT VEC MOD NOSHORT PF_R,PF_W,PF_X,
PF_VMS_VECTOR,
PF_VMS_PROTECT,
PF_VMS_SHARED

*2 EXE NOWRT * NOMOD NOSHORT PF_R,PF_X
* EXE WRT * NOMOD NOSHORT PF_R,PF_W,PF_X
NOSHR NOEXE NOWRT NOVEC MOD NOSHORT PF_R
NOSHR NOEXE NOWRT NOVEC NOMOD NOSHORT PF_R,Demand zero1

SHR NOEXE NOWRT NOVEC MOD NOSHORT PF_R,PF_VMS_SHARED
SHR NOEXE NOWRT NOVEC NOMOD NOSHORT PF_R,PF_VMS_SHARED
NOSHR NOEXE NOWRT VEC MOD NOSHORT PF_R,PF_VMS_VECTOR,

PF_VMS_PROTECT
SHR NOEXE NOWRT VEC MOD NOSHORT PF_R,PF_VMS_VECTOR,

PF_VMS_PROTECT,
PF_VMS_SHARED

* * WRT * * SHORT PF_R,PF_W,PF_VMS_SHORT
* * NOWRT * * SHORT PF_R,PF_VMS_SHORT

1Demand zero is no attribute, it is expressed as a file size of zero for a segment with nonzero memory size. If the /NODEMAND_ZERO
qualifier is specified, the file size is equal to the memory size of the segment.
2An asterisk (*) means any section attribute.

For example, Table 3.6 summarizes the settings of some significant attributes of the user controllable
sections in the module MYSUB.OBJ (see Example 3.6).

Table 3.6. Significant Attributes of User Sections from Module MYSUB

User Section Writability Executability Short Data
GLOBAL_DATA WRT NOEXE NOSHORT
SUB_DATA WRT NOEXE NOSHORT
$CODE$ NOWRT EXE NOSHORT
$LITERAL$ NOWRT NOEXE NOSHORT

The linker puts these four sections into three segments because only two have compatible attributes.

• The GLOBAL_DATA and SUB_DATA sections have identical attributes, including the WRT
attribute.

• The $CODE$ and $LITERAL$ sections have the NOWRT attribute and differ in the EXE
attribute.

70

Chapter 3. Understanding Image File Creation (x86-64 and I64)

The linker collects all these sections in segments in the named cluster MYSUB_CLUS, as requested
with the CLUSTER= option in Example 3.6.

The linker performs similar processing of the sections in the default cluster in Example 3.6. The
Image Segment Synopsis section of the map file lists the clusters the linker created and lists the
segments it created for each cluster. This map section also describes the layout of the image in
memory, including the base address of each segment within the image. Example 3.7illustrates an
excerpt of the Image Segment Synopsis section from the map file produced with the sample link
(Example 3.6). Note that for x86-64 and I64, the listing does not include clusters for shareable images,
like the VSI C Run-Time Library.

Example 3.7. Segment Information in a Map File
 +------------------------+
 ! Image Segment Synopsis !
 +------------------------+
Seg# Cluster Type Base Addr Protection Attributes
---- ------- ---- --------- ---------- ----------
 0 MYSUB_CLUS LOAD 00010000 READ WRITE
 1 LOAD 00020000 READ ONLY EXECUTABLE
 2 LOAD 00030000 READ ONLY

 3 LOAD 00040000 READ ONLY [UNWIND]
 4 DEFAULT_CLUSTER LOAD 00050000 READ WRITE
 5 LOAD 00060000 READ ONLY EXECUTABLE
 6 LOAD 00070000 READ ONLY

 7 LOAD 00080000 READ ONLY [UNWIND]

 8 LOAD 00090000 READ ONLY SHORT
 9 DYNAMIC Q-00000000

 80000000 READ ONLY

Linker created segments which can not be controlled by the user (see Section 3.4.3).
UNWIND is not a segment attribute and is therefore printed in brackets. Marking the unwind
segment here, helps to differentiate this segment from segments into which other sections are
collected.

For more information about the image segment synopsis section of a map file, see Chapter 5.

To find out which sections the linker placed in each segment, look at the Program Section Synopsis
section of the map file. This section lists all the sections in each cluster and lists the contributions
(the number of bytes) to each section from each object module. By comparing the base address of the
sections with the base address of the segments in the Image Segment Synopsis section, you can tell
in which segment the sections appear. Example 3.8 is an excerpt from the Program Section Synopsis
section of the map file produced by the sample link operation (Example 3.6).

Example 3.8. Section Information in a Map File
 +--------------------------+
 ! Program Section Synopsis !
 +--------------------------+

Psect Name Module/Image Base End Length Attributes
---------- ------------ ---- --- ------ ----------
GLOBAL_DATA 00010000 00010003 00000004 (4.) NOEXE, WRT
 MYSUB 00010000 00010003 00000004 (4.) Initializing Contribution
SUB_DATA 00010010 00010013 00000004 (4.) NOEXE, WRT
 MYSUB 00010010 00010013 00000004 (4.) Initializing Contribution
$CODE$ 00020000 0002008F 00000090 (144.) EXE,NOWRT
 MYSUB 00020000 0002006F 00000070 (112.)
 <Linker> 00020070 0002008F 00000020 (32.)
$LITERAL$ 00030000 0003000C 0000000D (13.) NOEXE,NOWRT
 MYSUB 00030000 0003000C 0000000D (13.)
$LINKER UNWIND$ 00040000 00040017 00000018 (24.) NOEXE,NOWRT
 MYSUB 00040000 00040017 00000018 (24.)
$LINKER UNWINFO$ 00040018 0004002F 00000018 (24.) NOEXE,NOWRT

71

Chapter 3. Understanding Image File Creation (x86-64 and I64)

 MYSUB 00040018 0004002F 00000018 (24.)
ADD_DATA 00050000 00050003 00000004 (4.) NOEXE, WRT
 MYADD 00050000 00050003 00000004 (4.) Initializing Contribution
$CODE$ 00060000 000602CF 000002D0 (720.) EXE,NOWRT
 MYTEST 00060000 000601BF 000001C0 (448.)
 MYADD 000601C0 0006022F 00000070 (112.)
 <Linker> 00060230 000602CF 000000A0 (160.)
$LITERAL$ 00070000 0007003C 0000003D (61.) NOEXE,NOWRT
 MYTEST 00070000 00070027 00000028 (40.)
 MYADD 00070030 0007003C 0000000D (13.)
$LINKER UNWIND$ 00080000 00080047 00000048 (72.) NOEXE,NOWRT
 MYTEST 00080000 0008002F 00000030 (48.)
 MYADD 00080030 00080047 00000018 (24.)
$LINKER UNWINFO$ 00080048 000800A7 00000060 (96.) NOEXE,NOWRT
 MYADD 000601C0 0006022F 00000070 (112.)
 <Linker> 00060230 000602CF 000000A0 (160.)
$LITERAL$ 00070000 0007003C 0000003D (61.) NOEXE,NOWRT
 MYTEST 00070000 00070027 00000028 (40.)
 MYADD 00070030 0007003C 0000000D (13.)
$LINKER UNWIND$ 00080000 00080047 00000048 (72.) NOEXE,NOWRT
 MYTEST 00080000 0008002F 00000030 (48.)
 MYADD 00080030 00080047 00000018 (24.)
$LINKER UNWINFO$ 00080048 000800A7 00000060 (96.) NOEXE,NOWRT
 MYTEST 00080048 0008008F 00000048 (72.)
 MYADD 00080090 000800A7 00000018 (24.)
$LINKER SDATA$ 00090000 000900B7 000000B8 (184.) NOEXE,NOWRT,SHORT
 <Linker> 00090000 000900B7 000000B8 (184.)

To fit on a page, the attribute column of the Program Section Synopsis is reduced to show only
the attributes listed in Table 3.6.

For more information about the Program Synopsis Section of a map file, see Section 5.2.4.

3.3.5. Allocating Memory for Segments
When it creates a segment, the linker allocates enough memory for the image segment to
accommodate all the sections it contains. Each section definition includes its size.

The linker aligns segments on CPU-specific page boundaries. Within a segment, the linker assigns to
each section a virtual address relative to the base address of the segment.

Concatenated Sections
If the sections have the concatenated (CON) attribute set, the linker positions the sections one after
the other within a segment, inserting padding bytes between the sections if necessary to achieve
the alignment requirement of a particular contribution to a section. The linker retains the alignment
specified for each section contribution but uses the largest alignment of a contributing module as the
alignment of the whole section.

With a PSECT_ATTR= option you can align the section within the segment. However, aligning the
section does not influence the alignment of the individual contributions to the section. The linker
follows the compiler's alignment specification when it aligns each individual contribution. If you
specify a smaller alignment for a section than any compiler-assigned alignment from all contributions,
the linker issues a warning.

Overlaid Program Sections
If the sections have the overlaid (OVR) attribute set, the linker uses the same start address for the
sections so that they occupy the same virtual memory (that is, the sections overlay each other). For
overlaid sections, the linker allocates enough space to accommodate the largest of all the section
contributions. Note that the linker does not generate a warning message if the contributions specify
different size allocations.

72

Chapter 3. Understanding Image File Creation (x86-64 and I64)

Any module can initialize the contents of an overlaid program section. However, the x86-64 and
I64 linkers only allow compatible initializations for the same section data. See Section 3.4.1 for an
explanation of a compatible initialization.

Assigning Virtual Addresses
The linker allocates virtual memory to all the segments beginning at a page size boundary.

The x86-64 linker places code segments in the P2 region by default and uses the default page size of
2000 hexadecimal. The /SEGMENT=CODE=P0 option can be specified to place code segments in the
P0 region. Non-code segments (without the ALLOC_64BIT attribute specified) are placed in the P0
region by default.

The I64 linker places segments in the P0 region by default and uses the default page size of 10000
hexadecimal. The /SEGMENT=CODE=P2 option can be specified to place segments in the P2 region.

For x86-64 and I64 linking, you can specify the page size value using the /BPAGE qualifier. For
information about the /BPAGE qualifier, see Chapter 10.

On x86-64 systems, the first P0 segment is placed at 2000 hexadecimal. On I64 systems, the first P0
segment is placed at 10000 hexadecimal, leaving the first page unused as a guard page. The first P2
segment (for example, containing sections with the ALLOC_64BIT attribute) is placed at 80000000
hexadecimal. However, all segment base addresses are only suggestions for the OpenVMS image
activator. The image activator can determine a different base address for each segment (within the
address region) to map the segment. This is always the case for shareable images. This is also the case
for all images being installed as resident images, where the INSTALL utility determines the addresses.
Unlike the Alpha and VAX platforms, executable images can also have their segment base addresses
determined by the image activator or the INSTALL utility.

An image not activated by the OpenVMS image activator might need a specific base address for the
first segment. For such an image, you can specify this address with the /BASE_ADDRESS qualifier.
(For information about the /BASE_ADDRESS qualifier, see Chapter 10).

Because the linker processes clusters in the order in which they appear in the cluster list, the virtual
address space of the final image will generally contain contiguous segments of consecutive clusters on
the basis of their order in the cluster list.

After allocating memory for all segments in a cluster, the linker relocates their contents by performing
the following processing:

1. Relocating each section in the segment. The linker adds the starting virtual address of the
segment to the relative offset of the section from the base of the segment.

2. Relocating each global symbol in the section. The linker adds the newly calculated section
virtual address to the relative offset of the global symbols from the base of the section.

3.3.6. Segment Attributes
When creating segments, the linker assigns attributes to the segment based on the attributes of the
sections it contains. The segment attributes describe certain characteristics of the portion of memory
they represent, for example, the protection characteristics. For example, a segment that contains
sections with the writability attribute also has the writability attribute set. Tables 3.4 and 3.5 include
the segment attributes associated with a segment that contains sections with a particular set of
attributes. Table 3.7 lists all the segment attributes. Segment attributes, like section attributes, are
Boolean values that are either on or off.

73

Chapter 3. Understanding Image File Creation (x86-64 and I64)

Table 3.7. Segment Attributes

Attribute Symbol
(prefix PHDR$V_)

Function

Executability PF_X The mapping of the EXE attribute from the
section.

Write PF_W The mapping of the WRT attribute from the
section.

Readability PF_R All segments have this attribute set.
Modified if Relocated PF_VMS_NOWRIT_RELOC The attribute is set by the linker if the the

segment contents is changed when relocated.
The image activator sets the protection to
NOWRT after the relocation.

Initial Code PF_VMS_INITALCODE This attribute is reserved to OpenVMS.
Resident PF_VMS_RESIDENT This attribute is reserved to OpenVMS.
Vectored PF_VMS_VECTOR The mapping of the VEC attribute from the

section.
Protected PF_VMS_PROTECT Protect indicates that a section is protected.

The linker sets the PF_VMS_PROTECT
attribute whenever PF_VMS_VECTOR is
set. PROTECT is also set if the /PROTECT
qualifier is used, or if the cluster that the
segment is spawned from came after a
PROTECT=YES option (and before a
PROTECT=NO option).

Modified by Fix-Ups PF_VMS_NOWRIT_FIXUP The attribute is set by the linker if the
segment contents is changed for fix-ups.
The image activator sets the protection to
NOWRT after the fix-ups are applied.

Short Data1 PF_VMS_SHORT The mapping of the SHORT attribute from
the section.

Shared PF_VMS_SHARED The SHR mapping of the SHR attribute from
the sections.

1I64 specific

The Image Segment Synopsis section of a map file lists the attributes of each segment created in
the Protection and Attributes columns. See Example 3.7 for an illustration and see Table 3.3 for the
display names in these columns. You can also get a listing of all the segments created by the linker
by using the ANALYZE/IMAGE utility. The output generated by this utility includes a list of all the
segments that make up the image, with their attributes. An excerpt from the analysis of the image file
MYTEST.EXE is shown in Example 3.9.

Example 3.9. Image Segment Descriptions in an ANALYZE/IMAGE Display
SEGMENT HEADER ENTRY 0.
Offset Description Hex (<bitmask>) Interpretation
------ ----------- --------------- --------------
00000000 Segment Type: 00000001 PHDR$K_PT_LOAD

00000004 Segment Flags: 00000006
 Segment is writeable: <00000002> PHDR$M_PF_W
 Segment is readable: <00000004> PHDR$M_PF_R

00000008 Offset to Segment Data: 0000000000000400

74

Chapter 3. Understanding Image File Creation (x86-64 and I64)

00000010 Memory Virtual Address: 0000000000010000

00000018 Page Fault Cluster Size: 0000000000000000

00000020 Segment Size in File: 0000000000000014

00000028 Segment Size in Memory: 0000000000000014
00000030 Alignment Constraint: 0000000000000010
SEGMENT HEADER ENTRY 1. (0001) 56. (0038) bytes
Offset Description Hex (<bitmask>) Interpretation
------ ----------- --------------- --------------
00000000 Segment Type: 00000001 PHDR$K_PT_LOAD

00000004 Segment Flags: 00000005
 Segment is executable: <00000001> PHDR$M_PF_X
 Segment is readable: <00000004> PHDR$M_PF_R

00000008 Offset to Segment Data: 0000000000000600

00000010 Memory Virtual Address: 0000000000020000

00000018 Page Fault Cluster Size: 0000000000000000

00000020 Segment Size in File: 0000000000000090

00000028 Segment Size in Memory: 0000000000000090
00000030 Alignment Constraint: 0000000000000010
 .
 .
 .

The items in the following list correspond to the numbers in Example 3.9:

The settings of segment attributes. Table 3.7 lists these attributes.
The offset in the image file in bytes, at which the segment begins.
The virtual base address assigned to the segment by the linker. Note that at run-time the image
activator may decide to map this segment at a different address.
The number of page lets that should be mapped in when the initial page fault occurs. You can set
this value by using the CLUSTER= option.
The size of the segment in the image file, expressed in bytes. Note that demand zero segments
have a file size of zero but a nonzero memory size.
The size of the segment in the memory, expressed in bytes. For the shown segments, both sizes
are identical so they are not demand zero segments.

3.3.7. Controlling Segment Creation
You can control how the linker combines sections into segments in the following ways:

• By modifying the attributes of sections

• By using the SOLITARY attribute

• By using the /SEGMENT_ATTRIBUTES qualifier

• By putting object modules into named clusters

• By collecting sections

3.3.7.1. Modifying Section Attributes
The linker combines sections in the same cluster into the same segment if they have the same settings
for the significant section attributes. To force the linker to put the sections into different segments,
change the attributes of one of the sections by using the PSECT_ATTR= option.

For example, in the sample link operation, the GLOBAL_DATA section has the WRT attribute. But
its contents, the variable global_data, serves as a constant (initialized but never changed). If you want
the GLOBAL_DATA section to appear in a read-only segment, change the writability attribute. For
example, in the following link of the sample programs, the writability attribute is set to NOWRT.

75

Chapter 3. Understanding Image File Creation (x86-64 and I64)

$ LINK/MAP/FULL MYTEST,MYADD,SYS$INPUT/OPT
CLUSTER=MYSUB_CLUS,,,MYSUB
PSECT_ATTR=GLOBAL_DATA,NOWRT
Ctrl/Z

Example 3.10 shows the image and program section synopsis for the second link.

Example 3.10. Image and Program Section Synopsis of Second Link
 +--------------------------+
 ! Program Section Synopsis !
 +--------------------------+
Psect Name Module/Image Base End Length Attributes
---------- ------------ ---- --- ------ ----------
SUB_DATA 00010000 00010003 00000004 (4.) NOEXE, WRT,NOVEC, MOD
 MYSUB 00010000 00010003 00000004 (4.) Initializing Contribution
$CODE$ 00020000 0002008F 00000090 (144.) EXE,NOWRT,NOVEC, MOD
 MYSUB 00020000 0002006F 00000070 (112.)
 <Linker> 00020070 0002008F 00000020 (32.)
$LITERAL$ 00030000 0003000C 0000000D (13.) NOEXE,NOWRT,NOVEC, MOD
 MYSUB 00030000 0003000C 0000000D (13.)
GLOBAL_DATA 00030010 00030013 00000004 (4.) NOEXE,NOWRT,NOVEC, MOD
 MYSUB 00030010 00030013 00000004 (4.) Initializing Contribution
$LINKER UNWIND$ 00040000 00040017 00000018 (24.) NOEXE,NOWRT,NOVEC, MOD
 MYSUB 00040000 00040017 00000018 (24.)
 .
 .
 .

Note that there is no change in the number and attributes of the segments. However, the
GLOBAL_DATA section moved into an existing read-only segment. (It also moved in the address
space.) The GLOBAL_DATA section is now in the same segment as the read-only $LITERAL$
section, which it follows, based on alphabetical order (for a comparison, see Example 3.8).

3.3.7.2. Alternate Way to Modify Section Attributes
With the /SEGMENT_ATTRIBUTE qualifier, you can change some attributes for a class of sections.
The keywords SHORT_DATA, CODE, and SYMBOL_VECTOR define obvious classes of sections:
all sections with the SHORT, all sections with the EXE attribute, and the symbol vector section. The
attribute to change depends on the class.

For short data sections, you can set WRT. For executable sections, you can set or clear the
ALLOC_64BIT attribute. For the I64 symbol vector, you can set or clear the SHORT attribute. For
the x86-64 symbol vector, setting or clearing the SHORT attribute is ignored. To be compatible
with other DCL command qualifiers, for the first two classes, more descriptive names are used:
WRITE for WRT, P0 for NOALLOC_64BIT, P2 for ALLOC_64BIT. For information about
the /SEGMENT_ATTRIBUTE qualifier, see Chapter 10.

With /SEGMENT_ATTRIBUTE, the section attributes are changed before the sections are collected
into segments. As a result, the effect is the same as using the PSECT_ATTR= for each member of the
class. However, /SEGMENT_ATTRIBUTE can do more because even the linker-generated sections
are members of the classes (for example, $LINKER SDATA$ and $LINKER SYMBOL_VECTOR$).

To move all code into P2 space, you can use the /SEGMENT_ATTRIBUTE=CODE=P2 command
qualifier. Please note, that if you use clusters in the same link command (with linker options) and
if EXE sections are put on specific clusters, setting ALLOC_64BIT does not change the per cluster
segment creation. You then will see more than one executable segment with base addresses in P2
space.

For I64 linking, the /SEGMENT_ATTRIBUTE=SHORT_DATA=WRITE command qualifier
allows you to combine the read-only and the read-write short data segments into a single segment,

76

Chapter 3. Understanding Image File Creation (x86-64 and I64)

reclaiming up to 65,535 bytes of unused, read-only space (default value for /BPAGE). When setting
SHORT_DATA to WRITE, your program may accidentally write to formerly read-only data.
Therefore, this qualifier is recommended only if your short data segment has reached the limit of 4
MB.

On I64, the linker stores the shareable image's symbol vector into the read-only short data segment by
default. That is, the linker created section $LINKERSYMBOL_VECTOR$ has the SHORT attribute.
By specifying /SEGMENT_ATTRIBUTE=SYMBOL_VECTOR=NOSHORT, the linker clears
the SHORT attribute of the section and, therefore, collects the symbol vector into a read-only data
segment of the default cluster. If the shareable image has no read-only data se is created. This frees up
the symbol vector entries from the short data. This qualifier is recommended only if your short data
segment has reached the limit of 4 MB.

3.3.7.3. Manipulating Cluster Creation
In general, the linker creates segments on a per-cluster basis; that is, only sections within a particular
cluster can contribute to segment creation. (The linker can collect sections with the global attribute
from all clusters into a single segment. However, there is one exception: sections with the I64 SHORT
attribute can not be collected.) To ensure that a section appears in a particular segment, put the section
in a specific cluster.

For example, in the sample link operation illustrated in Example 3.6, the linker puts all the sections in
the object module MYSUB.OBJ in the cluster named MYSUB_CLUS because the CLUSTER=option
is specified. If you wanted to group all of the sections that contain code from all the other clusters into
the MYSUB_CLUS cluster, you could specify the COLLECT= option, as in the following example.

Note

Section naming conventions are language processor specific. By convention, most OpenVMS
language processors put the code they generate into sections named $CODE$. An exception is the
VSI C++ compiler which puts code into a section named .text.
$ LINK/MAP/FULL MYTEST, MYADD, SYS$INPUT/OPT
CLUSTER=MYSUB_CLUS,,,MYSUB
COLLECT=MYSUB_CLUS,$CODE$
Ctrl/Z

3.3.7.4. Isolating a Section into a Segment
You can specify that the linker places a particular section into its own segment. This can be useful for
programs that map data into predefined locations within an image.

To isolate a section into a segment, specify the SOLITARY attribute of the section using the
PSECT_ATTR= option. For example, to isolate the GLOBAL_DATA section in the sample link into
its own segment, specify the following:
$ LINK/MAP/FULL MYTEST,MYADD,SYS$INPUT/OPT
CLUSTER=MYSUB_CLUS,,,MYSUB
PSECT_ATTR=GLOBAL_DATA,SOLITARY
Ctrl/Z

When mapping data into an existing location in the virtual memory of your program using the Create
and Map Global Section ($CRMPSC) system service or the Map Global Section ($MGBLSC) system
service, you must specify an address range (in the inadr argument) that is aligned on a CPU-specific
page boundary. Because the linker aligns segments on CPU-specific page boundaries and the section
in which the global section is to be mapped is the only section in the segment, you ensure that the start

77

Chapter 3. Understanding Image File Creation (x86-64 and I64)

address of the location is page aligned. In addition, because x86-64 and I64 systems must map at least
an entire page of memory at a time, using the SOLITARY attribute allows you to ensure that no other
data is in the segment. By default, the linker creates the next segment on the next page boundary so
that no data can be overwritten.

Note that SHORT sections can not be isolated. That is, an attempt to set the SOLITARY attribute to a
SHORT section is ignored by the I64 linker and a warning is issued.

3.4. Initializing an Image on x86-64 and I64
Systems
After allocating memory for the image, the linker initializes the image by writing the binary contents
into the segment buffers, that is, by copying section data from the object modules. In addition, the
linker inserts the addresses of symbols within the image wherever they are referenced.

3.4.1. Handling of Initialized Overlaid Sections
On x86-64 and I64 systems, the ELF object language does not implement the feature of the Alpha
and VAX object language which allows the initialization of portions of the sections. When an
initializations made, the entire section is initialized. Subsequent initializations of this section can
be performed only if they are compatible. A subsequent initialization is compatible if the number
of initializers are less or equal to the existing ones and all the values match or if there are more
initializers than the existing ones but all the existing values match.

The linker receives entire sections from the compilers that are already initialized. The linker reads all
the applicable module initializations to the section and checks for compatible initializations. If they
are not compatible, the linker issues the following error message:
%ILINK-E-INVOVRINI, incompatible multiple initializations for
 overlaid section
 section: <section name>
 module: <module name for first overlaid section>
 file: <file name for first overlaid section>
 module: <module name for second overlaid section>
 file: <file name for second overlaid section>

In this message, the linker lists the first module, which contributes an initialization, and the first
module with an incompatible initialization. Note that this is not a full list of all incompatible
initializations; it is simply the first one that the linker encounters.

In the Program Section Synopsis of the linker map, each module with an initialization is flagged
as Initializing Contribution. Use this information to identify and resolve all the incompatible
initializations.

Example 3.11 shows the additional information in the map file shown in Example 3.12.

Example 3.11. Compatible Initializations
$ cre one.c
#pragma extern_model common_block
int common_data[]={0,1,2,3};
int main (void) {return 1;}
Ctrl/Z
$ cc one
$ cre two.c
#pragma extern_model common_block
int common_data[]={0,1};
Ctrl/Z

78

Chapter 3. Understanding Image File Creation (x86-64 and I64)

$ cc two
$ cre three.c
#pragma extern_model common_block
int common_data[]={0,1,2,3,4,5,6,7};
Ctrl/Z
$ cc three
$ link/map one,two,three
$

Example 3.12 shows the program section synopsis of the linker map for Example 3.11. Note that the
Align and Attributes fields normally continue after the Length field but were modified to fit on the
page.

Example 3.12. Linker Map Showing Program Section Synopsis
 +--------------------------+
 ! Program Section Synopsis !
 +--------------------------+

Psect Name Module/Image Base End Length Attributes
---------- ------------ ---- --- ------ ------------

COMMON_DATA 00010000 0001001F 00000020 (32.) OVR,NOEXE, WRT,NOVEC, MOD
 ONE 00010000 0001000F 00000010 (16.) Initializing Contribution
 TWO 00010000 00010007 00000008 (8.) Initializing Contribution
 THREE 00010000 0001001F 00000020 (32.) Initializing Contribution

Example 3.13 shows an incompatible initialization and the resulting linker message.

Example 3.13. Incompatible Initialization
$ cre four.c
#pragma extern_model common_block
int common_data[]={0,1,0,0};
Ctrl/Z
$ cc /extern=common four
$ link one,two,three,four
%ILINK-E-INVOVRINI, incompatible multiple initializations for
 overlaid section
 section: COMMON_DATA
 module: ONE
 file: DISK$USER:[JOE]ONE.OBJ;1
 module: FOUR
 file: DISK$USER:[JOE]FOUR.OBJ;1

Note that the sources use a #pragma to force the extern common model. For OpenVMS, the default
extern model is the relaxed reference/definition (ref/def) model. In that model, only one explicit
initialization is allowed. That is, even identical initializations result in a linker MULDEF message.

3.4.2. Writing the Binary Contents of Segments
An object module contains sections with compiler-initialized data. The linker copies the data into the
corresponding segment buffer. For overlaid sections, subsequent data overwrites already existing data.
With the compatibility check for overlaid sections, (as explained in Section 3.4.1) the linker ensures,
that existing data is only overwritten with identical values.

If the compilers initialized data with binary zeros, the buffer contains zeros as well. To save
some disk space, the linker can check a segment buffer contents for trailing zeros. This time-
consuming operation is not performed by default. You can request it with the PER_PAGE keyword for
the /DEMAND_ZERO qualifier. Similar to a demand-zero section, the trailing zeros are not written
to the image file. The amount of trailing demand-zero bytes for such a segment is expressed as the
difference between the memory size (including these zeros) and the file size (excluding them). For
information about the PER_PAGE keyword and the /DEMAND_ZERO qualifier, see Chapter 10.

79

Chapter 3. Understanding Image File Creation (x86-64 and I64)

An object module can contain information to express link time calculations for addresses, offsets or
values. For example, an offset between two global variables defined in two different object modules
can be calculated by the linker and can be used to initialize another global variable. The link time
expressions in the object modules are implemented in object relocations. The linker processes them
similar to the other object relocations. The calculation is done in a linker internal accumulator and the
results written into the corresponding buffer of the segment.

When this processing is complete, the linker has written the binary contents of all code and data
sections into segment buffers in its own address space.

3.4.3. Other Image Segments
This section describes other segments created by the x86-64 and I64 linkers:

• Global Offset Table segments (x86-64 only)

• Unwind segments (I64 only)

• Short data segments (I64 only)

• Signature segments (I64 only)

• Dynamic segments

Section 3.4.3.1

Section 3.4.3.2

Section 3.4.3.3

Section 3.4.3.4

Section 3.4.3.5

3.4.3.1. Global Offset Table Segments (x86-64 Only)
The x86-64 linker creates Global Offset Table (GOT) segments when required by code. They contain
addresses of procedures and data. The code uses these addresses to access data and call procedures.

Each code segment in an x86-64 image usually has an associated GOT segment adjacent to it in
memory. There are no linker options or qualifiers to control placement of a GOT.

3.4.3.2. Unwind Segments (I64 Only)
Creation of the unwind segments can not be controlled with linker options or qualifiers. You can
indirectly influence where they appear by moving code sections. For each cluster with a code segment
there is an unwind segment. That is, to move all unwind information into one segment you can collect
all code sections on one cluster. Both, the sections and the segments, are listed in the corresponding
sections of the linker map.

3.4.3.3. Short Data Segment (I64 Only)
The I64 linker usually creates two short data segments. One of them is read-only and the other is read-
write. They must be placed by the image activator at addresses that are the same relative distance
apart as the linker originally put them in the image. In other words, they must be relocated together as
if they were one segment. Note that the qualifier /SEGMENT_ATTRIBUTE=SHORT=WRITE can be
used to combine the two short data segments into one read-write segment.

3.4.3.4. Signature Segment (I64 Only)
In case the generated image needs to interoperate with translated images, the I64 linker may create
another segment to save procedure signature information. Such a segment is only necessary if the
signature can not be stored with the function descriptor (because the signature is greater than 8 bytes,

80

Chapter 3. Understanding Image File Creation (x86-64 and I64)

a quadword). Signatures describe the calling interface for translated images and are described in
Section 3.2.1.3.

3.4.3.5. Dynamic Segment
The x86-64 and I64 linkers create a segment with image activator information, referred to as the
dynamic segment. This segment contains the necessary information about the shareable images on
which the image depends, including the required match control and pointers to the fix-ups. It contains
linker flags, for example, if the image was linked with /DEBUG and (by default) should run under the
control of the OpenVMS debugger. For shareable images, the dynamic segment contains a pointer to
the symbol vector. For all images, it includes fix-up and image relocation information.

The linker flags are initially set by the linker. For x86-64 and I64 images, you can display the
settings using the SHOW IMAGE command. The SET IMAGE command enables you to manipulate
individual flags or to restore the initial linker setting. If you change the flags, you change the behavior
of the image at activation or run-time.

Note

Changing linker flags might result in unexpected image behavior.

Table 3.8 shows the flags set by the linker.

Table 3.8. Linker Flags

Flag1 Description Set by Linker Qualifier or Option
CALL_DEBUG SYS$IMGSTA checks this

flag to determine whether it
calls the debugger.

See Table 3.9

DBG_IN_DSF Debug information is present
in the DSF file.

See Table 3.9

DBG_IN_IMG Debug information is present
in the image file.

See Table 3.9

EXE_INIT Image has a pointer to
EXE$INITIALIZE.

Reserved to OpenVMS

IMGSTA Image execution is to begin
by calling SYS$IMGSTA.
The image activator includes
SYS$IMGSTA as the first
address in the (traditional
VMS style) transfer vector.

See Table 3.9

INITIALIZE Image has a pointer to
LIB$INITIALIZE.

If at least one of the input object modules has a
reference to LIB$INITIALIZE.

MAIN Image has a main transfer
address.

In at least one of the input object modules a
procedure was flagged as a main entry point by
the corresponding language processor.

MKTHREADS Enable multiple kernel thread
use.

/THREADS_ENABLE=MULTIPLE_
KERNEL_THREADS

NOP0BUFS No P0 buffers for RMS
image I/O.

IOSEGMENT=,NOP0BUFS

81

Chapter 3. Understanding Image File Creation (x86-64 and I64)

Flag1 Description Set by Linker Qualifier or Option
P0IMAGE Image is loaded only to P0

space.
/P0IMAGE

SIGNATURES TIE Signatures are present. /NONATIVE_ONLY
TBK_IN_DSF Traceback records are

present in the DSF file.
See Table 3.9

TBK_IN_IMG Traceback records are
present in the image file.

See Table 3.9

UPCALLS User thread up calls are
enabled.

/THREADS_ENABLE=UPCALLS

1These dynamic segment flags are prefixed with DYNSEG$SC_VMS_LF_ as a main entry point by the corresponding language processor.

Table 3.9 shows flags determined by a combination of linker qualifiers.

Table 3.9. Flag Settings Determined by /TRACEBACK, /DEBUG, and /DSF

Qualifier IMGSTA1 CALL_
DEBUG1

TBK_IN
_IMG1

DBG_IN
_IMG1

TBK_IN
_DSF1

DBG_IN
_DSF1

/NoTrace /NoDebug /NoDSF 0 0 0 0 0 0
/Trace /NoDebug /NoDSF 1 0 1 0 0 0
/NoTrace /Debug /NoDSF 1 1 1 1 0 0
/Trace /Debug /NoDSF 1 1 1 1 0 0
/NoTrace /NoDebug /DSF 0 0 0 0 1 1
/Trace /NoDebug /DSF 1 0 1 0 1 1
/NoTrace /Debug /DSF 1 1 1 0 1 1
/Trace /Debug /DSF 1 1 1 0 1 1

1These dynamic segment flags are prefixed with DYNSEG$SC_VMS_LF_.

Notes

• On x86-64 and I64 systems, the value of SYS$IMGSTA is not included in the image's transfer
array; only a flag that indicates it is to be called. The image activator already knows the value of
SYS$IMGSTA.

• Linker flags do not appear in a DSF file. DSF files are not activated by the image activator (they
have no dynamic segment and, therefore, no linker flags field).

• When /DSF is specified along with /TRACEBACK or /DEBUG, the VMS_LF_TBK_IN_IMG
(traceback in image) flag is set. This is a difference in behavior from Alpha, where traceback
records are not included in the image when /TRACEBACK/DSF or /DEBUG/DSF is specified.
Note that debugger records do not get copied to an image whenever /DEBUG/DSF is specified.
Here, /DEBUG causes only the VMS_LF_IMGSTA bit to be set in the image.

The dynamic segment contains additional data taken from the linker qualifier keywords or values,
or option arguments. Other than these, you can not influence the creation or contents of the dynamic
segment.

Note that the linker, by default, assigns a P2 base address for the dynamic segment. The image
activator needs the dynamic segment at image activation time, the segment is not used at run-time.
The image activator maps the dynamic segment at the proposed P2 address and processes its contents.

82

Chapter 3. Understanding Image File Creation (x86-64 and I64)

The image activator maps the dynamic segments of the shareable images as well, also into P2 space.
When all of the information of all these dynamic segments is processed, the image activator may
unmap all of these segments.

Fixing Up Addresses, Relocating Images

While the linker assigns addresses to the segments of executable and shareable images in memory,
their actual final address is determined by the image activator. Because the linker does not know the
actual address that an image will be loaded, it cannot initialize external symbol references nor even
symbol references internal to the image itself. In both cases, the image requires a virtual address to
make the reference.

In the first case, the image needs to refer to external symbols which are usually resolved from
shareable images that will be loaded in the future when the image is activated. For such symbols, the
linker creates fix-ups that the image activator uses to resolve these external symbolic references.

In the second case, internal symbolic references, the linker creates image relocations that the image
activator must use to relocate the image. These relocations are used if the image activator uses a load
address different from the one proposed for it, which is the case for all shareable images.

The linker combines the fix-ups and image relocations with the activation in formation in the dynamic
segment.

The linker generates fix-ups for symbol references to a shareable image. These references are to
global data (by value or by reference) or to global procedures, which the shareable image offers.
Depending on the type, the linker generates fix-ups for currently undetermined values or address
data in an image segment. The image activator processes these fix-ups. At activation-time, the values
and addresses of global data and procedures from the shareable image are known. Then, the image
activator fills in the data in the segment to contain the values from the shareable image.

This collaboration of the linker and the image activator makes images independent of the
implementation of a public interface, which is manifested in the shareable image and its symbol
vector.

The linker generates image relocations for address data of resolved symbol references within the
generated image. The address value has to change if the linker-proposed load address changes at
image activation time. If the image activator determines a different load address, it uses the linker
provided relocations to adjust the address data.

This combined effort of the linker and the image activator preserves the position independence of the
images.

3.4.4. Keeping the Size of Image Files Manageable
On OpenVMS, uninitialized static data is initialized with bytes of zeros. Language processors usually
do not provide explicit bytes of zeros for uninitialized static data within the object file. Instead, they
create conceptual sections filled with bytes of zeros. In ELF, these are sections with a section type
specified as SHT_NOBITS (equivalent to the traditional NOMOD section attribute). These sections
occupy virtual memory when the image is activated but do not occupy any space in the object file. As
these sections are collected together, they will generate demand-zero segments in the image file that
will occupy virtual memory at image activation time but do not occupy space in the image file (just as
the NOBITS sections do in object files).

When a reference is made to data in a demand-zero segment at run-time, the operating system will
map an in-memory page of zeros rather than having to access the image file on disk to load a page of

83

Chapter 3. Understanding Image File Creation (x86-64 and I64)

zeros (a much slower process). Along with that benefit, demand-zero segments keep the image file
size smaller.

If one or more contributions to a section do not have the NOMOD attribute set,the section is
considered a non-demand-zero section and will be collected into anon-demand-zero segment.

On OpenVMS x86-64 and I64 systems, the linker can create demand-zero segments for both
executable and shareable images. However, sections with the SHR and the NOMOD attributes set are
not sorted into demand-zero segments in shareable images.

At run-time, uninitialized static data is identical to zero-initialized data. However, x86-64 and I64
language processors supply actual sections with bytes of zeros for static data explicitly initialized
to zero in your source code. Such sections are not collected into demand-zero segments. However,
the linker can search these non-demand-zero segment buffers for whole pages of trailing zero data
and create demand-zero pages from them. Because this process, called trailing demand-zero
compression, can be time-consuming, it is not done by default. To have this processing done, you
must specify the PER_PAGE keyword in the /DEMAND_ZERO qualifier.

Trailing demand-zero compression reduces the size of the image file and usually enhances the
performance of the program. As with demand-zero segments, a run-time reference made to data in
a demand-zero page will cause the operating system to map an in-memory page of zeros rather than
having to go out to disk for a block of zeros.

3.4.4.1. Controlling Demand-Zero Image Segment Creation
On x86-64 and I64 systems, you can force the linker to allocate disk blocks for demand-zero segments
by specifying the /NODEMAND_ZERO qualifier. The linker initializes the segment data with zeros
and writes the segment data into the image file. Note that the linker still sorts the sections with the
NOMOD attribute into separate segments.

To control which sections are placed in demand-zero segments, you must reset the NOMOD attribute
of the section by using the PSECT_ATTR=option. The NOMOD attribute cannot be set by the
programmer in source code or with linker options, but it can be cleared with PSECT_ATTR= psect-
name, MOD.

If you set the EXE or VEC attributes for a section for which the compiler has set the NOMOD
attribute, the linker issues a warning and sets the section attributes back to NOEXE and NOVEC.
The linker creates a read-only demand-zero segment for a segment with the NOWRT attribute. See
Chapter 10 for more information.

To request trailing zero compression, you have to use the PER_PAGE keyword for
the /DEMAND_ZERO qualifier.

The DZRO_MIN= and the ISD_MAX= options are not supported on x86-64 and I64 systems. The
linker ignores these options and produces informational messages. For further explanation of these
options, see Chapter 10.

3.4.5. Creating ELF Sections in the Image File
Debugger and traceback sections are processed only if you requested in the LINK command that the
debug information be included using the /DEBUG qualifier and that the traceback information not
be excluded using the /NOTRACE qualifier. Otherwise, this information is ignored. These sections
contain their information in the Debugging With Attribute Record Format, or DWARF. DWARF
information is kept in several sections, identified by a few section types and distinguished by name.

84

Chapter 3. Understanding Image File Creation (x86-64 and I64)

You are not able to control these sections with the PSECT_ATTR= or the COLLECT= option clauses.
Also, the linker does not collect these sections into segments.

The DWARF sections are combined according to their section type and are usually written into the
image file. You can request that the debug information go into a separate file called a debug symbol
file (DSF) by using the /DSF qualifier. For information about the /DSF qualifier, see Chapter 10.

The linker saves some image information in the .note ELF section, referred to as the note section.
It saves the link time and the linker ID,as well as the image name and the global symbol table
name (GSTNAM). This section contains a copy of some of the original link-time value settings
for additional fields that can be modified by the SET IMAGE command. Further, it contains a
modification time stamp field, updated when the SET IMAGE command changes field values. Finally,
it contains a modification timestamp the PATCH utility uses when it changes any data in the image
file.

The linker writes global symbols into the image file under the following conditions:

• When you request a shareable image. (If you want to ship a shareable image that cannot be linked
against, use /NOGST to exclude the global symbol from the shareable image file).

• When you request a debug version of the image.

Table 3.10 indicates where global symbol definitions are written during a link operation that uses the
debugging qualifiers:

Table 3.10. Location of Global Symbols Determined by /TRACEBACK, /DEBUG,
and /DSF

Qualifier Global Symbols in Image Global Symbols in DSF File
/NoTrace /NoDebug /NoDSF 0 0
/Trace /NoDebug /NoDSF 0 0
/NoTrace /Debug /NoDSF 1 0
/Trace /Debug /NoDSF 1 0
/NoTrace /NoDebug /DSF 0 1
/Trace /NoDebug /DSF 0 1
/NoTrace /Debug /DSF 0 1
/Trace /Debug /DSF 0 1

The linker creates the required ELF sections, to implement the symbol table. It creates a section
named .symtab to contain the values and symbol attributes together with a pointer to a string
section, .strtab, which contains the symbol names.

3.4.6. Writing the Main Output Files
To complete the image creation the generated data has to be written to the image file. The linker
prepares all the necessary ELF header tables, which are updated, when writing segments and ELF
sections. The linker writes the headers, and sections, that is the contents of the linker buffers in the
following order:

1. Temporary ELF header, temporary segment header table

2. All segments to the image file.

85

Chapter 3. Understanding Image File Creation (x86-64 and I64)

3. The traceback sections to the image or debug symbol file, unless /NOTRACEB specified in the
LINK command.

4. The debug sections to the image or debug symbol file, in case /DEBUG was specified in the LINK
command.

5. The remaining sections of the map to the map file, if requested in the LINK command. (These
sections include all requested sections except the Object Module Synopsis, which it already wrote,
and the Link Run Statistics, which it cannot write until the linking operation finishes).

6. The global symbol table to the image file, and also to another separate file, if requested in the
LINK command.

7. The supporting ELF sections to the image file.

8. The ELF section header table to the image file.

9. The updated ELF header and segment header table.

10. The link statistics to the map file, if requested in the LINK command.

86

Chapter 4. Creating Shareable Images
(x86-64 and I64)
This chapter describes how to create shareable images on OpenVMS x86-64 and OpenVMS I64
systems and how to declare universal symbols in shareable images.

4.1. Overview of Creating Shareable Images
on x86-64 and I64 Systems
To create a shareable image, specify the /SHAREABLE qualifier on the LINK command line. You
can specify as input files in the link operation any of the types of input files accepted by the linker, as
described in Chapter 1.

Note, however, to enable other modules to reference symbols in the shareable image, you must declare
them as universal symbols. You must declare universal symbols at link time using linker options. The
linker lists all universal symbols in the global symbol table (GST) of the shareable image. For x86-64
and I64 images the GST is implemented as a set of symbols in the ELF symbol table (SYMTAB)
in the shareable image. The linker processes the GST of a shareable image specified as an input file
in a link operation during symbol resolution. For more information about symbol resolution, see
Chapter 2.

For x86-64 and I64 linking, you declare universal symbols by listing the symbols in a
SYMBOL_VECTOR= option statement in a linker options file. You do not need to create a transfer
vector to create an upwardly compatible shareable image, as you do with OpenVMS VAX shareable
images. The symbol vector can provide upward compatibility. For more information about this topic,
see Section 4.2.

The linker supports qualifiers and options that control various aspects of shareable image creation.
Table 4.1 lists these qualifiers and options. For more information about linker qualifiers and options,
see Chapter 10.

Table 4.1. Linker Qualifiers and Options Used to Create Shareable Images on x86-64
and I64 Systems

Qualifier Description
/GST Directs the linker to include universal symbols in the global symbol table

(GST) of the shareable image, which is the default. When you specify
the /NOGST qualifier, the linker creates an empty GST for the image. See
Section 4.2.4 for more information about using this qualifier to create run-
time kits.

/PROTECT Directs the linker to protect the shareable image from write access by user
or supervisor mode.

/SHAREABLE Directs the linker to create a shareable image, when specified in the link
command line. When appended to a file specification in a linker options
file, this qualifier identifies the input file as a shareable image.

Option Description
GSMATCH= Sets the major and minor identification numbers in the shareable image and

specifies the algorithm when comparing identification numbers.

87

Chapter 4. Creating Shareable Images (x86-64 and I64)

Option Description
PROTECT=1 When specified with the YES keyword in a linker options file, this option

directs the linker to protect the clusters created by subsequent options
specified in the options file. You turn off protection by specifying the
PROTECT=NO option in the options file.

SYMBOL_TABLE=2 When specified with the GLOBALS keyword, this option directs the
linker to include in a symbol table file all the global symbols defined in the
shareable image, in addition to the universal symbols. By default, the linker
includes only universal symbols in a symbol table file associated with a
shareable image (SYMBOL_TABLE=UNIVERSALS).

SYMBOL_VECTOR= Specifies symbols in the shareable image that you want declared as
universal.

1It is recommended to protect the whole image with the /PROTECT qualifier, see Section 4.4.
2The only purpose of a symbol table file is to make symbols and their values known to the System Dump Analyzer (SDA). The option is
intended for system developers who use SDA to look at a running system, a process, or crash dump.

4.2. Declaring Universal Symbols in x86-64
and I64 Shareable Images
To illustrate how to declare universal symbols, consider the programs in the following examples.
Example 4.1 shows a shareable image test module. Example 4.2 shows the shareable image.

Example 4.1. Shareable Image Test Module: my_main.c
#include <stdio.h>
#pragma extern_model save
#pragma extern_model common_block
extern int my_data;
#pragma extern_model restore
extern int my_symbol;
extern int mysub(int, int);
main()
{
 int num1, num2, result;
 num1 = 7;
 num2 = 4;
 result = mysub(num1, num2);
 printf("Result= %d\n", result);
 printf("Data implemented as overlaid psect= %d\n", my_data);
 printf("Global reference data is= %d\n", my_symbol);
}

Example 4.2. Shareable Image: my_math.c
#pragma extern_model save
#pragma extern_model common_block
int my_data = 5;
#pragma extern_model restore
int my_symbol = 10;
int add_data = -1;
int sub_data = -1;
int mul_data = -1;
int div_data = -1;
int myadd(int value_1, int value_2)
{
 add_data = value_1 + value_2;
 return add_data;
}
int mysub(int value_1, int value_2)
{

88

Chapter 4. Creating Shareable Images (x86-64 and I64)

 sub_data = value_1 - value_2;
 return sub_data;}
int mymul(int value_1, int value_2)
{
 mul_data = value_1 * value_2;
 return mul_data;
}
int mydiv(int value_1, int value_2)
{
 div_data = value_1 / value_2;
 return div_data;
}

You must use the extern common model to make the VSI C for x86-64 or I64 compiler implement
the symbol my_data as an overlaid section. The default model on VSI C is relaxed/refdef. For more
information on the extern models and how they are enabled with pragmas or command qualifiers, see
the VSI C User's Guide for OpenVMS Systems.

For x86-64 and I64 linking, you declare universal symbols by listing them in a SYMBOL_VECTOR=
option. For each symbol listed in the SYMBOL_VECTOR= option, the linker creates an entry in the
shareable image's symbol vector and creates an entry for the symbol in the shareable image's GST.
When the shareable image is included in a subsequent link operation, the linker processes the symbols
listed in its GST.

To enable images that linked against a shareable image to run with various versions of the shareable
image, you must specify the identification numbers of the image. By default, the linker assigns
a unique identification number to each version of a shareable image. At run-time, if the ID of
the shareable image as it is listed in the executable image does not match the ID of the shareable
image the image activator finds to activate, the activation will abort. For information about using
the GSMATCH= option to specify ID numbers, see the description of the GSMATCH= option in
Chapter 10.

To implement Example 4.2 as an x86-64 or I64 shareable image, you must declare the universal
symbols in the image by using the following LINK command:

$ LINK/SHAREABLE MY_MATH, SYS$INPUT/OPT
GSMATCH=LEQUAL,1,1000
SYMBOL_VECTOR=(MYADD=PROCEDURE,-
 MYSUB=PROCEDURE,-
 MYMUL=PROCEDURE,-
 MYDIV=PROCEDURE,-
 MY_SYMBOL=DATA,-
 MY_DATA=PSECT)
Ctrl/Z

You must identify the type of symbol vector entry you want to create by specifying a keyword. The
linker allows you to create symbol vector entries for procedures, data (relocatable or constant), and for
global data implemented as an overlaid section.

A symbol vector entry is two quadwords (on x86-64 systems) or one quadword (on I64 systems) that
contain information about the symbol that can be used in subsequent fix-up of images that are linked
against the shareable image. The contents of the entry depend on what the symbol represents. If the
symbol represents a procedure (=PROCEDURE), the symbol vector entry contains the procedure
value, that is the function address. If the symbol represents a data item (=DATA), the symbol vector
entry contains the address of the data location. If the symbol represents a data constant (=DATA),
the symbol vector entry contains the actual value of the constant. If the symbol represents a section
(=PSECT), the symbol vector entry contains the address of the location of the section.

The linker fills in the symbol vector with values and addresses. The address calculations are based
on the assumption that the shareable image will be mapped at the default base address. This is done

89

Chapter 4. Creating Shareable Images (x86-64 and I64)

despite the fact that the linker cannot know where the image will be in memory at run-time. The linker
also adds relocation information so that the image activator can adjust the address values based on the
actual base address of the shareable image at activation time. This way, at run-time the symbol vector
contains the actual code or data addresses.

When you create the shareable image (by linking it specifying the /SHAREABLE qualifier), the value
of a universal symbol listed in the GST is the zero-based index of the symbol in the symbol vector
(expressed as index z in Figure 4.1 (x86-64) and Figure 4.2 (I64)).

When you include this shareable image in a subsequent link operation, the linker leaves references to
the procedure, data or section empty. The linker create fix-ups in the executable image that reference
symbols from the shareable image. The fix-up includes the symbol’s index in the symbol vector of the
shareable image.

The following example illustrates how to link the object module MY_MAIN.OBJ with the shareable
image MY_MATH.EXE.

$ LINK MY_MAIN, SYS$INPUT/OPTMY_MATH/SHAREABLE
Ctrl/Z

On x86-64 systems, when an executable image calls a function in a shareable image, the call goes
through one or two linker-generated code stubs. In MY_MAIN.EXE, the call to mysub is redirected
by the linker to a PLT stub. The PLT stub consists of a single instruction, an indirect jump through a
GOT entry. Using the symbol vector in MY_MATH.EXE, the image activator fixes up the GOT entry
in MY_MAIN.EXE so it contains the procedure value for mysub. Since, in this example, the code for
mysub is located in P2, the procedure value points to another linker-generated stub. This stub does an
indirect jump to mysub itself.

90

Chapter 4. Creating Shareable Images (x86-64 and I64)

Figure 4.1. Accessing Universal Symbols Specified Using the
SYMBOL_VECTOR=Option on x86-64

On I64 systems, at run-time, when the image activator maps the shareable image into memory, it
calculates the actual locations of the routines and relocatable data within the image and stores these
values in its symbol vector. The image activator then fixes up the references to these symbols in the
executable image. For a symbol representing constant data, the constant from the symbol vector is
copied into the executable image. For a symbol representing relocatable data, the address of the data
from the symbol vector is copied into the executable image. For a symbol representing a procedure
the contents of the FD pointed to by the address in the symbol vector, the code address and the
global pointer, is copied into the executable image. When the executable image makes a call to the
procedure, shown as the branch (br.few) instruction sequence in Figure 4.2, control is transferred
directly to the location of the procedure within the shareable image.

91

Chapter 4. Creating Shareable Images (x86-64 and I64)

Figure 4.2. Accessing Universal Symbols Specified Using the
SYMBOL_VECTOR=Option on I64

Note that the images are being activated by the image activator with all relocations applied, pointing
out a single fix-up. That is, m and n are the virtual addresses after the image relocations are applied
and gp is the relocated global pointer value.

Note also that, unlike VAX linking, global symbols implemented as overlaid sections are not universal
by default. Instead, you control which of these symbols is a universal symbol by including it in the
SYMBOL_VECTOR=option, specifying the PSECT keyword. The example declares the section
my_data as a universal symbol.

4.2.1. Symbol Definitions Point to Shareable Image
Sections
On x86-64 and I64 systems, the linker cannot overlay sections that are referenced by symbol
definitions with shareable image sections of the same name.

For example, the VSI C compiler generates symbol definitions when the relaxed ref/def extern model
is used (the default).

For hard symbol definitions, the compiler creates an overlaid section defining the memory
requirements for that symbol. For tentative symbol definitions, there is no virtual memory allocated
by the compiler. At link time, if there is no virtual memory for a symbol found, the linker creates an
overlaid section defining the memory.

92

Chapter 4. Creating Shareable Images (x86-64 and I64)

If an overlaid section was created for a symbol definition, such a section cannot be overlaid with
shareable image sections that are created when you link a shareable image and use the PSECT
keyword in your SYMBOL_VECTOR option. For more information on the extern models, see VSI C
User's Guide for OpenVMS Systems.

If the linker detects this condition, it issues the following error:
%LINK-E-SHRSYMFND, shareable image psect <name> was pointed
to by a symbol definition
%LINK-E-NOIMGFIL, image file not created

The link continues, but no image is created. To work around this restriction, change the symbol vector
keyword to DATA, or recompile your C program with the qualifier /EXTERN=COMMON.

For more information, see the VSI C User's Guide for OpenVMS Systems.

If the section specified in a SYMBOL_VECTOR= option does not exist, the linker issues a warning,
places zeros in the symbol vector entry and does not create an entry for the section in the image's
GST.

The linker maintains separate name spaces for global symbol names and section names. As described
in Chapter 2, the section names are not used to resolve an undefined symbol. Because of the different
name spaces, it is possible to specify an identical name in a symbol vector option when exporting a
global symbol and a section. This depends on the main module's extern model and which entry in the
symbol vector resolves or overlays a reference from the main module.

Note

Although this is correct linker behavior, using identical names in this manner can create confusion. As
such, VSI discourages the use of this feature.

4.2.2. Creating Upwardly Compatible Shareable Images
The SYMBOL_VECTOR= option allows you to create upwardly compatible shareable images. You
can create a shareable image that can be modified, recompiled, and relinked without causing the
images that were linked against previous versions of the image to be relinked.

To ensure upward compatibility when using a SYMBOL_VECTOR= option, you must preserve the
order and placement of the entries in the symbol vector with each relinking. Do not delete existing
entries and only add new entries at the end of the list. If you use multiple SYMBOL_VECTOR=
option statements in a single options file to declare the universal symbols, you must also maintain
the order of the SYMBOL_VECTOR= option statements in the options file. If you specify
SYMBOL_VECTOR= options in separate options files, make sure the linker always processes the
options files in the same order. (The linker creates only one symbol vector for an image).

Use the GSMATCH mechanism to record any changes you make. GSMATCH handles the changes as
follows:

• Major changes or incompatible changes, different orders of existing symbol vector entries, or
deletion of entries most likely will result in a mismatch of the major ID number.

• Minor changes or compatible changes, or addition of new entries should result in a match of the
major ID number but in a mismatch of the minor ID number.

By using the major and minor IDs in this manner, along with the LEQUAL keyword, you can create
upwardly compatible shareable images. For example, a main image linked against minor ID 2 of a

93

Chapter 4. Creating Shareable Images (x86-64 and I64)

shareable image is not allowed to run against the shareable image with a minor ID less than 2, if the
shareable image was linked with the keyword LEQUAL. For more information, see the description of
the GSMATCH= option in Chapter 10.

4.2.3. Deleting Universal Symbols Without Disturbing
Upward Compatibility
To delete a universal symbol without disturbing the upward compatibility of an image, use the
PRIVATE_PROCEDURE or PRIVATE_DATA keywords. In the following example, the symbol
mysub is deleted using the PRIVATE_PROCEDURE keyword:

$ LINK/SHAREABLE MY_MATH, SYS$INPUT/OPT
GSMATCH=LEQUAL,1,1000
SYMBOL_VECTOR=(MYADD=PROCEDURE,-
 MYSUB=PRIVATE_PROCEDURE,-
 MYMUL=PROCEDURE,-
 MYDIV=PROCEDURE,-
 MY_SYMBOL=DATA,-
 MY_DATA=PSECT)
Ctrl/z

When you specify the PRIVATE_PROCEDURE or PRIVATE_DATA keyword in the
SYMBOL_VECTOR= option, the linker creates symbol vector entries for the symbols but does
not create an entry for the symbol in the GST of the image. The symbol still exists in the symbol
vector and none of the other symbol vector entries have been disturbed. Images that were linked with
previous versions of the shareable image that reference the symbol still work, but the symbol is not
available for new images to link against.

Using the PRIVATE_PROCEDURE keyword, you can replace an entry for an obsolete procedure with
a private entry for a procedure that returns a message that explains the status of the procedure.

4.2.4. Creating Run-Time Kits
If you use shareable images in your application, you may want to ship a run-time kit with versions of
these shareable images that cannot be used in link operations.

To do this, you must first link your application, declaring the universal symbols in the shareable
images using the SYMBOL_VECTOR= option so that references to these symbols can be resolved.
After the application is linked, you must then relink the shareable images so that they have fully
populated symbol vectors but empty global symbol tables (GSTs). The fully populated symbol vectors
allow your application to continue to use the shareable images at run-time. The empty GSTs prevent
other images from linking against your application.

To create this type of shareable image for a run-time kit (without having to disturb the
SYMBOL_VECTOR= option statements in your application's options files), relink the shareable
image after development is completed, specifying the /NOGST qualifier on the LINK command line.
When you specify the /NOGST qualifier, the linker builds a complete symbol vector, containing the
symbols you declared universal in the SYMBOL_VECTOR= option, but does not create entries for
the symbols that you declared universal in the GST of the shareable image. For more information
about the /GST qualifier, see Chapter 10.

94

Chapter 4. Creating Shareable Images (x86-64 and I64)

4.2.5. Specifying an Alias Name for a Universal Symbol
For x86-64 and I64 linking, a universal symbol can have a name, called a universal alias, different
from the name contributed by the object module in which it is defined. You specify the universal alias
name when you declare the global symbol as a universal symbol using the SYMBOL_VECTOR=
option. The universal alias name precedes the internal name of the global symbol, separated by a slash
(/). In the following example, the global symbol mysub is declared as a universal symbol under the
name sub_alias.
$ LINK/SHAREABLE MY_MATH, SYS$INPUT/OPT
GSMATCH=LEQUAL,1,1000
SYMBOL_VECTOR=(MYADD=PROCEDURE,-
 SUB_ALIAS/MYSUB=PROCEDURE,-
 MYMUL=PROCEDURE,-
 MYDIV=PROCEDURE,-
 MY_SYMBOL=DATA,-
 MY_DATA=PSECT)
Ctrl/Z

You can specify universal alias names for symbols that represent procedures or data; you cannot
declare a universal alias name for a symbol implemented as an overlaid section. In link operations in
which the shareable image is included, the calling modules must refer to the universal symbol by its
universal alias name to enable the linker to resolve the symbolic reference.

The alias mechanism can also be used to map case sensitive symbols to case insensitive ones. With
C and C++, case sensitivity becomes more important. You may want to create a shareable image that
contains both symbols,so that object modules from traditional programming languages as MACRO
and FORTRAN can link against your image as well as modules which compile from open sources and
usually expect case sensitive names. In the following link operation for Example 4.2, for each routine
or data, uppercase and lowercase symbols are defined with the alias mechanism, which are written
into the GST.
$ LINK/SHAREABLE MY_MATH, SYS$INPUT/OPT
CASE_SENSITIVE=YES
SYMBOL_VECTOR=(MYADD=PROCEDURE,-
 myadd/MYADD=PROCEDURE,-
 MYSUB=PROCEDURE,-
 mysub/MYSUB=PROCEDURE,-
 MYMUL=PROCEDURE,-
 mymul/MYMUL=PROCEDURE,-
 MYDIV=PROCEDURE,-
 mydiv/MYDIV=PROCEDURE,-
 MY_SYMBOL=DATA,-
 my_symbol/MY_SYMBOL=DATA,-
 MY_DATA=PSECT)CASE_SENSITIVE=NO
Ctrl/Z

In a privileged shareable image, calls from within the image that use the alias name result in a fix-up
and subsequent vectoring through the privileged library vector (PLV), which results in a mode change.
Calls from within the shareable image that use the internal name are done in the caller's mode. (Calls
from external images always result in a fix-up). For more information about creating a PLV, see the
VSI OpenVMS Programming Concepts Manual.

4.3. Improving the Performance of Installed
Shareable Images
On x86-64 and I64 systems, you can improve the performance of an installed shareable image by
installing it as a resident image (by using the /RESIDENT qualifier of the Install utility). INSTALL
loads the executable and read-only segments of resident images into physical memory, with virtual

95

Chapter 4. Creating Shareable Images (x86-64 and I64)

addresses in system space. Data or code of such images is directly accessed from memory. That is, at
run-time image pages do not need to be read from the image file. See the documentation on the Install
utility for more information about installing images as resident images.

4.4. Linking User-Written System Services
User-written system services allow user-mode programs to call routines that can perform functions
that require privileges. These services are implemented in shareable images. Because of the privileged
code, these images are also referred to as privileged shareable images. For security reasons, the
privileged code and associated data must be protected from manipulations. Therefore, such images are
also called protected shareable images.

As you would create any other shareable image, create a privileged shareable image by specifying
the /SHAREABLE qualifier in the LINK command. However, because the privileged routine entry
points in privileged shareable images must be routed through the OpenVMS system service dispatcher
in order to change mode to a more privileged mode, declaring these entry points as universal requires
additional steps:

• Protect the privileged shareable image from user-mode or supervisor-mode write access —
Create a protected shareable image by specifying the /PROTECT qualifier. If you need to protect
only certain segments in a privileged shareable image, use the PROTECT= option. For more
information about this option, see Chapter 10.

• Create a Privileged Library Vector (PLV) and put it in a protected section — Create a PLV
for a privileged shareable image. The image activator uses the information in the PLV to set up the
change of mode code. You can create a protected shareable image by specifying the /PROTECT
qualifier. For information about creating a PLV, see the VSI OpenVMS Programming Concepts
Manual.

Note

On x86-64 and I64 systems, it is recommended to protect the entire image, rather than parts of the
image (that is, individual image segments). Partial protection requires that you verify that all data to
be protected is in the protected segment. Compilers for x86-64 and I64 put data in different types of
sections. By doing so, it becomes difficult to control protection setting.

For example, compilers for I64 put some data into short data sections. The linker then must collect
these sections into short data segments, which cannot be collected into user-defined clusters (the only
clusters that you can protect with the linker option). That is, for partially protected images, you need
control over that location that the compiler puts all your data. The compiler of your choice might not
offer a reliable method to do so; therefore; it is recommended to protect the entire image.

96

Chapter 5. Interpreting an Image Map
File (x86-64 and I64)
This chapter describes how to interpret information in an image map created by the linker on
OpenVMS x86-64 and OpenVMS I64 systems. It describes the combinations of linker qualifiers used
to produce a map.

For information about interpreting an image map file on OpenVMS Alpha and OpenVMS VAX
systems, see Chapter 9.

5.1. Overview of x86-64/I64 Linker Map
At your request, the linker can generate information that describes the contents of the image and
the linking process. This information, called an image map, can be helpful when determining
programming and link-time errors, studying the layout of the image in virtual memory, and keeping
track of global symbols.

You can obtain the following types of information about an image from its image map:

• The names of all modules included in the link operation, both explicitly in the LINK command
and implicitly from libraries

• The names, sizes, and other information about the segments that comprise the image

• The names, sizes, and locations of sections within an image

• The names and values of all the global symbols referenced in the image, including the name of
the module in which the symbol is defined and the names of the modules in which the symbol is
referenced

• Statistical summary information about the image and the link operation itself

You determine which information the linker includes in a map file by specifying qualifiers in the
LINK command line. If you specify the /MAP qualifier, the map file includes certain information by
default (called a default map). You can also request a map file that contains less information about
the image (called a brief map) or a map file that contains more information about the image (called a
full map). Table 5.1 lists the LINK command qualifiers that affect map file production.

Table 5.1. LINK Command Map File Qualifiers

Qualifier Description
/MAP Directs the linker to create a map file. This is the default for batch

jobs. /NOMAP is the default for interactive link operations.
/BRIEF When used in combination with the /MAP qualifier, directs the linker to create a

map file that contains only a subset of the default map sections.
/FULL When used in combination with the /MAP qualifier, directs the linker to

create a map file that contains extensive information of the image in the
map file. To tailor the full information to your needs, you can use keywords
to add or suppress specific information. The default value for /FULL is
SECTION_DETAILS.

97

Chapter 5. Interpreting an Image Map File (x86-64 and I64)

Qualifier Description
• DEMANGLED_SYMBOLS — Directs the inker to add a translation table of

mangled and demangled (source code) names. You can request this section
if you use a programming language, whose language processor performs
name mangling (for example, Ada and C++) and the compiler provides the
necessary information within the object modules. The table contains names
of global definitions, procedures and data. Note that /DNI (to process display
name information) must be be present, which is by default. See Section 5.4
for more information.

• GROUP_SECTIONS — Directs the linker to list all processed groups (ELF
COMDATs). For example, C++ includes groups in its object modules and
shareable images. Note when linking against C++ shareable images, all
groups of these images will be listed; even for short programs this will create
a long list.

• [NO]SECTION_DETAILS — Directs whether or not the linker suppresses
zero length contributions in the Program Section Synopsis.

• ALL — The ALL keyword is equivalent to specifying all of the above listed
keywords.

/CROSS_
REFERENCE

When used in combination with the /MAP qualifier, directs the linker to replace
the Symbols By Name section with a Symbol Cross-Reference section, in which
all the symbols in each module are listed with the modules in which they are
called. You cannot request this type of listing in a brief map file.

5.2. Components of an x86-64/I64 Image Map
File
The linker formats the information it includes in a map file into sections. Table 5.2 lists the sections
of a map file in the order in which they appear in the file. The table also indicates whether the section
appears in a brief map, full map, or default map file.

Table 5.2. x86-64/I64 Image Map Sections

Section Name Description Default Map Full Map Brief Map
Object and Image
Synopsis1

Lists all the object modules
included in the image
and the shareable images
referenced in the order they
are processed by the linker.

Yes Yes Yes

Cluster Synopsis Lists all the clusters created
by the linker

— Yes —

Image Segment
Synopsis

Lists the image segments that
were created

— Yes —

COMDAT Group
Synopsis

Lists the processed groups
ordered by group name

— Keyword

GROUP_
SECTIONS

—

98

Chapter 5. Interpreting an Image Map File (x86-64 and I64)

Section Name Description Default Map Full Map Brief Map
Program Section
Synopsis1

Lists the sections and their
attributes.

Yes Yes —

Symbol Cross
Reference1

Lists each symbol name,
its value, the name of the
module that defined it, and
the names of the modules
that refer to it.

Yes /CROSS Yes /CROSS —

Symbols By Value Lists all the symbols with
their values in hexadecimal
representation.

— Yes —

Cross Reference
Footnotes

If the cross reference or the
symbol value lists contain
shortened name, this section
is automatically created and
the full names are listed.

Yes Yes —

Mangled/
Demangled
Symbols

Lists all the mangled
symbols with their
demangled (source code)
names.

— Keyword

DEMANGLED_
SYMBOLS

—

Image Synopsis Presents statistics and other
information about the output
image.

Yes Yes Yes

Link Run Statistics Presents statistics about
the link run that created
the image. Quota usage
keeps track of quotas being
used by the linker and may
suggest which quota should
be increased to improve
performance.

Yes Yes Yes

1In a full map file, these sections include information about modules that were included in the link operation from libraries but were not
explicitly specified on the LINK command line.

5.2.1. Object and Image Synopsis Section
The first section that appears in a map file is the Object and Image Synopsis, which lists the name
of each object or shareable image included in the link operation in the order in which they were
processed. This section of the map file also includes other information about each module, arranged in
columns. Example 5.1 shows the Object and Image Synopsis map.

This section corresponds to the OpenVMS Alpha section titled Object Module Synopsis. To compare
with the linker map on Alpha, see Section 9.2.1.

99

Chapter 5. Interpreting an Image Map File (x86-64 and I64)

Example 5.1. Object and Image Synopsis

 +---------------------------+
 ! Object and Image Synopsis !
 +---------------------------+

Module/Image File Ident Attributes Bytes Creation Date Creator
------------ ---- ----- ---------------- ----- ------------- -------
GETJPI V1.0 Lkg Dnrm 280 8-MAR-2019 15:50 VSI C X7.4-151
 DISK$USER:[JOE]GETJPI.OBJ;1
DECC$SHR V8.3-00 Lkg 0 28-FEB-2019 10:57 Linker I02-68
 SYS$COMMON:[SYSLIB]DECC$SHR.EXE;1
SYS$PUBLIC_VECTORS X-3 Sel Lkg 0 28-FEB-2019 10:56 Linker I02-68
 SYS$COMMON:[SYSLIB]SYS$PUBLIC_VECTORS.EXE;1

 Key for Attributes
 +--+
 ! Sel - Module was selectively searched !
 ! Lkg - Contains call linkage information !
 ! Dnrm - Denormal IEEE FP model !
 +--+

Module/Image. The name of each object module or shareable image included in the link
operation. The modules/images are listed in the order in which the linker processed them. (Note
that the order of processing can be different from the order in which the files were specified
in the command line. For more information about how the linker processes input files, see
Chapter 2). If the linker encounters an error during its processing of an object module or
shareable image, an error message appears on the line directly following the line containing the
name of that module or image.
This column corresponds to the Module Name column on the Alpha linker map.
File. Full file specification of the input file, including device and directory. The specification is
printed on a separate line. It starts at the File column and continues across the other columns. If
the specification is longer than 111 characters, it is shortened by dropping the device portion of
the file specification or both the device and directory portions of the file specification.
Attributes. The attributes displays four subcolumns of module attributes. An explanation of the
abbreviations used appears in the Key for Attributes legend that appears at the end of the Object
and Image Synopsis section:

The first of the four subcolumns indicates whether the symbol search of the module was
selective. If the symbol search was selective, the abbreviation Sel appears. If the symbol search
of the module was not selective, this subcolumn is left blank.

The second subcolumn indicates whether the module has call linkage information. If the module
has call linkage information, Lkg appears. If the module does not have call linkage information,
this subcolumn is left blank.

The third subcolumn indicates whether the module was compiled with the Reduced Floating
Point model. If it was, the abbreviation RFP appears. If the module was not compiled with the
Reduced Floating Point model, this subcolumn is left blank. This designation is suppressed for
shareable images.

The fourth subcolumn indicates the whole program Floating Point mode for the module. Several
abbreviations can appear in this column. For example Dnrm, the denormal IEEE FP model.

The following example lists all of the possible abbreviations for this subcolumn in the Keys for
Attributes legend. The Bytes, Creation Date and Creator columns are omitted from this example;
refer to the preceding map example for the entire Object and Image Synopsis.

100

Chapter 5. Interpreting an Image Map File (x86-64 and I64)

Module/Image File Ident Attributes
------------ ---- ----- ----------------
NONE V1.0 Lkg
 DISK1:[JOE]NONE.OBJ;1
NOFLOAT_CASE Lkg RFP
 DISK1:[JOE]NOFLOAT.OBJ;1
DNORM_CASE Lkg Dnrm
 DISK1:[JOE]DENORM_W.OBJ;1
FAST_CASE Lkg Fast
 DISK1:[JOE]FAST_W.OBJ;1
NEPCT_CASE Lkg Inex
 DISK1:[JOE]INEXACT_W.OBJ;1
SPCL_CASE Lkg Spcl
 DISK1:[JOE]SPECIAL_W.OBJ;1
UNDER_CASE Lkg Undr
 DISK1:[JOE]UNDERFLOW_W.OBJ;1
DG_FL_CASE Lkg VXfl
 DISK1:[JOE]VAXFLOAT_W.OBJ;1
DECC$SHR V8.2-00 Lkg
 RESD$:[SYSLIB]DECC$SHR.EXE;1
SYS$PUBLIC_VECTORS X-2 Sel Lkg
 RESD$:[SYSLIB]SYS$PUBLIC_VECTORS.EXE;1

 Key for Attributes
 +--+
 ! Sel - Module was selectively searched !
 ! Lkg - Contains call linkage information !
 ! RFP - Conforms to the reduced FP model !
 ! VXfl - VAX Float FP model !
 ! Dnrm - Denormal IEEE FP model !
 ! Fast - Fast IEEE FP model !
 ! Inex - Inexact IEEE FP model !
 ! Undr - Underflow-to-zero IEEE FP model !
 ! Spcl - Special FP model !
 +--+

Bytes. The number of bytes the object module contributes to the image. Because shareable
images do not contribute to the image the value 0 (zero) appears in this column.
Creation Date. The date and time the module or image was created.
Creator. Identification of the language processor or other utility that created the module or
image.

5.2.2. Cluster Synopsis Section
The Cluster synopsis section (Example 5.2) shows clusters that were created for and used by the
linker, the order in which they were processed, and Global Section Match (GSMATCH) criteria.

Example 5.2. Cluster Synopsis

 +------------------+

 ! Cluster Synopsis !
 +------------------+

Cluster Match Majorid Minorid
------- ----- ------- ----------
MYCLU
DEFAULT_CLUSTER
DECC$SHR LESS/EQUAL 1 1
SYS$PUBLIC_VECTORS EQUAL 9525 361572293

Cluster Synopsis. On x86-64 and I64 systems, there are separate map sections titled Cluster
Synopsis and Image Segment Synopsis. The Cluster Synopsis section on x86-64 and I64 does
not contain segment information.

101

Chapter 5. Interpreting an Image Map File (x86-64 and I64)

Cluster. The Cluster column shows the names of the clusters created for and used by the linker,
and the order in which they were processed. STARLET.OLB is an exception. It is on the default
cluster but its processing is postponed after processing IMAGELIB.OLB. See Chapter 2 for
more information on processing default libraries.
Match, Majorid, and Minorid. The Match, Majorid, and Minorid columns show the GSMATCH
criteria along with the major and minor version numbers, if this information is available. For
more information, see the GSMATCH= option in Chapter 10.

5.2.3. Image Segment Synopsis Section
The Image Segment Synopsis section of the linker map file (Example 5.3) lists the image segments
created by the linker. The image segments appear in the order in which the linker created them. The
order of the segments depends on the order of the clusters as shown in the linker's image cluster
synopsis (see Section 5.2.2). On x86-64 and I64 systems, segments of the shareable images which are
included in the link operation are not listed in the Image Segment Synopsis.

This section of the image map includes other information about the image segments, formatted in
columns. To compare with the Alpha Image Section Synopsis map, see Section 9.2.3.

Example 5.3. Image Segment Synopsis
 +------------------------+

 ! Image Segment Synopsis !
 +------------------------+

Seg# Cluster Type Pglts Base Addr Disk VBN PFC Protection Attributes
---- ------- ---- ----- --------- -------- --- ---------- ----------
 0 MYCLU LOAD 1 00010000 2 0 READ WRITE
 1 LOAD 1 00020000 0 0 READ WRITE DEMAND ZERO
 2 LOAD 1 00030000 3 0 READ ONLY EXECUTABLE,SHARED
 3 LOAD 1 00040000 4 0 READ ONLY SHARED
 4 LOAD 1 00050000 5 0 READ ONLY [UNWIND]

 5 DEFAULT_CLUSTER LOAD 1 00060000 6 0 READ ONLY SHORT
 6 DYNAMIC 2 Q-00000000
 80000000 7 0 READ ONLY

 Key for special characters above
 +----------------------+
 ! Q - Quad Value !
 +----------------------+

The Image Segment Synopsis section shows each segment as it was created.
Seg#. The image's segment number, indicating segments in the order the linker created them and
used in image relocations and image fix-ups that are applied to a segment by the image activator.

Using the ANALYZE/IMAGE/SEGMENT=DYNAMIC command, you can format the dynamic
segment, which includes the image relocations and fix-ups. The following extract of the
ANALYZE shows how the segment numbers are used for image relocations:

Segment Offset Modified: 0000000000000050 imr$q_rela_offset
Image Relocation Type: 00000081 imr$l_type
Segment Being Modified: 00000003 imr$l_rela_seg
Image Relocation Addend: 0000000000000000 imr$q_addend
Symbol Segment Offset: 0000000000000000 imr$q_sym_offset
Symbol Segment Number: 00000000 imr$l_sym_seg
Virtual Address Affected: 0000000000040050

Cluster. The name of each cluster the linker created, listed in the order in which the linker
created them. For better readability, the cluster name is only shown for the first segment in the
cluster.

102

Chapter 5. Interpreting an Image Map File (x86-64 and I64)

Type. The type of the segment, indicating if a segment will be in memory at run-time (LOAD),
or if the segment is used to activate the image (DYNAMIC).
Pagelets. The length of each segment, expressed in pagelets (512-byte quantities).
Base Address. The base address assigned to the segment. Note that all segments are relocatable,
the image activator may relocate the base address.
Disk VBN (virtual block number). The virtual block number of the image file on disk where the
segment begins. The number 0 indicates that the segment is not in the image file. This is the case
for demand-zero segments.
Page fault cluster (PFC). The number of pagelets read into memory by the operating system
when the initial page fault occurs for that segment. The number 0 indicates that the system
parameter PFCDEFAULT determines this value, rather than the linker.
Protection. The protection attributes of the segment:

Keyword Meaning
READ ONLY Indicates that the segment is protected against write access.
READ WRITE Indicates that the segment allows both read and write access.

Attributes. A keyword phrase that characterizes the settings of certain attributes of the image
segment, such as the attributes that affect paging.

The following table lists the keywords used by the linker to indicate these characteristics of an
image segment:

Keyword Meaning
DEMAND ZERO Indicates that the segment is a demand-zero segment. For more

information, see Section 3.4.4.
DZRO COMPRESSED Indicates that a segment had the trailing pagelets containing zeros

compressed. For more information, see Section 3.4.4.
EXECUTABLE Indicates that the segment contains code.
FIXED OFFSET1 Indicates that this segment position relative to the previous segment must

be maintained when the image is loaded and activated.
PROTECTED Indicates that a segment at run-time will be protected from user-mode and

supervisor-mode write access. The image activator ensures the protection
when the segment is in memory. For more information, see Section 4.4.

SHARED Indicates that a segment can be shared between several processes.
SHORT2 Indicates a short data segment, data which is addressed with small offsets

from the global pointer. For more information, see Section 3.4.3.3.
VECTOR Indicates that a segment contains privileged change-mode vectors or

message vectors.
[UNWIND] Indicates that a segment contains unwind information. Please note that

UNWIND is not an attribute. The linker flags this segment for better
readability because all other attributes may be identical to other segments.
For more information, see Section 3.2.1.5.

1x86-64 specific
2I64 specific

The linker may use more than one keyword to describe a segment. For example, to describe a
segment that contains code, the linker uses the READ ONLY and EXECUTABLE keywords.

103

Chapter 5. Interpreting an Image Map File (x86-64 and I64)

(I64 specific) If the module was compiled with /TIE and the image is
linked /NONATIVE_ONLY and if the image contains nonstandard signatures, a separate
segment appears immediately after the short data segment that contains them.

5.2.4. Program Section Synopsis Section
The Program Section Synopsis section lists the sections that comprise the image, along with
information about the size of the section, its starting- and ending-addresses, and its attributes.
The Module Name column in this map section lists the modules that contribute to each section.
Example 5.4 shows the Program Section Synopsis.

Example 5.4. Program Section Synopsis
 +--------------------------+
 ! Program Section Synopsis !
 +--------------------------+

Psect Name Module/Image Base End Length Align Attributes
---------- ------------ ---- --- ------ ----- ----------
ITMLET 00010000 0001000F 00000010 (16.) OCTA 4 OVR,REL,GBL,NOSHR,NOEXE, WRT,NOVEC, MOD

 GETJPI 00010000 0001000F 00000010 (16.) OCTA 4 Initializing Contribution
FILLEN 00020000 00020003 00000004 (4.) OCTA 4 OVR,REL,GBL,NOSHR,NOEXE, WRT,NOVEC,NOMOD

 <Linker> 00020000 00020003 00000004 (4.) OCTA 4
FILLM 00020010 00020013 00000004 (4.) OCTA 4 OVR,REL,GBL,NOSHR,NOEXE, WRT,NOVEC,NOMOD
 <Linker> 00020010 00020013 00000004 (4.) OCTA 4
IOSB 00020020 00020023 00000004 (4.) OCTA 4 OVR,REL,GBL,NOSHR,NOEXE, WRT,NOVEC,NOMOD
 <Linker> 00020020 00020023 00000004 (4.) OCTA 4
STATUS 00020030 00020033 00000004 (4.) OCTA 4 OVR,REL,GBL,NOSHR,NOEXE, WRT,NOVEC,NOMOD
 <Linker> 00020030 00020033 00000004 (4.) OCTA 4
$CODE$ 00030000 0003015F 00000160 (352.) OCTA 4 CON,REL,LCL, SHR, EXE,NOWRT,NOVEC, MOD
 GETJPI 00030000 0003015F 00000160 (352.) OCTA 4
$LINKER C$0 00030160 0003019F 00000040 (64.) OCTA 4 CON,REL,LCL, SHR, EXE,NOWRT,NOVEC, MOD

 <Linker> 00030160 0003019F 00000040 (64.) OCTA 4
$LITERAL$ 00040000 00040012 00000013 (19.) OCTA 4 CON,REL,LCL, SHR,NOEXE,NOWRT,NOVEC, MOD
 GETJPI 00040000 00040012 00000013 (19.) OCTA 4
$LINKER UNWIND$ 00050000 0005002F 00000030 (48.) QUAD 3 CON,REL,LCL,NOSHR,NOEXE,NOWRT,NOVEC, MOD
 GETJPI 00050000 0005002F 00000030 (48.) QUAD 3
$LINKER UNWINFO$ 00050030 0005005F 00000030 (48.) QUAD 3 CON,REL,LCL,NOSHR,NOEXE,NOWRT,NOVEC, MOD
 GETJPI 00050030 0005005F 00000030 (48.) QUAD 3
$LINKER SYMBOL_VECTOR$ 00060000 00060007 00000008 (8.) OCTA 4 CON,REL,GBL,NOSHR,NOEXE,NOWRT,NOVEC, MOD,SHORT
 <Linker Option> 00060000 00060007 00000008 (8.) OCTA 4
$LINKER SDATA$ 00060008 000600AF 000000A8 (168.) OCTA 4 CON,REL,GBL,NOSHR,NOEXE,NOWRT,NOVEC, MOD,SHORT
 <Linker> 00060008 000600AF 000000A8 (168.) OCTA 4

There are two types of line entries: first type is a section entry (Psect Name); the second type are
individual module contributions to that section (Module/Image).

Psect Name. The name of each section in the image in ascending order of its base virtual
address.
Module/Image. The names of the modules that contribute to the section whose name appears on
the line directly above in the Psect Name column. If a shareable image appears in this column,
the section is overlaid onto the section in the shareable image.
Base. The starting virtual address of the section or of a module that contributes to a section. If
the section is overlaid onto a section in a shareable image, the virtual address is taken from the
shareable image.
End. The ending virtual address of the section or of a module that contributes to a section. If
the section is overlaid onto a section in a shareable image, the virtual address is taken from the
shareable image.
Length. For the section entry line, the total length of the section in bytes; for the individual
module contribution lines, the length of the individual contribution in bytes.
Align. The type of alignment used for the entire section or for an individual section contribution.
The alignment is expressed in two ways. In the first column, the alignment is expressed using
a predefined keyword, such as OCTA. In the second column, the alignment is expressed as an
integer that is the power of 2 that creates the alignment. For example, octaword alignment would

104

Chapter 5. Interpreting an Image Map File (x86-64 and I64)

be expressed as the keyword OCTA and as the integer 4 (because 24 = 16). For more information
on the effects of alignment with the PSECT= option see Chapter 10.
If the linker does not support a keyword to express an alignment, it puts the text “2 **” in the
column in which the keyword usually appears. When read with the integer in the second column,
it expresses these alignments, such as 25 = 32.
Attributes. The attributes associated with the section. For a complete list of all the possible
attributes, see Chapter 3.
The linker indicates which modules made initializations (if there were any) to sections which
have the attributes OVR, REL and GBL with the designation Initializing Contribution.
If you get multiple initialization errors, the linker will have two or more sections marked with
the designation Initializing Contribution, in order to help you debug an instance that has many
contributors.
The linker contributes storage for common or relaxed ref/def symbols. It is marked
with <Linker> under the Module/Image header. The section name is always named
after the symbol. (In this example map the C module was compiled with the default
switch /EXTERN=RELAXED, and the variables ITMLST, FILLEN, FILLIM and IOSB are
relaxed ref/def symbols).
The linker makes a contribution to the code section containing trampolines (instructions with
larger branches within the same code segment) or code to branch to another segment (either
inside or outside the image). It is marked with <Linker> under the Module/Image header.

Note

If a routine is extracted from the default system library to resolve a symbolic reference, the Program
Section Synopsis section in a full map contains information about the program sections comprising
that routine. The Program Section Synopsis section in a default map does not.

5.2.5. Symbol Cross-Reference Section
The Symbol Cross-Reference section is a superset of the Symbols By Name section. It is produced in
place of the Symbols By Name section when you specify the /CROSS_REFERENCE qualifier. It lists
all symbols referenced in the image, along with the module in which they are defined and with all the
modules that reference them. Example 5.5 shows how the Symbol Cross-Reference Section formats
this information.

Example 5.5. Symbol Cross-Reference
 +------------------------+
 ! Symbol Cross Reference !
 +------------------------+

Symbol Value Defined By Referenced By ...
------ ----- ---------- -----------------

DECC$TXPRINTF 00000496-X DECC$SHR GETJPI
ELF$TFRADR 00060050-R WK-GETJPI
FILLEN 00020000-R GETJPI GETJPI
FILLM 00020010-R GETJPI GETJPI
GETJPI (U) 00000000 <Linker Option>
INTERNAL_GETJPI 00060098-R GETJPI
IOSB 00020020-R GETJPI GETJPI
ITMLST 00010000-R GETJPI
STATUS 00020030-R GETJPI GETJPI
SYS$GETJPIW 0000009A-X SYS$PUBLIC_VECTORS GETJPI

105

Chapter 5. Interpreting an Image Map File (x86-64 and I64)

Symbol. The name of the global symbol.
Value. The value of the global symbol, expressed in hexadecimal. The linker appends characters
to the end of the symbol value to describe other characteristics of the symbol. For an explanation
of these symbols, see Section 5.2.6.
Defined By. The name of the module in which the symbol is defined. For example, the symbol
ITMLST is defined in the module named GETJPI.
Referenced By... . The name or names of all the modules that contain at least one reference to
the symbol.
On x86-64 and I64 systems, the designation of an external symbol is always X (external). The
linker can not know whether or not an external symbol is relocatable or not. As a result, the
designation R (relocatable) can not be attached.

5.2.6. Symbols By Value Section
The Symbols By Value section lists all the global symbols in the image in ascending order by value.
The linker formats the information into columns. Example 5.6 shows the Symbols By Value map
section.

Example 5.6. Symbols by Value

 +------------------+
 ! Symbols By Value !
 +------------------+

Value Symbols...
----- ----------
00000000 GETJPI (U)
0000009A X-SYS$GETJPIW
00000496 X-DECC$TXPRINTF
00010000 R-ITMLST
00020000 R-FILLEN
00020010 R-FILLM
00020020 R-IOSB
00020030 R-STATUS
00060050 R-ELF$TFRADR
00060098 R-INTERNAL_GETJPI

 Key for special characters above
 +----------------------+
 ! * - Undefined !
 ! (U) - Universal !
 ! R - Relocatable !
 ! X - External !
 ! C - Code Address !
 ! WK - Weak !
 ! UxWk - Unix-Weak !
 +----------------------+

Value. The value of each global symbol, expressed in hexadecimal, in ascending numerical
order.
Symbols... . The names of the global symbols. If more than one symbol has the same value, the
linker lists them on more than one line. The characters prefixed to the symbol names indicate
other characteristics of the symbol, such as its scope.
Keys for Special Characters. The keys for special characters used in the Symbols column are
defined as follows:

• On x86-64 and I64, the special character C appears for code address.
On I64, when a function does not have a function descriptor assigned by the linker, its value
is its code address.

106

Chapter 5. Interpreting an Image Map File (x86-64 and I64)

• On x86-64 and I64 systems, universal symbols appear once with a suffix of (U) defined by
<Linker Option> to indicate the external value, and again, possibly with the prefix or
suffix R, that indicates their internal value. The external value is the index into the symbol
vector. If you had a symbol vector with an alias name, the alias name appears with the
universal value, and the internal name appears with the internal value.

For example:

symbol_vector=(getjpi/internal_getjpi=procedure)

yields:

 00000000 GETJPI (U)
 00050098 R-INTERNAL_GETJPI

Note that the OpenVMS Alpha prefixes and suffixes A and I (for Alias and Internal) are not
used by OpenVMS x86-64 and I64.

• WK designates a weak symbol.

• UxWk designates a UNIX-style weak symbol, which is similar to an OpenVMS weak
symbol. However, more than one symbol with a UNIX-style weak definition can be
processed when linking multiple modules without producing a multiple definitions
error. UNIX-style weak symbols are currently produced by the C++ compiler. For more
information about symbol types, see Chapter 2.

5.2.7. Image Synopsis Section
The Image Synopsis section contains miscellaneous information about the image, such as its name
and identification numbers, and a summary of various attributes of the image, such as the number
of files used to build the image. Example 5.7 illustrates the format of this section of a map file. The
list following the example provides more information about items in this section that are not self-
explanatory.

Example 5.7. Image Synopsis
 +----------------+
 ! Image Synopsis !
 +----------------+

Virtual memory allocated: 00010000 0006FFFF 00060000 (393216. bytes, 768. pages)

64-Bit Virtual memory allocated: 00000000 00000000 00000000
 80000000 80010000 00010000 (65536. bytes, 128. pages)

Stack size: 0. pages

Image header virtual block limits: 1. 1. (1. block)

Image binary virtual block limits: 2. 8. (7. blocks)
Image name and identification: GETJPI V1.0
Number of files: 5.
Number of modules: 3.
Number of program sections: 8.
Number of global symbols: 3364.
Number of cross references: 17.
Number of image segments: 7.
Transfer address from module: GETJPI

User transfer FD address: 00000000 00060050

User transfer code address: 00000000 00030000
Initial FP mode: 00000000 09800000 (IEEE DENORM_RESULTS)
Number of code references to shareable images: 2.
Image type: SHAREABLE. Global Section Match=EQUAL, Ident, Major=9533, Minor=3817251083
Reduced Floating Point model (RFP): Image does not use RFP model
Map format: FULL WITH CROSS REFERENCE in file DISK$USER:[JOE]GETJPI.MAP;1
Estimated map length: 443. blocks

107

Chapter 5. Interpreting an Image Map File (x86-64 and I64)

Virtual memory allocated. This line contains the following information:

• The starting address of the image (base address)

• The ending address of the image

• The total size of the image, expressed in bytes, in hexadecimal radix

The numbers in parentheses at the end of the line indicate the total size of the image, expressed
in bytes and in pagelets. Both these values are expressed in decimal.
64-Bit Virtual memory allocated. The next two lines contain information on the image portions
in P2 space. The virtual addresses are printed by column,in two rows, with the high order digits
in the first row. The values are as in the preceding line: the starting-address, the ending-address,
the size.
Sections with the attribute ALLOC_64BIT are collected into P2 space (For more information on
collecting sections and assigning virtual addresses see Chapter 3). The linker usually places the
image activator information (dynamic segment) into the 64-bit space. Therefore, for all x86-64
and I64 images, 64-bit virtual memory is usually allocated.
Stack size.
Image header virtual block limits. For x86-64 and I64 images, the header blocks contain the ELF
header and the segment header table. This is usually one disk block.
Image binary virtual block limits. For x86-64 and I64 images, the binary blocks contain the
image binaries (the segments) and other sections, depending on the type of image. There can
be traceback and debug information as well as symbol tables. Also, the section header table
describing such sections is counted here.
(I64 specific) User transfer FD address. The virtual address of the function descriptor (FD) for
the main entry. This is an address in the short data segment.
User transfer code address. The virtual address of the first code instruction in the main entry.
This is an address in an executable segment.

5.2.8. Link Run Statistics Section
The Link Run Statistics section contains miscellaneous statistical information about the link
operation, such as performance indicators. Example 5.8 shows the formatting of this section.

Note that the link command line and the linker options are part of the Link Run Statistics Section.

Example 5.8. Link Run Statistics

 +---------------------+
 ! Link Run Statistics !
 +---------------------+

Performance Indicators Page Faults CPU Time Elapsed Time
---------------------- ----------- -------- ------------
 Command processing: 52 00:00:00.01 00:00:00.00
 Pass 1: 187 00:00:00.01 00:00:00.01
 Allocation/Relocation: 10 00:00:00.01 00:00:00.02
 Pass 2: 537 00:00:00.00 00:00:00.00
 Write program segments: 15 00:00:00.01 00:00:00.05
 Symbol table output: 3 00:00:00.00 00:00:00.06
 Map data after object module synopsis: 6 00:00:00.00 00:00:00.01
Total run values: 810 00:00:00.04 00:00:00.17

Quota usage ByteCount FileCount PgFlCount
------------ --------- --------- ---------
 Available: 255616 128 700000

108

Chapter 5. Interpreting an Image Map File (x86-64 and I64)

 Command processing: 384 3 7040
 Pass 1: 384 3 9504
 Allocation/Relocation: 576 4 9504
 Pass 2: 384 3 17824
 Write program segments: 576 4 17952
 Symbol table output: 384 3 17952
 Map data after object module synopsis: 384 3 17952

Using a working set limited to 18784 pages and 11105 pages of data storage (excluding image)

Number of modules extracted explicitly = 0
 with 0 extracted to resolve undefined symbols

1 library searches were for symbols not in the library searched

A total of 1 global symbol table entries was written

LINK/MAP/FULL/CROSS/SHARE GETJPI/OPT
<DISK$USER:[JOE]GETJPI.OPT;1>
cluster=myclu,,,getjpi.obj

symbol_vector=(getjpi/internal_getjpi=procedure)

Quota usage. For x86-64 and I64, includes Quota usage information in the Link Run Statistics
section. This information can help you to keep track of the quotas that are being used by the
linker. If quota issues occur, the linker is usually able to work around them. However, the linker
outputs a special message to the Quota Usage section indicating what quota should be increased
to improve performance. For example:

Performance of this link operation could be improved by increasing quotas
 Quota related to status return: %SYSTEM-SECTBLFUL, process or global
 section table is full
2688 extra file I/O operations performed due to current process quota(s)
36 performed on object files; 2652 performed on library files

Library searches were for symbols not in the library searched. When resolving undefined
symbols, libraries are searched for definitions (see Chapter 2 for more information on symbol
resolution). The printed number shows how often undefined symbols are not found in a library.
For example, assume that module MAIN references the symbols MY_ADD and MY_SUB,
which are defined by modules in ADDLIB.OLB and SUBLIB.OLB. Using the link command:

$ LINK MAIN, MAINLIB/LIB, ADDLIB/LIB, SUBLIB/LIB

if the MY_ADD and MY_SUB symbols are not found in MAINLIB, MY_SUB is not found in
ADDLIB. This results in "3 library searches for symbols not in the library searched".

The number of global symbols written into a shareable image corresponds to the procedure
and data entries in the symbol vector option. In this example, there is only a single entry in the
symbol vector option.

5.3. Shortened Names with Footnotes in the
Cross-Reference
Some sections of the linker map have tables with a fixed amount of space for their columns. The
Symbol Cross-Reference and the Symbols By Value map sections are examples. If names exceed the
given column size, the linker prints a shortened name. On x86-64 and I64, for the cross reference and
the symbol value list the linker attaches a footnote, referring to the full name. If there are footnotes
attached to any name, the linker automatically adds a Cross-Reference Footnotes section. The
footnote section contains the footnote index and the full name, wrapped to several lines, if necessary.

109

Chapter 5. Interpreting an Image Map File (x86-64 and I64)

The following example demonstrates how to read the footnotes. The long names were constructed for
demonstration purpose only. In Example 5.9, the qualifiers /MAP/CROSS/FULL were specified to get
both the cross-reference and the symbol value list.

Example 5.9. Shortened Symbol and Module Names
 +------------------------+
 ! Symbol Cross Reference !
 +------------------------+

Symbol Value Defined By Referenced By ...
------ ----- ---------- -----------------
a_very_very_very_very_very_very_very_very_very_very_very_very_very_very_very_very_very_long_variable_name...[1]
 00010000-R A_VERY_LONG_MODULE_NAME_JUST_F...[2]

 +------------------+
 ! Symbols By Value !
 +------------------+

Value Symbols...
----- ----------
00010000 R-a_very_very_very_very_very_very_very_very_very_very_very_very_very_very_very_very_lon...[1]

In the symbol cross reference, the symbol name does not fit on one line. The name is shortened,
which is shown with the trailing ellipses. And index of the footnote is in the rightmost column.
In the symbol cross reference, the module name exceeds the size for the column Defined By.
Again, ellipses show that the names is shortened and an index of the footnote is attached.
The same symbol shows in the Symbols By Value section. Even less space is provided to fit
the symbol into the Symbols... column. The name, therefore, is shortened with ellipses and a
footnote index is attached. Because this is the same symbol as in the Cross-Reference Section
(although more shortened), the same index points to the same full name, and the entry in the
footnote section.

Example 5.10 shows an example of a Cross Reference Footnotes section, automatically added by the
linker.

Example 5.10. Cross Reference Footnotes
 +---------------------------+
 ! Cross Reference Footnotes !
 +---------------------------+

Index Full Symbol Name
----- ----------------
 1 a_very_very_very_very_very_very_very_very_very_very_very_very_very_very_very_long_variable_name
 _used_only_for_demonstration_purpose
 2 A_VERY_LONG_MODULE_NAME_JUST_FOR_DEMO

In this example, the full name does not fit into the footnote column. The full symbol name will
be wrapped to multiple lines, as necessary.

5.4. Translation Table for Mangled Names
Some compilers mangle symbol names to implement language features (for example,overloading)
or to use shortened, unique names. Ada and C++ compilers, for example, do so. The linker receives
only mangled names from the compilers for resolving symbols and for exporting universal symbols.
There is no general rule to derive a mangled name from a source codename or vice versa. If you need
to know the source code name for a given mangled name, you need the demangler support from that
programming language processor.

110

Chapter 5. Interpreting an Image Map File (x86-64 and I64)

Recent compilers are able to add demangling information to the object modules. With this information
and the language specific demangler routines (usually available with run-time libraries), the linker can
create a translation table for mangled names. To obtain this table, use the DEMANGLED_SYMBOLS
keyword for the /FULL qualifier when requesting a map. The linker lists all the global symbol
definitions from the input object modules with their source code names. Example 5.11 shows a
translation table in the linker map.

Example 5.11. Mangled/Demangled Symbols
 +---------------------------+
 ! Mangled/Demangled Symbols !
 +---------------------------+

Symbol = Source Code Name

CX3$ZN4RW22RWRDNRYXCHNGI2LM6VES
 = "int __rw::__rw_ordinary_exchange<int, int>(int&, int const&)"
CX3$_Z10DESCENDINGRIS_2OLL9N5

 = "descending(int&, int&)"
CX3$_Z6MYSWAPIIEVRT_S1_1658A7V

 = "void myswap<int>(int&, int&)"
CX3$_Z9ASCENDINGRIS_162K6TK

 = "ascending(int&, int&)"
CXXL$ZN4RW10RWGARDC1ERNS1UGN3D2
 = "__rw::__rw_guard::$complete$__rw_guard(__rw::__rw_mutex_base&)"
CXXL$ZN4RW10RWGARDC2EPNS05KBR8A
 = "__rw::__rw_guard::$subobject$__rw_guard(__rw::__rw_mutex_base*)"
CXXL$ZN4RW10RWGARDC9EPNS20LCU4S
 = "__rw::__rw_guard::__rw_guard(__rw::__rw_mutex_base*)"
CXXL$ZN4RW10RWGARDC9ERNS2NGDC8S
 = "__rw::__rw_guard::__rw_guard(__rw::__rw_mutex_base&)"
CXXL$ZN4RW17RWSTTCMTXB8C19J9SHI
 = "__rw::__rw_static_mutex<bool>::_C_mutex"
CXXL$ZN4RW17RWSTTCMTXJ8C1AJH16C
 = "__rw::__rw_static_mutex<unsigned int>::_C_mutex"
CXXL$ZN4RW20RWTMCXCHNGII0DCUDA8
 = "int __rw::__rw_atomic_exchange<int, int>(int&, int const&, __rw::__rw_mutex_base&)"
CXXL$ZNKST15BSCSTRAMBFCS03029KV
 = "std::basic_streambuf<char, std::char_traits<char> >::_C_write_avail() const"
CXXL$ZNKST5CTYPEICE5WDNC2S864U0
 = "std::ctype<char>::widen(char) const"

The translation table is sorted by the mangled names. Sorting the names by the source code
name is not helpful. For example, the C++ source code function names contain the return type,
which would determine the sort order rather than the function names.

Note that the mangled names might contain a dollar sign ($) character. This does not necessarily
indicate an OpenVMS reserved name.
The table only contains global symbol definitions from the object modules included in the link.
However, there might be more names than expected; the compiler may generate some names
(for example, when implementing C++ templates). In the map extract, "descending(int&, int&)",
"void myswap <int>(int&, int&)"and "ascending(int&, int&)" are the user-defined template
functions from the example Example 2.3. Other names are C++ generated names.

111

Chapter 5. Interpreting an Image Map File (x86-64 and I64)

112

Chapter 6. Understanding Symbol
Resolution (Alpha and VAX)
This chapter describes how the linker performs symbol resolution on OpenVMS Alpha and
OpenVMS VAX systems.

For information on performing symbol resolution on OpenVMS x86-64 and OpenVMS I64 systems,
see Chapter 2.

As one of its primary tasks, the linker must resolve symbolic references between modules. This
chapter describes how you can control the process to ensure that the linker resolves symbolic
references as you intend.

6.1. Overview
Programs are typically made up of many interdependent modules. For example, one module may
define a symbol to represent a program location or data element that is referenced by many other
modules. The linker is responsible for finding the correct definition of each symbol referenced in all
the modules included in the link operation. This process of matching symbolic references with their
definitions is called symbol resolution.

6.1.1. Types of Symbols
Symbols can be categorized by their scope, that is, the range of modules over which they are intended
to be visible. Some symbols, called local symbols, are meant to be visible only within a single
module. Because the definition and the references to these symbols must be confined to a single
module, language processors such as compilers can resolve these references.

Other symbols, called global symbols, are meant to be visible to external modules. A module can
reference a global symbol that is defined in another module. Because the value of the symbol is not
available to the compiler processing the source file, it cannot resolve the symbolic reference. Instead,
a compiler creates a global symbol directory (GSD) in an object module that lists all of the global
symbol references and global symbol definitions it contains.

In shareable images, symbols that are intended to be visible to external modules are called universal
symbols. A universal symbol in a shareable image is the equivalent of a global symbol in an object
module. Note, however, that only those global symbols that have been declared as universal are listed
in the global symbol table (GST) of the shareable image and are available to external modules to link
against.

Language processors determine whether a symbol is local or global. For example, in VAX
FORTRAN, statement numbers are local symbols and module entry points are global symbols.
In other languages, you can explicitly specify whether a symbol is local or global by including or
excluding particular attributes in the symbol definition. Note also that some languages allow you to
specify symbols as weak or strong (see Section 6.5 for more information).

You must explicitly declare universal symbols as part of the link operation in which the shareable
image is created. For more information about declaring universal symbols, see Chapter 8.

113

Chapter 6. Understanding Symbol Resolution (Alpha and VAX)

Note

In some VSI programming languages, certain types of global symbols, such as external variables
in C and COMMON data in FORTRAN, are not listed in the GSD as global symbol references
or definitions. Because these data types implement virtual memory that is shared, the languages
implement them as program sections that are overlaid. These symbols appear as program section
definitions in the GSD, not as a symbol definition or reference. (Compilers use program sections to
define the memory requirements of an object module). The linker does not include program section
definitions in its symbol resolution processing. For information about how the linker processes
program sections, see Chapter 7.

On VAX systems, the VAX C language extensions globalref and globaldef allow you to create
external variables that appear as symbol references and definitions in the GSD. For more information,
see the VAX C documentation.

On Alpha systems, the VSI C compiler supports the globalref and global deflanguage extensions. In
addition, VSI C supports command line qualifiers and source code pragma statements that allow you
to control whether it implements external variables as program sections or as global symbol references
and definitions. For more information, see the VSI C documentation.

6.1.2. Linker Symbol Resolution Processing
During its first pass through the input files specified in the link operation,the linker attempts to find
the definition for every symbol referenced in the input files. By default, the linker processes all
the global symbols defined and referenced in the GSD of each object module and all the universal
symbols defined and referenced in the GST of each shareable image. The definition of the symbol
provides the value of the symbol. The linker substitutes this value for each instance where the symbol
is referenced in the image.

The value of a symbol depends on what the symbol represents. A symbol can represent a routine entry
point or a data location within an image. For these symbols, the value of the symbol is an address. A
symbol can also represent a data constant (for example, X = 10). In this case, the value of the symbol
is its actual value (in the example, the value of X is 10).

For symbols that represent addresses in object modules, the value is expressed initially as an offset
into a program section. This is how language processors express addresses. Later in its processing,
when the linker combines the program sections contributed by all the object modules into the image
sections that define the virtual memory layout of the image, it determines the actual value of the
address. For information about how the linker determines the virtual memory layout of an image, see
Chapter 7.

For symbols that represent addresses in a shareable image, the value of the symbol at link time is
architecture specific.

For Alpha images, at link time, the value of a symbol in a shareable image (as listed in the GST of
the image) is the offset of the symbol's entry in the symbol vector of the image. A symbol vector
entry is a pair of quadwords that contain information about the symbol. The contents of these
quadwords depend on whether the symbol represents a procedure entry point, data location, or a
constant. Figure 6.1 illustrates the contents of a symbol vector entry for each of these three types of
symbols. Note that, at link time, a symbol vector entry for a procedure entry point or a data location
is expressed as an offset into the image. At image activation time, when the image is loaded into
memory and the base address of the image is known, the image activator converts the image offset

114

Chapter 6. Understanding Symbol Resolution (Alpha and VAX)

into a virtual address. Figure 6.1 shows the contents of the symbol vector at link time and at image
activation time.

Figure 6.1. Symbol Vector Contents

Note that the linker does not allow programs to make procedure calls to symbols that represent data
locations.

For VAX images, at link time, the value of a symbol in a shareable image (as listed in the GST of the
image) is the offset into the image of the routine or data location, if the symbol was declared universal
using the UNIVERSAL=option. If the symbol was declared universal using a transfer vector, the
value of the symbol is the offset into the image of the transfer vector entry. If the symbol represents a
constant, the GST contains the actual value of the constant.

The actual value of an address symbol in a shareable image is determined at run-time by the image
activator when it loads the shareable image into memory. The image activator relocates all the address
references within a shareable image when it loads the image into memory. Once it has determined
the absolute values of these addresses, the image activator fixes up references to these addresses in
the image that linked against the shareable image. Previously, the linker created fix-ups that flag to
the image activator where it must insert the actual addresses to complete the linkage of a symbolic
reference to its definition in an image. The linker listed these fix-ups in the fix-up section it creates
for the image. For more information about shareable images, see Chapter 8.

For VAX images, you can specify the address at which you want a shareable image loaded into
memory by using the BASE= option. When you specify this option, the linker can calculate the
absolute addresses of symbols within the shareable image because the base address of the shareable
image is known. By specifying a base address, you eliminate the need for the image activator to
perform fix-ups and relocations.

Note, however, that basing a shareable image can potentially destroy upward compatibility between
the shareable image and other images that were linked against it.

Figure 6.2 illustrates the interdependencies created by symbolic references among the modules that
make up an application. In the figure, arrows point from a symbol reference to a symbol definition.
(The statements do not reflect a specific programming language.)

115

Chapter 6. Understanding Symbol Resolution (Alpha and VAX)

Figure 6.2. Symbol Resolution

The linker creates an image even if it cannot find a definition for every symbol referenced in the input
files it processes. The linker reports these undefined symbols as in the following example, if at least
one of these unresolved references is a strong reference. (For information about strong and weak
symbolic references, see Section 6.5). The linker includes the message in the map file, if a map file
was requested.

$ link my_main ! The module MY_MATH is omitted
%LINK-W-NUDFSYMS, 1 undefined symbols:

 %LINK-I-UDFSYM, MYSUB

 %LINK-W-USEUNDEF, undefined symbol MYSUB referenced
 in psect $CODE offset %X0000001A
 in module MY_MAIN file WORK:[PROGRAMS]MY_MAIN.OBJ;1

The linker issues an informational message for each symbol for which it cannot find a definition.
The linker issues a warning message for each instance where an undefined symbol is referenced
in the image.

If you run an image that contains undefined symbols and the symbols are never accessed, the program
will run successfully. If you run an image that contains undefined symbols and the image accesses the
symbols at run-time, the image will abort, in most cases, with an access violation because the linker
assigns the value zero to undefined symbols, as in the following example:

$ run my_main
%SYSTEM-F-ACCVIO, access violation, reason mask=00, virtual address=00000000,
PC=00001018, PSL=03C00000
%TRACE-F-TRACEBACK, symbolic stack dump follows
module name routine name line rel PC abs PC
MY_MAIN main 15 00000018 00001018

116

Chapter 6. Understanding Symbol Resolution (Alpha and VAX)

6.2. Input File Processing for Symbol
Resolution
The linker can include object modules, shareable images, and libraries in its symbol resolution
processing. For VAX images, the linker can also include a symbol table file in its symbol resolution
processing. (Options files, in which linker options and input files are specified, are not included in
symbol resolution).

By default, when the linker processes an object module or shareable image, it includes all the symbol
definitions from the object module or shareable image in its processing. However, if you append
the /SELECTIVE_SEARCH qualifier to the object module or shareable image file specification, the
linker includes in its processing only those symbols from the object module or shareable image that
define symbols referenced in a previously processed input file. For more information about selectively
processing input files, see Section 6.2.4.

Table 6.1 summarizes how the linker processes these different types of input files when performing
symbol resolution. The following sections provide more detail on the linker's processing of each type
of input file.

Table 6.1. Linker Input File Processing

Input File How Processed
Object file (.OBJ) By default, the linker processes all the symbol definitions and

references listed in the GSD of the module. If you append
the /SELECTIVE_SEARCH qualifier to the input file specification,
the linker includes in its processing only those symbol definitions
from the GSD that resolve symbolic references found in previously
processed input files.

Shareable image file (.EXE) By default, the linker processes all symbol definitions and references
listed in the GST of the image. Note, however, to avoid cluttering
the map file of the resultant image, the linker lists only those symbol
definitions in the map file that are referenced by other modules.

If you append the /SELECTIVE_SEARCH qualifier to the input file
specification,the linker includes in its processing only those symbol
definitions from the GST that resolve symbolic references found in
previously processed input files.

Symbol table file (.STB)1 By default, the linker processes all the symbol definitions
and references in the GSD of the module. If you append
the /SELECTIVE_SEARCH qualifier to the input file specification,
the linker includes in its processing only those symbol definitions
from the module that resolve symbolic references found in previously
processed input files.

Library files (.OLB) The linker searches the name table of the library for symbols that are
undefined in previously processed input files. (A library file's name
table lists all the symbols available in all of the modules it contains). If
the linker finds the definition of a symbol referenced by a previously
processed input file, it includes in the link operation the module in
the library that contains the definition of the symbol. Once the object
module or shareable image is included in the link operation, the linker
processes it as any other object module or shareable image.

117

Chapter 6. Understanding Symbol Resolution (Alpha and VAX)

Input File How Processed
If you append the /INCLUDE qualifier to a library file specification,
the linker does not search the library's name table to find undefined
symbolic references. Instead, the linker simply includes the specified
object module or shareable image specified as a parameter to
the /INCLUDE qualifier.

You cannot process a library file selectively. However, if the Librarian
utility's /SELECTIVE_SEARCH qualifier was specified when the
object module or shareable image was inserted into the library, the
linker will process the module selectively when it extracts it from the
library.

1VAX specific

6.2.1. Processing Object Modules
The way the linker processes object modules to resolve symbolic references illustrates how the linker
processes most other input files. (Symbol table files are object modules. The GST of a shareable
image, which the linker processes in symbol resolution, is also created as an object module appended
to the shareable image).

For example, the program in Example 6.1 references the symbol mysub.

Example 6.1. Module Containing a Symbolic Reference: my_main.c

#include <stdio.h>
int mysub();
main()
{
 int num1, num2, result;
 num1 = 5;
 num2 = 6;
 result = 0;
 result = mysub(num1, num2);
 printf("Result is: %d\n", result);
}

mysub, which Example 6.1 references, is defined in the program in Example 6.2.

Example 6.2. Module Containing a Symbol Definition: my_math.c

int myadd(int value_1,int value_2) {
 int result;
 result = value_1 + value_2;
 return(result);
}
int mysub(int value_1,int value_2)
 int result;
 result = value_1 - value_2;
 return(result);
}
int mymul(int value_1,int value_2)
 int result;
 result = value_1 * value_2;
 return(result);
}
int mydiv(int value_1,int value_2)
 int result;
 result = value_1 / value_2;
 return(result);
}

118

Chapter 6. Understanding Symbol Resolution (Alpha and VAX)

The GSD created by the language processor for the object module MY_MAIN.OBJ lists the reference
to the symbol mysub. Because object modules cannot be examined using a text editor, the following
representation of the GSDis taken from the output of the ANALYZE/OBJECT utility. The example
is from the analysis of an OpenVMS Alpha object module. Differences between the format of the
symbol reference between VAX object files and Alpha object files are highlighted in the list following
the example.

4. GLOBAL SYMBOL DIRECTORY (EOBJ$C_GSD) , 344 bytes
 .
 .
 .

 9) Global Symbol Specification (EGSD$C_SYM)
 data type: DSC$K_DTYPE_Z (0)
 symbol flags:
 (0) EGSY$V_WEAK 0
 (1) EGSY$V_DEF 0
 (2) EGSY$V_UNI 0
 (3) EGSY$V_REL 0
 (4) EGSY$V_COMM 0

 (5) EGSY$V_VECEP 0

 (6) EGSY$V_NORM 0
 symbol: "MYSUB"

For VAX object files, the symbol for the global symbol directory is OBJ$C_GSD.
For VAX object files, the symbol for a global symbol specification is GSD$C_SYM.
For VAX object files, this field is not included.
For VAX object files, this field is not included. For Alpha object files, the value of this field is
always zero for symbolic references.

The GSD created by the language processor for the object module MY_MATH.OBJ contains the
definition of the symbol mysub, as well as the other symbols defined in the module. The definition of
the symbol includes the value of the symbol.

The following excerpt from an analysis of the OpenVMS Alpha object module (performed using the
ANALYZE/OBJECT utility) shows the format of a GSD symbol definition entry. Note that, in an
OpenVMS Alpha object module, a symbol definition is listed as a Global Symbol Specification.

4. GLOBAL SYMBOL DIRECTORY (EOBJ$C_GSD), 46 bytes
 .
 .
 .
 9) Global Symbol Specification (EGSD$C_SYM)
 data type: DSC$K_DTYPE_Z (0)
 symbol flags:
 (0) EGSY$V_WEAK 0
 (1) EGSY$V_DEF 1
 (2) EGSY$V_UNI 0
 (3) EGSY$V_REL 1
 (4) EGSY$V_COMM 0
 (5) EGSY$V_VECEP 0

 (6) EGSY$V_NORM 1

 psect: 3

 value: 64 (%X'00000040')

 code address psect: 5

 code address: 8 (%X'00000008')
 symbol: "MYSUB"
 .
 .
 .

The value of the EGSY$V_NORM flag is 1 if the symbol represents a procedure. The value is
set to zero if the symbol represents data.
The index of the program section that contains the procedure descriptor for mysub.

119

Chapter 6. Understanding Symbol Resolution (Alpha and VAX)

The location of the procedure descriptor expressed as the offset from the starting address of the
program section that contains the procedure descriptor.
Index of program section that contains the code entry point.
The location of the code entry point, expressed as the offset from the starting address of the
program section that contains the entry point.

The following excerpt from an analysis of the OpenVMS VAX object module (performed using the
ANALYZE/OBJECT utility) shows the format of a GSD symbol definition entry. Note that, on VAX
systems, a symbol definition is listed as an Entry Point Symbol and Mask Definition record.
4. GLOBAL SYMBOL DIRECTORY (OBJ$C_GSD), 46 bytes
 .
 .
 .
 2) Entry Point Symbol and Mask Definition (GSD$C_EPM)
 data type: DSC$K_DTYPE_Z (0)
 symbol flags:
 (0) GSY$V_WEAK 0
 (1) GSY$V_DEF 1
 (2) GSY$V_UNI 0
 (3) GSY$V_REL 1
 (4) GSY$V_COMM 0
 psect: 0
 value: 0 (%X'0000000C')
 entry mask: <>
 symbol: "MYSUB"
 .
 .
 .

The value of the symbol is expressed as an offset into a program section.

When you link the modules shown in Example 6.1 and Example 6.2 together to create an image, you
specify both object modules on the command line, as in the following example:
$ LINK MY_MAIN, MY_MATH

When the linker processes these object modules, it reads the contents of the GSDs, obtaining the value
of the symbol from the symbol definition.

Note that, for Alpha images, in the map file associated with the image, the value of the symbol
mysub is the location within the image of the procedure descriptor for the routine. The procedure
descriptor contains the address of the routine within the image.

For VAX images, the value of the symbol mysub is represented in the map file as the location of the
entry point mask.

6.2.2. Processing Shareable Images
When the linker processes a shareable image specified as input in a link operation, it processes all
the symbol definitions and references in the GST of the image. The GST contains all the universal
symbols defined in the shareable image. Because the linker creates the GST of a shareable image in
the format of an object module, the processing of shareable images for symbol resolution is similar to
the processing of object modules. Note that the linker includes in the map file only those symbols that
resolve references to avoid cluttering the listing with extraneous symbols.

For example, the program in Example 6.2 (in Section 6.2.1) can be implemented as a shareable
image. (For information about creating a shareable image, see Chapter 8). The shareable image can be
included in the link operation as in the following example:
$ LINK/MAP/FULL MY_MAIN, SYS$INPUT/OPT
MY_MATH/SHAREABLE

120

Chapter 6. Understanding Symbol Resolution (Alpha and VAX)

The GST created by the linker for the shareable image MY_MATH.EXE contains the definition of the
symbol mysub, as well as the other symbols defined in the module.

Because images cannot be examined using a text editor, the following representations of the GST are
taken from the output of the ANALYZE/IMAGE utility.

For Alpha images, the universal symbol mysub in the shareable image MY_MATH.EXE appears
in the GST of the image as a Universal Symbol Specification record, as illustrated in the following
example:

SHAREABLE IMAGE - GLOBAL SYMBOL TABLE
 .
 .
 .
4. GLOBAL SYMBOL DIRECTORY (EOBJ$C_EGSD), 200 bytes
 .
 .
 .
 3) Universal Symbol Specification (EGSD$C_SYMG)
 data type: DSC$K_DTYPE_Z (0)
 symbol flags:
 (0) EGSY$V_WEAK 0
 (1) EGSY$V_DEF 1
 (2) EGSY$V_UNI 1
 (3) EGSY$V_REL 1
 (4) EGSY$V_COMM 0
 (5) EGSY$V_VECEP 0
 (6) EGSY$V_NORM 1
 psect: 0
 value: 16 (%X'00000010')
 symbol vector entry (procedure)
 %X'00000000 00010008'
 %X'00000000 00000040'
 symbol: "MYSUB"
 .
 .
 .

Note that the value of the symbol, as it appears in the Universal Symbol Specification, is the location
of the symbol's entry in the image's symbol vector, expressed as an offset from the base of the symbol
vector. The symbol vector entry contains the address of mysub's entry point and the address of its
procedure descriptor. These locations are expressed as offsets from the base of the image. The entry
for a symbol in the GST of an image is a duplicate of the symbol's entry in the symbol vector.

For VAX images, the universal symbol mysub in the shareable image MY_MATH.EXE appears
in the GST of the image as an Entry Point Symbol and Mask Definition record, as illustrated in the
following example:

SHAREABLE IMAGE - GLOBAL SYMBOL TABLE
 .
 .
 .
 2) Entry Point Symbol and Mask Definition (GSD$C_EPM)
 data type: DSC$K_DTYPE_Z (0)
 symbol flags:
 (0) GSY$V_WEAK 0
 (1) GSY$V_DEF 1
 (2) GSY$V_UNI 1
 (3) GSY$V_REL 1
 (4) GSY$V_COMM 0
 psect: 0
 value: 8 (%X'00000008')
 entry mask: <>
 symbol: "MYSUB"
 .
 .
 .

121

Chapter 6. Understanding Symbol Resolution (Alpha and VAX)

Note that the flag GSY$V_UNI is set for universal symbols to distinguish them from global symbols
in object modules that use the same record format.

Implicit Processing of Shareable Images
For VAX linking, when you specify a shareable image in a link operation, the linker not only
processes the shareable image you specify, but also all the shareable images that the shareable image
has been linked against. (A shareable image contains a global image section descriptor [GISD] for
each shareable image to which it has been linked).

For Alpha linking, the linker does not process the shareable images that the shareable image you
specify has been linked against. (Shareable images on Alpha systems still contain GISDs for each
shareable image that they have been linked against, however). If your application's build procedure
depends on implicit processing of shareable images, you may need to add these shareable images to
your linker options file.

6.2.3. Processing Library Files
Libraries specified as input files in link operations contain either object modules or shareable images.
The way in which the linker processes library files depends on how you specify the library in the link
operation. Sections 6.2.3.1, 6.2.3.2, and 6.2.3.3 describe these differences. Note, however, that once
an object module or shareable image is included from the library into the link operation, the linker
processes the file as it would any other object module or shareable image.

For example, to create a library and insert the object module version of the program in Example 6.2
into the library, you could specify the following command:
$ LIBRARY/CREATE/INSERT MYMATH_LIB MY_MATH

The librarian includes the module in its module list and all of the global symbols defined in the
module in its name table. To view the library's module list and name table, specify the LIBRARY
command with the /LIST and /NAMES qualifiers, as in the following example:
$ LIBRARY/LIST/NAMES MYMATH_LIB
Directory of OBJECT library WORK:[PROGS]MYMATH_LIB.OLB;1 on 3-NOV-2000 11:11:33
Creation date: 3-NOV-2000 11:08:04 Creator: VAX-11 Librarian V04-00
Revision date: 3-NOV-2000 11:08:04 Library format: 3.0
Number of modules: 1 Max. key length: 31
Other entries: 5 Preallocated index blocks: 49
Recoverable deleted blocks: 0 Total index blocks used: 2
Max. Number history records: 20 Library history records: 0
Module MY_MATH
MYADD MYDIV
MYMUL MYSUB

You can specify the library in the link operation using the following command:
$ LINK/MAP/FULL MY_MATH, MYMATH_LIB/LIBRARY

The map file produced by the link operation verifies that the object module MY_MATH.OBJ was
included in the link operation.

6.2.3.1. Identifying Library Files Using the /LIBRARY Qualifier
When the linker processes a library file identified by the /LIBRARY qualifier, the linker processes the
library's name table, looking for the definitions of symbols referenced in previously processed input
files.

Note that, to resolve a reference to a symbol defined in a library, the linker must process the module
that references the symbol before processing the library file. Thus, while the ordering of object

122

Chapter 6. Understanding Symbol Resolution (Alpha and VAX)

modules and shareable images is not usually important in a link operation, the ordering of library files
can be important. For more information about controlling the order in which the linker processes input
files, see Section 6.3.

Once the object module or shareable image is included from the library into the link operation,
the linker processes all the symbol definitions and references in the module. If you want the linker
to selectively process object modules or shareable images that are included in the link operation
from a library, you must append the Librarian utility's /SELECTIVE_SEARCH qualifier to the file
specification of the object module or shareable image when you insert it into the library. Appending
the linker's /SELECTIVE_SEARCH qualifier to a library file specification in a link operation is
illegal. For more information about processing input files selectively, see Section 6.2.4.

Processing Object Module Libraries

When the linker finds a symbol in the name table of an object module library,it extracts from the
library the object module that contains the definition and includes it in the link operation. The linker
then processes the GSD of the object module extracted from the library, adding an entry to the
linker's list of symbol definitions for every symbol defined in the object module, and adding entries
to the linker's undefined symbol list for all the symbols referenced by the module (as described in
Section 6.2.1). The linker continues to process the undefined symbol list until there are no definitions
in the library for any outstanding references. When the linker finishes processing the library, it has
extracted all the modules that resolve references generated by modules previously extracted from the
library.

Processing Shareable Image Libraries

When the linker finds a symbol in the name table of a shareable image library,it notes which shareable
image contains the symbol and then looks for the shareable image to include it in the link operation.
By default, the linker looks for the shareable image in the same device and directory as the library file.

For VAX linking, if the linker cannot find the shareable image in the device and directory of the
library file, the linker looks for the shareable image in the directory pointed to by the logical name
SYS$LIBRARY.

For Alpha linking, if the linker cannot find the shareable image in the device and directory of the
library file, the linker looks for the shareable image in the directory pointed to by the logical name
ALPHA$LIBRARY.

Once it locates the shareable image, the linker processes the shareable image as it does any other
shareable image (as described in Section 6.2.2).

6.2.3.2. Including Specific Modules from a Library Using
the /INCLUDE Qualifier
If the library file is specified with the /INCLUDE qualifier, the linker does not process the library's
name table. Instead, the linker includes in the link operation the modules from the library specified in
the /INCLUDE qualifier and processes them as it would any other object module or shareable image.

If you append both the /LIBRARY qualifier and the /INCLUDE qualifier to a library file
specification, the linker processes the library's name table to search for modules that contain needed
definitions. When the linker finds an object module or shareable image in the library that contains a
needed definition, it processes it as described in Section 6.2.3.1. In addition, the linker also includes
the modules specified with the /INCLUDE qualifier in the link operation and processes them as it
would any other object module or shareable image.

123

Chapter 6. Understanding Symbol Resolution (Alpha and VAX)

6.2.3.3. Processing Default Libraries
In addition to the libraries you specify using the /LIBRARY qualifier or the /INCLUDE qualifier, the
linker also processes certain other libraries by default. The linker processes these default libraries in
the following order:

1. Default user library files. You specify a default user library by associating the library with
one of the linker's default logical names from the range LNK$LIBRARY, LNK$LIBRARY_1,
… LNK$LIBRARY_999. If the /NOUSERLIBRARY qualifier is specified, the linker skips
processing default user libraries. For more information about defining a default user library, see
the description of the /USERLIBRARY qualifier in Chapter 10.

If the default user library contains shareable images, the linker looks for the shareable image as
described in Section 6.2.3.1.

2. Default system shareable image library file. The linker processes the default system
shareable image library IMAGELIB.OLB by default unless you specify the /NOSYSSHR or
the /NOSYSLIB qualifier.

Note that when the linker needs to include a shareable image from IMAGELIB.OLB in a link
operation, it always looks for the shareable images in SYS$LIBRARY for VAX linking or
ALPHA$LIBRARY for Alpha linking. The linker does not look for the shareable image in the
device and directory of IMAGELIB.OLB as it does for other shareable image libraries.

3. Default system object module library file. The linker processes the default system object library
STARLET.OLB by default unless you specify the /NOSYSLIB qualifier.

For Alpha linking, when the linker processes STARLET.OLB by default, it also processes the
shareable image (SYS$PUBLIC_VECTORS.EXE). This shareable image is needed to resolve
references to system services. (For VAX linking,references to system services are resolved by
linking against the file SYS$P1_VECTOR, which resides in STARLET.OLB).

When STARLET is not processed by default (for example, when the /NOSYSLIB qualifier is
specified), the linker does not process SYS$PUBLIC_VECTORS.EXE automatically, even if you
explicitly specify STARLET.OLB in an options file.

If you specify SYS$PUBLIC_VECTORS.EXE explicitly in an options file when it is already
being processed by default, the linker displays the following warning:

%LINK-W-MULCLUOPT, cluster SYS$PUBLIC_VECTORS multiply defined
 in options file [filename]

6.2.3.4. Open Systems Library Support
If you are developing portable applications using the Network Application Support (NAS) products, a
second image library, similar to IMAGELIB, is used. The second image library contains components
that conform to NAS conventions rather than to OpenVMS conventions. By default, the linker will
not search this library because it may contain symbols that do not conform to the OpenVMS global
symbol naming rules.

If you want the linker to include the open image library in its processing,define the logical name
LNK$OPEN_LIB with any non null string value. If the LNK$OPEN_LIB logical is defined at link
time, the linker searches OPEN_LIB in the same way it searches IMAGELIB. The open image library
search is in addition to any other searches, and it is done after user libraries are searched and before
other system libraries are searched, as follows:

124

Chapter 6. Understanding Symbol Resolution (Alpha and VAX)

1. User libraries, if defined with LNK$LIBRARY_nnn

2. OPEN_LIB, if LNK$OPEN_LIB logical is defined

3. IMAGELIB, unless /NOSYSSHR is specified

4. STARLET, unless /NOSYSLIB is specified

6.2.4. Processing Input Files Selectively
By default, the linker processes all the symbol definitions and references in an object
module or a shareable image specified as input in a link operation. However, if you append
the /SELECTIVE_SEARCH qualifier to an input file specification, the linker processes from the input
file only those symbol definitions that resolve references in previously processed input files.

Processing input files selectively can reduce the amount of time a link operation takes and can
conserve the linker's use of virtual memory. Note, however, that selective processing can also
introduce dependencies on the ordering of input files in the LINK command.

Note

Processing files selectively does not affect the size of the resultant image; the entire object module is
included in the image even if only a subset of the symbols it defines is referenced. (Shareable images
do not contribute to the size of an image).

For example, in the link operation in Section 6.2.2, the linker processes the shareable image
MY_MATH.EXE before it processes the object module MY_MAIN.OBJ because of the way in
which the linker clusters input files. (For information about how the linker clusters input files, see
Section 6.3.2.1). When it processes the shareable image, the linker includes on its list of symbol
definitions all the symbols defined in the shareable image. When it processes the object module
MY_MAIN.OBJ and encounters the reference to the symbol mysub, the linker has the definition to
resolve the reference.

If you append the /SELECTIVE_SEARCH qualifier to the shareable image file specification and all
of the other input files are specified on the command line, the link will fail. In the following example,
because the linker has no symbols on its undefined symbol list when it processes the shareable image
file MY_MATH.EXE, it does not include any symbol definitions from the shareable image in its
processing. When it subsequently processes the object module MY_MAIN.OBJ that references the
symbol mysub, the linker cannot resolve the reference to the symbol. For information about how to
correct this link operation, see Section 6.3.2.1.

$ LINK MY_MAIN, SYS$INPUT/OPT
MY_MATH/SHAREABLE/SELECTIVE_SEARCH
Ctrl/Z
%LINK-W-NUDFSYMS, 1 undefined symbol:
%LINK-I-UDFSYM, MYSUB
%LINK-W-USEUNDEF, undefined symbol MYADD referenced
 in psect $CODE offset %X00000011
 in module MY_MAIN file WORK:[PROGRAMS]MY_MAIN.OBJ;6

To process object modules or shareable images in a library selectively, you must specify the /
SELECTIVE_SEARCH qualifier when you insert the module in the library. The following example
creates the library MYMATH_LIB.OLB and inserts the file MY_MATH.OBJ into the library. For
more information about using the Librarian utility, see the VSI OpenVMS Command Definition,
Librarian, and Message Utilities Manual.

$ LIBRARY/CREATE/INSERT MYMATH_LIB MY_MATH/SELECTIVE_SEARCH

125

Chapter 6. Understanding Symbol Resolution (Alpha and VAX)

6.3. Ensuring Correct Symbol Resolution
For many link operations, the order in which the input files are specified in the LINK command is
not important. However, in complex link operations that specify many library files or process input
files selectively, to ensure that the linker resolves all the symbolic references among the input files
as you intend, you may need to be aware of the order in which the linker processes the input files. To
control the order in which the linker processes input files, you must understand how the linker parses
the command line.

6.3.1. Understanding Cluster Creation
As it parses the command line, the linker groups the input files you specify into clusters and places
these clusters on a cluster list. A cluster is an internal linker construct that determines image section
creation. The position of an input file in a cluster and the position of that cluster on the linker's cluster
list determine the order in which the linker processes the input files you specify.

The linker always creates at least one cluster, called the default cluster. The linker may create
additional clusters, called named clusters, depending on the types of input files you specify and the
linker options you specify. If it creates additional clusters, the linker places them on the cluster list
ahead of the default cluster, in the order in which it encounters them in the options file. The default
cluster appears at the end of the cluster list. (Within the default cluster, input files appear in the same
order in which they are specified on the LINK command line).

Clusters for shareable images specified in shareable image libraries appear after the default cluster
on the cluster list because they are created later in linker processing, when the linker knows which
shareable images in the library are needed for the link operation.

The linker groups input files into clusters according to file type. Table 6.2 lists the types of input files
accepted by the linker and describes how the linker processes them when creating clusters.

Table 6.2. Linker Input File Cluster Processing

Input File Cluster Processing
Object file (.OBJ) Placed in the default cluster unless explicitly placed in a named cluster

using the CLUSTER= option.
Shareable image file (.EXE) Always placed in a named cluster.
Symbol table file (.STB)1 Placed in the default cluster unless explicitly placed in a named cluster

using the CLUSTER= option.
Library files (.OLB) Placed in the default cluster unless explicitly placed in a named cluster

using the CLUSTER= option. If the library contains shareable images
and the linker includes a shareable image from the library in the link
operation, the linker creates a new cluster for the shareable image.

The linker puts input files included in a link operation from a library
using the /INCLUDE qualifier in the same cluster as the library.

The linker puts modules extracted from any default user library that
is an object library and from STARLET.OLB in the default cluster.
However, because they are shareable images, the linker puts modules
extracted from IMAGELIB.OLB into new clusters at the end of the
cluster list (after the default cluster).

126

Chapter 6. Understanding Symbol Resolution (Alpha and VAX)

Input File Cluster Processing
Options file (.OPT) Not placed in a cluster.

1VAX specific

The following example illustrates how the linker puts the various types of input files in clusters. To
see which clusters the linker creates for this link operation, look at the Image Section Synopsis section
of the image map file. Figure 6.3 illustrates the clusters created for this link operation.
$ DEFINE LNK$LIBRARY SYS$DISK:[]MY_DEFAULT_LIB.OLB
$ LINK MY_MAIN.OBJ, MY_LIB.OLB/LIBRARY, SYS$INPUT/OPT
CLUSTER=MY_CLUS,,,MY_PROG.OBJ
MY_SHARE.EXE/SHAREABLE
MY_SHARE_LIB.OLB/LIBRARY
MY_TAB.STB

Figure 6.3. Clusters Created for Sample Link

The linker processes input files in cluster order: processing each input file starting with the first file
in the first cluster, then the second, and so on, until it has processed all files in the first cluster. Then
it does the same for the second cluster, and the next, and so on, until it has processed all files in all
clusters.

6.3.2. Controlling Cluster Creation
You can control in which cluster the linker places an input file by using either of the following linker
options:

• CLUSTER= option

• COLLECT= option

6.3.2.1. Using the CLUSTER= Option to Control Clustering
The CLUSTER= option causes the linker to create a named cluster and to place in the cluster the
object modules specified in the option. (The linker puts shareable images in their own clusters by
default).

For example, you can use the CLUSTER= option to fix the link operation illustrated in Section 6.2.4,
where the link failed because a shareable image was processed selectively. To make the linker process
the object module MY_MAIN.OBJ before it processes the shareable image MY_MAIN.EXE, put the
object module in a named cluster. In the following example, the /EXECUTABLE qualifier is specified
on the command line to specify the name of the resultant image, because MY_MAIN is not specified
on the command line.

127

Chapter 6. Understanding Symbol Resolution (Alpha and VAX)

$ link/executable=my_main sys$input/opt
CLUSTER=mymain_clus,,,my_main
my_math/shareable/selective_search
Ctrl/Z

The Object Module Synopsis section of the image map file verifies that the linker processed the object
module MY_MAIN before it processed the shareable image MY_MATH, as in the following map file
excerpt:

 +------------------------+
 ! Object Module Synopsis !
 +------------------------+
Module Name Ident Bytes File
----------- ----- ----- -----
MY_MAIN V1.0 105 MY_MAIN.OBJ;1
MY_MATH V1.0 12 MY_MATH.EXE;1
 .
 .
 .

6.3.2.2. Using the COLLECT= Option to Control Clustering
You can also create a named cluster by specifying the COLLECT= option. The COLLECT= option
directs the linker to put specific program sections in a named cluster. The linker creates the cluster if it
does not already exist. Note that the COLLECT= option manipulates program sections, not input files.

The linker sets the global (GBL) attribute of the program sections specified in a COLLECT= option to
enable a global search for the definition of that program section.

6.4. Resolving Symbols Defined in the
OpenVMS Executive
For VAX linking, you link against the OpenVMS executive by specifying the system symbol table
(SYS$LIBRARY:SYS.STB) in the link operation. Because a symbol table file is an object module, the
linker processes the symbol table file as it would any other object module.

For Alpha linking, you link against the OpenVMS executive by specifying the /SYSEXE
qualifier. When this qualifier is specified, the linker selectively processes the system shareable
image, SYS$BASE_IMAGE.EXE, located in the directory pointed to by the logical name
ALPHA$LOADABLE_IMAGES. The linker does not process SYS$BASE_IMAGE.EXE by default.

Note that, because the linker is processing a shareable image, references to symbols in the OpenVMS
executive are fixed up at image activation, not fully resolved at link time as they are for VAX linking.
Also note that the linker looks for SYS$BASE_IMAGE.EXE in the directory pointed to by the
logical name ALPHA$LOADABLE_IMAGES, not in the directory pointed to by the logical name
SYS$LIBRARY as for VAX linking.

When the /SYSEXE qualifier is specified, the linker processes the file selectively. To disable selective
processing, specify the /SYSEXE=NOSELECTIVE qualifier. For more information about using
the /SYSEXE qualifier, see the description of the qualifier in Chapter 10.

Relation to Default Library Processing
When you specify the /SYSEXE qualifier, the linker processes the SYS$BASE_IMAGE.EXE
file after processing the system shareable image library, IMAGELIB.OLB, and before processing
the system object library, STARLET.OLB. (Note that the linker also processes the system service
shareable image, SYS$PUBLIC_VECTORS.EXE, when it processes STARLET.OLB by default).

128

Chapter 6. Understanding Symbol Resolution (Alpha and VAX)

The /SYSSHR and /SYSLIB qualifiers, which control processing of the default system libraries,
do not affect SYS$BASE_IMAGE.EXE processing. When the /NOSYSSHR qualifier is specified
with the /SYSEXE qualifier, the linker does not process IMAGELIB.OLB, but still processes
SYS$BASE_IMAGE.EXE and then STARLET.OLB and SYS$PUBLIC_VECTORS.EXE.
When /NOSYSLIB is specified, the linker does not process IMAGELIB.OLB, STARLET.OLB, or
SYS$PUBLIC_VECTORS, but still processes SYS$BASE_IMAGE.EXE.

To process SYS$BASE_IMAGE.EXE before the shareable images in IMAGELIB.OLB, specify
SYS$BASE_IMAGE.EXE in a linker options file as you would any other shareable image. If you
specify SYS$BASE_IMAGE.EXE in your options file, do not use the /SYSEXE qualifier.

Figure 6.4 illustrates how the /SYSEXE qualifier, in combination with the /SYSSHR and /SYSLIB
qualifiers, can affect linker processing. (The default syntax illustrated in the figure is rarely specified).

Figure 6.4. Linker Processing of Default Libraries and SYS$BASE_IMAGE.EXE

6.5. Defining Weak and Strong Global
Symbols
In the dialects of MACRO, BLISS, and Pascal supported on both VAX and Alpha systems, you can
define a global symbol as either strong or weak, and you can make either a strong or a weak reference
to a global symbol.

In these languages, all definitions and references are strong by default. To make a weak definition or a
weak reference, you must use the .WEAK assembler directive (in MACRO), the WEAK attribute (in
BLISS), or the WEAK_GLOBAL or WEAK_EXTERNAL attribute (in Pascal).

The linker records each symbol definition and each symbol reference in its global symbol table,
noting for each whether it is strong or weak. The linker processes weak references differently from
strong references and weakly defined symbols differently from strongly defined symbols.

A strong reference can be made to a weakly defined symbol or to a strongly defined symbol.

129

Chapter 6. Understanding Symbol Resolution (Alpha and VAX)

For a strong reference, the linker checks all explicitly specified input modules and libraries and all
default libraries for a definition of the symbol. In addition, if the linker cannot locate the definition
needed to resolve the strong reference, it reports the undefined symbol and assigns the symbol a value,
which usually results in a run-time error for accessing the data or calling the routine.

A weak reference can be made to a weakly defined symbol or to a strongly defined symbol. In either
case, the linker resolves the weak reference in the same way it does a strong reference, with the
following exceptions:

• The linker will not search library modules that have been specified with the /LIBRARY qualifier
or default libraries (user-defined or system) solely to resolve a weak reference. If, however, the
linker resolves a strong reference to another symbol in such a module, it will also use that module
to resolve any weak references.

• If the linker cannot locate the definition needed to resolve a weak reference, it assigns the symbol
a value of 0, but does not report an error (as it does if the reference is strong). If, however, the
linker reports any unresolved strong references, it will also report any unresolved weak references.

One purpose of making a weak reference arises from the need to write and test incomplete programs.
The resolution of all symbolic references is crucial to a successful linking operation. Therefore, a
problem arises when the definition of a referenced global symbol does not yet exist (as would be the
case, for example, if the global symbol definition is an entry point to a module that is not yet written).
The solution is to make the reference to the symbol weak, which informs the linker that the resolution
of this particular global symbol is not crucial to the link operation.

By default, all global symbols in all VAX and Alpha languages have a strong definition.

A strongly defined symbol in a library module is included in the library symbol table; a weakly
defined symbol in a library module is not. As a result,if the module containing the weak symbol
definition is in a library but has not been specified for inclusion by means of the /INCLUDE qualifier,
the linker will not be able to resolve references (strong or weak) to the symbol. If, however, the linker
has selected that library module for inclusion (in order to resolve a strong reference), it will be able to
resolve references (strong or weak) to the weakly defined symbol.

If the module containing the weak symbol definition is explicitly specified either as an input object
file or for extraction from a library (by means of the /INCLUDE qualifier), the weak symbol
definition is as available for symbol resolution as a strong symbol definition.

130

Chapter 7. Understanding Image File
Creation (Alpha and VAX)
This chapter describes how the linker creates an image on OpenVMS Alpha and OpenVMS VAX
systems. The linker creates images from the input files you specify in a link operation. You can
control image file creation by using linker qualifiers and options.

7.1. Overview of Creating Images on
Alpha/VAX Systems
After the linker has resolved all symbolic references between the input files specified in the LINK
command (described in Chapter 6), the linker knows all the object modules and shareable images that
are required to create the image. For example, the linker has extracted from libraries specified in the
LINK command those modules that contain the definitions of symbols required to resolve symbolic
references in other modules. The linker must now combine all these modules into an image.

To create an image, the linker must perform the following processing:

• Determine the memory requirements of the image. The memory requirements of an image are
the sum of the memory requirements of each object module included in the link operation. The
language processors that create the object modules specify the memory requirements of an object
module as program section definitions. A program section represents an area of memory that
has a name, a length, and other characteristics, called attributes, which describe the intended or
permitted usage of that portion of memory. Section 7.2 describes program sections.

The linker processes the program section definitions in each object module,combining program
sections with similar attributes into an image section. Each image section specifies the size and
attributes of a portion of the virtual memory of an image. The image activator uses the image
section attributes to determine the characteristics of the physical memory pages into which it loads
the image, such as protection.

Figure 7.1 illustrates how memory requirements are communicated from the language processor to
the linker and from the linker to the image activator. Section 7.3 provides more information about
this process.

131

Chapter 7. Understanding Image File Creation (Alpha and VAX)

Figure 7.1. Communication of Image Memory Requirements on Alpha/VAX

Note that shareable images included in link operations have already been processed by the linker.
These images are separate images with their own memory requirements, as specified by their own
image sections. The linker does, however, create special global image section descriptors (GISDs)
for each shareable image to which an image has been linked. The image activator activates these
shareable images at run-time.

• Initialize the image. When image sections are first created, they are empty. In this step of linker
processing, the linker fills the image sections with the machine code and data, as specified by
the Text Information and Relocation (TIR) commands in the object module. Section 7.4 provides
more information about this process.

For Alpha linking, the linker also attempts to optimize the performance of an image by replacing
Jump to Subroutine (JSR) instruction sequences with the more efficient Branch to Subroutine
(BSR) instruction sequences.

After creating image sections and filling them with binary code and data, the linker writes the image
to an image file. Section 7.4.1 describes this process. To keep the size of image files manageable, the
linker does not allocate space in the image file for image sections that have not been initialized with
any data unless this function has been disabled (that is, the linker does not write pages of zeros to the
image file). The linker can create demand-zero image sections, which the operating system initializes
at run-time when a reference to the image section requires the operating system to move the pages
into memory. Section 7.4.3 describes how the linker creates demand-zero image sections.

7.2. Creating Program Sections (Alpha/VAX)
Language processors create program sections and define their attributes. The number of program
sections created by a language processor and the attributes of these program sections are dependent

132

Chapter 7. Understanding Image File Creation (Alpha and VAX)

upon language semantics. For example, some programming languages implement global variables
as separate program sections with a particular set of attributes. Programmers working in high-level
languages typically have little direct control over the program sections created by the language
processor. Medium- and low-level languages provide programmers with more control over
program section creation. For more information about the program section creation features of a
particular programming language, please refer to the appropriate OpenVMS programming language
documentation.

In general, the linker does not create program sections. However, for Alpha linking, the linker creates
a special program section for a shareable image, named $SYMVECT, which contains the symbol
vector of the shareable image.

Program Section Attributes
The language processors define the attributes of the program sections they create and communicate
these attributes to the linker in program section definition records in the global symbol directory
(GSD) in an object module. (The GSD also contains global symbol definitions and references, as
described in Chapter 6).

Program section attributes control various characteristics of the area of memory described by the
program section, such as the following:

• Access. Using program section attributes, compilers can prohibit some types of access, such as
write access. Using other program section attributes, compilers can allow access to the program
section by more than one process.

• Positioning. By specifying certain program section attributes, compilers can specify to the linker
how it should position the program section in memory.

Program section attributes are Boolean values, that is, they are either on or off. Table 7.1 lists
all program section attributes with the keyword you can use to set or clear the attribute, using
the PSECT_ATTR=option. For more information about using the PSECT_ATTR= option, see
Section 7.3.6.

For example, to specify that a program section should have write access,specify the writability
attribute as WRT. To turn off an attribute, specify the negative keyword. Some attributes have separate
keywords that express the negative of the attribute. For example, to turn off the global attribute
(GBL), you must specify the local attribute (LCL). Note that the alignment of a program section is
not strictly considered an attribute of the program section. However, because you can set it using the
PSECT_ATTR= option, it is included in the table.

Table 7.1. Program Section Attributes (Alpha/VAX)

Attribute Keyword Description
Specifies the alignment of the program section as
an integer that represents the power of 2 required to
generate the desired alignment. For certain alignments,
the linker supports keywords to express the alignment.
The following table lists all the alignments supported
by the linker with their keywords:
Power
of 2

Keyword Meaning

Alignment —

0 BYTE Alignment on byte
boundaries.

133

Chapter 7. Understanding Image File Creation (Alpha and VAX)

Attribute Keyword Description
1 WORD Alignment on word

boundaries.
2 LONG Alignment on longword

boundaries.
3 QUAD Alignment on quadword

boundaries.
4 OCTA Alignment on octaword

boundaries.
9 — Alignment on 512-byte

boundaries.
13 — Alignment on 8 KB

boundaries.
14 — Alignment on 16 KB

boundaries.
15 — Alignment on 32 KB

boundaries.
16 — Alignment on 64 KB

boundaries.
— PAGE Alignment on the default

target page size, which is 64
KB for Alpha linking and
512 bytes for VAX linking.
You can override this default
by specifying the /BPAGE
qualifier.

Position Independence PIC/NOPIC Specifies that the program section can run anywhere
in virtual address space. Applicable in shareable
images only. Note that this attribute is not meaningful
for Alpha images, but it is still used to sort program
sections.

Overlaid/Concatenated OVR/CON When set to OVR, specifies that the linker may
combine (overlay) this program section with other
program sections with the same name and attribute
settings. Program sections that are overlaid are
assigned the same base address. When set to CON, the
linker concatenates the program sections.

Relocatable/Absolute REL/ABS When set to REL, specifies that the linker can place
the program section anywhere in virtual memory,
according to the memory allocation strategy for the
type of image being produced. When set to ABS,
this attribute specifies that the program section is an
absolute program section that contains no binary data
or code and appears to be based at virtual address
0. Absolute program sections are used by compilers
primarily to define constants.

134

Chapter 7. Understanding Image File Creation (Alpha and VAX)

Attribute Keyword Description
Global/Local GBL/LCL When set to GBL, specifies that the linker should

gather contributions to the program section from all
clusters and place them in the same image section.
When set to LCL, the linker gathers program sections
into the same image section only if they are in the
same cluster. The memory for a global program
section is allocated in the cluster that contains the first
contributing module.

Shareability SHR/NOSHR Specifies that the program section can be shared
between several processes. Only used to sort program
sections in shareable images.
Specifies that the program section contains executable
code. If an image transfer address is defined in a
nonexecutable program section, the linker issues a
diagnostic message.

Executability EXE/NOEXE

1For Alpha linking, the EXE attribute is propagated
to the image section descriptor where it is used by
the Install utility when it is installing the image as a
resident image. For information about resident images,
see the description of the /SECTION_BINDING
qualifier in Chapter 10.

Writability WRT/NOWRT Specifies that the contents of a program section can be
modified at run-time.

Protected Vectors VEC/NOVEC Specifies that the program section contains privileged
change-mode vectors or message vectors. In shareable
images, image sections with the VEC attribute are
automatically protected.

Solitary SOLITARY Specifies that the linker should place this program
section in its own image section. Useful for programs
that map data into specific locations in their virtual
memory space. Note that compilers do not set
this attribute. You can set this attribute using the
PSECT_ATTR=option.

Unmodified1 NOMOD/MOD When set, specifies that the program section has
not been initialized (NOMOD). On Alpha systems,
the linker uses this attribute to create demand zero
sections; see Section 7.4.3. Only compilers can set
this attribute. You can clear this attribute only by
specifying the MOD keyword in the PSECT_ATTR=
option.

COM1 — Used by the VSI C compiler to implement the
relaxed symbol reference/definition model for
external variables. See the C documentation for more
information. This attribute cannot be modified using
the PSECT_ATTR= option.

Readability RD Reserved to OpenVMS.

135

Chapter 7. Understanding Image File Creation (Alpha and VAX)

Attribute Keyword Description
User/Library USR/LIB Reserved to OpenVMS. To ensure future compatibility,

this attribute should be clear.
1Alpha specific

To illustrate program section creation, consider the program sections created by the VAX C compiler
when it processes the sample programs in the following examples.

Example 7.1. Sample Program MYTEST.C
extern int global_data;
int myadd();
int mysub();
main()
{
 int num1, num2, res1, res2;
 static int my_data;
 num1 = 5;
 num2 = 6;
 res1 = myadd(num1, num2);
 res2 = mysub(num1, num2);
 printf("res1 = %d, res2 =%d, globaldata=%d\n",
 res1,res2,global_data);
}

Example 7.2. Sample Program MYADD.C
#include <stdio.h>
myadd(value_1,value_2)
 int value_1;
 int value_2;
{
 int result;
 static int add_data;
 printf("In MYADD.C\n");
 result = value_1 + value_2;
 return(result);
}

Example 7.3. Sample Program MYSUB.C
int global_data = 5;
mysub(value_1,value_2)
 int value_1;
 int value_2;
{
 int result;
 static int sub_data;
 result = value_1 - value_2;
 return(result);
}

To see what program sections the VAX C compiler creates for these programs, use the
ANALYZE/OBJECT utility to examine the global symbol directory (GSD) in each object module.
(Note that the names the language processors assign to program sections are architecture specific).

Example 7.4 presents an excerpt from the analysis of the object module MYTEST.OBJ. Only the
program section definitions are included in the excerpt.

136

Chapter 7. Understanding Image File Creation (Alpha and VAX)

Example 7.4. Program Sections Generated by Example 7.1

4. GLOBAL SYMBOL DIRECTORY (OBJ$C_GSD), 138 bytes
 .
 .
 .
 6) Program Section Definition (GSD$C_PSC)

 alignment: 4-byte boundary <-- psect 0

 attribute flags:
 (0) GPS$V_PIC 1
 (1) GPS$V_LIB 0
 (2) GPS$V_OVR 0
 (3) GPS$V_REL 1
 (4) GPS$V_GBL 0
 (5) GPS$V_SHR 1
 (6) GPS$V_EXE 1
 (7) GPS$V_RD 1
 (8) GPS$V_WRT 0
 (9) GPS$V_VEC 0

 allocation: 63 (%X'0000003F')

 symbol: "$CODE"
 7) Program Section Definition (GSD$C_PSC)
 alignment: 4-byte boundary <-- psect 1
 attribute flags:
 (0) GPS$V_PIC 1
 (1) GPS$V_LIB 0
 (2) GPS$V_OVR 0
 (3) GPS$V_REL 1
 (4) GPS$V_GBL 0
 (5) GPS$V_SHR 0
 (6) GPS$V_EXE 0
 (7) GPS$V_RD 1
 (8) GPS$V_WRT 1
 (9) GPS$V_VEC 0
 allocation: 4 (%X'00000004')
 symbol: "DATA"
 8) Program Section Definition (GSD$C_PSC)
 alignment: 4-byte boundary <-- psect 2
 attribute flags:
 (0) GPS$V_PIC 1
 (1) GPS$V_LIB 0
 (2) GPS$V_OVR 1
 (3) GPS$V_REL 1
 (4) GPS$V_GBL 1
 (5) GPS$V_SHR 1
 (6) GPS$V_EXE 0
 (7) GPS$V_RD 1
 (8) GPS$V_WRT 1
 (9) GPS$V_VEC 0
 allocation: 4 (%X'00000004')
 symbol: "GLOBAL_DATA"
 9) Program Section Definition (GSD$C_PSC)
 alignment: 4-byte boundary <-- psect 3
 attribute flags:
 (0) GPS$V_PIC 1
 (1) GPS$V_LIB 0
 (2) GPS$V_OVR 0
 (3) GPS$V_REL 1
 (4) GPS$V_GBL 0
 (5) GPS$V_SHR 0
 (6) GPS$V_EXE 0
 (7) GPS$V_RD 1
 (8) GPS$V_WRT 1
 (9) GPS$V_VEC 0
 allocation: 36 (%X'00000024')
 symbol: "$CHAR_STRING_CONSTANTS"
 .
 .
 .

137

Chapter 7. Understanding Image File Creation (Alpha and VAX)

Note that you can also determine the program sections in an object module after a link operation by
looking at the Program Section Synopsis section of an image map file, as illustrated in Example 7.7.

Alignment specifies the address boundary at which the linker places a module's contribution to
the program section.
Attribute flags indicate which program section attributes are set. The attributes are listed by their
full symbolic name, that is, each abbreviation is preceded by the character string “GPS$V_”.
Note that, for attributes that are turned off by specifying different keywords, only the keyword
that sets the attribute is listed. For example, you can see whether the program section is overlaid
by checking attribute flag number 2. If the value is 1, the program section is overlaid; if the
value is 0, the program section must be concatenated. Table 7.1 lists all the program section
attributes. Note that the solitary attribute is not included in the GSD of an object module because
that attribute is not set by language processors.

For Alpha linking, the program section display includes several additional attribute flags. The
COM attribute is reserved to OpenVMS. The NOMOD attribute indicates that the program
section does not contain initialized data. The linker gathers program sections with this attribute
into demand-zero image sections. Section 7.4.3 describes how the linker creates demand-zero
image sections.
Allocation indicates the number of bytes required for the program section.
Symbol indicates the name of the program section.

Figure 7.2 illustrates the program sections created by the VAX C compiler for the programs in
Examples 7.1, 7.2, and 7.3. (The shaded areas represent the settings of the program section attributes
the linker considers when sorting the program sections into image sections in an executable image.
See Section 7.3.3 for more information about how the linker creates image sections).

Figure 7.2. Program Sections Created for Examples 7.1, 7.2, and 7.3

7.3. Creating Image Sections
To create the image sections that define the memory requirements and page protection characteristics
of an image, the linker processes the program section definitions in the object modules specified in
the link operation. The number and type of image sections the linker creates depend on the number of
clusters the linker creates when processing the LINK command and on the attributes of the program
sections in the object modules in each cluster. Section 7.3.1 describes how the clustering of input files
affects image section creation. Section 7.3.2 describes the effects of program section attributes on
image section creation.

138

Chapter 7. Understanding Image File Creation (Alpha and VAX)

7.3.1. Processing Clusters to Create Image Sections
To create image sections, the linker processes the program section definitions in the input files you
specify in the LINK command. The linker processes these input files on a cluster-by-cluster basis (as
described in Section 6.3.1).

In general, only program sections in a particular cluster can contribute to a particular image section.
However, the linker crosses cluster boundaries when processing program sections with the global
(GBL) attribute. When the linker encounters a program section with the global attribute, it searches
all the previously processed clusters for a program section with the same name and attributes and, if
it finds one, places the new definition of the global program section in the same cluster as the first
definition of the program section.

The linker processes input files in the order in which they appear in the clusters, making two passes
through the cluster list.

On its first pass, the linker processes based clusters. Based clusters specify the location within
memory at which the linker must position them. A based cluster can be a cluster that contains a
based shareable image or a cluster, created by the CLUSTER= option, in which a base address was
specified.

For VAX linking, you can also use the BASE= option to specify the base address of the default
cluster.

For more information about creating based clusters, see the descriptions of the CLUSTER= and
BASE= options in Chapter 10.

After processing based clusters, the linker then processes non based clusters. The linker ignores non
based (position-independent) shareable image clusters because they are allocated virtual memory at
run-time.

A LINK command to create an image using the object modules in Section 7.2 is shown in
Example 7.5.

Example 7.5. Linking Examples 7.1, 7.2, and 7.3
$ LINK/MAP/FULL MYTEST, MYADD, SYS$INPUT/OPT
CLUSTER=MYSUB_CLUS,,,MYSUB
SYS$LIBRARY:VAXCRTL/SHARE
Ctrl/Z

The CLUSTER= option in this LINK command causes the linker to create a cluster named
MYSUB_CLUS, which contains the object module MYSUB.OBJ. The linker also creates a cluster
for the C Run-Time Library shareable image VAXCRTL.EXE. The linker puts the object modules
MYTEST.OBJ and MYADD.OBJ in the default cluster. These clusters appear on the linker's cluster list
in the following order:

1. MYSUB_CLUS

2. VAXCRTL

3. DEFAULT_CLUSTER

The linker always processes the default cluster last. (For Alpha linking, you do not need to explicitly
include the C Run-Time Library shareable image in the link operation because it resides in the default
system shareable image library IMAGELIB.OLB, which the linker processes by default).

139

Chapter 7. Understanding Image File Creation (Alpha and VAX)

7.3.2. Combining Program Sections into Image
Sections
The linker creates image sections by grouping together program sections with similar attributes.
Within an image section, the linker organizes program sections alphabetically by name. If more than
one object module contributes to the same program section, the linker lays out their contributions in
the order it processes them.

Figure 7.3 shows how the linker groups the program sections in the object modules from the sample
link into image sections, based on the setting of their significant attributes. In the figure, the settings
of these significant attributes are represented by shading. (The figure considers attributes that are
significant when creating executable images, not shareable images. Section 7.3.3 provides more
information about which program section attributes are significant).

Note, in the figure, that the overlaid contributions from MYSUB.OBJ and MYTEST.OBJ to the
program section, GLOBAL_DATA, both appear in the MYSUB_CLUS cluster, even though the
object module MYTEST.OBJ is in the default cluster. The linker puts all contributions to a global
program section in the cluster in which it is first defined.

140

Chapter 7. Understanding Image File Creation (Alpha and VAX)

Figure 7.3. Combining Program Sections into Image Sections

7.3.3. Processing Significant Program Section
Attributes (Alpha/VAX)
When combining program sections into image sections, the linker considers only a subset of program
section attributes. The set of significant attributes varies according to the type of image being created.
When creating an executable image, the linker considers all combinations of the following attributes
when combining program sections into image sections:

• Writability (WRT/NOWRT)

• Executability (EXE/NOEXE)

• Protected vector (VEC/NOVEC)

• Unmodified (NOMOD/MOD) (Alpha linking only)

141

Chapter 7. Understanding Image File Creation (Alpha and VAX)

When creating a shareable image, the linker considers all combinations of the following attributes
when combining program sections into image sections:

• Writability (WRT/NOWRT)

• Executability (EXE/NOEXE)

• Shareability (SHR/NOSHR)

• Position independence (PIC/NOPIC)

• Protected vector (VEC/NOVEC)

• Unmodified (NOMOD/MOD) (Alpha linking only)

The linker creates only one large image section for system images, so combining program sections by
attributes is not applicable.

Tables 7.2 and 7.3 list all the possible combinations of program section attributes for executable
images and shareable images. Note that the order in which the combinations appear in the table (each
row) is the same order in which the linker processes them. For example,the linker first processes all
program sections with the NOWRT, NOEXE, and NOVEC attributes, creating an image section of
program sections with these attributes. The linker then processes all program sections with the WRT,
NOEXE, and NOVEC attributes, creating an image section for these program sections. The linker
continues this processing until all the combinations of significant attributes have been processed and
all the program sections in the cluster have been placed in an image section.

The tables include only program sections that are relocatable (with the REL attribute). Absolute
program sections (with the ABS attribute), by definition, can have no allocation (they contain only
constants) and cannot contribute to an image section.

For OpenVMS Alpha images, the tables assume that the images are linked using
the /DEMAND_ZERO qualifier, which is the default. (When this qualifier is specified, the
linker groups program sections that do not contain any data into demand-zero image sections,
allocating memory for the image section but not writing zeros to disk). If the image is linked with
the /NODEMAND_ZERO qualifier, the linker allocates space for the image section in the image file.
Note that the /NODEMAND_ZERO qualifier does not affect how the linker sorts program sections;
it proceeds exactly as specified by the table. However, when the image is written, the linker allocates
disk space for the image section and fills the space with zeros.

The tables also show how a particular combination of program section attributes determines the
attributes of the image section in which it is placed. For more information about image section
attributes, see Section 7.3.5.

Table 7.2. Mapping Program Section Attributes to Image Section Attributes for
Executable Images

Significant Psect Attribute Settings1 Type of Isect Isect Attributes Set2

NOWRT NOEXE NOVEC 3MOD NORMAL —
WRT NOEXE NOVEC 3MOD " WRT, CRF
NOWRT EXE NOVEC 3MOD " 4EXE
WRT EXE NOVEC 3MOD " WRT, CRF, 4EXE
NOWRT NOEXE VEC 3MOD " VECTOR,

PROTECT

142

Chapter 7. Understanding Image File Creation (Alpha and VAX)

Significant Psect Attribute Settings1 Type of Isect Isect Attributes Set2

WRT NOEXE VEC 3MOD " WRT, VECTOR,
PROTECT, CRF

NOWRT EXE VEC 3MOD " VECTOR,
PROTECT, 4EXE

WRT EXE VEC 3MOD " WRT, VECTOR,
PROTECT, 4EXE

3NOWRT 3NOEXE 3NOVEC 3NOMOD " DZRO
3WRT 3NOEXE 3NOVEC 3NOMOD " WRT, DZRO5

1For Alpha images, these attributes are prefixed with EGPS$V_. For VAX images, these attributes are prefixed with GPS$V_.
2For Alpha images, these attributes are prefixed with EISD$V_. For VAX images, these attributes are prefixed with ISD$V_.
3Alpha specific
4For Alpha images, these attributes are prefixed with EGPS$V_. For VAX images, these attributes are prefixed with GPS$V_.
5If the /NODEMAND_ZERO qualifier is specified, the copy-on-reference (CRF) attribute is set instead of the DZRO attribute.

Table 7.3. Mapping Program Section Attributes to Image Section Attributes for
Shareable Images

Significant Psect Attribute Settings1 Type of
Isect

Isect Attributes Set2

NOWRT NOEXE SHR NOPIC NOVEC 3MOD SHRFXD —
WRT NOEXE SHR NOPIC NOVEC 3MOD " WRT
NOWRT EXE SHR NOPIC NOVEC 3MOD " 3EXE
WRT EXE SHR NOPIC NOVEC 3MOD " WRT, 3EXE

NOWRT NOEXE NOSHR NOPIC NOVEC 3MOD PRVFXD —
WRT NOEXE NOSHR NOPIC NOVEC 3MOD " WRT, CRF
NOWRT EXE NOSHR NOPIC NOVEC 3MOD " 3EXE
WRT EXE NOSHR NOPIC NOVEC 3MOD " WRT, CRF, 3EXE

NOWRT NOEXE SHR PIC NOVEC 3MOD SHRPIC PIC
WRT NOEXE SHR PIC NOVEC 3MOD " WRT, PIC
NOWRT EXE SHR PIC NOVEC 3MOD " PIC, 3EXE
WRT EXE SHR PIC NOVEC 3MOD " WRT, PIC, 3EXE

NOWRT NOEXE NOSHR PIC NOVEC 3MOD PRVPIC PIC
WRT NOEXE NOSHR PIC NOVEC 3MOD " WRT, CRF, PIC
NOWRT EXE NOSHR PIC NOVEC 3MOD " PIC, 3EXE
WRT EXE NOSHR PIC NOVEC 3MOD " WRT, CRF, PIC, 3EXE

NOWRT NOEXE SHR NOPIC VEC 3MOD SHRFXD VECTOR, PROTECT
WRT NOEXE SHR NOPIC VEC 3MOD " WRT, VECTOR,

PROTECT

143

Chapter 7. Understanding Image File Creation (Alpha and VAX)

Significant Psect Attribute Settings1 Type of
Isect

Isect Attributes Set2

NOWRT EXE SHR NOPIC VEC 3MOD " VECTOR, PROTECT,
3EXE

WRT EXE SHR NOPIC VEC 3MOD " WRT, VECTOR,
PROTECT, 4EXE

NOWRT NOEXE NOSHR NOPIC VEC 3MOD PRVFXD VECTOR, PROTECT
WRT NOEXE NOSHR NOPIC VEC 3MOD " WRT, CRF
NOWRT EXE NOSHR NOPIC VEC 3MOD " VECTOR, PROTECT,

3EXE
WRT EXE NOSHR NOPIC VEC 3MOD " WRT, CRF, VECTOR,

PROTECT, 4EXE

NOWRT NOEXE SHR PIC VEC 3MOD SHRPIC PIC, VECTOR,

PROTECT
WRT NOEXE SHR PIC VEC 3MOD " WRT, PIC, VECTOR,

PROTECT
NOWRT EXE SHR PIC VEC 3MOD " PIC, VECTOR,

PROTECT, 3EXE
WRT EXE SHR PIC VEC 3MOD " WRT, PIC, VECTOR,

PROTECT, 4EXE

NOWRT NOEXE NOSHR PIC VEC 3MOD PRVPIC PIC, VECTOR,

PROTECT
WRT NOEXE NOSHR PIC VEC 3MOD " WRT, CRF, PIC,

VECTOR, PROTECT
NOWRT EXE NOSHR PIC VEC 3MOD " PIC, VECTOR,

PROTECT, 3EXE
WRT EXE NOSHR PIC VEC 3MOD " WRT, CRF, PIC,

VECTOR, PROTECT,
3EXE

3NOWRT 3NOEXE 3SHR 3NOPIC 3NOVEC 3NOMOD SHRFXD —
3WRT 3NOEXE 3SHR 3NOPIC 3NOVEC 3NOMOD " WRT

3NOWRT 3NOEXE 3NOSHR 3NOPIC 3NOVEC 3NOMOD PRVFXD DZRO
3WRT 3NOEXE 3NOSHR 3NOPIC 3NOVEC 3NOMOD " WRT, DZRO4

3NOWRT 3NOEXE 3NOSHR 3PIC 3NOVEC 3NOMOD PRVPIC DZRO
3WRT 3NOEXE 3NOSHR 3PIC 3NOVEC 3NOMOD " WRT, DZRO4, PIC

144

Chapter 7. Understanding Image File Creation (Alpha and VAX)

Significant Psect Attribute Settings1 Type of
Isect

Isect Attributes Set2

3NOWRT 3NOEXE 3SHR 3PIC 3NOVEC 3NOMOD SHRPIC PIC
3WRT 3NOEXE 3SHR 3PIC 3NOVEC 3NOMOD " WRT, PIC

2For Alpha images, these attributes are prefixed with EISD$V_. For VAX images, these attributes are prefixed with ISD$V_.
3Alpha specific
4If the /NODEMAND_ZERO qualifier is specified, the copy-on-reference (CRF) attribute is set instead of the DZRO attribute.

For example, Table 7.4 summarizes the settings of the significant attributes of the program sections in
the module MYADD.OBJ. (Because this is an OpenVMS VAX object module, the MOD attribute is
not considered).

Table 7.4. Significant Attributes of Program Sections in MYSUB_CLUS Cluster

 Writability Executability Protected Vector
$CODE NOWRT EXE NOVEC
DATA WRT NOEXE NOVEC
$CHAR_STRING_CONSTANTS WRT NOEXE NOVEC

The linker puts both the DATA and $CHAR_STRING_CONSTANTS program sections in
the same image section because they both have the same settings of significant attributes.
Within the image section, the linker organizes the program sections alphabetically, so the
$CHAR_STRING_CONSTANTS program section appears before the DATA program section. The
linker creates a separate image section for the $CODE program section.

The linker performs similar processing of the program sections in the default cluster. The Image
Section Synopsis section of the map file lists the clusters the linker created and lists the image
sections it created for each cluster. This section also describes the layout of the image in memory,
including the base address of each image section. Example 7.6 illustrates an excerpt of the Image
Section Synopsis section from the map file produced with the sample link. The listing includes
clusters for contributions for the VAX C Run-Time Library.

Example 7.6. Image Section Information in a Map File
 +------------------------+
 ! Image Section Synopsis !
 +------------------------+
 Cluster Type Pages Base Addr Disk VBN PFC Protection and Paging ...
 ------- ---- ----- --------- -------- --- ---------------------
MYSUB_CLUS 0 1 00000200 2 0 READ WRITE COPY ON REF
 0 1 00000400 3 0 READ ONLY
VAXCRTL 3 4 00000000-R 0 0 READ ONLY
 3 1 00000800-R 0 0 READ ONLY
 4 1 00000A00-R 0 0 READ WRITE COPY ON REF
 3 17 00000C00-R 0 0 READ ONLY
 3 142 00002E00-R 0 0 READ ONLY
 4 21 00014A00-R 0 0 READ WRITE COPY ON REF
 4 1 P-00017400-R 0 0 READ WRITE COPY ON REF
 2 3 00017600-R 0 0 READ WRITE FIXUP VECTORS
LIBRTL 3 193 00000000-R 0 0 READ ONLY
 4 8 00018200-R 0 0 READ WRITE DEMAND ZERO
MTHRTL 3 335 00000000-R 0 0 READ ONLY
 2 1 00029E00-R 0 0 READ WRITE FIXUP VECTORS
DEFAULT_CLUSTER 0 1 00000600 4 0 READ WRITE COPY ON REF
 0 1 00000800 5 0 READ ONLY
 0 1 00000A00 6 0 READ WRITE FIXUP VECTORS
 253 20 7FFFD800 0 0 READ WRITE DEMAND ZERO

For more information about the image section synopsis section of a map file, see Section 9.2.3.

145

Chapter 7. Understanding Image File Creation (Alpha and VAX)

To find out which program sections the linker placed in each image section, look at the Program
Section Synopsis section of the map file. This section lists all the program sections in each cluster and
lists the contributions (the number of bytes) to each program section from each object module. By
comparing the base-address of the program sections with the base-addresses of the image sections in
the Image Section Synopsis section, you can tell in which image section the program sections appear.
Example 7.7 is an excerpt from the Program Section Synopsis section of the map file produced by the
sample link operation.

Example 7.7. Program Section Information in a Map File (VAX Example)

 +--------------------------+
 ! Program Section Synopsis !
 +--------------------------+
Psect Name Module Name Base End Length Align Attributes
---------- ----------- ---- --- ------ ----- ----------
$DATA 00000200 00000203 00000004 (4.) LONG 2 PIC,USR,CON ...
 MYSUB 00000200 00000203 00000004 (4.) LONG 2
GLOBAL_DATA 00000204 00000207 00000004 (4.) LONG 2 PIC,USR,OVR ...
 MYSUB 00000204 00000207 00000004 (4.) LONG 2
 MYTEST 00000204 00000207 00000004 (4.) LONG 2
$CODE 00000400 0000040B 0000000C (12.) LONG 2 PIC,USR,CON ...
 MYSUB 00000400 0000040B 0000000C (12.) LONG 2
$CHAR_STRING_CONSTANTS 00000600 0000062D 0000002E (46.) LONG 2 PIC,USR,CON ...
 MYTEST 00000600 00000623 00000024 (36.) LONG 2
 MYADD 00000624 0000062D 0000000A (10.) LONG 2
$DATA 00000630 00000637 00000008 (8.) LONG 2 PIC,USR,CON ...
 MYTEST 00000630 00000633 00000004 (4.) LONG 2
 MYADD 00000634 00000637 00000004 (4.) LONG 2
$CODE 00000800 00000858 00000059 (89.) LONG 2 PIC,USR,CON ...
 MYTEST 00000800 0000083E 0000003F (63.) LONG 2
 MYADD 00000840 00000858 00000019 (25.) LONG 2
 .
 .
 .

For more information about the program synopsis section of a map file, see Section 9.2.4.

7.3.4. Allocating Memory for Image Sections
When it creates an image section, the linker allocates enough memory for the image section to
accommodate all the program sections it contains. Each program section definition includes its size.

The linker aligns image sections on CPU-specific page boundaries. Within an image section, the
linker assigns to each program section a virtual address relative to the base address of the image
section.

Concatenated Program Sections

If the program sections have the concatenated (CON) attribute set, the linker positions the program
sections one after the other within an image section, inserting padding bytes between the program
sections if necessary to achieve the alignment requirement of a particular contribution to a program
section. The linker retains the alignment specified for each program section contribution but uses the
largest alignment of a contributing module as the alignment of the whole program section.

Overlaid Program Sections

If the program sections have the overlaid (OVR) attribute set, the linker uses the same start address
for the program sections so that they occupy the same virtual memory (that is, the program sections
overlay each other). For overlaid program sections, the linker allocates enough space to accommodate

146

Chapter 7. Understanding Image File Creation (Alpha and VAX)

the largest of all the program section contributions. Note that the linker does not generate a warning
message if the contributions specify different size allocations.

Any module can initialize the contents of an overlaid program section. However, the final contents of
the program section are determined by the last contributing module. Therefore, the order in which you
specify the input modules is important.

Assigning Virtual Addresses

The linker keeps track of free (available) virtual addresses by maintaining a free virtual memory list.
For each cluster, the linker determines the number of pages required, searches the list beginning at the
lowest virtual address for a contiguous number of pages large enough to contain the cluster, allocates
those addresses to the cluster, then removes those addresses from the list.

The linker allocates virtual memory to the first cluster beginning at a page size boundary for
executable images in the P0 region of the user's virtual address space, unless the cluster is based, in
which case it allocates virtual memory beginning at the specified address. For VAX linking,the default
is 512 (200 hexadecimal). However, you can specify the page size using the /BPAGE qualifier. For
information about the /BPAGE qualifier, see Chapter 10.

On its first pass through the cluster list, the linker allocates virtual addresses to any based user clusters
or based shareable image clusters on the cluster list, removing the allocated addresses from the free
virtual memory list as it proceeds. On its second pass, it repeats this procedure for non based user
clusters. (Remember that non based shareable image clusters will have memory allocated for them at
run-time).

Because the linker processes clusters in the order of their appearance on the cluster list, the virtual
address space of the final image will generally contain contiguous image sections of consecutive
clusters on the basis of their order in the cluster list. The presence of based clusters, however,may
prevent such an outcome, and for this reason they are not recommended.

After allocating memory for a cluster, the linker relocates its contents by performing the following
processing:

1. Relocating each image section. The linker adds the starting virtual address of the cluster to the
relative offset of the image section from the cluster base and places the result in the appropriate
field of the image section descriptor (ISD).

2. Relocating each program section in the image section. The linker adds the newly calculated
starting virtual address of the image section to the relative offset of the program section from the
base of the image section.

3. Relocating each global symbol in the program section. The linker adds the newly calculated
program section virtual address to the relative offset of the global symbols from the base of the
program section.

7.3.5. Image Section Attributes
When it creates image sections, the linker assigns attributes to the image section based on the
attributes of the program sections it contains. The image section attributes describe certain
characteristics of the portion of memory they represent, for example, the protection characteristics.
For example, an image section that contains program sections with the writability attribute also has
the writability attribute set. Tables 7.2 and 7.3 include the image section attributes associated with an

147

Chapter 7. Understanding Image File Creation (Alpha and VAX)

image section that contains program sections with a particular set of attributes. Table 7.5 lists all the
image section attributes. Image section attributes, like program section attributes, are Boolean values
that are either on or off.

Table 7.5. Image Section Attributes

Attribute Symbol Function
Global [E]ISD$M_GBL GBL is set when the ISD came from a shareable

image. On both VAX and Alpha systems, the first
ISD of a shareable image is included in the base
image for use by the image activator. For VAX
linking, if the shareable image is based, all of its
ISDs are included in the image being linked.

Copy On
Reference

[E]ISD$M_CRF CRF is set whenever the psect attributes are
WRT and not SHR. CRF is also set by the linker
whenever it creates fix-ups to the section (which
require the image activator to write to it).

Demand Zero [E]ISD$M_DZRO Demand zero is set for VAX linking for
executable images if:

• The section was never written to with a TIR
(Text and Information Relocation) command.

• The section resulted from compression of
empty pages from an existing section.

Demand zero is set for Alpha executable and
Alpha shareable images if the user has not
specified /NODEMAND_ZERO and if:

• The section was never written to with an
ETIR command.

• The program sections in the section have the
NOMOD bit set.

DZRO is always set for stack ISDs on both Alpha
images and VAX images.

Executability [E]ISD$M_EXE The EXE attribute is inherited from the program
section.

Write [E]ISD$M_WRT The WRT attribute is inherited from the program
section. WRT is also set by the linker if fix-ups
are made to the section. When this is done, the
linker also generates a change protection fix-
up so that the image activator can change the
protection back to NOWRT after the fix-up is
applied.

Match Control ISD$M_MATCHCTL This is used only for VAX images. It is not an
attribute. MATCHCTL is a 3-bit field inside the
flags field. It contains the match control bits. For
Alpha images, this information is contained in a
completely separate field.

148

Chapter 7. Understanding Image File Creation (Alpha and VAX)

Attribute Symbol Function
Last Cluster [E]ISD$M_LASTCLU LASTCLU is set only for sections inexecutable

images. LASTCLU indicates that an image
section was generated off of the last cluster
(which was not a shareable image cluster) in the
cluster list. If FIXUPVEC is set, LASTCLU is
clear.

Initial Code [E]ISD$M_INITALCODE This attribute is reserved to OpenVMS.
Based [E]ISD$M_BASED BASED indicates that the section is based. This is

set when BASE= is specified in the options file.
This attribute may also be set if based shareable
images are encountered during linking. This
attribute is present but not used for Alpha linking.

Fix-Up Vectors [E]ISD$M_FIXUPVEC FIXUPVEC marks the section that contains the
image activator fix-ups. This section is created by
the linker. The attribute cannot be set by the user.

Resident [E]ISD$M_RESIDENT This attribute is reserved to OpenVMS.
Vectored [E]ISD$M_VECTOR VECTOR indicates a vectored section,either a

message section or a privileged library vector.
Protected [E]ISD$M_PROTECT Protect indicates that a section is protected. The

linker sets the PROTECT attribute whenever
VECTOR is set. PROTECT is also set if
the /PROTECT qualifier is used, or if the
cluster that the section is spawned from came
after a PROTECT=YES option (and before a
PROTECT=NO option).

The linker uses type designations instead of image section attributes to propagate the SHR and PIC
program section attributes. The linker assigns the type designation [E]ISD$K_NORMAL for image
sections in executable images. Image sections in shareable images can be any of the following types:

Image Section Type Attribute Settings
Share fixed ([E]ISD$K_SHRFXD) SHR, NOPIC
Private fixed ([E]ISD$K_PRVFXD) NOSHR, NOPIC
Share position-independent ([E]ISD$K_SHRPIC) SHR, PIC
Private position-independent ([E]ISD$K_PRVPIC) NOSHR, PIC

The Image Section Synopsis section of a map file lists the attributes of each image section created in
the Protection and Paging column. See Example 7.6 for an illustration. You can also get a listing of all
the image sections created by the linker by using the ANALYZE/IMAGE utility. The output generated
by this utility includes a list of all the image sections that make up the image, with their attributes. An
excerpt from the analysis of the image file MYTEST.EXE is shown in Example 7.8.

Example 7.8. Image Section Descriptions in an ANALYZE/IMAGE Display
Image Section Descriptors (ISD)

1) image section descriptor (16 bytes)

 page count: 1

 base virtual address: %X'00000200' (P0 space)

 page fault cluster size: default

149

Chapter 7. Understanding Image File Creation (Alpha and VAX)

 IS flags:
 (0) ISD$V_GBL 0
 (1) ISD$V_CRF 1
 (2) ISD$V_DZRO 0
 (3) ISD$V_WRT 1
 (7) ISD$V_LASTCLU 0
 (8) ISD$V_INITALCODE 0
 (9) ISD$V_BASED 0
 (10) ISD$V_FIXUPVEC 0
 (11) ISD$V_RESIDENT 0
 (17) ISD$V_VECTOR 0
 (18) ISD$V_PROTECT 0

 section type: ISD$K_NORMAL

 base VBN: 2
 .
 .
 .
 9) image section descriptor (31 bytes)
 page count: 193
 base virtual address: %X'00000000' (P0 space)
 page fault cluster size: default
 IS flags:
 (0) ISD$V_GBL 1
 (1) ISD$V_CRF 0
 (2) ISD$V_DZRO 0
 (3) ISD$V_WRT 0
 (7) ISD$V_LASTCLU 0
 (8) ISD$V_INITALCODE 0
 (9) ISD$V_BASED 0
 (10) ISD$V_FIXUPVEC 0
 (11) ISD$V_RESIDENT 0
 (17) ISD$V_VECTOR 0
 (18) ISD$V_PROTECT 0
 section type: ISD$K_SHRPIC
 base VBN: 0

 global section major id: %X'01', minor id: %X'00000E'

 match control: ISD$K_MATLEQ

 global section name: "LIBRTL_001"

The size of the image section descriptor.
The size of the image section, expressed in pages. For Alpha images, the value is expressed in
bytes.
The start address assigned to the image section by the linker. Note that this address is an offset
from the beginning of the image, which is assumed to start at virtual address zero. (The linker
always inserts an empty page at the beginning of every executable image). Note also that the
linker does not assign a start address for image sections representing shareable images because
this information cannot be determined until run-time, when the shareable image is loaded into
memory by the image activator.
The number of pagelets that should be mapped in when the initial page fault occurs. You can set
this value by using the CLUSTER= option.
The settings of image section attributes. Table 7.5 lists these attributes.
The type of image section, based on the combination of image section attributes.
The virtual block in the image file at which the image section begins.
Image sections that represent shareable images include the global section identification number,
which specifies the identification number of the shareable image.
Image sections that represent shareable images also include a match control field that identifies
the match control algorithm the image activator should apply to the global image section
identification number when it activates the shareable image this ISD describes.
Image sections that represent shareable images include the global section name field, which is
the name of the shareable image. The “_001"” is appended to the name by the linker to indicate
which ISD in the image this represents.

150

Chapter 7. Understanding Image File Creation (Alpha and VAX)

7.3.6. Controlling Image Section Creation
You can control how the linker combines program sections into image sections in the following ways:

• By modifying the attributes of program sections

• By putting object modules into named clusters

• By using the SOLITARY attribute

7.3.6.1. Modifying Program Section Attributes

The linker combines program sections in the same cluster into the same image section if they have
the same settings for the significant program section attributes. To force the linker to put the program
sections into different image sections, change the attributes of one of the program sections by using
the PSECT_ATTR= option.

For example, in the sample link operation, the DATA program section and the
$CHAR_STRING_CONSTANTS program section are combined into the same image section. If you
want the $CHAR_STRING_CONSTANTS program section to appear in a different image section,
change one of the significant attributes. For example, in the following link of the sample programs,
the writability attribute is set to NOWRT. (For Alpha linking, you do not need to explicitly specify
the C Run-Time Library in the link operation because it resides in the default system shareable image
library [IMAGELIB.OLB], which the linker processes by default).

$ LINK/MAP/FULL MYTEST,MYADD,SYS$INPUT/OPT
CLUSTER=MYSUB_CLUS,,,MYSUB
PSECT_ATTR=$CHAR_STRING_CONSTANTS,NOWRT
SYS$LIBRARY:VAXCRTL/SHARE
Ctrl/Z

Example 7.9 presents an excerpt from the Image Section Synopsis section of the map file produced by
this link.

Example 7.9. Image Section Synopsis of Second Link

 Cluster Type Pages Base Addr Disk VBN PFC Protection and Paging ...
 ------- ---- ----- --------- -------- --- ---------------------
 .
 .
 .
DEFAULT_CLUSTER 0 1 00000600 4 0 READ ONLY
 0 1 00000800 0 0 READ WRITE DEMAND ZERO
 0 1 00000A00 5 0 READ ONLY
 0 1 00000C00 6 0 READ WRITE FIXUP VECTORS
 253 20 7FFFD800 0 0 READ WRITE DEMAND ZERO
 .
 .
 .

Note that the default cluster contains one additional image section, a read-only image section
beginning at virtual address 0x00000600, than the default cluster in the original link, illustrated in
Section 7.3.1.

7.3.6.2. Manipulating Cluster Creation

In general, the linker creates image sections on a per-cluster basis; that is,only program sections
within a particular cluster can contribute to image section creation. (The linker can collect program

151

Chapter 7. Understanding Image File Creation (Alpha and VAX)

sections with the global attribute from all clusters into a single image section). To ensure that a
program section appears in a particular image section, put the program section in a specific cluster.

For example, in the sample link operation illustrated in Example 7.5, the linker puts all the program
sections in the object module MYSUB.OBJ in the cluster named MYSUB_CLUS because the
CLUSTER= option is specified. If you wanted to group all of the program sections that contain code
from all the other clusters into the MYSUB_CLUS cluster, you could specify the COLLECT= option,
as in the following example. (By convention,VAX language processors put the code they generate into
program sections named $CODE. Program section naming conventions are architecture specific).

$ LINK/MAP/FULL MYTEST, MYADD, SYS$INPUT/OPT
CLUSTER=MYSUB_CLUS,,,MYSUB
COLLECT=MYSUB_CLUS,$CODE
SYS$LIBRARY:VAXCRTL/SHARE
Ctrl/Z

7.3.6.3. Isolating a Program Section into an Image Section
You can specify that the linker place a particular program section into its own image section. This can
be useful for programs that map data into predefined locations within an image.

To isolate a program section into an image section, specify the SOLITARY attribute of the program
section using the PSECT_ATTR= option. For example, to isolate the GLOBAL_DATA program
section in the sample link into its own image section, specify the following:

$ LINK/MAP/FULL MYTEST,MYADD,SYS$INPUT/OPT
CLUSTER=MYSUB_CLUS,,,MYSUB
PSECT_ATTR=GLOBAL_DATA,SOLITARY
Ctrl/Z

For Alpha linking, when mapping data into an existing location in the virtual memory of your
program using the Create and Map Global Section ($CRMPSC) system service or the Map Global
Section ($MGBLSC) system service,you must specify an address range (in the inadr argument)
that is aligned on a CPU-specific page boundary. Because the linker aligns image sections on CPU-
specific page boundaries and the program section in which the section is to be mapped is the only
program section in the image section, you ensure that the start address of the location is page aligned.
In addition,because Alpha systems must map at least an entire page of memory at a time, using the
SOLITARY attribute allows you to ensure that no other data in the image section is inadvertently
overwritten by the mapping. By default, the linker creates the next image section on the next page
boundary so that no data can be overwritten.

7.4. Initializing an Image on Alpha/VAX
Systems
After allocating memory for the image, the linker initializes the image by writing the binary contents
of the image sections by processing text information and relocation (TIR) records in the object
modules. These records direct the linker in the initialization of the image section by telling it what to
store in the image section buffers. In addition, the linker inserts the addresses of symbols within the
image wherever they are referenced.

7.4.1. Writing the Binary Contents of Image Sections
A TIR record contains object language commands, such as stack and store commands. Stack
commands direct the linker to put information on its stack,and store commands direct the linker to
write the information from its stack to the buffer for that image section.

152

Chapter 7. Understanding Image File Creation (Alpha and VAX)

During this image section initialization, the linker keeps track of the program section being initialized
and the image section to which it has been allocated. The first attempt to initialize part of an image
section by storing nonzero data causes the linker to allocate a buffer in its own program region
to contain the binary contents of the generated image section. This allocation is achieved by the
Expand Region ($EXPREG) system service, and it requires that the linker have available a virtually
contiguous region of its own memory at least as large as the image section being initialized.

A buffer is not allocated for an image section until the linker executes a store command (with nonzero
data) within that image section.

Debugger information (DBG) records and traceback information (TBT) records are processed only if
the debugger was requested and traceback information was not excluded by the /NOTRACE qualifier
in the LINK command. Otherwise, these records are ignored. The records contain stack and store
object language commands (TIR records), but they are stored in the debugger symbol table (DST)
instead of in an image section. (The linker expands its memory region to accommodate the DST,
unless the /NOTRACEBACK qualifier was specified in the LINK command).

When the linker processes end-of-module (EOM) records, it checks that its internal stack has been
collapsed to its initial state. When this processing is complete, the linker has written the binary
contents of all image sections to image section buffers in its own address space.

The linker writes the contents of its buffers in the following order:

1. All image sections to the image file.

2. The debugger symbol table to the image file, unless /NOTRACEBACK was specified in the LINK
command.

3. The remaining sections of the map to the map file, if requested in the LINK command. (These
sections include all requested sections except the Object Module Synopsis, which it already wrote,
and the Link Run Statistics, which it cannot write until the linking operation finishes).

4. The global symbol table to the image file, and also to another separate file, if requested in the
LINK command.

5. The image header to the image file.

6. The link statistics to the map file, if requested in the LINK command.

7.4.2. Fixing Up Addresses
Executable images and based images are loaded into memory at a known location in P0 space. The
linker cannot know where in memory a shareable image will be located when it is loaded into memory
at run-time by the image activator. Thus, the linker cannot initialize references to symbols within the
shareable image from external modules or to internal symbolic references within the shareable image
itself. For shareable images, the linker creates fix-ups that the image activator must resolve when it
activates the images at run-time.

The linker uses the fix-up image section in the following ways:

• The fix-up image section adjusts the values stored by any .ADDRESS directives that are
encountered during the creation of the non based shareable image. This action, together with
subsequent adjustment of these values by the image activator,preserves the position independence
of the shareable image.

153

Chapter 7. Understanding Image File Creation (Alpha and VAX)

On Alpha systems, an error message informs you at link time that the linker is placing global
symbols from shareable images in byte- or word-sized fields. The OpenVMS Alpha image header
format does not allow byte or word fix-ups.

Following is an example of the kind of error message the system displays:

%LINK-E-NOFIXSYM, unable to perform WORD fixup for symbol TPU$_OPTIONS
 in psect $PLIT$ in module TEST_MODULE file USER:[ACCOUNT]TEST.OLB;1

To work around the Alpha image header format restriction, move the symbolic value into a
selected location at run-time rather than at link time. For example, in MACRO, rather than
performing .WORD TPU$_OPTIONS, use the following instruction:

MOVW #TPU$_OPTIONS, dest

• For VAX linking, the fix-up image section processes all general-address-mode code references to
targets in position-independent shareable images. In this way, it creates the linkage between these
code references and their targets, whose locations are not known until run-time.

7.4.3. Keeping the Size of Image Files Manageable
Because neither language processors nor the linker initialize data areas in a program with zeros,
leaving this task to the operating system instead, some image sections might contain uninitialized
pages. To keep the size of the image file as small as possible, the linker does not write pages of zeros
to disk for these uninitialized pages unless you explicitly disable this function. The linker can search
image sections that contain initialized data for groups of contiguous, uninitialized pages and creates
demand-zero image sections out of these pages (called demand-zero compression). Demand-zero
image sections reduce the size of the image file and enhance the performance of the program. At
run-time, when a reference is made that initializes the section, the operating system initializes the
allocated page of physical memory with zeros (hence the name “demand-zero”).

The Alpha compilers identify to the linker program sections that have not been initialized by setting
the NOMOD attribute of the program section. The linker groups these uninitialized program sections
into a demand-zero image section.

If two modules contribute to the same program section and one contribution has the NOMOD
attribute set and the other does not, the linker performs a logical AND of the NOMOD bits so that the
two contributions end up in the same (non-demand-zero) image section.

Note that the linker creates demand-zero image sections only for OpenVMS VAX executable images.
On OpenVMS Alpha systems,the linker can create demand-zero image sections for both executable
and shareable images. Program sections with the SHR and the NOMOD attributes set are not sorted
into demand-zero image sections in shareable images.

7.4.3.1. Controlling Demand-Zero Image Section Creation
When performing demand-zero compression, by default the linker searches the pages of existing
image sections looking for the default minimum of contiguous, uninitialized pages. You can specify
a different minimum by using the DZRO_MIN= option. For more information about the effect of this
option on image size and performance, see the description of the DZRO_MIN= option in Chapter 10.

You can control demand-zero compression by specifying the maximum number of image sections that
the linker can create using the ISD_MAX= option.

154

Chapter 8. Creating Shareable Images
(Alpha and VAX)
This chapter describes how to create shareable images on OpenVMS Alpha and OpenVMS VAX
systems and how to declare universal symbols in shareable images.

For information on how to create shareable images on OpenVMS x86-64 and OpenVMS I64 systems,
see Chapter 4.

8.1. Overview of Creating Shareable Images
on Alpha/VAX Systems
To create a shareable image, specify the /SHAREABLE qualifier on the LINK command line. You
can specify as input files in the link operation any of the types of input files accepted by the linker, as
described in Chapter 1.

Note, however, to enable other modules to reference symbols in the shareable image, you must
declare them as universal symbols. High- and mid-level languages do not provide semantics to
declare universal symbols. You must declare universal symbols at link time using linker options. The
linker lists all universal symbols in the global symbol table (GST) of the shareable image. The linker
processes the GST of a shareable image specified as an input file in a link operation during symbol
resolution. For more information about symbol resolution, see Chapter 6.

For Alpha linking, you declare universal symbols by listing the symbols in a SYMBOL_VECTOR=
option statement in a linker options file. You do not need to create a transfer vector to create an
upwardly compatible shareable image. The symbol vector can provide upward compatibility. For
more information about this topic, see Section 8.3.

For VAX linking, you declare universal symbols by listing the symbols in a UNIVERSAL= option
statement in a linker options file. You can create shareable images that can be modified, recompiled,
and relinked without causing the images that were linked against previous versions of the shareable
image to be relinked. To provide this upward compatibility, you must create a transfer vector that
contains an entry for each universal symbol in the image. For more information about these topics, see
Section 8.2.

The linker supports qualifiers and options that control various aspects of shareable image creation.
Table 8.1 lists these qualifiers and options. For more information about linker qualifiers and options,
see Chapter 10.

Table 8.1. Linker Qualifiers and Options Used to Create Shareable Images

Qualifier Description
/GST1 For Alpha images, directs the linker to include universal symbols in the

global symbol table (GST) of the shareable image, which is the default.
When you specify the /NOGST qualifier, the linker creates an empty GST
for the image. See Section 8.3.4 for more information about using this
qualifier to create run-time kits. Not supported for VAX images.

/PROTECT Directs the linker to protect the shareable image from write access by user
or supervisor mode.

155

Chapter 8. Creating Shareable Images (Alpha and VAX)

Qualifier Description
/SHAREABLE Directs the linker to create a shareable image, when specified in the link

command line. When appended to a file specification in a linker options
file, this qualifier identifies the input file as a shareable image.

Option Description
GSMATCH= Sets the major and minor identification numbers in the header of the

shareable image and specifies the algorithm the linker uses when
comparing identification numbers.

PROTECT= When specified with the YES keyword in a linker options file, this option
directs the linker to protect the clusters created by subsequent options
specified in the options file. You turn off protection by specifying the
PROTECT=NO option in the options file.

SYMBOL_TABLE=1 For Alpha linking, when specified with the GLOBALS keyword,
this option directs the linker to include in a symbol table file all the
global symbols defined in the shareable image, in addition to the
universal symbols. By default, the linker includes only universal
symbols in a symbol table file associated with a shareable image
(SYMBOL_TABLE=UNIVERSALS). Not supported for VAX linking.

SYMBOL_VECTOR=1 For Alpha linking, specifies symbols in the shareable image that you want
declared as universal. Not supported for VAX linking.

UNIVERSAL=2 For VAX linking, specifies symbols in the shareable image that you want
declared as universal. Not supported for Alpha linking.

1Alpha specific
2VAX specific

8.2. Declaring Universal Symbols in VAX
Shareable Images
For VAX linking, you declare universal symbols by specifying the UNIVERSAL=option in an options
file. List the symbol or symbols you want to be universal as an argument to the option. The symbols
listed in a UNIVERSAL= option can represent procedures, relocatable data, or constants. For each
symbol declared as universal, the linker creates an entry in the global symbol table (GST) of the
image. At link time, when the linker performs symbol resolution, it processes the symbols listed in the
GSTs of the shareable images included in the link operation.

To illustrate how to declare universal symbols, consider the programs inthe following examples.

Example 8.1. Shareable Image Test Module: my_main.c
#include <stdio.h>
extern int my_data;
globalref int my_symbol;
int mysub();
main()
{
int num1, num2, result;
num1 = 5;
num2 = 6;
result = mysub(num1, num2);
printf("Result= %d\n", result);
printf("Data implemented as overlaid psect= %d\n", my_data);
printf("Global reference data is= %d\n", my_symbol);
}

156

Chapter 8. Creating Shareable Images (Alpha and VAX)

Example 8.2. Shareable Image: my_math.c

int my_data = 5;
globaldef int my_symbol = 10;
myadd(value_1, value_2)
int value_1;
int value_2;
{
int result;
result = value_1 + value_2;
return(result);
}
mysub(value_1,value_2)
int value_1;
int value_2;
{
int result;
result = value_1 - value_2;
return(result);
}
mydiv(value_1, value_2)
int value_1;
int value_2;
{
int result;
result = value_1 / value_2;
return(result);
}
mymul(value_1, value_2)
int value_1;
int value_2;
{
int result;
result = value_1 * value_2;
return(result);
}

To implement Example 8.2 as a shareable image, you must declare the universal symbols in the image
by using the following LINK command:

$ LINK/SHAREABLE MY_MATH, SYS$INPUT/OPT
PSECT_ATTR=my_data,NOSHR
UNIVERSAL=myadd
UNIVERSAL=mysub
UNIVERSAL=mymul
UNIVERSAL=mydiv
UNIVERSAL=my_symbol
Ctrl/Z

Note that the symbol my_data in Example 8.2 does not have to be declared universal because of
the way in which VAX C implements it. Several programming languages, including VAX C and
Fortran for OpenVMS VAX, implement certain external variables as program sections with the
overlaid (OVR), global (GBL), and relocatable (REL) attributes. When the linker processes these
object modules, it overlays the program sections so that the various object modules that reference the
variable access the same virtual memory. Symbols implemented in this way are declared universal
(appear in the GST of the image) by default.

In the sample link operation, the SHR attribute of the program section that implements the data
symbol my_data is reset to NOSHR. If you do not reset the shareable attribute for program sections
that are writable,you must install the shareable image to run the program. (The shareable attribute
[SHR] determines whether multiple processes have shared access to the memory).

The following example illustrates how to link the object module MY_MAIN.OBJ with the shareable
image MY_MATH.EXE. Note that the LINK command sets the shareability attribute of the program
section my_data to NOSHR, as in the link operation in which the shareable was created.

157

Chapter 8. Creating Shareable Images (Alpha and VAX)

$ LINK MY_MAIN, SYS$INPUT/OPT
MY_MATH/SHAREABLE
PSECT_ATTR=my_data,NOSHR
Ctrl/Z

8.2.1. Creating Upwardly Compatible Shareable Images
(VAX Only)
For VAX linking, you can create a shareable image that can be modified, recompiled, and relinked
without causing the images that were linked against previous versions of the image to be relinked. To
provide this upward compatibility, you must ensure that the values of relocatable universal symbols
within the image remain constant with each relinking.

Universal Symbols that Represent Procedures

To fix the locations of universal symbols that represent procedures in shareable image, create a
transfer vector for the shareable image. In a transfer vector, you create small routines in VAX
MACRO that define an entry point in the image and then transfer control to another location in
memory. You declare the entry points defined in the transfer vector as the universal symbols and
have each routine transfer control to the actual location of the procedures within the shareable image.
As long as you ensure that the location of the transfer vector remains the same with each relinking,
images that linked with previous versions of the shareable image will access the procedures at the
locations they expect.

Figure 8.1 illustrates the flow of control at run-time between a main image and a shareable image in
which the actual routines are declared as universal symbols (as shown in Section 8.2) and between a
main image and a shareable image in which the transfer vector entry points are declared as universal
symbols (as shown in Section 8.2.1.1).

158

Chapter 8. Creating Shareable Images (Alpha and VAX)

Figure 8.1. Comparison of UNIVERSAL= Option and Transfer Vectors

Universal Symbols that Represent Data

To provide upwardly compatible symbols that represent data locations, you must also fix these
locations within memory. You can accomplish this by allocating the data symbols at the end of the
transfer vector file. In this way, when you fix the location of the transfer vector within an image, the
data locations also remain the same.

8.2.1.1. Creating a Transfer Vector (VAX Only)

You create a transfer vector using VAX MACRO. Specify the .TRANSFER directive because
it declares the symbol that you specify as its argument as a universal symbol by default. VSI
recommends the following coding conventions for creating a transfer vector:

 .transfer FOO ;Begin transfer vector to FOO

 .mask FOO ;Store register save mask

 jmp L^FOO+2 ;Jump to routine

The .TRANSFER directive causes the symbol, named FOO in the example, to be added to
the shareable image's global symbol table. (You do not need to also specify the symbol in a
UNIVERSAL= statement in a linker options file).
The .MASK directive causes the assembler to allocate 2 bytes of memory, find the register save
mask accompanying the entry point (FOO in the example), and store the register save mask of
the procedure. (According to the OpenVMS calling standard, procedure calls using the CALLS

159

Chapter 8. Creating Shareable Images (Alpha and VAX)

or CALLG instructions include a word, called the register save mask, whose bits represent
which registers must be preserved by the routine).
The JMP instruction transfers control to the address specified as its argument. In the example,
this address is two bytes past the routine entry point FOO (the first two bytes of the routine are
the register save mask).

It is recommended to use a jump instruction (for example, JMP L^) in the transfer vector.
Transferring control with a BSBW or JSB instruction results in saving the address of the next
instruction from the transfer vector on the stack. In addition, the displacement used by the
BSBW instruction must be expressible in 16 bits, which may not be sufficient to reach the target
routine. Also, to avoid making the image position dependent, do not use an absolute mode
instruction.

Note that the preceding convention assumes that the routine is called using the procedure call format,
the default for most high-level language compilers. If a routine is called as a subroutine, using the
JSB instruction, you do not need to include the .MASK directive. When creating a transfer vector
for a subroutine call, VSI recommends adding bytes of padding to the transfer vectors. This padding
makes a subroutine transfer vector the same size as a transfer vector for a procedure call. If you
need to replace a subroutine transfer vector with a procedure call transfer vector, you can make the
replacement without disturbing the addresses of all the succeeding transfer vectors.

The following example illustrates a subroutine transfer vector that uses the .BLKB directive to
allocate the padding:

.TRANSFER FOO ;Begin transfer vector to FOO
JMP L^FOO ;Jump to routine
.BLKB 2 ;Pad vector to 8 bytes

To ensure upward compatibility, follow these guidelines when creating a transfer vector:

• Preserve the order and placement of entries in a transfer vector. Once you establish the order in
which entries appear in a transfer vector, do not change it. Images that were linked against the
shareable image depend on the location of the symbol in the transfer vector.

You can reserve space within a transfer vector for future growth by specifying dummy transfer
vector entries at various positions in a transfer vector.

• Add new entries to the end of a transfer vector. When including universal data in a transfer vector
file, use padding to leave adequate room for future growth between the end of the transfer vector
and the beginning of the list of universal data declarations.

A transfer vector for the program in Example 8.2 is illustrated in Example 8.3.

Example 8.3. Transfer Vector for the Shareable Image MY_MATH.EXE

.transfer myadd

.mask myadd
jmp l^myadd+2
.transfer mysub
.mask mysub
jmp l^mysub+2
.transfer mymul
.mask mymul
jmp l^mymul+2
.transfer mydiv
.mask mydiv
jmp l^mydiv+2
.end

160

Chapter 8. Creating Shareable Images (Alpha and VAX)

Assemble the transfer vector file to create an object module that can beincluded in a link operation:

$ MACRO MY_MATH_TRANS_VEC.MAR

8.2.1.2. Fixing the Location of the Transfer Vector in Your Image
(VAX Only)

For VAX linking, you include a transfer vector in a link operation as you would any other object
module. However, to ensure upward compatibility,you must make sure that the transfer vector always
appears in the same location in the image. The best way to accomplish this is to make the transfer
vector always appear at the beginning of the image by forcing the linker to process it first. If you
put the transfer vector file in a named cluster, using the CLUSTER=option, and specify it as the first
option in an options file that can generate a cluster, the transfer vector will appear at the beginning of
the file. For more information about controlling cluster creation, see Section 6.3.

The following example illustrates how to include the transfer vector in the link operation, using the
CLUSTER= option, so that the linker processes it first:

$ LINK/SHAREABLE MY_MATH, SYS$INPUT/OPT

 GSMATCH=lequal,1,1000

 CLUSTER=trans_vec_clus,,,MY_MATH_TRANS_VEC.OBJ
Ctrl/Z

To enable images that linked against a shareable image to run with various versions of the
shareable image, you must specify the identification numbers of the image. By default, the
linker assigns a unique identification number to each version of a shareable image. At run-
time, if the ID of the shareable image as it is listed in the executable image does not match the
ID of the shareable image the image activator finds to activate, the activation will abort. For
information about using the GSMATCH= option to specify ID numbers, see the description of
the GSMATCH= option Chapter 10.
This CLUSTER= option causes the linker to create the named cluster TRANS_VEC_CLUS and
to put the transfer vector file in this cluster.

8.2.2. Creating Based Shareable Images
(VAX Linking Only)
For VAX linking, you can create a based shareable image by specifying the BASE= option in a linker
options file. In a based image, you specify the starting address at which you want the linker to begin
allocating memory for the image. For more information about the BASE= option, see Chapter 10.

VSI does not recommend using based shareable images.

Based shareable Alpha images are not supported.

8.3. Declaring Universal Symbols in Alpha
Shareable Images
For Alpha linking, you declare universal symbols by listing them in a SYMBOL_VECTOR=
option. For each symbol listed in the SYMBOL_VECTOR= option,the linker creates an entry in the
shareable image's symbol vector and creates an entry for the symbol in the shareable image's global
symbol table (GST). When the shareable image is included in a subsequent link operation, the linker
processes the symbols listed in its GST.

161

Chapter 8. Creating Shareable Images (Alpha and VAX)

To implement Example 8.2 as an Alpha shareable image, you must declare the universal symbols in
the image by using the following LINK command:

$ LINK/SHAREABLE MY_MATH, SYS$INPUT/OPT
GSMATCH=lequal,1,1000
SYMBOL_VECTOR=(myadd=PROCEDURE,-
mysub=PROCEDURE,-
mymul=PROCEDURE,-
mydiv=PROCEDURE,-
my_symbol=DATA,-
my_data=PSECT)
Ctrl/Z

You must identify the type of symbol vector entry you want to create by specifying a keyword. The
linker allows you to create symbol vector entries for procedures, data (relocatable or constant), and for
global data implemented as an overlaid program section.

A symbol vector entry is a pair of quadwords that contains information about the symbol. The
contents of these quadwords depends on what the symbol represents. If the symbol represents a
procedure, the symbol vector entry contains the address of the procedure entry point and the address
of the procedure descriptor. If the symbol represents a data location, the symbol vector entry contains
the address of the data location. If the symbol represents a data constant, the symbol vector entry
contains the actual value of the constant.

When you create the shareable image (by linking it specifying the /SHARE qualifier), the value of a
universal symbol listed in the GST is the offset of its entry into the symbol vector (expressed as the
offset z in Figure 8.2).

When you include this shareable image in a subsequent link operation, the linker puts this value in the
linkage pair in the linkage section of the executable image that references the symbol. A linkage pair
is a data structure defined by the VSI OpenVMS Calling Standard.

At run-time, when the image activator loads the shareable image into memory, it calculates the actual
locations of the routines and relocatable data within the image and stores these values in the symbol
vector. The image activator then fixes up the references to these symbols in the executable image that
references symbols in the shareable image, moving the values from the symbol vector in the shareable
image into the linkage section in the executable image. When the executable image makes the call to
the procedure, shown as the Jump-to-Subroutine (JSR) instruction sequence in Figure 8.2, control is
transferred directly to the location of the procedure within the shareable image.

162

Chapter 8. Creating Shareable Images (Alpha and VAX)

Figure 8.2. Accessing Universal Symbols Specified Using the
SYMBOL_VECTOR=Option

Note that, unlike VAX linking, global symbols implemented as overlaid program sections are not
universal by default. Instead, you control which of these symbols is a universal symbol by including
it in the SYMBOL_VECTOR=option, specifying the PSECT keyword. The example declares the
program section my_data as a universal symbol.

You must specify the qualifier /EXTERN_MODEL=COMMON on the compile command line to
make the VSI C for OpenVMS Alpha compiler implement the symbol as an overlaid program section.
If you do not specify the COMMON keyword, the default keyword is RELAXED_REFDEF.

8.3.1. Symbol Definitions Point to Shareable Image
Psects (Alpha Only)
On Alpha systems, the linker cannot overlay program sections that are referenced by symbol
definitions with shareable image program sections of the same name. The C compiler generates
symbol definition records that contain the index of an overlaid program section when the relaxed ref-
def extern model is used (the default).

Shareable image program sections are created when you link a shareable image and use the PSECT
keyword in your SYMBOL_VECTOR option.

If the linker detects this condition, it issues the following error:
%LINK-E-SHRSYMFND, shareable image psect <name> was pointed to
by a symbol definition
%LINK-E-NOIMGFIL, image file not created

The link continues, but no image is created. To work around this restriction, change the symbol vector
keyword to DATA, or recompile your C program with the qualifier /EXTERN=COMMON.

163

Chapter 8. Creating Shareable Images (Alpha and VAX)

For more information, see the VSI C for OpenVMS Alpha documentation.

The name of a symbol implemented as an overlaid program section can duplicate the name
of a symbol representing a procedure or data location. If the program section specified in a
SYMBOL_VECTOR= option does not exist, the linker issues a warning, places zeros in the symbol
vector entry, and does not create an entry for the program section in the image's GST.

8.3.2. Creating Upwardly Compatible Shareable Images
(Alpha Only)
The SYMBOL_VECTOR= option allows you to create upwardly compatible shareable images
without requiring you to create transfer vectors as for VAX images.

However, as with transfer vectors, to ensure upward compatibility when using a
SYMBOL_VECTOR= option, you must preserve the order and placement of the entries in the symbol
vector with each relinking. Do not delete existing entries. Add new entries only at the end of the list.
If you use multiple SYMBOL_VECTOR= option statements in a single options file to declare the
universal symbols, you must also maintain the order of the SYMBOL_VECTOR= option statements
in the options file. If you specify SYMBOL_VECTOR= options in separate options files, make sure
the linker always processes the options files in the same order. (The linker creates only one symbol
vector for an image).

Note, however, that there is no need to anchor the symbol vector at a particular location in memory, as
you would anchor a transfer vector for a VAX link. The value at link time of a universal symbol in an
Alpha shareable image is its location in the symbol vector, expressed as an offset from the base of the
symbol vector, and the location of the symbol vector is stored in the image header. (For VAX linking,
the value of a universal symbol at link time is the location of the symbol in the image, expressed as an
offset from the base of the image). Thus, the relative position of the symbol vector within the image
does not affect upward compatibility.

8.3.3. Deleting Universal Symbols Without Disturbing
Upward Compatibility (Alpha Only)
To delete a universal symbol without disturbing the upward compatibility of an image, use the
PRIVATE_PROCEDURE or PRIVATE_DATA keywords. In the following example, the symbol
mysub is deleted using the PRIVATE_PROCEDURE keyword:
$ LINK/SHAREABLE MY_MATH, SYS$INPUT/OPT
GSMATCH=lequal,1,1000
SYMBOL_VECTOR=(myadd=PROCEDURE,-
mysub=PRIVATE_PROCEDURE,-
mymul=PROCEDURE,-
mydiv=PROCEDURE,-
my_symbol=DATA,-
my_data=PSECT)
Ctrl/Z

When you specify the PRIVATE_PROCEDURE or PRIVATE_DATA keyword in the
SYMBOL_VECTOR= option, the linker creates symbol vector entries for the symbols but does
not create an entry for the symbol in the GST of the image. The symbol still exists in the symbol
vector and none of the other symbol vector entries have been disturbed. Images that were linked with
previous versions of the shareable image that reference the symbol will still work, but the symbol will
not be available for new images to link against.

Using the PRIVATE_PROCEDURE keyword, you can replace an entry for an obsolete procedure with
a private entry for a procedure that returns a message that explains the status of the procedure.

164

Chapter 8. Creating Shareable Images (Alpha and VAX)

8.3.4. Creating Run-Time Kits (Alpha Only)
If you use shareable images in your application, you may want to ship a run-time kit with versions of
these shareable images that cannot be used in link operations.

To do this, you must first link your application, declaring the universal symbols in the shareable
images using the SYMBOL_VECTOR= option so that references to these symbols can be resolved.
After the application is linked,you must then relink the shareable images so that they have fully
populated symbol vectors but empty global symbol tables (GSTs). The fully populated symbol vectors
allow your application to continue to use the shareable image sat run-time. The empty GSTs prevent
other images from linking against your application.

To create this type of shareable image for a run-time kit (without having to disturb the
SYMBOL_VECTOR= option statements in your application's options files), relink the shareable
image after development is completed, specifying the /NOGST qualifier on the LINK command line.
When you specify the /NOGST qualifier, the linker builds a complete symbol vector, containing the
symbols you declared universal in the SYMBOL_VECTOR= option, but does not create entries for
the symbols that you declared universal in the GST of the shareable image. For more information
about the /GST qualifier, see Chapter 10.

8.3.5. Specifying an Alias Name for a Universal Symbol
(Alpha Only)
For Alpha linking, a universal symbol can have a name, called a universal alias, different from the
name contributed by the object module in which it is defined. You specify the universal alias name
when you declare the global symbol as a universal symbol using the SYMBOL_VECTOR= option.
The universal alias name precedes the internal name of the global symbol, separated by a slash (/). In
the following example, the global symbol mysub is declared as a universal symbol under the name
sub_alias.
LINK/SHAREABLE MY_SHARE/SYS$INPUT/OPT
SYMBOL_VECTOR=(myadd=procedure,-
 sub_alias/mysub=procedure,-
 mymul=procedure,-
 mydiv=procedure,-
 my_symbol=DATA,-
 my_data=PSECT)
Ctrl/Z

You can specify universal alias names for symbols that represent procedures or data; you cannot
declare a universal alias name for a symbol implemented as an overlaid program section. In link
operations in which the shareable image is included, the calling modules must refer to the universal
symbol by its universal alias name to enable the linker to resolve the symbolic reference.

In a privileged shareable image, calls from within the image that use the alias name result in a fix-up
and subsequent vectoring through the privileged library vector (PLV), which results in a mode change.
Calls from within the shareable image that use the internal name are done in the caller's mode. (Calls
from external images always result in a fix-up). For more information about creating a PLV, see the
VSI OpenVMS Programming Concepts Manual.

8.3.6. Improving the Performance of Installed
Shareable Images (Alpha Only)
For Alpha linking, you can improve the performance of an installed shareable image by installing it
as a resident image (by using the /RESIDENT qualifier of the Install utility). INSTALL moves the

165

Chapter 8. Creating Shareable Images (Alpha and VAX)

executable, read-only pages of resident images into system space where they reside on huge pages.
Executing your image in huge pages improves performance.

166

Chapter 9. Interpreting an Image Map
File (Alpha and VAX)
This chapter describes how to interpret the information returned in an image map on OpenVMS Alpha
and OpenVMS VAX systems and describes the combinations of linker qualifiers used to obtain a map.

For information about interpreting an image map file on OpenVMS x86-64 and OpenVMS I64
systems, see Chapter 5.

9.1. Overview of Alpha/VAX Linker Map
At your request, the linker can generate information that describes the contents of the image and the
linking process itself. This information, called an image map, can be helpful when locating link-time
errors, studying the layout of the image in virtual memory, and keeping track of global symbols.

You can obtain the following types of information about an image from its image map:

• The names of all modules included in the link operation, both explicitly in the LINK command
and implicitly from libraries

• The names, sizes, and other information about the image sections that comprise the image

• The names, sizes, and locations of program sections within an image

• The names and values of all the global symbols referenced in the image,including the name of
the module in which the symbol is defined and the names of the modules in which the symbol is
referenced

• Statistical summary information about the image and the link operation itself

You determine which information the linker includes in a map file by specifying qualifiers in the
LINK command line. If you specify the /MAP qualifier, the map file includes certain information by
default (called the default map). You can also request a map file that contains less information about
the image (called a brief map) or a map file that contains more information about the image (called a
full map). Table 9.1 lists the LINK command qualifiers that affect map file production.

Table 9.1. LINK Command Map File Qualifiers

/MAP Directs the linker to create a map file. This is the default for batch
jobs. /NOMAP is the default for interactive link operations.

/BRIEF When used in combination with the /MAP qualifier, directs the linker to
create a map file that contains only a subset of all the possible information.

/FULL When used in combination with the /MAP qualifier, directs the linker to
create a map file that contains all the possible information.

/CROSS_REFERENCE When used in combination with the /MAP qualifier, directs the linker to
replace the Symbols By Name section with a Symbol Cross-Reference
section, in which all the symbols in each module are listed with the
modules in which they are called. You cannot request this type of listing in
a brief map file.

167

Chapter 9. Interpreting an Image Map File (Alpha and VAX)

9.2. Components of an Image Map File
(Alpha/VAX)
The linker formats the information it includes in a map file into sections. Table 9.2 lists the sections
of a map file in the order in which they appear in the file. The table also indicates whether the section
appears in a brief map, full map, or default map file.

Table 9.2. Image Map Sections

Section Name Description Default Map Full Map Brief Map
Object Module
Synopsis1

Lists all the object modules
in the image.

Yes Yes Yes

Module Relocatable
Reference Synopsis2

Specifies the number
of .ADDRESS directives in
each module.

— Yes —

Image Section Synopsis Lists all the image sections
and clusters created by the
linker.

— Yes —

Program Section
Synopsis1

Lists the program sections
and their attributes.

Yes Yes —

Symbols By Name1 Lists global symbol names
and values.

Yes Yes —

Symbol Cross-
Reference1

Lists each symbol name,
its value, the name of
the module that defined
it, and the names of the
modules that refer to it.
Replaces the Symbols
By Name section when
the /CROSS_REFERENCE
qualifier is specified.

Yes Yes —

Symbols By Value Lists all the symbols with
their values (in hexadecimal
representation).

— Yes —

Image Synopsis Presents statistics and other
information about the output
image.

Yes Yes Yes

Link Run Statistics Presents statistics about
the link run that created the
image.

Yes Yes Yes

1In a full map file, these sections include information about modules that were included in the link operation from libraries but were not
explicitly specified on the LINK command line.
2VAX specific

The following sections describe each of the image map sections in detail. The examples of the map
sections are taken from the map file created in a link operation of the executable image in Chapter 8.

168

Chapter 9. Interpreting an Image Map File (Alpha and VAX)

9.2.1. Object Module Synopsis (Alpha/VAX)
The first section that appears in a map file is the Object Module Synopsis. This section lists the
name of each module included in the link operation in the order in which it was processed. Note that
shareable images included in the link operation are listed here as well. This section of the map file
also includes other information about each module, arranged in columns, as in the following example:

 +------------------------+
 ! Object Module Synopsis !
 +------------------------+

Module Name Ident Bytes File Creation Date Creator
----------- ----- ----- ----- ------------- -------
MY_MATH V1.0 0 WORK:[PROGS]MY_MATH.EXE;11 3-NOV-2000 12:27 Linker T10-37
MY_MAIN V1.0 553 WORK:[PROGS]MY_MAIN.OBJ;15 3-NOV-2000 12:27 C X1.1-048E
DECC$SHR V1.0 0 [SYSLIB]DECC$SHR.EXE;2 9-JUL-2000 07:49 Linker T10-03
SYS$PUBLIC_VECTORS
 X-26 0 [SYSLIB]SYS$PUBLIC_VECTORS.EXE;2 9-JUL-2000 07:34 Linker T10-03

Module Name. The name of each object module included in the link operation. The modules are
listed in the order in which the linker processed them. If the linker encounters an error during its
processing of an object module, an error message appears on the line directly following the line
containing the name of that object module.
Ident. The text string in the IDENT field in an object module or in the image header of a
shareable image.
Bytes. The number of bytes the object module contributes to the image. Because shareable
images are activated at run-time, the linker cannot calculate the size of their contributions to the
image. Thus, the value 0 (zero) is associated with shareable images.
File. Full file specification of the input file, including device and directory. If the specification is
longer than 35 characters, it is shortened by dropping the device portion of the file specification
or both the device and directory portions of the file specification.
Creation Date. The date and time the file was created.
Creator. Identification of the language processor or other utility that created the file.

The order in which the modules are listed in this section reflects the order in which the linker
processes the input files specified in the link operation. Note that the order of processing can be
different from the order in which the files were specified in the command line. For more information
about how the linker processes input files, see Chapter 6.

9.2.2. Module Relocatable Reference Synopsis
(VAX Only)
For VAX linking, the information contained in the Module Relocatable Reference Synopsis section
varies with the type of image being created. For shareable images, this section lists all of the modules
that contain at least one .ADDRESS directive. For executable or system images, this section lists
the names of all object modules containing at least one .ADDRESS reference to a shareable image.
The section lists the modules in the order in which the linker processes them, including the number
of .ADDRESS references found. The linker formats the information as in the following example:

 +---------------------------------------+
 ! Module Relocatable Reference Synopsis !
 +---------------------------------------+

Module Name Number Module Name Number Module Name Number
----------- ------ ----------- ------ ----------- ------

MAIN1 1

169

Chapter 9. Interpreting an Image Map File (Alpha and VAX)

Module Name. The name of each object module included in the link operation. The modules are
listed in the order in which the linker processed them.
Number. The number of .ADDRESS references found.

Note that you can reduce linker and image activator processing time by removing .ADDRESS
directives from input files.

9.2.3. Image Section Synopsis Section (Alpha/VAX)
The Image Section Synopsis section of the linker map file lists the image sections created by the
linker. The image sections appear in the order in which the linker created them, which is the same
order as the clusters in the linker's cluster list. (For more information about clusters, see Chapter 6).
The section includes other information about these image sections, formatted in columns, as in the
following example:

1. Cluster. The name of each cluster the linker created, listed in the order in which the linker created
them.

2. Type. The type of image section, expressed as one of the following codes:

Code Image Section Type
1 Shareable fixed image section
2 Private fixed image section
3 Shareable position-independent image section
4 Private position-independent image section
253 Stack image section

For more information about the types of image sections the linker creates, see Section 7.3.5.

3. Pages or pagelets. The length of each image section, expressed in pages or pagelets.

170

Chapter 9. Interpreting an Image Map File (Alpha and VAX)

4. Base Address. The base address assigned to the image section. Note that if the cluster is
relocatable, the image activator relocates the base address. In this case, the base address entry for
each image section in the cluster MY_MATH has the letter “R” appended to it, indicating that
the base address entry is an offset to be added to the cluster base address assigned by the image
activator.

For Alpha linking, when images are installed as resident images, the Install utility moves image
sections containing code into system space. This invalidates the base addresses listed for these
image sections in this section of the map file. Note, however, that the relative positions of the
program sections within the image section, listed in the Program Section Synopsis section of the
map file, remain valid when the image section is moved into system space.

5. Disk VBN (virtual block number). The virtual block number of the image file on disk where the
image section begins. The number 0 indicates that the image section is not in the image file.

6. Page fault cluster (PFC). The number of pagelets read into memory by the operating system
when the initial page fault occurs for that image section. The number 0 indicates that the system
parameter PFCDEFAULT determines this value, rather than the linker.

7. Protection and Paging. A keyword phrase that characterizes the settings of certain attributes of the
image section, such as the attributes that affect protection and paging. The following table lists the
keywords used by the linker to indicate these characteristics of an image section:

Keyword Meaning
COPY ON REF Indicates that the image section is a copy-on-reference image

section. Because a copy-on-reference image section is readable
and writable, but not shareable, each process receives a copy of
it.

DEMAND ZERO Indicates that the image section is a demand-zero image section.
For more information, see Section 7.4.3.

EXECUTABLE Indicates that the image section contains code.
FIXUP VECTORS Indicates that the image section contains the fix-up section.

There is always a change-protection fix-up for the fix-up section,
so that when the image activator is done, the image activator
changes the protection of the image section to READ ONLY.

NON-SHAREABLE ADDRESS
DATA

Indicates that the linker set a READONLY page in the image
section to WRITE so that the image activator can fix up address
references (.ADDRESS) in the image section. The linker creates
a change-protection fix-up for these image sections that causes
the image activator to set the attributes of the image section
back to READ ONLY when it finishes processing the address
references.

READ ONLY Indicates that the image section is protected against write access.
READ WRITE Indicates that the image section allows both read and write

access.

The linker may use more than one keyword to describe an image section. For example, to describe
an image section that contains code, the linker uses the READ ONLY and EXECUTABLE
keywords.

171

Chapter 9. Interpreting an Image Map File (Alpha and VAX)

Note that a program section that you may have protected from write access (by setting the
NOWRT program section attribute) may appear in the map file as writable (with the READ
WRITE keyword). If this program section also has the NON-SHAREABLE ADDRESS DATA
keyword (as the first image section in DEFAULT_CLUSTER illustrates), the linker has enabled
write access to the program section to allow the image activator to fix up address references in
the image section at run-time. The image activator resets the program section attributes to READ
ONLY after it is finished.

8. Global Section Name. The name assigned by the linker to each image section comprising a
shareable image. The linker creates the names by appending the characters “_00x” after the
file name, where “x” is an integer, starting with 1, and incremented for each image section in a
shareable image.

9. Match. The algorithm the image activator uses when comparing identification numbers in a
shareable image, expressed by the keyword LESS/EQUAL, EQUAL, or ALWAYS. For more
information about this topic, see the description of the GSMATCH= option in Chapter 10.

10. Majorid. An identification number assigned to the image. The linker assigns the number to the
image if it is not specified as part of the link operation in the GSMATCH= option.

11. Minorid. An identification number assigned to the image. The linker assigns the number to the
image if it is not specified as part of the link operation in the GSMATCH= option.

9.2.4. Program Section Synopsis Section (Alpha/VAX)
The Program Section Synopsis section lists the program sections that comprise the image, with
information about the size of the program section, its starting- and ending-addresses, and its attributes.
The Module Name column in this section lists the modules that contribute to each program section.
The following example illustrates this format:

1. Psect Name. The name of each program section in the image in ascending order of its base virtual
address.

2. Module Name. The names of the modules that contribute to the program section whose name
appears on the line directly above in the Psect Name column. If a shareable image appears in this
column, the linker processed the program section as a shareable image reference.

3. Base. The starting virtual address of the program section or of a module that contributes to a
program section.

172

Chapter 9. Interpreting an Image Map File (Alpha and VAX)

4. End. The ending virtual address of the program section or of a module that contributes to a
program section.

5. Length. The total length of the program section or of a module that contributes to a program
section.

6. Align. The type of alignment used for the entire program section or for an individual program
section contribution. The alignment is expressed in two ways. In the first column, the alignment
is expressed using a predefined keyword, such as OCTA. In the second column, the alignment is
expressed as an integer that is the power of 2 that creates the alignment. For example, octaword
alignment would be expressed as the keyword OCTA and as the integer 4 (because 24 = 16).

If the linker does not support a keyword to express an alignment, it puts the text "2 **" in the
column in which the keyword usually appears. When read with the integer in the second column,
it expresses these alignments, such as 2 ** 5.

7. Attributes. The attributes associated with the program section. For a list of all the possible
attributes, see Chapter 7.

For Alpha linking, the linker includes the MOD attribute in the list of program section attributes
(as illustrated in the example). To make room in the display for this attribute, the linker leaves out
the Readability (RD/NORD) and User Library (USR/LIB) attributes, which are reserved for future
use.

For VAX linking, the list of attributes includes the Readability (RD/NORD) and User Library
(USR/LIB) attributes. The Modified (MOD/NOMOD) attribute, which is not supported for VAX
images, is not included.

Note that, if a routine is extracted from the default system library to resolve a symbolic reference,
the Program Section Synopsis section in a full map contains information about the program sections
comprising that routine. The Program Section Synopsis section in a default map does not.

9.2.5. Symbols By Name Section (Alpha/VAX)
The Symbols By Name section lists the global symbols contained in all the modules included in the
link operation. The section includes the value of the symbol, in the following format:

 +-----------------+
 ! Symbols By Name !
 +-----------------+

Symbol Value Symbol Value Symbol Value Symbol Value
------ ----- ------ ----- ------ ----- ------ -----
DECC$EXIT 00001FD0-RX
DECC$GPRINTF 00001710-RX
DECC$MAIN 000007D0-RX
MAIN 00010000-R
MYSUB 00000010-RX
MY_SYMBOL 00000050-RX
SYS$IMGSTA 00000340-RX
__MAIN 00010078-R

Symbol. The names of the image's global symbols in alphabetical order.
Value. The value of the symbol, expressed in hexadecimal. The linker appends characters to the
end of the symbol value to describe other characteristics of the symbol. For an explanation of
these symbols, see Section 9.2.7.

173

Chapter 9. Interpreting an Image Map File (Alpha and VAX)

Note that this section is replaced by the Symbol Cross-Reference section when you specify
the /CROSS_REFERENCE qualifier in the LINK command. The Symbols by Value section,
described in Section 9.2.7, lists the same symbols by value.

9.2.6. Symbol Cross-Reference Section (Alpha/VAX)
The Symbol Cross-Reference Section, which is produced in place of the Symbols By Name section
when you specify the /CROSS_REFERENCE qualifier, lists all of the symbols referenced in the
image, along with the module in which they are defined and with all the modules that reference them.
The section formats this information as in the following example:
 +------------------------+
 ! Symbol Cross Reference !
 +------------------------+

Symbol Value Defined By Referenced By ...
------ ----- ---------- -----------------
DECC$EXIT 00001FD0-RX DECC$SHR MY_MAIN
DECC$GPRINTF 00001710-RX DECC$SHR MY_MAIN
DECC$MAIN 000007D0-RX DECC$SHR MY_MAIN
MAIN 00010000-R MY_MAIN
MYSUB 00000010-RX MY_MATH MY_MAIN
MY_SYMBOL 00000050-RX MY_MATH MY_MAIN
SYS$IMGSTA 00000340-RX SYS$PUBLIC_VECTORS
__MAIN 00010078-R MY_MAIN

Symbol. The name of the global symbol.
Value. The value of the global symbol, expressed in hexadecimal. The linker appends characters
to the end of the symbol value to describe other characteristics of the symbol. For an explanation
of these symbols, see Section 9.2.7.
Defined By. The name of the module in which the symbol is defined. For example, the symbol
mysub is defined in the module named MY_MATH.
Referenced By.... The name or names of all the modules that contain at least one reference to the
symbol.

9.2.7. Symbols By Value Section (Alpha/VAX)
The Symbols By Value section lists all the global symbols in the image

The Symbols By Value section lists all the global symbols in the image in order by value, in ascending
numeric order. The linker formats the information into columns, as in the following example:
 +------------------+
 ! Symbols By Value !
 +------------------+

Value Symbols...
----- ----------
00000010 RX-MYSUB
00000050 RX-MY_SYMBOL
00000340 RX-SYS$IMGSTA
000007D0 RX-DECC$MAIN
00001710 RX-DECC$GPRINTF
00001FD0 RX-DECC$EXIT
00010000 R-MAIN
00010078 R-__MAIN

Value. The value of each global symbol, expressed in hexadecimal, in ascending numerical
order.
Symbols... The names of the global symbols. If more than one symbol has the same value, the
linker lists them on more than one line. The characters prefixed to the symbol names indicate
other characteristics of the symbol, such as its scope. Table 9.3 lists these codes.

174

Chapter 9. Interpreting an Image Map File (Alpha and VAX)

Table 9.3. Symbol Characterization Codes (Alpha/VAX)

Code Meaning
asterisk(*) Symbol is undefined.
A1 Symbol is the alias name for a universal symbol.
I1 Symbol is the internal name of a symbol that hasa universal alias name.
U Symbol is a universal symbol.
R Symbol is a relocatable symbol.
X Symbol is an external symbol.
WK Symbol is a weak symbol. (For more information, see Chapter 6).

1Alpha specific

9.2.8. Image Synopsis Section (Alpha/VAX)
The Image Synopsis section contains miscellaneous information about the image, such as its name
and identification numbers, and a summary of various attributes of the image, such as the number of
files used to build the image. The following example illustrates the format of this section of a map
file. The list following the example provides more information about items in this section that are not
self-explanatory.
 +----------------+
 ! Image Synopsis !
 +----------------+

Virtual memory allocated: 00010000 0003FFFF 00030000 (196608. bytes, 384. pages)
Stack size: 20. pages
Image header virtual block limits: 1. 2. (2. blocks)
Image binary virtual block limits: 3. 5. (3. blocks)
Image name and identification: MY_MAIN V1.0
Number of files: 7.
Number of modules: 4.
Number of program sections: 11.
Number of global symbols: 944.
Number of cross references: 13.
Number of image sections: 20.
User transfer address: 00010078
Debugger transfer address: 00000340
Number of code references to shareable images: 6.
Image type: EXECUTABLE.
Map format: FULL WITH CROSS REFERENCE in file WORK:[PROGS]MY_MAIN.MAP;15
Estimated map length: 148. blocks

Virtual memory allocated. This line contains the following information:

• The starting-address of the image (base-address)

• The ending-address of the image

• The total size of the image, expressed in bytes, in hexadecimal radix

The numbers in parentheses at the end of the line indicate the total size of the image, expressed in
bytes and in pagelets. Both these values are expressed in decimal.

9.2.9. Link Run Statistics Section (Alpha/VAX)
The Link Run Statistics section contains miscellaneous statistical information about the link
operation, such as performance indicators, formatted as in the following example:

175

Chapter 9. Interpreting an Image Map File (Alpha and VAX)

 +---------------------+
 ! Link Run Statistics !
 +---------------------+

Performance Indicators Page Faults CPU Time Elapsed Time
---------------------- ----------- -------- ------------
 Command processing: 93 00:00:00.18 00:00:00.81
 Pass 1: 345 00:00:00.55 00:00:12.04
 Allocation/Relocation: 9 00:00:00.04 00:00:00.30
 Pass 2: 29 00:00:00.14 00:00:00.62
 Map data after object module synopsis: 3 00:00:00.05 00:00:00.31
 Symbol table output: 0 00:00:00.00 00:00:00.10
Total run values: 479 00:00:00.96 00:00:14.18

Using a working set limited to 2048 pages and 946 pages of data storage (excluding image)

Total number object records read (both passes): 167
 of which 0 were in libraries and 0 were DEBUG data records containing 0 bytes

Number of modules extracted explicitly = 0
 with 0 extracted to resolve undefined symbols

5 library searches were for symbols not in the library searched

A total of 0 global symbol table records was written

LINK/MAP/FULL/CROSS MY_MAIN,SYS$INPUT/OPT
my_math/share

176

Chapter 10. LINK Command
Reference
10.1. LINK Command

LINK
LINK — Invokes the OpenVMS Linker utility to link one or more input files into a program image
and defines the execution characteristics of the image.

Format

LINK file-spec [,...]

Qualifiers Supported
Platform

Defaults

/ALPHA Alpha, VAX Platform dependent, see reference
description.

/BASE_ADDRESS[=address] x86-64, I64 /NOBASE_ADDRESS
/BPAGE[=page-size-indicator] All Platform dependent, see reference

description.
/BRIEF All None.
/CONTIGUOUS All /NOCONTIGUOUS
/CROSS_REFERENCE All None.
/DEBUG[=file-spec] All /NODEBUG
/DEMAND_ZERO[=PER_PAGE] 64-bit platforms /DEMAND_ZERO
/DNI
(Display Name Information)

x86-64, I64 /DNI

/DSF[=file-spec]
(Debug Symbol File)

64-bit platforms /NODSF

/EXECUTABLE[=file-spec] All /EXECUTABLE
/FP_MODE=keyword x86-64, I64 /NOFP_MODE
/FULL[=(keyword[,...])] All None.
/GST
(Global Symbol Table)

64-bit platforms /GST

/HEADER Alpha, VAX /NOHEADER1

/INCLUDE=(module-name[,...]) All None.
/INFORMATIONALS All /INFORMATIONALS
/LIBRARY All None.
/MAP[=file-spec] All /NOMAP (in interactive mode)
/NATIVE_ONLY I64, Alpha /NATIVE_ONLY

177

Chapter 10. LINK Command Reference

Qualifiers Supported
Platform

Defaults

/OPTIONS All None.
/P0IMAGE All /NOP0IMAGE
/PROTECT All /NOPROTECT
/REPLACE Alpha /REPLACE1

/SECTION_BINDING[=(CODE,DATA)] Alpha /NOSECTION_BINDING1

/SEGMENT_ATTRIBUTE=(segm-attribute,
[...])

x86-64, I64 None.

/SELECTIVE_SEARCH All None.
/SHAREABLE[=file-spec] All /NOSHAREABLE
/SYMBOL_TABLE[=file-spec] All /NOSYMBOL_TABLE
/SYSEXE 64-bit platforms /NOSYSEXE
/SYSLIB All /SYSLIB
/SYSSHR All /SYSSHR
/SYSTEM[=base-address] Alpha, VAX /NOSYSTEM
/THREADS_ENABLE All /NOTHREADS_ENABLE
/TRACE All /TRACE
/USERLIBRARY[=(table[,...])] All /USERLIBRARY=ALL
/VAX Alpha, VAX Platform dependent, see reference

description.
1On x86-64 and I64 systems, the qualifier is accepted by the linker but has no effect.

Parameters
file-spec [,...]

Specifies one or more input files (wildcard characters are not allowed). Input files may be object
modules, shareable images, libraries to be searched for external references or from which specific
modules are to be included, or options files to be read by the linker. Separate multiple input file
specifications with commas (,) or plus signs (+). In either case, the linker creates a single image file.

If you omit the file type in an input file specification, the linker supplies default file types, based on
the nature of the input file. For object modules, the default file type is .OBJ. For more information
about specifying input files, see Chapter 1.

10.2. Qualifier Descriptions
This section describes the LINK command qualifiers.

/ALPHA (Alpha and VAX)
/ALPHA (Alpha and VAX) — Directs the linker to produce an OpenVMS Alpha image. On
OpenVMS Alpha or VAX systems, when neither /ALPHA nor /VAX is specified, the default action is
to create an OpenVMS VAX image on an OpenVMS VAX system and to create an OpenVMS Alpha
image on an OpenVMS Alpha system.

178

Chapter 10. LINK Command Reference

Format

/ALPHA

Description

This qualifier is used to instruct the linker to accept OpenVMS Alpha object files and library files to
produce an OpenVMS Alpha image.

You must inform the linker where OpenVMS Alpha system libraries and shareable images are located
with the logical names ALPHA$LOADABLE_IMAGES and ALPHA$LIBRARY. On an OpenVMS
Alpha system, these logicals are already defined to point to the correct directories on the current
system disk. On OpenVMS VAX, you must define these logical names so that they translate to the
location of an OpenVMS Alpha system disk residing on the system where the Alpha linking is to
occur.

For more information on cross-architecture linking, see Section 1.5.

Example
$ DEFINE ALPHA$LIBRARY DKB100:[VMS$COMMON.SYSLIB]
$ DEFINE ALPHA$LOADABLE_IMAGES DKB100:[VMS$COMMON.SYS$LDR]
$ LINK/ALPHA ALPHA.OBJ

This example, which is performed on an OpenVMS VAX system, shows the definition of logical
names to point to the appropriate a reason an OpenVMS Alpha system disk mounted on device
DKB100. The qualifier /ALPHA tells the linker to expect the object file,ALPHA.OBJ, to be an
OpenVMS Alpha object file and to link it using the OpenVMS Alpha libraries and images on
DKB100, if necessary.

/BASE_ADDRESS (x86-64 and I64)
/BASE_ADDRESS (x86-64 and I64) — Assigns a virtual address for executable images that are not
activated by the OpenVMS image activator, such as images used in the boot process.

Format

/BASE_ADDRESS=address

/NOBASE_ADDRESS (default)

Qualifier Values

address

The location at which you want the first segment of the executable image located. You can
express this location as decimal (%D), octal (%O), or hexadecimal (%X) numbers. The default is
hexadecimal.

Description

The /BASE_ADDRESS qualifier assigns a virtual address for executable images that are not activated
by the OpenVMS image activator, such as images used in the boot process. The base address is the

179

Chapter 10. LINK Command Reference

starting address that you want the linker to assign to an executable image. The OpenVMS image
activator is free to ignore any linker-assigned starting address. This qualifier is used primarily by
system developers.

The /BASE_ADDRESS qualifier does not replace the BASE= option or the base-address specifier in
the CLUSTER= option, which is illegal on OpenVMS x86-64 and I64 systems.

For all images (executable and shareable), the starting address is determined by the image activator.
Any linker assigned address value can be changed when activating the image.

/BPAGE
/BPAGE — Specifies the page size the linker should use when it creates the segments (on x86-64 and
I64 systems) or image sections (on Alpha and VAX systems) that make up an image.

Format
/BPAGE[=page-size-indicator]

Qualifier Values
page-size-indicator

An integer that specifies a page size as the power of 2 required to create a page that size. For example,
to get an 8 KB page size, specify the value 13 because 213 equals 8 K. The following table lists the
page sizes supported by the linker with the defaults:

Value Page Size Defaults
9 512 bytes Default value for VAX links when the/BPAGE qualifier is not

specified.
13 8 KB Default value for VAX links when the /BPAGE qualifier is specified

without a value.
14 16 KB —
15 32 KB —
16 64 KB Default value on 64-bit systems when /BPAGE is not specified or

when the /BPAGE qualifier is specified without a value.

Description
The images the linker creates are made up of segments (on x86-64 and I64 systems) or image sections
(on Alpha and VAX systems) that the linker allocates on page boundaries. When you specify a larger
pagesize, the origin of segments or image sections increases to the next multiple of that size.

An image linked to a page size that is larger than the page size of the CPU generally runs correctly,
but it might consume more virtual address space.

On 64-bit systems, by default the linker creates segments or image sections on 64 KB boundaries, thus
allowing the images to run properly on any 64-bit system, regardless of the hardware page size.

On VAX systems, linking a shareable image to a larger page size can cause the value of transfer vector
offsets to change if they were not allocated in page 0 of the image. Do not link against as hareable

180

Chapter 10. LINK Command Reference

image that was created with a different page size. (You cannot determine the page size used in the
creation of a VAX image from the image).

Example
$ LINK/BPAGE=16 MY_PROG.OBJ

Including the value 16 with the /BPAGE qualifier causes the linker to create segments (on x86-64 and
I64 systems) or image sections (on Alpha and VAX systems) on 64 KB page boundaries.

/BRIEF
/BRIEF — Directs the linker to produce a brief image map. For more information, see also the /MAP
and /FULL qualifiers.

Format
/MAP/BRIEF

Qualifier Values
None.

Description
On x86-64 and I64 systems, a brief map contains the following sections:

• Object and Image Synopsis

• Image Segment Synopsis

• Link Run Statistics

On Alpha and VAX systems, a brief map contains the following sections:

• Object Module Synopsis

• Image Section Synopsis

• Link Run Statistics

In contrast, on x86-64 and I64 systems, the default image map contains the Object and Image
Synopsis, Image Synopsis, Link Run Statistics, Program Section Synopsis, and Symbols By Name
sections. On Alpha and VAX systems, the default image map contains the Object Module Synopsis,
Image Synopsis, Link Run Statistics, Program Section Synopsis, and Symbols By Name sections. For
more information about image maps, see Chapter 5 (x86-64 and I64) and Chapter 9 (Alpha and VAX).

The /BRIEF qualifier must be specified with the /MAP qualifier and is incompatible with the /FULL
qualifier and the /CROSS_REFERENCE qualifier.

Example
$ LINK/MAP/BRIEF MY_PROG

In this example, the linker creates a brief image map with the filename MY_PROG.MAP.

181

Chapter 10. LINK Command Reference

/CONTIGUOUS
/CONTIGUOUS — Directs the linker to place the entire image in consecutive disk blocks. If
sufficient contiguous space is not available on the output disk, the linker reports an error and
terminates the link operation.

Format
/CONTIGUOUS

/NOCONTIGUOUS (default)

Description
You can use the /CONTIGUOUS qualifier to speed up the activation time of any type of image
because images usually activate more slowly if their image disk blocks are not contiguous. Note,
however, that in most cases performance benefits do not warrant the use of the /CONTIGUOUS
qualifier.

You can also use the /CONTIGUOUS qualifier when linking bootstrap programs for certain system
images that require contiguity.

Even when you do not specify the /CONTIGUOUS qualifier, the file system tries to use contiguous
disk blocks for images, if sufficient contiguous space is available.

Example
$ LINK/CONTIGUOUS MY_PROG

This example directs the linker to place the entire image named MY_PROG.EXE in consecutive disk
blocks.

/CROSS_REFERENCE
/CROSS_REFERENCE — Directs the linker to replace the Symbols By Name section in a full or
default image map with the Symbol Cross-Reference section.

Format
/MAP/CROSS_REFERENCE

Description
The Symbol Cross-Reference section lists, in alphabetical order, the name of each global symbol,
together with the following information about each:

• Its value

• The name of the first module in which it is defined

• The name of each module in which it is referenced

The number of symbols listed in the cross-reference section depends on whether the linker generates
a full map or a default map. In a full map, this section includes global symbols from all modules in
the image, including those extracted from all libraries. In a default map, this section does not include

182

Chapter 10. LINK Command Reference

global symbols from modules extracted from the default system libraries IMAGELIB.OLB and
STARLET.OLB. For more information about image map files, see Chapter 5 (x86-64 and I64) and
Chapter 9 (Alpha and VAX).

The /CROSS_REFERENCE qualifier is incompatible with the /BRIEF qualifier.

Example
$ LINK/MAP/CROSS_REFERENCE MY_PROG

This example produces an image map file named MY_PROG.MAP that includes a Symbol Cross-
Reference section.

/DEBUG
/DEBUG — Directs the linker to generate debug and traceback information and to give the debugger
control when the image is run.

Format
/DEBUG[=file-spec]

/NODEBUG (default)

Qualifier Values
file-spec (Alpha and VAX)

Identifies a user-written debugger module.

If you specify the /DEBUG qualifier without entering a file specification, the OpenVMS Debugger
gains control at run-time. Requesting the OpenVMS Debugger does not affect the location of code
within the image because the debugger is mapped into the process address space at run-time, not at
link time. See the VSI OpenVMS Debugger Manual for additional information.

On x86-64 and I64 systems, a file specification is not allowed.

On Alpha and VAX systems, if you specify the /DEBUG qualifier with a file specification, the user-
written debugger module that the file specification identifies gains control at run-time. The linker
assumes a default file type of .OBJ. Requesting a user-written debugger module does affect the
location of code within the image.

Description
The /DEBUG qualifier automatically includes the /TRACE qualifier. If you specify the /DEBUG
qualifier and the /NOTRACE qualifier, the linker overrides your specification and includes traceback
information.

To debug a shareable image, you must compile and link it with the /DEBUG qualifier and then
include it in a link operation that creates a debuggable image (that link operation must also use
the /DEBUG qualifier).

For x86-64 and I64 systems, Table 3.10 indicates where global symbol definitions are written during
a link operation that uses the debug related qualifiers as /DEBUG, /DSF, or /TRACE. Table 3.9 shows
how these qualifiers determine the link flags in the generated image.

183

Chapter 10. LINK Command Reference

On 64-bit systems, Table 10.1 shows the effects of debug-related qualifiers when running an image.

Table 10.1. Effects of /DEBUG, /DSF and /TRACE when Running an Image on 64-Bit
Systems

 RUN RUN/
DEBUG

RUN/NODEBUG Traceback Info Debug Info

/NoTrace
/NoDebug
/NoDSF

Start main Same as RUN Same as RUN None None

/Trace
/NoDebug
/NoDSF

Enable
traceback
handler; start
main

Set initial
breakpoint;
start debugger

Same as RUN Automatic: in
image

None

/NoTrace
/Debug
/NoDSF

The linker converts /NoTrace to /Trace: see next row

/Trace
/Debug
/NoDSF

Set initial
breakpoint;
start debugger

Same as RUN Enable traceback
handler; start main

Automatic: in
image

Automatic: in
image

/NoTrace
/NoDebug
/DSF

Start main Same as RUN Same as RUN Not used Not used

/Trace
/NoDebug
/DSF

Enable
traceback
handler; start
main

Set initial
breakpoint;
start debugger

Same as RUN Automatic: in
image1

Manual: in DSF

/NoTrace
/Debug
/DSF

The linker converts /NoTrace to /Trace: see next row

/Trace
/Debug
/DSF

Set initial
breakpoint;
start debugger

Same as RUN Enable traceback
handler; start main

Automatic: in
image1

Manual: in DSF

1x86-64 and I64 specific. On Alpha systems, the traceback info is in the DSF file; for a RUN, the traceback handler is enabled but it cannot
print the line information, because it is not in the image.

Additional information:

• The VAX linker does not generate a DSF file. For VAX, a reduced table with /NoDSF lines
applies.

• Start main — Execution starts at the main entry of the image

• None — No traceback or debug information is generated by the linker

• Enable traceback handler — In case of an error, a traceback with source line information is
printed. if there is no handler, in case of an error, a register dump is printed.

• Set initial breakpoint — Depending on the programming language, the initial breakpoint may be at
main or before main

• Start debugger — The debugger controls the execution of the image

184

Chapter 10. LINK Command Reference

• Not used — There is traceback or debug information in the image or DSF file, however it is not
used.

• Automatic — Automatically found by the debugger.

• Manual — Automatically found by the debugger if the DSF is in the same directory
as the image. Manually points to a different directory of the DSF file with the logical
DBG$IMAGE_DSF_PATH.

Example
$ LINK/DEBUG MY_PROG

This example produces an executable image named MY_PROG.EXE. Upon image activation, control
will be passed to the debugger.

/DEMAND_ZERO (64-Bit Systems)
/DEMAND_ZERO (64-Bit Systems) — Enables demand-zero segment (on x86-64 and I64 systems)
or image section (on Alpha systems) production for both executable and shareable images.

Format
/DEMAND_ZERO (default)

/DEMAND_ZERO[=PER_PAGE]

/NODEMAND_ZERO

Qualifier Values
PER_PAGE

On x86-64 and I64 systems, directs the linker to compress trailing zeros for each segment (that is,
demand-zero compression of zeros on trailing pages).

On Alpha systems, enables the linker to perform demand-zero compression on Alpha images on a per-
page basis. If this keyword is not used, the linker performs demand-zero compression on an image-
section basis only.

Description
On x86-64 and I64 system, compilers identify uninitialized sections by setting the NOBITS section
type, which is interpreted by the linker as the NOMOD program section attribute.

On Alpha systems, compilers identify to the linker which program sections have not been initialized
by setting the NOMOD program section attribute.

The linker collects these uninitialized program sections into demand-zero segments (on x86-64 and
I64 systems) or image sections (on Alpha systems). For more information about demand-zero segment
or image section production, see Section 3.4.4 (x86-64 and I64) and Section 7.4.3 (Alpha).

If you specify the /NODEMAND_ZERO qualifier, the linker still gathers uninitialized program
sections into demand-zero segments or image sections but writes them to disk. Thus, the virtual

185

Chapter 10. LINK Command Reference

memory layout of an image is the same when the /DEMAND_ZERO qualifier is specified and when
the /NODEMAND_ZERO qualifier is specified.

If you specify the /NODEMAND_ZERO qualifier, the linker turns the demand-zero segments or
image sections containing the NOMOD sections into regular segments or image sections. The Alpha
linker sets the copy-on-reference (CRF) attribute if the write (WRT) attribute is set.

To force the linker to write a section to disk that otherwise would be included in a demand-
zero segment or image section, turn off the NOMOD attribute of the section by using the
PSECT_ATTRIBUTE= option, as in the following example:

PSECT_ATTRIBUTE=psect-name,MOD

Note that only language processors can set the NOMOD attribute of a section.

Examples
1. $ LINK/NODEMAND_ZERO

In this example, the linker does not perform demand-zero compression.

2. $ LINK/DEMAND_ZERO

In this example, the linker by default performs demand-zero compression on a per-segment basis
(on x86-64 and I64 systems) or per-image-section basis (on Alpha systems).

3. $ LINK/DEMAND_ZERO=PER_PAGE

In this example, on x86-64 and I64 systems, the linker performs demand-zero compression on
both a per-segment and per-trailing-pages basis. On Alpha systems, the linker performs demand-
zero compression on both a per-image-section and per-page basis.

/DNI (x86-64 and I64)
/DNI (x86-64 and I64) — Controls the processing of the demangling information. Specify /DNI (the
default) to allow the linker to attempt symbol name demangling and move the necessary demangling
information into the shareable image being created.

Format
/DNI (default)

/NODNI

Description
The /DNI qualifier controls the processing of the demangling information.

The object modules generated by the VSI C, VSI C++, GNAT Pro Ada, and possibly other compilers
can have symbol names in the symbol table that have been altered; a process is commonly referred
to as "mangling". These names are the symbol names visible to the linker, which the linker uses for
symbol resolution.

The reason for mangling can be an overload feature in the programming language or simply
the need to uniquely shorten names. When you link such modules and get an undefined-symbol

186

Chapter 10. LINK Command Reference

message,the linker displays only the symbol name from the object module's symbol table (that is,
the mangled name). This processing makes it difficult to match the undefined, mangled symbol with
the unmangled, source code name. The linker displays the source code name; that is, the linker can
"demangle" the undefined symbol name. Further, if there is demangling information for universal
symbols (that is, those to be exported from a shareable image), the linker can include that information
in the generated shareable images so that when you link against the shareable image at a later time, the
linker can demangle the name when it issues an error message.

The symbol resolution process remains unchanged. The linker still uses the mangled symbol names
for symbol definitions and to resolve symbol references. The symbol vector option remains the same
as well; it still requires the names found in the symbol tables (the mangled names).

Specify /DNI (the default) to allow the linker to attempt symbol name demangling and move the
necessary demangling information into the shareable image being created. Specify /NODNI when:

• You do not want the demangled names to be displayed in error messages.

• You do not want the demangling information to be moved into the shareable image.

/DSF (64-Bit Systems)
/DSF (64-Bit Systems) — Directs the linker to create a file called a debug symbol file (DSF) for use
by the OpenVMS Debugger or the OpenVMS System-Code Debugger.

Format
/DSF[=file-spec]

/NODSF (default)

Qualifier Values
file-spec

Specifies the character string you want the linker to use as the name of the debug symbol file. If you
do not include a file type in the character string, the linker appends the .DSF file type to the file name.

If you specify the /DSF qualifier without the file specification, the linker creates a debug symbol
file with the file name of the first input file and the default file type .DSF. If you append the /DSF
qualifier to one of the input file specifications, the linker creates a debug symbol file with the file
name of the file to which the qualifier is appended and with the default file type .DSF.

The OpenVMS Debugger (whether you use it in System-Code Debugger mode or user mode) requires
that the name of the DSF file be the same as the name of the image file,except that the file extension
is .DSF. If you use the /EXECUTABLE or /SHAREABLE qualifier and a file name with the LINK
command, you must also include the same file name with the /DSF qualifier. (You must also use
the .DSF file type).

Description
The /DSF qualifier directs the linker to create a separate file to contain the debug information used
by the OpenVMS Debugger. The /DSF qualifier can be used with the /NOTRACE qualifier to
suppress the call of SYS$IMGSTA at activation time. For x86-64 and I64 linking, the /DSF qualifier

187

Chapter 10. LINK Command Reference

determines link flags and if traceback information is written into the image file (see Table 3.9). For
Alpha linking, the /DSF qualifier has no effect on the contents of the image, including the image
header. For more information on the effects of using /DSF combined with /DEBUG and /TRACE, see
/DEBUG.

To use the information in the DSF file when you run the image and in case the DSF file is not in the
same directory as the image file, you must define the logical name DBG$IMAGE_DSF_PATH to
point to disk and directory where the DSF file resides. For more information, see the VSI OpenVMS
Debugger Manual.

Example
$ LINK/DSF/NOTRACE MY_PROG.OBJ

In this example, the linker creates the files MY_PROG.DSF and MY_PROG.EXE.

/EXECUTABLE
/EXECUTABLE — Directs the linker to create an executable image, as opposed to a shareable image
or a system image.

Format

/EXECUTABLE[=file-spec] (default)

/NOEXECUTABLE

Qualifier Values

file-spec

Specifies the character string you want the linker to use as the name of the image file produced by the
link operation. If you do not specify a file type in the character string, the linker assigns the .EXE file
type by default.

If you do not specify a file name with the /EXECUTABLE qualifier, the linker creates an executable
image with the file name of the first input file. If you append the /EXECUTABLE qualifier to an input
file specification, the linker creates an executable image with the file name of the file to which the
qualifier is appended.

Description

The /NOEXECUTABLE qualifier directs the linker to perform the linking operation but to not
create an image file. Use the /NOEXECUTABLE qualifier to have the linker process the input files
you specify without creating an image file to check for errors in your LINK command syntax or
other link-time errors. You can also use the linker to produce a map file or symbol table file only
by specifying the /NOEXECUTABLE qualifier with the /MAP qualifier or the /SYMBOL_TABLE
qualifier.

The linker assumes the /EXECUTABLE qualifier as the default unless you specify
the /NOEXECUTABLE qualifier, the /SHAREABLE qualifier, or the /SYSTEM qualifier.
Note, however, that on Alpha and VAX, when used with the /SYSTEM qualifier, you can use
the /EXECUTABLE qualifier to specify the name of a system image.

188

Chapter 10. LINK Command Reference

Examples
1. $ LINK/NOEXECUTABLE MY_PROG

This example directs the linker to link the object module in the file MY_PROG.OBJ without
creating an image file.

2. $ LINK/EXECUTABLE MY_PROG

This example directs the linker to produce an executable image named MY_PROG.EXE. (The
command line $ LINK MY_PROG will yield the same result because the /EXECUTABLE
qualifier is the default).

3. $ LINK/EXECUTABLE=MY_IMAGE MY_PROG

This example directs the linker to produce an executable image with the name MY_IMAGE.EXE
instead of the name MY_PROG.EXE.

/FP_MODE (x86-64 and I64)
/FP_MODE (x86-64 and I64) — Determines the program's initial floating-point mode when one is not
provided by the module that provides the main transfer address.

Format
/FP_MODE=keyword

/NOFP_MODE (default)

Qualifier Values
keyword

The linker accepts the following keywords to set the floating-point mode:

Keyword Description
D_FLOAT, G_FLOAT Sets VAX floating-point modes.
IEEE_FLOAT[=ieee_behavior] Sets the IEEE floating-point mode to the default or a specific

behavior. The OpenVMS x86-64 and I64 linkers accept the
following IEEE behavior keywords:

FAST
UNDERFLOW_TO_ZERO
DENORM_RESULTS (default)
INEXACT

LITERAL=fp_ctrl_mask Sets the floating-point mode to a literal control mask. You can
express this mask as a decimal (%D), octal (%O), or hexadecimal
(%X) value (for example, %X09800000, which is equivalent to
the default, IEEE_FLOAT=DENORM_RESULTS).

Description
The OpenVMS x86-64 and I64 linkers determine the program's initial floating-point mode using
the floating point mode provided by the module that provides the main transfer address. Use

189

Chapter 10. LINK Command Reference

the /FP_MODE qualifier to set an initial floating point mode only if the module that provides the main
transfer address does not provide an initial floating-point mode. The /FP_MODE qualifier does not
override an initial floating point mode provided by the main transfer module.

For more information about the initial floating-point mode, see the VSI OpenVMS Calling Standard.

/FULL
/FULL — Directs the linker to create a full image map file. For more information, see also
the /MAP, /CROSS_REFERENCE, and /BRIEF qualifiers.

Format
/MAP/FULL[=(keyword[,...])]

Qualifier Values
keyword (x86-64, I64)

The OpenVMS x86-64 I64 linkers accept the following keywords to tailor the map (the default
is /FULL=SECTION_DETAILS):

Keyword Description
ALL For the OpenVMS x86-64 and I64 linkers, the ALL keyword

is equivalent to specifying the DEMANGLED_SYMBOLS,
GROUP_SECTIONS and SECTION_DETAILS keywords.

DEMANGLED_SYMBOLS For the OpenVMS x86-64 and I64 linkers, when display name
information is available and processed (DNI), directs the linkers
to add a translation table to the map file. The table contains both
mangled and demangled names for global symbols.

GROUP_SECTIONS Directs the OpenVMS x86-64 and I64 linkers to list all processed
groups.

[NO]SECTION_DETAILS Directs whether or not the OpenVMS x86-64 and I64 linkers
suppress zero length contributions in the Program Section
Synopsis.

Description
On x86-64 and I64 systems, a full map contains the following sections:

• Object and Image Synopsis

• Cluster Synopsis

• Image Segment Synopsis

• Program Section Synopsis

• Symbols By Name (and the Symbol Cross-Reference section if the /CROSS_REFERENCE
qualifier is specified)

• Symbols By Value

190

Chapter 10. LINK Command Reference

• Image Synopsis

• Link Run Statistics

On Alpha and VAX systems, a full map contains the following sections:

• Object Module Synopsis

• Module Relocatable Reference Synopsis (VAX only)

• Image Section Synopsis

• Program Section Synopsis

• Symbols By Name (and the Symbol Cross-Reference section if the /CROSS_REFERENCE
qualifier is specified)

• Symbols By Value

• Image Synopsis

• Link Run Statistics

By default, a full linker map lists all the module contributions in the Program Section Synopsis on all
systems.

The full map also contains information about modules included from the default system libraries
STARLET.OLB and IMAGELIB.OLB in the Object Module Synopsis, Program Section Synopsis,
and Symbols By Name sections. For more information about image map files, see Chapter 5 (x86-64
and I64) and Chapter 9 (Alpha and VAX).

The /FULL qualifier is valid only if you also specify the /MAP qualifier in the LINK command.
The /FULL qualifier is compatible with the /CROSS_REFERENCE qualifier, but it is not compatible
with the /BRIEF qualifier.

On x86-64 and I64 systems, you can request a map section containing a translation table for the global
symbol definitions. This table correlates the mangled symbol names with their demangled equivalents.
By default, the linker does not generate this section in the map file. To request this section, specify the
keyword DEMANGLED_SYMBOLS to the /FULL qualifier. As with other keywords for the /FULL
qualifier, specify the /MAP qualifier. You should not specify the /NODNI qualifier. The translation
table in the map can be helpful to verify the symbol vector entries.

Example
$ LINK/MAP/FULL MY_PROG

This example directs the linker to produce a full image map named MY_PROG.MAP.

/GST (64-Bit Systems)
/GST (64-Bit Systems) — Directs the linker to include in the global symbol table (GST) of a
shareable image those symbols that have been declared as universal symbols in a symbol vector.

191

Chapter 10. LINK Command Reference

Format
/GST (default)

/NOGST

Description
By default, the linker lists in the GST of a shareable image the global symbols in the image that have
been declared universal. By listing these symbols in the GST, the linker allows them to be referenced
in link operations where the shareable image is specified as an input file.

To create a shareable image that can be activated by the images that linked against it, but that cannot
be used to resolve symbolic references in a link operation, you can specify the /NOGST qualifier.
When this qualifier is specified, the linker creates the image with an empty GST. (The linker still
creates a GST). By using the /NOGST qualifier, you can create a run-time version of a shareable
image without having to remove the symbol vector from the link operation.

The images that were linked against the shareable image can still access symbols within the image
because the /NOGST qualifier does not affect the symbol vector in the image.

This qualifier is valid only when used with the /SHAREABLE qualifier to create a shareable image.

Example
$ LINK/NOGST/SHAREABLE MY_SHARE,UNIVERSALS/OPTIONS

This example creates the shareable image MY_PROG.EXE without listing entries for universal
symbols in its global symbol table. The image contains an empty global symbol table.

/HEADER (Alpha and VAX)
/HEADER (Alpha and VAX) — On Alpha and VAX systems, when specified with the /SYSTEM
qualifier, directs the linker to include an image header in a system image.

Format
/HEADER

/NOHEADER (default)

Description
On Alpha and VAX systems, the linker always creates executable images and shareable images with
headers;a required component of those image files. The linker creates system images without a header
by default. To create a system image with a header, you must specify the /HEADER qualifier along
with the /SYSTEM qualifier on the command line.

The linker ignores the /HEADER qualifier if it is specified for any other type of image (executable or
shareable).

Example
$ LINK/SYSTEM/HEADER MY_SYS

192

Chapter 10. LINK Command Reference

This example directs the linker to produce a system image named MY_SYS.EXE with an image
header. For more information about when to specify the /HEADER qualifier with the /SYSTEM
qualifier, see the description of the /SYSTEM qualifier.

/INCLUDE
/INCLUDE — Identifies the input file specification to which it is appended as a library file and
directs the linker to include in the link operation the module or modules specified as the value of the
qualifier.

Format
library-name/INCLUDE=(module-name[,...])

Qualifier Values
library-name

Specifies the name of the library from which you want a module or modules extracted. The file name
must specify a library file. The linker assumes the default file type of .OLB.

module-name

Specifies the module or modules that you want to extract from the library. To specify more than one
module, enclose the list in parentheses and separate the module names with commas.

Description
Note that the /INCLUDE qualifier does not cause the linker to process the library for the definitions
of unresolved symbolic references. If you want the linker to search the library for definitions of
unresolved symbols, you must also specify the /LIBRARY qualifier before the /INCLUDE qualifier.

Examples
1. $ LINK MY_PROG,MY_LIB/INCLUDE=(MOD1,MOD2,MOD5)

This example directs the linker to include modules MOD1, MOD2, and MOD5 from the library
MY_LIB.OLB in the link operation with MY_PROG.

2. $ LINK MY_PROG,MY_LIB/LIBRARY/INCLUDE=(MOD1,MOD2,MOD5)

This example directs the linker to extract modules MOD1, MOD2, and MOD5 from the library
MY_LIB.OLB and then to search that library for symbol definitions that are unresolved in all four
modules.

/INFORMATIONALS
/INFORMATIONALS — Directs the linker to output informational messages produced by a link
operation.

193

Chapter 10. LINK Command Reference

Format
/INFORMATIONALS (default)

/NOINFORMATIONALS

Description
The linker outputs informational messages by default. To suppress informational messages, specify
the /NOINFORMATIONALS qualifier.

Example
$ LINK/NOINFORMATIONALS MY_PROG

When the /NOINFORMATIONALS qualifier is specified, informational messages are suppressed.

/LIBRARY
/LIBRARY — Identifies the input file specification to which it is appended as a library file and directs
the linker to process the library's name table as part of its symbol resolution processing. When the
linker finds in the library the definition of a symbol referenced in a previously processed input file, the
linker includes from the library the module in which the symbol is defined.

Format
library-name/LIBRARY

Qualifier Values
library-name

Specifies the name of the library to be included in the link operation. You must specify a library file.
The linker assumes the default file type of .OLB.

Description
The order in which a library file is specified in the command string (or in an options file) is important
because the linker uses the library file to resolve undefined symbols in previously processed (not
subsequently processed) modules only. For more information about how the linker processes input
files to resolve symbolic references, see Chapter 2 (x86-64 and I64) and Chapter 6 (Alpha and VAX).

Note that shareable image libraries do not contain a copy of an image. They contain the image's
name, the image's identification information and a table including the image's universal symbols. The
identification information is provided by the GSMATCH= option,when the shareable image is linked.
(See the GSMATCH= option for more information).

It is possible that a shareable image is relinked but a library is not updated. To handle this case, the
linker looks for compatibility. On Alpha and VAX systems, the linker makes the same verification that
the image activator does; that is, it uses the GSMATCH criteria to verify compatibility.

On VAX systems, the linker also compares against the date and time,signaling LINK-I-
DATMISMCH, if they are different.

194

Chapter 10. LINK Command Reference

On Alpha systems, the initial behavior of the linker was the same as the VAX linker. The check
was seen as too sensitive and the default behavior was changed to use only the GSMATCH
criteria. If you prefer, you can obtain the former VAX behavior by setting the logical name
LINK$SHR_DATE_CHECK.

Examples
1. $ LINK MY_PROG,MY_LIB/LIBRARY,PROG2,PROG3

In this example, the linker uses the library MY_LIB.OLB to resolve undefined symbols in
MY_PROG, but not in PROG2 or PROG3.

2. $ LINK MY_PROG,PROG2,PROG3,MY_LIB/LIBRARY

In this example, the linker can resolve undefined symbols in MY_PROG, PROG2, and PROG3
from the library MY_LIB.OLB.

/MAP
/MAP — Directs the linker to create an image map file.
For more information, see also the /BRIEF, /CROSS_REFERENCE, and /FULL qualifiers.

Format
/MAP[=file-spec]/NOBRIEF/NOCROSS_REFERENCE/NOFULL
(default in batch mode)

/NOMAP
(default in interactive mode)

Qualifier Values
file-spec

If you enter a file specification with the /MAP qualifier, the linker creates an image map file with that
file name. If you do not enter a file type after the file name, the linker assumes a file type of .MAP.

If you do not enter a file specification with the /MAP qualifier, the linker creates an image map file
with the file name of the first input file specified on the command line and the file type .MAP. (If
there are no input files specified on the command line, the linker names the map file .MAP).

If you append the /MAP qualifier to one of the input file specifications, the linker creates an image
map file with the file name of the file to which the qualifier is appended,using the .MAP file type.

Description
On OpenVMS x86-64 and I64 systems, the /MAP qualifier causes the linker to produce a default
image map file containing the following sections:

• Object and Image Synopsis

• Program Section Synopsis

• Symbols By Name

• Image Synopsis

195

Chapter 10. LINK Command Reference

• Link Run Statistics

On OpenVMS Alpha and VAX systems, the /MAP qualifier causes the linker to produce a default
image map file containing the following sections:

• Object Module Synopsis

• Program Section Synopsis

• Symbols By Name

• Link Run Statistics

See Chapter 5 (x86-64 and I64) and Chapter 9 (Alpha and VAX) for more information about image
map files.

Examples
1. $ LINK/MAP MY_PROG

This example directs the linker to produce an image map with the default name of
MY_PROG.MAP.

2. $ LINK/MAP=MY_MAP MY_PROG

This example directs the linker to produce an image map with the name of MY_MAP.MAP
instead of the default name of MY_PROG.MAP.

3. $ LINK MY_PROG,MY_SUB/MAP

This example directs the linker to produce an image map with the default name of
MY_SUB.MAP.

4. $ LINK MY_PROG,SYS$INPUT/OPTIONS/MAP
MY_SHARE/SHAREABLE
Ctrl/Z

This example directs the linker to produce an image map with the default name of .MAP, because
SYS$INPUT is a device specification without a file name.

/NATIVE_ONLY (I64 and Alpha)
/NATIVE_ONLY (I64 and Alpha) — On I64 and Alpha systems, prevents the linker from generating
procedure signature information.

Format
/NATIVE_ONLY (default)

/NONATIVE_ONLY

Description
On I64 and Alpha systems, prevents the linker from generating procedure signature information.
Procedure signatures are required to allow the native code being linked to interoperate with images
translated from either VAX or Alpha binary code. To build an executable or shareable image that calls
or can be called by translated code, link it using /NONATIVE_ONLY. Code that is to interoperate

196

Chapter 10. LINK Command Reference

with translated images must also be compiled using the /TIE qualifier. (See the associated compiler
documentation for details).

Since OpenVMS x86-64 does not support translated imaged, this option is ignored on x86-64
systems.

Example
1. $ LINK/NATIVE_ONLY MY_PROG

In this example, the linker creates an image, named MY_PROG.EXE, that cannot interoperate
with translated OpenVMS images.

2. $ LINK/NONATIVE_ONLY MY_PROG

In this example, the linker creates an image, named MY_PROG.EXE, that can interoperate with
translated OpenVMS images.

/OPTIONS
/OPTIONS — Identifies the input file specification to which it is appended as a linker options file.

Format
options-file-name/OPTIONS

Qualifier Values
options-file-name

The file specification of a linker options file. The linker assumes the file type .OPT by default.

Description
A linker options file can contain linker option specifications and input file specifications. For
information about creating an options file, see Chapter 1.

Examples
1. $ LINK MY_PROG,MY_OPTIONS/OPTIONS

This example directs the linker to use an options file named MY_OPTIONS.OPT to produce an
executable image named MY_PROG.EXE.

2. $ LINK MY_PROG,SYS$INPUT/OPTIONSMY_SHARE/SHAREABLE
Ctrl/Z

This example illustrates how to create an options file interactively by specifying SYS$INPUT as
the file specification. After entering the options, press Ctrl/Z to end the options file.

/P0IMAGE
/P0IMAGE — Directs the linker to place an executable image entirely in P0 address space. When
the /P0IMAGE qualifier is specified, the user stack and OpenVMS RMS buffers, which usually reside
in P1 space, are placed in P0 space by the image activator.

197

Chapter 10. LINK Command Reference

Format

/P0IMAGE

/NOP0IMAGE (default)

Description

For Alpha and VAX, note that the address of the stack shown in the map of an image linked
with the /P0IMAGE qualifier does not reflect the true address of the stack at run-time because,
when /P0IMAGE is specified, the virtual address space for the stack is dynamically allocated at the
end of P0 space at run-time.

/P0IMAGE is used to create executable images that modify P1 address space.

Example
$ LINK/P0IMAGE MY_PROG

This example directs the linker to set up an executable image named MY_PROG.EXE to be run
entirely in the P0 address space.

/PROTECT
/PROTECT — Directs the linker to protect an entire shareable image from user-mode write access
and supervisor-mode write access. Can be specified only with the /SHAREABLE qualifier.

Format

/PROTECT

/NOPROTECT (default)

Description

The /PROTECT qualifier protects an entire shareable image from user-mode write access and
supervisor-mode write access. To protect only specific segments (on x86-64 and I64 systems) or
image sections (on Alpha systems) within a shareable image, but not the entire shareable image, use
the PROTECT= option. For more information about using the PROTECT= option, see its description
later in this section.

The /PROTECT qualifier is commonly used to protect shareable images that are used to implement
user-written system services (called privileged shareable images) from user-mode access.

On x86-64 and I64 systems, it is recommended to protect the whole image with the /PROTECT
qualifier (see Section 4.4).

The /PROTECT qualifier is incompatible with the /EXECUTABLE qualifier and the /SYSTEM
qualifier.

Example
$ LINK/SHAREABLE/PROTECT MY_SHARE

198

Chapter 10. LINK Command Reference

This example directs the linker to produce a privileged shareable image named MY_SHARE.EXE.

/REPLACE (Alpha Only)
/REPLACE (Alpha Only) — For Alpha linking, specifies that the linker should perform certain
optimizations to improve the performance of the resultant image, when instructed by the compiler.
This qualifier is ignored by the OpenVMS x86-64 and I64 linkers.

Format
/REPLACE (default)

/NOREPLACE

Description
For Alpha linking, it is more efficient to execute a procedure call as a branch,using the BSR (Branch
to Subroutine) instruction sequence, than it is to execute the call as a jump, using the JSR (Jump to
Subroutine) instruction sequence. In a BSR instruction, the destination can be expressed as an offset,
requiring fewer memory fetches than a JSR instruction sequence.

Compilers cannot always take advantage of the efficiency of the BSR instruction because the
information needed to calculate the offset is not available until link time, when the linker lays out the
image sections that make up the image. To achieve this performance enhancement, compilers flag
uses of the JSR instruction sequence and the linker examines each use and attempts to replace it with
the BSR instruction sequence wherever possible.

In addition to code replacement, the linker can also specify hints to improve the performance of
the JSR instructions that remain in the image. A hint is used to index the instruction cache and
can improve performance. Hints are generated for JSR instructions within the image and for JSR
instructions to shareable images.

/SECTION_BINDING (Alpha Only)
/SECTION_BINDING (Alpha Only) — For Alpha linking, directs the linker to create an image that
can be installed as a resident image and to flag coding practices in the image that would prevent this.
This qualifier is ignored by the OpenVMS x86-64 and I64 linkers. The x86-64 and I64 linkers always
produce images that can be installed as resident images.

Format
/[NO]SECTION_BINDING[=(CODE,DATA)]

/NOSECTION_BINDING (default)

Qualifier Values
CODE

Prevents the linker from replacing the Jump to Subroutine (JSR) instruction sequence with the more
efficient Branch to Subroutine (BSR) instruction sequence when the target of the branch crosses an
image section boundary.

199

Chapter 10. LINK Command Reference

DATA

Directs the linker to check for address calculations that create dependencies on the layout of data
image sections. The linker reports such occurrences.

When the /SECTION_BINDING qualifier is specified without either the CODE or DATA keyword,
the linker performs both types of checking by default.

Description
For Alpha linking, you can improve the performance of an installed image by installing it as a resident
image (by using the /RESIDENT qualifier of the Install utility). The Install utility moves portions of
resident images into system space where they reside on a large single page with granularity hints set
(called a granularity hint region or GHR), thus improving performance.

For an image to be installed as a resident image, it must not contain any dependencies on the layout of
image sections, such as branch instructions that cross image section boundaries. The offsets calculated
by the linker for such branches depend on the layout of the image sections. The relative position
of the code image sections changes when they are moved to system space and the accuracy of the
offsets calculated by the linker is destroyed. (These dependencies are created by the linker when it
replaces the JSR instruction sequence with the BSR instruction sequence. For more information, see
the description of the /REPLACE qualifier).

When the /SECTION_BINDING qualifier is specified, the linker does not replace JSR instructions
when the destination crosses an image section boundary. The linker still replaces the JSR instruction
sequence for calls that stay within the boundaries of an image section.

In addition to eliminating image section layout dependencies in code image sections, the linker can
also check the data image sections in an image to see if they contain coding practices that produce
dependencies on image section layout.

The image activator can reposition data image sections to eliminate the gaps in virtual memory
left by the code image sections that were moved to system space. However, data image sections
can also contain dependencies on image section layout. For example, when an image initializes an
address by performing arithmetic on two addresses that reside in two different image sections, the
address calculation creates a dependency on the layout of the data image sections, as in the following
example:

OWN
 FOO: INITIAL (FOO - BAR)

If the linker detects the compiler adding or subtracting two intra-image addresses, it assumes that a
relative branch is being calculated and displays the following warning:

%LINK-W-BINDFAIL, failed to bind reference at %X00030000 between sections
 at locations %X00030000 and %X00010000
 in module X file WORK:[TEST]X.OBJ;6

The warning message produced by the linker indicates the two addresses being operated on and the
virtual address where it was trying to write the result. To find the source code that is creating the
dependency, examine the map file to determine what entities reside at these addresses and then search
the source code for places where they are used in calculations. In this example, module X contained a
data cell, FOO, initialized with the difference between FOO's address and BAR's (as in the previous
code example). In the image map, FOO resides at%X00030000 and BAR at %X00010000. Because
these addresses appear in different image sections, the calculation introduces a dependency on the
layout of image sections. To fix this dependency, rewrite the source code to remove the calculation

200

Chapter 10. LINK Command Reference

or move the two data cells into the same image section by using the COLLECT= option or the
PSECT_ATTRIBUTE= option.

The linker issues a message for each address calculation in data image sections that create
dependencies on the layout of image sections, as in the following example:

%LINK-W-BINDISABLE, section binding of data has been disabled
%LINK-W-BINDFAIL, failed to bind reference at %X0000865D between sections
 at locations %X00008000 and %X00000000
 in module MKDRIVER file X56Y_RESD$:[DRIVER.OBJ]DRIVER.OLB;1
%LINK-W-BINDFAIL, failed to bind reference at %X00008665 between sections
 at locations %X00008000 and %X00000000
 in module MKDRIVER file X56Y_RESD$:[DRIVER.OBJ]DRIVER.OLB;1
%LINK-W-BINDFAIL, failed to bind reference at %X0000866D between sections
 at locations %X00008000 and %X00000000
 in module MKDRIVER file X56Y_RESD$:[DRIVER.OBJ]DRIVER.OLB;1

Example
$ LINK/SHAREABLE/SECTION_BINDING MY_PROG

In this example, the linker creates the image MY_PROG.EXE and processes it so that it can be
installed as a resident image.

/SEGMENT_ATTRIBUTE (x86-64 and I64)
/SEGMENT_ATTRIBUTE (x86-64 and I64) — Instructs the OpenVMS x86-64 and I64 linkers to set
certain attributes for segments.

Format
/SEGMENT_ATTRIBUTE=(segm-attribute[,...])

Qualifier Values
segm-attribute

The linker accept the following keywords to set segment attributes:

CODE=address_region
DYNAMIC=address_region
SHORT_DATA=WRITE (I64 only)
SYMBOL_VECTOR=[NO]SHORT

where an address_region can be specified with keywords P0 and P2.

Description
By default, the linker assigns code segments to P2 space on x86-64 systems and P0 space on I64
systems. With the CODE=P0 or CODE=P2 keywords, you can override the default spaces for placing
code segments. When the image activator activates an image, code segments will be placed in the
space specified by the CODE=address_region keyword.

By default, the linker puts the dynamic segment, which contains information for the image activator,
into P2 space. For images not activated by the OpenVMS image activator, DYNAMIC=P0 forces
the linker to put the dynamic segment into P0 space. This qualifier is primarily used by system
developers.

201

Chapter 10. LINK Command Reference

On I64 systems, the SHORT_DATA=WRITE keyword allows you to combine the read-only and the
read-write short data segments into a single segment, reclaiming up to 65,535 bytes of unused, read-
only space (when /BPAGE=16, the default value).When setting SHORT_DATA to WRITE, your
program may accidentally write to formerly read-only data. Therefore, this qualifier is recommended
only if your short data segment has reached the limit of 4 MB.

By default, for shareable images, the linker stores the symbol vector into the read-only short data
segment. By specifying SYMBOL_VECTOR=NOSHORT, the linker collects the symbol vector into
a read-only data segment of the default cluster. If the shareable image has none, such a segment is
created. This frees up the short data of the symbol vector entries. This qualifier is recommended only
if your short data segment has reached the limit of 4 MB.

/SELECTIVE_SEARCH
/SELECTIVE_SEARCH — When this qualifier is appended to an input file specification, the linker
processes only those symbols in the input file that have been referenced by previously processed input
files.

Format
input-file-name/SELECTIVE_SEARCH

Qualifier Values
input-file-name

The input file you want included in the link operation. The /SELECTIVE_SEARCH qualifier
works with object modules and shareable images only. This qualifier is illegal with library files. (To
process the modules in a library selectively, you specify the /SELECTIVE_SEARCH qualifier when
inserting the files into the library. For more information, see the VSI OpenVMS Command Definition,
Librarian, and Message Utilities Manual).

Description
If you do not specify the /SELECTIVE_SEARCH qualifier with an input file, the linker includes all
the input file's global symbols in the linker's internal global symbol table for symbol resolution by
default.

Note that the /SELECTIVE_SEARCH qualifier does not affect the size of the resultant image. The
entire object module is included in the image, even if only a subset of the symbols in its global symbol
table are needed to resolve symbolic references. Specifying the /SELECTIVE_SEARCH qualifier can
improve the performance of a link operation and conserve the linker's use of virtual memory.

Examples
1. $ LINK/MAP MY_MAIN,MY_PROG/SELECTIVE_SEARCH

In this example, the linker processes the object module MY_PROG.OBJ selectively. You can
verify this processing by checking the list of symbols in the image map file created in this link.
The only symbols from the file MY_PROG.OBJ that will appear in the map file are those symbols
that were referenced by MY_MAIN.OBJ.

2. $ LINK/MAP=MY_MAIN/EXECUTABLE=MY_MAIN SYS$INPUT/OPTIONS
CLUSTER=MY_MAIN_CLUS,,,MY_MAIN

202

Chapter 10. LINK Command Reference

MY_SHARE/SHAREABLE/SELECTIVE_SEARCH
Ctrl/Z

In this example, the linker processes the shareable image MY_SHARE.EXE selectively. Note
that, to ensure that the linker processes references to symbols in the shareable image before it
processes the shareable image selectively, the input file MY_MAIN.OBJ is placed in a named
cluster(MY_MAIN_CLUS), using the CLUSTER= option. If the object modules had been
specified on the LINK command line, the linker would have put it in the default cluster. The linker
processes named clusters before it processes the default cluster.

3. $ LIBRARIAN/INSERT/SELECTIVE_SEARCH MY_LIB MY_PROG
$ LINK MY_PROG,MY_LIB/LIBRARY

In this example, the object module MY_PROG.OBJ is inserted into the library MY_LIB.OLB
selectively. When the library is specified in a link operation, the linker processes the object
module selectively. This link operation is equivalent to the link operation in Example 1.

/SHAREABLE
/SHAREABLE — When specified anywhere on the LINK command line, the /SHAREABLE
qualifier directs the linker to create a shareable image. When the /SHAREABLE qualifier is appended
to a file specification in a linker options file, it identifies the input file as a shareable image.

Format
/SHAREABLE[=file-spec]

/NOSHAREABLE (default)

shareable-image-file-name/SHAREABLE

Qualifier Values
file-spec

When the /SHAREABLE qualifier is used to create a shareable image, this parameter specifies the
name you want the linker to assign to the shareable image being created. If you do not include a file
specification, the linker assigns the shareable image the name of the file to which the /SHAREABLE
qualifier is appended in the LINK command line. If the /SHAREABLE qualifier is not appended to
an input file specification, the linker assigns to the shareable image the name of the first input file
specified on the command line using the extension .EXE.

If you designate a file name but omit the file type, the linker assigns the shareable image the file
type .EXE.

shareable-image-file-name

Specifies the name of a shareable image. Note that you can use the /SHAREABLE qualifier to
identify a shareable image only in a linker options file. It is illegal to include a shareable image in a
link operation by specifying it on the LINK command line.

Description
The linker creates executable images by default; you must specify the /SHAREABLE qualifier to
create a shareable image. The /SHAREABLE qualifier is incompatible with the /SYSTEM qualifier.

203

Chapter 10. LINK Command Reference

For more information about creating and using shareable images, see Chapter 4 (x86-64 and I64) and
Chapter 8 (Alpha and VAX).

Examples
1. $ LINK/SHAREABLE MY_SHARE,UNIVERSALS/OPTIONS

This example directs the linker to produce a shareable image named MY_SHARE.EXE. The
options file UNIVERSALS.OPT contains declarations of the universal symbols in the shareable
image.

2. $ LINK/SHAREABLE=MY_APP MY_SHARE,UNIVERSALS/OPTIONS

This example directs the linker to produce a shareable image named MY_APP.EXE using the
object module MY_SHARE.OBJ as input.

3. $ TYPE MY_OPTIONS.OPTMY_SHARE/SHAREABLE
$ LINK MY_PROG,MY_OPTIONS.OPT/OPTIONS

In this example, a shareable image is included in a link operation. The shareable image is specified
in the options file MY_OPTIONS.OPT, which is specified as an input file on the LINK command
line.

4. $ LINK MY_PROG,SYS$INPUT/OPTIONS
MY_SHARE/SHAREABLE
Ctrl/Z

This example shows how the shareable image MY_SHARE.EXE is used, together with the object
file MY_PROG.OBJ, to create an executable image named MY_PROG.EXE.

Note how you can specify options interactively at the command line by identifying the logical
name SYS$INPUT as an options file. The linker interprets the lines following the LINK command
as the contents of an options file, until you terminate the options by entering the Ctrl/Z key
sequence.

/SYMBOL_TABLE
/SYMBOL_TABLE — Directs the linker to create a symbol table file.

Format
/SYMBOL_TABLE[=file-spec]

/NOSYMBOL_TABLE (default)

Qualifier Values
file-spec

Specifies the character string you want the linker to use as the name of the symbol table file. If you do
not include a file type in the character string,the linker appends the .STB file type to the file name.

If you specify the /SYMBOL_TABLE qualifier without the file specification, the linker creates
a symbol table file with the file name of the first input file and the default file type .STB. If you
append the /SYMBOL_TABLE qualifier to one of the input file specifications, the linker creates a
symbol table file with the file name of the file to which the qualifier is appended, with the default file
type .STB.

204

Chapter 10. LINK Command Reference

Description
A symbol table file contains a copy of the image's global symbol table, excluding definitions from
shareable images, in object module format.

On 64-bit systems, you cannot specify symbol table files as input files in a link operation. Symbol
table files of images are intended only as an aid in debugging crash dumps using the OpenVMS
System Dump Analyzer utility (SDA). For more information, see Section 1.2.4.

On 64-bit systems, note that you can direct the linker to include global symbols in a symbol table file
associated with a shareable image by specifying the SYMBOL_TABLE=GLOBALS option. When
you specify this option, the linker includes global symbols as well as universal symbols in a symbol
table file by default.

On VAX systems, a global symbol table produced by a link that creates a shareable image contains
only universal symbols. A global symbol table produced by a link that creates an executable image
contains all the global symbols in the image.

On VAX systems, you can specify symbol table files as input files in link operations if they were
produced in an operation in which an executable or system image was created. Symbol table files
produced in a link operation in which a shareable image was created do not always contain enough
information to be used as input files in link operations. For more information, see Section 1.2.4.

Examples
1. $ LINK/SYMBOL_TABLE/NOEXECUTABLE MY_PROG

In this example, the linker produces a symbol table file named MY_PROG.STB without
producing an executable image.

2. $ LINK/SYMBOL_TABLE=MY_PROG_SYMB_TAB MY_PROG

In this example, the linker produces a symbol table file named MY_PROG_SYMB_TAB.STB. An
executable image file named MY_PROG.EXE is also produced.

3. $ LINK/SHAREABLE/SYMBOL_TABLE MY_SHARE,SYS$INPUT/OPTIONS
GSMATCH=LEQUAL,1,1000
SYMBOL_VECTOR=(MYPROC=PROCEDURE, -
 MYDATA=DATA, -
 MYPROC2=PROCEDURE)SYMBOL_TABLE=GLOBALS
Ctrl/Z

In this example, the linker creates a symbol table file on 64-bit systems, named
MY_SHARE.STB, that contains both global symbols and universal symbols because the linker
option SYMBOL_TABLE=GLOBALS is specified in the options file.

/SYSEXE (64-Bit Systems)
/SYSEXE (64-Bit Systems) — Directs the linker to process the system shareable image,
SYS$BASE_IMAGE.EXE, in a link operation. The linker looks for SYS$BASE_IMAGE.EXE
in the directory pointed to by the logical name X86$LOADABLE_IMAGES on x86-64 systems,
IA64$LOADABLE_IMAGES on I64 systems, and ALPHA$LOADABLE_IMAGES on Alpha
systems.

205

Chapter 10. LINK Command Reference

Format
/SYSEXE[=[NO]SELECTIVE]

/NOSYSEXE (default)

Qualifier Values
SELECTIVE (default)

When the /SYSEXE qualifier is specified with no keyword, the linker processes the
SYS$BASE_IMAGE.EXE file selectively.

When you specify /SYSEXE with the SELECTIVE keyword, the linker processes the
SYS$BASE_IMAGE.EXE file selectively, including only those symbols from the global symbol table
of the SYS$BASE_IMAGE.EXE file that were referenced by input files previously processed in the
link operation.

NOSELECTIVE

When you specify the NOSELECTIVE keyword, the linker includes all the symbols from the
SYS$BASE_IMAGE.EXE global symbol table in the link operation.

Description
When you specify the /SYSEXE qualifier, the linker processes the SYS$BASE_IMAGE.EXE
file selectively after processing the system shareable image library, IMAGELIB.OLB, and before
processing the system object library, STARLET.OLB, and the system service shareable image,
SYS$PUBLIC_VECTORS.EXE, which is associated with STARLET.OLB. (By default, the linker
processes IMAGELIB.OLB, STARLET.OLB, and SYS$PUBLIC_VECTORS.EXE, in that order, to
resolve symbols that remain undefined after all the files specified in the LINK command have been
processed and after any user-specified libraries have been processed). Note that the linker qualifiers
that determine whether the linker processes the default system libraries, /SYSSHR and /SYSLIB, do
not affect SYS$BASE_IMAGE.EXE processing.

If you want the linker to process SYS$BASE_IMAGE.EXE before processing IMAGELIB.OLB,
specify SYS$BASE_IMAGE.EXE in an options file, as you would any other shareable image. If you
specify SYS$BASE_IMAGE.EXE in your options file, do not specify the /SYSEXE qualifier in the
LINK command.

For more information about linking against the OpenVMS executive, see Section 2.4 (x86-64 and I64)
and Section 6.4 (Alpha).

Example
$ LINK/SHAREABLE/SYSEXE MY_SHARE, SYS$INPUT/OPTIONS
SYMBOL_VECTOR=(MY_PROC=PROCEDURE)
Ctrl/Z

In this example, the linker processes the OpenVMS system executive file, SYS$BASE_IMAGE.EXE,
to create a shareable image named MY_SHARE.EXE.

/SYSLIB
/SYSLIB — Directs the linker to process the default system shareable image library,
IMAGELIB.OLB, and the default system object module library, STARLET.OLB, to resolve symbolic

206

Chapter 10. LINK Command Reference

references that remain undefined after all specified input files and any default user libraries have been
processed.

Format
/SYSLIB (default)

/NOSYSLIB

Description
The linker first searches IMAGELIB.OLB, the default system shareable image library, then
STARLET.OLB, the default system object library.

On 64-bit systems, the linker also searches the shareable image SYS$PUBLIC_VECTORS.EXE
to resolve references to system services. (For more information about processing
SYS$PUBLIC_VECTORS.EXE, see the description of the /SYSEXE qualifier). The linker looks
for these default libraries in the directory pointed to by the logical name X86$LIBRARY for x86-64
links, IA64$LIBRARY for I64 links, and ALPHA$LIBRARY for Alpha links.

For VAX linking, the linker looks for these default libraries in the directory that the logical name
SYS$LIBRARY points to.

If you specify the /NOSYSLIB qualifier and the /SYSSHR qualifier, the /SYSSHR qualifier is
ignored.

If you want the linker to search IMAGELIB.OLB but not STARLET.OLB, specify the /NOSYSLIB
qualifier (to inhibit the default search of both default system libraries), and then specify
IMAGELIB.OLB in the LINK command line or in an options file.

Example
$ LINK/NOSYSLIB MY_PROG

In this example, the linker creates the executable image MY_PROG.EXE without referencing the
default system libraries IMAGELIB.OLB or STARLET.OLB.

/SYSSHR
/SYSSHR — Directs the linker to process the default system shareable image library
(IMAGELIB.OLB) to resolve symbolic references that remain undefined after all specified input files
and any default user libraries have been processed.

Format
/SYSSHR (default)

/NOSYSSHR

Description
The linker searches IMAGELIB.OLB, the default system shareable image library,and resolves
symbolic references that remain undefined after all specified input files and any default user libraries
have been processed.

207

Chapter 10. LINK Command Reference

If you want the linker to skip processing the default shareable image library, IMAGELIB.OLB, but
still process the default system object library, STARLET.OLB, specify the /NOSYSSHR qualifier.

See the description of the /SYSLIB qualifier for information about controlling how the linker
processes the default system libraries.

Example
$ LINK/NOSYSSHR MY_PROG

In this example, the linker processes the default system object library (STARLET.OLB), but does not
process the default system shareable image library (IMAGELIB.OLB), to resolve symbolic references
while producing an executable image named MY_PROG.EXE.

/SYSTEM (Alpha and VAX)
/SYSTEM (Alpha and VAX) — On Alpha and VAX systems, directs the linker to create a system
image and optionally allows you to specify the address at which the image should be loaded into
memory. A system image cannot be activated with the RUN command; it must be bootstrapped or
otherwise loaded into memory.

Format

/SYSTEM[=base-address]

/NOSYSTEM (default)

Qualifier Values

base-address

Specifies the address at which the image is to be loaded in virtual memory. You can specify a base
address in hexadecimal (%X), octal (%O), or decimal (%D) format. The default base address is
%X80000000.

Note that if you specify the /HEADER qualifier, the linker adjusts the base address to the next highest
page boundary if it is not already a page boundary. The next highest page boundary is the smallest
number that is greater than the value specified in the base-address parameter and that is divisible
by the default page size (which is architecture specific) or the page size specified using the /BPAGE
qualifier.

Description

System images are intended for special purposes, such as standalone operating system diagnostics.
When the linker creates a system image, it orders the program sections in alphanumeric order and
ignores all program section attributes.

The linker creates the system image with the file name of the first input file and the file type .EXE. If
you want a different output file specification,specify that file specification with the /EXECUTABLE
qualifier.

If you specify the /SYSTEM qualifier, you cannot specify the /SHAREABLE qualifier or
the /DEBUG qualifier.

208

Chapter 10. LINK Command Reference

Example
$ LINK/SYSTEM MY_SYS

This example directs the linker to produce a system image named MY_SYS.EXE based at address
%X80000000.

/THREADS_ENABLE
/THREADS_ENABLE — Kernel threads allow a multithreaded application to have a thread
executing on every CPU in a multiprocessor system. The /THREADS_ENABLE qualifier allows you
to turn kernel threads on and off on a per-image basis.

Format
/THREADS_ENABLE[=(MULTIPLE_KERNEL_THREADS,UPCALLS)]

/NOTHREADS_ENABLE (default)

Qualifier Values
MULTIPLE_KERNEL_THREADS

When you specify this qualifier, the OpenVMS linker sets the appropriate bits in the dynamic segment
(on x86-64 and I64 systems) or the image header (on Alpha and VAX systems) of the image being
linked. These bits control the following:

• Whether the image is allowed to enter a multiple kernel threads environment

• Whether the image can receive upcalls from the OpenVMS scheduler

On 64-bit systems, this keyword sets the MULTIPLE_KERNEL_THREADS bit in the dynamic
segment (on x86-64 and I64 systems) or the image header (on Alpha systems) of the image being
built. This bit indicates to the image activator that the image can be run in a multiple kernel threads
environment.

If you specify this keyword for OpenVMS VAX links, it is ignored.

UPCALLS

This qualifier sets the UPCALLS bit in the OpenVMS dynamic segment (on x86-64 and I64 systems)
and image header (on Alpha and VAX systems) of the image being built. This bit indicates to the
image activator that the process can receive upcalls from the OpenVMS scheduler.

When the /THREADS_ENABLE qualifier is specified without either the
MULTIPLE_KERNEL_THREADS or UPCALLS keyword, the linker sets both bits by default.

Description
The principal benefit of threading is to allow you to launch multiple paths of execution within a
process. With threading, you can have some threads running while others are waiting for an external
event to occur, such as I/O. The multi-threading kernel of OpenVMS can place threads on separate
central processing units for concurrent execution; this enables a process to run faster.

The set bits allow you to control your threads environment on a per-process basis rather than system-
wide. The image activator examines these bits to determine the environment in which the image is to
run.

209

Chapter 10. LINK Command Reference

Caution

The OpenVMS linker does no analysis whatsoever to determine if the image can be safely placed in a
multiple kernel threads environment. The linker only sets the bits.

For more information on kernel threads, see the Guide to the POSIX Threads Library.

Examples
1. $ LINK /NOTHREADS_ENABLE

This command, which is the default, keeps the MULTIPLE_KERNEL_THREADS and
UPCALLS bits clear in the image being built.

2. $ LINK/THREADS_ENABLE

For this command, the result on 64-bit systems is different from the result on VAX systems:

• On 64-bit systems, this command sets the UPCALLS and MULTIPLE_KERNEL_THREADS
bits in the image being built.

• On VAX systems, the command sets only the UPCALLS bit in the image being built.

3. $ LINK/THREADS_ENABLE=UPCALLS

This command sets the UPCALLS bit in the images being built on all systems.

4. $ LINK/THREADS_ENABLE=MULTIPLE_KERNEL_THREADS

For this command, the result on 64-bit systems is different from the result on VAX systems:

• On 64-bit systems, the command sets the MULTIPLE_KERNEL_THREADS bit in the image
being built.

• On VAX systems, the qualifier and keyword are ignored.

5. $ LINK/THREADS_ENABLE=(MULTIPLE_KERNEL_THREADS,UPCALLS)

For this command, the result on 64-bit systems is different from the result on VAX systems:

• On 64-bit systems, the command sets the UPCALLS and MULTIPLE_KERNEL_THREADS
bits in the image being built.

• On VAX systems, the command sets only the UPCALLS bit in an image being built.

/TRACE
/TRACE — Directs the linker to include traceback information in the image file. If you
specify the /DEBUG qualifier, the linker includes traceback information by default, overriding
the /NOTRACE qualifier if it is specified.

Format
/TRACE (default)

/NOTRACE

210

Chapter 10. LINK Command Reference

Description

Traceback is a facility that displays information from the call stack when a program error occurs. The
output shows which modules were called before the error occurred.

For more information on the effects of using /TRACE combined with /DEBUG and /DSF, see
/DEBUG.

Example
$ LINK/NOTRACE MY_PROG

In this example, the linker does not include traceback information in the executable image named
MY_PROG.EXE.

/USERLIBRARY
/USERLIBRARY — Directs the linker to process one or more default user libraries to resolve
symbolic references that remain undefined after all specified input files have been processed.

Format

/USERLIBRARY[=(table[,...])]

/NOUSERLIBRARY

/USERLIBRARY=ALL (default)

Qualifier Values

table

Specifies the logical name tables that the linker searches for default user libraries. The following
keywords are the only acceptable parameter values:

Keyword Description
ALL Directs the linker to search the process, group, and system logical name tables for

default user library definitions. This is the default.
GROUP Directs the linker to search the group logical name table for default user library

definitions.
NONE Directs the linker not to search any logical name table; the /USERLIBRARY=NONE

qualifier is equivalent to the /NOUSERLIBRARY qualifier.
PROCESS Directs the linker to search the process logical name table for default user library

definitions.
SYSTEM Directs the linker to search the system logical name table for default user library

definitions.

Description

A default user library may be an object module library or a shareable image library.

211

Chapter 10. LINK Command Reference

To define a default user library, you must use the DCL command DEFINE or ASSIGN to equate the
logical name LNK$LIBRARY to the file specification of the library, because the linker looks for this
logical name to determine if a default user library exists.

Further, to control access to the library, you can define LNK$LIBRARY in the process, group,
or system logical name tables by using the /PROCESS qualifier, the /GROUP qualifier, and
the /SYSTEM qualifier, respectively, in the DEFINE command.

For example, if you want the library MY_LIB to be your default user library,the library GROUP_LIB
to be the default user library of everyone else in your group, and the library ANY_LIB to be the
default user library of everyone else on the system, you would issue the following commands:

$ DEFINE LNK$LIBRARY DB2:[MARK]MY_LIB
$ DEFINE/GROUP LNK$LIBRARY DB2:[PROJECT]GROUP_LIB
$ DEFINE/SYSTEM LNK$LIBRARY SYS$LIBRARY:ANY_LIB

Note that the GRPNAM and SYSNAM privileges are required to use the /GROUP qualifier and
the /SYSTEM qualifier, respectively.

If you are defining more than one library in a single logical name table, use the logical names
LNK$LIBRARY for the first library, LNK$LIBRARY_1 for the second library, LNK$LIBRARY_2
for the third, and so on, up to the last possible logical name of LNK$LIBRARY_999. However, you
must specify these logical names in numeric order without skipping any, because when the linker does
not find the next sequential logical name, it stops searching in that logical name table.

The search of default user libraries proceeds as follows:

1. If you specify the /USERLIBRARY=PROCESS qualifier or the /USERLIBRARY qualifier, the
linker searches the process logical name table for the name LNK$LIBRARY. If this entry exists,
the linker translates the logical name and searches the specified library for unresolved strong
references. If you exclude PROCESS from the table list in the /USERLIBRARY qualifier or if no
entry exists for LNK$LIBRARY, the linker proceeds to step 4 (searching the group logical name
table).

2. If any unresolved strong references remain, the linker searches the process logical name
table for the name LNK$LIBRARY_1 and follows the logic of step 1. If no entry exists for
LNK$LIBRARY_1, the linker proceeds to step 4 (searching the group logical name table).

3. If any unresolved strong references remain, the linker follows the logic of step 1 for
LNK$LIBRARY_2, LNK$LIBRARY_3, and so on, until it finds no match in the process logical
name table, at which point it proceeds to step 4.

4. If you specify the /USERLIBRARY=GROUP qualifier or the /USERLIBRARY qualifier, the
linker follows the logic in steps 1 through 3 using the group logical name table. If you exclude
GROUP from the table list in the /USERLIBRARY qualifier or when any logical name translation
fails, the linker proceeds to step 5.

5. If you specify the /USERLIBRARY=SYSTEM qualifier or the /USERLIBRARY qualifier,
the linker follows the logic in steps 1 through 3 using the system logical name table. If you
exclude SYSTEM from the table list in the/USERLIBRARY qualifier or when any logical name
translation fails, the search of default user libraries is complete. By default, the linker proceeds to
search the default system libraries if any unresolved references remain.

Search lists are not recognized in LNK$LIBRARY* logical names. Instead, use LNK$LIBRARY_nnn
with a single library specification.

212

Chapter 10. LINK Command Reference

Example
$ LINK/USERLIBRARY=(GROUP) MY_PROG

In this example, the linker searches only the group logical name table to translate the logical names
LNK$LIBRARY, LNK$LIBRARY_1, LNK$LIBRARY_2, and so on.

/VAX (Alpha and VAX)
/VAX (Alpha and VAX) — Directs the linker to produce an OpenVMS VAX image. The default
action, when neither /ALPHA nor /VAX is specified, is to create an OpenVMS VAX image on an
OpenVMS VAX system and to create an OpenVMS Alpha image on an OpenVMS Alpha system.

Format

/VAX

Description

This qualifier is used to instruct the linker to accept OpenVMS VAX object, image and library files to
produce an OpenVMS VAX image.

You must inform the linker where OpenVMS VAX system libraries and shareable images are
located. On an OpenVMS VAX system, you use the logical name SYS$LIBRARY to do this. On an
OpenVMS Alpha system, you use the logical name VAX$LIBRARY to do this. Therefore, if the link
is to occur on an OpenVMS Alpha system, you must define the logical VAX$LIBRARY so that it
translates to the location of an OpenVMS VAX system disk residing on the system where the VAX
linking is to occur.

For more information on cross-architecture linking, see Section 1.5.

Example
$ DEFINE VAX$LIBRARY DKB200:[VMS$COMMON.SYSLIB]
$ LINK/VAX VAX.OBJ

This example, performed on an OpenVMS Alpha system, shows the definition of the logical name
VAX$LIBRARY to point to an OpenVMS VAX system disk mounted on device DKB200 in the
appropriate area. The qualifier tells the linker to expect the object file, VAX.OBJ, to be an OpenVMS
VAX object file and to link it using the OpenVMS VAX libraries and images on DKB200, if
necessary.

10.3. Option Descriptions
This section describes the linker options that you can specify in a linker options file. For information
about creating and using linker options files, see Chapter 1.

You can express numeric parameters in decimal (%D), hexadecimal (%X), or octal (%O) radix by
prefixing the number with the corresponding radix operator. If no radix operator is specified, the
linker assumes decimal radix.

The default and maximum numeric values in this manual are expressed in decimal numbers, as are the
values in any linker messages relating to these options.

213

Chapter 10. LINK Command Reference

Options Supported
Platform

Defaults

BASE=address VAX See reference description.
CASE_SENSITIVE=YES/NO All NO
CLUSTER=cluster-name All None.
COLLECT=cluster-name All None.
DZRO_MIN=number-of-pages Alpha, VAX Platform specific, see reference

description.
GSMATCH=keyword,major-id,minor-id All See reference description.
IDENTIFICATION=id-name All See reference description.
IOSEGMENT=number-of-pagelets[,
[NO]P0BUFS]

All 0,NOP0BUFS

ISD_MAX=number-of-image-sections Alpha, VAX Approximately 96
NAME=image-name All Name of the image
PROTECT=YES/NO All NO
PSECT_ATTRIBUTE=psect-name,attribute-
keyword[,...]

All None.

RMS_RELATED_CONTEXT=YES/NO All YES
STACK=number-of-pagelets All 20
SYMBOL=symbol-name,symbol-value None.
SYMBOL_TABLE=GLOBALS/
UNIVERSALS

64-bit platforms UNIVERSALS

SYMBOL_VECTOR=([alias/]name= entry-
type[,...])

64-bit platforms None.

UNIVERSAL=symbol-name[,...] VAX None.

BASE= (VAX Only)
BASE= (VAX Only) — For VAX linking, specifies the base address (starting address) that you want
the linker to assign to the image.

Format
BASE=address

Option Values
address

The address at which you want the image based. You can express the number in decimal (%D),
octal (%O), or hexadecimal (%X) notation. If the address specified is not divisible by 512, the linker
automatically adjusts it upward to the next multiple of 512, that is, to the next highest page boundary.
Do not attempt to base an image linked with a larger page size (specified using the /BPAGE qualifier).

The linker bases shareable images at address 0, by default, and bases system images at address
%X80000000, by default.

214

Chapter 10. LINK Command Reference

Description
The BASE= option is illegal in a link operation that produces a system image. To specify a base
address for a system image, use the /SYSTEM qualifier.

The BASE= option is not supported on 64-bit systems. On x86-64 and I64 systems, you cannot create
any based image. On Alpha systems, however, you can create a based executable image but you
cannot create a based shareable image.

On Alpha systems, you can set the base address for an executable image by specifying the base
address argument to the CLUSTER= cluster-name,base-addressoption. On x86-64 and I64 systems,
the base address argument must be omitted in a CLUSTER= option.

In general, the use of based images is not recommended. The image activator, a component of the
OpenVMS operating system,cannot relocate a based image in the virtual address space, which can
result in conflicts in the address space: when two or more based images overlap. It can also result in
fragmentation of the used virtual address space.

The linker processes the BASE= option by assigning the specified base address to the default cluster.
If the linker creates additional clusters before it searches the default libraries, which it does if a
CLUSTER= or COLLECT= option is specified or if a shareable image is explicitly specified, the
following effects may occur:

• If the additional clusters are based (that is, if the CLUSTER=option specifies a base address or if
the shareable image is a based shareable image), the linker must check that memory requirements
for each based cluster do not conflict. Memory requirements conflict when more than one cluster
requires the same section of address space. If they do conflict, the linker issues an error message
and aborts the linking operation. If they do not conflict, the linker allocates each cluster the
memory space it requests.

• If the additional clusters are not based, there will be no conflicting memory requirements.
However, the linker will place each additional cluster at an address higher than that of the default
cluster (because the base address of the default cluster must be the base address of the entire
image). Consequently, the location of clusters (relative to each other) in the image will differ from
what you would expect based on the position of each cluster in the cluster list. (Remember that
the additional clusters precede the default cluster on the cluster list and that the linker typically
allocates memory for clusters beginning at the first cluster on the cluster list, then the second,
and so on). For more information about the linker's clustering algorithm, see Chapter 6. For more
information about the linker’s memory allocation algorithm, see Chapter 7.

CASE_SENSITIVE=
CASE_SENSITIVE= — Directs the linker to preserve the mixture of uppercase and lowercase
characters used in character string arguments to linker options.

Format
CASE_SENSITIVE=YES/NO

CASE_SENSITIVE=NO (default)

215

Chapter 10. LINK Command Reference

Option Values
YES

Enables case sensitivity. You can use any mixture of uppercase and lowercase characters when
specifying the keyword YES.

NO

Disables case sensitivity. Note that you must use only uppercase characters when specifying the
keyword NO because case sensitivity is enabled and the linker does not accept mixed case in
keywords.

Description
Once case sensitivity has been enabled, the linker preserves the case of all succeeding character string
arguments to linker options until you explicitly disable it. When the CASE_SENSITIVE= option is
disabled (which is the default), the linker changes all the characters in a character string to uppercase
before processing the string.

Note that the CASE_SENSITIVE= option only affects how the linker processes arguments to linker
options. When it searches object files and shareable image files for symbols that need to be resolved,
the linker preserves the case used in the symbol names (created by the language compilers). Also,
the names of the linker options (all the characters preceding the equal sign, as in the NAME= option)
are unaffected by the case-sensitivity option. The linker changes all the characters in option names to
uppercase characters before processing the option, even if case sensitivity has been enabled.

Carefully delimit the section of a linker options file in which you use case sensitivity to avoid
unintentional side effects. For example, if you include options in the case sensitive region that accept
keyword arguments, such as YES, NO, EXE, and SHR, make sure the keywords are specified using
uppercase characters. Because these keywords appear after the equal sign, they are affected by case
sensitivity. Similarly, character string arguments used to name a program section, cluster, or image are
also affected by case sensitivity.

Symbol names issued by compilers are upper-cased by default. But you can use compiler switches
to preserve mixed-case source code names. Be aware that this may result in mixed-case module or
program section names as well. For example, if you have a library include statement and the module
names in the library are mixed-case, then set CASE_SENSITIVE=YES to operate on mixed-case
names in the options file.

The following excerpt from an options file illustrates how the linker changes or preserves the
syntactical elements of an option line. The example contains mixed-case names that you want to
preserve by setting the linker to case-sensitive mode:

 case=Yes
 My_Lib/library/include=(Add_Func, Sub_Func)
 symbol_vector=(Add_Func=PROCEDURE,PAGE_COUNT=DATA)
 case=NO

When processed by the linker, the text appears as follows:

 CASE=YES
 MY_LIB/LIBRARY/INCLUDE=(Add_Func,Sub_Func)
 SYMBOL_VECTOR=(Add_Func=PROCEDURE,PAGE_COUNT=DATA)
 CASE=NO

The case of all names to the right of the first equal sign in each option remains the same.

216

Chapter 10. LINK Command Reference

Note

It is recommended to switch to case sensitivity only when needed.

Example
$ LINK/SHAREABLE/MAP/FULL TEST,SYS$INPUT/OPTIONS
CASE_SENSITIVE=YES
NAME=ImageName
SYMBOL=OneSymbol,1
CASE_SENSITIVE=NO
SYMBOL_VECTOR=(myroutine=PROCEDURE)
Ctrl/Z

In the example, the CASE_SENSITIVE= option with the value YES enables case sensitivity in
the linker options file. Because case sensitivity has been enabled, the linker preserves the mix of
uppercase and lowercase characters used in character string arguments to all succeeding linker
options. In the example, this includes the character string Image Name passed to the NAME=option
and the character string One Symbol passed to the SYMBOL= option.

Specifying the CASE_SENSITIVE= option with the value NO turns off case sensitivity. Note that you
must use uppercase characters when specifying the keyword NO. Because case sensitivity has been
disabled, the linker changes all the characters in the universal symbol my routine to uppercase. The
following excerpt from the map file produced by this link illustrates how these identifiers were stored
by the linker:

ImageName
OneSymbol
MYROUTINE

CLUSTER=
CLUSTER= — Directs the linker to create a cluster. (The linker groups input files into clusters before
processing their contents).

Format
CLUSTER=cluster-name[,base-address[,pfc[,file-spec[,...]]]]

Option Values
cluster-name

The name you want assigned to the cluster.

base-address

The base virtual address for the cluster. If you omit the base-address value, you must still enter the
comma.

On x86-64 and I64 systems, the base address must be omitted.

On Alpha systems, it is illegal to specify a base address for a cluster when creating a shareable image.

217

Chapter 10. LINK Command Reference

pfc (page fault cluster)

The number of pagelets read into memory by the operating system when the initial page fault occurs
for a page in the cluster. If you do not specify the pfc parameter, the operating system uses the default
value established by the system parameter PFCDEFAULT. If you omit the page fault cluster value,
you must still enter the comma.

file-spec

The file you want the linker to place in the cluster. Note that you should not specify in the LINK
command itself any file that you specify with the CLUSTER= option (unless you want to include two
copies of the file in the final image).

Description

You can use the CLUSTER= option in the following ways:

• To control the order in which the linker processes input files

• To cause specified modules to be placed close together in virtual memory

If you do not specify the CLUSTER= option, the linker always creates at least one cluster, called the
default cluster. For more information about how the linker creates clusters, see Chapter 2 (x86-64 and
I64) and Chapter 6 (Alpha and VAX).

You can also create a cluster by specifying the COLLECT= option

Example
$ LINK MY_PROG,SYS$INPUT/OPTIONS CLUSTER=MY_CLUSTER,,,PROG2,PROG3

In this example, the linker creates a cluster, named MY_CLUSTER, that contains the input files
named PROG2.OBJ and PROG3.OBJ.

COLLECT=
COLLECT= — Directs the linker to place the specified program section (or program sections) into
the specified cluster.

Format

COLLECT=cluster-name
[/ATTRIBUTES=(RESIDENT,INITIALIZATION_CODE)],psect-name[,...]

Option Values

cluster-name

Name of the cluster.

psect-name

Name of the program sections (psects) you want placed in the cluster.

218

Chapter 10. LINK Command Reference

Qualifier
/ATTRIBUTES

On 64-bit systems, directs the linker to mark the cluster 'cluster-name' with the indicated qualifier
keyword value. Attributes set by this qualifier are only evaluated by the loader. This qualifier is used
to build OpenVMS drivers. See Writing OpenVMS Alpha Device Drivers in C for guidelines for using
this qualifier.

Qualifier Values

RESIDENT—Marks the cluster 'cluster-name' as RESIDENT so that the segment (on x86-64 and I64
systems) or image section (on Alpha systems) created from that cluster has the RESIDENT flag set.
This will cause the loader to map the segment or image section into non-paged memory.
INITIALIZATION_CODE—Marks the cluster 'cluster-name' as INITIALIZATION_CODE so
that the segment (on x86-64 and I64 systems) or image section (on Alpha systems) created from
that cluster has the INITALCOD flagset. The initialization code will be executed by the loader. This
keyword is specifically intended for use with program sections from modules SYS$DOINIT and
SYS$DRIVER_INIT in STARLET.OLB.

Description
If the specified cluster does not already exist, the linker creates the cluster when it processes the
COLLECT= option.

The linker sets the global (GBL) attribute for all the program sections specified, if they do not already
have this attribute set. Program sections exported from a shareable image referenced in the options file
with the /SHAREABLE qualifier cannot be specified in the COLLECT= option.

Example
LINK MY_PROG,SYS$INPUT/OPTIONS
COLLECT=MY_CLUSTER,PSECT2,PSECT3
Ctrl/Z

In the example, the linker creates the cluster named MY_CLUSTER, if it does not already exist, and
puts the program sections named PSECT2 and PSECT3 in the cluster.

DZRO_MIN= (Alpha and VAX)
DZRO_MIN= (Alpha and VAX) — On Alpha and VAX systems, specifies the minimum number
of contiguous, uninitialized pages that the linker must find in an image section before it can extract
the pages from the image section and place them in a newly created demand-zero image section. By
creating demand-zero image sections (image sections that do not contain initialized data), the linker
can reduce the size of images.

Format
DZRO_MIN=number-of-pages

Option Values
number-of-pages

Specifies the minimum number of contiguous pages.

219

Chapter 10. LINK Command Reference

For VAX linking, the linker, by default, uses a minimum of 5 pages. Each VAX page equals 512
bytes.

For Alpha linking, the linker, by default, uses a minimum of 1 page. The size of an Alpha page is
CPU-specific. The initial set of Alpha systems uses an 8 KB page. The page size used is that of the
current link operation. (See the /BPAGE qualifier).

The number of pages must be equal to or greater than the value specified in the parameter.

Description
A demand-zero image section contains uninitialized, writable pages, which do not occupy physical
space in the image file on disk, but which, when accessed during program execution, are allocated
memory and initialized with binary zeros by the operating system. For more information about
demand-zero compression on Alpha and VAX, see Chapter 7.

When specifying a value for this option, be aware that a low value (less than the default value)
increases the likelihood that the linker will encounter the required number of contiguous, uninitialized
pages and thus may increase the number of demand-zero image sections the linker creates for the
image (depending on the contents of the object modules). While this can reduce the size of the image
file on disk, it can also decrease the image's paging performance during execution. Conversely, a
value higher than the default value decreases the likelihood that the linker will encounter the required
number of contiguous, uninitialized pages; decreases the number of demand-zero image sections
the linker creates; and may increase the size of the image file on disk but provide better paging
performance during execution.

The linker stops creating demand-zero image sections when the total number of image sections
in the image reaches the value specified by the ISD_MAX= option or the default value. For more
information, see the description of the ISD_MAX= option.

The DZRO_MIN= option is illegal in a link operation that produces a system image.

Example
$ LINK MY_PROG,SYS$INPUT/OPTIONS
DZRO_MIN=15
Ctrl/Z

In this example, the value of the DZRO_MIN= is set to 15.

GSMATCH=
GSMATCH= — Sets match control parameters for a shareable image and specifies the match
algorithm. This option allows you to control whether executable images that link with a shareable
image must be relinked each time the shareable image is updated and relinked.

Format
GSMATCH=keyword,major-id,minor-id

GSMATCH=EQUAL,link-time-derived-major-id,link-time-derived-minor-id
(default)

220

Chapter 10. LINK Command Reference

Option Values
keyword

Identifies the match algorithm used by the image activator. Specify one of the following keywords:

Keyword Meaning
EQUAL Directs the image activator to allow the image to map to the referenced

shareable image when one condition is met:

• the major and minor ID for the shareable image, as saved at link time in the
image file, are equal to the IDs found in the actual shareable image file at
activation time.

LEQUAL Directs the image activator to allow the image to map to the referenced
shareable image when two conditions are met:

• the major ID for the shareable image, as saved at link time in the image file,
is equal to the major ID found in the actual shareable image file at activation
time

• the minor ID for the shareable image, as saved at link time in the image file,
is less than or equal to the minor ID found in the actual shareable image file
at activation time.

ALWAYS Directs the image activator to unconditionally allow the image to map to the
referenced shareable image:

• regardless of the values of the major and minor ID for the shareable image,
as saved at link time in the image file, and the values of the IDs found in the
actual shareable image file at activation time.

Note that you must still specify values for the major ID and minor ID
parameters to satisfy the requirements of the option syntax.

major-id

Specifies the major identification number.

minor-id

Specifies the minor identification number.

When a shareable image is created without specifying a GSMATCH= option, the linker by default
creates one. It sets the EQUAL match control and uses portions of the image creation time, as a binary
value, for the major and minor IDs. In general this is sufficient to set a unique value for the IDs each
time the shareable image is linked. On x86-64 and I64 systems, the linker uses bits 40 through 54 of
the binary time value for the major ID and bits 8 through 39 for the minor ID. On Alpha and VAX
systems, the linker uses bits 32 through 46 of the binary time value for the major ID and bits 16
through 31 for the minor ID.

Description
The GSMATCH= option causes a major identification parameter (major-id), a minor identification
parameter (minor-id), and a match control keyword to be stored in the shareable image file. The
control keyword together with the IDs is called the GSMATCH information.

221

Chapter 10. LINK Command Reference

When an image is linked with a shareable image, together with the reference to the shareable image its
GSMATCH information is saved in the image file.

When the image is run, the image activator encounters the reference to the shareable image. At
this time, the image activator compares the GSMATCH information as saved in the image with the
GSMATCH information retrieved from the actual shareable image. The implementation details on
different systems are slightly different, the mechanism and its effects are the same.

The following information describes the GSMATCH mechanism for an executable image linked
against a shareable image. "Executable" is used to clearly differentiate between the referencing
image and the referenced image, the shareable image. However, in general any image, executable or
shareable, can be linked against a shareable image and the described mechanism applies.

• On x86-64 and I64 systems, the GSMATCH= option causes a major identification parameter
(major-id), a minor identification parameter (minor-id), and a match control keyword to be stored
in the dynamic segment of the shareable image. It is the DT_VMS_IDENT field which holds this
information.

When an executable image is linked with a shareable image, the dynamic segment of the
executable image contains the name of the shareable image. This information is saved in the field
DT_NEEDED. The name is accompanied by the GSMATCH information of the shareable image,
taken at link time. This information is saved in the field DT_VMS_NEEDED_IDENT.

When the executable image is run and the image activator begins processing the dynamic segment
of the executable image, the image activator encounters the name of the shareable image. At that
time, the image activator looks up the shareable image file based on this name, either as a logical
name, pointing to a file, or as a file name in the directory SYS$LIBRARY. If an image file was
found, the image activator continues to process the GSMATCH information.

• On Alpha and VAX systems, the GSMATCH= option causes a major identification parameter
(major-id), a minor identification parameter (minor-id), and a match control keyword to be stored
in the image header of the shareable image.

When an executable image is linked with a shareable image, the image header of the executable
image contains an image section descriptor (ISD) for the shareable image (as well as an ISD for
each image section in the image). The ISD for the shareable image contains a major ID, minor ID,
and match control keyword, which the linker copies from the shareable image at link time.

When the executable image is run and the image activator begins processing the ISDs in the image
header of the executable image, the image activator encounters the ISD for the shareable image.
As such, the image activator looks up the shareable image file based on its name, either as a
logical name, pointing to a file, or as a file name in the directory SYS$LIBRARY. If an image file
was found, the image activator compares the image section name in the ISD to the image section
name in the image header of the current shareable image file. If the image section names do not
match, the image activator does not allow the executable image to map to the shareable image,
regardless of the GSMATCH parameters. If the image section names match, the image activator
continues to process the GSMATCH information.

• To process the GSMATCH information, the image activator compares the major ID parameters.
If they do not match, the image activator does not allow the executable image to map to the
shareable image unless GSMATCH=ALWAYS has been specified.

If the major ID parameters match, the image activator compares the minor ID parameters. If the
relation between the minor ID parameters does not satisfy the relation specified by the match

222

Chapter 10. LINK Command Reference

control keyword, the image activator does not allow the executable image to map to the shareable
image. Then the image activator issues an error message stating that the executable image must be
relinked.

The match control keyword must be the same in both the shareable and executable image files.
If it is different, then the more restrictive match is used. For example, if a shareable image is
linked with ALWAYS,and an executable image contains EQUAL (from an earlier version of the
shareable image), then the test at activation time will be EQUAL.

Thus, to create an upwardly compatible shareable image, increment only the value of the minor
ID and leave unchanged the value of the major ID. If the match control keyword is LEQUAL, the
executable image that links against it will run. (If the major ID is changed, executable images can
never map to the shareable image unless ALWAYS is specified). By using this convention, you
can ensure that executable images that linked with an older version of the shareable image can
map to the newer version.

On Alpha and VAX systems, the linker uses the same GSMATCH mechanism to check the
compatibility of the information in a shareable image library and the shareable image file. For more
information, see the description of the /LIBRARY qualifier in /LIBRARY.

The image activator verifies the index (on x86-64 and I64 systems) or offset (on Alpha systems) of a
referenced symbol in a shareable image; the index or offset is then confirmed if it is within the symbol
vector.

This additional step makes it possible to avoid relinking of some images. To illustrate
the feature, consider a shareable image with an exported routine MY_ADD, created
with a SYMBOL_VECTOR=(MY_ADD=PROCEDURE) option. Consider also
an updated version of the shareable image with an improved MY_ADD routine but
also with an additional routine MY_SUB. That is, a shareable image created with a
SYMBOL_VECTOR=(MY_ADD=PROCEDURE,MY_SUB=PROCEDURE) option.

The usual way to make such a change upward compatible is by changing the minor ID in the
GSMATCH= option. (This method is also the required way on VAX). Now consider linking your
application, which only calls MY_ADD, with the new shareable image and shipping it to a customer
site, where only the old shareable image is available. This image will not be activated with the old
shareable image because of the GSMATCH mechanism. It does not matter that the new symbol is not
referenced and that the application - if activated - would correctly work. To resolve this GSMATCH
conflict, the application image needs to be relinked with the old shareable image at the customer site
or the updated shareable image needs to be shipped with the application.

On 64-bit systems, this condition can be avoided. By using an unchanged minor ID in the
GSMATCH= option, the updated shareable image is downward compatible. Again, the application
image only uses the old interface (MY_ADD, in this example). Such images, although linked
against the new shareable image, can be activated with the old shareable image. Any application
image using the additional interface (MY_SUB, in this example) will not be activated with
the old shareable image; the check fails, the index or offset of the new symbol is not within
the symbol vector of the old shareable image. The image activation aborts with the secondary
message -LOADER-E-BADSVINDX (on x86-64 and I64 systems) or with the error message
%IMGACT-F-SYMVECMIS (on Alpha systems).

In such a situation, where you only add interfaces at the end of the symbol vector, you can safely
leave the minor ID of the updated shareable image the same and rely on the check of the image
activator.

223

Chapter 10. LINK Command Reference

Examples
1. $ LINK/SHAREABLE MY_SHARE,SYS$INPUT/OPTIONS

GSMATCH=LEQUAL,1,1000
Ctrl/Z

In this example, the GSMATCH= option sets the major and minor identification numbers for this
shareable image.

2. $ LINK/SHAREABLE MY_SHARE,SYS$INPUT/OPTIONS
GSMATCH=LEQUAL,1,1001
Ctrl/Z

In this example, the shareable image created in the previous example is relinked and the minor
identification number is incremented. Note that executable images that link with the new version
cannot map to the old version, whereas executable images that link with the old version can map
to the new version.

3. $ LINK/SHAREABLE MY_SHARE,SYS$INPUT/OPTIONS
GSMATCH=ALWAYS,0,0
Ctrl/Z

By specifying the keyword ALWAYS, an executable image can run with any version of the
shareable image (newer or older).

IDENTIFICATION=
IDENTIFICATION= — Sets the image-id field in the image file. The image identification usually
holds a version number of the image, but can be used for any text to identify the generated image.

Format
IDENTIFICATION=id-name

Option Values
id-name

The maximum length of the identification character string is 15 characters. If the string contains
characters other than uppercase and lowercase A through Z, the numerals 0 through 9, the dollar
sign,and the underscore, enclose it in quotation marks.

Description
On x86-64 and I64 systems, the identification string is saved in the NOTE section. On Alpha and
VAX systems, the text is saved in the image header.

When the IDENTIFICATION= option is not specified, the linker always creates and saves a default
identification. Because object modules have identification strings as well,the linker tries to use them
for the image. If that fails, the linker uses the file type, explicitly or implicitly specified for the image
file. In such a case you may see the identification ".EXE".

For the default image ID, the linker takes the first non-empty identification string from an object
module,when processing the input files. Thereafter, the default image ID is only changed, if the linker
encounters an object module that provides the transfer address. (A transfer address is the main entry
point for the image). The providing module is seen as the main contributor and therefore should
determine the default image ID.

224

Chapter 10. LINK Command Reference

Because shareable images normally do not have a main entry point, the default image ID usually
remains as the ID of the first object module processed.

On Alpha and VAX systems, when linking system image with /SYSTEM and /NOHEADER, the
IDENTIFICATION= option is accepted but is not saved in the image file.

Example
$ LINK /EXECUTABLE=IA64_LINKER LINKER/OPTIONS,SYS$INPUT/OPTIONS
IDENTIFICATION="I02-31"
Ctrl/Z

In this example, it is shown how a version number of the I64 linker is specified with the
IDENTIFICATION= option. With the Analyze utility, the image can be identified as the second major
release of the I64 linker with version 31.

IOSEGMENT=
IOSEGMENT= — Specifies the amount of space to be allocated for the image I/O segment, which
holds the buffers and OpenVMS RMS control information for all files used by the image.

Format
IOSEGMENT=number-of-pagelets[,[NO]P0BUFS]

IOSEGMENT=0,NOP0BUFS (default)

Option Values
number-of-pagelets

Specifies the number of pagelets (512-byte units) to be allocated for the image I/O segment. By
default, the operating system uses the value set by the IMGIOCNT system parameter to determine the
size of the image I/O space.

[NO]P0BUFS

By default, the operating system allocates the I/O segment in the P1 region of the process space
and, if additional space is needed, at the end of the P0 region. If you specify NOP0BUFS, you deny
OpenVMS RMS additional pages in the P0 region.

Description
Specifying the value of number-of-pagelets to be greater than the value of IMGIOCNT ensures the
contiguity of P1 address space, providing that OpenVMS RMS does not require more pages than the
value specified. If OpenVMS RMS requires more pagelets than the value specified, the pagelets in the
P0 region would be used (by default).

Note that if you specify NOP0BUFS and if OpenVMS RMS requires more pagelets than have been
allocated for it, OpenVMS RMS issues an error message.

Example
$ LINK MY_PROG,SYS$INPUT/OPTIONS
IOSEGMENT=100,P0BUFS
Ctrl/Z

225

Chapter 10. LINK Command Reference

ISD_MAX= (Alpha and VAX)
ISD_MAX= (Alpha and VAX) — On Alpha and VAX systems, specifies the maximum number of
image sections allowed in the image.

Format

ISD_MAX=number-of-image-sections

ISD_MAX=96 (default, approximate value)

Option Values

number-of-image-sections

The maximum number of image sections that may be created. You can specify the value in
hexadecimal (%X), decimal (%D), or octal (%O) radix. The default is decimal radix.

Description

This option is used to control the linker's creation of demand-zero image sections by imposing an
upward limit on the number of total image sections. Thus, if the linker is creating demand-zero image
sections, and if the total number of image sections reaches the ISD_MAX= value, demand-zero image
section creation ceases at that point. For more information about how the linker creates demand-zero
image sections, see Section 7.4.3.

The ISD_MAX= option may be specified only in a link operation that produces an executable image.
The ISD_MAX= option is illegal in a link operation that produces either a shareable or a system
image.

The default value for ISD_MAX= is approximately 96. Note that any value you specify is also an
approximation. The linker determines an exact ISD_MAX=value based on characteristics of the
image, including the different combinations of section attributes. The exact value, however, will be
equal to or slightly greater than what you specify; it will never be less.

Example
$ LINK MY_PROG,SYS$INPUT/OPTIONS
ISD_MAX=126
Ctrl/Z

NAME=
NAME= — Sets the image-name field in the image file. The image name is used on Alpha and VAX
systems to resolve self-references in the shareable image list.

Format

NAME=image-name

Format

image-name

226

Chapter 10. LINK Command Reference

A character string up to 39 characters in length. If the name contains characters other than uppercase
and lowercase A through Z, the numerals 0 through 9, the dollar sign, and the underscore, enclose it in
quotation marks.

Description
If the NAME= option is not specified, the string specified with /SHAREABLE or /EXECUTABLE is
used for the image-name field. If no string was specified to /SHAREABLE or /EXECUTABLE, the
name of the first module processed is used.

The NAME= option does not affect the name of the image file.

The image-name field is not used by the linker or librarian.

For Alpha and VAX linking, if a shareable image references its own exported symbol (on Alpha
systems, created with a SYMBOL_VECTOR clause that contains an ALIAS keyword), the linker
always uses the string from the NAME= option to name the image in the shareable image list. When
using a different name than the image file, the to be generated shareable image will not show in its
own shareable image list. The image-name field will not change when the image file is renamed. This
way the image activator can always resolve a self-reference.

On x86-64 and I64 systems, self-references is expressed differently. There is no entry in the
shareable image list for the current image. Self-references are referred to with a special index value
into the shareable image list (-1 in the DT_VMS_FIXUP_NEEDED field) that results in a set of
DT_NEEDED entries. However, the NAME= option is supported for compatibility reasons.

The following conventions describe the various names that apply to an image:

• File name — Images are given an image file specification (for example, FOO.EXE) that can be
changed with the DCL command RENAME.

• Image name — The image name as specified with the NAME= option and stored in the image
file. This name can be different than the image file specification name. However, if you do not use
the NAME= option, the name defaults to the image file specification name. The Analyze utility
displays this name as the "Image name". Once written to the image file, you cannot change this
name.

• Global Symbol Table Name — An additional name for the image is associated with the global
symbol table (GST) and stored in the image, for example, in x86-64 and I64 images it is in a
note of type NT_VMS_GSTNAM. The linker sets this name to be the same as the image file
specification name. This name is used by the Librarian when you insert an image into an image
library. It is displayed by the Analyze utility as the Global Symbol Table Name. Once written to
the image file, you cannot change this name.

Example
$ LINK MY_PROG,SYS$INPUT/OPTIONS
NAME=MY_IMAGE
Ctrl/Z

PROTECT=
PROTECT= — Specifies that the segments (on x86-64 and I64 systems) or image sections (on Alpha
and VAX systems) in one or more clusters in a shareable image should be protected from user-mode
or supervisor-mode write access.

227

Chapter 10. LINK Command Reference

Format
PROTECT=YES/NO

PROTECT=NO (default)

Option Values
YES

Enables protection for all the clusters defined in subsequent lines in the options file by the
CLUSTER= option or the COLLECT= option, up to a line containing another PROTECT= option.

NO

Disables protection for all clusters specified on subsequent lines of a linker options file by the
CLUSTER=option or the COLLECT= option, up to the line containing another PROTECT=YES
option. Protection is disabled by default.

Description
This option is used to protect segments or image sections that contain privileged code or data
in shareable images that implement user-written system services (called privileged shareable
images). For more information about creating user-written system services, see the VSI OpenVMS
Programming Concepts Manual.

Note that the protection applies to the segments and image sections the linker creates from the cluster,
not the cluster itself. A cluster is an internal construct the linker uses to organize how it processes
input files. The linker communicates the actual memory requirements of an image, including its
protection, to the image activator as segment or image section specifications.

If the entire shareable image needs to be protected,specify the /PROTECT qualifier.

On x86-64 and I64 systems, it is recommended to protect the whole image with the /PROTECT
qualifier; see Section 4.4).

Example
$ LINK/SHAREABLE=MY_SHARE SYS$INPUT/OPTIONS
PROTECT=YES
CLUSTER=A,,,MOD1,MOD2
SYMBOL_VECTOR=(ENTRY=PROCEDURE)
PROTECT=NO
CLUSTER=B,,,MOD3
COLLECT=A,PSECTX,PSECTY,PSECTZ
Ctrl/Z

In this example, the segments or image sections, created from the modules MOD1 and MOD2 in
cluster A are protected; the segments or image sections, created from the module MOD3 in cluster
B are not protected; the segments or image sections into which the program sections PSECTX,
PSECTY, and PSECTZ are collected in cluster A are protected. Note that other linker options, such
as the SYMBOL_VECTOR= option in the example, are not affected. Please note, the symbol vector,
which is a NOWRT program section by default, is not protected with this scheme. Its program section
is collected onto the default cluster.

228

Chapter 10. LINK Command Reference

PSECT_ATTRIBUTE=
PSECT_ATTRIBUTE= — Specifies the attributes of a program section.

Format

PSECT_ATTRIBUTE=psect-name,attribute-keyword[,...]

Option Values

psect-name

Specifies the name of the program section whose attributes you want to set. The name may be a
character string up to 31 characters in length.

attribute-keyword

One or more attributes, identified by a keyword or a number, separated by commas. For a complete
description of the program section attributes see Section 3.2 (x86-64 and I64) and Section 7.2 (Alpha
and VAX).

Settable attributes

• Alignment — Specify the alignment of the program section as an integer that represents the power
of 2 required to generate the desired alignment or specify a keyword, if available.

Power of 2 Keyword Meaning
0 BYTE Alignment on byte boundaries.
1 WORD Alignment on word boundaries.
2 LONG Alignment on longword boundaries.
3 QUAD Alignment on quadword (8-byte) boundaries.
4 OCTA Alignment on octaword (16-byte) boundaries.
51 HEXA Alignment on hexadecimal word (32-byte) boundaries.
61 — Alignment on 64-byte boundaries.
71 — Alignment on 128-byte boundaries.
8 — Alignment on 256-byte boundaries.
9 — Alignment on 512-byte boundaries.
13 — Alignment on 8 KB boundaries.
14 — Alignment on 16 KB boundaries.
15 — Alignment on 32 KB boundaries.
16 — Alignment on 64 KB boundaries.
— PAGE Alignment on the default target page size, see the /BPAGE qualifier

1x86-64 and I64 specific

• ALLOC_64BIT/NOALLOC_64BIT (x86-64 and I64) — Allocate section in P2 space

• EXE/NOEXE — Executability

229

Chapter 10. LINK Command Reference

• GBL/LCL — Global/Local

• MOD (64-bit systems) — Unmodified

• OVR/CON — Overlaid/Concatenated

• PIC/NOPIC (Alpha and VAX) — Position Independence

• REL/ABS — Relocatable/Absolute

• SHORT (I64 only) — Short Data

• SHR/NOSHR — Shareability

• SOLITARY — Solitary

• VEC/NOVEC — Protected Vectors

• WRT/NOWRT — Writability

Description

Attributes not specified in a PSECT_ATTRIBUTE= option remain unchanged.

If you specify a program section alignment that is greater than the target page size, the linker issues a
warning and adjusts the alignment to be equal to the target page size.

By default, the linker aligns program sections, at a minimum, on the boundary specified by the
compiler.

The PSECT_ATTRIBUTE= option aligns the program section on the specified boundary which
should be equal to or greater than that which the compiler specified. The linker does not align each
individual contribution to the section;rather, it aligns the total program section. The linker follows the
compiler's alignment specification when it aligns each individual contribution.

Do not specify a smaller program section alignment with the PSECT_ATTRIBUTE=option than the
alignment that the compiler gave to the program section.

On x86-64 and I64 systems, if you specify a smaller alignment for a program section than any
compiler-assigned alignment from all contributions to this program section,the linker issues a
warning. For example:

$ LINK HI,SYS$INPUT/OPTIONS
PSECT_ATTRIBUTE=$LITERAL$,BYTE
Ctrl/Z
%ILINK-W-CONFALGN, PSECT option alignment (1) less than compiler
assigned (16);
alignment ignored
 section: $LITERAL$
 module: HI
 file: DISK$USER:[JOE]HI.OBJ;3

Please note, the alignment number in the linker message indicates a multiple-of-bytes alignment,
where 1 is a byte alignment and 16 is an octaword alignment.

On Alpha and VAX systems, the linker inappropriately aligns the program section on the boundary
that you specified ("byte", in the preceding code example), and places all the contributions to that

230

Chapter 10. LINK Command Reference

program section (from other modules you might have linked with "HI", in the example) on boundaries
that were not specified by the compiler. The linker does not issue an error message.

Example
$ LINK MY_PROG,SYS$INPUT/OPTIONS
PSECT_ATTRIBUTE=MY_CONST,NOWRT
Ctrl/Z

In this example, the linker protects the program section MY_CONST from write access and leaves all
other attributes of MY_CINST unchanged.

RMS_RELATED_CONTEXT=
RMS_RELATED_CONTEXT= — Enables or disables RMS related name context processing. This
is also known as file specification "stickiness." The default is to have RMS related name context
processing enabled. This default applies at the start of each options file regardless of the setting in a
previous options file. The related name context itself (the collection of data structures RMS maintains
to supply the most recently specified fields) does not carry over from one linker options file to the
next. That is,previously specified fields in the previous options file are not used to fill in absent fields
for file specifications in the current options file.

Format

RMS_RELATED_CONTEXT=YES/NO

RMS_RELATED_CONTEXT=YES (default)

Option Values

YES

Enables RMS related name context processing. If an option RMS_RELATED_CONTEXT=NO is in
effect, its saved related name context is restored. If RMS related name context processing is already
enabled, this option has no effect.

RMS related name context processing is enabled by default. Therefore command line file
specifications are processed with RMS related name context. Also, RMS related name context
processing is enabled at the start of each options file. The related name context is limited to a single
options file. That is, the saved related name context is cleared at the start of each options file.

NO

Disables RMS related name context processing. If an option RMS_RELATED_CONTEXT=YES is
in effect, the current name context is saved for a possible future RMS_RELATED_CONTEXT=YES
option. If RMS related name context processing is already disabled, specifying
RMS_RELATED_CONTEXT=NO has no effect.

Description

When RMS related name processing is enabled (by default and at the beginning of each options file),
file specifications that do not have all fields of the file specification present will have the missing
fields replaced with the corresponding fields most recently specified in earlier file specifications.

231

Chapter 10. LINK Command Reference

When disabled, fields in the file specification that are absent are not replaced with corresponding
fields of previous file specifications.

When the RMS related name context processing is switched from enabled to disabled, the current
related name context is saved. Vice versa, if the RMS related name context processing is switched
from disabled to enabled, the saved related name context is restored.

In combination with logical names and search lists, determining a missing input file with RMS related
name context processing enabled may take long. To the user the link operations seems to hang or to
loop. To identify such a situation and to resolve it by determining which file is missing, follow these
steps:

1. Specify SYS$INPUT/OPTIONS in the LINK command and press Return. (The linker waits for
you to enter option clauses for the link operation from the terminal).

2. Enter the option clauses and include the following information:

• On the first line, specify: RMS_RELATED_CONTEXT=NO.

With the RMS_RELATED_CONTEXT= option set to NO, any missing file listed in this
options file generates an immediate "file not found" message.

• On subsequent lines, specify the files to be linked, using full file specifications in the form
disk:[dir]filename.ext for every file. Full file specifications are required because
when you specify RMS_RELATED_CONTEXT=NO, file name "stickiness" is disabled.

3. Press Ctrl/Z.

Example
1. $ LINK DSK:[TEST]A.OBJ, B.OBJ

In this example the RMS related name context processing is enabled by default. The specified
input file B.OBJ gets the name context DSK:[TEST] from the previous input file DSK:
[TEST]A.OBJ.

2. $ LINK/EXECUTABLE=A.EXE SYS$INPUT/OPTIONS
 RMS_RELATED_CONTEXT=NO
 DSK:[TEST]A.OBJ, DSK:[TEST]B.OBJ
 Ctrl/Z

In this example the RMS related name context processing is disabled. The full file specifications
for both object modules are required. The link operation is the same as in the previous example.

3. $ DEFINE DSKD$ WORK4:[TEST.LINKER.OBJ.]
 $ DEFINE RESD$ ROOT$, ROOT2$, ROOT3$,
 ROOT4$, ROOT5$, DISK_READ$:[SYS.]
 $ DEFINE ROOT$ WORK4:[TEST.PUBLIC.TEST]
 $ DEFINE ROOT2$ WORK4:[TEST.LINKER.]
 $ DEFINE ROOT3$ WORK4:[TEST.UTIL32.]
 $ DEFINE ROOT4$ WORK4:[TEST.PUBLIC.]
 $ DEFINE ROOT5$ WORK4:[TEST.PUBLIC.TMP]
 $ LINK/MAP/FULL/CROSS_REFERENCE/EXECUTABLE=ALPHA.EXE RESD$:[TMPOBJ]A.OBJ,-
 _$ RESD$:[SRC]B.OBJ,C,DSKD$:[OBJ]D.OBJ,E,RESD$:[TMPSRC]F.OBJ,-
 _$ RESD$:[TEST]G.OBJ,RESD$:[SRC.OBJ]H,RESD$:[COM]DOES_NOT_EXIST.OBJ

 Ctrl/T
 NODE6::_FTA183: 15:49:46 LINK CPU=00:02:30.04 PF=5154 IO=254510 MEM=134
 Ctrl/T
 NODE6::_FTA183: 15:49:46 LINK CPU=00:02:30.05 PF=5154 IO=254513 MEM=134
 Ctrl/T

232

Chapter 10. LINK Command Reference

 NODE6::_FTA183: 15:50:02 LINK CPU=00:02:38.27 PF=5154 IO=268246 MEM=134
 Ctrl/T
 NODE6::_FTA183: 15:50:02 LINK CPU=00:02:38.28 PF=5154 IO=268253 MEM=134
 Ctrl/T
 NODE6::_FTA183: 15:50:14 LINK CPU=00:02:44.70 PF=5154 IO=278883 MEM=134

In this example, the linker appears to loop. The file DOES_NOT_EXIST.OBJ, as included in the
argument list, does not exist. An RMS_RELATED_CONTEXT= option is not specified (and,
therefore, defaults to YES). With multiple logical names and a search list for the logical RESD$,
determining that this file is missing takes very long.

These commands define logical names and equivalents.
Each time you press Ctrl/T, the CPU and IO values increase, but the MEM and PF values do not,
indicating that LIB$FIND_FILE has been called with RMS related name context.

 $ DEFINE DSKD$ WORK4:[TEST.LINKER.OBJ.]
 $ DEFINE RESD$ ROOT$, ROOT2$, ROOT3$, ROOT4$, ROOT5$, DISK_READ$:[SYS.]
 $ DEFINE ROOT$ WORK4:[TEST.PUBLIC.TEST.]
 $ DEFINE ROOT2$ WORK4:[TEST.LINKER.]
 $ DEFINE ROOT3$ WORK4:[TEST.UTIL32.]
 $ DEFINE ROOT4$ WORK4:[TEST.PUBLIC.]
 $ DEFINE ROOT5$ WORK4:[TEST.PUBLIC.TMP.]
 $ LINK/MAP/FULL/CROSS_REFERENCE/EXECUTABLE=ALPHA.EXE SYS$INPUT/OPTIONS
 RMS_RELATED_CONTEXT=NO
 RESD$:[TMPOBJ]A.OBJ,RESD$:[SRC]B.OBJ,RESD$:[SRC]C,DSKD$:[OBJ]D.OBJ
 DSKD$:[OBJ]E,RESD$:[TMPSRC]F.OBJ,RESD$:[TEST]G.OBJ
 RESD$:[SRC.OBJ]H,RESD$:[COM]DOES_NOT_EXIST.OBJ
 Ctrl/Z

 %LINK-F-OPENIN, error opening DISK_RESD$:[SYS.][COM]DOES_NOT_EXIST.OBJ; as input
 -RMS-E-FNF, file not found
 $

In this example, using an options file with RMS_RELATED_CONTEXT set to NO, causes the
link operation to finish immediately because it determines quickly the missing file.

STACK=
STACK= — Specifies the size of the user-mode stack.

Format
STACK=number-of-pagelets

STACK=20 (default)

Format
number-of-pagelets

Specifies the size of the stack in pagelets (512-byte units).

Description
If you do not specify the STACK= option, the linker allocates 20 pagelets (512-byte units) for the
user-mode stack. Note that the stack is usually located at the lower end of the used P1 space and that
additional space for the user-mode stack is automatically allocated — growing into unused, lower P1
space, if needed, during program execution. The STACK= option is primarily used to set the stack
size for images that are linked with the /P0IMAGE qualifier, where the stack growth is limited by
the mapped images. Depending on the layout of the images, the stack can grow into a writable data

233

Chapter 10. LINK Command Reference

segment (on x86-64 and I64 systems) or image section (on Alpha and VAX systems) and corrupt
the data. The STACK= option may be specified only in a link operation that produces an executable
image. Shareable images share the stack with the executable image.

SYMBOL=
SYMBOL= — Directs the linker to define an absolute global symbol with the specified name and
assign it the specified value. You can use this option to specify a link-time constant.

Format
SYMBOL=symbol-name,symbol-value

Option Values
symbol-name

A character string up to 31 characters in length.

symbol-value

The value you want to assign to the symbol. An absolute global symbol has a fixed numeric value and
is therefore not relocatable. Thus, the value must be a number.

On x86-64 and I64 systems, the numeric value is a 64-bit value.

Description
The definition of a symbol specified by the SYMBOL= option constitutes the first definition of that
symbol, and it overrides subsequent definitions of the symbol in input object modules. In particular:

• If the symbol is defined as relocatable in an input object module,the linker ignores this definition,
uses the definition specified by the SYMBOL= option, and issues a warning message.

• If the symbol is defined as absolute in an input object module,the linker ignores this definition
and uses the definition specified by the SYMBOL= option; however, it does not issue a warning
message.

For more information about symbol resolution, see Chapter 2 (x86-64 and I64) and Chapter 6 (Alpha
and VAX).

Note

The SYMBOL= option cannot be used to define a symbol used in the SYMBOL_VECTOR= option
or the UNIVERSAL= option.

Example
$ LINK MY_PROG,SYS$INPUT/OPTIONS
SYMBOL=ITERATIONS,15
Ctrl/Z

In this example, the program MY_PROG contains a loop, which is performed ITERATIONS times. In
this link operation, for the image MY_PROG, the value of ITERATIONS, even if defined in an object
module, is set to 15.

234

Chapter 10. LINK Command Reference

SYMBOL_TABLE= (64-Bit Systems)
SYMBOL_TABLE= (64-Bit Systems) — Specifies whether the linker should include global symbols
in a symbol table file produced in a link operation in which a shareable image is created. By default,
the linker includes only universal symbols in a symbol table file associated with a shareable image.

Format

SYMBOL_TABLE=GLOBALS/UNIVERSALS

SYMBOL_TABLE=UNIVERSALS (default)

Option Values

GLOBALS

Specifies that the linker should include global symbols and universal symbols in the symbol table file
associated with the shareable image.

UNIVERSALS

Specifies that the linker should include only universal symbols in the symbol table file associated with
the shareable image.

Description

This option may be specified only in the creation of a shareable image. Note that the symbol table
file affected by this option cannot be used as input in a subsequent link operation but is intended to be
used with the OpenVMS System Dump Analyzer utility (SDA) as an aid to debugging.

Example
$ LINK/SHAREABLE/SYMBOL_TABLE MY_SHARE,SYS$INPUT/OPTIONS
GSMATCH=LEQUAL,1,1000
SYMBOL_VECTOR=(PROC1=PROCEDURE,-
 PROC2=PROCEDURE,-
 PROC4=PROCEDURE)
SYMBOL_TABLE=GLOBALS
Ctrl/Z

In the example, the symbols PROC1, PROC2, and PROC4 are declared as universal symbols.
Normally, these symbols would be the only symbols to appear in a symbol table file associated with
this shareable image. (The symbol table file duplicates the global symbol table of the shareable
image). However, because the SYMBOL_TABLE=GLOBALS option is specified, the linker also
puts all the global symbols in the shareable image into the symbol table file. You must specify
the /SYMBOL_TABLE qualifier to obtain a symbol table file.

SYMBOL_VECTOR= (64-Bit Systems)
SYMBOL_VECTOR= (64-Bit Systems) — Declares universal symbols in shareable images.

Format

SYMBOL_VECTOR=([alias/]name=entry-type[,...])

235

Chapter 10. LINK Command Reference

Option Values
alias

Optionally specifies an alias name for the symbol you want to declare universal. When specified, the
alias name appears in the global symbol table (GST) of the image and values associated with the name
specified in the symbol-name parameter appear in the symbol vector of the image.

Note that you can specify alias names only for symbol vector entries declared using the DATA or
PROCEDURE keywords. For more information about symbol vector entry types, see the following
table.

name

Specifies the name of the symbol or the name of a program section in the shareable image that you
want to declare universal.

entry-type

Specifies the type of the symbol vector entry. The following table lists the types of symbol vector
entries supported by the linker along with the keyword you use to specify them:

Keyword Function
DATA1 Creates a symbol vector entry for data (relocatable or constant). The

linker creates an entry for the symbol in the GST of the shareable
image.

PROCEDURE1 Creates a symbol vector entry for a procedure and creates an entry for
the symbol in the GST of the shareable image.

PRIVATE_DATA Creates a symbol vector entry for data; however, the linker does not
create an entry for the data in the GST of the shareable image. Thus,
the symbol is not available for other modules to link against.

PRIVATE_PROCEDURE Creates a symbol vector entry for a procedure;however, the linker
does not create an entry for the procedure in the GST of the shareable
image. Thus, the symbol is not available for other modules to link
against.

PSECT Creates a symbol vector entry for a program section and creates an
entry for the program section in the GST of the shareable image.2

SPARE Use this keyword to create a placeholder. SPARE allows you to
preserve the order of the symbol vector entries when you need to
create an upwardly compatible shareable image. The SPARE keyword
is used alone; it is not preceded by a symbol name and equal sign.

1You can specify an alias name for this type of symbol vector entry.
2Although not a symbol, the name of an exported program section is part of the GST, which implements the public interface of the shareable
image.

Description
The linker creates an entry in the GST of a shareable image for each name listed in the
SYMBOL_VECTOR= option, unless the symbol is declared private, the /NOGST qualifier is
specified, or the symbol is the internal name for an alias. Symbols and program sections that appear in
the GST of a shareable image are available for external modules to link against. For more information
about creating and using shareable images, see Chapter 4 (x86-64 and I64) and Chapter 8 (Alpha).

236

Chapter 10. LINK Command Reference

Example
$ LINK/SHAREABLE MY_SHARE,SYS$INPUT/OPTIONS
GSMATCH=LEQUAL,1,1000
SYMBOL_VECTOR=(MY_ADD=PROCEDURE,-
 MY_SUB=PROCEDURE,-
 SPARE,-
 SPARE,-
 MY_DATA=DATA,-
 MY_DATA_PSECT=PSECT)
Ctrl/Z

This example creates a symbol vector with entries for procedures, data, and a program section.

$ LINK/SHAREABLE MY_SHARE,SYS$INPUT/OPTIONS
GSMATCH=LEQUAL,1,1001
SYMBOL_VECTOR=(MY_ADD=PRIVATE_PROCEDURE,-
 DEPRECATED_SUB=PRIVATE_PROCEDURE,-
 MY_ADD/UPDATED_ADD=PROCEDURE,-
 MY_SUB/UPDATED_SUB=PROCEDURE,-
 MY_DATA=DATA,-
 MY_DATA_PSECT=PSECT)
Ctrl/Z

This example creates a symbol vector to be upward compatible with the shareable image from the
last example. Images linked against the old shareable image continue to work. For calling MY_ADD
and MY_SUB, they use the first and second entry. The old MY_ADD is still available, but no longer
public. The old MY_SUB is replaced by DEPRECATED_SUB. Newly linked images will always use
the third and fourth entry for MY_ADD and MY_SUB, the updated public interfaces. For MY_DATA
and MY_DATA_PSECT, all images use entries 5 and 6 to reference the unchanged data interfaces.

$ LINK/SHAREABLE MY_SHARE,SYS$INPUT/OPTIONS
GSMATCH=LEQUAL,1,200
CASE_SENSITIVE=YES
SYMBOL_VECTOR=(my_mul=PROCEDURE,-
 MY_MUL/my_mul=PROCEDURE,-
 my_div=PROCEDURE,-
 MY_DIV/my_div=PROCEDURE,-
 my_data=DATA,-
 MY_DATA/my_data=DATA)
CASE_SENSITIVE=NO
Ctrl/Z

This example creates a symbol vector or a shareable image with all the symbols in the GST as
lowercase and uppercase names. This is useful if applications built in the traditional way (compilers
uppercase global names) and built as in the Open Source environment (global names as-is) link
against that shareable image.

UNIVERSAL= (VAX Only)
UNIVERSAL= (VAX Only) — For VAX linking, declares a symbol in a shareable image as universal,
causing the linker to include it in the global symbol table of a shareable image.

Format
UNIVERSAL=symbol-name[,...]

Description
This option may be specified only in the creation of a shareable image.

For more information about declaring universal symbols, refer to Chapter 8.

237

Chapter 10. LINK Command Reference

Option Values
symbol-name

The name of the symbol or symbols you want to declare universal.

Example
$ LINK/SHAREABLE MY_SHARE,SYS$INPUT/OPTIONS
UNIVERSAL=MY_SYMBOL
Ctrl/Z

In this example, the linker includes the universal symbol MY_SYMBOL in the global symbol table of
the shareable image MY_SHARE.EXE.

238

Glossary
This glossary defines key terms for the OpenVMS Linker. The OpenVMS Linker is part of the
OpenVMS operating system which is available on x86-64, Integrity, Alpha, and VAX hardware
platforms. Certain terminology commonly used by the linker on OpenVMS Alpha and OpenVMS
VAX systems might be different on OpenVMS x86-64 and OpenVMS I64 systems.

based cluster An Alpha and VAX term. A cluster located at a base address using
the CLUSTER= option.

brief map Information produced by the linker when the /BRIEF qualifier is
specified with the /MAP qualifier. A brief map contains only a subset
of the default map.
See Also image map.

default map Information produced by the linker when the /MAP qualifier is
specified without the /BRIEF and /FULL qualifiers.
See Also image map.

demangler A compiler tool that translates mangled names back to their source-
name equivalents. Recent compilers are able to include demangling
information when they generate their object modules.
See Also mangled names.

ELF See Executable and Linkable Format (ELF).

Executable and Linkable
Format (ELF)

The object and image format as described in System V Application
Binary Interface. The ELF format is extensible; that is, it can contain
hardware and software extensions.

For I64 systems, a hardware extension is used as described in the
Intel Itanium Processor-specific Application Binary Interface.

For x86-64 systems, a hardware extension is used as described in
the System V Application Binary Interface, AMD64 Architecture
Processor Supplement.

In the OpenVMS x86-64 and I64 extensions, ELF is the object
and image file format for object and image binaries. Compilers,
assemblers, and other language processors whose output is used by
the OpenVMS Linker utility must produce object files that conform
to the OpenVMS extensions of the ELF specification.

executable image The primary type of image created from a link operation. This image
can be executed from the DCL command line.
See Also shareable image.

fix-up Executable and shareable images can have references to shareable
images. At link time, when symbols are resolved, the address values
are not known. They become visible when the image activator maps
the shareable image. At that time, the image activator "fixes up" the
references with the address values.

239

Glossary

full map Information produced by the linker when the /FULL qualifier is
specified with the /MAP qualifier. To tailor the full information, you
can use keywords to add or suppress specific information.
See Also image map.

function descriptor An I64 term. As defined in the VSI OpenVMS Calling Standard,
a function descriptor is the pairing of a code address and a global
pointer. With this information, a call to the function (or procedure)
can be made, and the called function can access its data by way of the
global pointer.

hard definition A symbol with compiler-supplied storage that is not in an overlaid
section.

header table An ELF term. The ELF format describes portions of the object and
image modules, as well as their attributes, using section and segment
headers. These headers are contained in two arrays of headers called
the Section Header Table (for section headers) and the Program
Header Table (for program segment headers). Only one header, the
main ELF header, is not listed in either of these tables. It is located at
the beginning of the module.
See Also Executable and Linkable Format (ELF).

image file A file containing binary code and data of a program for an OpenVMS
system; essentially, an image of what is in memory when the program
is started. Also called an image.

image header An Alpha and VAX term. The part of an executable or shareable
image that describes the contents of the image file (the image
sections). It is located at the beginning of the file.

image initialization The part of the link operation where the linker, after it resolves
references and obtains memory requirements, initializes the image by
filling it with the compiled binary code and data.

image map Information generated by the linker that describes the contents of the
image and the linking process. The image map helps you determine
programming and link-time errors, study the layout of the image in
virtual memory, and keep track of global symbols. You control the
information generated by the map by accepting the default map, or by
specifying either a brief or full map.
See Also default map, brief map, full map.

image optimization An I64 and Alpha term. Actions the linker takes to improve run-
time performance of an image it creates. For example, for OpenVMS
I64 images, the linker can optimize data references to the short data
segment.

image relocations Address suggested by the linker that image activator uses to relocate
the image.
See Also relocations.

linkage pair An Alpha term. A compiler-generated small data structure to
implement a call. A linkage pair consists of the required information
to make a call: the code address and the procedure descriptor address

240

Glossary

of a procedure. The linkage pair is not defined in the VSI OpenVMS
Calling Standard. It is an implementation detail used by compilers
and understood by the linker.

local function descriptor An I64 term. As defined in the VSI OpenVMS Calling Standard,
a function descriptor is the pairing of a code address and a global
pointer. With this information, a call to the function (or procedure)
can be made and the called function can access its data by way of
the global pointer. The calling standard requires a local function
descriptor for each call to another image. Local function descriptors
are set up by the linker. Although for each call a different local
function descriptor can be used, the linker sets up and re-uses one
local function descriptor per target function. The linker creates a fix-
up for each local function descriptor.
See Also fix-up, official function descriptor.

mangled names The process where some compilers create abbreviated symbol names
to implement language features or to use shortened, unique names.
For example, C++ compilers mangle symbol names to guarantee
unique names for overloaded functions.
See Also demangler.

object file A file produced from a source language by a language processor
(compiler, assembler, etc.) that contains one or more object modules
that serves as input to the linker.
See Also image file.

official function descriptor An I64 term. As defined in the VSI OpenVMS Calling Standard,
a function descriptor is the pairing of a code address and a
global pointer. With this information, a call to the function (or
procedure)can be made and the called function can access its data via
the global pointer. The linker sets up an official function descriptor
to implement calls to the function (or procedure). As such,an official
function descriptor is an entry point. An entry is unique: there can be
only one official function descriptor per function (or procedure).
See Also local function descriptor.

OpenVMS system A system running the VSI OpenVMS operating system. These
include OpenVMS x86-64, I64, Alpha, and VAX operating systems.
See Also system.

OpenVMS Alpha system An HPE Alpha system running the OpenVMS Alpha operating
system. Also referred to as Alpha system or Alpha.

OpenVMS I64 system An HPE Integrity server running the OpenVMS I64 operating
system. Also referred to as I64 system or I64.

OpenVMS VAX system An HPE VAX system running the OpenVMS VAX operating system.
Also referred to as VAX system or VAX.

OpenVMS x86-64 system A server running the OpenVMS x86-64 operating environment. Also
referred to as x86-64 system or x86-64.

OpenVMS 64-bit system An OpenVMS Alpha, OpenVMS I64, or OpenVMS x86-64.

241

Glossary

platform A generic term referring to all systems of a specific processor
architecture. For example, Intel Itanium.
See Also system.

privileged shareable image A shareable image containing privileged code. For example, user-
written system services allow user-mode programs to call routines
that can perform functions that require privileges. These services
are implemented in shareable images. Because of the presence of
privileged code, they are referred to as privileged shareable images.
See Also protected shareable image.

program section An area of memory that has a name, a length, and other attributes
describing the intended or permitted usage of that portion of memory.
Program sections are part of an object module. At link time, the user
can set or change some of the attributes so the linker combines them
in a manner that the user controls.

program segment An x86-64 and I64 term. A chunk of the image binary, usually data
or code. In general, everything that needs to be available to activate
and run the image.
See Also image header.

protected shareable image A shareable image created with the /PROTECT qualifier. Privileged
shareable images must be protected from user-mode and supervisor-
mode write access.
See Also privileged shareable image.

psect See program section.

relaxed definition See tentative definition.

relocations The linker combines object binaries (code and data) from different
object modules. The language processors do not know where their
modules will be located in virtual address space. Therefore, the
language processors generate information packets for the linker,
called relocations, so that code execution and data references will
work from any linker-chosen memory location. The linker applies
these relocations to data. Because the image activator can place an
image at any memory location, the linker produces relocations, called
"image relocations", to assist the image activator. Code is always
position independent, that is, it requires no relocations.

shareable image A collection of data and program services that is a product of a link
operation and is not directly executed from the DCL command line.
To make use of a shareable image, it must first be included as input in
a link operation that produces an executable image.
See Also executable image.

symbol resolution The process of resolving references to symbols whose definitions are
external to the module.

system The computer hardware; the server. Distinguish from the operating
system (for example, OpenVMS Alpha).
See Also platform.

242

Glossary

system image An Alpha and VAX term. A product of a link operation producing
an image that can be run as a standalone program, without operating
system support. Therefore, these images typically do not contain
image activation information. On OpenVMS x86-64 and I64 systems,
images always contain image activation information. As a result, the
x86-64 and I64 linkers do not create system images.
See Also executable image.

tentative definition A symbol definition without compiler supplied storage or storage in
overlaid sections. There can be tentative definitions for a symbol in
several modules. If no hard definition for the symbol is encountered,
one of the tentative definitions for that symbol is selected by the
linker to be the defining instance.
See Also hard definition.

243

Glossary

244

	Linker Utility Manual
	Table of Contents
	Preface
	1. About VSI
	2. Intended Audience
	3. Document Structure
	4. Related Documents
	5. VSI Encourages Your Comments
	6. How to Order Additional Documentation
	7. Typographical Conventions

	Chapter 1. Introduction
	1.1. Overview
	1.1.1. Terminology Used in this Manual
	1.1.2. Linker Overview
	1.1.3. Linker Functions
	1.1.4. Using the Linker

	1.2. Specifying Input to the Linker
	1.2.1. Object Modules as Linker Input Files
	1.2.2. Shareable Images as Linker Input Files
	1.2.2.1. Including a Shareable Image in a Link Operation
	1.2.2.2. Installing a Shareable Image

	1.2.3. Library Files as Linker Input Files
	1.2.3.1. Creating a Library File
	1.2.3.2. Including a Library File in a Link Operation

	1.2.4. Symbol Table Files as Linker Input Files (VAX Only)
	1.2.5. Options Files as Linker Input Files

	1.3. Specifying Linker Output Files
	1.3.1. Creating an Executable Image
	1.3.2. Creating a Shareable Image
	1.3.3. Creating a System Image (Alpha and VAX)
	1.3.4. Creating a Symbol Table File
	1.3.5. Creating a Map File
	1.3.6. Creating a Debug Symbol File (64-Bit Systems)

	1.4. Controlling a Link Operation
	1.4.1. Linker Qualifiers
	1.4.2. Link Options

	1.5. Linking for Different Architectures (Alpha and VAX)

	Chapter 2. Understanding Symbol Resolution (x86-64 and I64)
	2.1. Overview
	2.1.1. Types of Symbols
	2.1.1.1. Understanding Strong and Weak Symbols
	2.1.1.2. Group Symbols
	2.1.1.3. The C Extern Common Model
	2.1.1.4. Tentative Definitions in C
	2.1.1.5. Considerations for C Language Extensions

	2.1.2. Linker Symbol Resolution Processing

	2.2. Input File Processing for Symbol Resolution
	2.2.1. Processing Object Modules
	2.2.2. Processing Shareable Images
	2.2.2.1. Implicit Processing of Shareable Images

	2.2.3. Processing Library Files
	2.2.3.1. Identifying Library Files Using the /LIBRARY Qualifier
	2.2.3.2. Including Specific Modules from a Library Using the /﻿INCLUDE Qualifier
	2.2.3.3. Processing Default Libraries

	2.2.4. Processing Input Files Selectively

	2.3. Ensuring Correct Symbol Resolution
	2.3.1. Understanding Cluster Creation
	2.3.2. Controlling Cluster Creation
	2.3.2.1. Using the CLUSTER= Option to Control Clustering
	2.3.2.2. Using the COLLECT= Option to Control Clustering

	2.4. Resolving Symbols Defined in the OpenVMS Executive
	2.5. Processing Weak and Strong Global Symbols
	2.5.1. Overview of Weak and Strong Global Symbol Processing
	2.5.1.1. Strong Symbols
	2.5.1.2. VMS-Style Weak Symbols
	2.5.1.3. UNIX-Style Weak Symbols

	2.5.2. Strong and Weak Definitions
	2.5.3. Resolving Strong and Weak Symbols
	2.5.4. Creating and Using VMS-style Weak Symbols

	2.6. Processing VSI C++ Compiler-Generated UNIX-Style Weak and Group Symbols
	2.6.1. Processing Group Symbols
	2.6.2. VSI C++ Examples
	2.6.3. Compiler-Generated Symbols and Shareable Images

	2.7. Understanding and Fixing DIFTYPE and RELODIFTYPE Linker Conditions (I64 Only)

	Chapter 3. Understanding Image File Creation (x86-64 and I64)
	3.1. Overview
	3.2. Creating Sections
	3.2.1. Sections Created by The Linker
	3.2.1.1. Sections for Relaxed Symbol Definitions
	3.2.1.2. Sections Embedded in Code Segments (I64 Only)
	3.2.1.3. Short Data Sections (I64 Only)
	3.2.1.4. Section for the Symbol Vector
	3.2.1.5. Sections that Contain Unwind Data (I64 Only)

	3.3. Creating Segments
	3.3.1. Processing Clusters to Create Segments
	3.3.2. Combining Sections into Image Segments
	3.3.3. Traditional OpenVMS Image Attribute Terms and ELF Terms
	3.3.4. Processing Significant Section Attributes
	3.3.5. Allocating Memory for Segments
	3.3.6. Segment Attributes
	3.3.7. Controlling Segment Creation
	3.3.7.1. Modifying Section Attributes
	3.3.7.2. Alternate Way to Modify Section Attributes
	3.3.7.3. Manipulating Cluster Creation
	3.3.7.4. Isolating a Section into a Segment

	3.4. Initializing an Image on x86-64 and I64 Systems
	3.4.1. Handling of Initialized Overlaid Sections
	3.4.2. Writing the Binary Contents of Segments
	3.4.3. Other Image Segments
	3.4.3.1. Global Offset Table Segments (x86-64 Only)
	3.4.3.2. Unwind Segments (I64 Only)
	3.4.3.3. Short Data Segment (I64 Only)
	3.4.3.4. Signature Segment (I64 Only)
	3.4.3.5. Dynamic Segment

	3.4.4. Keeping the Size of Image Files Manageable
	3.4.4.1. Controlling Demand-Zero Image Segment Creation

	3.4.5. Creating ELF Sections in the Image File
	3.4.6. Writing the Main Output Files

	Chapter 4. Creating Shareable Images (x86-64 and I64)
	4.1. Overview of Creating Shareable Images on x86-64 and I64 Systems
	4.2. Declaring Universal Symbols in x86-64 and I64 Shareable Images
	4.2.1. Symbol Definitions Point to Shareable Image Sections
	4.2.2. Creating Upwardly Compatible Shareable Images
	4.2.3. Deleting Universal Symbols Without Disturbing Upward Compatibility
	4.2.4. Creating Run-Time Kits
	4.2.5. Specifying an Alias Name for a Universal Symbol

	4.3. Improving the Performance of Installed Shareable Images
	4.4. Linking User-Written System Services

	Chapter 5. Interpreting an Image Map File (x86-64 and I64)
	5.1. Overview of x86-64/I64 Linker Map
	5.2. Components of an x86-64/I64 Image Map File
	5.2.1. Object and Image Synopsis Section
	5.2.2. Cluster Synopsis Section
	5.2.3. Image Segment Synopsis Section
	5.2.4. Program Section Synopsis Section
	5.2.5. Symbol Cross-Reference Section
	5.2.6. Symbols By Value Section
	5.2.7. Image Synopsis Section
	5.2.8. Link Run Statistics Section

	5.3. Shortened Names with Footnotes in the Cross-Reference
	5.4. Translation Table for Mangled Names

	Chapter 6. Understanding Symbol Resolution (Alpha and VAX)
	6.1. Overview
	6.1.1. Types of Symbols
	6.1.2. Linker Symbol Resolution Processing

	6.2. Input File Processing for Symbol Resolution
	6.2.1. Processing Object Modules
	6.2.2. Processing Shareable Images
	6.2.3. Processing Library Files
	6.2.3.1. Identifying Library Files Using the /LIBRARY Qualifier
	6.2.3.2. Including Specific Modules from a Library Using the /﻿INCLUDE Qualifier
	6.2.3.3. Processing Default Libraries
	6.2.3.4. Open Systems Library Support

	6.2.4. Processing Input Files Selectively

	6.3. Ensuring Correct Symbol Resolution
	6.3.1. Understanding Cluster Creation
	6.3.2. Controlling Cluster Creation
	6.3.2.1. Using the CLUSTER= Option to Control Clustering
	6.3.2.2. Using the COLLECT= Option to Control Clustering

	6.4. Resolving Symbols Defined in the OpenVMS Executive
	6.5. Defining Weak and Strong Global Symbols

	Chapter 7. Understanding Image File Creation (Alpha and VAX)
	7.1. Overview of Creating Images on Alpha/﻿﻿VAX Systems
	7.2. Creating Program Sections (Alpha/VAX)
	7.3. Creating Image Sections
	7.3.1. Processing Clusters to Create Image Sections
	7.3.2. Combining Program Sections into Image Sections
	7.3.3. Processing Significant Program Section Attributes (Alpha/VAX)
	7.3.4. Allocating Memory for Image Sections
	7.3.5. Image Section Attributes
	7.3.6. Controlling Image Section Creation
	7.3.6.1. Modifying Program Section Attributes
	7.3.6.2. Manipulating Cluster Creation
	7.3.6.3. Isolating a Program Section into an Image Section

	7.4. Initializing an Image on Alpha/VAX Systems
	7.4.1. Writing the Binary Contents of Image Sections
	7.4.2. Fixing Up Addresses
	7.4.3. Keeping the Size of Image Files Manageable
	7.4.3.1. Controlling Demand-Zero Image Section Creation

	Chapter 8. Creating Shareable Images (Alpha and VAX)
	8.1. Overview of Creating Shareable Images on Alpha/VAX Systems
	8.2. Declaring Universal Symbols in VAX Shareable Images
	8.2.1. Creating Upwardly Compatible Shareable Images (VAX Only)
	8.2.1.1. Creating a Transfer Vector (VAX Only)
	8.2.1.2. Fixing the Location of the Transfer Vector in Your Image (VAX Only)

	8.2.2. Creating Based Shareable Images (VAX Linking Only)

	8.3. Declaring Universal Symbols in Alpha Shareable Images
	8.3.1. Symbol Definitions Point to Shareable Image Psects (Alpha Only)
	8.3.2. Creating Upwardly Compatible Shareable Images (Alpha Only)
	8.3.3. Deleting Universal Symbols Without Disturbing Upward Compatibility (Alpha Only)
	8.3.4. Creating Run-Time Kits (Alpha Only)
	8.3.5. Specifying an Alias Name for a Universal Symbol (Alpha Only)
	8.3.6. Improving the Performance of Installed Shareable Images (Alpha Only)

	Chapter 9. Interpreting an Image Map File (Alpha and VAX)
	9.1. Overview of Alpha/VAX Linker Map
	9.2. Components of an Image Map File (Alpha/VAX)
	9.2.1. Object Module Synopsis (Alpha/VAX)
	9.2.2. Module Relocatable Reference Synopsis (VAX Only)
	9.2.3. Image Section Synopsis Section (Alpha/VAX)
	9.2.4. Program Section Synopsis Section (Alpha/VAX)
	9.2.5. Symbols By Name Section (Alpha/VAX)
	9.2.6. Symbol Cross-Reference Section (Alpha/VAX)
	9.2.7. Symbols By Value Section (Alpha/VAX)
	9.2.8. Image Synopsis Section (Alpha/VAX)
	9.2.9. Link Run Statistics Section (Alpha/VAX)

	Chapter 10. LINK Command Reference
	10.1. LINK Command
	LINK

	10.2. Qualifier Descriptions
	/ALPHA (Alpha and VAX)
	/BASE_ADDRESS (x86-64 and I64)
	/BPAGE
	/BRIEF
	/CONTIGUOUS
	/CROSS_REFERENCE
	/DEBUG
	/DEMAND_ZERO (64-Bit Systems)
	/DNI (x86-64 and I64)
	/DSF (64-Bit Systems)
	/EXECUTABLE
	/FP_MODE (x86-64 and I64)
	/FULL
	/GST (64-Bit Systems)
	/HEADER (Alpha and VAX)
	/INCLUDE
	/INFORMATIONALS
	/LIBRARY
	/MAP
	/NATIVE_ONLY (I64 and Alpha)
	/OPTIONS
	/P0IMAGE
	/PROTECT
	/REPLACE (Alpha Only)
	/SECTION_BINDING (Alpha Only)
	/SEGMENT_ATTRIBUTE (x86-64 and I64)
	/SELECTIVE_SEARCH
	/SHAREABLE
	/SYMBOL_TABLE
	/SYSEXE (64-Bit Systems)
	/SYSLIB
	/SYSSHR
	/SYSTEM (Alpha and VAX)
	/THREADS_ENABLE
	/TRACE
	/USERLIBRARY
	/VAX (Alpha and VAX)

	10.3. Option Descriptions
	BASE= (VAX Only)
	CASE_SENSITIVE=
	CLUSTER=
	COLLECT=
	DZRO_MIN= (Alpha and VAX)
	GSMATCH=
	IDENTIFICATION=
	IOSEGMENT=
	ISD_MAX= (Alpha and VAX)
	NAME=
	PROTECT=
	PSECT_ATTRIBUTE=
	RMS_RELATED_CONTEXT=
	STACK=
	SYMBOL=
	SYMBOL_TABLE= (64-Bit Systems)
	SYMBOL_VECTOR= (64-Bit Systems)
	UNIVERSAL= (VAX Only)

	Glossary

